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1. Introduction

Pareto probability laws were formulated by Pareto (1897) and initially dealt with the

distribution of income over a population. They are nowadays popular in describing a

variety of other phenomena such as city population sizes, occurrence of natural resources,

stock price fluctuations, to name a few.

In actuarial mathematics, the excess-of-loss random variable (rv) Y = X−d given that

X > d, possesses the decumulative distribution function (ddf)

FX,d(x) = P[X − d > x| X > d], (1.1)

and it is of central importance in both life and non-life insurance contexts. Loosely

speaking, ddf (1.1) on the one hand describes a risk inherent in a reinsurance treaty

bearing a deductible d, and on the other hand it corresponds to the age-at-death of a

new born child given survival to age d. Interestingly, it can be shown that for large d,

appropriately chosen function σ(d) > 0 and a constant α > 0, the approximation

FX,d(x) ≈

(

1 +
x

σ(d)

)−α

, x > 0 (1.2)

holds for a large class of distribution functions (see, e.g., Balkema and de Haan, 1974;

Pickands, 1975). Thus, the excess-of-loss rv can be generally approximated by a Pareto

of the second kind. This, in turn, immediately hints at utilizing this probability law for

modeling, e.g., catastrophe insurance treaties, which are known to be characterized by

rather heavy tailed risks.

In view of the high popularity of the univariate Pareto distributions and the aforemen-

tioned implication of equation (1.2), it is quite natural to ask for a multivariate extension.

Indeed, the concept of dependence, unfairly neglected in the ‘classical’ actuarial science,

has been receiving its merited attention in the recent years, thus leading to numerous

papers touching on various aspects of the multivariate distribution theory with applica-

tions to insurance (see, e.g., Vernic, 1997, 2000; Pfeifer and Nešlehová, 2004; Bauerle and

Grubel, 2005; Roger et al., 2005; Centeno, 2005; Furman, 2008; Furman and Landsman,

2008, 2009; Chiragiev and Landsman, 2009).

Recently, probably due to the observation formulated by equation (1.2), the multivariate

Pareto distribution of the second kind having the ddf

F (x1, . . . , xn) =

(

1 +
n

∑

j=1

xj − µj

σj

)−α

, xj > µj, (1.3)
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where µj ∈ (−∞,∞) := R, σj ∈ (0,∞) := R+ and j = 1, 2, . . . , n, has been employed

to model insurance risks in the context of risk capital allocations and optimal reinsur-

ance retentions by Chiragiev and Landsman (2007) (see, also, Vernic, 2009) and Cai

and Tan (2007), respectively. In what follows, we denote the random vectors distributed

multivariate Pareto of the second kind with ddf (1.3) as X ∽ Pa∗
n(II)(µ,σ, α), where

µ = (µ1, . . . , µn)′ ∈ (−∞,∞)n := Rn and σ = (σ1, . . . , σn)′ ∈ (0,∞)n := Rn
+ are two

constant vectors, and α is a positive constant. Although the model seems to be quite

tractable, it inconveniently results in common shape parameters for all univariate mar-

gins Xj, j = 1, 2, . . . , n, and thus imposes the somewhat restrictive correlation coefficient

given by

Corr[Xj, Xl] =
1

α
, for all j 6= l ∈ {1, 2, . . . , n} and α > 2.

Another well-known inconvenience associated with (1.3) is that it does not allow to model

independent Pareto distributed risks.

In the present paper we propose an alternative to (1.3) multivariate generalization

of the univariate Pareto probability laws. The probabilistic model introduced herein is

constructed using the multivariate reduction method (see, e.g., Furman and Landsman,

2009; and references therein). The motivation for, as well as the interpretation of the

aforementioned construction stem from, e.g., the background economy and the common

shock models (see, e.g., Tsanakas, 2008; Boucher et al., 2008). The resulting multivariate

Pareto, denoted in the sequel as X ∽ Pan(II)(µ, σ,α, α), with µ, σ and α as before,

and α = (α1, . . . , αn)′ ∈ Rn
+, is marginally closed, allows for non-negative probabilities

of simultaneous losses and possesses a more flexible than (1.3) dependence structure. In

addition, setting α ≡ 0 yields a probabilistic model having independent Pareto distributed

margins.

The rest of the paper is organized as follows: In Section 2 the multivariate Pareto of

interest is introduced, and its various properties are derived. In Section 3 the discussion

is specialized to the bivariate case, for which the (joint) moments, the conditional dis-

tributions along with the conditional moments are developed. Finally, in Section 4 it is

shown that the regression function of the multivariate Pareto introduced herein is ‘sepa-

rable’, which is then employed to facilitate its applications to insurance pricing. Section

5 concludes the paper.
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2. The multivariate Pareto of the second kind

In the sequel, we fix the probability space (Ω,F ,P), and we are interested in construct-

ing a random vector X = (X1, . . . , Xn)′, which is a map from the aformentioned space

into the n-dimensional Borel space (Rn
+,Bn), such that the j-th coordinate, j = 1, . . . , n,

of X is a univariate Pareto of the second kind. In other words, Xj ∽ Pa(II)(µj, σj, αj),

and

FXj
(x) =

(

1 +
x − µj

σj

)−αj

, x > µj, and σj, αj > 0.

