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Abstract 
The paper describes a layered approach to 

analysing safety and security in a structured way and 
creating a security-informed safety case. The 
approach is applied to a case study – a Security 
Gateway controlling data flow between two different 
security domains implemented with a separation 
kernel based operating system in an avionics 
environment. We discuss some findings from the 
case study, show how the approach identifies and 
ameliorates important interactions between safety and 
security and supports the development of complex 
assurance case structures. 

1. Introduction 
Assurance Cases in their many forms (safety, 

security, dependability and reliability cases) have 
been around for many years with considerable work 
done around structuring them in a variety of ways 
[1][2][3][4][5]. In this study, we are developing a 
practical approach to structuring cases based on the 
idea of compositionality and layered assurance [6][7]. 
This is particularly useful when dealing with complex 
security-informed safety cases, which provide 
justification of safety taking into full consideration 
the impact of security. 

A detailed safety analysis and the production of 
a safety case are required by various standards in 
automotive [8], railway [9], nuclear [10] and other 
industries. Most of these standards focus solely on 
safety without taking security into account. However, 
there is a growing realization that security 
considerations can have a significant impact on safety 
especially with the increasing openness of systems. 
For many cyber-physical systems, analysis of safety 
and security is combined to achieve high assurance. 
Our experience and previous research [11] has shown 

that a significant portion of a safety case is affected 
by considering security. Introducing security aspects 
increases the complexity of the resulting security-
informed safety case and one of the possible 
structuring mechanisms for dealing with that 
complexity is a layered approach to constructing 
cases that we are developing. 

This paper provides an overview of our 
approach illustrating it on an example from the 
avionics domain, where the combined security-
informed safety assessment is particularly important. 
Aviation has been implementing systems by 
following the safety standards [12][13] and recently 
by using the safety-driven design-approach of 
Integrated Modular Avionics (IMA) [14]. IMA relies 
on the concept of partitioning between applications. 
Similarly, avionic industry has recently issued 
security standards [15][16]. In terms of the system 
design, the security-driven design approach of 
Multiple Independent Level of Security (MILS) is 
used with partitioning and a separation kernel to 
control information flow [17]. Building on the safety 
case approach and taking into account security 
considerations, in this study we are creating an 
integrated security-informed safety case for a MILS-
based gateway controlling information flow between 
aircraft security domains. 

The paper is structured in the following way. 
The overview of the layered approach to architecting 
security-informed safety cases that we are developing 
is provided in Section 2. A brief description of the 
Security Gateway use case is provided and the 
application of the layered approach to the case study 
illustrated in Section 3. Conclusions, some finding 
from the case study and next steps for future research 
are outlined in Section 4. 



2. Security-informed Safety Case 

2.1 General Concept 

The approach we are developing is based on the 
use of structured assurance cases for communicating 
and building confidence in the safety and security 
properties of the system. Structured assurance cases 
are used in a wide range of industrial domains. Our 
current method is based on a concept of Claims, 
Arguments and Evidence (CAE) [1], which can be 
related to the approach developed by Toulmin [2]. 

Security considerations have a significant impact 
on various aspects of safety justification. It is 
necessary to identify security properties as well as 
safety properties, to demonstrate compliance with 
both security and safety standards, and to consider a 
broader set of potential hazards, threats and 
vulnerabilities. 

Our previous research [11] has shown that a 
significant portion of a security-informed safety case 
will need to address security explicitly. In some 
instances this will lead to substantial changes to the 
system design, the implementation process and the 
justification. For example, the following areas are 
particularly significant from a security perspective 
and are evident in large scale systems, such as an 
aircraft: 

 Supply chain integrity 

 Confidentiality of the process and product 

 Combination of specific aspects of addressing 
safety and security design approaches and life 
cycle processes of certification and updates, such 
as stable and infrequently changing system design 
and certification approaches addressing safety 
combined with requirement of frequent security 
subsystem updates. 

