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Abstract. The classical problem of identifying the optimal risk transfer from one in-
surance company to multiple reinsurance companies is examined under some quantile-
based risk measure criteria. We develop a new methodology via a two-stage opti-
misation procedure which allows us to not only recover some existing results in the
literature, but also makes possible the analysis of high dimensional problems in which
the insurance company diversifies its risk with multiple reinsurance counter-parties,
where the insurer risk position and the premium charged by the reinsurers are func-
tions of the underlying risk quantile. Closed form solutions are elaborated for some
particular settings, although numerical methods for the second part of our proce-
dure represent viable alternatives for the ease of implementing it in more complex
scenarios. Furthermore, we discuss some approaches to obtain more robust results.

Keywords and phrases : Expected Shortfall, Distorted Risk Measure, Premium Prin-
ciple, Optimal Reinsurance, Truncated Tail-Value-at-Risk , Value-at-Risk.

1. Introduction

The optimality problem of the risk transfer contract between two insurance companies within a
one-period setting appears in different forms in the literature. The first attempts are attributed
to Borch (1960) and Arrow (1963) where maximising the expected utility defines the optimality
criterion. Further extensions have been developed for various decision criteria that depend on the
risk measure choice (for example, see Heerwaarden et al., 1989, Young, 1999, Kaluska, 2001 and
2005, Verlaak and Beirlant, 2003, Kaluszka and Okolewski, 2008, Ludrovski and Young, 2009). De-
cisions based on two particular risk measures, Value-at-risk (VaR) and Expected Shortfall (ES), are
considered by Cai et al. (2008), Cheung (2010) and Chi and Tan (2011). All of the afore-mentioned
papers deal with the one-period model. The classical risk model setting has been successfully stud-
ied in the literature by Centeno and Guerra (2010) and Guerra and Centeno (2008 and 2010), via
maximisation of the adjustment coefficient.

There are two parties involved in a reinsurance contract: the insurer or cedent who has an
interest in transferring part of its risk, and the reinsurer. Let X ≥ 0 be the total loss amount
incurred during the duration of the insurance contract, with distribution function denoted by F (·)
and survival function F̄ (·) = 1−F (·). In addition, the right end-point xF := inf{z ∈ ℜ : F (z) = 1}
of the loss distribution can be either finite or infinite. The reinsurance company agrees to pay, R[X ],
the amount by which the entire loss exceeds the insurer amount, I[X ]. Thus, I[X ] + R[X ] = X .
There are many possible reinsurance arrangements, which depend on the particular choice of the
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insurer and reinsurer of sharing the premiums and underwritten risks. For example, the liabilities
are shared in a fixed proportion under proportional reinsurance and therefore I[X ] = cX , where
0 < c < 1 is a constant. Another common arrangement is the stop-loss reinsurance contracts, for
which the cedent loss is limited to a fixed amount, M , known as retention limit. The net amount
paid by the insurer is therefore given by min{X,M} := X ∧M .

The reinsurer premium, P
(

R[X ]
)

, is usually assumed to satisfy P
(

R[X ]
)

≥ E
(

R[X ]
)

, since
otherwise the risk bearer would become insolvent almost surely. Obviously, the total insurer loss
becomes

L
(

R[X ]
)

:= I[X ] +P
(

R[X ]
)

.

The aim of this paper is to identify the optimal arrangement that lays the cedent in the best

possible situation towards the risk. That is, we intend to minimise ϕI

(

L
(

R[X ]
)

)

over a set of

feasible reinsurance contracts, where ϕI represents a measure of the risk taken by the insurer.
Motivated by the standard regulatory requirements developed within the insurance industry, the
risk exposures are measured via VaR and ES risk measures. The VaR of a generic loss variable Z at
a confidence level α, V aRα(Z), represents the minimum amount of capital that makes the insurance
company to be solvent at least α% of the time. The mathematical formulation is then given by

V aRα(Z) := inf{z ≥ z0 : Pr(Z ≤ z) ≥ α},

where z0 := sup{z ∈ ℜ : Pr(Z ≤ z) = 0} represents the left end point of the distribution of Z. The
ES at a confidence level α, ESα(Z), evaluates the expected loss amount incurred among the worst
(1 − α)% scenarios. Clearly, ES represents a more conservative risk measure than VaR, especially
in the situation in which both risk quantifications are made at the same confidence level. The ES
has multiple formulations in the literature, and the comprehensive papers on this topic of Acerbi
and Tasche (2002) and Hürlimann (2003) may help in clarifying the differences between equivalent
representations. We only refer to the next definition:

ESα(Z) :=
1

1− α

∫ 1

α

V aRs(Z) ds = V aRα(Z) +
1

1− α
E
(

Z − V aRα(Z)
)

+
, (1.1)

where (z)+ = max{z, 0}. Interestingly, this risk measure is a special case of the Haezendonck-
Goovaerts class, which was introduced many years ago by Haezendonck and Goovaerts (1982).
Further details can be found in Bellini and Rosazza Gianin (2012), Goovaerts et al. (2004 and
2012) and the references therein.

As a result of the translation invariance property of the three risk measures, the following holds

ϕI

(

L
(

R[X ]
)

)

= ϕI

(

I[X ]
)

+P
(

R[X ]
)

.

In order to avoid potential moral hazard issues related to the reinsurance arrangement, the set of
feasible contracts is given by

F :=
{

R(·) : I(x) = x−R(x) and R(x) are non− decreasing functions
}

.

It is useful to note that R ∈ F implies that the functions I and R are Lipschitz functions with unit
constants, i.e. |I(y)−I(x)| ≤ |y−x| and |R(y)−R(x)| ≤ |y−x| are true for all x, y ≥ 0. Therefore,
our optimisation problem is reduced to

min
R∈F

{

ϕI

(

X
)

− ϕI

(

R[X ]
)

+P
(

R[X ]
)

}

, (1.2)

since I[X ] and R[X ] are co-monotone random variables (for details, see Dhaene et al., 2002 a and
b, Denuit et al., 2005). In other words, the co-monotonicity property implies that

ϕI

(

X
)

= ϕI

(

I[X ]
)

+ ϕI

(

R[X ]
)

.

It should be noted that we give explicit derivations whenever the insurer’s risk position is evaluated
via the ES and VaR risk measures, but our procedure can be easily applied to any risk measure
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that is a function of the risk quantile. In Section 4, we will illustrate this for a more robust risk
measure, namely the Truncated Tail Value-at-Risk (TrTVaR). A large class of such risk measures
is given by

MΦ(Z) :=

∫ 1

0

V aRs(Z)Φ(s) ds,

where the function Φ(·) has certain properties. This class is known as the distorted (see Wang and
Young, 1998 and Jones and Zitikis, 2003) and spectral (see Acerbi, 2002) class of risk measures,
respectively. Therefore, our procedure is widely applicable to situations in which the insurer risk
position is evaluated via many well-known risk measures.

A common premium principle used in practice is the expected value principle. That is, the
reinsurer premium is loaded as follows:

P
(

R[X ]
)

= (1 + ρ)E
(

R[X ]
)

,

where ρ > 0 is known as the security loading factor. The main problem defined by equation 1.2 has
been previously investigated in the literature when the insurer has set VaR or ES as the baseline
risk measure. Cai et al. (2008) and Cheung (2010) found the optimal reinsurance contract over a
class of convex functions R(·). Note that both papers assume F (·) to be a strictly increasing and
continuous function, and therefore their Conditional Tail Expectation evaluation coincides with that
of ES. Chi and Tan (2011) elaborate a two-stage optimisation procedure to solve the VaR and ES
problem, where the solution of the first problem is given a priori.

Once again, our procedure can be applied to other premium principles that are functions of the
underlying risk quantile. Section 3 contains some distorted premium principles that should help in
supporting our statement. The expected value principle is chosen only for the sake of exposition,
and also to recover some existing results from the literature.

So far, it has been implicitly assumed that the insurer may transfer the risk to only one reinsurance
counter-party. More realistic situations involve multiple reinsurance risk transfers available on the
market. It is likely that each reinsurer has its own pricing model, and the cedent may choose to
transfer specific layers from the total risk to competitive companies. Therefore, the insurer may
improve the diversification gain by sharing the loss with multiple reinsurance counter-parties. At
this point, it is worth mentioning that all previously-mentioned papers assume the reinsurance
market to consist of only one agent.

In this paper, we present a general two-stage based algorithm for identifying optimal arrange-
ments when the insurer risk is diversified through multiple reinsurance agreements. More specifically,
we investigate some optimisation problems within a trivariate risk transfer setting with different
assumptions regarding the premium principles used by the two reinsurance counter-parties. Accord-
ing to our knowledge, the proposed method represents the only choice for an insurance company of
taking advantage of different available reinsurance pricing schemes on the market. However, this
situation tends to be cumbersome if more than two reinsurance companies are potential players in
the risk transfer game. We derive closed form solutions for two particular scenarios, but numeri-
cal methods are required for solving the second stage problem in order to overcome this potential
computational issue. In the one dimensional reinsurance market case, our approach can also be
viewed as an alternative solution to existing methods, but we clearly derive the solution of the first
optimisation problem. However, our proposed method has the advantage of solving more complex
situations, whenever the insurer’s risk position and the reinsurer premiums are functions of the risk
quantile. Note that our approach can be extended to many more reinsurance companies than just
two.

The rest of the paper is organized as follows. The next section gives a different perspective for
the ideal ES and VaR-based reinsurance arrangement under the assumption that there is only one
reinsurance company on the market, for which some of the results can already be found in the
existing literature. The third section illustrates some VaR and ES-based optimal decisions for an
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insurer, whenever the cedent shares the risk with two other reinsurance agents. The fourth section
deals with robust estimation of the optimal reinsurance arrangement. In this section we will also
obtain the ideal TrTVaR-based reinsurance arrangement given that there is only one reinsurance
company on the market. The final section comprises a numerical analysis of some of our main
results.