To this end, let Y = (Y0, Y1, . . . , Yn)′ be an (n + 1) variate random vector possess-

ing mutually independent univariate Pareto margins Y0 ∽ Pa(II)(0, 1, α0) and Yj ∽

Pa(II)(µj, σj, αj), j = 1, . . . , n. Denote by T the functional map T : Rn+1
+ → Rn

+.

Definition 2.1. The random vector X = T (Y), such that

Xj = min (σjY0 + µj, Yj) , j = 1, . . . , n,

is said to follow the multivariate Pareto distribution of the second kind Pan (II) (µ, σ,α, α0),

with µ and σ, α being constant vectors in Rn and Rn
+, respectively, and α0 > 0.

Note 2.1. It is possible to formulate the definition above for a slightly more general

random vector Y by assuming Y0 ∽ Pa(II)(µ0, σ0, α0), which is a non-standardized Pareto

of the second kind. In such a case, the map T : Rn+1
+ → Rn

+ is such that

Xj = min

(

σj

σ0

(Y0 − µ0) + µj, Yj

)

, j = 1, . . . , n.

However, as it is readily observed from Proposition 2.1, neither µ0 nor σ0 influences the

ddf of X, and they are hence set to µ0 ≡ 0 and σ0 ≡ 1 without loss of generality.

We note in passing that various particular cases of the just defined multivariate Pareto

have been studied. Namely, when µj = σj ≡ const for j = 1, . . . , n, the model is called

the Marshall-Olkin type (see, Marshall and Olkin, 1967) multivariate Pareto in Kotz et al.

(2000), and it has been explored by Muliere and Scarsini (1987) in the two dimensional,

and by Hanagal (1996) in the multidimensional contexts.

We further derive the multivariate ddf of the distribution defined in Definition 2.1. To

enhance the readability of the paper, we relegate the proof of the next proposition, as

well as other technical proofs to the Appendix.
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Proposition 2.1. Let X ∽ Pan(II)(µ,σ, α, α0). The ddf of X is then

F̄X (x) =

(

1 + max
j=1,...,n

xj − µj

σj

)−α0 n
∏

j=1

(

1 +
xj − µj

σj

)−αj

, xj > µj, j = 1, . . . , n, (2.1)

where µj are real, and σj, αj, α0 are positive constants.

Note 2.2. It is straightforwardly observed that ddf (2.1) is invariant under linear trans-

formations, and it thus belongs to a (multivariate) location-scale family of distributions.

Consequently, in the sequel, we shall frequently use the so-called standardized form of the

ddf, which certainly does not reduce the level of generality, but strongly contributes to the

clarity of the results. More specifically, we shall often consider the multivariate Pareto

Z ∽ Pan(II)(0,1, α, α0), with µ = 0 and σ = 1 being n-variate constant vectors of zeros

and ones, respectively, and the ddf

F̄Z (z1, . . . , zn) =

(

1 + max
j=1,...,n

zj

)−α0 n
∏

j=1

(1 + zj)
−αj , zj > 0, j = 1, . . . , n. (2.2)

It seems worth noticing that there exist alternative to Definition 2.1 ways to arrive at

ddf (2.1). We formulate our observations in this context as the following propositions,

and we leave their proofs to the reader.

Proposition 2.2. Let Y = (Y1, . . . , Yn)′ ∽ Expn(α, α0) denote the n variate Marshall

and Olkin exponential distribution with α ∈ Rn
+, α0 ∈ R+ and the ddf

FY(y1, . . . , yn) = exp{−α1y1 − · · · − αnyn − α0 max(y1, . . . , yn)}.

Then the n variate random vector X with its j-th coordinate given by Xj = µj + σj(e
Yj −

1), j = 1, . . . , n has ddf (2.1).

We have already emphasized that the multivariate Pareto of Hanagal (1996) is a special

case of the one given in Definition 2.1. More specifically, to obtain the former distribution,

we set µ = σ = (σ, . . . , σ)′ ∈ Rn
+ in the framework of the latter one.

Proposition 2.3. Let Y ∽ Pan(II)(σ,σ,α, α0) denote the n variate Pareto of Hanagal

(1996) with σ = (σ, . . . , σ)′ ∈ Rn
+, α ∈ Rn

+, α0 ∈ R+ and the ddf

FY(y1, . . . , yn) =

(

max
j=1,...,n

yj

σ

)−α0 n
∏

j=1

(yj

σ

)−αj

.

Then the n variate random vector X with its j-th coordinate given by Xj = µj+σj(Yj/σ−1)

has ddf (2.1).
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Our next observation touches on a mixture representation of the multivariate Pareto

discussed herein. The counterpart of Proposition 2.4 is well documented for the multi-

variate Pareto of the second kind given by (1.3), and it has been extensively employed

in actuarial science. We believe that the mixture representation below is new and worth

noticing. Following Note 2.2, we formulate and prove the proposition for the standardized

multivariate Pareto, i.e., for Z ∽ Pan(0,1,α, α0). The proof is sketched in the Appendix.

Proposition 2.4. Let Z|(Λ, Λ0)
′
∽ Expn(Λ, Λ0) denote, as before, the n variate Mar-

shall and Olkin exponential distribution, and let (Λ, Λ0)
′ be an (n + 1) dimensional ran-

dom vector with independent univariate standardized gamma distributed coordinates Λi ∽

Ga(αi, 1), i = 0, 1, . . . , n. Then the unconditional distribution of Z is Pan (II) (0,1,α, α0).

