
Zu, Y. (2015). Consistent nonparametric specification tests for stochastic volatility models based on 

the return distribution (Report No. 15/02). London, UK: Department of Economics, City University 

London. 

City Research Online

Original citation: Zu, Y. (2015). Consistent nonparametric specification tests for stochastic 

volatility models based on the return distribution (Report No. 15/02). London, UK: Department of 

Economics, City University London. 

Permanent City Research Online URL: http://openaccess.city.ac.uk/12206/

 

Copyright & reuse

City University London has developed City Research Online so that its users may access the 

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are 

retained by the individual author(s) and/ or other copyright holders.  All material in City Research 

Online is checked for eligibility for copyright before being made available in the live archive. URLs 

from City Research Online may be freely distributed and linked to from other web pages. 

Versions of research

The version in City Research Online may differ from the final published version. Users are advised 

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact 

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/42629055?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


 

 

 

Department of Economics 

 
Consistent nonparametric specification tests for 
stochastic volatility models based on the return 

distribution 
 
 

Yang Zu1 
City University London 

 
H. Peter Boswijk2 

University of Amsterdam 
 
 
 
 

Department of Economics 
Discussion Paper Series 

No. 15/02 
  
 

 
1 Corresponding author: Email: Yang.Zu@city.ac.uk. Department of Economics, City University London, Northampton Square, EC1V 0HB, London, United Kingdom. 
  Telephone: +44 (0)20 7040 8619. Fax: +44 (0)20 7040 8580. 
 
2 Corresponding author: Email: H.P.Boswijk@uva.nl. Amsterdam School of Economics, University of Amsterdam, Valckenierstraat 65-67, 1018 XE Amsterdam, The  
  Netherlands. Telephone: +31 (0)20 525 4316. 

 



Consistent nonparametric specification tests for

stochastic volatility models based on the return

distribution

Yang Zu1

City University London

H. Peter Boswijk2

University of Amsterdam

April 29, 2015

1Email: Yang.Zu@city.ac.uk. Department of Economics, City University London, Northamp-
ton Square, EC1V 0HB, London, United Kingdom. Telephone: +44 (0)20 7040 8619. Fax: +44
(0)20 7040 8580.

2Email: H.P.Boswijk@uva.nl. Amsterdam School of Economics, University of Amsterdam,
Valckenierstraat 65-67, 1018 XE Amsterdam, The Netherlands. Telephone: +31 (0)20 525 4316.



Abstract

This paper develops nonparametric specification tests for stochastic volatility models by

comparing the nonparametically estimated return density and distribution functions with

their parametric counterparts. Asymptotic null distributions of the tests are derived and

the tests are shown to be consistent. Extensive Monte Carlo experiments are performed

to study the finite sample properties of the tests. The tests are applied to an empirical

dataset and we find the estimated stochastic volatility model is misspecified.
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1 Introduction

In this paper we consider specification tests for a class of parametric stochastic volatility

models, given by

dYt = σtdBt,

dσ2
t = b(σ2

t ; θ)dt+ a(σ2
t ; θ)dWt,

(1)

where (Bt,Wt)t≥0 is a bivariate standard Brownian motion process, where b and a are

known functions, and where θ is an unknown parameter vector. The model is tested

within a larger class of nonparametric stochastic volatility models

dYt = σtdBt, (2)

where (σt)t≥0 is a stochastic process satisfying certain regularity conditions. The model

(2) is nonparametric in the sense that there is no parametric structure specified for

the volatility process. Model (1) is often used in financial econometrics to describe a

logarithmic stock price process (Yt)t≥0, where (σt)t≥0 is an unobserved spot volatility

process. It includes popular models such as the Hull-White model, the Heston model and

the GARCH diffusion model, which motivates the development of specification tests for

this class of models.

Let Y be observed discretely at times ti = i∆, i = 0, 1, . . . , n. Consider the re-scaled

∆-period return sequence

Xi =
1√
∆
(Yti − Yti−1

) =
1√
∆

∫ ti

ti−1

σsdBs, i = 1, . . . , n. (3)

Let (Xi)
n
i=1 having a stationary density, denoted by q(x), and let q(x; θ) be its spec-

ification implied by the parametric model (1). In this paper we propose to test the

specification (1) by comparing the estimated parametric return density to its nonpara-

metrically estimated counterpart. Stated formally, we are testing

H0 : q(x) = q0(x) ∈ {q(x; θ), θ ∈ Θ},

where Θ ⊆ R
k is the parameter space, and define θ0 to be the true parameter under the

null hypothesis: that is, it satisfies q(x; θ0) = q0(x).

Specification tests based on the stationary marginal return distribution have their em-

pirical justifications — as discussed in Section 3.3 of Aı̈t-Sahalia, Hansen, and Scheinkman

(2010), reproducing the stationary distribution is an important aspect of structural eco-

nomic modeling. Return distribution is also widely used as the basis to formulate specifi-

cation tests for continuous-time diffusion processes, see e.g. Aı̈t-Sahalia (1996) and Gao

and King (2004). Admittedly, formulating the test based on q(.; θ) will limit its power in

2



detecting certain deviations in the functions {b(.; θ), a(.; θ)}1; however, tests constructed
this way would still be an important ”first check” because of its empirical significance in

any structural modelling. The problem could be solved by defining test statistics based

on the transition distribution of the observed returns, we discuss this issue in Section 7.

To formulate the test statistic, one can compare either the density functions or the

cumulative distribution functions. It is known from the literature that generally speaking,

density-based tests are more sensitive to local deviations, whereas distribution-based tests

are more sensitive to global deviations (see e.g. Eubank and LaRiccia (1992), Escanciano

(2009) and Aı̈t-Sahalia, Fan, and Peng (2009)), we thus consider both in this paper.

A long-span asymptotic scheme is used in this paper. That is, we consider the asymp-

totics when n→ ∞ with fixed ∆. This is because model (1) is often used to describe price

processes observed at relatively low frequencies (usually daily), prominent microstructure

noise effects in prices observed at higher frequencies make the model unsuitable for such

data. Throughout, we assume that (Xi)
n
i=1 is a stationary and ergodic sequence, and

that it is β-mixing with exponentially decaying coefficients. In Appendix A, checkable

sufficient conditions for these properties to hold in the parametric model are given.

The stochastic volatility model we consider here is essentially a (partially observed)

two dimensional diffusion process, so our test is related to the vast literature of nonpara-

metric test for diffusion models, such as Aı̈t-Sahalia (1996), Hong and Li (2005), Corradi

and Swanson (2005), Li (2007), Chen et al. (2008), Aı̈t-Sahalia et al. (2010), Kristensen

(2011) and Aı̈t-Sahalia and Park (2012), among others. However, the unobservability

of the volatility process in Model (1) makes the aforementioned research not applicable.

Closely related to this paper is Corradi and Swanson (2011), who consider a conditional

distribution based nonparametric test for stochastic volatility models. Other than the

test statistics we consider are different from that of Corradi and Swanson, the model we

consider is also different. Corradi and Swanson consider the stochastic volatility model

where the observed series is assumed to be strictly stationary; while in our model we

assume the observed return series (first difference of the observed series) to be station-

ary and we allow the observed series to exhibit say unit-root type of dynamics. From a

practical perspective, the stochastic volatility model considered in Corradi and Swanson

in more appropriate to be used with interest rate data, where mean-reversion is often

observed; while our model is more appropriate for equity and exchange rate price data,

where unit-root behaviour is often observed. Zu (2015) analyzes an alternative approach

to a similar testing problem, by comparing the nonparametric kernel deconvolution esti-

mator of the volatility density with its parametric counterpart.

