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Recognizing “Cool”:  
Can End Users Help Computer Vision Recognize 

Subjective Attributes of Objects in Images? 

  

 

 

 

  

 
ABSTRACT  

Recent computer vision approaches are aimed at richer 

image interpretations that extend the standard recognition 

of objects in images (e.g., cars) to also recognize object 

attributes (e.g., cylindrical, has-stripes, wet). However, the 

more idiosyncratic and abstract the notion of an object 

attribute (e.g., “cool” car), the more challenging the task of 
attribute recognition. This paper considers whether and how 

end users can help vision algorithms recognize highly 

idiosyncratic attributes, referred to here as subjective 

attributes. We empirically investigated how end users 

recognized three subjective attributes of cars—”cool”, 

“cute”, and “classic”—and whether some recognition 

challenges might be overcome by rich forms of interaction 

between end users and algorithms. Our contributions 

include: (1) identifying the types of image properties 

participants use to recognize subjective attributes, (2) three 

different types of automated explanations of the reasoning 

behind an algorithm’s classification of subjective attributes, 
along with empirical results about the ways each type 

impacted users, (3) participants’ insights into how the 

algorithm should reason, and (4) open questions for how to 

develop interactive attribute recognition algorithms. 

Overall, the results suggest the feasibility of a richly 

interactive approach for helping computer vision systems 

successfully recognize subjective attributes of objects. 
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INTRODUCTION  

Computer vision research on image interpretation has been 

primarily focused on naming objects occurring in an image. 

A common approach is to use machine learning techniques 

on features extracted from the image (e.g., textured patches, 

edges, or segments) to detect occurrences of an object class 

of interest (e.g., cars). Recently, computer vision has also 

found ways to describe objects’ measurable attributes (e.g., 
cylindrical, has-stripes, wet) that can be quantified directly 

from pixel values [6, 7]. (Note that attributes of objects are 

different from features of images: attributes are descriptive 

characteristics of object appearance, such as has-stripes, 

whereas features are perceptually salient image parts, such 

as corners, T-junctions, and edges.) Algorithms that 

recognize measurable attributes use techniques similar to 

those that recognize entire objects—they identify the 

presence or absence of an attribute by classifying a vector 

of image features. The classifier learns natural variations of 

object attributes from training examples with the attributes 
annotated. Among other advantages, recognizing attributes 

has been shown to facilitate object recognition (e.g., 

recognizing that the image showing an object with the 

“wet” attribute helps eliminate the hypothesis that the 

object class is “fire”) [6]. 

We would like to extend such advantages by recognizing 

subjective attributes. For example, given an image of a car, 

we would like to recognize whether the car is “cool”, 

“cute”, or “classic”. But how can an algorithm identify 

what makes a car “cool”? This problem has not yet been 

addressed in computer vision or human-computer 

interaction research. 

Why Subjective Attributes are Challenging 

One possibility is that subjective attributes can be expressed 
in terms of concrete image features, and machine learning 

algorithms may be able to recognize such subjective 

attributes. In order to express these attributes as image 

features, we need to understand how people reason about 

subjective attributes like “cool”. Then, in order for machine 

learning algorithms to recognize these attributes, we need to 

address at least three challenges to such recognition. 

The first challenge is that subjective attributes may be 

vaguely defined in end users’ minds. End users may not be 

able to communicate their personalized definition of an 

attribute in a “language” understood by a computer vision 

algorithm. Vision algorithms can operate only on 
observable, semantically low-level image features (e.g., two 

image regions share a boundary) but because human visual 

perception is largely an unconscious process, these low-
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level image features are often meaningless to end users.  

Second, prior work [6, 7] has demonstrated that the 

accuracy of attribute recognition algorithms is critically 

correlated with the quality of annotated training images. 

Simply tagging an entire training image with an attribute 

name has been shown insufficient for learning the attribute, 
whereas richer annotations, such as placing a bounding box 

around an example object and tagging the region with the 

attribute name, can improve attribute recognition but are 

extremely time-consuming for humans to provide. 