 Issues of lifecycle threats and malicious threats to 
evidence, e.g.: 

o Malicious events after system deployment that 
will change in nature and scope as the threat 
environment changes. 

o Weakening of security controls as the 
capability of the attacker and technology 
changes. This may have major impact on 

proposed lifetime of installed equipment and 
design for refurbishment and change. 

 Design changes to address new user interactions, 
training, configuration, and vulnerabilities. This 
might lead to additional functional requirements 
that implement security controls. 

 Possible exploitation of the device/service to 
attack itself or others. 

In order to address these additional security risks 
for an avionics example, it is necessary to combine 
safety and security risk assessment. Because many 
systems already have safety justifications with 
corresponding risk assessments we are developing an 
adapted process to make them security-informed, as 
opposed to the common approach of starting with 
security issues and then merging them with safety 
standards. As a result, the presented approach brings 
the security-informed safety case perspective into the 
avionics domain. 

2.2 Security-Informed Safety Case Architecture 

The justification of a security-informed safety 
case can be complex, or at least complicated, as it 
combines the claims from adaptation, supply chain 
deployment, and hazard and vulnerability analysis. 
As one role of the case is to communicate effectively, 
one needs to balance both the risk of abstracting 
away important details and the risk of the important 
details being lost in a sea of other details.  

The works of Rushby and Delong [6][7]raise the 
idea of compositionality and layered assurance. The 
goals of the approach are manifest in the LAW series 
of workshop between 2005 and 2012 [18]. These 
explore the “bold proposition that it is possible to 
build assured systems from compositions of 
previously assured components, while being able to 
derive the system level properties (e.g., safety & 
security) systematically from the properties of the 
components”. LAW spans the theoretical, 
engineering, and certification challenges to be met in 
making compositional assurance for such systems a 
reality. They use the term "layered" assurance to 
encompass diverse manifestations of combined 
assurance, including composition (of assured 
components), incremental certification (incremental 
cost for incremental change), abstraction layers 
(building upon assurance of lower layers), and 



polymorphism (common assurance of variants, such 
as among members of a product family). MILS is one 
approach to achieving the goals of compositional 
assurance. 

Abstraction is one of the key structuring 
mechanisms and we have experimented with various 
levels of abstraction when creating security-informed 
safety cases. We call those levels layers of assurance, 
because within each abstraction level the assurance is 
provided. We identified the following main layers of 
assurance: 

 L0 Policy and requirements – the highest level 
of abstraction where the system represents its 
requirements, and defines safety and security 
policies and their interaction; 

 L1 Architectural layer – the intermediate level 
where the abstract system components and 
architecture are analysed; 

 L2 Implementation layer – the detailed level 
where the implementation of specific 
components and their integration within the 
specific system architecture are scrutinised. 

These layers of assurance fit well the layered 
system design approach of aerospace described in 
ARP 4754 [13] and ED-203 [16] combined with the 
compositional approach of MILS [17] and IMA [19]. 

The following chapter instantiates and discusses 
each abstraction layer in application to the MILS 
gateway use case, a potential subsystem in future 
aircraft system architectures. 

3. Analysis of a Security Gateway 

3.1 Overview of the Gateway Use Case 

As a use case for our study, we use a gateway 
function. Usually security gateways connect two or 
more security domains [20] to each other and control 
the information flow according to a given 
information flow policy. It is important to note that 
controlling information flow in the context of an 
airplane focuses more on ensuring the integrity and 
availability of one domain (by maintaining the 
integrity of safety-assured application and as a 
consequence safety) rather than protecting the 
confidentiality of the data propagating from one 

domain into another. The careful joint consideration 
of the security and safety needs and properties of this 
gateway is the basis for our security-informed safety 
analysis. 

Our gateway is implemented by using the design 
concept of Multiple Independent Layers of Security 
(MILS). MILS bases on the properties of separation 
and controlled information flow. In current MILS 
proposals these two properties are achieved by a 
special operation system layers. This operating 
system provides separation by the concept of 
partitioning. Partitions are isolated runtime 
environments for applications. Since a meaningful 
MILS system only works with allowed interactions 
among application, the operating system also allows 
a controlled information flow between partitions. 
Applications can implement further layers of 
security, e.g. cryptographic algorithms or more 
sophisticated data processing, or entire other function 
such as image processing. 

