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Abstract 

Motor theories of expression perception posit that observers simulate facial expressions 

within their own motor system, aiding perception and interpretation. Consistent with this 

view, reports suggest that blocking facial mimicry induces expression labeling errors and 

alters patterns of ratings. Crucially however, it is unclear whether changes in labeling and 

rating behavior reflect genuine perceptual phenomena (e.g., greater internal noise 

associated with expression perception or interpretation) or are products of response bias. 

In an effort to advance this literature, the present study introduces a new psychophysical 

paradigm for investigating motor contributions to expression perception that overcomes 

some of the limitations inherent in simple labeling and rating tasks. Observers were asked 

to judge whether smiles drawn from a morph continuum were sincere or insincere, in the 

presence or absence of a motor load induced by the concurrent production of vowel 

sounds. Having confirmed that smile sincerity judgments depend on cues from both eye 

and mouth regions (Experiment 1), we demonstrate that vowel production reduces the 

precision with which smiles are categorized (Experiment 2). In Experiment 3 we 

replicated this effect when observers were required to produce vowels, but not when they 

passively listened to the same vowel sounds. In Experiments 4 and 5 we found that gender 

categorizations, equated for difficulty, were unaffected by vowel production, irrespective 

of the presence of a smiling expression. These findings greatly advance our understanding 

of motor contributions to expression perception and represent a timely contribution in 

light of recent high-profile challenges to the existing evidence base.  

 

Key words: Facial expressions, smile sincerity, mirror neurons, simulation, motor 

theories 
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Introduction 

The discovery of mirror neurons responsive during the execution and passive observation 

of facial gestures (Ferrari, Gallese, Rizzolatti, & Fogassi, 2003) prompted considerable 

interest in motor theories of expression perception. Building on models of �action 

understanding� (Gallese & Sinigaglia, 2011; Kilner, 2011; Schütz-Bosbach & Prinz, 2007; 

Wilson & Knoblich, 2005), motor theories of expression perception posit that observers 

simulate expressions within their own motor system � a process likened to covert imitation 

� thereby aiding perception and interpretation (Goldman & Sripada, 2005; Niedenthal, 

Mermillod, Maringer, & Hess, 2011; Vitale, Williams, Johnston, & Boccignone, 2014). 

Various authors have linked aberrant simulation to poor expression recognition in Autism 

Spectrum Disorder (Dapretto et al., 2006), Möbius Syndrome (Bate, Cook, Mole, & Cole, 

2013), Parkinson�s Disease (Marneweck, Palermo, & Hammond, 2014) and Locked-in 

Syndrome (Pistoia et al., 2010). However, the clinical significance of putative motor 

contributions to expression perception remains controversial (Bird & Cook, 2013; 

Hamilton, 2012; Hickok, 2014; Rives Bogart & Matsumoto, 2009). 

 

Existing empirical evidence 

Consistent with motor theories of expression perception, previous reports suggest that 

blocking facial mimicry impairs performance on expression labeling tasks. For example, 

observers correctly identified expressions of happiness and disgust less often � their hit 

rate for these categories was lower on a four alternative-forced-choice (AFC) labeling task 

�  when asked to grip a pen with their teeth, relative to their performance in a free-viewing 

baseline condition (Oberman, Winkielman, & Ramachandran, 2007). Biting on chopsticks 

and contracting eyebrow muscles decreased hit-rates for happy and angry expressions 

respectively, on a 5-AFC labeling task, and both manipulations reduced hit-rates for 

disgusted expressions, relative to observers in a free-viewing control condition (Ponari, 

Conson, D'Amico, Grossi, & Trojano, 2012). Recipients of Botox injections � a cosmetic 

procedure resulting in paralysis of muscles in the forehead � underperformed on the 

Reading the Mind in the Eyes Test (Baron-Cohen, Wheelwright, Hill, Raste, & Plumb, 

2001), in which observers have to label affective and communicative expressions from 

cues present in the eye-region, compared to individuals given dermal filler � a cosmetic 

procedure that does not alter muscle function (Neal & Chartrand, 2011). Female 

participants (but not males) also took longer to respond during an expression labeling task 



4 

 

when asked to clench their teeth, avoid facial movement and attend to feedback from a 

plaster on their forehead, than when asked to keep their shoulders still (Stel & van 

Knippenberg, 2008).  

 

Complementary studies have reported motor-induced modulation of expression ratings 

(Maringer, Krumhuber, Fischer, & Niedenthal, 2011; Rychlowska et al., 2014). Maringer 

and colleagues asked participants to rate the �genuineness� of true and false dynamic 

smiles posed by a computer-generated avatar on a five-point scale (from not at all genuine 

to very genuine). Observers in a blocked mimicry condition were informed that more 

objective judgments are made when facial movement is kept to a minimum, and were 

required to hold a pen in their mouths. Observers in a free mimicry condition were given 

no advice and were free to mimic the expressions. Whereas the ratings given to the true 

and false smiles by participants in the free mimicry condition differed significantly, the 

ratings given by participants in the blocked mimicry condition did not (Maringer et al., 

2011). In a follow-up study, participants were again asked to rate the genuineness of true 

and false smiles whilst wearing a mouth-guard, squeezing a ball in their hand or under 

free-viewing conditions (Rychlowska et al., 2014). In contrast to the ratings of the two 

control groups, the ratings given to the true and false smiles by participants in the mouth-

guard condition did not differ significantly.  

 

Internal noise and bias 

Extant studies have described how labeling errors and genuineness ratings vary as a 

function of motor load. Strikingly, however, no attempt has been made to determine how 

the precision with which expressions are categorized is affected by a concurrent motor 

load. Consequently, it is not clear whether performance decrements induced by the 

foregoing motor manipulations reflect increases in internal noise or are products of bias. 

Bias errors are made when observers are prone towards a particular percept (perceptual 

bias), or tend to make or avoid certain responses (response bias). For example, observers 

judging smile sincerity might incorrectly label a false smile or award it a high genuineness 

rating, because they tend to see smiles as true, or, because they choose to respond 

�genuine� whenever they experience a degree of indecision. In contrast, precision errors 

reflect unreliable responses, which fail to vary as a function of smile sincerity. For 
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example, precision errors may arise where internal noise detracts from the description and 

interpretation of the physical differences between stimuli.    