It turns out that the multivariate Pareto possessing ddf (1.3) is to an extent a particular

case of the one given by Definition 2.1. We formulate this observation as the following

proposition. The proof in essence replicates the one of Proposition 2.4 and is thus omitted.

Also, in a manner entirely similar to Note 2.2, we let Pa∗
n (II) (0,1, α) be the standardized

counterpart of multivariate Pareto (1.3).

Proposition 2.5. Let Z|Λ ∽ Expn(Λ, 0) be the n variate Marshall and Olkin exponential

distribution, and let Λ be an n dimensional random vector possessing standardized gamma

coordinates Λ ∽ Ga(α, 1). Then the unconditional distribution of Z is Pa∗
n (II) (0,1, α).

Interestingly, it is possible to extend Proposition 2.4, and obtain a characteristic prop-

erty of the multivariate Pareto distribution introduced in Definition 2.1.

Proposition 2.6. If Z ∽ Pan (II) (0,1, α, α0), then there exist a random vector Ξ fol-

lowing the n variate Marshall and Olkin exponential distribution Expn(λ1, . . . , λn, λ0) and

an (n + 1) variate random vector Λ possessing independent standardized gamma margins

Ga(αi, 1), i = 0, 1, . . . , n, such that X = Ξ|Λ.

Propositions 2.4 and 2.6 establish an ‘if and only if’ result for the mixture representation

of the multivariate Pareto of interest.

We next show that the introduced multivariate Pareto is marginally closed, which seems

to be one of the basic requirements for a reasonable multivariate distribution aiming at

(insurance) applications.

Proposition 2.7. Let X ∽ Pan(II)(µ,σ, α, α0). Then the j-th univariate margin is dis-

tributed Pareto of the second kind. Namely, Xj ∽ Pa(II) (µj, σj, α0 + αj) , j = 1, . . . , n.
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We note in passing that in a similar fashion, multivariate margins of any order follow mul-

tivariate Pareto distributions of the second kind with arbitrarily parameterized univariate

margins.

One of the peculiarities associated with the multivariate Pareto introduced in Definition

2.1 is that, unlike many other multivariate distributions (including (1.3)), it allows for

modeling simultaneously occurring losses. In the context of (1.3), we certainly have that

P[X1 = X2 = · · · = Xn] = 0. More precisely speaking, this means that the multivari-

ate Pareto introduced in Definition 2.1 is not absolutely continuous with respect to the

Lebesgue measure on Rn
+, and it thus has both an absolutely continuous and a singular

part.

Distributions with singularities are rarely popular in the univariate case, however they

can be easily motivated in the multivariate one. Indeed, specializing our discussion to

the insurance context of interest and bearing in mind the n variate random vector X =

(X1, X2, . . . , Xn)′, the event {X1 = X2 = · · · = Xn} can represent, e.g., the possibility of a

simultaneous claim initiated by n business lines. Needless to say, the aforementioned event

is also useful to plainly model the occurrence of equal losses, which is certainly impossible

to implement in the framework of absolutely continuous multivariate distributions.

In the next proposition we quantitatively study the singularity phenomenon.

Proposition 2.8. For k ≤ n and distinct j1, ..., jk ∈ {1, 2, . . . , n}, we have that

P

[

Xj1 − µj1

σj1

= · · · =
Xjk

− µjk

σjk

]

=
α0

α0 +
∑k

i=1 αji

.

We have already noticed that the ddf of X ∽ Pan(II)(µ,σ,α, α0) is a mixture of

the absolutely continuous and singular components. In view of this, the corresponding

multivariate probability density function (pdf) can be derived by taking the appropriate

derivative of the continuous component and utilizing Proposition 2.8.

Note 2.3. The singular component is 0 if and only if α0 ≡ 0. In addition, the greater

the dependence among risks is, the more substantial is the portion of the singularity.

We further specialize our discussion to the bivariate case, where a decomposition of the

decumulative distribution function into absolutely continuous and singular components

can be conveniently elaborated.
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3. The bivariate Pareto distribution of the second kind

We are henceforth interested in the bivariate counterpart of Definition 2.1. Clearly, in

such a case ddf (2.1) reduces to

F̄X(x1, x2) =

(

1 + max
j=1,2

xj − µj

σj

)−α0 2
∏

j=1

(

1 +
xj − µj

σj

)−αj

, xj > µj, j = 1, 2, (3.1)

or, in other words, to

F̄X (x1, xn) =















(

1 +
x1 − µ1

σ1

)−α01
(

1 +
x2 − µ2

σ2

)−α2

,
x1 − µ1

σ1

≥
x2 − µ2

σ2

> 0
(

1 +
x1 − µ1

σ1

)−α1
(

1 +
x2 − µ2

σ2

)−α02

,
x2 − µ2

σ2

≥
x1 − µ1

σ1

> 0

,

where α0j = α0 + αj, j = 1, 2.

Note 3.1. When formulated more accurately, bivariate ddf (3.1) is given by

F̄X(x1, x2) =







































(

1 + maxj=1,2
xj−µj

σj

)−α0 ∏2
j=1

(

1 +
xj−µj

σj

)−αj

, xj > µj,
(

1 +
x1 − µ1

σ1

)−α01

, x1 > µ1, x2 ≤ µ2

(

1 +
x2 − µ2

σ2

)−α02

, x1 ≤ µ1, x2 > µ2

1, x1 ≤ µ1, x2 ≤ µ2

.