2. Optimal Single Reinsurance Contract

The current section explains our method of finding the optimal risk transfer whenever there is
only one reinsurance company. This lays the foundation for extending our methodology to more
complex situations where multiple risk absorbers are available to the risk transfer initiator. This
section also provides an alternative proof for some existing results in the literature, and additionally,
we are able to find all optimal solutions via our constructive methodology. Expected value premium
principle is set to be used by the reinsurer, while the insurer risk is measured by VaR and ES, as
has been anticipated in the previous section. These settings are chosen to simply explain our
constructive method, but one may apply it for any situation in which the insurer’s criterion and
reinsurance premium are functions of the underlying risk quantile. The method consists of a two-
stage optimisation problem, where the first one is an infinite dimensional problem, while the second
stage becomes a classical constrained optimisation problem. Therefore, the first stage is the key
step in our procedure, and it can be solved as shown in Proposition 2.1.

Proposition 2.1. Let f(·) be a real valued function defined on [s1, s2] with 0 ≤ s1 ≤ s2 ≤ 1. Then,

min
R∈F

∫ s2

s1

f(s)R
(

V aRs(X)
)

ds subject to R
(

V aRs1(X)
)

= ξ1, R
(

V aRs2(X)
)

= ξ2,

is uniquely solved by

R∗[X ; ξ1, ξ2] =

{
(

X − V aRs1(X) + ξ1
)

∧ ξ2, if f(s) < 0 for all s1 ≤ s ≤ s2
ξ1 +

(

X − V aRs2(X) + ξ2 − ξ1
)

+
, if f(s) > 0 for all s1 ≤ s ≤ s2

,

where (ξ1, ξ2) are some constants such that 0 ≤ ξ2 − ξ1 ≤ V aRs2(X)− V aRs1(X).

Proof. Without loss of generality, we may only investigate the case in which ξ1 = 0 and ξ2 = ξ. Let
R ∈ F be a generic risk transfer function such that R

(

V aRs1(X)
)

= ξ1, R
(

V aRs2(X)
)

= ξ2. We
first assume that the function f(·) takes only negative values, and we show that R(x) ≤ R∗(x; 0, ξ)
holds for all x ∈ [V aRs1(X), V aRs2(X)]. If there exists x0 ∈ [V aRs1(X), V aRs2(X)] satisfying
R∗(x0; 0, ξ) < R(x0), then x0 < ξ due to the boundary condition. Thus,

R(x0)− R
(

V aRs1(X)
)

= R(x0) > R∗(x0; 0, ξ) = x0 − V aRs1(X),

which contradicts the Lipschitz continuity property. Therefore, the first scenario is concluded.
Similarly, if f(·) takes only positive values, then it is sufficient to show that R(x) ≥ R∗(x; 0, ξ)

holds for all x ∈ [V aRs1(X), V aRs2(X)]. If there exists x0 ∈ [V aRs1(X), V aRs2(X)] satisfying
R(x0) < R∗(x0; 0, ξ), then V aRs2(X)− ξ < x0 ≤ V aRs2(X) due to the boundary condition. Thus,

R
(

V aRs2(X)
)

−R(x0) = ξ −R(x0) > ξ − R∗(x0; 0, ξ) = V aRs2(X)− x0,

which contradicts the Lipschitz continuity property. Thus, the first proof is now complete. �

We are now ready to exemplify our procedure, and we start out with the VaR criterion, which is
given in Theorem 2.1.

Theorem 2.1. Let ρ∗ = ρ/(1 + ρ). The VaR-based optimal decision that minimises the insurer
total loss from 1.2 is given by

R∗[X ] =
(

X − V aRρ∗(X)
)

+
∧
(

V aRα(X)− V aRρ∗(X)
)

+
. (2.1)
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Therefore, the corresponding cedent risk becomes

V aRα

(

L
(

R∗[X ]
)

)

= V aRα(X) ∧ V aRρ∗(X) + (1 + ρ)

∫ V aRα(X)

V aRα(X)∧V aRρ∗ (X)

F̄ (x) dx. (2.2)

Proof. Recall that we need to minimise

V aRα

(

L
(

R[X ]
)

)

= V aRα(X)− V aRα

(

R[X ]
)

+ (1 + ρ)E
(

R[X ]
)

= V aRα(X)− R
(

V aRα(X)
)

+ (1 + ρ)

∫ 1

0

R
(

V aRs(X)
)

ds

over F . Note that the last relation is true since R(·) is a non-decreasing continuous function. The
above optimisation problem is solved via a two-stage procedure, and the first step is given by

min
R∈F

∫ 1

0

R
(

V aRs(X)
)

ds subject to R
(

V aRα(X)
)

= ξ, (2.3)

where 0 ≤ ξ ≤ V aRα(X) is a constant. Proposition 2.1 allows us to conclude that 2.3 is solved by

R∗[X ; ξ] :=
(

X − V aRα(X) + ξ
)

+
∧ ξ. (2.4)

Now,

E
(

R∗[X ; ξ]
)

=

∫ ξ

0

Pr
(

R∗[X ; ξ] > x
)

dx =

∫ V aRα(X)

V aRα(X)−ξ

Pr(X > x) dx.

Thus, the second step is to minimise

H1(ξ) := −ξ + (1 + ρ)

∫ V aRα(X)

V aRα(X)−ξ

F̄ (x) dx (2.5)

over the set [0, V aRα(X)]. Clearly, the derivative H
′

1(ξ) = −1 + (1 + ρ)F̄
(

V aRα(X) − ξ
)

takes
non-positive values if and only if V aRα(X)−V aRρ∗(X) ≥ ξ. Thus, if V aRα(X) ≥ V aRρ∗(X) then
H1(·) is minimised at V aRα(X) − V aRρ∗(X), which replicates 2.1 in this case. Similarly, H1(·)
attains its global minimum at 0, whenever V aRα(X) < V aRρ∗(X). Thus, the insurer should choose
R∗[X ; 0] = 0. The proof is now complete. �

We are now able to find the optimal ES-based decision, which is further developed in Theorem 2.2.

Theorem 2.2. The ES-based optimal reinsurance contract that solves 1.2 is given by

R∗[X ] =







(

X − V aRρ∗(X)
)

+
, α > ρ∗

0, α < ρ∗

h∗
1(X), α = ρ∗

,

where h∗
1(·) is a non-decreasing Lipschitz function with unit constant satisfying h∗

1

(

V aRα(X)
)

= 0.
Therefore, the corresponding insurer risk becomes

ESα

(

L
(

R∗[X ]
)

)

=

{

V aRρ∗(X) + (1 + ρ)
∫ xF

V aRρ∗ (X)
F̄ (x) dx., α > ρ∗

ESα(X), α ≤ ρ∗
.

Proof. Recall that we aim to minimise

ESα

(

L
(

R[X ]
)

)

= ESα(X)−ESα

(

R[X ]
)

+ (1 + ρ)E
(

R[X ]
)

= ESα(X)−
1

1− α

∫ 1

α

R
(

V aRs(X)
)

ds+ (1 + ρ)

∫ 1

0

R
(

V aRs(X)
)

ds
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over F , where the second identity is due to equation 1.1 and the fact that R(·) is a non-decreasing
continuous function. Once again, the latter is solved via a two-stage optimisation procedure, and
the first step is given by







min
R∈F

(1 + ρ)

∫ α

0

R
(

V aRs(X)
)

ds+
(

1 + ρ−
1

1− α

)

∫ 1

α

R
(

V aRs(X)
)

ds

subject to R
(

V aRα(X)
)

= ξ,
(2.6)

where the parameter ξ satisfies 0 ≤ ξ ≤ V aRα(X).
Let us first assume that α > ρ∗, which implies that 1+ ρ− 1

1−α
< 0. Thus, Proposition 2.1 shows

that 2.6 is solved by R∗[X ; ξ] :=
(

X − V aRα(X) + ξ
)

+
. Next,

H2(ξ) := −ESα

(

R∗[X ; ξ]
)

+ (1 + ρ)E
(

R∗[X ; ξ]
)

= −ESα(X) + V aRα(X)− ξ + (1 + ρ)

∫ xF

V aRα(X)−ξ

F̄ (x) dx,

needs to be minimised over the set [0, V aRα(X)]. Note that the above differs from H1(·) defined in
2.5 by just a constant, and therefore has the same behaviour. Similar reasoning to the one used in
the proof of Theorem 2.1 shows that H2(·) is minimised at V aRα(X)−V aRρ∗(X), which completes
the proof in this case.

The mirror setting α < ρ∗ is considered. Now, the optimal reinsurance contract of 2.6 is given by
2.4, due to Proposition 2.1 and the fact that 1+ ρ− 1

1−α
> 0. The second stage in our optimisation

can be solved as before.
Finally, the case in which α = ρ∗ is discussed in greater detail. We have no available information

on the behaviour of the optimal solution on [V aRα(X), xF ], and the solution of 2.6 is no longer
unique. The set of possible solutions is given by

R∗[X ; ξ] :=

{
(

X − V aRα(X) + ξ
)

+
, X ≤ V aRα(X)

h∗
1(X ; ξ), X > V aRα(X)

,

where h∗
1(·; ξ) is a Lipschitz function with unit constant such that h∗

1

(

V aRα(X); ξ
)

= ξ. These are
consequences of Proposition 2.1 and the fact that R(·) is a Lipschitz function with unit constant.
The second stage optimisation problem is reduced to minimising

H3(ξ) :=

∫ α

0

(

V aRs(X)− V aRα(X) + ξ
)

+
ds

=

∫ α

F

(

V aRα(X)−ξ

)

(

V aRs(X)− V aRα(X) + ξ
)

ds

over [0, V aRα(X)]. The above is increasing in ξ, since

H3(ξ1) ≤

∫ α

F

(

V aRα(X)−ξ1

)

(

V aRs(X)− V aRα(X) + ξ2
)

ds ≤ H3(ξ2)

for all 0 ≤ ξ1 < ξ2 ≤ V aRα(X). The second inequality is true as a result of

V aRs(X)− V aRα(X) + ξ2 > 0, for all F
(

V aRα(X)− ξ2
)

< s ≤ F
(

V aRα(X)− ξ1
)

.

