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Abstract:  In the Meshless Local Petrove-
Galerkin based on Rankine source solution 
(MLPG-R), a simplified finite difference 
interpolation (SFDI) scheme was developed for 
numerical interpolation and gradient calculation 
(CMES, Vol. 23(2), pp. 75-89). Numerical tests 
concluded that the SFDI is generally as 
accurate as the linear moving least square 
method (MLS) but requires less CPU time.  In 
this paper, a modified SFDI is proposed for 
numerically modelling of nonlinear water 
waves, considering the typical feature of the 
spatial variation of the wave-related parameters. 
Systematic numerical investigations are carried 
out and the results indicate that the 
modification considerably improves the 
robustness of the SFDI on gradient estimation. 
Although the scheme is originally derived for 
meshless method, its feasibility and accuracy in 
the mesh-based methods are discussed here 
through the fully nonlinear wave simulation 
using the Quasi Arbitrary Lagrangian Eulerian 
Finite Element Method (QALE-FEM), which is 
based on fully nonlinear potential theory.  
 
Keywords: Modified SFDI, gradient estimation, 
nonlinear water waves, QALE-FEM 
 

1. Introduction 
 
Numerical interpolation and gradient estimation 
are essential in the meshless methods, e.g. the 
Meshless Local Petrove-Galerkin (MLPG) 
method developed by Atluri and Zhu (1998), 
the moving particle semi-implicit method (MPS) 
developed by Koshizuka and Oka (1996) and 
the smooth particle hydrodynamics(SPH, e.g. 
Zheng, Ma and Duan, 2014).  They include the 
Shepard function, the partition of unity, the 

reproducing kernel particle interpolation, the 
radial basis function, and the moving least 
square methods (MLS). Detailed reviews can 
be found in Atluri and Shen (2002) and Ma 
(2008). 
 
Ma (2008) developed a new meshless 
interpolation scheme called simplified finite 
difference interpolation (SFDI). The numerical 
investigations concluded that the SFDI is 
generally as accurate as the linear MLS but 
requires less CPU time due to the fact that the 
SFDI requires the inverse of lower order matrix 
than the MLS.  It is also observed that the SFDI 
is more robust than the schemes used in the 
MPS (e.g. Yoon, Koshizuka and Oka, 2001). 
The SFDI has been implemented in the MLPG 
Method Based on Rankine Source Solution 
(MLPG_R) developed by Ma (2005) and the 
SPH method to modelling breaking waves and 
their impacts on structures, e.g. Sriram and Ma 
(2012), Zhou and Ma (2010) and Zheng, Ma 
and Duan (2014).   
 
In addition to the meshless methods, the mesh 
based methods are also commonly used in 
modelling nonlinear water waves.  These 
include multi-phase flow solvers and the fully 
nonlinear potential solvers (FNPT), in which 
the numerical interpolation and gradient 
estimation are as critical as the meshless 
methods. The FNPT is relatively simpler and 
needs less computational resource than the 
former with satisfactory accuracy if the viscous 
effects are insignificant.  As a result, it provides 
a preferable alternative solution to the meshless 
methods to modelling non-breaking water 
waves with relatively higher computational 
efficiency. Hybrid models combining the FNPT 



solvers and the meshless methods, e.g. Sriram 
and Ma (2014), have therefore been developed 
to accelerate the simulation.  In the FNPT 
models, the flow is governed by the Laplace 

Equation of the velocity potential ( ).  Various 

methods, such as the boundary element method 
(BEM, e.g. Fochesato and Dias, 2006) and the 
finite element method (FEM), can be used to 
solve the FNPT model using mixed Eulerian 
and Lagrangian (MEL) approach as reviewed 
by Ma and Yan (2006), Yan and Ma (2010), 
who also concluded that the FEM is more 
robust than BEM in modelling fully nonlinear 
water waves.  In the FNPT based FEM methods, 
the fluid velocity on the free surface is 
estimated by the gradient of   and it is 

essential to provide the position of and the 
values of   at the free surface for next time 

step.  For this purpose, various schemes have 
been developed. They include the shape 
function, global projection Galerkin method 
(Wu and Eatock Taylor, 1994), least square 
method (Ma, Wu and Eatock, 2001), mapped 
finite difference scheme (Steinhagen, 2001), 
cubic spline method (Sriram, Sannasiraj and 
Sundar, 2010). Their advantage and limitation 
have been discussed by Sriram, Sannasiraj and 
Sundar (2010), in which a systematic 
investigation concluded that the cubic spline 
method was superior over other methods when 
modelling strong nonlinear waves but was 
limited to two-dimensional (2D) applications.   
Ma and Yan (2006) suggested a hybrid scheme 
to estimate tangential and normal velocity 
separately. To find the normal velocity 
component at each free-surface node, a three-
point finite difference scheme was used, in 
which a quadratic MLS was adopted to 
interpolate the velocity potential at two other 
points in its normal direction.  A linear least 
square method was implemented to estimate the 
tangential components.  By using this scheme, 
a promising accuracy was confirmed for 2D or 
three dimensional (3D) nonlinear waves 
including overturning (Yan and Ma, 2010).   

However, in the above-mentioned interpolation 
and gradient calculation schemes derived either 
for meshless or mesh based methods, it is 
generally assumed that the variation of a 
variable features the same in all directions in 
the physical coordinate system, e.g. an 

isotropous basis functions (such as   ],,,1[ zyx  

for linear interpolation) are used in the least 
square or MLS methods.  In fact, the variations 
of wave-related parameters, e.g. the velocity 
potential and the pressure, show significantly 
different features in horizontal and vertical 
directions. Taking the 2D linear regular wave 
as example, the velocity potential satisfies  
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for waves in finite depth and  
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for waves in deep water (see, e.g. Dalzell, 
1999).  In Eq. (1),  a,  and k are the wave 

amplitude, frequency and wave number, 
respectively, h the mean water depth, g the 
gravitational acceleration, x and z, respectively, 
are the horizontal and vertical coordinates 
which origins from the mean free surface. Eq.(1) 
reveals that the spatial variation of   follows a 

sinusoidal feature in the horizontal direction but 
a hyperbolic or exponential feature in the 
vertical direction.   Considering the variation 
feature in vertical direction, Wu and Eatock 
Taylor (1994, 1995) suggested an exponential 
function to determine the vertical mesh 
resolution in the mesh generation, followed by 
Ma, Wu and Eatock Taylor(2001), Steinhagen 
(2001) and Sriram, Sannasiraj and Sundar, 
(2010). A similar idea was also introduced to 
the spring stiffness for the spring analogy 
method used to move the computational mesh 
by Ma and Yan (2006). Numerical 
investigations confirmed their considerable 
improvement in the overall computational 
efficiency. Similar attempts have not yet been 
found in the aspect of numerical integrations or 
gradient estimations.   



