
Netkachova, K., Müller, K., Paulitsch, M. & Bloomfield, R. E. (2015). Investigation into a Layered

Approach to Architecting Security-Informed Safety Cases. Paper presented at the 2015 IEEE/AIAA

34th Digital Avionics Systems Conference (DASC), 13-09-2015 - 17-09-2015, Prague, Czech

Republic.

City Research Online

Original citation: Netkachova, K., Müller, K., Paulitsch, M. & Bloomfield, R. E. (2015).

Investigation into a Layered Approach to Architecting Security-Informed Safety Cases. Paper

presented at the 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC), 13-09-2015 -

17-09-2015, Prague, Czech Republic.

Permanent City Research Online URL: http://openaccess.city.ac.uk/12967/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/42629522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

INVESTIGATION INTO A LAYERED APPROACH TO ARCHITECTING
SECURITY-INFORMED SAFETY CASES

Kateryna Netkachova, City University London and Adelard LLP, London, UK

Kevin Müller, Airbus Group Innovations, Munich, Germany

Michael Paulitsch, Thales Austria GmbH, Vienna, Austria

Robin Bloomfield, City University London and Adelard LLP, UK

Abstract
The paper describes a layered approach to

analysing safety and security in a structured way and
creating a security-informed safety case. The
approach is applied to a case study – a Security
Gateway controlling data flow between two different
security domains implemented with a separation
kernel based operating system in an avionics
environment. We discuss some findings from the
case study, show how the approach identifies and
ameliorates important interactions between safety and
security and supports the development of complex
assurance case structures.

1. Introduction
Assurance Cases in their many forms (safety,

security, dependability and reliability cases) have
been around for many years with considerable work
done around structuring them in a variety of ways
[1][2][3][4][5]. In this study, we are developing a
practical approach to structuring cases based on the
idea of compositionality and layered assurance [6][7].
This is particularly useful when dealing with complex
security-informed safety cases, which provide
justification of safety taking into full consideration
the impact of security.

A detailed safety analysis and the production of
a safety case are required by various standards in
automotive [8], railway [9], nuclear [10] and other
industries. Most of these standards focus solely on
safety without taking security into account. However,
there is a growing realization that security
considerations can have a significant impact on safety
especially with the increasing openness of systems.
For many cyber-physical systems, analysis of safety
and security is combined to achieve high assurance.
Our experience and previous research [11] has shown

that a significant portion of a safety case is affected
by considering security. Introducing security aspects
increases the complexity of the resulting security-
informed safety case and one of the possible
structuring mechanisms for dealing with that
complexity is a layered approach to constructing
cases that we are developing.

This paper provides an overview of our
approach illustrating it on an example from the
avionics domain, where the combined security-
informed safety assessment is particularly important.
Aviation has been implementing systems by
following the safety standards [12][13] and recently
by using the safety-driven design-approach of
Integrated Modular Avionics (IMA) [14]. IMA relies
on the concept of partitioning between applications.
Similarly, avionic industry has recently issued
security standards [15][16]. In terms of the system
design, the security-driven design approach of
Multiple Independent Level of Security (MILS) is
used with partitioning and a separation kernel to
control information flow [17]. Building on the safety
case approach and taking into account security
considerations, in this study we are creating an
integrated security-informed safety case for a MILS-
based gateway controlling information flow between
aircraft security domains.

The paper is structured in the following way.
The overview of the layered approach to architecting
security-informed safety cases that we are developing
is provided in Section 2. A brief description of the
Security Gateway use case is provided and the
application of the layered approach to the case study
illustrated in Section 3. Conclusions, some finding
from the case study and next steps for future research
are outlined in Section 4.

2. Security-informed Safety Case

2.1 General Concept

The approach we are developing is based on the
use of structured assurance cases for communicating
and building confidence in the safety and security
properties of the system. Structured assurance cases
are used in a wide range of industrial domains. Our
current method is based on a concept of Claims,
Arguments and Evidence (CAE) [1], which can be
related to the approach developed by Toulmin [2].

Security considerations have a significant impact
on various aspects of safety justification. It is
necessary to identify security properties as well as
safety properties, to demonstrate compliance with
both security and safety standards, and to consider a
broader set of potential hazards, threats and
vulnerabilities.

