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Abstract

This paper addresses the problem of control design and implementation for a

nonlinear marine vessel manoeuvring model. The authors consider a highly

nonlinear vessel 4 DOF model as the basis of this work. The control al-

gorithm here proposed consists of a combination of two methodologies: i)

an iteration technique that approximates the original nonlinear model by a

sequence of linear time varying equations whose solution converge to the so-

lution of the original nonlinear problem and, ii) a lead compensation design

in which for each of the iterated linear time varying system generated, the

controller is optimized at each time on the interval for better tracking per-

formance. The control designed for the last iteration is then applied to the

original nonlinear problem.

Simulations and results here presented show a good performance of the ap-

proximation methodology and also an accurate tracking for certain manoeu-
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vring cases under the control of the designed lead controller. The main char-

acteristic of the nonlinear system′s response are the reduction of the settling

time and the elimination of the steady state error and overshoot.

Keywords: Ship control, nonlinear, autopilot, lead compensation,

course-keeping.

1. Introduction

The design of autopilots based on proportional-integral-derivative (PID)

methodologies has been in use since 1920′s (?) with the help of gyrocom-

passes which measured the vehicle′s heading angle for feedback purposes.

The major challenges confronted in the design of ship autopilots are mainly

the existing surrounding environmental uncertainties such as waves, wind,

ocean currents and the high nonlinear ship dynamics. In addition to these,

the rudder dynamics also present saturation-type nonlinearities on its rate

and deflection angle.

Several articles deal with the design and implementation of PID based au-

topilots, in which linearizations for the vessel′s manoeuvring model are per-

formed, see ?????? as the most representative. In the case of low speed

applications, it is acceptable to neglect the nonlinear dynamics on the ships

manoeuvring model due to linear terms predomination. However, for high

speed applications, tight turns, large sideslip angles or in the presence of

currents, nonlinear effects become pronounced and thus neglecting them may

degrade the controller′s performance and robustness.

On the other hand, different nonlinear methods (?) have been presented for

course-keeping autopilots design such as state feedback linearization (?), non-
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linear backstepping (??), sliding mode control (?), output feedback (?), H
∞
-

control (?), particle swarm optimization (?), genetic algorithms (?), fuzzy

logic methods (?),... etc. For most of these type of applications, nonlinear

manoeuvring models in 1 degree of freedom (DOF) are considered, see ? or

? as example, still in these contributions, the coupling existing between the

various variables is obviously not taken into account. Due to the complexity

of some of the above cited nonlinear methods, the implementation may be

tedious and time consuming from the computational point of view.

The aim of this article is to design a control method for a nonlinear ma-

rine vessel manoeuvring model without performing any simplification in the

model′s nonlinearities or variable′s couplings. The authors propose a con-

trol strategy based on an optimized lead compensation control methodology

combined with an iteration technique used to approach the original nonlin-

ear system. This iteration technique was initially presented in ?? and has

been used to solve various nonlinear control problems such as optimal con-

trol (?), observers design (?), nonlinear optimal tracking (?),...etc. One of

its advantages is the fact that it maintains the inherent nonlinear character-

istics of the system′s behaviour, providing the grounds for a robust control

implementation where modelling uncertainties are removed. The iteration

technique is applied to a 4 DOF nonlinear manoeuvring ship model. This

opens the novel possibility of course-keeping autopilot design based on lead

compensation methodology applied to a nonlinear model. This approach ex-

ists without the limitations of the linear models previously indicated, and

keeps the simplicity of the lead compensation design and implementation.

Furthermore, based on a preliminar study, the use of a lead controller in-
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stead of a conventional PID is justified. By an appropriate optimization

technique, a trade off between the overshoot and time response is achieved

without stationary state error.

The objective is to design a lead compensation controller for nonlinear sys-

tems of the form:

ẋ = f(x) = A(x)x(t) + B(x)uc(t, θc), x(0) = x0 (1)

where uc(t, θc) is the control action, θc is the set of controller′s parameters,

x(t) is the state vector, A(x), B(x) are matrices of appropriate dimensions

and x(0) are the initial conditions. Replacing the nonlinear system by a se-

quence of ”i” linear time varying (LTV) systems, a sequence of corresponding

feedback laws u
(i)
c (t, θc) is generated: for each of them, the closed-loop re-

sponse for the ith LTV system at each time of the time interval is controlled by

the designed lead controller u
(i)
c (t, θc). From the convergence of the sequence

of LTV solutions (?), the last iterated control law u
(i)
c (t, θc), (corresponding

to the ith iteration), will provide lead controller stability objectives satisfac-

tion when it is applied to the nonlinear system.

