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Abstract: By applying visual analytics techniques to vehicle traffic data, we found a way to 

visualize and study the relationships between the traffic intensity and movement speed on 

links of a spatially abstracted transportation network. We observed that the traffic intensities 

and speeds in an abstracted network are interrelated in the same way as they are in a detailed 

street network at the level of street segments. We developed interactive visual interfaces that 

support representing these interdependencies by mathematical models. To test the possibility 

of utilizing them for performing traffic simulations on the basis of abstracted transportation 

networks, we devised a prototypical simulation algorithm employing these dependency 

models. The algorithm is embedded in an interactive visual environment for defining traffic 

scenarios, running simulations, and exploring their results. Our research demonstrates a 

principal possibility of performing traffic simulations on the basis of spatially abstracted 

transportation networks using dependency models derived from real traffic data. This 
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possibility needs to be comprehensively investigated and tested in collaboration with 

transportation domain specialists. 

Keywords: visual analytics; mobility; traffic modeling; traffic simulation 

 

1. Introduction 

Data concerning vehicle traffic in transportation networks are now collected in great amounts owing 

to advances in sensing technologies. These data offer new opportunities for improving the understanding 

of traffic properties and enhancing the accuracy of the models describing and forecasting traffic 

situations and their evolution. However, the potential of real traffic data remains largely underexploited. 

By means of visual analytics methods, we performed a systematic study of the hidden opportunities. We 

found out that traffic data covering a sufficiently long time period to reflect the regular daily and weekly 

variations can be used for deriving models capable of predicting not only regular traffic flows at different 

times but also extraordinary flows in abnormal situations, such as road closures or mass movements 

caused by public events or emergencies. Predicting unusual traffic behaviors on the basis of data 

reflecting only normal patterns becomes possible due to the reconstruction of interdependencies [1] 

between the traffic intensity (also known as traffic flow or flux) and the mean movement speed for 

different links of a transportation network. 

A distinctive feature of our approach to traffic analysis, modeling, and simulation is the use of spatial 

abstraction for representing transportation networks and traffic properties at different spatial scales. The 

approach is based on the key finding that the fundamental relationships between traffic characteristics are 

consistent across different levels of spatial abstraction of a physical transportation network. 

2. Related Works 

The concept of spatial scale is one of the central concepts in the geographic sciences [2–5], where it 

is commonly recognized that the scale of analysis must match the actual scale of the phenomenon that 

is analyzed. On the other hand, the scale should also match the goals of analysis. Making justifiable 

choices is not easy. Often researchers use empirical trial-and-error approaches to identifying appropriate 

scales for analyzing phenomena. Researchers also need to check how patterns they observe change with 

the scale and, more generally, to address the problem of modifiable areal unit [6], which refers not only 

to the sizes of spatial units but also to the delineation of their boundaries. It was suggested [7] that visual 

analytics approaches can help spatial analysts in choosing suitable spatial and temporal scales of analysis 

and testing the sensitivity of findings to changes of the sizes and delineation of spatial and temporal 

units. This is exemplified by our research, in which interactive visual embedding of techniques for spatial 

abstraction and aggregation [8] facilitated the exploration of vehicle traffic at different spatial scales and, 

thus, enabled our key finding that fundamental relationships between traffic characteristics are consistent 

across multiple scales (Section 3). 

In the research dealing with analysis of movement data, only a few researchers considered the role of 

scale. Laube and Purves [9] demonstrated the impact of varying the temporal scale on derived movement 



ISPRS Int. J. Geo-Inf. 2015, 4 593 

 

 

parameters, and Soleymani et al. [10] suggested a framework for cross-scale analysis of movement 

behaviors using machine learning (classification) methods. Concerning the spatial scale, the idea is to 

use three hierarchical levels of space subdivision, derive various aggregate measures for the defined 

zones, and use these measures as features for a classification model. The scale at which the highest 

performance of the classifier is achieved is judged as the most appropriate. In a similar way, an 

appropriate temporal scale is chosen. It is not yet clear how this approach can be generalized beyond the 

task of movement behavior classification. 

Scale is also a pertinent concept in transportation research. In particular, traffic simulation models are 

classified into macroscopic, mesoscopic, and microscopic [11]. Macroscopic models describe the traffic at 

a high level of aggregation as flow without considering individual vehicles [12,13]. In microscopic models, 

traffic is described at the level of individual vehicles and their interactions with each other and with the 

road infrastructure. Two major classes are agent-based models [14] and cellular automata models [15]. 

