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a b s t r a c t

Intra-group transfers are riskmanagement tools that are usually widely used to optimise the risk position

of an insurance group. In this paper, it is shown that premium and liability transfers could be optimally

made in such a way as to reduce the amount of Technical Provisions and Minimum Capital Requirement

for the entire insurance conglomerate. These levels of required capital represent the minimal amount

that needs to be held by the insurance group without regulator intervention, according to the Solvency

II regulation. We assume that only proportional risk transfers are feasible, since such transfers are not

difficult to administer for a large scaled insurance group, as is always the case. In addition, any risk

shifting should be made for commercial purposes in order to be considered acceptable by the local

regulators that impose restrictions on how much the assets within an insurance group are fungible. Our

numerical examples illustrate the efficiency of the optimal proportional risk transfers which can easily

be implemented, in terms of computation, in any well-known solver even for an insurance conglomerate

withmany subsidiaries. We found that our proposed optimal proportional allocations aremore beneficial

for large insurance group, since the relative reduction in capital requirement tends to be small, whereas

the gain in absolute terms is quite significant for large scaled insurance group.

© 2015 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

An insurance group (IG) is composed of multiple legal entities,

also known as insurance undertakings (IU’s), that may operate

under different regulation regimes. Diversification across an IG

represents a risk management tool, often used to reduce the risk

exposures, and consequently the required level of capital within

the organisation. The risk exposures of different entities will in

general not be perfectly positively correlated, and thus some group

level diversification is observed (see Keller, 2007). On the other

hand, assets and liabilities are not pooled across entities, since

there are limits to the cross-subsidy (especially when conceptually

different regulatory requirements are in place for various IU’s), as

well as the capital fungibility, within the group. Nonetheless, the
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risk and capital requirements of individual entities can be reduced,

through a web of capital and risk transfer arrangements across

entities. This capital efficiency can be understood as a result of

down-streaming of diversification (see Keller, 2007).

The complexity of group legal structures and intra-group

risk transfers, with entities being potentially subject to different

regulatory regimes, poses a major challenge for regulators, since

it requires producing equivalence assessments between these

regimes. For example, the EU and Swiss regulatory requirements

are equivalent (see EIOPA, 2011), but no agreement has been

achieved between these two regulatory bodies and the North

American regulators. Therefore, it is not surprising that studying

this problem has become a keen interest for practitioners and

academics. The work of Filipović and Kupper (2008) investigates

optimal risk transfers in a framework where a finite set of risk

transfer instruments is available and the capital requirements of

individual entities are calculated via convex risk measures. The

paper of Gatzert and Schmeiser (2011) studies the impact of group

diversification on shareholder value, considering a variety of group

structures and capital and risk transfer instruments, while also

offering a thorough literature review of diversification in financial

http://dx.doi.org/10.1016/j.insmatheco.2015.10.008

0167-6687/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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conglomerates. Schlütter and Gründl (2012) assess the impact

of group building on policyholder welfare. In their analysis, it is

assumed that a particular type of rational risk transfer arrangement

is enforced, while the group sets premium and equity targets in

order to maximise shareholder value, allowing for the impact of

entities’ default risk on insurance demand. A recent paper of Asimit

et al. (2013) investigates the optimal intra-group transfer in an IG

consisting of two IU’s, where liabilities are assumed to be perfect

positively associated.

An ambitious project, started more than a decade ago, has

been initiated in order to harmonise the regulatory environment

within the European Union (EU) insurance industry, which is

known as Solvency II. This unified methodology applies to all

insurance players that operate in the EU insurance market and

its legal framework is specified in European Commission (2009).

The actual implementation of Solvency II is expected to be

put in practice in several years, and in the meantime, various

Quantitative Impact Studies (QIS) have been performed. These

QIS’s were meant to collect feedback from various insurance

and reinsurance companies related to the constantly augmented

Solvency II specifications. Themost recent one, also known asQIS 5

(see European Commission, 2010), summarises the most probable

recommendations that will later lead to the implementation of

Solvency II.

In this paper, the optimal risk transfer within an EU non-life

IG is considered. That is, all entities are located within EU or an

equivalence assessment has been approved for the IU’s outside this

economic region. In other words, the regulatory regime designed

within the Solvency II equally applies to the entire IG. Since there

are significant regulatory differences between life and non-life

businesses, it is assumed that the IG is purely a non-life insurance

one. Note that some non-life businesses, such as health insurance

or workers’ compensation, are similar in nature to life insurance

activities from the regulatory point of view, and therefore the

capital requirements follow the life insurance evaluation. These

hybrid businesses are excluded from our analysis, so that we could

better understand the risk transfer effects within a pure non-life

IG.

