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ABSTRACT12

The design of cable-stayed bridges is typically governed by the dynamic response. This work13

provides designers with essential information about the fundamental vibration modes proposing14

analytical expressions based on the mechanical and geometrical properties of the structure. Differ-15

ent bridge geometries are usually considered in the early design stages until the optimum solution16

is defined. In these design stages the analytical formulation is advantageous as finite element mod-17

els are not required and modifying the bridge characteristics is straightforward. The influence of18

the tower flexibility is included in this study, unlike in previous attempts on mode estimation. The19

dimensions and proportions of the canonical models proposed in the analytical study stem from20

the previous compilation of the dimensions of a large number of constructed cable-stayed bridges.21

Five tower shapes, central or lateral cable-system layouts and box- or ‘U’-shaped deck sections22

have been considered. The vibration properties of more than one thousand cable-stayed bridges23

with main spans ranging from 200 to 800 m long were extracted within an extensive parametric24
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analysis. The Vaschy-Buckingham theorem of dimensional analysis was applied to the numeri-25

cal results in order to propose the formulation for period estimation. Finally, the formulae were26

validated with the vibration properties of 17 real cable-stayed bridges constructed in different coun-27

tries. The importance of the tower flexibility is verified and the errors observed are typically below28

15 %, significantly improving the estimations obtained by previous research works.29

Keywords: cable-stayed bridges, vibration periods, preliminary design, dimensional analysis,30

tower flexibility, Chinese bridges.31

INTRODUCTION32

The large flexibility, light weight and reduced damping of cable-stayed bridges are responsi-33

ble for severe potential oscillations when subjected to dynamic excitations, particularly for large34

spans (He et al. 2001). Aerodynamic instabilities like flutter, torsional-flutter, or vortex shedding35

can be catastrophically accentuated for critical wind speeds which are strongly related to the funda-36

mental frequencies of the structure (Selberg 1961; Simiu and Scanlan 1996; Katsuchi et al. 1998;37

Strømmen 2006; Mannini et al. 2012). The critical speed for flutter is affected by the character-38

istic closely spaced vertical and torsional frequencies in cable-stayed bridges, particularly if the39

deck is supported by two lateral cable planes. On the other hand, Eurocode 1 part 1-4 (EN1991-40

1-4: 2005) and previous research studies (Walshe and Wyatt 1983) propose simplified expressions41

for the study of vertical deck movements under wind gusts set in terms of the modal properties,42

among other variables. The crucial importance of the first vibration modes for bridge safety under43

wind loads is self evident, and these modes also play an important role in the seismic response of44

cable-stayed bridges (Camara and Astiz 2012).45

The study of the vibration properties of a cable-stayed bridge is consequently a key step to46

address its global dynamic behaviour and possible design weaknesses. Modal coupling is a distin-47

guishing feature of this structural typology, particularly between the transverse flexure of the deck48

and its torsional response. This coupling differentiates the dynamic behaviour of cable-stayed49

bridges from suspension bridges (Walther et al. 1988; Abdel-Ghaffar 1991). The first vibration50

modes involve the excitation of the deck, and they are strongly influenced by the cable-system in51
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vertical direction due to the closely spaced stays and slender decks currently employed in modern52

designs. However, in transverse direction the cables offer small restraint to the deck and the vibra-53

tion is dominated by the transverse flexural stiffness of the girder. Transverse vibration modes can54

be approximated from those of a continuous beam with the same span arrangement (Wyatt 1991).55

The torsional stiffness may arise from two sources: (i) from the cable-system geometry if differen-56

tial longitudinal displacements are prevented in the cable-planes due to the tower geometry, this is57

the case for A- and inverted Y-shaped towers but not for towers with H shape; or (ii) from the deck58

cross-section in bridges with moderate-to-medium spans and box-shaped girders, which is typical59

in structures with one Central Cable Plane (CCP) (Virlogeux 1999).60

In the early stages of the project different design options are typically considered and engineers61

need basic information about the natural frequencies of the bridge to obtain the final configuration.62

Finite Element (FE) models are able to provide accurate solutions but changes in the geometry63

(e.g. the tower shape or the span distribution) are not easily introduced. In this context, simple64

expressions to estimate the first vibration modes are very helpful. However, the aim of the an-65

alytical estimation is not the substitution of the FE model and it should be developed once the66

final bridge configuration is achieved. In the last two decades several analytical formulations that67

predict the vertical, transverse and torsional deck periods have been proposed. The most simple68

(and also gross) estimation only includes the main span of the cable-stayed bridge and is based on69

field forced excitation tests conducted in 13 constructed cable-stayed bridges in Japan (Kawashima70

et al. 1993). A similar approach was adopted by (Guohao 1992). More rigorously, Wyatt (Wy-71

att 1991) introduced the mechanical properties of the deck, the cable-system and the geometrical72

configuration of the bridge in the modal estimation. Recently, Gimsing and Georgakis (Gims-73

ing and Georgakis 2011) proposed an idealized model with two springs representing the cables in74

order to study the vertical and torsional fundamental frequencies of the deck neglecting its stiff-75

ness, which is valid for lateral cable arrangements. The resulting ratios between the first vertical76

and torsional frequencies were close to the observed ones in practice, between 1.5 and 1.6 (Wyatt77

1991). However, the tower flexibility is neglected in all the works published to date, assuming that78
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it is infinitely stiff both in transverse (perpendicular to traffic) and longitudinal (parallel to traffic)79

directions. This was observed to be a source of significant errors in the present study.80