Being quite resource-demanding, microscopic models have traditionally been used for local simulations in 

small areas, but the increased power of computers and parallel computing have enabled microscopic 

simulations for large networks. A disadvantage of microscopic models is large effort required for model 

preparation. Mesoscopic models fill the gap between macroscopic and microscopic models by combining 

individual vehicle representation with aggregate representation of traffic dynamics [16]. Individual 

vehicles or packets of vehicles move through links of a transportation network according to general  

speed-density relationships defined in traffic flow theories [17] or derived from real data [18]. Parameters 

of these relationships can be set differently for different link types [16]. Hybrid models combine 

macroscopic or mesoscopic models with microscopic models [19,20]. Different model types are applied 

to different parts of a network. Thus, Sewall et al. [11] perform agent-based simulation of individual 

vehicles in regions of user’s interest while a faster macroscopic model is used in the remainder of  

the network. 

Visualization support to traffic simulation is currently represented only by the works of  

Sewall et al. [11,12], who generate realistic 3D animations of simulated vehicle movements. For the 

hybrid micro-macro simulation, they designed an interactive tool that automatically and dynamically 

selects the appropriate simulation method for different parts of the network based on user’s needs. In our 

work, interactive visualizations and interfaces support not only traffic simulations but also analysis of 

real traffic data and creation of models that are subsequently applied for simulations. 

3. Spatial Abstraction of a Transportation Network 

Traffic data may be available in the form of trajectories of moving objects. A trajectory consists of 

records reporting the positions (e.g., geographic coordinates) of moving objects at different times. Given 

a large set of trajectories, we apply an existing method [8] that derives an abstracted network consisting of 

cells (territory compartments) and links between them. Smaller or larger cells can be generated by varying 

method parameters, thus, allowing traffic analysis and modeling at a chosen spatial scale. Moreover, it is 

also possible to vary the spatial scale across the territory depending on the data density and, thus, obtain 

finer cells in data-dense areas and coarser cells in data-sparse regions [21]. 

The nodes of an abstracted traffic network are polygonal cells. Neighboring cells are connected by 

pairs of directed links. After constructing a network, the original trajectory data are aggregated spatially 
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by the nodes and links of the network and temporally by time intervals [8]. The result of the aggregation 

includes two sets of time series for the links: traffic intensities and mean vehicle speeds (velocities). 

Traffic intensity on a link, also called traffic flow or flux, is the number of objects traversing the link per 

time unit. The mean speed on a link is computed as follows. For each object that moved from cell A to 

cell B, two trajectory points that are the closest to the centers of these cells are selected. Dividing the 

length of the path between the selected points by the time difference between them gives the mean speed 

of this object. The overall mean speed on the link (A,B) in a time interval [t1,t2] is computed as the mean 

of the mean speeds of all objects that moved from cell A to cell B during this time interval. 

Figure 1 gives an example of an abstracted traffic network of Milan (Italy) reconstructed from GPS 

tracks of 17,241 cars collected over a period of one week from Sunday, 1 April, to Saturday, 7 April, 

2007 (data source: Octo Telematics SpA). The original GPS records include anonymized vehicle 

identifiers, time stamps, and geographic coordinates. The temporal resolution is mostly 30 seconds while 

larger temporal gaps also occur. In Figure 1, the territory of Milan is divided into cells with approximate 

radii of 1 km. 

 

Figure 1. An abstraction of the street network of Milan (Italy) built with cell radii ≈ 1 km. 

Explanation: The cells are Voronoi polygons built around the “mass centers” of spatial clusters of 

points extracted from the trajectories. The clustering method [8] groups the points so that each group fits 

in a circle of a user-specified maximal radius (1 km in our example), but the actual group radius may 

also be smaller. The medoid of each group (i.e., the point with the smallest sum of distances to all other 

points) is taken as a generating seed for Voronoi tessellation. Note that the medoid is not necessarily the 

center of the circumcircle of the group. The shapes and sizes of the resulting polygons depend on the 

spatial distribution of the group medoids. Since the latter is irregular, the cell shapes and sizes are also 

irregular. When we use an expression “cells with approximate radii x”, we actually mean that the cells 

have been built on the basis of point clusters with the maximal radius x. 

