
              

City, University of London Institutional Repository

Citation: Asimit, A.V. & Gerrard, R. J. G. (2016). On the worst and least possible 
asymptotic dependence. Journal of Multivariate Analysis, 144, pp. 218-234. doi: 
10.1016/j.jmva.2015.11.004 

This is the accepted version of the paper. 

This version of the publication may differ from the final published 
version. 

Permanent repository link:  http://openaccess.city.ac.uk/13121/

Link to published version: http://dx.doi.org/10.1016/j.jmva.2015.11.004

Copyright and reuse: City Research Online aims to make research 
outputs of City, University of London available to a wider audience. 
Copyright and Moral Rights remain with the author(s) and/or copyright 
holders. URLs from City Research Online may be freely distributed and 
linked to.

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

CORE Metadata, citation and similar papers at core.ac.uk

Provided by City Research Online

https://core.ac.uk/display/42629622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


On the Worst and Least Possible Asymptotic Dependence

Alexandru V. Asimit
1

Cass Business School, City University London EC1Y 8TZ,

United Kingdom. E-mail: asimit@city.ac.uk

Russell Gerrard

Cass Business School, City University London EC1Y 8TZ,

United Kingdom. E-mail: R.J.Gerrard@city.ac.uk

October 30, 2015

Abstract. Multivariate extremes behave very differently under asymptotic dependence

as compared to asymptotic independence. In the bivariate setting, we are able to char-

acterise the extreme behaviour of the asymptotic dependent case by using the concept

of the copula. As a result, we are able to identify the properties of the boundary cases,

that are asymptotic independent but still have some asymptotic dependent features.

These situations are the most problematic in statistical extreme, and, for this reason,

distinguishing between asymptotic dependence and asymptotic independence represents

a difficult problem. We propose a simple test to resolve this issue which is an alternative

to the procedure based on the classical coefficient of tail dependence. In addition, we are

able to identify the worst/least asymptotic dependence (in the presence of asymptotic

dependence) that maximises/minimises the probability of a given extreme region if tail

dependence parameter is fixed. It is found that the perfect extreme association is not the

worst asymptotic dependence, which is consistent with the existing literature. We are

able to find lower and upper bounds for some risk measures of functions of random vari-

ables. A particular example is the sum of random variables, for which a vivid academic

effort has been noticed in the last decade, where bounds for a sum of random variables

are sought. It is numerically shown that our approach provides a great improvement of

the existing methods, which reiterates the sensible conclusion that any additional piece

of information on dependence would help to reduce the spread of these bounds.

Keywords and phrases : Asymptotic dependence/independence; Copula; Extreme Value

Theory; Gumbel Tail; Regular Variation; Risk measure.

1. Introduction

Estimation of multivariate extreme events is a challenging problem in Extreme Value Theory (EVT) and

the starting point of non-parametric estimation is to decide if data exhibit the asymptotic dependence

(AD) or asymptotic independence (AI) property. In simple words, under AD, concomitant extreme

events are observed and both are at the same scale. Under AI, concomitant extreme events may occur
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but at different scales or may not even occur at the same time. Therefore, it is expected that extreme

regions estimates to be very different in magnitude in the presence of AD than AI. It is well-known that

statistical inferences in the presence of AI is very difficult, and many estimation methods are available

if AD holds (see for example, de Haan and Ferreira, 2006). Since distinguishing between AD and AI

plays an important role in predicting extreme events, Ledford and Tawn (1996, 1997) introduced the

coefficient of tail dependence which has been extensively investigated in the literature. For example,

nonparametric inference can be found in Peng (1999) and Draisma et al. (2004), while Goegebeur and

Guillou (2012) considered an asymptotically unbiased estimator in the case of AI. The main disadvantage

of the coefficient of tail dependence is that inconclusive results are possible, especially in situations which

fall on the boundary between AD and AI. In order to help detect AI/AD, the recent paper of Asimit et al.

(2015) proposes a conditional version of the classical measure of association Kendall’s tau for absolutely

continuous distributions.

The initial motivation of the paper was to examine in great details the joint tail behaviour of a bivariate

random vector under AD and understand the differences between AD and almost AD (boundary between

AD and AI) cases. Since we are interested in characterising the association of extreme events, the

concept of the copula will be considered throughout this paper. Our properties will clarify the existing

examples in the literature that pointed out naive conjectures of a link between some measure of tail

dependence and the presence of AI/AD. Having in mind our AD characterisation, one may construct

counterexample for such speculative conclusions and serve to provide a better understanding of extreme

behaviour in the almost AD extreme behaviour. In fact, we exihibit one example, but many examples

can be constructed in the same fashion, that can be useful as a model for any statistical extreme where

the overlapping between AD and AI is of interest. We are able to identify the worst/least extreme

dependence under AD with a fixed tail dependence parameter, which is a measure of tail dependence (for

a summary of tail dependence concepts, we refer the reader to Hua and Joe, 2011). In our interpretation,

worst (least) extreme dependence represents the least (most) favourable dependence that may occur and

it really depends on the context. For example, when one deals with a sum of positive insurance losses,

the worst(least) dependence is achieved when some tail risk measures of the aggregate risk is maximised

(minimised). Note that focusing only on the tail dependence parameter, the overall dependence may be

underestimated as argued in Furman et al. (2014). We can further find the upper and lower bounds for

the tail distribution of a function of random variables (rv’s). A special case is the sum of rv’s that has

been extensively studied in the literature as it can be seen below. Note that extreme quantile for a sum

of rv’s are of great interest in risk management among other areas (for example, see Asimit et al., 2015).

Value-at-Risk (which is in fact a quantile) is one of the most common risk measure used in practice in

the banking and insurance industries, and therefore its evaluation has received particular attention in

the last decade. The uncertainty with the dependence among rv’s is huge, especially due to the data

scarcity, and the choice of a parametric model is quite challenging even though such compromises are

made in practice and are sometimes based on prior beliefs of the modeler. As a result, evaluating the

range of values for the VaR of a sum of rv’s is usually made when the marginal distributions are known

and, possibly, an additional piece of information about dependence is known. This approach allows the

decision-maker to understand the worst and least possible VaR-based risk. The best possible bounds for
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the distribution of a sum of rv’s are described in Embrechts and Puccetti (2006 a and b) and the references

therein. VaR bounds have been discussed in Embrechts et al. (2013), Wang et al. (2013) and Bernard et

al. (2014), if no additional information about dependence is available. The recent paper of Bernard et

al. (2015) investigates the VaR constrained set-up under an additional assumption that the aggregate

variance is known. The same problem is investigated in Bernard et al. (2014) when the decision-maker

has only a summary statistics of the individual risks (mean, variance, skewness etc, i.e. some high order

expectations) instead of their distributions. Usually, these bounds are attained under extreme atomic

dependence models which suggests that studying the constrained problem under a reduced set of feasible

dependence structures represents the way forward in this field. As a result, Bignozzi et al. (2015) find

VaR bounds under the assumption of lower orthant stochastic ordering with respect to a particular

dependence model.

This paper first provides the necessary background in Section 2. The AD is fully characterised in Section 3,

which enables us to identify the worst and least asymptotic dependence in Section 4. We propose a new

procedure to identify the presence of AD/AI in Section 5. Section 6 numerically illustrates the advantages

of our findings over the existing bounds available in the literature. Finally, all proofs are relegated in the

Appendix.

2. Background

Let X1, · · · , Xn be independent and identically distributed (iid) rv’s with cumulative distribution function

(cdf) F and infinite right-end point. EVT assumes that there are two sequences of constants an > 0, bn ∈
ℜ such that

lim
n→∞

P

(
an

(
max
1≤i≤n

Xi − bn

)
≤ x

)
= G(x), x ∈ ℜ.