 
It should be pointed out that, provided 
sufficiently fine particle or mesh resolution, 
both sinusoidal function and the exponential 
function can be well approximated by using 
polynomials.  However, one may agree that the 
convergence property of the interpolation 
schemes may be improved if the different 
features of spatial variations are considered.  In 
this paper, the SFDI is modified by considering 
the typical feature of the wave-related 
parameters in the vertical direction.  A 
systematic investigation is carried out to show 
its improved convergence property.  Another 
contribution of this paper is to apply the 
modified SFDI to the Quasi Arbitrary 
Lagrangian Eulerian Finite Element Method 
(QALE-FEM), which is based on FNPT and 
has been proved to be much more efficient 
compared to other numerical methods at the 
same accuracy level (Yan and Ma, 2010).   
 

2. Modified SFDI scheme for gradient 
estimation 
 
The detailed derivation of the SFDI for the 
gradient estimation has been given in Ma 
(2008). It will not be repeated here.  In order to 
consider the feature of the spatial variation of 
wave-related parameters, such as the pressure 
in the MLPG_R (Sriram and Ma, 2012) and 
SPH (Zheng, Ma and Duan, 2014) or the 
velocity potential in the FNPT models (e.g. 
Yan and Ma, 2010), as discussed in the 
Introduction,  it is proposed to estimate the 

gradient in a homogeneous space ( 321 ,,  ) 

instead of the physical space (x,y,z), in which 

hyhx /,/ 21   and two definitions of 3  

listed below are considered in the investigation, 

)cosh(
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where  is a coefficient. It is easy to deduce 

that, if k , Eqs. (2a) and (2b) represent the 

depth variation functions for linear regular 
wave in finite depth and deep water, 
respectively.  For clarity, the modified SFDI 
with Eq. 2(a)  and that with Eq. 2(b) are 
referred to as MSFDI_1 and MSFDI_2, 
respectively. It is worth noting that as   

increases, 
)cosh(

))(cosh(
h

zh


 

 approaches ze  and 

therefore MSFDI_1 and MSFDI_2 becomes 
consistent.  
 

Following Ma (2008),  )(rf


 is used to 

represent any parameters in general where 

},,{ 321 r


denoting the position vector of a 

point in the homogeneous space. At any 

particle/node J with position vector Jr


, it can 

be estimated using the Taylor expansion at 

particle/node O with 0r


, such as the following 

form with linear accuracy, 
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   where 0,Jw  is 

the weight function for particle/node J related 

to  0r


 , on both sides of Eq. (3), taking the sum 

of equations at all relevant particles/nodes and 
ignoring error term, it follows that   
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where k  and m ranging from 1 to 3; 
kJr ,


 is the 

k
 -directional component of the position vector

Jr


,  
0

, rk
f   is the k

 -directional gradient of the 

unknown function at position  0r


.   Eq. (4) can 

be generalised as the following equation in 
matrix form for 3D cases, 
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[C] is an 3×N matrix with its components 
defined as 
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[A] is an 3×3 matrix with its entries given by  
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when  km  and 1mkA  otherwise.   

Through solving Eq. (5), the gradient,  
01, r

f  , 

 
02, r

f   and  
03, r

f  can be found and the 

gradient in the physical coordinate system 

(x,y,z) ,  
0

, rxf  ,  
0

, ryf  and  
0

, rzf  can be 

estimated using   
x

f
r 
 1

,
01


  ,  

y
f
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 2

,
02


  and

 
z

f
r 
 3

,
03


  , respectively.   It shall be noted that 

for 2D cases where x and z are considered, the 
following solution can be directly obtained,     
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Similar to the original SFDI for gradient 
estimation in Ma(2008), Eqs. (5) and (6) gives 
exact value of gradient components, 
independent of the distribution of 

particles/nodes, if  )(rf


 is linear.  If k , for 

2D linear water waves, the velocity potential in 
the homogeneous space defined above can be 
written as 

31)sin(  kht
ag     (7) 

For specific horizontal location, the velocity 

potential   is linear in 3  and thus Eq. (6b) 

leads to exact solution of the vertical gradient.  
However, in the physical coordinate system 

(x,z),    is not linear neither in horizontal nor 

in vertical direction.  Clearly the modified 
SFDI leads to more accurate results than the 
original SFDI.  However, it should be noted 
that for nonlinear water waves, the velocity 
potential consist of linear component as shown 
in Eq. (1) and nonlinear components which do 
not behave the same vertical variation as the 
linear harmonic.  For example, for 2nd- order 
regular waves in finite depth, two additional 
2nd-order terms are introduced to Eq. (1), 
leading to  
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Where G and G  are the coefficients for 2nd 

order sub-harmonic and super-harmonic, 
respectively (Schaffer, 1996). The latter 

follows 
kh

hzk

2cosh

)(2cosh 
 in the vertical direction.  

More importantly, for nonlinear wave groups 
consists of many wave components with 
different wave numbers, yielding different 
vertical variation.  This is the main reason why 

a coefficient  , instead of wave number k, is 

adopted in Eq. (2). Sensitivity investigations in 

terms of   are therefore required to determine 

the coefficient for general wave problems.  It 
should be noted that once wave breaking occurs, 
the wave-related parameters near the breaking 
jets may not behaviour as discussed above. 
Such cases will not be considered in this paper.  
 
