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Abstract. Various solutions to the parameter estimation problem of the

multivariate Pareto distribution of Asimit et al. (2010) are developed and

exemplified numerically. Namely, a density of the aforementioned multi-

variate Pareto distribution with respect to a dominating measure, rather

than the corresponding Lebesgue measure, is specified and then employed

to investigate the maximum likelihood estimation (MLE) approach. Also,

in an attempt to fully enjoy the common shock origins of the multivariate
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model of interest, an adapted variant of the expectation maximization (EM)

algorithm is formulated and studied. The method of moments is discussed

as a convenient way to obtain starting values for the numerical optimization

procedures associated with the MLE and EM methods.

Keywords and phrases : Multivariate Pareto distribution, common shock

model, maximum likelihood estimation, expectation maximization algorithm,

method of moments.

Mathematics Subject Classification: 62F10, 62H12, 60E05.

1. Introduction

Fix a measurable space (Ω, F) and n ∈ Z+, and let Y = (Y0, Y1, . . . , Yn)
′ : Ω → Rn+1

denote an (n + 1)-dimensional random vector possessing mutually independent Pareto-

distributed coordinates Yi ∽ Pa(µi, σi, αi), i = 0, 1, . . . , n (‘∽’ stands for ‘distributed’

throughout), such that, for σi ∈ R+ and αi ∈ R+, we have that

F Yi
(y) = P[Yi > y] =

(

1 +
yi − µi

σi

)−αi

, with y > µi ∈ R. (1.1)

Then, for µ0 = 0, σ0 = 1, α0j = α0 + αj, j = 1, . . . , n, and a map T : Rn+1 →

Rn, the random vector X = T (Y), with the coordinates Xj = min (σjY0 + µj, Yj) ∽

Pa(µj, σj, α0j), is in Asimit et al. (2010) referred to as a multivariate Pareto distribution

having arbitrarily parameterized Pareto of the second kind margins (see, Arnold, 1983),

and a dependence structure, described by the Marshall and Olkin copula (see, Marshall and

Olkin, 1967). Various applications of the just-mentioned multivariate Pareto distribution

in e.g. actuarial mathematics and/or operational research stem from its ‘common shock’ -

based formation (see, loc. cit., as well as Asimit et al., 2010).
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The multivariate Pareto distribution above, which was in Asimit et al. (2010) de-

noted by Pan(µ,σ,α, α0), with the vectors of parameters µ = (µ1, . . . , µn)
′ ∈ Rn, σ =

(σ1, . . . , σn)
′ ∈ Rn

+, α = (α1, . . . , αn)
′ ∈ Rn

+ and a scalar-valued ‘dependence’ parameter

α0 > 0, proved to be quite analytically tractable and thus allowed for a comprehensive

study of a number of its properties. More specifically, we derived explicit expressions for,

e.g., the decumulative distribution functions (d.d.f.’s), the probability density functions

(p.d.f.’s), and the conditional as well as joint moments, proved certain characteristic re-

sults, and developed pricing formulas. A discussion of the appropriate inferential statistics

techniques for Pan(µ,σ,α, α0), seems therefore to suggest itself.

Our interest in this paper is therefore to find estimates of µ, σ, α and α0. Speaking

plainly, the problem is not trivial. Indeed, notice that the maximum likelihood estimation

(MLE) seems not at first glance applicable because the d.d.f. of X ∽ Pan(µ,σ,α, α0),

which is given by (see, loc. cit.)

FX (x1, . . . , xn) =

(

1 + max
j=1,...,n

xj − µj

σj

)−α0 n
∏

j=1

(

1 +
xj − µj

σj

)−αj

, (1.2)

with xj > µj, j = 1, . . . , n, is not absolutely continuous with respect to the Lebesgue

measure on Rn. Furthermore, even the moment-based estimation can become somewhat

intricate if, say, the expectation and/or variance are not finite, which can certainly be the

case, e.g., we readily have that if α0j ≤ 1, then E[Xj] is infinite. It is worthwhile noticing

that the aforementioned statistical inconvenience is often an advantage, and it is in fact

quite desirable in practical applications for modeling ‘particularly heavy’ financial risks

and/or losses.

In the rest of the paper we attempt to provide possible ways to tackle the parameters

estimation issue. To this end, in Section 2.2 we specify a density of X ∽ Pan(µ,σ,α, α0)
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with respect to a dominating measure, instead of the Lebesgue measure, which makes the

MLE method feasible, and we discuss the expectation maximization (EM) algorithm to

estimate the parameters in Section 2.3. Section 3 reveals a numerical study and concludes

the paper. The proofs are relegated to the appendix.

2. Main results

2.1. Basic properties. In Asimit et al. (2010) we showed that, for j = 1, . . . , n,

• The distribution of Xj is Pa(µj, σj, α0j).

• The mathematical expectation of Xj is, for α0j > 1,

E[Xj] = µj +
σj

α0j − 1
.

• The variance of Xj is, for α0j > 2,

Var[Xj] =
α0jσ

2
j

(α0j − 1)2(α0j − 2)
.

• The covariance between Xj and Xk is, for j ̸= k, α0j > 1, α0k > 1 and α0jk =

α0 + αj + αk > 2,

Cov[Xj, Xk] =
α0σjσk

(α0j − 1)(α0k − 1)(α0jk − 2)
.

• Pearson’s correlation coefficient between Xj and Xk is, for j ̸= k, α0j > 2, α0k > 2

and α0jk > 2,

Corr[Xj, Xk] =
α0

α0jk − 2

√

(α0j − 2)(α0k − 2)

α0jα0k

. (2.1)

Furthermore, for 1 ≤ j ̸= k ≤ n and xk > µk, the conditional d.d.f. of Xj| Xk = xk, as well

as the conditional expectation E[Xj| Xk = xk] were also derived in Asimit et al. (2010).

