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Application of Data Mining in Air Traffic Forecasting 

Judit G. Busquets* and Dr. Eduardo Alonso† 
City University London, London, EC1V 0HB, UK 

Dr. Antony D. Evans‡ 
University of California, Santa Cruz, Moffett Field, CA 94035, USA 

The main goal of the study centers on developing a model for the purpose of air traffic 
forecasting by using off-the-shelf data mining and machine learning techniques. Although 
data driven modeling has been extensively applied in the aviation sector, little research has 
been done in the area of air traffic forecasting. This study is inspired by previous research 
focused on improving the Federal Aviation Administration (FAA) Terminal Area 
Forecasting (TAF) methodology, which historically assumed that the US air transportation 
system (ATS) network structure was static. Recent developments use data mining algorithms 
to predict the likelihood of previously un-connected airport-pairs being connected in the 
future, and the likelihood of connected airport-pairs becoming un-connected. Despite the 
innovation of this research, it does not focus on improving the FAA’s existing methodology 
for forecasting future air traffic levels on existing routes, which is based on relatively simple 
regression and growth models. We investigate different approaches for improving and 
developing new features within the existing data mining applications in air traffic 
forecasting. We focus particularly on predicting detailed traffic information for the US ATS. 
Initially, a 2-stage log-log model is applied to establish the significance of different inputs 
and to identify issues of endogeneity and multi-colinearity, while maintaining the simplicity 
of current models. Although the model shows high goodness of fit, it tested positive for both 
mentioned issues as well as presenting problems with causality. With the objective of solving 
these issues, a 3-stage model that is under development is introduced. This model employs 
logistic regression and discrete choice modelling. As part of future work, machine learning 
techniques such as clustering and neural networks will be applied to improve this model’s 
performance.   

I. Introduction 
VIATION is the fastest growing mode of passenger transportation globally1. Global air travel growth has 
averaged approximately 5% per year over the past 30 years, which is an annual growth rate twice that of global 

Gross Domestic Product (GDP)2. Forecasts for future growth are also high. Airbus3 predicts that air traffic levels 
will double in the next 15 years, in line with historical trends. In the US, medium-term predictions forecast that the 
industry will grow from 731 million passengers in 2011 to 1.2 billion in 20324. Economically, the aviation sector 
had a global impact of £2.4 trillion in 2012, equivalent to 3.4% of the global GDP5.  

While growth in air transportation has significant economic benefits, it also has negative consequences, 
including increasing flight delays and environmental impacts at both the local level (e.g., air quality and noise) and 
global scale (e.g., climate change), as reported by the International Panel on Climate Change6. These positive and 
negative consequences of aviation must be traded-off by policy makers in the development of policy. A topical 
example is the UK air transportation sector. It is estimated that London, one of the key gateway cities to Europe, is 
at risk of losing its economic and social competitiveness to other European hubs because of airport capacity 
constraints7. Failing to supply capacity to serve the long-term air travel demand in the South-east of England is 
estimated to have a negative economic impact of £18 to £20 billion on users and providers of airport infrastructure, 
and £30 to £45 billion on the wider economy7. There are also, however, concerns about the consequences of adding 
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capacity, including increased noise and reduced air quality associated with increasing capacity at Heathrow Airport, 
as well as questions about whether the UK could still meet its emissions targets given the associated rise in air 
traffic. 

To make policy trade-offs, it is critical that good forecasts of future demand for air traffic exist, as well as good 
forecasts of how airlines are likely to serve this demand. This is particularly important given the long timescales 
associated with airport capacity expansion, especially in many developed economies where there is significant 
resistance to airport development. Good forecasts of future demand are also critical for airlines and airport 
authorities, which must plan their operations accordingly, and often need to order equipment well before it is 
required. Good forecasting requires a solid understanding of the most important drivers of supply and demand. 
Consequently, not only do historical trends in air transportation need to be studied, but the intrinsic drivers 
underlying passenger and airline behavior must also be understood. 

Aviation stakeholders tend to generate their own air travel forecasts and forecasting methodologies. While a 
diversity of methodologies exist, econometric, gravity and time-series models prevail. Most of these models are 
based on correlating aviation growth and socio-economic growth, (e.g. Ref. 8), and are characterized by their 
relative simplicity. For example, the FAA9 applies a simple growth factor algorithm to allocate traffic across the US 
ATS. These approaches also often use similar explanatory variables, generally chosen given the judgment of domain 
experts. More complex approaches from the literature are often not used because of the associated drawbacks, such 
as computational intensity or relatively low accuracy.   

In this paper we attempt to improve current forecasting methodologies by better understanding the patterns 
underlying the historical supply and demand for air travel, using the US domestic air transportation system as an 
example. In order to achieve this, three innovations are investigated: the use of several data mining techniques to 
develop a forecasting methodology; the use of a larger range of explanatory variables than is commonly considered; 
and explicitly modeling the distribution of city-pair passenger demand between itineraries. 

Data mining provides us with a variety of computational methods to analyze relationships that exist within large 
datasets, identifying dominant drivers of important outcomes, predicting the probability of new outcomes, and 
determining anomalous behavior. The application of data mining techniques in air traffic forecasting constitutes a 
recent trend started in the last decade. Aviation is an interesting system in which data mining can be applied since it 
is a large and complex system that involves the generation of a large scale and unstructured mixture of data in 
various data formats. Data mining aims to transform these datasets into applied knowledge. From the application of 
data mining techniques in air transportation data, several benefits can be obtained. This includes improved revenue 
management10, advances in safety within the air transportation system11,12 as well as improving on existing air travel 
demand forecasts. Although the potential benefits in applying this type of approach to air traffic forecasting are 
widely acknowledged, little research has been done up until now.  

