
Asimit, A. V., Li, D. & Peng, L. (2010). Pitfalls in using Weibull tailed distributions. Journal of 

Statistical Planning and Inference, 140(7), pp. 2018-2024. doi: 10.1016/j.jspi.2010.01.039 

City Research Online

Original citation: Asimit, A. V., Li, D. & Peng, L. (2010). Pitfalls in using Weibull tailed distributions. 

Journal of Statistical Planning and Inference, 140(7), pp. 2018-2024. doi: 

10.1016/j.jspi.2010.01.039 

Permanent City Research Online URL: http://openaccess.city.ac.uk/13131/

 

Copyright & reuse

City University London has developed City Research Online so that its users may access the 

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are 

retained by the individual author(s) and/ or other copyright holders.  All material in City Research 

Online is checked for eligibility for copyright before being made available in the live archive. URLs 

from City Research Online may be freely distributed and linked to from other web pages. 

Versions of research

The version in City Research Online may differ from the final published version. Users are advised 

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact 

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/42629629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Pitfalls in using Weibull tailed distributions

Alexandru V. Asimit1, Deyuan Li2∗ and Liang Peng3

1School of Mathematics, The University of Manchester, UK

2School of Management, Fudan University, China

3School of Mathematics, Georgia Institute of Technology, USA

October 25, 2009

Abstract

By assuming that the underlying distribution belongs to the domain of attraction of an

extreme value distribution, one can extrapolate the data to a far tail region so that a rare event

can be predicted. However, when the distribution is in the domain of attraction of a Gumbel

distribution, the extrapolation is quite limited generally in comparison with a heavy tailed

distribution. In view of this drawback, a Weibull tailed distribution has been studied recently.

Some methods for choosing the sample fraction in estimating the Weibull tail coefficient and

some bias reduction estimators have been proposed in the literature. In this paper, we show

that the theoretical optimal sample fraction does not exist and a bias reduction estimator does

not always produce a smaller mean squared error than a biased estimator. These are different

from using a heavy tailed distribution. Further we propose a refined class of Weibull tailed

distributions which are more useful in estimating high quantiles and extreme tail probabilities.

KEY WORDS: Asymptotic mean squared error, extreme tail probability, high quantile,

regular variation, Weibull tail coefficient

1 Introduction

Suppose X1, · · · , Xn are independent and identically distributed random variables with distribution

function F , which has a Weibull tail coefficient θ. That is,

1 − F (x) = exp{−H(x)} with H−(x) = inf{t : H(t) ≥ x)} = xθl(x), (1.1)

∗Corresponding address: School of Management, Fudan University, Room 736, Siyuan Building, 670 Guoshun

Road, 200433 Shanghai, P.R. China. E-mail address: deyuanli@fudan.edu.cn (D. Li).
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where l(x) is a slowly varying function at infinity, i.e.,

lim
t→∞

l(tx)/l(t) = 1 for all x > 0.

This class of distributions includes some well-known light tailed distributions such as Weibull, Gaus-

sian, gamma and logistic. Due to the applications of these distributions in insurance, estimating θ

has attracted much attention recently. Accurate estimate of the probabilities associated with the

extreme events contributes to a good understanding of the risk taken by the insurance company.

In addition, estimates of certain risk measures can be obtained, such as the Value-at-Risk, which

is a quantile function. This may be quite useful for risk management purposes, as it allows one

to determine high quantiles of the insurance company losses and therefore enables one to obtain

capital amounts that will be adequate with high probability.

There exist various estimators for θ in the literature; see Beirlant, Bouquiaux and Werker

(2006), Gardes and Girard (2008), Girard (2004). A comparison study is given in Gardes and

Girard (2006). Since the condition (1.1) is made asymptotically, each of these proposed estimators

for θ can only involve a fraction of upper order statistics. How to choose this fraction plays an

important role in practice. Motivated by similar studies on estimating extreme value index in

Matthys and Beirlant (2003) and Mattys, Delafosse, Guillou and Beirlant (2004), Diebolt, Gardes,

Girard and Guillou (2008a,b) proposed ways to choose the optimal fraction in estimating both θ

and high quantiles of F . Moreover some bias reduction estimators for both θ and high quantiles

are proposed in Diebolt, Gardes, Girard and Guillou (2008a,b), and Dierckx, Beirlant, de Waal and

Guillou (2009).

It is known that there exists a theoretical optimal choice of the sample fraction in estimating the

tail index of a heavy tailed distribution when the second order regular variation index is negative.