This work starts suggesting dimensionless ratios to define reasonable deck and tower sections81

in cable-stayed bridges with main spans ranging from 200 to 800 m. Next, analytical expressions82

are provided to estimate the first vibration periods in terms of the mechanical and geometrical83

properties of the structure. The terms involved in the proposed formulae are obtained from a84

dimensional analysis that explicitly includes the tower flexibility. Different parameters of the pro-85

posed equations are obtained by means of the least squares approach applied to an extensive modal86

analysis conducted in more than one thousand FE models. These models are parametrically de-87

scribed in terms of the main span length, the width of the deck and the tower height. The resulting88

expressions are validated with results reported by other research works (Fan et al. 2001; Pridham89

and Wilson 2005; Ren et al. 2005; Magalhaes et al. 2007; Wu et al. 2008) on 17 constructed90

cable-stayed bridges, distinguishing the influence of the tower shape among other features. The91

improved accuracy of the mode estimation proposed in this work is observed in the great majority92

of the cases, where the averaged errors are below 15 %.93

BRIDGE DEFINITION AND PARAMETRIC STUDIES94

The proposed bridges have a conventional configuration with two concrete towers and a com-95

posite deck. The distribution is completely symmetric in transverse direction (Y ) and also in96

longitudinal direction (X). The back span to main span ratio (LS/LP ) and the tower height97

(above the deck level) to main span ratio (H/LP ) are taken from the compilation of 43 con-98

structed cable-stayed bridges. This database is an extension of the work reported by (Manterola99

1994). The geometrical ratios of 80 % of the cable-stayed bridges in this database are within the100

range: H/LP = 0.19 − 0.23 and LS/LP = 0.3 − 0.5, hereafter referred to as ‘conventional’101

range. The bridges proposed in this work employ the averaged geometrical ratios: H/LP = 0.21102

and LS/LP = 0.4. These aspect ratios are in accordance with the canonical proportions given103

by (Leonhardt and Zellner 1980) (H/LP = 0.2 − 0.25, LS/LP = 0.42) and (Como et al. 1985)104

(H/LP = 0.2, LS/LP = 0.33) in the 80’s.105
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The cable-system configuration is arranged in a semi-harp layout, which is the normal solution106

in modern designs to obtain a balance between structural efficiency and ease of construction. Inter-107

mediate piers constrain exclusively the vertical movement of the deck (and its torsion) in the side108

spans whereas the longitudinal and transverse movements are released. The deck-tower connec-109

tion plays an important role in the dynamic response of the structure (He et al. 2001). Following110

the current design trend in seismic areas the only movement restrained at this point is the relative111

deck-tower displacement in transverse direction (Y ) (‘floating’ connection). Figure 1 shows the112

generic bridge elevation and plan, besides the boundary conditions along the deck and the towers.113

The deck cross-section is composite with two longitudinal edge steel girders and one upper114

concrete slab (open section) in bridges with two Lateral Cable Planes (LCP). In this case the girder115

depth slightly increases with the main span due to wind considerations, and the relationship be-116

tween both parameters is taken from (Astiz 2001). On the other hand, the deck adopted in structures117

with one Central Cable Plane (CCP) shows an ‘U’-shaped steel section below the concrete slab.118

The closed deck section in CCP models helps to withstand the torsion that is not resisted by the119

cable-system. The depth of the deck in CCP configurations is adopted from the aforementioned120

database of constructed cable-stayed bridges. Figure 1 includes the description of the deck cross-121

sections. The stays are proportioned to a consistent level of stress under the deck self-weight and122

traffic live load (4 kN/m2) combination: 708 MPa. This value is 40 % of the ultimate stress allowed123

in the cable steel. Each cable cross-section is obtained by equilibrium considerations between the124

cable force and the weight of the deck.125

Five different tower shapes have been considered and their sections are defined in terms of126

the tower height (H) based on the dimensions of 20 real cable-stayed bridges. Figures 2 and 3127

represent the studied towers, in which the symbols are self-explanatory. The design of the towers128

in a real project requires a detailed definition of the transition between sections in different parts.129

This plays an important role in the static and dynamic response of the whole structure (Camara130

and Astiz 2011). However, this detail level is beyond the scope of the preliminary design stage.131

Instead, constant sections between different parts of the towers have been adopted in the parametric132
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study of this paper. The only exception to this is found in the towers with lower diamond (YD and133

AD configurations in Figure 2), where the transition of the sections below the deck level is smooth134

to avoid an undesirable seismic behaviour (Camara and Astiz 2011). The thickness (tc) of the135

tower cross-sections is obtained so that the maximum allowable compression f ∗

cd = 10 MPa is136

not exceeded when the self-weight, dead load and traffic live load are applied to the structure.137

Constructability limitations dictate the vertical pier thickness in the lower diamond to be 0.45 m,138

regardless of the main span length.139

The parametric studies of the FE models are based on three independent variables described140

in Figures 1 to 3: the main span length LP , the deck width B and the distance between the tower141

foundation and the deck level Hi. The proportions and sections of the whole bridge are defined in142

terms of the central span LP (which is the main variable), except B and Hi. The distance between143

consecutive cable anchorages is fixed in the central span to 10 m (see Figure 1). Not every main144

span length is valid in the parametric analysis as the number of stays in one cable plane (NC145

in Figure 1) is obviously a natural number. Consequently, the number of cables is the variable146

modified in the parametric analysis instead of the main span. In accordance with the cable-system147

arrangement illustrated in Figure 1, the number of cables and the main span length are related148

through the expression: NC = (LP − 20)/20. The bridges in this parametric study are obtained149

by varying the main span from 200 to 800 m each 20 m (i.e. NC ranges from 9 to 39 cables).150