 

The distinction between performance decrements attributable to bias and internal noise is 

not trivial. Existing motor theories of expression perception (Goldman & Sripada, 2005; 

Niedenthal et al., 2011; Vitale et al., 2014) appeal to the idea that the motor system 

conveys a top-down signal that can be used to disambiguate ambiguous sensory 

descriptions (e.g., Gilbert & Li, 2013). Manipulations that corrupt or block the top-down 

signal should therefore induce noisier, but unbiased responding
1
. Moreover, performance 

decrements attributable to bias errors can reflect changes in response bias. For example, 

discomfort experienced by participants asked to grip items between their teeth for 

prolonged periods may encourage the use of �sad� responses � one of the most frequently 

encountered emotional labels outside of the lab � and thereby reduce hit-rates for happy, 

disgusted and angry expressions (Oberman et al., 2007; Ponari et al., 2012). Should motor 

manipulations modulate labeling or rating performance by altering response strategies, 

putative motor effects on expression perception may not index genuine perceptual effects. 

Importantly, studies that manipulate motor load between-subjects (Maringer et al., 2011; 

Neal & Chartrand, 2011; Niedenthal, Brauer, Halberstadt, & Innes-Ker, 2001; Ponari et 

al., 2012; Rychlowska et al., 2014) are particularly vulnerable to differences in response 

strategy, especially where motor manipulations are confounded with guidance about the 

effects of mimicry (Maringer et al., 2011; Rychlowska et al., 2014).  

 

Inconsistent findings 

Not only does the existing evidence base fail to distinguish a loss of categorization 

precision from bias, it also contains a great deal of inconsistency. First, several motor 

manipulations have failed to impair expression labeling. Observers asked to chew gum or 

grip a pen with their lips showed no sign of diminished expression recognition (Oberman 

et al., 2007). Nevertheless, i) both manipulations inhibit overt facial mimicry and disrupt 

somatosensory feedback, and ii) electromyographic (EMG) recordings revealed that 

chewing gum induced strong activation of multiple facial muscles (Oberman et al., 2007). 

Similarly, observers asked to clench their teeth, avoid facial movement and attend to 

feedback from a plaster on their forehead, exhibited expression labeling accuracy 

comparable with controls who were simply asked to keep their shoulders still (Stel & van 
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Knippenberg, 2008). Moreover, the application of restrictive gel to the faces of observers 

improved performance in an expression labeling task, relative to a second group who had 

gel applied to their inner arm (Neal & Chartrand, 2011). Each of these manipulations 

(chewing gum, gripping a pen with the lips, teeth clenching, avoiding facial movement, 

attending to feedback from a plaster placed on the forehead, the application of restrictive 

gel to the face) would be expected to interfere with a top-down contribution to expression 

perception derived from motor simulation.   

 

Second, where observed, motor-induced changes in expression labeling are reported for 

some expressions, but not for others. For example, in the study reported by Oberman and 

colleagues, gripping a pen between the teeth was associated with reduced hit-rates when 

labeling happy, and to some degree disgusted expressions, but had no effect on hit-rates 

for fear and sadness (Oberman et al., 2007). Ponari and colleagues found that biting on 

chopsticks reduced hit-rates for disgust, happiness and fear, but did not significantly alter 

hit-rates for anger, surprise or sadness. Similarly, eyebrow contraction reduced the hit-rate 

for anger and fear, but labeling of disgust, happiness and surprise was unaffected (Ponari 

et al., 2012). Facial expressions comprise highly correlated changes from across eye and 

mouth regions (Jack, Garrod, & Schyns, 2014) and are thought to recruit holistic visual 

processing whereby eye and mouth variation is integrated into a single perceptual 

representation (Calder, Young, Keane, & Dean, 2000). Manipulations that successfully 

disrupt movements made with either the upper (e.g., eye-brow contraction) or lower 

regions (e.g., gripping a pen between teeth) of the face, and thereby block a top-down 

signal to the visual system, should affect perception of a wide range of facial expressions 

and gestures. It is therefore unclear why the perception of some expressions, such as 

sadness (Oberman et al., 2007; Ponari et al., 2012), should be unaffected. 

 

Finally, many individuals with Möbius syndrome, a disorder associated with partial or 

complete paralysis of the facial muscles, show unimpaired facial expression recognition 

(Calder, Keane, Cole, Campbell, & Young, 2000; Rives Bogart & Matsumoto, 2009), or 

evidence of non-specific visual deficits that extend beyond expression recognition (Bate et 

al., 2013). Should the motor system make a necessary causal contribution to expression 

perception � as suggested by reports of motor interference effects in healthy adults � one 

might expect the expression recognition ability of members of this population to be 
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disproportionately impaired relative to typical observers. Reconciling the findings from 

Möbius patients, with expression labeling and rating changes induced by motor 

manipulations in healthy adults, is potentially problematic, a fact highlighted in recent 

high-profile critiques of motor theories and their evidence base (Caramazza, Anzellotti, 

Strnad, & Lingnau, 2014; Hickok, 2014).   

 

The present study 

In sum, putative motor contributions to expression recognition have stimulated 

considerable interest, but the findings reported to date are equivocal, and motor theories 

remain enormously controversial. In an effort to advance this literature, the present study 

introduces a novel technique for investigating motor contributions to expression 

perception. Using a psychophysical paradigm that overcomes some of the limitations 

inherent in simple labeling and rating tasks, we sought to interrogate motor theories of 

expression perception more rigorously than has been possible to date. Having first 

confirmed that cues from both the eye and mouth regions contribute to sincerity judgments 

(Experiment 1), we show that the concurrent production of vowel sounds reduces the 

precision with which smiles are categorized as sincere or insincere without inducing 

systematic bias (Experiment 2). We then exclude the possibility that the performance 

decrement is caused by afferent auditory feedback (Experiment 3), and go on to show that 

comparable judgments of facial gender are unaffected by the motor load, irrespective of 

the presence or absence of a smile (Experiments 4 & 5).  

