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LEARNING HORIZON AND OPTIMAL ALLIANCE FORMATION 

 
 
 

ABSTRACT 
 
We develop a theoretical Bayesian learning model to examine how a firm’s learning horizon, 

defined as the maximum distance in a network of alliances across which the firm learns from 

other firms, conditions its optimal number of direct alliance partners under technological 

uncertainty. We compare theoretical optima for a ‘close’ learning horizon, where a firm learns 

only from direct alliance partners, and a ‘distant’ learning horizon, where a firm learns both from 

direct and indirect alliance partners. Our theory implies that in high tech industries, a distant 

learning horizon allows a firm to substitute indirect for direct partners, while in low tech 

industries indirect partners complement direct partners. Moreover, in high tech industries, 

optimal alliance formation is less sensitive to changes in structural model parameters when a 

firm’s learning horizon is distant rather than close. Our contribution lies in offering a formal 

theory of the role of indirect partners in optimal alliance portfolio design that generates normative 

propositions amenable to future empirical refutation. 

 
 
Keywords: technological uncertainty; alliance formation; Bayesian learning; learning horizon; 
indirect partners 
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1. INTRODUCTION 

Scholars have long noted that technological uncertainty, defined as the difficulty of 

accurately predicting the future state of the technological environment, motivates firms to enter 

into alliances with other firms (Auster 1992; Eisenhardt and Schoonhoven 1996; Hagedoorn 2002; 

Mody 1993; Rosenkopf and Schilling 2007; Steensma et al. 2000). Alliances are an important 

mechanism for reducing technological uncertainty because they allow firms to learn from their 

alliance partners about relevant developments in the technological environment (Frankort et al. 

2012; Frankort 2013; Gomes-Casseres et al. 2006; Mowery et al. 1996; Oxley and Wada 2009; 

Powell et al. 1996). However, alliances are not equally effective as an uncertainty-reduction 

mechanism in all circumstances, while they also induce costs. Therefore, the optimal number of 

alliances represents a balance between the uncertainty-reduction benefits and costs of alliances, 

so that a firm has enough alliances to reduce uncertainty effectively, but not so many as for costs 

to outweigh their benefits (Faems et al. 2012). Convergent with the existence of such a balance, 

empirical evidence shows that learning-related outcomes tend to be greatest at intermediate 

alliance portfolio size (Deeds and Hill 1996; Frankort et al. 2012; Lahiri & Narayanan 2013; 

Rothaermel and Deeds 2006; Vanhaverbeke et al. 2012, 2014). 

Nevertheless, even though empirical evidence on optimal alliance portfolio size resonates 

with a basic trade-off between the uncertainty-reduction benefits and costs of alliances, the 

underlying theory has overwhelmingly centered on firms’ direct partners as sources of learning 

and uncertainty reduction. This somewhat narrow focus on direct partners appears at odds with 

findings suggesting that alliances may also serve as conduits through which firms learn from their 

indirect partners, i.e., the set of firms that direct partners have access to through their own 

alliances (Ahuja 2000; Salman and Saives 2005; Soh and Roberts 2005; Vanhaverbeke et al. 

2012). To the extent firms have the potential to learn not just from direct but also indirect 
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partners, a fundamental question arises as to how learning from indirect partners affects the trade-

off between the uncertainty-reduction benefits and costs of alliances. Answering this question is 

important because it is doubtful that the learning potential afforded by indirect partners is 

straightforwardly proportional to that afforded by direct partners. For example, firms vary greatly 

in their number of indirect partners for a given number of direct partners (e.g., Iyer et al. 2006)1, 

while they may also differ in the extent to which they are aware of (e.g., Lhuillery and Pfister 

2011) and benefit from (e.g., Boyd and Spekman 2008; Ghosh and Rosenkopf 2014) such 

indirect partners. Motivated by these observations, and following a call to begin to consider the 

role of indirect partners in optimal alliance portfolio design (Lavie 2006: 651), we complement 

the study of optimal alliance formation under technological uncertainty with a systematic theory 

of how learning from indirect partners shapes a firm’s optimal alliance portfolio size. Our 

specific research question is this: In the face of technological uncertainty, how does learning 

from indirect partners influence a firm’s optimal number of direct partners? 

We take a formal approach to answering this question. In particular, we derive normative 

propositions regarding optimal alliance formation from a theoretical Bayesian learning model of 

how firms facing technological uncertainty form alliances and then use those alliances to learn 

and thereby reduce such uncertainty. In addition to being considered a leading formal device for 

modeling decision making under uncertainty (Cyert and DeGroot 1987), a Bayesian learning 

framework is particularly well suited to address our specific research question. First, the Bayesian 

approach accords central importance to the initial uncertainty surrounding key parameters, while 

                                                           

    1 For example, in the pharmaceutical biotechnology industry during 1990-94, The Upjohn Company and Sepracor 
Inc. both had two direct partners, though these connected Upjohn to only two indirect partners while connecting 
Sepracor to well over twenty (Roijakkers and Hagedoorn 2006, p. 439). As another example, in the global 
semiconductor manufacturing industry during 1990-96, both Matsushita Electric Industrial Co. Ltd. and Motorola 
Inc. had one direct partner, but Matsushita had two indirect partners while Motorola had six (Kapoor and McGrath 
2014, p. 564). These examples foreshadow that the learning potential afforded by firms’ respective sets of direct and 
indirect partners may vary independently. It follows that the theory of optimal alliance formation must explicitly 
account for heterogeneity in the extent to which distinct sets of indirect partners allow for learning and uncertainty 
reduction. 
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Bayesian updating subsequently allows actors to reduce such uncertainty through a mechanism of 

learning. This particular temporal sequence, in which actors respond to uncertainty by looking for 

learning opportunities that in turn help improve their beliefs about the uncertain parameter of 

interest, sits at the heart of the empirical phenomenon we are interested in modeling. 

Second, a Bayesian learning framework allows us to model the effects of multiple 

parameters relevant to our research question in a tractable way. This is important because factors 

such as perceived technological uncertainty, the cost of unresolved uncertainty, the viability of 

interfirm learning, the cost of alliances, and awareness of indirect partners can vary greatly across 

firms and industries (e.g., Hagedoorn 2002; Harrigan 1985; Rosenkopf and Schilling 2007; 

Sutcliffe and Huber 1998), while all may individually as well as jointly shape the consequences 

of learning from indirect partners in perhaps unanticipated ways. A formal Bayesian learning 

framework, by requiring clear mathematical definitions of all relevant parameters and due to the 

rigor imposed by the Bayesian updating mechanism, allows us to generate an integrative and 

logically consistent account of any such effects (Adner et al. 2009). 