In this case, G is called an Extreme Value Distribution and F is said to belong to the domain of attraction

of G. The Fisher-Tippett Theorem (see Fisher and Tippett, 1928) states that if the limit distribution

is non-degenerate then G(x) = exp{−x−α} for all x > 0 with α > 0 or G(x) = exp {−e−x} for all

x ∈ ℜ, since the domain of F is assumed to be unbounded in the right tail. In the first case, X has the

regularly varying (RV) property at ∞ with tail index α, i.e. the survival function F̄ = 1 − F satisfies

limt→∞ F̄ (tx)/F̄ (t) = x−α for all x > 0, and we write F̄ ∈ RV−α. In the second case, X has a Gumbel

tail and it is well-known (see, for example, Resnick, 1987 or Embrechts et al., 1997) that there exists a

positive, measurable function a such that limt→∞ F̄ (t + xa(t))/F̄ (t) = e−x for all real x, and we write

F̄ ∈ Λ(a).

We now review the concept of vague convergence. Consider an n-dimensional cone E equipped with a

Borel sigma-field B. Two particular cones EF = [0,∞]\{0} and EG = [−∞,∞]\{−∞} will be of interest

in this paper. In particular, EF is involved when the tails are RV, while EG becomes the main interest

whenever we deal with Gumbel tails. A measure on the cone is called Radon if its value is finite for every

compact set in B. For a sequence of Radon measures {ν, νk, k = 1, 2, . . .} on E , we say that νk vaguely

converges to ν, written as νk
v→ ν, if

lim
k→∞

∫

E
h(z)νk(dz) =

∫

E
h(z)ν(dz)
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holds for every nonnegative continuous function h with compact support. It is known that νk
v→ ν on EF

if and only if the convergence

lim
k→∞

νk [0,x]
c = ν [0,x]c

holds for every continuity point x ∈ EF of the limit. Obviously, 0 is replaced by −∞ if EG appears

instead. For more details and related discussions, we refer the reader to Section 3.3.5 and Lemma 6.1 of

Resnick (2007).

Dependence among rv’s plays an important role in our paper, and we therefore introduce the concept

of a copula. Let X and Y be two rv’s with cdf’s F and G, respectively. The dependence structure

associated with the distribution of a random vector can be characterised in terms of its copula. A

bivariate copula is a two-dimensional cdf defined on [0, 1]2 with uniformly distributed marginals. Due

to Sklar’s Theorem (see Sklar, 1959), if F and G are continuous, then there exists a unique copula, C,

such that P(X ≤ x, Y ≤ y) = C (F (x), G(y)). Similarly, the survival copula, Ĉ, is defined as the copula

corresponding to the joint tail function, i.e. the distribution of
(
F̄ (X), Ḡ(Y )

)
(see Nelsen, 2006).

Our main assumption on dependence is given as Assumption 2.1.

Assumption 2.1. Assume that there exists a non-degenerate function H : [0, 1]2 → [0, 1] such that

H(x, y) = lim
u↓0

Ĉ(ux, uy)

u
. (2.1)

Consequently, H(1, 1) := c ∈ (0, 1], which is also called the tail dependence parameter.

It is not difficult to find that H is a homogeneous function of order one, i.e. H(t·) = tH(·). In addi-

tion, H(·) > 0 on (0, 1]2, since otherwise the homogeneity property of function H ≡ 0 would make H

degenerate. It is also true (see Nelsen, 2006) that Ĉ(x, y) ≤ min(x, y) and therefore H(x, y) ≤ min(x, y).

Further, define HX(x) = H(x, 1)/c and HY (y) = H(1, y)/c the marginal cdf’s of the joint cdf H(·)/c.
By setting y = a and x = az, we see that H(x, y) = cyHX

(
x
y

)
if x ≤ y. In general,

H(x, y) = c yHX

(
x/y

)
I
(
x ≤ y

)
+ c xHY

(
y/x

)
I
(
y < x

)
, (2.2)

where I represents the indicator function. Moreover, x ≤ HX(x), HY (x) ≤ min
(
x/c, 1

)
for all 0 ≤ x ≤ 1

(for details, see Asimit et al., 2015).

Note that c > 0 is assumed, which means that X and Y are AD (see de Haan and Ferreira, 2006

or Klüppelberg and Resnick, 2008). Alternatively, if limu↓0
Ĉ(u,u)

u = 0, then we have AI. In order to

distinguish between AD and AI, Ledford and Tawn (1996, 1997) introduced the concept of the coefficient

of tail dependence η ≤ 1 by assuming that

Ĉ(u, u) = u1/ηs(u)
(
1 + o(1)

)
as u ↓ 0, (2.3)

where s is a slowly varying function, i.e. limu↓0 s(ux)/s(u) = 1 for all x > 0. Thus, under condition

(2.3), when η = 1 and limu↓0 s(u) = c ∈ (0, 1], AD property holds, while either η < 1 or η = 1 and

limu↓0 s(u) = 0 implies AI. Therefore, η and the limit behaviour of function s can be used to distinguish

between AD and AI. Note that standard estimators for c are available in Asimit et al. (2015) and Haug et

al. (2011).

In order to explain the joint tail behaviour, we also need to assume that X and Y have similar tails.
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Assumption 2.2. The random variables X and Y are tail equivalent such that limt→∞ Ḡ(t)/F̄ (t) = 1.

Let H : ℜ2

+ \ {0} → ℜ+ such that

H(x, y) := max(x, y)H

(
x

max(x, y)
,

y

max(x, y)

)
.

It can be shown that, for F̄ ∈ RV−α,

lim
t→∞

P
(
X > xt, Y > yt

)

P(X > t)
= H

(
x−α, y−α

)
(2.4)

and, for F̄ ∈ Λ(a),

lim
t→∞

P
(
X > t+ xa(t), Y > t+ ya(t)

)

P(X > t)
= H

(
e−x, e−y

)
(2.5)

(for details, see Alink et al., 2007 and Kortschak and Albrecher, 2009). Consequently, if F̄ ∈ RV−α, then

P

((
X/t, Y/t

)
∈ ·
)

F̄ (t)

v→ µF (·) (2.6)

holds on EF , where µF

(
(x,∞]× (y,∞]

)
:= H

(
x−α, y−α

)
. Similarly, if F̄ ∈ Λ(a), then

P

((
(X − t)/a(t), (Y − t)/a(t)

)
∈ ·
)

F̄ (t)

v→ µG(·) (2.7)

holds on EG , where µG

(
(x,∞]× (y,∞]

)
:= H

(
e−x, e−y

)
.

3. Characterisation of AD

This section provides a characterisation of the AD as defined in Assumption 2.1 and we show in Propo-

sitions 3.1 and 3.2 that the limiting dependence is fully described by its marginal cdf’s, namely HX

and HY . The one-to-one relationship incentivise the authors even more to understand the properties of

marginal cdf’s. These technical results will help us later in Section 4 to find the worst and least possible

extreme dependence, which is the main aim of our paper.

Proposition 3.1. If Assumption 2.1 holds, then HX and HY are continuous and possess right derivatives

hX and hY , which are themselves continuous and satisfy hX(1−) + hY (1−) = 1 + d, for some d ∈ [0, 1].

In addition, x−1HX(x), x−1HY (x), hX(x) and hY (x) are non-increasing functions of x. Moreover,

hX(0+) = hY (0+) = 1/c.

A straightforward implication of Proposition 3.1 is given by Corollary 3.1, and its proof is left to the

reader.

Corollary 3.1. If Assumption 2.1 holds, then HX(x) ≤ 1−hX(1−)(1−x) and HY (x) ≤ 1−hY (1−)(1−x)

for all 0 ≤ x ≤ 1.

It is interesting to find out whether, for any given pair of cdf’s HX and HY on [0, 1], possessing density

functions hX and hY , there exists a copula that satisfies (2.1). It is natural to believe that the bivariate

cdf derived via (2.2) has a copula that holds the property from (2.1), which is established in the next

proposition.
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Proposition 3.2. Let HX and HY be two cdf’s on [0, 1] with non-increasing density functions hX and

hY such that hX(0+) = hY (0+) = 1/c and hX(1−) + hY (1−) = 1 + d, where c ∈ (0, 1] and d ∈ [0, 1].