 

General Methods 

Stimuli 

Facial stimuli were drawn from morph continua, each comprising seven levels, varying 

attribute strength from 20% to 80% in increments of 10% (Figure 1). Image morphing was 

performed using Morpheus Photo Morpher Version 3.11 (Morpheus Software, 

Indianapolis, IN). Stimuli subtended 8° vertically when viewed at a distance of 57.3cm. 

The smile morphs used in Experiments 1-3 were created by blending one sincere 

�enjoyment� smile and one insincere �control� smile from the Smile Picture Set (Del 

Giudice & Colle, 2007). The set of gender morphs used in Experiments 4 blended one 

neutral male and one neutral female face taken from the Radboud Faces Database 

(Langner et al., 2010). The set of gender morphs used in Experiments 5 blended one 
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happy male and one happy female face with the same identity and from the same database 

as in Experiment 4.  

 

Figure-1 

 

Procedure 

A common trial format was employed throughout the five experiments described (Figure 

2a). Trials began with a 1000 Hz tone of 50 ms duration, followed by an interval of 500 

ms, after which a facial stimulus was presented for 1000 ms. A response screen was 

presented 300 ms after stimulus offset, prompting participants to make a 2-AFC judgment 

with their dominant hand. In Experiments 1-3, participants judged whether the facial 

stimulus depicted a �sincere� or �insincere� smile. In Experiments 4 and 5 participants 

judged the gender of the face stimulus (�male� or �female�). To make both of these 

judgments, observers must place a given exemplar in a natural category defined by 

characteristic facial variation; whereas males and females face differ in facial form and 

pigmentation (e.g., Cellerino, Borghetti & Sartucci, 2004), sincere and insincere smiles are 

defined by characteristic deformations around the eyes and mouth (Del Giudice & Colle, 

2007; Niedenthal et al., 2011). The response screen was visible until a response was 

registered. The next trial began 1000 ms after the response was made. All experiments 

were programmed in MATLAB (The MathWorks, Natick, MA) using the Psychophysics 

Toolbox (Brainard, 1997; Pelli, 1997).  

 

Figure-2 

 

Across all experiments, participants� responses were modeled by estimating psychometric 

functions using the Palamedes toolbox (Prins & Kingdom, 2009). Separate cumulative 

Gaussian functions were fitted for each condition based on 140 observations (20 

presentations × 7 stimulus levels), for each participant. Each function estimated two key 

parameters: The point of subjective equality (PSE) and internal noise. The PSE is a 

measure of bias which represents the hypothetical stimulus strength equally likely to be 

judged as sincere or insincere (Experiments 1-3) or male or female (Experiments 4 and 5). 

Shifts in the PSE can result from changes in response and/or perceptual bias. The noise 

estimate is a measure of the precision with which stimuli are categorized and was defined 
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as the standard deviation of the symmetric Gaussian distribution underlying each 

cumulative Gaussian function. Noise estimates are inversely related to the slope of the 

psychometric function; steep and shallow slopes are associated with low and high noise 

estimates, respectively. Lower noise estimates indicate that observers can perceive subtle 

differences in stimulus strength and vary their responses accordingly. Greater noise 

estimates reveal that participants� responses are relatively invariant to changes in stimulus 

strength, indicative of imprecise categorization. Psychometric functions were modeled 

using a Maximum Likelihood criterion. PSE and slope measures were free to vary and 

estimated initially at 50% and 10%, respectively. Guess and lapse rates were fixed at zero. 

Raw proportions of sincere responses for Experiments 1-3 and male responses for 

Experiments 4-5, used to estimate psychometric functions are presented as a function of 

stimulus level in Table 1 and Table 2, respectively.  

 

Where psychometric functions were found to vary across conditions, Signal Detection 

Theory (Green and Swets, 1966) was used to determine whether effects were seen across 

the stimulus range. For each observer, we estimated their ability to categorize i) the 20% 

and 80% levels, ii) the 30% and 70% levels, and  iii) 40% and 60% levels. Hits and false 

alarms were defined according to the categorization task; sincere responses in the presence 

of the 60%, 70%, and 80% sincere stimuli were treated as hits, and sincere responses in 

the presence of 20% 30% and 40% sincere stimuli as false alarms
2
. Where participants 

made no misses / false alarms in a given condition, probabilities of 0.9995 and 0.0005 

were assigned for the purposes of the d’ calculation.  

 

In each experiment, sample size was determined a priori based on i) the need to 

counterbalance the order of three conditions manipulated within-subjects, and ii) power 

analysis conducted assuming a large effect size (Cohen, 1988). Ethical clearance was 

granted by the local ethics committee and the study was conducted in line with the ethical 

guidelines laid down in the 6
th

 (2008) Declaration of Helsinki. All participants gave 

informed consent. 

 

Experiment 1 

It has been suggested that manipulations that primarily interfere with upper (e.g., eyebrow 

contraction) or lower facial mimicry (e.g., biting on a pen), may disproportionately impair 
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perception of expressions characterized by changes in the eye-region and mouth-region, 

respectively (Ponari et al., 2012)
3
. It is well established that sincere smiles are associated 

with contractions of the muscles around the eyes (the orbicularis oculi and the pars 

lateralis), the so-called �Duchenne marker� (Duchenne de Boulogne, 1862). Should 

judgments of smile sincerity be based solely on the Duchenne marker, blocking overt 

mimicry (or covert simulation) of the mouth through vowel production may induce little 

perceptual decrement. However, if sincerity judgments also rely on cues present in the 

mouth region, loading the motor structures associated with mouth movements ought to 

impair perceptual judgments (Ponari et al., 2012). To aid clear interpretation of our 

subsequent experiments, we therefore sought to confirm that observers use cues from both 

the eye and mouth regions when judging the sincerity of the smile morphs (Figure 1a). 

 

Methods 

Twenty-four healthy adults (7 males, Mage = 31.29, 1 left handed) participated in 

Experiment 1. Psychometric functions were estimated for three viewing conditions. In the 

whole-face condition, participants were presented with a smiling face and were free to use 

cues from the eye-region, the mouth-region, or both to judge sincerity. In the mouth-only 

condition the eye-region was occluded, forcing observers to use cues from the mouth 

region. In the eyes-only condition, the mouth-region was occluded, forcing observers to 

use cues from the eye-region. Viewing condition (whole-face, eyes-only, mouth-only) was 

blocked. The order in which participants completed the three blocks was fully 

counterbalanced. Within each block of 140 trials, the seven levels of sincerity appeared 20 

times, in a randomized order.   