Thus, H3(·) attains its minimum at 0. It may be worth mentioning that the objective function that
we start with has its minimal value

ESα(X) + (1 + ρ)

∫ α

0

(

V aRs(X)− V aRα(X)
)

+
ds = ESα(X).

The last case is now elucidated, which completes the proof. �
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Note that the VaR-based insurer optimal contract includes extremely high layers as opposed to
the ES-based ideal solution. This is due to the fact that VaR is blind to more extreme situations than
its level, while ES incorporates the entire tail risk. It should also be noted that our findings from
Theorem 2.1 replicate some existing results, such as Theorem 3.2 of Chi and Tan (2011). Moreover,
most of our findings from Theorem 2.2 fully overlap with previous results from Theorem 4.1 of
Chi and Tan (2011). In most of the cases, the optimal solution is unique, as observed in the
aforementioned paper. Our first stage optimisation problem does not have a single solution whenever
α = ρ∗, which makes the optimal solution of the initial problem to not be unique anymore. The
previous approaches are able to capture only one optimal solution, which is due to the fact that
their solution for the first optimisation problem is given a priori, and is sensitive to the problem to
be solved, while the proposed approach is an instructive method of finding the optimal solution(s).
Our method is able to identify the entire set of optimal solutions, which obviously lays the insurer
at the same level of risk, but it has the advantage of allowing the decision-maker to choose the best
arrangement among these optimal solutions according to a different criterion. For example, if the
insurer wishes to find the ES-based optimal risk transfer for α1 = ρ∗, then Theorem 2.2 says that
the whole risk prior to V aRρ∗(X) should be retained by the reinsurer, while the remaining layer can
be shared with the reinsurer in any possible way. In addition, if the insurer decides to find the ideal
way of sharing layers higher than V aRρ∗(X), the optimal V aRα2

-based decision, with α2 > ρ∗, is as
given by Theorem 2.1. Thus, the multiple criteria decision (the optimal V aRα2

(X) contract among
the set of ESα1

-based optimal risk transfer, where α1 = ρ∗ < α2), is given by

I∗[X ] = X ∧ V aRρ∗(X) +
(

X − V aRα2
(X)

)

.

In the next section, one may find why previous methods, based on knowledge of the solution
a priori, fail to be applicable since the optimal solution becomes quite cumbersome. In contrast,
our constructive method is able to accommodate even higher dimensional problems where there are
more than one reinsurers that may absorb the insurer’s risk.

3. Optimal Multiple Reinsurance Contract

It is natural to consider situations in which an insurance company may be able to share the
risk with multiple reinsurers that use different premium principles. Clever allocation of the risk
layers among the players, would produce a better position for the insurer towards the risk, as a
result of risk reduction. In this section, we derive optimal solutions for the VaR-based problem
when the reinsurance market consists of two agents with different pricing schemes. The two-stage
optimisation procedure allows one to tackle complex situations with more than two agents, although
analysis becomes cumbersome in high dimension. We choose two settings in order to exemplify our
procedure in such cases. The key point is to solve the first stage problem, while the second one can
be solved numerically. Generally speaking, high dimensional problems are numerically tractable,
but one ought to carefully design the variable restrictions associated with the second stage problem.
A general assumption that is required by our proposed method is that each reinsurer could price
any risk layer, although we do not exclude the possibility of discouraging the insurer to place certain
layers by some reinsurers.

The bivariate reinsurance problem has the following mathematical formulation

min
(R1,R2)∈G

V aRα

(

L
(

R1[X ], R2[X ]
)

)

= V aRα

(

I[X ]
)

+P1

(

R1[X ]
)

+P2

(

R2[X ]
)

, (3.1)

where G :=
{

(R1, R2) : I(x) = x−R1(x)−R2(x), R1(x) and R2(x) are non−decreasing functions
}

.
Next, an explanation is provided for the above requirements, though standard assumptions that

impose the amounts paid by insurance and reinsurance players to be increasing functions of the
total loss. The starting point lies within the fundamentals of the reinsurance market mechanism.
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Therefore, whenever multiple insurers share a risk, the risk allocation process is made sequentially.
Specifically, a feasible allocation for our setting from 3.1 should satisfy

(C1) I and R1 are non-decreasing functions of X −R2

(C2) I and R2 are non-decreasing functions of X −R1

(C3) R1 and R2 are non-decreasing functions of X − I

in order to avoid potential moral hazard issues with such allocation.

Proposition 3.1. Under conditions (C1) to (C3), I, R1 and R2 are non-decreasing functions of
X. In addition, I, R1 and R2 are Lipschitz functions with unit constants.

Proof. Let ω1 and ω2 be two possible outcomes such that X(ω1) ≤ X(ω2). We may assume without
loss of generality that I(ω1) ≤ I(ω2), and therefore it is sufficient to show that R1(ω1) ≤ R1(ω2)
and R2(ω1) ≤ R2(ω2). Now, if R2(ω1) > R2(ω2), then condition (C2) implies that

X(ω1)− R1(ω1) > X(ω2)− R1(ω2) ⇒ I(ω1) ≥ I(ω2).

Thus, I(ω1) = I(ω2), which in turn suggests that X(ω1) > X(ω2), since condition (C3) implies that
X(ω1)− I(ω1) > X(ω2)− I(ω2). Consequently, our assumption is violated, and therefore I, R1 and
R2 should be non-decreasing functions of the total risk X .

The Lipschitz property is proved only for the insurer retained loss. In other words, we need to
show that I(ω2)− I(ω1) ≤ X(ω2)−X(ω1) is true as long as I(ω1) ≤ I(ω2). Clearly,

I(ω2)− I(ω1) = X(ω2)−X(ω1)−
(

R1(ω2)−R1(ω1)
)

−
(

R2(ω2)− R2(ω1)
)

≤ X(ω2)−X(ω1).

The proof is now complete. �

As it has been demonstrated that the infinite dimensional optimisation problem given in the first
stage of our procedure is the key step in finding the optimal risk transfer. The next result extends
Proposition 2.1 when there are two risk absorbers.

Proposition 3.2. Let f1(·) and f2(·) be two real valued functions defined on [s1, s2] with 0 ≤ s1 ≤
s2 ≤ 1. Then,

min
R∈G

∫ s2

s1

f1(s)R1

(

V aRs(X)
)

ds+

∫ s2

s1

f2(s)R2

(

V aRs(X)
)

ds subject to (3.2)

R1

(

V aRs1(X)
)

= ξ11, R1

(

V aRs2(X)
)

= ξ12, R2

(

V aRs1(X)
)

= ξ21, R2

(

V aRs2(X)
)

= ξ22,

is uniquely solved by

i) if f1(s) < f2(s) < 0 for all s1 ≤ s ≤ s2, then
{

R∗
1[X ; ξ] =

(

X − V aRs1(X) + ξ11
)

+
∧ ξ12

R∗
2[X ; ξ] = ξ21 +

(

X − V aRs1(X)− (ξ12 − ξ11)
)

+
∧ (ξ22 − ξ21)

,

ii) if f1(s) < 0 < f2(s) for all s1 ≤ s ≤ s2, then
{

R∗
1[X ; ξ] =

(

X − V aRs1(X) + ξ11
)

+
∧ ξ12

R∗
2[X ; ξ] = ξ21 +

(

X − V aRs2(X) + ξ22 − ξ21
)

+

,

iii) if 0 < f1(s) < f2(s) for all s1 ≤ s ≤ s2, then
{

R∗
1[X ; ξ] = ξ11 +

(

X − V aRs2(X) + ξ12 − ξ11 + ξ22 − ξ21
)

+
∧ (ξ12 − ξ11)

R∗
2[X ; ξ] = ξ21 +

(

X − V aRs2(X) + ξ22 − ξ21
)

+

,

where ξ = (ξ11, ξ12, ξ21, ξ22) ∈ D is a vector of constants and

D :=

{

0 ≤ ξ11 ≤ ξ12, 0 ≤ ξ21 ≤ ξ22, ξ11 + ξ21 ≤ V aRs1(X), ξ12 + ξ22 ≤ V aRs2(X),
ξ12 − ξ11 + ξ22 − ξ21 ≤ V aRs2(X)− V aRs1(X).
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Proof. Let (R1, R2) ∈ G such that the boundary conditions are satisfied, as required in our optimi-
sation problem from 3.2.