In our Bayesian learning model, a firm begins with subjective beliefs about key features 

and trends characterizing an uncertain technological environment. The firm can update its beliefs 

by forming one or more alliances with other firms. The learning potential of the resulting set of 

alliances, and so the extent to which a firm can reduce technological uncertainty, is modeled as a 

function of the firm’s learning horizon. We define a firm’s learning horizon as the maximum 

distance in a firm’s network of alliances across which that firm learns from other firms. We 

develop two canonical scenarios. In the first scenario, the firm learns only from its direct partners 

and so we label its learning horizon as ‘close’. In the second, the firm learns both from its direct 

and indirect partners and so we label its learning horizon as ‘distant’ instead. In our model, more 

precisely, a firm has a distant learning horizon if it is both aware of one or more indirect partners 
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and able to learn from such partners. A comparison of the optimal alliance formation decisions in 

these distinct scenarios subsequently supplies precise normative propositions on how learning 

from indirect partners influences optimal alliance formation under technological uncertainty. 

Our formal assessment of the relationship between firms’ learning horizon and optimal 

alliance formation under technological uncertainty offers several key results. First, we show that 

a firm’s learning horizon has distinct implications for optimal alliance formation depending on its 

industry context (e.g., Ahuja 2000, pp. 450-451). Specifically, in industries where technological 

uncertainty is comparatively high, residual uncertainty is costly, and where alliances are a 

comparatively affordable and effective solution to technological uncertainty (which we label 

‘high tech industries’), firms with a distant learning horizon can substitute alliance ties to indirect 

partners for those with direct partners. In contrast, in industries where technological uncertainty is 

comparatively low, residual uncertainty is less costly, and where alliances are a comparatively 

costly and ineffective solution to technological uncertainty (which we label ‘low tech industries’), 

alliance ties to direct and indirect partners act as complements. 

Second, we show that given a distant learning horizon, the optimal number of direct 

partners of a firm in a high tech industry will be more robust to inter-temporal changes in the cost 

of residual technological uncertainty, the cost of alliances, and the perceived level of 

technological uncertainty. Through a Bayesian lens, therefore, the inter-temporal stability of a 

firm’s alliance activities may be understood as the strategically optimal outcome of its efforts to 

reduce technological uncertainty. This novel insight complements prior alliance research, which 

has often discussed inter-temporal stability in firms’ alliance activities through embeddedness 

and inertia mechanisms (e.g., Gulati and Gargiulo 1999; Hagedoorn 2006; Kim et al. 2006). 

The paper is organized as follows: Section 2 introduces the basic setting and payoff 

structure in our model. Sections 3 and 4 develop expressions for optimal alliance formation under 
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close and distant learning horizons, respectively. Section 5 compares the respective optimal 

decisions in equilibrium and derives our basic propositions. Section 6 generalizes the model to 

account for heterogeneous alliance formation and incomplete awareness of indirect partners. 

Section 7 discusses the findings and their implications. 

2. THE BASIC MODEL 

2.1 Setting 

We consider a setting in which a firm performs research and development (R&D) 

activities within an industry-level technological paradigm. A technological paradigm directs the 

search efforts of firms towards an optimal future technology along a technological trajectory 

(Breschi et al. 2000; Dosi 1982). A technological trajectory represents “…the activity of 

technological process along the economic and technological trade-offs defined by a paradigm…” 

(Dosi 1988, p. 1128). However, even though a technological paradigm produces some notion of 

what paths of research to pursue and avoid, the superiority of one direction over another is likely 

unclear a priori (Nelson and Winter 1982) and so a firm’s expectations regarding an ‘optimal’ 

technological trajectory are inevitably imprecise. 

We represent the optimal technological trajectory by a parameter T. We assume that a 

technological paradigm has one optimal technological trajectory T. An optimal trajectory is not 

necessarily the one that is closest to the technological frontier or technologically superior 

(Anderson and Tushman 1990; Arthur 1989; Liebowitz and Margolis 1995). Rather, it is the one 

that among conceivable alternatives appears most promising “on the ground of some rather 

obvious and broad criteria such as feasibility, marketability and profitability” (Dosi 1982, p. 155). 

Our assumption of one optimal trajectory is consistent with a flurry of industry cases 

documenting the eventual emergence of one comparatively dominant technology across settings 

as diverse as cement, glass, and minicomputers (Anderson and Tushman 1990), automobiles, 
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electronic calculators, picture tubes, television, transistors, and typewriters (Suarez and Utterback 

1995), as well as video tapes (Cusumano et al. 1992). Moreover, note that our assumption of one 

optimal technological trajectory does not preclude the contemporaneous existence of additional 

trajectories with some merit; all it requires is that at any one moment in time, prevailing 

technological, economic, and institutional constraints point to one technological trajectory that is 

on aggregate projected to be more feasible, marketable, and profitable. 

Because the optimal technological trajectory depends on trade-offs along several 

technological, economic, and institutional dimensions and given that such trade-offs reflect a 

complex interplay between different actors (Dosi 1982; Garud et al. 1997), we assume that T is 

exogenous to the R&D activities of any one individual firm. If a firm had full information, it 

would make R&D investments consistent with the technological trajectory as given by T. In what 

follows, we refer to T as the optimal technology. We assume that each firm has incomplete 

knowledge about T, yet even though T is uncertain, a firm nevertheless has initial expectations 

about T based on available information (e.g., that accumulated through prior experience). We 

represent such initial expectations about the value of T by a prior probability distribution that is 

normal with mean μ and variance 2
T , such that T ~ N(μ, 2

T ). This prior probability distribution 

expresses a firm’s initial perceived technological uncertainty. 

2.2 Payoffs 

The technology ultimately implemented by a firm is represented by the decision 

parameter d. For a decision d, a firm’s cost function is given by C(T, d) =  b’|T – d|, where b’ 

represents the cost a firm incurs when implementing a technology d that deviates from the 

optimal technology T by one unit and so b’>  0. This definition of b’ allows for the possibility that 

a given deviation from T is not equally costly in all settings. For example, it is conceivable that in 

industries where technological progress is comparatively more important, b’—i.e., the marginal 
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cost of getting d wrong given T—is higher than in industries where technological progress is less 

important. Because of imperfect substitutability of R&D outcomes across different trajectories 

and due to strong path dependencies within them (Dosi 1982; Nelson and Winter 1982; Sahal 

1981), in practical terms one might view C(T, d) as capturing the opportunity cost of suboptimal 

R&D investment as well as the capital, effort, and time associated with adjusting to, and catching 

up with progress in, the optimal technological trajectory. The cost function shows that a firm 

incurs higher costs when the distance between d and T increases and so absent technological 

uncertainty, a firm would select d = T. However, complete certainty is improbable and so a firm 

will at best be able to reduce rather than eliminate uncertainty so as to pinpoint T with greater 

precision. Because knowledge about T is dispersed across firms within the industry, it is useful 

for firms to search for information to decrease technological uncertainty. 