The remainder of the paper is structured as follows: a review on existing forecasting methodologies in air 
transportation is outlined in Section II. This is followed by the paper’s objectives in Section III. The modelling 
approach used in this study is detailed in Section IV, including an explanation of the parameters identified as the key 
drivers of air transportation supply and demand. Information regarding the data sources is outlined in Section V. The 
corresponding results are shown in Section VI, followed by a discussion on future work in Section VII.      

II. Literature Review 
How much, how quickly and where air transportation will grow is driven by a number of factors, some 

economic-related and others linked to demographics and socio-economic evolution. The primary objective of 
forecasters is to understand how different drivers will contribute to explaining the future of air transportation. 
εethodologies used to forecast future air traffic differ significantly depending on the forecast’s purposes.  

Swan13 identifies three common methods of forecasting passenger demand for air travel: trends; gravity models; 
and stimulation models, which forecast the increase in traffic from estimated changes in fares and service levels. 
Historical trends are the most common forecasting technique used to predict air travel demand. This involves the use 
of econometric equations in which passenger and freight demand is regressed against economic activity over 
historical time periods. Factors that induce economic growth are also sometimes taken into account, e.g., 
demographic variables such as population. Boeing and the ICAO Asia/Pacific Area Traffic Forecasting Group14 use 
this approach. In the case of Boeing, future air travel demand, measured in Revenue Passenger Kilometre (RPK), is 
estimated through an equation that compares air travel growth mainly against economic growth measured in GDP 
(Ref. 8). Some of the forecasting methodologies are combined with qualitative techniques such as surveys and 
questionnaires. These are based on intuition and subjective evaluation including expert opinion15. For example, UK 
aviation forecasts, produced by the Department for Transport (DfT), are mainly based on econometric models. 
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However, DfT also uses Civil Aviation Authority’s (CAA) Passenger Surveys to calibrate the weight values that 
represent the strength of each factor driving passenger airport choice16. 

In contrast, Eurocontrol’s medium-term forecasts are produced by combining regression techniques and time-
series analysis17. This combination is most appropriate for producing short and medium term forecasts18 and is 
mainly based on analyzing historical data and trends19. The FAA’s Terminal Area Forecast (TAF) is based upon 
historical local and national measures that influence aviation activity as well as those drivers within the industry 
itself. In this manner, passenger demand at a particular airport is derived independently of the ability of that airport 
and its supporting air traffic control system to furnish the capacity required for meeting that specific demand.  

Broadly, the FAA’s air traffic forecasting process is split into two stages. The first stage consists in modelling 
the true-origin ultimate-destination (O-D) passenger demand flows using econometrics models. These are based on 
regression analysis using historical segment-pair air traffic data. Information such as airfares, demographic and 
income parameters are included within the set of independent variables. The second stage consists in combining the 
TAF results, which account for the estimates in traffic change at individual airports, with the most recent airline 
schedules obtained from T-100 segment data. The allocation process is performed by the application of the Fratar 
algorithm. This is a type of trip distribution algorithm based on a growth factor method, by which the connectivity 
between an airport or city pair is evaluated20. By using the Fratar algorithm, the O-D passenger demand forecasted 
during the first stage of the process is distributed across the possible routes of the network constructed from the 
airline schedule in the way that best satisfies the forecast airport level growth. As a result, the future airline flight 
schedule is generated. The above approach has a few drawbacks. Firstly, there is an inherent assumption that the 
future route network structure will remain the same as the current network structure21. Secondly, the Fratar 
algorithm has a number of limitations, including that it does not account for changes in transport costs and assumes 
that resistance to travel will remain the same. Finally, there is significant uncertainty associated with econometric 
models, mainly because the behavior of the transport system is correlated with relatively few socio-economic and 
historical features. 

εuch of the existing research is in line with the industry’s use of econometric models, time series and gravity 
models as the dominant quantitative approaches to estimate future air traffic demand and supply. However, research 
has also focused on improving the existing techniques to forecast future air traffic by applying alternative modelling 
approaches, such as agent-based modelling and discrete choice modelling. For example, Ref. 22 combines a gravity 
model of passenger O-D demand with an agent-based model of airline decision-making, simulating airline frequency 
competition using a myopic best response game, in order to model the airlines operational responses to 
environmental constraints. The key difference between this work and the econometric, gravity and time series 
models described above is that it attempts to model the airline decision making process explicitly, instead of 
estimating model parameters based on historical data. Results obtained show that airline response to any type of 
capacity constraint and competition between airlines is important when trying to understand the underlying 
principles behind the evolution of the air transportation system. Similarly, Ref. 23 uses a two-stage Nash best-
response game to evaluate the most appropriate hub-and-spoke network for an airline to develop in a competitive 
environment. Given three different settings, the study examines when equilibria in the air transportation industry 
would occur. Results obtained show that demand plays an important role in the solution outcome. Finally, focusing 
on modeling competition to determine air-travel itinerary shares, Ref. 24 presents a 3-level weighted nested logit 
model to predict airline ridership at the itinerary level and help carriers in medium and long term decision-making. 
This model is applied at an aggregate level and variables included are chosen to capture the inter-itinerary 
competition dynamic along three dimensions: time of the day, carrier and level of service. Results obtained suggest 
that itineraries sharing the same time show a moderate level of competition while those sharing time and carrier or 
level of service show a high level of competition. Although results from these researches are promising, they are 
computational intensive, limiting their application to relatively small network sets. The ability of some of the models 
to reproduce existing air traffic is also limited and further model refinement and verification is still required to better 
capture passenger choice effects. However, important insights can be gained into what some of the key drivers of 
airline decision-making are, and therefore what decision variables could be added to existing approaches.   