The cell boundaries are shown in Figure 1 by grey lines and the links between them by colored curved 

lines, which can be better seen in an enlarged map fragment on the top right. The curvature of a line 
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representing a link increases towards the link end [22], which distinguishes the directions of the opposite 

links between the same cells. An alternative method for representing links is by half-arrow symbols [23], 

as demonstrated on the bottom right of Figure 1. It can be noted that not all pairs of neighboring cells 

are connected by links. The absence of a link between two cells means the absence of actual movements 

between these cells. 

For improving the map legibility, the link symbols are colored based on results of partition-based 

clustering by the similarity of the associated time series of the traffic intensities and mean speeds, i.e., 

each color corresponds to one of the clusters. The colors for the clusters are chosen so that close clusters 

receive similar colors and distant clusters receive dissimilar colors. This is done by projecting the cluster 

centers onto a two-dimensional color space [24]. Hence, in our example, similar colors correspond to 

clusters of links with similar traffic intensities and mean speeds. The three clusters with the most 

distinctive colors (dark red, dark mauve, and violet) consist of the links located along the orbital 

motorway around the city and the radial motorways. The colors signify that these links differ much from 

the remaining links located inside the city and in the residential suburbs. 

To study and quantify the relationships between the traffic intensities and mean speeds on the links, 

the data are transformed in the following way. Let A and B be two time-dependent attributes associated 

with the same object (in particular, link) and defined for the same time steps. 

1. Divide the value range of attribute A into intervals. 

2. For each value interval of A:  

a. Find all time steps in which the values of A fit in this interval. 

b. Collect all values of B occurring in these time steps. 

c. From the collected values of B, compute summary statistics: mean, quartiles, 9th decile (i.e., 90th 

percentile), and maximum. 

d. For each statistical measure (i.e., mean, 9th decile, maximum, etc.), construct an ordered sequence 

of values corresponding to the value intervals of A arranged in the ascending order. 

In this way, a family of attributes is derived: mean of B, 9th decile of B, maximum of B, and so on. 

For each of the derived attributes, there is an ordered sequence of values corresponding to the chosen 

value intervals of attribute A. This sequence is similar to a time series except that the steps are based not 

on time but on values of attribute A. We call such sequences dependency series (DS) since they express 

the dependency between attributes A and B. Attribute A is treated as the independent variable and B as 

the dependent variable. 

To study and model the interdependencies between the mean speed and the traffic intensity, we 

perform two transformations. First, we treat the traffic intensity as the independent variable and derive 

a family of attributes expressing the dependency of the mean speed on the traffic intensity. Second, we 

treat the mean speed as the independent variable and derive a family of attributes expressing the 

dependency of the traffic intensity on the mean speed. Dependency series may be derived using either 

the absolute or relative traffic intensities, the latter being computed as the ratios or percentages of the 

absolute intensities to the maximal intensities attained on the same links. 

The dependency series we have derived for the abstracted transportation network of Milan shown in 

Figure 1 are graphically represented in Figure 2. The lines in the graphs correspond to the links of the 

network and are colored according to the cluster membership of the links using the same colors as in 
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Figure 1. The graph on the left shows how the mean speed depends on the relative traffic intensity 

expressed as the percentage to the maximum. The horizontal axis corresponds to the traffic intensity and 

the vertical axis to the 9th decile of the mean speed. We have taken the 9th decile because this statistical 

measure is less sensitive to outliers as the maximum. Outliers among the values of the mean speed often 

occur in time intervals of low traffic intensity, when a single or only a few vehicles traverse a link. The 

graph on the right shows for each link the dependency of the maximal relative traffic intensity on the 

mean speed. The horizontal axis corresponds to the mean speed and the vertical axis to the maximal 

relative traffic intensity.  

 

Figure 2. The graphs represent the interdependencies between the traffic intensity and mean 

speed for the links of the abstracted transportation network of Milan shown in Figure 1. 

On the left of Figure 2, the shapes of the lines show that the mean speed decreases with increasing traffic 

intensity. On the right, the lines have the shape of a bell or symbol “⌒”, which can be interpreted as 

follows. When vehicles move with a low mean speed, only a small number of vehicles can traverse a link 

in a time unit, i.e., the traffic intensity is low. When the mean speed increases, the intensity also increases, 

but only till the point when a certain “optimal” value of the mean speed is reached. After this point, 

movement with higher mean speeds is only possible when the traffic intensity decreases. These 

observations conform to our commonsense knowledge and experiences concerning the behavior of the 

vehicle traffic on roads but refer to an abstracted rather than physical transportation network. 