In addition, a bias reduced estimator for the tail index produces a smaller order of asymptotic mean

squared error than the corresponding biased tail index estimator theoretically. Since the estimation

for the Weibull tail coefficient is partly motivated by the similar study in estimating the tail index

of a heavy tailed distribution, one may conjecture that the bias reduction for estimating θ is always

better. Although the above mentioned papers are in favor of bias-reduction estimation for θ, we

show that bias reduction estimation is not always better in the sense of asymptotic mean squared

error and the choice of sample fraction for a bias reduction estimator of θ becomes practically

difficult. That is, a bias reduction estimator for θ is not particularly useful both theoretically and

practically. These observations are in contrast to the case of tail index estimation. Finally, we

propose a refined class of Weibull tailed distributions which are more useful in estimating high

quantiles and extreme tail distributions.
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We organize this paper as follows. Section 2 presents our main findings. A simulation study is

given in Section 3. Some conclusions are given in Section 4.

2 Main results

Before giving our statements, we list some known estimators for θ and their asymptotic results.

Suppose X1, · · · , Xn are independent and identically distributed random variables with distri-

bution function F . Let Xn,1 ≤ · · · ≤ Xn,n denote the order statistics of X1, · · · , Xn. Throughout

we assume that F satisfies (1.1). Here we focus on the following estimators proposed in Diebolt,

Gardes, Girard and Guillou (2008) and Dierckx, Beirlant, de Waal and Guillou (2009), respectively:

θ̂H(k) =
k−1

∑k
i=1 log(Xn,n−i+1/Xn,n−k)

k−1
∑k

i=1 log log((n + 1)/i) − log log((n + 1)/(k + 1))
,

θ̂R,1(k) = k−1
k

∑

i=1

i log(n/i) log(Xn,n−i+1/Xn,n−i),

θ̂R,2(k) = k−1
k

∑

i=1

i log(n/i) log(Xn,n−i+1/Xn,n−i)−
∑k

j=1(aj − ā)j log(n/j) log(Xn,n−j+1/Xn,n−j)
∑k

j=1(aj − ā)2
ā,

where aj = ( log(n/j)
log(n/k))

−1, ā = k−1
∑k

j=1 aj , and

θ̂M (k) = {1 −
∑k

j=1 log{m̂(Xn,n−j)/m̂(Xn,n−k−1)}
∑k

j=1 log(Xn,n−j/Xn,n−k−1)
}−1,

where m̂(Xn,n−k) = k−1
∑k

i=1 Xn,n−i+1 − Xn,n−k. Note that θ̂R,2(k) and θ̂M (k) are bias-reduced

estimators for θ. Here we want to compare these two bias-reduced estimators with the possibly

biased estimators θ̂H(k) and θ̂R,1(k) in terms of asymptotic mean squared errors.

In order to derive the asymptotic limits of the above estimators, one needs the following stricter

condition than (1.1): there exist ρ ≤ 0 and b(x) → 0 (as x → ∞) such that

lim
x→∞

b−1(x) log
l(xy)

l(x)
=

yρ − 1

ρ
for all y > 0. (2.1)

From now on we assume that (1.1) and (2.1) hold and k = k(n) → ∞ and k/n → 0 as n → ∞.

Result 1 (Theorem 1 of Gardes and Girard (2008)). If

k1/2b(log n) → λ ∈ (−∞,∞) and k1/2/ log n → 0, (2.2)

then
√

k{θ̂H(k) − θ} d→ N(λ, θ2).
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Result 2 (Theorem 2.2 of Diebolt, Gardes, Girard and Guillou (2008a)). If

|kb(k)| → ∞, k1/2b(log(n/k)) → λ ∈ (−∞,∞) and log k/ log n → 0 when λ = 0, (2.3)

then
√

k{θ̂R,1(k) − θ − b(log(n/k))k−1
k

∑

j=1

a−ρ
j } d→ N(0, θ2).

Result 3 (Theorem 3.1 of Diebolt, Gardes, Girard and Guillou (2008a)). If

|kb(k)| → ∞,
√

k
log(n/k)b(log(n/k)) → Λ ∈ (−∞,∞) and,

log2 k
log(n/k) → 0 and

√
k

log(n/k) → ∞ when Λ = 0,
(2.4)

then √
k

log(n/k)
{θ̂R,2(k) − θ} d→ N(0, θ2).