The gateway is intended to filter application-
level data traffic for the TFTP and HTTP protocol. It 
achieves its data filtering by a cooperating of several 
partition applications allowing to interact in a certain 
way with each other. Figure 1 shows the abstract 
system design [21]. Each solid box represents one 
partition provided by the Separation Kernel. In the 
use case implementation we use PikeOS [22], 
however the analysis remained generic as long as the 
Separation Kernel supports spatial and time 
partitioning. PikeOS is currently under Common 
Criteria evaluation targeting the Evaluation 
Assurance Level 5+ (AVA_VAN.5) [23], and hence, 
being a good foundation for secure developments. 
The arrows define the directed and controlled 
information flow among partition in order to allow 
interaction. Using the MILS architecture allows the 
definition and implementation of a local security and 
information flow policy for each partition. For 
example, each Receiver Component is in charge to 
analyse ingress traffic and forward it either to the 
TFTP or to the HTTP filter chain. Each filter chain’s 
policy again is to filter these data packets according 
to the prevalent application-level protocol. 

The security policy of the Audit partition is to 
gather audit records generated by other partitions and 
to store them securely in order to provide traceability. 

 



 

Figure 1. High-level View of Gateway Component 

 

3.2 Application of the Layered Assurance 
Approach 

Scope of the System 
The scope of the security and safety analysis, of 

our use case is broader than just the gateway. We are 
interested in a system consisting of applications in 
two domains having different security levels, i.e. 
processing data of different classification. Each 
application belongs to a single security domain and 
can only communicate with applications from the 
other security domain via the security gateway.  

Figure 2 shows a context data flow diagram 
representing the high view of such broader system. 
The double circle at the centre represents the gateway 
process that performs various operations (receives 
data streams, applies security policies, transmits the 
filtered content etc.). 

 

Figure 2. High-level data flow diagram of the 
system 

Rectangles identify external entities that interact 
with the gateway. They comprise applications from 
two domains (A and B) and the administrators that 
can maintain the gateway while being in maintenance 
mode (a special operational mode). An open-ended 
rectangle indicates a data store where the logging and 
alerting data are stored by the gateway for later use. 

Discussion of L0 on the Gateway  

The first and most abstract level concerns 
requirements, policies and principles of the system, 
with the focus on the system safety, system security 
and their interaction. 

The top-level claim involves introducing a 
security policy, considering a set of applications at 
different security classification, and safety 
criticalities associated with them. At L0 the abstract 
gateway enforces a security policy that puts 
constraints on inter-domain information flows. We 
need to undertake an analysis to show that the 
interaction and trade-offs are satisfactory.  

It is unlikely that under all runtime 
circumstances one simple and static policy will be 
valid. There will be times of initialisation, special 
operational modes or changing threat levels that will 
impact the policy. For example at high levels of 
security threat the system might be adjusted to isolate 
high-safety applications from all applications of other 
domains. Alternatively, in times of operationally 
challenging conditions safety consideration could 
require an adaption of the security policies in order to 
allow manually transmitted messages by trusted 



external entities to provide guidance and recovery 
strategies to the pilots. 

Figure 3 provides an illustration of some of 
these considerations by showing different policy 
zones. At the bottom left we have an area of 
maximum operational benefit. The other areas 
indicate how certain threat level security concerns 
dominating e.g. the need to restrict the flows. In this 
case the safety analysis must show that these are 
acceptably safe even if they do cause higher 
workload or operational complexities. There is a 
corresponding zone where safety issues dominate and 
the security policy is the same or weakened. In this 
case, the security analysis must show that identified 
security threats are countered by other environmental 
properties during this time.  