 

Table-1 

 

Results and discussion 

If observers use cues from both regions when categorizing whole-face smiles, 

performance in the eyes-only and mouth-only conditions should independently predict 

whole-face performance. A multiple regression analysis was therefore conducted in which 

noise estimates from the whole-face condition were regressed onto the noise estimates 

from the eyes-only and mouth-only conditions. There was no significant correlation 

between the predictors [r(23) = .27, p = .196] and the dependent variable was normally 
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distributed [W(24) = .96, p = .413]. Crucially, variability in noise estimates observed in the 

eyes-only (β = .441, p = .009) and in the mouth-only (β = .485, p = .005) conditions 

predicted unique variance in whole-face performance. The combined regression model 

was highly significant [F(1,22) = 12.620, p < .001] explaining 54.5% of variability in 

whole-face noise estimates. 

 

 

Consistent with the existing literature on the Duchenne marker (reviewed by Niedenthal et 

al., 2011), the results from Experiment 1 indicate that information present in the top half 

of the face is useful when judging smile sincerity. Critically, however, ability to judge 

smile sincerity from mouth cues also predicted independent variance in whole-face 

performance, confirming that whole-face sincerity judgments depend on cues derived 

from both the eye and mouth region. Existing simulation accounts of expression 

perception (Goldman & Sripada, 2005; Niedenthal et al., 2011), therefore predict that 

manipulations that load high-level motor areas responsible for planning mouth actions, 

should impair whole-face sincerity judgments (Experiments 2 and 3), irrespective of the 

nature of the top-down contribution; i.e., whether it is feature-specific, aiding 

interpretation of mouth variation only (e.g., Ponari et al., 2012), or global, aiding 

interpretation of the entire facial configuration (e.g., Friston, 2005; Gregory, 1997).   

 

Experiment 2 

Having determined that cues derived from the mouth area contribute to observers� 

judgments of smile sincerity, Experiment 2 examined whether a concurrent motor load 

would modulate performance on our psychophysical task. To induce motor interference, 

participants were asked to produce vowel sounds during stimulus presentation. Crucially, 

motor theories regard covert simulation in high-level motor areas as the core mechanism 

for action or expression understanding (Gallese & Sinigaglia, 2011; Goldman & Sripada, 

2005; Kilner, 2011; Schütz-Bosbach & Prinz, 2007; Vitale et al., 2014; Wilson & 

Knoblich, 2005). Because vowel production has both planning and production 

components it is likely to load high-level motor structures such as the premotor cortex 

(Rizzolatti & Luppino, 2001).  
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Manipulations used to block mimicry in previous studies � biting on a pen (Niedenthal et 

al., 2001; Oberman et al., 2007) or on chopsticks (Ponari et al., 2012), wearing a mouth-

guard (Rychlowska et al., 2014), 2014), sitting still (Stel & van Knippenberg, 2008), and 

botox injections (Neal & Chartrand, 2011) � block the peripheral motor system and may 

distort to some degree afferent feedback where observers make overt movements. 

However, it is unclear whether the foregoing manipulations effectively engage regions 

such as premotor cortex, recruited during the planning and coordination of action 

(Rizzolatti & Luppino, 2001). Interestingly, a manipulation more likely to load premotor 

cortex � chewing gum � failed to modulate performance on an expression labeling task 

(Oberman et al., 2007).   

 

Methods 

Twenty-four healthy adults (10 males, Mage = 28.08, 2 left handed) participated in 

Experiment 2. Participants completed the whole-face task from Experiment 1 under three 

conditions: In the baseline condition, participants viewed the stimuli without the 

requirement to produce a vowel sound. In the remaining conditions participants produced 

one of two vowel sounds � either /i/ (pronounced �eeh’ as in ‘cheese’) or �/u/� 

(pronounced �ooh’ as in ‘choose’) � cued by the tone at the start of each trial. Participants 

were required to produce the vowel sound as soon as the tone was detected, and maintain 

the sound until the offset of the stimulus image. Auditory responses were recorded and 

response latencies analyzed using Audacity sound-editing software 

(http://audacity.sourceforge.net/). The order in which participants completed the 

conditions was fully counterbalanced across the sample.  

 

Results and discussion 

Analysis of the response latencies indicated that the vowel production task was performed 

well, with 98.3% of speech sounds produced within ±600 ms of the stimulus onset (Figure 

3a). The noise and PSE estimates were analyzed using ANOVA with viewing condition 

(baseline, produce /i/, produce /u/) as a within-subjects factor. The analyses revealed a 

significant main effect of viewing condition on noise estimates [F(2,46) = 9.06, p = .001, 

η
2 

= .283]. Planned pairwise comparisons revealed significantly lower noise estimates, 

indicative of greater categorization precision, in the baseline condition (M = 8.67, SD = 

4.02) compared with both the produce /i/ (M = 12.20, SD = 5.72) [t(23) = 3.57, p = .002] 
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and produce /u/ (M = 11.59, SD = 4.63) conditions [t(23) = 4.16, p < .001]. The difference 

between the noise estimates in the produce /i/ and produce /u/ conditions was not 

significant [t(23) = .66, p = .518]. No significant effect of condition on PSE estimates was 

found [F(2,46) = .40, p = .672, η
2
=.017] indicating that observers� bias did not differ 

across the baseline (M = 51.17, SD = 8.86), produce /u/ (M = 50.17, SD = 10.14) and 

produce /i/ conditions (M = 50.29, SD = 8.62).  