The structure of this paper is as follows. Sections 2 and 3 discuss nonparametric

and parametric estimation of the return density and distribution functions, respectively.

1That is, there might exist two different specifications {b(.; θ), a(.; θ)} and {b̃(.; θ), ã(.; θ)} leading to
the same return distribution with density q(x).
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Section 4 defines the test statistics, derives their asymptotic null distributions and consis-

tency, and discusses using the bootstrap to approximate the null distribution. In section 5

Monte Carlo evidence for the size and power properties of the tests are given. In Section

6 we study an empirical application. Section 7 discusses possible extensions and con-

cludes. Technical assumptions are collected in Appendix A. The proofs for the theorems

are collected in Appendix B.

2 Nonparametric estimation

We now discuss the nonparametric estimation of density and distribution functions. In

the nonparametric model (2), estimation of the stationary marginal return density and

distribution functions is considered under the direct assumption that the sequence (Xi)
n
i=1

is stationary, ergodic and β-mixing with exponentially decaying coefficients.

To estimate q(x), the stationary return density function of (Xi)
n
i=1. Let hn be a

bandwidth, K(.) be a kernel function. It is well known that the density function q(x) can

be estimated by the kernel density estimator

q̂(x) =
1

nhn

n∑

i=1

K

(
x−Xi

hn

)
.

Under appropriate conditions on the bandwidth parameter and the kernel function, the

consistency and asymptotic distribution of the kernel density estimator are classical re-

sults, we refer the readers to e.g. Pagan and Ullah (1999).

Denote the distribution function of the sequence (Xi)
n
i=1 to be Q(x). Letting I(.)

denote the indicator function, the distribution function Q(x) can be estimated by the

empirical distribution function

Q̂(x) =
1

n

n∑

i=1

I(Xi 6 x).

The consistency and asymptotic normality of the empirical distribution function are clas-

sical results in statistics, see e.g. Chapter 19 of Van der Vaart (2000) for the results

with independent and identically distributed data. For stationary dependent data, such

properties still hold with the application of Ergodic Law of Large Numbers and Central

Limit Theorem for dependent data, see Appendix A.5 in Pagan and Ullah (1999) for a

summary.
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3 Parametric estimation

Given a parameterization {b(x; θ), a(x; θ)}, to obtain the parametric estimate of the func-

tions q(x; θ) and Q(x; θ), we first need an estimate for the parameter vector, denoted as

θ̂, then evaluate the two functions given θ̂.

On the one hand, parametric estimation of stochastic volatility model is by no means

an easy task; substantial research efforts were devoted to it in the past decades. Here we

first briefly review the existing methods and just assume we have a parametric estimator

satisfying certain conditions. On the other hand, evaluating the two functions given θ̂ is

also not trivial, because the density and distribution functions of the observed returns

usually do not have closed-form expressions and one needs to resort to approximation

methods to evaluate them.

3.1 Parametric estimation of stochastic volatility models

Many efforts have been devoted to the estimation of stochastic volatility models in the

past decades. For a review, see e.g. Renault (2009). Here we do not confine to any

particular parametric estimation method, but only give conditions that a parametric

estimator should satisfy. We will need different assumptions for the density function

based test and the distribution function based test. For the density function based test,

we only need to assume the parametric estimator θ̂n is
√
n-consistent. We will also need

the parametrization to be smooth.

(P1a) Under the null hypothesis,

|θ̂ − θ0| = Op(n
−1/2),

and q(x, θ) is Lipschitz in the parameter θ with the Lipschitz constant L(x) to be

square integrable.

For the distribution function based test, however, stronger assumptions are needed —

the estimator has to satisfy a certain first order asymptotic expansion, which will be a

non-vanishing part of the asymptotic distribution. We also need the parameterization to

be differentiable.

(P1b) Under the null hypothesis,

√
n(θ̂ − θ0) =

1√
n

n∑

i=1

ψθ0(Xi) + op(1),

with Pθ0ψθ0 = 0 and Pθ0‖ψθ0‖2 <∞, and Q(x; θ) is differentiable with respect to θ.
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3.2 Approximating parametric density and distribution func-

tion

When no closed-form expressions for the density and distribution functions exist, we can

in principle use an Euler scheme to simulate the process and hence evaluate intractable

functionals of the process.

Given an estimate θ̂, the parameterization b(., θ) and a(., θ), the observation interval

∆, and the objective variables Xi =
1√
∆

∫ ti
ti−1

σsdBs, i = 1, . . . , n, to be approximated, we

first choose an integerm as the steps to simulate within the interval ∆, and another integer

M as the number of ∆-interval returns, such that we simulate the process Y with step

size δ = ∆/m for m×M steps. Then take first differences to get δ-returns, and aggregate

and rescale over every m returns to get M simulated ∆-returns, X∗
i , i = 1, . . . ,M . Using

a kernel density estimator we can approximate q(x; θ̂) from the simulated sample with

q∗(x; θ̂) =
1

MhM

M∑

i=1

K

(
x−X∗

i

hM

)
,

where K(.) is a kernel function, and hM is the bandwidth parameter.

Standard consistency results for the kernel density estimator and convergence theo-

rems for the Euler scheme simulation of stochastic differential equations imply that when

M → ∞, hM → 0 and m → ∞, q∗(x; θ̂) → q(x; θ̂) pointwise in x ∈ R. The convergence

should be understood as in the probability space of Monte Carlo simulation. For the tech-

nical conditions on the kernel function K(.), bandwidth hM and the consistency result for

the kernel density estimator, we refer to, e.g. Section 2.6.2 of Pagan and Ullah (1999). For

the convergence result of the Euler simulation method, we refer to Chapter 9 of Kloeden

and Platen (1992). The accuracy of this approximation is determined by the number M

and m that we choose. Because these numbers do not have to be bounded by the sample

size n, they can be chosen very large to make the approximation error arbitrarily small.

The parametric distribution function Q̂(x, θ̂) can be approximated analogously using the

empirical distribution function with the simulated data. In this reason, in the following

we take the approximated q∗(x; θ) and Q∗(x; θ) to be equal to the corresponding exact

ones q(x; θ) and Q(x; θ) to avoid complication.

Remark 1 With the purpose to approximate the conditional distribution in a stochastic

volatility model, Bhardwaj, Corradi, and Swanson (2008) propose to simulate multiple

paths of fixed length starting from a common initial value and take average across these

paths. We remark that when the simulated process is stationary, our simulation of a long

path can be understood as multiple paths of shorter length and thus the two approaches

can both simulate the intended observations. One difference is that our paths have

different starting values while they have a common one. They impose this restriction in

6



order to evaluate the conditional distribution given a certain value. However, we remark

that for the purpose of conditional distribution function approximation given a certain

value, simulating paths conditional on that value is not necessary.

Remark 2 Bhardwaj, Corradi, and Swanson (2008) notice that the Milestein scheme

simulation for the stochastic volatility is not convergent if the commutative condition is

not satisfied, which is the case for most of the stochastic volatility models with leverage

effects. They use a generalized Milestein scheme from Kloeden and Platen (1992) to deal

with this problem. We emphasize that the Euler’s scheme is valid both in univariate and

multivariate diffusions, and it is convergent both in the weak and in the strong sense when

the simulating interval goes to 0. When used with stochastic volatility model, usually

the Eulers Scheme is applied to a finer grid within the needed sampling interval, as in

the method used in this paper. This will not cause the “stochastic integral” problem

as discussed in Bhardwaj, Corradi, and Swanson (2008). Actually the Euler’s scheme is

widely used in the literature to simulate stochastic volatility models with leverage effects.