As it has been mentioned, the multivariate Pareto distribution of interest in this paper

possesses Pareto of the second kind margins and Marshall-Olkin copula-based dependence
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structure (see, Nelsen, 1999, p. 46). For the sake of the analysis in Section 2.3, we further

complement (2.1) with the following two well-known robust measures of association, i.e.,

Kendall’s Tau and Spearman’s Rho (see, Nelsen, 1999, p’s. 133 and 136; for the proofs).

Lemma 2.1. Let X ∽ Pan(µ,σ,α, α0) follow the multivariate Pareto distribution of

interest, and let 1 ≤ j ̸= k ≤ n. Then it can be shown that,

• Spearman’s rank correlation coefficient between Xj and Xk is

ρ[Xj, Xk] = 3α0/(2(α0j + α0k)− α0), and (2.2)

• Kendall’s tau rank correlation coefficient between Xj and Xk is

τ [Xj, Xk] = α0/(α0j + α0k − α0). (2.3)

2.2. Density and likelihood. It is not difficult to see that the p.d.f. does not everywhere

exist for d.d.f. (1.2). We skip negligible technical details and only note in passing that the

d.d.f. consists of both absolutely continuous and singular components. Thereby, with a

fixed index (n) ∈ {1, . . . , n}, such that

z(n) = max
j=1,...,n

(xj − µj)/σj, (2.4)

and α(0n) and σ(n) denoting the shape and scale parameters corresponding to the just

introduced coordinate z(n), we have that the p.d.f. for the absolutely continuous part is

fX(x1, . . . , xn) =
α(0n)

σ(n)

(

1 + z(n)
)−(α(0n)+1)

n
∏

j=1, j ̸=(n)

αj

σj

(

1 +
xj − µj

σj

)−(αj+1)

, (2.5)

where xj > µj. In addition, for distinct j1. . . . , jk ∈ {1, 2, . . . , n} and a fixed k ≤ n, the

probabilities for the singular component are given by

P

[

Xj1 − µj1

σj1

= · · · =
Xjk − µjk

σjk

]

=
α0

α0 +
∑k

i=1 αji

. (2.6)
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We further specify a probability density function of the multivariate Pareto distribution

with respect to a dominating measure, rather than to the Lebesgue measure on Rn (see,

e.g., Proschan and Sullo, 1976; Hanagal, 1996; for similar approaches). To this end, for

r = 2, . . . , n, let Ir = {i1, . . . , ir} ⊆ {1, . . . , n} = In, and {j1, . . . , jn−r} = In \ Ir. Also,

for C ⊆ Rn, let us define

gIr (C) =

{

(

z(n), xj1 , ..., xjn−r

)

: x ∈ C and
xi1 − µi1

σi1

= · · · =
xir − µir

σir

= z(n)

}

,

with z(n) given in (2.4). Then for νn denoting the n-dimensional Lebesgue measure, it is

possible to introduce another measure ν >> νn (in words, ‘ν dominates νn’), such that

ν(C) = νn(C) +
∑

r=2,...,n
Ir⊆In

νn−r+1

(

gIr

(

C
∩

{x ∈ Rn : xi > µi, i = 1, . . . , n}
))

(2.7)

for any C in the Borel σ-algebra Bn in Rn.

Furthermore, let x = (x1, . . . , xn)
′ ∈ Rn be a realization of X ∽ Pan(µ,σ,α, α0).

We then introduce a number of auxiliary indexes as functions of x, for j = 1, . . . , n,

k = 1, . . . , n, and ‘#′ denoting the ‘cardinality’ of a set, i.e., let

vj = vj(x) =















1, (xj − µj)/σj < z(n)

0, otherwise

,

s = s(x) =















1, ∃ j ̸= k : (xj − µj)/σj = (xk − µk)/σk = z(n)

0, otherwise

,

and

r = r(x) = #

{

j ∈ {1, . . . , n} :
xj − µj

σj

= z(n)

}

.

(When no confusion is possible, we omit the argument ‘x’, and we write vj, s and r instead

of vj(x), s(x) and r(x), respectively.)
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Theorem 2.1. The density of X ∽ Pan(µ,σ,α, α0) with respect to ν is given by

fX(x1, . . . , xn) = αs
0(1 + z(n))

−α0+r−1

n
∏

j=1

(

αj

σj

)vj
(

α0j

σj

)(1−s)(1−vj)(

1 +
xj − µj

σj

)−(αj+1)

,

where xj > µj ∈ R, j = 1, . . . , n.

Before sketching the MLE method, it is worthwhile noticing the particular forms of the

bivariate and trivarite p.d.f.

Corollary 2.1. The p.d.f. of X ∽ Pa2(µ,σ,α, α0) is given by

fX (x) =































αjα0i

σ1σ2

(

1 +
xi − µi

σi

)−(α0i+1)(

1 +
xj − µj

σj

)−(αj+1)

,
xi − µi

σi

>
xj − µj

σj

> 0

and i ̸= j ∈ {1, 2}

α0

(

1 + z(2)
)−(α0+α1+α2+1)

,
x1 − µ1

σ1

=
x2 − µ2

σ2

= z(2) > 0

,

(2.8)

while for X ∽ Pa3(µ,σ,α, α0) and {i, j, k} = {1, 2, 3} it holds that

fX (x) =



































































αiαjα0k

σ1σ2σ3

(

1 +
xk − µk

σk

)−(α0k+1)(

1 +
xi − µi

σi

)−(αi+1)(

1 +
xj − µj

σj

)−(αj+1)

,

xk − µk

σk

> max

{

xi − µi

σi

,
xj − µj

σj

}

> 0

αiα0

σi

(

1 + z(3)
)−(α0+αj+αk+1)

(

1 +
xi − µi

σi

)−(αi+1)

,

xk − µk

σk

=
xj − µj

σj

= z(3) >
xi − µi

σi

> 0

α0

(

1 + z(3)
)−(α0+α1+α2+α3+1)

,
x1 − µ1

σ1

=
x2 − µ2

σ2

=
x3 − µ3

σ3

= z(3) > 0

.

