## City Research Online

Original citation: Asimit, A. V., Furman, E., Tang, Q. \& Vernic, R. (2011). Asymptotics for risk capital allocations based on Conditional Tail Expectation. Insurance: Mathematics and Economics, 49(3), pp. 310-324. doi: 10.1016/j.insmatheco.2011.05.002

Permanent City Research Online URL: http://openaccess.city.ac.uk/13126/

## Copyright \& reuse

City University London has developed City Research Online so that its users may access the research outputs of City University London's staff. Copyright © and Moral Rights for this paper are retained by the individual author(s) and/ or other copyright holders. All material in City Research Online is checked for eligibility for copyright before being made available in the live archive. URLs from City Research Online may be freely distributed and linked to from other web pages.

## Versions of research

The version in City Research Online may differ from the final published version. Users are advised to check the Permanent City Research Online URL above for the status of the paper.

## Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact with the author(s) of this paper, please email the team at publications@city.ac.uk.

# Asymptotics for Risk Capital Allocations based on Conditional Tail Expectation 

Alexandru V. Asimit<br>Cass Business School, City University, London EC1Y 8TZ, United Kingdom. E-mail: asimit@city.ac.uk<br>Edward Furman<br>Department of Mathematics and Statistics, York University, Toronto, Ontario M3J 1P3, Canada. E-mail: efurman@mathstat.yorku.ca

Qihe TANG ${ }^{1}$
Department of Statistics and Actuarial Science, University of Iowa, 241 Schaeffer Hall, Iowa City, IA 52242, USA. E-mail: qihe-tang@uiowa.edu

Raluca Vernic
Department of Mathematics and Informatics, Ovidius University of Constanta, Constanta, Romania. E-mail: rvernic@univ-ovidius.ro


#### Abstract

An investigation of the limiting behavior of a risk capital allocation rule based on the Conditional Tail Expectation (CTE) risk measure is carried out. More specifically, with the help of general notions of Extreme Value Theory (EVT), the aforementioned risk capital allocation is shown to be asymptotically proportional to the corresponding Value-atRisk (VaR) risk measure. The existing methodology acquired for VaR can therefore be applied to a somewhat less well-studied CTE. In the context of interest, the EVT approach is seemingly well-motivated by modern regulations, which openly strive for the excessive prudence in determining risk capitals.


Keywords and phrases: Asymptotic dependence and independence; Capital allocation; Conditional Tail Expectation; Extreme Value Theory; Heavytailed distributions; Value-at-Risk.

Mathematics Subject Classification: Primary 91B30; Secondary 91G10, 62H20, 60E05

[^0]
## 1. Introduction

Let $X$ denote an insurance risk. Speaking more formally, $X$ is a non-negative random variable defined on the probability space $(\Omega, \mathcal{F}, \operatorname{Pr})$ and possessing a distribution function $F(x):=\operatorname{Pr}(X \leq x)$ and a tail function $\bar{F}(x):=1-F(x), x \in \mathbf{R}$. A risk measure is generally formulated as a functional, $Q$, from the space of distribution functions to $[0, \infty]$. Similarly (see, e.g., Bühlmann, 1980), we can consider the functional $Q$ as from $\mathcal{X}$, the space of insurance risks, to $[0, \infty]$, which we indeed often do in the sequel.

Certainly, $\bar{F}$ establishes a meaningful ordering of $\mathcal{X}$ and, hence, it can be interpreted as a risk measure. However, for the sake of risk capital determination, it is desirable for the risk measure $Q[F]$ to take on monetary units. Thus, $Q[F]=\bar{F}(x)$ is naturally replaced with, e.g., its inverse, bringing us to the notion of Value-at-Risk (VaR). Namely, let $q \in(0,1)$ denote the confidence level required by regulations. Then

$$
\operatorname{VaR}_{q}[X]:=\inf \{x: F(x) \geq q\}
$$

establishes arguably the most popular risk measure, which has been a cornerstone of the financial risk measurement of the last century. We note in passing that the Solvency II Accord designed by the EU Commission sets $q=0.995$ over a one-year time horizon.

Noticeably, the recent financial instability and, as a result, regulators' inclination to excessive prudence in determining risk capital requirements have to a certain extent enfeebled VaR's status. In this respect, the so-called tail-based risk measurement has emerged as a natural tool for quantifying insurance risks while emphasizing the adverse effect of low probability but high severity tail events. Thereby, a more pessimistic Conditional Tail Expectation (CTE) risk measure is defined, for $q \in(0,1)$, as

$$
\operatorname{CTE}_{q}[X]:=\mathbf{E}\left[X \mid X>\operatorname{VaR}_{q}[X]\right] .
$$

CTE is known as a coherent risk measure over the space of continuous random variables. It belongs to both the distorted and weighted risk measures (see Wang, 1996; Dhaene et al., 2006; Furman and Zitikis, 2008a). Practically, CTE has already replaced VaR in regulatory requirements of, e.g., Canada, Israel and Switzerland. We note in passing that the current practice in the aforementioned countries is $q=0.99$ over a one-year time horizon.

Let $X_{i} \in \mathcal{X}, i=1, \ldots, d$, denote $d \in \mathbf{N}$ insurance risks and let $S_{d}:=X_{1}+\cdots+X_{d}$ denote the aggregate risk. Then evaluating $\operatorname{VaR}_{q}\left[S_{d}\right]$ and $\mathrm{CTE}_{q}\left[S_{d}\right]$ is a somewhat basic phase of the modern risk capital framework. Indeed, while it is of pivotal importance to
determine the overall risk capital requirement for an insurance company, it is of consequent interest to decompose the aforementioned capital into the associated risk sources. To this end, the functional $Q$ is naturally generalized beyond the conditional state independence, to a risk capital allocation functional, $A$, from the space of the Cartesian product of $\mathcal{X}$ with itself to $[0, \infty]$, and such that $A\left[X_{i}, X_{i}\right]=Q\left[X_{i}\right], i=1, \ldots, d$; see, e.g., Furman and Zitikis (2008b). It should be noted that apart from purely regulatory interest, the functional $A$ is often employed for, e.g., profitability analysis, pricing and quality control.

Various functional forms of $A$ have been proposed in the literature, with the allocation based on the CTE risk measure, formulated as

$$
\begin{equation*}
\mathbf{E}\left[X_{i} \mid S_{d}>\operatorname{VaR}_{q}\left[S_{d}\right]\right], \quad i=1, \ldots, d, \tag{1.1}
\end{equation*}
$$

being arguably the most popular. See Section 6.3 of McNeil et al. (2005) for related discussions on this allocation as a consequence of the Euler principle, as well as Dhaene et al. (2011) for optimality studies of interest. Although (1.1) is quite elegant and satisfies many desirable properties, its analytic tractability for generally distributed and possibly dependent $X_{1}, \ldots, X_{d}$ remains seldom feasible. To emphasize the point, we refer the reader to Panjer and Jia (2001), Landsman and Valdez (2003), Valdez and Chernih (2003), Cai and Li (2005), Furman and Landsman (2005, 2006, 2008), Chiragiev and Landsman (2007), Vernic $(2006,2011)$ and Dhaene et al. (2008) for analytic expressions for (1.1) under specific multivariate distributions of a multi-line business and/or a portfolio of risks.

In this paper, we follow a different route. Namely, as the excessive prudence of the current regulatory framework requires a confidence level close to 1, the notion of Extreme Value Theory (EVT) becomes appropriate. We therefore study the asymptotic behavior of capital allocations defined in (1.1) as $q \uparrow 1$, when $X_{1}, \ldots, X_{d}$ are asymptotically dependent or asymptotically independent. Following Section 5.2 of McNeil et al. (2005), the asymptotic independence between two random variables $X_{i}$ and $X_{j}$ with distribution functions $F_{i}$ and $F_{j}$ is defined as

$$
\lim _{q \uparrow 1} \operatorname{Pr}\left(F_{j}\left(X_{j}\right)>q \mid F_{i}\left(X_{i}\right)>q\right)=0
$$

while the asymptotic dependence is defined via this relation with a positive limit. However, in this paper we slightly relax the notion of asymptotic dependence and define it as

$$
\begin{equation*}
\liminf _{q \uparrow 1} \operatorname{Pr}\left(F_{j}\left(X_{j}\right)>q \mid F_{i}\left(X_{i}\right)>q\right)>0 . \tag{1.2}
\end{equation*}
$$

The notion of asymptotic dependence in higher dimensions is an obvious generalization of the two-dimensional definition above. It is known that, for both Fréchet and Gumbel
cases, the CTE and VaR of a single risk are proportional for a high confidence level (see Asimit and Badescu, 2010). Therefore, not surprisingly our main results show that capital allocations, as described by (1.1), are asymptotically proportional to $\mathrm{VaR}_{q}\left[S_{d}\right]$ with a readily calculable coefficient of proportionality. This allows for the utilization of the VaR-related machinery when dealing with the risk capital allocation based on CTE.

The remainder of the paper is organized as follows. The main results under asymptotic dependence and asymptotic independence are formulated and proved in Sections 2 and 3, respectively. Relevant examples are discussed in Section 4, while certain simulation studies verifying the accuracy of the main results are carried out in Section 5. Finally, Section 6 concludes the paper.

## 2. Main results under asymptotic dependence

From now on, we consider a multi-line insurance business consisting of $d$ non-negative risk variables $X_{1}, \ldots, X_{d}$. Denote $\underline{X}=\left(X_{1}, \ldots, X_{d}\right)$ and $S_{d}=\sum_{i=1}^{d} X_{i}$. Unless otherwise stated, all limit relationships hold as $t \rightarrow \infty$ or $q \uparrow 1$, letting the relations speak for themselves. For two positive functions $a(\cdot)$ and $b(\cdot)$, we write $a(\cdot) \sim c b(\cdot)$ to mean strong equivalence, i.e., $\lim a(\cdot) / b(\cdot)=c$ for some positive constant $c$, and we write $a(\cdot) \asymp b(\cdot)$ to mean weak equivalence, i.e., $0<\lim \inf a(\cdot) / b(\cdot) \leq \lim \sup a(\cdot) / b(\cdot)<\infty$. We also denote $\lim \inf a(\cdot) / b(\cdot) \geq 1$ and $\limsup a(\cdot) / b(\cdot) \leq 1$ by $a(\cdot) \gtrsim b(\cdot)$ and $a(\cdot) \lesssim b(\cdot)$, respectively.

To develop the main results of this paper we extensively employ the EVT techniques. A distribution function $F$ is said to belong to the Maximum Domain of Attraction (MDA) of a non-degenerate distribution function $G$, written as $F \in \operatorname{MDA}(G)$, if there are some $a_{n}>0$ and $b_{n} \in \mathbf{R}$ for $n \in \mathbf{N}$ such that

$$
\lim _{n \rightarrow \infty} F^{n}\left(a_{n} x+b_{n}\right)=G(x) .
$$

Due to the Fisher-Tippett theorem (see Fisher and Tippett, 1928, and Gnedenko, 1943), $G$ is of one of the following three types:

Fréchet type: $\quad \Phi_{\alpha}(x)=\exp \left\{-x^{-\alpha}\right\}, \quad x>0, \alpha>0$,
Gumbel type: $\quad \Lambda(x)=1-\exp \left\{-\mathrm{e}^{-x}\right\}, \quad-\infty<x<\infty$,
Weibull type: $\quad \Psi_{\alpha}(x)=\exp \left\{-(-x)^{\alpha}\right\}, \quad x \leq 0, \alpha>0$.
Since distributions from $\operatorname{MDA}\left(\Psi_{\alpha}\right)$ have finite upper endpoints while we are interested in risk variables with unbounded supports, in this paper we shall consider the Fréchet and Gumbel cases only.

Another important notion that is crucial for establishing our main results is vague convergence. Let $\left\{\mu_{n}, n \geq 1\right\}$ be a sequence of measures on a locally compact Hausdorff
space $\mathbb{B}$ with countable base. Then $\mu_{n}$ converges vaguely to some measure $\mu$, written as $\mu_{n} \xrightarrow{v} \mu$, if for all continuous functions $f$ with compact support we have

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{B}} f \mathrm{~d} \mu_{n}=\int_{\mathbb{B}} f \mathrm{~d} \mu
$$

A thorough background on vague convergence is given by Kallenberg (1983) and Resnick (1987).
2.1. Fréchet case. The next assumption is sufficient for our first main result.

Assumption 2.1. Let $\underline{X}$ be a non-negative random vector with marginal distributions $F_{1}, \ldots, F_{d}$ such that

$$
\lim _{t \rightarrow \infty} \frac{\operatorname{Pr}\left(X_{1}>t x_{1}, \ldots, X_{d}>t x_{d}\right)}{\bar{F}_{1}(t)}:=H_{F}(\underline{x})
$$

exists for all $\underline{x}=\left(x_{1}, \ldots, x_{d}\right) \in[0, \infty]^{d} \backslash\{\underline{0}\}$, where $H_{F}(\cdot)$ is assumed to be a nondegenerate function and $\underline{0}$ is the vector of zeroes.

This assumption implies that the marginal distribution functions are tail equivalent. That is,

$$
\begin{equation*}
0<\lim _{t \rightarrow \infty} \frac{\bar{F}_{j}(t)}{\bar{F}_{i}(t)}<\infty \tag{2.1}
\end{equation*}
$$

for all $1 \leq i, j \leq d$. In addition, there exists some $\alpha>0$ such that, for each $1 \leq i \leq d$, the distribution function of $X_{i}$ is regularly varying with index $\alpha$, written as $X_{i} \in \mathcal{R}_{-\alpha}$,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\bar{F}_{i}(t x)}{\bar{F}_{i}(t)}=x^{-\alpha}, \quad x>0 \tag{2.2}
\end{equation*}
$$

Note that $X_{i} \in \mathcal{R}_{-\alpha}$ is equivalent to $X_{i} \in \operatorname{MDA}\left(\Phi_{\alpha}\right)$ (see Resnick, 1987). Moreover,

$$
\begin{equation*}
\frac{\operatorname{Pr}\left(\left(X_{1} / t, \ldots, X_{d} / t\right) \in \cdot\right)}{\bar{F}_{1}(t)} \xrightarrow{v} \mu(\cdot) \tag{2.3}
\end{equation*}
$$

holds on $[0, \infty]^{d} \backslash\{\underline{0}\}$, where the measure $\mu$ is given by

$$
\begin{equation*}
\mu\left(\left(x_{1}, \infty\right] \times \cdots \times\left(x_{d}, \infty\right]\right):=H_{F}(\underline{x}) . \tag{2.4}
\end{equation*}
$$

The function $H_{F}$ satisfies certain properties (see Resnick, 1987), and one of the most important is continuity on the set $(0, \infty)^{d}$, but not necessarily on the boundary of its domain. The non-degeneracy assumption ensures that the measure $\mu(\cdot)$ does not put any mass on the boundary of the domain.

Recall Proposition 0.8(vi) of Resnick (1987), which in our current context can be easily restated as:

Lemma 2.1. Let $X_{1}$ and $X_{2}$ be two random variables, both belonging to $\mathcal{R}_{-\alpha}$ for some $\alpha>0$. Then, for $0<c<\infty$, we have $\operatorname{Pr}\left(X_{2}>t\right) \sim c \operatorname{Pr}\left(X_{1}>t\right)$ if and only if $\operatorname{VaR}_{q}\left[X_{2}\right] \sim c^{1 / \alpha} \operatorname{VaR}_{q}\left[X_{1}\right]$.

With the help of Lemma 2.1 we can easily verify that Assumption 2.1 describes an asymptotic dependence case.

Lemma 2.2. Under Assumption 2.1 the components of $\underline{X}=\left(X_{1}, \ldots, X_{d}\right)$ are pairwise asymptotically dependent.