It may also be worthy of pointing out that 
Steinhagen (2001) suggested a mapped finite 
difference scheme to calculate the velocity (the 



gradient of the velocity potential). In their 
scheme, the physical coordinate system was 
transferred to a mapped coordinate aiming to 
normalise the vertical coordinate using 

),(3 yxh

zh

 
   in which ),( yx  was the free 

surface elevation at (x,y). The intention of such 
transformation was to map the computational 
mesh into a rectangular domain, benefiting the 
finite difference scheme.  It did not explicitly 
reflect the feature of the vertical variation of 
wave-related parameters.   
 

3. QALE-FEM for modelling nonlinear 
water waves 
 
Although the MSFDI developed in this paper 
can be applied to both the meshless methods, 
e.g. the MLPG_R, and the mesh based methods, 
its overall effectiveness on modelling nonlinear 
water waves is demonstrated by its application 
to the QALE-FEM.   The details of the QALE-
FEM can be found in Ma & Yan (2006) and 
Yan & Ma (2010). A summary is given below 
for completeness. 
 
In the QALE-FEM method, the flow is 
governed by the Laplace equation of the 
velocity potential. At every time step, a 
boundary value problem for the velocity 
potential is solved using the FEM.  Velocities 
at the free surface are evaluated and used to 
update the free surface condition at the next 
time step. It should be noted that in this time-
marching process, the error of the velocity 
estimations on the free surface in the current 
time step will be brought to the next time step 
and, therefore, may be accumulated during the 
time-domain simulation. Due to this fact, the 
velocity estimation in the FNPT modelling is 
required to have sufficiently high accuracy in 
order to achieve a satisfactory overall accuracy. 
As indicated above, in the previous applications 
of the QALE-FEM, a robust hybrid scheme is 
used to find the velocity in which a three-point 

finite difference scheme and a linear least 
square method are implemented to evaluate the 
normal and tangential velocity components, 
respectively.  This method is referred to as ‘3-
point’ scheme in this paper.   
   
The QALE-FEM simulation is carried out in 
time domain. The mesh is generated only once 
in the beginning of the simulation and moves to 
conform to the deformation of the free surface. 
The initial mesh used is unstructured and 
generated by using the in-house mesh generator. 
To reflect the complexity of the fluid domain, 
one may assign different representative mesh 
size (ds) to the mesh generator, which indicates 
the characteristic distance between two 
connected nodes. Although this mesh size is not 
precisely equal to the real mesh size, it largely 
indicates how fine the mesh is. It should be 
noted that the initial mesh can be generated 
using any mesh generator with any degrees of 
complexity, either structured or unstructured, or 
even mixed. Based on previous convergence 
investigations on modelling nonlinear water 
waves, for free surface elements ds is assigned 
to be λ/30~λ/60 depending on the wave 
steepness, where λ is the incident wavelength. 
ds gradually increases in vertical direction from 
the free surface to the seabed following 
exponential principle suggested by Wu and 
Eatock Taylor (1994, 1995) , i.e.    
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in which Nz is the number of nodes in vertical 
direction,  Ψ the exponential coefficient which 
is taken as 1.7 in the investigation.  Convergent 
test indicates that Ψ =1.7 and Nz ranging from 
14 to 20 are suitable for solitary waves and 
nonlinear waves with frequencies ranging from 

0.5~6 gh / , coving most of the application in 

experiments and numerical works.    
 



4. Convergent rate of MSFDI 
 
In this section, investigations will be made into 
the convergent rate of the modified SFDI in 
gradient estimation.  Well-established wave 
theories including the Stokes 5th order theory 
for regular waves (Fenton, 1985) and 2nd order 
wave theory for wave groups (Schaffer, 1996; 
Toffoli, Onotato, Babanin, Bitner-Gregersen, 
Osborne and Monbaliu, 2007), are used to 
provide analytical solutions to the wave 
elevation ( ), velocity potential ( ) and 

velocity, for comparison.  In the investigation, 
the velocity potential at every particle/node is 
specified using the wave theories. The velocity, 
i.e. the gradient of the velocity potential, is 
estimated using different gradient estimation 
schemes and compared with the analytical 
solution from the wave theories.  The error is 
defined by   
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where nv


 and av


 are the numerical estimations 

and the analytical solutions of the velocity 
vector by  the wave theories, respectively.  It 
represents the relative error in terms of kinetic 
energy of the water waves covering the spatial 
domain. Although these schemes can be used 
for 3D non-breaking water wave problems, the 
numerical tests will be focused on 2D, which 
providing a good insight of their effectiveness 
and the robustness.    
 
The spatial domain in the test is bounded by 

two vertical lines, the free surface (z = )(x ) 

and a flat seabed (z = –h).  In the horizontal 
direction, the particles initially distribute with a 

uniform distance dx  as illustrated by the 

hollow squares in Fig. 1.  Two sets of vertical 
distributions are considered. In the first set, a 

uniform vertical distance 
)/int(

)(

dxh

hx 
 is used. 

Considering the fact that )(x  changes at 

different location, therefore the vertical particle 

distance dzis not constant but a function of x. 

This refers to as the quasi-uniform distribution 
in this paper. In the second set, the particles 
distributes in the vertical direction following Eq. 
(9). This refers to as the exponential 
distribution.  The quasi-uniform distribution is 
generally used in the meshless method and the 
exponential distribution is commonly seen in 
the FNPT based FEM solvers, including the 
QALE-FEM, as discussed above. In order to 
reflect the movement of the particles/nodes 
during the simulation, random shifts, similar to 
Ma (2008), are introduced for particles as 
illustrated by solid diamond in Fig.1.  Such 
random shifts are used in all cases presented in 
this paper. 

 
(a) Quasi-uniform distribution 

 
(b)Exponential distribution 

Figure 1: Example of distributions of particles 
(Hollow: initial distribution; Solid: with 
random shift)  
 
There are many options for the weight 
functions. In this paper, we mainly concern 
about effectiveness of the modification, only 
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the following weight function is employed in 
all the cases,  











10

15.03/4443/4

5.0443/2
32

32

0,

s

ssss

sss

wJ

     (11) 

where sJ rds /0 , 0Jd  and rs are, respectively, 

the distance from particle/node J to O and the 
radius of the support domain.  This function 
was suggested by Atluri and Zhu (1998) and 
has been applied to the QALE-FEM for 
interpolating the velocity potential using MLS, 
confirming its promising efficiency (Ma and 

Yan, 2006; Yan and Ma, 2010).  0,Jw may be 

calculated in either the physical domain or the 
homogeneous domain. For clarity, they are 

referred to as ),,( zyxw  and ),,( 321 w , 

respectively.  
 