Theorem 2.1 establishes an absolutely continuous p.d.f., which can be used to develop

the MLE for the multivariate Pareto distribution of interest, as it is shown in the sequel.

Let (Xi)
m

i=1 be m independent copies of X ∽ Pan(µ,σ,α, α0), with the realization of,

say, Xi, being denoted by xi = (x1,i, . . . , xn,i)
′, and let, for j = 1, . . . , n,

u0 =
m
∑

i=1

s (xi) , uj =
m
∑

i=1

vj (xi) , wj =
m
∑

i=1

(1− s (xi)) (1− vj (xi)) .
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Let z(n)i = maxj=1,...,n(xj,i − µj)/σj, for a fixed i = 1, . . . ,m. The following statement is

a clear consequence of Theorem 2.1 and is therefore given without proof.

Corollary 2.2. The log-likelihood function for the Pan(µ,σ,α, α0) sample (Xi)
m
i=1 is

lnL (µ,σ,α, α0;x1, . . . ,xm) = u0 lnα0 +
m
∑

i=1

(r (xi)− α0 − 1) ln(1 + z(n)i) (2.9)

+
n
∑

j=1

(

uj lnαj + wj lnα0j − (uj + wj) ln σj − (αj + 1)
m
∑

i=1

ln

(

1 +
xj,i − µj

σj

)

)

,

which simplifies to the findings of Hanagal (1996) for µj = σj ≡ 1.

At this point, the ideal solution is of course to estimate all (3n + 1) parameters of

Pan(µ,σ,α, α0) applying the just derived log-likelihood. However, this can become rather

cumbersome (if not impossible) if, say, µ and σ are unknown, since in such a case, we

have that, e.g., s and vj are unknown as well. Remarkably, it is possible to tackle the

aforementioned complication by following an alternative route to estimating the parameters

of interest, that we in fact do in Subsection 2.3.

To complement the current discussion, we further outline a number of seemingly useful

observations, which can be of importance to practitioners under specific constraints. To

start off, we note that the obvious estimates for µj are µ̂j = mini=1,...,m xj,i, where j =

1, . . . , n, and we thus have to actually estimate (2n + 1) parameters, only, with further

simplifications sometimes possible.

Indeed, an interesting special case in this respect is the one when the multivariate Pareto

distribution of interest possesses identically distributed margins, or, more generally, when

σj ≡ σ. Then we readily observe that the v, s and r functions do not depend on the values

of σ, and therefore a system of (n + 2) non-linear equations must be solved to obtain the
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estimates of σ, α0 and α. The system is given below, and it is not solvable analytically



































∑m

i=1

(

∑n

j=1 (αj + 1)
xj,i − µ̂j

σ + xj,i − µ̂j

− (r (xi)− α0 − 1)
z(n)i

1 + z(n)i

)

−
∑n

j=1 (uj + wj) = 0,

u0

α0

−
m
∑

i=1

ln
(

1 + z(n)i
)

+
n
∑

j=1

wj

α0j

= 0, and

uj

αj

+
wj

α0j

−
m
∑

i=1

ln

(

1 +
xj,i − µ̂j

σ

)

= 0, for each j = 1, . . . , n

.

In a variety of practical applications, it may be convenient to estimate µ and σ using the

marginal (univariate) estimation discussed in, e.g., Arnold (1983), and to utilize the log-

likelihood function obtained in Corollary 2.2 to find the estimates of α0 and α. Thereby,

assuming that we have the estimates µ̂ and σ̂, we readily end up with the system



















u0

α0

−
m
∑

i=1

ln
(

1 + z(n)i
)

+
n
∑

j=1

wj

α0j

= 0, and

uj

αj

+
wj

α0j

−
m
∑

i=1

ln

(

1 +
xj,i − µ̂j

σ̂j

)

= 0, for each j = 1, . . . , n

, (2.10)

which can be solved numerically for α0 and α in order to obtain α̂0 and α̂.

Furthermore, we may want to estimate µ and σ, as well as (α0j)
n
j=1 using marginal

(univariate) estimation techniques, and to estimate α0 with the help of (2.9) thereafter. In

such a case, with (α̂0j)
n
j=1 denoting the estimates of (α0j)

n
j=1, the only equation to solve is

u0

α0

−

m
∑

i=1

ln
(

1 + z(n)i
)

+
n
∑

j=1

(

m
∑

i=1

ln

(

1 +
xj,i − µ̂j

σ̂j

)

−
uj

α̂0j − α0

)

= 0. (2.11)

In the next subsection we discuss an alternative method, which allows to estimate the

parameters of interest simultaneously. To this end, we note in passing that in the context of

the map X = T (Y), the random vector Y ∈ Rn+1 is a latent variable, and only X ∈ Rn is

practically observed. This interpretation, as well as the unimodal nature of the multivariate

Pareto distribution considered herein, strongly hint at the appropriateness of the method.

In the rest of the paper, we keep our discussion restricted to the bivariate and trivariate
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cases to make the exposition simple and to circumvent notational inconveniences inevitably

arising when the general case is considered.

2.3. Expectation maximization algorithm. The general version of the EM algorithm

was described and analyzed by Dempster et al. (1977) (see, also Wu, 1983) as an alternative

to solving complex MLE problems. Karlis (2003) realized the method in the context of

the multivariate exponential distribution of Marshall and Olkin, which is an example of a

multivariate common shock model with exponential margins. As the multivariate Pareto

distribution of interest clearly allows for a missing data interpretation, the utilization of

the EM algorithm is quite natural.

