Netkachova, K., Netkachov, O. & Bloomfield, R. E. (2015). Tool Support for Assurance Case
Building Blocks, Providing a Helping Hand with CAE. Paper presented at the SAFECOMP 2015
Workshops, ASSURE, DECSo0S, ISSE, ReSA4CI, and SASSUR, 22-09-2015, Delft, Netherlands.

City Research Online

FST 1894

Original citation: Netkachova, K., Netkachov, O. & Bloomfield, R. E. (2015). Tool Support for
Assurance Case Building Blocks, Providing a Helping Hand with CAE. Paper presented at the
SAFECOMP 2015 Workshops, ASSURE, DECSo0S, ISSE, ReSA4CI, and SASSUR, 22-09-2015,
Delft, Netherlands.

Permanent City Research Online URL.: http://openaccess.city.ac.uk/12968/

Copyright & reuse

City University London has developed City Research Online so that its users may access the
research outputs of City University London's staff. Copyright © and Moral Rights for this paper are
retained by the individual author(s) and/ or other copyright holders. All material in City Research
Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research
The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries
If you have any enquiries about any aspect of City Research Online, or if you wish to make contact
with the author(s) of this paper, please email the team at publications@city.ac.uk.

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Tool Support for Assurance Case Building Blocks

Providing a Helping Hand with CAE

Kateryna Netkachov Oleksandr Netkachd¥and Robin Bloomfieltf

1 Centre for Software Reliability, City University London, UK
{Kateryna.Netkachova.2, Oleksandr.Netkachov,
R.E.Bloomfield}@city.ac.uk
2Adelard LLP, London, UK
{kn, reb}Radelard.com

Abstract. This paper presents a tool for structuring arguments in assurance cases.
The tool is designed to support the methodology of Claims-Argts¥ievidence

(CAE) Building Blocks that provides a series of archetypal CAE fragments to
help structure cases more formally and systematidalpssists with the devel-
opment and maintenance of structured assurance cases by providitigsféo
manage CAE blocks and partially automate the generation of staictures. In
addition to the tool, new visual guidelinegled “Helping hand is provided to

assist in applying the building blockEhe tool has been implemented on the
Adelard ASCE platform. The target users are assurance case developers and re
viewers. The tool and associated methodology can also be usegfabfae learn-

ing how to structure cases in a more rigorous and systematic manner.

Keywords: Claims:argument-evidence: CAE building blocks- helping
hand- ASCE tool- support.

1 I ntroduction

Over the past ten years there has been a trend towards an explicit claim-basethapproac
to safety justification and considerable work has been done on devedopisiguctur-
ing assurance cases [1,2,3]. However, the practice of how to stracii present cases
is very varied. There are lots of different styles with different expressivaemeksthese
many approaches make it difficult to compare cases and hard to pronade ggorous
semantics. To address these issues and provide a more rigoroahpparchitecting
cases, we have defined specific rules that restrict the type of argument struatures an
developed a collection of building blocks for assurance cases that hetpucboases
more formally and systmatically [4].

During the development of CAE building blocks, we reviewed a widesrahgases
from the defence, medical, financial and nuclear sector and the propbosétsilding
blocks were able to capture most of what was being expressed. We déghidg these
CAE building blocks, evaluating their use and improving the metlogg.

mailto:R.E.Bloomfield%7d@city.ac.uk

The tool presented in this paper is designed to aid the research and practice of devel-
oping structured formal and semi-formal assurance cases. Ta@thar products [5,6]
available to assist in the structured assurance case development. What makes our tool
unique is supporfor the CAE blocks as self-contained reusable configurable compo-
nents. It isa purpose-built tool designed specifically for the building blocks methodo
ogy, therefore, it was essential to integratevith a widely-used assurance case soft-
ware to make an ingzt We implemented it on top of ASCE [7], which is a market-
leading tool for the development and maintenance of assurance cassssauioe
range of industries. ASCE is a commercial product but it is availableffderge for
academic research purgss

The paper is structured in the following way. The concept of CAHibg blocks
needed to understand the idaal a new “helping hand” guidance are introduced in
Section 2. The software tool, which is the main focus of the paloeig with its tech-
nical information and implementation details are described in Section 3. Some early
experience with the tool and the future directions of work are outlm&edtion 4.