Result 4 (Theorem 2.3 of Dierckx, Beirlant, de Waal and Guillou (2009)). If x−ρ|b(x)|
is a normalized slowly varying function and

k1/2/ log(n/k) → ∞ and log2 k/ log n → 0, (2.5)

then √
k

log(n/k)
{θ̂M (k) − θ − (1 + ρ)b(log(n/k)) − θ − θ2

log(n/k)
} d→ N(0, θ2).

Now, using the above results, we can articulate our statements as follows.

Statement 1: no theoretical optimal k. Recently, Diebolt, Gardes, Girard and Guillou

(2008a) proposed to choose k to minimize the following estimated asymptotic mean squared error

ˆAMSE(k) = k−1θ̂2
R,1(k) + {

∑k
j=1(aj − ā)j log(n/j) log(Xn,n−j+1/Xn,n−j)

∑k
j=1(aj − ā)2

k−1
k

∑

j=1

aj}2. (2.6)

Now the question is whether the minimum exists. Note that the theoretical asymptotic mean

square error of θ̂R,1(k) is AMSE(k) = k−1θ2 + {b(log(n/k))k−1
∑k

j=1 a−ρ
j }2. Since b is a regular

variation with index ρ, (2.3) implies that lim supn→∞

√
k{log(n/k)}ρ−ǫ < ∞ for any ǫ > 0, i.e.,

√
k = O({log(n/k)}−ρ+ǫ) = O({log n}−ρ+ǫ). Thus,

log k = o(k
1

2ǫ−2ρ ) = o(log n),

which implies that







limn→∞ log(n/k)/ log n = 1 − limn→∞ log k/ log n = 1

limn→∞ b(log(n/k))/b(log(n)) = limn→∞( log(n/k)
log n )ρ = 1.

(2.7)
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Write aj = (1 − log(j/k)/ log(n/k))−1. For any t > 0, we have

1 ≥ k−1
∑k

i=1 a−ρ
i

≥ k−1
∑k

i=1(1 − log(i/k)
t )ρ

→
∫ 1
0 (1 − log x

t )ρ dx.

Taking t → ∞, we have

lim
k→∞

k−1
k

∑

i=1

a−ρ
i = 1. (2.8)

By (2.7) and (2.8), we have

AMSE(k) = {k−1θ2 + b2(log n)}{1 + o(1)}.

Apparently the minimum of AMSE(k) is achieved when k = n. Hence, the theoretical optimal k in

terms of minimizing the asymptotic mean squared error of θ̂R,1 does not exist at all. So, the method

in choosing k in Diebolt, Gardes, Girard and Guillou (2008a) is not mathematically sound. Similar

thing happens for the way of choosing k in estimating high quantiles proposed in Diebolt, Gardes,

Girard and Guillou (2008b). These are not surprising since similar study exists in estimating an

extreme value index γ, where the case of γ = 0 is excluded in considering the optimal choice of

sample fraction.

Statement 2: no need to reduce bias when
√

kb(log(n/k)) → λ ∈ (−∞,∞). It follows

from Results 1-4 that biased estimators θ̂H(k) and θ̂R,1(k) have a faster rate of convergence than

the bias-reduced estimators θ̂R,2(k) and θ̂M (k). Hence, when one employs the same k such that
√

kb(log(n/k)) → λ ∈ (−∞,∞), the biased estimators have a smaller order of mean squared error

than the bias-reduced estimators. This is different from the study for a heavy tailed distribution.

Statement 3: bias reduction is useful only when a large sample fraction is employed.

Now let’s compare the bias estimator θ̂R,1(m) with the bias reduction estimator θ̂R,2(k) when m

and k satisfy (2.3) with λ 6= 0 and (2.4) with Λ 6= 0, respectively. By (2.7) and (2.8), Results 2 and

3 imply that the asymptotic mean squared errors for θ̂R,1(m) and θ̂R,2(k) are b2(log n){1 + θ2λ−2}
and b2(log n)θ2Λ−2, respectively. Hence, θ̂R,2(k) has a smaller asymptotic mean squared error than