To start off, we readily note that in the bivariate case, the missing data is repre-

sented by the latent random vector Y = (Y0, Y1, Y2)
′, whereas the random vector

X = T (Y) = (X1, X2)
′
∽ Pa2(µ,σ,α, α0) denotes the practically observable variables

of interest. Consequently, the complete data is in that case a five dimensional random

vector possessing the p.d.f. fX,Y (x,y; θ) with θ = (µ,σ,α, α0)
′ ∈ Θ ⊂ R7. The EM

algorithm then iteratively improves the initial estimate θ(0) by constructing new estimates

θ(k+1), k ∈ N, that do not decrease the complete data expected analogue of (2.9).

More specifically, denoting, as before, by (Xi)
m

i=1 and xi = (x1,i, x2,i)
′, the m independent

copies of X ∽ Pa2(µ,σ,α, α0) and the realization of say Xi, respectively, the complete

data expected log-likelihood is naturally formulated as

Q
(

θ;x1, . . . ,xm,θ
(k)
)

= E

[

ln
m
∏

i=1

fXi,Y (Xi, Y; θ) | Xi = xi, θ(k)

]

=

∫

R3

m
∑

i=1

ln fXi,Y (xi,y;θ) fY|Xi=xi, θ
(k) (y) dy, (2.12)
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and it must be calculated for every k = 0, 1, . . .. The estimate θ(k+1) is then determined

as the expected log-likelihood maximizer, i.e., given θ(k), we have that

θ(k+1) = argmax
θ∈Θ

Q
(

θ;x1, . . . ,xm,θ
(k)
)

. (2.13)

We note in passing that it is well-accepted to refer to (2.12) and (2.13) as the ‘E’ and

‘M’ steps, respectively. The two steps are repeated until a convergence criterion has been

achieved.

In view of the recurrent nature of the EM algorithm, the k = 0 case, that corresponds

to the initial expected log-likelihood Q
(

θ;x1, . . . ,xm,θ
(0)
)

, requires a somewhat special

treatment. Speaking literally, the problem boils down to determining the starting value

θ(0) to then allow for the evaluation of the consequent estimates. In this respect we suggest

to utilize the empirical variates of the appropriate mean, variance, Pearson’s correlation,

as well as of Spearman’s and/or Kendall’s coefficients of association to trigger the method

of moments (MM) estimation technique. We can thereby obtain, e.g., the estimates of α0,

α̂0 =
c (α̂01 + α̂02 − 2)

1 + c
, with c = Ĉorr[X1, X2]

√

α̂01α̂02

(α̂01 − 2) (α̂02 − 2)
,

α̂0ρ =
2 (α̂01 + α̂02) ρ̂[X1, X2]

3 + ρ̂[X1, X2]
, and α̂0τ =

(α̂01 + α̂02) τ̂ [X1, X2]

1 + τ̂ [X1, X2]
,

using the empirical values of Pearson’s correlation, Spearman’s ρ and Kendall’s τ , respec-

tively. In the similar fashion, the entire θ = (µ,σ,α, α0)
′ can be found using appropriate

MM equations, and it is thereafter used as θ(0) to start with the EM algorithm.

Explicit expressions for (2.12) are generally rarely derivable. In the context of the mul-

tivariate Pareto distribution of interest, the derivation is however possible with an effort.

Lemma 2.2. Let X ∽ Pa2(µ,σ,α, α0) be the observable random vector, and let Y0 ∽

Pa(0, 1, α0) and Yj ∽ Pa(µj, σj, αj), j = 1, 2 denote the latent variables. In addition, let
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z(xj) = (xj − µj)/σj. The conditional p.d.f. of Y = (Y0, Y1, Y2)
′ on X = (X1, X2)

′ is

fY|X (y |x) =















α0αi

α0i

(1 + y0)
−α0−1 (1 + z(xi))

α0 , yj = xj, yi = xi and y0 > z(xi)

α0αi

σiα0i

(1 + y0)
αi

(

1 +
yi − µi

σi

)−αi−1

, yj = xj, yi > xi and y0 = z(xi)

,

for z(xi) > z(xj), i ̸= j ∈ {1, 2}, and

fY|X (y |x) =
α1α2

σ1σ2

(1 + y0)
α1+α2

(

1 +
y1 − µ1

σ1

)−α1−1(

1 +
y2 − µ2

σ2

)−α2−1

,

for z(x1) = z(x2) = y0 < min {(y1 − µ1)/σ1, (y2 − µ2)/σ2}.

We further employ Lemma 2.2 to estimate the parameters of the multivariate Pareto

distribution of interest. To this end, for i = 1, . . . ,m, let us redenote by xi = (x1,i, x2,i)
′

a realization of the bivariate Pareto of the second kind random vector Xi, which is an

independent copy of X ∽ Pa2(µ,σ,α, α0), and let (Xi)
m
i=1 be a sequences of such copies.

As we have already noted, the estimation of the parameters of Pa2 is not indeed trivial.

The EM algorithm with its time consuming M -step does not contribute to the tractability,

either. Therefore, we suggest an adapted variant of the algorithm to estimate the vector

θ∗ = (α, α0)
′. We note in passing that the obvious estimate for µ = (µ1, µ2)

′ is µ̂ =

(µ̂1, µ̂2)
′, such that µ̂j = mini=1,...,m xj,i, j = 1, 2, and we estimate the vector σ = (σ1, σ2)

′

separately employing marginal (univariate) estimation techniques.

Namely, the (k + 1)-th step of the adapted EM algorithm utilized in the sequel is

E step - Evaluate Q
(

α, α0;x1, . . . ,xm,α
(k), α

(k)
0

)

using identity (2.12) and Lemma 2.2.

M1 step - Obtain the maximum likelihood estimates α(k+1), α
(k+1)
0 of α and α0 à la (2.13).