In meshless methods, the support domain is 
selected based on the distances of the 

surrounding particles to 0r


. For example, in the 

MLPG_R (Ma, 2008), the size of the support 

domain is given by os hr 4  where  is a 

scale factor and Oh4  is the distance between 0r


and the fourth nearest neighbour.  It may be 
less effective for the exponential distribution or 
non-uniform distribution, when dx is significant 
different from dz, because the particles in the 

support domain of 0r


 may not distribute on one 

or more quadrants of 0r


 leading to lower 

accuracy. Alternatively, in the mesh based 
method, one may take advantage of the mesh 
connectivity and use an approach suggested by 
Yan (2006). In this approach, for any node O, 
all nodes connected to it are defined as 1st-layer 
nodes and those connected to the 1st-layer but 
not belonging to 1st-layer or itself are defined as 
2nd-layer nodes, as illustrated in Fig.2.  In 
general, mth –layer nodes are those connected to 
(m-1)th-layer nodes but not belonging to all the 
nodes on the lower layers.  Once a proper 
number of layers are selected, the nodes used 

for the numerical interpolation of gradient 

estimation are determined and maxhrs   , 

where   and hmax are scale factor and the 

maximum distance from neighbour to O, is 

used for the weigh function. If 0r


 does not lay 

on any nodes, the nearest node will be 
considered.  
 

 
Figure 2: Node O and it neighbours (hollow: 
first-layer nodes of node O; solid: second-layer 
nodes of O) 
 
This approach ensures that the neighbour nodes 

distribute on all quadrants of 0r


 except the 

boundary nodes.  It is easy to deduce that in the 
cases with quasi-uniform node distribution, this 
approach leads to a similar support domain to 
the one suggested by Ma (2008). More 
importantly, this approach is independent of 
distance and therefore ensures that the 
coordinate transformation does not affect the 
selection of the nodes/particles for the gradient 
estimations.  This approach will be used in the 
test and different layers of neighbours (Nl) will 
be considered to investigate the effects of the 
support domain size on the accuracy or the 
convergent rate of the modified SFDI.  
 
3.1 Regular waves 

 
As discussed above, Eq. (2a) and (2b) 
corresponds to regular waves in finite depth 
and deep water, respectively. In fact, Eq. (2b) is 
a special case of Eq. (2a).  In this section, kh 

will vary from 0.5 to 10π to cover both shallow 
water and deep water waves. Different wave 
steepness ka ranging from 0.01 to 0.2 are used.  
The length of the computational domain is 
taken as one wavelength λ. The 5th-order 

O 



stokes theory (Fenton ,1985) is used to provide 
the analytical solutions to the free surface 
profile and velocity potential, with which 
different gradient estimation schemes are used 
to evaluate the velocity at all particles. It also 
provides the analytical solutions to the velocity 
for the error evaluation using Eq. (10).  
 
3.1.1 Quasi-Uniform particle distribution 

 
Fig.3 and Fig.4 shows the convergent rates of 
different schemes to estimate the velocity in the 
case with kh =2, i.e. a typical wave in finite 
depth, in which a quasi-uniform distribution 
with random shift is employed. The number of 
particles in x-direction Nx = λ/dx and the 
numerical of particles in z-direction Nz =  h/ dx. 

Two layers of neighbour particles, i.e. Nl = 2, 

are used to form the support domain. k is 

applied.   
 

 

 
Figure 3: Convergent rate of gradient 
estimation for kh=2 and ka = 0.01 (quasi-
uniform distribution,  Nl = 2, k ) 
 

From them, it is found that the errors of all 
schemes decrease if more particles are 
distributed in the same domain.  Their rates of 
deduction are relatively constant.  The modified 
SFDI with weighting calculated in the physical 

domain, i.e. ),,( zyxw , is found to have 

considerably higher accuracy at all particles 
than the SFDI and the linear MLS for any 
particle resolutions (Figs 3(a) and Fig.4(a)). 
The improvement is more significant when 
estimating the velocities at the free-surface 
particles (Figs. 3(b) and 4(b)). It is also 
interested to find that the effectiveness of the 
modification on improving the accuracy or the 
convergent rate is independent of wave 
steepness, although the idea of the modification 
origins from the linear wave theory.   
 

 

 
Figure 4: Convergent rate of gradient 
estimation for kh=2 and ka = 0.2 (quasi-
uniform distribution,  Nl = 2, k ) 
 
Improvement is also found in the cases with 
other values of kh. Some examples are given in 
Fig. 5 in which results from both a shallow 
water case with kh = 1 and a deep water case 
with kh =2π are displayed.  For clarity, only the 
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error variation of the velocity on the free 
surface particles for nonlinear cases with ka = 
0.2 are shown.  Comparing the results shown in 
Figs. 3-5, one may observe that the difference 
between MSFDI-1 and MSFDI-2 becomes 
more invisible as kh increases, confirming our 
previous discussion on the consistence of Eq. 
2(a) and (b) for deep water waves; and that the 

difference between the results with ),,( zyxw

and those with ),,( 321 w  becomes more 

significant as kh increases, giving confirmation 

of the superiority of ),,( zyxw over 

),,( 321 w in terms of accuracy of the 

modified schemes. 
 