In our model, a firm can gather information about the properties of T by forming one or 

more alliances with other firms and we represent the number of alliances formed by a firm by  . 

We assume that each alliance yields one direct observation—i.e., one set of information about the 

optimal technology T. A firm begins with an initial belief represented by the prior probability 

distribution concerning T. Using the observations obtained from its alliances, the firm updates its 

prior probability distribution and forms a posterior belief—i.e., a posterior probability 

distribution concerning T—that incorporates the observations obtained through its alliances. This 

transformation or ‘updating’ of the prior belief concerning T into a posterior belief about that 

parameter is what makes our model Bayesian. In particular, the posterior distribution of the 

optimal technology T is obtained by deriving the distribution of T conditional on the prior belief 

of the firm and on the observations obtained from its alliances. Based on this posterior belief 

about T, a firm chooses d = dopt that minimizes the expected value of C(T, d). Thus, dopt is 
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determined through ),(min
,

dTCE
Td  , where E represents the expectations operator with respect to 

T and the   below E denotes that a firm chooses d based on the posterior probability distribution 

of T after obtaining observations through its   alliances. 

The observations a firm obtains through its alliances are jointly normally distributed with 

mean T and a covariance structure as will be given in Section 3, and the posterior probability 

distribution of T is normal with mean μη and variance 2 . The expression ||
,

dTE
T

  is 

minimized when d equals the median of the probability distribution of T. As T follows a normal 

distribution, the median and mean are equal and so ||||||min
,,,

YETEdTE
TTTd    , where 

Y follows a normal distribution with mean zero and variance equal to 2 . The expected value of 

the absolute value of Y is equal to 



2

,

2
|| YE

T
 (DeGroot 1970, pp. 232-233) and so it follows 

that 

(1) 
 

  bbdTCE
Td

2
'

,

2
),(min , 

where   is the standard deviation of a firm’s posterior belief about T, reflecting a firm’s 

residual technological uncertainty after it obtains sets of information through its alliances, and the 

parameter b collects all constant terms. Note that while   plays a role in equation (1), μη does 

not. Additionally, while a firm may reduce its technological uncertainty through its   alliances 

with other firms, each individual alliance involves a cost c that captures the capital, effort, and 

time necessary to form, operate, and terminate that alliance. For tractability, we begin by 

interpreting the cost c as a parameter that is stable both across alliances as well as across firms. 
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However, this stability assumption can be relaxed without loss of generality and we take 

advantage of this possibility in Section 6, when generalizing our equilibrium results. 

Consequently, the optimal number of alliances minimizes the total cost TC: 

(2)  minTC b c      . 

Thus, a firm’s total cost is an increasing function of the posterior standard deviation   and so a 

firm has an incentive to minimize residual technological uncertainty (Hagedoorn et al. 2011; 

Letterie et al. 2007). As we will show later, because an increase in the number of alliances 

decreases  , the optimal number of alliances represents a resolution of the trade-off between 

the uncertainty-reduction benefits of alliances on the one hand, and their costs (i.e., c ) on the 

other hand. 

3. OPTIMAL ALLIANCE FORMATION FOR A CLOSE LEARNING HORIZON 

Consider the case where a firm’s learning horizon is close and so it only learns through 

alliances with its own partners, but not through the alliances of its partners. The observation a 

firm receives through one alliance, which we represent by xi, is normally distributed with mean T 

and variance 2
x . We assume that individual observations are independent, such that an 

observation ix  captures the non-redundant part of the information set obtained through one 

alliance. Thus, we assume that each alliance will yield at least some unique information as 

compared both with the firm’s own knowledge and that accessed through its other alliances. This 

assumption is conceivable because individual firms tend not to have fully identical knowledge 

bases. It is also consistent with findings in empirical research showing that firms consider 

knowledge complementarity when selecting their alliance partners (Arora and Gambardella 1990; 

Mowery et al. 1998; Rothaermel and Boeker 2008). Note that this independence assumption is 



12 

 

plausible, as each of a firm’s partners must only hold some knowledge that is not held by the 

firm’s other partners. Therefore, the independence assumption fully accommodates the possibility 

that the beliefs a firm’s partners hold about the optimal technology T are partly redundant, for 

example in case such partners also have alliances with one another (Ahuja 2000). By implication, 

the observations x1, x2, ... , xη that a firm obtains through its   alliances are jointly normally 

distributed with mean T and a covariance structure as given by a diagonal matrix Σx. 

Each observation xi provides a set of information about T but this information set will be 

imprecise to a greater or lesser extent (i.e., 02 x ). First, due to the “permanent existence of 

asymmetries among firms, in terms of their…technologies” (Dosi 1988, p. 1155), information is 

scattered across industry firms and so no individual firm has full information about T. Second, to 

the extent that knowledge is tacit and embedded in routines and interactions within firms, its 

transmission across firm boundaries may be challenging (Kogut and Zander 1992). Third, to 

appropriate the returns to their knowledge, firms have a strategic reason to protect part of their 

knowledge about T from leakage to their alliance partners (Oxley and Wada 2009). While such 

strategizing may lead firms to be protective of their in-house knowledge, we assume that firms 

will not purposely mislead their alliance partners and so strategic motives may affect the variance 

of an observation but not the mean. 

Consequently, after a firm has acquired observations x1, x2, ... , xη through its  alliances, 

it will face a residual level of technological uncertainty as given by the posterior variance of T: 

(3) 

1

22
2 1





 
Tx 

 . 

Derivation of this posterior variance is given in the Appendix. Equation (3) clearly shows that the 

Bayesian learning mechanism generates a posterior variance of T that is conditional on both the 

prior belief of the firm regarding T as well as the observations it obtains from its alliances. 
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Substituting equation (3) into (2) and solving for the optimal number of alliances *  yields 

(4)  
2

2
3

1
2*

T

x
xa 

  , 

where
3

2

2




c

b
a , to save some notation. The optimal number of alliances is a continuous 

variable here but in practice a firm will choose an integer value close to *  yielding the lowest 

cost as implied by equation (2). Also, note that in our model, because firms choose the optimal 

(in the Bayesian sense) number of alliances * , in equilibrium no firm will have an incentive to 

deviate from this optimum. 