Little existing research has been identified linking data mining with air traffic forecasting. Nevertheless, a few 
key studies can be highlighted. Ref. 25, one of the first studies done in this field, used neural networks to forecast 
international airline passenger traffic between the US and South Korea. Results showed that neural networks 
enhanced forecasting accuracy and went beyond the capabilities of the more conventional statistical analysis used at 
the time. The decision variables used in this study include eleven dummy variables defining the monthly seasonality 
and one time variable reflecting the trend effect. Similarly, Ref. 26 applied a hybrid model of neural network and 
statistical analysis in order to forecast air traffic flow at fixes on a 30-min aggregation level within China’s air traffic 
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network. For this study, the decision variables were a combination of information provided by radar data and 
historical airline flight schedule data.   

Ref. 27 uses Support Vector Machine (SVM) techniques to develop a model that improves on the simple time-
series approach to air traffic forecasting. The study highlights the advantage of this approach over traditional 
econometric models proving that potential benefits can be obtained when applying data mining techniques in air 
traffic forecasting. Finally, Ref. 28 developed a model using data mining techniques to capture mechanisms by 
which the US ATS network evolves. Ref. 28’s approach uses complex network theory quantitative parameters as 
explanatory variables in the input dataset, and trains logistic regressions and neural networks to predict the 
likelihood of previously un-connected airport-pairs being connected in the future, and the likelihood of connected 
airport-pairs becoming un-connected. The main objective of this study was to improve on the FAA TAF assumption 
of a static routing network, which was done by adding an initial step that models US network evolution. 
Notwithstanding the innovativeness of Ref. 28’s method, the accuracy of the results was between β0% and 40%, 
leaving room for improvement. In addition, the work done by Ref. 28 did not improve on the current FAA 
methodology for forecasting air traffic levels on existing routes. Hence, further enhancements in the approach are 
possible. Such improvements are the focus of this paper.  

III. Objectives 
The primary objective of this research is to develop a model for forecasting future air traffic levels. This is 

inspired by previous research28 that focused on improving the FAA’s forecasting methodology and for which further 
potential improvements have been identified. Consequently, in an attempt to improve on the current FAA’s 
forecasting methodology, the model described in this paper is expected to:  Highlight the most important factors underlying the growth of the US ATS. This will allow 

identification of the key drivers of evolution in the US ATS.  Predict future air traffic growth, and hence, the evolution of the ATS system. 
In order to achieve these objectives, the developed model includes three new elements beyond that of the 

existing research:  The use of data mining techniques to model the US ATS evolution. By the use of these techniques, the 
resulting model will predict air traffic with improved accuracy and precision levels while maintaining 
the simplicity of existing econometric, gravity and time-series models.    The consideration of a larger set of explanatory variables than is typically considered in existing air 
traffic forecasting approaches.   Explicitly modeling the distribution of city-pair passenger demand between itineraries, so as to better 
predict airport-pair flows.   

IV. Approach  

A. Factors Influencing Future Air Traffic  
One of the means by which improvements in forecasting air traffic are expected to be achieved is the inclusion of 

a larger range of explanatory variables than is typically considered in existing approaches, based particularly on 
findings from the agent-based modeling of airline decision making by Ref. 22 as well as the findings of other 
studies23,28,29. This extended set of explanatory variables is expected to better capture the underlying behavior that 
drives the aviation industry, including the underlying drivers of demand for air travel, and the underlying drivers of 
airline decision making to supply flights to serve this demand. 

The explanatory variables used as input data for the air traffic forecasting model developed using data mining 
algorithms are classified into three groups: 

I. Network theory quantitative measures. Their inclusion is based on a representation of the air 
transportation system using topology and mathematical graph theory, as by Ref. 28 and Ref. 29. Given 
this, the ATS is represented as a natural network that consists in well-defined nodes (airports) and links 
(flights that connect these nodes or airports); 

II. Socio-economic variables; 
III.  Aviation-related variables. These represent the airline response to capacity constraints derived from 

insights gained through the work of Ref. 22 and Ref. 23.  
Table 1 shows a brief explanation of all input data considered as explanatory variables.   
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Table 1. Key factors to influence the future air traffic demand, where node represents an airport within the US 
ATS; Aij is a non-weighted adjacency matrix with all its entries being binary, indicating whether a link between two 
nodes –i.e. i and j– is present (“1”) or not (“0”)ν and      is a weighted adjacency matrix in which each entry 
(corresponding to a link between node i and node j) has a scalar weight that signifies some distinguishing trait 
characterizing that link, in this case flight frequency. 
 

 

 

Measure Symbol and Equation General Explanation 

Node degree 
In the transport network, node degree accounts for 
the total number of connections node i  has with 

other nodes.

Node weight 
In the transport network, node weight refers to the 

total number of flights associated to node i .  

Eigenvector centra lity,
which is a measure at the collective 
level that accounts for the influence 
that neighbouring nodes have to a 

given node.  
where "x"  is an eigenvector of the 

adjacency matrix

It assumes that the importance or popularity of an 
airport is proportional to the sum of centralities of the 

neighbouring airports (nodes) to which it is 
connected.  

Clustering Coefficient   
It quantifies how many times node i  forms triangular 

sub-graphs with their adjacent nodes. 

Population Pop
N° of inhabitants within the Metropolitan Statistical 

Areas (MSA) linked to node i . 

Income Inc
Mean household income per capita by the MSA 

associated with node i .

How specia l is a  city,
Boolean parameter

Specia l 1i j = "0" if both cities are not 
special; "1" otherwise. 
Specia l 2i j = "0" if both cities are 
special; "1" otherwise. 