 

Figure-3 

 

To determine whether the motor load impaired categorization across the entire stimulus 

range, we estimated each observer�s ability to categorize i) the 20% and 80% levels, ii) the 

30% and 70% levels, and  iii) the 40% and 60% levels using Signal Detection Theory 

(Green and Swets, 1966). Hits and false alarms were defined according to the 

categorization task; sincere responses in the presence of the 60%, 70%, and 80% sincere 

stimuli were treated as hits, and sincere responses in the presence of 20% 30% and 40% 

sincere stimuli as false alarms. Where participants made no misses or no false alarms in a 

given condition, probabilities of 0.9995 and 0.0005 were assigned for the purposes of the 

d’ calculation. The resulting distributions of d’ statistics were analyzed using ANOVA 

with Viewing Condition (baseline, produce /i/, produce /u/) and Stimulus Difference (20-

80%, 30-70%, 40-60%).  

  

The analysis revealed a main effect of Viewing Condition [F(2,46) = 5.29, p = .009, η
2 

= 

.187]. Pairwise comparisons revealed significantly higher attribution sensitivity in the 

baseline condition (M = 4.66, SD = 0.96) compared to the produce /i/ (M = 4.03, SD = 

1.31) [t(23) = 2.55, p = .018] and produce /u/ conditions (M = 4.03, SD = 1.16) [t(23) = 

3.32, p = .003]. Attribution sensitivity did not differ in the produce /i/ and produce /u/ 

conditions [t(23) = .01, p = .992]. The analysis also revealed a main effect of Stimulus 

Difference [F(2,46) = 126.28, p < .001, η
2
=.846]. Attribution sensitivity for the 20% and 

80% levels (M = 5.45, SD = 0.93) exceeded that for the 30% and 70% levels (M = 4.61, 

SD = 1.30), [t(23) = 9.95, p < .001], and for the 40% and 60% levels (M = 2.66, SD = 

1.00) [t(23) = 16.15, p < .001]. Attribution sensitivity for the 30% and 70% levels also 

exceeded that of the 40% and 60% levels [t(23) = 4.97, p < .001]. Importantly, however, 

no interaction was seen between the Viewing Condition and Stimulus Difference [F(4,92) 
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= 1.54, p = .196, η
2
=.063], suggesting that motor load impaired categorization across the 

entire stimulus range.  

 

These results indicate that inducing a motor load through vowel production decreases the 

precision with which smiles are categorized as sincere or insincere, without introducing 

systematic bias, consistent with motor theories of expression perception (Goldman & 

Sripada, 2005; Niedenthal et al., 2011; Vitale et al., 2014). In light of the findings from 

Experiment 1, the motor load may have prevented observers using information around the 

mouth region to inform their sincerity judgements, thereby reducing categorization 

precision. Alternatively, the load may have detracted from a top-down contribution in the 

form of a global interpretation of the facial configuration. The detrimental effect of motor 

load was not restricted to the highly ambiguous stimuli around the middle of the morph 

continuum; effects were seen across the range of stimulus intensities.   

 

Experiment 3 

The results of Experiment 2 suggest that concurrent vowel production increases the 

internal noise associated with expression perception and interpretation, consistent with 

hypothesized motor contributions to expression perception. It is possible, however, that 

the decrease in categorization precision did not reflect the presence of the motor load per 

se, but rather distraction caused by afferent auditory feedback; in other words, the 

performance decrement may have been induced by the resultant speech sounds, not the 

speech production itself. Experiment 3 sought to test this alternative account. Participants 

judged the sincerity of whole-face smiles in a baseline viewing condition, a production 

condition in which participants produced the vowel /i/, and a passive condition in which 

observers heard the vowel /i/ during stimulus presentation. If the performance decrement 

observed in Experiment 2 was a product of afferent auditory feedback, the loss of 

sensitivity should also be induced by the passive auditory signals.   

 

Methods 

Twenty-four healthy adults (2 males, Mage = 20.17, 1 left handed) participated in 

Experiment 3. The baseline and produce /i/ conditions were identical to those described in 

Experiment 2. To provide a conservative test of the auditory feedback account, we sought 

to maximize the salience of the auditory stimuli presented in the passive /i/ condition. 
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During the passive block, each participant encountered twenty-five tokens of /i/ (five 

examples of vowels produced by five participants in Experiment 2). Male and female 

participants heard tokens produced by male and female actors, respectively. The auditory 

stimulus could occur at 0 ms, ±100 ms, ±200 ms, ± 300 ms, ± 400 ms, ±500 ms, relative to 

the onset of the visual stimulus. The distribution of vowel onset asynchronies was yoked 

to that seen in the production condition in Experiment 2. The offsets of the auditory and 

visual stimuli in the passive condition were always synchronized. The order in which 

participants completed the three conditions was fully counterbalanced. 

 

Results and discussion 

Analysis of the response latencies indicated that the vowel production task in the motor 

condition was performed well, with 99.1% of speech sounds produced within ±600 ms of 

the stimulus onset (Figure 3b). Noise and PSE estimates were analyzed using ANOVA 

with Viewing Condition (baseline, produce /i/, passive /i/) as a within-subjects factor. The 

analyses revealed a significant main effect of Viewing Condition on noise estimates 

[F(2,46) = 3.74, p = .031, η
2 

= .140]. Pairwise comparisons revealed significantly lower 

noise estimates, indicative of greater categorization precision, in the baseline condition (M 

= 10.28, SD = 4.45) compared to the produce /i/ condition (M = 13.40, SD = 7.81) [t(23) = 

2.51, p = .019], replicating the interference effect seen in Experiment 2. Crucially, 

however, the noise estimates seen in the passive /i/ condition (M = 11.23, SD = 5.26) did 

not differ from those seen in the baseline condition [t(23) = .96, p < .346], arguing against 

an afferent auditory feedback account of the precision decrement. There was no effect of 

Viewing Condition on PSE estimates [F(2,46) = .28, p = .755, η
2
=.012], indicating that 

observers� bias was comparable in the baseline (M = 52.71, SD = 6.35), produce /i/ (M = 

53.08, SD = 7.20) and passive /i/ conditions (M = 52.21, SD = 6.12). 