 

Figure 3. Defining integrated policy 

Finally, the top right hand corner is a very 
uncertain and undecidable area where some special 
capabilities might be needed, e.g. in the form of a 
manual override to security policy enabling flows as 
well as a manual closing down on all non-essential 
information flows if threats were high and 
compromise was likely. Again, the consequences of 
any trade-offs need to be assessed during the 
analysis. In summary as we create the L0 case for the 
system we need to address the: 

 modes of safety application 

  operational modes of the gateway 

 Impact of different threat levels 

 attributes for the gateway’s policy 

At this level we develop a substance to the 
analysis of the policy interactions, we have an 
updated security policy and safety requirements as 
well as initial results from the risk analysis. Also, we 
identify some more details about modes of operation 
of the gateway and the overall system as well as 
availability and other attributes for the properties. 
The case structure created for the security gateway at 
L0 level of analysis is presented in Figure 4. 

Discussion of L1 on the Gateway  
At this level we analyse the components and the 

architecture of the system, which play important roles 
in achieving system objectives and enforcing the 
critical properties of the system.  

To address security considerations, at this level 
of analysis we applied various methods of security 
analysis including: 

 A security-informed guideword-based approach 
derived from the safety Hazop (Hazard and 
Operability) analysis; 

 An analysis of trust relationships; 

STRIDE (Spoofing, Tampering, Repudiation, 
Information Disclose, Denial of Service, Elevation of 
Privilege) [24], the Microsoft threat modelling 
approach. 

Fragments of the analyses are presented in 
Tables 1, 2 and 3 below.  

Table 1 provides an example of applying a 
security-informed Hazop guideword-based approach. 

Table 2 presents a part of trust relationships 
analysis performed using the high-level system view 
(Figure 2). STRIDE methodology required us to 
analyse the system with respect to spoofing, 
tempering, repudiation, information disclosure, denial 
of service, elevation of privilege. A brief description 
of these scenarios is presented as part of the STRIDE 
analysis in Table 2. 

Table 3 presents a part of trust relationships 
analysis performed using the high-level system view 
(Figure 2). 

.



All interactions

are captured

properly

Trade-offs

analysis results

satisfactory

Security-related

constraints and

policies taken into

account

Security analysis

including assests,

usage etc. is

adequate

Safety-related

constraints and

policies taken into

account

Safety analysis

adequate

Risk from system is

tolerable if controls

implemented

Risk is ALARP by

design and

operation

Security policiesSafety analysis Standards Security

analysis

System Requirements

Services functional and

non-functional

Document

capturing

trade-offs

analysis and

decisions

made

Report

capturing

security and

safety

interactions

Analysis of

HazID

process,

experience

Preliminary

hazard

identification

and analysis

report

System

hazard

analysis

and risk

assessment

report

Documentation

training and

OME Safety

Instructions

identified

Good design

practices

analysis and

definition

System

hazard log

Analysis of

experience with

system (and data)

SQEPness

Decomposition by

souces of safety

requirements

Decomposition by

souces of security

requirements

Decomposition by

identified / satisfactory

Decomposition

tolerable / ALARP

Interaction between safety

requirements and security

policies is understood and

trade-offs satifactory

All system assets

identified and security

related objectives

defined properly

Complete set of system

safety-related uses identified

and safety requirements

captured properly

Requirements identified

necessary to reduce risks

to tolerable and ALARP

Decomposition by

safety, security and their

interaction

Safety and security

requirements are

complete

Safety and security

requirements are

well-defined and of good

quality

Report analysing that

the requirements are

consistent,

unambiguous, unitary,

atomic, traceable,

verifiable, complete and

up-to-date

Output from tools

providing natural

language analysis

of the

requirements

Safety and security

requirements are

valid

Concretion

Decomposition by

content and quality

System safety and

security policies and

requirements are

adequate

By valid we mean the

requirements reduce

risk to tolerable and 

ALARP

 

Figure 4. L0-level case fragment for the gateway in CAE notation 

 

 

 