Our previous research [11] has shown that a
significant portion of a security-informed safety case
will need to address security explicitly. In some
instances this will lead to substantial changes to the
system design, the implementation process and the
justification. For example, the following areas are
particularly significant from a security perspective
and are evident in large scale systems, such as an
aircraft:

 Supply chain integrity

 Confidentiality of the process and product

 Combination of specific aspects of addressing
safety and security design approaches and life
cycle processes of certification and updates, such
as stable and infrequently changing system design
and certification approaches addressing safety
combined with requirement of frequent security
subsystem updates.

 Issues of lifecycle threats and malicious threats to
evidence, e.g.:

o Malicious events after system deployment that
will change in nature and scope as the threat
environment changes.

o Weakening of security controls as the
capability of the attacker and technology
changes. This may have major impact on

proposed lifetime of installed equipment and
design for refurbishment and change.

 Design changes to address new user interactions,
training, configuration, and vulnerabilities. This
might lead to additional functional requirements
that implement security controls.

 Possible exploitation of the device/service to
attack itself or others.

In order to address these additional security risks
for an avionics example, it is necessary to combine
safety and security risk assessment. Because many
systems already have safety justifications with
corresponding risk assessments we are developing an
adapted process to make them security-informed, as
opposed to the common approach of starting with
security issues and then merging them with safety
standards. As a result, the presented approach brings
the security-informed safety case perspective into the
avionics domain.

2.2 Security-Informed Safety Case Architecture

The justification of a security-informed safety
case can be complex, or at least complicated, as it
combines the claims from adaptation, supply chain
deployment, and hazard and vulnerability analysis.
As one role of the case is to communicate effectively,
one needs to balance both the risk of abstracting
away important details and the risk of the important
details being lost in a sea of other details.

The works of Rushby and Delong [6][7]raise the
idea of compositionality and layered assurance. The
goals of the approach are manifest in the LAW series
of workshop between 2005 and 2012 [18]. These
explore the “bold proposition that it is possible to
build assured systems from compositions of
previously assured components, while being able to
derive the system level properties (e.g., safety &
security) systematically from the properties of the
components”. LAW spans the theoretical,
engineering, and certification challenges to be met in
making compositional assurance for such systems a
reality. They use the term "layered" assurance to
encompass diverse manifestations of combined
assurance, including composition (of assured
components), incremental certification (incremental
cost for incremental change), abstraction layers
(building upon assurance of lower layers), and

polymorphism (common assurance of variants, such
as among members of a product family). MILS is one
approach to achieving the goals of compositional
assurance.

Abstraction is one of the key structuring
mechanisms and we have experimented with various
levels of abstraction when creating security-informed
safety cases. We call those levels layers of assurance,
because within each abstraction level the assurance is
provided. We identified the following main layers of
assurance:

 L0 Policy and requirements – the highest level
of abstraction where the system represents its
requirements, and defines safety and security
policies and their interaction;

 L1 Architectural layer – the intermediate level
where the abstract system components and
architecture are analysed;

 L2 Implementation layer – the detailed level
where the implementation of specific
components and their integration within the
specific system architecture are scrutinised.

These layers of assurance fit well the layered
system design approach of aerospace described in
ARP 4754 [13] and ED-203 [16] combined with the
compositional approach of MILS [17] and IMA [19].

The following chapter instantiates and discusses
each abstraction layer in application to the MILS
gateway use case, a potential subsystem in future
aircraft system architectures.

3. Analysis of a Security Gateway

3.1 Overview of the Gateway Use Case

As a use case for our study, we use a gateway
function. Usually security gateways connect two or
more security domains [20] to each other and control
the information flow according to a given
information flow policy. It is important to note that
controlling information flow in the context of an
airplane focuses more on ensuring the integrity and
availability of one domain (by maintaining the
integrity of safety-assured application and as a
consequence safety) rather than protecting the
confidentiality of the data propagating from one

domain into another. The careful joint consideration
of the security and safety needs and properties of this
gateway is the basis for our security-informed safety
analysis.