Figure 3 demonstrates how the two-way dependencies between the traffic intensity and mean speed 

can be represented by formal models, such as polynomial regression (other kinds of curves can be fitted 

as well). The modeling is done for clusters of links rather than for each individual link, to avoid  

over-fitting and reduce the impact of local outliers and fluctuations. The figure represents screenshots of 

the interactive visual tool supporting model building. The UI elements below the graphs show, in 

particular, the label of the cluster for which the model is being built, the chosen modeling method 

(polynomial regression), and the polynomial order. The grey curves in each graph represent the 

dependency series for the individual links from the chosen cluster, in dark blue is the summary curve for 

this cluster, and in yellow is the curve representing the modeling result. 
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Figure 3. The two-way dependencies between the traffic intensity and mean speed can be 

represented by polynomial regression models. 

The shapes of the fitted curves, which capture the character of the dependencies, are similar to the 

shapes of the curves in the fundamental diagram of traffic flow describing the relationship between the 

traffic characteristics [1]. The fundamental diagram of traffic flow includes three graphs: mean speed u 

versus traffic density k (the number of vehicles per 1 km of road length), mean speed u versus traffic 

intensity (or flow, or flux. i.e., the number of vehicles per time unit) q, and intensity q versus density k. 

The shape of the lower curve in Figure 3 corresponds to the shape of the curve u versus q, except that 

the u-axis (speed) in the fundamental diagram is vertical and the q-axis is horizontal, i.e., our graph is 

transposed with respect to the canonical graph. Our upper image shows the dependency of u (speed) 

versus q (intensity). There is no directly corresponding graph in the fundamental diagram, but there is a 

graph of u versus density k. According to the traffic theory, the traffic density is calculated as k = q/u. 

Transforming the graph of u versus k based on this formula would result in a graph of u versus q with 

the curve shape similar to the shape in Figure 3 (top). 
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The fundamental diagram refers to links of a physical transportation network, i.e., to street segments. 

The exact parameters of the curves depend on the street properties, such as the width, number of lanes, 

and speed limit. We see that the same relationships as in a physical network exist also in a spatially 

abstracted network. The parameters of the curves depend on the properties of the abstracted links. As 

each abstracted link stands for a group of physical links, its properties incorporate and summarize the 

properties of these physical links. Moreover, we have found that the relationships conforming to the 

fundamental traffic diagram exist on different levels of spatial abstraction, as illustrated in Figure 4. 

 

 

Figure 4. The maps show spatially abstracted transportation networks of Milan built with 

cell radii ≈ 2 km (top) and 4 km (bottom). The graphs to the right of each map represent the 

two-way dependencies between the relative traffic intensities and the mean speeds on the 

network links. 

We have checked this finding using a much larger dataset covering the geographical region of 

Tuscany (Italy) and a time period of one month. Similar relationships as in Milan have been observed at 

diverse spatial scales for traffic flows both within and between the towns of Tuscany. 

This key finding provides a basis for our approach to traffic analysis and modeling. The fundamental 

relationships between the traffic flow characteristics expressed by the conventional traffic flow diagram 
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are commonly used for traffic flow prediction and simulation, which is usually done on the basis of a 

physical street network. The existence of similar relationships at higher levels of spatial abstraction 

makes it possible to do modeling, prediction, and simulation also at higher spatial scales in cases when 

fine details are not necessary.  

4. Advantages and Limitations of Spatial Abstraction 

Spatial abstraction of a street network offers following advantages: 

1. The number of nodes and links in an abstracted network can be much smaller than in the underlying 

physical network. Hence, much less time and effort is needed for model building and calibration, and 

also simulations can be carried out much faster compared to the current practices. This enables, in 

particular, rapid approximate predictions and assessments of traffic dynamics in emergency situations, 

when time is very limited. 

2. Spatial abstraction compensates for the sparseness of real data on streets with low traffic. There may 

be not enough trajectory points on a given street segment for reconstructing the dependency between 

the mean speed and traffic intensity, but aggregation of several physical links into one abstract link 

alleviates this problem. 