Define

J(x, y) =





yHX

(
x
y

)
if 0 ≤ x < y ≤ 1

xHY

(
y
x

)
if 0 ≤ y ≤ x < 1

Then J is a bivariate cdf with marginals HX and HY , and its copula, J
(
H−1

X , H−1
Y

)
, satisfies (2.1) with

H ≡ cJ , where H−1
X and H−1

Y are the left-continuous inverses of HX and HY , respectively. Moreover,

x−1HX(x) and x−1HY (x) are non-increasing functions in x ∈ (0, 1].

Finally, we examine in Proposition 3.3 the almost AD cases, i.e. η = 1 and c = 0. The proof is left to

the reader since it can be shown in the same manner as Propositions 3.1 and 3.2.

Proposition 3.3. i) Assume that there exists a non-degenerate homogeneous of order one function

H : [0, 1]2 → [0, 1] such that

H(x, y) = lim
u↓0

Ĉ(ux, uy)

Ĉ(u, u)
and lim

u↓0

Ĉ(u, u)

u
= 0. (3.1)

Then HX(·) = H(·, 1) and HY (·) = H(1, ·) are continuous and possess right derivatives hX and hY , which

are themselves continuous and satisfy hX(1−) + hY (1−) ∈ [1, 2]. In addition, x−1HX(x), x−1HY (x),

hX(x) and hY (x) are non-increasing functions of x. Moreover, hX(0+) = hY (0+) = ∞.

ii) Let HX and HY be two cdf’s on [0, 1] with non-increasing density functions hX and hY such that

hX(0+) = hY (0+) = ∞ and hX(1−) + hY (1−) ∈ [1, 2]. Define

J(x, y) =





yHX

(
x
y

)
if 0 ≤ x < y ≤ 1

xHY

(
y
x

)
if 0 ≤ y ≤ x < 1

.

Then J is a bivariate cdf with marginals HX and HY , and its copula, J
(
H−1

X , H−1
Y

)
, satisfies (3.1) with

H ≡ J , where H−1
X and H−1

Y are the left-continuous inverses of HX and HY , respectively. Moreover,

x−1HX(x) and x−1HY (x) are non-increasing functions in x ∈ (0, 1].

Having in mind Proposition 3.3, one may easily construct examples that exhibit the almost AD property.

Two examples are as follow:

HX(x) = HY (x) :=
(x+ 1) log(x+ 1)− x log x

2 log 2
(3.2)

and

HX(x) = HY (x) := x

(
1− 1

2
log x

)
. (3.3)

Note that the (3.2) appeared as Example 5.2 in Juri and Wüthrich (2003). Both examples are counterex-

amples to the naive conjecture that AI implies a joint extreme behaviour similar to independence:

P
(
(U, V ) ∈ ·|U, V ≤ u

)
≃ P

(
U ∈ ·|U, V ≤ u

)
P
(
V ∈ ·|U, V ≤ u

)
,

for u sufficiently close to 0, where the random vector (U, V ) has cdf H .
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4. Worst and Least Dependence

The AD profile of a bivariate random vector is discussed in great detail in Section 3. These properties are

useful to explain how to find the largest and lowest possible value (and their corresponding dependence

structures) of an extreme event with a fixed positive value for c > 0. Examples include the tail probability

of a function of rv’s such as sum, product, absolute difference etc. We first provide the mathematical

formulation of the chosen problems which are given in Theorem 4.1. These results are the key ingredient

in establishing our bounds for the tail probability as obtained in Proposition 4.1 and Lemma 4.1.

Theorem 4.1. Suppose that Assumptions 2.1 and 2.2 hold.

i) If F̄ ∈ RV−α, then for any b > 0 we have that

lim
t→∞

P(X + bY > t)

P(X > t)
= 1 + bα − c(1 + b)α (4.1)

+bc

(∫ 1

0

z1/α−1

((
1 + bz1/α

)α−1

hX(z) +

(
b+ z1/α

)α−1

hY (z)

))
dz.

ii) If F̄ ∈ RV−α, then

lim
t→∞

P(XY > t2)

P(X > t)
= −c+

c

2

(∫ 1

0

z−1/2
(
hX(z) + hY (z)

))
dz. (4.2)

ii) If F̄ ∈ Λ(a), then

lim
t→∞

P(X + Y > 2t)

P(X > t)
= −c+

c

2

(∫ 1

0

z−1/2
(
hX(z) + hY (z)

))
dz. (4.3)

Remark 4.1. It is well-known (see Resnick, 2007) that the limit from (4.1) under AI becomes

lim
t→∞

P(X + bY > t)

P(X > t)
= lim

t→∞

P(X > t) + P(bY > t)

P(X > t)
= 1 + bα.

Now, the same limit is equal to 2 if α = b = 1 for any c ∈ [0, 1], which justifies the particular example

from Section 3.2 of Klüppelberg and Resnick (2008). In other words, AD and AI provide the same limit

whenever X and Y are tail equivalent and RV with tail index of 1. This is a another counterexample

that a stronger positive dependence in the tail (usually simplified to the value of c) would increase the tail

probability of X + Y . Recall that Embrechts et al. (2009) concluded that the marginal cdf’s affect the tail

behaviour and may have a greater impact than the dependence.

Let
{
aX(x), aY (x) : 0 ≤ x ≤ 1

}
be two continuous, monotone functions of x. As observed in Theorem 4.1,

the aim is to find a pair (hX , hY ) of densities, satisfying the sufficient conditions stated in Proposition 3.2

in order to minimise (respectively maximise) an infinite dimensional optimisation problem with objective

function given by:

J(aX , aY ) =

∫ 1

0

aX(x)hX(x) dx+

∫ 1

0

aY (y)hY (x) dx, (4.4)

or at least to identify the infimum (supremum) of this quantity in the event that it is not attained. Thus,

hX ∈ Hξ,c,d and hY ∈ H1+d−ξ,c,d, where

Hξ,c,d :=
{
h : h is a non-increasing density on [0, 1], h(0+) = 1/c, h(1−) = ξ

}
, ξ ∈ [d, 1], c ∈ (0, 1].

The infinite dimensionality issue is solved in Theorem 4.2 by reducing the set of feasible solutions.
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Theorem 4.2. Suppose a : [0, 1] → R is a continuous and monotone increasing function. Then

inf
h∈Hξ,c,d

∫ 1

0

a(x)h(x) dx =

∫ 1

0

a(x)h∗(x; ξ, c) dx and sup
h∈Hξ,c,d

∫ 1

0

a(x)h(x) dx =

∫ 1

0

a(x) dx,

where

h∗(x; ξ, c, d) =





1
c if 0 < x < x(ξ, c)

ξ if x(ξ, c) < x < 1
, (4.5)

and x(ξ, c) is chosen in order for h∗(·; ξ, c, d) is a valid density. That is, x(ξ, c) = (1−ξ)c
1−ξc . If a is

continuous and monotone decreasing, the extrema are interchanged.

With the help of Theorem 4.2, we can now solve the infinite dimensional optimisation problem defined

in (4.4). Namely, if aX(·) and aY (·) are continuous and monotone increasing functions on [0, 1], we have

inf
(hX ,hY)∈(Hξ,c,d,H1+d−ξ,c,d)

J(aX , aY ) = inf
0≤d≤ξ≤1

∫ 1

0

(
aX(x)h∗(x; ξ, c, d) + aY (x)h

∗(x; 1+d−ξ, c, d)
)
dx,

sup
(hX ,hY)∈(Hξ,c,d,H1+d−ξ,c,d)

J(aX , aY ) =

∫ 1

0

(
aX(x) + aY (x)

)
dx.