Proof. As an illustration we consider relation (1.2) for $(i, j)=(1,2)$. By relations (2.1) and (2.2) and Lemma 2.1, there is some $c_{2}>0$ such that $\operatorname{VaR}_{q}\left[X_{2}\right] \sim c_{2}^{1 / \alpha} \operatorname{VaR}_{q}\left[X_{1}\right]$. As $q \uparrow 1$, or, equivalently, as $t=\operatorname{VaR}_{q}\left[X_{1}\right] \rightarrow \infty$, we have

$$
\begin{aligned}
\operatorname{Pr}\left(F_{2}\left(X_{2}\right)>q \mid F_{1}\left(X_{1}\right)>q\right) & =\frac{\operatorname{Pr}\left(F_{1}\left(X_{1}\right)>q, F_{2}\left(X_{2}\right)>q\right)}{\operatorname{Pr}\left(F_{1}\left(X_{1}\right)>q\right)} \\
& \geq \frac{\operatorname{Pr}\left(X_{1}>\operatorname{VaR}_{q}\left[X_{1}\right], X_{2}>\operatorname{VaR}_{q}\left[X_{2}\right]\right)}{\operatorname{Pr}\left(X_{1} \geq \operatorname{VaR}_{q}\left[X_{1}\right]\right)} \\
& \gtrsim \frac{\operatorname{Pr}\left(X_{1}>t, X_{2}>2 c_{2}^{1 / \alpha} t\right)}{\operatorname{Pr}\left(X_{1}>t\right)} \\
& \rightarrow H_{F}\left(1,2 c_{2}^{1 / \alpha}, 0, \ldots, 0\right)>0 .
\end{aligned}
$$

This proves relation (1.2) for $(i, j)=(1,2)$.
We are now able to provide asymptotic expressions for the risk capital allocation for a multi-line insurance business. Noticeably, switching the context to a portfolio consisting of $a_{i}$ units of $X_{i}$ for all $1 \leq i \leq d$, similar results as given in the next theorem can be obtained by replacing the measure $\mu$ from (2.4) with

$$
\begin{aligned}
\mu_{\underline{a}}\left(\left(x_{1}, \infty\right] \times \cdots \times\left(x_{d}, \infty\right]\right) & =\lim _{t \rightarrow \infty} \frac{\operatorname{Pr}\left(a_{1} X_{1}>t x_{1}, \ldots, a_{d} X_{d}>t x_{d}\right)}{\operatorname{Pr}\left(a_{1} X_{1}>t\right)} \\
& =H_{F}\left(x_{1} / a_{1}, \ldots, x_{d} / a_{d}\right) a_{1}^{-\alpha}
\end{aligned}
$$

Theorem 2.1. Let $\underline{X}$ be a random vector satisfying Assumption 2.1. If $X_{1} \in \mathcal{R}_{-\alpha}$ with $\alpha>1$ then we have, for all $1 \leq k \leq d$,

$$
\mathbf{E}\left[X_{k} \mid S_{d}>\operatorname{VaR}_{q}\left[S_{d}\right]\right] \sim C_{k} \operatorname{VaR}_{q}\left[S_{d}\right],
$$

where, with $\mu$ defined by (2.4),

$$
C_{k}=\frac{\frac{1}{\alpha-1} \mu\left(\underline{x}: x_{k}>1\right)+\int_{0}^{1} \mu\left(\underline{x}: x_{k}>z, \sum_{i=1}^{d} x_{i}>1\right) \mathrm{d} z}{\mu\left(\underline{x}: \sum_{i=1}^{d} x_{i}>1\right)} .
$$

Due to Assumption 2.1, it follows that

$$
\begin{equation*}
\operatorname{Pr}\left(S_{d}>t\right) \sim \mu\left(\underline{x}: \sum_{i=1}^{d} x_{i}>1\right) \bar{F}_{1}(t) ; \tag{2.5}
\end{equation*}
$$

for details, see Proposition 7.3 of Resnick (2007). Thus, $S_{d} \in \mathcal{R}_{-\alpha}$, which gives that $\sum_{i=1}^{d} C_{k}=\frac{\alpha}{\alpha-1}$; see Balkema and de Haan (1974), Alink et al. (2005), or Asimit and Badescu (2010).

Note 2.1. After the majority of this work had been done we became aware of a forthcoming paper by Joe and Li (2011). Their Remark 2.3(2) suggests that our Theorem 2.1 is a consequence of their Theorem 2.2. However, this statement is not true because their proof is based on the vague convergence property (see relation 2.3), which can be used only for $\mu$-continuous sets. The reasoning behind applying the vague convergence property is given in the proof of Theorem 2.1, for completeness. It is conveyed that the asymptotic independence case (see Theorem 3.1) requires an altered argumentation.

Proof. We first note that

$$
\begin{align*}
\mathbf{E}\left[X_{k} \mid S_{d}>t\right] & =\int_{0}^{\infty} \operatorname{Pr}\left(X_{k}>z \mid S_{d}>t\right) \mathrm{d} z \\
& =\int_{0}^{t} \frac{\operatorname{Pr}\left(X_{k}>z, S_{d}>t\right)}{\operatorname{Pr}\left(S_{d}>t\right)} \mathrm{d} z+\int_{t}^{\infty} \frac{\operatorname{Pr}\left(X_{k}>z\right)}{\operatorname{Pr}\left(S_{d}>t\right)} \mathrm{d} z \\
& =I_{1}(t)+I_{2}(t) \tag{2.6}
\end{align*}
$$

For the first part of $(2.6), I_{1}(t)$, we have

$$
\begin{equation*}
I_{1}(t)=t \int_{0}^{1} \frac{\operatorname{Pr}\left(X_{k}>t z, S_{d}>t\right)}{\operatorname{Pr}\left(S_{d}>t\right)} \mathrm{d} z \sim t \int_{0}^{1} \frac{\mu\left(\underline{x}: x_{k}>z, \sum_{i=1}^{d} x_{i}>1\right)}{\mu\left(\underline{x}: \sum_{i=1}^{d} x_{i}>1\right)} \mathrm{d} z \tag{2.7}
\end{equation*}
$$

which is a consequence of relations (2.3) and (2.5), the Dominated Convergence Theorem and Proposition A2.12 of Embrechts et al. (1997). Note that the latter proposition can be applied since $\mu\left(\partial\left\{\underline{x}: x_{k}>z, \sum_{i=1}^{d} x_{i}>1\right\}\right)=0$ for all $z \geq 0$. In fact, Assumption 2.1 implies that

$$
\mu\left\{x_{i}=z,\left(x_{1}, \ldots, x_{i-1}, x_{i+1} \ldots, x_{d}\right) \in A\right\}=0
$$

for all $z>0$ and any relatively compact set $A$ in $[0, \infty]^{d-1} \backslash\{\underline{0}\}$. This is still true for $z=0$ under the additional condition that the set $A$ is bounded away from $\{\underline{0}\}$. Moreover, the proof of Theorem 3.2 of Kortschak and Albrecher (2009) justifies the fact that no mass is put by the measure $\mu$ over the line $\sum_{i=1}^{d} x_{i}=1$ and any neighborhood around $\infty$.

For the second part of relation (2.6), $I_{2}(t)$, we have

$$
\begin{equation*}
I_{2}(t)=t \frac{\operatorname{Pr}\left(X_{k}>t\right)}{\operatorname{Pr}\left(X_{1}>t\right)} \frac{\operatorname{Pr}\left(X_{1}>t\right)}{\operatorname{Pr}\left(S_{d}>t\right)} \int_{1}^{\infty} \frac{\operatorname{Pr}\left(X_{k}>t z\right)}{\operatorname{Pr}\left(X_{k}>t\right)} \mathrm{d} z \sim \frac{t}{\alpha-1} \frac{\mu\left(\underline{x}: x_{k}>1\right)}{\mu\left(\underline{x}: \sum_{i=1}^{d} x_{i}>1\right)}, \tag{2.8}
\end{equation*}
$$

where in the last step above we have applied the relations (2.5) and

$$
\operatorname{Pr}\left(X_{k}>t\right) \sim \mu\left(\underline{x}: x_{k}>1\right) \operatorname{Pr}\left(X_{1}>t\right)
$$

due to (2.3), and made use of the Dominated Convergence Theorem as justified by Proposition 0.8 of Resnick (1987).

Plugging (2.7) and (2.8) into (2.6) yields $\mathbf{E}\left[X_{k} \mid S_{d}>t\right] \sim C_{k} t$. The proof is complete.

As a consequence of Theorem 2.1, we now express the capital allocations in terms of the VaR of the reference risk. The proof simply uses Lemma 2.1 and relation (2.5) and for this reason is omitted.

Corollary 2.1. Under the conditions of Theorem 2.1, it holds for all $1 \leq k \leq d$ that

$$
\mathbf{E}\left[X_{k} \mid S_{d}>\operatorname{VaR}_{q}\left[S_{d}\right]\right] \sim C_{k} \mu^{1 / \alpha}\left(\underline{x}: \sum_{i=1}^{d} x_{i}>1\right) \operatorname{VaR}_{q}\left[X_{1}\right],
$$

where the constants $C_{k}$ are defined as in Theorem 2.1.
2.2. Gumbel case. The Gumbel case is further investigated in the presence of asymptotic dependence. Since we are only interested in risks with unbounded supports, all individual risks are assumed to have an infinite upper endpoint. It is well known (see Embrechts et al., 1997) that if $F \in \operatorname{MDA}(\Lambda)$, then there exists a positive, measurable function $a(\cdot)$ such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\bar{F}(t+a(t) s)}{\bar{F}(t)}=\mathrm{e}^{-s} \tag{2.9}
\end{equation*}
$$

for any $s \in \mathbf{R}$. In addition, the latter holds locally uniformly in $s$ (see Resnick, 1987). Recall that the auxiliary function $a(\cdot)$ satisfies $a(t)=o(t)$ and is such that the relation

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{a(t+a(t) x)}{a(t)}=1 \tag{2.10}
\end{equation*}
$$

holds locally uniformly in $x$. Moreover, this auxiliary function can be chosen as the mean excess function of $F$, i.e.,

$$
a(t)=\int_{t}^{\infty} \frac{\bar{F}(s)}{\bar{F}(t)} \mathrm{d} s
$$

See Section 3.3 of Embrechts et al. (1997) for more details.
The next assumption is sufficient for our main results of this subsection.

Assumption 2.2. Let $\underline{X}=\left(X_{1}, \ldots, X_{d}\right)$ be a non-negative random vector with marginal distributions $F_{1}, \ldots, F_{d}$ such that

$$
\lim _{t \rightarrow \infty} \frac{\operatorname{Pr}\left(X_{1}>t+a(t) x_{1}, \ldots, X_{d}>t+a(t) x_{d}\right)}{\bar{F}_{1}(t)}:=H_{G}(\underline{x})
$$

exists for all $\underline{x} \in \mathbf{R}^{d}$, where $H_{G}(\cdot)$ is assumed to be a non-degenerate function.

Assumption 2.2 implies that

$$
\begin{equation*}
\frac{\operatorname{Pr}\left(\left(\frac{X_{1}-t}{a(t)}, \ldots, \frac{X_{d}-t}{a(t)}\right) \in \cdot\right)}{\bar{F}_{1}(t)} \xrightarrow{v} \nu(\cdot) \tag{2.11}
\end{equation*}
$$

holds on $[-\infty, \infty]^{d} \backslash\{-\underline{\infty}\}$ for the measure $\nu$ given by

$$
\nu\left(\left(x_{1}, \infty\right] \times \cdots \times\left(x_{d}, \infty\right]\right):=H_{G}(\underline{x}),
$$

where $\{-\underline{\infty}\}=(-\infty, \ldots,-\infty)$. Moreover, the distribution functions are tail equivalent with

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\bar{F}_{i}(t)}{\bar{F}_{1}(t)}=\nu\left(\underline{x}: x_{i}>0\right), \quad 1 \leq i \leq d \tag{2.12}
\end{equation*}
$$

and, therefore, all belong to $\operatorname{MDA}(\Lambda)$. One choice for the function $a(\cdot)$ from Assumption 2.2 is given by the auxiliary function corresponding to the random variable $X_{1}$ as described in relation (2.9). In fact, all marginal distributions admit the same auxiliary function.

We now show that the non-degeneracy of $H_{G}$ in Assumption 2.2 ensures that the random vector $\underline{X}$ has the asymptotic dependence property, which is a key property in describing the tail probability of $S_{d}$ (see Section 4.1 of Klüppelberg and Resnick, 2008).

Lemma 2.3. Under Assumption 2.2 the components of $\underline{X}=\left(X_{1}, \ldots, X_{d}\right)$ are pairwise asymptotically dependent.

Proof. As in the proof of Lemma 2.2, we consider relation (1.2) for $(i, j)=(1,2)$. By (2.12) and (2.9) with $F$ replaced by $F_{1}$, we have

$$
\lim _{t \rightarrow \infty} \frac{\bar{F}_{2}(t+a(t) s)}{\bar{F}_{1}(t)}=\nu\left(\underline{x}: x_{2}>0\right) \mathrm{e}^{-s} .
$$

Fix some $s$ large enough such that the right-hand side above is smaller than 1. Then it holds for all large $t$ that $\bar{F}_{2}(t+a(t) s)<\bar{F}_{1}(t)$, from which it follows that

$$
\operatorname{VaR}_{F_{1}(t)}\left[X_{2}\right] \leq t+a(t) s
$$

Analogously to the proof of Lemma 2.2, as $q \uparrow 1$, or, equivalently, as $t=\operatorname{VaR}_{q}\left[X_{1}\right] \rightarrow \infty$,

$$
\begin{aligned}
\operatorname{Pr}\left(F_{2}\left(X_{2}\right)>q \mid F_{1}\left(X_{1}\right)>q\right) & \geq \frac{\operatorname{Pr}\left(X_{1}>\operatorname{VaR}_{q}\left[X_{1}\right], X_{2}>\operatorname{VaR}_{q}\left[X_{2}\right]\right)}{\operatorname{Pr}\left(X_{1} \geq \operatorname{VaR}_{q}\left[X_{1}\right]\right)} \\
& \geq \frac{\operatorname{Pr}\left(X_{1}>t, X_{2}>\operatorname{VaR}_{F_{1}(t)}\left[X_{2}\right]\right)}{\operatorname{Pr}\left(X_{1} \geq t\right)} \\
& \geq \frac{\operatorname{Pr}\left(X_{1}>t, X_{2}>t+a(t) s\right)}{\operatorname{Pr}\left(X_{1} \geq t\right)} \\
& \rightarrow \nu\left(\underline{x}: x_{1}>0, x_{2}>s\right)>0,
\end{aligned}
$$

where in the last step we used the fact $\operatorname{Pr}\left(X_{1} \geq t\right) \sim \operatorname{Pr}\left(X_{1}>t\right)$ due to Corollary 1.6 of Resnick (1987). This proves relation (1.2) for $(i, j)=(1,2)$.

Note 2.2. Due to Assumption 2.2, it holds that

$$
\begin{equation*}
\operatorname{Pr}\left(S_{d}>d t\right) \sim \nu\left(\underline{x}: \sum_{i=1}^{d} x_{i}>0\right) \bar{F}_{1}(t), \tag{2.13}
\end{equation*}
$$

which is a consequence of the vague convergence in (2.11) and Proposition 4.1 of Klüppelberg and Resnick (2008). Note that Assumption 2.2 allows us to withdraw the equal marginal distributions assumption from their proposition. Thus,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\operatorname{Pr}\left(S_{d}>t+a(t / d) d s\right)}{\operatorname{Pr}\left(S_{d}>t\right)}=\mathrm{e}^{-s} \tag{2.14}
\end{equation*}
$$

holds for any $s \in \mathbf{R}$ and relation (2.9) is satisfied by $S_{d}$ with an auxiliary function $\tilde{a}(t):=$ $a(t / d) d$. The latter implies that $S_{d} \in \operatorname{MDA}(\Lambda)$, which gives that

$$
\begin{equation*}
\mathbf{E}\left[S_{d} \mid S_{d}>t\right] \sim t \tag{2.15}
\end{equation*}
$$

Relation (2.15) agrees with the next theorem, which provides the asymptotic expressions for the capital allocations for a multi-line insurance business of $d$ asymptotically dependent risks that belong to $\operatorname{MDA}(\Lambda)$.