This variable represents whether the cities associated 
with a specific airport-pair have any attractiviness, 
business and leisure wise, that would promote air 

travel demand.  

Connectivity by ra il and/or road,
Boolean parameter 

Roadra ili j =  " 0" if accesibility by road 
or/and by rail exised for both cities & 
stage length ≤160 mile; "1" otherwise

This variable refers to the accessibility by road and 
rail transport modes between node i and node j . 

Hub/no hub,
Boolean parameter 

Hub1 i j = "0" if both airports are a hub; 
"1" otherwise. 
Hub 2i j = "0" if both airports are not 
hubs; "1" otherwise. 

Hub1 i j and Hub2 i j  refer to whether airports 
associated with an airport-pair are operated as hubs 

or not. 

Number of a irports by city
Num_airprt_cityi

Measure of  number of airports located in a city. It 
accounts for airport competitiveness.

Stage length Stage_lengthi j 
Distance between airport-pair (from airport i  to 

airport j). 

Fuel price Fuel_ price Average annual fuel price.  

Number of a irlines by a irport
Num_airlines_airpti Measure of number of airlines operating at airport i.  

Network Theory metrics

socio-economic parameters

Aviation-related factors
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B. Detailed Forecasting Methodology 
Along with forecasting future air travel demand, effort is directed at identifying those factors that drive the 

evolution of the air transportation system. Therefore, this research attempts to develop an approach using data 
mining techniques that would predict air traffic growth with significant accuracy and precision levels while 
maintaining the simplicity levels of existing econometric, gravity and time-series models. An attempt will also be 
made to incorporate the methods developed by Ref. 28 in modeling the evolution of the US ATS network by 
allowing the possibility of new routes emerging and existing routes disappearing.   

In order to develop a successful forecasting methodology, a variety of approaches are considered. The 
performance of each approach will be evaluated and assessed, and consequently, the model with the most potential 
will be identified. This validation process will compare the results of each approach to observed historic air traffic 
levels.  

Two forecasting approaches are presented in this paper. The first approach uses linear regression with 
logarithmic transformation in both the dependent and independent variables – i.e. a log-log model. The 
implementation of this extended version of the more basic linear model is based on its ability to handle non-linear 
relationships between dependent and independent variables. This is done while maintaining the simplicity of the 
linear model30. By applying the natural logarithm, rate of change is accounted for rather than the absolute values of 
the variables, removing the growth over time in the variance of the data19. The second approach is an extended 
version of the previous one in which the log-log models are combined with other techniques, including a 
classification algorithm and a discrete choice model that captures passenger itinerary choice.  
 The two forecasting approaches differ in the number of explanatory variables and in the means by which the data 
is handled. Each approach is as follows:   2-stage log-log model: In a first stage, the air travel demand by city-pair (ODdemand) is estimated 

using Pop, Inc, Special1, Special2, Roadrail and Generalised_cost as input variables (See Table 1 for 
explanation of variables). This follows the approaches used to predict O-D passenger demand described 
by Ref. 31 and Ref. 22. In the second stage, the predicted ODdemand is then used as an input variable 
to predict the flight frequency by airport-pair, along with the network theory metrics, Hub1, Hub2, 
Num_airpt_city, Fltfreq_previousyr and Fuel_price. While this approach is not as simple as a 1-stage 
log-log model, it is expected to have improved performance.   3-stage model: This approach adds to the 2-stage log-log model an intermediate step with the objective 

Table 1. Key factors to influence the future air traffic demand (cont.). 
 

 

Measure Symbol and Equation General Explanation 

Delay 
Delayij  =  D(GateDep)i + D(TO) i +

          + D(Airbone)ij + D(TI)j

Delay gives a sense of the capacity constraints of a 
given airport. It is captured through computing the 
difference between expected gate-to-gate time and 

the real time that a specific airport-pair route service 
has related. 

Flight frequency from previous 
year, 

the auto-regressive term.
Fltfreq_previousyrij

The use of this variable comes from the consideration 
that current observations of the dependent variable 
(at time t ) are partly explained and generated by a 

weighted average of past that variable (at time t-1 ). 
This accounts for the fleet constraint, in that the 
current schedule is impacted by how many flights 

were operated in the previous year. 

Number of passengers ODdemandij
This represents the O-D demand between city i and 

city j in number of passengers. 

Genera lised Cost 

This variable refers to the generalised cost that a 
passenger has to incur to travel from city i to city j . It 
considers the airfare, the value of travelling time and 

the value of delayed time 

Aviation-related factors (Cont.)
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of transforming the O-D demand by city-pair extracted from the 1st stage into passenger demand by 
airport-pair, which serves as a stronger driver of airport-pair air traffic. This predicted passenger 
demand by airport-pair is then used as input variable to predict the flight frequency by airport-pair, 
along with the network theory metrics and aviation-related variables – as in the 2nd stage of the previous 
model. 

Initially, simpler models were tested, such as several 1-stage log-log models. However, they were discarded due 
to poor performance.  

In all the approaches considered, at least 20 flights per year must be operated between an airport-pair for it to be 
considered operational. Similarly, when estimating the O-D passenger demand by city-pair, in the 2-stage approach, 
at least 3,000 passengers per year must travel between the cities for demand to be considered.  

The instances used to train the log-log models are generated by airport-pair or city-pair, which in some cases 
requires data transformation. For those parameters that take continuous values and are unique to individual airports 
or cities, the square root of the product of the two airports’ or cities’ characteristic is computed – e.g., given that city 
i has population Popi and city j has population Popj, the explanatory variable related to population for city pair ij  is 
computed as shown in Eq. (1). In addition, all data is normalized, which helps to reduce skewness.                                             (1) 

For binary variables, which represent an attribute with two distinct categories, such as the variable Special1, 
dummy variables have been used, as described in Table 1.  

