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Abstract

This paper exploits a stochastic representation of bivariate elliptical distri-

butions in order to obtain asymptotic results which are determined by the tail

behavior of the generator. Under certain specified assumptions, we present the

limiting distribution of componentwise maxima, the limiting upper copula, and a

bivariate version of the classical peaks over threshold result.
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1 Introduction

During the past few decades there has been an extensive amount of work on the under-

standing of the elliptical class of distributions. The first comprehensive work was given

by Fang et al. (1990). Primarily, these distributions allow an alternative and extension

of the normal law. Elliptical distributions are easily implemented and simulated (see,

1E-mail: aasimit@stats.uwo.ca
2Corresponding Author. Telephone: 519-661-3149; Fax: 519-661-3813; E-mail: jones@stats.uwo.ca

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/42629638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


for example, Breymann et al., 2003; Hodgson et al., 2002; Johnson, 1987; Li et al., 1997;

Manzotti et al., 2002), and they are useful for actuarial and financial applications.

Modelling of extreme or rare events is an important and well-researched topic. When

there are several random variables of interest, the dependence structure must be consid-

ered in investigating their extreme behavior. This is addressed in the growing literature

on multivariate extreme value theory (see, for example, Beirlant, et al., 2004).

The extreme behavior of elliptically distributed random vectors is closely related

to the asymptotic property of its generator (see Berman, 1992 and Hashorva, 2005).

Starting with the work of Sibuya (1960), recently many other papers have studied the

extreme behavior of elliptical random vectors, see for example Hult and Lindskog (2002),

Schmidt (2002), Abdous et al. (2005), Demarta and McNeil (2005), and Hashorva

(2005).

In this paper, we present some results on the extreme behavior of bivariate elliptical

distributions. These results hold under certain conditions on the tail behavior of the

generator. Specifically, we give the limiting distribution of componentwise maxima of

iid elliptical random vectors and find that it is exactly that obtained by Demarta and

McNeil (2005) for the special case of the Student t distribution. We then present results

concerning joint exceedances over a high threshold. We first provide a characterization

of the limiting upper copula. We then give a bivariate version of the classical peaks

over threshold result (see Balkema and de Haan, 1974, and Pickands, 1975). We close

the paper with an illustration.

2 Definitions and examples

Let Zi = (Xi, Yi), i = 1, 2, . . . be a sequence of independent random vectors with

common distribution F , and let

Mn = ( max
i=1,...,n

Xi, max
i=1,...,n

Yi).

That is, Mn is the vector of componentwise maxima of Z1, . . . ,Zn. If there exist

sequences of vectors of constants an, bn ∈ ℜ2 and a random vector Z with distribution

2



G and nondegenerate marginals such that anMn + bn converges weakly to Z, then G,

the limit distribution of normalized componentwise maxima, is said to be a bivariate

extreme value distribution. We then say that F is in the maximum domain of attraction

of G with normalizing vectors of constants an and bn and write F ∈ MDA(G). It is

useful to note that

lim
n→∞

F n(anx+ bn) = G(x) ⇔ lim
n→∞

n[1− F (anx+ bn)] = − logG(x), (1)

for all x such that G(x) > 0.

A characterization of the maximum domain of attraction of multivariate extreme

value distributions is given by Marshall and Olkin (1983). Necessary conditions for

(1) are that each marginal Fi of F is in the (univariate) MDA of the corresponding

component Gi of G. Classical results concerning univariate maxima are given by Gne-

denko (1943). In particular, if Fi ∈ MDA(Gi) then, by the Fisher-Tippett theorem, Gi

belongs to the type of the distribution

Hξ(x) =

 exp
{
−(1 + ξx)−1/ξ

}
, 1 + ξx > 0, ξ ̸= 0

exp{−e−x}, −∞ < x < ∞, ξ = 0
. (2)

Hξ is known as the generalized extreme value distribution. For α > 0, Φα(x) :=

H1/α(α(x − 1)) is the standard Fréchet distribution, Ψα(x) := H−1/α(α(x + 1)) is the

standard Weibull distribution, and Λ(x) := H0(x) is the standard Gumbel distribution.