In what follows, we shall however consider the sub-domain xj > µj, j = 1, 2, only.

In Figure 1 we have depicted ddf (3.1) versus the bivariate counterpart of (1.3). The

parameters of the two distributions are chosen in such a way that their means (3.3) are

equal, as well as their variances (3.4). Also, the two models share same correlation value.

Figure 1 conveniently visualizes the fact that the Pareto distribution introduced in this

paper is not differentiable everywhere. In what follows, we elaborate on this phenomenon.

3.1. The decumulative distribution function decomposition. Bivariate ddf (3.1)

is not absolutely continuous with respect to the Lebesgue measure on R2
+. Namely,

it consists of both the absolutely continuous and singular components with the latter

concentrated on

{

(x1, x2) :
x1 − µ1

σ1

=
x2 − µ2

σ2

}

. Hence, the ddf can be decomposed as

F̄X (x) = aF̄ac (x) + (1 − a) F̄s (x) , 0 ≤ a ≤ 1, (3.2)



9

Figure 1. The ddf’s F (x, y) of the classical Pareto (top pannel) and the

new one (bottom panel).

where F̄ac denotes the absolutely continuous component, and F̄s stands for the singular

one. The next proposition formally describes the phenomenon. The proof is given in the

Appendix. From now on, we often use the following auxiliary notation α+ = α0 +α1 +α2.

Proposition 3.1. Let X ∽ Pa2 (II) (µ,σ, α, α0). Then the ddf of X is a mixture

F̄X (x) =
α1 + α2

α+

F̄ac (x) +
α0

α+

F̄s (x) ,
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where the singular component F̄s (x) concentrates its mass on the line (x1 − µ1)/σ1 =

(x2 − µ2)/σ2, and is given by

F̄s (x) =

(

1 + max
i=1,2

xi − µi

σi

)−α+

, xj > µj, j = 1, 2,

while the absolutely continuous component is formulated, for xj > µj, j = 1, 2, as

F̄ac (x) =
α+

α1 + α2

(

1 + max
i=1,2

xi − µi

σi

)−α0 2
∏

i=1

(

1 +
xi − µi

σi

)−αi

−
α0

α1 + α2

(

1 + max
i=1,2

xi − µi

σi

)−α+

.

Note 3.2. The pdf of the absolutely continuous component is obtained by straightforward

differentiation, i.e.,

∂2F̄X (x)

∂x1∂x2

=
α1 + α2

α+

fac (x)

=



















α01α2

σ1σ2

(

1 +
x1 − µ1

σ1

)−(α01+1) (

1 +
x2 − µ2

σ2

)−(α2+1)

,
x1 − µ1

σ1

>
x2 − µ2

σ2

> 0

α02α1

σ1σ2

(

1 +
x1 − µ1

σ1

)−(α1+1) (

1 +
x2 − µ2

σ2

)−(α02+1)

,
x2 − µ2

σ2

>
x1 − µ1

σ1

> 0

.

The pdf is employed in Propositions 3.2 and 3.3 below.

3.2. Moments. The marginal moments of X ∽ Pa2(II)(µ,σ,α, α0) are readily ob-

tained, for j = 1, 2, as

E[Xj] = µj +
σj

α0j − 1
, for α0j > 1 (3.3)

and

Var[Xj] =
α0jσ

2
j

(α0j − 1)2 (α0j − 2)
, for α0j > 2. (3.4)

The covariance of say X1 and X2 can also be derived, as we show with some effort in the

next proposition.

Proposition 3.2. Let X ∽ Pa2(II)(µ,σ, α, α0), and assume that α0j > 1, j = 1, 2 and

α+ > 2. Then

Cov [X1, X2] =
α0σ1σ2

(α01 − 1) (α02 − 1) (α+ − 2)
.

Moreover, if α0j > 2, j = 1, 2, then the correlation coefficient is

Corr [X1, X2] =
α0

α+ − 2

√

(α01 − 2) (α02 − 2)

α01α02

.

Note 3.3. As a consequence of Proposition 3.2, we readily have that for fixed α1 and α2

and letting α0 → ∞, the correlation between X1 and X2 varies from 0 to 1.
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3.3. Conditional distributions and expectations. Let X ∽ Pa2(II)(µ,σ, α, α0).

Then the conditional distribution of X1 given X2 = x2 has an absolutely continuous

component and a discrete one. The following proposition formulates its ddf. The proof is

in the Appendix.

Proposition 3.3. The conditional ddf of X1 given X2 = x2, x2 > µ2, is

F̄X1|X2
(x1 |x2 ) =















α2

α02

(

1 +
x2 − µ2

σ2

)α0
(

1 +
x1 − µ1

σ1

)−α01

,
x1 − µ1

σ1

>
x2 − µ2

σ2
(

1 +
x1 − µ1

σ1

)−α1

, 0 <
x1 − µ1

σ1

≤
x2 − µ2

σ2

.

We then immediately obtain the next corollary which yields the conditional expectation.