Note the the supremum is not attained unless c = 1 while the inf and min are interchangeable (optimi-

sation is made on a compact set, specifically [0, 1]), and therefore we may obtain a sharp lower bound.

Moreover, if aX and aY are continuous and monotone decreasing functions, then the infimum and supre-

mum may swap with each other. Sometimes, closed-form solutions can be found and are explicitly given

in Proposition 4.1.

Proposition 4.1. Denote AX(x) =
∫ x

0
aX(y) dy and AY (x) =

∫ x

0
aY (y) dy.

i) Assume that aX ≡ aY ≡ a such that a is a continuous, monotone increasing function, the extremal

values of J(a, a) defined in (4.4) are

inf
(hX ,hY)∈(Hξ,c,d,H1+d−ξ,c,d)

J(a, a) = AX(1) +
1

r∗(c)
AX

(
r∗(c)

)
,

sup
(hX ,hY)∈(Hξ,c,d,H1+d−ξ,c,d)

J(a, a) = 2AX(1),

where r∗(c) = c/(2 − c) < 1. If a is a continuous and monotone decreasing function, then the

infimum and supremum are reversed.

ii) Assume that aX and aY are monotone increasing and decreasing, respectively, continuous func-

tions, then the extremal values of J(aX , aY ) defined in (4.4) are

inf
(hX ,hY)∈(Hξ,c,d,H1+d−ξ,c,d)

J(aX , aY ) =
AX(c)

c
+AY (1),

sup
(hX ,hY)∈(Hξ,c,d,H1+d−ξ,c,d)

J(aX , aY ) = AX(1) +
AY (c)

c
.

Remark 4.2. Proposition 4.1i) tells us that for all symmetric problems (in aX and aY ) from Theorem 4.1,

namely (4.1) with b = 1 and α > 1, (4.2) and (4.3) have a lower bound when H(x, y) = cmin(x, y), which

can be achieved for many copulae (for example, take Ĉ(u, v) = cmin{u, v} + (1 − c)uv). That is, the

least extreme dependence for a sum with a given c is the Fréchet-Hoeffding upper bound (when the upper

copula, as explained in Juri and Wüthrich, 2003, is the Fréchet-Hoeffding upper bound). This confirms
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the fact that quantiles of a sum are maximised under negative association instead of a maximum positive

assocition (see for example, Embrechts et al., 2005). On the other side, the worst extreme dependence

for a sum with a given c is given by

H−1
∗
(
max(u, v)

)
H∗

(
H−1

∗
(
min(u, v)

)

H−1
∗
(
max(u, v)

)
)
,

where H∗(x) =
x
c I
(
0 ≤ x ≤ r∗(c)

)
+ 1+x

2 I
(
r∗(c) < x ≤ 1

)
.

In the very end of this section we outline a variant of Lemma 7.1 when function b(·) is not always positive
on [0, 1]. The infinite dimensional optimisation problem is first solved over a reduced feasibility set given

by

Hǫ,ξ,y0
:=
{
H : H is a cdf on [0, 1] with a non-increasing density h such that (4.6) is satisfied

}
,

H(x0) = y0, h(0+) =
1

c
, h(x0+) ≤ ǫ ≤ h(x0−), h(1−) = ξ, (4.6)

where c ∈ (0, 1] and x0 ∈ (0, 1) are some constants. In addition, the remaining parameters should satisfy

ξ ≤ 1− y0
1− x0

≤ ǫ ≤ y0
x0

≤ 1

c
, d ≤ ξ ≤ 1, x0 ≤ y0. (4.7)

The final result is given below as Lemma 4.1 and its proof is left to the reader since one can follow similar

arguments to the one used in the proof of Lemma 7.1.

Lemma 4.1. Suppose b : [0, 1] → ℜ such that
∫ 1

0
|b(x)| dx < ∞. In addition, there exists 0 < x0 < 1

such that b(x) ≤ 0 and b(x) ≥ 0 if 0 ≤ x ≤ x0 and x0 ≤ x ≤ 1, respectively. Then

inf
H∈Hǫ,ξ,d,y0

∫ 1

0

b(x)H(x) dx =

∫ 1

0

b(x)H∗(x; ǫ, ξ, d, y0) dx,

sup
H∈Hǫ,ξ,d,y0

∫ 1

0

b(x)H(x) dx =

∫ 1

0

b(x)H
∗
(x; ǫ, ξ, d, y0) dx

where

H∗(x; ǫ, ξ, d, y0) =





x
c if 0 ≤ x ≤ c(y0−ǫx0)

1−cǫ

y0 + ǫ(x− x0) if c(y0−ǫx0)
1−cǫ ≤ x ≤ x0

1− 1−y0

1−x0
(1− x) if x0 ≤ x ≤ 1

and

H
∗
(x; ǫ, ξ, d, y0) =





y0

x0
x if 1 ≤ x ≤ x0

y0 + ǫ(x− x0) if x0 ≤ x ≤ 1−ξ−y0+ǫx0

ǫ−ξ

1− ξ(1 − x) if 1−ξ−y0+ǫx0

ǫ−ξ ≤ x ≤ 1

As before, the desired bounds can be found via a finite dimensional constrained optimisation problem by

varying the parameters ǫ, ξ, d and y0 over the set defined in equation (4.7).
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5. Detecting AD

It has been previously explained the importance of knowing whether or not AD represents a reasonable

assumption. We already know that η = 1 may imply AD or AI. This section provides a new way of

detecting AD and elaborates a simple test statistic to differentiate between AD and AI.

Let X and Y be two identically distributed truncated Pareto rv’s with survival function F̄ (t) = x−α for

all x ≥ 1. If the survival copula Ĉ of (X,Y ) satisfies Assumption 2.1, then from Theorem 4.1 i) we get

that

lim
t→∞

P(X + Y > t)

P(X > t)
= 2− c 2α + c

∫ 1

0

z1/α−1
(
1 + z1/α

)α−1(
hX(z) + hX(z)

)
dz.

The lower and upper bounds for the above limit can be found via Proposition 4.1 i) with

A(x;α) =
(
1 + x1/α

)α
− 1.

If α > 1 then

K(α, c) ≤ lim
t→∞

P(X + Y > t)

P(X > t)
≤ K(α, c), (5.1)

where

K(α, c) := 2− c 2α + 2cA(1;α) = 2 + c (2α − 2)

and

K(α, c) := 2− c 2α + c

(
A(1;α) +

2− c

c
A

(
c

2− c
;α

))
=
(
(2− c)1/α + c1/α

)α
.

Thus, the lower bound is strictly greater than 2 under AD, while Remark 4.1 tells us that the limit is

always 2 under AI. These suggest a way of testing AD against AI as follows

H0 : K(θ) > 2 versus H1 : K(θ) = 2,

for any fixed θ > 1, where we define

K(θ) = lim
u↓0

K(u; θ) and K(u; θ) :=
P

((
U−1/θ + V −1/θ

)−θ ≤ u
)

u
.

Note that the asymptotic upper tail dependence of (X,Y ) and the asymptotic lower tail dependence of

(U, V ) =
(
F̄ (X), F̄ (Y )

)
are equal. Therefore, we check the AD/AI property for the pair of standard

uniform (U, V ) in the lower tail instead of the upper tail, and as a result, the assumption from (2.3) is

replaced by

C(u, u) = u1/ηs(u)
(
1 + o(1)

)
as u ↓ 0.

Similarly, another way of testing AD against AI is as follows:

H0 : K(θ) < 2 versus H1 : K(θ) = 2,

for any fixed 0 < θ < 1.

We now provide a brief simulation study for our proposed test for distinguishing between AD and AI.