Equation (4) provides a number of results. The optimal number of alliances increases with 

the cost of uncertainty b, while it decreases with the cost of alliances c. Moreover, the optimal 

number of alliances increases with a firm’s perceived level of technological uncertainty 2
T . 

Consequently, initial technological uncertainty represents an inducement for firms to enter into 

alliances that will in turn increase firms’ information about T, thus reducing their residual 

technological uncertainty 2 . Descriptive findings are consistent with this result. In dynamic 

industry settings with high technological uncertainty, such as information technology or 

pharmaceutical biotechnology, firms tend to engage in more alliances than in more stable 

industry settings, such as food and beverages (Hagedoorn 2002). Equation (4) thus formally 

captures the widely-established notion that technological uncertainty constitutes an important 

motivation for firms to enter into alliances with other firms (Auster 1992; Hagedoorn 2002; 

Mody 1993; Rosenkopf and Schilling 2007). 

Finally, to see how the optimal number of alliances depends on the variance of an 

observation 2
x , we obtain the first order derivative of * with respect to 2

x  as follows: 
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(5)       3
2

2
2

3
2

2

2
3

2
2

2

*

3

1

3

 



 


x

T

x

T

x

x

aa 





. 

This derivative varies with the cost b of residual (i.e., posterior) technological uncertainty   

relative to the cost of alliances c, and the level of uncertainty 2T  relative to the variance of an 

observation 2
x . Therefore, interpretation of the role of 2x  in shaping *  is conditional on two 

distinct industry scenarios that we define as follows2: 

 
A high tech industry is one in which (1) the cost b of residual technological uncertainty 

  is high relative to the cost of alliances c, and (2) the initial technological uncertainty 

2
T  is high relative to the variance of an observation 2

x . 

 
A low tech industry is one in which (1) the cost b of residual technological uncertainty   

is low relative to the cost of alliances c, and (2) the initial technological uncertainty 2T  is 

low relative to the variance of an observation 2
x . 

 

In a high tech industry, the first order derivative in equation (5) is positive and so a firm 

will form more alliances when the variance of observations becomes greater. As the incentive to 

learn through alliances in this setting is strong (loosely, b > c and 2
T  > 2

x ), greater variance of 

observations induces a firm to establish more alliances. For a low tech industry, the first order 

derivative in equation (5) is negative and so a firm will form fewer alliances when the variance of 

observations increases. In this setting, the incentive to learn through alliances is weak (loosely, b 

                                                           

    2 Our labeling of these two scenarios as ‘high tech industry’ and ‘low tech industry’ reflects the close consistency 
between empirically observed high tech and low tech industries and our theoretical definitions of both. For example, 
compared to low tech industries, the R&D intensities of high tech industries are much higher (Dyer et al. 2014), 
while the marginal impact of firms’ technology stocks on their value added and market valuations is also higher in 
high tech industries, such as pharmaceutical biotechnology (e.g., Cuneo and Mairesse 1984; Hall et al. 2005). This 
suggests that the level of technological uncertainty as well as the cost of residual technological uncertainty is much 
higher in high tech compared to low tech industries, thus outweighing the costs and learning imperfections of 
alliances, as reflected in high tech firms’ greater propensity to engage in alliances with other firms (Hagedoorn 2002). 
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< c and 2
T  < 2

x ) and so greater variance of observations reduces a firm’s inducement to 

establish more alliances. Therefore, in high tech industries, where technological uncertainty is 

severe and expensive, and where alliances are a comparatively affordable and effective solution 

to such uncertainty, a firm will form more alliances when the variance of observations increases. 

Conversely, in low tech industries, where technological uncertainty is limited and less expensive, 

and where alliances are a comparatively expensive and ineffective solution to such uncertainty, a 

firm will form fewer alliances when the variance of observations increases. 

4. OPTIMAL ALLIANCE FORMATION FOR A DISTANT LEARNING HORIZON 

Now consider the case where a firm’s learning horizon is distant and so it learns both 

through alliances with its own partners as well as through indirect partners, defined as the set of 

firms that direct partners have access to through their own alliances. Let each alliance partner 

have ω alliance partners itself. Because the focal firm is included in ω, we must subtract one 

from ω to obtain the number of indirect partners provided by a direct partner. Therefore, each of 

a firm’s direct partners yields ω – 1 indirect partners and so   direct alliances yield  1   

indirect observations. We assume that individual observations obtained through indirect partners, 

represented here by xj, are independent and so each indirect partner will yield at least some 

unique information compared to the firm’s own knowledge base, the knowledge bases of its 

direct alliance partners, and the knowledge bases of its other indirect partners. 

For the reasons as outlined in the previous Section, the set of information about the 

optimal technology T captured through an observation xj will be imprecise. Because an increase 

in distance between firms makes the movement of knowledge more challenging (Burt 2010), we 

assume that a firm’s indirect partners yield more variable observations about T than its direct 

partners. Specifically, in our model a firm observes jjj xy  , where the stochastic term j  is 
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normally distributed with mean zero and variance 2 , the latter which represents the additional 

transmission noise surrounding an indirect observation compared to an observation drawn from a 

direct partner. While an indirect observation also has a mean T, its variance is 22  x  and so 

the uncertainty-reduction potential of one indirect observation is smaller than that of one direct 

observation because 222
xx    . 

With a distant learning horizon, after acquiring   direct and  1   indirect 

observations, a firm faces a residual level of technological uncertainty as given by the posterior 

variance of T: 

(6) 
    

1

222

22

2

1

2222
2 111





 



 


Tx

x

xTxx 















 . 

Note that the expression in equation (6) bears analogy to equation (3), except that it additionally 

accounts for the uncertainty-reduction potential of  1   indirect partners. In equation (3), 

which gives the posterior variance of T for a close learning horizon, each observation obtained 

from one direct partner has a variance equal to 2

1

2

1
x

x

 


 
. In equation (6), which instead gives 

the posterior variance of T for a distant learning horizon, each observation obtained from one 

direct partner has a variance that is in the aggregate equal to 

     2
22

22
2

1

22

22

2

1
x

x

x
x

x

x

x

f 









 









. Consequently, though indirect observations 

themselves have greater transmission noise than direct observations, the overall variance of the 

combined information sets obtained through one of a firm’s direct partners is smaller for a distant 

compared to a close learning horizon. Substituting equation (6) into (2) and solving for the 

optimal number of alliances **  yields 
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(7) 
     22
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x
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
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
 
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

 . 