Corollary 3.1. For α01 > 1, the regression of X1 on X2 is given by

E [X1 |X2 = x2 ] =



















µ1 +
σ1

α1 − 1

(

1 +
α0 (1 − α+)

α02 (α01 − 1)

(

1 +
x2 − µ2

σ2

)−(α1−1)
)

, if α1 6= 1

µ1 + σ1

(

ln

(

1 +
x2 − µ2

σ2

)

+
α2

α0α02

)

, if α1 = 1

,

where x2 > µ2.

In the next section we relate Corollary 3.1 to certain issues of (insurance) pricing.

4. Applications to (insurance) pricing

Let rX1|X2
(x2) = E[X1 −E[X1]|X2 = x2] denote the centered regression function of X1

on X2. The following definition is a simplified (one dimensional) version of Definition 2.1

of Furman and Zitikis (2009).

Definition 4.1. The centered regression function rX1|X2
is called separable if it admits

the decomposition

rX1|X2
(x2) = C(F(X1,X2))q(x2, FX1

, FX2
) (4.1)

for FX2
-almost all x2 ∈ R, where C(F(X1,X2)) is a constant which depends on the joint

cdf F(X1,X2), and x2 7→ q(x2, FX1
, FX2

) ∈ R is a function that may depend only on the

marginal cdf ’s FX1
and FX2

.

It has turned out that separable regression functions considerably facilitate the analytic

derivations of a great variety of pricing functionals. Following Corollary 3.1, we readily

observe that the centered regression function of the multivariate Pareto of interest is

separable. Namely, for e.g., (Z1, Z2) ∽ Pa2 (II) (0,1,α, α0), α01 > 1, α02 > 2, α1 6= 1,

we have that
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C(F(Z1,Z2)) =
Cov[Z1, Z2]

Var[Z2]

(α+ − 2)(α+ − 1)

(α1 − 1)(α02 − 2)(α02 − 1)
, (4.2)

and

q(x2, FZ1
, FZ2

) =

(

α02

α+ − 1
− (1 + x2)

1−α1

)

. (4.3)

Similarly, the regression function of the non-standardized bivariate Pareto is also separa-

ble.

In Figure 2, we have depicted the regression functions of the classical bivariate Pareto

versus the one of the model introduced in this paper. Unlike the former, the latter

multivariate Pareto has a non-linear regression. We note in passing, that the parameters

of the two distributions are chosen in such a way that their means are equal, as well as

their variances. The models share same correlation value.
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Figure 2. Regression curves of the classical and new bivariate Pareto distributions.

4.1. Insurance pricing. Let X denote the set of (insurance) risks. Then following Fur-

man and Zitikis (2008a), we recall that for X ∈ X and a non-decreasing weight function

w : R → R+, the actuarial weighted premium calculation principle is formulated as the

map πw : X → [0,∞], such that

πw[X] =
E[Xw(X)]

E[w(X)]
, (4.4)
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where we assume that 0 < E[w(X)] < ∞. Functional (4.4) unifies such popular premium

calculation principles as the Value-at-Risk, conditional tail expectation, Esscher, Kamps’

and under mild conditions the distorted premiums, and it thus allows for a common

treatment of all of the above.

It should be noted, that functional (4.4) establishes a classical actuarial pricing prin-

ciple, since it depends on X only. Departing from this rather restrictive requirement,

Furman and Zitikis (2008b) introduced and studied the economic weighted pricing func-

tional Πw : X × X → [0,∞] formulated as

Πw[X1, X2] =
E[X1w(X2)]

E[w(X2)]
, (4.5)

for 0 < E[w(X2)] < ∞, and X1 and X2 in X . They also showed that, for Dw[FX1
, FX2

] =

E[q(X2, FX1
, FX2

)w(X2)], the following relation between Πw and πw holds

Πw[X1, X2] = E[X1] +
C(F(X1,X2))Dw(FX1

, FX2
)

Cov[X2, w(X2)]
(πw[X2] − E[X2]) . (4.6)

Consequently, to calculate the value of Πw[X1, X2] in the case of the classical multi-

variate Pareto, we use the fact that it has linear centered regression function of the form

(see, e.g., Arnold, 1983),

r∗X1|X2
(x2) =

Cov[X1, X2]

Var[X2]
(x2 − E[X2]),

which is of course separable with C(F(X1,X2)) = Cov[X1, X2]/Var[X2], q(x2, FX1
, FX2

) =

x2 − E[X2], and thus yields Dw[FX1
, FX2

] = Cov[X2, w(X2)]. Consequently, the value of

the economic pricing functional readily follows for an arbitrary choice of w using equation

(4.6).

In a similar manner, we calculate the value of the economic pricing functional for the

multivariate Pareto distribution introduced in this paper. More specifically, we note that

in this case C(F(X1,X2)) and Dw[FX1
, FX2

] follow from equations (4.2) and (4.3), or more

generally from Corollary 3.1. Hence, the value of the economic pricing functional once

again readily follows for an arbitrary choice of w using equation (4.6).

As it is seen from the discussion above, the task of evaluating the economic weighted

pricing functional is quite straightforward in the context of both the classical multivariate

Pareto and the new one having the non-linear regression function. To illustrate the

procedure numerically, we specialize our discussion to the conditional tail expectation

pricing principle, which is the (economic) weighted pricing functional with w(x) = 1{x >

V aRp[X]}, where V aRp[X] = inf{x : F (x) ≥ p} denotes the well-known Value-at-Risk
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risk measure. In this respect and given a random pair (X1, X2), we are interested in

calculating the price of X1.
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Figure 3. The actuarial (top panel) and the economic (bottom panel)

weighted pricing functionals for the first coordinate of (X1, X2).