This include Andersen and Lund (1997), Bollerslev and Zhou (2002), Aı̈t-Sahalia and

Kimmel (2007) and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), to name

just a few.

4 Test statistics and asymptotic properties

4.1 Asymptotic null distribution and the consistency

Define

T1 = nh1/2
∫

R

(q̂(x)−Kh ∗ q(x; θ̂))2dx,

where Kh ∗ q(x; θ̂) =
∫
R
Kh(x− y)q(y; θ̂)dy is the convolution of Kh(x) = K(x/h)/h with

q(x; θ̂), the function K(.) and bandwidth h are the same as used in the definition of q̂(x).

Using the convoluted return density in the formulation of the test statistic corrects the

bias of the test statistic and deliver better asymptotic properties of the test statistic, we

refer to Fan (1994) for a discussion of this issue in the general density test problem with

i.i.d. data.

Theorem 1 Under the null hypothesis, and if (SV0)–(SV5), (N1)–(N4), and (P1a) are

satisfied, then

(
T1 − h−1/2

∫

R

K2(u)du

)

d−→ N

(
0, 2

∫

R

q20(x)dx

∫

R

(
K(2)(v)

)2
dv

)
,
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where K(2)(v) denote the convolution of the kernel function K with itself. Let

σ̂2 =
2

n

n∑

i=1

q̂(Xi)

∫

R

(
K(2)(v)

)2
dv,

which is a consistent estimator of the variance of the asymptotic distribution, then

T2 =
T1 − h−1/2

∫
R
K2(u)du

σ̂

d−→ N(0, 1).

The test T1 is not pivotal as it depends on the unknown density q0(x). However the

corresponding studentized test T2 is pivotal.

A Cramer-von Mises type statistic can be formulated by comparing distribution esti-

mates:

T3 = n

∫

R

(Q̂(x)−Q(x; θ̂n))
2dQ(x; θ̂).

Theorem 2 Under the null hypothesis, and if (SV0)–(SV5), (N2) and (P1b) are satis-

fied, then as n→ ∞

T3
d−→
∫

R

(
GQI(· ≤ x)−GQψ

T
θ0
(·)∂Q(x, θ)

∂θ
|θ=θ0

)2

dQ(x), (4)

where GQ is a Q-Brownian bridge indexed by F = {I(· ≤ x), x ∈ R} ∪ {ψθ(·)}, with

zero mean and the covariance function Γ(f, g) = limk→∞
∑∞

i=1 Cov(f(Xk), g(Xi)) with

f, g ∈ F .

The above limiting distribution of T3 is a functional of a Brownian bridge process, and

it depends on the model structure (thus not model-free) as well as the unknown parameter

values. For this reasons, this limiting theorem cannot be used directly to define critical

values of the test. We discuss the approximation method to obtain test critical values in

the next Section 4.2.

We then look at the asymptotic power of these tests under fixed alternatives. To be

specific, we consider

H1 : {q(x) = q1(x) 6= q(x; θ), ∀θ ∈ Θ}.

We will need assumptions on the parametric estimator under the alternative model.

(P1a1) Under the alternative hypothesis H1,

|θ̂ − θ∗| = Op(n
−1/2),

where θ∗ is the pseudo true value of the model corresponding to q1(x).
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Theorem 3 Assume Conditions (SV0)–(SV5) and Assumptions (N1)–(N4), and (P1a1)

in Appendix A; let α ∈ (0, 1) be a level of significance, and Z1−α be the 1− α quantile of

the standard normal distribution. Then under H1,

P

(
T1 − h−1/2

∫

R

K2(u)du > σ̂Z1−α

)
→ 1,

and

P (T2 > Z1−α) → 1.

For the distribution based test, we assume that under the alternative hypothesis the

parametric estimator satisfy

(P1b1) Under the alternative hypothesis H1,

√
n(θ̂ − θ∗) =

1√
n

n∑

i=1

ψθ∗(Xi) + op(1),

with Pθ∗ψθ∗ = 0 and Pθ∗‖ψθ∗‖2 < ∞, and Q(x; θ) is differentiable with respect to

θ.

Theorem 4 Under the null hypothesis, and if (SV0)–(SV5), (N2) and (P1b) are satis-

fied; let α ∈ (0, 1) be a level of significance, and c1−α be the 1−α quantile of the limiting

distribution in (4), then as n→ ∞,

P (T3 > c1−α) → 1.

As with most nonparametric tests, both tests are consistent. That is, they can detect

any fixed deviation to the true model as long as the sample size is sufficiently large.

4.2 Bootstrap null distribution

In the literature of nonparametric goodness of fit test, it is a usual problem that the

asymptotic distribution of the density based nonparametric test statistic will provide a

poor approximation for the null distribution in finite sample. For the distribution function

based test, as we noted before that the asymptotic distribution of the test statistic is

not feasible. These problems lead us to develop a bootstrap approximation to the null

distribution, which is a common practice in nonparametric tests. Different bootstrap

methods can be considered in nonparametric test. Parametric-type of bootstrap has

been considered in e.g. Fan (1995), Andrews (1997), Franke, Kreiss, and Mammen (2002),

Andrews (2005), Gao and Gijbels (2008) and Aı̈t-Sahalia, Fan, and Peng (2009)among

others. A nonparametric-type block bootstrap has been considered in Bhardwaj, Corradi,

and Swanson (2008), Corradi and Swanson (2011) and several of their other works.
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We use a parametric bootstrap procedure to approximate the distributions of the tests

under the null hypothesis. Parametric bootstrap is also called model based bootstrap.

As contrary to classical bootstrap, where one generate bootstrap samples by resampling

the available dataset, parametric bootstrap involves generating bootstrap samples by first

estimating a parametric model and then simulating data from the estimated parametric

model (see Section 6.5 of Efron and Tibshirani (1994)). The dependence of the bootstrap

sample on the original data is only through the estimated parameters. The parametric

bootstrap is in particular useful in approximating the null distribution in a testing con-

text because it always simulates data based on the null model: it will mimic the null

model both under the null hypothesis and under the alternative hypothesis. In contrast,

bootstrap procedures that do not exploit the model structures will usually mimic the data

generating process (alternative model) under the alternative hypothesis. For example, in

testing diffusion models, Corradi and Swanson (2011) use a block bootstrap procedure.

Since the block bootstrap procedure mimics the data generating process under the al-

ternative hypothesis, the bootstrapped statistic cannot reproduce the null distribution

under a misspecified model, and they further define a re-centered test statistic to make

the block bootstrap to work.

The parametric bootstrap procedure is as follows (use T1 as an example):

Step 1 Given a parametric estimate θ̂, and step size ∆, simulate n (original sample size)

discretely observed returns {X∗
i }ni=1, which is called one bootstrap sample. Notice

this step has to be done using the method in Section 3.2 over a finer grid.

Step 2 With this bootstrap sample, compute the nonparametric estimator q̂∗(x) and the

parametric estimator θ̂∗, then compute the test statistic T ∗
1 analogous to T1.

Step 3 Repeat step 1 and 2 B times to get a bootstrap sample T ∗1
1 , . . . , T ∗B

1 for the

statistic T1.

When B is large, the empirical distribution of T ∗1
1 , . . . , T ∗B

1 approximates the finite sample

null distribution.