θ̂R,1(m) only when Λ2 ≥ λ2θ2/(λ2 + θ2). That is, when the sample fraction k in the bias-reduced

estimator θ̂R,2(k) is not large enough, i.e., Λ is not large enough, the bias-reduced estimator θ̂R,2(k)

has a larger asymptotic mean squared error than the biased estimator θ̂R,1(m). On the other hand,

how large a sample fraction in a bias-reduced estimator should be chosen becomes practically

difficult. This is different from tail index estimation, where a bias reduction tail index estimator

has a smaller order of asymptotic mean squared error than a biased one.
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Statement 4: not enough for estimating an extreme tail probability. It is known

that heavy tailed distributions can be employed to estimate both high quantiles and extreme tail

probabilities. Although model (1.1) has been employed to estimating high quantiles, it is doubtful

that it can be used to estimate an extreme tail probability. Suppose

1 − F (x) ∼ xα exp{−cx1/θ} = exp{−cx1/θ + α log x}

as x → ∞, which satisfies (1.1). As in Diebolt, Gardes, Girard and Guillou (2008b), estimating a

high quantile for (1.1) is based on the inverse function of exp{−cx1/θ} and estimators for c and θ.

However, the factor xα is not negligible in estimating an extreme tail probability, i.e., estimating

1 − F (xn) where xn → ∞ as n → ∞. Therefore a more refined model than (1.1) is needed for

estimating an extreme tail probability. A possible class is

1 − F (x) = cxα exp{−dx1/θ}{1 + O(x−β)} (2.9)

as x → ∞, where c > 0, α ∈ R, d > 0, β > 0 and θ > 0. Note that the class of the distributions

satisfying (2.9) is a sub-class of Weibull tailed distributions defined in (1.1). One example which

is Weibull tailed distribution but not satisfying (2.9) is 1 − F (x) = exp{−xα(log x)β} for some

α, β > 0 and large x.

Since Theorem 1.2.6 of de Haan and Ferreira (2006) implies that (2.9) is in the domain of

attraction of the Gumbel distribution, one may wonder how useful (2.9) is in estimating high

quantiles in comparison with the way developed in extreme value theory.

Statement 5: model (2.9) is useful in estimating very high quantiles. Let’s consider

estimating the high quantile xp defined by p = 1−F (xp), where p = p(n) → 0. A proposed estimator

based on a Weibull tailed distribution in the literature is x̃p(k) = Xn,n−k+1{ log(1/p)
log(n/k)}θ̂H(k) and it

follows from Diebolt, Gardes, Girard and Guillou (2008b) that

x̃p(k)/xp − 1 = O(log(
log(1/p)

log(n/k)
)/
√

k) (2.10)

when

(2.9) holds and
√

k
log log n

log n
→ λ < ∞, lim inf

n→∞

log(1/p)

log(n/k)
> 1. (2.11)

Since (2.9) implies that F is in the domain of attraction of the Gumbel distribution, xp can be

estimated by some known methods in extreme value theory; see Section 4.3 of de Haan and Ferreira

(2006). Since the extreme value index is zero, we can estimate xp by

x̂p(k) = Xn,n−k + log(
k

np
)Xn,n−kk

−1
k

∑

i=1

log
Xn,n−i+1

Xn,n−k
,

6



which is slightly different from the estimator for xp given in Section 4.3.1 of de Haan and Ferreira

(2006). Denote the inverse function of 1/(1 − F (t)) by U(t). Then (2.9) implies that

U(x) = d−θ(log x)θ{1 + a1
log log x

log x + a2
1

log x + a3
(log log x)2

(log x)2

+a4
log log x
(log x)2

+ a5
1

(log x)2
+ O

( (log log x)2

(log x)3
+ (log x)−βθ−1

)

}
(2.12)

as x → ∞, where

a1 = αθ2, a2 = θ log c − αθ2 log d, a3 = −1 − θ

2θ
a2

1,

a4 = αθa1 −
a1a2(1 − θ)

θ
and a5 = αθa2 −

1 − θ

2θ
a2

2.

It follows from (2.12) that

U(tx) = d−θ(log t)θ{1 + a1
log log t

log t + a2
1

log t + a3
(log log t)2

(log t)2

+a4
log log t
(log t)2

+ a5
1

(log t)2
+ log x

(

a1−a2+θa2

(log t)2
+ a1(θ−1) log log t

(log t)2
+ θ

log t

)

+ (log x)2

2
θ(θ−1)
(log t)2

+ O( (log log t)2

(log t)3
+ (log t)−βθ−1)}

(2.13)

for any x > 0 as t → ∞. Hence, when βθ > 1 and θ 6= 1,

lim
t→∞

U(tx)−U(t)
a(t) − log x

A(t)
=

(log x)2

2

for x > 0, where

a(t) = d−θ(log t)θ{a1 − a2 + θa2

(log t)2
+

a1(θ − 1) log log t

(log t)2
+

θ

log t
}

and A(t) = d−θθ(θ−1)(log t)θ−2/a(t). Similar to the proof of Theorem 4.3.1 of de Haan and Ferreira