  

To determine whether the motor load impaired categorization across the entire stimulus 

range, we estimated observers� ability to categorize the 20% and 80% levels, the 30% and 

70% levels, and the 40% and 60% levels. The resulting distributions of d’ statistics were 

analyzed using ANOVA with Viewing Condition (baseline, produce /i/, passive /i/) and 

Stimulus Difference (20-80%, 30-70%, 40-60%) as within-subjects factors. The analysis 

revealed a main effect of Viewing Condition [F(2,46) = 4.36, p = .018, η
2
=.159]. Pairwise 

comparisons revealed significantly lower attribution sensitivity in the produce /i/ condition 
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(M = 3.84, SD = 1.52) than in the baseline (M = 4.46, SD = 1.04) [t(23) = 2.53, p = .019] 

and the passive /i/ conditions (M = 4.32, SD = 1.18) [t(23) = 2.08, p < .05]. The difference 

between the baseline and passive /i/ conditions was not significant [t(23) = 0.78, p = .446]. 

The analysis also revealed a main effect of Stimulus Difference [F(2,46) = 126.28, p < 

.001, η
2
=.846].  Attribution sensitivity for the 20% and 80% levels (M = 5.36, SD = 1.27) 

exceeded that seen for the 70% and 30% levels (M = 4.76, SD = 1.37) [t(23) = 2.90, p = 

.008] and for the 60% and 40% levels (M = 2.50, SD = 1.01) [t(23) = 17.19, p < .001]. 

Attribution sensitivity for the 70% and 30% levels also exceeded that seen for the 60% 

and 40% levels [t(23) = 11.30, p < .001]. Once again, no interaction was seen between the 

Viewing Condition and Stimulus Difference [F(4,92) = 1.54, p = .213, η
2
=.063], 

suggesting that motor load impaired categorization across the entire stimulus range. 

 

Experiment 4 

The pattern of results observed in Experiments 2 and 3 is consistent with the view that 

motor processes aid the perception and interpretation of facial expressions via top-down 

influence (Goldman & Sripada, 2005; Oberman et al., 2007; Vitale et al., 2014). However, 

these results might also reflect the additional task demands associated with the vowel 

production task (akin to generic distraction). Afferent somatosensory feedback, or the 

planning and production components of the concurrent motor task, could load the wider 

cognitive system, thereby disrupting performance on a wide range of tasks, extending 

beyond expression perception. Experiment 4 sought to distinguish between these 

possibilities by testing whether vowel production also modulates categorization precision 

when observers judge facial gender. Because these tasks have similar demands, a generic 

distraction account predicts that vowel production should induce comparable precision 

decrements for gender classification.   

 

Methods  

Twenty-four healthy adults (9 males, Mage = 30.42, 1 left handed) participated in 

Experiment 4. Participants were required to judge the gender of whole-face stimuli 

(responding �male� or �female�) drawn from a continuum blending a male and female face 

(Figure 1b). Both faces exhibited a �neutral� expression; i.e. neither appeared to express 

emotion. Psychometric functions were modelled under three viewing conditions, baseline, 

production of /i/ and production of /u/. The order in which participants completed the 
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conditions was again fully counterbalanced. With the exception of the stimuli presented 

(drawn from a male-female morph) and the judgment made (judging facial gender), the 

methods were identical to those employed in Experiment 2.  

 

Table-2 

 

Results and discussion 

Analysis of the response latencies indicated that the vowel production task was again 

performed well, with 97.1% of speech sounds produced within ±600 ms of the onset of the 

stimulus (Figure 4a). This level of performance is comparable with that seen in 

Experiment 2. Noise and PSE estimates were analyzed using ANOVA, with condition 

(baseline, produce /i/ and produce /u/) as a within-subjects factor. In contrast to 

Experiment 2, the analysis revealed no effect of condition on noise estimates [F(2,46) = 

.37, p = .693, η
2 

=.016], indicating that categorization precision in the baseline (M = 

8.32%, SD = 3.39%), produce /i/ (M = 7.66%, SD = 4.31%) and produce /u/ (M = 7.94%, 

SD = 3.59%) conditions was comparable. Similarly, PSE estimates did not vary across 

condition [F(2,46) = 1.96, p = .153, η
2
 = .078], indicating that observers� bias did not 

differ in the baseline (M = 44.23, SD = 4.77), produce /i/ (M = 44.60, SD = 4.36) and 

produce /u/ (M = 46.21, SD = 6.31) conditions. The results from Experiment 4 indicate 

that the precision decrements induced by vowel production in Experiments 2 and 3 do not 

extend to judgments of facial gender, arguing against a generic distraction account.  

 

Figure-4 

 

Experiment 5  

Experiment 4 indicates that precision decrements induced by vowel production in 

Experiments 2 and 3 do not simply reflect the increased task demands associated with the 

concurrent vowel production task. One interpretation of these results is that the 

categorization of smile sincerity benefits from a top-down contribution from the motor 

system, one that is not recruited by categorization of facial gender. Consequently, the 

concurrent motor load impairs sensitivity to smile sincerity, but not facial gender. 

However, another possibility is that vowel production induces an executive load that is not 

present in the gender judgment task. It is well known that the sight of actions (e.g., Heyes, 
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2011) and expressions (e.g., Sato & Yoshikawa, 2007) primes imitative responding. When 

judging smile sincerity, the requirement to produce vowel sounds is in direct conflict with 

the tendency to imitate. Because the motor programs to produce a vowel and imitate the 

smile cannot be discharged simultaneously, an executive process must intervene to resolve 

the response competition. When judging expression-neutral gender stimuli, however, there 

is no response competition, and consequently no executive load. The differential effects of 

vowel production on attribution of smile sincerity and facial gender might reflect the 

respective presence and absence of this executive load, rather than an expression-specific 

motor contribution to perception. 

 

Experiment 5 sought to test this executive load account of the effect of vowel production 

on sincerity judgments. Should the increase in noise seen in Experiments 2 and 3 reflect 

executive load, a similar decrement should be seen when judging the gender of smiling 

faces. Importantly, vowel production in the presence of a smiling face induces response 

competition and consequently an executive load � the conflict between vowel production 

and facial imitation must be resolved.  

 

Methods  

Twenty-four healthy adults (9 males, Mage = 27.46, 2 left handed) participated in 

Experiment 5. Participants were required to judge the gender of whole-face facial stimuli 

drawn from a continuum blending the same male and female faces used in Experiment 4. 