 

 
Figure 5: Convergent rate of gradient 
estimation for nonlinear regular waves ka = 0.2 
(quasi-uniform distribution,  Nl = 2, k )  
 
It is also found that the improvement of the 
MSFDI over SFDI becomes less significant as 
the kh increases. For shallow water waves 

(Fig.5(a)), the MSFDI with ),,( zyxw  leads to 

a considerable reduction of the error, i.e. about 
4 times, for all particle resolution compared to 
the SFDI. For deep water waves (Fig.5(b)), the 

results with MSFDI using ),,( zyxw  and the 

SFDI are very close.    This can be explained 
using the fact that for the quasi uniform 
distribution used in this test, the number of 
division in vertical direction significantly 
increases following the reduction of the wave 
length and so does the horizontal particle 
distance dx as the wave number increases.  For 
example, the minimum Nz are 30 and 5, 
corresponding to  Nx =30, in the cases with kh 

=  2π (Fig.5(b)) and 1(Fig.5(a)), respectively. 
For such fine particle resolution in Fig. 5(b), 
the exponential or the hyperbolic vertical 
distribution can be well approximated by using 
linear function, eliminating the difference 
between SFDI and MSFDI, as discussed in the 
introduction. It is expected that as the further 
increase of the wave number, the difference 
between the MSFDI and the SFDI shall keep 
decreasing to zero.  This is confirmed by Fig. 6 
which illustrates the ratio of the error for SFDI 
to that for MSFDI in the cases with different kh, 
ranging from 0.5 to 10π.   In this figure, the 

value of )/log( MSFDISFDI  is given. A positive 

value representing a increase of the accuracy. 
Only the results by MSFDI_1 are plotted for 
demonstration.  One may also notice from Fig. 
6 that the MSFDI is the most effective when kh 

around 1. As the decrease of kh from 1, the 
ratio and therefore the difference between SFDI 
and MSFDI decreases.   
 

 
 

Figure 6: )/log( MSFDISFDI  for free surface 

velocity estimations for nonlinear regular 
waves ka = 0.2 in the cases with different 
kh(quasi-uniform distribution,  Nl = 2, k ) 
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3.1.2 Exponential particle distribution 

 
Investigations are also carried out on the 
exponential distribution of the particles, where 
particles are distributed in horizontal direction 
with even space of λ/ Nx and Eq. (9) is used to 
specify the vertical distribution. Different 
values of Nx and Nz are used.   Similar to Figs. 
3-6, two layers of neighbours are used to form 
the support domain in this test.    
 

 

 

 
Figure 7: Convergent rate for gradient 
estimation at free surface particles for kh =10π 
(exponential distribution, ka = 0.2, Nl = 2, 

k ) 
 
The first case discussed here is that with kh = 
10π, a case with deep water. For such case, as 
discussed following Fig. 6, if a quasi-uniform 
particle distribution is used, the MSFDI does 
not show much superiority over the SFDI in 
terms of accuracy for specific particle 
resolution due to a very fine vertical particle 
distribution, e.g. Nz 150, corresponding to Nx 

=30, in this case. In fact, such fine vertical 
particle distribution is unnecessary for 
achieving convergent solution. As indicated 
before, in the FNPT based QALE-FEM, 14~20 
vertical layers following the exponential 
distribution are sufficient for achieving 
convergent FEM solution to the velocity 
potential of non-breaking extreme waves in 
finite depth. Unnecessary increasing the 
vertical particle distribution obviously leads to 
excessive reduction of the overall 
computational efficiency.   Considering this, 
the range of Nz is taken as [5,40] in the 
investigation.  
 
The convergent rates for gradient estimation at 
free surface particles in this case are illustrated 
in Fig. 7, together with the results from the 
MLS for comparison.  It is observed that within 
the range of Nz , the MSFDI leads to 
considerably higher accuracy than the SFDI, 
except in the cases with small Nx ,e.g. 30.  
Providing a sufficient large Nx, e.g. Nx = 90, the 
improvement of the accuracy compared with 
the SFDI may be 10 times.  Fig.7 also shows 
that the convergent rate of the MSFDI, in 
particular for large kh, seems to be less 
sensitive to the change of Nz compared with 
SFDI and the MLS. It is clearer in Fig.8 which 
compares the corresponding results with 
different Nz.  
 
For all values of kh considered here, the results 
by MSFDI do not change as significantly as 
those by SFDI and MLS with the change of Nz. 
This implies that the convergent rate and the 
accuracy of the MSFDI are more independent 
of Nz compared to others. This may be regarded 
as an advantage of the MSFDI. In wave 
modelling practices, one may only need to 
consider the horizontal particle resolution or 
mesh sizes per wave length when investigating 
the convergence.  Based on the results 
presented above, it may be deduced that, for 
specific Nx, the MSFDI may well reserve the 
accuracy in case that the vertical particle/node 
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resolution is not as high as the horizontal 
direction. It is a particularly important feature 
for the extreme wave modelling, in which the 
rising free surface leads to considerable 
reduction of the particle/mesh resolution near 
the free surface.   
 

 

 

 

 
Figure 8: Convergent rates for gradient 
estimation at free surface particles with 
different Nz(exponential distribution, ka = 0.2, 
Nl = 2, k ) 
 
3.1.3 Effects of Nl 

 
As mentioned above, another important factor 
related to the accuracy or the convergent rate is 

the size of the support domain.  In this 
investigation, different layers of neighbour 
particles (Nl), ranging from 1 to 3, are used to 
test the effect of Nl.   
 

 

 
Figure 9: Convergent rate of gradient 
estimation on the free surface in terms of 
Nl(Quasi-uniform distribution, ka = 0.2, k ) 
 
Fig. 9 displays the convergent rate for the 
nonlinear wave cases (ka = 0.2), in which a 
quasi-uniform distribution of the particle is 
employed.   It is found that both the MSFDI 
and SFDI behave similarly when Nl changes, i.e. 
the accuracy is improved as Nl decreases.   
Especially, when Nl = 1, the MSFDI shows a 
most significant improvement of the accuracy 
compared to the SFDI and the MLS.   
 
It is also valuable to know whether similar 
conclusion may be drawn for the cases where 
the particles are distributed exponentially in the 
vertical direction. For this purpose, the 
corresponding results on the free surface are 
plotted in Fig. 10.  It is found that the error of 
the MSFDI with Nl = 1 does not show a 
continuously decreasing trend as other Nl. For 
cases with different Nz, there are turning points, 
e.g. Nx = 60, 90 and 180 for Nz = 10 (Fig.10(a)), 
20 (Fig.10(b)) and 40 (Fig.10(c)), respectively, 
at which a slight increase of the error as found. 