Considering all these assumptions, the two equations used in the 2-stage log-log model are derived. The first one 
is presented in Eq. (2.a) and estimates the O-D passenger demand by city-pair in number of passengers. Constant1, 
, , μ, π, ,  are the coefficients to be estimated. The second equation predicts the flight segment frequency by 

airport-pair using the O-D passenger demand estimated in the first stage of the process as an explanatory variable. 
This is shown in Eq. (2.b) where Constant2, α, , , , ρ, , ζ, φ, , υ are the coefficients to be estimated. Note that 
while Eq. (2.a) estimates city-pair demand, Eq. (2.b) estimates airports-pair flight frequency. The city-pair demand 
used in Eq. (2.b) is the city pair demand associated with the airports under question.  �   �     =         1 +        +      + �(      1  )                                                  

+ (      2  ) + (         ) +             _        (2.a) 

(2.b) 

For the 3-stage model 4 equations are used. A flowchart showing the 3-stage model is presented in Fig. 1. In the 
1st stage, Eq. (2.a) is applied to estimate air travel demand by city-pair. During the 2nd stage, in which estimated O-D 
demand by city-pair is transformed into passenger demand by airport-pair, a discrete choice model is applied to 
distribute the city-pair passenger demand predicted during the 1st stage across the available itineraries. This allows 
passenger demand by airport-pair to be calculated. 

The availability of itineraries is identified using a classification algorithm similar to that used by Ref. 28 – i.e. 
logistic regression –, and will predict the likelihood of previously connected airport-pairs being disconnected in the 
future, as well as the likelihood of un-connected airport-pairs being connected in the future. For a non-stop itinerary, 
if a non-stop flight between the cities is predicted to be served by air traffic, then this itinerary is feasible. For a 
connecting itinerary, the itinerary will only be considered feasible if every flight leg in the itinerary (e.g., from the 
origin city to the hub, from the hub to the destination city, etc.) is predicted to be served by air traffic. The 
probability of a flight segment being connected is calculated applying Eq. (3) where ƟT represents the set of 
parameters to be estimated.  

(3) 

 

   �  �   =         2 +            +               +       +  � �   + (�   �     )�
+ ( 1  ) + �( 2  ) +   �_      _       +     �  � _           
+     _        

 (�) =
1

1 +  −�    
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Where � = (  �) = 1 + 2 (         ) + 3 (            ) + 4 (    ) + 5 (� �  ) + 6 (� (  )  �     )

+ 7 (     ) + 8 (      1  ) + 9 (      2  ) + 10 ( 1  ) + 11 ( 2  )

+ 12 (   _      )  

After identifying the available itineraries, the O-D demand by city-pair obtained from the 1st stage is distributed 
across the available itineraries identified by the classification algorithm using a discrete choice model. This allows 
the flight segment passenger demand by airport-pair to be estimated, based on the passenger itinerary demand from 
all O-D city-pairs. In order to apply the discrete choice model, the US was divided into five regions, as done by Ref. 
24: four Continental time zones (Central, East, Mountain and West) and a region for Alaska and Hawaii. The 
number and nature of these regional clusters will be modified using clustering techniques in future work. Given 
these regions, 18 entities have been defined: considering all 16 possible combinations of the Continental time zones 
– e.g., Central-Central (C-C), Central-East (C-E), Central-Mountain (C-M), Central-West (C-W), […], West-
Mountain (W-M), West-West (W-W) –; as well as an entity for Alaska and Hawaii to Continental US and an entity 
for the Continental US to Alaska and Hawaii.  

At this early stage of the work presented in this paper, a total of 26 itinerary options have been considered as the 
universal choice set which considers a non-stop service and 25 one-stop services in one of the 25 US hub airports 
considered in this study. For each entity, the set of alternatives is a subset of the universal choice set. The passenger 
choice of itinerary is modeled based on travel time (TT) and travel cost (TC). 

The annual share of passenger demand assigned to each itinerary between a given city-pair is modeled as an 
aggregate multinomial logit (MNL) function and is given by Eq. (4) where Si is the passenger share assigned to 
itinerary i, Vi is the utility function or value of itinerary i and the summation is over all itineraries for a given airport-
pair. The utility function (Vi) is a linear function of the explanatory variables – i.e. TT and TC –. Equation (5) shows 
the Vi used in this study where 1i is the intercept corresponding to itinerary i, and 2 and 3 are the coefficients of TT 
and TC respectively. 1i, 2 and 3 are the coefficients to be estimated.   

 =  � (� )/   � (� )  
(4) � = 1 + 2  + 3   (5) 

The estimated flight segment passenger demand by airport-pair will then be used as one of the input variables 
during the 3rd stage of the 3-stage model to estimate the flight segment frequencies by applying Eq. (6). Note that the 
only difference between this 3rd stage and the 2nd stage of the 2-stage log-log model (Eq. 2b) is that flight segment 
demand (APdemandij) is used as one of the explanatory variables instead of O-D demand by city-pair. The rest of the 
input variables are identical.    �  �   =         3 +            +               +       +  � �   

+ (    �     )� + ( 1  ) + �( 2  ) +   �_      _       
+     �  � _           +     _        (6) 
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Figure 1. Flowchart of the 3-stage model. 
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As a final note, two issues that can affect the validity of the approaches followed in this study have been studied: 
endogeneity§ and multi-collinearity** . In order to test for endogeneity the Hausman specification test is performed19. 
Endogeneity tests are carried out for two explanatory variables, num_airlines_airpt and delay.  