Our gateway is implemented by using the design
concept of Multiple Independent Layers of Security
(MILS). MILS bases on the properties of separation
and controlled information flow. In current MILS
proposals these two properties are achieved by a
special operation system layers. This operating
system provides separation by the concept of
partitioning. Partitions are isolated runtime
environments for applications. Since a meaningful
MILS system only works with allowed interactions
among application, the operating system also allows
a controlled information flow between partitions.
Applications can implement further layers of
security, e.g. cryptographic algorithms or more
sophisticated data processing, or entire other function
such as image processing.

The gateway is intended to filter application-
level data traffic for the TFTP and HTTP protocol. It
achieves its data filtering by a cooperating of several
partition applications allowing to interact in a certain
way with each other. Figure 1 shows the abstract
system design [21]. Each solid box represents one
partition provided by the Separation Kernel. In the
use case implementation we use PikeOS [22],
however the analysis remained generic as long as the
Separation Kernel supports spatial and time
partitioning. PikeOS is currently under Common
Criteria evaluation targeting the Evaluation
Assurance Level 5+ (AVA_VAN.5) [23], and hence,
being a good foundation for secure developments.
The arrows define the directed and controlled
information flow among partition in order to allow
interaction. Using the MILS architecture allows the
definition and implementation of a local security and
information flow policy for each partition. For
example, each Receiver Component is in charge to
analyse ingress traffic and forward it either to the
TFTP or to the HTTP filter chain. Each filter chain’s
policy again is to filter these data packets according
to the prevalent application-level protocol.

The security policy of the Audit partition is to
gather audit records generated by other partitions and
to store them securely in order to provide traceability.

Figure 1. High-level View of Gateway Component

3.2 Application of the Layered Assurance
Approach

Scope of the System
The scope of the security and safety analysis, of

our use case is broader than just the gateway. We are
interested in a system consisting of applications in
two domains having different security levels, i.e.
processing data of different classification. Each
application belongs to a single security domain and
can only communicate with applications from the
other security domain via the security gateway.

Figure 2 shows a context data flow diagram
representing the high view of such broader system.
The double circle at the centre represents the gateway
process that performs various operations (receives
data streams, applies security policies, transmits the
filtered content etc.).

Figure 2. High-level data flow diagram of the
system

Rectangles identify external entities that interact
with the gateway. They comprise applications from
two domains (A and B) and the administrators that
can maintain the gateway while being in maintenance
mode (a special operational mode). An open-ended
rectangle indicates a data store where the logging and
alerting data are stored by the gateway for later use.

Discussion of L0 on the Gateway

The first and most abstract level concerns
requirements, policies and principles of the system,
with the focus on the system safety, system security
and their interaction.

The top-level claim involves introducing a
security policy, considering a set of applications at
different security classification, and safety
criticalities associated with them. At L0 the abstract
gateway enforces a security policy that puts
constraints on inter-domain information flows. We
need to undertake an analysis to show that the
interaction and trade-offs are satisfactory.

It is unlikely that under all runtime
circumstances one simple and static policy will be
valid. There will be times of initialisation, special
operational modes or changing threat levels that will
impact the policy. For example at high levels of
security threat the system might be adjusted to isolate
high-safety applications from all applications of other
domains. Alternatively, in times of operationally
challenging conditions safety consideration could
require an adaption of the security policies in order to
allow manually transmitted messages by trusted

external entities to provide guidance and recovery
strategies to the pilots.

Figure 3 provides an illustration of some of
these considerations by showing different policy
zones. At the bottom left we have an area of
maximum operational benefit. The other areas
indicate how certain threat level security concerns
dominating e.g. the need to restrict the flows. In this
case the safety analysis must show that these are
acceptably safe even if they do cause higher
workload or operational complexities. There is a
corresponding zone where safety issues dominate and
the security policy is the same or weakened. In this
case, the security analysis must show that identified
security threats are countered by other environmental
properties during this time.

Figure 3. Defining integrated policy

Finally, the top right hand corner is a very
uncertain and undecidable area where some special
capabilities might be needed, e.g. in the form of a
manual override to security policy enabling flows as
well as a manual closing down on all non-essential
information flows if threats were high and
compromise was likely. Again, the consequences of
any trade-offs need to be assessed during the
analysis. In summary as we create the L0 case for the
system we need to address the:

 modes of safety application

 operational modes of the gateway

 Impact of different threat levels

 attributes for the gateway’s policy

At this level we develop a substance to the
analysis of the policy interactions, we have an
updated security policy and safety requirements as
well as initial results from the risk analysis. Also, we
identify some more details about modes of operation
of the gateway and the overall system as well as
availability and other attributes for the properties.
The case structure created for the security gateway at
L0 level of analysis is presented in Figure 4.