0.5 1 1.5 2 2.5 3
-7

-6

-5

-4

-3

-2

-1

0

log(Nx)

lo
g(
)

(a) kh = 10

 

 
MSFDI-2 Nz=5

MSFDI-2 Nz=20

MSFDI-2 Nz=40

SFDI Nz=5

SFDI Nz=20

SFDI Nz=40

MLS Nz=5

MLS Nz=20

MLS Nz=40

0.5 1 1.5 2 2.5 3
-7

-6

-5

-4

-3

-2

-1

0

log(Nx)

lo
g(
)

(b) kh = 2

 

 
MSFDI-2 Nz=5

MSFDI-2 Nz=20

MSFDI-2 Nz=40

SFDI Nz=5

SFDI Nz=20

SFDI Nz=40

MLS Nz=5

MLS Nz=20

MLS Nz=40

0.5 1 1.5 2 2.5 3
-7

-6

-5

-4

-3

-2

-1

0

log(Nx)

lo
g(
)

(c) kh=2

 

 
MSFDI-2 Nz=5

MSFDI-2 Nz=20

MSFDI-2 Nz=40

SFDI Nz=5

SFDI Nz=20

SFDI Nz=40

MLS Nz=5

MLS Nz=20

MLS Nz=40

0.5 1 1.5 2 2.5 3
-7

-6

-5

-4

-3

-2

-1

0

log(Nx)

lo
g(
)

(d) kh=1

 

 
MSFDI-2 Nz=5

MSFDI-2 Nz=20

MSFDI-2 Nz=40

SFDI Nz=5

SFDI Nz=20

SFDI Nz=40

MLS Nz=5

MLS Nz=20

MLS Nz=40

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

log(Nx)

lo
g(
)

(a) kh=1

 

 

MSFDI-2 Nl=1

MSFDI-2 Nl=2

MSFDI-2 Nl=3

SFDI Nl=1

SFDI Nl=2

SFDI Nl=3

Linear MLS Nl=1

Linear MLS Nl=2

Linear MLS Nl=3

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

log(Nx)

lo
g(
)

(b) kh=2

 

 

MSFDI-2 Nl=1

MSFDI-2 Nl=2

MSFDI-2 Nl=3

SFDI Nl=1

SFDI Nl=2

SFDI Nl=3

Linear MLS Nl=1

Linear MLS Nl=2

Linear MLS Nl=3



After the turning points, the error decreases as 
Nx increases.  After the turning points, one may 
see that the errors of the MSFDI with Nl = 1 
may be larger than those with Nl = 2 or 3.  
Before the turning points, the accuracy of the 
MSFDI increase as Nl decreases, consistent 
with the observation in the cases with quasi-
uniform distribution. By using Nl = 1, the 
MSFDI leads to better accuracy than the SFDI 
and the MLS. Considering the FNPT modelling 
practices discussed above, the general 
requirement on the mesh resolutions to achieve 
convergent solution of the velocity potential are 
Nx ranging from 30 to 60 and Nz ranging from 
14 to 20. Within this range, MSFDI with Nl = 1 
leads to better estimation of the free surface 
velocity than the SFDI and MSFDI with other 
values of Nl.  Similar phenomenon is also found 
in the cases with other wave numbers. The 
results are not shown here to save the space.  
 
 

 

 

 
Figure 10: Convergent rate of gradient 
estimation on the free surface in terms of Nl 

(exponential distribution, ka = 0.2, kh = 2π,
k ) 

 

 

 
Figure 11: Convergent rate of gradient 
estimation on the free surface in terms of γ in 
the cases with quasi uniform distribution (ka = 
0.2, Nl= 1)  
 
 

 

 
Figure 12: Convergent rate of gradient 
estimation on the free surface in terms of γ in 
the case with exponential distribution (ka = 0.2, 
Nl= 1, Nz= 20)  
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3.1.4 Effects of γ 
 

In the results shown above,  k  is taken in 

Eq. (2). This is a reasonable for regular waves, 
however, it is important to see how the 
accuracy and the convergent rate of the MSFDI 

are affected by different values of  .  Such 

investigation will shed a light for the 

assignment of  in the cases with wave groups 

consisting of many wave components.  For this 
purpose, different  ranging from 0.1k to 10k, 

are used for each cases with different wave 
numbers. Two typical examples are illustrated 
in Fig. 11 and Fig.12, for quasi-uniform particle 
distribution and exponential particle 
distribution, respectively, in which ka = 0.2, 
Nl= 1 are used. 
 
These figures show that when γ is taken as a 
value too smaller than the wave number k, the 
accuracy of the MSFDI for specific particle 
resolution decreases to that of the SFDI at  γ 
=0.1k.  On the other hand, the accuracy of the 
MSFDI is more sensitive to the value of γ when 
it is assigned a value greater than k. It is 
generally seen that if γ is greater than 2k, the 
MSFDI loss its superiority over the SFDI. A 
similar phenomenon is also observed in the 
cases with other wave steepness, wave numbers, 
Nl and Nz. Based on the investigation, the 
reasonable range for γ is 0.1k ~ 2k. 
 
3.2 Wave groups 

 
In this section, the comparison between the 
MSFDI and other schemes are made using the 
cases with wave groups. Both the random sea 
state and the focusing wave groups are 
considered here.  Although other parameters 
have been tested, only MSFDI-2 with Nl = 1 
and exponential particle distribution are 
presented in this section.  
 
In the first case, we consider a focusing wave 
group generated using the spatial-temporal 

focusing mechanism which has been used both 
experimentally and numerically as reviewed by 
Ma (2007) in a water depth h = 10m.  64 wave 
components with frequencies at equally spaced 

from gh /  to 3 gh / . Each wave component 

is assigned the same wave amplitude, i.e. 
0.00225h. Their phases are carefully selected to 
ensure their crests focus at the focusing point xf 
at the focusing time, leading to a giant wave. 
The 2nd order wave theory (Schaffer, 1996; 
Toffoli, Onotato, Babanin, Bitner-Gregersen, 
Osborne and Monbaliu, 2007) is used here to 
provide the analytical results of the wave 
elevation, velocity potential and the velocity.  
At the focusing time, the local wave steepness 
H/λ, where H is the wave height, is about 0.2 
and the local wave number kh ≈ 2π.  For such 
simplified spectrum where each component 
contains equal energy, γ is taken as the wave 
number corresponding to the midpoint of the 
frequency range (refer to kavg). The 
computational domain is taken as 10h 
surrounding the focusing point.   
 