M2 step - Use the estimates from the M1-step above to update the marginal maximum like-

lihood estimate σ(k+1) = (σ
(k+1)
1 , σ

(k+1)
2 )′ of σ = (σ1, σ2)

′.

The aforementioned three steps are repeated until a convergence criterion has been reached.
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Recall that, for j = 1, 2 and i = 1, . . . ,m, we have that Xj,i = min (σjY0,i + µj, Yj,i).

To facilitate the exposition of the main result herein, let z
(k)
j,i = (xj,i − µ̂j) /σ

(k)
j and also

z
(k)
(2)i = maxj z

(k)
j,i . In addition, denote by w

(k)
0 , w

(k)
1 and w

(k)
2 the cardinalities of the sets

S
(k)
0 =

{

i : z
(k)
1,i = z

(k)
2,i

}

, S
(k)
1 =

{

i : z
(k)
1,i > z

(k)
2,i

}

and S
(k)
2 =

{

i : z
(k)
1,i < z

(k)
2,i

}

, respectively.

Theorem 2.2. The expected log-likelihood for the (k + 1)-th, k ∈ N, step is

Q(α, α0;x1, . . . ,xm,α
(k), α

(k)
0 )

∝ m ln (α0α1α2)− α0

(

m
∑

i=1

ln
(

1 + z
(k)
(2)i

)

+
α
(k)
2 w

(k)
2

α
(k)
0 α

(k)
02

+
α
(k)
1 w

(k)
1

α
(k)
0 α

(k)
01

)

−
2
∑

j=1

αj

(

m
∑

i=1

ln
(

1 + z
(k)
j,i

)

+
α
(k)
0 w

(k)
j

α
(k)
j α

(k)
0j

+
w

(k)
0

α
(k)
j

)

. (2.14)

Theorem 2.2 clearly establishes the E step of the adapted EM algorithm. Thereby, the

next statement follows straightforwardly, and it establishes the consequent M1 step.

Corollary 2.3. The (k + 1)-th, k ∈ N, step estimates of the coordinates of θ∗ = (α, α0)
′

are conveniently obtained as

α
(k+1)
0 = m

(

m
∑

i=1

ln
(

1 + z
(k)
(2)i

)

+
α
(k)
1 w

(k)
1

α
(k)
0 α

(k)
01

+
α
(k)
2 w

(k)
2

α
(k)
0 α

(k)
02

)−1

,

α
(k+1)
1 = m

(

m
∑

i=1

ln
(

1 + z
(k)
1,i

)

+
α
(k)
0 w

(k)
1

α
(k)
1 α

(k)
01

+
w

(k)
0

α
(k)
1

)−1

, and

α
(k+1)
2 = m

(

m
∑

i=1

ln
(

1 + z
(k)
2,i

)

+
α
(k)
0 w

(k)
2

α
(k)
2 α

(k)
02

+
w

(k)
0

α
(k)
2

)−1

.

At last, to establish the M2 step of the adapted EM algorithm, the system

σ
(k+1)
j

m
∑

i=1

(

σ
(k+1)
j + xj,i − µ̂j

)−1

=
mα

(k+1)
0j

α
(k+1)
0j + 1

, j = 1, 2, (2.15)

is solved numerically for σ
(k+1)
j employing α

(k+1)
0j , j = 1, 2, evaluated at the M1 step.
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Note 2.1. Noticeably, Corollary 2.3 extends to the trivariate case in a similar fash-

ion. Namely, let {j, l, q} = {1, 2, 3} and denote by w
(k)
j , w

(k)
jl and w

(k)
0 the cardinal-

ities of the sets S
(k)
j =

{

i : z
(k)
j,i > max{z

(k)
l,i , z

(k)
q,i }
}

, S
(k)
jl =

{

i : z
(k)
j,i = z

(k)
l,i > z

(k)
q,i

}

and

S
(k)
0 =

{

i : z
(k)
1,i = z

(k)
2,i = z

(k)
3,i

}

, respectively. Then the (k + 1)-th step estimates of the

coordinates of θ∗ = (α, α0)
′ arise as

α
(k+1)
0 = m

(

m
∑

i=1

ln
(

1 + z
(k)
(3)i

)

+
1

α
(k)
0

3
∑

j=1

α
(k)
j w

(k)
j

α
(k)
0j

)−1

,

α
(k+1)
j = m

(

m
∑

i=1

ln
(

1 + z
(k)
j,i

)

+
1

α
(k)
j

(

α
(k)
0 w

(k)
j

α
(k)
0j

+ w
(k)
jl + w

(k)
jq + w

(k)
0

))−1

,

where j = 1, 2, 3.

After our derivations herein had been accomplished, we found a work by Kundu and

Dey (2009), in which yet somewhat different approach to the EM algorithm was followed

in the context of a bivariate Weibull distribution. More specifically, in the aforementioned

paper, the orderings among the coordinates ofY = (Y0, Y1, Y2)
′, rather than the coordinates

themselves, were considered a missing information. The two results are however isomorphic.

3. A numerical illustration

3.1. Bivariate case. To exemplify and compare the various estimation methods presented

above, we have generated bivariate Pareto random vectors Xi ∽ Pa2(µ = (1, 2)′,σ =

(2, 3)′,α = (2, 2)′, α0 = 2), i = 1, . . . ,m = 5000, and we have then applied the multivari-

ate MLE (see, Subsection 2.2), as well as the MM and the adapted EM (see, Subsection

2.3) methods to estimate µ, σ, α and α0. To rank the various estimation techniques,

we have used the well-known Pearson’s χ2 test (see, Greenwood and Nikulin, 1996; for

details).