It is well-known (see, for example, Embrechts et al., 1997) that Fi ∈ MDA(Hξ) if

and only if there exists a positive, measurable function a(·) such that

lim
t↑xFi

F̄i(t+ xa(t))

F̄i(t)
=

 (1 + ξx)−1/ξ, 1 + ξx > 0, if ξ ̸= 0

e−x, −∞ < x < ∞, if ξ = 0
, (3)

where xFi
is the right endpoint of the support of Fi. The right-hand side of (3) is the

survival function of the generalized Pareto distribution.

Returning to the bivariate setup, the bivariate extreme value distribution can be

represented as follows

G(x, y) = exp

{
log {G1(x)G2(y)}A

(
logG1(x)

log {G1(x)G2(y)}

)}
, (4)
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where A is the Pickands’ representation function, which is a convex function on [0, 1]

such that max(t, 1− t) ≤ A(t) ≤ 1 (see Pickands, 1981).

The dependence structure associated with the distribution of a random vector can be

characterized in terms of a copula. A two-dimensional copula is a bivariate distribution

function defined on [0, 1]2 with uniformly distributed marginals. Due to Sklar’s Theorem

(see Sklar, 1959), if F is a joint distribution function with continuous marginals F1 and

F2 respectively, then there exists a unique copula, C, given by

C(u, v) = F (F←1 (u), F←2 (v)), (5)

where h←(u) = inf{x : h(x) ≥ u} is the generalized inverse function. Similarly, the

survival copula is defined as the copula relative to the joint survival function and is

given by

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v). (6)

A more formal definition, properties and examples of copulas are given in Nelsen (1999).

Let (U, V ) be a random vector with copula C, and standard uniformly distributed

marginals. The upper copula at level u is defined as follows:

Cup
u (x, y) = Pr(U ≤ F←1,u(x), V ≤ F←2,u(y)|U > u, V > u), (7)

where F1,u(x) = Pr(U ≤ x|U > u, V > u) and F2,u(y) = Pr(V ≤ y|U > u, V > u).

A fundamental concept in Extreme Value Theory is that of regular variation, which

we now define.

Definition 1 A positive measurable function h defined on (0,∞) and satisfying

lim
t→∞

h(tx)

h(t)
= xα, x > 0, (8)

is said to be regularly varying at ∞ with index α ∈ ℜ, and we denote this by h ∈ RV ∞α .

For a more thorough background on regular variation see Bingham et al. (1987).

We now introduce the bivariate elliptical family of distribution, using the approach

of Abdous et al. (2005). For other properties see Fang et al. (1990).
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Definition 2 A bivariate elliptical random vector has the following stochastic repre-

sentation:

(X, Y )
d
= (µX , µY ) + (σXRDU1, σY ρRDU1 + σY

√
1− ρ2 R

√
1−D2 U2), (9)

where U1, U2, R, and D are mutually independent random variables, µX , µY ∈ ℜ are the

respective means of X and Y , σX , σY > 0 are the standard deviations, ρ is the Pearson

correlation between X and Y , and Pr(Ui = −1) = Pr(Ui = 1) = 1
2
, i = 1, 2. Both D

and R are positive random variables and D has probability density function

fD(s) =
2

π
√
1− s2

, 0 < s < 1. (10)

The random variable R is called the generator of the elliptical distributed random vector.

Throughout this paper it is assumed that µX = µY = 0 and σX = σY = 1. There-

fore, the joint distribution of X and Y is symmetric, and X and Y are identically

distributed. Our results can be extended to the more general setup.

The following examples give the generator pdfs for some well-known bivariate ellip-

tical distributions. We refer to these examples later in the paper. For more examples,

see Fang et al. (1990), who use a more classical representation. Abdous et al. (2005)

explain the relationship between the two representations.

Example 1 Pearson type VII

fR(x) =
2(N − 1)

m
x

(
1 +

x2

m

)−N
, x > 0, N > 1,m > 0.

When m = 1 and N = 3/2, we have the Cauchy distribution, and when N = (m+2)/2

we have the Student t distribution with m degrees of freedom.

Example 2 Logistic

fR(x) = 4 x
exp{−x2}

(1 + exp{−x2})2
, x > 0.

Example 3 Kotz

fR(x) =
2s

r−N/sΓ(N/s)
x2N−1 exp{−rx2s}, x > 0, N, r, s > 0.