 
Figure 13: Convergent rate of gradient 
estimation on the free surface for focusing 

waves (frequency range gh /  ~ 3 gh / ,  

Exponential particle distribution MSFDI-2 with 
Nl = 1, Nz = 20) 
 
Fig.13 displays the convergent rate of gradient 
estimation at free-surface particles using the 
velocity potential given by the 2nd order wave 
theory in the cases with exponential particle 
distribution and Nz = 20.  As expected, the 
errors of all schemes approach a steady value as 
Nx increases and the MSFDI lead to the best 
accuracy.  In the case with convergent solution, 
e.g. Nx =6400(log(Nx)≈3.8), the relative error of 

1.5 2 2.5 3 3.5 4 4.5
-3

-2

-1

0

log(Nx)

lo
g(
)

 

 

SFDI

Linear MLS

MSFDI-2  = kavg



the MSFDI is around 0.6 of those of SFDI and 
linear MLS.  In order to show how the error 
distributed spatially, the free surface velocities 
near the crest are compared in Fig.14, which 
demonstrates that the results by the MSFDI 
agree with the theoretical solution better than 
the SFDI and the MLS, particularly the vertical 
velocity near the wave crest which is the most 
critical in the focusing wave simulation.  It 
should be noted that Fig. 14 only demonstrates 
the error at one time step. During the time-
domain simulation, the error at every time step 
may be accumulated, resulting in a significant 
overall error after long time simulation, as 
indicated before. The overall error by these 
gradient estimation schemes in a time domain 
simulation will be discussed in Section 5.  
 

 

 
Figure 14: Free surface velocity near the crest 

at the focusing time (frequency range gh /  ~ 

3 gh / ; Exponential particle distribution 

MSFDI-2 with Nl = 1, Nz = 20, Nx = 6400) 
 
Although such simplified spectrum is 
commonly used in the experimental and 
numerical simulation, it is rarely seen in real 
scenario. Another case in finite water with real 
spectrum is discussed below. In this case, an 

event similar to the ‘New Year Wave’ recorded 
at the Draupner platform in the North Sea, a 
rare high-quality measurement of a ‘freak’ or 
‘rogue’ wave, on 1st January 1995. The local 
water depth at the site is about 70m and the 
giant wave had a crest of mean 18.6 m above 
mean see level and was 25.6 m in height. A 
JONSWAP spectrum with a peak at around 
0.067 Hz may be used to describe this event 
(Adcock, Taylor, Yan, Ma and Janssen, 2011; 
Adcock and Taylor, 2014). The wave number 
near the crest kh is about 1.6, a typical focusing 
wave in finite water depth.  Again, 2nd order 
wave theory is used to provide the analytical 
solutions.  It should be noted that this event 
may be caused by two directional wave groups 
crossing in the sea (Adcock, Taylor, Yan, Ma 
and Janssen, 2011). However, 2D 
simplification is considered here. This may not 
well re-produce the event but provides 
sufficiently good data for the convergence test. 
The computational domain covers 700m around 
the crest (x = xf). The corresponding convergent 
rates on the free surface velocity estimation 
near the focusing crest at the focusing time are 
displayed in Fig.15. Similar to those in Fig.13, 
the results of the MSFDI with γ being the wave 
number corresponding to the significant wave 
converge to results with small error using less 
number of particles compared to the SFDI and 
the MLS.   
 

 
Figure 15: Convergent rate of gradient 
estimation on the free surface for focusing 
waves (JONSWAP, peak frequency 0.067Hz, 
Exponential particle distribution MSFDI-2 with 
Nl = 1, Nz = 20) 
 
The third case demonstrated here is a 2D 
random wave group, which is generally seen in 
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reality. In this case, JONSWAP spectrum with 
peak period of 12.5s and significant wave 
height H1/3 of 12m are used. The water depth is 
70m. This is a typical sea state in North Sea.  In 
the test, the length of the computational domain 
is 4000m. Exponential particle distribution with 

Nz = 20 are used to generate the particles. Nl = 1 
is used for all gradient estimation schemes. γ in 
the MSFDI is taken as the wave number 
corresponding to the significant wave.  
 

 

 

 
Figure 16: Free surface elevation and velocity 
in random sea (JONSWAP, h = 70m, peak 
period 12.5s, H1/3 = 12m, Exponential particle 
distribution MSFDI-2 with Nl = 1, Nz = 20) 
 

 
Figure 17: Convergent rate of gradient 
estimation on the free surface in random sea 
(JONSWAP, h = 70m, peak period 12.5s, H1/3 = 
12m, Exponential particle distribution MSFDI-
2 with Nl = 1, Nz = 20) 
 
Fig.  16(a) illustrates the free surface elevation 
at one time instant obtained by using 2nd order 

wave theory.  Fig. 16(b) and (c) compares the 
analytical and the MSFDI solutions to the 
velocity at the free surface particles at the same 
instant, where Nx = 6400, i.e. log(Nx)≈3.8, is 
used by the MSFDI. A satisfactory agreement 
has been observed. The relative errors for the 
free surface velocity estimation in terms of 
horizontal particle resolution are plotted in Fig. 
17, together with the corresponding results by 
other scheme. Again, the MSFDI shows its 
superiority over the SFDI and MLS in terms of 
accuracy or convergent rate.  

 
5. Implementation of MSFDI in QALE-FEM 
modelling 
 

 

Figure 18: Sketch of the wave flume at the 
Harbin Engineering University, China  
 
In this section, the MSFDI is implemented by 
the QALE-FEM method for time-domain 
nonlinear wave simulations. For validation 
purpose, experiments have been carried out in 
the wave flume at the Harbin Engineering 
University, China. The sketch of the flume is 
given in Fig. 18.  The mean water depth is 3.5m 
and the total length of the flume is 108m. A 
hinged wavemaker is installed at the left end of 
the flume with rotational centre located at 
1.64m above the bed. An absorbing beach is 
used to absorb the wave in the end of the wave 
flume.   The numerical simulation is carried out 
in a numerical wave tank with the same 
dimension. A Sommefeld condition together 
with a damping zone is employed in the right 
end of the numerical tank to absorb the wave.  
Various wave gauges are installed to measure 
the time histories of the wave elevations. Both 
SFDI and MSFDI with Nl = 1 are used in the 
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QALE-FEM to estimate the free surface 
velocity.  
 