Theoretical justification of the proposed parametric procedure is missing in this pa-

per. This is a highly non-trivial problem, although it can probably be solved using the

methodology developed in Fan (1994) and Andrews (1997). In absence of such results, we

use extensive Monte Carlo simulations to study the power properties of the tests under

various realistic scenarios and across different sample sizes in the next section.

5 Monte Carlo simulations

In this section, we study the finite sample performance of the density-based tests T1 and T2

and the distribution-based test T3. We use the bootstrap method described in the previous

10



section to determine the null distribution of the test statistic. The empirical quantiles

of the null distribution are used to determine the critical values. The cross-validation

method (e. g. Wasserman (2004), Section 20.3) is used to determine the bandwidth, and

we use the Gaussian kernel in all the nonparametric kernel density estimators. The GMM

method of Meddahi (2002) is used to estimate the parametric model. The GMMmethod is

less efficient than the likelihood based method, but it achieves a good compromise between

the estimation efficiency and computation time. To save space, for all the simulated size

and power, we only report the results at 5% significance level.2

5.1 Size of the tests

We simulate 1000 sample paths of daily observations (∆ = 1/252) from the Heston model,

dYt = σtdWt,

dσ2
t = 5(0.1− σ2

t )dt+ 0.75
√
σ2
t dBt,

(5)

where the two Brownian motions W and B are independent. Within one day, 10 steps

are simulated to reduce discretization error. We consider the sample sizes 1000, 2000 and

3000, roughly corresponds to 4 years, 8 years and 12 years of daily observations.

With the parameters and sample sizes, the test statistics T1, T2 and T3 are simulated

1000 times. The distribution of these realized test statistics are taken as the true distri-

bution (except for the Monte Carlo errors). For each of the realized 1000 sample path,

we obtain 5 bootstrap samples and compute their resulting test statistics T ∗
1 , T

∗
2 and T ∗

3 .

Aggregating them together across 1000 sample yields 5000 bootstrap statistics. Their

sampling distribution is taken as the distribution of the bootstrap method.

Table 1 summarizes the simulated 5% level size of all the tests for the three sample

sizes. The bootstrap test statistics seem to have a reasonable size property, especially

when the sample size is large. For T1 and T3, the size property becomes better as the

sample size increases, though this is not the case for T2.

[Table 1 about here.]

5.2 Power of the tests

We study the power performance of the tests under four different sample sizes 500, 1000,

2000 and 3000, and we still use 1000 simulations. We take the Heston model (5) as the

null hypothesis. We evaluate the power functions of the three test statistics under the

2The computations in this section are conducted with Matlab R© 2012b on the Lisa computing cluster
at the University of Amsterdam. The default random number generator in Matlab (The Mersenne twister
algorithm) is used with seed 12345.
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three families of alternative models. Each family of models is indexed by τ , with τ = 0

corresponding to the null model (5).

In the first family of alternative models, the drift functions of the volatility processes

are deviated from the Heston model. In the second family of models, the diffusion func-

tions are deviated from the Heston model. In the third family of models, jumps are

included in the volatility process.

5.2.1 Misspecification in the drift function

We evaluate the power function of the three test statistics under the following sequence

of alternative models,

dσ2
t = {(1− τ)(α(β − σ2

t ) + τµ(σ2
t )}dt+ γ

√
σ2
t dWt, (6)

for τ = 0, 0.1, ..., 1, where µ(σ2
t ) = σ2

t [a(b − ln σ2
t )] with a = 9, b = 3.5. The functional

form of the drift part is motivated by the log SARV model

dYt = σtdBt,

d ln σ2
t = κ(θ − ln σ2

t )dt+ γdWt.

By Ito’s lemma, the volatility process of the log SARV model is

dσ2
t = σ2

t

[
κ(θ − ln σ2

t ) +
1

2
γ2
]
dt+ γσ2

t dWt,

where the drift function is a highly nonlinear function of σ2
t and we use this to determine

the specification of µ(σ2
t ).

Figure 1 shows the differences of the drift functions between the null model and the

alternative models. It also gives the 5% level power functions of the three tests at the 4

different sample sizes. All the three tests show increasing power as the sample size goes

large, confirming the consistency result of the tests. The performance of the three tests

seems to be similar for this type of deviations in the drift function.

[Figure 1 about here.]

5.2.2 Misspecification in the diffusion function

Here we consider the misspecification in the diffusion function of the volatility process.

The null model is still the Heston model (5). In the alternative model, the drift function

remains the same, but the diffusion function is deviating away to a GARCH diffusion
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process.

dYt = σtdBt,

dσ2
t = α(β − σ2

t )dt+ {(1− τ)γ
√
σ2
t + τρ(σ2

t )}dWt

(7)

for τ = 0, 0.1, ..., 1, where ρ(σ2
t ) = cσ2

t with c = 5. When τ = 1, the alternative model is

a GARCH diffusion process.

Figure 2 shows the differences of the diffusion functions between the null model and

the alternative models. It also gives the 5% level power functions of the three tests at

the 4 different sample sizes. Again all the three tests show increasing power (to 1) as the

sample size goes large. The power of T1 seems to be slightly better than T3 when the

deviation is small, while when the deviation is large, the power seems to be similar. The

power of T2 seems to be lower than the other two tests; when the sample size is small

(n = 500), the test T2 seems to have no power at all.

[Figure 2 about here.]

5.2.3 Jumps in the volatility process

We now consider the power of the three tests against a sequence of models where the

volatility process contains jumps

dσ2
t = α(β − σ2

t )dt+ γ
√
σ2
t dBt + Jt−dNt, (8)

where Nt is a Poisson process with intensity λ. Jt is the jump size that is independent

of (Wt) and (Bt). We consider the following 5 jump intensities: 52, 104, 252, 252 × 1.5,

252× 2, these can be understood as the average number of jumps in a year. We consider

a jump size that is normally distributed with mean 0 and standard deviation equal to

1.5%.

Figure 3 gives the power functions of the three tests under different sample sizes. We

observe again the consistency of the three tests for this type of deviations to the null

hypothesis. Also we see that as the jump intensity of the volatility process increases,

the tests are more powerful in detecting the deviations. The relative performance of the

three tests seems to be similar to this type of deviations.

[Figure 3 about here.]

6 Empirical application

In this section, we apply our tests to a daily Apple stock price dataset. The dataset

contains the adjusted close prices from Jan 3rd 2000 to 3rd Feb 2014, making 3543

13



observations in total. Figure 4 gives the plot of the series, the log returns, the nonpara-

metrically estimated density function, as well as the empirical distribution function of

the dataset.

[Figure 4 about here.]

The dataset is fitted to the Heston model (5). The estimated parameter is α̂ =

17.5119, β̂ = 0.1793, γ̂ = 2.4715. We then apply the nonparametric specification tests

proposed in this paper to study the validity of the Heston model estimated. We still use

the cross-validation method to determine the bandwidth and use the Gaussian kernel.

Based on 1000 bootstrap samples, the estimated p-values for T1, T2 and T3 are 0.009, 0.014

and 0.000 respectively. The p-values of all the tests provide strong evidence of rejection of

the Heston model. The p-value of the distribution-based test is smaller than the p-values

of the other two tests. From the Monte Carlo evidence, under the misspecification of the

diffusion function, the distribution-based test seems to be slightly more powerful than

the density-based tests. This give us the hint that the misspecification of the current

model may come from the diffusion function. The results of this empirical application

provides evidences that the model may not provide a good approximation of the marginal

distribution of empirical data, although it is widely used in pricing options in real world

applications.