The second potential issue, multi-collinearity or ill-conditioned data, is tested by computing a condition number, 
the Variance Inflation Factor (VIF). If the VIF is above a specific threshold, it suggests the presence of ill-
conditioned data32. A more in-depth technique proposed and explained in Ref. 32 is also applied. Multi-collinearity 
tests are carried out on all explanatory variables.  

V. Application 
The models described above are applied to a network of 337 airports within the US ATS. This represents a 

significantly larger dataset than that modeled by Ref. 22, and is comparable to that modeled by Ref. 28. The exact 
choice of airports is made for compatibility with the AIM Project33, allowing for integration into the AIM modeling 
framework in the future. These 337 US airports represent the US airport set included in a global set of 1,277 
airports, serving 95% of global RPK. Along with the airport set mentioned, the compilation of the corresponding US 
cities, special city variables, and road-rail variables are identical to those in Ref. 33.  

For the purposes of estimating model parameters, historic socio-economic data, covering population and mean 
household income per capita, is extracted from the US census Bureau34 and Bureau of Economic Analysis35, 
respectively. Historical flight frequency data is extracted from US Department of Transport T-100 data36, while 
historical information on passenger demand data and airfares is extracted from the Airline Origin and Destination 
Survey (DB1B), which contains a 10% sample of airline tickets from reporting carriers37. Travel times used in the 
discrete choice model using Biogeme38, are also extracted from Ref. 37. Flight delay information is obtained from 
the FAA Aviation System Performance Metrics (ASPM) database39.  

The time-step considered in this study is annual. The period taken into account for estimating the model 
corresponds to the year range from 2003 to 2007. This period was considered because it represents a reasonably 
stable period not affected by any major external factor such as a terrorist attack or an economic crisis. Because more 
than one year is considered, it is necessary to convert monetary data to the same year, which is done based on the 
Consumer Price Index (CPI)40 to 2007 US dollar values. 

Once the models are estimated, they will be applied to forecast traffic growth in the same network of 337 
airports into the future, using population, income and oil price growth forecasts from the US Department of 
Transport41. These results will then be compared to those of the TAF in future work. 

VI. Model Estimation Results 

A. First approach: 2-stage log-log model 
As described above, the first stage of the 2-stage log-log model consists of estimating the O-D passenger demand 

between city-pairs. The model estimation results for this stage are presented in Table 2. The second stage consists of 
taking the predicted air travel demand by city-pair along with other parameters to form the input matrix for 
predicting flight frequency by airport-pair. Results for this second stage are presented in Table 3.   

The estimated model predicting O-D passenger demand by city-pair, presented in Table 2, has an adjusted R2 of 
0.61. Given that there is no auto-regressive term, this is considered acceptable. Estimated coefficients are consistent 
with expectations and there is no sign of multi-collinearity or endogeneity. In addition, all coefficients are 
statistically significant at the 95% level of confidence, and are similar in value to those estimated by Ref. 22Error! 
Bookmark not defined. and Ref. 31. 

For the second stage, the estimated model is run for two cases, with the estimated coefficients and the 
corresponding t-statistics, presented in Table 3, shown in each case. In the first case, the input dataset as described in 
§IV.B is included. In the second, Node degree (NodeDeg) and Clustering Coefficient (CC) are dropped, because 
they are not found to be statistically significant at 95% confidence level in the first case. The variable num_airlines 
is dropped in both cases due to issues with multi-collinearity. The estimated coefficients do not vary drastically 
between the two cases. However, in the second case, variable Hub1 becomes only statistically significant at the 86th 

                                                           
§ Endogeneity refers to the situation when one or more explanations variables are correlated to the dependent 
variable and consequently, to the disturbance term.  
**  Multi-collinearity refers to the situation when two or more explanatory variables are highly, but not perfectly, 
correlated with each other. Therefore, any change on one of the collinear variable will cause a change on the rest of 
collinear variables.  
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percentile confidence level. In both cases, the adjusted R2 is 0.84, which is considered reasonable given the inclusion 
of the auto-regressive term within the explanatory variables.  

The estimated coefficients are all of the expected sign, suggesting no causation problems. With the removal of 
num_airlines no endogeneity or multi-collinearity issues were detected. However, four variables dominate, with 
significantly larger coefficients compared to the rest of the variables. These are the auto-regressive term 
(Fltfreq_previousyr) (0.83), Fuel_price (-0.16), NodeDeg (0.16), and ECV (0.16). This is a cause for concern given 
that parameters such ODdemand, which would be expected to have a large influence on predicting future flight 
frequency, have limited influence.  

These model estimation results therefore represent an improvement with respect to the discarded 1-stage log-log 
models which presented endogeneity, collinearity and causation issues, but further improvements are still possible.  

Table 2. 2-stage log-log model. 1st stage model estimation results: estimated coefficients and corresponding t-
statistics for the air travel demand forecasting. 

 

Table 3. 2-stage log-log model. 2nd stage model estimation results: estimated coefficients and corresponding t-
statistics for flight frequency forecasting. 

 

Coefficients t Sta t

Constant 10.5443 503.6

Pop (ε) 1.0145 119.1

Inc  (θ) 1.3181 30.5

Special1  (μ) 0.5848 42.7

Special2  (π) -1.3398 -75.2

RoadRail  ( ) -1.5550 -28.5

 eneralised_Cost  ( ) -0.8735 -54.5

Adjusted R2 

Collinearity

Num. Observations

No

22225

0.6134

Coefficients t Stat Coefficients t Stat

Constant 7.4913 1152 7.4920 1158

NodeDeg (α) -0.1635 -3.21 -0.1368 -5.13

σodeWeight ( ) -0.0385 -1.29* - - - - - -

CC ( ) -0.0129 -0.65** - - - - - -

ECV ( ) 0.1598 4.38 0.1044 5.96

τDdemand (Φ) 0.0501 9.04 0.0481 8.85

Hub1 (ρ) 0.0330 1.98 0.0233 1.5***

Hubβ ( ) -0.0431 -3.40 -0.0413 -3.46

σum_airprt_city (ϕ) -0.0478 -4.18 -0.0444 -3.95

Fuel_price (υ) -0.1571 -9.17 -0.1681 -10.64

Fltfreq_previousyr ( ) 0.8289 168.10 0.8271 171.24

Adjusted R2

Endogeneity

Collinearity

Num. Observations

No

No

9187
*** significant at the 85.9% 
confidence level. 