3. It is possible to build an abstract network in which the level of spatial abstraction varies across a 

territory according to the variation of the data density. In areas with high traffic, abstracted links may 

very closely approximate physical links (i.e., street segments), whereas areas with low traffic can be 

represented by large cells. Hence, it is possible to have different levels of detail in traffic simulations 

and prediction in areas with high and low traffic, when fine details in low traffic areas are not important.  

We do not claim that the spatial scale (i.e., the cell sizes) can be unlimitedly increased without 

distorting and eventually destroying the shapes of the curves representing the relationships between the 

traffic fluxes and velocities. Generally, increasing the spatial scale increases the amount of noise  

(i.e., oscillations) within the curves. The overall shapes of the curves remain discernible up to a certain 

abstraction level, at which the oscillations become too high. Our experiments show that the upper limit 

for the cell sizes may depend on the number and diversity of the existing physical links between the 

cells. Thus, for Milan and the urban areas of Tuscany, increasing the cell radius beyond 4 km distorts 

the curves too much, whereas much larger cells can be used for the rural areas of Tuscany. Hence, there 

is no uniform upper limit to the level of spatial abstraction that would be valid everywhere. An 

appropriate level for a given territory and available data can be determined empirically with the use of 

visual analytics techniques. 

It can be argued that the use of spatial abstraction in traffic flow modeling greatly simplifies the reality 

as compared to modeling on the basis of the detailed street network. Indeed, abstraction involves 

simplification, but any model is an abstracted and simplified representation of the reality. The 

fundamental traffic relationships adopted in the transportation domain are themselves theoretical 

abstractions. Moreover, the use of these relationships for traffic modeling is based on a simplifying 

assumption that the equation parameters are uniform everywhere for streets of the same type. Hence, 

even when a detailed street network is used, the modeling inevitably involves simplification. However, 

simplification should not be considered as a bad and undesired feature of models. On the opposite, it is 



ISPRS Int. J. Geo-Inf. 2015, 4 600 

 

 

the simplification of the reality that makes models practically useful. The reality is so complex that, even 

if it would be possible to build a model representing some part of it in its full detail, this model would 

be intractable. In transportation, each class of models (macroscopic, mesoscopic, microscopic, or hybrid) 

simplifies the reality in its specific way. It would not be valid to say that some ways are better than 

others; rather, the different ways are suitable for different purposes. We propose a yet another approach 

to simplification, which is not supposed to replace any of the existing approaches but can complement 

them. The possible use cases for it are listed at the beginning of the section. We discussed our approach 

with transportation researchers from the University of Hasselt (Belgium), with whom we collaborated 

in a research project. They find the approach sensible and promising while requiring further 

substantiation by additional empirical studies. 

5. Deriving Traffic Models from Real Data 

A reservation needs to be made concerning the reconstruction of the fundamental relationships 

between the traffic flow characteristics from real vehicle trajectories. It is typical that available 

trajectories cover only a sample of vehicles that move within a network and not the entire population. 

Hence, the traffic intensities computed from these trajectories need to be appropriately scaled, to 

approximate the real intensities. This reservation is not specific to spatially abstracted networks but also 

applies to detailed street networks. Appropriate scaling parameters (or even scaling functions capturing 

daily and weekly variations) can be derived by comparing the vehicle counts computed from trajectory 

data with measured counts obtained from traffic sensors [25]. 

For model derivation, we apply a methodology [24] in which an interactive visual interface to a 

modeling library is utilized. The methodology is applicable to aggregated movement data associated 

with nodes and links of a network, which may be a physical street network or a spatially abstracted 

network. The data must include time series of the traffic intensities, that is, the counts of objects that 

moved through the links by time intervals, and time series of the corresponding mean speeds of their 

movement. The length and temporal resolution of the time series must be suitable for capturing the traffic 

variation related to the daily and weekly temporal cycles, which means that the length must be at least 

one week (more is better) and the resolution must be at most one hour (finer is better). Ideally, the counts 

should represent the entire population of the objects that moved over the network, but it is also possible 

to use data obtained for a large sample of objects after applying appropriate scaling. 