15

As expected in our case, the χ2 test at a significance level of 0.01 has rejected the

Pearson’s correlation-based MM method, only. This is not surprising, bearing in mind the

expression for the conditional expectation, derived in Corollary 3.1 of Asimit et al. (2010),

i.e., the linear correlation is not a good measure of dependence for the multivariate Pareto

distribution of interest. To rank among other estimation techniques, we have employed

the χ2 values (see, Table 1; the lower - the better). Other entries of the table are briefly

explained below.

The obvious estimates of µ1 and µ2 have been obtained as µ̂1 = 1.0000029 and µ̂2 =

2.0002214, and these values have been used in all three estimation techniques. The es-

timates of σ1 and σ2 have been developed as solutions of the marginal MLE system of

equations – in the context of the MM and the multivariate MLE methods, and as iter-

atively updated solutions of the marginal MLE system – in the context of the adapted

EM algorithm. The advantage of the latter technique is reflected in the corresponding χ2

values. Similarly, the adapted EM algorithm seems to have outperformed the MM and the

multivariate MLE when estimating α0, α1 and α2.

Next in order to verify the perfomance of the proposed EM moethod as opposed to

sample size, we have kept µ1 = µ2 = 1, σ1 = σ2 = 1 and α1 = α2 = α0 = 2 fixed and let

the sample size vary. Also, as the starting values did not influence the Average Estimates

(AEs), we have further fixed σ1 = σ2 = α1 = α2 = α0 = 1.5 as initial values. The stopping

criterion hinged on the difference between parameters’ consequetive values (stop if less than

10−6 in absolute value). Based on 100 replications, we thereby obtained the AE and the

mean squared error (MSE) for each parameter, as well as the average number of iterations

(AI), required. The results are depicted in Table 2, and we notice that the estimation

naturaly improves with sample size.
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Parameters MM based on Multivariate MLE Adapted EM

Pearson’s Corr Spearman’s ρ Kendall’s τ

α̂0 2.18480 2.09250 2.08020 2.03579 2.04602

α̂1 1.80185 1.89415 1.90645 1.95086 1.95178

α̂2 1.99119 2.08349 2.09579 2.14020 2.04601

σ̂1 2.01025 2.01722

σ̂2 3.12215 3.04672

µ̂1 1.0000029

µ̂2 2.0002214

χ2 27.9646 17.6281 17.1714 17.2520 14.2909

Table 1. Estimated parameters for the simulated bivariate Pareto X ∽

Pa2(µ,σ,α, α0), with µ = (1, 2)′, σ = (2, 3)′, α = (2, 2)′, α0 = 2.

To elucidate the influence of the dependence on the outputs of the adapted EM algorithm,

we let the values of α0 vary, and set µ1 = µ2 = 1, σ1 = σ2 = 1 and α1 = α2 = 2. In this

respect, Table 3 seems to imply that the weaker the dependence is, the more effective the

EM algorithm becomes.

3.2. Trivariate case. To conclude, we have also applied the EM method in the trivariate

case with varying sample sizes and fixed µ1 = µ2 = µ3 = 1, σ1 = σ2 = σ3 = 1 and

α1 = α2 = α3 = α0 = 2. The outcomes are depicted in Table 4, and they are comparable

with these in Table 2.
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m = 1000,AI= 1697 m = 2000,AI= 1651 m = 3000,AI= 1568 m = 4000,AI= 1515

AE MSE AE MSE AE MSE AE MSE

µ1 1.0001 6× 10−8 1.0001 2× 10−8 1.00006 10−8 1.00005 10−9

µ2 1.0002 9× 10−8 1.0001 2× 10−8 1.00006 10−8 1.00005 10−8

σ1 1.0010 0.0190 1.0119 0.0166 1.0089 0.0120 1.0017 0.0047

σ2 1.0141 0.0230 1.0144 0.0214 1.0171 0.0095 1.0014 0.0069

α1 2.0178 0.1060 2.1578 0.1643 2.0870 0.0772 2.0578 0.0536

α2 2.2152 0.3095 2.0327 0.1836 2.1368 0.0831 2.0439 0.0420

α0 1.9557 0.0836 1.9424 0.0373 1.9682 0.0239 1.9411 0.0205

Table 2. The AE, MSE and AI indexes for the adapted EM method with

varying sample size and X ∽ Pa2(µ,σ,α, α0), where µ = (1, 1)′, σ =

(1, 1)′, α = (2, 2)′, α0 = 2.

.
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α0 = 1,AI= 686 α0 = 1.5,AI= 1047 α0 = 2,AI= 1515 α0 = 2.5,AI= 2122

AE MSE AE MSE AE MSE AE MSE

µ1 1.00008 1× 10−8 1.0001 2× 10−8 1.00006 10−8 1.00004 10−9

µ2 1.00007 1× 10−8 1.0001 2× 10−8 1.00006 10−8 1.00006 10−8

σ1 1.0039 0.0046 0.9916 0.0052 1.0017 0.0047 1.0219 0.0098

σ2 0.9994 0.0063 1.0195 0.0101 1.0014 0.0069 1.0029 0.0130

α1 2.0342 0.0247 2.0083 0.0276 2.0578 0.0536 2.0228 0.0543

α2 2.0329 0.0340 2.0119 0.0499 2.0912 0.0420 2.0912 0.0987

α0 0.9803 0.0041 1.4533 0.0093 1.9411 0.0205 2.4223 0.0404

Table 3. The AE, MSE and AI indexes for the adapted EM method with

varying α0 and X ∽ Pa2(µ,σ,α, α0), where µ = (1, 1)′, σ = (1, 1)′, α =

(2, 2)′ and m = 4000.