Here, too, observe the analogy to equation (4) for a close learning horizon. Assuming for the 

moment that all firms are identical in their alliance formation strategies, we can impose the 

symmetry condition    to obtain a Nash equilibrium as follows: 

(8) 
     2**2
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
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

 . 

In our theoretical model this is a likely outcome because to this point, we have assumed that the 

payoffs and costs of alliance formation are symmetric. After we compare equilibria for close and 

distant learning horizons, we relax this symmetry condition in Section 6 in order to generalize our 

equilibrium results. A solution for equation (8) is not tractable but the expression nevertheless 

has properties directly relevant to our decision problem. For instance, an increase in the 

transmission noise 2  generates: 

(9) 
        *
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

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T

x
x

x

x

T

x

x

x
x aa . 

Thus, for a distant learning horizon, if the variability of observations drawn from indirect partners 

increases, then a firm’s uncertainty reduction progressively becomes a function of localized 

learning from direct partners alone. In that case, **  asymptotically converges to * . The 

transmission noise 2  captures the inverse of a firm’s ability to learn from indirect partners and 

so the intuition of equation (9) is that despite the presence of indirect partners, a firm nevertheless 

has a close learning horizon if it is unable to learn from indirect partners. 

Next, to see how the optimal number of alliances given a distant learning horizon varies 

with the main parameters of the model, we restrict our attention to a high tech industry because in 
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a low tech industry, equilibrium outcomes for several partial derivatives are indefinite. First note 

that in a high tech industry      2
2**2

22
2**

x

x

x
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 . Furthermore, 

(10) 
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Recall that 
3

2

2




c

b
a  and so the optimal number of alliances increases with the cost of residual 

technological uncertainty b, while it decreases with the cost of alliances c, as in the case of a 

close learning horizon (see equation (4)). Also, the first order derivative of **  with respect to a 

firm’s perceived level of technological uncertainty 2
T  is 

(11) 
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Therefore, a firm’s optimal number of direct partners increases if the firm perceives greater 

technological uncertainty. Next, 

(12) 
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and so if the additional transmission noise surrounding an observation from an indirect partner 

becomes greater, then the number of direct partners increases to compensate for such additional 

variance. Similarly, note that 
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(13) 
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and so the number of direct partners increases when the variability of observations obtained 

through a firm’s direct partners increases. 

5. COMPARING EQUILIBRIA 

Having developed the Bayesian analysis for both close and distant learning horizons, we 

now turn to a comparison of *  and ** , the respective optimal decisions for the two scenarios. 

We begin with two key insights from the prior Sections. First, equilibrium outcomes respond 

differently to increases in information variability depending on the context because 02

* 


x


 in a 

high tech industry whereas 0
2

* 


x


 in a low tech industry. Second, for a distant learning 

horizon each observation through a direct partner has a variance that is, in the aggregate, equal to 

     2
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x
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x
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


 
  and so the overall variability of information a firm obtains 

through its alliances is smaller for a distant rather than a close learning horizon. 

A change from a close to a distant learning horizon can be viewed as an aggregate 

decrease in information variability. By Sections 3 and 4, this has opposing implications in high 

versus low tech industries. Specifically, in a high tech industry 0
2

* 


x


 and so a firm will form 

fewer alliances if the variability of observations decreases. By this result, and because 
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 , a static comparison of *  and **  (equations (4) and (8)) 
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generates a smaller optimum for a distant compared to a close learning horizon, i.e., * > ** . 

This generates the following proposition: 

 
Proposition 1. In a high tech industry, a firm’s optimal number of alliances is smaller 

when it has a distant rather than a close learning horizon. 

 
Thus, in a high tech industry, a firm with a distant learning horizon can substitute alliance ties to 

indirect partners for those with direct partners. Conversely, if the learning horizon is close—i.e., a 

firm has no indirect partners or it does have, but cannot learn from, such partners—then a firm’s 

optimal number of alliances becomes greater. 

In a low tech industry 0
2

* 


x


 and so a firm will form more alliances if the information 

variability of observations decreases. By this result, and because      2
2**2

22
2**

x
x

x
xf 




 
 , 

a static comparison of *  and **  (equations (4) and (8)) generates a larger optimum for a 

distant compared to a close learning horizon, i.e., * < ** . This generates the following 

proposition: 

 
Proposition 2. In a low tech industry, a firm’s optimal number of alliances is greater 

when it has a distant rather than a close learning horizon. 

 
Thus, in a low tech industry, a distant learning horizon instead generates complementarity 

between a firm’s alliance ties to direct and indirect partners: a firm that learns both from direct 

and indirect partners will benefit more from a larger number of direct partners. 

One key insight following directly from our analysis is that though a firm’s learning 

horizon does have an impact on optimal alliance formation, the nature of this association depends 
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on characteristics of the industry context within which the firm is embedded (here, whether the 

industry is low tech or high tech). Together, propositions 1 and 2 reinforce Ahuja’s (2000, pp. 

450-451) suggestion that the nature of the interaction between ties to direct and indirect partners 

“… can only be understood relative to a particular context…” 

Though propositions 1 and 2 represent static implications of the Bayesian learning model, 

the analysis also has dynamic implications for firms in a high tech industry. Suppose a firm 

optimizes its number of alliances every period as a consequence of period-by-period changes in 

the structural parameters of the model. Then, its optimal decision and so its optimal number of 

alliances may vary by period. Indeed, the sensitivity of a firm’s optimal number of alliances to 

changes in structural model parameters may differ between close and distant learning horizons. 

To examine such a dynamic effect, we focus our attention on b, c, and 2
T  because 

dynamic implications of changes in the variance of an observation 2
x  are indefinite. We first 

obtain the partial derivatives of *  with respect to the structural parameters a (capturing b and c) 

and 2
T  and then use the properties of  f  to compare these partial derivatives to equations (10) 

and (11), respectively. For a close learning horizon, the relevant partial derivatives of *  are 
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the numerator of the expression 
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 , which itself appears as the 

numerator in the respective partial derivates of **  (equations (10) and (11)), is smaller than 

 2 k

x , where  1 ,13k . The denominator, i.e., 
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because 
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f 
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  , and   2
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2

1
0

3 T

a
f  

      in a high tech industry. Therefore, a 

comparison of the relevant first order derivatives of *  and **  with respect to b, c, and 2
T

generates the following proposition: 

 
Proposition 3. In a high tech industry, the optimal number of alliances is less sensitive to 

changes in the structural parameters b, c, and 2
T  when a firm has a distant rather than 

a close learning horizon (i.e., 
aa 


 ***

0


 and 
2

*

2

**

0
TT 








 ). 