Obviously, a more detailed investigation is needed in order to grasp multiple potential problems that

usually arise with such estimators (for example the optimal fraction problem), but these aspects are

beyond the scope of this paper. Four dependence models are assumed as follow:
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(A) Farlie-Gumbel-Morgenstern copula

C(u, v; ξ) := uv
(
1 + ξ(1− u)(1− v)

)
, −1 ≤ ξ ≤ 1.

The lower AI holds with η = 1/2.

(B) The first almost AD example with copula

H−1
X

(
max(u, v)

)
HX

(
H−1

X

(
min(u, v)

)

H−1
X

(
max(u, v)

)
)
,

where HX is defined in (3.2). Recall that the lower AI holds with η = 1.

(C) The second almost AD example with copula

H−1
X

(
max(u, v)

)
HX

(
H−1

X

(
min(u, v)

)

H−1
X

(
max(u, v)

)
)
,

where HX is defined in (3.3). Recall that the lower AI holds with η = 1.

(D) Clayton copula

C(u, v; ξ) :=
(
u−1/ξ + v−1/ξ − 1

)−ξ

, ξ > 0.

The lower AD holds with c = 2−ξ and HX(x; ξ) = HY (x; ξ) =
(

1+x−1/ξ

2

)−ξ

.

A sample (Ui, Vi) of size n = 5, 000 is drawn from each copula and we plot in Figures 5.1, 5.2, 5.3 and 5.4

the tail dependence estimators, η̂ and K̂(θ) with θ = 1.2, 1.3 for the four dependence models and different

values of k. The value of k represents the fraction of the sample which is considered to be extreme

behaviour of the sample. Recall that we investigate AD/AI at the lower end. The tail dependence

estimator (at the upper end) and its properties have been investigated investigated in Draisma et al.

(2004). In our setting, we have

η̂(k) =
1

k

k∑

i=1

log
T(i)

T(k+1)
,

where T(i) is the ith largest order statistics of

Ti = min

(
n+ 1

RUi
,
n+ 1

RVi

)

with RUi being the rank of Ui among U1, U2 . . . , Un and RVi being the rank of Vi among V1, V2 . . . , Vn.

Figure 5.1. Estimators η̂(k), K̂(1.2; k) and K̂(1.3; k) for copula (A) with ξ = 0.5 are

plotted against k = {21, . . . , 500}.
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An estimator for K(θ) is

K̂(θ; k) =
1

k

n∑

i=1

I

((
U

−1/θ
i + V

−1/θ
i

)−θ

≤ k/n

)
.

The AI with η < 1 from Figure 5.1 seems quite clear and the η plot is more informative. The almost AD

copulae from Figures 5.2 and 5.3 show that our proposed estimator could be carefully used in conjunction

with the classical coefficient of tail dependence. The AD copula plots displayed in Figure 5.4 suggest that

a significant change of K(θ) when θ marginally changes would be an indication that AD is present, but

an extensive simulation study would provide a better understanding of how to interpret such plots. The

horizontal lines in Figure 5.4 represent the theoretical values for K(θ) calculated via (4.1) as follows:

K(θ) = 2− 2θ−ξ + 21−ξ

∫ 1

0

z1/θ−1
(
1 + z1/θ

)θ−1
HX(dz; ξ).

Numerical evaluations show that K(1.2) = 2.22974 and K(1.3) = 2.36934.

Figure 5.2. Estimators η̂(k), K̂(1.2; k) and K̂(1.3; k) for copula (B) are plotted against

k = {21, . . . , 500}.

Figure 5.3. Estimators η̂(k), K̂(1.2; k) and K̂(1.3; k) for copula (C) are plotted against

k = {21, . . . , 500}.

Note that the behaviour of K̂ (as shown in Figures 5.1-5.4) follows a similar pattern when k changes. For

small values of k, the estimator behaves erratically due to small sized samples, while for large values of k,
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Figure 5.4. Estimators η̂(k), K̂(1.2; k) and K̂(1.3; k) for copula (D) with ξ = 1 are

plotted against k = {21, . . . , 500}.

the rapidly growing bias is observed and poor estimates are obtained. In between those scenarios, there is

a region of values for k, where the estimator is more stable and the actual estimate is chosen accordingly.

Special attention should be paid to the theoretical optimal choice of k that is usually found by minimising

the asymptotic mean squared error, but further research is needed to confirm this plausible choice. As

a final comment, we would like to point out that further work is needed to show the consistency of our

proposed estimator and other properties that will help us to produce confidence intervals. As explained

in Asimit et al. (2015), we believe that a combination of some existing estimators (for example, the ones

from Draisma et al., 2004 and Asimit et al., 2015) with our estimators would provide better statistical

tools to distinguish between AD and AI.

6. Numerical Results

Some numerical examples are now given in order to justify the advantage of using our asymptotic ap-

proximations. As explained in Section 1, special attention has been given to evaluating the tail risk

for a portfolio of risks for which the dependence is unknown or very little is known. According to our

previous findings, we can answer the same questions by estimating the tail risk of a bivariate portfolio of

risks where some partial information about dependence is known, namely, the tail dependence parameter

c. Obviously, there is some uncertainty with the estimation of c, but confidence intervals can be found

and in turn, the bounds are changed accordingly. Interestingly, we are able to find sharp upper bounds,

which provide the most conservative scenario that a decision-maker might expected to encounter. The

tail risk is based on one of the most popular risk measures, VaR. Its definition for a generic risk rv Z at

a confidence level q is

V aRq(Z) := inf
t

{
P(Z ≤ t) ≥ q

}
.

It is first assumed that X and Y are identically distributed Pareto rv’s such that P(X > x) = (1 + x)−α

for all x ≥ 0. Lemma 2.1 of Asimit et al. (2011) and equation (5.1) show that

(
K(α, c)

)1/α ≤ lim
q↓0

V aR1−q(X + Y )

V aR1−q(X)
≤
(
K(α, c)

)1/α
.

These bounds are plotted in Figure 6.1.
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Figure 6.1. The upper bound (solid line) and lower bound (dashed line) for the ratio

of V aR1−q(X + Y )/V aR1−q(X) as a function of c with α = 2 (left) and α = 3 (right).

While both bounds are informative, the decision-maker is more keen to find the worst possible case, i.e.

the upper bound. It is well-known that under AD, the joint tail behaviour exhibits the lower orthant

property and therefore, we can compare our results with the one obtained by Bignozzi et al. (2015).

Their Theorem 3.1 tells us that

V aR1−q(X + Y ) ≤ inf
1−q≤s≤1

{
V aRs(X) + V aR(1−q)/s(X)

}
= 2V aR√

1−q(X),

since the objective function from above is convex and symmetric due to the Pareto assumption. The

VaR ratio upper bound found in Bignozzi et al. (2015) is depicted in Figure 6.2. Comparing Figures 6.1

and 6.2, it becomes clear that it is more advantageous to use our bounds if one has knowledge about the

tail dependence parameter. The same conclusion can be drawn for the VaR ratio lower bounds, since

the lower bound from Bignozzi et al. (2015) is 1 (see their Example 3.1). Recall that our asymptotic

approximations displayed in Figure 6.1 depend only on c, but remain unchanged for different values of q.

In turn, the alternative upper bounds from Figure 6.2 are only sensitive to changes of q.

Figure 6.2. The upper bound for the ratio of V aR1−q(X+Y )/V aR1−q(X) as a function

of 1− q with α = 2 (left) and α = 3 (right).

Knowing the most and least conservative scenarios, it is interesting to understand how wide our confidence

interval is. Thus, we plot in Figure 6.3 the relative spread (difference between the VaR ratio upper and
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lower bounds) based on our results (left) and Bignozzi et al. (2015) (right). Once again, our bounds are

tighter since we include an additional piece of information about dependence, but it is fair to mention

that our approach works only in the bivariate case. It is also worth mentioning that the bounds are less

spread for relatively small values and large values of c, since the uncertainty with the tail dependence is

reduced in these case when X and Y have RV tails.