When N = 1, s = 1, and r = 1/2, we have the normal distribution.
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3 Main results

3.1 Componentwise maxima

The limiting distribution of componentwise maxima of iid elliptical random vectors is

discussed in detail by Hashorva (2005). The following result shows that, in the bivariate

case where the generator R ∈ MDA(Φα), the limiting distribution of componentwise

maxima of iid bivariate elliptical random vectors is exactly that obtained by Demarta

and McNeil (2005) for the bivariate Student t distribution.

Proposition 1 Let (X,Y ) be a bivariate standardized elliptical random vector, and F

its distribution function. If R ∈ MDA(Φα), then (X, Y ) ∈ MDA(G), where G has

Fréchet marginals, Φα, and the Pickands’ representation is given by

A(t) = tT̄α+1

{
[(1−t

t
)

1
α − ρ]

√
α + 1√

1− ρ2

}
+ (1− t)T̄α+1

{
[( t

1−t)
1
α − ρ]

√
α + 1√

1− ρ2

}
, (11)

where T̄α is the survival function of a univariate Student t random variable with α

degrees of freedom.

Proof. First, we show that X ∈ MDA(Φα) whenever the generator R ∈ MDA(Φα).

The latter implies that F̄R ∈ RV ∞−α (see, for example, Embrechts et al., 1997). Therefore,

for x > 0, by conditioning on U1 in (9) we get

F̄X(x)

F̄R(x)
=

Pr(RDU1 > x)

F̄R(x)
=

1

2

Pr(RD > x)

F̄R(x)

=
1

2

∫ 1

0

F̄R(
x
u
)

F̄R(x)
fD(u) du → 1

2

∫ 1

0

uαfD(u) du as x → ∞, (12)

where the Dominated Convergence Theorem is used in the last step, since for x suffi-

ciently large, the integrand is bounded by uα−1/2fD(u). The result can also be obtained

from Lemma 2.2 of Hashorva (2005). Thus, X ∈ MDA(Φα), and the normalizing con-

stants for the maxima are given by an ∼ F←X (1 − n−1) and bn = 0 (see page 131 of

Embrechts et al. 1997). It is sufficient to verify convergence criterion (1):

n[1− Pr(X ≤ anx, Y ≤ any)]

= nPr(X > anx) + nPr(Y > any)− nPr(X > anx, Y > any). (13)
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Since X and Y ∈ MDA(Φα), the first two terms on the right hand side of (13) have

limits x−α and y−α, respectively, and from Theorem 1 of Abdous et al. (2005) we have

nPr(X > anx, Y > any)

=
Pr(X > anx, Y > any)

Pr(X > anx)
nF̄X(anx)

→ x−αT̄α+1

{(
y
x
− ρ

)√
α + 1√

1− ρ2

}
+ y−αT̄α+1


(

x
y
− ρ

)√
α + 1√

1− ρ2

 , (14)

as n → ∞.

Combining (1), (4), (13) and (14) completes the proof. �

3.2 Joint threshold exceedances

In financial applications, the limiting distribution of joint threshold exceedances is im-

portant in assessing the impact of extreme events affecting two or more variables of

interest. For example, the losses in value of several different assets that result from

a stock market crash can be viewed as dependent random variables. In analyzing the

overall effect of the crash on the value of a portfolio, the dependence structure of these

losses must be considered. If we are primarily interested in extreme cases, it is useful

to understand the behavior of joint exceedances over a high threshold.

When the threshold of interest for each asset is the Value at Risk (VaR), then

we are interested in exceedances above high quantiles. The joint distribution of these

exceedances is given by the upper copula.

The next result is motivated by the work of Breymann et al. (2003). There, an

empirical approach was given to illustrate that the limiting upper copula of a bivariate

elliptical random vector is well-fitted by the survival Clayton copula. If R ∈ MDA(Φα),

then under the assumption that the distribution function of the elliptical random vector

is continuous with strictly increasing marginals, we can obtain an asymptotic result

for the upper copula. This result is a direct implication of Theorem 2.3 of Juri and

Wüthrich (2003).
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Proposition 2 Let (X, Y ) be a standardized continuous elliptical random vector with

strictly increasing margins. If R ∈ MDA(Φα), then the limiting survival upper copula

is given by

lim
u↑1

Ĉup
u (x, y) = g−1(y)g

(
g−1(x)

g−1(y)

)
, (15)

where

g(x) =

xT̄α+1

(
(x1/α − ρ)

√
α+1√
1−ρ2

)
+ T̄α+1

(
(x−1/α − ρ)

√
α+1√
1−ρ2

)
2 T̄α+1

{
(1− ρ)

√
α+1
1−ρ2

} . (16)

Remarks:

1. Proposition 2 is useful because it expresses the limiting distribution in terms of

the two parameters α and ρ, which can be estimated using standard methods.