Theorem 2.2. Let $\underline{X}$ be a random vector satisfying Assumption 2.2. Then it holds for all $1 \leq k \leq d$ that

$$
\mathbf{E}\left[X_{k} \mid S_{d}>\operatorname{VaR}_{q}\left[S_{d}\right]\right] \sim \frac{1}{d} \operatorname{VaR}_{q}\left[S_{d}\right] .
$$

Proof. The first step of the proof is developed as

$$
\begin{equation*}
\mathbf{E}\left[X_{k} \mid S_{d}>d t\right]=\left(\int_{0}^{t}+\int_{t}^{\infty}\right) \operatorname{Pr}\left(X_{k}>z \mid S_{d}>d t\right) \mathrm{d} z=I_{1}(t)+I_{2}(t) . \tag{2.16}
\end{equation*}
$$

The second integral can be easily reduced to

$$
\begin{equation*}
I_{2}(t) \leq \int_{t}^{\infty} \frac{\operatorname{Pr}\left(X_{k}>z\right)}{\operatorname{Pr}\left(S_{d}>d t\right)} \mathrm{d} z . \tag{2.17}
\end{equation*}
$$

The change of variables $z=t+a(t) v$ leads to

$$
\int_{t}^{\infty} \frac{\operatorname{Pr}\left(X_{k}>z\right)}{\operatorname{Pr}\left(X_{k}>t\right)} \mathrm{d} z=a(t) \int_{0}^{\infty} \frac{\operatorname{Pr}\left(X_{k}>t+a(t) v\right)}{\operatorname{Pr}\left(X_{k}>t\right)} \mathrm{d} v=o(t)
$$

due to the Dominated Convergence Theorem, relations (2.9) and $a(t)=o(t)$. Thus, the latter relation, together with (2.13) and (2.17), concludes that

$$
\begin{equation*}
I_{2}(t)=o(t) . \tag{2.18}
\end{equation*}
$$

It only remains to investigate the first term of (2.16), which is equal to

$$
\begin{align*}
I_{1}(t) & =t-\left(\int_{0}^{t+(d-1) a(t) s}+\int_{t+(d-1) a(t) s}^{t}\right) \operatorname{Pr}\left(X_{k} \leq z \mid S_{d}>d t\right) \mathrm{d} z \\
& =t-I_{11}(t, s)-I_{12}(t, s), \tag{2.19}
\end{align*}
$$

where $s$ is a negative number.
Recall that $a(\cdot)$ is a positive function. It holds for every $s<0$ that

$$
\begin{align*}
\frac{I_{11}(t, s)}{t} & \leq \operatorname{Pr}\left(X_{k} \leq t+(d-1) a(t) s \mid S_{d}>d t\right) \\
& \leq \frac{\operatorname{Pr}\left(\sum_{i=1, i \neq k}^{d} X_{i}>(d-1) t-(d-1) a(t) s\right)}{\operatorname{Pr}\left(S_{d}>d t\right)} \\
& \sim \frac{\nu\left(\underline{x}: \sum_{i=1, i \neq k}^{d} x_{i}>0\right)}{\nu\left(\underline{x}: \sum_{i=1}^{d} x_{i}>0\right)} \mathrm{e}^{s}, \tag{2.20}
\end{align*}
$$

as a result of (2.13) and (2.14). Thus,

$$
\lim _{s \downarrow-\infty} \limsup _{t \rightarrow \infty} \frac{I_{11}(t, s)}{t}=0 .
$$

As before, the change of variables $z=t+(d-1) a(t) v$ yields

$$
\begin{align*}
I_{12}(t, s) & =(d-1) a(t) \int_{s}^{0} \operatorname{Pr}\left(X_{k} \leq t+(d-1) a(t) v \mid S_{d}>d t\right) \mathrm{d} v \\
& \leq(d-1) a(t) \frac{\int_{s}^{0} \operatorname{Pr}\left(\sum_{i=1, i \neq k}^{d} X_{i}>(d-1) t-(d-1) a(t) v\right) \mathrm{d} v}{\operatorname{Pr}\left(S_{d}>d t\right)} \\
& \leq(d-1) a(t)|s| \frac{\operatorname{Pr}\left(\sum_{i=1, i \neq k}^{d} X_{i}>(d-1) t\right)}{\operatorname{Pr}\left(S_{d}>d t\right)} \\
& \sim(d-1) a(t)|s| \frac{\nu\left(\underline{x}: \sum_{i=1, i \neq k}^{d} x_{i}>0\right)}{\nu\left(\underline{x}: \sum_{i=1}^{d} x_{i}>0\right)}=o(t), \tag{2.21}
\end{align*}
$$

due to $a(t)=o(t)$ and relations (2.13) and (2.14).

A combination of relations (2.19), (2.20) and (2.21) yields that $I_{1}(t) \sim t$. Plugging this and (2.18) into (2.16) concludes the proof.

Recall that every distribution $F$ from $\operatorname{MDA}(\Lambda)$ with an infinite upper endpoint also has a rapidly varying tail (see Embrechts et al., 1997, page 148), written as $F \in \mathcal{R}_{-\infty}$, characterized by

$$
\lim _{t \rightarrow \infty} \frac{\bar{F}(t x)}{\bar{F}(t)}= \begin{cases}0, & x>1 \\ \infty, & 0<x<1\end{cases}
$$

The following result is similar to Lemma 2.1 but for the rapid variation case:
Lemma 2.4. Let $X_{1}$ and $X_{2}$ be two random variables with distribution functions $F_{1}$ and $F_{2}$ in $\mathcal{R}_{-\infty}$. If $\bar{F}_{1}(l t) \asymp \bar{F}_{2}(t)$ for some $l>0$ then, for every $m>0$, as $q=1-p \uparrow 1$,

$$
\begin{equation*}
\operatorname{VaR}_{q}\left[X_{1}\right] \sim l \operatorname{VaR}_{1-m p}\left[X_{2}\right] . \tag{2.22}
\end{equation*}
$$

Proof. Let $0<\varepsilon<1$ be arbitrarily fixed. As $p \downarrow 0$, there is some function $b(p) \rightarrow 0$ such that

$$
\begin{aligned}
\bar{F}_{1}\left((1+\varepsilon) l \mathrm{VaR}_{1-m p}\left[X_{2}\right]\right) & =b(p) \bar{F}_{1}\left((1+\varepsilon / 2) l \mathrm{VaR}_{1-m p}\left[X_{2}\right]\right) \\
& \asymp b(p) \bar{F}_{2}\left((1+\varepsilon / 2) \operatorname{VaR}_{1-m p}\left[X_{2}\right]\right) \leq b(p) m p
\end{aligned}
$$

Similarly, as $p \downarrow 0$, there is some function $c(p) \rightarrow \infty$ such that

$$
\begin{aligned}
\bar{F}_{1}\left((1-\varepsilon) l \mathrm{VaR}_{1-m p}\left[X_{2}\right]\right) & =c(p) \bar{F}_{1}\left((1-\varepsilon / 2) l \mathrm{VaR}_{1-m p}\left[X_{2}\right]\right) \\
& \asymp c(p) \bar{F}_{2}\left((1-\varepsilon / 2) \mathrm{VaR}_{1-m p}\left[X_{2}\right]\right) \geq c(p) m p
\end{aligned}
$$

Thus, for all $0<p<1$ sufficiently close to 0 , we have

$$
\bar{F}_{1}\left((1+\varepsilon) l \operatorname{VaR}_{1-m p}\left[X_{2}\right]\right)<p<\bar{F}_{1}\left((1-\varepsilon) l \mathrm{VaR}_{1-m p}\left[X_{2}\right]\right) .
$$

It follows that

$$
(1-\varepsilon) l \operatorname{VaR}_{1-m p}\left[X_{2}\right] \leq \operatorname{VaR}_{q}\left[X_{1}\right] \leq(1+\varepsilon) l \operatorname{VaR}_{1-m p}\left[X_{2}\right] .
$$

By the arbitrariness of $\varepsilon$, this leads to relation (2.22).
Similar to the Fréchet case, Theorem 2.2 allows us to express the capital allocations in terms of the reference risk measure, $\operatorname{VaR}_{q}\left[X_{1}\right]$. Finally, relation (2.13), Lemma 2.4 and the fact that $S_{d} \in \mathcal{R}_{-\infty}$ imply the following result:

Corollary 2.2. Under the conditions of Theorem 2.2, as $q=1-p \uparrow 1$ it holds that

$$
\begin{equation*}
\mathbf{E}\left[X_{k} \mid S_{d}>\operatorname{VaR}_{q}\left[S_{d}\right]\right] \sim \operatorname{VaR}_{1-p / K}\left[X_{1}\right] \tag{2.23}
\end{equation*}
$$

where $K=\nu\left(\underline{x}: \sum_{i=1}^{d} x_{i}>0\right)$.
Lemma 2.4 shows that $\operatorname{VaR}_{q}\left[X_{1}\right]$ as a function of $p$ is slowly varying as $p \downarrow 0$ (see also Proposition 0.8(v) of Resnick, 1987). Therefore, the right-hand side of (2.23) can be changed to $\operatorname{VaR}_{1-m p}\left[X_{1}\right]$ for every constant $m>0$. However, in view of relation (2.13), the most rational choice for $m$ should be $m=1 / K$.

We have thus obtained an appealing expression for the CTE-based risk capital allocations for a multi-line insurance business consisting of asymptotically dependent risks that are not extremely heavy tailed. The fact that all risks belong to $\operatorname{MDA}(\Lambda)$ allows us to conclude that the marginal risk capitals under CTE are equal for conservative scenarios. It is interesting that this remains true without assuming exchangeable risks, a situation in which the allocations are obviously equal at any degree of safeness.

## 3. Main results under asymptotic independence

There has been a particular interest in understanding the tail behavior of the sum of asymptotically independent random variables with heavy tails (see Albrecher et al., 2006, Ko and Tang, 2008, Asmussen and Rojas-Nandayapa, 2008, Geluk and Tang, 2009, and Mitra and Resnick, 2009). A similar pattern for the CTE-capital allocations is expected. The results are less homogeneous under asymptotic independence, and various assumptions are provided in this case. The Fréchet and Gumbel cases exhibit fundamentally different behaviors for the capital allocations and, therefore, analyses are made separately.
3.1. Fréchet case. We first restrict our attention to a portfolio of risks with regularly varying tails. Two overlapping sets of assumptions are made, but neither of them is a consequence of the other. The first assumption is a natural extension of Assumption 2.1 under the asymptotic independence setting.

Assumption 3.1. Let $\underline{X}$ be a non-negative random vector with marginal distributions $F_{1}, \ldots, F_{d}$ such that

$$
\lim _{t \rightarrow \infty} \frac{\operatorname{Pr}\left(X_{1}>t x_{1}, \ldots, X_{d}>t x_{d}\right)}{\bar{F}_{1}(t)}:=\mu_{I}\left(\left(x_{1}, \infty\right] \times \cdots \times\left(x_{d}, \infty\right]\right)
$$

exists for all $\underline{x} \in[0, \infty]^{d} \backslash\{\underline{0}\}$, where $\mu_{I}$ is a Radon measure such that $\mu_{I}\left((0, \infty]^{d}\right)=0$.

Since the limiting measure is Radon, Assumption 3.1 suggests that all marginal distributions are regularly varying tailed with possibly different indexes, $\alpha_{i}$, such that $\alpha_{1}=$ $\wedge_{1 \leq i \leq n} \alpha_{i}$. If these indexes are not equal, then the measure $\mu_{I}$ does not put mass on the vast majority of the boundary of its domain, $[0, \infty]^{d} \backslash\{\underline{0}\}$. In such a case, the problem becomes trivial and only components with indexes equal to $\alpha_{1}$ have contributions to extreme events related to the aggregate portfolio. Therefore, without loss of generality it is further assumed that all marginal distributions belong to $\operatorname{MDA}\left(\Phi_{\alpha}\right)$, since otherwise the main results remain unchanged. Then, for each $1 \leq i \leq d$, there exists a positive constant $c_{i}$ such that

$$
\begin{equation*}
\bar{F}_{i}(t) \sim c_{i} \bar{F}_{1}(t) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\operatorname{Pr}\left(\left(X_{1} / t, \ldots, X_{d} / t\right) \in \cdot\right)}{\operatorname{Pr}\left(X_{1}>t\right)} \xrightarrow{v} \mu_{I}(\cdot) \tag{3.2}
\end{equation*}
$$

holds on $[0, \infty]^{d} \backslash\{\underline{0}\}$. Furthermore, the measure $\mu_{I}$ puts mass only on the coordinate axes due to the fact that $\mu_{I}\left((0, \infty]^{d}\right)=0$. Thus, for all $z>0$,

$$
\mu_{I}\left(\underline{x}: x_{1}=\cdots=x_{i-1}=x_{i+1}=\cdots=x_{d}=0, x_{i} \in(z, \infty]\right)=c_{i} z^{-\alpha} .
$$

It is interesting to outline the link between Assumption 3.1 and asymptotic independence. Under Assumption 3.1, following the proof of Lemma 2.2 we can easily verify that the components of $\underline{X}$ are pairwise asymptotically independent. As for the inverse statement, for simplicity consider $\underline{X}=\left(X_{1}, X_{2}\right)$. Assume that $X_{1}$ and $X_{2}$ belong to $\operatorname{MDA}\left(\Phi_{\alpha}\right)$, have strongly equivalent tails as in (3.1) and are asymptotically independent. For this case, the asymptotic independence is equivalent to

$$
\lim _{t \rightarrow \infty} \operatorname{Pr}\left(X_{2}>t \mid X_{1}>t\right)=0
$$

Then for all positive $x_{1}$ and $x_{2}$ we have

$$
\frac{\operatorname{Pr}\left(X_{1}>t x_{1}, X_{2}>t x_{2}\right)}{\operatorname{Pr}\left(X_{1}>t\right)} \leq \frac{\operatorname{Pr}\left(X_{1} \wedge X_{2}>t x_{1} \wedge t x_{2}\right)}{\operatorname{Pr}\left(X_{1}>t\right)}=o(1) .
$$

Thus,

$$
\lim _{t \rightarrow \infty} \frac{\operatorname{Pr}\left(X_{1}>t x_{1}, X_{2}>t x_{2}\right)}{\operatorname{Pr}\left(X_{1}>t\right)}= \begin{cases}x_{1}^{-\alpha}, & x_{1}>0, x_{2}=0 \\ c_{2} x_{2}^{-\alpha}, & x_{1}=0, x_{2}>0 \\ 0, & \text { otherwise }\end{cases}
$$

Assumption 3.1 describes a situation in which

$$
\begin{equation*}
\operatorname{Pr}\left(S_{d}>t\right) \sim \bar{F}_{1}(t) \sum_{i=1}^{d} c_{i} ; \tag{3.3}
\end{equation*}
$$

see Lemma 2.1 of Davis and Resnick (1996) or Proposition 7.3 of Resnick (2007).
The first main result of this subsection is now given for a multi-line insurance business consisting of asymptotically independent risks with regularly varying tails.