The structure of the article is as follows: Section ?? contains the detailed

description of the nonlinear model for the vessel under consideration. Details

on the hydrodynamic, propulsion and control forces are given. Section ??

provides details on the iteration technique and the convergence theorem is

stated. Section ?? shows the application of this technique to the nonlinear

vessel model by using a 20◦-20◦ zig-zag manoeuvre example to illustrate the

ideas. Section ?? presents the control algorithm design and implementation.

Section ?? shows the performance of the control methodology on the vessel′s

nonlinear model. This section contains the simulations carried out and a dis-
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cussion on the results obtained. Conclusions and further research guidelines

are provided in section ??.

2. The Mathematical Model

The nonlinear dynamical model described in this section is classified as

what is known as manoeuvring. Manoeuvring deals with the ship′s motion

in absence of waves excitation (calm water) (?). The motion results from the

action of control devices such as control surfaces (rudders, fins, T-foils) and

propulsion units.

In manoeuvring theory, the motion of 4 DOF ship models requires from

four independent coordinates in order to fully determine the position and

orientation of the vehicle, which is considered to be a rigid body. These

coordinates represent the longitudinal and lateral positions and speeds as well

as and their derivatives along the respective coordinate frames. The variables

describing the vessels′s dynamics are provided in Table ?? and Figure ??

following the notation found in ?, which will be adopted for remaining of

this article.

The four degrees of freedom under consideration in this work describe the

ship′s motion (surge, sway and yaw) on the horizontal plane and the roll

in the vertical plane. Two coordinate frames are used: the n coordinate

system (earth-fixed), On, is used to define the ship position and the system

b, (body-fixed) Ob, helps to define the ship′s orientation (?) (see Figure ??).

Table 1: Notation for the ship′s displacement variables.
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Figure 1: Ship′s displacement variables and coordinate systems.

The rigid-body equations of motion of the 4 DOF model are given by ?:

m[u̇− ybgṙ − vr − xbgr
2 + zbgpr] = τX

m[v̇ − zbgṗ+ xbgṙ + ur − ybg(r
2 + p2)] = τY

Ixxṗ−mzbgv̇ +m[ybgvp− zbgur] = τK

Izz ṙ +mxbgv̇ −mybgu̇+m[xbgur − ybgvr] = τN (2)

The subindex g refers to the center of gravity and the superindex b to the

b-frame. Details of the parameters included in equations (??) can be found

in ??. These equations of motion are formulated about the b-frame, which is

fixed to the point determined by the intersection of the port-starboard plane

of symmetry, the waterline plane and the transverse vertical plane at Lpp/2

(see ?? for hull dimensions).

The force terms on the right hand side of equations (??) can be described as

the total contribution of the hydrodynamic, propulsion and control forces:

τ = τhyd + τp + τc (3)

These terms will be described next.

2.1. Hydrodynamic Forces

The hydrodynamic forces considered in this section, τhyd, are those ap-

pearing due to the motion of the vessel in calm water. The following equa-

tions correspond to the model established by ? that proposed a simplified
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version of the model in ?, preserving in this way the most important hydrody-

namic coefficients so that the model describes a wide variety of manoeuvring

regimes in spite of some minor simplifications. Hydrodynamic forces are

mainly composed by surge, sway, roll and yaw terms:

• Surge terms

τ bXhyd = Xu̇u̇+Xvrvr +Xu|u|u|u| (4)

• Sway terms

τ bY hyd = Yv̇v̇ + Yṙṙ + Yṗṗ+ Y|u|v|u|v + Yurur + Y|v|v|v|v + Y|v|r|v|r
+Y|r|v|r|v + Yφ|uv|φ|uv|+ Yφ|ur|φ|ur|+ Yφuuφu

2

(5)

• Roll terms

τ bKhyd = Kv̇v̇ −Kṗṗ+K|u|v|u|v +Kurur +K|v|v|v|v +K|v|r|v|r +K|r|v|r|v
+Kφ|uv|φ|uv|+Kφ|ur|φ|ur|+Kφ|uu|φu

2 +K|u|p|u|p+Kp|p|p|p|+Kpp

−Kφφφφ
3 + ρg▽GMtφ

(6)

• Yaw terms

τ bNhyd = Nv̇v̇ +Nṙṙ +N|u|v|u|v +Nurur +N|v|v|v|v +N|v|r|v|r +N|r|v|r|v
+Nφ|uv|φ|uv|+Nφu|r|φu|r|+N|p|p|p|p+N|u|p|u|p+Nφu|u|φu|u|

(7)

Note that ψ̇ = r and φ̇ = p.