We have depicted the results in Figure 3. The top panel shows the values of the actuarial

pricing functional CTEp[X1] = E[X1|X1 > V aRp[X1]] for various values of p. Actuarial

pricing functionals do not make any use of the dependence of X1 on X2, therefore they

coincide for both Pareto’s.
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The importance of the dependence structure is however readily observed from the bot-

tom panel of Figure 3, where the economic pricing functionals CTEp[X1, X2] = E[X1|X2 >

V aRp[X2]] are visualized for the classical multivariate Pareto and the new one introduced

in this paper. To make the problem more interesting, we set E[X1] = E[X2] and also

Var[X1] = Var[X2] for both models, that in addition share same correlation value. Nev-

ertheless, the implications of the dependence structures are evident. Namely, it is clear

that in this case, mistakenly assuming linear dependence between X1 and X2 can result

in underpricing of X1 for moderate values of p and overpricing of X1 for the so-called tail

values of p.

Finally, the actuarial CTE pricing functional is well-known to be at least as high as its

economic counterpart, i.e., the bound CTEq[X1, X2] ≤ CTEq[X1] holds for any random

pair (X1, X2) and level of confidence q independently on the joint cdf F(X1,X2) (see, Furman

and Zitikis, 2008b). The bound is reflected in Figure 4, which combines both panels of

Figure 3.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

100*p

W
ei

gh
te

d 
pr

ic
in

g 
fu

nc
tio

na
l 

 
Pa(α

1
,α

2
,α

0
)

Pa(α)

Figure 4. The actuarial (gray) and the economic (black) CTE pricing

functionals for the first coordinate of (X1, X2).

5. Conclusions

Generally speaking, there exist a great variety of methods of constructing multivariate

dependent probabilistic structures possessing specific univariate margins of interest, with



16

the copula-based approaches being arguably the most popular in nowadays applied actu-

arial science and practice (see, e.g., Frees and Valdez, 1998; and Cherubini et al., 2004).

Indeed, in many situations copulas can be quite efficient in the way they separate the

dependence structure and the margins, thus supplying an attractive route for modeling

dependent risks.

However, there is always a trade-off between the approximation level provided by the

model and its analytic complexity. In this respect, copula-based multivariate probabilistic

structures frequently suffer from analytic intractability (see, e.g., Song, 2000).

In this paper a multivariate distribution possessing arbitrarily parameterized Pareto

margins has been formulated and studied. The distribution is unimodal and positively

skewed, and it conveniently allows for modeling the probability of simultaneous loss. Im-

portantly, the proposed multivariate Pareto enjoys essential level of analytic tractability.

This has ensured that 1.) numerous links to certain nowadays existing probabilistic mod-

els, as well as seemingly useful characteristic results have been proved, 2.) expressions for,

e.g., decumulative distribution functions, densities, (joint) moments and regressions have

been derived, and 3.) insurance pricing with general economic weighted pricing function-

als have been developed. We believe that the multivariate dependent Pareto distribution

introduced in this paper is capable of adequate modeling dependent heavy tailed risks

with a non-zero probability of simultaneous loss.
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Appendix A. Proofs

Proof of Proposition 2.1. By definition we have that

F̄X (x) = P
[

∩n
j=1Xj > xj

]

= P
[

∩n
j=1 min (σjY0 + µj, Yj) > xj

]

= P
[

∩n
j=1 (Yj > xj ∩ Y0 > (xj − µj)/σj)

]

= P

[

(

∩n
j=1Yj > xj

)

∩ Y0 > max
j=1,...,n

(xj − µj)/σj

]

.

Hence, by independence of Y0, Y1, . . . , Yn, we obtain that

F̄X (x) = F̄Y0

(

max
j=1,...,n

xj − µj

σj

) n
∏

j=1

F̄Yj
(xj) ,

which completes the proof. ¤
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Proof of Proposition 2.4. We note that, for an (n + 1) variate vector λ = (λ0, . . . , λn)′,

the unconditional ddf of Z is

FZ(z1, . . . , zn) = E
[

FZ|(Λ,Λ0)(z1, . . . , zn|(Λ, Λ0))
]

=

∫

R
n+1

+

FZ|(Λ,Λ0)(z1, . . . , zn|λ)
n

∏

i=0

fΛi
(λi)dλ, (A.1)

where

FZ|(Λ,Λ0)(z1, . . . , zn|λ) = exp {−λ1z1 − · · · − λnzn − λ0 max(z1, . . . , zn)} , (A.2)

and

fΛi
(λi) = e−λi

λi
αi−1

Γ(αi)
, for i = 0, 1, . . . , n. (A.3)

Substituting (A.2) and (A.3) into (A.1) and compleeting the latter to (n + 1) gamma

densities completes the proof. ¤

Proof of Proposition 2.6. Let Z ∽ Pan(II)(0,1, α, α0), for which the ddf is given by

F̄X(z1, . . . , zn) = P[Z1 > z1, . . . , Zn > zn]

=

(

1 + max
j=1,...,n

zj

)−α0 n
∏

j=1

(1 + zj)
−αj , zj > 0, j = 1, ..., n.