0.8383

No

No

9187

0.8384

* significant at the 80.2% confidence levels.
**significant at the 48.1% confidence levels.  
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B. Estimation of flight frequency as a function of observed airport-pair demand  
A further analysis was also carried out to identify the value of modeling passenger routing. As described above, 

the first stage of the 2-stage log-log model estimates O-D passenger demand by city-pair. The second-stage, 
however, estimates airport-pair flight frequency, which is likely to be a stronger function of flight segment 
passenger flows by airport-pair than O-D city-pair demand. It is therefore important to identify the value in 
estimating airport-pair flight frequency as a function of airport-pair passenger flows. Therefore, observed flight 
segment passenger flows by airport-pair are extracted from Ref. 36, and are used as an explanatory variable in the 
second stage of the 2-stage log-log model (as in Eq. 6) instead of the estimated O-D demand predicted during the 1st 
stage of the 2-stage log-log model (Eq. 2.a). Note that these segment passenger flows include passengers travelling 
on only that flight segment as well as connecting passengers for which that segment constitutes one of the legs of 
their multi-stop trip.  

Through the above analysis it is possible to evaluate whether or not a further step should be included in the flight 
frequency forecasting methodology. The objective of this intermediate step would be to transform the estimated O-D 
passenger demand by city-pair, extracted from the 1st stage of the process, into passenger segment demand, by 
airport pair. This could be done by allocating O-D passenger demand by city-pair to passenger itineraries, describing 
passenger routing, as described for the 3-stage model in §IV.B. This would then allow for the calculation of 
passenger segment demand by airport-pair. The resulting estimated airport-pair demand would then be included 
within the set of explanatory variables of the second stage of the 2-stage log-log model, as described above.    

Table 4 shows the model estimation results for the modified flight frequency estimation using observed flight 
segment passenger flows. These results show a significant improvement in goodness of fit relative to the previous 
model, with the adjusted R2 increasing from 0.84 to 0.89 – an increase of 5.3%. The values of the estimated 
coefficients are also more balanced, with less dominance from the auto-regressive term and network parameters, and 
increased impact from passenger demand (the segment demand data has an estimated coefficient of 0.35). 
Furthermore, all estimated coefficients are significant at the 95th percentile confidence level, show the expected sign, 
and there are no signs of endogeneity or multi-collinearity.  

It is therefore clear that the use of flight segment demand by airport-pair in the estimation of flight frequency is 
superior to using O-D passenger demand by city-pair. Consequently, it appears that there would be significant 
benefit in adding a further step in the forecasting process that transforms the O-D passenger demand estimated in the 
first stage of the process into segment passenger demand by airport-pair.  

Table 4. Model estimation results when considering T-100 segment demand data instead of the estimated 
ODdemand. 

 
 

Coefficients t-Sta t

Constant 7.5702 1667

NodeDeg (α) -0.2373 -6.45

σodeWeight ( ) -0.4688 -21.23

CC ( ) -0.0408 -2.88

ECV ( ) 0.4787 18.88

T 100 real segment demand data (Φ) 0.3504 62.16

Hub1 (ρ) 0.0436 3.75

Hubβ ( ) -0.1431 -15.45

σum_airprt_city (ϕ) -0.0629 -9.37

Fuel_price (υ) -0.0504 -4.02

Fltfreq_previousyr ( ) 0.5841 110.63

Adjusted R2

Endogeneity

Collinearity

Num. Observations 11295

0.8857

No

No
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C. Second approach: 3-stage model 
From the comparison of the results obtained from the 2-stage log-log model and the case when observed flight 

segment demand by airport-pair is used, it is clear that further improvement could be achieved by introducing a 
further step to the forecasting process, resulting in a 3-stage model. The aim of this intermediate step is to transform 
O-D passenger demand estimated in the first stage of the process into segment passenger demand by airport-pair.  

At the 1st stage of this 3-stage model Eq. (2.a) is used, and therefore results from Table 2 apply. Similarly, for the 
3rd stage, in which flight segment frequency is predicted using segment passenger demand, Eq. (6) applied, which is 
a modified Eq. (2.b) – i.e. using segment passenger demand instead of O-D demand –. The intermediate step, as 
described above, consists of a classification algorithm applied to identify the available itineraries and a discrete 
choice model to assign the passenger share across these identified available itineraries. Table 5 presents the model 
estimation results for the logistic regression obtained by applying Eq. (3). These results show all estimated 
coefficients significant at the 95th percentile confidence level, and no collinearity is observed. However, two 
causation problems can be identified. Firstly, the estimated coefficient of Population (Pop) is negative. One would 
expect the population coefficient to be positive since higher numbers of inhabitants associated with a city-pair would 
be expected to correlate to flight segments that exist. A similar case is observed with the Hub2 variable. Hub2 is 0 if 
both airports are not a hub and 1 otherwise, so a positive correlation is expected.  

To evaluate the performance of the logistic regression model, the confusion matrix is computed along with 
sensitivity and specificity tests. Sensitivity is also known as True Positive Rate (TPR) while specificity is also 
known as True Negative Rate (TNR). Table 6 shows the results of these tests. Results obtained for the model’s TPR 
and TNR have high values of 89.24% and 89.29% respectively, which is good.  