The resulting structures have a typical value of the tower height below the deck: Hi = H/2; and151

four reasonable deck widths for each main span length: B = 20, 25, 30, 35 m. In order to cover a152

broader range of possibilities, two extra values of the tower height below the deck are considered:153

Hi = H/2.5 and Hi = H/1.5, but in these cases the deck width is fixed to 25 m. Altogether, 1050154

FE models (ABAQUS 2012) have been studied.155

The elastic properties of the materials have been defined using the relevant Eurocodes. Each156

stay cable is represented by only one element without flexural stiffness, consequently ignoring157

local cable modes. The foundation soil is assumed as infinitely stiff and the towers are encastred158

at their base, which is a reasonable assumption since the first vibration modes mainly involve the159
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deck deformation and are not significantly affected by the response of the foundation.160

The analytical definition of the vibration properties presented in this study is also valid for161

bridges with different sections and materials than those considered in the parametric analysis,162

provided that they have two towers and symmetrical configurations.163

ANALYTICAL EXPRESSIONS FOR MODE ESTIMATION164

Dimensional analysis165

The first vibration modes in a cable-stayed bridge mainly involve the deformation of the deck,166

which is constrained to a greater or lesser extent by the towers and the cable-system. The relevance167

of this constraint depends on the mechanical properties, the geometry and the nature of the mode168

shape (i.e. transverse, vertical or torsional). The problem can be simplified to a beam (the deck)169

simply supported at the abutments and spanning a distance LP + 2LS [m] with a distributed mass170

md [kg/m] and rigidity EId [Nm2]. The constraint imposed by the towers, the intermediate piers171

and/or the cable-system may be defined by means of elastic springs with constant K [N/m]. The172

physical equation that relates the vibration period T [s] in this model with the mechanical proper-173

ties of the deck and the restraining system is: f(md, EId, LP , K, T ) = 0. This equation depends174

on three physical units: the mass, the length and the time. According to the Vaschy-Buckingham Π175

theorem (Buckingham 1914) this physical equation may be rewritten in terms of two dimensionless176

parameters g(Π1,Π2) = 0:177

Π1 = Tj

√

EId,j
mdL4

P

(1a)178

179

Π2 =
EId,j
KL3

P

(1b)180

181

where Tj is the first vibration period in direction j (j = Y for the transverse mode and j = Z182

for the vertical one), E is the Young’s modulus of the deck section (homogenized in composite183

girders), Id,j is the moment of inertia of the deck associated with the flexure in direction j. In the184
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case of torsion, expressions (1a) and (1b) are slightly different and will be discussed in the next185

section.186

The dimensionless parameters Π1 and Π2 (particularized for the transverse, vertical and tor-187

sional vibration modes) are obtained in all the FE models defined in the parametric analysis. Sub-188

sequently, the physical equation g(Π1,Π2) = 0 is adjusted by the least squares technique in order189

to obtain analytical expressions to estimate the vibration periods. This approach is presented in190

the following paragraphs. Another dimensionless parameter (Π3) could be included to take into191

account the influence of the tower mass, but it is irrelevant in the fundamental periods.192

Fundamental transverse mode193

The contribution of the cable-system to horizontal transverse loads is negligible in cable-stayed194

bridges, in which the transverse movement of the deck is mainly constrained at the abutments and195

the towers (see the boundary conditions in Figure 1). Wyatt (Wyatt 1991) assumed that the dis-196

placement of the towers due to the transverse reaction of the deck is negligible in the fundamental197

transverse mode. This is true only if the transverse flexural rigidity of the deck is much lower than198

the tower stiffness, i.e. if the main span length is large. Figure 4 shows the first transverse vibration199

mode in two cable-stayed bridges, with 300 and 600 m main span. The transverse movement of200

the towers and their interaction with the deck is clear in the small bridge (LP = 300 m), where the201

towers act as elastic transverse springs constraining the deck movement. However, this interaction202

is negligible in the large bridge (LP = 600 m) and the deck behaves in transverse direction like203

a beam with fixed supports at the abutments and the towers. Consequently, the simplified phys-204

ical model that describes the transverse response of the deck is a beam elastically supported at205

the towers level and simply supported at the abutments. To obtain the transverse tower stiffness206

Kt,Y [N/m] a unit load is applied to the FE model of the tower (excluding the deck and the cable-207

system) as shown in Figure 5(a). The resulting displacement at the deck-tower connection defines208

the stiffness of the elastic supports in the deck model.209

The dimensionless parameters Π1 and Π2 are obtained from expression (1), in which: T = TY210

is the first transverse mode obtained in the modal analysis of the studied bridges; EId,j = EId,Y211
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is the transverse rigidity of the deck; and K = Kt,Y is the transverse tower stiffness obtained in212

the static analysis described in Figure 5(a). Figure 6(a) plots Π1 versus Π2 in all the studied FE213

models and proposes an optimum nonlinear relationship between both parameters: g(Π1,Π2) =214

a1Π
a2
2
+ a3 − Π1 = 0, where the coefficients ai are obtained by the least squares approach. From215

this relationship, and considering expressions (1a) and (1b), the analytical estimation of the first216

transverse period is obtained:217

TY =

√

mdL
4

P

EId,Y
(9.54Π0.70

2
+ 0.39) (2)218

where Π2 = EId,Y /(Kt,YL
3

P ). Note that expression (2) is reduced to the proposal of Wyatt (Wyatt219

1991) if the tower stiffness and/or the main span are very large (i.e. if Kt,Y or LP → ∞ then220