2.2. Propulsion Forces

The dynamics of the propulsion system are not included in the model as

in ?. Instead of that, it is assumed that the propellers deliver a constant
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thrust T that compensates the resistance on calm water:

T = −Xu|u|u
2
nom (8)

where unom is the service speed. The resultant propulsion forces vector is:

τp = [T, 0, 0, 0]T (9)

Consequently, the rudder′s and fin′s motion induce drag forces that contribute

to slow down the vessel.

2.3. Control Forces: Rudder

The vessel under study in here is equipped with two rudders which to-

gether with the commanding machinery constitute the actuators of the sys-

tem. In order to obtain the expression of the control forces, some other

concepts need to be introduced first.

Hydrofoil lift and drag forces (?), are given by the following expressions:

L = 1/2ρV 2
f Af C̄Lαe (10)

D = 1/2ρV 2
f Af (CD0 +

(C̄Lαe)
2

0.9πa
) (11)

where Vf is the local velocity at the foil, Af is the area of the foil, αe is the

effective angle of attack in radians, and a is the effective aspect ratio. We

can use the following linear approximation to represent the lift coefficient:

C̄L =
∂CL

∂αe

|αe=0 (12)

Once the stall angle of the hydrofoils is reached, the lift saturates in value.

In order to calculate the lift of the rudder, the effective angle of attack, αe,

is approximated by the mechanical angle of the rudder: αe ≈ δc, and the
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local flow velocity at the rudder is considered to be equal to the vessel’s total

horizontal speed, Vf =
√
u2 + v2. Then, a global correction for the lift and

drag can be applied ?:

∆L = T

[

1 +
1

1 + CTh

sin(αe)

]

(13)

∆D = T

[

1 +
1

1 + CTh

(1− cos (αe))

]

(14)

where T is the propeller′s thrust, and CTh is the propeller
′s loading coefficient

given by:

CTh =
2T

ρV 2
f Ap

(15)

in which Ap is the propeller′s disc area.

The control forces, τc, generated by the rudder in the b-frame are:

τc ≈ [−D, L, zbCPL, x
b
CPL]

T (16)

where xbCP and zbCP are the coordinates of the center of pressure of the rudder

(CP) with respect to the b-frame. The CP is assumed to be located at the

rudder stock and in the middle of the rudder span.

The hydraulic machinery moving the rudder is implemented in this work

following the model of ? that considers both a maximum rudder angle and

rate. When working in the unsaturated zone, the rudder′s dynamics can be

represented by a first order system of the form:

δ̇(t) =
1

Tm
[δc(t)− δ(t)] (17)

where δ(t) is the actual rudder angle, δc(t) is the commanded rudder angle

and Tm is the time constant of the hydraulic machinery.
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2.4. Kinematics

The kinematics cover the geometrical aspects of the vessel′s displacement

without considering mass and forces. The position of the ship is obtained

by performing a transformation between the body-fixed (b − frame) linear

velocities and the time derivative of the positions in the (n − frame), see

Figure ??. This can be expressed for a 6 DOF manoeuvring model as:











ẋn

ẏn

żn











= Rn
b









u

v

w









, (18)

where u is the surge speed, v is the sway speed and w is the heave speed.

The linear-velocity transformation matrix Rn
b is (??):

Rn
b =











cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ

sψcθ cψcφcφ+ sφsθsψ −cψsφ+ sψcφsθ

−sθ cθsφ cθsφ











, (19)

where ψ is the yaw angle, φ is the roll angle, θ is the pitch angle, s ≡ sin(·)
and c ≡ cos(·).
For the case of the 4 DOF manoeuvring model of this work, the movement

in the z axis is not considered and θ = 0, then, by taking this into account,

equations (??) and (??) are simplified as follows:

ẋn = u · cos(ψ)− v · sin(ψ)cos(φ)

ẏn = u · sin(ψ) + v · cos(ψ)cos(φ) (20)

Note that all the variables were previously defined in Table ?? .
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3. Iteration Technique for Nonlinear systems

This section revises the implementation and convergence properties of a

recently introduced technique for solving nonlinear dynamical systems. In

this methodology, the original nonlinear problem is replaced by a sequence of

linear time varying systems whose solutions converge in the space of contin-

uous functions to the solution of the nonlinear system under a mild Lipschitz

condition (?). This section contains the basis on how this technique is im-

plemented and its convergence theorem.