 
The ordering of the first-order derivatives in proposition 3 implies that a firm’s optimal number 

of direct partners is expected to be more stable—i.e., less sensitive to changes in b, c, and 2
T —

if the firm learns both from direct and indirect partners. To see why this happens, note that our 

Bayesian model and the resulting Nash equilibrium explicitly account for firms considering the 

alliance formation behavior of their direct partners. Indeed, even though parameters b, c, and 2
T  

are assumed exogenous to individual firms, in the case of a distant learning horizon, a focal firm 

calibrates optimal alliance formation in part based on its expectations concerning partners’ 

alliance formation. Because in that case, a firm can benefit from learning from indirect partners, 

it will determine optimal alliance formation keeping in mind such indirect learning benefits. 

These indirect benefits are absent in the case of a close learning horizon, which in turn gives rise 

to the contrast between close and distant learning horizons as summarized in proposition 3. 

For example, let us assume that perceived technological uncertainty 2
T  increases, which 

represents an exogenous shock that might be due to, for example, the discovery of an additional 

trajectory within a technological paradigm. By equations (3) and (6), the effect of such a shock 
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would be to increase the posterior variance of T—i.e., the residual technological uncertainty 

faced by the firm. Equations (4) and (8) indicate that such an increase in 2T  is a motivation for 

the firm to increase its number of alliances, both for close and distant learning horizons. Crucially 

though, the partners of the firm will be similarly motivated and so in case of a distant learning 

horizon, the firm’s increased learning requirement will be satisfied in part by its partners’ alliance 

formation. In our model, the optimal number of alliances in the resulting equilibrium explicitly 

takes into account the alliance formation patterns of partners. Compared to a close learning 

horizon, this is the mechanism reducing variance in the focal firm’s optimal number of alliances 

under a distant learning horizon. A similar line of reasoning holds for the effects of parameters b 

and c. Compared to a close learning horizon, a firm’s distant learning horizon in a high tech 

industry therefore acts as a buffer from changes in several structural model parameters because in 

equilibrium the firm accounts for partners’ responses to such changes. 

6. GENERALIZING THE MODEL 

6.1 Heterogeneous Alliance Formation 

Thus far, we have assumed that    in order to obtain a symmetric Nash equilibrium, 

while we also treated a focal firm as having access to 1  indirect partners. First, even if   , 

the latter assumption is restrictive because some of partners’ direct partners may be ‘redundant’ 

from the perspective of a focal firm, in that they might themselves be direct partners of the firm 

as well (Ahuja 2000; Walker et al. 1997). Moreover, multiple direct partners might have alliances 

with one and the same indirect partner. In both scenarios, a focal firm’s number of non-redundant, 

unique indirect partners will be smaller than 1 . Second, the assumption that    is itself 

restrictive because firms tend to differ in their number of alliance partners (e.g., Roijakkers and 

Hagedoorn 2006; Kapoor and McGrath 2014; Powell et al. 1996). Such heterogeneity may be, for 



24 

 

example, due to differences in the costs firms incur to form, operate, and terminate an alliance. 

Indeed, though to this point we have interpreted the cost c as a parameter that is stable both 

across alliances as well as across firms, this stability assumption can be relaxed without loss of 

generality.3 In this Section, we generalize our model to allow explicitly for heterogeneous 

alliance formation. 

Let 1   be the average number of indirect partners that are ‘non-redundant’ from the 

perspective of a focal firm. Then, by equation (7) a firm’s optimal number of alliances is given by 

(14)    
2

3
1†

T

f
fa 

  , 

where     22

22
2

x

x
xf 




 . In this setting, propositions 1 and 2 will hold if   2

xf   , which 

requires that the number of unique indirect partners is positive, i.e. 1 0   . This condition will 

be satisfied if it is possible for the direct partners of a firm to give access to at least strictly more 

than an average of zero non-redundant, unique indirect partners. The opportunity for non-

redundancy appears to be a weak requirement, first, given the hundreds and often thousands of 

firms populating many industries (e.g., United States Census Bureau 2012). Second, empirical 

research shows that non-redundancy is prevalent even in networks with high degrees of local 

redundancy, due to the propensity of some firms to form ‘bridging’ ties across otherwise 

disconnected parts of an alliance network (e.g., Powell et al. 2005; Rosenkopf and Padula 2008; 

Schilling and Phelps 2007; Sytch et al. 2011). In this more general model, then, not all direct 

partners of the firm are required to have unique partners themselves: even if only one of a firm’s 

direct partners has one unique partner itself, a distant learning horizon can exist and so the 

necessary conditions for propositions 1 and 2 are replicated. Therefore, by relaxing the symmetry 

                                                           

    3 Specifically, this more general assumption amounts to interpreting c as the expected cost of forming, operating, 
and terminating an alliance. 
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condition through allowing   , we impose much weaker sufficiency conditions on 

propositions 1 and 2. 

 This generalization of our model to account for heterogeneous alliance formation allows 

for a descriptive comparison between key implications of propositions 1 and 2 and performance 

in empirically-observed alliance portfolios. One key implication of proposition 1 is that in a high 

tech industry the number of direct alliance partners optimal for technological learning is smaller 

for firms with a more extensive learning horizon. This implication is fully consistent with results 

in Ahuja (2000) and Vanhaverbeke et al. (2012), suggesting that the number of direct alliance 

partners optimal for learning in a number of technology-intensive industries during 1981-1996 

was smaller for firms with greater numbers of indirect partners. One key implication of 

proposition 2 is that in a low tech industry the optimal number of direct alliance partners is 

instead greater for firms with a more extensive learning horizon. Consistent with this implication, 

Koka and Prescott (2008) show that in the low tech steel industry during 1980-94, firms that 

simultaneously had greater numbers of direct as well as indirect partners outperformed others, 

and this effect was even more pronounced during periods of environmental stability. 

 We now turn to generalizing proposition 3. Given that   3
1
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, it is straightforward 

to show that 
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, then the main 

features of proposition 3 are replicated. In practice, this requires that both a firm and its average 
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partner increase their number of alliances in response to an increase in the parameter 
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reflecting an increase in the cost of residual technological uncertainty b relative to the cost of 
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As in the above, if both 0 
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
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2
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 , the sensitivity of a firm’s number of alliances in 

case of a distant learning horizon is lower than that of a close learning horizon, i.e., 
2

*

2

†

TT 









. 