Part i) is first investigated. If (R∗
1, R

∗
2) is not the unique solution of 3.2, then it may happen that

∫ s2

s1

(

f1(s)
(

R1

(

V aRs(X)
)

−R∗
1

(

V aRs(X); ξ
)

)

+f2(s)
(

R2

(

V aRs(X)
)

−R∗
2

(

V aRs(X); ξ
)

)

)

ds<0.(3.3)

Note that R1(x) − R∗
1(x; ξ) ≤ 0 holds for all x ∈ [V aRs1(X), V aRs2(X)], which is a result of

Proposition 2.1. The latter and the fact that f1(s)− f2(s) < 0 is true for all s1 ≤ s ≤ s2 imply that
the left hand side of 3.3 is greater than

∫ s2

s1

f2(s)
(

R1

(

V aRs(X)
)

+R2

(

V aRs(X)
)

−R∗
1

(

V aRs(X); ξ
)

−R∗
2

(

V aRs(X); ξ
)

)

ds

=

∫ s2

s1

f2(s)
(

I∗
(

V aRs(X); ξ
)

−I
(

V aRs(X)
)

)

ds ≥ 0, (3.4)

where the last step is a result of Proposition 2.1, i.e. I∗(x; ξ) ≤ I(x) is true on [V aRs1(X), V aRs2(X)].
Thus, 3.4 contradicts 3.3, and therefore (R∗

1, R
∗
2) is indeed the unique optimal solution of 3.2 for

part i).
Part ii) simply follows from the fact that

R1(x) ≤ R∗
1(x; ξ) and R2(x) ≥ R∗

2(x; ξ), for all x ∈ [V aRs1(X), V aRs2(X)],

which are consequences of Proposition 2.1.
Part iii) can be proven in the same manner as Part i), and therefore is left to the reader. Thus,

the proof is now complete. �

We need to specify the premium calculation used by each reinsurance company in order to evaluate
the insurer’s optimal decision. Our two-stage optimisation problem can be applied to any premium
principle that is quantile-based, i.e. the premium charged by reinsurer is a function of the quantile
function corresponding to its paid amount. We derive the ideal reinsurance contract among all
VaR-based decisions, but one can extend our findings for ES-based decisions, or any other objective
function that is based on a risk measure which is a function of the insurer’s risk quantile. Note that
all distorted and spectral risk measures are risk quantile functions.

A major class of quantile-based risk measures is the distorted class, for which the following
definition is needed.

Definition 3.1. A distortion function is a non-decreasing function g : [0, 1] → [0, 1] such that
g(0) = 0 and g(1) = 1.

Any distortion function defines a distorted expectation, which represents a risk measure and can
be useful in premium calculations (see for example, Jones and Zitikis, 2003). The insurer chooses
its optimal VaR-based contract by transferring the risk to one reinsurer that uses the expected
value principle, i.e. P

(

R1[X ]
)

= (1 + ρ)E
(

R1[X ]
)

, while the second reinsurer prefers the distorted
premium principle. Thus,

P
(

R2[X ]
)

=

∫ xF

0

g
(

Pr
(

R2[X ] > x
)

)

dx =

∫ 1

0

V aRs

(

R2[X ]
)

Φ(s) ds,

where g(·) is a distorted function and Φ(s) := g
′

(1 − s). Note that g(·) is not assumed to be
differentiable on its domain. Since g(·) is concave, its right and left derivatives always exist and the
usual derivative exists almost everywhere. Thus, the above integral does not change its value due
to the fact that at most a null-measure set could possibly be removed (for details, see Dhaene et
al., 2012).
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The specific optimisation problem that is elaborated in this section can be summarised as follows:

min
(R1,R2)∈G

V aRα

(

I[X ]
)

+ (1 + ρ)

∫ 1

0

V aRs

(

R1[X ]
)

ds+

∫ 1

0

V aRs

(

R2[X ]
)

Φ(s) ds. (3.5)

Closed form solutions are obtained if the premium principles are fully specified. It should not be
surprising if the optimal arrangement is heavily sensitive to the reinsurer pricing strategy. The first
result allows for diversification gain, while the presence of the second reinsurer becomes futile from
the insurer point of view in Theorem 3.2. The next set of assumptions are sufficient to describe our
findings from Theorem 3.1.

Assumption 3.1. Let g(·) be a distortion function with corresponding positive function Φ(·) such
that lim sups→0 g(s) = 0 and g′+(0) > 1 + ρ, where g′+(·) represents the right-derivative function.

We now discuss our assumptions. Clearly, the concavity of g(·) implies that Φ(·) is non-negative
and non-decreasing. The positivity assumptions allows us to remove the possibility of having in-
finitely many optimal solutions for our first stage optimisation problem. The first assumption on
function g(·) tells us that a jump at 0 for g(·) is excluded, which could be possible, since the con-
cavity guarantees continuity only on (0, 1). The key condition g′+(0) > 1+ρ implies that there exist
s∗∗ ≤ s∗ < 1 such that:

i) s∗ := inf{s : Φ(s) ≥ 1 + ρ} ≥ ρ∗;
ii) s∗∗ is the unique non-trivial solution of G(1− s∗∗) = 0, where G(t) := (1 + ρ)t− g(t).

We only need to argue that ρ∗ ≤ s∗ holds. Note that G(t) < 0 for all 0 < t < 1− s∗∗, and therefore
if s∗ < ρ∗, then G(1− ρ∗) < 0. The latter implies that g

(

1/(1 + ρ)
)

> 1, which is false, and in turn
one finds that ρ∗ ≤ s∗ is true.

The next theorem establishes situations in which the second reinsurer sets its premium not only
on the tail risk, and consequently takes into consideration the entire loss spectrum.

Theorem 3.1. Let us assume that Assumption 3.1 holds such that s∗∗ ≤ α Then, the VaR-based
optimal reinsurance contract described in 3.5 is as follows:

R∗
1[X ] =

(

X − V aRs∗∗(X)
)

+
∧
(

V aRα(X)− V aRs∗∗(X)
)

, R∗
2[X ] = X ∧ V aRs∗∗(X), (3.6)

and the corresponding insurer risk becomes

V aRα

(

L
(

R∗
1[X ], R∗

2[X ]
)

)

= (1 + ρ)

∫ V aRα(X)

V aRs∗∗ (X)

F̄ (x) dx+

∫ V aRs∗∗ (X)

0

g
(

F̄ (x)
)

dx. (3.7)

Note 3.1. Theorem 3.1 shows that one is not able to simply apply a sequential optimisation for high
dimensional problems. That is, the optimal solution cannot be incrementally obtained by initially
finding the insurer’s allocation in the presence of the first reinsurance only, as shown in Theorem 2.1,
and then the insurer to look for sharing the remaining risk with the second reinsurer.

Proof. The proof is composed of two stages, and initially additional restrictions are added to our
main optimisation problem defined in 3.5. Thus, provided that s∗ < α,















min
(R1,R2)∈G

V aRα

(

I[X ]
)

+ (1 + ρ)

∫ 1

0

V aRs

(

R1[X ]
)

ds+

∫ 1

0

V aRs

(

R2[X ]
)

Φ(s) ds

subject to R1

(

V aRs∗(X)
)

= ξ11, R1

(

V aRα(X)
)

= ξ12,
R2

(

V aRs∗(X)
)

= ξ21, R2

(

V aRα(X)
)

= ξ22,

(3.8)

is solved at the moment, where ξ = (ξ11, ξ12, ξ21, ξ22) ∈ D1 is a vector of constants and

D1 :=

{

0 ≤ ξ11 ≤ ξ12, 0 ≤ ξ21 ≤ ξ22, ξ11 + ξ21 ≤ V aRs∗(X), ξ12 + ξ22 ≤ V aRα(X),
ξ12 − ξ11 + ξ22 − ξ21 ≤ V aRα(X)− V aRs∗(X).
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We are now able to solve 3.8 by applying Proposition 3.2 twice, but keeping in mind Assump-
tion 3.1 and its consequences. A graphical representation of the optimal solution is provided in
Figure 3.1, where without loss of generality ξ11 ≤ ξ21 and ξ12 ≤ ξ22 are assumed to hold.

X��� ∗(")− $11 −  $21  

��� ∗(X)−$11  

��� ∗(X)  

���& " − $22 −  $21 −  $12 −  $11( ) ) )( (

���& " − $22 −  $21( ( ))

���& "  ( )

$11

$21

$12

$22

Figure 3.1. The construction of R∗
1[X ; ξ] (solid line) and R∗

2[X ; ξ] (dotted line) in
Theorem 3.1 when s∗ < α.

As a result, the solution of 3.8 is given by

R∗
1[X ; ξ] :=

{

(

X − V aRs∗(X) + ξ11
)

+
∧ ξ11, X ≤ V aRα(X)− (ξ12 − ξ11)− (ξ22 − ξ21)

(

X − V aRα(X) + (ξ22 − ξ21) + ξ12
)

+
∧ ξ12, otherwise

and

R∗
2[X ; ξ] :=

{

(

X − V aRs∗(X) + ξ11 + ξ21
)

+
∧ ξ21, X ≤ V aRα(X)− (ξ22 − ξ21)

(

X − V aRα(X) + ξ22
)

+
∧ ξ22, otherwise

.