2. A comparison of contour plots (not shown) indicate that the copula in (15) is

indeed similar to the Clayton copula.

Proof. Letting x > 0, we only need to check the sufficient condition from Theorem 2.3

of Juri and Wüthrich (2003) as follows:

Ĉ(xv, v)

Ĉ(v, v)
=

Pr(X > F̄←X (xv), Y > F̄←X (v))

Pr(X > F̄←X (v), Y > F̄←X (v))

∼ Pr(X > x−1/αF̄←X (v), Y > F̄←X (v))

Pr(X > F̄←X (v), Y > F̄←X (v))

→ g(x), as v ↓ 0,

which gives the required result by applying Theorem 1 of Abdous et al. (2005) and the

result of de Haan (1970, see page 22). �
The main result of this paper establishes the joint distribution of the exceedances

over a high threshold when R ∈ MDA(Φα) and when R ∈ MDA(Λ). We first give

some preliminary results.

If a distribution function F ∈ MDA(Λ) with infinite support, then the auxiliary

function a(·) that satisfies (3) is absolutely continuous with density a′(·) such that

lim
t→∞

a(t)

t
= 0, lim

t→∞
a′(t) = 0, and lim

t→∞

a(t+ xa(t))

a(t)
= 1, (17)
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locally uniformly in x ∈ ℜ. For further details see Resnick (1987, p. 40).

The following lemma will be useful in proving the main result.

Lemma 1 If F ∈ MDA(Λ) with xF = ∞ and auxiliary function a(·), then, provided

that h(t) = o(a(t)), the following holds for any x:

lim
t→∞

F̄ (t+ xa(t) + h(t))

F̄ (t)
= exp{−x}. (18)

Proof. Let h(t) = o(a(t)). Then it is sufficient to verify that F̄ (t+ h(t)) ∼ F̄ (t). Using

a representation of Von Mises functions (see Resnick, 1987, p. 40) we need only prove

that

lim
t→∞

∫ t+h(t)

t

1

a(u)
du = 0. (19)

Let ε, δ > 0, then since a(·) is positive, for t sufficiently large we get∫ t+h(t)

t

1

a(u)
du ≤

∫ t+a(t)ε

t

1

a(u)
du =

∫ ε

0

a(t)

a(t+ za(t))
dz < (1 + δ)ε,

where the last inequality is implied by (17), which completes the proof. �

Theorem 1 Let (X,Y ) be a bivariate standard elliptical random vector with −1<ρ<1.

(a) Let R ∈ MDA(Φα). Then whenever x, y > 0,

lim
t→∞

Pr(X > t+ xa(t), Y > t+ ya(t)|X > t, Y > t) (20)

=

(
1 + x

α

)−α
T̄α+1

{(
α+y
α+x

− ρ
)√

α+1
1−ρ2

}
+
(
1 + y

α

)−α
T̄α+1

{(
α+x
α+y

− ρ
)√

α+1
1−ρ2

}
2 T̄α+1

{
(1− ρ)

√
α+1
1−ρ2

} ,

where a(·) is defined by (3).

(b) Let R ∈ MDA(Λ) with auxiliary function a(·) and infinite right endpoint. If

a ∈ RV ∞α , α ≤ 1, then whenever x, y > 0,

lim
t→∞

Pr(X > t+ xa(t), Y > t+ ya(t)|X > t, Y > t) = exp

{
−x+ y

2
Kα−1(ρ)

}
,

(21)

where K(ρ) =
√
(ρ+ 1)/2.
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If ρ = 1, then

lim
t→∞

Pr(X > t+ xa(t), Y > t+ xa(t)|X > t, Y > t) = exp{−max(x, y)}.

Remarks:

1. When ρ = −1, there exists a t0 > 0 such that for all t > t0, Pr(X > t, Y > t) = 0.

Since it does not make sense to condition on the event {X > t, Y > t} in this

case, an equivalent result cannot be obtained.

2. In the Gaussian case, α = −1 and (21) coincides with the result of Juri and

Wüthrich (2003).