Further, let Gn+1 denote an (n+1) variate gamma cdf with independent but not identically

distributed univariate margins Ga(αi, 1), i = 0, 1, . . . , n, and let z̃ = (z1, . . . , zn, maxj=1,...,n zj)
′.

Also, denote by F(z̃) the (n + 1) variate Laplace transform of Gn+1 evaluated at z̃. Then

we easily observe that, for λ = (λ0, . . . , λn)′,

F(z̃) = F̄Z(z1, . . . , zn) =

∫

R
n+1

+

exp

{

−λ1z1 − · · · − λnzn − λ0 max
j=1,...,n

zj

}

dGn+1(λ),

(A.4)

where Gn+1 is unique because of the corresponding uniqueness of the Laplace transform.

On the other hand, equation (A.4) establishes the desired mixture representation of Z

since for general Ξ and Λ, it holds that

F̄Z(z1, . . . , zn) =

∫

R
n+1

+

FΞ|Λ(z1, . . . , zn|λ)dFΛ(λ),

which thus completes the proof. ¤
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Proof of Proposition 2.7. For j = 1, . . . , n, we have that

F̄Xj
(xj) = P [Xj > xj] = P [min (σjY0 + µj, Yj) > xj]

= P [Yj > xj ∩ Y0 > (xj − µj)/σj]

=

(

1 +
xj − µj

σj

)−(α0+αj)

, xj > µj,

which completes the proof. ¤

Proof of Proposition 2.8. Let Y = (Y0, Y1, . . . , Yn)′ be an (n + 1) variate random vector

with independent univariate Pareto margins as in Definition 2.1. Also, let Ak denote

the desired event, and let U0 = Y0, Ui = (Yi − µi)/σi, i = 1, . . . , n. Then the U ′
is are

independent and Pa(II)(0, 1, αi) distributed, and we have that

Ak = {min (U0, Uj1) = · · · = min (U0, Ujk
)} ,

which is equivalent to saying that

Ak = {Uj1 ≥ U0, . . . , Ujk
≥ U0} ∪ {U0 > Uj1 = · · · = Ujk

} .

Thus, since

P[U0 > Uj1 = · · · = Ujk
] = 0,

we obtain that

P [Ak] = P [Uj1 ≥ U0, . . . , Ujk
≥ U0] .

Further, for D = {(u0, . . . , uk) : u1 ≥ u0, . . . , uk ≥ u0, u0 > x} , x > 0 and u = (u0, u1, . . . , uk),

we have that

P [Ak ∩ {U0 > x}]

= P [Uj1 ≥ U0, . . . , Ujk
≥ U0, U0 > x] =

∫

D

k
∏

i=1

fUji
(ui) fU0

(u0) du

=

∞
∫

x

fU0
(u0)

∞
∫

u0

fUj1
(u1) ...

∞
∫

u0

fUjk
(uk) du =

∞
∫

x

fU0
(u0)

k
∏

i=1

F̄Uji
(u0) du0

= α0

∞
∫

x

(1 + u0)
−(α0+

∑k
i=1

αji
+1) du0

=
α0

α0 +
∑k

i=1 αji

(1 + x)−(α0+
∑k

i=1
αji) , x ≥ 0. (A.5)

Substituting x = 0 in (A.5) completes the proof. ¤
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Proof of Proposition 3.1. It is clear that

F̄X (x) = P [X1 > x1, X2 > x2| A]P [A] + P
[

X1 > x1, X2 > x2| Ā
]

P
[

Ā
]

,

where A = {(X1 − µ1)/σ1 = (X2 − µ2)/σ2} . Similarly to the proof of Proposition 2.8,

let Uj = (Yj − µj) /σj, j = 1, 2, U0 = Y0. The singular part of F̄X is then given by

(1 − a) F̄s (x1, x2) = P[X1 > x1 ∩ X2 > x2 ∩ A]

= P

[

X1 − µ1

σ1

=
X2 − µ2

σ2

> max
j=1,2

xj − µj

σj

]

= P

[

min

(

Y0,
Y1 − µ1

σ1

)

= min

(

Y0,
Y2 − µ2

σ2

)

> max
j=1,2

xj − µj

σj

]

= P

[

U1 ≥ U0, U2 ≥ U0, U0 > max
j=1,2

xj − µj

σj

]

,

which after using (A.5), becomes

(1 − a) F̄s (x1, x2) =
α0

α+

(

1 + max
j=1,2

xj − µj

σj

)−α+

,
xj − µj

σj

≥ 0, j = 1, 2,

and the expression for F̄s readily follows with a = 1 − α0/α+. Certainly, the expression

for F̄ac results immediately from equation (3.2) as F̄ac = α+

α1+α2

(

F̄X − α0

α+
F̄s

)

, which thus

completes the proof. ¤

Proof of Proposition 3.2. We first note in passing that the conditions α0j > 1 and α0j > 2

assure the finiteness of E[Xj] and Var [Xj] , j = 1, 2, respectively. We further derive the

covariance for the standardized random pair Z = (Z1, Z2) ∽ Pa2(II)(0,1,α, α0), from

which Cov[X1, X2] readily follows due to Note 2.2.