Note that the above are true even if either ξ11 ≤ ξ21 or ξ12 ≤ ξ22 is not satisfied. Consequently, the
second step optimisation problem is equivalent to

min
D1

G1(ξ) :=V aRα

(

X
)

−ξ12−ξ22+

∫ V aRs∗ (X)−ξ11

V aRs∗ (X)−ξ11−ξ21

g
(

F̄ (x)
)

dx+

∫ V aRα(X)

V aRα(X)−(ξ22−ξ21)

g
(

F̄ (x)
)

dx

+(1 + ρ)

(

∫ V aRs∗ (X)

V aRs∗(X)−ξ11

F̄ (x) dx+

∫ V aRα(X)−(ξ22−ξ21)

V aRα(X)−(ξ12−ξ11)−(ξ22−ξ21)

F̄ (x) dx

)

. (3.9)

Now, ξ11 ≤ ξ12 ≤ V aRα(X)− V aRs∗(X)− (ξ22 − ξ21) + ξ11 suggests that D1 is a simple region with
respect to ξ12, since the boundary curves remain the same when varying

{

ξ11, ξ21, ξ22
}

. Next,

dG1

dξ12
= −1 + (1 + ρ)F̄

(

V aRα(X)− (ξ12 − ξ11)− (ξ22 − ξ21)
)

≤ −1 + (1 + ρ)F̄
(

V aRs∗(X)
)

,

which is non-positive if V aRρ∗(X) ≤ V aRs∗(X). The latter is obviously ensured by Assumption 3.1,
and therefore 3.9 is the same as minimising

G2(ξ11, ξ21, ξ22) := G1

(

ξ11, V aRα(X)− V aRs∗(X)− (ξ22 − ξ21) + ξ11, ξ21, ξ22
)

(3.10)

= V aRs∗

(

X
)

− ξ11 − ξ21 + (1 + ρ)

∫ V aRα(X)−(ξ22−ξ21)

V aRs∗ (X)−ξ11

F̄ (x) dx

+

∫ V aRs∗(X)−ξ11

V aRs∗ (X)−ξ11−ξ21

g
(

F̄ (x)
)

dx+

∫ V aRα(X)

V aRα(X)−(ξ22−ξ21)

g
(

F̄ (x)
)

dx,



12

over D2 :=
{

0 ≤ ξ11, 0 ≤ ξ21, ξ11 + ξ21 ≤ V aRs∗(X), 0 ≤ ξ22 − ξ21 ≤ V aRα(X)− V aRs∗(X)
}

. Note
that D2 is a simple region with respect to ξ22 since ξ21 ≤ ξ22 ≤ V aRα(X)− V aRs∗(X) + ξ21. Thus,

dG2

dξ22
= −(1 + ρ)F̄

(

V aRα(X)− (ξ22 − ξ21)
)

+ g
(

F̄
(

V aRα(X)− (ξ22 − ξ21)
)

)

= −G
(

F̄
(

V aRα(X)− (ξ22 − ξ21)
)

)

.

Clearly, G(0) = 0 and G(1) = ρ > 0. Moreover, Assumption 3.1 implies that G(·) attains its global
minimum at 1 − s∗. Thus, s∗∗ < s∗ and G(t) ≤ 0 for all 0 ≤ t ≤ 1 − s∗∗. The latter and the fact
that F̄

(

V aRα(X) − (ξ22 − ξ21)
)

≤ F̄
(

V aRs∗(X)
)

≤ 1 − s∗ suggest the non-decreasing property in
ξ22 of G2(·). This allows us to further conclude that 3.10 is equivalent to solving

min
D3

G3(ξ11, ξ21) := G2

(

ξ11, ξ21, ξ21
)

(3.11)

= V aRs∗
(

X
)

−ξ11−ξ21+(1+ρ)

∫ V aRα(X)

V aRs∗(X)−ξ11

F̄ (x) dx+

∫ V aRs∗ (X)−ξ11

V aRs∗ (X)−ξ11−ξ21

g
(

F̄ (x)
)

dx

over D3 :=
{

0 ≤ ξ11, 0 ≤ ξ21, ξ11 + ξ21 ≤ V aRs∗(X)
}

. Obviously,

dG3

dξ21
= −1 + g

(

F̄
(

V aRs∗(X)− ξ11 − ξ21
)

)

≤ 0,

and therefore 3.11 is reduce to finding the solution of

min
0≤ξ11≤V aRs∗(X)

G4(ξ11) := G3(ξ11, V aRs∗(X)− ξ11)

= (1 + ρ)

∫ V aRα(X)

V aRs∗(X)−ξ11

F̄ (x) dx+

∫ V aRs∗ (X)−ξ11

0

g
(

F̄ (x)
)

dx.

Simple calculations lead to dG4

dξ11
= G

(

F̄
(

V aRs∗(X) − ξ11
)

)

. Recall that G(·) takes non-positive

values whenever 0 ≤ t ≤ 1− s∗∗. The latter and the fact that

F̄
(

V aRs∗(X)− ξ11
)

≤ 1− s∗∗ ⇔ V aRs∗∗(X) ≤ V aRs∗(X)− ξ11

suggest that G4(·) is non-increasing on [0, V aRs∗(X) − V aRs∗∗(X)]. Similarly, one may find that
G4(·) is non-decreasing on [V aRs∗(X) − V aRs∗∗(X), V aRs∗(X)]. Thus, the global minimum of
G4(·) is attained at V aRs∗(X) − V aRs∗∗(X), and simple calculations yield 3.6 and 3.7 in this
setting. Therefore, the s∗ < α case is fully explained.

We now assume that s∗∗ ≤ α ≤ s∗. The first stage optimisation problem is as given by 3.8 where
the positions of s∗ and α are swapped. Its solution is provided by Figure 3.2, and may be obtained
via applying Proposition 3.2 twice.

The proof continues with similar derivations to the ones previously displayed when the s∗ < α
scenario was investigated. The derivatives are taken in the same order and yield the following global
minimum solution

ξ∗11 = ξ∗12 = V aRα(X)− V aRs∗∗(X), ξ∗21 = ξ∗22 = V aRs∗∗(X),

which concludes the s∗∗ ≤ α ≤ s∗ scenario. Thus, the proof is now complete. �

Theorem 3.1 assumes that the second reinsurance company charges a non-purely tail risk based
premium, and consequently Φ(s) > 0 over the whole domain of definition. If the latter is not
satisfied, then there exists s0 such that Φ(s) > 0 on (s0, 1], and it stays at level zero for smaller
values than s0. In other words, the corresponding g(t) ≡ 1 whenever t ≥ 1 − s0. One may con-
struct multiple examples satisfying this property, but probably the most natural distorted premium
principle example would be the ES one, where g(t) := (t/(1 − β)) ∧ 1 with 0 ≤ β < 1. This sce-
nario is discussed in Theorem 3.2. In addition, Theorem 3.1 always allows for diversification, while
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X��� ( )− "11 −  "21  $

��� (X)−"11  $

��� (X)  $
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���  − "12 −  "11%∗( ( ))

"11
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"12

"22

���%∗(X)  

Figure 3.2. The construction of R∗
1[X ; ξ] (solid line) and R∗

2[X ; ξ] (dotted line) in
Theorem 3.1 when α ≤ s∗.

Theorem 3.2 shows an improved diversification only if β < ρ∗. Moreover, Theorem 3.2 provides
infinitely many optimal solutions (due to the tail risk pricing choice made by the second reinsurer),
as compared to Theorem 3.1, and we are able to find all of them as a result of our constructive
proposed methodology of finding the ideal arrangement(s).

Theorem 3.2. The VaR-based insurer risk problem

min
(R1,R2)∈G

V aRα

(

I[X ]
)

+ (1 + ρ)E
(

R1[X ]
)

+ ESβ

(

R2[X ]
)

, (3.12)

is considered such that max{ρ∗, β} ≤ α. Then, its optimal solution has the following composition:

a) whenever β < ρ∗

R∗
1[X ] ≡ 0;R∗

2[X ] =

{

h∗
2(X), X ≤ V aRβ(X)

X ∧ V aRα(X)− V aRβ(X) + a, X > V aRβ(X)
,

b) whenever β > ρ∗

R∗
1[X ] =

(

X − V aRρ∗(X)
)

+
∧
(

V aRα(X)− V aRρ∗(X)
)

;R∗
2[X ] = h∗

3(X) ∧ b

with a ∈ [0, V aRβ(X)] and b ∈ [0, V aRρ∗(X)] some parameters. In addition, h∗
2(·) and h∗

3(·) are
non-decreasing Lipschitz functions with unit constants such that

h∗
2(0) = h∗

3(0) = 0, h∗
2

(

V aRβ(X)
)

= a, h∗
3

(

V aRρ∗(X)
)

= b.

Therefore, the corresponding insurer risk becomes

V aRα

(

L
(

R∗
1[X ], R∗

2[X ]
)

)

= V aRβ(X) +
1

1− β

∫ V aRα(X)

V aRβ(X)

F̄ (x) dx

if β < ρ∗, and

V aRα

(

L
(

R∗
1[X ], R∗

2[X ]
)

)

= V aRρ∗(X) + (1 + ρ)

∫ V aRα(X)

V aRρ∗(X)

F̄ (x) dx,

if β > ρ∗.

Note 3.2.
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i) Essentially, the insurer and second reinsurer are able to share the layer [0, V aRβ∧ρ∗ ] in any
possible way due to the tail-based pricing offered by the second risk absorber. Therefore, the
insurer may decide to achieve its optimal arrangement, among the infinitely many optimal
solutions given in Theorem 3.2, by imposing an additional criterion. For example, one may
show, via our proposed two-stage method, that maximising/minimising insurer’s expected
profit/loss among this set of VaR-based optimal solutions would be possible. This additional
criterion leads to an overall unique optimal solution as follows:

I∗[X ] = X ∧ V aRβ∧ρ∗(X) +
(

X − V aRα(X)
)

+
,

which is attained if the insurer keeps the maximal possible risk for itself.
ii) If β < ρ∗ then, for any possible risk layer, the first reinsurance company charges a higher

premium than the second reinsurer, and therefore it is not surprising why it is not optimal
to allocate any layer to the first reinsurer.

iii) Theorem 3.2 also includes the result from Theorem 2.1 if β > ρ∗.

Proof. We derive the optimal solution of 3.12 in two steps. Initially,














min
(R1,R2)∈G

V aRα

(

I[X ]
)

+ (1 + ρ)

∫ 1

0

V aRs

(

R1[X ]
)

ds+
1

1− β

∫ 1

0

V aRs

(

R2[X ]
)

ds

subject to R1

(

V aRβ(X)
)

= ξ11, R1

(

V aRα(X)
)

= ξ12,
R2

(

V aRβ(X)
)

= ξ21, R2

(

V aRα(X)
)

= ξ22,

(3.13)

is solved, where ξ = (ξ11, ξ12, ξ21, ξ22) ∈ E1 is a vector of constants and

E1 :=

{

0 ≤ ξ11 ≤ ξ12, 0 ≤ ξ21 ≤ ξ22, ξ11 + ξ21 ≤ V aRβ(X), ξ12 + ξ22 ≤ V aRα(X),
ξ12 − ξ11 + ξ22 − ξ21 ≤ V aRα(X)− V aRβ(X).

Let us now assume that β < ρ∗. Thus, 1+ρ > 1/(1−β), and one may further apply Proposition 3.2
twice. A graphical representation of the optimal solution from 3.13 is provided in Figure 3.3, where
without loss of generality ξ11 ≤ ξ21 and ξ12 ≤ ξ22 are assumed to hold.

X��� (X)−!11  "

��� (X)  "

���# $ − !12 −  !11 −  !22 −  !21( ) ) )( (

���# $ − !12 −  !11( ( ))

���# $  ( )

!11

!21

!12

!22

Figure 3.3. The construction of R∗
1[X ; ξ] (solid line) and R∗

2[X ; ξ] (dotted line) in
Theorem 3.2 when β < ρ∗.

The solution of 3.13 can be formally written in the following fashion:

R∗
1[X ; ξ] :=

{
(

X − V aRβ(X) + ξ11
)

+
∧ ξ11, X ≤ V aRα(X)− (ξ12 − ξ11)

(

X − V aRα(X) + ξ12
)

∧ ξ12, otherwise
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and

R∗
2[X ; ξ] :=

{

h∗
2

(

X ; ξ
)

∧ ξ21, X ≤ V aRα(X)− (ξ12 − ξ11)− (ξ22 − ξ21)
(

X − V aRα(X) + ξ12 − ξ11 + ξ22
)

∧ ξ22, otherwise
,

where h∗
2(·; ξ) is a non-decreasing Lipschitz function with unit constant such that h∗

2(0; ξ) = 0 and

h∗
2

(

V aRβ(X)− ξ11; ξ
)

= ξ21. Consequently, the second step optimisation problem is equivalent to

min
E1

G1(ξ) := V aRα(X)−ξ12−ξ22+(1 + ρ)

(

∫ V aRβ(X)

V aRβ(X)−ξ11

F̄ (x) dx+

∫ V aRα(X)

V aRα(X)−(ξ12−ξ11)

F̄ (x) dx

)

+ξ21 +
1

1− β

∫ V aRα(X)−(ξ12−ξ11)

V aRα(X)−(ξ12−ξ11)−(ξ22−ξ21)

F̄ (x) dx. (3.14)

Note that ξ21 ≤ ξ22 ≤ V aRα(X) − V aRβ(x) − (ξ12 − ξ11) + ξ21 always holds, suggesting that E1
represents a ξ22-simple region. The latter and the fact that

dG1

dξ22
= −1 +

1

1− β
F̄
(

V aRα(X)− (ξ12 − ξ11)− (ξ22 − ξ21)
)

≤ −1 +
1

1− β
F̄
(

V aRβ(X)
)

≤ 0

imply that 3.14 is reduced to minimising

G2(ξ11, ξ12, ξ21) := G1

(

ξ11, ξ12, ξ21, V aRα(X)− V aRβ(X)− (ξ12 − ξ11) + ξ21
)

(3.15)

= V aRβ(X)− ξ11 + (1+ρ)

(

∫ V aRβ(X)

V aRβ(X)−ξ11

+

∫ V aRα(X)

V aRα(X)−(ξ12−ξ11)

)

F̄ (x) dx

+
1

1− β

∫ V aRα(X)−(ξ12−ξ11)

V aRβ (X)

F̄ (x) dx,

over E2 :=
{

0 ≤ ξ11, 0 ≤ ξ21, ξ11 + ξ21 ≤ V aRβ(X), 0 ≤ ξ12 − ξ11 ≤ V aRα(X) − V aRβ(X)
}

. The
above is a ξ12-simple region since ξ11 ≤ ξ12 ≤ V aRα(X)− V aRα(X) + ξ11 holds. Next,

dG2

dξ12
=

(

1 + ρ−
1

1− β

)

F̄
(

V aRα(X)− (ξ12 − ξ11)
)

≥ 0,

and consequently 3.15 is further reduced to

min
E3

G3(ξ11, ξ21) := G2

(

ξ11, ξ11, ξ21
)

= V aRβ(X)− ξ11 + (1 + ρ)

∫ V aRβ(X)

V aRβ(X)−ξ11

F̄ (x) dx+
1

1− β

∫ V aRα(X)

V aRβ (X)

F̄ (x) dx,

where E3 := {0 ≤ ξ11, 0 ≤ ξ21, ξ11 + ξ21 ≤ V aRβ(X)}. For any fixed ξ21, the above function is in-
creasing in ξ11. The latter is true since its partial derivative with respect to ξ11 is positive as a
result of V aRβ(X)− ξ11 ≤ V aRβ(X) ≤ V aRρ∗(X). Therefore, the minimum is attained at ξ∗11 = 0
and ξ∗21 may take any value from [0, V aRβ(X)]. Some simple calculations allow one to recover the
results stated in this theorem whenever β < ρ∗.

Only the main steps of the other case, i.e. ρ∗ < β, are given, since the proof is very similar to
what we have seen earlier. The solution of 3.13 changes slightly only for losses between V aRβ(X)
and V aRα(X), in the sense that R1(·) reaches its upper level as late as possible, but not before
R2(·) does. These are illustrated in Figure 3.4, and could be found via Proposition 3.2.

The mathematical formulation of the risk allocation is then given by

R∗
1[X ; ξ] :=

{
(

X − V aRβ(X) + ξ11
)

+
∧ ξ11, X ≤ V aRα(X)− (ξ12 − ξ11)− (ξ22 − ξ21)

(

X − V aRα(X) + ξ22 − ξ21 + ξ12
)

∧ ξ12, otherwise
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Figure 3.4. The construction of R∗
1[X ; ξ] (solid line) and R∗

2[X ; ξ] (dotted line) in
Theorem 3.2 when ρ∗ < β.

and

R∗
2[X ; ξ] :=

{

h∗
3

(

X ; ξ
)

∧ ξ21, X ≤ V aRα(X)− (ξ22 − ξ21)
(

X − V aRα(X) + ξ22
)

∧ ξ22, otherwise
,

where h∗
3(·; ξ) is a non-decreasing Lipschitz function with unit constant such that h∗

3(0; ξ) = 0 and

h∗
3

(

V aRβ(X)− ξ11; ξ
)

= ξ21.
One may easily find that the second stage optimisation problem is then given by























min
E1

V aRα(X)− ξ12 − ξ22 + ξ21 +
1

1− β

∫ V aRα(X)

V aRα(X)−(ξ22−ξ21)

F̄ (x) dx

+(1 + ρ)

(

∫ V aRβ(X)

V aRβ(X)−ξ11

F̄ (x) dx+

∫ V aRα(X)−(ξ22−ξ21)

V aRα(X)−(ξ12−ξ11)−(ξ22−ξ21)

F̄ (x) dx

)

All other steps follow by taking appropriate partial derivatives in the same order as in the proof of
the previous case. The proof is now complete. �

4. Robustness issues

In this section, we briefly investigate and discuss some robust statistical approaches to identify
the optimal reinsurance arrangement. Therefore, it is important to estimate the risk measures in
a robust manner, which boils down to robustly estimating the p-quantiles of a distribution (for
different values of p between 0 and 1).

For a distribution F and a general 0 < p < 1, the p-quantile is denotedQp = inf {x ∈ R|F (x) ≥ p}
with 0 < p < 1. For a given F , these quantiles can often be computed analytically. When
the underlying distribution is unknown, we have to estimate it from the observed data set Xn =
{x1, x2, . . . , xn}. The empirical distribution function has a jump of size 1/n at each of the n data
points and is given by

Fn(x) =
1

n

n
∑

i=1

I(x ≤ xi)

where I(·) is the indicator function. Naturally, the empirical quantile is Q̂p = inf{x|Fn(x) ≥ p}.
Classical parametric statistical procedures work well if the underlying assumptions hold, but

may become extremely unreliable if the shape of the true underlying model deviates from the
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assumed parametric model. A typical violation which can have a big influence on the result is the
presence of outliers in the data. Outliers are observations that do not follow the pattern indicated
by the majority of the data. Sometimes these outlying observations are errors resulting from data
input mistakes, but other reasons may also explain their occurrence in real data, such as belonging
to different populations or observations made under exceptional circumstances. Therefore, it is
interesting to always investigate the outliers after detection. In practice one often tries to detect
outliers using diagnostics starting from a classical fitting method. However, as classical statistical
techniques are known to be extremely sensitive to outliers, it is possible that these outliers affect
the estimates so strongly that the resulting fitted model does not allow detection of the deviating
observations (masking effect). Additionally, some reliable data points might even appear as outliers
(swamping effect). Since it is well-known that outliers can lead to very misleading results when
applying traditional statistical methods, robust alternatives have been developed. These techniques
search for the model fitted by the majority of the data and hence are more robust against the
possibility that the data contain one or more expected outliers. This has been the starting point of
the robust statistical literature for the past 40 years, from the initial work in the univariate setting
to recent work for high-dimensional data analysis (see e.g. Huber, 1981, Hampel et al., 1986 and
Maronna et al., 2006 for more information). Recently, outlier detection and robustness have also
become important in various financial applications such as asset allocation models (e.g. Welsch
and Zhou, 2007), interest-rate models (e.g. Czellar et al., 2007), ruin probabilities (e.g. Loisel
et al., 2008), time series modelling (e.g. Croux et al., 2010) and claims reserving (e.g. Verdonck
and Debruyne, 2011). Therefore, robust methods are helpful to gain insight in the data and this
knowledge often yields a significant improvement to the classical techniques. When there are no
outliers in the data, the classical robust methods yield similar results, so the deviation between the
two fits can be used to correctly identify outliers.

When examining the obtained closed formulas, it is clear that robust estimation of the risk
measure will make the methodology more robust, and hence the goal of this section is to robustly
estimate the p-quantiles of a data set (for different values of 0 < p < 1). However, many univariate
robust estimators are based purely on quantiles. Examples include the median instead of the
classical mean for location and the interquartile range (IQR) rather than the classical standard
deviation for scale. A popular tool to measure robustness is the breakdown point, which is the
smallest amount of contamination that may cause an estimator to take on arbitrarily large values.
Both classical estimators, mean and variance, have a breakdown point of 0%, whereas the median
and IQR, respectively have a breakdown point of 50% and 25%. It is clear that the p-quantile
estimator has a breakdown point of 100(1 − p)%. For example, for the 0.75-quantile, we have to
alter (at least) the 25% largest observations of the data set to break down the estimator (if we let all
these observations go to infinity, then the estimated quantile will also go to infinity). Therefore, if
we only need to calculate p-quantiles for p < 0.75, robustness would probably not be an important
issue, since most real data sets contain less than 25% outliers. Due to the fact that we are also
interested in p-quantiles for p > 0.75 and even p > 0.95, a smaller amount of outliers are already
able to significantly influence the result. Note that extremely small observations have no impact on
this estimator, since only outliers in the right tail of the distribution have an effect on the estimation
of the p-quantile.

Recently, robustness and sensitivity analysis of risk measures have been studied by Cont et al.
(2010) and Kou et al. (2012). They also emphasize the importance of robustness of risk estimators
in practice. Cont et al. (2010) have proposed an alternative for ES, namely the Truncated Tail
Value-at-Risk (TrTVaR), which is defined as follows:

TrTV aRα1,α2
(Z) :=

1

α2 − α1

∫ α2

α1

V aRs(Z) ds =
(1− α1)ESα1

(Z)− (1− α2)ESα2
(Z)

α2 − α1
, (4.1)
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and is simply the average of VaR levels across a range of loss probabilities. The robustness and
efficiency properties depend on the choice for 0 < α1 < α2 < 1 (the higher α2, the more efficient but
also the less robust the estimator will be). It can easily be seen that this measure incorporates both
the VaR and the ES risk measure. It is well-known that ES is a convex risk measure, while VaR is
not convex (see for example, Acerbi and Tasche, 2002 and Denuit et al., 2005). TrTVaR represents
a compromise between VaR and ES, in the sense that only a part of the tail behaviour is measured
by it, and as expected, it has similar properties to VaR. That is, TrTVaR is a non-convex and
robust risk measure (see Cont et al., 2010), and has the advantage of being more tail sensitive than
VaR. Since it might also be interesting to give explicit derivations when the insurer’s risk position
is evaluated by this more robust measure, we provide in Theorem 4.1 the optimal risk allocation
whenever the insurer decision is based on the TrTVaR risk measure. It is further assumed that
1 + ρ < 1/

(

α2 − α1

)

, which represents the most plausible scenario as α1 and α2 are expected to
have values close to 1.

Theorem 4.1. If 1+ρ < 1/
(

α2−α1

)

, then the TrTVaR-based optimal reinsurance contract is given
by

R∗[X ] =

{

(

X − V aRα∗∗(X)
)

+
∧
(

V aRα∗(X)− V aRα∗∗(X)
)

+
, α∗ > α1

(

X − V aRρ∗(X)
)

+
∧
(

V aRα1
(X)− V aRρ∗(X)

)

+
, α∗ < α1

, (4.2)

where α∗ = 1− 1−α2

1−(1+ρ)
(

α2−α1

) and α∗∗ = min(ρ∗, α1).

Proof. Keeping in mind equation 4.1, the function that needs to be minimised over F is given by

TrTV aRα1,α2

(

L
(

R[X ]
)

)

= TrTV aRα1,α2
(X)− TrTV aRα1,α2

(

R[X ]
)

+ (1 + ρ)E
(

R[X ]
)

= TrTV aRα1,α2
(X) + (1 + ρ)

∫ α1

0

R
(

V aRs(X)
)

ds

+

(

1+ρ−
1

α2−α1

)
∫ α2

α1

R
(

V aRs(X)
)

ds+(1+ρ)

∫ 1

α2

R
(

V aRs(X)
)

ds.

As before, the above is solved via a two-stage procedure, where the first step becomes






min
R∈F

(1+ρ)

(
∫ α1

0

+

∫ 1

α2

)

R
(

V aRs(X)
)

ds+

(

1+ρ−
1

α2−α1

)
∫ α2

α1

R
(

V aRs(X)
)

ds

subject to R
(

V aRα1
(X)

)

= ξ1, R
(

V aRα2
(X)

)

= ξ2.

(4.3)

Note that (ξ1, ξ2) ∈ C1 is a vector of constants with

C1 :=
{

0 ≤ ξ2 − ξ1 ≤ V aRα2
(X)− V aRα1

(X), 0 ≤ ξ1 ≤ V aRα1
(X), 0 ≤ ξ2 ≤ V aRα2

(X)
}

.

Now, 1 + ρ − 1
α2−α1

is assumed to be negative. Similar arguments to the one used in the proof

of Theorems 2.1 and 2.2 show that 4.3 is solved by R∗
1[X ; ξ1, ξ2] :=

(

X − V aRα1
(X) + ξ1

)

+
∧ ξ2.

Equations 1.1 and 4.1, and the fact that

E
(

R∗
1[X ; ξ1, ξ2]

)

=

∫ ξ2

0

Pr
(

R∗
1[X ; ξ1, ξ2] > x

)

dx =

∫ V aRα1
(X)+ξ2−ξ1

V aRα1
(X)−ξ1

Pr(X > x) dx,

show that the second step is to minimise over C1

H4(ξ1, ξ2) := (1 + ρ)

∫ V aRα1
(X)+ξ2−ξ1

V aRα1
(X)−ξ1

Pr(X > x) dx

−
1

α2 − α1

(

(1− α1)ξ1 − (1− α2)ξ2 +

∫ V aRα1
(X)+ξ2−ξ1

V aRα1
(X)

Pr(X > x) dx

)

.
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Clearly, dH4

dξ2
= 1−α2

α2−α1

+
(

1+ρ− 1
α2−α1

)

F̄
(

V aRα1
(X) + ξ2−ξ1

)

. The latter is negative if and only if

F
(

V aRα1
(X) + ξ2 − ξ1

)

< α∗, which is equivalent to V aRα1
(X) + ξ2 − ξ1 < V aRα∗(X).

Note that α∗ < α2 always holds. Let us assume first that α∗ > α1. Keeping in mind that
ξ2 ∈

[

ξ1, ξ1+V aRα2
(X)−V aRα1

(X)
]

, then for any fixed ξ1 ∈
[

0, V aRα1
(X)

]

we have that dH4

dξ2
< 0

if ξ2 ∈
[

ξ1, ξ1 + V aRα∗(X)− V aRα1
(X)

)

, and dH4

dξ2
≥ 0 if

ξ2 ∈
[

ξ1 + V aRα∗(X)− V aRα1
(X), ξ1 + V aRα2

(X)− V aRα1
(X)

]

.

Thus,

H4(ξ1, ξ2) ≥ H4

(

ξ1, ξ1 + V aRα∗(X)− V aRα1
(X)

)

= (1 + ρ)

∫ V aRα∗ (X)

V aRα1
(X)−ξ1

Pr(X > x) dx− ξ1 +K1,

where K1 is a constant with respect to ξ1. Taking the derivative with respect to ξ1 of the right
hand side function from above, one may recover 4.2 for this case, by following similar steps as used
in the proof of Theorem 2.1.

It only remains to show the α∗ < α1 case. Thus,
dH4

dξ2
> 0 holds for any fixed ξ1 ∈

[

0, V aRα1
(X)

]

,

and any ξ2 ∈
[

ξ1, ξ1 + V aRα2
(X)− V aRα1

(X)
]

. Consequently,

H4(ξ1, ξ2) ≥ H4

(

ξ1, ξ1
)

= (1 + ρ)

∫ V aRα2
(X)

V aRα1
(X)−ξ1

−ξ1 +K2,

where K2 is a constant with respect to ξ1. As before, one may find the global optimal solution for
this case. The proof is now complete. �

It is expected that the limiting cases from Theorem 4.1 can be used to recover the optimal VaR
and ES-based decisions found in Theorems 2.1 and 2.2, which are further explained. The VaR case
is obtained as α1 ր α2, which implies that α∗ ր α2. It is simple to show that if α1 is sufficiently
close to α2, then α∗ < α1 (α∗ > α1) as long as ρ∗ ≥ α2 (ρ∗ < α2), which in turn makes the optimal
reinsurance contract from 4.2 to be R∗[X ] =

(

X−V aRρ∗(X)
)

+
∧
(

V aRα2
(X)−V aRρ∗(X)

)

+
. Clearly,

the latter recovers the VaR result from Theorem 2.1. The ES case is obtained when α2 ր 1, which
yields that α∗ ր 1. Thus, α∗ > α1 and 4.2 becomes R∗[X ] =

(

X − V aRρ∗(X)
)

+
, as long as

1 + ρ < 1/(1− α1), i.e. ρ
∗ < α1, which aligns with our findings from Theorem 2.2.