As mentioned before, models are built for clusters of links rather than individual links, to avoid  

over-fitting and reduce the impacts of noise and local outliers. The links are clustered according to the 

similarity of the associated time series of traffic intensities and mean speeds using a partition-based 

clustering algorithm, such as k-means, and interactive visual tools enabling refinement of selected 

clusters when needed [24]. Three sets of models are built: (1) models of the temporal variation of the 

traffic intensity; (2) models of the dependencies of the mean speeds on the traffic intensities; and (3) 

models of the dependencies of the traffic intensities on the mean speeds. For the model set (1), we apply 

the double exponential smoothing (Holt-Winters) method, which captures the periodic character of the 

temporal variation regarding the daily and weekly time cycles. For the model sets (2) and (3), we apply 

polynomial regression models, as demonstrated in Figure 3. The process of modeling the two-way 
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dependencies between the traffic intensity and mean speed is described in more detail in a recently 

published book [21]. 

Since the models are derived for link clusters, each model by itself makes a common prediction for 

all cluster members. However, this prediction is individually adjusted for each cluster member based on 

the statistics of the distribution of its original values [24]. 

6. Use of Models for Traffic Prediction and Simulation 

The models of the temporal variation of the traffic intensity can be used for prediction of the regular 

traffic for chosen time intervals in the future, assuming that the properties of the temporal variation do 

not change. When real traffic data are collected on a regular basis, it is reasonable to periodically check 

the models against the real data. If the prediction quality degrades, the models need to be updated. 

The models of the dependencies between the traffic intensity and the mean speed can be used to 

simulate and predict unusual traffic behaviors. The main idea is following:  

1. For each link, determine how many vehicles need to move through it in the current minute. 

2. Using the dependency model from the traffic intensity to the mean speed, determine the mean 

speed that is possible for this link load. 

3. Using the dependency model from the mean speed to the traffic intensity, determine how many 

vehicles will actually be able to move through the link in this minute. 

4. Promote this number of vehicles to the end place of the link and suspend the remaining vehicles 

in the start place of the link. 

To perform a simulation, the analyst needs to define the scenario to be simulated. This includes 

defining a set of extra vehicles that will be moving in the network in addition to the regular traffic, the 

origins and destinations of their trips, the routes they will follow, and the time when each vehicle starts 

moving. To support the process of scenario definition, we have developed a wizard guiding the analyst 

through the required steps and providing visual feedback at each step. However, the description of the 

wizard and the other interactive visual tools that are used is out of the scope of this paper, the objective 

of which is to present the key idea and outline the approach that is based on this idea. Therefore, we give 

only a brief example of how the simulation can be used. 

For Milan, we have performed experiments on simulating the movement of a large number of personal 

cars from the area around the San Siro stadium after a soccer game. To be able to simulate this scenario, 

we need to solve the problem of data scaling mentioned at the end of Section 2. The data that we used 

for model building represent not all vehicles that moved in Milan but only about 2% of the private cars. 

We apply the following approach. If we need to simulate movements of N private cars, we downscale 

this number to 2% of N, to make it compatible with the models. Figures 5 and 6 present simulated 

trajectories of 250 cars, which correspond to about 12,500 cars in the real scale. 

In Figure 5, the trajectories are shown as lines in a space-time cube. To be better distinguishable, the 

lines are differently colored according to their destination locations. The cube display allows us to see 

the followed routes and the progress of the movement over time. We can spot the places where many 

cars will be suspended, waiting for the possibility to move. The suspensions appear in the cube as vertical 

trajectory segments, which mean that the spatial positions do not change as the time passes. 
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Figure 5. Simulated trajectories of cars moving from the vicinity of the San Siro stadium to 

supposed home places after a soccer game are shown in a space-time cube. 

In Figure 6, the trajectory lines are drawn on a map, ignoring the temporal component. In this view, 

the routes can be easier related to the physical street network of Milan and to the spatially abstracted 

network of linked cells. The red circles on the map are drawn in four cells around the San Siro stadium, 

which we chose as the origins for the simulated car trips. The green circles mark the trip destinations. 