 

 

 

Figure 19: Comparison of the time histories of 
the wave elevations recorded at the gauge with 
the experimental data (Nl = 1, Nz = 20) 
 

 
Figure 20: Comparison of the time histories of 
the wave elevations recorded at the gauge with 
the three-point finite difference scheme 
 
The first case considered here is a regular wave 
with wave period of 2s and wave height of 
0.12m.  A linear wavemaker theory is used to 
configure the wavemaker motion. A wave 
gauge located at 15m from the wavemaker is 
applied to record the time history of the wave 
elevation.  In the QALE-FEM, the initial mesh 
is generated with Nz = 20 and different values 
of dx on the free surface ranging from λ/30 to 
λ/60 are used, corresponding to Nx = 30 to 60 
per wave length. The time step is taken as 
T/200 where T is the wave period.  The 
wavemaker motion used in the QALE-FEM is 
specified to be the same as those in the physical 
experiments.  
 
Fig.19 displays the time histories of the wave 
elevations recorded at the wave gauge.  It is 
found from Fig. 19(a) that the results from the 

MSFDI with Nx = 30 agree well with the 
experimental results. The relative error on the 
wave elevation, which is evaluated using 
Eq.(10) with velocities being replaced by 
corresponding wave elevation, is less than 0.1%; 
whereas the SFDI leads to not only slightly 
smaller wave amplitude but also a considerably 
phase shift. This suggests that Nx = 30 is not 
sufficiently large for SFDI to achieve 
convergent results, as confirmed by Fig. 19(b) 
where Nx = 60 is used and the results with SFDI 
agree with the experimental data better than 
those in Fig. 19(a). This suggests that the 
MSFDI has better convergent property than the 
SFDI when implemented in the QALE-FEM. 
To achieve the convergent results, the SFDI 
needs half of the horizontal free surface mesh 
size than the MSFDI. As a result, the CPU time 
spent by the QALE-FEM with SFDI is almost 
the double of that by the QALE-FEM with 
MSFDI. Comparison with the three-point finite 
difference scheme suggested by Ma and Yan 
(2006) has also been made.  It concludes that 
the MSFDI leads to a similar accuracy level to 
the three-point scheme for specific mesh size, 
as demonstrated by Fig. 20 where Nx = 30 are 
used.  However, the CPU time spent on the free 
surface velocity estimation by the MSFDI is 
about 1/10 of that by the three-point scheme, 
yielding a total reduction on the CPU time of 
about 1/4 to achieve the results shown in Fig. 
20.  
 
The experiments in the same flume on the 
focusing wave group are also used for 
validation purpose.   In this case, the spatial-
temporal focusing mechanism used by Ma 
(2007) is considered here.  32 wave 
components with wave period ranging from 
1.7s to 4.7s, are used in both the experiment 
and the numerical simulation. The focusing 
point and the focusing time are specified at 
30m and 36s, respectively.  A linear 
wavemaker theory is used to specify the phases 
for each wave components, yielding an 
expected crest 0.1m above the mean free 
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surface when the wave group focuses. The 
details can be found at Ma (2007).   It is noted 
that the wavemaker motion specified using the 
linear theory may lead to a significant shift of 
the focusing point caused by the interactions 
between the progressive waves, wavemaker 
motion and the evanescent waves (Schaffer, 
1996).  In order to well capture the focusing 
point, 24 wave gauges installed near the 
expected focusing point are used in the 
investigation.  
 

 

 

 
Figure 21: Comparison of the time histories of 
the wave elevations for focusing wave group 
(dx = 0.2m, Nl = 1, Nz = 20) 
 
Fig.21 compares the time histories of the wave 
elevations recorded at different locations in the 
cases with dx = 0.2m and Nz = 20.  In the 
MSFDI and SFDI, Nl = 1 is used. To save the 
space, only the results at three gauges, i.e. one 
in front of (Fig.21(a)), one at (Fig.21(b)) and 
one behind the actual focusing point (Fig.21(c)). 
Again, both the results obtained using MSFDI 
and three-point scheme agree well with the 
experimental. But the former spends about ¾ 
overall CPU time of the latter. It is also found 

that the results from the QALE-FEM with 
SFDI considerably different from the 
experimental data for the mesh used here, 
although the CPU time is at the same level as 
the MSFDI. By reducing the mesh size, dx, the 
results by the QALE-FEM with SFDI do not 
seem to change, as shown in Fig.22 (a), 
suggesting that SFDI leads to convergent 
solutions with lower accuracy than the 
convergent solutions by the MSFDI which are 
demonstrated in Fig.22(b). This is consistent 
with conclusions obtained from Figs. 13 and 15.  
 
 

 

 
Figure 22: Comparison of the time histories of 
the wave elevations at x = 27.105m (Nl = 1, Nz 
= 20) 
 
6. Conclusion 
 
In this paper, a modified SFDI (MSFDI) 
scheme is developed based on the SFDI scheme 
for the gradient estimation and investigated 
using the fully nonlinear water wave problems. 
The modification takes into account of the 
feature of the vertical variation of the wave-
related parameters.  Based on the numerical 
tests, one observes the following features: (1) 
The MSFDI is generally more accurate than the 
SFDI and the linear MLS for the estimating 
free surface velocity, particularly when an 
exponential particle distribution is used; (2) 
The MSFDI is less sensitive to the vertical 
particle/node distribution; (3) In the QALE-
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FEM practices, the MSFDI leads to similar 
convergent property as the three-point scheme 
but better than the SFDI; (4) the CPU time 
required by the MSFDI to achieve convergent 
results is about half of that by the SFDI and 3/4 
of that by the three-point method. Although 
only the application on the mesh based QALE-
FEM is presented, the preliminary investigation 
on the quasi-uniform particle distribution 
reveals the superiority of MSFDI over the SFDI 
and linear MSL when being implemented by 
meshless methods, e.g.   the MLPG_R method. 
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