Optimising the risk intra-group transfers represents a practical

problem that has not been discussed much in the framework of

Solvency II, but there exists a rich literature on similar problems

that exhibit a reduced level of complexity. One research stream is

the optimal reinsurance contract problem that was first discussed

by Borch (1960) and Arrow (1963) who consider the objectives

of minimising the variance of the insurer’s retained risk and

maximising the expected utility of the insurer’s final wealth,

respectively. Alternative decision criteria have been investigated

by many researchers (see for example, Van Heerwaarden et al.,

1989, Young, 1999, Verlaak and Beirlant, 2003, Kaluszka and

Okolewski, 2008, Guerra and Centeno, 2008 etc.). Decisions based

on Value-at-risk (VaR) and Conditional Value-at-risk (CVaR) are

considered by Cai et al. (2008), Cheung (2010) and Chi and Tan

(2011). A recent paper of Asimit et al. (2015) identifies the optimal

reinsurance contract by taking into account the Solvency II capital

requirements. Note that the optimal reinsurance approach finds

the ideal reinsurance contract between two insurance players,

namely, insurer and reinsurer, where the risk shifting is usually

initiated by the insurer in order to meet the solvency targets. A

more cooperative approach is the so-called optimal risk allocation

problem that has a long history. Under this setting, the players have

their own targets and try to efficiently share their risks in a way

that is mutual beneficiary to all risk holders, i.e. finding the Pareto

optimal risk transfers. The vast literature on this topic includes

Landsberger and Meilljson (1994), Ludkovski and Young (2009),

Kiesel and Rüschendorf (2009, 2010), Carlier et al. (2012) etc. An

excellent review on this topic has appeared in Rüschendorf (2013).

In summary, themain aimof this paper is to identify the optimal

risk allocation within a non-life IG such that the total IG minimum

level of capital is reduced as much as possible. The paper is

organised as follows: Section 2 provides the necessary background

on Solvency II and describes our setting, while Section 3 contains

a case study that numerically illustrates our previous findings; the

main conclusions of the paper are summarised in Section 4.

2. Capital requirements model

The main purpose of the paper is to explain how an IG may ef-

ficiently share their various risk portfolios in order to reduce the

capital requirements. The chosen regulatory environment is the

Solvency II Regime that applies to a large economic area and there-

fore, it is likely to consider the problemof capital efficiency of an in-

surance conglomerate. In Section 3, we will consider the economic

value captured by the IG when implementing such risk manage-

ment tools. In order to define the ultimate objective function that

we need to optimise, we need to describe the capital requirements

model used in this paper, which is a replication of the current Sol-

vency II recommendations, as defined in previous QIS’s such as

QIS4 (see European Commission, 2008) and QIS5 (for example, see

European Commission, 2010). Recall that QIS5 provides a signif-

icant augmentation to QIS4, not only on the parameter values of

the considered proxy models, but there are conceptual differences

in implementing the Solvency II recommendations.

We assume that we have an IG consisting of n IU’s that operates

under the Solvency II Regime and each IU holds m lines of business

(LOB’s). There are twelve LOB’s recognised within Solvency II,

which are non-life insurance, while three other LOB’s are non-

life insurance, but the corresponding capital requirements follow

the life insurance evaluation. The capital requirements are set up

for a finite time horizon, which is one year for Solvency II. The

EU regulatory regime requires capital to be put aside in order to

cover the technical provisions (TP) and additional capital. The TP’s

are evaluated per LOB, and each of them consists of best estimate

(BE) of the liabilities and its risk margin (RM) (see for example,

CEIOPS, 2010). The additional capital is defined asMinimumCapital

Requirement (MCR) and Solvency Capital Requirement (SCR). MCR is

viewed as the lower bound of the SCR, and immediate regulatory

intervention is in force once an IU holds capital at levels lower

than its MCR. The SCR calculations within an IG are very complex,

and lead to individual calculations for stand-alone IU’s and IG

calculations by taking into account the consolidated balance sheet

(where the risk transfers cannot be used as a risk management

tool), but each IU should calculate their very own SCR, called the

individual SCR. The MCR calculations are much simpler, and at a

group level, the total MCR equals to the sum of all MCR’s. Besides

the fact that MCR and SCR are calculated in a different manner,

the required own funds to cover these levels of capital should

satisfy certain requirements. As expected, the requirements are

more stringent for the assets that are allowed to reach the MCR

level than the SCR level.

As explained above, the IG’s objective is to reduce as much as

possible the total amount of TP and MCR by keeping the current

global business volume intact. Thismay be achieved by considering

risk transfers among the IU’s, which should be acceptable to the

local regulators. One major impediment is that assets are not

fully fungible and not surprisingly, a risk transfer is considered

acceptable to a local regulator as long as it has a commercial

purpose. There aremanyways of transferring the future premiums

and liabilities within different IU’s, but it is obvious that

proportional allocations would be the easiest to implement from

the administrative point of view and at the same time to become

acceptable for various local regulators. Therefore, the set of feasible

transfers assumed in this paper consists of transferring premiums
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and future liabilities in the same proportion. That is, let xijk be the

proportion of business volume, pertaining to the kth LOB, received

by the ith IU from the jth IU. The case in which i = j should be

understood as the remaining business held by the jth IU. Clearly,

n


i=1

xijk = 1, xijk ≥ 0, for all 1 ≤ i ≤ n, 1 ≤ k ≤ m.

