
Netkachova, K., Netkachov, O. & Bloomfield, R. E. (2015). Tool Support for Assurance Case

Building Blocks, Providing a Helping Hand with CAE. Paper presented at the SAFECOMP 2015

Workshops, ASSURE, DECSoS, ISSE, ReSA4CI, and SASSUR, 22-09-2015, Delft, Netherlands.

City Research Online

Original citation: Netkachova, K., Netkachov, O. & Bloomfield, R. E. (2015). Tool Support for

Assurance Case Building Blocks, Providing a Helping Hand with CAE. Paper presented at the

SAFECOMP 2015 Workshops, ASSURE, DECSoS, ISSE, ReSA4CI, and SASSUR, 22-09-2015,

Delft, Netherlands.

Permanent City Research Online URL: http://openaccess.city.ac.uk/12968/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Tool Support for Assurance Case Building Blocks

Providing a Helping Hand with CAE

Kateryna Netkachova12, Oleksandr Netkachov12 and Robin Bloomfield12

1 Centre for Software Reliability, City University London, UK
{Kateryna.Netkachova.2, Oleksandr.Netkachov,

R.E.Bloomfield}@city.ac.uk
2 Adelard LLP, London, UK

{kn, reb}@adelard.com

Abstract. This paper presents a tool for structuring arguments in assurance cases.
The tool is designed to support the methodology of Claims-Arguments-Evidence
(CAE) Building Blocks that provides a series of archetypal CAE fragments to
help structure cases more formally and systematically. It assists with the devel-
opment and maintenance of structured assurance cases by providing facilities to
manage CAE blocks and partially automate the generation of claim structures. In
addition to the tool, new visual guidelines called “Helping hand” is provided to
assist in applying the building blocks. The tool has been implemented on the
Adelard ASCE platform. The target users are assurance case developers and re-
viewers. The tool and associated methodology can also be useful for people learn-
ing how to structure cases in a more rigorous and systematic manner.

Keywords: Claims·argument·evidence·CAE building blocks·helping
hand·ASCE tool·support.

1 Introduction

Over the past ten years there has been a trend towards an explicit claim-based approach
to safety justification and considerable work has been done on developing and structur-
ing assurance cases [1,2,3]. However, the practice of how to structure and present cases
is very varied. There are lots of different styles with different expressiveness and these
many approaches make it difficult to compare cases and hard to provide a more rigorous
semantics. To address these issues and provide a more rigorous approach to architecting
cases, we have defined specific rules that restrict the type of argument structures and
developed a collection of building blocks for assurance cases that help construct cases
more formally and systematically [4].

During the development of CAE building blocks, we reviewed a wide range of cases
from the defence, medical, financial and nuclear sector and the proposed set of building
blocks were able to capture most of what was being expressed. We wish to deploy these
CAE building blocks, evaluating their use and improving the methodology.

mailto:R.E.Bloomfield%7d@city.ac.uk

The tool presented in this paper is designed to aid the research and practice of devel-
oping structured formal and semi-formal assurance cases. There are other products [5,6]
available to assist in the structured assurance case development. What makes our tool
unique is support for the CAE blocks as self-contained reusable configurable compo-
nents. It is a purpose-built tool designed specifically for the building blocks methodol-
ogy, therefore, it was essential to integrate it with a widely-used assurance case soft-
ware to make an impact. We implemented it on top of ASCE [7], which is a market-
leading tool for the development and maintenance of assurance cases across a wide
range of industries. ASCE is a commercial product but it is available free of charge for
academic research purposes.

The paper is structured in the following way. The concept of CAE building blocks
needed to understand the idea and a new “helping hand” guidance are introduced in
Section 2. The software tool, which is the main focus of the paper, along with its tech-
nical information and implementation details are described in Section 3. Some early
experience with the tool and the future directions of work are outlined in Section 4.

2 CAE Building Blocks and the “Helping Hand”

2.1 Building Blocks Concept

CAE building blocks are a series of archetypal CAE fragments, derived from an empir-
ical analysis of real cases in various domains. They are created using a standardised
structure for combining CAE and are part of a stack of resources that we are developing
to support authors of assurance cases. These resources comprise the basic concepts of
claims, argument, evidence; building blocks with a set of specific CAE structures; tem-
plates created out of the blocks to address particular classes of problems, and the overall
assurance case created using blocks and templates. The stack of CAE resources is
shown in Fig. 1, where arrows indicate the instantiation of elements to produce an as-
surance case. The approach can be extended to support GSN notation [3] as well. In
that case, GSN elements will be used instead of CAE and GSN patterns will be con-
structed out of the building blocks in a similar way as the CAE templates. This exten-
sion will be implemented in due course.