2 CAE Building Blocks and the “Helping Hand”

2.1 Building Blocks Concept

CAE building blocks are a series of archetypal CAE fragments, derivedaincempir-

ical analysis of real cases in various domains. They are createdausiagdardised
structure for combining CAE and are part of a stack of resourdesehare developing

to support authors of assurance cases. These resources comprésscticernrepts of
claims, argument, evidence; building blocks with a set of specific CAE stesctem-
plates created out of the blocks to address particular classes of problems, aadaihe ov
assurance case created using blocks and templates. The stack of CAEesdsou
shown in Fig. 1, where arrows indicate the instantiation of elenepi©duce an as-
surance case. The approach can be extended to support GSN n&fagierwgll. In
that case, GSN elements will be used instead of CAE and GSN patterns will be con-
structed out of the building blocks in a similar way as the CAE templBités exten-
sion will be implemented in due course.

Cases

Templates

11114

' l
i :
E | Blocks i
| |
i !

Fig. 1. Schematic of the stack of CAE resources (left) instantiated into a spes#i¢right)

The block structure contains enhancements to the classical CAE appr@addrié,
enhancement is to how arguments are addressed: a special side-warrantiglgment
troduced to explain and assist in a structured way whether the top-lemelcelaibe
deduced from the subclaims and under which circumstances the arguwadiot iShe
five basic CAE building blocks that we have identified are:

e Decomposition- partitions some aspect of the claim

e Substitution- refines a claim about an object into another claim about an equiva-
lent object

e Concretion- gives a more precise definition to some aspect of the claim

e Calculation or proof- used when some value of the claim can be computed or
proved

e Evidence incorporation incorporates evidence that directly supports the claim

The summary and the structure ofgbbasic block are provided in the Appendix A
Additional information and guidance can be found in the pager [4

2.2 “Helping Hand” for CAE Building Blocks

In order to support the teaching and deployment of CAE Buildilbgk3, we have
createdavisual guidance shown in Fig. We call it a “helping hand as it is designed

to help people structure assurance cases in an easier and more intuitbyeprayid-

ing a “cheat sheet” on a hand with some hints and questions to answer. Instead -of won
dering what to do next and how to better expand the case, this dpphifésthe ques-

tion to an easier one: “which block is best to uséand helps to find the answer by
following the provided guidance.

Does the claim involve
a calculated property?

Would it be easier
to satisfy the claim
by splitting it up?

e Con the claim pq
Is the claim be satisfed by
adequately the available
expressed? evidence? Easior-to justify

n for an equivalent
& object or property?
Consider C,Jncreﬁng
Or redrafting

——— > Substitution

Fig. 2. “Helping hand — high level guidelines for applying the building blocks

3 Tool Description

The main focus of this paper is on the software tool that assisséign QAE building
blocks within the existing assurance case development processes. The toave
developed provides facilities for creating and managing block-based emtatian to
help create more formal, structured and maintainable assurance cases.

The usage of CAE Building Blocks is not isolated and in order to betigffemur
tool should be integrated with the current processes and other tediouthe creation
and management of cases. To address this, we implemented it ontbep ABCE
platform, which is a widely-used powerful graphical and narrative hyperekfor
the development, review and maintenance of assurance cases. The detailetibdescr
of the ASCE tool can be found in the help file [8]. Below weydngihlight the features
of ASCE that are used by our tool and needed to understand the respapér.

Graphical editor for creating and arranging arguments

Support for different notations, including CAE

A content editor for editing the narrative content of nodes in a HTML format
Functionality to validate the resulting network against the logical constraithts of
notation being u=d

o Extensibility allowing support for specific applications and integration wfitier
technologies

The extensibility feature is particularly important for us as it is usétctoyporate
our tool into the existing ASCE environment. The integration is peddrmrough the
use of the ASCE mechanism of plugins and a customised “schema” file.

Therefore, the implementation of the tool involved two major activitiggpating
the Building Blocks methodology and integrating it into the ASCE tool. Bathem
is described in sections 3.1 and 3.2 below. The interaction between AKCEoth
parts of our tool is schematically shown in the sequence diagram gdadwidrig. 3.

Building Blocks

Q ASCE Integration
\}L Tool

User

-
|

«create or load
network» -Schema

GetSchemal()

GUIAction(action) .