Third, due to the inherent variability of subjective attribute 

definitions, we cannot create more training data by simply 

pooling together annotations from a large number of 

people. Related work [6, 22] has shown that the 

performance of existing recognition approaches actually 

decreases as the number of training examples of attributes 

labeled by different annotators increases. This degradation 

occurs because annotators differ to a large degree in their 
visual perceptions of an attribute, even though they may 

have a similar mental model of that attribute. These 

differences introduce labeling noise that we expect to be 

even more pronounced in the case of subjective attributes.  

Thus, with subjective attributes, a specific end user’s own 

definition of the attribute is the gold standard. This gold 

standard inherently limits the amount of training data 

available, especially when the algorithm is first deployed.  

Together, these issues suggest that for algorithms to 

recognize subjective attributes, a rich, interactive form of 

communication with end users—extending beyond labeled 
training examples—is necessary. For example, a particular 

end user might guide the algorithm to be able to find cool 

cars according to that user’s definition, supported by 

explanations of the algorithm’s behavior. 

Research Questions 

To investigate the issues we have raised in this section, we 

conducted an empirical study in which we asked end users 

to explain how to classify images of cars as “cool”, “cute”, 

or “classic”. We then investigated what happens when the 

machine provides explanations of its behavior. Our research 

questions were: 

RQ1: What visual image properties do end users use to 

identify subjective attributes of objects?  

RQ2: Can these visual image properties be mapped to low-
level image features used by vision algorithms? 

RQ3: How consistent are these visual image properties for 

subjective attributes across multiple users? 

RQ4: How distinct are these visual image properties for 

different types of subjective attributes? 

RQ5: Can users understand automatically generated 

explanations of an attribute recognition algorithm? What 

aspects of these explanations are most helpful to users’ 

understanding and ease of making corrections? 

RQ6: What types of corrective feedback do end users give 

to explanations of an attribute recognition algorithm? 

RELATED WORK  

Interactive machine learning can be described as a two-

stage process: the learning system presents its results (and 

possibly explanations) to end users, who in turn can provide 

corrective feedback to the learning algorithm. 

Regarding the first stage, examples of explanations by the 

algorithm for specific decisions include why... and why 

not... descriptions of the agent’s reasoning [9, 11] and 

visual depictions of the assistant’s known correct 
predictions versus its known failures [21]. Previous work 

has found that users will change their mental models of how 

a learning system operates when the system makes its 

reasoning transparent [10], however, some explanations 

may only lead to poor mental models [18]. We know of no 

prior work on explaining vision algorithms to end users.  

For the second stage, researchers have explored a variety of 

end user feedback to machine learning systems. One of the 

first approaches in the computer vision domain was the 

Crayons system [5], which allowed software developers to 

interactively create training examples to train an image 
classifier. Another common technique is active learning 

[17], in which the machine learning system queries the end 

user to label the most informative training examples. 

Recently, research has begun to explore richer forms of end 

user feedback such as adding constraints [2, 18], 

manipulating classifier ensembles [20], and feature labeling 

[16, 4, 23]. In computer vision, Vijayanarasimhan and 

Grauman [24] developed an active learning framework that 

trades off the cost versus the informativeness of the 

annotation.  In work that looks at classifying subjective 

concepts, Yew et al. [26] show that how people interact 
with YouTube videos can give clues as to whether a video 

is funny or not, but their approach focuses on classification 

based on social interactions, which is a different task from 

attribute recognition based on the content of an image or 

video. 

Although these works provide valuable insights for both 

stages, none of them investigate the possibility of applying 

this sort of two-stage interactive process to attribute 

recognition. 

STUDY SET-UP 

To investigate the viability of interactive computer vision 

algorithms for recognizing subjective attributes, we 

conducted an empirical study in which participants 

explained how they reasoned about “cool”, “cute”, and 
“classic” subjective attributes of cars in images.  

Participants and Procedures  

We recruited 12 participants (7 males and 5 females) from 
the local community. These participants had little or no 

programming experience, no machine learning experience, 

and none were computer science majors. Participants were 

compensated $20 for their time. 

We began by introducing participants to the idea of 

“thinking-aloud” by reasoning about cars. Participants were 
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asked to describe prominent areas that stand out in a car by 

verbalizing their thoughts and marking up the areas on a 

printed image. Participants practiced this skill, and then the 

main study began. 