Under these two fairly general assumptions, the key properties of proposition 3 are 

replicated, generating the following proposition: 

 
Proposition 4. In a high tech industry, if alliance formation is heterogeneous (i.e.,   ) 

and firms are homogeneous in the sign of their sensitivity (i.e., both 0 
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), then the optimal number of alliances is 

less sensitive to changes in the structural parameters b, c, and 2
T  when a firm has a 

distant rather than a close learning horizon (i.e., 
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 ). 

 
Therefore, once we allow for heterogeneous alliance formation, which only introduces weak 

additional constraints, the influence of a firm’s learning horizon on the sensitivity of the firm’s 

optimal number of alliances to changes in structural model parameters is identical in proposition 
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4 compared to proposition 3. One key implication of proposition 4 is that relative to a firm with a 

more restricted learning horizon, a firm with a more extensive learning horizon benefits more 

from a given level of inter-temporal stability in its number of direct alliance partners. As an 

illustrative example, consider Advanced Micro Devices Inc. (AMD) and National Semiconductor 

Corporation (NSC) during 1977-99.4 Both firms operated mainly in the semiconductors subsector 

of the high tech information technology industry, a setting that has historically experienced great 

variation in the level of technological uncertainty, the cost of residual technological uncertainty, 

and the cost of alliances (e.g., Bresnahan and Greenstein 1999; Frankort 2013; Grove 1996; 

Kapoor 2013; Schilling 2015; Sytch et al. 2011), and so we might expect a priori that the 

learning horizon may have an effect consistent with proposition 4. 

AMD and NSC were similar on a number of dimensions. For example, both had their 

home in Silicon Valley and were among few semiconductors companies having remained 

independent by the end of the 1970s (Chandler 2005). Moreover, average annual R&D 

investments were similar between the two firms, at around $235MM, while both divided their 

alliance activities across IT subsectors in comparable ways, with around 80% of the alliances in 

microelectronics. They also had similar shares of contractual alliances compared to joint ventures. 

Finally, the extent to which partners had alliances among themselves—i.e., the density of the two 

alliance portfolios—was comparable as well. Despite all such similarities, however, AMD on 

average outperformed NSC by about 80% on patent-based measures of technological learning, 

which raises the question: what might explain such a differential? Our theory related to 

proposition 4 would predict that part of the difference in technological learning may have been 

due to the comparatively greater benefit AMD derived from the stability in its number of direct 

                                                           

    4 We developed this brief comparative case example based on combined data drawn from the Cooperative 
Agreements and Technology Indicators database (alliance data, 1977-99), the NBER patent data file (data on 
technological learning in IT, 1977-99), as well as searches of historical annual reports in Mergent Online and 
Mergent Archives (additional data, 1978-99). Details are available upon request. 
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partners, afforded by a more extensive distant learning horizon. Indeed, though the alliance 

portfolios of both firms were equally stable in terms of inter-temporal variance in numbers of 

direct partners, the extent of the learning horizon of AMD, in terms of numbers of indirect 

partners per direct partner, was on average more than 1.2 times that of NSC. 

6.2 Incomplete Awareness 

In his classic treatment of interorganizational relationship formation, Van de Ven (1976, p. 

31, italics added) noted that “organizations must be aware of possible sources…where their 

needed resources can be obtained; otherwise organizational directors are likely to conclude that 

the goal or need which motivates the search for resources cannot be attained.” To this point, we 

have treated firms’ awareness of indirect partners strictly dichotomously: firms are either 

unaware (i.e., a close learning horizon) or fully aware of all their non-redundant, unique indirect 

partners (i.e., 1 ). However, there can be a discrepancy between a firm’s total number of 

unique indirect partners (i.e., )1(   ) and those that the firm knows to exist.5 In this Section, 

we focus on a further generalization of our model to account for incomplete awareness. 

To incorporate incomplete awareness into our theory, it suffices to let 1'  be the 

average number of non-redundant indirect partners that a focal firm is aware of. It is 

straightforward to see that the necessary conditions for propositions 1 and 2 are replicated if 

1' . Hence, regardless of a firm’s actual number of unique indirect partners, as soon as it is 

aware of at least one such partner (i.e., 1' ), propositions 1 and 2 will hold. Turning to 

proposition 4, if '  rather than   is the relevant parameter from the standpoint of a firm facing 

an alliance formation decision, the features of proposition 4 are replicated if a firm with a greater 

                                                           

    5 This possibility is fully consistent with the literature on competitor identification, suggesting that cognitive 
limitations may lead to discrepancies between firms’ industry environments and cognitive models of such 
environments (Porac et al. 1995), which can have consequences for firm decision making (Zajac and Bazerman 
1991). To date, the implications of such cognitive constraints have remained largely unaddressed in the alliance 
literature (Westphal 2008). 
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number of unique indirect partners is aware of more such partners than a firm with a smaller 

number of unique indirect partners, i.e., 0)',( corr . This assumption is reasonable because 

the alliance portfolio of a firm with a greater number of partners should be more visible than that 

of a firm with a smaller number of partners. 

Because 2  represents the inverse of a firm’s ability to learn from indirect partners, we 

can now be more precise in our distinction between close and distant learning horizons. If a firm 

is unaware of unique indirect partners (i.e., 1' ), then its ability to learn from them is 

irrelevant and so the firm has a close learning horizon. Instead, if the firm is aware of at least one 

unique indirect partner (i.e., 1' ) and it is able to learn from that partner (i.e., 2 ), then it 

has a distant learning horizon. Therefore, neither awareness nor ability alone is sufficient for a 

firm to act on the learning potential afforded by non-redundant indirect partners. In particular, all 

effects summarized in propositions 1, 2, and 4 will hold if both 1'  and 2 . 