OpenEditor(block) __

A

«show editor»

«block editing»

T

vy

asave block»
= SaveBlock(block)

«ASCE network
modification commands»

Fig. 3. Interaction sequence diagram

3.1 Tool Support for CAE Building Blocks

The Building Blocks tool is developed as a DHTML application. The graphical user
interface (GUI) components are created using HTML5, CSS3 and JavaScript. The
structure of the GUI controls follows the Model-View-Controller architectural pattern
every control has a model containing its internal state, HTML view reacting to any
changes of that model and controllers reacting to the user events aifigngdtie
model based on them. Examples of the GUI for the decompositioramuetion
blocks are provided in Fig. 4.

Most of the fields are completed automatically to save the user unnedggsagy
For example, the top claim is parsed to locate the name of the objecbassthe
values are completed, the subclaims titles, argument and side-warrant textesre gen
ated. One of the design choices we made is the ability to grade the formalitiiee.g.
side-warrant can be formulated informally or it can be generated lgdhi|m a more
formal way (math based side-warrant). All the inputs are editable anddieare free
to alter the text of the subclaims, side-warrants, etc. the way theyMen®DK button
at the bottom of the dialog is used to apply the block. Of course, dt ia ane way
write as the tool supports the evolution of CAE structures. If teesuiecide to change
their minds and delete or modify the nodes, this is reflected back fndh In that case
the automatically created text is regenerated, while any custom modificatiqre-are
served (no user data is lost). A sample CAE structure and the toati@ltdependen-
cies between auto-generated text values shown in red are provided in Fig. 4

5
g.;. Block_examples.axml - ASCE - Assurance and Safe| i3 Block l =TlEL ﬁ
File Edit View Format Toels Windows - Settings =
¥ = 3 —
.zl | R éﬂ-? Claim: {8]5[(_p_f_f_qi_llrlr_e‘_i_d_tnlerahlel

Block: concretion

-What s concreted?
Type: [property[~]

Mame of property:]bo\erable‘ 4'\/

Concrete by:]praase value)

Risk of failure is

tolerable ~How to concrete?

Z
Values: Jless than 1e-2 "\ -+

m

~Subdclaims [Evidence

JRisk of failure is less than 1e-2 &
tolerableis Rf| UMY \
-Extra Subdaims/Evidence \
3

. conc_rgon by | interpreted as
| precisevalue |
| | I

less than 1e-2
-Side Claim
mE Al

(ho\erable is interpreted as less than 1e-2

- Argument Text
If Risk of failure isless than 1e-2 and tolerable is

Risk of failure is
less than 1e-2

interpreted as less than 1e-2, we can show that
Risk of failure is tolerable,

Fig. 4. GUI and sample CAE diagram for the concretion block

In terms of the implementation details, the following JavaScript libraries are yised b
the GUI components: jQuery for DOM querying and manipulating, Backfzorien-
plementing the Observer pattern, Lo-Dash for general-purpose objdet meeries.

The standard HTML controls such as inputs and checkboxes are wrapihed\ulyC

triads to keep GUI control set consistent. In addition to those wrappeesatearustom
application-specific controls, such as ListControl, which iterates over the collection of
items, rendering each of them into an independent row. The class diagrdra fool

is provided in Fig. 5.

IConnector

Application -~ +Read() - Block Element
+Write(Block) Text st
ex rin
\ SeeEe
< &
Editor g .
+TopClaim \ / AN
+BlockEditors : BlockEditor[5] Block Evidence

)
‘ +Argument - Text
o +SideWarrant : Block
BlockEditor] +Subclaims - Element(]

+CurrentBlock : Block
4 =

DecompositionEditor

EvidencelncEditor ComputationEditor CommonEditor <+——— ConcretionEditor
A SN A W s A | N

SubstitutionEditor

Argument SideWarrant Variables Values Subclaims
AN / ™ ‘ N
v K AV ' AN
TextControl ListControl CheckboxControl

Fig. 5. UML class diagram for the tool

All classes of the tool are grouped into three main packages:

e Block model - classes that represent Block elements

e GUI - user-interaction controls and Block editors, constructed frone ttwsrols

e Application engine - manages instantiation of Block editors, contains depand
injection points for connector used for the integration with ASCE

The classes representing CAE Building Block elements (claims, argument,aside-w
rant etc.) and links are included in the Block model package. This packagertisins
rules for checking whether the model is well-formed by follovthregrules of the CAE
normal form, specifically:

Claim nodes may only be connected to argument nodes

Argument nodes may only be connected to claim and evidence nodes

Each argument node may only have one outbound link to a clalen no

Each claim is to be supported by only one argument

Argument nodes must be supported by at least one subclaim or evidence node
Evidence nodes represent the bottom of the safety argument arad snpported

A claim, subclaim or evidence may support more than one argument

All modules within the packages conform to the CommonJS Modulesispéoif.
To load these modules the execution environment should contain the imfdéore
of the CommonJS “require” function. The next section describes the integration part,
where this function is implemented by using the Windows Scripting ¢tosponents.