Any nonlinear system given on the form:

ẋ(t) = f [x(t)] = A[x(t)]x(t) + B[x(t)]uc(t), x(0) = x0 ∈ R
n. (21)

where A[x(t)] ∈ R
nxn is locally Lipschitz, can be approximated by a sequence

of linear time varying equations where the vector of states x(t) ∈ R
n, inside

the matrices A[x(t)] and B[x(t)] are substituted at each iteration ”i” by the

states obtained in the previous iteration x(i−1)(t):

ẋ(1)(t) = A[x(0)]x(1)(t) + B[x(0)]u
(1)
c (t), x(1)(0) = x(0)

...

ẋ(i)(t) = A[x(i−1)(t)]x(i)(t) + B[x(i−1)(t)]u
(i)
c (t), x(i)(0) = x(0)

(22)

for i ≥ 1 and ∀t ∈ [0, τ ]. The solutions of this sequence of linear time varying

equations, x(i)(t) converge to the solution of the nonlinear system x(t) given

in (??):

Limi→∞

[

x(i)(t)
]

→ x(t) (23)

The convergence of this sequence is stated in the following theorem:
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Theorem I: Suppose that the nonlinear equation (??) has a unique solution

on the time interval t ∈ [0, τ ] denoted by x(t) and assume that the system′s

matrix A[x(t)] : Rn → Rn is locally Lipschitz. Then, the sequence of solu-

tions defined in (??) converges uniformly on t ∈ [0, τ ] to the solution x(t).

The convergence proof of Theorem I can be found in ? where global conver-

gence is extended to time intervals t ∈ [0,∞], the reader is referred to this

cite for a detailed mathematical derivation of the proof.

Figure 2: The sequence of linear time varying solutions defined in (??) converges uniformly

on t ∈ [0, τ ] to the solution x(t) of the nonlinear problem.

The application of this technique provides an accurate representation of the

nonlinear solution after just a few iterations. Nonlinear systems of the form

(??), satisfying the local Lipschitz requirement can be now approached by

classic linear methods. This is a very mild assumption since it is an already

assumed condition for the uniqueness of solution in Theorem I.

4. Approximation to the vessel′s nonlinear equations

In this section the authors show how to apply the iteration technique

presented in section ?? to approximate the vessel′s nonlinear model given in

section ?? for the particular case of a full scale coastal patrol. The set of

parameters and the main characteristics of the coastal patrol are included in

??. The coastal patrol is equipped with two rudders and its service speed

is unom = 15 knots (7.71m/s). The simulations were carried out using Mat-

lab/Simulink and the GNC toolbox (?). The simulation time was tf = 200
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secs and the integration step size was set to be h = 0.1 secs. As a rule of

thumb, the sampling period h is chosen to be in the range of 20-40 samples

within the rise time of the fastest degree of freedom.

The equations of motion of this system, (??)-(??), are highly nonlinear and

can be written on the form:

ẋ(t) = A[x(t)]x(t) + B[x(t)]uc(t), x(0) = x0 ∈ R
9. (24)

where the systems matrix A[x(t)] ∈ R
9x9, B[x(t)] ∈ R

9x2, uc(t) is the control

signal and x(t) is the state vector, x(t) = [u v p r φ ψ δ xn yn]
T . u is the surge

(longitudinal speed), v is the sway, this is the lateral speed, p is the angular

speed of roll, r is the angular speed on yaw, φ is the angular displacement in

roll, ψ is the angular displacement in yaw, δ is the rudder displacement for

direction management purposes and xn, yn are the corresponding coordinates

for longitudinal and lateral positions expressed in the n-frame.