Discussion of L1 on the Gateway
At this level we analyse the components and the

architecture of the system, which play important roles
in achieving system objectives and enforcing the
critical properties of the system.

To address security considerations, at this level
of analysis we applied various methods of security
analysis including:

 A security-informed guideword-based approach
derived from the safety Hazop (Hazard and
Operability) analysis;

 An analysis of trust relationships;

STRIDE (Spoofing, Tampering, Repudiation,
Information Disclose, Denial of Service, Elevation of
Privilege) [24], the Microsoft threat modelling
approach.

Fragments of the analyses are presented in
Tables 1, 2 and 3 below.

Table 1 provides an example of applying a
security-informed Hazop guideword-based approach.

Table 2 presents a part of trust relationships
analysis performed using the high-level system view
(Figure 2). STRIDE methodology required us to
analyse the system with respect to spoofing,
tempering, repudiation, information disclosure, denial
of service, elevation of privilege. A brief description
of these scenarios is presented as part of the STRIDE
analysis in Table 2.

Table 3 presents a part of trust relationships
analysis performed using the high-level system view
(Figure 2).

.

All interactions

are captured

properly

Trade-offs

analysis results

satisfactory

Security-related

constraints and

policies taken into

account

Security analysis

including assests,

usage etc. is

adequate

Safety-related

constraints and

policies taken into

account

Safety analysis

adequate

Risk from system is

tolerable if controls

implemented

Risk is ALARP by

design and

operation

Security policiesSafety analysis Standards Security

analysis

System Requirements

Services functional and

non-functional

Document

capturing

trade-offs

analysis and

decisions

made

Report

capturing

security and

safety

interactions

Analysis of

HazID

process,

experience

Preliminary

hazard

identification

and analysis

report

System

hazard

analysis

and risk

assessment

report

Documentation

training and

OME Safety

Instructions

identified

Good design

practices

analysis and

definition

System

hazard log

Analysis of

experience with

system (and data)

SQEPness

Decomposition by

souces of safety

requirements

Decomposition by

souces of security

requirements

Decomposition by

identified / satisfactory

Decomposition

tolerable / ALARP

Interaction between safety

requirements and security

policies is understood and

trade-offs satifactory

All system assets

identified and security

related objectives

defined properly

Complete set of system

safety-related uses identified

and safety requirements

captured properly

Requirements identified

necessary to reduce risks

to tolerable and ALARP

Decomposition by

safety, security and their

interaction

Safety and security

requirements are

complete

Safety and security

requirements are

well-defined and of good

quality

Report analysing that

the requirements are

consistent,

unambiguous, unitary,

atomic, traceable,

verifiable, complete and

up-to-date

Output from tools

providing natural

language analysis

of the

requirements

Safety and security

requirements are

valid

Concretion

Decomposition by

content and quality

System safety and

security policies and

requirements are

adequate

By valid we mean the

requirements reduce

risk to tolerable and

ALARP

Figure 4. L0-level case fragment for the gateway in CAE notation

Table 1. Example of security-informed Hazop analysis for the gateway

N Element Guide
word

Deviation Possible causes Consequences

Function considered: Connecting to the gateway

1 Connect to channels Other
than

Application
connects to a
channel other than
gateway‘s

Another application
from the same
domain pretends to
act like a gateway

Man-in-the-middle
attacks

2 Connect to channels More Too many messages
are sent to gateway
channels

Faulty or
compromised
application is
sending too many
requests

Denial of service

Function considered: Gateway filtering

12 Filter messaged going
through gateway

As
well
as

Additional messages
are allowed to pass
through the gateway

Error in filter
specification or
implementation

Leakage of
confidential data
Pass of malformed
data (integrity)

Table 2. Trust relationship analysis of the gateway use case

Breach of
Trust

Consequences Mitigation

Gateway-
Administrator

High

Denial of service, loss of data integrity and
confidentiality, man in the middle attack.

All security policies have to be operating
and have to be identified by some
authority. The gateway will only accept
these security policies.