.
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m = 1000,AI= 1789 m = 2000,AI= 1642 m = 3000,AI= 1618 m = 3500,AI= 1541

AE MSE AE MSE AE MSE AE MSE

µ1 1.0002 7× 10−8 1.0001 10−8 1.00005 10−8 1.00007 10−8

µ2 1.0002 9× 10−8 1.0001 2× 10−8 1.00007 10−8 1.00007 10−8

µ3 1.0002 8× 10−8 1.0001 3× 10−8 1.00006 10−8 1.00004 10−8

σ1 0.9749 0.0298 1.0019 0.0212 1.0174 0.0072 1.0023 0.0040

σ2 1.0205 0.0389 0.9941 0.0181 1.0070 0.0136 0.9944 0.0139

σ3 1.0057 0.0339 1.0122 0.0149 1.0132 0.0113 0.9989 0.0043

α1 2.0531 0.2025 2.1319 0.1773 2.0590 0.0517 2.0284 0.0501

α2 2.2112 0.3228 2.1021 0.1415 2.1211 0.1074 1.9915 0.0600

α3 2.1902 0.2850 1.9654 0.1055 2.1401 0.1006 2.0716 0.0625

α0 1.8670 0.0611 1.8740 0.0367 1.9148 0.0284 1.8910 0.0280

Table 4. The AE, MSE and AI indexes for the adapted EM method with

varying sample sizes and X ∽ Pa3(µ,σ,α, α0), where µ = (1, 1, 1)′, σ =

(1, 1, 1)′, α = (2, 2, 2)′ and α0 = 2

.
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4. Appendix

Proof of Theorem 2.1. According to (2.7), we readily have that, for any C in the Borel

σ-algebra Bn in Rn,

P[{X ∈ C}] =

∫

C

fXdν =

∫

C

fXdνn +
n
∑

r=2

∫

C

fXdνn−r+1.

Therefore, to treat the right most side, and for each r = 2, . . . , n and Tr = In\Ir, we start

with the probability

P

[

{X > x}
∩

{

Xi1 − µi1

σi1

= · · · =
Xir − µir

σir

}]

1
= P

[

∩

l∈Tr

{Yl > xl}

r
∩

j=1

{

Y0 ≤
Yij − µij

σij

}

∩

{

Y0 > z(n)
}

]

2
=

(

∏

l∈Tr

F Yl
(xl)

) ∞
∫

z(n)

fY0 (y0)







r
∏

j=1

∞
∫

σij
y0+µij

fYij
(yj) dyj






dy0

=

(

∏

l∈Tr

F Yl
(xl)

) ∞
∫

z(n)

α0 (1 + y0)
−(α0+

∑r
j=1 αij

+1) dy0

=
α0

α0 +
∑r

j=1 αij

(

1 + z(n)
)−(α0+

∑r
j=1 αij)

∏

l∈Tr

(

1 +
xl − µl

σl

)−αl

,

where
1
= is because, for σj ∈ R+, µj ∈ R and j = 1, . . . , n we have that

min(σjY0 + µj, Yj)− µj

σj

= min

(

Y0,
Yj − µj

σj

)

,

and
2
= holds by independence. The corresponding density is then obtained (recall the

dimension of the measure νn−r+1) by differentiating with respect to z(n), as well as with
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respect to each xl with l ∈ Tr, as

f(x1, . . . , xn) = α0

(

1 + z(n)
)−(α0+

∑r
j=1 αij

+1)∏

l∈Tr

αl

σl

(

1 +
xl − µl

σl

)−(αl+1)

,

which along with (2.5) and keeping in mind (2.7) and the Radon-Nikodym theorem com-

pletes the proof. �

Proof of Lemma 2.2. It is clear that the d.d.f. of the complete data random vector is

conveniently written as

P[{Y > y} ∩ {X > x}]

= P[Y0 > max (z(x1), z(x2), y0)]P[Y1 > max(x1, y1)]P[Y2 > max(x2, y2)],

where yj > µj and xj > µj, j = 1, 2, as well as y0 > 0. Consequently various orderings of

z(x1), z(x2) and y0 must be treated separately. More specifically, utilizing (2.8), we readily

have that, e.g., for z(x1) = z(x2) = y0 and thus y0 < min
(

y1−µ1

σ1
, y2−µ2

σ2

)

, the conditional

p.d.f. of interest reduces to

fY|X(y| x) = fY0(y0)fY1(y1)fY2(y2)(fX(x))
−1,

as required.

A somewhat more tedious case is the one where z(x1) ̸= z(x2) and y0 > max(z(x1), z(x2)),

which implies that xj = yj, j = 1, 2. Then the d.d.f. to be considered is

P [{Y > y} ∩ {X > x} ∩ {X1 = Y1} ∩ {X2 = Y2} ∩ {Y0 > max {z(X1), z(X2)}}]

= P [{Y0 > y0} ∩ {σ1Y0 + µ1 > Y1 > x1} ∩ {σ2Y0 + µ2 > Y2 > x2}]

=

∞
∫

y0

fY0 (u0)







2
∏

j=1

σju0+µj
∫

xj

fYj
(uj) duj






du0 =

∞
∫

y0

fY0 (u0)
2
∏

j=1

(

F Yj
(xj)− F Yj

(σju0 + µj)
)

du0

= F Y0 (y0)F Y1 (x1)F Y2 (x2) +H0 (y0) +H1 (y0, x1) +H2 (y0, x2) ,



23

which thus yields

fY|X(y| x) = fY0(y0)fY1(x1)fY2(x2)(fX(x))
−1,

and it in turn disintegrates as expected keeping in mind (2.8).