Fig. 1. Schematic of the stack of CAE resources (left) instantiated into a specific case (right)

The block structure contains enhancements to the classical CAE approach [1,2]. One
enhancement is to how arguments are addressed: a special side-warrant element is in-
troduced to explain and assist in a structured way whether the top-level claim can be
deduced from the subclaims and under which circumstances the argument is valid. The
five basic CAE building blocks that we have identified are:

 Decomposition – partitions some aspect of the claim  Substitution – refines a claim about an object into another claim about an equiva-
lent object  Concretion – gives a more precise definition to some aspect of the claim  Calculation or proof – used when some value of the claim can be computed or
proved  Evidence incorporation – incorporates evidence that directly supports the claim

The summary and the structure of these basic block are provided in the Appendix A.
Additional information and guidance can be found in the paper [4].

2.2 “Helping Hand” for CAE Building Blocks

In order to support the teaching and deployment of CAE Building Blocks, we have
created a visual guidance shown in Fig. 2. We call it a “helping hand” as it is designed
to help people structure assurance cases in an easier and more intuitive way by provid-
ing a “cheat sheet” on a hand with some hints and questions to answer. Instead of won-
dering what to do next and how to better expand the case, this approach shifts the ques-
tion to an easier one: “which block is best to use?” and helps to find the answer by
following the provided guidance.

Fig. 2. “Helping hand” – high level guidelines for applying the building blocks

3 Tool Description

The main focus of this paper is on the software tool that assists in using CAE building
blocks within the existing assurance case development processes. The tool we have
developed provides facilities for creating and managing block-based argumentation to
help create more formal, structured and maintainable assurance cases.

The usage of CAE Building Blocks is not isolated and in order to be effective our
tool should be integrated with the current processes and other tools used for the creation
and management of cases. To address this, we implemented it on top of the ASCE
platform, which is a widely-used powerful graphical and narrative hypertext tool for
the development, review and maintenance of assurance cases. The detailed description
of the ASCE tool can be found in the help file [8]. Below we only highlight the features
of ASCE that are used by our tool and needed to understand the rest of the paper.

 Graphical editor for creating and arranging arguments  Support for different notations, including CAE  A content editor for editing the narrative content of nodes in a HTML format  Functionality to validate the resulting network against the logical constraints of the
notation being used  Extensibility allowing support for specific applications and integration with other
technologies

The extensibility feature is particularly important for us as it is used to incorporate
our tool into the existing ASCE environment. The integration is performed through the
use of the ASCE mechanism of plugins and a customised “schema” file.

Therefore, the implementation of the tool involved two major activities: supporting
the Building Blocks methodology and integrating it into the ASCE tool. Each of them
is described in sections 3.1 and 3.2 below. The interaction between ASCE and both
parts of our tool is schematically shown in the sequence diagram provided in Fig. 3.

Fig. 3. Interaction sequence diagram

3.1 Tool Support for CAE Building Blocks

The Building Blocks tool is developed as a DHTML application. The graphical user
interface (GUI) components are created using HTML5, CSS3 and JavaScript. The
structure of the GUI controls follows the Model-View-Controller architectural pattern:
every control has a model containing its internal state, HTML view reacting to any
changes of that model and controllers reacting to the user events and modifying the
model based on them. Examples of the GUI for the decomposition and concretion
blocks are provided in Fig. 4.

Most of the fields are completed automatically to save the user unnecessary typing.
For example, the top claim is parsed to locate the name of the object. As soon as the
values are completed, the subclaims titles, argument and side-warrant text are gener-
ated. One of the design choices we made is the ability to grade the formality, e.g. the
side-warrant can be formulated informally or it can be generated by the tool in a more
formal way (math based side-warrant). All the inputs are editable and the users are free
to alter the text of the subclaims, side-warrants, etc. the way they want. The OK button
at the bottom of the dialog is used to apply the block. Of course, it is not a one way
write as the tool supports the evolution of CAE structures. If the users decide to change
their minds and delete or modify the nodes, this is reflected back in the tool. In that case
the automatically created text is regenerated, while any custom modifications are pre-
served (no user data is lost). A sample CAE structure and the tool GUI with dependen-
cies between auto-generated text values shown in red are provided in Fig. 4

Fig. 4. GUI and sample CAE diagram for the concretion block

In terms of the implementation details, the following JavaScript libraries are used by
the GUI components: jQuery for DOM querying and manipulating, Backbone for im-
plementing the Observer pattern, Lo-Dash for general-purpose object model queries.
The standard HTML controls such as inputs and checkboxes are wrapped by the MVC
triads to keep GUI control set consistent. In addition to those wrappers, there are custom
application-specific controls, such as ListControl, which iterates over the collection of
items, rendering each of them into an independent row. The class diagram for the tool
is provided in Fig. 5.