Table 1. Example of security-informed Hazop analysis for the gateway 

N Element Guide 
word 

Deviation Possible causes Consequences 

Function considered: Connecting to the gateway 

1 Connect to channels Other 
than 

Application 
connects to a 
channel other than 
gateway‘s 

Another application 
from the same 
domain pretends to 
act like a gateway 

Man-in-the-middle 
attacks 

2 Connect to channels More Too many messages 
are sent to gateway 
channels 

Faulty or 
compromised 
application is 
sending too many 
requests 

Denial of service 

Function considered: Gateway filtering 

12 Filter messaged going 
through gateway 

As 
well 
as 

Additional messages 
are allowed to pass 
through the gateway 

Error in filter 
specification or 
implementation 

Leakage of 
confidential data 
Pass of malformed 
data (integrity) 

Table 2. Trust relationship analysis of the gateway use case 

Breach of 
Trust 

Consequences Mitigation 

Gateway-
Administrator 

High 

Denial of service, loss of data integrity and 
confidentiality, man in the middle attack. 

All security policies have to be operating 
and have to be identified by some 
authority. The gateway will only accept 
these security policies. 

Gateway-
Auditing 

Medium 

Loss of accountability and nonrepudiation, 
possible impact on confidentiality of 
recorded data 

Applications located in the domains can 
have their own logs documenting what 
they sent. No confidential data or data that 
can help facilitate an attack should be 
stored in logs. 

Table 3. Fragment of the STRIDE analysis of the gateway 

Threat 
type 

Security 
property 

Brief explanation Use case examples 

Spoofing Authenticity Impersonating 
someone else 

1) Application from domain B pretends to be a 
gateway or an application from domain A and sends 
something to domain B users; 

2) One application from domain B pretends to be 
another application from domain B and requests 
something from the domain A or gateway 

Tampering Integrity Modifying data One application from domain B intercepts and 
modifies the data send to or from another application 

Denial of 
service 

Availability Denying or degrading 
service to valid users 

Application from domain B sends too many messages 
to the gateway 



 

Some of the attack scenarios created at this level 
of abstraction are illustrated in Figure 5. 

 

Figure 5. Attack scenarios: a) spoofing; b) 
spoofing and tempering; c) denial of service 

The analysis conducted at the L1 level of 
abstraction showed that many critical aspects of the 
system are enforced by the separation kernel. Other 
important components of the architecture include the 
gateway application software, system monitor & 
audit component, system integrator, etc. The resulting 
L1 case is shown in Figure 6. 

The L1 case considers the critical properties, 
related to the system functionality as well as other 
aspects (reliability, availability, etc.) and properties 
identified at L0. Each of the architectural components 
enforcing the critical properties of the system should 
be expanded further to demonstrate that the 

implemented subcomponents really enforce the 
corresponding properties. This type of analysis is to 
be performed at the next L2 level of abstraction. 

Discussion of L2 on the Gateway  
L2 represents the detailed implementation level. 

At this level we introduce all the technical 
information available about the actual system 
implementation. 

To illustrate the approach let us consider one of 
the generic requirements that would be identified at 
L0 as part when analysing security policies of the 
system: all communication between domains of 
different security levels must be controlled in 
accordance with a system-wide security policy. Then, 
at the L1 level this is expanded into subclaims related 
to system components and architecture. One of such 
subclaims defined at L1 is: “All communication 
between domains is via the gateway” (Figure 6). The 
L1 analysis also shows that this subclaim is enforced 
by the defined information flow between partitions 
configured and assured by the PikeOS component 
within the system architecture. Therefore, the 
implementation details of both the gateway and the 
PikeOS need to be thoroughly analysed in order to 
demonstrate that the critical property is really 
enforced. This analysis is performed at the L2 level 
of abstraction. 