7 Discussion and conclusion

We propose three tests for stochastic volatility model specification by comparing the

parametrically and nonparametrically estimated stationary marginal density functions

and distribution functions. Our approach can be adapted to discrete-time stochastic

volatility models easily, as long as the volatility process is stationary. For example ,con-

sider the classical discrete-time stochastic volatility model

yti = σtiεti ,

log σ2
ti

= ω + γ log σ2
ti−1

+ σηηt,

(εt, ηt) ∼ i. i. d. N(0, I2).

When |γ| < 1, and the volatility process log σ2
t is initiated from the stationary distri-

bution N(ω/(1 − γ), σ2
η/(1 − γ2)), the volatility process is strictly stationary. It is also

β-mixing with exponentially decaying coefficients, see Pham and Tran (1985), and thus

ergodic. Then the conditions for nonparametric estimation and parametric estimation are

satisfied, and one can compare the estimated density functions and distribution functions

as discussed for continuous-time model analogously.
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As discussed in the introduction section, the stationary marginal return distribution

does not contain the information of dynamics in the data, such that tests defined on

the marginal distribution will not be able to detect the misspecification in the dynamic

structure of a model. To exploit the dependence structure in the model, we could consider

to the one-step conditional distribution function and density function of Xi|Xi−1, i =

2, . . . , n, to formulate the test statistics.

Denote the density function of Xi|Xi−1 by p(y, x) and the corresponding conditional

distribution function by P (y, x).

For the nonparametric estimation of the two functions, we can proceed as follows. A

simple kernel type density estimator for p(y, x) is

p̂(y, x) =

1
nh2

n

∑n−1
i=1 K

(
x−Xi

hn

)
K
(

y−Xi+1

hn

)

1
nhn

∑n
i=1K

(
x−Xi

hn

) ,

and the estimator for the conditional distribution function P (y, x) is

P̂ (y, x) =

∑n−1
i=1 I(Xi 6 x)I(Xi+1 6 y)∑n

i=1 I(Xi 6 x)
.

For parametric estimation of the above functions, we again need approximations and we

can again resort to simulation based approximation.

Analogously to the univariate density based test, conditional density based test statis-

tics can be formulated as:

T4 =

∫

❘2

(
p̂(x, y)−Kh ∗ p(x, y; θ̂n)

)2
dxdy,

where Kh(x, y) = K(x/h)×K(y/h)/h2 is the two dimensional kernel used in the definition

of p̂(x, y). And the conditional distribution function based test is

T5 = n

∫

❘2

(
P (x, y; θ̂n)− P̂ (x, y)

)2
dP (x, y; θ̂n).

A similar parametric bootstrap is used to obtained the null distribution of the tests.

Appendix A: Basic setup and probabilistic properties

(N1) (kernel function) The kernel function K is a bounded, symmetric, nonnegative

function on R, satisfying

∫ ∞

−∞
K(x)dx = 1,

∫ ∞

−∞
xK(x)dx = 0,

∫ ∞

−∞
x2K(x)dx = 2k <∞,
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where k > 0 is a constant, and

∫ ∞

−∞
K2(x)dx <∞.

(N2) (density function) q(x) and its second order derivative are bounded and uniformly

continuous on R.

The above assumptions on the kernel function, and the smoothness assumption on the

density function are not the weakest possible. However, Assumptions (N1) and (N2) are

sufficient for the present purpose and simplify the argument in the proof.

(N3) For the process (Xi)
n
i=1, all four dimensional joint densities of (yi1 , . . . , yi1) exist, are

bounded and Lipschitz continuous. This implies that the corresponding distribution

functions satisfy the same conditions.

(N4) As n→ ∞, hn → 0 and nhn → ∞.

These set of conditions will be used to derive the asymptotic properties of the test statis-

tics, but together with the mixing conditions we assume throughout, they are also suffi-

cient to make q̂(x) a (pointwise) consistent estimator of q(x) for all x ∈ R. (N3) is stronger

than necessary for consistency, but will be required for the asymptotic distribution of the

test based on the bivariate distribution of (Xi, Xi+1)
n−1
i=1 .

The tests developed in this paper require the observed return sequence to be station-

ary, ergodic and β-mixing with exponentially decaying coefficients. In the nonparametric

model, it is sufficient to assume the observed return sequence (Xi)
n
i=1 to satisfy the above

conditions directly. However, in the parametric model, it is non-trivial to check that

these conditions are satisfied for particular choices of the functions b(x; θ) and a(x; θ). In

the parametric stochastic volatility model (1), we first assume

(SV0) (B,W ) is a standard Brownian motion in R
2, defined on the probability space

(Ω,F ,P), and σ2
0 is random variable defined on the same probability space, inde-

pendent of (B,W ).

The following are standard assumptions from Genon-Catalot et al. (1998).

(SV1) For all θ ∈ Θ, the function b(x) = b(x; θ) is continuous on (0,+∞), and the

function a(x) = a(x; θ) is continuously differentiable on (0,+∞), such that

∃K > 0, ∀x > 0, b2(x) + a2(x) ≤ K(1 + x2),

and

∀x > 0, a(x; θ) > 0.
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This assumption ensures the existence and uniqueness of an almost surely positive strong

solution to the stochastic differential equation (1) generating the volatility process.

Define, for v0 > 0, the scale measure

s(x; θ) = exp

(
−2

∫ x

v0

b(v; θ)

a2(v; θ)
dv

)
,

and the speed measure

m(x; θ) =
1

a2(x; θ)s(x; θ)
.

Then the assumption

(SV2) ∫ ·

0

s(x; θ)dx = ∞,

∫ ∞

·
s(x; θ)dx = ∞,

∫ ∞

0

m(x; θ)dx =M <∞,

where the · in the integral means a arbitrary point in the domain of s(x; θ), ensures a

unique and positive recurrent solution on (0,∞), see Genon-Catalot et al. (1998).

The last condition in (SV2) guarantees the existence of a stationary distribution (for

the volatility process), with density defined as

π(x; θ) =
m(x; θ)

M
I(x > 0).

If the process is initiated from this stationary distribution, i.e., under assumption

(SV3) The initial random variable σ2
0 has density π(x; θ),

the solution is strictly stationary and ergodic.

Now we give sufficient conditions to ensure that the volatility process is β-mixing

with exponentially decaying coefficients. From Theorem 3.6 of Chen et al. (2010), a

sufficient condition (together with (SV1) and (SV2)) for exponential decay of the β-mixing

coefficients is that the process is ρ-mixing, so in the following we give the conditions for

the process to be ρ-mixing. Also, we note the result that if a diffusion process is ρ-mixing,

its ρ-mixing coefficients decay at an exponential rate (Bradley (2005), Theorem 3.3, or

Genon-Catalot, Jeantheau, and Laredo (2000), Proposition 2.5). Furthermore, β-mixing

and ρ-mixing with exponential decay are almost equivalent concepts for scalar diffusions,

as discussed in Chen et al. (2010).

(SV4)

lim
x↓0

a(x; θ)m(x; θ) = 0, lim
x↑∞

a(x; θ)m(x; θ) = 0.

(SV5) Let

γ(x; θ) = a′(x; θ)− 2b(x; θ)

a(x; θ)
;

the limits of 1/γ(x; θ), as x ↓ 0 and as x ↑ ∞, exist.
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Appendix B: Lemmas and proofs

Conditions in Appendix A ensure strict stationarity, ergodicity and β-mixing of the

volatility process. Notice that the return sequence (Xi)
n
i=1 is a sequence of stochastic

integrals of the volatility process with respect to an independent Brownian motion B

over small fixed intervals. By the following lemma from Zu (2015), the return series in-

herit the stationarity, ergodicity and the β-mixing properties from the volatility process.