Figure 6.3. The relative spread for various values of c (left) and q (right) with α = 2

(solid line) and α = 3 (dashed line).

We now assume that the risks are exponentially distributed with mean 1 and perform the same analysis

as before. Proposition 4.1i) and (4.3) yield that

c ≤ P(X + Y > 2t)

P(X > t)
≤
√
c(2− c)

and in turn, Lemma 2.4 of Asimit et al. (2011) implies that

2V aR1−q/c(X) ≤ V aR1−q(X + Y ) ≤ 2V aR
1−q/

√
c(2−c)

(X), for q sufficiently close to 0.

Our VaR ratios are depicted in Figure 6.4 and are calculated as above.

Figure 6.4. The upper bound (solid line) and lower bound (dashed line) for the ratio of

V aR1−q(X+Y )/V aR1−q(X) as a function of 1− q with c = 0.25 (left), c = 0.5 (middle)

and c = 0.75 (right).
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As before, the VaR ratio lower and upper bounds found in Bignozzi et al. (2015) are 1 and 2V aR√
1−q(X),

respectively. Comparing these bounds with the values displayed in Figure 6.4, one can find that our

bounds are tighter. Moreover, we compare in Figure 6.5 the relative spread of the VaR ratio based on

our results (left) and Bignozzi et al. (2015) (right). Note that for larger values of c, our lower/upper

bounds (see Figure 6.4) and relative spread (see Figure 6.5) increase.

Figure 6.5. The relative spread as a function of q with (left) and without (right) as-

ymptotic piece of information given by c = 0.25 (solid line), c = 0.5 (long dashed line)

and c = 0.75 (short solid line).

Acknowledgments: We would like to thank to the Associate Editor and the three anonymous reviewers
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7. Appendix

Proof of Proposition 3.1 It is sufficient to prove the properties for HX , since the other case can be

shown in the same fashion. Recall that HX is right-continuous, as it is a cdf. Choose ε > 0 and for

0 < u < (1 − ε)v we have

(1− ε)vHX

(
u

(1− ε)v

)
=

H
(
u, (1− ε)v

)

c
≤ H(u, v)

c
= vHX

(u
v

)
.

Write x = u
(1−ε)v and in turn one may get that

HX(x)−HX

(
(1− ε)x

)

HX(x)
≤ ε.

Thus, HX is a left-continuous function, and hence is a continuous function. Since it is non-decreasing,

this means that it has a right derivative hX , which must satisfy

sup
0<x<1

x
hX(x)

HX(x)
≤ 1.

In other words, we may write HX(x) = xJX(x), where JX is a continuous, non-increasing function

satisfying JX(1) = 1. Taking this one step further, we observe for 0 < u < v that

chX

(u
v

)
=

∂H(u, v)

∂u
≤ ∂H

(
u, v(1 + ε)

)

∂u
= chX

(
u

v(1 + ε)

)
.
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Defining x = u
v(1+ǫ) , one may get that hX((1 + ε)x) ≤ hX(x), and thus, hX is right-continuous and

non-increasing function on (0, 1). The left continuity of hX is obtained in the same way was as the left

continuity of HX above.

Let (U, V ) be two rv’s on [0, 1] with joint cdf G = H/c, where H is defined in (2.2). For any 0 < x < 1,

equation (2.2) yields

P(U, V ≤ x, U > V ) =

∫ x

0

(HY (1)− hY (1−)) dz =
(
1− hY (1−)

)
x.

Similarly, P(U, V ≤ x, U < V ) =
(
1− hX(1−)

)
x. These and the fact that G(x, x) = x imply

P(U = V ≤ x) =
(
hX(1−) + hY (1−)− 1

)
x.

Thus, one may choose d = P(U = V ) = hX(1−) + hY (1−)− 1, which clearly satisfies d ∈ [0, 1].

It only remains to justify hX(0+) = hY (0+) = 1/c. Assume that the random vector (Z, T ) has survival

copula Ĉ and Z, T ∈ RV−α are identically distributed and positive rv’s. Clearly, relation (2.4) implies

that

lim
t→∞

P(T > ty|Z > t) = y−αH(yα, 1), for all y < 1,

and since the limit is continuous, the limit holds uniformly in y as a result of Theorem 1.11 of Petrov

(1995). Thus,

1 = µF

(
(1,∞)× (0,∞]

)
= lim

y↓0
y−αH

(
yα, 1

)
= c lim

y↓0

HX

(
yα
)

yα
= c hX

(
0 +

)
,

which completes the proof.

Proof of Proposition 3.2 It is first proved that x−1HX(x) is a non-increasing function in x ∈ (0, 1].

Clearly, for any x

d

dx

HX(x)

x
= −HX(x)

x2
+

hX(x)

x
= − 1

x2

∫ x

0

hX(y) dy +
hX(x)

x
=

1

x2

∫ x

0

(
hX(x) − hX(y)

)
dy ≤ 0,

since hX is non-increasing. The mirror result for HY can be shown in a similar manner.

Next, we show that J(·) is a valid cdf on [0, 1]2. Note that J(x, 0) = J(0, x) = 0 for any 0 ≤ x ≤ 1 and

that J(1, 1) = 1. It only remains to establish that

J
(
x2, y2

)
− J

(
x2, y1

)
− J

(
x1, y2

)
+ J

(
x1, y1

)
≥ 0, for all 0 ≤ x1 ≤ x2 ≤ 1, 0 ≤ y1 ≤ y2 ≤ 1.

We demonstrate that ∂J
∂x (x, y2) − ∂J

∂x (x, y1) ≥ 0 for each x, from which the required result follows by

integration. There are three cases to consider; in each case the result relies on the fact that hX and hY

are non-increasing, whilst in case ii) we also use the fact that hX(1−) + hY (1−) = 1 + d.

i) Suppose first that x ≤ y1 ≤ y2. If x < y1, the following holds

∂J

∂x
(x, y2)−

∂J

∂x
(x, y1) = hX

(
x

y2

)
− hX

(
x

y1

)
≥ 0.
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The remaining case in which x = y1 is further shown. The right derivatives of J with respect to x at

(x, y1) is given by

lim
ǫ↓0

J(x + ǫ)− J(x, x)

ǫ
= lim

ǫ↓0

(x+ ǫ)HY

(
x/(x+ ǫ)

)
− x

ǫ

= lim
ǫ↓0

(
HY

(
x/(x+ ǫ)

)
+

HY

(
1− ǫ/(x+ ǫ)

)
− 1

ǫ/(x+ ǫ)

x

x+ ǫ

)

= 1− hY (1−).

Similarly, the left derivative becomes

lim
ǫ↓0

J(x, x) − J(x− ǫ)

ǫ
= hX(1−),

which is always larger than the right derivative. Thus, our claim is true since hX

(
x
y2

)
− hX(1−) ≥ 0.

ii) Now, suppose that y1 < x ≤ y2. If y1 < x < y2, we have that

∂J

∂x
(x, y2)−

∂J

∂x
(x, y1)

= hX

(
x

y2

)
−
[
HY

(y1
x

)
− y1

x
hY

(y1
x

)]

= hX

(
x

y2

)
− hX(1−) + 1− hY (1−)−

[
HY

(y1
x

)
− y1

x
hY

(y1
x

)]
+ d

= hX

(
x

y2

)
− hX(1−) +

∫ 1

y/x

(
hY (u)− hY (1−)

)
du+

y1
x

(
hY

(y1
x

)
− hY (1−)

)
+ d

≥ 0.