However, unlike the continuum used in Experiment 4, both of the morphed faces exhibited 

happy expressions (Figure 1c). Psychometric functions were again modelled under three 

viewing conditions: baseline, production of /i/ and production of /u/. The order in which 

participants completed the conditions was fully counterbalanced. With the exception of 

the morph stimuli, the methods were identical to those employed in Experiment 4.  

 

Results and discussion 

Analysis of the response latencies indicated that the vowel production task was again 

performed well, with 99.1% of speech sounds produced within ±600 ms of the onset of the 

stimulus (Figure 4b). This level of performance is comparable with that seen in 

Experiments 2-4. Noise and PSE estimates were analyzed using ANOVA, with condition 

as a within-subjects factor. As in Experiment 4, the analysis revealed no effect of 
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condition on noise estimates [F(2,46) = .16, p = .852, η
2 

= .007], indicating that 

categorization precision was comparable in the baseline (M = 9.23%, SD = 4.78%), 

produce /i/ (M = 9.46%, SD = 7.58%) and produce /u/ (M = 9.82%, SD = 5.67%) 

conditions. PSE estimates were also similar in the baseline (M = 46.97, SD = 4.47), 

produce /i/ and produce /u/ (M = 47.00, SD = 5.77) conditions (M = 46.91, SD = 8.34), 

indicating similar degrees of bias [F(2,46) = .002, p = .998, η
2
 = .000]. The fact that vowel 

production failed to interfere with attribution of facial gender, irrespective of the presence 

of a smiling expression, argues against an executive load account of the motor interference 

effect observed in Experiments 2 and 3.  

 

Finally, we compared noise estimates measured in the baseline conditions across 

Experiments 2-5. Should the judgments of facial gender be easier than judgments of smile 

sincerity, the additional task demands (Experiment 4), or the additional executive load 

(Experiment 5) induced by vowel production, might be sufficient to interfere with 

sincerity judgments, but insufficient to impair judgments of facial gender. Importantly, 

however, ANOVA with Experiment (2-5) as a between-subjects factor confirmed that the 

noise estimates obtained in the baseline conditions did not vary significantly [F(3,92) = 

1.01, p = .394, η
2
 = .032], confirming that the gender and smile sincerity tasks were of 

comparable difficulty.  

 

General discussion 

The present study introduces a novel paradigm for investigating motor contributions to the 

perception of facial expressions, one that adopts a psychophysical approach, permitting 

disambiguation of decrements associated with internal noise (e.g. associated with 

perception and interpretation) from response bias. Having confirmed that observers� 

judgments of smile sincerity were based on cues from both the eye and mouth regions 

(Experiment 1), we went on to show that the presence of a concurrent motor load, induced 

by vowel production, causes a decrease in the precision with which smiles are categorized; 

responses varied less as a function of stimulus level (Experiment 2). In Experiment 3 we 

replicated this effect when observers were required to produce vowels, but not when they 

passively listened to the same vowel sounds. In Experiments 4 and 5 we found that similar 

judgments of facial gender were unaffected by vowel production, irrespective of the 

presence of a smiling expression.  



20 

 

 

Previous studies have reported that blocking facial mimicry alters expression labeling 

(Niedenthal et al., 2001; Oberman et al., 2007; Ponari et al., 2012; Stel & van 

Knippenberg, 2008) and rating performance (Maringer et al., 2011; Rychlowska et al., 

2014). Remarkably, however, this is the first study to demonstrate i) that a concurrent 

motor task increases the level of internal noise present during categorization of facial 

expressions, and ii) that reduction in precision does not extend to other types of facial 

judgment. Crucially, our novel psychophysical paradigm enabled us to exclude the 

possibility that motor-induced performance decrements reflect changes in response bias. 

These findings are a timely contribution in light of high-profile challenges to the existing 

evidence base for motor theories (Caramazza et al., 2014; Hickok, 2014). 

 

The increase in internal noise induced by vowel production is consistent with simulation 

accounts of expression perception (Goldman & Sripada, 2005; Niedenthal et al., 2011; 

Vitale et al., 2014). These models propose that the motor system exerts a top-down 

influence on perception, useful when interpreting ambiguous expressions. This 

contribution may be mediated by a reverse simulation process whereby covert mimicry of 

observed facial expressions aids interpretation by activating motor, somatosensory and 

affective states associated with observed expressions (Goldman & Sripada, 2005; 

Niedenthal et al., 2011). Alternatively, observers may form an initial hypothesis about the 

emotion conveyed through a visual analysis, which is subsequently tested via covert 

simulation; for example, the anticipated sensory consequences of the hypothesized state 

may be compared with feedback from the simulation (see Vitale et al., 2014). Importantly, 

both reverse simulation and generate-and-test models predict that a concurrent motor load 

ought to result in reduced precision (e.g. greater internal noise), without introducing a 

systematic perceptual or decision bias.    

 

An alternative account of the precision decrement seen in Experiments 2 and 3 posits that 

afferent auditory feedback, and not the motor load itself, induced the loss of sensitivity. 

Importantly, however, experiencing vowel sounds passively did not interfere with smile 

categorization (Experiment 3). This finding, together with the fact that predicted sensory 

consequences of actions are thought to be less salient than unpredicted events triggered 

exogenously (e.g., Brown, Adams, Parees, Edwards, & Friston, 2013), argues against an 

afferent auditory feedback account of the perceptual decrement. It is also important to 
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remember that the motor system may contribute to perception through various 

mechanisms; for example, by modulating processing in low-level visual areas (including 

V1 and Lateral Geniculate Nucleus; Erisken et al., 2014), by directing the allocation of 

attention (Bekkering & Neggers, 2002), and by aiding mental rotation (Wexler, Kosslyn, 

& Berthoz, 1998). Moreover, concurrent vowel production can impair performance 

through generic distraction (e.g., caused by the additional task demands) and executive 

load. However, the fact that vowel production did not induce perceptual decrements when 

judging facial gender (Experiment 4), irrespective of the presence of a smiling expression 

(Experiments 5), suggests that the interference effect was not a product of low-level 

sensory modulation, attentional allocation, mental rotation, generic distraction or 

executive load.     