The proof of the remaining two expressions is knocked out in an entirely similar fashion,

and it is thus left to the reader. This completes the proof of the lemma. �

Proof of Theorem 2.2. By definition and utilizing Lemma 2.2, we have that

Q(α, α0;x1, . . . ,xm,α
(k), α

(k)
0 ) = E

[

m
∑

i=1

ln fXi,Y

(

Xi, Y; σ(k),α, α0

) ∣

∣ Xi = xi, θ(k)

]

= E

[(

m
∑

i=1

ln (fY0 (Y0) fY1 (X1,i) fY2 (X2,i))

)

1

{

z
(k)
1,i ̸=z

(k)
2,i , Yj=Xj,i,j=1,2

Y0>max
{

z
(k)
1,i ,z

(k)
2,i

}

}

∣

∣

∣
Xi = xi, θ(k)

]

+ E

[(

m
∑

i=1

ln

(

fY0 (Y0)
fY1 (X1,i)

σ
(k)
2

fY2 (Y2)

))

1
{

Y0=z
(k)
2,i >z

(k)
1,i

Y2>X2,i, Y1=X1,i

} ∣

∣

∣
Xi = xi, θ(k)

]

+ E

[(

m
∑

i=1

ln

(

fY0 (Y0)
fY2 (X2,i)

σ
(k)
1

fY1 (Y1)

))

1
{

Y0=z
(k)
1,i >z

(k)
2,i

Y1>X1,i, Y2=X2,i

} ∣

∣

∣
Xi = xi, θ(k)

]

+ E

[(

m
∑

i=1

ln (fY0 (Y0) fY1 (Y1) fY2 (Y2))

)

1

{

Y0=z
(k)
1,i =z

(k)
2,i

Y0<max

{

Y1−µ̂1

σ
(k)
1

,
Y2−µ̂2

σ
(k)
2

}

}

∣

∣

∣
Xi = xi, θ(k)

]

.
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Further, according to Lemma 2.2, three distinct cases must be considered. Namely, for,

e.g., z
(k)
2,i > z

(k)
1,i , i = 1, . . . ,m, we have that

Q1(α, α0;x1, . . . ,xm,α
(k), α

(k)
0 )

= E

[(

m
∑

i=1

ln (fY0 (Y0) fY1 (X1,i) fY2 (X2,i))

)

1
{

Y0>z
(k)
2,i >z

(k)
1,i ,

Xj,i=Yj ,j=1, 2

} ∣

∣

∣
Xi = xi, θ(k)

]

+ E

[(

m
∑

i=1

ln

(

fY0 (Y0)
fY1 (X1,i)

σ
(k)
2

fY2 (Y2)

))

1
{

Y0=z
(k)
2,i >z

(k)
1,i ,

Y2>X2,i,X1,i=Y1

} ∣

∣

∣
Xi = xi, θ(k)

]

=
∑

i=1,...,m

z
(k)
2,i >z

(k)
1,i

∫

ln

(

α0 (1 + y0)
−α0−1 α1α2

σ
(k)
1 σ

(k)
2

(

1 + z
(k)
1,i

)−α1−1 (

1 + z
(k)
2,i

)−α2−1
)

×
α
(k)
0 α

(k)
2

α
(k)
02

(

1 + z
(k)
2,i

)α
(k)
0

(1 + y0)
−α

(k)
0 −1

1{y0 > z
(k)
2,i }dy0

+
∑

i=1,...,m

z
(k)
2,i >z

(k)
1,i

∫

ln





α0

σ
(k)
2

(

1 + z
(k)
2,i

)−α0−1 α1α2

σ
(k)
1 σ

(k)
2

(

1 + z
(k)
1,i

)−α1−1
(

1 +
y2 − µ̂2

σ
(k)
2

)−α2−1




×
α
(k)
0 α

(k)
2

σ
(k)
2 α

(k)
02

(

1 + z
(k)
2,i

)α
(k)
2

(

1 +
y2 − µ̂2

σ
(k)
2

)−α
(k)
2 −1

1{y2 > x2,i}dy2

∝
∑

i=1,...,m

z
(k)
2,i >z

(k)
1,i

(

ln (α0α1α2)− (α0 + α2) ln
(

1 + z
(k)
2,i

)

− α1 ln
(

1 + z
(k)
1,i

)

−
α0α

(k)
2

α
(k)
0 α

(k)
02

−
α2α

(k)
0

α
(k)
2 α

(k)
02

)

,

neglecting the terms that do not depend on α0 and/or α.

A similar expression follows, e.g., by symmetry, for the opposite case, where z
(k)
2,i < z

(k)
1,i ,

i.e., we have that

Q2(α, α0;x1, . . . ,xm,α
(k), α

(k)
0 )

=
∑

i=1,...,m

z
(k)
2,i <z

(k)
1,i

(

ln (α0α1α2)− (α0 + α1) ln
(

1 + z
(k)
1,i

)

− α2 ln
(

1 + z
(k)
2,i

)

−
α0α

(k)
1

α
(k)
0 α

(k)
01

−
α1α

(k)
0

α
(k)
1 α

(k)
01

)

.
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Finally, for z
(k)
2,i = z

(k)
1,i , we readily obtain that

Q3(α, α0;x1, . . . ,xm,α
(k), α

(k)
0 )

= E

[(

m
∑

i=1

ln (fY0 (Y0) fY1 (Y1) fY2 (Y2))

)

1

{

Y0=z
(k)
1,i =z

(k)
2,i

Y0<max

{

Y1−µ̂1

σ
(k)
1

,
Y2−µ̂2

σ
(k)
2

}

}

∣

∣

∣
Xi = xi, θ(k)

]

∝
∑

i=1,...,m

z
(k)
2,i =z

(k)
1,i

(

ln (α0α1α2)− (α0 + α1 + α2) ln
(

1 + z
(k)
(2)i

)

−
α1

α
(k)
1

−
α2

α
(k)
2

)

.

The expected log - likelihood of interest then follows as

Q(α, α0;x1, . . . ,xm,α
(k), α

(k)
0 ) =

3
∑

i=1

Qi(α, α0;x1, . . . ,xm,α
(k), α

(k)
0 ),

which reduces to (2.14) as required and hence completes the proof. �


