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Abstract

Inspired by the multiplicative nature of the Ramanujan modular discriminant, ∆,

we consider physical realizations of certain multiplicative products over the Dedekind

eta-function in two parallel directions: the generating function of BPS states in certain

heterotic orbifolds and elliptic K3 surfaces associated to congruence subgroups of the

modular group. We show that they are, after string duality to type II, the same K3

surfaces admitting Nikulin automorphisms. In due course, we will present identities

arising from q-expansions as well as relations to the sporadic Mathieu group M24.
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1 Introduction and Motivation

On the virtues of 24 there has been much written. The ever expanding tapestry of

correspondences, intricate and beautiful, continues to be woven in many new direc-

tions. Of the multitude of the stories surrounding this mysterious number we will

isolate two strands of thought, both rich in mathematics and in physics, touching

upon such diverse subjects as K3 surfaces, multiplicative functions, BPS counting

and modular subgroups.

We begin with the standard fact that the Dedekind eta-function η(q) = q
1
24

∞
∏

n=1

(1−

qn) has a prefactor of q
1
24 which is crucial to its quasi-modularity (cf. Appendix A.1).

It is also well-known, dating at least to Euler, that once removing this factor, the

reciprocal is the generating function for the partition of positive integers. This fact

was exploited in the computation of oscillator modes in string theory. Interestingly,

for the bosonic string, which is critical in 26 dimensions, the physical degrees of

freedom, upon quantization in the light-cone, is a counting governed by qη(q)−24, i.e.,

by the free partition of integers in 24 independent directions (spatial dimensions).

What is perhaps less appreciated is the fact that the reciprocal generating function,

η(q)−24, enjoys extraordinary properties: the expansion coefficients are the values of

the famous Ramanujan tau-function, and are of a remarkable multiplicative nature.

On this latter point, quite independent of physical interpretation, the natural and

important question of what other products of η-functions, viz., functions of the form
∏

i η(q
ai)bi for some finite set of positive integers ai, bi, was addressed in [1]. These

turn out to correspond to exactly 30 partitions of 24 and are all modular forms of

appropriate weight, level and character.
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Thus, the question which instantly emerges is whether it is possible to find physical

systems whose partition functions are exactly these elegant products. Remarkably,

at this list did the authors of [9] arrive when considering the counting of electrically

charged, 1/2-BPS states in the N = 4 supersymmetric CHL orbifolds of the heterotic

string on the six-torus. What is particularly fascinating for our present purposes is

that upon string duality the situation is equivalent to the compactification of type

IIB string theory on the product of a two-torus with a K3 surface of a specific type,

viz., one which admits certain Nikulin involutions. Such K3 are quite special [28]

and there are 14 in type, having automorphisms which are various Abelian groups of

fairly low order.

In a parallel vein, there is an equally valuable partition problem of 24 involving

K3 surfaces. This is the list of semi-stable extremal elliptic fibrations and constituted

the classification of [20], numbering a total of 112. Such K3 surfaces have maximal

Picard number and, more relevant for our present discourse, of having elliptic j-

invariants which are Belyi maps from P1 to P1 and thus are associated to dessins

d’enfants [21, 22]. A special class has been distilled in order to study congruence

subgroups of the modular groups, in relation to Seiberg-Witten curves of certain

N = 2 gauge theories in four space-time dimensions [23]. And thus we are brought to

the final list of our dramatis personae, which are torsion-free genus zero congruence

subgroups of the modular group; such have been classified in [24–26], tallying 33 in

total. The Schreier coset graphs of these are also trivalent and clean (all, say, white

nodes are valency two) dessins d’enfants. At the intersection of the extremal 112 K3

list and the 33 congruence subgroup list lie 9 distinguished K3 surfaces which are

modular elliptic.

The above information we shall introduce in detail in §2 and §3, discussing, as we
encounter the objects of our concern, the relevant quantities in our parallel context.

In due course, we shall show by explicit computation, that the extremal K3 surfaces

from the Nikulin/CHL side coincides with the congruence/extremal side, at least

for semi-stable models of the former. In fact, we will see that one can go beyond

extremality and establish correspondence between the Nikulin list and the eta-product

list for all partitions of 24 not with at least 6 parts. Emboldened, having touched

upon the fact that our eta-products are not only multiplicative, but are also modular

forms, it is irresistible not to enter the realm of elliptic curves as guided by Shimura-

Taniyama-Wiles. The more general situation of which eta-quotients - i.e., allowing

our aforementioned integers bi to be negative as well - are weight two modular forms
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was investigated in [4]. We will focus on our eta-products with four partitions which

produce weight 2 modular forms and study the corresponding elliptic curves explicitly.

Of equal importance is how the dessins relate to so-called ”Mathieu Moonshine”. The

fundamental eta-product, namely the Ramanujan-tau function corresponding to the

partition 124, already encodes the irreducible representations of the sporadic group

M24. We will present the associated dessins in §4.

As a parting digression, we will take an alternative physical interpretations from

the perspectives of the Plethystic Programme in §5, which is a method of extracting

underlying geometries from the generating function of half-BPS states by computing

certain Hilbert series via an inverse Euler transform. Finally, in §6, we conclude with
prospects and outlook.

The interested reader might find the Appendix entertaining; therein we will take a

rapid excursion on a multitude of expansions and identities, mostly rudimentary but

some less so. In Appendix A we collect some standard facts on various modular and

partitioning properties of the Dedekind eta-function. In Appendix B, we will exploit

the relation of the j-invariant to the eta-function, and thence the Euler phi-function,

to express the former in terms of the partition of integers, as well as these partitions

in terms of divisor functions. Moreover, we will amuse ourselves with q-expansions

of various n-th roots of the j-invariants for n being a divisor of 24, including the

example of the cube-root, which is known to encode the representations of the E8 Lie

group [58,59].

1.1 Nomenclature

Before turning to the full exposition of our tale, since we shall alight upon a variety

of objects, for clarity we will adhere to the following standard notation which we

summarize here.

• The upper-half plane {z : Im(z) > 0} is denoted as H, with coordinate z and

nome q:

z ∈ H , q = exp(2πiz) . (1.1)
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• The Euler phi-function (we will use this one rather than the reciprocal)

ϕ(q) =
∞
∏

n=1

(1− qn)−1 =
∞
∑

k=0

πkq
k (1.2)

is the formal generating function for the partition πk of integers k ∈ Z≥0.

• The Dedekind eta-function is related to ϕ(q) as

η(z) = q
1
24

∞
∏

n=1

(1− qn) = q
1
24ϕ(q)−1 (1.3)

• The Jacobi theta functions are defined with the following conventions

θ1(q, y) = i
∞
∑

n=−∞
(−1)nq

(n− 1
2 )2

2 yn−
1
2 , θ2(q, y) =

∞
∑

n=−∞
q

(n− 1
2 )2

2 yn−
1
2 ,

θ3(q, y) =
∞
∑

n=−∞
q

n2

2 yn , θ4(q, y) =
∞
∑

n=−∞
(−1)nq

n2

2 yn , (1.4)

with q = exp(2πiz) and y = exp(2πiz̃). Moreover, the single argument case is

understood to be θi(q) := θi(q, 1) for all i = 1, 2, 3, 4.

• The modular discriminant ∆ and Ramanujan tau-function τ(n) are related to

eta by:

∆(z) = η(z)24 := q
∞
∏

n=1

(1− qn)24 =
∞
∑

n=1

τ(n)qn . (1.5)

In term of the Weierstraß form of an elliptic curve

y2 = 4x3 − g2 x− g3 , (1.6)

the discriminant is ∆ = g32 − 27g23 and the modular j-invariant is j = 1728
g32
∆
.

We will use upper case J to refer to the J-invariant, which is j without the

123 = 1728 prefactor.

• A level N weight k modular form with character χ is a holomorphic function
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f(z) which transforms under the congruence group Γ0(N) ⊂ SL(2;Z) as

f(
az + b

cz + d
) = (cz+d)kχkf(z) , Γ0(N) :=











a b

c d



 ∈ SL(2;Z)

∣

∣

∣

∣

∣

∣

c ≡ 0 mod N







/{±I}

(1.7)

• The Jacobi symbol, for a ∈ Z and odd n ∈ Z>0 with prime factorization n =

pm1
1 pm2

2 · · · pmk

k , is

(a

n

)

=

(

a

p1

)m1
(

a

p2

)m2

· · ·
(

a

pk

)mk

, (1.8)

where for primes in the “denominator”, we have the Legendre symbol

(

a

p

)

=



















0 if a ≡ 0 mod p ,

1 if a 6≡ 0 mod p and ∃x ∈ Z, a ≡ x2 mod p ,

−1 if 6 ∃ such x

(1.9)

2 Eta Products and Partition Functions

As advertized in the Introduction, we now turn to the details of how products of eta

functions as well as their reciprocals enumerate interesting problems, especially in the

context of string theory. We begin with the classic toy example of the bosonic string

before turning to a class of partition functions for BPS states in compactifications on

certain K3 surfaces.

2.1 Bosonic String Oscillators

The physical states of the bosonic string [8] is given by αi
n|0〉, which has mass α′M2 =

n − 1 and i = 1, . . . , 24 refer to the 24 directions transverse to the light-cone within
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the famous 26 dimensions, whereby representing the physical oscillations. Therefore,

using the number operator N :=
∞
∑

n=1

α−n ·αn =
∞
∑

n=1

24
∑

i=1

αi
−nα

i
n, the generating function

G(q) for the number of states dn

G(q) = Tr q

∞∑

n=1
α−n·αn

=
∞
∑

n=0

dnq
n = ϕ(q)24 = qη(q)−24 = q∆(q)−1 . (2.1)

Therefore, whereasG(q) is the generating function for counting the physical states,

its reciprocal is the modular discriminant. More precisely, its series expansion gives

the Ramanujan τ -function.

qG(q)−1 =
∞
∑

n=1

τ(n)qn . (2.2)

Crucially, the tau-function [6] is weakly multiplicative:

τ(m n) = τ(m)τ(n) , if gcd(m,n) = 1 . (2.3)

We need to emphasize that the rôle of 24 is essential here, other powers of the

Dedekind eta-function would not have this multiplicativity. For one thing, the pre-

factor of q−
1
24 is a very deep property of the said function, especially in light of its

transformations under the modular group [5,6]. In Appendix A.1, we will summarize

the origin of this 24.

For multiplicative functions, the natural course of action is to take the Dirichlet

transform; here we produce the tau-Dirichlet series:

T (s) =
∞
∑

n=1

τ(n)n−s . (2.4)

The zeros of T (s), like those of the Riemann zeta-function, are well-known to have

fascinating behaviour; to this point we will return in §3.5.
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2.2 Eta Products

The question of whether other combinations of Dedekind eta functions should be

multiplicative was posed and answered in [1] (q.v. also [2] and generalizations to

quotients of eta-functions [3,4]; note that the cases of weight 2 and relation to elliptic

curves are of particular interest due to the works of Taniyama-Shimura-Wiles). In

particular, products of the form

F (z) = [n1, n2, . . . , nt] :=
t
∏

i=1

η(niz) (2.5)

were considered. The notation [n1, . . . , nt] is commonly called a frame shape (or

disjoint cycle shape) and t, the cycle length. Immediately, multiplicativity implies that

the frame shape is a partition of 24 and that a1, the coefficient of the linear term in

the, q-expansion, is unity. Interestingly, the motivation for considering such products

was in relation to the cycles in the permutation representation of the Mathieu group

M24; indeed, monstrous behaviour for M24 has recently become an active subject

(cf. [48] for a up-to-date review as well as the references therein).

In all, of the π(24) = 1575 partitions of 24, there are only 30 corresponding eta-

products which give multiplicative series expansions. These are summarized in Table

1. We have organized the eta-products according to weight k and level N of which

the product is a modular form with character χ which are either 1 or some Jacobi

symbol. In general, it was shown that under

(

a b

c d

)

∈ Γ0(N),

F (
az + b

cz + d
) = (cz + d)kχkF (z) , χ =







(−1)
d−1
2

(

N
d

)

, d odd
(

d
N

)

, d even ,
(2.6)

and t = 2k is the number of the parts (cycle length). Note that for two cases k is a half-

integer. Note that the fact the Jacobi symbol is only defined for odd “denominator”

is not a problem here since when d is even, ad − bc = 1 whilst c ≡ 0 mod N implies

that N must be odd.
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k N eta-product χ

12 1 [124] 1

8 2 [28, 18] 1

6 3 [36, 16] 1

4 [212] 1

5 4 [44, 22, 14]
(−1

d

)

4 6 [62, 32, 22, 12] 1

5 [54, 14] 1

8 [44, 24] 1

9 [38] 1

3 8 [82, 4, 2, 12]
(−2

d

)

7 [73, 13]
(−7

d

)

12 [63, 23]
(−3

d

)

16 [46]
(−1

d

)

k N eta-product χ

2 15 [15, 5, 3, 1] 1

14 [14, 7, 2, 1] 1

24 [12, 6, 4, 2] 1

11 [112, 12] 1

20 [102, 22] 1

27 [92, 32] 1

32 [82, 42] 1

36 [64] 1

1 23 [23, 1]
(−23

d

)

44 [22, 2]
(−11

d

)

63 [21, 3]
(−7

d

)

80 [20, 4]
(−20

d

)

108 [18, 6]
(−3

d

)

128 [16, 8]
(−2

d

)

144 [122]
(−1

d

)

k eta-product

“3
2
” [83]

“1
2
” [24]

Table 1: The 30 multiplicative eta-products, organized by weight k and level N for the
congruence group Γ0(N). We have also included the character χ under the modular
transformation; where χ = 1, the corresponding product is a traditional modular form.
The [ ] notation is explained in (2.5). For example, [124] is simply η(z)24 = ∆(z), which
is a famous weight 12 modular form. The two special cases of “half-integer weight” are
the final two entries.

2.3 Partition Functions and K3 Surfaces

Inspired by (2.2), we ask whether the shifted reciprocal of all the 30 multiplicative

eta-products other than the η(z)24 have an interesting physical interpretation. This

was partially addressed in the very nice work of [9]. The set-up is discussed in detail

by the nice review [10].

The original context of [9] was the Chaudhuri-Hockney-Lykken (CHL) maximally

supersymmetric heterotic string in less than 10 dimensions [11]. Specifically, [9] con-

siders asymmetric ZN -orbifolds of the E8 × E8 heterotic string compactified on the

six-torus T 6 ≃ T 4 × S̃1 × S1. For our purposes, it is convenient to use string dual-
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ity to map this to type IIB superstring theory and we shall switch between the two

equivalent description liberally.

Considered type IIB compactified on K3 ×S̃1 × S1, which is known to be a 6-

dimensional theory with N = 4 supersymmetry. Now, quotient this theory by a

cyclic group Zt action with a generator g acting on the S1 by shifting 1/t units

along it (i.e., g = exp(2πi/t) on S1) and simultaneously acting on K3 by an order

N involution. On the heterotic side, within six-torus T 4 × S̃1 × S1, the Zt acts on

the Narain lattice Γ20,4 associated with the T 4 which is a signature (20, 4) lattice.

Back from the type II perspective, the lattice can be identified with the cohomology

H∗(K3,Z). Consequently, the Zt is realized as a so-called Nikulin involution which

has an Abelian action on K3 that leaves the holomorphic two-form invariant.

Now, consider the configuration consisting of a D5-brane wrapping K3 ×S1, Q1

D1-branes wrapping S1 and Kaluza-Klein monopole with negative magnetic charge

associated with S̃1, −(k − 2) units of momentum∗ along S1 and momentum J along

S̃1. A dyon with electro-magnetic charge (qe, qm), where each is a vector in the lattice

Γr,6 with r some integer between 1 and 22 as determined by the orbifold action, thus

has

q2e = 2(k − 2)/t , q2m = 2(Q1 − 1) , qe · qm = J . (2.7)

2.4 Counting 1/2-BPS States

In the unorbifolded case, we simply have the heterotic string on T 6 and the left-moving

sector is bosonic as discussed in §2.1. Here, the electric 1
2
-BPS states carry charge

1
2
q2e with qe ∈ Γ22,6. Level matching gives n+ 1 = 1

2
q2e and the partition function is

16

η(q)24
=

∞
∑

n=−1

dnq
n . (2.8)

The factor of 16 comes from the Ramond ground state in the right-moving super-

symmetric sector and the index n starts at −1 due to level matching; therefore, the

expression is slightly different from the pure bosonic string given in (2.1).

∗We shift the definition in k to be consistent with our notation.
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In the orbifolded case, [9] showed that the above expression generalizes to

16
t
∏

i=1

η(niz)

=
∞
∑

n=−1

dnq
n . (2.9)

The factor of 16 is just an overall multiplier. In all, we have a list of multiplicative

partition functions, each associated to a K3 surface with special symplectic automor-

phism.

Now, Nikulin [28] classified the possible automorphisms of K3 surfaces preserving

the holomorphic 2-forms and finite Abelian groups in this list can only be one of the

following† 14:

Zn=2,...,8 , Z2
m=2,3,4 , Z2 × Z4 , Z2 × Z6 , Z3

2 , Z4
2 . (2.10)

Consequently, Table 1 of [9] presents the eta-products which have corresponding

Nikulin involutions ‡. In particular, they consist of the level N up to 16 eta-products

in our Table 1. Moreover, as we shall shortly see, they are intimately related to

another important set of K3 surfaces.

Before we turn to this next development of our story, we need to emphasize a

fact which will be of great utility [28, 29]. It was shown by Nikulin that the action

of the finite Abelian group of symplectic automorphisms is uniquely determined by

the integral second cohomology of the K3 surface, which is a lattice of rank 19:

H2(K3;Z) ≃ U3 ⊕ E8(−1)2, where U is a rank 2 hyperbolic lattice and E8(−1) is

a rank 8 negative definite lattice associated to E8. In other words, the involution

does not depend on the specific model of the K3 surface. Therefore, we can take a

convenient algebraic realization in order to perform the necessary computations. We

shall follow [29, 30] and take the K3 surface to be elliptically fibred over P1, and in

fact with only type-I singular fibres.

† Incidentally, there are 14 exceptional cases in Arnold’s classification of surface singularities and
relations between these two lists of 14 were studied in [33].

‡ There is single case of [112, 12] in the last row of their table which is curiously outside the domain
of Nikulin involutions, and indeed, as we shall soon see, K3 surfaces. In the elliptically fibred models,
such would have only 4 singular fibres which violates the lower bound of 6. Nevertheless, the authors
have obtained a generating function from the heterotic side.
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3 K3 Surfaces and Congruence Groups

A similar problem of partitioning 24 arises in the study of K3 surfaces, and through

trivalent graphs, congruence subgroups of the modular group. One cannot resist but

to draw analogies to this list and establish a comparative study. First, let us recall

some rudiments.

3.1 Extremal K3 Surfaces

Let X be a K3 surface elliptically fibred over a curve C, then C is genus 0 and the

elliptic j-invariant is therefore explicitly a rational map from C to a target P1 of

degree at most 24. We will call this the J-map. Explicitly, given the Weierstraß form

of the K3 surface

{y2 = 4x3 − g2(s) x− g3(s)} ⊂ C[x, y, s] , (3.1)

where s is the affine coordinate of the base curve C ≃ P1, the J-map is simply, using

(1.6),

J =
g32(s)

∆(s)
=

g32(s)

g32(s)− 27g23(s)
: P1

s −→ P1 . (3.2)

Note that we have removed a factor of 1728 from the modular invariant, which we

will denote by a lower-case j.

In the case of all fibres of π : X → C being of Kodaira type In, the K3 surface

is called semi-stable. Furthermore, the J-map is of degree at most 24, with the

extremal case of d = 24 corresponding to the saturation of the Picard number at

20 [27]. How we distribute the singular fibres In in the elliptic fibration is then

precisely the problem of partitioning 24 = n1+ . . .+nt. One of the pioneering papers

in this subject is [20] wherein all possible such distributions, and hence, all extremal,

semi-stable elliptic K3 surfaces are classified. In particular, the number of parts must

not be less than 6 by a celebrated result of Shioda-Tate. The case of t = 6 partitions

is our extremal one. In all, combining (3.3) to (3.7) of §3 in [20] and our Table 1 gives

us that all the partitions for k ≥ 3 exist in both lists (recall that the number of parts

is equal to t = 2k).
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The J-maps obey very interesting constraints:

• 8 preimages of J(s) = 0 all having multiplicity (ramification index) 3;

• 12 preimages of J(s) = 1 all having multiplicity (ramification index) 2;

• t preimages of J(s) = ∞, having multiplicity (ramification indices) [n1, . . . , nt];

• there might be ramification points x1, . . . , xm other than (0, 1,∞) but for t = 6,

the extremal case, there are no such points.

Indeed, Riemann-Hurwitz implies that for ramified covers of P1 → P1, the number of

ramification points must exceed the degree of the map by 2− 2g(P1) = 2. Here, the

former is 8 + 12 + t and the latter is 24, whence t = 6, the extremal case, is the only

one for which there are no other ramification points other than (0, 1,∞).

Now, maps to P1 ramified only at (0, 1,∞) hold a crucial place in modern number

theory and are call Belyi maps. Thus, for our 6-tuple partitions, the J-maps are

Belyi. These can be represented graphically as Grothendieck’s dessins d’enfants. To

draw such a dessin is simple: given the ramification data {(~r0)i=1,...,W , (~r1)j=1,...,B, (~r∞)k=1,...,I}
specifying the ramification indices at the various pre-images of 0, 1 and infinity, one

marks one white node for the i-th pre-image of 0, with (r0)i edges emanating there-

from; similarly, one marks one black node for the j-th pre-image of 1, with (r1)j edges.

Thus we have a bipartite graph embedded on a Riemann sphere, with W white nodes

and B black nodes. Now we connect the nodes with the edges, joining only black

with white, such that we have I faces, each being a polygon with (2r∞)k sides.

In our present case, the ramification data is {38, 212, [n1, . . . , nt]}. Note that such

dessins are called clean because all pre-images of 1 have valency 2. The dessins for all

the extremal 6-tuple cases are studied in [21,22] and we refer the reader to Appendix

A of [22].

3.2 Modular Subgroups and Coset Graphs

In [24, 25], a particular family of subgroups G of the modular group Γ = PSL(2;Z)

has been identified. These are the so-called torsion-free and genus zero congruence
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subgroups. By torsion-free we mean that the subgroup contains no element, other

than the identity, which is of finite order. By genus zero we mean that when we

quotient the upper half plane H (compactified to H∗ by adjoining so-called cusps ,

which are points on Q ∪ ∞) by the subgroup G, the resulting Riemann surface is

genus 0. Indeed, H∗ quotiented by the full modular group Γ is well-known to be a

Riemann sphere.

Now, the stabilizer of the cusp is a finite index subgroup of G, which is a finite

index n subgroup of the stabilizer of the cusp in the full Γ; we call n the cusp width

associated with the cusp for G. It is also the smallest positive integer such that the

modular conjugate of the action z 7→ z + n leaves the cusp invariant. The sum over

the cusp widths turns out to be the index of the subgroup G itself in Γ.

The complete classification of the torsion-free, genus zero, subgroups of Γ was

carried out in [26] and they are very rare indeed: they are only 33, all of index 6,

12, 24, 36, 48 or 60. In particular, there are 9 of index 24, and the relation to gauge

theories was discussed in [23]. Given the aforementioned cusp widths, these 9 groups

will correspond to 6-tuple partitions of 24, as given in Table 2.

Group Cusp Widths

Ia: Γ(4) [46]

Ib: Γ(8; 4, 1, 2) [22, 43, 8]

IIa: Γ0(3) ∩ Γ(2) [23, 63]

IIb: Γ0(12) [12, 32, 4, 12]

IIIa: Γ1(8) [12, 2, 4, 82]

IIIb: Γ0(8) ∩ Γ(2) [24, 82]

IIIc: Γ0(16) [14, 4, 16]

IIId: Γ(16; 16, 2, 2) [12, 23, 16]

IV: Γ1(7) [13, 73]

where

Γ(m) := {A ∈ SL(2;Z) |A ≡ ±I mod m}/{±I}

Γ1(m) :=

{

A ∈ SL(2;Z)

∣

∣

∣

∣

∣

A ≡ ±
(

1 b

0 1

)

mod m

}

/{±I} ;

Γ0(m) :=

{(

a b

c d

)

∈ Γ

∣

∣

∣

∣

∣

c ≡ 0 mod m

}

/{±I}

Γ(m; m
d
, ǫ, χ) :=







±





1 + m
ǫχ
α d β

m
χ
γ 1 + m

ǫχ
δ





∣

∣

∣

∣

∣

∣

γ ≡ α mod χ







.

Table 2: The 9 torsion free, genus zero, congruence subgroups of the modular group.

Now, each of these is an index 24 subgroup of the modular group, and we can draw
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the Schreier coset graph for each. First, recall that the Cayley graph of PSL(2;Z)

is an infinite free trivalent tree, but with each node replaced by an oriented triangle.

This is because Γ := PSL(2;Z) ≃ 〈S, T |S2 = (ST )3 = I〉 ; calling x the element of

order 2 and y the element of order 3, we see that Γ is the free product of the cyclic

groups C2 = 〈x|x2 = I〉 and C3 = 〈y|y3 = I〉. That is, Γ ≃ C2 ⋆ C3. Thus x will

serve as an undirected edge whilst y will give rise to an oriented triangle, namely, a

directed triangular closed circuit.

For a subgroup G ∈ PSL(2;Z) of index µ, we can decompose the modular group

into the (right) cosets Ggi of G as PSL(2;Z) ≃
µ
⋃

i=1

Ggi, so that our generators x

and y act by permuting the nodes, which now correspond to cosets. The result is a

coset graph with µ nodes and a folded version of the Cayley graph of the full modular

group. This is the Schreier coset graph (sometimes called Schreier-Cayley coset

graph) and it remains, in particular, to be trivalent, with bi-directional edges for x

and oriented 3-cycles for y. In fact, the converse is true: any finite cubic graph is a

realization of a Schreier coset graph of a subgroup of the modular group.

To complete the story, we can canonically associate a K3 surface to each of these

genus zero subgroups. First, we extend the action of G ⊂ Γ on H to an action

H× C ∋ (z, w) −→
(

γz,
w +mz + n

cz + d

)

, (3.3)

for γ =





a b

c d



 ∈ G and (m,n) ∈ Z2. Thus the quotient of H×C by the above au-

tomorphism defines a surface equipped with a morphism to the modular curve arising

from the quotient of H by z → γz. The fibre over the image of this morphism to the

modular curve is generically an elliptic curve corresponding to the lattice Z⊕ZτT with

complex structure parametre τT . What we have therefore is a complex surface which

is an elliptic fibration over the modular curve, called the Shioda elliptic modular

surface [27] associated to G. The base, because our modular curves are genus zero,

will be the Riemann sphere P1
C .

For our index 24 subgroups G, the modular surface is a semi-stable, extremal,

elliptic K3 surface, the 6 cusp widths are precisely the 6 In fibres. Moreover, the

Schreier coset graph G is, when replacing each oriented triangle with a black node

and inserting in each edge a white node, the dessin d’enfant for the J-map of the
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corresponding K3 surface [23].

3.3 Summary

In summary, we present the objects which lie in the intersection of all the above parti-

tioning problems of 24 in Table 3. Starting from the left, the first column is the cycle

shape of the eta-product [n1, . . . , nt] as defined in (2.5). Next, in column 2, we have

the weight k, level N and the character χ under which the eta-product transforms

modularly as in (2.6) and Table 1. The eta-product is the partition function of cer-

tain quotients of the type IIB string theory compactified on K3×T 2 with special K3

surfaces admitting Nikulin involution as given in column 4. The cycle shape, being a

partition of 24, also uniquely determines an extremal K3 surface which is semi-stable

with type-In fibers exactly being {In1 , . . . , Int
}. These K3 surfaces are elliptically

fibred over P1, with j-invariants being rational functions in the homogeneous coordi-

nate s of the base P1, given in column 5. They can be considered as ramified maps

from P1 to P1, which turn out to be Belyi, and hence describe clean dessins d’enfants,

as drawn in column 6. The dessins are precisely Schreier coset graphs (column 6)

associated with congruence subgroups (column 3) of the modular group PSL(2;Z).

To complete the cycle of correspondences, we know the explicit equations of the

K3 surfaces from both sides: (1) From the point of view of the modular surfaces, the

Weierstraß form of the elliptic fibration has been computed in [23, 31] which yields

the correct J-maps in Table 3; (2) From the perspective of the partition function on

K3×T 2, the K3 surfaces admitting Nikulin involutions also have explicit models in

Tate, Weierstraß or Legendre form, which are computed in [29]. For the ones of our

interest as given in Table 3, we summarize the equations in Table 4, wherein s is the

base projective coordinate of the P1 over which the K3 surface is an elliptic fibration.

In the second column of the equations for the Nikulin K3, p and q are some linear

functions as+ b (with a, b ∈ C) in s and not the same for each of the cases.

We see that in the first case of the modular K3 surface associated to Γ1(7) the

one with the Z7 involution has the identical equation. This is a semi-stable extremal

K3 with 6 type In fibres: three each of I7 and I1, which is precisely the cycle shape of

the corresponding eta product. Incidentally, this is an elliptic curve known for some

time [32].
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Eta Product (k,N, χ)
Modular

Subgroup

Nikulin

Involution
J-Map

Dessin &

Schreier

[73, 13] (3, 7,
(−7

d

)

) Γ1(7) Z7
(s8−12s7+42s6−56s5+35s4−14s2+4s+1)

3

(s−1)7s7(s3−8s2+5s+1)

[82, 4, 2, 12] (3, 8,
(−2

d

)

) Γ1(8) Z8 −16(s8−28s6−10s4+4s2+1)
3

s4(s2+1)8(2s2+1)

[63, 23] (3, 12,
(−3

d

)

) Γ0(3) ∩ Γ(2) Z2 × Z6
(3s2+8)

3
(3s6+600s4−960s2+512)

3

8s6(8−9s2)2(s2−8)6

[46] (3, 16,
(−1

d

)

) Γ(4) Z2
4

16(1+14s4+s8)3

s4(s4−1)4

Table 3: The four eta-products relevant to extremal K3 surfaces in two contexts: mod-
ular elliptic K3 surfaces/dessins/congruence subgroups and type IIB compactification on
K3×T 2/Nikulin involutions/partition functions; q.v., text in §3.3 for an explanation of
the various columns.

For the remaining three cases, we have degrees of freedom from the linear functions

p and q, which can be fixed by appropriate transformations to the forms from the

modular side. The easiest strategy is to simply compute the J-invariant for the

equations from the Nikulin side and match to the J-invariant as given in column 5 of
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Nikulin Inv Equation Congruence Group Equation

Z7
y2 + (1 + s− s2)xy + (s2 − s3)y

= x3 + (s2 − s3)x2
Γ1(7) same

Z8 y2 = x3 + ( (p−q)4

4
− 2p2q2)x2 + p4q4x Γ1(8) (x+ y)(xy − 1) + 4is2

s2+1
xy = 0

Z2 × Z6
y2 = x (x− (3p− q)(p+ q)3)×

(x− (3p+ q)(p− q)3)
Γ0(3) ∩ Γ(2)

(x+ y)(x+ 1)(y + 1)+
8s2

8−s2
xy = 0

Z2
4 y2 = x (x− p2q2)

(

x− (p2+q2)2

4

)

Γ(4)
x(x2 + 2y + 1)+

s2−1
s2+1

(x2 − y2) = 0

Table 4: The explicit equations of the K3 surfaces: from Nikulin’s list and from the
modular extremal list. In all cases, s is the base projective coordinate of the P1 over
which the K3 surface is an elliptic fibration. The coefficients p and q are some (not the
same for each case) linear functions of s.

Table 3. Now, it is a standard fact that for an elliptic curve in Tate form

y2 + a1xy + a3 = x3 + a2x
2 + a4x+ a6 , (3.4)

the J-invariant (without the 1728 prefactor) is given by

J =
c34

−b22b8 + 9b2b4b6 − 8b34 − 27b26
, with

b2 = a21 + 4a2, b4 = a1a3 + 2a4,

b6 = a23 + 4a6, b8 = a21a6 − a1a3a4 + a2a
2
3 + 4a2a6 − a24,

c4 = b22 − 24b4, c6 = −b32 + 36b2b4 − 216b6 .

(3.5)

For Z2
4, the J-invariant is, using (3.5) and Table 4,

16(p8+14p4q4+q8)
3

p4q4(p4−q4)4
. Therefore,

comparing with the J-map from Table 3, this sets p = s and q = 1, which are indeed

linear in s. Consequently, the specific Nikulin K3 surface becomes y2 = x(x− s2)(x−
(s2+1)2

4
).

For Z8, if we perform a simple change of base variables s → 1/s for the congruence

group/modular elliptic curve, giving us a J-invariant −16(s8−28s6−10s4+4s2+1)
3

s4(s2+1)8(2s2+1)
, then
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setting p = s + i and q = s − i gives precisely this expression using (3.5); again p

and q are linear functions, as required. Hence, here the K3 surface is described by

y2 = x3 + (4− 2(s2 + 1)2)x2 + (s2 + 1)4x.

Finally, for Z2 × Z6, we find from Table 4 that J =
(9p8+228p6q2+30p4q4−12p2q6+q8)

3

(p3−pq2)6(q3−9p2q)2
.

Setting p = s and q =
√
8 immediately gives the J-map of the corresponding

modular K3 surface in Table 3. Therefore, the K3 surface is given by y2 = x3 +

(−6s4 − 96s2 + 128) x2 + (9s8 − 224s6 + 1920s4 − 6144s2 + 4096) x.

Therefore, we conclude that we are indeed talking about the same K3 surfaces,

both from the modular elliptic/Cayley graph side and from the Nikulin involution/BPS

state counting side. In the latter, we are fixed at particular points in the space of com-

plex structure, since in the former, there is complete rigidity because of the algebraic

nature of dessins d’enfants.

3.4 Beyond Extremality

We have discussed the case of 6 type-I fibres extensively so far, which, as mentioned

above, correspond to extremal K3 surfaces; of course, both the cycle shape of the eta-

products and of the Nikulin involutions can exceed the lower bound of 6. Examining

Table 1, there are 9 cases of k > 3. The cycle shapes of these, re-reassuringly, also all

- except the maximal case of k = 12 - appear in the list of [29] (for the cases of Z3 and

Z5, the full equations were given in a preceding work [30]), as sequences of In fibres.

The explicit Weierstraß equations are presented in Table 5. In it, we have adhered to

the notation that pi and qi are some degree i polynomial in the base coordinate s.

Once again, we can find algebraic points in the moduli space of these K3 surfaces

which make the J-maps Belyi. As an example, let us look at [38]. Using (3.5), we

readily see that the j-invariant (with the 1/1728 factor) is j[38](s) =

64
(

(s2 + 1) (p0s
2 + q0)

3
+ (s2 + 1)

4
)3

64
(

(s2 + 1) (p0s2 + q0)
3 + (s2 + 1)4

)3
+
(

−20 (s2 + 1)3 (p0s2 + q0)
3 + (p0s2 + q0)

6 − 8 (s2 + 1)6
)2 .

(3.6)

Seeing that the discriminant of the numerator of j − 1 vanishes is reassuring: it is

indeed Belyi. For example, setting p0 = 1, q0 = 0 gives us a Belyi map with 8 pre-
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Eta Product (k,N, χ)
Nikulin

Involution
Equation

[28, 18] (8, 2, 1) Z2 y2 = x(x2 + p4x+ q8)

[36, 16] (6, 3, 1) Z3 y2 = x3 + 1
3
x(2p2q6 + p42) +

1
27
(q26 − p62)

[212] (6, 4, 1) Z2
2 y2 = x(x− p4)(x− q4)

[44, 22, 14] (5, 4,
(−1

d

)

) Z4 y2 = x(x2 + (p2 − 2q4)x+ q24)

[62, 32, 22, 12] (4, 6, 1) Z6 y2 = x(x2 + (−3p22 + q22)x+ p32(3p2 + 2q2))

[54, 14] (4, 5, 1) Z5
y2 = x3 + 1

3
x (−q42 + p22q

2
2 − p42 − 3p2q

3
2 + 3p32q2)+

+ 1
108

(p22 + q22)(19q
4
2 − 34p22q

2
2 + 19p42 + 18p2q

3
2 − 18p32q2)

[44, 24] (4, 8, 1) Z2 × Z4 y2 = x(x− p22)(x− q22)

[38] (4, 9, 1) Z2
3

y2 = x3 + 12x ((s2 + 1)(p0s
2 + q0)

3 + (s2 + 1)4)+

+2 ((p0s
2 + q0)

6 − 20(p0s
2 + q0)

3(s2 + 1)3 − 8(s2 + 1)6)

Table 5: The K3 surfaces which admit Nikulin involutions which correspond to non-
extremal cases (the number k/2 of partitions of 24 is not equal to 6). In the explicit
Weierstraß equation, pi and qi are some degree i polynomials in the base coordinate s.
For reference, we record the corresponding eta-product, as well as its level N and character
χ as a modular form.

images of 0 with ramification 3 and 12 pre-images of 1 with ramification 12. We could,

of course, perform a similar exercise for all the remaining non-extremal cases, but for

now, we seem to have exhausted K3 surfaces with the weight k ≥ 3 (and hence cycle

length ≥ 6) cases, we now turn to the k = 2 eta-products.

3.5 Elliptic Curves

Now, in the list in Table 1, there are ones of weight k = 2 which are modular forms

at various levels. According to the celebrated theorem of Taniyama-Shimura-Wiles,

these should be associated to some elliptic curve in the sense that the Hasse-Weil L-

function should be the Mellin transform of these eta-products; moreover the conductor

of the elliptic curve should be the level. Such a situation - and in fact, more generally

allowing quotients of eta functions as well - was considered in [4]. The reader is also
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referred to [52,53] for L-functions in the context of gauge theories, especially in light

of the Plethystic programme.

Specifically, defining the standard Tate form of an elliptic curve as

y2 + a1xy + a3y = x3 + a2x
2 + a4 + a6 , (3.1)

we have the correspondence (we reproduce their table here, and also include the

j-invariant, with the 1/1728 normalization):

N eta-product (a1, a2, a3, a4, a6) j

15 [15, 5, 3, 1] (1, 1, 1,−10,−10) 133 · 373/26 · 37 · 54

14 [14, 7, 2, 1] (1, 0, 1, 4,−6) 53 · 433/212 · 33 · 73

24 [12, 6, 4, 2] (0,−1, 0,−4, 4) 133/22 · 35

11 [112, 12] (0,−1, 1,−10,−20) −26 · 313/33 · 115

20 [102, 22] (0, 1, 0, 4, 4) 113/22 · 33 · 52

27 [92, 32] (0, 0, 1, 0,−7) 0

32 [82, 42] (0, 0, 0, 4, 0) 1

36 [64] (0, 0, 0, 0, 1) 0

(3.2)

It is interesting to see that N = 27 and N = 36 are isogenous and correspond to the

simple elliptic curve y2 = x3 +1. In general, our multiplicative product [35] affords a

Mellin transform which is an Euler product over L-functions as

M ([n1, n2, . . . , nt]) =
∏

p prime

(

1− app
−s + bpp

−2s
)−1

bp :=

(−N

p

)k

pk−1 , (3.3)

where the conductor N is the product of the largest and smallest entries in the cycle

shape (i.e., n1nt if [n1, n2, . . . , nt] is ordered) and k is, as always, the half-cycle-length,

which is also the weight of the modular form.

Indeed, the q-expansions of these eta-products as modular forms should have mul-

tiplicative coefficients, much in the spirit of η(q)24 discussed at the very beginning of

our exposition, which is not in the present list because it is of weight “1
2
”. Neverthe-
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less, to give an idea to the explicit q-expansions, we see that

[15, 5, 3, 1] =q − q2 − q3 − q4 + q5 + q6 + 3q8 + q9 − q10 − 4q11 + q12 − 2q13 − q15 − q16 + 2q17−
− q18 + 4q19 − q20 + 4q22 − 3q24 + q25 + 2q26 +O

(

q27
)

[14, 7, 2, 1] =q − q2 − 2q3 + q4 + 2q6 + q7 − q8 + q9 − 2q12 − 4q13 − q14 + q16 + 6q17 − q18+

+ 2q19 − 2q21 + 2q24 − 5q25 + 4q26 + 4q27 + q28 − 6q29 +O
(

q30
)

[12, 6, 4, 2] =q − q3 − 2q5 + q9 + 4q11 − 2q13 + 2q15 + 2q17 − 4q19 − 8q23 − q25 − q27 + 6q29+

+ 8q31 − 4q33 + 6q37 + 2q39 − 6q41 + 4q43 − 2q45 − 7q49 − 2q51 − 2q53 − 8q55 +O
(

q57
)

[112, 12] =q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 − 2q9 − 2q10 + q11 − 2q12 + 4q13 + 4q14 − q15−
− 4q16 − 2q17 + 4q18 + 2q20 + 2q21 − 2q22 − q23 − 4q25 − 8q26 + 5q27 − 4q28 +O

(

q30
)

[102, 22] =q − 2q3 − q5 + 2q7 + q9 + 2q13 + 2q15 − 6q17 − 4q19 − 4q21 + 6q23 + q25 + 4q27 + 6q29−
4q31 − 2q35 + 2q37 − 4q39 + 6q41 − 10q43 − q45 − 6q47 − 3q49 + 12q51 − 6q53 +O

(

q54
)

[92, 32] =q − 2q4 − q7 + 5q13 + 4q16 − 7q19 − 5q25 + 2q28 − 4q31 + 11q37 + 8q43−
− 6q49 − 10q52 − q61 − 8q64 + 5q67 − 7q73 + 14q76 + 17q79 − 5q91 − 19q97 +O

(

q100
)

[82, 42] =q − 2q5 − 3q9 + 6q13 + 2q17 − q25 − 10q29 − 2q37 + 10q41 + 6q45 − 7q49 + 14q53−
− 10q61 − 12q65 − 6q73 + 9q81 − 4q85 + 10q89 + 18q97 +O

(

q98
)

[6]4 =q − 4q7 + 2q13 + 8q19 − 5q25 − 4q31 − 10q37 + 8q43 + 9q49 + 14q61−
− 16q67 − 10q73 − 4q79 − 8q91 + 14q97 +O

(

q101
)

Indeed, the multiplicativity of the initial coefficients is evident.

The natural course of action, of course, is to take the Dirichlet transform L(s) =
∞
∑

n=1

ann
−s of these multiplicative coefficients an, which, by the Modularity Theorem,

should be the L-function of the corresponding elliptic curve. For example, take the

simple case of [6]4, the elliptic curve is y2 = x3 + 1, whose local zeta-function can be

computed - by Magma [19] for instance - and taking the product over the primes (both

of good and bad reduction) indeed gives the coefficients in the last row above. The

explicit forms of the local zeta-functions, depending on the prime p, can be readily

given as rational functions by Weil-Deligne in the standard way: here the conductor

is 36, thus the global zeta-function is equal to

Z(s) =
ζ(s)ζ(s− 1)

L(s)
=
∏

p∤36

1− 2App
−s + p1−2s

(1− p1−s)(1− p−s)

∏

p|36

1

(1− p1−s)(1− p−s)
, (3.4)
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where Ap is an integer which can be fixed for each prime. Comparing L(s) =
∏

p∤36

(1−

2Ap + p2s−1)−1 gives us (A2, A3, A5, A7, A11, . . .) = (0, 0, 0, 2, 0, 1, . . .).

4 Monsieur Mathieu

We have mentioned the sporadic group M24 a few times throughout the text, which

indeed was the original motivation for considering the cycle shapes. Indeed, it was

shown in [35] that the cycle shapes in fact encode the irreps of the sporadic group

M24. Indeed, M24, of order 2
10 · 33 · 5 · 7 · 11 · 23 = 244, 823, 040, is a subgroup of the

permutation group Σ24 on 24 elements, generated by 2 elements which in standard

cycle notation for permutations are (cf. [49])

M24 := 〈(1, 4, 6)(2, 21, 14)(3, 9, 15)(5, 18, 10)(13, 17, 16)(19, 24, 23) ,
(1, 4)(2, 7)(3, 17)(5, 13)(6, 9)(8, 15)(10, 19)(11, 18)(12, 21)(14, 16)(20, 24)(22, 23)〉 .

(4.1)

Now, for permutation groups, cycle shapes are invariant under conjugation; there-

fore, conjugacy classes can be labeled thereby. For the full Σ24, there are of course the

entire π(24) = 1575 number of conjugacy classes. Here, for M24, there are 26 conju-

gacy classes with 21 distinct cycle shapes, all of which appear in our list of 30, with the

9 exceptions being [63, 23]; [92, 33]; [82, 42]; [64]; [22, 2]; [20, 4]; [18, 6]; [16, 8]; [122].

Consequently, the so-called “multiplicative Moonshine phenomenon” [35,36] is the

remarkable fact that the coefficients ap and bp in the L-function can all be expressed

as virtual characters of M24, that is, as simple Z-linear combinations of the entries

of the (rational) character table of M24. The correspondence is precise in that the

q-expansion of the eta-product of a particular cycle shape encodes the conjugacy class

associated to that shape and is thus a McKay-Thompson series affiliated thereto. For

example, [124], which is η(z)24 = ∆(z), should correspond to the class of the identity
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whence the dimensions of the irreps:

dim(IrrepM24
) = {1, 23, 45, 45, 231, 231, 252, 253, 483, 770, 770, 990, 990, 1035, 1035,
1035, 1265, 1771, 2024, 2277, 3312, 3520, 5313, 5544, 5796, 10395}

(4.2)

Indeed, the q-expansion of ∆(z) gives the Ramanujan tau-function, whose first values

are

τ(n) = {1,−24, 252,−1472, 4830,−6048,−16744, 84480,−113643,−115920,

534612,−370944,−577738, 401856, 1217160 . . .} , (4.3)

and we have such simple linear combinations as

− 24 = −1− 23, 252 = 252, −1472 = 1 + 23− 231− 1265, . . . (4.4)

expressing the τ -coefficients in terms of the dimensions of irreps.

Now, in [37], it was noticed that the elliptic genus of a K3 surface encodes the irreps

of M24 and thus began Mathieu Moonshine from the point of view of conformal field

theory (cf. [38–48]). In a recent work of [46,47], this was realized as part of a web of

string compactifications so that the elliptic genus corresponds to the partition function

of N = 2 type II string compactification on K3, and, by duality, the heterotic string

on K3 × T 2, much like our situation. However, our eta-products are the generating

functions of particular BPS spectra and differs from the elliptic genera as well as

prepotential considerations of [37,47]. It would certainly be interesting to clarify the

relations further, especially the role of multiplicativity in the conformal field theory.

For now, let us turn to a brief comparative study. Recalling the theta-functions

from (1.4), the statement of [37, 47] is that

Zelliptic
K3 (q, y) = 8

[

(

θ2(q, y)

θ2(q, 1)

)2

+

(

θ3(q, y)

θ3(q, 1)

)2

+

(

θ4(q, y)

θ4(q, 1)

)2
]

= −24iy
1
2 θ1(q, y)

η(q)3

∞
∑

n=−∞

(−1)nq
1
2
n(n+1)yn

1− qny
+

∞
∑

n=0

Anq
n− 1

8
θ1(q, y)

2

η(q)3
; (4.5)

so that we have the coefficients An = {2, 90, 462, 1540, 4554, 11592, . . .}. In the origi-
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nal normalization of [37], we halve these:

Ãn = {−1, 45, 231, 770, 2277, 5796, . . .} (4.6)

so that the simple combinations of the irreps of M24 are even more apparent: these

first few appear already in the irreps.

These two versions of Mathieu moonshine, multiplicative and elliptic, seem to

extract different irreps as basis elements, as can be seen from (4.3) and (4.6). In some

sense, the two moonshine phenomena are complementary to each other. There is,

however, a relation between the Dedekind eta-function and the Jacobi theta-function:

η(q) = 1√
3
θ2(

π
6
, q

1
6 ), whence ∆(q) = 1

312
θ2(

π
6
, q

1
6 )24, and thus at least part of the elliptic

genus can be expressed in terms of the discriminant. The reader is referred to the

nice discussions in [38] for the relations between how M24 is encoded in these different

aspects.

In our present context of K3 surfaces, as mentioned earlier, it is a classical result

that any symmetry preserving the holomorphic 2-form on a K3 surface [34] is a

subgroup of M24. The essential reason for this is the fact that the homology lattice

H∗(K3,Z) is an even self-dual lattice of dimension 24 whileM24 is a natural (subgroup

of) the automorphism group of such dimension 24 lattices.

Moreover, the family of Mathieu groups are constructible as dessins d’enfants,

in suggestive figures which has been affectionately called “Monsieur Mathieu” [49].

The subgroup M12 of M24 and of order 95040, itself one of the Mathieu family of

5 sporadic groups, generated by s = (1, 2)(3, 4)(5, 8)(7, 6)(9, 12)(11, 10) and t =

(1, 2, 3)(4, 5, 6)(8, 9, 10), affords a particularly picturesque dessin; we present both

of these dessins in Figure 1. Now, the generators of course have a degree of freedom

in their choice and subsequently there are many ways to draw them [50], and the

reader is referred to the classification results of [51] We adhere to these above two

sets of generators of M12 and M24.

We note that both are clean dessins in the sense that the valency of one colour

(here chosen as white) is always 2; we have also labeled the edges explicitly. As we

read (counterclockwise) around each node, we have two sets of cycles, one for the

black and the other for the white, these are precisely the generators of groups in cycle

notation. Indeed, we can form a so-called “permutation triple” by setting σ0 and σ1

26



1

10 19 2223

18

11

24
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1112

6 7

4

6 9 3 17 13 5

Figure 1: Monsieur Mathieu et son chien: The clean dessins d’enfants of M12 on the left

and that of M24 on the right. We label the 12 (respectively 24) edges corresponding to the

elements of the set on which the permutation group Σ12 (respectively Σ24) acts.

as the black and white cycle generators in (4.1) and σ∞ such that σ0σ1σ∞ equals the

identity permutation in Σ24 (cf. e.g. [54] for rudiments, especially in the context of

gauge theories). Thus we have

σ0 = (1, 4, 6)(2, 21, 14)(3, 9, 15)(5, 18, 10)(13, 17, 16)(19, 24, 23) ;

σ1 = (1, 4)(2, 7)(3, 17)(5, 13)(6, 9)(8, 15)(10, 19)(11, 18)(12, 21)(14, 16)(20, 24)(22, 23) ;

σ∞ = (2, 7, 14, 17, 15, 8, 9, 4, 6, 3, 13, 10, 23, 22, 24, 20, 19, 18, 11, 5, 16, 21, 12) . (4.7)

The fact that σ∞ has only a cycle of length 23 and thus, trivially, a cycle of length

1, corresponds to the fact that the dessin for M24 has only one visible face (a 2-

gon). The cartographic group in (??) corresponds to the ramification (passport)

data















36, 16

212

23, 1















. Thus the pre-images of 0 are not tri-valent, whereby violating the

conditions of (3.2), and we do not actually have an elliptically fibred surface here.

What we do have is a trivalent clean dessin with six “spikes” [24], coming from the

16 uni-valent nodes. In principle we should be able to find a corresponding modular

subgroup using the methods of [22], though the group is expected to be neither genus

0 nor congruence.
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5 A Plethystic Outlook

As a parting digression, let us see an alternative physical interpretation of the eta-

products. In [16,17] we proposed the Plethystic programme to study gauge theories,

especially those with supersymmetry. The methods are very much in the spirit of

the super-conformal index which has been introduced in [12] and extensively studied

by [13–15] et al. Briefly, the programme follows the following steps:

• Find the vacuum geometry M of the theory, which is the algebraic variety

parametrized by the vacuum expectation values of the scalars. Compute the

Hilbert series

f(t) =
∞
∑

n=0

ant
n , an ∈ Z≥0 (5.1)

of M with respect to some appropriate grading dictated by the natural charges

in the system. This is the generating function for counting the basic single-trace

invariants;

• To find the multi-trace objects, i.e., the unordered products of the single-traces,

we take the plethystic exponential (sometimes know as the Euler transform)

g(t) = PE[f(t)] := exp

( ∞
∑

n=1

f(tn)− f(0)

n

)

=
1

∞
∏

n=1

(1− tn)an
; (5.2)

• There is an analytic inverse function to PE, which is the plethystic logarithm,

given by

f(t) = PE−1(g(t)) =
∞
∑

k=1

µ(k)

k
log(g(tk)) , (5.3)

where

µ(k) :=



















0 k has repeated prime factors

1 k = 1

(−1)n k is a product of n distinct primes

where µ(k) is the Möbius function. The plethystic logarithm of the Hilbert

series gives the geometry of M, i.e.,

PE−1[f(t)] = defining equation of M.
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In particular, if M were complete-intersection variety, then PE−1[f(t)] is poly-

nomial;

• The Hilbert series of the N -th symmetric product is given by

gN(t;M) = f(t; SymN(M)), SymN(M) := MN/SN , (5.4)

where the “grand-canonical” partition function is given by the fugacity-inserted

plethystic exponential of the Hilbert series:

g(ν; t) = PEν [f(t)] :=
∞
∏

n=0

1

(1− ν tn)an
=

∞
∑

N=0

gN(t)ν
N . (5.5)

In the gauge theory, this is considered to be at finite N .

We mentioned in §2.1 that the most natural manipulation to perform upon multi-

plicative series is to take the Dirichlet transform. Indeed, the Riemann zeta function

itself can be seen as the Dirichlet transform of the plethystic logarithm of ϕ(q) in

the following way: PE−1[ϕ(q)] = (1 − q)−1 =
∞
∑

n=0

ant
n with an = 1 and whence

∞
∑

n=1

n−s = ζ(s)),

Inspired by (2.1) and given now the wealth of multiplicative function constructed

from eta-products, from the aperçu of the plethystic programme, we need to compute

PE−1[q/F (q)] where F (q) is a multiplicative eta-product , (5.6)

treating q purely as a formal “dummy” variable in the generating function. Note that

the q in the numerator serves to cancel the product over q1/24 which always yields q in

the denominator for our partitions. In the ensuing, we will projectivize our varieties

for convenience and geometrically interpret our Hilbert series as that of projective

varieties, possibly with weights.

The simplest case of [124] = η(z)24 in (2.2) gives

PE−1[q/η(q)24] = 24PE−1[ϕ(q)] =
24

1− q
. (5.7)
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Using the standard method of interpretation [18], this is simply 24 distinct points in

general position on P1. Note that this is, of course, geometrically different from P24,

which would have the Hilbert series (1− q)−24.

Let us now move onto a more non-trivial one, say [28, 18] = η(2z)8η(z)8, whereby

PE−1[
q

η(q2)8η(q)8
] = PE−1[ϕ(q2)8ϕ(q)8] =

8

1− q2
+

8

1− q
. (5.8)

Similar to the above, this is the Hilbert series of 16 points in weighted P1 with

weights [1 : 2] on the projective coordinates, though not in general position so that

linear relations exist amongst them. In general, because our cycle shape is always

of the form [na1
1 , . . . , nat

t ] with one of the ni, say the first, dividing all other ni, or

in the simplest case, with just a single [na1
1 ]. Therefore, after taking the plethystic

logarithm, we will always have the Hilbert series of the form
t
∑

i=1

ai
1−qni

. The leading

fractional contribution a1
1−qn1

has a denominator which divides all others, thus allowing

the remaining fractions to be combined to yield a final answer PE−1[q/F (q)] = a1+f(q)
1−qn1

for some polynomial f(q). This geometrically represents points in weighted-P1 with

weights [1 : n1] which are not necessarily in general position.

Indeed, the physical origins between our main discussion on the eta-products as

partition functions of certain BPS states in type IIA on K3×T 2 and this abovemen-

tioned view-point on the geometry encoded by the Hilbert series, generically arising

from type IIB on Calabi-Yau spaces, are different, though tantalizingly similar. It

would be fascinating to see whether there might be some mirror-type of transforma-

tion which maps one to the other.

6 Conclusions and Prospects

Having indulged ourselves with two parallel strands of thought, let us pause here for

a brief reflection. Motivated by the relation of the multiplicative structure of the

(reciprocal) generating function for the oscillator modes of the bosonic string, we

have commenced with the full list of products of Dedekind eta functions which are

multiplicative and have subsequently delved into the compactification of the heterotic

string on appropriate six-tori whose generating functions of BPS states are known
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to be precisely this list, 30 in number. These products further possess modular

properties and are, in fact, certain modular forms of weight k which is equal to half

the number of terms in the product. By string duality, the type IIB realization of

this compactification is that of K3 surfaces. The multiplicative constraint singles out

special K3 surfaces which admit Nikulin involutions, falling under 14 classes. Indeed,

all these K3 surfaces are in the list of the 30 and correspond to the situation where

k ≥ 3. In the algebraic realization of elliptic fibration over P1, these K3 surfaces

are all semi-stable with 2k Kodaira type-I fibres. Central to the above are particular

partitions of the number 24.

Along another vein relating to semi-stable K3 surfaces, there is a partitioning

problem of 24 of which there is a classification totaling 112 which are extremal in

the sense of possessing 6 singular type-I fibres. These all correspond to subgroups

of the modular group by having the dessins d’enfants corresponding to their J-maps

identifiable with the Schreier coset graph of the modular subgroup. Equivalently,

the subgroup is also the cartographic group of the dessin. Of these 112, nine are

congruence and genus zero and have been investigated in the context of N = 2 gauge

theories in four dimensions.

We have inter-woven the co-extending skeins by showing that the two sets of K3

surfaces and partitioning, whenever intersecting, are in fact the same geometries by

finding the explicit Weierstraß models. That multiplicativity and modularity should

engender the same geometries, both affording interpretations as string compactifica-

tions is fascinating and merit further investigations. In [23], the proposal was made

that a class of Gaiotto N = 2 theories in four dimensions should be obtainable for

every K3 surface who J-invariant is Belyi, and indeed for any connected finite index

subgroup of the modular group. It would be interesting to see how these gauge theo-

ries relate, when possible, to the gauge theories obtainable from the compactification

on T 2 times a Nikulin K3 surface.

Furthermore, we have discussed how the eta-products encode the characters of

the sporadic group M24. This is particularly relevant given the recent explosion of

activity on Mathieu moonshine, especially in the interpretations of elliptic genera

of K3 surfaces and partition functions of the dual heterotic compactification. It is

interesting how our version is complementary to the ones obtained in the literature;

this is certainly worthy of further investigation.
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Another fascinating direction to take is to follow the works of Yau and Zaslow [55].

There, the authors realized that the number nd of degree d rational curves on a K3

surface obeys, in fact, the generating function

∞
∑

d=1

qd = qη(q)−24 , (6.9)

which is precisely the counting function discussed in (2.1) that initiated our quest.

That the Riemann Hypothesis could be translated, via a theorem of Lagarias [56], to a

statement on rational curves on K3 surfaces using the above fact, was discussed in [57].

It is therefore natural to enquire whether all our eta-products afford interpretations

as Gromov-Witten invariants. On these and many more lines of enquiry we shall

pursue.
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A Further Salient Features of Eta

In this appendix, we collect some further properties of the eta-function, ranging from

standard modularity arguments to combinatorial interpretations of their products

and quotients.

A.1 Modularity

It is a standard fact that the Dedekind eta function

η(q) = q
1
24

∞
∏

n=1

(1− qn) , q = e2πiz , z ∈ H (A.10)

is a modular form of weight 1
2
on the upper half plane H (cf. e.g.,§III.2 of [7] or a

classic of Siegel from the perspective of residues in [5]).

It is illustrative to show the workings of the action by the modular group. First,

under z 7→ z + 1, we clearly have that η(z + 1) = exp(πi
12
)η(z). Next, for the trans-

formation z 7→ −1/z, consider the logarithmic derivative. To fully appreciate the

prefactor, let us define

η̃(z) :=
∞
∏

n=1

(1− qn) . (A.11)

Whence,
η̃′(z)

η̃(z)
=

∞
∑

n=1

(−2πin)e2πinz

1− e2πinz
= −2πi

∞
∑

n=1

σ1(n)q
n . (A.12)

where σk(n) :=
∑

d|n
dk is the divisor sum function and where we have used the standard

Lambert sum: ∞
∑

n=1

nkqn

1− qn
=

∞
∑

n=1

σk(n)q
n . (A.13)

Finally, we recall that the normalized Eisenstein series is itself a sum over divisor
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functions (cf. [6, 7] and adhering to the conventions of the latter)

Ek(z) =
1

2

∑

m,n ∈ Z

gcd(m,n) = 1

(mz + n)−k = 1− 2k

Bk

∞
∑

n=1

σk−1(n)q
n, k ∈ 2Z>0 (A.14)

where Bk is the k-th Bernoulli number and that

z−2E2(−
1

z
) = E2(z) +

12

2πiz
, z−kEk(−

1

z
) = Ek(z) , k ∈ 2Z, k > 2 , (A.15)

(so that indeed, for even k > 2 we have modular forms of weight k and for k = 2, we

have the extraneous term 12
2πiz

). Hence, the logarithmic derivative is

η̃′(z)

η̃(z)
=

2πiB2

4
(1− E2(z)) . (A.16)

The inhomogeneity of the above, in relation to E2, will inevitably ruin any nice

modular behaviour. This is why the Dedekind function has the extra power of q
1
24 so

as to modify (A.16) to (note the reciprocal removes the minus sign in front of E2(z))

η′(z)

η(z)
=

2πi

24
E2(z), (A.17)

so that

z−2η
′(−1/z)

η(−1/z)
=

2πi

24
E2(z) +

2πi

24

12

2πiz
=

1

2z
+

η′(z)

η(z)
(A.18)

on using (A.15). Hence, η(−1/z) = η(z)
√
zC for some constant C upon integration,

which can be fixed to be −i by substituting z = i.

In general, under

(

a b

c d

)

∈ SL(2;Z), we have that

η(
az + b

cz + d
) = (cz + d)

1
2 χa,b,c,d η(z) ,

χa,b,c,d =











exp( bπi
12
) , c = 0, d = 1

exp(πi

(

a+d
12c

− 1
4
−

c−1
∑

n=1

n
c

(

dn
c
− ⌊dn

c
⌋ − 1

2

)

)

) , c > 0 .

(A.19)
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A.2 Some Partition Identities

We collect some interesting properties of the Euler function which encode various

partitions, some are the explicit q-expansions of our eta-products; cf. [4, 58]:

Euler, 1748 η(q) = q
1
24

∞
∑

k=−∞
(−1)kq

3k2+k
2

Jacobi, 1828 η(q)3 = q
1
8

∞
∑

k=−∞
(4k + 1)q2k

2+k , η(q8)3 = q
∞
∑

k=0

(−1)k(2k + 1)q(2k+1)2

Gauss, 1866 η(q)2

η(q2)
=

∞
∑

k=−∞
(−1)kqk

2
, η(q2)2

η(q)
= q

1
8

∞
∑

k=−∞
q2k

2+k

Gordon, 1961 η(q2)5

η(q)2
= q

1
3

∞
∑

k=−∞
(−1)k(3k + 1)q3k

2+2k , η(q)5

η(q2)2
= q

1
24

∞
∑

k=−∞
(6k + 1)q

3k2+k
2

Macdonald, 1972 η(q6)5

η(q3)2
=

∞
∑

k=1

(−1)k−1
(

k
3

)

kqk
2

Kac, 1980 η(q12)2 =
∑

k,m∈Z,k≥2|m|
(−1)k+mq

3(2k+1)2−(6m+1)2

2

η(q16)η(q8) =
∑

k,m∈Z,k≥3|m|
(−1)kq(2k+1)2−32m2

η(q20)η(q4) =
∑

k,m∈Z≥0,2k≥m

(−1)kq
5(2k+1)2−(2m+1)2

4

B The j-function: Partition Properties

One can write the j-invariant in terms of our Dedekind η-function:

j(q) = 64
(t+ 4)3

t2
, t :=

1

64

(

η(z)

η(2z)

)24

, (B.20)

wherein we could further write in terms of the partition πn of integers from (1.2):

q
1
24 (η(z))−1 =

∞
∑

k=0

πkq
k . (B.21)
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Subsequently, we can substitute and expand j(q) in terms of πn to find

j(q) =
1

q
+

24 (32π0 − π1)

π0

+
12

π2
0

(

16384π2
0 + 2π1π0 − 2π2π0 + 25π2

1

)

q

+
8

π3
0

(

2097152π3
0 + 589824π1π

2
0 − 3π3π

2
0 − 72π2

1π0 + 75π1π2π0 − 325π3
1

)

q2

+
6

π4
0

(

2925π4
1 + 1200π0π

3
1 + 9044014π2

0π
2
1 − 1300π0π2π

2
1 + 133431296π3

0π1

− 96π2
0π2π1 + 100π2

0π3π1 + 50π2
0π

2
2 + 786436π3

0π2 − 4π3
0π4

)

q3 +O
(

q4
)

(B.22)

Substituting in the standard first values

(π0, π1, π2, π3 . . .) = (1, 1, 2, 3, 5, 7, . . .) (B.23)

readily retrieves the famous coefficients 744, 196884, etc. We note that the numerators

are all homogeneous polynomials in the partitions πi(n), one naturally questions

oneself what significance they carry.

Alternatively, we can use the Eisenstein series

j(q) = 1728
g2(q)

3

g2(q)3 − 27g3(q)2
= 1728

g2(q)
3

∆(q)

=

(1 + 240
∑

n≥1

σ3(n)q
n)3

q
∏

n≥1

(1− qn)24
=

1

q
ϕ(q)24(1 + 240

∑

n≥1

σ3(n)q
n)3 . (B.24)

This gives us a positive combination in terms of the partition numbers πn and the

divisor function σ3(n), which are themselves positive integers; this is obviously a

useful expansion for j(q):

1

q
π24
0 +

(

720π24
0 σ3(1) + 24π1π

23
0

)

+

q
(

172800π24
0 σ3(1)

2 + 720π24
0 σ3(2) + 17280π1π

23
0 σ3(1) + 24π2π

23
0 + 276π2

1π
22
0

)

+

q2
(

13824000π24
0 σ3(1)

3 + 345600π24
0 σ3(1)σ3(2) + 720π24

0 σ3(3)+

4147200π1π
23
0 σ3(1)

2 + 17280π2π
23
0 σ3(1) + 17280π1π

23
0 σ3(2) + 198720π2

1π
22
0 σ3(1) +

24π3π
23
0 + 552π1π2π

22
0 + 2024π3

1π
21
0

)

+O(q3)
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One could, of course, equate the two expansions (B.22) and (B.25), to obtain ex-

pressions for πn in terms of σ3(n) (for convenience, we have set σ3(0) = 1 as is the

convention):

π1 = 16− 15σ3(1),

π2 =
3825

2
σ3(1)

2 − 12015σ3(1)

2
− 15σ3(2) + 4232,

π3 = −631125

2
σ3(1)

3 +
3690225

2
σ3(1)

2 + 3825σ3(2)σ3(1)− 3102000σ3(1)−
−6000σ3(2)− 15σ3(3) + 1592448

(B.25)

Likewise, one could use the following expression, which is used to prove identities

of the Ramanujan tau-function,

j(q)− 1728 = ϕ(q)24

(

1− 504
∑

n≥1

σ5(n)q
n

)2

, (B.26)

to express all the partitions in terms of σ5.

B.1 q-Expansion of Roots of the j-function

We have exploited the relation between the j-function and the eta-function in the

above to obtain expressions of the famous q-coefficients of the former in terms of

the partition numbers. Here, we tabulate a few interesting but perhaps less known

expansions for the various roots of the j-function. First, the famous q-expansion of

the j-function is

j(q) =
1

q
+ 744 + 196884q + 21493760q2 + 864299970q3 + 20245856256q4

+ 333202640600q5 + 4252023300096q6 + 44656994071935q7

+ 401490886656000q8 + 3176440229784420q9 + 22567393309593600q10

+ 146211911499519294q11 + 874313719685775360q12

+ 4872010111798142520q13 + 25497827389410525184q14 + . . .
(B.27)
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The n-roots of j(q) afford integer q expansions when n is a divisor of 24. In

particular, we have the following:

(B.28)
j(q)1/2 =

1√
q
+ 372

√
q + 29250q3/2 − 134120q5/2

+ 54261375q7/2 − 6139293372q9/2 + 854279148734q11/2

− 128813964933000q13/2 + 20657907916144515q15/2

− 3469030105750871000q17/2 + 603760629237519966018q19/2 + . . .

(B.29)j(q)1/3 =
1

q1/3
+ 248q2/3 + 4124q5/3 + 34752q8/3

+ 213126q11/3 + 1057504q14/3 + 4530744q17/3 + 17333248q20/3

+ 60655377q23/3 + 197230000q26/3 + 603096260q29/3 + . . .

(B.30)
j(q)1/4 =

1

q1/4
+ 186q3/4 − 2673q7/4 + 430118q11/4

− 56443725q15/4 + 8578591578q19/4 − 1411853283028q23/4

+ 245405765574252q27/4 − 44373155962556475q31/4

+ 8266332741845429800q35/4 − 1576306833508315403544q39/4 + . . .

(B.31)
j(q)1/6 =

1

q1/6
+ 124q5/6 − 5626q11/6 + 715000q17/6

− 104379375q23/6 + 16966161252q29/6 − 2946652593626q35/6

+ 535467806605000q41/6 − 100554207738307500q47/6

+ 19359037551684042500q53/6 − 3800593180746056684372q59/6 + . . .

(B.32)
j(q)1/8 =

1

q1/8
+ 93q7/8 − 5661q15/8 + 741532q23/8

− 113207799q31/8 + 19015433748q39/8 − 3390166183729q47/8

+ 629581913929419q55/8 − 120437982238038210q63/8

+ 23564574046009042869q71/8 − 4692899968498921291530q79/8 + . . .
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(B.33)
j(q)1/12 =

1

q1/12
+ 62q11/12 − 4735q23/12 + 651070q35/12

− 103766140q47/12 + 17999397756q59/12 − 3292567703035q71/12

+ 624659270035130q83/12 − 121698860487451255q95/12

+24194029851560118900q107/12−4886913657541566648179q119/12+ . . .

(B.34)
j(q)1/24 =

1

q1/24
+ 31q23/24 − 2848q47/24 + 413823q71/24

− 68767135q95/24 + 12310047967q119/24 − 2309368876639q143/24

+ 447436508910495q167/24 − 88755684988520798q191/24

+17924937024841839390q215/24−3671642907594608226078q239/24+ . . .

Of these, the most discussed one is (B.29) which has all positive integer coefficients

and corresponds to the McKay-Thompson series for the Class 3C for the Monster

Group. Remarkably, it also encodes the irreducible dimensions of E8. These are

discussed in [58,59].

Using (B.20) and being mindful of the product formulae for the eta function, we

can write

j(z) = 28 · 3 + η(z)24

η(2z)24
+ 216 · 3η(2z)

24

η(z)24
+ 224

η(2z)48

η(z)48
. (B.35)

In general for the various roots wherein d = 1, 2, 3, 4, 6, 8, 12, 24,

j(z) =
(η(z)24 + 28η(2z)24)3/d

η(z)48/dη(2z)24/d
=

(ϕ(q2)24 + 28qϕ(q)24)3/d

q1/dϕ(q)24/dϕ(q2)48/d
. (B.36)

We can use expressions (B.24) and (B.26) to simplify two of the roots. For the

cubic root, we see why immediately all the coefficients are positive:

j(q)1/3 =
1

q1/3
ϕ(q)8(1 + 240

∑

n≥1

σ3(n)q
n) =

1

q1/3

(

∑

n≥0

πnq
n

)8

(1 + 240
∑

n≥1

σ3(n)q
n).

(B.37)

From this, we can see how to write the McKay-Thompson series coefficients for class

3C of the Monster in terms of polynomials in πn and σ3(n) with positive coefficients.
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For the square root, we see that

(j(q)−123)1/2 = ϕ(z)12

(

1− 504
∑

n≥1

σ5(n)q
n

)

=

(

∑

n≥0

πnq
n

)12(

1− 504
∑

n≥1

σ5(n)q
n

)

.

(B.38)

Note that we need the shift of the constant term by 123 = 1728 in order to get the

perfect square. Upon expansion, we obtain

(B.39)(j(q)− 123)1/2 =
1√
q
− 492

√
q − 22590q3/2 − 367400q5/2 − 3764865q7/2

− 28951452q9/2 − 182474434q11/2 − 990473160q13/2 − 4780921725q15/2

− 20974230680q17/2 − 84963769662q19/2 +O
(

q21/2
)

.

The coefficients here are all negative and the magnitudes thereof are precisely the

McKay-Thompson series for Class 2a of the Monster [60]. Thus of all these 7 roots

of the j-function, n = 2, 3 have been given nice interpretation, the integers in the

remaining 5 are still elusive.
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