 

We speculate that correlated sensorimotor experience may be necessary for the emergence 

of motor contributions to expression perception (Cook, Bird, Catmur, Press, & Heyes, 

2014; Press & Cook, 2015). In the typically developing population, individuals experience 

a wealth of correlated �seeing� and �doing� during ontogeny; for example, performing a 

smile or frown frequently predicts the sight of smiling or frowning interactants, 

respectively. Following this kind of contingent sensorimotor experience, motor programs 

responsible for expression planning and execution may come to excite predicted visual 

consequences. Interestingly, perception of arbitrary stimuli including Gabor patches 

(Cardoso-Leite, Mamassian, Schültz-Bosbach, & Waszak, 2010) and houses (Kühn, 

Seurinck, Fias, & Waszak, 2010) can be influenced by motor contributions if paired 

contingently with action performance during sensorimotor training. In Experiments 4 and 

5, vowel production had no influence on judgments of facial gender suggesting that this 

perceptual decision does not ordinarily recruit motor processes. However, whether 

judgments of facial gender have the potential to recruit motor contributions to perception, 

conceptually similar to those recruited by smile judgments, remains an open empirical 

question (Press & Cook, 2015).  

 

When healthy adult observers experience a concurrent motor load, the precision with 

which they categorized the smile morphs was reduced. This finding is seemingly 

inconsistent with previous reports that individuals with Möbius syndrome, a congenital 

condition associated with partial or complete paralysis of the facial muscles, show 

unimpaired facial expression recognition (Calder, Keane et al., 2000; Rives Bogart & 
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Matsumoto, 2009), or non-specific visual deficits (Bate et al., 2013). Drawing conclusions 

about typical cognitive functioning from atypically developing populations is notoriously 

difficult (Karmiloff-Smith, 1998). It is possible that this apparent inconsistency reflects 

the use of insensitive tasks that were unable to detect subtle differences in the expression 

recognition abilities of Möbius patients. Highly ambiguous judgments, such as 

categorizing smiles with similar configurations, may be more likely to detect modulations 

in top-down influence, than tasks requiring the categorization of stereotypical basic 

emotions (Bate et al., 2013; Calder, Keane et al., 2000; Rives Bogart & Matsumoto, 

2009). Whether the loss of precision observed here extends to other types of expression 

categorizations remains an open empirical question. Alternatively, expression recognition 

in individuals with Möbius syndrome may be achieved via a qualitatively different route, 

drawing on compensatory processes. For example, individuals born with Möbius 

syndrome, unlike members of the typically developing population, do not experience 

contingencies between expression production and expression observation, and may 

therefore develop other sources of top-down modulation.  

 

In summary, the present study reports important new evidence for motor contributions to 

the perception of facial expressions. Using a novel psychophysical paradigm we have 

shown that inducing a concurrent motor load through vowel production causes a loss of 

perceptual sensitivity, without introducing response bias, when healthy adult observers 

judge smile sincerity. The perceptual decrement is not a product of afferent auditory 

feedback and does not extend to similar judgments of facial gender. These findings are 

consistent with models proposing that the motor system makes a causal contribution to the 

perception and interpretation of facial expressions (Goldman & Sripada, 2005; Niedenthal 

et al., 2011; Vitale et al., 2014). 
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Footnotes 

1
 When the concurrent motor task is unrelated to the perceptual judgment (e.g., performing 

vowel sounds when judging smile sincerity), existing motor theories predict a loss of 

categorization precision. When concurrent motor tasks are closely-related to the judgment 

(e.g., performing an insincere smile when judging smile sincerity), these models predict 

perceptual bias.  

 

2
 This treatment reflects the nature of the attribution task; i.e., participants judged whether 

stimuli belong to one of two natural categories (sincere or insincere smiles). This is a 

departure from a standard signal detection task whereby a signal is absent on some trials 

and present in others. In the latter case it is common to estimate false alarms in the 

absence of a stimulus and the proportion of hits at varying levels of stimulus intensity.
 

 

3 
The suggestion that a top-down contribution can selectively modulate perception of the 

eye or mouth regions, is at odds with the finding that expressions are typically defined by 

correlated eye and mouth variation (Jack et al., 2014), and that expressions are represented 

holistically (Calder, Young et al., 2000). 
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Figure 1: (a) The smile stimuli used in Experiments 1-3, morphing incrementally from 

20% sincere (left) to 80% sincere (right). The morph continuum was created using images 

taken from the Smile Picture Set (Del Giudice & Colle, 2007). (b) The gender stimuli used 

in Experiment 4 morphing incrementally from 20% male (left) to 80% male (right). (c) 

The gender stimuli used in Experiment 5 morphing incrementally from 20% male (left) to 

80% male (right).  The morph continua from Experiment 4 and 5 were created using 

images taken from the Radboud Faces Database (Langner et al., 2010). 
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Figure 2: (a) The arrangement of experimental trials. In Experiment 1 the tone was task-

irrelevant. In Experiments 2-5, observers were required to produce a vowel sound, either 

/u/ or /i/, cued by the tone. In Experiment 3, observers also passively listened to, a vowel 

(/i/) played through speakers after the tone. (a) Illustration of bias. This observer is 

relatively sensitive to physical changes in the stimulus but is prone to making �insincere� 

responses. (b) Illustration of insensitivity. This observer exhibits no bias, but their 

responses vary less with physical changes in stimulus strength.   
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Figure 3: (a) The noise estimates and vowel onset asynchronies from Experiment 2. (b) 

The noise estimates and vowel onset asynchronies from Experiment 3. Negative 

asynchronies indicate that vowel production commenced before the onset of the image.  

Error bars represent 95% Confidence Intervals. *** denotes p < .01, ** denotes p < .025. 
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Figure 4: (a) The noise estimates and vowel onset asynchronies from Experiment 4. (b) 

The noise estimates and vowel onset asynchronies from Experiment 5. Negative 

asynchronies indicate that vowel production commenced before the onset of the image.  

Error bars represent 95% Confidence Intervals.  

  



 

Table 1: Mean proportion of sincere responses to each stimulus level, in each condition, for Experiments 1-3. Standard deviations are shown in 

italics inside parentheses.  
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Table 2: Mean proportion of male responses to each stimulus level, in each condition, for Experiments 4-5. Standard deviations are shown in 

italics inside parentheses.  