Π2 → 0), and hence the contribution of the tower to the first transverse mode is ignored as it was221

intended.222

The aim of this work is the estimation of the vibration periods by means of simple analytical223

expressions. Equation (2) could be questioned if a FE model of the tower is required to obtain the224

parameter Kt,Y . Consequently, an analytical expression is proposed to approximate the transverse225

tower stiffness. From the static analysis of the tower frame included in Figure 5(a) it may be226

observed that the stiffness is governed by the following terms:227

Kt,Y =
EtĪt,Y

(H +Hi)3
H

Hi

(mY sinα + bY ) (3)228

in which Et is the Young’s modulus of the material employed in the tower, Īt,Y is the transverse229

moment of inertia of the tower leg below the deck level (averaged if the section is variable), H and230

Hi are the tower height above and below the deck respectively, α is the angle of the tower leg with231

respect to the horizontal line (see Figure 2). Finally, the parameters mY and bY result from a linear232

regression of the tower stiffness observed in the FE models. These values are presented in Table233

1 and control the transverse tower stiffness depending on its shape. The estimated tower stiffness234

is larger if the lateral legs are connected at the top (i.e. inverted Y- and A-shaped towers) due to235
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the geometrical constraint exerted by this point in transverse direction. This result is in agreement236

with (Camara and Astiz 2011).237

The transverse period obtained with expression (2) when the approximation of the tower stiff-238

ness in equation (3) is employed (TY = Tapp) has been compared with the FE model results239

(TFEM ). The error in the estimation of the transverse vibration period is shown in Figure 7(a)240

for the whole range of main span lengths studied. This error is defined as: e = 100(Tapp −241

TFEM)/TFEM . Only the results of specific tower shapes and cable layouts are presented but sim-242

ilar trends have been observed in other models. The error obtained with the expressions proposed243

by Wyatt (Wyatt 1991) and Kawashima et al. (Kawashima et al. 1993) is included in this figure for244

comparison. The estimation of the first transverse period has been clearly improved by the present245

work: the error could reach 60 % with previous approaches but it never exceeds 10 % if equation246

(2) is employed. The error with the proposed expression is caused primarily by the definition of247

g(Π1,Π2) = 0 (see the dispersion in the least squares fitting in Figure 6(a)). The proposal of248

Wyatt significantly underestimates the transverse vibration period below 400 m main span. This249

interesting result is explained by the significant transverse flexibility of the towers and their strong250

interaction with the deck in small-to-medium bridges, which is included in expression (2) in con-251

trast to Wyatt’s study. The proposal of Kawashima et al.: TY = L1.262
P /482 [s] (LP in [m]), only252

depends on the main span length and such a simple expression cannot expect to predict accurately253

the vibration period of a cable-stayed bridge, as shown in Figure 7(a).254

Fundamental vertical mode255

The deck of modern cable-stayed bridges with closely spaced stays behaves in vertical di-256

rection like a beam over elastic foundation (Walther et al. 1988). The constraint exerted by the257

cable-system to the vertical deck flexure is caused by the axial deformation of the stays and is258

reduced due to the movement of the tower anchorage area in longitudinal direction (X , parallel259

to the traffic). This horizontal movement of the tower reduces the structural effectiveness of the260

cable-system and is counterbalanced by the back span restraint. Wyatt (Wyatt 1991) proposed the261

estimation of the first vertical vibration period of the deck by neglecting the longitudinal move-262
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ment of the tower, i.e. by considering that the cable-system is perfectly effective. Only pure fan263

cable-system configurations with very stiff towers would be strictly covered by Wyatt’s assump-264

tion. This approach leads to unreasonably stiff vibration periods in conventional bridges with harp-265

or semi-harp cable layouts, since the longitudinal movement of the tower cannot be totally avoided266

and its flexibility should be taken into account (besides the effect of the back span cable-system).267

Figure 8 shows the first vertical vibration mode in a cable-stayed bridge, highlighting the coupling268

between the vertical deck flexure and the longitudinal movement of the tower.269

The physical model to describe the behaviour of the bridge in vertical direction is again rep-270

resented by a beam (the deck) that is constrained by elastic springs at the cable anchorages with271

stiffness Kct,Z [N/m]. The cable-system and the tower may contribute to this stiffness. A paramet-272

ric FE model of a tower and the associated cable-system is developed to obtain Kct,Z , as shown in273

Figure 5(b). In light of the deck deformation in the fundamental vibration mode (shown in Figure274