In addition, it is assumed that all transfers are made at the same

time.

We now explain the Solvency II terminology for calculating

the three major capital requirements components: BE, RM and

MCR. The first component is relatively simple, and each IU should

report the BE’s gross and net of ‘‘reinsurance’’. Since the BE

represents the expected value of future liabilities, the IG’s total

amount of BE’s remains the same on both calculation methods and

more importantly, it is not sensitive to any kind of risk shifting.

Consequently, our model may discard the BE contributions to the

TP.

Themost granularmethodology is related to the RMcalculation.

Note that the RM’s are evaluated without allowing any diversifi-

cation between different LOB’s of any particular IU, and therefore

calculations are extremely simplified. In addition, RM calculations

take into account only four sources of risk: underwriting (UwR), un-

avoidable market (UMR), counterparty default (CDR) and operational

(OpR). The calculations for the UwR risk include the premium (PR)

and reserve (RR) risks.

Let RM ik be the corresponding RM for the kth LOB of the ith IU.

Recall that RM’s are calculated per LOB, and the total RM for a given

IU is given by summing the individual RM’s (see CEIOPS, 2009,

2010). Therefore, the IG’s total RM capital requirements becomes:

RM IG :=
n


i=1

m


k=1

RM ik. (2.1)

Note that the calculations of OpR for a non-life IG is simplified to

SCR
OpR

ik := 0.03P
gross

−1,ik + max


0.03P
gross

−1,ik − 1.1P
gross

−2,ik, 0


,

where P
gross

−1,ik and P
gross

−2,ik are gross (of reinsurance and intra-group

transfer) earned premium received by the ith IU for the kth LOB

during the last year and year before last year, respectively. Note

that the earned premiums are calculated in this paper via the

accounting method due to its simplicity, especially when defining

the net earned premiums needed for the PR calculations. Clearly,

the OpR contribution to the capital requirements is evaluated gross

of any risk transfer, and therefore, our optimisation problem may

neglect this capital requirement component, which is not the case

for the remaining four risks. Thus, after removing the OpR, the

mathematical formulation for each RM ik follows the Cost-of-Capital

approach and is given by:

λ



SCR
tf

ik +
1 + r

2



Durmod
ik − nik



Durmod
ik − nik + 1



1rnikBE
net
ik

+ SCRCDR
ik



, (2.2)

where

(i) λ = CoC/(1 + r) is the adjustment coefficient with CoC

and r being the Cost-of-Capital rate and annual risk-free rate,

respectively;

(ii) SCR
tf

ik represents the current SCR for the kth LOB of the ith IU,

excluding market risk and default for financial derivatives;

(iii) Durmod
ik defines the modified duration of BEnet

ik ;

(iv) nik is the longest duration of available risk-free financial

instruments to cover the liabilities corresponding to the kth

LOB of the ith IU;

(v) 1rnik represents the absolute decrease of the risk-free interest

for maturity nik under a downward stress scenario of the

interest rate risk sub-module;

(vi) BEnet
ik defines the net BE provisions for the claims outstanding

in the kth LOB of the ith IU;

(vii) SCRCDR
ik is the current capital charge for the default risk within

the kth LOB of all transfers made by the ith IU.

It is common sense to have thatDurmod
ik = Durmod

k for all 1 ≤ k ≤ n,

i.e. the modified duration depends only on the nature of the busi-

ness rather than being geographically specific for similar insurance

risks. Now, several recommendations have beenmade for calculat-

ing the previously-mentioned quantities. The first simplification

is for computing SCR
tf

ik , where only the PR and RR risks are taken

into account. These risks are assumed to be LogNormal distributed

withmeans Pnet
ik and BEnet

ik , and coefficients of variationσ PR
ik andσ RR

ik ,

where

(i) σ PR
ik and σ RR

ik represent the standard deviation for PR and RR,

respectively, corresponding to the kth LOB of the ith IU, as

defined by the Solvency II Standard Formula;

(ii) Pnet
ik is the net (of reinsurance and intra-group transfer) earned

premium in the kth LOB of the ith IU during the forthcoming

year.

Note that for a LogNormal random variable, Z , with mean µ and

coefficient of variation σ , we have

VaRp(Z) − E(Z) = µ



exp{Φ−1(p)
√
1 + σ 2}

√
1 + σ 2

− 1



,

where VaRp(Z) andΦ−1(p) are the p% percentile of the distribution

function of Z and standard normal, respectively. Denote

g(t) :=
exp



Φ−1(p)



log


1 + t2




√
1 + t2

− 1. (2.3)