In terms of implementation, the security gateway 
is composed out of user applications hosted by 
PikeOS. The gateway’s purpose is to control all 
information flow between applications located in 
different security domains according to the system-
wide policy. All applications are supposed to 
communicate in accordance to the settings specified 
in the PikeOS system configuration file (VMIT file). 
This file is configured in an XML format by the 
system integrator and converted into a binary form. 
Then all software application binaries (with binaries 
of the security gateway component being part of 
them), PikeOS binary objects (microkernel, platform 
support package, PikeOS system software) and the 
PikeOS system configuration file are assembled into 
one binary file - PikeOS ROM image, which is then 
booted and run on the target system [25]. 
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Figure 6. L1-level case fragment for the gateway

Therefore, the case created at the L2 level of 
abstraction includes (but is not limited to) the 
following claims: 

1. Gateway is implemented and deployed as user 
applications within PikeOS partitions; 

2. Inter-partition channels in the VMIT file are 
configured in a way that all partitions with 
different security settings can only communicate 
with the gateway partitions (inbound or 
outbound); 

3. There are no errors in the configuration file 
allowing partitions with different se-curity 
settings to communicate bypassing the gateway 
partitions; 

4. Partitions can only communicate by using the 
communication channels provided by PikeOS 
(e.g. via shared memory resources, network 
resource, etc.) 

5. All PikeOS binary objects, configuration binary, 
gateway application binary and the resulting 
ROM binary image are generated properly 
without any malicious modifications or 
corruptions; 

6. The binary objects are not modified or replaced 
after they have been generated. 

7. All partitions are initialized, created and set up 
correctly before data passes the gateway; 



8. Gateway application is loaded properly after the 
separation kernel has been established, and is 
available to use; 

9. Gateway application can receive and send 
messages to the gateway partitions’ ports, which 
are the end points for the communication 
channels configured in the VMIT file; 

10.  PikeOS security kernel correctly enforces any 
settings specified in the VMIT configuration 
file. 

A fragment from the L2 case (related to #5 and 6 
above) is provided in Figure 7. 
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Figure 7. Sample fragment from the L2 case for 
the gateway 

As discussed, various parts of the system need to 
be analysed within the L2 case. Other points (e.g. #4, 
6, 7, 10) are related to the general PikeOS 
implementation and can be satisfied by showing that 
the PikeOS is implemented correctly to its 
specification providing all the required functionality. 
Some other claims are dependent on the correct 
implementation of the gateway application (#1, 9), or 
the experience of the system integrator (#2, 3), 
trusted development and deployment processes (#5, 
6). 

4 Conclusion 
This paper presents a Layered Assurance 

approach to creating security-informed safety cases 
and its application to a MILS-based security gateway. 
We have developed CAE structures for each of the 
abstraction levels providing a concrete example of 
the approach that can be used to include security in a 
safety case as well as to consider how more general 
security issues can be addressed. There are two main 
roles of the approach: 1) it aids in the communication 
by providing a summary of the issues and their 
interrelationship, and 2) it indicates how we might 
reason that the lower properties combine to satisfy 
the top-level claim. 

Overall, our review of the Layered CAE 
Assurance Case has broadened our view of how to 
combine safety and security. For example since 
tackling at architecture level is insufficient, we need 
to escalate to requirements using the abstraction 
layers and the explicit consideration of policy 
interactions within the L0 layer. In addition the 
consideration of lifecycle issues, particularly the 
adaptation and updating of the system is part of our 
assurance case approach. 

The CAE Layered Approach provides a generic 
link between a number of key processes: the 
integrated risk analysis and the safety and security 
system development lifecycle, and further integration 
could be developed. We also found that the IMA 
architecture and PikeOS have intrinsic properties of 
separation and partitioning that are fundamental to 
enforcing the safety and security properties. While 
many of the assurance required from a security-
informed safety perspective will exist in the IMA 
assurance, the emphasis on the credibility of the 
supply chain, the trust in tools, the response to 



malicious events, maintenance and update policies 
will be different. 

To show that the claims are a complete set and 
that the PikeOS and Security Gateway properties do 
in fact combine in this way will require us to provide 
a more formal semantics. One way to do this is to 
take a more explicit model based approach where the 
claim structure helps us identify the right level of 
abstraction and detail in the model. This is a topic for 
future research. 

The next steps will be towards additional 
formalisation of the reasoning within the security-
informed safety cases and the development of 
templates using the CAE Blocks [4] as well as 
exploring their linking them to formal models. 
Additionally, issues related to compositionality and 
traceability between layers would need to be 
addressed in more detail. 
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