Theorem 3.1. Let $\underline{X}$ be a random vector satisfying Assumption 3.1. If $X_{1} \in \mathcal{R}_{-\alpha}$ with $\alpha>1$, then for all $1 \leq k \leq d$ we have

$$
\mathbf{E}\left[X_{k} \mid S_{d}>\operatorname{VaR}_{q}\left[S_{d}\right]\right] \sim \frac{\alpha}{\alpha-1} \frac{c_{k}}{\sum_{i=1}^{d} c_{i}} \operatorname{VaR}_{q}\left[S_{d}\right],
$$

where the constants $c_{i}$ are given by (3.1).
Proof. Similar to the proof of Theorem 2.1,

$$
\begin{align*}
\mathbf{E}\left[X_{k} \mid S_{d}>t\right] & =\int_{0}^{t} \frac{\operatorname{Pr}\left(X_{k}>z, S_{d}>t\right)}{\operatorname{Pr}\left(S_{d}>t\right)} \mathrm{d} z+\int_{t}^{\infty} \frac{\operatorname{Pr}\left(X_{k}>z\right)}{\operatorname{Pr}\left(S_{d}>t\right)} \mathrm{d} z \\
& =I_{1}(t)+I_{2}(t) \tag{3.4}
\end{align*}
$$

Now, for any $0<z \leq 1$ we have

$$
\begin{aligned}
\frac{\operatorname{Pr}\left(X_{k}>t z, S_{d}>t\right)}{\operatorname{Pr}\left(X_{1}>t\right)} & =\frac{\operatorname{Pr}\left(X_{k}>t\right)}{\operatorname{Pr}\left(X_{1}>t\right)}+\frac{\operatorname{Pr}\left(t z<X_{k} \leq t, S_{d}>t\right)}{\operatorname{Pr}\left(X_{1}>t\right)} \\
& \sim c_{k}+\mu_{I}\left(\underline{x}: z<x_{k} \leq 1, \sum_{i=1}^{d} x_{i}>1\right) \\
& =c_{k},
\end{aligned}
$$

where Proposition A2.12 of Embrechts et al. (1997) and the vague convergence property in (3.2) are applied over the $\mu_{I}$-negligible set $\left\{\underline{x}: z<x_{k} \leq 1, \sum_{i=1}^{d} x_{i}>1\right\}$. The latter, relation (3.3) and the Dominated Convergence Theorem yield that

$$
\begin{equation*}
I_{1}(t)=t \int_{0}^{1} \frac{\operatorname{Pr}\left(X_{k}>t z, S_{d}>t\right)}{\operatorname{Pr}\left(S_{d}>t\right)} \mathrm{d} z \sim \frac{c_{k}}{\sum_{i=1}^{d} c_{i}} t . \tag{3.5}
\end{equation*}
$$

As in the proof of Theorem 2.1, the second term in (3.4) satisfies

$$
\begin{equation*}
I_{2}(t) \sim \frac{1}{\alpha-1} \frac{c_{k}}{\sum_{i=1}^{d} c_{i}} t \tag{3.6}
\end{equation*}
$$

Putting together (3.4), (3.5) and (3.6), we obtain

$$
\mathbf{E}\left[X_{k} \mid S_{d}>t\right] \sim \frac{\alpha}{\alpha-1} \frac{c_{k}}{\sum_{i=1}^{d} c_{i}} t
$$

which completes the proof.
An even simpler expression for the CTE-capital allocations is given without proof in the next corollary, which is a consequence of Theorem 3.1, Lemma 2.1 and relation (3.3).

Corollary 3.1. Under the conditions of Theorem 3.1, it holds for all $1 \leq k \leq d$ that

$$
\mathbf{E}\left[X_{k} \mid S_{d}>\operatorname{VaR}_{q}\left[S_{d}\right]\right] \sim \frac{\alpha}{\alpha-1} c_{k}\left(\sum_{i=1}^{d} c_{i}\right)^{\frac{1}{\alpha}-1} \operatorname{VaR}_{q}\left[X_{1}\right]
$$

where the constants $c_{i}$ are given by (3.1).
Our next assumption is motivated by the work of Asimit and Badescu (2010).
Assumption 3.2. Let $\underline{X}$ be a nonnegative random vector with marginal distribution functions $F_{1}, \ldots, F_{d}$. Assume that there are some measurable and bounded functions $h_{i}(\cdot):(0, \infty) \rightarrow(0, \infty)$ such that, for distinct $i, j \in\{1, \ldots, d\}$, the relation

$$
\begin{equation*}
\operatorname{Pr}\left(X_{j}>t \mid X_{i}=x\right) \sim \bar{F}_{j}(t) h_{i}(x) \tag{3.7}
\end{equation*}
$$

holds uniformly for $0 \leq x<\infty$. In addition, for $d \geq 3$, it is also assumed that

$$
\begin{equation*}
\operatorname{Pr}\left(X_{j}>t, X_{k}>t \mid X_{i}=x\right)=o\left(\bar{F}_{j}(t)+\bar{F}_{k}(t)\right) h_{i}(x) \tag{3.8}
\end{equation*}
$$

holds uniformly for $0 \leq x<\infty$ for distinct $i, j, k \in\{1, \ldots, d\}$.
The uniformity of relation (3.7) is understood as

$$
\lim _{t \rightarrow \infty} \sup _{0 \leq x<\infty}\left|\frac{\operatorname{Pr}\left(X_{j}>t \mid X_{i}=x\right)}{\bar{F}_{j}(t) h_{i}(x)}-1\right|=0
$$

while the uniformity of relation (3.8) as

$$
\lim _{t \rightarrow \infty} \sup _{0 \leq x<\infty} \frac{\operatorname{Pr}\left(X_{j}>t, X_{k}>t \mid X_{i}=x\right)}{\left(\bar{F}_{j}(t)+\bar{F}_{k}(t)\right) h_{i}(x)}=0
$$

The recent work of Li et al. (2010) discussed the verification of the uniformity of relation (3.7) and the boundedness of the functions $h_{i}(\cdot)$. Clearly, the uniformity property implies that $\mathbf{E}\left[h_{i}(X)\right]=1$.

For the dependence structures discussed by Asimit and Badescu (2010) and Li et al. (2010) with strongly equivalent tails, both Assumptions 3.1 and 3.2 are satisfied. It is not difficult to prove that a bivariate random vector with strongly equivalent tails and dependence structure given by the Marshall-Olkin copula (see, e.g., Nelsen, 1999, page 46) satisfies only Assumption 3.1. It will be later seen in Note 3.1 that within a particular (yet fairly general) setting, Assumption 3.2 may provide a refinement for the capital allocations given by Theorem 3.1. Therefore, neither of Assumptions 3.1 and 3.2 is dominated by the other one.

We first establish that random vectors satisfying Assumption 3.2 have pairwise asymptotically independent components.

Lemma 3.1. Relation (3.7) implies that $X_{i}$ and $X_{j}$ are asymptotically independent.

Proof. By definition,

$$
\begin{aligned}
\operatorname{Pr}\left(F_{j}\left(X_{j}\right)>q \mid F_{i}\left(X_{i}\right)>q\right) & \leq \frac{\operatorname{Pr}\left(F_{i}\left(X_{i}\right)>q, F_{j}\left(X_{j}\right) \geq q\right)}{\operatorname{Pr}\left(F_{i}\left(X_{i}\right)>q\right)} \\
& =\frac{\int_{\operatorname{VaR}_{q}\left[X_{j}\right]^{-}}^{\infty} \operatorname{Pr}\left(F_{i}\left(X_{i}\right)>q \mid X_{j}=x\right) \operatorname{Pr}\left(X_{j} \in \mathrm{~d} x\right)}{\operatorname{Pr}\left(F_{i}\left(X_{i}\right)>q\right)} .
\end{aligned}
$$

Hence, by the uniformity of (3.7), the right-hand side above converges to

$$
\lim _{q \uparrow 1} \int_{\operatorname{VaR}_{q}\left[X_{j}\right]^{-}}^{\infty} h_{j}(x) \operatorname{Pr}\left(X_{j} \in \mathrm{~d} x\right)=0
$$

Therefore, $X_{i}$ and $X_{j}$ are asymptotically independent.

The next result is crucial for developing our second main result of this subsection.

Lemma 3.2. Let $\underline{X}$ be a random vector satisfying Assumption 3.2 such that each component has a regularly varying tail. Then the relation

$$
\operatorname{Pr}\left(\sum_{i=1, i \neq k}^{d} X_{i}>t \mid X_{k}=x\right) \sim h_{k}(x) \sum_{i=1, i \neq k}^{d} \bar{F}_{i}(t)
$$

holds uniformly for $0 \leq x<\infty$ for all $1 \leq k \leq d$.

Proof. The proof below proceeds for $d \geq 3$ and $k=1$, but it can easily be adjusted so that it is valid for $d \geq 2$ and $k \neq 1$. We first derive an asymptotic lower bound. Since each $X_{i}$ is nonnegative, by Bonferroni's inequality we have, uniformly for $0 \leq x<\infty$,

$$
\begin{aligned}
& \operatorname{Pr}\left(\sum_{i=2}^{d} X_{i}>t \mid X_{1}=x\right) \\
\geq & \operatorname{Pr}\left(\bigvee_{i=2}^{d} X_{i}>t \mid X_{1}=x\right) \\
\geq & \sum_{i=2}^{d} \operatorname{Pr}\left(X_{i}>t \mid X_{1}=x\right)-\sum_{2 \leq i \neq j \leq d} \operatorname{Pr}\left(X_{i}>t, X_{j}>t \mid X_{1}=x\right) \\
\sim & h_{1}(x) \sum_{i=2}^{d} \bar{F}_{i}(t),
\end{aligned}
$$

where in the last step we applied both (3.7) and (3.8). Next, we derive the corresponding asymptotic upper bound. For an arbitrarily fixed constant $0<\varepsilon<1$, we have

$$
\begin{align*}
& \operatorname{Pr}\left(\sum_{i=2}^{d} X_{i}>t \mid X_{1}=x\right) \\
\leq & \operatorname{Pr}\left(\bigvee_{i=2}^{d} X_{i}>(1-\varepsilon) t \mid X_{1}=x\right)+\operatorname{Pr}\left(\sum_{i=2}^{d} X_{i}>t, \bigvee_{i=2}^{d} X_{i} \leq(1-\varepsilon) t \mid X_{1}=x\right) \\
= & I_{1}(t, \varepsilon)+I_{2}(t, \varepsilon) . \tag{3.9}
\end{align*}
$$

Let $\alpha_{i}>0$ be the regularly varying index of $\bar{F}_{i}$. Then relation (3.7) gives that

$$
\begin{equation*}
I_{1}(t, \varepsilon) \leq \sum_{i=2}^{d} \operatorname{Pr}\left(X_{i}>(1-\varepsilon) t \mid X_{1}=x\right) \sim h_{1}(x) \sum_{i=2}^{d}(1-\varepsilon)^{-\alpha_{i}} \bar{F}_{i}(t) . \tag{3.10}
\end{equation*}
$$

Similarly, by (3.8),

$$
\begin{align*}
I_{2}(t, \varepsilon) & =\operatorname{Pr}\left(\sum_{i=2}^{d} X_{i}>t, \bigvee_{j=2}^{d} X_{j}>\frac{t}{d-1}, \bigvee_{i=2}^{d} X_{i} \leq(1-\varepsilon) t \mid X_{1}=x\right) \\
& \leq \sum_{j=2}^{d} \operatorname{Pr}\left(\sum_{i=2}^{d} X_{i}>t, X_{j}>\frac{t}{d-1}, X_{j} \leq(1-\varepsilon) t \mid X_{1}=x\right) \\
& \leq \sum_{j=2}^{d} \operatorname{Pr}\left(\sum_{i=2, i \neq j}^{d} X_{i}>\varepsilon t, \left.X_{j}>\frac{t}{d-1} \right\rvert\, X_{1}=x\right) \\
& \leq \sum_{2 \leq i \neq j \leq d} \operatorname{Pr}\left(X_{i}>\frac{\varepsilon t}{d-2}, \left.X_{j}>\frac{t}{d-1} \right\rvert\, X_{1}=x\right) \\
& =o\left(h_{1}(x) \sum_{i=2}^{d} \bar{F}_{i}(t)\right) . \tag{3.11}
\end{align*}
$$

Substituting (3.10) and (3.11) into (3.9) and noticing the arbitrariness of $\varepsilon$, we obtain

$$
\operatorname{Pr}\left(\sum_{i=2}^{d} X_{i}>t \mid X_{1}=x\right) \lesssim h_{1}(x) \sum_{i=2}^{d} \bar{F}_{i}(t) .
$$

The proof is complete.
Now we are ready to state the second main result of this subsection.
Theorem 3.2. Let $\underline{X}$ be a random vector satisfying Assumption 3.2 such that each component $X_{i}$ has a regularly varying tail with index $\alpha_{i}>1$. In addition, if each $h_{i}(\cdot)$ is a regularly varying function, then

$$
\begin{equation*}
\operatorname{Pr}\left(S_{d}>t\right) \sim \sum_{i=1}^{d} \bar{F}_{i}(t) \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{E}\left[X_{k} \mid S_{d}>t\right] \sim \frac{\mathbf{E}\left[X_{k} h_{k}\left(X_{k}\right)\right] \sum_{i=1, i \neq k}^{d} \bar{F}_{i}(t)+t \bar{F}_{k}(t) \frac{\alpha_{k}}{\alpha_{k}-1}}{\sum_{i=1}^{d} \bar{F}_{i}(t)} . \tag{3.13}
\end{equation*}
$$

All examples presented in the work of Li et al. (2010) give the regular variation property of the functions $h_{i}(\cdot)$. If relation (3.1) holds for each $1 \leq i \leq d$, then one may use Theorem 3.2 to recover Corollary 3.1.

Note 3.1. Let us assume that there exist finite constants $c_{i}, 1 \leq i \leq d$, such that $\bar{F}_{i}(t) \sim$ $c_{i} \bar{F}_{1}(t)$ for all $1 \leq i \leq d-1$ and $\bar{F}_{d}(t) \sim t \bar{F}_{1}(t) c_{d}$. Thus, $\alpha_{i}=\alpha_{1}$ for all $1 \leq i \leq d-1$ and $\alpha_{d}=\alpha_{1}-1$. Suppose $\alpha_{1}>2$ so that $X_{d}$ has a finite mean as well. In addition, $\operatorname{Pr}\left(S_{d}>t\right) \sim \bar{F}_{d}(t)$, which together with Lemma 2.1, implies that $\operatorname{VaR}_{q}\left[S_{d}\right] \sim \operatorname{VaR}_{q}\left[X_{d}\right]$. Some algebraic manipulations lead to

$$
\lim _{t \rightarrow \infty} \mathbf{E}\left[X_{k} \mid S_{d}>t\right]=\mathbf{E}\left[X_{k} h_{k}\left(X_{k}\right)\right]+\frac{\alpha_{1}}{\alpha_{1}-1} \frac{c_{k}}{c_{d}}
$$

for all $1 \leq k \leq d-1$ and

$$
\mathbf{E}\left[X_{d} \mid S_{d}>t\right] \sim t \frac{\alpha_{d}}{\alpha_{d}-1} .
$$

Obviously, these relations generate the asymptotic capital allocation estimates

$$
\lim _{t \rightarrow \infty} \mathbf{E}\left[X_{k} \mid S_{d}>\operatorname{VaR}_{q}\left[S_{d}\right]\right]=\mathbf{E}\left[X_{k} h_{k}\left(X_{k}\right)\right]+\frac{\alpha_{1}}{\alpha_{1}-1} \frac{c_{k}}{c_{d}}
$$

for all $1 \leq k \leq d-1$ and

$$
\begin{equation*}
\mathbf{E}\left[X_{d} \mid S_{d}>\operatorname{VaR}_{q}\left[S_{d}\right]\right] \sim \frac{\alpha_{d}}{\alpha_{d}-1} \operatorname{VaR}_{q}\left(X_{d}\right) \tag{3.14}
\end{equation*}
$$

On the contrary, in this particular setting, Theorem 3.1 gives that

$$
\mathbf{E}\left[X_{k} \mid S_{d}>\operatorname{VaR}_{q}\left[S_{d}\right]\right]=o\left(\operatorname{VaR}_{q}\left[X_{d}\right]\right), \quad 1 \leq k \leq d-1
$$

while the $d^{\text {th }}$ capital allocation is given as in relation (3.14). The advantage of using Theorem 3.2 over Theorem 3.1 becomes transparent.