8), a linearly increasing load is applied to the cable anchorages of this model. Only the cables275

anchored to the abutment and the intermediate piers are considered in the side spans because they276

concentrate the larger part of the resistance in this area.277

Once the elastic supports of the model are defined, the dimensionless parameters Π1 and Π2 are278

analogously obtained from expression (1), in which: T = TZ is the first vertical mode obtained in279

the modal analysis; EId,j = EId,Z is the vertical rigidity of the deck; and K = Kct,Z . Figure 6(b)280

compares Π1 versus Π2 in all the studied FE models, distinguishing between central and lateral281

cable-system layouts. The optimum nonlinear relationship between the dimensionless parameters282

that covers both cable configurations is obtained from: g(Π1,Π2) = a1Π
a2
2

− Π1 = 0. The283

analytical estimation of the first vertical period is expressed as:284

TZ =

√

mdL
4

P

EId,Z
(1.81 Π0.46

2
) (4)285

where Π2 = EId,Z/(Kct,ZL
3

P ).286

The constraint of the cable-system and the tower to the vertical movement of the deck (Kct,Z)287

is composed of two counteracting effects: (1) the ideal vertical stiffness of the central span cable-288
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system (Kc,Z) in which the longitudinal movement of the tower is considered null (Wyatt’s as-289

sumption), is reduced by (2) the longitudinal flexibility of the tower restrained by the back span290

anchoring cables, Ktr,Z . Both systems are connected in series through the anchorage area when291

the load is applied along the main span, and consequently the global stiffness is:292

Kct,Z =
1

1

Kc,Z

+
1

Ktr,Z

(5)293

The main span cable-system stiffness Kc,Z [N/m] is given by Wyatt:294

Kc,Z =
EsmdgH

fD(L2

P +H2)
(1.2LP + 47) (6)295

in which Es and fD are referred to the cables and represent respectively the modulus of elasticity296

and the average stress due to the dead load, g = 9.81 [m/s2] is the gravitational constant. The term297

(1.2LP +47) is a modification factor introduced herein to take into account the linearly distributed298

load and the point where the vertical displacement is measured in Figure 5(b) (these conditions299

differ from those considered by Wyatt).300

The stiffness Ktr,Z [N/m] results from the combination of the tower stiffness in longitudinal301

direction (Kt,X) and the stiffness introduced by the back span anchoring cables (Kbs,X). The302

horizontal stiffness of the tower is obtained by considering a cantilever beam with a distributed303

load applied at the cable anchorages, gradually decreasing from the top to the lower anchorage.304

The stiffness of the back span cables is obtained through Wyatt’s expression. The tower and the305

back span cables are connected in parallel from the point of view of the calculation of the combined306

stiffness:307

Ktr,Z = Kt,X +Kbs,X =
60EtĪt,X

21H3

A + 40H2

AHt − 70HAH2
t + 20H3

t

+
EsmdgL

2

S

fDH(L2

S +H2)

LS

NC

(7)308

in which Et is the Young’s modulus of the tower, Īt,X is the moment of inertia of the tower cross-309
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sections (considering one leg) associated with the longitudinal flexure (X) and averaged along310

the whole tower height, HA is the length of the anchorage area in the tower (see Figure 2) and311

Ht = H+Hi is the total height of the tower (from the foundation to the top). The ratio LS/NC gives312

the distance between cable anchorages in the side span. All the parameters have been described in313

Figures 1-2 and the previous expressions. According to Wyatt, the tower stiffness is infinite and314

hence: Kt,X = ∞ → Ktr,Z = ∞ and Kct,Z = Kc,Z in expression (5).315

The first vertical period obtained in the FE models is compared with the analytical estimations.316

The errors are included in Figure 7(b) for different cable-stayed bridges. Again, the approach317

of Wyatt underestimates the vibration period in the whole main span range. It is verified that318

neglecting the longitudinal movement of the tower results in vertical vibration modes that can be319

unrealistically stiff due to certain inefficiency of the semi-harp cable-system layout. This important320

aspect is corrected in expression (5) by reducing the stiffness due to the longitudinal movement of321

the tower top. The error of the proposed vertical period estimation is introduced by the analytical322

approximation of the tower and cable-system restraint in equation (5). The analytical and FE323

results are almost coincident if the exact value of Kct,Z is employed in (4). Kawashima et al. also324

proposed a simple expression for the estimation of the first vertical mode in terms of the main325

span exclusively: TZ = L0.763
P /33.8 [s] (LP in [m]). This simple expression is insensitive to many326

important aspects of the structure and errors above 40 % have been observed.327

Fundamental torsional mode328

The torsional deformation of the deck in the main span (angle θ in Figure 5(c)) activates dif-329

ferent parts of the bridge depending on the cable-system arrangement: (i) in bridges with two330

lateral cable planes (LCP) the deck torsion is constrained by the differential vertical deflection of331

the stays; (ii) in bridges with central cable arrangement (CCP) it mobilises the torsional rigidity332

of the girder. The vibration period of the first torsional mode can be selected by the designer to333

some extent. If the bridge has two cable planes that converge to the top of inverted Y- or A-shaped334

towers, purely torsional deck modes require axial extensions of the stays and the associated periods335

are lower than those in H-shaped towers, where the two shafts allow for longitudinal differential336
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displacements (Walther et al. 1988; Wyatt 1991; Gimsing and Georgakis 2011).337

The torsional response of cable-stayed bridges has been studied in the past by distinguishing338

the type of cable arrangement or the tower shape, nonetheless in this work a unique physical model339

is proposed in order to obtain a more general analytical expression. This model is represented by340

a beam (the deck) with distributed mass and torsional rigidity, in which torsion is constrained341

between supports spaced Ltor [m]. The deck is restrained by the tower and the cable-system342

through elastic torsional springs with stiffness Kct,θ [Nm/rad]. In analogy to the approach in the343

preceding sections, this torsional spring stiffness is obtained by means of the FE model in Figure344