As in setting i), the case x = y2 is justified as follows:

∂J

∂x
(x, y2)−

∂J

∂x
(x, y1) ≥ 1− hY (1−)−

[
HY

(y1
x

)
− y1

x
hY

(y1
x

)]

=

∫ 1

y/x

(
hY (u)− hY (1−)

)
du+

y1
x

(
hY

(y1
x

)
− hY (1−)

)

≥ 0.

iii) Next, suppose y1 < y2 < x and it yields

∂J

∂x
(x, y2)−

∂J

∂x
(x, y1) =

[
HY

(y2
x

)
− y2

x
hY

(y2
x

)]
−
[
HY

(y1
x

)
− y1

x
hY

(y1
x

)]

=

∫ y2/x

y1/x

(
hY (u)− hY

(y2
x

))
du+

y1
x

(
hY

(y1
x

)
− hY

(y2
x

))

≥ 0.

We also need to verify that C satisfies (2.1), where C(u, v) := J
(
H−1

X (u), H−1
Y (v)

)
is the copula of J ,

which exists due to Sklar’s Theorem. Elementary arguments may help to justify that

lim
u↓0

H−1
X (u)

u
= lim

u↓0

H−1
Y (u)

u
= c

as a result of hX(0+) = hY (0+) = 1/c and the fact that H−1
X and H−1

Y are non-decreasing. Thus, if

x < y and u is sufficiently close to 0, then H−1
X (ux) ≤ H−1

Y (uy) and we have

lim
u↓0

J
(
H−1

X (ux), H−1
Y (uy)

)

u
= lim

u↓0

H−1
Y (uy)

u
HX

(
H−1

X (ux)

H−1
Y (uy)

)
= cyHX

(
x

y

)
= cJ(x, y).
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The case y ≤ x can be justified similarly, which completes the proof.

Proof of Theorem 4.1 i) Note first that equation (2.6) yields

lim
t→∞

P(X + bY > t)

P(X > t)
= µF

(
As

)
, where As :=

{
(x, y) : x+ by > 1

}
,

since µF

(
∂As

)
= 0 (for details, see Kortschak and Albrecher, 2009). An alternative proof is given in

Resnick (2007) and Klüppelberg and Resnick (2008). Now, using equations (2.2), (2.4) repeatedly and

obvious changes of variables, we get

µF

(
As

)

= µF

(
(x, y) : x+ by > 1, x ≥ y

)
+ µF

(
(x, y) : x+ by > 1, x < y

)

=

∫ 1

1
1+b

µF

(
dx×

(
1− x

b
, x

])
+

∫ ∞

1

µF

(
dx× (0, x]

)
+ c d (1 + b)α

+

∫ 1/b

1
1+b

µF

(
(1− by, y]× dy

)
+

∫ ∞

1
b

µF

(
(0, y]× dy

)

= c α

∫ 1

1
1+b

x−α−1hX

(
1− x

ax

)
dx + µF

(
(1,∞]× (0,∞]

)
−
∫ ∞

1
1+b

µF

(
dx× (x,∞]

)
+ c d (1 + b)α

+c α

∫ 1
b

1
1+b

y−α−1hY

((
1− by

y

)α)
dy + µF

(
(0,∞]× (1/b,∞]

)
−
∫ ∞

1
1+b

µF

(
(y,∞]× dy

)

= b c

∫ 1

0

z1/α−1
(
1 + bz1/α

)α−1

hX(z) dz + 1− c hX(1−)(1 + b)α + c d (1 + b)α

+b c

∫ 1

0

z1/α−1
(
b+ z1/α

)α−1

hY (z) dx+ bα − c hY (1−)(1 + b)α,

which concludes (4.1) since hX(1−) + hY (1−) = 1 + d.

ii) The vague convergence from relation (2.6) yields

lim
t→∞

P(XY > t2)

P(X > t)
= µF

(
Ap

)
, where Ap :=

{
(x, y) : xy > 1

}
, (7.1)

as long as µF

(
∂Ap

)
= 0. Note that no mass is put in neighborhoods of ∞, and therefore, the only

possible way to put same mass on the boundary of Ap is only on the curve {xy = 1}. Assume that

µF

({
(x, 1/x), x > 0

})
= m > 0. Thus,

µF

({
(x, y), 1 < xy ≤ 2

})
≥ µF


 ⋃

q∈Q
⋂
(1,2]

{
(x, y), xy = q

}



=
∑

q∈Q
⋂
(1,2]

µF

({
(x, y), xy = q

})

= µF

({
(x, y), xy = 1

}) ∑

q∈Q
⋂
(1,2]

q−α/2

= ∞,

where the second last step is due to the fact that µF (xA) = x−αµF (A) holds for any relatively compact

set, which contradicts our assumption that m > 0, since µF is a Radon measure.
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Some algebra that involves multiple use of equations (2.2), (2.4) and some obvious changes of variables

lead to

µF

(
Ap

)

= µF

(
(x, y) : xy > 1, x ≥ y

)
+ µF

(
(x, y) : xy > 1, x < y

)

=

∫ ∞

1

µF

(
dx×

(
1/x,∞

])
−
∫ ∞

1

µF

(
dx× (x,∞]

)
+ c d

+

∫ ∞

1

µF

((
1/y,∞

]
× dy

)
−
∫ ∞

1

µF

(
(y,∞]× dy

)

= c α

∫ ∞

1

x−α−1hX

(
x−2α

)
dx− chX(1−) + c d+ c α

∫ ∞

1

y−α−1hY

(
y−2α

)
dy − chY (1−)

=
c

2

∫ 1

0

z−1/2hX(z) dz +
c

2

∫ 1

0

z−1/2hY (z) dz − c,

since hX(1−) + hY (1−) = 1 + d. The latter and relation (7.1) conclude part ii).

iii) A consequence of equation (2.7) is that

lim
t→∞

P(X + Y > 2t)

P(X > t)
= µG

(
B
)
, where B :=

{
(x, y) : x+ y > 0

}
,

since µG

(
∂B
)
= 0 (for details, see Kortschak and Albrecher, 2009). Note that there is an alternative

approach, which is given in Klüppelberg and Resnick (2008). As before, by multiple use of equations (2.2),

(2.5) and obvious changes of variables, we get

µG(B) = µG

(
(x, y) : x+ y > 0, x > 0

)
+ µG

(
(x, y) : x+ y > 0, y > 0

)
− µG

(
(0,∞]× (0,∞]

)

=

∫ ∞

0

µG

(
dx× (−x,∞]

)
−
∫ ∞

0

µG

(
(−y,∞]× dy

)
− c

= c

∫ ∞

0

e−xhX

(
e−2x

)
dx+ c

∫ ∞

0

e−yhX

(
e−2y

)
dy − c

=
c

2

∫ 1

0

z−1/2hX(z) dz +
c

2

∫ 1

0

z−1/2hY (z) dz − c,

The proof is now complete.

The first step in the proof of Theorem 4.2 is the next lemma. Let Hξ,c,d be the collection of cdf’s whose

densities h are elements of Hξ,c,d.

Lemma 7.1. Suppose b : [0, 1] → [0,∞) satisfies
∫ 1

0
b(x) dx < ∞. Then

inf
H∈Hξ,c,d

∫ 1

0

b(x)H(x) dx =

∫ 1

0

xb(x) dx, (7.2)

sup
H∈Hξ,c,d

∫ 1

0

b(x)H(x) dx =

∫ 1

0

b(x)H∗(x; ξ, c) dx (7.3)

where

H∗(x; ξ, c, d) =





x
c if 0 ≤ x ≤ (1−ξ)c

1−ξc

1− ξ + ξx if (1−ξ)c
1−ξc ≤ x ≤ 1

Proof of Lemma 7.1 The proof of (7.3) is straightforward, since H∗(·; ξ, c, d) ∈ Hξ,c,d and it follows

from Corollary 3.1 and the fact that H(x) ≤ x/c that H(·) ≤ H∗(·; ξ, c, d) for any H ∈ Hξ,c,d.
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In addition, since H(x) ≥ x, it is clear that the infimum in (7.2) is at least as large as
∫ 1

0
xb(x) dx.