Gateway-
Auditing

Medium

Loss of accountability and nonrepudiation,
possible impact on confidentiality of
recorded data

Applications located in the domains can
have their own logs documenting what
they sent. No confidential data or data that
can help facilitate an attack should be
stored in logs.

Table 3. Fragment of the STRIDE analysis of the gateway

Threat
type

Security
property

Brief explanation Use case examples

Spoofing Authenticity Impersonating
someone else

1) Application from domain B pretends to be a
gateway or an application from domain A and sends
something to domain B users;

2) One application from domain B pretends to be
another application from domain B and requests
something from the domain A or gateway

Tampering Integrity Modifying data One application from domain B intercepts and
modifies the data send to or from another application

Denial of
service

Availability Denying or degrading
service to valid users

Application from domain B sends too many messages
to the gateway

Some of the attack scenarios created at this level
of abstraction are illustrated in Figure 5.

Figure 5. Attack scenarios: a) spoofing; b)
spoofing and tempering; c) denial of service

The analysis conducted at the L1 level of
abstraction showed that many critical aspects of the
system are enforced by the separation kernel. Other
important components of the architecture include the
gateway application software, system monitor &
audit component, system integrator, etc. The resulting
L1 case is shown in Figure 6.

The L1 case considers the critical properties,
related to the system functionality as well as other
aspects (reliability, availability, etc.) and properties
identified at L0. Each of the architectural components
enforcing the critical properties of the system should
be expanded further to demonstrate that the

implemented subcomponents really enforce the
corresponding properties. This type of analysis is to
be performed at the next L2 level of abstraction.

Discussion of L2 on the Gateway
L2 represents the detailed implementation level.

At this level we introduce all the technical
information available about the actual system
implementation.

To illustrate the approach let us consider one of
the generic requirements that would be identified at
L0 as part when analysing security policies of the
system: all communication between domains of
different security levels must be controlled in
accordance with a system-wide security policy. Then,
at the L1 level this is expanded into subclaims related
to system components and architecture. One of such
subclaims defined at L1 is: “All communication
between domains is via the gateway” (Figure 6). The
L1 analysis also shows that this subclaim is enforced
by the defined information flow between partitions
configured and assured by the PikeOS component
within the system architecture. Therefore, the
implementation details of both the gateway and the
PikeOS need to be thoroughly analysed in order to
demonstrate that the critical property is really
enforced. This analysis is performed at the L2 level
of abstraction.

In terms of implementation, the security gateway
is composed out of user applications hosted by
PikeOS. The gateway’s purpose is to control all
information flow between applications located in
different security domains according to the system-
wide policy. All applications are supposed to
communicate in accordance to the settings specified
in the PikeOS system configuration file (VMIT file).
This file is configured in an XML format by the
system integrator and converted into a binary form.
Then all software application binaries (with binaries
of the security gateway component being part of
them), PikeOS binary objects (microkernel, platform
support package, PikeOS system software) and the
PikeOS system configuration file are assembled into
one binary file - PikeOS ROM image, which is then
booted and run on the target system [25].

Decision for change

due to the environment

or objectives changes is

made correctly

Should be expanded at L2 to

analyse the implementation of the

components

Decision making

process

Monitoring and

auditing

components

Audits

analysis

Pike OS split by

reasons
Development

process

Deployment

process

Decision for change

as a response to

failures or anomalies

is made correctly

Any new

binary file is

correct

Decisions for

changes are

made correctly

New binary

file is

deployed

properly

Applications are

separated and there is

no unexpected

communication bw

them

Gateway

application

consider critical

properties

phases of change

accommodation

lifecycle

Critical information flow

properties will continue

to be satisfied with any

future changes

Critical information

flow requirements

are satisfied initially

Decomposition

by time period

Safety and security

requirements are

satisfied by the

architecture and its

components

All communication

between domains

is via gateway

Communication

between domains

is controlled

properly

Figure 6. L1-level case fragment for the gateway

Therefore, the case created at the L2 level of
abstraction includes (but is not limited to) the
following claims:

1. Gateway is implemented and deployed as user
applications within PikeOS partitions;

2. Inter-partition channels in the VMIT file are
configured in a way that all partitions with
different security settings can only communicate
with the gateway partitions (inbound or
outbound);

3. There are no errors in the configuration file
allowing partitions with different se-curity
settings to communicate bypassing the gateway
partitions;

4. Partitions can only communicate by using the
communication channels provided by PikeOS
(e.g. via shared memory resources, network
resource, etc.)