5(c). In this model the deck is again removed and the cable anchors in the main span are subjected345

to a gradually increasing load towards the span center (applied in opposite directions depending on346

the cable plane).347

As it may be observed in expression (8), the dimensionless parameters (Πθ1,Πθ2) are slightly348

modified to include the radius of gyration and the torsional stiffness of the elastic supports. How-349

ever, the procedure to obtain the relationship g(Πθ1,Πθ2) = 0 is analogous. Figure 6(c) shows the350

dimensionless parameters in the proposed FE models and the nonlinear relationship between them,351

which in this case is a hyperbolic function: g(Πθ1,Πθ2) = a1/(Πθ2 + a2) + a3 − Πθ1 = 0. The352

analytical estimation of the first torsional period is expressed as:353

Tθ =

√

mdr
2L2

tor

GJd

(

2.14

Πθ2 + 1.11
+ 0.07

)

(8)354

where Πθ2 = r2Kct,θLtor/(GJdB
2). The parameters r and GJd are respectively the radius of355

gyration and the torsional rigidity of the deck (G is the shear modulus and Jd the torsion constant356

of the deck section), Ltor is the length between effective torsional restraints (in this study the357

torsion is restrained by the intermediate piers at the side-spans, but expression (8) is also valid in358

other configurations) and B is the deck width.359

Note that in the case of CCP models, the contribution of the cable-system and the tower to360

the torsional response of the deck is negligible and hence: Kct,θ = 0 and Πθ2 = 0. With this361

condition expression (8) is reduced to the classical formula to obtain the torsional period in a362
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simple beam with the torsion totally constrained at the supports (spaced Ltor). This is also the363

approach suggested by Wyatt in CCP bridges.364

Equation (9) approximates the value of the torsional spring stiffness (Kct,θ) without the support365

of a FE model. It is based on the close relationship that exists between the cable-system and the366

tower response when the deck is subjected to torsional or vertical movements. The ratio B2/2367

relates the torsional stiffness to the vertical one (this is derived from Figures 5(b) and 5(c)):368

Kct,θ =
1

A1

Kc,θ

+
A2

Ktr,θ

=
1

A1

B2

2
Kc,Z

+
A2

B2

2
Ktr,Z

(9)369

in which Kc,Z and Ktr,Z are respectively defined in expressions (6) and (7). Depending on the370

inclination of the cable planes, the coefficient A1 modifies the torsional restraint exerted by the371

cable-system in the central span: Kc,θ. In the study of Kc,θ the differential movement of the372

tower top in longitudinal direction is avoided. This movement is considered in the second term373

of expression (9), in which the coefficient A2 affects the contribution of the tower and back span374

anchoring cables to the torsional stiffness: Ktr,θ. For CCP bridges Kct,θ = 0.375

A parametric FE analysis has been conducted to obtain the parameters A1 and A2 presented376

in Table 1 for different tower shapes. The influence of the main span length (LP ), the deck width377

(B) and the deck height above the tower foundation (Hi) on these parameters is small and, conse-378

quently, the values have been averaged from the whole set of results. It is remarkable from Table 1379

that only bridges with H-shaped towers allow for differential longitudinal movements of the tower380

shafts, whereas in the rest of the models the torsional movement of the tower is assumed negligible381

and thus A2 = 0 (the second term in expression (9) vanishes).382

The error of expression (8) in the estimation of the first torsional period of the FE models is383

lower than 10 %, as it is shown in Figure 7(c). Wyatt’s proposal for bridges with central cable384

layouts (CCP) coincides with the one suggested in this work (since Kct,θ = 0) and the accuracy385

is very high. Considering bridges with lateral cable-system (LCP), Wyatt proposed a relationship386

between the vertical and torsional periods: Tθ ≈ (2r/B)TZ . This ratio assumes completely free387
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differential movements of the tower shafts in longitudinal direction, which is only reasonable if388

H-shaped towers without transverse struts are employed. For comparison purposes, this ratio is389

applied to all the LCP models in this work regardless of the tower shape. It is observed in Figure390

7(c) that the torsional period estimated by Wyatt’s procedure is unreasonably large in LCP bridges.391

This is explained because the torsional stiffness due to the tower shape or the transverse struts392

in the real model is significant. The accuracy of Wyatt’s approach is worse than the analytical393

expression proposed in this work, but it is improved as long as the deck width is increased or the394

main span length is reduced in H-LCP models. This is due to the minimisation of the transverse395

strut constraint to the differential longitudinal movements between both shafts. On the other hand,396

the simple expression proposed by Kawashima et al. (Kawashima et al. 1993): Tθ = L0.453
P /17.5397

[s] (LP in [m]), leads to inadmissible underpredictions of the first torsional period, typically above398

50 %.399

Sensitivity to changes in the geometrical proportions400

The results presented so far demonstrate the accuracy of the proposed formulation if the aspect401

ratios are H/LP = 0.21 and LS/LP = 0.4. In order to investigate the influence of variations in the402

bridge proportions, additional analyses have been carried out considering the limits of the range of403

conventional bridges: H/LP = 0.19 − 0.23 and LS/LP = 0.3 − 0.5. The model with H-shaped404

towers is selected in this specific study to include the possibility of differential shaft movements in405

torsional vibration modes.406

The accuracy of the proposed expressions is not significantly affected by changes in the back407

to main span ratio (LS/LP ). On the other hand, the errors in the first vertical and torsional periods408

increase if the tower height to main span ratio is different than 0.21. However, the error remains409

below 25 % in the range of conventional tower proportions: H/LP = 0.19−0.23. The accuracy of410

the proposed formulation is considerably higher than that provided by previous studies considering411

different aspect ratios.412

VERIFICATION WITH REAL CABLE-STAYED BRIDGES413

Finally, the proposed formulae are verified by means of the vibration properties observed in414
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constructed cable-stayed bridges. Table 2 includes the errors in the vibration period estimated415

with different formulations (Tapp), in comparison with the real vibration periods (Tr) reported else-416

where: e = 100(Tapp − Tr)/Tr. The bridge properties and the observed vibration periods (either417

through numerical or field ambient vibration tests) have been taken from the following authors:418