For choosing the destinations, we used the following reasoning. After the game, most of the spectators 

would drive to their home places. Hence, the probability of a cell to be a trip destination is proportional 

to the number of people living there. We have no data about the spatial distribution of the resident 

population of Milan at a level of detail sufficient for estimating the number of residents in each Voronoi 

cell; however, we have hourly counts of trip ends in the cells as a result of the aggregation of the original 

trajectory data. The number of trip ends in the evening and night hours can be expected to correlate with 

the number of homes in a cell, since in the evenings people typically go home. This commonsense 

expectation is consistent with results of empirical studies [26]. Hence, the distribution of the trip ends in 

the evening and night can serve as a proxy for the resident population distribution. Based on this 

reasoning, we let the tool distribute the trip destinations randomly throughout the territory, so that the 
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probability of choosing a cell is proportional to the cell weight, which is the sum of the hourly counts of 

trip ends in the hours from 6:00 p.m. to 12:00 a.m. 

 

Figure 6. The simulated trajectories are shown on a map. The red and green circles represent 

the trip origins and destinations, respectively. 

Besides viewing the simulated trajectories in a space-time cube and on a map, which may be animated 

for showing the car movements over time, there are further opportunities for analysis. The tool 

aggregates the simulation results for the cells and links by time intervals of user-chosen length. Using 

time graph displays, we can analyze the link loads, attained mean speeds, and numbers of suspended 

cars in the cells. Bottlenecks in the transportation infrastructure can be revealed. 

After analyzing the predicted development of the traffic situation, it is possible to introduce 

modifications in the scenario (e.g., disable the use of some links and/or modify link weights, to model 

traffic re-routing) and run a new simulation. Through such “what if” analysis, it may be possible to find 

suitable measures for decreasing traffic suspensions and congestions. 

7. Evaluation of Model Goodness 

The evaluation of how the models predict the regular traffic flows is done in a straightforward way 

by comparing the predicted traffic flow intensities with the real ones. More challenging is to evaluate 

the prediction of extraordinary traffic situations when there are no real data reflecting such situations. 

Without going into detail, we present an idea of how such an evaluation can be done. The idea is to 

utilize the differences between the quiet and busy periods of the regular traffic, which are reflected in 
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the real data. The analyst selects a quiet time interval tq and a busy time interval tb and finds the difference 

∆N between the total numbers of the vehicles N(tb) and N(tq) that were present in the network in these 

two intervals: ΔN = N(tb) − N(tq). Then the analyst simulates the scenario as if ΔN extra vehicles 

appeared in the network in the time interval tq in addition to the normal traffic for tq. The extra vehicles 

are distributed over the nodes of the network proportionally to the differences in the vehicle counts 

between the intervals tb and tq. After performing the simulation, the predicted traffic intensities 

combining the regular and extra traffic are compared with the real traffic intensities in the interval tb. 

The evaluation is repeated several times for different pairs of tq and tb. We applied this approach to the 

models built for Milan and for Tuscany and obtained very high correlations between the predicted and 

real values. 

8. Conclusion 

In the recent years, our research was strongly focused on analysis of data concerning movement [21], 

including network-constrained movement. By developing and applying various visual analytics methods, 

we strived at comprehensive exploration of the potential opportunities that can be provided by movement 

data. For network-constrained movement, we found data transformations that allowed us to visualize the 

interdependencies between two key aspects of the movement, traffic intensity and speed. Having vivid 

pictures, as in Figures 2 and 4, we noticed common patterns and got an idea that the interdependencies can 

be quantified and expressed formally in a uniform way. To implement this idea, we developed additional 

visual analytics tools that enabled us to represent the dependencies by formal models. This shows that 

visual analytics methods can help analysts not only to gain understanding (i.e., a mental model) of a 

phenomenon represented by data, but also to transform this mental model into explicit formal models. 

Our next idea was that the models capturing the traffic intensity—speed relationships can allow 

prediction of not only typical movements but also unusual movements that were not represented in the 

original data. This is possible because the models generalize the data and can extrapolate beyond the 

original scope of the data. We have developed a traffic simulation tool capable of using the models 

derived from real traffic data and a visual analytics infrastructure that supports definition of traffic 

scenarios to simulate and analysis of simulation results. 

Our research showed a principal possibility of using knowledge gained from real movement data for 

prediction of development of traffic situations, even under unusual conditions. Moreover, one of our 

findings was that the dependencies between the traffic intensity and speed existing in a spatially abstracted 

network are similar to the known dependencies existing in road traffic and observed at the level of road 

segments. This opens a potential opportunity for performing rapid large-scale simulations of traffic 

situation developments on large territories when fine details are not required. This opportunity needs to 

be comprehensively investigated and tested in collaboration with transportation domain specialists. 
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