5. All PikeOS binary objects, configuration binary,
gateway application binary and the resulting
ROM binary image are generated properly
without any malicious modifications or
corruptions;

6. The binary objects are not modified or replaced
after they have been generated.

7. All partitions are initialized, created and set up
correctly before data passes the gateway;

8. Gateway application is loaded properly after the
separation kernel has been established, and is
available to use;

9. Gateway application can receive and send
messages to the gateway partitions’ ports, which
are the end points for the communication
channels configured in the VMIT file;

10. PikeOS security kernel correctly enforces any
settings specified in the VMIT configuration
file.

A fragment from the L2 case (related to #5 and 6
above) is provided in Figure 7.

Check is

performed

before the binary

code is run

Binary hash

is added

and checked

Signed

(against

malicious)

stages: during

/ after

Non-modified

binary image is

used

building

process

PikeOS, configuration

gateway app and the

resulting ROM binaries are

generated properly

Binary not modified

during the

generation

Binary not modified

after it is generated

Binary

specification file

is correct

malicious /

non-malicious

changes

protection

implemented /

checked

Binary

generator tools

are OK

Binary not

corrupted

RAM with

autocorrection

is used

Development

OS is

protected

Signature and

hash protection

implemented

No malicious code

running during the

binary generation

Figure 7. Sample fragment from the L2 case for
the gateway

As discussed, various parts of the system need to
be analysed within the L2 case. Other points (e.g. #4,
6, 7, 10) are related to the general PikeOS
implementation and can be satisfied by showing that
the PikeOS is implemented correctly to its
specification providing all the required functionality.
Some other claims are dependent on the correct
implementation of the gateway application (#1, 9), or
the experience of the system integrator (#2, 3),
trusted development and deployment processes (#5,
6).

4 Conclusion
This paper presents a Layered Assurance

approach to creating security-informed safety cases
and its application to a MILS-based security gateway.
We have developed CAE structures for each of the
abstraction levels providing a concrete example of
the approach that can be used to include security in a
safety case as well as to consider how more general
security issues can be addressed. There are two main
roles of the approach: 1) it aids in the communication
by providing a summary of the issues and their
interrelationship, and 2) it indicates how we might
reason that the lower properties combine to satisfy
the top-level claim.

Overall, our review of the Layered CAE
Assurance Case has broadened our view of how to
combine safety and security. For example since
tackling at architecture level is insufficient, we need
to escalate to requirements using the abstraction
layers and the explicit consideration of policy
interactions within the L0 layer. In addition the
consideration of lifecycle issues, particularly the
adaptation and updating of the system is part of our
assurance case approach.

The CAE Layered Approach provides a generic
link between a number of key processes: the
integrated risk analysis and the safety and security
system development lifecycle, and further integration
could be developed. We also found that the IMA
architecture and PikeOS have intrinsic properties of
separation and partitioning that are fundamental to
enforcing the safety and security properties. While
many of the assurance required from a security-
informed safety perspective will exist in the IMA
assurance, the emphasis on the credibility of the
supply chain, the trust in tools, the response to

malicious events, maintenance and update policies
will be different.

To show that the claims are a complete set and
that the PikeOS and Security Gateway properties do
in fact combine in this way will require us to provide
a more formal semantics. One way to do this is to
take a more explicit model based approach where the
claim structure helps us identify the right level of
abstraction and detail in the model. This is a topic for
future research.

The next steps will be towards additional
formalisation of the reasoning within the security-
informed safety cases and the development of
templates using the CAE Blocks [4] as well as
exploring their linking them to formal models.
Additionally, issues related to compositionality and
traceability between layers would need to be
addressed in more detail.

References
[1] ASCAD: Adelard Safety Case Development

Manual. Adelard (2010)

[2] Toulmin, S.: The Uses of Argument. Cambridge
University Press (1958)

[3] Kelly, T.: The goal structuring notation-a safety
argument notation. In: Proc. DSN 2004,
Workshop on Assurance Cases, 2004.

[4] Bloomfield, R. and Netkachova, K.: Building
Blocks for Assurance Cases. 2nd International
Workshop on Assurance Cases for Software-
intensive Systems (ASSURE), International
Symposium on Software Reliability
Engineering, Naples, Italy (2014)

[5] ISO/IEC 15026-2 Systems and software
engineering -- Systems and software assurance -
- Part 2: Assurance case. ISO (2011)

[6] Delong, R.: Compositional Certification Lecture
Notes. Real-Time Embedded Systems Forum,
The Open Group (TOG) conference, Toronto,
Canada (2009)

[7] Boettcher, C., Delong, R., Rushby, J., Sifre, W.:
The MILS Component Integration Approach to
Secure Information Sharing. 27th IEEE/AIAA

Digital Avionics Systems Conference (DASC),
St. Paul MN (2008)

[8] ISO 26262: Road Vehicles - Functional Safety.
International Organization for Standardization.

[9] Railway applications - Communication,
signalling and processing systems - Safety-
related electronic systems for signaling. CSN
EN 50129 (2003)

[10] Def Stan 00-55: Requirements for safety related
software in defence equipment. Ministry of
Defence

[11] Bloomfield, R., Netkachova, K., Stroud, R.:
Security-Informed Safety: If it's not secure, it's
not safe. 5th International Workshop on
Software Engineering for Resilient Systems
(SERENE), Kiev, Ukraine (2013)

[12] ED-135/ARP4761: Guidelines and Methods for
Conducting the Safety Assessment Process on
Civil Airborne Systems and Equipment.
EUROCAE/RTCA (1996)

[13] ED-79A/ARP4754A: Guidelines for
Development of Civil Aircraft and Systems.
EUROCAE/RCTA (2010)

[14] ARINC-653: Avionics Application Software
Standard Interface. Airlines Electronic
Engineering Committee (2010)

[15] ED-202a/DO-326a: Airworthiness Security
Process Specification. EUROCAE/RCTA (2014
and 2015)

[16] ED-203: Airworthiness Security Methods and
Considerations. EUROCAE (2012)

[17] Boettcher C., R. Delong, J. Rushby, S. Wilmar:
The MILS Component Integration Approach to
Secure Information Sharing. 27th Digital
Avionics Systems Conference (DASC), St. Paul,
MN (2008)

[18] The Layered Assurance Workshop (LAW).
ASCAS 2007-2013.

[19] DO-297: Integrated Modular Avionics (IMA)
Development Guidance and Certification
Considerations. RTCA (2005)

[20] ARINC 811: Commercial Aircraft Information
Security Concepts of Operation and Process
Framework. Airlines Electronic Engineering
Committee (2005)

[21] D11.1 - Project Requirements: Classification,
Cross-domain analysis and High-Level
Architecture. EURO-MILS project (2014)

[22] PikeOS Manual - v3.4. SYSGO AG (2014)

[23] EURO-MILS: The EURO-MILS Project. 2012-
2016. European Union’s 7th Framework
Programme. ICT-318353. www.euromils.eu

[24] Microsoft Corporation. 2002. The STRIDE
Threat Model. Online available: https://msdn.
microsoft.com/en-
us/library/ee823878(v=cs.20).aspx Accesses:
2015-08-13

[25] Installing and Using PikeOS. SYSGO AG
(2014)

Acknowledgements
This work was supported by the Artemis JU

SESAMO project (project number 295354), the
European Union’s 7th Framework Programme
project EURO-MILS (ID: ICT-318353) and the UK
EPSRC funded Communicating and Evaluating
Cyber Risk and Dependencies (CEDRICS) project
which is part of the UK Research Institute in
Trustworthy Industrial Control Systems (RITICS).

Email Addresses
Kateryna.Netkachova.2@city.ac.uk

Kevin.Mueller@airbus.com

Michael.Paulitsch@thalesgroup.com

R.E.Bloomfield@city.ac.uk

34th Digital Avionics Systems Conference

September 13-17, 2015

http://www.euromils.eu/
mailto:Kateryna.Netkachova.2@city.ac.uk
mailto:Kevin.Mueller@airbus.com
mailto:Michael.Paulitsch@thalesgroup.com
mailto:R.E.Bloomfield@city.ac.uk