A standard 20◦-20◦ zig-zag manoeuvre (see ?) is simulated, the reason for

choosing such a large amplitude is to excite the vessel′s high nonlinear dynam-

ics and to show the good fit of the iteration technique to the nonlinear original

system. The control vector to carry out this manoeuvre is uc(t) = [δc T ]
T ,

where T was previously defined in (??) and δc is the rudder
′s deflection that

must follow the zig-zag manoeuvre phases as shown in Figure ??. Despite

there is no control methodology design, the zig-zag manoeuvre is in closed

loop as the actual value of ψ(t) is measured and until it reaches a determined

value the rudder does not change from starboard to port or viceversa (see

2nd, 3rd, 4th, and 5th phase points where the rudder angle of deflection is

changed in Figure ??). The zig-zag manoeuvre should be completed with at

least five phases.
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Figure 3: 20◦-20◦ zig-zag manoeuvre phases and corresponding values of the heading angle

ψ(t) represented in solid blue line and the rudder′s deflection δc(t) represented by dashed

black line.

The initial conditions, x0 = [unom 0 0 0 0 0 0 0 0]T , substitute the states

on the first approximated linear system′s matrices, A[x0], B[x0] and, subse-

quently, the iteration technique results in a sequence of linear time varying

(LTV) systems where 20 iterations were needed to approach the original non-

linear system.

Figures (??)-(??) show the time history of various states during the 20◦-20◦

zig zag manoeuvre for some of the iterations and as well the evolution in

time of the states in the nonlinear case (red line), this is done in order to

illustrate the convergence of this method. It is shown how the 20th solution

is a good representation of the nonlinear system solution, also the 40th solu-

tion is shown in order to demonstrate the convergence of the states. After

the 20th iterated solution, x(20)(t), the convergence to the nonlinear solution

x(t) is clear and also it is shown how the consequent iterations, i.e., x(40)(t)

show little variation with respect to it, this is,
∥

∥x(40)(t)− x(20)(t)
∥

∥ → 0 when

t→ ∞.

Figure 4: Convergence of u(t) and v(t) states on a 20◦-20◦ zig-zag manoeuvre. Red line

represents the movement of the original nonlinear system. The pink line represents the

20th iterated linear time varying approximation and the black line is the 40th iteration.

Figure 5: Convergence of p(t) and r(t) states on a 20◦-20◦ zig-zag manoeuvre. Red line

represents the movement of the original nonlinear system. The pink line represents the

20th iterated linear time varying approximation and the black line is the 40th iteration.
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Figure 6: Convergence of φ(t) and ψ(t) states on a 20◦-20◦ zig-zag manoeuvre. Red line

represents the movement of the original nonlinear system. The pink line represents the

20th iterated linear time varying approximation and the black line is the 40th iteration.

Figure 7: (a) Convergence of δ(t) state on a 20◦-20◦ zig-zag manoeuvre. Red line represents

the movement of the original nonlinear system. The pink line represents the 20th iterated

linear time varying approximation and the black line is the 40th iteration. (b) Vessel′s

position on the plane (xn, yn) along this manoeuvre

Figure ??.b shows the vessel′s position on the plane (xn, yn) along this

manoeuvre; it is clear to see how the 20th iteration (pink line) gives an

accurate approximation to the behavior of the original nonlinear system (red

line). From the previous figures, it is clear to conclude that when the iteration

technique is implemented, after a short number of iterations, the original

nonlinear expression for the vessel′s dynamics gets a good representation by

the last of the linear approximations, 20 in this particular case.

5. Control of the Vessel′s Nonlinear Dynamics

5.1. Controller design

An automatic pilot must fulfil two functions: course-keeping and change

of course. In the first case, the control objective is to maintain the trajectory

of the vessel following a desired constant heading, ψd. In the second case, the

objective is to perform heading changes without introducing large response

oscillations and within a minimum time. In both cases, the adequate func-

tioning of the system must be independent from the disturbances produced

by existing external factors such as wind, waves and currents.

The heading trajectory followed by the vessel, ψ(t), can be obtained by means
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of a second order reference model:

ψ̈(t) + 2ζwnψ̇(t) + w2
nψ(t) = w2

nψd (25)

where wn is the natural frequency and ζ is the desired damping ratio of the

closed loop system. ζ is typically chosen to lie within the interval values

(0.8 ≤ ζ ≤ 1) in order to account for security issues (?). In restricted waters

and for collision avoidance, the course-changing manoeuvre should have a

clear start, in order to warn nearby ships of the intention of the manoeuvre

and, for that reason, that manoeuvre should preferably be completed with

no overshoot.