Lemma 1 In the model (1), if the volatility process (σ2
t )t≥0 is stationary, ergodic and

β-mixing with a certain decay rate, then the normalized return sequence (Xi)
n
i=1 is also

stationary, ergodic and β-mixing, with a mixing decay rate at least as fast as that of

(σ2
t )t≥0.

In all the proofs in this appendix, we take the above mentioned probabilistic properties

for the return series as given to avoid repetition. When we use a integral without the

range of integration, the integration is over the full real axis ❘.

Proof (of Theorem 1) We first derive the asymptotic distribution of T1. Notice that

T1

= nh1/2
∫
(q̂(x)−Kh ∗ q(x; θ̂n))2dx

= nh1/2
∫
(q̂(x)−Kh ∗ q(x))2dx+ nh1/2

∫
(Kh ∗ q(x)−Kh ∗ q(x; θ̂n))2dx

+nh1/2
∫

(q̂(x)−Kh ∗ q(x))(Kh ∗ q(x)−Kh ∗ q(x; θ̂n))dx.

Define

T ′
1 = nh1/2

∫
(q̂(x)−Kh ∗ q(x))2dx.

It will be shown later that T ′
1 = Op(1); the second term nh1/2

∫
(Kh ∗ q(x) − Kh ∗

q(x; θ̂n))
2dx = Op(h

1/2) because θ̂n is a
√
n-consistent estimator for θ0 and the square in-

tegrable assumption on the Lipschitz constant L(x) as in Assumption (P1a), so this term

is dominated by T ′
1; the crossproduct term is clearly dominated by T ′

1 by the Cauchy-

Schuwarz inequality. Thus we have that

T1 = T ′
1(1 + op(1)),

and we derive the asymptotic distribution of T ′
1 in the following.
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First notice

∫ (
1

n

n∑

i=1

(Kh(x−Xi)−Kh ∗ q(x))
)2

dx

=
1

n2

n∑

i=1

∫
(Kh(x−Xi)−Kh ∗ q(x))2dx

+
2

n2

∑

i<j

∫
(Kh(x−Xi)−Kh ∗ q(x))(Kh(x−Xj)−Kh ∗ q(x))dx

:=
1

n2

n∑

i=1

ϕn(Xi, Xi) +
2

n2

∑

i<j

ϕn(Xi, Xj),

where

ϕn(u, v) :=

∫
(Kh(x− u)−Kh ∗ q(x))(Kh(x− v)−Kh ∗ q(x))dx.

Next, we show that

1. The sum of the diagonal terms

1

n2

n∑

i=1

ϕn(Xi, Xi)
p−→ (nh)−1

∫
K2(u)du.

2. The sum of the off-diagonal terms

nh1/2

(
2

n2

∑

i<j

ϕn(Xi, Xj)

)
d−→ N

(
0, 2

∫
q20(u)du

∫
(K(2)(u))2du

)
.

3. Then we show that

T ′
1

d−→ N

(
0, 2

∫
q20(u)du

∫
(K(2)(u))2du

)
,

and the asymptotic distribution of T1 follows easily.
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Step 1 We first compute the order of the mean,

E

(
1

n2

n∑

i=1

ϕn(Xi, Xi)

)

=
1

n
Eϕn(X1, X1)

=
1

n

∫ ∫
(Kh(x−X1)−Kh ∗ q(x))2dxq(X1)dX1

=
1

nh2

∫ ∫ (
K

(
x−X1

h

))2

q(X1)dxdX1(1 + o(1))

=
1

nh

∫ ∫
(K(u))2q(X1)dudX1(1 + o(1))

= (nh)−1

∫
K2(u)du(1 + o(1)). (9)

Then we compute the order of the variance

Var

(
1

n2

n∑

i=1

ϕn(Xi, Xi)

)

6 E

(
1

n2

n∑

i=1

ϕn(Xi, Xi)

)2

=
1

n3
Eϕ2

n(X1, X1) +
2

n4

∑

i<j

Eϕn(Xi, Xi)ϕn(Xj, Xj). (10)

We look at the two terms separately. For the first term

Eϕ2
n(X1, X1)

=

∫ (∫
K2

h(x−X1)dx

)2

q(X1)dX1(1 + o(1))

=
1

h4

∫ (∫
K2

(
x−X1

h

)
dx

)2

q(X1)dX1(1 + o(1))

=
1

h2

∫ (∫
K2(u)du

)2

q(X1)dX1(1 + o(1))

= O

(
1

h2

)
. (11)
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For the second term,

Eϕn(Xi, Xi)ϕn(Xj, Xj)

=

∫ ∫ ∫
K2

h(x−Xi)dx

∫
K2

h(x−Xj)dxq(Xi, Xj)dXidXj(1 + o(1))

=
1

h2

∫ ∫ (∫
K2(u)du

)2

q(Xi, Xj)dXidXj(1 + o(1))

= O

(
1

h2

)
. (12)

Use the result in (11) and (12) in (10), we get

Var

(
1

n2

n∑

i=1

ϕn(Xi, Xi)

)

6
1

n3
O

(
1

h2

)
+

2

n4
n2O

(
1

h2

)

= O

(
1

n2h2

)
. (13)

Use the results in (9) and (13) and apply Markov’s inequality we have

P

(∣∣∣∣∣
1

n2

n∑

i=1

ϕn(Xi, Xi)− (nh)−1

∫
K2(u)du

∣∣∣∣∣ > ε

)

6
E
∣∣ 1
n2

∑n
i=1 ϕn(Xi, Xi)− (nh)−1

∫
K2(u)du

∣∣2

ε2

= O

(
1

n2h2

)
= o(1),

because nh→ ∞. Thus we have proved that

1

n2

n∑

i=1

ϕn(Xi, Xi)− (nh)−1

∫
K2(u)du = op(1).

Step 2 Now we use Theorem A, Appendix 1 in Hjellvik, Yao, and Tjøstheim (1998) to

show

nh1/2

(
2

n2

∑

i<j

ϕn(Xi, Xj)

)
d−→ N

(
0, 2

∫
q20(u)du

∫
(K(2)(u))2du

)
.

Notice that ϕn(x, y) is a degenerate symmetric kernel, and the mixing condition is satis-

fied.

First we calculate the asymptotic variance. Let X̃i, X̃j be independent variables with

21



the same distribution as Xi. First we compute

Eϕ2
n(X̃i, X̃j)

=

∫ ∫ (∫
Kh(x−Xi)Kh(x−Xj)dx

)2

q(Xi)q(Xj)dXidXj(1 + o(1))

=
1

h2

∫ ∫ (∫
K(u)K

(
u+

Xi −Xj

h

)
dx

)2

q(Xi)q(Xj)dXidXj(1 + o(1))

=
1

h2

∫ ∫ (
K(2)

(
Xi −Xj

h

))2

q(Xi)q(Xj)dXidXj(1 + o(1))

=
1

h

∫ ∫
(K(2)(u))2q(Xj + uh)q(Xj)dudXj(1 + o(1))

=
1

h

∫
(K(2)(u))2du

∫
q2(x)dx(1 + o(1)).

then the asymptotic variance

σ2
n =

n2

2
Eϕ2

n(X̃i, X̃j) =
n2

2h

∫
(K(2)(u))2du

∫
q2(x)dx(1 + o(1)). (14)