Quincy Bayview bridge (Pridham and Wilson 2005), International Guadiana bridge (Magalhaes419

et al. 2007), Megami bridge (Wu et al. 2008), Qingzhou bridge (Ren et al. 2005). The remaining420

information is extracted from the work of (Fan et al. 2001) and unpublished reports. Unfortu-421

nately, some of the required properties are not reported. In these specific cases reasonable values422

based on engineering judgement and the dimensions of constructed bridges (Figures 1-3) have423

been assumed. Possible deviations from the actual project conditions may modify the vibration424

period estimation and, consequently, the present verification simply aims to provide guidance on425

the expected accuracy.426

The proposed formulae yield accurate results in constructed bridges and the errors are below427

20 % in Table 2, with the exception of the vertical and torsional periods in three unconventional428

bridges in which the canonical proportions assumed for the structure are clearly not satisfied: (i)429

Nanjing Qinhuai bridge (ref. 1) have very short towers (H/LP = 0.15, much lower than the430

conventional ratio assumed: 0.21); (ii) the side spans in Anqing bridge (ref. 10) are very large in431

comparison with the main span (LS/LP = 0.56, larger than the ratio typically employed: 0.4); on432

the opposite side (iii) Taoyaomen bridge (ref. 11) presents very short side spans (LS/LP = 0.25).433

However, the average error (in absolute value) obtained with the proposed expressions is below 15434

% (including in the average the unconventional bridges), which is acceptable in the early stages435

of the project and improves significantly the results reported by Wyatt and Kawashima et al. The436

average deviation of the transverse, vertical and torsional periods obtained with the approach of437

Kawashima et al. is respectively 74.1, 16.6 and 27.8 %, and is not included in Table 2.438

Wyatt’s proposal underestimates the first transverse vibration period in almost all the studied439

bridges, whereas the expression proposed in this work improves significantly the results because440

the tower flexibility is considered. The importance of this effect on the transverse vibration mode441
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is clear in Nanjing Qinhuai, Donghai, Megami and Jintang bridges (references 1, 7, 9 and 14442

in Table 2), in which Wyatt’s formula leads to unreasonably stiff vibrations. The tower and the443

cable-system interaction with the deck movement can also explain the accuracy of the vertical444

and torsional vibration periods with the new formulation. Nonetheless it is recognized that the445

applicability of Wyatt’s formula for torsional periods is extended for comparison purposes and it446

is not strictly valid beyond H-shaped towers without transverse struts.447

CONCLUSIONS448

Fundamental vibration modes are very important in the design of cable-stayed bridges. This449

work proposes analytical expressions to estimate the first transverse, vertical and torsional vibra-450

tion periods. The proposed formulation is completely defined in terms of the mechanical properties451

and proportions of the structure and it is based on the results of more than one thousand finite ele-452

ment models. The following conclusions were drawn:453

• The tower flexibility is included in the formulation proposed to estimate the vibration peri-454

ods, which was ignored in previous research works. The interaction between the towers and455

the deck is particularly important in the response of small-to-medium cable-stayed bridges456

in transverse direction. This explains the accuracy of the analytical expression proposed in457

this work to calculate the first transverse mode.458

• The new formulation also takes into account the movement of the tower shafts in longitu-459

dinal direction when the vertical and torsional vibration periods are calculated. This is of460

paramount importance in bridges with harp and semi-harp cable layouts. Previous works461

neglected this effect and the restraint exerted by the back span anchoring cables. The ana-462

lytical expressions proposed here reduce the estimation errors in light of a large parametric463

analysis conducted in 1050 finite element models.464

• The accuracy of the proposed analytical expressions is verified in 17 real cable-stayed465

bridges, constructed in different countries. The observed average errors are below 15 %,466

which is deemed acceptable when the seismic demand and possible aerodynamic insta-467
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bilities are evaluated to address the viability of a preliminary design. The average results468

obtained with the analytical formulations proposed by other authors are significantly less469

accurate. The expressions proposed in this paper are valid for standard cable-stayed bridges470

with two towers, regardless of the materials conforming the structure, providing that aspect471

ratios are conventional (LS/LP = 0.3− 0.5 and H/LP = 0.19− 0.23).472

• The sections and proportions of cable-stayed bridges with different tower shapes and cable473

configurations are suggested through dimensionless ratios obtained from the study of a474

large number of constructed cable-stayed bridges. The detailed structures may represent an475

appropriate starting point to address the viability of the project.476
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NOTATION544

Main symbols employed in this paper and corresponding SI units:545

B = deck width; [m]

e = error in the vibration period estimation; [%]

Es = modulus of elasticity of the steel conforming the stays; [N/m2]

EId,j = flexure rigidity of the deck in direction j; [Nm2]

fD = average stress in the stays due to the dead load; [N/m2]

GJd = torsional rigidity of the deck; [Nm2]

H = tower height above the deck level; [m]

HA = length of the anchorage area in the tower; [m]

Hi = distance between the tower foundation and the deck level; [m]