The following PID control schema is conventionally used for the heading

control implementation:

Uc(s) =
δc
E
(s) =

[

kp +
ki
s
+

kds

αTds+ 1

]

(26)

where kd = Tdkp and ki = kp/Ti being Td the derivative time, Ti the inte-

gral time, δc(s) the Laplace transform of the rudder position and E(s) the

Laplace transform of the error, e(t) = ψd − ψ(t) and Uc(s) is the Laplace

transform of the control signal, uc(t, θc). The ψ(t) vector is extracted from

the states, being x(t) = [u v p r φ ψ δ x y]T and x(6)(t) = ψ(t).

The noise levels of the onboard standard instrumentation may cause deriva-

tive model noise amplification problems. The PID schema (??), in which the

derivative action is filtered by a first order system 1
αTds+1

, avoids this problem

of noise amplification.

It is highly likely that the rudder’s deflection angle and rate saturations

provoque the windup phenomenon (see ? for more details) when PID method-

ology is applied. This is, the PID integral term, (ki
s
), may become large and

16



as a consequence, the heading response may show high levels of oscillation.

There exist several anti-windup schemes in the literature (see ? and refer-

ences therein), but instead of applying one of them, this would make the

designed controller more complex, a simpler method is chosen: a modified

control structure such as the following first order network controller is pro-

posed, note that the integral action has been omitted:

Uc(s) =
δc
E
(s) = K

[

s+ z

s+ p

]

(27)

where K > 0 and p > z.

The expression (??) represents a lead compensation controller (?) that has

a zero located nearer to the s-plane origin than the pole. This dominant zero

improves the stability of the system, which is desirable in order to satisfy the

objective of obtaining a heading response without overshoot.

Note that equations (??) and (??) become equal to each other if the

integral term Kp/(Tis) is zero, being equivalent to a PD controller transfer

function.

5.2. Tuning the controller

The tuning task is performed by following the schema on Figure ??,

in which the optimization algorithm takes data from the output (vessel′s

heading angle ψ(t)) and from the input (desired heading ψd). In the selection

of the optimization method the aims of the heading control were taken into

account: To minimize both the response′s overshoot and the settling time

without steady state error. For these reasons, the authors chose the minimax

optimization technique, as it minimizes the maximum value of the output.

In this way, when the maximum value of the output is reduced, the heading′s
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overshoot is minimized too.

Figure 8: Closeloop diagram for the optimization process.

The application of the minimax problem to the heading control, consist on

minimizing the maximum value of the output, ψ(t), over the simulation time

interval [t0, tf ]. The following constrain is imposed such that ψ(t) is always

less or equal than the constant input value ψd,

ψ(t) ≤ ψd, tr ≤ t ≤ tf (28)

being tr the rise time of the system. By imposing this restriction, a flat

response with no overshoot and no stationary error is expected. The value of

tr is determined based on a prior knowledge of the system response. Then,

the Minimax problem is applied (??):

min

θ
(i)
c

max
j {ψj(θ

(i)
c )} ≡











ψ(t) ≤ ψd, tr ≤ t ≤ tf

lb ≤ θ
(i)
c ≤ ub

where ψ(t) is the heading angle, θ
(i)
c are the controller’s parameters for the

corresponding ith linear time varying approximation to be optimized , lb is

the lower bound of the parameters, ub is the upper bound of the parameters

and the subindex j represents one set of multivariable functions.

5.3. Implementation Procedure

Based on the theory previously presented, the heading control implemen-

tation process can be summarized according to the following steps:

Initialization
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• Set initial values for the constants and variables involved in the

process:

lb, ub, x(0), θ
(0)
c , t0, tf , tr, ψd, h, tolx, tolθc .

Step (1)

• The first step to solve system (??) is to approximate it by solving

the following linear time invariant system:

ẋ(1)(t) = A[x0]x
(1)(t) + B[x0]u

(1)
c (t, θ

(1)
c ), x(1)(0) = x0.

This system represents a linear model and it differs from the non-

linear behaviour, not being a good representation; that is the rea-

son why the heading control is not optimized at this step, then we

made θ
(1)
c = θ

(0)
c .

Step (2)

1. Optimize the heading control loop:

min

θ
(2)
c

max
j {ψj(θ

(2)
c )} ≡











ψ(t) ≤ ψd, tr ≤ t ≤ tf

lb ≤ θ
(2)
c ≤ ub

for j = 1, 2, . . . tf/h. The optimization stops when ‖θ(2)c − θ
(1)
c ‖ <

tolθc is true.