Then we check the conditions related to the 6 quantities Mni, i = 1, . . . , 6, as defined

in Theorem A, Appendix 1 in Hjellvik, Yao, and Tjøstheim (1998). For Mn1, notice that

for 1 > δ > 0,

E|ϕn(X1, Xj)ϕn(Xi, Xj)|1+δ

=

∫ ∫ ∫ ∣∣∣∣
∫
Kh(x−X1)Kh(x−Xj)dx

∫
Kh(x−Xi)Kh(x−Xj)dx

∣∣∣∣
1+δ

q(X1, Xi, Xj)dX1dXidXj(1 + o(1))

=

∫ ∫ ∫ ∣∣∣∣
1

h4

∫
K

(
x−X1

h

)
K

(
x−Xj

h

)
dx

∫
K

(
x−Xi

h

)
K

(
x−Xj

h

)
dx

∣∣∣∣
1+δ

q(X1, Xi, Xj)dX1dXidXj(1 + o(1))

=

∫ ∫ ∫ ∣∣∣∣
1

h2
K(2)

(
X1 −Xj

h

)
K(2)

(
Xi −Xi

h

)∣∣∣∣
1+δ

q(X1, Xi, Xj)dX1dXidXj(1 + o(1))

= h2
∫ ∫ ∫ ∣∣∣∣

1

h2
K(2)(u)K(2)(v)

∣∣∣∣
1+δ

q(Xj + uh,Xj + vh,Xj)dudvdXj(1 + o(1))

=
1

h2δ

(∫
|K(2)(u)|1+δdu

)2 ∫
q(Xj + uh,Xj + vh,Xj)dXj(1 + o(1))

= O

(
1

h2δ

)
.

Using the same strategy it can be shown thatMn1 also has this upper bound and we thus

have

n2M
1

1+δ

n1 /σ2
n = O

(
h

h2δ/(1+δ)

)
= O

(
h

1−δ

1+δ

)
= o(1).
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Similarly, we can show that

E|ϕn(X1, Xj)ϕn(Xi, Xj)|2(1+δ) = O

(
h2

h4(1+δ)

)
= O

(
1

h4δ+2

)
,

E|ϕn(X1, Xj)ϕn(Xi, Xj)|2 = O

(
1

h2

)
,

E|ϕn(X1, Xi)ϕn(Xj, Yk)|2(1+δ) = O

(
1

h4δ+2

)
,

which further imply that

n
3
2M

1
2(1+δ)

n2 /σ2
n = O

(
1

n1/2hδ/(1+δ)

)
= o(1),

n
3
2M

1
2
n3/σ

2
n = O

(
1

n1/2

)
= o(1).

n
3
2M

1
2(1+δ)

n4 /σ2
n = O

(
1

n1/2hδ/(1+δ)

)
= o(1),

by noticing again that δ/(1 + δ) < 1/2 and nh→ ∞.

For Mn5, we first calculate

E

∣∣∣∣
∫

ϕn(X1, Xi)ϕn(X1, Xj)dP (X1)

∣∣∣∣
2(1+δ)

=

∫ ∫ ∣∣∣∣
∫ (∫

Kh(x−X1)Kh(x−Xi)dx

∫
Kh(x−X1)Kh(x−Xj)dx

)
q(X1)dX1

∣∣∣∣
2(1+δ)

q(Xi, Xj)dXidXj(1 + o(1))

=

∫ ∫ ∣∣∣∣
∫

1

h4

(∫
K

(
x−X1

h

)
K

(
x−Xi

h

)
dx

∫
K

(
x−X1

h

)
K

(
x−Xj

h

)
dx

)
q(X1)dX1

∣∣∣∣
2(1+δ)

q(Xi, Xj)dXidXj(1 + o(1))

=

∫ ∫ ∣∣∣∣
∫

1

h2
K(2)

(
X1 −Xi

h

)
K(2)

(
X1 −Xj

h

)
q(X1)dX1

∣∣∣∣
2(1+δ)

q(Xi, Xj)dXidXj(1 + o(1))

=

∫ ∫ ∣∣∣∣
∫

1

h
K(2)(u)K(2)

(
u+

Xi −Xj

h

)
q(Xi + uh)du

∣∣∣∣
2(1+δ)

q(Xi, Xj)dXidXj(1 + o(1))

6
1

h2(1+δ)

∫ ∫ ∫ ∣∣∣∣K
(2)(u)K(2)

(
u+

Xi −Xj

h

)∣∣∣∣
2(1+δ)

q(Xi + uh)duq(Xi, Xj)dXidXj(1 + o(1))

=
h

h2(1+δ)

∫ ∫ ∫
|K(2)(u)K(2)(u+ v)|2(1+δ)q(Xi + uh)duq(Xi, Xi − vh)dXidv(1 + o(1))

6 C × h

h2(1+δ)

(∫
|K(2)(u)|2(1+δ)du

)2

= O

(
1

h2δ+1

)
.

Using the same method, we can show that the other quantities in the definition of Mn5

23



also have this upper bound and Mn5 = O
(

1
h2δ+1

)
. We thus have

n2M
1

2(1+δ)

n5 /σ2
n = O

(
h

h
2δ+1
2(1+δ)

)
= O

(
h

1
2(1+δ)

)
= o(1).

Similarly we have

E

∣∣∣∣
∫
ϕn(X1, Xi)ϕn(X1, Xj)dP (X1)

∣∣∣∣
2

= O

(
1

h

)
,

and

n2M
1
2
n6/σ

2
n = O

(
h

1
2

)
= o(1).

We have then checked the condition

1

σ2
n

{
n2

{
M

1
1+δ

n1 +M
1

2(1+δ)

n5 +M
1
2
n6

}
, n

3
2

{
M

1
2(1+δ)

n2 +M
1
2
n3 +M

1
2(1+δ)

n4

}}
→ 0,

and the CLT for the U-statistic is proved and we have finished proving Step 2.

Step 3 The asymptotic distribution of T ′
1 is an easy consequence of Step 1 and 2. The

asymptotic distribution of T1 is obtained by noticing T1 = T ′
1(1 + op(1)).

For the asymptotic distribution of T2. First use the result in Fan and Ullah (1999)

Theorem 4.1 we have
1

n

n∑

i=1

q̂(Xi)
p−→
∫
q2(x)dx,

then the CLT for T2 follows easily from Slutsky’s lemma. �

In proving Theorem 2, we will need the following weak convergence results for empir-

ical process of β-mixing sequences:

Lemma 2 (Kosorok (2008), Theorem 11.24) Let X1, X2, . . . be stationary with marginal

distribution P , and β-mixing with

∞∑

k=1

k2/(p−2)β(k) <∞,

for some 2 < p < ∞. Let F be a class of functions in L2(P ) satisfying the entropy

condition, where the bracketing number satisfies

J[ ](∞,F , Lp(P )) <∞. (15)

then

Gnf = n1/2

n∑

i=1

(f(Xi)− Pf)
d−→ GPf,
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in l∞(F), where f 7→ GPf is a tight, mean zero Gaussian process with covariance function

Γ(f, g) = lim
k→∞

∞∑

i=1

Cov(f(Xk), g(Xi)),

for all f, g ∈ F .

Proof (of Theorem 2) We prove the theorem using empirical processes techniques. We

are working with dependent data, so we need the empirical process result for β-mixing

sequences in Lemma 2, which is Theorem 11.24 in Kosorok (2008). The exponential decay

of β-mixing coefficients is sufficient for the above lemma to work.