(2006), we have

x̂p(k)/xp − 1 = Op(
a(n/k){log(k/(np))}2

xp

√
k

) (2.14)

when

(2.9) holds and
√

kA(n/k) → λ ∈ (−∞,∞), log(np) = o(
√

k), np = o(k). (2.15)

Note that the condition
√

kA(n/k) → λ ∈ (−∞,∞) in (2.15) and the formula for A(t) imply

that
√

k/ log(n/k) converges to a finite number, i.e.,
√

k/ log n converges to a finite number. Com-

bining this with the condition log(np) = o(
√

k) in (2.15), we conclude that (2.15) implies that

limn→∞ log(np)/ log n = 0. It is easy to check that (2.11) implies that limn→∞{− log(np)}/ log n >

0. Hence model (2.9) works for a much higher quantile than the standard high quantile estimation

developed in extreme value theory. This is exactly what we need to cope with the extrapolation

limitation of using the condition of domain of attraction of the Gumbel distribution. Is it possible to

have a high quantile estimator work for the case limn→∞ log(np)/ log n ≥ 0? Since the high quantile

7



estimator x̃p(k) is only based on the first order in (2.12), the model approximation error becomes

large when xp is small. This explains why x̃p only works for a very high quantile. It is of interest

to study a high quantile estimator based on (2.12) and estimators for c, α, d, θ under the setup of

(2.9). We conjecture that this new high quantile estimator works when limn→∞ log(np)/ log n ≥ 0.

If this is true, then the model (2.9) becomes more practically useful than the methods based on

either (1.1) or the domain of attraction of the Gumbel distribution since one does not need to worry

whether the target quantile is high enough.

3 A Simulation Study

Here, we perform a simulation study to support Statements 1, 2, 3 and 5. We simulate 1000

random samples of size n = 1000 from the Gamma distribution with shape parameter 1.2 and scale

parameter 1.

First, for each sample we determined the optimal value k ∈ [2, n − 1] such that the AMSE

in (2.6) is minimized. Figure 1 plots the AMSE evaluated at each optimal k (Kopt) against the

optimal k. This figure shows that most of the optimal k values are near the sample size n = 1000,

which supports Statement 1.
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Figure 1: Plots of AMSE(Kopt) against Kopt for Gamma(1.2, 1).

Next, to support Statements 2 and 3, a simulation is performed in which the biased and bias-

reduced estimators, θ̂R,1(m) and θ̂R,2(k), are compared. In Figure 2, we plot the mean squared

errors of these two estimators against difference choices of k = m. From this figure, we observe that
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the MSE of θ̂R,1(m) is smaller than that of θ̂R,2(k) when k = m ≤ 500, which supports Statement

2. When m is around 200, one really needs a very large k to ensure that the MSE of θ̂R,2(k) is

smaller than that of θ̂R,1(m). This observation supports Statement 3.
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M
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Biased estimator
bias−reduced estimator

Figure 2: MSEs of θ̂R,1(m) and θ̂R,2(k) are plotted for Gamma(1.2, 1).

Finally, we calculate the MSEs of x̃p(k) and x̂p(k) for p = 10−2, 10−4, 10−6. The first 50 smallest

MSEs of these two estimators are plotted in Figure 3, which shows that x̃p(k) works much better

than x̂p(k) when p becomes smaller.

4 Conclusions

Unlike tail index estimation, the theoretical optimal sample fraction in estimating the Weibull tail

coefficient does not exist, and a bias reduction estimator only shows an advantage when a large

sample fraction is employed. There is no theory to guide the choice of a large sample fraction which

still satisfies some necessary conditions such that
√

k
log(n/k)b(log(n/k)) → Λ ∈ (−∞,∞). Therefore, it

should be extremely cautious to employ any adaptive estimation and bias reduction estimation for

the Weibull tail coefficient in practice due to the lack of theoretical support! Weibull tailed distribu-

tions are more useful in estimating a higher quantile than the standard high quantile estimation by

assuming the condition of domain of attraction of the Gumbel distribution. The proposed refined

class of Weibull tailed distributions is necessary for estimating extreme tail probabilities and may

be more practical in estimating high quantiles.
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