According to QIS5, p = 99.5% and

SCR
tf

ik

:=





g



σ PR
ik



Pnet
ik

2

+


g



σ RR
ik



BEnet
ik

2

+ 2 αg



σ PR
ik



g



σ RR
ik



Pnet
ik BEnet

ik ,

(2.4)

where α (usually is 0.5) represents the correlation coefficient

between PR and RR, as defined by the Standard Formula. Market

wide estimates for σ are shown to be between 5% and 22%,

and therefore, a reasonable approximation, g(σ ) ≈ 3σ , has

been proposed in QIS4 and QIS5, but we prefer to work with

the formulation displayed in Eq. (2.4) in order to achieve a more

accurate evaluation of the capital requirements. The general rule

in Solvency II for the proportional evaluation of the risk leads to

Pnet
ik :=

n


j=1

xijkP
gross

jk and BEnet
ik :=

n


j=1

xijkBE
gross

jk , (2.5)

where P
gross

jk is the gross earned premium in the kth LOB of the jth IU

during the forthcoming year before making any transfer. Note that

diversification among LOB’s or IU’s is not allowed in the calculation

of the RM’s. In addition, σ PR
ik = σ PR

k and σ RR
ik = σ RR

k are assumed to

be constant among all IU, and their tentative values are tabulated in

Section 2 of European Commission (2010), but one should keep in

mind that the calibration process is still under development, which

is one of the scopes of each QIS.

The second term from relation (2.2) represents the contribution

of the UMR, which is a simplification recommended in Section 2

of European Commission (2010). The same reference provides
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guidance to calculating the regulatory CDR capital, which is

defined for two classes of exposures. According to the Solvency

II terminology, the intra-group transfers belong to the class of

type 1 exposures. In addition, common practice suggests the same

probability of default (PD) for all IU’s, which is usually estimated

from external ratings or based on the IG solvency ratio (SR) (i.e. the

ratio between IG total own funds and capital requirements).

Moreover, for regulation purposes, the IGneeds to evaluate the Loss

Given Default (LGD) for each subsidiary, where the LGD represents

the loss of basic own funds which a subsidiary would incur if the

another subsidiary or subsidiaries default. The LGD is amended

by 1 − RecR, where RecR represents the recovery rate of the IU,

and the European Commission recommendations include that the

RecR’s should be estimated based on the specific risk profile of each

subsidiary. Thus, without loss of generality, it is further assumed

that all LOB’s of a single IU have the same RecR, but different

values may arise among distinct IU’s. Whenever robust estimation

of the RecR is not possible, the recommendation is to use the 50%

benchmark value. The capital requirements for type 1 exposures is

recommended to be

SCRCDR
ik :=



















3


Vik,


Vik ≤ 5%


j≠i

LGDik

min





j≠i

LGDjk, 5


Vik



,


Vik > 5%


j≠i

LGDik,

where Vik and LGDik represent the variance of the loss distribution

of the type 1 exposures and LGD in the ith LOB of the ith IU. This

formulation may lead to arbitrage opportunities, which can be

removed by considering the following reformulation:

SCRCDR
ik := min





j≠i

LGDjk, l


Vik



, (2.6)

where l is a constant.

The LGDik results from the potential loss in own funds due to PR

and RR risks, and one needs to take advantage of the LogNormal

assumption. It is not difficult to find that a LogNormal random

variable, Z , with mean µ and coefficient of variation σ , satisfies

E



Z − VaRp(Z) | Z > VaRp(Z)



=
µ

1 − p
Φ





log


1 + σ 2


− Φ−1(p)



− VaRp(Z),

where Φ is the distribution function of a standard normal random

variable. Denote

h(t) :=
Φ




log


1 + t2


− Φ−1(p)



1 − p
− g(t) − 1, (2.7)

where function g is defined in Eq. (2.3). Since the capital

requirements are set at VaR99.5% level, then we have

LGDik := (1 − RecRi)

×





h



σ PR
ik



Pnet
ik

2

+


h



σ RR
ik



BEnet
ik

2

+ 2 αh



σ PR
ik



h



σ RR
ik



Pnet
ik BEnet

ik ,

(2.8)

where once again α = 0.5 and p = 99.5%. As anticipated, RecRi

represent the recovery rate corresponding to the ith IU.

The Vik takes into account the default within the kth LOB

of all other IU’s, except for the ith IU. Due to the dependence

between these default events, the evaluation of the variance Vik

should include the concomitant default events, which makes the

calculations quite laborious if all concomitant default events are

included. Since the PD for multiple IU at the same time decreases

significantly once the number of insolvent IU’s increases, it is

further assumed that nomore than two concomitant default events

may occur at the same time. Note that in these situations, we may

aggregate the defaulted amounts if the assets are non-fungible,

which is normally the case, unless a legally binded contract is

in force (for further details, see Keller, 2007). Therefore, Lik, the

random loss in own funds for the kth LOB of the ith IU, is given

by

Lik :=



LGDjk, if only the jth IU defaults, j ≠ i

LGDj1k + LGDj2k, if only the j1th

and j2th IU’s default, j1 < j2, j1, j2 ≠ i.