Proof. The proof is provided only for $k=1$ as the extensions to all other values of $k$ are obvious. Similar to the proof of Theorem 2.1,

$$
\begin{align*}
\mathbf{E}\left[X_{1} \mid S_{d}>t\right] & =\int_{0^{-}}^{\infty} x \operatorname{Pr}\left(X_{1} \in \mathrm{~d} x \mid S_{d}>t\right) \\
& =\frac{\int_{0^{-}}^{\infty} x \operatorname{Pr}\left(S_{d}-X_{1}>t-x \mid X_{1}=x\right) F_{1}(\mathrm{~d} x)}{\int_{0^{-}}^{\infty} \operatorname{Pr}\left(S_{d}-X_{1}>t-x \mid X_{1}=x\right) F_{1}(\mathrm{~d} x)} . \tag{3.15}
\end{align*}
$$

We first investigate the numerator from (3.15). By Lemma 3.2, for every $\varepsilon>0$, there is some $t_{0}>0$ such that, for all $t \geq t_{0}$ and $x>0$,

$$
\begin{equation*}
(1-\varepsilon) h_{1}(x) \sum_{i=2}^{d} \bar{F}_{i}(t) \leq \operatorname{Pr}\left(S_{d}-X_{1}>t \mid X_{1}=x\right) \leq(1+\varepsilon) h_{1}(x) \sum_{i=2}^{d} \bar{F}_{i}(t) . \tag{3.16}
\end{equation*}
$$

According to this constant $t_{0}$, for all $t \geq t_{0}$ we split the integral into three parts as

$$
\begin{equation*}
\sum_{i=1}^{3} I_{i}(t)=\left(\int_{0^{-}}^{t-t_{0}}+\int_{t-t_{0}}^{t}+\int_{t}^{\infty}\right) x \operatorname{Pr}\left(S_{d}-X_{1}>t-x \mid X_{1}=x\right) F_{1}(\mathrm{~d} x) \tag{3.17}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
I_{3}(t)=\int_{t}^{\infty} x F_{1}(\mathrm{~d} x) \tag{3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{2}(t) \leq \int_{t-t_{0}}^{t} x F_{1}(\mathrm{~d} x)=o\left(I_{3}(t)\right) \tag{3.19}
\end{equation*}
$$

By (3.16),

$$
\begin{equation*}
1-\varepsilon \leq \frac{I_{1}(x)}{\sum_{i=2}^{d} \int_{0^{-}}^{t-t_{0}} x h_{1}(x) \bar{F}_{i}(t-x) F_{1}(\mathrm{~d} x)} \leq 1+\varepsilon \tag{3.20}
\end{equation*}
$$

Define a distribution $F_{*}$ by

$$
F_{*}(\mathrm{~d} x)=\frac{x h_{1}(x)}{\mathbf{E}\left[X_{1} h_{1}\left(X_{1}\right)\right]} F_{1}(\mathrm{~d} x),
$$

where $\mathbf{E}\left[X_{1} h_{1}\left(X_{1}\right)\right]$ is a finite positive normalizing constant. Clearly, $F_{*}$ has a regularly varying tail as well. Thus, by Lemma 1.3.1 of Embrechts et al. (1997) (see also Proposition 1.2 or Theorem 2.1 of Cai and Tang, 2004),

$$
\begin{aligned}
& \int_{0^{-}}^{t-t_{0}} x h_{1}(x) \bar{F}_{i}(t-x) F_{1}(\mathrm{~d} x) \\
= & \mathbf{E}\left[X_{1} h_{1}\left(X_{1}\right)\right]\left(\int_{0^{-}}^{\infty}-\int_{t}^{\infty}-\int_{t-t_{0}}^{t}\right) \bar{F}_{i}(t-x) F_{*}(\mathrm{~d} x) \\
= & (1+o(1)) \mathbf{E}\left[X_{1} h_{1}\left(X_{1}\right)\right]\left(\bar{F}_{i}(t)+\bar{F}_{*}(t)\right)-\mathbf{E}\left[X_{1} h_{1}\left(X_{1}\right)\right] \bar{F}_{*}(t)-o(1) \bar{F}_{*}(t) \\
= & (1+o(1)) \mathbf{E}\left[X_{1} h_{1}\left(X_{1}\right)\right] \bar{F}_{i}(t)-o(1) \bar{F}_{*}(t) .
\end{aligned}
$$

Substituting this into (3.20), then substituting (3.18), (3.19) and (3.20) into (3.17) and noticing the arbitrariness of $\varepsilon$, we obtain

$$
\begin{align*}
\sum_{i=1}^{3} I_{i}(t) & \sim \mathbf{E}\left[X_{1} h_{1}\left(X_{1}\right)\right] \sum_{i=2}^{d} \bar{F}_{i}(t)+\int_{t}^{\infty} x F_{1}(\mathrm{~d} x) \\
& \sim \mathbf{E}\left[X_{1} h_{1}\left(X_{1}\right)\right] \sum_{i=2}^{d} \bar{F}_{i}(t)+t \frac{\alpha_{1}}{\alpha_{1}-1} \bar{F}_{1}(t) \tag{3.21}
\end{align*}
$$

Using a similar argumentation and keeping in mind $\mathbf{E}\left[h_{1}\left(X_{1}\right)\right]=1$, one sees that the denominator on the right-hand side of (3.15) can be approximated as

$$
\begin{equation*}
\int_{0^{-}}^{\infty} \operatorname{Pr}\left(S_{d}-X_{1}>t-x \mid X_{1}=x\right) F_{1}(\mathrm{~d} x) \sim \sum_{i=1}^{d} \bar{F}_{i}(t) \tag{3.22}
\end{equation*}
$$

which is equivalent to (3.12). By substituting (3.21) and (3.22) into (3.15), we obtain (3.13) and the proof is complete.
3.2. Gumbel case. In the second part of this section, some asymptotic results are obtained for the case in which the risks belong to $\operatorname{MDA}(\Lambda)$ and are unbounded and asymptotically independent. The class $\operatorname{MDA}(\Lambda)$ essentially contains all distributions with rapidly varying tails. Moderately heavy-tailed distributions such as lognormal and Weibull as well as light-tailed distributions such as exponential and gamma are members of MDA( $\Lambda$ ). For more information, see Embrechts et al. (1997).

It has been seen that asymptotic capital allocations are closely related to the tail behavior of the aggregate risk. A moderately heavy-tailed distribution from the Gumbel family is also known as a distribution from the subexponential class $\mathcal{S}$ for which two independent, identically distributed and nonnegative copies, $X_{1}$ and $X_{2}$, satisfy

$$
\operatorname{Pr}\left(X_{1}+X_{2}>t\right) \sim 2 \operatorname{Pr}\left(X_{1}>t\right) .
$$

For a distribution function $F \in \operatorname{MDA}(\Lambda)$, conditions on its auxiliary function $a(\cdot)$ under which $F \in \mathcal{S}$ are available in Goldie and Resnick (1988) and Hashorva et al. (2010). The mainstream study of the tail probability of the sum of asymptotically dependent and asymptotically independent random variables has focused on the subexponential case. Mitra and Resnick (2009) investigated the problem from a different perspective. They considered dependent random variables from $\operatorname{MDA}(\Lambda)$ but not necessarily subexponential.

Following the work of Mitra and Resnick (2009) we propose a set of conditions below:
Assumption 3.3. Let $\underline{X}$ be a positive random vector with marginal distributions $F_{1}, \ldots, F_{d}$. Assume that $F_{1} \in \operatorname{MDA}(\Lambda)$ with an auxiliary function a $(\cdot)$ as defined in (2.9). In addition, for each $1 \leq i \leq d$, there exists a non-negative constant $c_{i}$ such that $\bar{F}_{i}(t) / \bar{F}_{1}(t) \rightarrow c_{i}$. Furthermore, assume that, for all $1 \leq i \neq j \leq d$,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\operatorname{Pr}\left(X_{i}>t, X_{j}>a(t) x\right)}{\bar{F}_{1}(t)}=0 \quad \text { for all } x>0 \tag{3.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\operatorname{Pr}\left(X_{i}>L_{i j} t, X_{j}>L_{i j} t\right)}{\bar{F}_{1}(t)}=0 \quad \text { for some } L_{i j}>0 \tag{3.24}
\end{equation*}
$$

If $c_{i}>0$ for all $1 \leq i \leq d$, then Assumption 3.3 indeed describes an asymptotic independence case. For simplicity, we only verify this for $d=2$. Note that relation (3.23) with $(i, j)=(1,2)$ trivially implies relation (3.25) below since $a(t)=o(t)$.

Lemma 3.3. Let $\underline{X}=\left(X_{1}, X_{2}\right)$ be a random vector with marginal distributions $F_{1}$ and $F_{2}$. Assume that $F_{1} \in \operatorname{MDA}(\Lambda)$ with an auxiliary function a $(\cdot)$, that $\bar{F}_{2}(t) / \bar{F}_{1}(t) \rightarrow c_{2}$ for some constant $c_{2}>0$ and that the relation

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\operatorname{Pr}\left(X_{1}>t, X_{2}>t x\right)}{\bar{F}_{1}(t)}=0 \tag{3.25}
\end{equation*}
$$

holds for some $0<x<1$. Then $X_{1}$ and $X_{2}$ are asymptotically independent.
Proof. Note that both $F_{1}$ and $F_{2}$ belong to $\operatorname{MDA}(\Lambda)$ since $c_{2}>0$. Thus, for every $s \in \mathbf{R}$,

$$
\lim _{t \rightarrow \infty} \frac{\bar{F}_{2}(t+a(t) s)}{\bar{F}_{1}(t)}=c_{2} \mathrm{e}^{-s} .
$$

Fix some $s$ small enough such that the right-hand side above is larger than 1. Then it holds for arbitrarily fixed $y \in(x, 1)$ and for all large $t$ that

$$
\bar{F}_{2}(t x) \geq \bar{F}_{2}(t y+a(t y) s)>\bar{F}_{1}(t y)
$$

It follows that $\operatorname{VaR}_{F_{1}(t y)}\left[X_{2}\right]>t x$. Analogously to the proof of Lemma 2.2, as $q \uparrow 1$, or, equivalently, as $t=\operatorname{VaR}_{q}\left[X_{1}\right] \rightarrow \infty$,

$$
\begin{aligned}
\operatorname{Pr}\left(F_{2}\left(X_{2}\right)>q \mid F_{1}\left(X_{1}\right)>q\right) & \leq \frac{\operatorname{Pr}\left(X_{1} \geq \operatorname{VaR}_{q}\left[X_{1}\right], X_{2} \geq \operatorname{VaR}_{q}\left[X_{2}\right]\right)}{\operatorname{Pr}\left(X_{1}>\operatorname{VaR}_{q}\left[X_{1}\right]\right)} \\
& \leq \frac{\operatorname{Pr}\left(X_{1} \geq t, X_{2} \geq \operatorname{VaR}_{F_{1}(t y)}\left[X_{2}\right]\right)}{\bar{F}_{1}(t)} \\
& \leq \frac{\operatorname{Pr}\left(X_{1}=t\right)+\operatorname{Pr}\left(X_{1}>t, X_{2}>t x\right)}{\bar{F}_{1}(t)} \rightarrow 0,
\end{aligned}
$$

where in the last step we used the fact $\operatorname{Pr}\left(X_{1}=t\right)=o\left(\bar{F}_{1}(t)\right)$ due to Corollary 1.6 of Resnick (1987). Therefore, $X_{1}$ and $X_{2}$ are asymptotically independent.

Corollary 2.2 of Mitra and Resnick (2009) shows that, under Assumption 3.3,

$$
\begin{equation*}
\operatorname{Pr}\left(S_{d}>t\right) \sim \bar{F}_{1}(t) \sum_{i=1}^{d} c_{i} \tag{3.26}
\end{equation*}
$$

This result aligns with other asymptotic results for the sum of asymptotically independent subexponential random variables and provides a conspicuous step ahead in understanding the extreme behavior of the sum of dependent random variables for the Gumbel case.

The next lemma provides useful information for the proof of Theorem 3.3 below.

Lemma 3.4. Let $\underline{X}$ be a random vector satisfying Assumption 3.3. Then, for every $y \in \mathbf{R}$,

$$
\lim _{t \rightarrow \infty} \frac{\operatorname{Pr}\left(X_{k}>a(t) x, S_{d}-X_{k}>t+a(t) y\right)}{\bar{F}_{1}(t)}= \begin{cases}\mathrm{e}^{-y} \sum_{i=1, i \neq k}^{d} c_{i}, & x \leq 0  \tag{3.27}\\ 0, & x>0\end{cases}
$$

and

$$
\lim _{t \rightarrow \infty} \frac{\operatorname{Pr}\left(X_{k} \leq a(t) x, S_{d}>t+a(t) y\right)}{\bar{F}_{1}(t)}= \begin{cases}\mathrm{e}^{-y} \sum_{i=1, i \neq k}^{d} c_{i}, & x>0,  \tag{3.28}\\ 0, & x \leq 0 .\end{cases}
$$

Proof. Our first remark is that relation (3.27) holds for non-positive values of $x$ due to (3.26). In addition, the proof of Corollary 2.2 of Mitra and Resnick (2009) shows that, for every $x>0$,

$$
\begin{equation*}
\operatorname{Pr}\left(X_{k}>a(t) x, S_{d}-X_{k}>t\right)=o\left(\bar{F}_{1}(t)\right) . \tag{3.29}
\end{equation*}
$$

Now, relation (2.10) implies that, for arbitrarily fixed $0<\varepsilon<1$ and all large $t$,

$$
(1-\varepsilon) a(t) \leq a(t+a(t) y) \leq(1+\varepsilon) a(t) .
$$

Thus, for any $x>0$ and $y \in \mathbf{R}$,

$$
\begin{aligned}
& \frac{\operatorname{Pr}\left(X_{k}>a(t) x, S_{d}-X_{k}>t+a(t) y\right)}{\bar{F}_{1}(t)} \\
\leq & \frac{\operatorname{Pr}\left(X_{k}>a(t+a(t) y) \frac{x}{1+\varepsilon}, S_{d}-X_{k}>t+a(t) y\right)}{\bar{F}_{1}(t)} \\
\sim & \frac{\operatorname{Pr}\left(X_{k}>a(t+a(t) y) \frac{x}{1+\varepsilon}, S_{d}-X_{k}>t+a(t) y\right)}{\bar{F}_{1}(t+a(t) y)} \mathrm{e}^{-y} \rightarrow 0,
\end{aligned}
$$

which is a consequence of relations (2.9) and (3.29). Therefore, (3.27) is proved.
The proof of the second constituent is facilitated by some vague convergence properties. Let $M<y$ be fixed. Then, by relation (3.27),

$$
\frac{\operatorname{Pr}\left(\left(\frac{X_{k}}{a(t)}, \frac{S_{d}-X_{k}-t}{a(t)}\right) \in \cdot\right)}{\bar{F}_{1}(t)} \xrightarrow{v} \mu_{k}(\cdot)
$$

holds on $[-\infty, \infty] \times[M, \infty]$ for the measure $\mu_{k}$ given by

$$
\mu_{k}(\mathrm{~d} x, \mathrm{~d} y):=\sum_{i=1, i \neq k}^{d} c_{i} \mathrm{e}^{-y} \epsilon_{0}(\mathrm{~d} x) \mathrm{d} y
$$

where $\epsilon_{0}(\cdot)$ denotes the Dirac measure. It is useful to note that in order to fully justify the latter vague convergence property, one should obtain similar results to (3.27) for other compact sets, which can be simply verified since (3.26) holds.