Though our labeling of learning horizons as close or distant at first blush suggests that the 

learning horizon concept has a strictly binary interpretation, the extent of the learning potential 

associated with different learning horizons actually represents a continuum, with three boundary 

scenarios. First, firms without indirect partners, those that have indirect partners yet without 

awareness of them, or those that have indirect partners yet without the ability to learn from them 

have the most restricted learning horizon, which we labeled a close learning horizon. Second, 

firms that are aware of one unique indirect partner and are at least minimally able to learn from 

that partner have the most restrictive distant learning horizon. Third, firms with many indirect 

partners that they are both aware of and able to learn from have the most extensive distant 

learning horizon. 
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7. DISCUSSION 

To begin to consider the role of indirect partners in optimal alliance portfolio design (e.g., 

Lavie 2006: 651), we asked how learning from indirect partners influences a firm’s optimal 

number of direct partners in the face of technological uncertainty. Our formal Bayesian learning 

model of optimal alliance formation demonstrated, first, that a firm’s learning horizon has 

distinct normative implications for optimal alliance formation depending on the firm’s specific 

industry context. In a high tech industry, where technological uncertainty is comparatively high, 

residual uncertainty is costly, and where alliances are a comparatively affordable and effective 

solution to technological uncertainty, firms with a distant learning horizon can substitute alliance 

ties to indirect partners for those with direct partners. In contrast, in a low tech industry, where 

technological uncertainty is comparatively low, residual uncertainty is less costly, and where 

alliances are a comparatively costly and ineffective solution to technological uncertainty, alliance 

ties to direct and indirect partners act as complements. These basic implications of our model 

resonate with recent literature analyzing complementarities across firms’ learning activities (e.g., 

Cassiman and Veugelers 2006), by suggesting that the question of whether alliance ties to direct 

and indirect partners are complements or substitutes must be answered with reference to relevant 

contextual variables (Ahuja 2000, pp. 450-451). 

Second, our model implies that in a high tech environment and relative to a firm with a 

more restricted learning horizon, a firm with a more extensive learning horizon benefits more 

from a given level of inter-temporal stability in its number of direct alliance partners. In 

particular, given a distant learning horizon, the optimal number of direct partners of a firm in a 

high tech industry will be more robust to inter-temporal changes in the cost of residual 

technological uncertainty, the cost of alliances, and the perceived level of technological 

uncertainty. Therefore, in high tech industries, the inter-temporal stability of some firms’ alliance 
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activities may be understood as the strategically optimal outcome (in the Bayesian sense) of firms’ 

efforts to reduce technological uncertainty. Our novel strategic explanation for inter-temporal 

stability in firms’ alliance activities complements prior research that has often discussed such 

stability in terms of embeddedness and inertia mechanisms (e.g., Gulati and Gargiulo 1999; 

Hagedoorn 2006; Kim et al. 2006). 

Our treatment of the learning horizon concept captures in an integrative way various 

factors of importance when considering the role of indirect partners in optimal alliance portfolio 

design. At a basic level, it allows firms to vary in their number of indirect partners for a given 

number of direct partners. Though existing research has already begun to account for such a 

possibility (Ahuja 2000; Vanhaverbeke et al. 2012), it has nevertheless implicitly assumed that 

firms’ learning from indirect partners is purely a function of the number of such partners. More 

broadly, it has tended to assume that knowledge flows fairly easily beyond individual alliance 

dyads, for example, between indirectly connected firms (Ghosh and Rosenkopf 2014). However, 

a firm with five indirect partners may be aware of all five yet have a limited ability to learn from 

them, while an otherwise identical firm may be aware of only two indirect partners yet have a 

strong ability to learn from these two. To account for such heterogeneity, our model formally 

incorporates as relevant parameters the extent to which firms are aware of and able to learn from 

their indirect partners. This way, our theory facilitates a refocusing, away from the assumption 

that firms’ learning from indirect partners is a direct function of the actual number of such 

partners, towards a more nuanced account that considers both firms’ cognitive limitations in 

observing other firms (Westphal 2008) as well as limitations in learning from them (Burt 2010; 

Ghosh and Rosenkopf 2014). 

Further opportunities exist to extend our research as well as address some of its 

limitations. First, in part because our approach has been theoretical, it will be important to subject 
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the predictions of our theoretical model to empirical testing. For example, though a few prior 

studies appear generally consistent with propositions 1 and 2, research in low tech industries is 

limited as is the systematic study of factors such as the awareness of and ability to learn from 

indirect partners. Moreover, while the consistency of our brief comparative case of AMD versus 

NSC with proposition 4 is promising (Section 6.1), empirical refutation through a large-scale 

empirical design would be necessary. Such empirical tests might answer a number of related 

questions: Do measures of firms’ learning horizon predict alliance formation and firm learning? 

Can they predict the inter-temporal stability of firms’ alliance portfolio size? If so, then how will 

such effects vary across industries with different levels of technological uncertainty? Reliance on 

secondary data may not suffice to address such questions because learning horizons can vary in 

their extent with the awareness of and ability to learn from indirect partners. Thus, surveys may 

be used to gauge firms’ view of the partner landscape (e.g., Lhuillery and Pfister 2011). 

Second, our model is based on the assumption that within a technological paradigm, it is 

eventually possible to discern one optimal technological trajectory. This assumption is reasonable 

in light of multiple and diverse corroborative industry cases (e.g., Anderson and Tushman 1990; 

Cusumano et al. 1992; Suarez and Utterback 1995). Nonetheless, it is of course possible that, at 

least in the intermediate term, multiple trajectories cannot easily be distinguished based on 

projections regarding their feasibility, marketability, and profitability. Future research might 

account for the possibility of multiple concurrent optimal trajectories in the intermediate term, 

which mathematically amounts to defining T to be a vector of values (e.g., Raiffa and Schlaifer 

1961; Zellner 1971). We speculate that our results will remain similar in spirit under the 

assumption that the elements of the vector of optima are somehow positively correlated, such that 

observations obtained through alliances at once allow firms to update their beliefs about all 

conceivable optima. In practice, this is plausible either if  the technologies underlying multiple 
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optimal trajectories are comparable on at least a subset of all relevant technological dimensions 

or if  they are complementary in defining a common application domain (e.g., Kodama 1991). 

In conclusion, our study extends the alliance literature by offering a formal and 

integrative account of the role of indirect partners in optimal alliance portfolio design, generating 

several normative propositions amenable to future empirical refutation. We hope our theory 

offers an impetus for further exploration of the effects of firms’ learning horizon on the formation 

and consequences of alliances by firms faced with technological uncertainty. 
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APPENDIX: DERIVATION OF THE POSTERIOR VARIANCE (EQUATION (3)) 

Suppose the covariance matrix for the observations x1, x2, ... , xη is given by 
x . Each variable xi 

is normally distributed with mean T and variance 2

ix . The posterior distribution function is 
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where ɩ is an   by 1 vector whose elements contain the number 1 and x is an   by 1 vector 

containing the observations xi. To determine the posterior variance of T it suffices to collect all 

terms that involve T 2, i.e.,   2
2

1 1
T

T
x

T 
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  . Because we assume that observations are 

independently and identically distributed,   .
111 2

2
1

2
2

2

1
TT

Ti xT
x

T 


 


  
   Therefore, the 

posterior variance of T is equal to 
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