The main study consisted of two parts. During the first part, 

participants’ task was to describe which visual properties 
make (or do not make) a car “cool”, “cute”, or “classic” 

from a set of 15 car images. Participants were asked to 

perform the task only on images that sparked their interest, 

so as to avoid forced classifications. This task lasted 20 

minutes, which we observed to be suitable in our pilot runs. 

During the second part of the study, participants’ task was 

to review 12 images (a subset of images from part one), 

which now included explanations of the algorithm’s 

subjective attribute classification from a labeled image set. 

We randomized the order of images as well as the three 

explanation types (described shortly) that were shown to 

each participant. Participants had 15 minutes to provide 
feedback in any way they believed would assist the 

machine in its decision-making. After this, we administered 

questionnaires probing participants’ subjective assessments 

of the explanations. 

We video-recorded all sessions, and transcribed the 

participants’ verbalizations and image mark-ups for detailed 

analysis. 

The Images  

We obtained 67 images of cars from the PASCAL 2010 

database [14], a well-known collection of images for object 

recognition. From these we selected a subset of images in 

which an entire car was in the center of the image and the 

image contained few background objects (e.g., pedestrians). 
Three researchers manually classified these as “cool”, 

“cute”, or “classic”. We used the majority’s decision to 

resolve any disagreements. In total, we selected 15 images, 

four for each subjective attribute, and three that did not 

clearly represent the subjective attributes. We used all 15 

for part one of the study, and the 12 that had been agreed 

upon to be “cool”, “cute”, or “classic” for part two. 

The Algorithm  

We used a Conditional Random Field (CRF) [19] to 

recognize attributes in these images. CRFs are one of the 

most popular probabilistic graphical models for 

representing images and efficiently capture important visual 

cues for image interpretation. When applied to images, the 

CRF represents an image as an undirected graph, where 
each node corresponds to an image region and each edge 

between two nodes indicates that they are spatially 

adjacent. At the core of a CRF is a weighted sum of image 

features. CRFs used for computer vision problems 

commonly use features derived from the appearance 

properties of individual image regions (e.g., it knows each 

region’s color) and features derived from pairs of regions 

(e.g., a feature that is true if two regions are neighbors).  

We first segmented each image into regions and used these 

regions to compute the image features. We used the state-

of-the-art gPb-OWT-UCM algorithm [1] to segment 

images. For each image region we computed four types of 

descriptors (vectors that describe appearance properties of 

an image region) commonly used in vision: (1) a SIFT 

vector [12], (2) a histogram of Oriented Gradients (HOG) 
[3], (3) a color histogram counting the number of pixels 

within the region that had a specific color, and (4) a region 

shape descriptor which included the region area normalized 

with respect to the image size and parameters of the best-

fitted ellipse to the region. All values in each descriptor 

were normalized to fall in the interval [0,1]. 

The computed descriptors of image regions were used to 

define a set of visual dictionary words (i.e., a set of 

exemplary descriptors) and were then mapped to the best 

matching dictionary word. This quantization of the 

descriptors typically improves performance of recognition 

algorithms. To compute the dictionary, we used K-means to 
cluster the descriptors. We then converted each descriptor 

into a dictionary word based on that descriptor’s cluster 

assignment. As a result, each image region was described 

using a binary feature vector indicating the presence or 

absence of the dictionary words within the region. 

Along with these descriptors of individual image regions, 

we developed a descriptor of pairs of regions. This binary 

descriptor consisted of an element indicating if two regions 

were adjacent, and a second element indicating if one 

region was an embedded subregion of the other.  

Our CRF implementation learned weights for features 
comprising image region descriptors, as well as the 

descriptors for relationships between regions. We used the 

MALLET toolkit [13] for both CRF training and inference. 

To create a training set for our CRF, a single researcher 

from our group labeled 67 images (15 “cool”, 15 “cute”, 15 

“classic”, and 22 “none of the above”).  

The Explanations  

We developed three styles of explanations about how the 

attribute recognition algorithm reasoned: Pie explanations, 

WithinFeature explanations, and Map explanations. Since 

the algorithm’s choices are based on the weights that it 

assigns to each region’s features, each explanation type 

aimed to explain which weights were most influential. 