3.2 Integration with ASCE

The extensible architecture of ASCE allows users to implement new featuies of

the core functionality of ASCE using additional schemas and plughesdéveloper

documentation is freely available and can be found at [9,10]. BasicalGEARigins

are written as XML files which contain a mixture of configuration informatisser

interface and code. The recommended approach is to use HTML formesvetthhan-

dlers created in one of the Windows Scripting compatible languages (VBScript or

JScript). The GUI approach used for our tool is suitable for this tiypeegration, so

we implemented the tool as an ASCE plugin that runs in the Welser@aemponent.

The two major integration tasks we had to solve involved:

1. Implementation of CommonJS API in the plugin usitipdows Scripting Compo-
nents As was mentioned above, ASCE uses Windows Scripting while our tool is
built using CommonJS architecture. In order to use CommonJS with AGClEgd
to implement CommonJS interfaces using objects available in Windows &gripti

2. Implementation of the converter between the objeatlels of the building blocks
and ASCE Specific classes of the ASCE tool that are used by the converter are
shown in the Fig. 6.

PluginDeveloperAPI PluginExecutionContext

+AppendPluginMenultem(...)

. +ActiveLinkKey : String
+AppendPluginSubMenu(...)

+ActiveNodeKey : String

*CloseForm() +FormDOM : DOMDocument
+LoadForm(...) T
/ \
ASCENetwork \
+Key : String / ASCELink
+Nodes : ASCENodes =/ +Key : String
+Links : ASCELinks 7~ ——— | +Network : ASCENstwork
T +0rg : ASCENode
+Dst : ASCENode
l +ViewManifestations : LinkViewManifestations
ASCENode +LinkType : LinkTypeEnum
+Key : String L - +StatusField(String, Variant) : Variant
+Network : ASCENetwork
+ViewManifestations : NodeViewManifestations
+Annotation : String) . .
+InLinks : ASCELinks NodeViewManifestation
+NodeType : NodeTypeEnum -— +Top : Float
+QutLinks : ASCELinks " +Left : Float
+Userld : String +Width : Float
+UserTitle : String +Height : Float

+StatusField(String, Variant) : Variant *Node : ASCENode

Fig. 6. Class diagram showing ASCE COM components

Additionally, we also created a new ASCE schema file with a few custmla n
properties used to store the block settings.

4 Conclusions and Future Directions

In this paper we have presented a software tool for structuringaassucases using
CAE Building Blocks. The tool is integrated in the ASCE environntieough the use
of additional schemas and plugins. Additionally, we have introduced devighguid-
ance- a “helping hand” — to assist in the case structuring process. The tool and the
methodology are going through a progressive, iterative approaméptoyment and
will continue to evolve. At the moment, CAE notation forms the basic blockseo
approach. However, ianbe extended to other graphical and tabular notations and their
tool support in the future

We have already deployed the prototype tool and the methodology onb&maoim
projects. Some of the completed tasks include drafting of guidantteefokEA on the
assessment of dependability of nuclear 1&C systems important fety sdfafting of
templates for arguing about statistical testing as part of the EU Harmonjiest pde-
veloping cases to address probabilistic modelling of critical infrastructure amclipar
lar how one addresses model doubt. We have also used CAE Blocks oessiprefl
Masters level course at City University London on Information SecamityRisk in an
Assurance Case module.

The experience to date has shown the utility of the building blocks. Howtere
is more research and development to be done. For example, we need te explor
position of blocks into reusable domain-specific fragments or pattegimgg GSN no-
tation elements [3] and a related formal ba$i§.[We also plan on looking into links
to challenge and review chdits generated from the blocks, enhancing the default
evidence incorporation block to be a composite block for trusted evidengecad:
ing more support for the formal aspects of assurance cases. This isaxtiazyand
growing area with a number of research trends on argumentatididlerme and model
based approaches and we plan to continue our research in this directiafitidm ak
will reflect on how the experience of CAE Blocks can further suppsstirance Case
workflows as well as what impact they might have on standardisatiiitias.