What remains is the proof of equality, which we accomplish by demonstrating a sequence of functions

Hn ∈ Hξ,c,d such that
∫ 1

0
b(x)Hn(x) dx →

∫ 1

0
xb(x) dx.

Define

Hn(x) =





x
c − n

2

(
1
c − 1

)2
x2 if 0 ≤ x ≤ xL(n)

x+ 1
2n if xL(n) ≤ x ≤ xU (n)

1− ξ(1 − x)− n
2 (1− ξ)2(1− x)2 if xU (n) ≤ x ≤ 1

,

where xL(n) =
[
n
(
1
c − 1

)]−1
and xU (n) = 1− [n(1− ξ)]−1. It is not difficult to verify that Hn ∈ Hξ,c,d.

Further,

∫ 1

0

b(x) |x−Hn(x)| dx =

∫ xL(n)

0

b(x)

∣∣∣∣∣x− x

c
+

n

2

(
1

c
− 1

)2

x2

∣∣∣∣∣ dx+

∫ xU (n)

xL(n)

1

2n
b(x) dx

+

∫ 1

xU (n)

b(x)
∣∣∣x− 1 + ξ(1− x) +

n

2
(1 − ξ)2(1 − x)2

∣∣∣ dx

=

(
1− 1

c

)∫ xL(n)

0

xb(x)

[
1 +

n

2

(
1

c
− 1

)
x

]
dx+

1

2n

∫ xU (n)

xL(n)

b(x) dx

+ (1 − ξ)

∫ 1

xU (n)

(1− x)b(x)
∣∣∣−1 +

n

2
(1− ξ)(1 − x)

∣∣∣ dx

≤ 3

2n

∫ xL(n)

0

b(x) dx +
1

2n

∫ xU (n)

xL(n)

b(x) dx+
3

2n

∫ 1

xU (n)

b(x) dx

≤ 3

2n

∫ 1

0

b(x) dx,

which justifies our results in full.

Proof of Theorem 4.2 Suppose a : [0, 1] → R is continuous and monotone increasing; then it has a

non-negative derivative b = a′ almost everywhere. Thus, the proof becomes straightforward and it follows

from integration by parts and Lemma 7.1.

Proof of Proposition 4.1 i) The supremum follows immediately from Theorem 4.2. For the infimum,

we need to minimise

min
0≤d≤ξ≤1

∫ 1

0

a(x)
(
h∗(x; ξ, c, d) + h∗(x; 1 + d− ξ, c, d)

)
dx

= min
0≤d≤ξ≤1

{
1

c
A

(
(1− ξ)c

1− ξc

)
+ ξ

(
A(1)−A

(
(1 − ξ)c

1− ξc

))
+

1

c
A

(
(ξ − d)c

1 + d− (1− ξ)c

)
(7.4)

+(1 + d− ξ)

(
A(1)−A

(
(ξ − d)c

1 + d− (1− ξ)c

))}

It is first shown that the objective function is convex in ξ for any fixed d and attains its minimum at

ξ∗(d) = (1 + d)/2. We need to minimise g(ξ) + g(1 + d− ξ) on [d, 1], where g : [d, 1] → ℜ with

g(ξ) := ξA(1) +

(
1

c
− ξ

)
A

(
(1− ξ)c

1− ξc

)
.

Clearly,
∂g

∂ξ
= A(1)−A

(
r(ξ)

)
−
(
1− r(ξ)

)
a
(
r(ξ)

)
, with r(ξ) :=

(1− ξ)c

1− ξc
.

Recall that A(s) + (1 − s)a(s) is a strictly increasing function, since its derivative is (1 − s)a′(s) > 0.

The latter and the fact that r is a strictly decreasing function suggest that ∂g
∂ξ is strictly increasing in ξ.
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Consequently, the objective function from (7.4) is decreasing and increasing in ξ if and only if ξ ≤ (1+d)/2

and ξ ≥ (1 + d)/2, respectively, and therefore the minimum is reached at ξ∗(d) = (1 + d)/2.

We now vary d ∈ [0, 1] in order to globally minimise (7.4). That is, we ought to minimise 2g
(
(1 + d)/2

)

or equivalently

min1≤t≤ 2−c
2−2c

h(t) := t

(
A

(
1− 1

t

)
−A(1)

)
by denoting t =

1
c − 1+d

2
1
c − 1

.

Now, h′′(t) = t−3a′(1− 1/t) > 0 and it yields

h′(t) ≤ h′(1) = a(0)−A(1) =

∫ 1

0

(
a(0)− a(y)

)
dy ≤ 0

and thus, the global minimum is attained when t∗ = 2−c
2−2c . Therefore, the infimum in (7.4) is A(1) +

1
r∗A(r

∗) and is obtained at
(
d∗, ξ∗

)
= (0, 1/2).

Finally, if a is monotone decreasing, we can apply the Proposition to ã(x) = −a(x) to obtain the required

result.

ii) We only prove the infimum since supremum can be shown in a similar manner. The first stage

optimisation problems are solved via Theorem 4.2 and we have

inf
(hX ,hY)∈(Hξ,c,d,H1+d−ξ,c,d)

J(aX , aY ) = inf
0≤d≤ξ≤1

∫ 1

0

(
aX(x)h∗(x; ξ, c, d) + aY (x)

)
dx (7.5)

= inf
0≤d≤ξ≤1

g(ξ) +AY (1),

where g is defined in the proof of part i). For any fixed d, the above function is increasing in ξ since

g′(ξ) ≥ g′(d) = A(1)−A
(
r(d)

)
−
(
1− r(d)

)
a
(
r(d)

)
=

∫ 1

r(d)

a(y) dy −
(
1− r(d)

)
a
(
r(d)

)
≥ 0

by keeping in mind that g′ and a are increasing functions. Thus, the minima is attained at ξ∗(d) = d and

by varying d ∈ [0, 1], it is not difficult to find that the infimum in (7.5) is obtained when d∗ = ξ∗ = 0,

which completes the proof.
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[6] Bernard, C., Rüschendorf, L. and Vanduffel, S. 2015. “Value-at-Risk Bounds with Variance Constraints”, Journal of

Banking and Finance, Forthcoming.
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[19] Haug, S., Klüppelberg, C. and Peng, L. 2011. “Statistical Models and Methods for Dependence in Insurance Data”,

Journal of the Korean Statistical Society, 40(2), 125–139.

[20] Hua, L. and Joe, H. 2011. “Tail Order and Intermediate Tail Dependence of Multivariate Copulas”, Journal of Multi-

variate Analysis 102(10), 1454–1471.
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[22] Klüppelberg, C. and Resnick, S.I. 2008. “The Pareto Copula, Aggregation of Risks, and the Emperor’s Socks”, Journal

of Applied Probability, 45(1), 67–84.

[23] Kortschak, D. and Albrecher, H. 2009. “Asymptotic Results for the Sum of Dependent Non-identically Distributed

Random Variables”, Methodology and Computing in Applied Probability, 11(3), 279–306.

[24] Ledford, A.W. and Tawn, J. 1996. “Statistics for Near Independence in Multivariate Extreme Values”, Biometrika,

83(1), 169–187.

[25] Ledford, A.W. and Tawn, J. 1997. “Modelling Dependence within Joint Tail Regions”, Journal of the Royal Statistical

Society. Series B (Methodological), 59(2), 475–499.

[26] Nelsen, R. B. 2006. An Introduction to Copulas, 2nd ed. Springer-Verlag, New York.

[27] Peng, L. 1999. “Estimation of the Coefficient of Tail Dependence in Bivariate Extremes”, Statistics and Probability

Letters, 43(4), 399-409.

[28] Petrov, V. V. 1995. Limit Theorems of Probability Theory. Sequences of Independent Random Variables. Oxford

University Press, New York.

[29] Resnick, S.I. 2007. Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer-Verlag, New York.

[30] Resnick, S.I. 1987. Extreme Values, Regular Variation and Point Processes. Springer-Verlag, New York.
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