2. With the obtained parameters θ
(2)
c , the following linear time vary-

ing system is solved for x(2)(t) by using the designed control action

u
(2)
c (t, θ

(2)
c ):

ẋ(2)(t) = A[x(1)]x(2)(t) + B[x(1)]u
(2)
c (t, θ

(2)
c ), x(2)(0) = x(0).
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If ‖x(2)−x(1)‖ < tolx is true the algorithm stops here, if not go to

step 3.

...

Step (i)

1. Optimize the heading control loop by:

min

θ
(i)
c

max
j {ψj(θ

(i)
c )} ≡











ψ(t) ≤ ψd, tr ≤ t ≤ tf

lb ≤ θ
(i)
c ≤ ub

for j = 1, 2, . . . tf/h. The optimization stops when ‖θ(i)c −θ(i−1)
c ‖ <

tolθc is true.

2. With the obtained parameters θ
(i)
c , the next step is to solve the

following linear time varying system:

ẋ(i)(t) = A[x(i−1)]x(i)(t) + B[x(i−1)]u
(i)
c (t, θ

(i)
c ), x(i)(0) = x(0).

If ‖x(i) − x(i−1)‖ < tolx is true the algorithm stops here, if not go

to step i+ 1.

Note that in the optimization process, in order to obtain the set of func-

tions {ψj(θ
(i)
c )} it is necessary to solve the corresponding linear time varying

approximation:

ẋ(i)(t) = A[x(i−1)]x(i)(t) + B[x(i−1)]u(i)c (t, θ(i)c ), x(i)(0) = x(0) (30)

to obtain x(i), as much as needed by the optimization algorithm. The control

output u
(i)
c (t, θ

(i)
c ) at each iteration is given by the control structure defined

in section ??.
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5.4. Iteration technique approximation for control purposes

In this section, the methodology previously introduced is applied to the

case of heading control of the vessel model. The equations of motion of this

system are highly nonlinear and can be written on the form:

ẋ(t) = A[x(t)]x(t) + B[x(t)]uc(t, θc), x(0) = x0 ∈ R
n. (31)

where A[x(t)] ∈ R
nxn, B[x(t)] ∈ R

nxm, x(t) is the state′s vector and the

control uc(t, θc) is designed by using the methodology presented in section

??. The system (??) can be approximated by the following sequence of linear

time varying systems:

ẋ(1)(t) = A[x(0)]x(1)(t) + B[x(0)]u
(1)
c (t, θ

(1)
c ), x(1)(0) = x(0)

...

ẋ(i)(t) = A[x(i−1)(t)]x(i)(t) + B[x(i−1)]u
(i)
c (t, θ

(i)
c ), x(i)(0) = x(0)

(32)

For each of these ”i” linear time varying iterations, a control action signal

u
(i)
c (t, θc)) is designed. Once last iteration is obtained, the sequence of so-

lutions converges to the nonlinear solution, Limi→∞

[

x(i)(t)
]

→ x(t). The

last designed control signal will be applied to the original nonlinear problem,

achieving control of the states:

ẋ(t) = A[x(t)]x(t) + B[x(t)]u(i)c (t, θ(i)c ), x(0) = x0 ∈ R
n. (33)

Figure 9: Diagram of the optimization algorithm connected to the iteration technique.
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6. Simulations and results

The simulation scenario is based on the coastal patrol full-scale vessel

data used in section ??. A course keeping manoeuvre of ψd=20◦ degrees will

validate and test the iterative controller design implemented following the

steps given in section ??. The manoeuvre should be completed satisfying the

objectives stated in section ??.

The vessel′s model defined in section ?? is rearranged on the form ẋ =

A(x)x(t)+B(x)uc(t, θc) where x(t, θc) = [u v p r φ ψ δ x y]T and the control

vector is uc(t, θc) = [δc T ]
T . The initial conditions are taken from ? as:

x0 = [unom 0 0 0 0 0 0 0 0]T .

In previous results for the 20◦ course-keeping manoeuvre case, a PID con-

troller (??) was applied and a high value of Ti was obtained by the optimiza-

tion method. As explained in section ??, the optimization technique applied

for the tuning, in an attempt to reduce the oscillation caused by the integral

windup problem, provides a high value of Ti and therefore reduces to the

minimum the influence of the integral term. This suggest that the contribu-

tion of the integral term ki/s in the PID controller (??) (being ki = kp/T i)

can be neglected. For all of this reasons, a lead compensation controller (??)

without integral action is used instead. The constrains of the controller pa-

rameters were set to lb = 0 and ub = ∞, in order to avoid unstable controller

behaviour. The lead compensation controller initial parameters were selected

taking into account that this type of controller must have a dominant zero

near to the s-plane origin.