The PD’s do not vary among different IU’s, and for this reason,

we may denote p1 and p2 to be the PD of a single default only

and concomitant default, respectively. Within QIS5, there are

recommended values for the PD (single or concomitant) of an IU

and are equal to p1 +p2(n−1). It is expected that the concomitant

events are stochastically positively dependent, which implies that

PD2 ≤ p2. Thus, one may require to have PD2 ≤ p2 ≤ PD/(n − 1).
Simple calculations show that

E


Lik


= p1



j≠i

LGDjk + p2



j1<j2,j1,j2≠i



LGDj1k + LGDj2k



= PD


j≠i

LGDjk

and

E


L2ik


= p1



j≠i

LGD2
jk + p2



j1<j2,j1,j2≠i



LGDj1k + LGDj2k

2

= PD


j≠i

LGD2
jk + 2p2



j1<j2,j1,j2≠i

LGDj1kLGDj2k

= p2





j≠i

LGDjk

2

+ (PD − p2)


j≠i

LGD2
jk.

Thus, the latter equations and (2.6) yield that

SCRCDR
ik

:= min









j≠i

LGDjk, l











p2 − PD2






j̸=i

LGDjk

2

+ (PD − p2)


j≠i

LGD2
jk







.

It is worth mentioning that an IG that is financially stable may

simplify the CDR calculations as follows:

SCRCDR
ik = l











p2 − PD2






j≠i

LGDjk

2

+ (PD − p2)


j≠i

LGD2
jk.

(2.9)

Note that the positiveness of PD− p2 implies that the above is true

as long as l2PD2−l2PD+1 ≥ 0 or equivalently if PD(1−PD) ≤ 1/l2.
If l = 3 then the latter is satisfied whenever PD ≤ 12.73%, which

is true, according to the QIS 5 recommendations (see European

Commission, 2010), for an IG with a B rating or higher or any

unrated IG (i.e. any possible SR satisfies our sufficient condition

whenever the IG is unrated). Similarly, if l = 5 then we should

have PD ≤ 4.17%, which is true for an IG with a BB rating or

higher or a SR larger than 80% for an unrated IG. Consequently,

the simplified formula from (2.9) can be utilised for an IG with a

reasonable financial stability.

Finally, we need to define theMCR contribution to our objective

function, i.e. the IG’s total MCR, MCRIG. As anticipated, the latter

quantity is obtained by aggregating all MCR’s:

MCRIG :=
n


i=1

MCRi, (2.10)
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where MCRi represents the individual MCR corresponding to the

ith IU. EachMCR includes the linearMCR for pure non-life business

and for non-life business similar to life business. Sincewe dealwith

a pure non-life IG, the second component is not present in this

model. Therefore,

MCRi :=
m


k=1

max


αkBE
net
ik , βkP

net
−1,ik



, (2.11)

where αk and βk are some constants, while Pnet
−1,ik represents the

net (of reinsurance and intra-group transfer) written premiums

within the kth LOB of the ith IU (for details, see Section 4 of

European Commission, 2010). It is worth mentioning that each

MCR is assumed to lie between 20% and 50% of the corresponding

individual SCR, which has been confirmed by empirical evidence

accumulated in the results of the QIS5 among the EU IG’s, when

the Standard formula of Solvency II was implemented. Finally, by

putting together relations (2.5), (2.10) and (2.11), onemay find that

the total RM is given by:

MCRIG =
n


i=1

m


k=1

max



αk

n


j=1

xijkBE
gross

jk , βkP
net
−1,ik



. (2.12)

3. Numerical examples

In this section, we discuss the implementation of our optimi-

sation problem and provide a numerical example to illustrate the

effect of the proposed risk transfer methodology. First, we need

to rewrite the optimisation problem such that the new formula-

tion is implementable in any well-known optimisation software.

For the sake of simplicity, the following notations are made for all

1 ≤ i ≤ n and 1 ≤ k ≤ m:

aik = P
gross

ik , bik = BE
gross

ik ,

cik = λ



1 + r

2



dk − nik



dk − nik + 1


1rnik



, dk = Durmod
k ,

e1 = l2


p2 − PD2


, e2 = l2


PD − p2


, Pik = βkP
net
−1,ik,

sk = λg


σ PR
k



, tk = λg


σ RR
k



,

uk = λh


σ PR
k



, vk = λh


σ RR
k



,

where the function g and h are defined in (2.3) and (2.7). In

addition, define f (x, y) :=


x2 + y2 + xy and

Fik(x) := (1 − RecRi)f



uk

n


l=1

xilk alk, vk

n


l=1

xilk blk



.

Clearly, a combination of (2.1), (2.2), (2.4), (2.5), (2.8), (2.9) and

(2.12) yield that our optimisation problem is given by:

min
x∈ℜn×n×m

m


k=1

n


i=1



f



sk

n


j=1

xijk ajk, tk

n


j=1

xijk bjk



+ cik

n


j=1

xijk bjk + max



αk

n


j=1

xijk bjk, Pik



+ min









e1





j≠i

Fjk(x)

2

+ e2



j≠i

F 2
jk(x),



j≠i

Fjk(x)









s.t.

n


j=1

xijk = 1, xijk ≥ 0 for all 1 ≤ i, j ≤ n and 1 ≤ k ≤ m.