The Pie explanations (Figure 1, top) described feature 
weights on the scale of the entire picture by adding together 

the weights of each image region for each feature type and 

normalizing by the total sum of the weights. The pie chart 

in the explanation showed the distribution of the total 

weights among the six feature types. 

The WithinFeature explanations (Figure 1, middle) focused 

on the highest weighted feature within each feature type. 

This explanation provided a textual and visual description 

of the most heavily weighted feature of each feature type 

and highlighted the corresponding region for the most 

heavily weighted features.  
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The Map explanations (Figure 1, 

bottom) showed the relative importance 

of each feature type in each region as 

well as the distribution of the total 

weights by feature type. The weights of 

each feature type in a region were 
normalized across the total weight of 

features in the region, and then assigned 

a color value based on their magnitude. 

Each region showed this color to 

illustrate the overall contribution for 

each feature type.  

Each explanation also showed the 

CRF’s subjective attribute classification 

and the segmented image. Finally, as 

Figure 1 illustrates, we translated 

technical vocabulary for image 

descriptors to common parlance: SIFT 
features were “textures”, HOG 

descriptors were “contrast”, color 

histograms were simply “colors”, shape 

descriptors were “shapes”, the 

adjacency relationship was “next-to”, 

and the embedded subregion 

relationship was “part-of”. 

RESULTS 

Which Visual Image Properties Matter 
to End Users?  

Subjective attributes rely on tacit 

knowledge [15], so it could be difficult 

for end users to precisely describe them 

as concrete visual properties [22]. We 

thus investigated how end users 

described the “cool”, “cute”, and 

“classic” subjective attributes, with 

particular attention to the concrete 
visual properties they discussed.  

We used a fine-grained code set to 

characterize participants’ feedback 

about “cool”, “cute”, and “classic” cars. 

The codes were words we extracted 

directly from the participant transcripts 

from part one of the study. Each code 

represents a visual property that the 

coders believed expressed a low-level 

image feature. We coded feedback as 

part-property when the focus was on a 

specific car part, or simply property 
when the participants’ feedback was 

about the entire car. Table 1 shows 

samples from one participant’s 

transcript alongside the codes we 

applied. 

The primary purpose of this code set 
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Figure 1: Examples of the Pie (top), WithinFeature (middle),  

and Map (bottom) explanations.  
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was to group synonyms together. Thus, if a participant 

described a car’s headlights as “not built in” (Table 1), we 

applied the code “headlight-external”. Two researchers 

iteratively built a list of such codes, refining the set to 

include each part and property participants discussed. The 

final code set had 37 codes for parts, 99 codes for properties 
of these parts, and 229 unique part-property combinations. 

To validate our code set’s reliability, the two researchers 

independently coded 187 transcript samples (representing 

40% of the total number of transcript samples). We 

computed reliability using the Jaccard index, where the 

number of agreeing codes (size of the intersection) was 

divided by the total number of applied codes (size of the 

union). Part codes and property codes were treated 

independently. For example, if Researcher 1 coded a 

segment as “headlight-round” while Researcher 2 coded the 

same segment as “headlight-external”, agreement would be 

1/3 because “headlight” agreed but “round” and “external” 
did not. The two researchers achieved a reliability of 80% 

over their 187 transcript samples. Despite the large number 

of codes, high reliability was achieved relatively easily as 

the code set functioned as a look-up dictionary for part and 

property synonyms. Given this acceptable level of 

reliability, one researcher independently coded the 

remaining transcripts. 

Figure 2 shows how often each code occurred in 

participants’ explanations about why a car was “cool”, 

“cute”, or “classic”. The size of each code represents its 

popularity across all participants, i.e., between-participant 
consistency. (We did not analyze within-participant 

consistency because participants almost never explained the 

same things twice; for example, once they explained to us 

that aerodynamics were important to “coolness”, they did 

not bother to explain it again.) As the figure shows, 

participants consistently used certain visual properties of 

each subjective attribute; for example, note how the 

property Small dominates the “cute” attribute. The most 

common descriptions applied to the entire car (e.g., 

Aerodynamic or Boxy), rather than part of a car, suggesting 

that participants focused on the whole gestalt before 

examining individual sub-objects. 