Proof. (a) If R ∈ MDA(Φα), then a(t) ∼ t
α
(see p. 159 Embrechts et al. 1997). Then

the proof of (a) follows from Theorem 1 of Abdous et al. (2005).

(b) Let x, y ≥ 0, and we assume that ρ ∈ [0, 1) (the ρ ∈ (−1, 0) case follows the

same reasoning). We now prove that when t → ∞ the following holds:

Pr(X > t+xa(t), Y > t+xa(t))

F̄R

(
t

K(ρ)

) ∼ 2
a(t)

t

K2−α(ρ)√
1−K2(ρ)

exp

{
−Kα−1(ρ)

x+y

2

}
. (22)

By conditioning on U1, U2 and D, from Definition 2, for t sufficiently large, we obtain

Pr(X > t+ xa(t), Y > t+ xa(t))

=
1

2π

[ ∫ 1

0

F̄R

(
max

{
t+ a(t)x

u
,
t+ a(t)y

f(u, ρ)

})
1√

1− u2
du

+

∫ 1

√
1−ρ2

F̄R

(
t+ a(t)x

g(u, ρ)

)
1√

1− u2
du

]
, (23)

where f(u, ρ) = ρu+
√

1− ρ2
√
1− u2 and g(u, ρ) = ρu−

√
1− ρ2

√
1− u2. Note that

we have used the fact that g(u, ρ) < 0 when u <
√
1− ρ2. Some simple algebraic

computations allow one to express (23) as

Pr(X > t+xa(t), Y > t+xa(t)) =
1

2π
{I1(t, x, y, ρ)+ I2(t, x, y, ρ)+ I3(t, x, y, ρ)}, (24)
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where the three integrals I1, I2, and I3 are

I1(t, x, y, ρ) =

∫ u(t,x,y,ρ)

0

F̄R

(
t+ a(t)x

u

)
1√

1− u2
du, (25)

I2(t, x, y, ρ) =

∫ 1

u(t,x,y,ρ)

F̄R

(
t+ a(t)y

f(u, ρ)

)
1√

1− u2
du, (26)

I3(t, x, y, ρ) =

∫ 1

√
1−ρ2

F̄R

(
t+ a(t)y

g(u, ρ)

)
1√

1− u2
du, (27)

and

u(t, x, y, ρ) =


(

t+a(t)y
t+a(t)x

)2

− 2ρ
(

t+a(t)y
t+a(t)x

)
+ 1

1− ρ2


−1/2

. (28)

We now have to determine the rates of convergence for each of the three integrals

defined in (25), (26), and (27). First, we establish that

I1(t, x, y, ρ) ∼
K2−α(ρ)√
1−K2(ρ)

a(t)

t
F̄R

(
t

K(ρ)

)
exp

{
−Kα−1(ρ)

x+ y

2

}
, as t → ∞. (29)

The change of variable u(t, x, y, ρ)/u = 1 + za(t)/t in (25) gives

I1(t, x, y, ρ) =
a(t)

t
u(t, x, y, ρ)×∫ ∞

0

F̄R

(
t+ (x+ z)a(t) + xza2(t)/t

u(t, x, y, ρ)

)
(1 + za(t)/t)−2√
1−

(
u(t,x,y,ρ)
1+za(t)/t

)2
dz. (30)

Using Lemma 1 and the fact that a(·) ∈ RV ∞α , straightforward computations yield that

F̄R

(
t+(x+z)a(t)+xza2(t)/t

u(t,x,y,ρ)

)
F̄R(t/K(ρ))

∼ exp

{
−Kα−1(ρ)

(
z +

x+ y

2

)}
, as t → ∞. (31)

Since e−z < 1/z(z+1) for z ≥ 2 the integral in (30) is bounded, and the Dominated

Convergence Theorem together with (17), (28), and (31) leads to (29).