Htot = distance between the tower foundation and the tower top section; [m]

Kt,Y = transverse stiffness of the tower; [N/m]

Kct,Z = tower and cable-system constraint to the vertical deck flexure; [N/m]

Kc,Z = main span cable-system constraint to the vertical deck flexure; [N/m]

Ktr,Z = tower and back span cables constraint to the vertical deck flexure; [N/m]

Kt,X = tower stiffness in longitudinal direction; [N/m]

Kct,θ = tower and cable-system constraint to the deck torsion; [Nm/rad]

LP = main span length; [m]

LS = side span length; [m]

Ltor = deck length between effective torsional restraints; [m]

md = distributed mass of the deck; [kg/m]

NC = number of stays in one cable plane;

r = deck radius of gyration; [m]

TY , TZ , Tθ = transverse, vertical and torsional vibration period; [s]

α = angle between the tower leg and the transverse horizontal line (Y );

Π = dimensionless parameter in dimensional analysis.

546
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TABLE 1. Parameters employed in the estimation of the transverse tower stiffness,

Kt,Y (mY , bY ), and the contribution of the tower and cable-system to the torsional

mode, Kct,θ (A1, A2), for different tower shapes (keywords described in Figure 2).

H-LCP Y-LCP YD-LCP A-LCP AD-LCP Y-CCP YD-CCP

mY 309 1177 76 2108 205 1177 76

bY 0 -573 -23 -1687 -154 -573 -23

A1 1.0 2.2 2.2 2.1 2.1

A2 2.2 0.0 0.0 0.0 0.0
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TABLE 2. Errors [%] obtained with different analytical expressions in the estimation

of the vibration periods of real bridges. Main span length LP in [m]. Concrete

towers and composite girders are employed, except in the following cases: (a) steel

deck and towers; (b) concrete deck and towers; (c) steel deck and concrete towers.

(1) The International Guadiana bridge is located between Spain and Portugal. (2)

The deck of Minpu bridge carries two roadway levels.

Transverse mode Vertical mode Torsional mode

Bridge System LP This work Wyatt This work Wyatt This work Wyatt

1. Nanjing Qinhuaib (China) H-LCP 270 -13.4 -38.2 -30.2 62.4 10.4 268.9

2. Quincy Bayview (USA, 1987) H-LCP 274 -1.5 -0.7 -17.4 16.3 -16.2 44.9

3. Guadianab (Spain1, 1991) A-LCP 324 13.7 7.0 5.4 7.0 9.5 153.8

4. Lianyan (China, 2006) H-LCP 340 -17.6 -22.9 8.9 -1.0 -13.3 -48.2

5. Haiheb (China, 2001) H-LCP 364 -9.8 -14.5 -15.0 -20.7 x x

6. North Runyangc (China, 2005) YD-LCP 406 0.6 -16.0 -12.3 -29.5 16.5 47.5

7. Donghai (China, 2005) YD-LCP 420 -0.7 -36.0 4.2 18.5 -17.3 12.4

8. North Hangzhouc (China, 2008) AD-LCP 448 -6.5 -18.5 -7.7 -6.3 15.5 37.7

9. Megamia (Japan, 2005) H-LCP 480 6.1 -44.0 -10.8 -2.6 -4.5 44.8

10. Anqingb (China, 2003) YD-LCP 510 9.3 -6.6 -22.8 -34.7 20.8 60.7

11. Taoyaomenc (China, 2003) AD-LCP 580 8.2 -4.4 -24.1 46.8 19.2 117.0

12. Xupu (China, 1997) A-LCP 590 -4.8 -6.4 -5.4 13.3 -12.3 36.2

13. Qingzhou (China, 2002) AD-LCP 605 10.2 7.0 -9.2 -2.4 -8.2 112.7

14. Jintanga (China, 2009) YD-LCP 620 1.5 -36.2 -1.1 1.9 14.2 110.2

15. Second Nanjingc (China, 2001) YD-LCP 628 x x -13.0 8.2 16.7 120.3

16. Third Nanjingc (China, 2005) A-LCP 648 -4.7 -4.7 -9.3 8.2 -0.8 -2.7

17. Minpuc,2 (China, 2009) H-LCP 708 -8.1 -12.3 -12.0 18.9 -17.5 33.5

Average error |e| 7.3 (-)17.2 12.3 17.6 13.3 78.2
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corresponding sections. Measurements in meters.
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FIG. 3. Definition of tower sections. Measurements in meters.
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FIG. 4. First transverse vibration mode in Y-LCP models (B = 25 m, Hi = H/2 m)

with a main span of 300 and 600 m.
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FIG. 5. Simplified FE models to define the influence of the tower and/or the cable-

system on the deck deformation; (a) flexure in transverse direction (contribution of

the tower); (b) flexure in vertical direction (contribution of the tower and the cable-

system); (b) torsion (contribution of the tower and the cable-system). The deck is

excluded from these models (in Figure 5(a) the cable-system is also removed).
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FIG. 6. Least squares fitting to obtain the relationship between the dimensionless

parameters g(Π1,Π2) in the fundamental; (a) transverse mode; (b) vertical mode; (c)

torsional mode. Bridge keywords described in Figure 2.
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FIG. 7. Error obtained with the analytical expressions proposed by several authors
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Bridge keywords described in Figure 2.
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FIG. 8. First vertical vibration mode in the Y-LCP model (B = 25 m, Hi = H/2 m)

with 200 m main span.
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