Note that (3.28) is trivial for non-positive values of $x$ and for this reason we assume $x>0$. Denote $A:=\left\{\left(x_{1}, x_{2}\right): x_{1} \leq x, x_{1}+x_{2}>y\right\}$. The measure $\mu_{k}$ puts mass over the
set $A$ only on the line $\left\{x_{1}=0, x_{2}>y\right\}$ and, therefore, $\mu_{k}(\partial A)=0$. Thus, Proposition A2.12 of Embrechts et al. (1997) allows us to generate the conclusion

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \frac{\operatorname{Pr}\left(X_{k} \leq a(t) x, S_{d}>t+a(t) y\right)}{\bar{F}_{1}(t)} & =\lim _{t \rightarrow \infty} \frac{\operatorname{Pr}\left(\left(\frac{X_{k}}{a(t)}, \frac{S_{d}-X_{k}-t}{a(t)}\right) \in A\right)}{\bar{F}_{1}(t)} \\
& =\mu_{k}(A)=\mathrm{e}^{-y} \sum_{i=1, i \neq k}^{d} c_{i} .
\end{aligned}
$$

The proof is complete.
Now, we are able to provide the last main result of this section.
Theorem 3.3. Let $\underline{X}$ be a random vector satisfying Assumption 3.3. Then the relation

$$
\begin{equation*}
\mathbf{E}\left[X_{k} \mid S_{d}>\operatorname{VaR}_{q}\left[S_{d}\right]\right]=\left(C_{k}+o(1)\right) \operatorname{VaR}_{q}\left[S_{d}\right] \tag{3.30}
\end{equation*}
$$

holds for all $1 \leq k \leq d$, where $C_{k}=c_{k}\left(\sum_{i=1}^{d} c_{i}\right)^{-1}$.
Note that the constant $C_{k}$ above can take value 0 for which reason we did not write relation (3.30) as an equivalence.

Proof. Similar to the proof of Theorem 2.2,

$$
\begin{aligned}
\mathbf{E}\left[X_{k} \mid S_{d}>t\right] & =\left(\int_{0}^{a(t)}+\int_{a(t)}^{t}+\int_{t}^{\infty}\right) \operatorname{Pr}\left(X_{k}>z \mid S_{d}>t\right) \mathrm{d} z \\
& =I_{1}(t)+I_{2}(t)+I_{3}(t) .
\end{aligned}
$$

Now, $I_{1}(t) \leq a(t)=o(t)$. The change of variables $z=t+a(t) s$ yields that

$$
\begin{aligned}
I_{3}(t) & =a(t) \int_{0}^{\infty} \operatorname{Pr}\left(X_{k}>t+a(t) s \mid S_{d}>t\right) \mathrm{d} s \\
& \leq \frac{a(t)}{\operatorname{Pr}\left(S_{d}>t\right)} \int_{0}^{\infty} \operatorname{Pr}\left(X_{k}>t+a(t) s\right) \mathrm{d} s \\
& \sim\left(\sum_{i=1}^{d} c_{i}\right)^{-1} a(t) \int_{0}^{\infty} \mathrm{e}^{-s} \mathrm{~d} s \\
& =o(t),
\end{aligned}
$$

as a result of relations (2.9) and (3.26), the Dominated Convergence Theorem and the fact that $a(t)=o(t)$. It remains to justify

$$
\begin{equation*}
I_{2}(t)=\left(C_{k}+o(1)\right) t \tag{3.31}
\end{equation*}
$$

Some useful bounds for $I_{2}(t)$ are as follows:

$$
\begin{equation*}
(t-a(t)) \operatorname{Pr}\left(X_{k}>t \mid S_{d}>t\right) \leq I_{2}(t) \leq t \operatorname{Pr}\left(X_{k}>a(t) \mid S_{d}>t\right) . \tag{3.32}
\end{equation*}
$$

The left-hand side above is equal to

$$
(t-a(t)) \operatorname{Pr}\left(X_{k}>t \mid S_{d}>t\right)=(t-a(t)) \frac{\operatorname{Pr}\left(X_{k}>t\right)}{\operatorname{Pr}\left(S_{d}>t\right)}=\left(C_{k}+o(1)\right) t,
$$

due to relation (3.26). A similar argumentation and relation (3.28) help us to find the asymptotic behavior of the right-hand side of (3.32), as

$$
\lim _{t \rightarrow \infty} \operatorname{Pr}\left(X_{k}>a(t) \mid S_{d}>t\right)=C_{k} .
$$

Thus, relation (3.31) holds, which completes the proof.
As before, Theorem 3.3 indicates that capital allocations can be related only to the reference risk measure, $\operatorname{VaR}_{q}\left[X_{1}\right]$. Finally, relation (3.26), Lemma 2.4 and the fact that $S_{d} \in \mathcal{R}_{-\infty}$ conclude the following result:

Corollary 3.2. Let $\underline{X}$ be a random vector satisfying Assumption 3.3. Then, as $q=$ $1-p \uparrow 1$,

$$
\mathbf{E}\left[X_{k} \mid S_{d}>\operatorname{VaR}_{q}\left[S_{d}\right]\right]=\left(C_{k}+o(1)\right) \operatorname{VaR}_{1-p / \sum_{i=1}^{d} c_{i}}\left[X_{1}\right] .
$$

The same as in Corollary 2.2, the right-hand side above can be changed to $\operatorname{VaR}_{1-m p}\left[X_{1}\right]$ for every constant $m>0$, but the most rational choice for $m$ should be $m=1 / \sum_{i=1}^{d} c_{i}$.

## 4. Examples

We first provide some examples under which Assumptions 2.1, 2.2 and 3.1 are satisfied. We start out by giving some information regarding the copula concept (further details can be found in Nelsen, 1999). It is well known that the dependence structure associated with the distribution of a random vector can be characterized in terms of a copula. A bivariate copula is a two-dimensional distribution function defined on $[0,1]^{2}$ with uniformly distributed marginals. Due to Sklar's theorem (see Sklar, 1959), if ( $X_{1}, X_{2}$ ) has continuous marginal distributions, then there exists a unique copula, $C$, such that

$$
\operatorname{Pr}\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}\right)=C\left(\operatorname{Pr}\left(X_{1} \leq x_{1}\right), \operatorname{Pr}\left(X_{2} \leq x_{2}\right)\right)
$$

Similarly, the survival copula, $\widehat{C}$, is defined as the copula corresponding to the joint tail function satisfying

$$
\operatorname{Pr}\left(X_{1}>x_{1}, X_{2}>x_{2}\right)=\widehat{C}\left(\operatorname{Pr}\left(X_{1}>x_{1}\right), \operatorname{Pr}\left(X_{2}>x_{2}\right)\right) .
$$

Note that every copula satisfies

$$
\left(u_{1}+u_{2}-1\right) \vee 0 \leq C\left(u_{1}, u_{2}\right) \leq u_{1} \wedge u_{2} .
$$

Recall that $W\left(u_{1}, u_{2}\right):=\left(u_{1}+u_{2}-1\right) \vee 0$ and $M\left(u_{1}, u_{2}\right):=u_{1} \wedge u_{2}$ are known as the comonotonic and counter-monotonic copulae, which respectively correspond to the strongest and weakest possible dependence structures that may occur between two random variables. The comonotonic (respectively, counter-monotonic) dependence structure arises when one random variable is a non-decreasing (respectively, non-increasing) function of the other.

An appealing class of copulae is the Archimedean one. By definition, an Archimedean copula $C$ is given by

$$
C\left(u_{1}, u_{2}\right)=\varphi^{-1}\left(\varphi\left(u_{1}\right)+\varphi\left(u_{2}\right)\right),
$$

where $\varphi:[0,1] \longmapsto[0, \infty]$, called the generator of $C\left(u_{1}, u_{2}\right)$, is a strictly decreasing and convex function with $0<\varphi(0) \leq \infty$ and $\varphi(1)=0$. The function $\varphi^{-1}(\cdot)$ is the pseudoinverse of $\varphi(\cdot)$, and by convention $\varphi^{-1}(t)=0$ if $t>\varphi(0)$. A strict generator satisfies $\varphi(0)=\infty$.

Juri and Wüthrich (2003) developed a set of sufficient conditions on the generator of an Archimedean copula under which the joint concomitant extreme events are characterized. That is, if

$$
\begin{equation*}
\lim _{u \downarrow 0} \frac{\varphi(1-x u)}{\varphi(1-u)}=x^{\beta}, \quad 1<\beta<\infty, \tag{4.1}
\end{equation*}
$$

then

$$
\lim _{u \downarrow 0} \frac{\widehat{C}\left(u x_{1}, u x_{2}\right)}{u}=x_{1}+x_{2}-\left(x_{1}^{\beta}+x_{2}^{\beta}\right)^{1 / \beta} .
$$

Now, under the assumption that both risks belong to $\operatorname{MDA}\left(\Phi_{\alpha}\right)$ and have strongly equivalent tail probabilities,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\operatorname{Pr}\left(X_{2}>t\right)}{\operatorname{Pr}\left(X_{1}>t\right)}=c \tag{4.2}
\end{equation*}
$$

with $c=c_{F}>0$, we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\operatorname{Pr}\left(X_{1}>t x_{1}, X_{2}>t x_{2}\right)}{\operatorname{Pr}\left(X_{1}>t\right)}=x_{1}^{-\alpha}+c_{F} x_{2}^{-\alpha}-\left(x_{1}^{-\alpha \beta}+c_{F}^{\beta} x_{2}^{-\alpha \beta}\right)^{1 / \beta} \tag{4.3}
\end{equation*}
$$

As expected, if condition (4.1) is satisfied and both risks belong to $\operatorname{MDA}(\Lambda)$ such that relation (4.2) holds with $c=c_{G}>0$, then

$$
\lim _{t \rightarrow \infty} \frac{\operatorname{Pr}\left(X_{1}>t+a(t) x_{1}, X_{2}>t+a(t) x_{2}\right)}{\operatorname{Pr}\left(X_{1}>t\right)}=\mathrm{e}^{-x_{1}}+c_{G} \mathrm{e}^{-x_{2}}-\left(\mathrm{e}^{-\beta x_{1}}+c_{G}^{\beta} \mathrm{e}^{-\beta x_{2}}\right)^{1 / \beta},
$$

where the auxiliary function $a(\cdot)$ is defined as in (2.9) corresponding to $X_{1}$.
Similarly, assume now that the survival copula is Archimedean with a strict generator satisfying

$$
\begin{equation*}
\lim _{u \downarrow 0} \frac{\varphi(x u)}{\varphi(u)}=x^{-\beta}, \quad 0 \leq \beta \leq \infty \tag{4.4}
\end{equation*}
$$

where $\beta=\infty$ implies that

$$
\lim _{u \downarrow 0} \frac{\varphi(x u)}{\varphi(u)}= \begin{cases}\infty, & x<1 \\ 0, & x>1 .\end{cases}
$$

Now,

$$
\lim _{u \downarrow 0} \frac{\widehat{C}\left(u x_{1}, u x_{2}\right)}{u}= \begin{cases}0, & \beta=0  \tag{4.5}\\ \left(x_{1}^{-\beta}+x_{2}^{-\beta}\right)^{-1 / \beta}, & 0<\beta<\infty, \quad \text { for all } x_{1}, x_{2}>0 \\ x_{1} \wedge x_{2}, & \beta=\infty\end{cases}
$$

The work of Juri and Wüthrich (2003) justifies the above for $0<\beta<\infty$, while Lemma 4.1 below proves (4.5) for $\beta=0$ and $\beta=\infty$. The same paper shows that Assumptions 2.1, 2.2 and 3.1 are satisfied for finite positive values of $\beta$, but one can easily extend this to the remaining cases. Specifically, if relation (4.2) holds with $c=c_{F}>0$ and $X_{1} \in \operatorname{MDA}\left(\Phi_{\alpha}\right)$, then

$$
\lim _{t \rightarrow \infty} \frac{\operatorname{Pr}\left(X_{1}>t x_{1}, X_{2}>t x_{2}\right)}{\operatorname{Pr}\left(X_{1}>t\right)}= \begin{cases}\left(x_{1}^{\alpha \beta}+c_{F}^{\beta} x_{2}^{\alpha \beta}\right)^{-1 / \beta}, & \text { if } 0<\beta<\infty \\ x_{1}^{-\alpha} \wedge c_{F} x_{2}^{-\alpha}, & \text { if } \beta=\infty\end{cases}
$$

and

$$
\lim _{t \rightarrow \infty} \frac{\operatorname{Pr}\left(X_{1}>t x_{1}, X_{2}>t x_{2}\right)}{\operatorname{Pr}\left(X_{1}>t\right)}= \begin{cases}x_{1}^{-\alpha}, & \text { if } \beta=0, x_{1}>0, x_{2}=0  \tag{4.6}\\ c_{F} x_{2}^{-\alpha}, & \text { if } \beta=0, x_{1}=0, x_{2}>0 \\ 0, & \text { otherwise }\end{cases}
$$

In addition, if relation (4.2) holds with $c=c_{G}>0$ and $X_{1} \in \operatorname{MDA}(\Lambda)$, then

$$
\lim _{t \rightarrow \infty} \frac{\operatorname{Pr}\left(X_{1}>t+a(t) x_{1}, X_{2}>t+a(t) x_{2}\right)}{\operatorname{Pr}\left(X_{1}>t\right)}= \begin{cases}\left(\mathrm{e}^{\beta x_{1}}+c_{G}^{\beta} \mathrm{e}^{\beta x_{2}}\right)^{-1 / \beta}, & \text { if } 0<\beta<\infty, \\ \mathrm{e}^{-x_{1}} \wedge c_{G} \mathrm{e}^{-x_{2}}, & \text { if } \beta=\infty\end{cases}
$$

Finally, note that a non-strict generator for a survival Archimedean copula gives (4.6) since it is certain that concomitant extreme events are impossible to occur.

A comprehensive list of copulae that satisfy the conditions explained in (4.1) and (4.4) is included in Charpentier and Segers (2009). The vast majority of Archimedean copulae that satisfy (4.4) with $\beta=1$, together with relation (4.2) with $c=c_{F}>0$ and $X_{1} \in \operatorname{MDA}\left(\Phi_{\alpha}\right)$, gives (4.6), which designs the framework defined in Assumption 3.1. Additional examples outside the Archimedean world can be found in Asimit and Jones (2008) and Kortschak and Albrecher (2009).

The next lemma develops some asymptotic results that are useful in justifying the extreme behavior of a bivariate random vector with an Archimedean survival copula.

Lemma 4.1. Let $C(\cdot, \cdot)$ be a copula such that the survival copula is Archimedean with a strict generator satisfying (4.4). Then

$$
\lim _{u \downarrow 0} \frac{\widehat{C}\left(u x_{1}, u x_{2}\right)}{u}= \begin{cases}0, & \beta=0  \tag{4.7}\\ x_{1} \wedge x_{2}, & \beta=\infty\end{cases}
$$

holds for any positive $x_{1}$ and $x_{2}$, and

$$
\begin{equation*}
\lim _{u \downarrow 0} \frac{\widehat{C}(u, f(u))}{f(u)}=1 \tag{4.8}
\end{equation*}
$$

is true for any $0<\beta \leq \infty$ and any positive measurable function $f(u)=o(u)$.

Proof. We first prove relation (4.7) for $\beta=0$. Recall that (4.4) holds locally uniformly. Therefore, for any $0<\varepsilon<1 / 2, x_{1}, x_{2}>0$ and $u$ sufficiently small, we have

$$
\varphi\left(u x_{1}\right)+\varphi\left(u x_{2}\right)>2(1-\varepsilon) \varphi(u) .
$$

Now, $\varphi(0)=\infty$ implies that $\varphi^{-1}(\cdot)$ is rapidly varying at $\infty$ (see Proposition $0.8(\mathrm{v})$, Resnick, 1987). Thus,

$$
\frac{\widehat{C}\left(u x_{1}, u x_{2}\right)}{u}=\frac{\varphi^{-1}\left(\varphi\left(u x_{1}\right)+\varphi\left(u x_{2}\right)\right)}{u} \leq \frac{\varphi^{-1}(2(1-\varepsilon) \varphi(u))}{\varphi^{-1}(\varphi(u))} \rightarrow 0, \quad u \downarrow 0 .
$$

The case in which $\beta=\infty$ follows in a similar manner. Proposition 0.8(v) of Resnick (1987) implies that $\varphi^{-1}(\cdot)$ is slowly varying at $\infty$. As before, we obtain that

$$
\begin{equation*}
\frac{\widehat{C}\left(u x_{1}, u x_{2}\right)}{u} \geq \frac{\varphi^{-1}\left(2 \varphi\left(u x_{1} \wedge u x_{2}\right)\right)}{\varphi^{-1}\left(\varphi\left(u x_{1} \wedge u x_{2}\right)\right)}\left(x_{1} \wedge x_{2}\right) \rightarrow x_{1} \wedge x_{2}, \quad u \downarrow 0 \tag{4.9}
\end{equation*}
$$

since $\varphi\left(u x_{1}\right) \vee \varphi\left(u x_{2}\right) \leq \varphi\left(u x_{1} \wedge u x_{2}\right)$ holds for all $u, x_{1}, x_{2}>0$. The upper bound is straightforward since $C\left(x_{1}, x_{2}\right) \leq M\left(x_{1}, x_{2}\right)$, which concludes the first part of this lemma.