 

Table 6. 2nd stage model estimation results: Confusion matrix, True Positive Rate and True Negative Rate for 
logistic regression model. 

 

Table 5. 3-stage model. 2nd stage model estimation results: estimated coefficients and corresponding t-
statistics for logistic regression model. 

 

89.24%

Unconnected 1329 11017 TNR 89.29%
Observed

Connected 11025 1321 TPR

Predicted 
Percentatge correct 

Connected Unconnected

Coefficients t-stats

Constant -1.8085 -13.93

σodeDeg ( α ) 2.0754 15.83

σodeWeight (  ) 1.5081 7.89

CC (  ) 0.2195 5.04

EVC (  ) 0.5364 2.99

APdemand 0.3176 13.81

Pop ( ) -0.6640 -15.34

Special1 (  ) 0.3758 7.16

Specialβ ( π ) -0.4314 -5.49

Hub1 ( ρ ) -1.1467 -2.20

Hubβ (  ) -1.3016 -26.61

Fuel_price ( ) -0.6895 -7.84

Collinearity

N of observations

No

24692
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The second part of the intermediate stage – i.e. the discrete choice model – is under development and the model 
estimation results have not been completed at the time of writing. However, some descriptive parameters for the 18 
entities have been computed. This data summary is presented in Table 7. Note that ‘Available Itineraries’ refers to 
the number of itineraries available to any traveller between the regions described by the entity. These itineraries are 
typically a non-stop flight from the traveller’s origin to destination, plus a number of connecting itineraries through 
a set of hub airports. The set of hub airports varies between entities, as some hubs do not make sense for 
geographical reasons. As mentioned in §IV.B the number of alternative itineraries for each entity is a subset of the 
universal choice set and varies across the entities. ‘Number of Observations’ shows the busiest flows in the US ATS 
network, i.e., the East Coast corridor (East-East entity), the West Coast corridor (West-West entity), between the 
Mid-West and Each Coast (Central-East and East-Central entities), and between the East and West Coasts (East-
West and West-East entities).    

 

VII. Conclusions and Future Work 
Research described in this paper provides an initial effort to improve on existing air traffic forecasting 

methodologies through a better understanding of the factors driving demand, supply and network dynamics. In order 
to achieve this, three enhancements are being pursued: the use of data mining techniques in air traffic forecasting; 
and the use of a larger range of explanatory variables not considered in existing approaches, and explicitly modeling 
the distribution of city-pair passenger demand between itineraries. These enhancements are applied to identify the 
different influences underlying the US ATS evolution. 

Initially, results obtained from the 2-stage log-log model show high goodness of fit. No endogeneity and multi-
collinearity issues were detected and the estimated coefficients are all of the expected sign, suggesting no causation 
problems. However, four variables – the auto-regressive term and network parameters – dominate, with significantly 
larger coefficients compared to the rest of variables. This is a cause of concern given the limited influence of other 
parameters, such as passenger demand, which is expected to have a large influence on predicting future flight 
frequency. From the comparison of the results obtained from the 2-stage log-log model and the case when observed 
flight segment demand by airport pair is used instead of predicted city pair demand, it is clear that further 
improvement could be achieved by introducing a further step to the forecasting process. The aim of this step would 

Table 7. Data summary for the 18 entities used in the discrete choice model.  

 

Entity Available Itineraries Num. Observations

Alaska&Hawaii - Continental US 19 23,901,990

 Continental US-Alaska&Hawaii 25 23,809,500

Central-Central 23 118,972,940

Central-East 24 179,885,310

Central-Mountain 26 24,509,400

Central-West 26 88,268,740

East-Central 26 179,337,760

East-East 20 491,361,300

East-Mountain 26 29,771,100

East-West 26 128,209,700

Mountain-Central 26 24,650,610

Mountain-East 26 29,930,000

Mountain-Mountain 12 5,846,370

Mountain-West 13 36,508,810

West-Central 26 88,802,810

West-East 26 129,306,700

West-Mountain 20 36,415,180

West-West 10 201,024,320
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be to transform O-D passenger demand estimated in the first stage of the process into segment passenger demand by 
airport-pair. Considering this intermediate step, this paper introduces a 3-stage model.  

Currently, this 2nd stage of the 3-stage model is under development, involving the distribution of city-pair 
passenger demand between itineraries and the evolution in the US ATS network. This is achieved in two steps. First, 
the existence of potential itineraries for any given O-D city-pair is estimated by using a classification algorithm. 
Then, a discrete choice model is applied to estimate the passenger itinerary share across the previously identified 
available itineraries. Results for the first step of the process, which estimates a logistic regression model as 
classification algorithm, look promising, with an overall percentage of correct classifications of 89.25%. Initial 
development of the second step of the process, the discrete choice model, is still in progress. 

Model estimation results obtained to date look promising. However, there is room for improvement and further 
work is planned. A line of work from which improvements could be achieved is the application of a feature 
extraction process prior to the training of the algorithm. Specifically, clustering US airports with similar properties is 
being considered to improve the model performance.  

Other machine learning techniques than regression will also be considered for each of the models described.  
Those under consideration include neural networks using various learning algorithms such as backpropagation and 
backpropagation through time (BPTT). In these approaches a feature extraction technique could also be applied as a 
previous step, to reduce computational complexity. Also, other model structures for the discrete choice model, such 
as nested-logit models, are considered. 

The best performing model will be used to predict air traffic in the US ATS into the future, so that the results can 
be compared directly to the TAF. In this way, the benefit of improved air traffic forecasting will be identified.  
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