Given a function g : R2
+ → [0,∞), such that E[g(X1, X2)] < ∞, and recalling the

decomposition

F̄Z(x1, x2) = aF̄ac,Z(x1, x2) + (1 − a)F̄s,Z(x1, x2),

we have, for x = (x1, x2)
′, that

E [g (Z1, Z2)] =

∞
∫

0

∞
∫

0

g (x) dFZ (x)

=

∞
∫

0

∞
∫

0

g (x) daFac,Z (x) +

∞
∫

0

∞
∫

0

g (x) d(1 − a)Fs,Z (x)

=

∫∫

x1<x2

g (x) afac,Z (x) dx +

∫∫

x1>x2

g (x) afac,Z (x) dx +

∫∫

x1=x2

g (x) d
α0

α+

Fs,Z (x) .
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In particular, for the function g(x1, x2) = (x1 − E[Z1])(x2 − E[Z2]), we have that

Cov [Z1, Z2] = E [(Z1 − E[Z1]) (Z2 − E[Z2])]

=

∞
∫

0

(x2 − E[Z2])





x2
∫

0

(x1 − E[Z1]) afac,Z (x) dx1 +

∞
∫

x2

(x1 − E[Z1]) afac,Z (x) dx1



 dx2

+

∫ ∞

0

(x2 − E[Z2]) (x2 − E[Z1]) d
α0

α+

(

1 − (1 + x2)
−α+

)

.

Further, substituting the expression for afac,Z from Note 3.2, recalling that E[Zj] =

(α0j − 1)−1, and setting yj = 1 + xj, where j = 1, 2, the covariance becomes

Cov [Z1, Z2] =

∞
∫

1

(

y2 −
α02

α02 − 1

)



α1α02y
−(α02+1)
2

y2
∫

1

(

y1 −
α01

α01 − 1

)

y
−(α1+1)
1 dy1

+ α2α01y
−(α2+1)
2

∞
∫

y2

(

y1 −
α01

α01 − 1

)

y
−(α01+1)
1 dy1



 dy2

+ α0

∞
∫

1

(

y2 −
α02

α02 − 1

)(

y2 −
α01

α01 − 1

)

y
−(α++1)
2 dy2.

After evaluating the inner integrals, the covariance further reduces to

Cov [Z1, Z2]

=
α0

(α1 − 1) (α01 − 1)

∞
∫

1

(

α02

(

y−α02

2 −
α02y

−α02−1
2

α02 − 1

)

+ (1 − α+)

(

y
−α++1
2 −

α02y
−α+

2

α02 − 1

))

dy2,

which, for α+ > 2, yields

Cov [Z1, Z2] =
α0

(α01 − 1) (α02 − 1) (α+ − 2)
,

from where the stated formula follows, since due to Note 2.2, Cov [X1, X2] = σ1σ2Cov [Z1, Z2].

Certainly, the expression for Corr [X1, X2] results immediately, and thus completes the

proof. ¤

Proof of Proposition 3.3. The absolutely continuous component of the distribution of X1

given X2 = x2 has density

a′fac(x1|x2) =
afac (x)

fX2
(x2)

=



















α01α2

α02σ1

(

1 +
x1 − µ1

σ1

)−(α01+1) (

1 +
x2 − µ2

σ2

)α0

,
x1 − µ1

σ1

>
x2 − µ2

σ2

> 0

α1

σ1

(

1 +
x1 − µ1

σ1

)−(α1+1)

,
x2 − µ2

σ2

>
x1 − µ1

σ1

> 0

,
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where the density of X2, denoted fX2
, results from Proposition 2.7.

Then the discrete component corresponding to {(x1 − µ1)/σ1 = (x2 − µ2)/σ2} is 1− a′

with a′ given by

a′ =

∫ ∞

µ1

afac (x)

fX2
(x2)

dx1 = 1 −
α0

α02

(

1 +
x2 − µ2

σ2

)−α1

.

Consequently, the ddf of the conditional distribution results immediately by integration.

However, special attention must be paid to the case
x2 − µ2

σ2

≥
x1 − µ1

σ1

, when we have

that

F̄X1|X2
(x1 |x2 ) =

∫ µ1+
σ1
σ2

(x2−µ2)

x1

a′fac(x|x2)dx +

∫ ∞

µ1+
σ1
σ2

(x2−µ2)

a′fac(x|x2)dx + (1 − a′) ,

which completes the proof. ¤

Proof of Corollary 3.1. We give a proof for Z = (Z1, Z2) ∽ Pa2(II)(0,1, α, α0), and

α1 6= 1. The stated formula then follows as a result of Note 2.2. Namely, for x2 > 0, we

have that

E [Z1 |Z2 = x2 ] = −

∫ ∞

0

x1dF̄Z1|Z2
(x1 |x2 ) = α1

∫ x2

0

x1 (1 + x1)
−α1−1 dx1

+
α01α2

α02

(1 + x2)
α0

∫ ∞

x2

x1 (1 + x1)
−α01−1 dx1 +

α0

α02

x2 (1 + x2)
−α1

=
1

α1 − 1

(

1 +
α0 (1 − α+)

α02 (α01 − 1)
(1 + x2)

−(α1−1)

)

.

The remaining case for α1 = 1 is then accomplished in the same fashion. This completes

the proof. ¤