In a similar manner asymptotic equivalences for I2 and I3 can be found. The one-

to-one mapping u 7→ f(z, ρ) reduces (26) to

I2(t, x, y, ρ) =

∫ z(t,x,y,ρ)

ρ

F̄R

(
t+ a(t)y

z

)
1√

1− u2
du, (32)

where

z(t, x, y, ρ) = f(u(t, x, y, ρ), ρ). (33)
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The change of variable z − ρ = (z(t, x, y, ρ)− ρ)/ (1 + ςa(t)/t) in (32) yields

I2(t, x, y, ρ) = (z(t, x, y, ρ)− ρ)
a(t)

t
×∫ ∞

0

F̄R

(
t+ (y + ς)a(t) + yςa2(t)/t

z(t, x, y, ρ) + ρςa(t)/t

)
(1 + ςa(t)/t)−2√

1−
(

z(t,x,y,ρ)+ρς
a(t)
t

1+ςa(t)/t

)2
dς, (34)

and straightforward computations together with Lemma 1 and the Dominated Conver-

gence Theorem give

I2(t, x, y, ρ) ∼
K2−α(ρ)√
1−K2(ρ)

a(t)

t
F̄R

(
t

K(ρ)

)
exp

{
−Kα−1(ρ)

x+ y

2

}
, as t → ∞. (35)

The change of variable z = g(u, ρ) in (27) yields

I3(t, x, y, ρ) =

∫ ρ

0

F̄R

(
t+ a(t)y

z

)
1√

1− z2
dz. (36)

In a similar way as for the previous two integrals, the rate of convergence for I3 can be

found when ρ > 0:

I3(t, x, y, ρ) ∼
ρ2−α√
1− ρ2

a(t)

t
F̄R

(
t

ρ

)
exp

{
−ρα−1y

}
, as t → ∞, (37)

and by (27) I3 ≡ 0 when ρ = 0. Moreover, when ρ ≥ 0 it follows that ρ < K(ρ), and

since F̄R is rapidly varying (see, for example, Embrechts, et al. 1997, p. 140) and using

(37) we get

I3(t, x, y, ρ) = o

(
F̄R

(
t

K(ρ)

)
a(t)

t

)
. (38)

Combining (24), (29), (35) and (38) gives (22) and (21), which completes the proof. �
The Pearson type VII generator given in Example 1 is in the maximum domain

of attraction of Fréchet distribution with α = 2(N − 1), and the generators given in

Examples 2 and 3 are in the maximum domain of attraction of the Gumbel distribution.

The auxiliary functions a(·) are regularly varying with indices -1 and 1 − 2s for the

Logistic and Kotz cases, respectively.

4 Illustration

In this section, we explore the sensitivity of the probabilities obtained from the limit

distribution given by (20) in Theorem 1 to the values of α and ρ, and we illustrate how
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the theorem can be used in analyzing the joint distribution of returns on two stocks in

the presence of an extreme event such as a market crash.

Table 1: Probabilities from equation (20) with x = 1 and y = 3 for various α and ρ

α\ρ −0.9 −0.7 −0.2 0 0.1 0.5 0.8

3 0.2155 0.2145 0.2110 0.2089 0.2076 0.1994 0.1835

4 0.1971 0.1962 0.1929 0.1910 0.1898 0.1820 0.1664

5 0.1856 0.1847 0.1817 0.1799 0.1788 0.1714 0.1563

Table 1 shows joint probabilities obtained from equation (20) with x = 1 and y = 3

for several values of α and ρ. We observe that these probabilities are sensitive to the

value of α, while the value of ρ does not have an important impact.

Table 2: Approximate Values of Pr(X > 0.25 + x, Y > 0.25 + y | X > 0.25, Y > 0.25)

x y Probability

0.1 0.1 0.2603

0.1 0.2 0.1456

0.1 0.3 0.0826

0.2 0.2 0.0953

0.2 0.3 0.0606

0.3 0.3 0.0427

We now illustrate the used of Theorem 1 in analyzing the conditional joint distri-

bution of returns on two stocks when both are subject to large losses. Let X represent

minus the daily log return for a given stock, and let Y represent minus the daily log

return for another stock. Assume that (X, Y ) is elliptically distributed with mean vec-

tor (0, 0), standard deviation vector (0.01, 0.01), α = 4 and ρ = 0.5. These parameters

were chosen arbitrarily, but are intended to be plausible. We are interested in the con-

ditional distribution of (X, Y ) given that a significant loss as occurred on both stocks

(perhaps due to a market crash). Specifically, we condition on the event that minus the

13



log return on both stocks exceeds 0.25. That is, both stocks have decreased in value by

at least (approximately) 22 percent. Table 2 shows several probabilities obtained from

the conditional distribution of interest using the result of Theorem 1 (a). Calculations

such as this allow one to correctly capture the impact of the dependence structure when

analyzing the severity investment losses under extreme market conditions.
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