Fig. 5. UML class diagram for the tool

All classes of the tool are grouped into three main packages:

 Block model - classes that represent Block elements  GUI - user-interaction controls and Block editors, constructed from these controls  Application engine - manages instantiation of Block editors, contains dependency
injection points for connector used for the integration with ASCE

The classes representing CAE Building Block elements (claims, argument, side-war-
rant etc.) and links are included in the Block model package. This package also contains
rules for checking whether the model is well-formed by following the rules of the CAE
normal form, specifically:

 Claim nodes may only be connected to argument nodes  Argument nodes may only be connected to claim and evidence nodes  Each argument node may only have one outbound link to a claim node  Each claim is to be supported by only one argument  Argument nodes must be supported by at least one subclaim or evidence node  Evidence nodes represent the bottom of the safety argument and are not supported  A claim, subclaim or evidence may support more than one argument

All modules within the packages conform to the CommonJS Modules specification.
To load these modules the execution environment should contain the implementation
of the CommonJS “require” function. The next section describes the integration part,
where this function is implemented by using the Windows Scripting Host components.

3.2 Integration with ASCE

The extensible architecture of ASCE allows users to implement new features on top of
the core functionality of ASCE using additional schemas and plugins. The developer
documentation is freely available and can be found at [9,10]. Basically, ASCE plugins
are written as XML files which contain a mixture of configuration information, user
interface and code. The recommended approach is to use HTML forms with event han-
dlers created in one of the Windows Scripting compatible languages (VBScript or
JScript). The GUI approach used for our tool is suitable for this type of integration, so
we implemented the tool as an ASCE plugin that runs in the Web browser component.
The two major integration tasks we had to solve involved:
1. Implementation of CommonJS API in the plugin using Windows Scripting Compo-

nents: As was mentioned above, ASCE uses Windows Scripting while our tool is
built using CommonJS architecture. In order to use CommonJS with ASCE, we had
to implement CommonJS interfaces using objects available in Windows Scripting.

2. Implementation of the converter between the object models of the building blocks
and ASCE: Specific classes of the ASCE tool that are used by the converter are
shown in the Fig. 6.

Fig. 6. Class diagram showing ASCE COM components

Additionally, we also created a new ASCE schema file with a few custom node
properties used to store the block settings.

4 Conclusions and Future Directions

In this paper we have presented a software tool for structuring assurance cases using
CAE Building Blocks. The tool is integrated in the ASCE environment through the use
of additional schemas and plugins. Additionally, we have introduced a high level guid-
ance – a “helping hand” – to assist in the case structuring process. The tool and the
methodology are going through a progressive, iterative approach to deployment and
will continue to evolve. At the moment, CAE notation forms the basic blocks of the
approach. However, it can be extended to other graphical and tabular notations and their
tool support in the future.

We have already deployed the prototype tool and the methodology on a number of
projects. Some of the completed tasks include drafting of guidance for the IAEA on the
assessment of dependability of nuclear I&C systems important for safety, drafting of
templates for arguing about statistical testing as part of the EU Harmonics project, de-
veloping cases to address probabilistic modelling of critical infrastructure and particu-
lar how one addresses model doubt. We have also used CAE Blocks on a professional
Masters level course at City University London on Information Security and Risk in an
Assurance Case module.

The experience to date has shown the utility of the building blocks. However, there
is more research and development to be done. For example, we need to explore com-
position of blocks into reusable domain-specific fragments or patterns, using GSN no-
tation elements [3] and a related formal basis [11]. We also plan on looking into links
to challenge and review checklists generated from the blocks, enhancing the default
evidence incorporation block to be a composite block for trusted evidence and provid-
ing more support for the formal aspects of assurance cases. This is a very active and
growing area with a number of research trends on argumentation, confidence and model
based approaches and we plan to continue our research in this direction. In addition we
will reflect on how the experience of CAE Blocks can further support Assurance Case
workflows as well as what impact they might have on standardisation activities.

Acknowledgement

We acknowledge support from the Artemis JU SESAMO project (number 295354) and
the UK EPSRC funded Communicating and Evaluating Cyber Risk and Dependencies
(CEDRICS) project which is part of the UK Research Institute in Trustworthy Indus-
trial Control Systems (RITICS).