Figures ?? and ?? show the results for a course keeping 20◦ (0.349 rad)

manoeuvre for each iteration ”i”. After the 5th iteration, the algorithm con-
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verges, the corresponding control parameters θc and the heading response

ψ(t) remain almost unchanged. The zoom made for the yaw variable ψ(t)

on the top part of Figure ?? for the iterations 5-8 shows that the difference

between iterations i and i−1, is within the order of 1
100

of degree, illustrating

the convergence properties of the presented algorithm. Figures ?? and ??

clearly show an accurate approximation for the 5th iteration to the nonlin-

ear model (compare iteration 5 with the simulated data generated with the

original nonlinear system and the controller parameters θ
(5)
c ). At this stage,

(i=5), the overshoot is reduced in the heading response ψ(t) and the settling

time is reduced with respect to the previous iterations. Furthermore, the

steady state error (e(t) = ψd −ψ(t)) converges to zero after only 30 seconds.

The bottom part of Figure ?? shows the actuator′s displacement, δ(t), which

Figure 10: Convergence results of the controlled variable ψ(t) and the actuator′s variable,

the rudder deflection, δ(t), for the coastal patrol vessel on a course keeping 20◦ manoeuvre.

represents the actual value of the rudder′s angle of deflection. There is satu-

ration present in the actuator for the 5th iteration, but with the selected lead

compensation controller the windup problem is avoided obtaining a response

without overshoot. The lead compensation controller is a simpler solution

that an anti-windup scheme for the PID controller.

Figure 11: Position convergence results for the coastal patrol vessel for a course keeping

20◦ manoeuvre.
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7. Conclusions

In this work, the authors proposed a control strategy based on an opti-

mized lead compensation controller methodology combined with an iteration

technique based on linear time varying approximations to approach the non-

linear dynamics of a ship. The theory here presented has been implemented in

Matlab/Simulink and applied to the particular example of a full scale coastal

patrol vessel under two different scenarios: firstly, a standard 20◦-20◦zig-zag

manoeuvre is considered in order to show the convergence of the iteration

methodology presented in the theory and secondly, a 20◦ course-keeping ma-

noeuvre is presented to show the accuracy of the tracking capabilities of the

designed controller when applied to the last of iterated linear time varying

systems.

On the first case, the results show that the approximation to the vessel’s

nonlinear dynamical equations in the 20◦ − 20◦ zig-zag manoeuvre is a good

approximation after only a few number of iterations, 20 in this case. By

generating this sequence of linear time varying equations that approximate

the original nonlinear dynamics, now linear control techniques can be applied

to the last of these iterations. This is a good advantage since linear control

methods are usually simpler and computationally cheaper to implement.

On the other hand, for the 20◦ course-keeping manoeuvre, the proposed con-

trol strategy and reference tracking methodology is tested. A high value of Ti

obtained with the proposed control strategy in preliminar results, indicates

that the rudder′s saturation provoques the integral windup problem when

PID control is applied. Therefore, it is advisable to use a controller without

integral term such as the lead compensation controller. The presented re-
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sults with the lead compensation controller meet the stated objectives in the

heading response: the elimination of the existing overshoot, the reduction of

the settling time and the elimination of the steady state error. In addition

to this, the lead compensation controller constitutes a simpler solution than

an anti-windup scheme for a PID controller.

The authors are currently investigating further within this area. The control

strategy here proposed will be extended to the multivariable control case in

order to develop a trajectory control system.

Appendix A. Coastal Patrol data

For the Coastal patrol (??) the main hull data and load condition are

given in Table ?? and Figure ??. The hydrodynamic coefficients of the

manoeuvring model are included in Table ?? and the data corresponding to

the propulsion system are in Tables ?? and ??. The vessel is equipped with

two rudders.

Table A.2: Principal ship dimensions and load condition.

Figure A.12: Main particulars and reference frames.

Note that og is the geometrical coordinate origin, see ? for more details.

Table A.3: Free stream data for rudder and fin profiles (see ?).
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Table A.4: Rudder data.

Table A.5: Hydrodynamic coefficients for the manoeuvring model.
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