We first prove

√
n(Q̂(x)−Q(x; θ̂n)) 

l∞(F) x 7→ GQI(u 6 x)−GQψ
T
θ0

∂Q(x, θ)

∂θ
|θ=θ0 , (16)

using the strategy discussed in Van der Vaart (2000), pp. 278–279. Here the notation

 l∞ denote weak convergence of stochastic process. Notice that

√
n(Q̂(x)−Q(x; θ̂n)) =

√
n(Q̂(x)−Q(x; θ))−

√
n(Q(x; θ̂n)−Q(x; θ))

=
√
n(Q̂(x)−Q(x; θ))−

√
n(θ̂n − θ)

∂Q(x, θ)

∂θ
,

=
√
n(Q̂(x)−Q(x; θ))− 1√

n

n∑

i=1

ψθ(Xi)
∂Q(x, θ)

∂θ
+ op(1),

where we use the differentiability of the parameterization and the assumption (P1b) about

the expansion of the parametric estimator. With this, the above limiting distribution is

determined by the joint distribution of

(
√
n(Q̂(x)−Q(x; θ)),

1√
n

n∑

i=1

ψθ0(Xi)

)
.

Notice that our F is the class of indicator functions F = {I(−∞, x)}, which satisfies

the entropy condition (15) and thus is a Donsker class. Adding the k components of ψθ

to F will make a larger class which we call G, which is again Donsker (a finite class is

Donsker); this is because the union of Donsker classes is also Donsker. Therefore

(
√
n(Q̂(x)−Q(x; θ)),

1√
n

n∑

i=1

ψθ0(Xi)

)
 

l∞(G) g 7→ GQg,

and using the continuous mapping theorem we get

√
n(Q̂(x)−Q(x; θ))− 1√

n

n∑

i=1

ψθ0(Xi)
∂Q(x, θ)

∂θ
 

l∞ x 7→ GQI(u 6 x)−GQψ
T
θ

∂Q(x, θ)

∂θ
.
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Notice that the process GQI(u 6 x) and the variable GQψ
T
θ are dependent because they

can be viewed as marginals of the process g 7→ GQg. Therefore, under the null hypothesis,

(16) is proved.

Then, under the null hypothesis,

T2n = n

∫
(Q̂(x)−Q(x; θ̂n))

2dQ(x; θ̂)

=

∫ (√
n(Q̂(x)−Q(x; θ̂n))

)2
dQ(x; θ0)(1 +Op(n

−1/2))

=

∫ (√
n(Q̂(x)−Q(x; θ̂n))

)2
dQ(x; θ)(1 + op(1)),

and the result of the theorem follows easily from continuous mapping, because the map

z 7→
∫
z2(t)dQ(t) from D[−∞,+∞] into R is continuous with respect to the supremum

norm. �

Proof (of Theorem 3) Under the alternative hypothesis, we can make the following

decomposition of the test statistic,

T1

= nh1/2
∫

(q̂(x)−Kh ∗ q(x; θ̂n))2dx

= nh1/2
∫

(q̂(x)−Kh ∗ q1(x))2dx+ nh1/2
∫

(Kh ∗ q1(x)−Kh ∗ q(x; θ̂n))2dx

+2nh1/2
∫

(q̂(x)−Kh ∗ q1(x))(Kh ∗ q1(x)−Kh ∗ q(x; θ̂n))dx

Using the same approach as in Theorem 1, it can be shown that the first term satisfies

nh1/2
(∫

(q̂(x)−Kh ∗ q1(x))2dx− (nh)−1

∫
K2(u)du

)

d−→ N

(
0, 2

∫
q20(u)du

∫
(K ∗K)2(u)du

)
.

For the second term, by definition

∫
(Kh ∗ q1(x)−Kh ∗ q(x; θ̂n))2dx

p−→
∫

(q1(x)− q(x; θ̂n))
2dx = Op(1),

as h → 0, because this is the L2 distance between the alternative model and the pe-

sudotrue model. The limit exists because we are considering functions in the L2 space.

Thus we have

nh1/2
∫

(Kh ∗ q1(x)−Kh ∗ q(x; θ̂n))2dx→ ∞.
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For the third term, by Cauchy-Schuwarz inequality

∫
(q̂(x)−Kh ∗ q1(x))(Kh ∗ q1(x)−Kh ∗ q(x; θ̂n))dx

6

(∫
(q̂(x)−Kh ∗ q1(x))2dx

)1/2(∫
(Kh ∗ q1(x)−Kh ∗ q(x; θ̂n))2dx

)1/2

= Op(n
−1/2h−1/4).

Then it is obvious that T1 → ∞ under H1 and the test is consistent.

The consistency of the test T2 can be shown analogously. �

Proof (of Theorem 4) Let F (x) = Q(x, θ∗) be the projection of Q1(x) onto the space

of parametric models. That is, Q(x, θ∗) is the pseudotrue model. Let X1, X2, . . . be

the observations generated from Q(x, θ∗), and denote F̂ (x) be the empirical distribution

function of the sample {Xi}ni=1. Then under the alternative hypothesis, we can make the

following decomposition

T3

= n

∫
(Q̂(x)−Q(x; θ̂n))

2dQ(x; θ̂n)

= n

∫
(Q̂(x)− F̂ (x))2dQ(x; θ̂n) + n

∫
(F̂ (x)−Q(x; θ̂n))

2dQ(x; θ̂n)

+2n

∫
(Q̂(x)− F̂ (x))(F̂ (x)−Q(x; θ̂n))ddQ(x; θ̂n).

When n→ ∞, the first term

n

∫
(Q̂(x)− F̂ (x))2dQ(x; θ̂n)

p−→ n

∫
(Q1(x)− F (x))2dF (x) = Op(n).

Using the same method as in the proof of Theorem 2, it can be shown that the second

term n
∫
(F̂ (x) − Q(x; θ̂n))

2dQ(x; θ̂n) satisfy the same convergence in distribution result

as in that theorem, such that

n

∫
(F̂ (x)−Q(x; θ̂n))

2dQ(x; θ̂n) = Op(1).

By Cauchy-Schuwarz inequality the cross product term is Op(n
1/2). Then it is obvious

that T3 → ∞ under H1 when n→ ∞ and the test is consistent. �
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(d) Power of T3

Figure 1: Power under the misspecification of the drift function. (a): drift function with
τ = 0 (solid), τ = 0.2 (dashed),τ = 0.5 (dotted),τ = 0.8 (dash-dotted),τ = 1 (purple
solid). (b), (c), (d): n = 500 (blue), n = 1000 (green), n = 2000 (red), n = 3000 (cyan)).
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(a) Diffusion functions
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(b) Power of T1 under different sample sizes
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(d) Power of T3 under different sample sizes

Figure 2: Power under the misspecification of the diffusion function. (a): drift function
with τ = 0 (solid), τ = 0.2 (dashed),τ = 0.5 (dotted),τ = 0.8 (dash-dotted),τ = 1 (purple
solid). (b), (c), (d): n = 500 (blue), n = 1000 (green), n = 2000 (red), n = 3000 (cyan)).
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Figure 3: Power under different jump intensities. (a), (b), (c): n = 500 (blue), n = 1000
(green), n = 2000 (red), n = 3000 (cyan)).
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Figure 4: (a): Log prices of Apple stock from 2000 to 2014. (b): Log returns of Ap-
ple stock: from 2000 to 2014. (c): Nonparametric density estimate. (d): Empirical
distribution function
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T1 T2 T3
n = 1000 0.0277 0.0581 0.0377
n = 2000 0.0372 0.0363 0.0400
n = 3000 0.0406 0.0564 0.0411

Table 1: Size of the bootstrap tests, cross validation
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