Participants used a wide range of properties to explain 

subjective attributes, and as Figure 2 illustrates, the amount 
of variety was different for each attribute. As Table 2 

shows, participants used nearly three times as many image 

properties to describe “coolness” as they did for “cuteness”. 

The degree of dominance also differed (e.g., Small was 

more dominant for “cute” than Aerodynamic was for 

“cool”). Perhaps most important, participants’ descriptions 

included very different properties for these three attributes. 

Figure 3 shows how little overlap existed between the 

properties participants discussed for each attribute. Only six 

codes (2.5% of the total) were shared among all three 

attributes. 

Implications for Attribute Recognition Algorithms  

Figure 2 shows that the most common codes participants 

discussed involved shapes, sizes, and textures—all of which 
can be expressed using the types of low-level image 

features commonly used in computer vision. For example, 

“boxy” can be captured by shape descriptors, and “color-

shiny” can be identified in the image as specularities, i.e., 

non-Lambertian surfaces. The participants’ codes referring 

to car parts, such as “tires”, can also be readily detected in 

images using off-the-shelf part detectors available in open-

source computer vision libraries. A compound code such as 

“headlights-round” can be detected using a combination of 

part and shape detectors. 

An interesting code for “cool” pointed out by most 
participants was “aerodynamic”, which can be interpreted 

as a simpler object attribute that participants used to define 

the more complex attribute “cool”. This suggests a 

hierarchical approach where recognition of simpler 

attributes (e.g., [6, 7]) could be used for reasoning about 

more complex attributes. New theoretical formulations, 

however, are needed to design algorithms for recognizing a 

hierarchy of attributes. 

The diffuse yet distinct nature of these subjective attributes 

has significant implications for attribute recognition 

algorithms. On one hand, the lack of overlap between the 

codes, as well as the presence of a core set of primary 
image properties, suggest that computers can learn the main 

concept of the subjective attribute. On the other hand, while 

Attribute Example Code 

Cool Mostly it’s very aerodynamic, it’s very cool in design Aerodynamic 

Cute Cute ones are usually smaller. Small 

Classic Um, I guess if they’re not built in and they’re really round shape so I would 
actually label [participant circles the headlights on image] classic. 

Headlights-Round, Headlights-
External 

Table 1: Three examples of how one participant’s feedback was coded. 

Attribute Unique Codes 

Cool 105 

Cute 42 

Classic 82 

Table 2: The number of unique codes describing 

participants’ verbalizations varied widely by attribute. 
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the primary properties can be identified as the amount of 

training data grows, identifying the more subtle secondary 

image properties that define the attribute for a specific user 

is more challenging. This diffuse set of properties is much 

larger than the personalized definition of the subjective 

attribute employed by a specific user, and thus using a 
group of secondary properties collected from all the 

participants introduces more noise and makes the concept 

harder to learn. We believe that a better alternative to 

learning the subjective attribute is to employ a richer form 

of interaction between the specific user and the learning 

algorithm, in which the user points out these secondary 

properties. 

Taken together, our results strongly suggest that 

participants’ descriptions of subjective attributes may be of 

real use to computer vision algorithms. Participants 

generally agreed with one another on the core properties 

about what made a car “cool”, “cute”, or “classic”, with 

little overlap between these attributes, and in terms that 

vision algorithms could readily leverage. 

User Reactions to Explanations  

Participants’ understanding of explanations matters—

explanations form part of the basis on which users build 
their mental models of an intelligent system’s reasoning and 

influence how they respond to problems [8, 21]. 

Understandable and trusted explanations are therefore a 

necessary requirement for eliciting useful corrective 

feedback from end users. 

We thus asked participants to rank the explanation types’ 

understandability from best (1) to worst (3). We also asked 

them to use the same scale to rank how well they liked each 

explanation type. The results are shown in Figure 4. As the 

left graph shows, most participants ranked Map as the most 

understandable type of explanation:  

“I liked [Map] because it was easy to identify the areas 

and separated importance in the picture and overall 

importance.” 
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Figure 2: Tag clouds showing the frequency of participants’ feedback for the subjective attributes “Cool” (Top), “Cute” (Middle) 
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Many participants also rated WithinFeature’s 

understandability fairly highly: 

“[WithinFeature] at least gave me an idea of what the 

program was identifying as being important, so this let 

me understand what I would change in the program 

sometimes.” 