(3.1)

The above unconstrained optimisation problem is economically

sound if each IU has sufficient assets to cover its TP and MCR after

Table 3.1

The values of αk , βk , σ
PR
k , σ RR

k and dk , where the first four quantities are chosen as

defined in QIS5.

k LOBk αk βk σ PR
k σ RR

k dk

1 Motor, third-party liability 12% 13% 10% 9.5% 2.3

2 Motor, other classes 13% 9% 7% 10% 1.86

3 Marine, aviation, transport 18% 22% 17% 14% 2.03

4 Fire and other property damage 14% 13% 10% 11% 1.56

5 Third-party liability 14% 20% 15% 11% 3.79

6 Credit and suretyship 25% 28% 21.5% 19% 2.72

7 Legal expenses 12% 9% 6.5% 9% 1.45

8 Assistance 14% 7% 5% 11% 1.75

9 Miscellaneous 20% 17% 13% 15% 3.03

the transfers have beenmade. Recall that for the sake of exposition,

our model excludes the BE’s and OpR contribution to the RM, since

both are gross of any risk transfers. Therefore, let us denote by Ai

the available assets held (before the risk transfers take place) by the

ith IU, where the BE’s and OpR contribution to the RM calculations

are removed. A set of transfers is feasible if each IU holds sufficient

own funds to cover the new portfolio of liabilities. Therefore, the

optimisation problem from (3.1) should be augmented by adding

the following set of inequality constraints:

m


k=1



f



sk

n


j=1

xijk ajk, tk

n


j=1

xijk bjk



+ cik

n


j=1

xijk bjk + max



αk

n


j=1

xijk bjk, Pik



+ min









e1





j≠i

Fjk(x)

2

+ e2



j≠i

F 2
jk(x),



j≠i

Fjk(x)









≤ Ai +


j≠i

m


k=1



xijkajk − xjikaik


, for all 1 ≤ i ≤ n. (3.2)

A detailed discussion on the convexity of the above objective

function and constraints is presented in the Appendix, where we

propose a reformulation of our optimisation problem as a Mixed

Integer Nonlinear Programming (MINLP) problem. For numerical

purposes, the optimal problem displayed in Eq. (A.2) from

Appendix is implemented using the General Algebraic Modeling

System (GAMS), a high performing solver which accommodates

our setting very well. Table 3.1 provides the values for α’s, β ’s and

σ ’s parameters as suggested in QIS5 (for details, see Sections 2 and

4 of European Commission, 2010). In addition, realistic values for

dk are also provided in Table 3.1, which have been chosen after

consulting many UK based non-life insurance companies. Among

the twelve pure non-life LOB’s, we chose only nine, i.e. m = 9,

since the other three refer to reinsurance, which without loss of

generality are excluded from ourmodel since our aim is to allocate

efficiently the IG’s assets and liabilitieswithout reducing its overall

business volume.

It is also assumed that the gross earned premiums for the

forthcoming year and net written premiums in the previous year

are the same for all LOB’s and IU’s, i.e. Pnet
−1,ik = aik. In addition,

the annual risk-free interest is 4%. As it can be seen in Table 3.1,

the possible maximal maturity for the risk-free interest is three

years. The values for 1rn are suggested in Section 2 of European

Commission (2010), where the downward stress scenarios are

defined to a reduction in the annual risk-free interest of 75%, 65%

and 56% for a maturity of one, two and three years, respectively.

Thus, 1rn equals to 3%, 2.6% and 2.24% for a maturity of one, two

and three years, respectively. It is widely accepted that a value of

6% for CoC is the most appropriate choice, and thus, λ = 6%/1.04.
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Table 3.2

Sensible values of Pgross ’s and BEgross ’s for all three IU’s (figures are in millions).

k LOBk P
gross

1k P
gross

2k P
gross

3k BE
gross

1k BE
gross

2k BE
gross

3k

1 Motor, third-party liability 1015 1218 812 700 840 560

2 Motor, other classes 672 806.4 537.6 480 576 384

3 Marine, aviation,

transport

29.4 35.28 23.52 21 25.2 16.8

4 Fire and other property

damage

490 588 392 280 336 224

5 Third-party liability 558 669.6 446.4 360 432 288

6 Credit and suretyship 86.4 103.68 69.12 48 57.6 38.4

7 Legal expenses 28 33.6 22.4 20 24 16

8 Assistance 42 50.4 33.6 30 36 24

9 Miscellaneous 72.5 87 58 50 60 40

Our numerical examples assume an IG with three IU’s, i.e. n =
3, and we report in Table 3.2 the best estimate of liabilities and

earned premiums for each IU and LOB. The values for the first IU

are chosen to be similar to those of Aviva Insurance Limited which

can be found on their publicly available statement of solvency. For

the second IU, the best estimates of liabilities are taken to be 20%

higher,while for the third IU they are 20% lower; the corresponding

security loadings necessary for premium calculations are kept

constant for all LOB’s. Note that the values for cik are computed via

the formula from the beginning of this section by using nik = ⌊dik⌋,
for all 1 ≤ i ≤ n and 1 ≤ k ≤ m. We consider a default probability

of 0.05% and let e1 = 0.000624375 and e2 = 0.009371875. The
total assets held by each IU is our last input and these values are:

1406.020, 1687.224 and 1124.816 (figures are in millions).