A Appendix - Basic Building Blocks for Assurance Cases

Structure Description

Decomposition block

This block is used to claim that a con-
clusion about the whole object or
property can be deduced from the
claims or facts about constituent
parts.

Substitution block

This block is used when a claim needs
to be given a more precise definition
or interpretation. The top claim P(X,
Cn, En) can be replaced with a more
precise or defined claim P1(X1, Cn,
En), Cn and En are configuration and
environment.

Concretion block

This block is used when a claim needs
to be given a more precise definition
or interpretation. The top claim P(X,
Cn, En) can be replaced with a more
precise or defined claim P1(X1, Cn,
En), Cn and En are configuration and
environment.

Calculation block

This block is used to claim that the
value of a property of a system can be
computed from the values of related
properties of other objects. Show that
the value b of property Q(X, b, E, C)
of system X in env E and conf C can

P(X)

Decomposition

- - -P(X2)P(X1) P(Xn)

(X = X1+X2+...+Xn) /\
(P(X1) /\ P(X2) /\ ... /\P(Xn)

=> P(X))

P(X)

Q(Y)

Substitution
Q(Y) is equivalent

to P(X)

P1(X1)

P(X)

Concretion P:=P1, X:=X1

Q2(X2, a2)

b= F(a1, a2, ..., ai)

- - - - - -

Q(X, b)

Q1(X1, a1) Qi(Xi, ai)

Calculation

be calculated from values

Evidence incorporation block

This block is used to incorporate evi-
dence elements into the case.

A typical application of this block is
at the edge of a case tree where a
claim is shown to be directly satisfied
by its supporting evidence.

References

1. ISO/IEC 15026-2: Systems and software engineering -- Systems and software assurance --
Part 2: Assurance case, 2011.

2. Bishop, P.G, Bloomfield, R.E.:A Methodology for Safety Case Development. In: Safety-
critical Systems Symposium 98, Birmingham, UK, Feb 1998, ISBN 3-540-76189-6.

3. Kelly, T.: The goal structuring notation-a safety argument notation. In: Proc. DSN 2004
Workshop on Assurance Cases, 2004.

4. Bloomfield, R.E., Netkachova, K.: Building Blocks for Assurance Cases. In: IEEE Interna-
tional Symposium on Software Reliability Engineering Workshops (ISSREW) 2014, pp.
186-191, doi:10.1109/ISSREW.2014.72.

5. Denney, E., Pai, G., Pohl, J.: AdvoCATE: An Assurance Case Automation Toolset. In: F.
Ortmeier, P. Daniel (eds.) SAFECOMP 2012 Workshops. LNCS, vol. 7613, pp. 8–21,
Springer, Heidelberg, 2012.

6. Aiello, M., Hocking, A., Knight, J., Rowanhill, J.: SCT: A Safety Case Toolkit. In: IEEE
International Symposium on Software Reliability Engineering Workshops (ISSREW) 2014,
pp. 216-219, doi:10.1109/ISSREW.2014.99.

7. Adelard LLP: Assurance and Safety Case Environment (ASCE). [Online]. Available:
http://www.adelard.com/asce/ [Accessed: 29 June 2015].

8. Adelard LLP, "Assurance and Safety Case Environment (ASCE) Help File". [Online].
Available: http://www.adelard.com/asce/ [Accessed: 29 June 2015].

9. Emmet, L.: Introduction to plugin and schema development for ASCE. [Online]. Availa-
ble:http://www.adelard.com/asce/plugins/developer-documenta-
tion/4.1/w1873v01c_ASCE_v4_plugin_API_docs.doc [Accessed: 29 June 2015].

10. Emmet, L.: API documentation for ASCE v4.1. [Online]. Available: http://www.ade-
lard.com/asce/plugins/developer-documentation/4.1/w2082v02a_ASCE_plugin_developer
_documentation.doc [Accessed: 29 June 2015].

11. Denney, E., Pai, G.: Formal Basis for Safety Case Patterns. In: 32nd International Confer-
ence on Computer Safety, Reliability and Security (SAFECOMP 2013), LNCS 8153, pp.
21-32. Sep. 2013.

),,,(),...,,,,(),,,,(222111 CEaXQCEaXQCEaXQ nnn

P(X)

evidence

incorporation

Results R

P(X)

Results R

http://www.adelard.com/asce/plugins/developer-documentation/4.1/w2082v02a_ASCE_plugin_developer%20_documentation.doc
http://www.adelard.com/asce/plugins/developer-documentation/4.1/w2082v02a_ASCE_plugin_developer%20_documentation.doc
http://www.adelard.com/asce/plugins/developer-documentation/4.1/w2082v02a_ASCE_plugin_developer%20_documentation.doc