However, the Pie explanations were ranked the worst by 

most participants: 

“Very hard to understand/grasp how the percentages 

were important. Took time to get what next-to was all 

about.” 

Participants’ preference rankings (Figure 4, right graph) 

were similar to their understandability rankings, suggesting 

that understandability was an important factor of how well 

they liked each explanation type. Participants who preferred 

the WithinFeature explanation praised its clarity and 

simplicity: 

 “I liked [WithinFeature] because it was clear to me 

what the computer was looking at.” 

“[WithinFeature was] much easier to understand.” 

Participants who preferred the Map explanations, 

conversely, enjoyed both the fine detail it presented, as well 

as the manner in which it situated the explanations in the 

image itself: 

“[Map] had a lot of information embedded in it, and 

having each picture on the side was useful in 

determining what the program was identifying.” 

Many participants, however, were frustrated by the lack of 

detail available in the Pie explanations: 

“[Pie] doesn't help me at all. It just says ‘here are the 

things I [the system] find important’—[but] not where 

I’m finding what's important.” 

Interestingly, although the underlying algorithm was 

exactly the same for all three explanations, participants’ 

trust in the explanations’ correctness differed (Figure 5). 

Further, their satisfaction with explanation correctness did 

not align with their explanation preferences or 

understanding. Participants’ opinions were polarized for the 

Map explanations, though they had ranked it highly for 

understanding and preference. For correctness, half of the 

participants said they were very satisfied with it, while half 

reported strong dissatisfaction with this explanation’s 

correctness. 

One possible reason for these ratings may be that more 

information in the explanations led to less participant trust 

in the correctness of the underlying reasoning: 

“This is very enlightening—actually it is kind of a 

shattering of what I was seeing before, because I totally 

thought it was analyzing the car. But here it is giving all 

this proof that it is not the car itself. I don't know how I 

feel about that.” 

Thus, on one hand, with more information, users have the 

ability to be better informed, which may lead to higher 

levels of trust in the computer’s reasoning. On the other 

hand, more information may help expose nuances of the 

algorithm’s reasoning with which users do not agree—

which may decrease users’ trust—but provide better 

opportunities for users to fix the algorithm.  

How Users Wanted to Fix the Algorithm  

When ranking how easy each explanation was to fix (Figure 
6), participants’ rankings were similar to their rankings of 

preference and understanding, with Map ranking first and 

Pie third. However, participants’ actual corrections 

numbered far more for Pie and WithinFeature than they did 

for Map explanations (Table 3, rightmost column)—the 

exact opposite of how they ranked ease of fixing. One 

interpretation is that the explanations they ranked harder to 

fix may have required far more corrections to communicate 

the desired correction. 

The kinds of corrections participants made also differed by 

explanation type (Table 3). Using the Pie explanations, 
participants focused mostly on feature type importance, but 

when using the WithinFeature explanations, participants 

focused mostly on segment importance. For the Map 

explanations, participants gave roughly the same number of 

corrections on feature type as for segment importance. This 

may be explained by the fact that the Map explanations 

combined the information content of the Pie and 

WithinFeature explanations. 

These findings suggest that if an algorithm has a low 

confidence in some of its predictions or is continually told 

by the user that its predictions are wrong, it could leverage 

the different explanation types to elicit more useful 
corrections. For example, if the algorithm needs more 

information on what feature type is important, it could show 

users the Pie explanation. Conversely, if the algorithm 

needs more information on specific regions, it could show 

users the WithinFeature explanation. In this way, the 

algorithm could dynamically change which explanations it 

displays based on what it needs to know. 

Feature Type Importance  

One common way participants made corrections to the 

algorithm was by adjusting the importance of feature types; 

  

Figure 4: Number of participants who ranked each 

explanation type as the best (dark) or second-best (light), 

out of 3 rankings. (Left:) How well they understood it. 

(Right:) How well they liked it.  
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48% of their corrections involved raising or lowering the 

importance of a feature type for a particular classification. 