The optimisation problem (A.2) is run under two different

scenarios depending on the values of the recovery rates. In the

first case, we assume that all IU’s have the same recovery rate

of 0.5, while in the second case we assume that RecR1 = 0.5,
RecR2 = 0.6 and RecR3 = 0.4. The optimal solutions are displayed

in Tables 3.3 and 3.4. It has been implicitly assumed that all

IU’s are already operating, so that the costs of opening a new

business unit are not included in this analysis. Otherwise, obtaining

geographic diversification by expanding the IG would need to take

into account the emerging friction costs.

We notice that the optimal risk transfer solutions are very

sensitive to the recovery rates of each IU. Although some of

the weights remain the same (see for example the risk transfer

performed by the first IU for the first five LOB and for the last one),

most of them change. More importantly, we can analyse the effect

of these recovery rates by computing the gain from transferring

the risk versus the no-transfer case. We can define this gain as the

relative difference between the objective function evaluated based

on the optimal solutions and the trivial solution (i.e. xijk = 1, for

any i = j, and xijk = 0 for any i ≠ j). Under the same recovery

rate scenario, we notice that this difference is negligible, of around

5 · 10−6%. However, this is no longer the case for the second

scenario where the relative difference is around 0.01%. Thus, we

have constructed a numerical example in which we showed that

the recovery rate is an important factor in choosing the optimal risk

transfer between insurance undertakings, and the gain by taking

such a strategy can be quite significant.

4. Conclusions

In this paper, we have translated the capital requirements for a

non-life insurance companyoperatingunder Solvency II intomath-

ematical form and then considered the problemof determining the

efficient allocation of risk across LOB’s by following the most re-

cent Solvency II recommendations summarised in QIS5. The pro-

portional allocation represented the set of feasible risk transfers,

since the administration costs within the IG are very low andmore

importantly, due to the fact that proportional allocations are ac-

ceptable to local regulators. One may consider non-proportional

allocations that have a commercial purpose in order to be feasible

from the local regulators’ point of view, but sharing the premiums

in a ‘‘fair’’ manner is quite problematic andmoreover, the adminis-

tration costs may escalate. Therefore, non-proportional allocations

may not be profitable to the IG and future investigations may clar-

ify how beneficial it would be to an IG to allocate the risks in this

fashion.

The model contains a large number of parameters representing

the features of each IU and LOB.We have not shown the sensitivity

of the results to changes in all of the parameters since the optimal

allocation is not sensitive to many of the underlying parameters.

However, our work to date suggests that a key parameter is the

recovery rate assumed for each IU. For numerical purposes, we

Table 3.3

Optimal intra-group transferring proportions for the problem defined in (A.2) with three IU with the same recovery

rates.

k LOBk x∗
11k x∗

21k x∗
31k x∗

12k x∗
22k x∗

32k x∗
13k x∗

23k x∗
33k

1 Motor, third-party liability 0.10 0.90 0.00 1.00 0.00 0.00 0.33 0.33 0.33

2 Motor, other classes 0.00 0.46 0.54 0.81 0.00 0.19 0.00 1.00 0.00

3 Marine, aviation, transport 1.00 0.00 0.00 0.59 0.00 0.41 0.00 1.00 0.00

4 Fire and other property damage 1.00 0.00 0.00 0.52 0.00 0.48 0.00 1.00 0.00

5 Third-party liability 1.00 0.00 0.00 0.66 0.00 0.34 0.54 0.46 0.00

6 Credit and suretyship 0.94 0.00 0.06 0.03 0.00 0.97 0.00 0.52 0.48

7 Legal expenses 0.16 0.68 0.16 0.34 0.38 0.28 0.57 0.00 0.43

8 Assistance 1.00 0.00 0.00 0.00 0.28 0.72 0.00 1.00 0.00

9 Miscellaneous 0.59 0.41 0.00 0.00 0.18 0.82 0.81 0.19 0.00

Table 3.4

Optimal intra-group transferring proportions for the problem defined in (A.2) with three IU with different recovery

rates.

k LOBk x∗
11k x∗

21k x∗
31k x∗

12k x∗
22k x∗

32k x∗
13k x∗

23k x∗
33k

1 Motor, third-party liability 0.64 0.17 0.19 0.77 0.00 0.23 0.00 0.00 1.00

2 Motor, other classes 0.00 0.36 0.64 0.81 0.00 0.19 0.00 1.00 0.00

3 Marine, aviation, transport 1.00 0.00 0.00 0.19 0.00 0.81 0.50 0.00 0.50

4 Fire and other property damage 1.00 0.00 0.00 0.22 0.00 0.78 0.45 0.09 0.45

5 Third-party liability 0.43 0.00 0.57 0.00 0.00 1.00 1.00 0.00 0.00

6 Credit and suretyship 0.94 0.00 0.06 0.37 0.00 0.63 0.00 0.00 1.00

7 Legal expenses 0.00 0.74 0.26 0.35 0.30 0.35 0.79 0.00 0.21

8 Assistance 0.70 0.04 0.26 0.00 0.00 1.00 0.00 1.00 0.00

9 Miscellaneous 0.59 0.41 0.00 0.00 0.18 0.82 0.81 0.19 0.00



A.V. Asimit et al. / Insurance: Mathematics and Economics 66 (2016) 69–76 75

have illustrated the model with a simple, but realistic case study.