To verify relation (4.8), notice that $f(u)=o(u)$ yields

$$
\frac{\widehat{C}(u, f(u))}{f(u)} \leq \frac{u \wedge f(u)}{f(u)} \rightarrow 1
$$

First assume that $0<\beta<\infty$. For any $\varepsilon>0$ and $u$ sufficiently small, we have $\varphi(f(u) / \varepsilon)>$ $\varphi(u)$. Thus,

$$
\frac{\widehat{C}(u, f(u))}{f(u)} \geq \frac{\varphi^{-1}\left(\varphi\left(\frac{f(u)}{\varepsilon}\right)+\varphi(f(u))\right)}{f(u)} \rightarrow\left(\varepsilon^{\beta}+1\right)^{-1 / \beta}, \quad u \downarrow 0,
$$

due to (4.5). By taking $\varepsilon \downarrow 0$, the lower and upper bounds coincide in this setting. For $\beta=\infty$, the lower bound follows by a similar reasoning as used in relation (4.9), which concludes (4.8). The proof is complete.

Examples regarding Assumption 3.2 have been already discussed. Multiple examples regarding Assumption 3.3 have been provided by Mitra and Resnick (2009). We now indicate a wide class of distributions under which conditions required by Assumption 3.3 are verified.

We consider an asymmetric class of copulae studied by Khoudraji (1995) (see also Genest et al., 1998). If $C(\cdot, \cdot)$ is an Archimedean copula then

$$
\begin{equation*}
C_{k, l}\left(u_{1}, u_{2}\right):=u_{1}^{1-k} u_{2}^{1-l} C\left(u_{1}^{k}, u_{2}^{l}\right), \quad k, l \in(0,1), \tag{4.10}
\end{equation*}
$$

defines another copula, which we call a transformed asymmetric Archimedean copula. It can be easily seen that for any dependence structure, the copula $C_{k, l}(\cdot, \cdot)$ describes an asymptotically independent scenario in the upper tail.

Proposition 4.1. Let $\left(X_{1}, X_{2}\right)$ be a bivariate non-negative random vector whose marginal distributions are identical to $F \in \operatorname{MDA}(\Lambda)$ with auxiliary function $a(\cdot)$ as described in (2.9). The survival copula is assumed to be given by a transformed asymmetric Archimedean copula $C_{k, l}(\cdot, \cdot)$ as defined in (4.10).
(i) If $\varphi$ is a strict generator satisfying (4.4) with $0<\beta \leq \infty$ and the distribution $F$ is such that

$$
\lim _{t \rightarrow \infty} \frac{\bar{F}^{b}(x a(t))}{\bar{F}^{c}(t)}= \begin{cases}0, & b>c  \tag{4.11}\\ \infty, & b \leq c\end{cases}
$$

holds for all $b, c, x>0$, then conditions (3.23) and (3.24) hold.
(ii) If $\varphi$ is a non-strict generator, then conditions (3.23) and (3.24) hold for any distribution function $F \in \operatorname{MDA}(\Lambda)$ with $a(t) \rightarrow \infty$.

The assumption of a non-strict generator can be easily relaxed. Specifically, conditions (3.23) and (3.24) still hold whenever $\operatorname{Pr}\left(X_{1}>t_{0}, X_{2}>t_{0}\right)=0$ for some $t_{0}>0$ together with the compulsory condition of strongly equivalent tails with an unbounded auxiliary function. This is the case if the underlying survival copula is given by an Archimedean copula or a transformed asymmetric Archimedean copula with non-strict generators. The counter-monotonic dependence structure reflects a similar extreme behavior.

Proof. A non-strict generator excludes joint extreme events with probability one, which together with the fact that $a(\cdot)$ is unbounded, indicates that, for any $x_{1}, x_{2}, L>0$ and all large $t$,

$$
\operatorname{Pr}\left(X_{1}>t, X_{2}>x_{2} a(t)\right)=\operatorname{Pr}\left(X_{1}>x_{1} a(t), X_{2}>t\right)=\operatorname{Pr}\left(X_{1}>L a(t), X_{2}>L a(t)\right)=0 .
$$

Evidently, conditions (3.23) and (3.24) are satisfied in this case.

It is further assumed that $\varphi$ is a strict generator. We start out the verification of condition (3.23) by noticing that

$$
\operatorname{Pr}\left(X_{1}>x_{1}, X_{2}>x_{2}\right)=\bar{F}^{1-k}\left(x_{1}\right) \bar{F}^{1-l}\left(x_{2}\right) \widehat{C}\left(\bar{F}^{k}\left(x_{1}\right), \bar{F}^{l}\left(x_{2}\right)\right)
$$

and that

$$
\widehat{C}\left(\bar{F}^{k}(t), \bar{F}^{l}(x a(t))\right) \sim \begin{cases}\bar{F}^{l}(x a(t)), & l>k, \\ \bar{F}^{k}(t), & l \leq k,\end{cases}
$$

where the latter is a direct implication of relations (4.8) and (4.11). Thus,

$$
\operatorname{Pr}\left(X_{1}>t, X_{2}>x a(t)\right) \sim \begin{cases}\bar{F}^{1-k}(t) \bar{F}(x a(t))=o(\bar{F}(t)), & l>k, \\ \bar{F}(t) \bar{F}^{1-l}(x a(t))=o(\bar{F}(t)), & l \leq k,\end{cases}
$$

which implies (3.23).
To verify condition (3.24), without loss of generality we assume $k \leq l$. If $k<l$ then

$$
\bar{F}^{l}(L a(t))=o\left(\bar{F}^{k}(L a(t))\right) \quad \text { for any } L>0,
$$

which, together with (4.8) and (4.11), gives

$$
\begin{aligned}
\operatorname{Pr}\left(X_{1}>L a(t), X_{2}>L a(t)\right) & =\bar{F}^{2-k-l}(L a(t)) \widehat{C}\left(\bar{F}^{k}(L a(t)), \bar{F}^{l}(L a(t))\right) \\
& \sim \bar{F}^{2-k}(L a(t)) \\
& =o(\bar{F}(t)) .
\end{aligned}
$$

If $l=k$ then

$$
\begin{aligned}
\operatorname{Pr}\left(X_{1}>L a(t), X_{2}>L a(t)\right) & =\bar{F}^{2-2 k}(L a(t)) \widehat{C}\left(\bar{F}^{k}(L a(t)), \bar{F}^{k}(L a(t))\right) \\
& \sim 2^{-1 / \beta} \bar{F}^{2-k}(L a(t)) \\
& =o(\bar{F}(t)),
\end{aligned}
$$

where the second step is due to (4.5) and the last step due to (4.11). Thus, the proof is complete.

Two moderately heavy-tailed distributions satisfy the sufficient condition defined in (4.11). The first example is the lognormal distribution with parameters $\mu \in \mathbf{R}$ and $\sigma>0$,

$$
\bar{F}(x)=\bar{F}_{S N}\left(\frac{\log x-\mu}{\sigma}\right), \quad x>0
$$

where $F_{S N}(\cdot)$ denotes the distribution function of the standard normal distribution. The auxiliary function is given by $a(x)=\frac{\sigma^{2} x}{\log x-\mu}$ (see Embrechts et al., 1997, page 150). The
second example is a distribution function $F$ with a tail

$$
\bar{F}(x)= \begin{cases}\mathrm{e}^{-(\log x)^{\gamma}}, & x>1, \\ 0, & x \leq 1,\end{cases}
$$

where $\gamma>1$. Its auxiliary function is given by $a(x)=\frac{x}{\gamma(\log x)^{\gamma-1}}$. For these two examples, the verification of (4.11) is straightforward and therefore is omitted.

We cannot draw a conclusion that all distributions from the intersection $\operatorname{MDA}(\Lambda) \cap \mathcal{S}$ satisfy the requirements of Proposition 4.1. Recall that a Weibull distribution has a tail

$$
\bar{F}(x)=\mathrm{e}^{-c x^{\tau}}, \quad x \geq 0, c>0,0<\tau<1
$$

with an auxiliary function $a(x)=c^{-1} \tau^{-1} x^{1-\tau}$ (see Embrechts et al., 1997, page 150). Hence, it holds for all $k, l, x>0$ that

$$
\lim _{t \rightarrow \infty} \frac{\bar{F}^{k}(x a(t))}{\bar{F}^{l}(t)}=\infty .
$$

## 5. Simulation study and numerical results

We perform a simulation study on the results derived in Corollary 2.1. A portfolio of two risks is considered and the individual loss random variables, $X_{1}$ and $X_{2}$, are Pareto distributed with distribution function

$$
F(x ; \lambda, \alpha)=1-\left(1+\frac{x}{\lambda}\right)^{-\alpha}, \quad x \geq 0
$$

where $\lambda$ equals 100,000 for $X_{1}$ and 150,000 for $X_{2}$, while $\alpha$ is the same for both $X_{1}$ and $X_{2}$ and it will be assigned values 2.5 and 3 . The portfolio dependence structure is assumed to be given by the Gumbel copula

$$
C\left(u_{1}, u_{2}\right)=\exp \left\{-\left(\left(-\log u_{1}\right)^{\beta}+\left(-\log u_{2}\right)^{\beta}\right)^{1 / \beta}\right\}, \quad \beta \geq 1 .
$$

This copula belongs to the Archimedean family with a strict generator $\varphi(u)=(-\log u)^{\beta}$. Clearly, the Gumbel copula has the asymptotic dependence property for $\beta$ values greater than 1 since relation (4.1) is satisfied. The measure $\mu$ in relation (2.4) is defined with $H_{F}(\cdot)$ calculated in (4.3) and relation (4.2) holds with $c=c_{F}=(3 / 2)^{\alpha}$. The parameter $\beta$ is chosen to be 2,3 and 5 . Note that the strength of dependence for the Gumbel copula increases as $\beta$ increases. The asymptotic constants appearing in Corollary 2.1, $C_{1}$ and $C_{2}$, are numerically computed by using the formulae $C_{1}+C_{2}=\alpha /(\alpha-1)$ and

$$
C_{1}=\frac{\frac{1}{\alpha-1}+\int_{0}^{1} \mu\left(\left(x_{1}, x_{2}\right): x_{1}>z, x_{1}+x_{2}>1\right) \mathrm{d} z}{\mu\left(\left(x_{1}, x_{2}\right): x_{1}+x_{2}>1\right)}
$$

TABLE 1. Capital allocation ratio estimates with $\alpha=2.5$

|  | Ratio for $X_{1}$ |  |  | Ratio for $X_{2}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $\beta=2$ | $\beta=3$ | $\beta=5$ | $\beta=2$ | $\beta=3$ | $\beta=5$ |
| 0.99 | 1.0705 | 1.0733 | 1.0748 | 1.0730 | 1.0747 | 1.0751 |
|  | $(0.0059)$ | $(0.0045)$ | $(0.0045)$ | $(0.0053)$ | $(0.0049)$ | $(0.0042)$ |
| 0.995 | 1.0500 | 1.0536 | 1.0548 | 1.0522 | 1.0543 | 1.0551 |
|  | $(0.0074)$ | $(0.0067)$ | $(0.0066)$ | $(0.0076)$ | $(0.0067)$ | $(0.0065)$ |
| 0.999 | 1.0231 | 1.0243 | 1.0263 | 1.0261 | 1.0263 | 1.0264 |
|  | $(0.0127)$ | $(0.0130)$ | $(0.0126)$ | $(0.0136)$ | $(0.0130)$ | $(0.0129)$ |
| 0.9995 | 1.0195 | 1.0198 | 1.0194 | 1.0210 | 1.0194 | 1.0194 |
|  | $(0.0232)$ | $(0.0232)$ | $(0.0193)$ | $(0.0229)$ | $(0.0219)$ | $(0.0191)$ |

Table 2. Capital allocation ratio estimates with $\alpha=3$

|  | Ratio for $X_{1}$ |  |  | Ratio for $X_{2}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | $\beta=2$ | $\beta=3$ | $\beta=5$ | $\beta=2$ | $\beta=3$ | $\beta=5$ |
| 0.99 | 1.0826 | 1.0879 | 1.0905 | 1.0881 | 1.0904 | 1.0917 |
|  | $(0.0040)$ | $(0.0038)$ | $(0.0038)$ | $(0.0040)$ | $(0.0038)$ | $(0.0039)$ |
| 0.995 | 1.0618 | 1.0660 | 1.0675 | 1.0650 | 1.0681 | 1.0686 |
|  | $(0.0044)$ | $(0.0043)$ | $(0.0044)$ | $(0.0049)$ | $(0.0047)$ | $(0.0044)$ |
| 0.999 | 1.0320 | 1.0360 | 1.0357 | 1.0357 | 1.0374 | 1.0365 |
|  | $(0.0086)$ | $(0.0108)$ | $(0.0094)$ | $(0.0087)$ | $(0.0102)$ | $(0.0097)$ |
| 0.9995 | 1.0246 | 1.0276 | 1.0274 | 1.0254 | 1.0271 | 1.0280 |
|  | $(0.0135)$ | $(0.0138)$ | $(0.0130)$ | $(0.0143)$ | $(0.0134)$ | $(0.0134)$ |

Each analysis is performed for 100 samples consisting of $5,000,000$ simulations from $\left(X_{1}, X_{2}\right)$. The ratios between the capital allocations, estimated from the empirical distribution of the simulated samples of size $5,000,000$ and from the approximation provided by Corollary 2.1, are calculated for all 100 samples. The averages and standard deviations are then tabulated for various values of the parameters $\alpha$ and $\beta$, as discussed previously, as well as four different confidence levels: $q=99 \%, 99.5 \%, 99.9 \%$ and $99.95 \%$. These results are presented in Tables 1 and 2.

The speed of convergence increases, as the strength of dependence relaxes. Heavier tails, i.e., smaller values for $\alpha$, entail faster convergence of our ratios to 1 . As expected, the variances of the ratios increase for large values of $q$, but they are still at reasonable levels.

In the last part of this section, we use our results to evaluate the capital requirements for a Swiss-based insurance company. According to the Swiss Solvency Test (SST) guidelines, the capital requirement for an insurance company that operates in Switzerland is given by the CTE-based risk capital corresponding to a $99 \%$ level of confidence over a oneyear horizon. Unlike the SST, Solvency II, which designs the regulatory requirements for insurance firms that operate in the European Union, sets out qualitative and quantitative requirements for Solvency Capital that ensures an insurance firm to be able to meet its obligations over the next 12 months with a probability of at least $99.5 \%$. For both SST and Solvency II, the risk-based economic capital is defined by the excess of the capital given by the chosen risk measure over the best estimate of the liabilities or the expected amount of liabilities under usual circumstances.