Acknowledgement

We acknowledge support from the Artemis JU SESAMO project (humb&52%and
the UK EPSRC funded Communicating and Evaluating Cyber Risk anghDepcies
(CEDRICS) project which is part of the UK Research Institute in Trustwanitiys-
trial Control Systems (RITICS).

A Appendix - Basic Building Blocks for Assurance Cases

Structure

Description

Decomposition

(X = X1+X2+..4+Xn) A
(P(X1) AP(X2) A ... NP(XF
=>P(X))

Decomposition block

This block is used to claim that a cq
clusion about the whole object
property can be deduced from 1
claims or facts about constitug
parts.

Substituti Q) is equlvalem
ubstitution

Substitution block

This block is used when a claim ne¢
to be given a more precise definiti
or interpretation. The top claif (X,
Cn, En)can be replaced with a mg
precise or defined clair®1(X1, Cn
En), CnandEn are configuration an
environment.

O&

Concretion ‘—.

Concretion block

This block is used when a claim neq
to be given a more precise definiti
or interpretation. The top claif(X,
Cn, En)can be replaced with a mg
precise or defined clair®1(X1, Cn
En), CnandEn are configuration an
environment.

Calculation

Calculation block

This block is used to claim that t
value of a property of a system can
computed from the values of relat
properties of other objects. Show t
the valueb of propertyQ(X, b, E, C)
of systemX in envE and confC can

be calculated from valug
QA% & EQ,Q(X.&, EC)...Q(X,a,.EC)

@ Evidence incorporation block
This block is used to incorporate €
dence elements into the case.

A typical application of this block
T at the edge of a case tree wher
' Results R claim is shown to be directly satisfi
Results R by its supporting evidence.

evidence
incorporation

References

10.

11.

. ISO/IEC 15026-2: Systems and software engineeriiBystems and software assurance

Part 2: Assurance case, 2011.

. Bishop, P.G, Bloomfield, R.E.:A Methodology for Safety Case Devetop. In: Safety-

critical Systems Symposium 98, Birmingham, UK, Feb 1998, ISBN 3-548946.

. Kelly, T.: The goal structuring notation-a safety argument notatiorProc. DSN 2004

Workshop on Assurance Cases, 2004.

. Bloomfield, R.E., Netkachova, K.: Building Blocks for Assurance Cases. In: |EfeEa-

tional Symposium on Software Reliability Engineering WorkshopsREB8) 2014, pp.
186191, doi:10.1109/ISSREW.2014.72.

. Denney,E., Pai, G., Pohl, J.: AdvoCATE: An Assurance Case Automation Todfsdt.

Ortmeier P. Daniel (eds.) SAFECOMP 2012 Workshops. LNCS, vol. 7613, {91, 8
Springer, Heidelberg, 2012.

. Aiello, M., Hocking, A., Knight, J., Rowanhill, J.: SCT: A Safety Case Toolkit.|EEE

International Symposium on Software Reliability Engineering WorksfiGSREW) 2014,
pp. 216-219, doi:10.1109/ISSREW.2014.99.

. Adelard LLP: Assurance and Safety Case Environment (ASCE). [Onikelilable:

http://www.adelard.com/asce/ [Access2@:June 201b

. Adelard LLP, "Assurance and Safety Case Environment (ASCE) Help. [f@elline].

Available: http://www.adelard.com/asce/ [Accessed: 29 June]2015

. Emmet, L.: Introduction to plugin and schema development for ASORline]. Availa-

ble:http://www.adelard.com/asce/plugins/developer-documenta-
tion/4.1/w1873v01lc_ASCE_v4_plugin_API_docs.doc [Accesg8dune 201pb

Emmet, L.: APl documentation for ASCE v4.1. [Online]. Available: hitpuiv.ade-
lard.com/asce/plugins/developer-documentation/4.1/w2082v02a_ASCE_pleg#loper
_documentation.doc [Access&t June 201p

Denney, E., Pai, G.: Formal Basis for Safety Case Patternrid:|Bternational Confer-
ence on Computer Safety, Reliability and Security (SAFECOMP 2QMN8}S 8153, pp.
21-32. Sep. 2013.

http://www.adelard.com/asce/plugins/developer-documentation/4.1/w2082v02a_ASCE_plugin_developer%20_documentation.doc
http://www.adelard.com/asce/plugins/developer-documentation/4.1/w2082v02a_ASCE_plugin_developer%20_documentation.doc
http://www.adelard.com/asce/plugins/developer-documentation/4.1/w2082v02a_ASCE_plugin_developer%20_documentation.doc