This demonstrates that the optimisation routine does not lead

to a trivial solution, so weights xijk are not equal to one. In the

case study, we found that the optimal (total) capital requirements

(included in our objective function) does not change much in

relative terms (around 0.01%), but in absolute terms, the reduction

in the level of required capital could be significant for a large IG.
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Appendix

First, we note that the function f (·) from (3.1) is a convex

function on ℜ2, and thus, any composition with an affine mapping

for f (·) is a convex function aswell, and in turn, the first term of the

objective function from Eq. (3.1) is a convex function. In addition,

the third term of the objective function from Eq. (3.1) is a convex

function as well. Therefore, we deal with a convex optimisation

problem as long as the simplified formulae from (2.9) holds. In

other words, for an IG with a ‘‘good’’ credit risk, we can rewrite

the optimisation problem as follows:

min
(x,u)∈ℜn×n×m×ℜn×m

m


k=1

n


i=1



f



sk

n


j=1

xijk ajk, tk

n


j=1

xijk bjk



+ cik

n


j=1

xijk bjk + uik +







e1





j≠i

Fjk(x)

2

+ e2



j≠i

F 2
jk(x)







s.t.

n


j=1

xijk = 1, xijk ≥ 0

for all 1 ≤ i, j ≤ n and 1 ≤ k ≤ m,

αk

n


j=1

xijkbjk ≤ uik, Pik ≤ uik

for all 1 ≤ i ≤ n and 1 ≤ k ≤ m,

m


k=1



f



sk

n


j=1

xijk ajk, tk

n


j=1

xijk bjk



+ cik

n


j=1

xijk bjk + uik

+







e1





j≠i

Fjk(x)

2

+ e2



j≠i

F 2
jk(x)







≤ Ai +


j≠i

m


k=1



xijkajk − xjikaik


, for all 1 ≤ i ≤ n.

(A.1)

Here, the slack variables uik are introduced in order to produce an

implementable (differentiable and convex) optimisation problem.

Note that if relation (2.9) does not hold, there is an alternative

solution to our optimisation problem, namely a Mixed Integer

Nonlinear Programming (MINLP) formulation for (3.1) with the

restriction from (3.2). Therefore, (A.1) is now replaced by a MINLP

reformulation due to themin’s terms in both the objective function

and constraint. In order to remove this term we need to add the

binary variables yik ∈ A = {0, 1} and the slack variables vik. Let M

be a sufficiently large number. Then, the MINLP reformulation can

be argued as in Asimit et al. (2015) and is given by:

min
(x,y,u,v)∈ℜn×n×m×An×m×ℜn×m×ℜn×m

m


k=1

n


i=1



f



sk

n


j=1

xijk ajk,

tk

n


j=1

xijk bjk



+ cik

n


j=1

xijk bjk + uik + vik



s.t.

n


j=1

xijk = 1, xijk ≥ 0 for all 1 ≤ i, j ≤ n and 1 ≤ k ≤ m,

αk

n


j=1

xijkbjk ≤ uik, Pik ≤ uik,



j≠i

Fjk(x) + M(yik − 1) ≤ vik,

vik ≤


j≠i

Fjk(x),

vik ≤







e1





j≠i

Fjk(x)

2

+ e2



j≠i

F 2
jk(x) and







e1





j≠i

Fjk(x)

2

+ e2



j≠i

F 2
jk(x) − Myik ≤ vik,

for all 1 ≤ i ≤ n and 1 ≤ k ≤ m,

m


k=1



f



sk

n


j=1

xijk ajk, tk

n


j=1

xijk bjk



+ cik

n


j=1

xijk bjk + uik + vik



≤ Ai +


j≠i

m


k=1



xijkajk − xjikaik


, for all 1 ≤ i ≤ n.

(A.2)

Note that there are nonlinearities in both the objective function

and constraints in the (A.2), and thus, it is possible to not be able to

find an optimal solution in a reasonable time for large dimensional

problem. This is not the case for practical problems, where it is not

expected to have more than let say 10 IU’s, i.e. n ≤ 10. Since we

know that k ≤ 13, then even for large IG with 10 subsidiaries, the

dimension of our problemwould be 102×13+3×10×13 = 1690,

which can be efficiently accommodated by a commercial solver

such as GAMS. For example, in our case the optimal solution is

found in less than a second using an Intel Core i7-2600, 3.40 GHz

processor and 8 GB RAM.
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