For example, participants wanted to tell the computer to 

ignore color and pay more attention to detected shapes: 

“I don't think you can really classify ‘color’ at all as 

‘classic’.” 

“Well I think that the ‘cool’ factor has a lot to do with 

‘shape’” 

Participants often agreed with one another about how 

important they felt each type of feature should be (e.g., 

shapes are very important, colors are not). However, there 

was very little agreement between the algorithm and the 

participants—the feature types people wanted the computer 

to pay the most attention to rarely aligned with the things it 

actually considered most discriminative.  

These types of corrections could be incorporated into the 

learning algorithm relatively easily—users could 

interactively modify the weights associated with each 
feature type, or rank certain feature types ahead of others. 

However, weight corrections by users may need to be 

treated with caution by vision algorithms. Participants’ 

corrections of feature type importance appeared to be 

inversely related to their understanding of a feature type 

(Figure 7). Critically, the feature types participants most 

often misunderstood and felt were unimportant (“next-to” 

and “part-of”) were the same feature types the vision 

algorithm most depended upon for its classifications. 

Blindly incorporating such user feedback would greatly 

harm the classifier, and resulting problems may discourage 

end users from providing any further corrections. 

Segmentation  

48% of the corrections participants made related 

to the regions in an image, exactly the same 

percentage as for feature type importance. Users 

often wanted to tell the algorithm that it should 

focus on a different image segment, especially 

for “next-to” or “part-of” features. For example: 

“So because it's on a lawn, no, not really for 

cool cars. Maybe for next-to would be 

like…Maybe like this teardrop shape next to the 

square hood.” 

Participants also commented on the poor 

segmentation of the image into regions and provided 

corrections by marking the region boundaries. Interactive 

image segmentation is an active area of research (e.g., 

[25]), but work in this area treats segmentation as a stand-

alone task performed during image pre-processing. In 

contrast, our results suggest that end users may want to alter 

the segmentation in real-time. However, creating a system 
that accepts end user feedback while seamlessly integrating 

segmentation with attribute recognition is currently so 

computationally expensive as to prevent the system from 

responding interactively. 

New Features  

The subjective attributes we explored could largely be 

expressed by the types of features commonly used by vision 

algorithms. Although it was not common for participants to 

correct the computer by introducing new features not 

mentioned in the explanations, the few features they did 

introduce could be very valuable for attribute recognition.  

Half of these new features concentrated on size and ratios. 

This makes sense, as throughout parts 1 and 2 of the 

experiment, every participant noted how important size was 
in their decision-making (e.g., small size suggested 

cuteness). Four participants developed the concept of ratio, 

and one participant went so far as to hypothesize how a 

computer could determine a car’s size from a single image: 

“I think maybe some sort of ratio, like an algorithm or 

something determining how, like the ratio of how like 

far away the wheels are compared to the height so when 

you see wheels that, they look far away from each other 

but it's not necessarily because they are but it's because 

 

Figure 5: Participants’ satisfaction (Likert scale) with 

explanation correctness. (Dark): Number of participants who 

were satisfied to very satisfied; (light): neutral; and (white): 

dissatisfied to very dissatisfied with explanation correctness. 
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Figure 6: Number of participants who ranked each 

explanation type as the best (dark) or second-best (light) 

for ease of giving feedback.  
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Explanation 

Feature 

Type 

Importance 

Segment 

Importance 

New 

features 
Total 

Pie 171 37 8 216 

WithinFeature 24 148 7 179 

Map 54 66 5 125 

Total 249 251 20 520 

Table 3: The kinds of corrections participants made. Both the total 

numbers of corrections (right column) and types of corrections (middle 

columns) differed by explanation type. 
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the car might be lower.” 

Since our algorithm already extracts image regions as basic 

features and measures the shape convexity of each region, it 

would be trivial to also compute relative sizes and 

length/width ratios of image regions. These ratios could be 

turned into features and readily added to the existing pool 
of features used by the attribute recognition algorithm. 

DISCUSSION  

These results suggest four open issues for interactive 
computer vision algorithms.  