Let us assume that a Swiss-based insurance company holds a portfolio of two dependent business lines, as assumed in the beginning of this section. By the Swiss Solvency Test guidelines, the total risk capital requirement is set to $\mathrm{CTE}_{0.99}\left[X_{1}+X_{2}\right]-\mathbf{E}\left[X_{1}+X_{2}\right]$, that is

$$
\mathbf{E}\left[X_{1}+X_{2} \mid X_{1}+X_{2}>\operatorname{VaR}_{0.99}\left[X_{1}+X_{2}\right]\right]-\mathbf{E}\left[X_{1}+X_{2}\right],
$$

while the individual capital requirements are given by

$$
\begin{equation*}
\mathbf{E}\left[X_{i} \mid X_{i}>\operatorname{VaR}_{0.99}\left[X_{i}\right]\right]-\mathbf{E}\left[X_{i}\right]=\frac{\alpha}{\alpha-1} \operatorname{VaR}_{0.99}\left[X_{i}\right], \quad i=1,2 . \tag{5.1}
\end{equation*}
$$

Due to the SST, the insurer should allocate the risk capital for the two business lines as follows:

$$
\begin{equation*}
\mathbf{E}\left[X_{i} \mid X_{1}+X_{2}>\operatorname{VaR}_{0.99}\left[X_{1}+X_{2}\right]\right]-\mathbf{E}\left[X_{i}\right], \quad i=1,2 . \tag{5.2}
\end{equation*}
$$

Table 3 elucidates relations (5.1) numerically. All tables herein consider four different confidence levels, i.e., $q=99 \%, 99.5 \%, 99.9 \%$ and $99.95 \%$. The $99 \%$ level is recommended by the SST, while the remaining calculations may help in understanding the effect of more conservative regulatory requirements.

Further, Tables 4 and 5 elucidate relations (5.2), which are to this end calculated for each business line for various confidence levels $q$ and values of the parameter $\beta$. In this respect, it is well known that risk aggregation should reduce the overall risk of a multi-line

TABLE 3. Individual capital requirements with varying $\alpha$ and $q$

| Confidence <br> Level | Required Capital <br> for $X_{1}(\alpha=2.5)$ | Required Capital <br> for $X_{2}(\alpha=2.5)$ | Required Capital <br> for $X_{1}(\alpha=3)$ | Required Capital <br> for $X_{2}(\alpha=3)$ |
| :---: | :---: | :---: | :---: | :---: |
| $99 \%$ | 884,929 | $1,327,393$ | 546,238 | 819,357 |
| $99.5 \%$ | $1,220,922$ | $1,831,383$ | 727,205 | $1,090,808$ |
| $99.9 \%$ | $2,474,822$ | $3,712,233$ | $1,350,000$ | $2,025,000$ |
| $99.95 \%$ | $3,318,799$ | $4,978,198$ | $1,739,882$ | $2,609,822$ |

Table 4. Individual capital requirements with $\alpha=2.5$

| Confidence <br> Level | Required Capital <br> for $X_{1}$ | Required Capital <br> for $X_{2}$ | Diversification <br> Effect | $\beta$ |
| :---: | :---: | :---: | :---: | :---: |
| $99 \%$ | 769,290 | $1,195,565$ | $88.81 \%$ | 2 |
| $99.5 \%$ | $1,086,689$ | $1,687,470$ | $90.89 \%$ | 2 |
| $99.9 \%$ | $2,271,198$ | $3,523,221$ | $93.65 \%$ | 2 |
| $99.95 \%$ | $3,068,469$ | $4,758,830$ | $94.34 \%$ | 2 |
| $99 \%$ | 799,973 | $1,215,167$ | $91.09 \%$ | 3 |
| $99.5 \%$ | $1,129,022$ | $1,714,514$ | $93.16 \%$ | 3 |
| $99.9 \%$ | $2,357,006$ | $3,578,039$ | $95.93 \%$ | 3 |
| $99.95 \%$ | $3,183,540$ | $4,832,343$ | $96.61 \%$ | 3 |
| $99 \%$ | 812,321 | $1,223,545$ | $92.02 \%$ | 5 |
| $99.5 \%$ | $1,146,058$ | $1,726,073$ | $94.10 \%$ | 5 |
| $99.9 \%$ | $2,391,539$ | $3,601,470$ | $96.86 \%$ | 5 |
| $99.95 \%$ | $3,229,849$ | $4,863,765$ | $97.55 \%$ | 5 |

business and thus results in the diversification effect. The phenomenon is conveniently quantified by the ratio

$$
\frac{\mathrm{CTE}_{0.99}\left[X_{1}+X_{2}\right]-\mathbf{E}\left[X_{1}+X_{2}\right]}{\mathrm{CTE}_{0.99}\left[X_{1}\right]+\mathrm{CTE}_{0.99}\left[X_{2}\right]-\mathbf{E}\left[X_{1}+X_{2}\right]},
$$

and it is included in both tables.
It can be seen that there is a significant drop in risk capital requirements as $\alpha$ increases, which is due to the reduction in the degree of heavy-tailedness. In addition, the change in capital requirements is more pronounced as the confidence level becomes less severe.

Table 5. Individual capital requirements with $\alpha=3$

| Confidence <br> Level | Required Capital <br> for $X_{1}$ | Required Capital <br> for $X_{2}$ | Diversification <br> Effect | $\beta$ |
| :---: | :---: | :---: | :---: | :---: |
| $99 \%$ | 467,939 | 725,971 | $87.43 \%$ | 2 |
| $99.5 \%$ | 639,531 | 991,330 | $89.71 \%$ | 2 |
| $99.9 \%$ | $1,230,061$ | $1,904,559$ | $92.88 \%$ | 2 |
| $99.95 \%$ | $1,599,744$ | $2,476,258$ | $93.71 \%$ | 2 |
| $99 \%$ | 485,866 | 737,220 | $89.56 \%$ | 3 |
| $99.5 \%$ | 663,397 | $1,006,305$ | $91.84 \%$ | 3 |
| $99.9 \%$ | $1,274,365$ | $1,932,359$ | $95.01 \%$ | 3 |
| $99.95 \%$ | $1,656,843$ | $2,512,087$ | $95.84 \%$ | 3 |
| $99 \%$ | 493,058 | 741,936 | $90.44 \%$ | 5 |
| $99.5 \%$ | 672,971 | $1,012,584$ | $92.71 \%$ | 5 |
| $99.9 \%$ | $1,292,139$ | $1,944,015$ | $95.89 \%$ | 5 |
| $99.95 \%$ | $1,679,751$ | $2,527,109$ | $96.72 \%$ | 5 |

The first business line always requires less risk capital than the second business line as expected. Also, an increase in the strength of dependence reduces the diversification effect, which makes intuitive sense since higher $\beta$ values imply that the risks are more positively dependent, i.e., closer to be comonotonic. We refer the reader to Dhaene et al. (2009), who investigated the influence of the dependence between losses on the diversification benefit that arises from merging these losses.

## 6. Conclusions

In this paper we considered the problem of allocating the aggregate risk of a multi-line insurance business consisting of dependent risks to the various sources. We fixed the risk measure to be Conditional Tail Expectation and we employed the machinery of the Extreme Value Theory, in general, and vague convergence, in particular. The allocation phenomenon is of immense importance in view of the increasing risk awareness, as well as because of the indisputable utility of the, e.g., profitability studies and quality control in insurance context (see, e.g., Valdez and Chernih, 2003). The proposed approach to tackle the problem is adequately motivated by the high confidence levels being required by regulations.

Our main results, under both asymptotic dependence and asymptotic independence, reduce the problem to calculating the Value-at-Risk of the aggregate risk of the multiline business of interest. More specifically, for risks having similar extreme behaviors, we showed the following:
i) Extremely heavy-tailed risks that are asymptotically dependent in the upper tail require allocations asymptotically proportional to the VaR-based aggregate capital, where proportions are sensitive to the strength of the upper tail dependence and the weight of each individual risk.
ii) Moderately heavy-tailed or light-tailed risks that are asymptotically dependent in the upper tail require asymptotically equal capital allocations;
iii) Asymptotic independence in the upper tail requires capital allocations that are asymptotically proportional to the weight of each individual risk in the portfolio.

Acknowledgments. The authors would like to thank the anonymous referee for his/her careful reading and useful comments. Asimit thanks Christian Genest for providing the Ph.D. thesis of Khoudraji (1995). Furman acknowledges support of the Natural Sciences and Engineering Research Council of Canada. Tang acknowledges support of the 2011 Individual Grant of the Society of Actuaries.

## References

Albrecher, H., Asmussen, S. and Kortschak, D. and 2006. "Tail asymptotics for the sum of two heavy-tailed dependent risks," Extremes 9(2), 107 - 130.

Alink, S., Löwe, M. and Wüthrich, M.V. 2005. "Analysis of the expected shortfall of aggregate dependent risks," ASTIN Bulletin, 35(1), $25-43$.

Asimit, A. V. and Badescu, A. L. 2010. "Extremes on the discounted aggregate claims in a time dependent risk model," Scandinavian Actuarial Journal, 2, 93-104.

Asimit, A.V. and Jones, B.L. 2008. "Asymptotic tail probabilities for large claims reinsurance of a portfolio of dependent risks," ASTIN Bulletin, 38(1), 147 - 159.

Asmussen, S. and Rojas-Nandayapa, L. 2008. "Asymptotics of sums of lognormal random variables with Gaussian copula ,"Statistics and Probability Letters, 78(16), 2709-2714.

Balkema, A.A. and de Haan, L. 1974. "Residual life time at great age," The Annals of Probability, 2(5), 792 - 804.

Bühlmann, H. 1980. "An economic premium principle," ASTIN Bulletin, 11(1), 52 - 60 .

Cai, J. and Li., H. 2005. "Conditional tail expectations for multivariate phase-type distributions," Journal of Applied Probability, 42(3), 810-825.

Cai, J. and Tang, Q. 2004. "On max-sum equivalence and convolution closure of heavy-tailed distributions and their applications," Journal of Applied Probability, 41(1), 117 - 130.

Charpentier, A. and Segers, J. 2009. "Tails of multivariate Archimedean copulas," Journal of Multivariate Analysis, 100(7), 1521-1537.

Chiragiev, A. and Landsman, Z. 2007. "Multivariate Pareto portfolios: TCE-based capital allocation and divided differences," Scandinavian Actuarial Journal, 2007(4), 261 - 280.

Davis, R.A. and Resnick, S.I. 1996. "Limit theory for bilinear processes with heavy-tailed noise," The Annals of Applied Probability, 6(4), 1191-1210.

Dhaene, J., Denuit, M. and Vanduffel, S. 2009. "Correlation order, merging and diversification," Insurance: Mathematics and Economics, 45(3), 325-332.

Dhaene, J., Henrard, L., Landsman, Z., Vandendorpe, A. and Vanduffel, S. 2008. "Some results on the CTE-based capital allocation rule," Insurance: Mathematics and Economics, 42(2), $855-863$.

Dhaene, J., Tsanakas, A., Valdez, E. and Vanduffel, E. 2011. "Optimal capital allocation principles, " Journal of Risk and Insurance, 78.

Dhaene, J., Vanduffel, S., Goovaerts, M.J., Kaas, R., Tang, Q. and Vyncke, D. 2006. "Risk measures and comonotonicity: a review," Stochastic Models, 22, 573-606.

Embrechts, P., Klüppelberg, C. and Mikosch, T. 1997. Modeling Extremal Events for Insurance and Finance. Springer-Verlag, Berlin.

Fisher, R.A. and Tippett, L.H.C. 1928. "Limiting forms of the frequency distribution of the largest or smallest member of a sample," Mathematical Proceedings of the Cambridge Philosophical Society, 24(2), 180 - 190.

Furman, E. and Landsman, Z. 2005. "Risk capital decomposition for a multivariate dependent gamma portfolio," Insurance: Mathematics and Economics, 37(3), 635-649.

Furman, E. and Landsman, Z. 2006. "Tail variance premium with applications for elliptical portfolio of risks," ASTIN Bulletin, 36(2), 433-462.

Furman, E. and Landsman, Z. 2008. "Economic capital allocations for non-negative portfolios of dependent risks," ASTIN Bulletin, 38(2), $601-619$.

Furman, E. and Zitikis, R. 2008a. "Weighted premium calculation principles," Insurance: Mathematics and Economics, 42(1), 459 - 465.

Furman, E. and Zitikis, R. 2008b. "Weighted risk capital allocations," Insurance: Mathematics and Economics, 43(2), 263 - 269.

Geluk, J. and Tang, Q. 2009. "Asymptotic tail probabilities of sums of dependent subexponential random variables," Journal of Theoretical Probability, 22(4), 871-882.

Genest, C., Ghoudi, K. and Rivest, L.P. 1998. "Discussions of understanding relationships using copulas," North American Actuarial Journal, 2(3), 143-149.

Gnedenko, B.V. 1943. "Sur la distribution limité du terme maximum d'une série aléatoaire," Annals of Mathematics, 44, 423-453.

Goldie, C.M. and Resnick, S. 1988. "Distributions that are both subexponential and in the domain of attraction of an extreme-value distribution," Advances in Applied Probability 20(4), $706-718$.

Hashorva, E., Pakes, A.G. and Tang, Q. 2010. "Asymptotics of random contractions," Insurance: Mathematics and Economics, 47(3), 405 - 414.

Joe, H. and Li, L. 2011. "Tail risk of multivariate regular variation," Methodology and Computing in Applied Probability, to appear.

Juri, A. and Wüthrich, M. V., 2003. "Tail dependence from a distributional point of view, " Extremes, 6(3), 213-246.

Kallenberg, O. 1983. Random Measures, 3rd edition Akademie-Verlag, Berlin.
Khoudraji, A. 1995. "Contributions à l'étude des copules et à la modélasion des valeurs extrêmes bivariées," Ph.D. thesis, Université Laval, Québec, Canada.

Klüppelberg, C. and Resnick, S.I. 2008. "The pareto copula, aggregation of risks, and the emperor's socks," Journal of Applied Probability, 45(1), 67-84.

Ko, B. and Tang, Q. 2008. "Sums of dependent nonnegative random variables with subexponential tails," Journal of Applied Probability, 45(1), 85-94.

Kortschak, D. and Albrecher, H. 2009. "Asymptotic results for the sum of dependent nonidentically distributed random variables," Methodology and Computing in Applied Probability 11(3), 279 - 306.

Landsman, Z. and Valdez, E. 2003. "Tail conditional expectation for elliptical distributions," North American Actuarial Journal, 7(4), 55-71.

Li, J., Tang, Q. and Wu, R. 2010. "Subexponential tails of discounted aggregate claims in a time- dependent renewal risk model," Advances in Applied Probability 42(4), 1126-1146.

McNeil, A.J., Frey, R. and Embrechts, P. 2005. Quantitative Risk Management. Princeton University Press, Princeton, NJ.

Mitra, A. and Resnick, S.I. 2009. "Aggregation of rapidly varying risks and asymptotic independence," Advances in Applied Probability, 41(3), 797-828.

Nelsen, R. B. 1999. An Introduction to Copulas. Springer-Verlag, New York.

Panjer, H.H. and Jia, J. 2001. "Solvency and capital allocation". Institute of Insurance and Pension Research Report 01-14. Waterloo, Ontario: University of Waterloo.

Resnick, S.I. 1987. Extreme Values, Regular Variation and Point Processes. Springer-Verlag, New York.

Resnick, S.I. 2007. Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. SpringerVerlag, New York.

Sklar, A. 1959. "Fonctions de répartion à n dimensions et leurs marges," Publications de l'Institut de Statistique de l'Université de Paris, 8, 229 - 231.

Valdez, E. and Chernih, A. 2003. "Wang's capital allocation formula for elliptically contoured distributions," Insurance: Mathematics and Economics, 33(3), 517-532.

Vernic, R. 2006. "Multivariate skew-normal distributions with applications in insurance," Insurance: Mathematics and Economics, 38(2), 413-426.

Vernic, R. 2011. "Tail conditional expectation for the multivariate Pareto distribution of the second kind: another approach," Methodology and Computing in Applied Probability, 13(1), 121-137.

Wang, S. S. 1996. "Premium calculation by transforming the layer premium density," ASTIN Bulletin, 26, 71-92.


[^0]:    ${ }^{1}$ Corresponding author. Phone: 1-319-3350730; fax: 1-319-3353017.