First, our study revealed that participants viewed the shape 

of cars as the most prominent property defining “cool”, 

“cute”, and “classic”. For example, Figure 2 clearly 

indicates that shape properties such as “round”, “boxy”, and 

“aerodynamic” were far more relevant for recognition of 

the three car attributes than a car’s material or color. This 

raises an open question regarding the relative importance of 

visual properties (shape versus color and texture)—a 

fundamental and as yet unanswered question for computer 

vision algorithms. 

A second open question is exactly how to integrate user 

feedback into computer vision algorithms. In our study, the 

majority of participants’ corrective feedback involved 

changing the importance of a feature for attribute 

recognition. In text classification, feature labeling [4, 16, 

23] allows users to explain to the algorithm which features 

are indicative of certain class labels. This approach could be 

extended beyond the domain of text classification, allowing 

end users to change the importance of features for attribute 

recognition. However, since end users cannot easily convert 

visual properties directly to low-level image features, we 
also need to develop a user interface to facilitate this 

process. Furthermore, this interface will need to account for 

labeling features that participants do not intuitively 

understand, such as “next-to” and “part-of”. These features 

are important to vision algorithms, but participants 

expressed difficulty understanding them and, as a result, 

often downgraded their importance.  

A third question is how users’ mental models of the vision 

algorithm impacts the corrective feedback they provide. We 

suspect that users possessing sound structural models of the 

algorithm’s reasoning process will be able to provide more 

useful feedback than users with little understanding of the 

algorithm. However, researchers have yet to explore how to 

support end users in building sound mental models for 

vision algorithms. Our study’s results suggest that users 

may encounter barriers in understanding vision algorithms 

and providing corrective feedback based on the flawed 
mental models they intuitively develop.  

Finally, this study suggests that the properties participants 

use to describe subjective attributes might extend to a wide 

variety of objects. For example, the property “Small” may 

apply equally to cute cars and cute cats. When asked 

whether they thought the “cool”, “cute”, and “classic” 

properties identified in cars could be applied to other 

objects, most participants said the properties were 

independent of the object itself: 

 “I think so. I think the same criteria in general can be 

followed for bikes or clothes, tables, chairs, etc.” 

This result suggests new theoretical developments in 
computer vision. Existing computer vision approaches treat 

attributes as tightly related to specific objects, and thus tie 

object recognition to attribute recognition. Our study 

suggests it might be possible to develop more general 

algorithms for recognizing attributes that transcend 

individual objects (e.g., an algorithm that recognizes 

“cuteness” regardless of whether the image shows cars or 

cats or cartoon characters). 

CONCLUSION  

This study is the first to consider interactive recognition of 

subjective attributes of images and to investigate 

explanations of vision algorithms. Our study illustrates the 

feasibility of helping end users teach computer vision 
systems how to detect these subjective attributes. 

Our results revealed that study participants consistently 

relied upon shapes, sizes, and textures to describe 

subjective attributes (RQ1). These image properties can be 

readily mapped to low-level image features commonly used 

by computer vision algorithms (RQ2). Participants agreed 

on a core set of primary image properties defining each 

subjective attribute but some attributes were more 

conceptually diffuse than others (RQ3). The properties 

participants identified for a specific subjective attribute did 

not substantially overlap, suggesting discriminative power 

for computer vision algorithms (RQ4). 

We also explored three types of explanations for explaining 

the algorithm’s reasoning about subjective attributes. 

Participants understood the information-rich Map 

explanation reasonably well, but also had problems 

understanding some of the features that were important to 

the algorithm (RQ5). Participants focused on adjusting 

feature and segment importance, but their understanding of 

the algorithm, influenced by the type of explanation they 

saw, ultimately affected the types of corrective feedback 

they gave (RQ6).  

 

Figure 7: The average number of times participants said 

each feature was important (dark blue, positive) or 

unimportant (dark blue, negative) and the number of 

participants who said they did not understand that feature 

(light blue). 
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Our results provide evidence that end users could 

interactively help computer vision algorithms recognize 

subjective attributes of objects in images. We also 

introduced new open questions for how to develop 

interactive vision algorithms and interfaces for this 

recognition task. Our work is a first step toward enabling 
vision algorithms that explain their reasoning to end users, 

respond appropriately to corrective feedback from the user, 

and support users by expanding the scope of vision systems 

to include subjective, user-defined attributes—from simply 

“is there a car?” to “is this car cool?” 
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