It is interesting to point out that an ideal contract from Theorem 4.1 does not always require
for layers higher than V aRα1

(X) to be covered by the insurance company, as it has been seen for
VaR-based optimal arrangement, even though the insurer risk is measured by quantifying a portion
of the worst 1 − α1 events. For example, the reinsurer covers in full the [V aRρ∗(X), V aRα∗(X)]
layer, whenever ρ∗ ≤ α1 < α∗ < α2. Further, if ρ = 1, α = 95%, α1 = 93% and α2 = 97%,
then ρ∗ = α∗∗ = 50% and α∗ = 96.7%. Consequently, the optimal 95% VaR decision makes
the reinsurer to cover the [V aR50%(X), V aR95%(X)] layer, while the optimal [93%, 97%] TrTVaR
reinsurance arrangement allows the reinsurer to pay only the [V aR50%(X), V aR96.7%(X)] layer. The
given example makes the TrTVaR to be blind to the worst 3% events, but the reinsurer pays the
worst 3.3% events, which includes some of the extreme events embedded in the [93%, 97%] TrTVaR
risk measure. The latter can be explained by the more complex structure of the TrTVaR risk
measure.

Actually, the TrTVaR estimator simply deletes a certain percentage, 1 − α2, of observations
before computing the ES in the usual way. A drawback of this methodology is that the value α2

has to be chosen beforehand and does not depend on the observed data. Hence, the proportion of
large observations that is removed is specified before computing the risk measure on the remaining
observations. If a prudent value for α2 is taken, and in reality there are no outliers in the data (or only
a very few), the result will not be very efficient, because a significant amount of “good” observations
is not taken into account for estimation. To overcome this problem, one could also follow another
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approach, namely empirically determining the amount of outliers in the data. Therefore, one might
try to automatically screen the data for outliers and remove them by using robust methods.

In general, one will try to estimate the distribution of the data before computing the p-quantiles.
Since we deal with univariate data, it might certainly be interesting to start with some exploratory
data analysis and visualise the data by constructing a few plots. To have an idea about the underly-
ing distribution of the data, it is useful to construct QQ plots for possible theoretical distributions.
The most common form is the normal QQ plot, which is used to test graphically whether the ob-
served data stems from a normal distribution. The shape of the QQ plot can also be very useful to
highlight distributional asymmetry, outliers, heavy tails, multi-modality or other interesting data
characteristics. Besides the normal QQ plot, it is also possible to construct QQ plots for other
reference distributions (see for example the qqplot command in R which creates a QQ plot for
most theoretical distributions). One could also use the classical boxplot in order to detect outliers,
which has been introduced by Tukey (1977). However, the classical boxplot rejection rule inherently
assumes normality of the data, and therefore, it usually classifies too many points as outlying when
the data are skewed, which is more the rule than an exception in financial data. To overcome this
drawback, Hubert and Vandervieren (2008) have proposed the adjusted boxplot, which includes a
robust measure of skewness and gives a more accurate representation of possible outliers.

One could also opt for kernel density estimation methods (see Silverman, 1986 for an introductory
text) and hence, no prior belief about the distribution is needed. Fernholz (1997) has already shown
that smoothing the empirical distribution function with an appropriate kernel and bandwidth can
reduce the variance and mean squared error of some quantile-based estimators. Recently, Hubert
et al. (2012) have constructed methods for reducing the variance and mean squared error of differ-
ent univariate robust estimators that are based on quantiles, by implementing a kernel smoothed
distribution function instead of the empirical distribution function. This smoothing procedure also
improves the ability to detect outliers with the adjusted boxplot. A range of kernel functions have
to be chosen, but popular choices are the Gaussian basis functions. Another important issue is the
selection of the bandwidth of the kernel, which exhibits a strong influence on the resulting estimate.
Optimal choices for this bandwidth exist (see for example, Sheather and Jones, 1991, and Jones et
al., 1996). A robust bandwidth selection procedure is also proposed in Hubert et al. (2012). The
kernel density estimation plot is helpful to notice multi-modality, outliers and other data anomalies.

After visual data inspection, it is plausible to believe that a good understanding about the
distribution is achieved. We then propose to use the following strategy to obtain robust estimates
for the quantile estimation.

(1) Robustly estimate the parameters of the distribution. For most common distributions, the
following references are useful:

• Exponential distribution (see Gather, 1986 and Gather and Schultze, 1999).
• Gamma distribution (see Marazzi and Ruffieux, 1996 and 1999, and Marazzi and Bar-
bati 2003).

• LogNormal distributon (see Serfling, 2002).
• Pareto distribution (see Brazauskas and Serfling, 2000 and 2003).
• Symmetric distributions (see Maronna et al., 2006).
• Weibull distribution (see Boudt et al., 2011).

Many of these techniques are already implemented in R.
(2) Before computing the required p-quantiles with the obtained robust parameter estimates, one

should check whether the assumption about the distribution is appropriate. This can be done
by using a goodness-of-fit test. For some of the above-mentioned distributions, there exist
particular goodness-of-fit tests (see for example, Rizzo, 2009 for the Pareto distribution).
Otherwise, the Kolmogorov-Smirnov, Cramér-von Mises or Anderson-Darling test on the
regular points are well-known alternatives. Most methods will automatically indicate which
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observations are the non-outlying ones. Otherwise, we propose to theoretically calculate the
99%-quantile with the robust parameter estimates and flag all observations larger than this
value as outlying.

(3) If the goodness-of-fit test is not rejected, the required theoretical quantiles are obtained.
Otherwise, one should try the entire procedure with another distribution.

When calculating p-quantiles for very large p (say p ≥ 0.95), it might be better to follow an
approach which is based on the idea of combining robust statistics and extreme value statistics. At
first sight, it might look inappropriate to combine these two research fields, since it is hard to decide
whether one or a group of very large observations are outliers or not when dealing with heavy-tailed
distributions. However, it is already shown that robustness may play an important role in extreme
value theory (see e.g. Dell’Aquila and Embrechts, 2006, Vandewalle et al., 2007, and Hubert et al.,
2012). For Pareto-type distributions, Hubert et al. (2012) have proposed a robust estimator of the
extreme value index, because it is shown that classical estimators, such as the Hill estimator, tend
to overestimate this parameter in the presence of outliers. Based on this robust estimator, they have
constructed a diagnostic tool to detect automatically the observations that have an unusual large
influence on the Hill estimator. This method also allows the robust estimation of large p-quantiles,
as described by Weissman (1978).

5. Examples and Numerical Results

This section provides a numerical analysis related to our main results described in Theorems 2.1
and 3.1. We start by enumerating some of the well known distorted premium principle examples.

i) Dual-power function principle: g(t) = 1− (1− t)β, β > 1;
ii) ES principle: g(t) = min(t/(1− β), 1), 0 < β < 1;
iii) Gini principle: g(t) = (1 + β)t− βt2, 0 < β ≤ 1;
iv) Proportional hazard transform (PHT) principle: g(t) = t1−β, 0 < β < 1;
v) Wang Transform: g(t) = FN

(

F−1
N (t) + λ

)

, λ > 0,

where FN(·) and F−1
N (·) represent the standard normal cumulative distribution function and its

inverse respectively. The Φ’s functions can be easily calculated, and therefore we only state the
form for the Wang Transform premium, which is

Φ(s) = exp

{

λF−1
N (s)−

λ2

2

}

,

(for more details, see Jones and Zitikis, 2003 and 2007). Note that, except for ES, all other examples
are potential candidates for Theorem 3.1.

We assume three particular distributions for the total loss, X , and all of them having an expected
loss amount of 1,000.

a) Exponential (λ = 1, 000);
b) LogNormal (µ = 6.4; σ = 1.00773);

c) Pareto (θ1 = 3, θ2 = 2, 000) with the survival function given by F̄ (x) =
(

1 + x
θ2

)−θ1

, x ≥ 0.

It is also assumed that the first reinsurer prefers an expected value principle with ρ = 1, while the
other reinsurer opts out for the PHT principle with β ∈ {0.5, 0.6}. Thus, ρ∗ = 0.5 and

(s∗, s∗∗) =

{

(93.75%, 75%), β = 0.5
(93.16%, 68.50%), β = 0.6

.

The insurer sets its confidence level at α = 99.5%, which aligns with the capital requirements
designed within the Solvency II, that applies to any insurance or reinsurance company that operates
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in the European Union. We are now able to provide some numerical results for Theorem 3.1 where
the diversification gain takes place. Recall that the risk allocation has the following form







I∗[X ] =
(

X − V aRα(X)
)

+

R∗
1[X ] =

(

X − V aRs∗∗(X)
)

+
∧
(

V aRα(X)− V aRs∗∗(X)
)

R∗
2[X ] = X ∧ V aRs∗∗(X)

,

which is now compared with the non-diversified scenario that is allocated as in Theorem 2.1







I∗[X ] = X ∧ V aRρ∗(X) +
(

X − V aRα(X)
)

+

R∗
1[X ] =

(

X − V aRρ∗(X)
)

+
∧
(

V aRα(X)− V aRρ∗(X)
)

R∗
2[X ] = 0

.

The corresponding insurer total VaR-based risk is then quantified by 3.7 and 2.2, respectively.
Note that the premium charged by the second reinsurance company increases as β increases, and

the diversification gain should decrease as well. Our numerical results capture this pattern and
are given in Table 5.1. The values that appear in the parentheses reflect the diversification gain

Table 5.1. VaR of the Insurer Total loss at 0.995 level: Theorem 3.1 setting

Exponential LogNormal Pareto

One Reinsurer 1, 683.15 1, 650.24 1, 721.28
Two Reinsurers 1, 490 1, 500.75 1, 560.42

β = 0.5 (11.48%) (9.06%) (9.35%)
Two Reinsurers 1, 545.06 1, 544.92 1, 608.65

β = 0.6 (8.20%) (6.38%) (6.54%)

corresponding to each setting. It is quite apparent that the insurer may benefit from clever risk
allocation. One may find it a tad intriguing that for β = 0.6, the Exponential loss replicates a
higher total risk than the LogNormal scenario. It is very true that the LogNormal distribution has
a heavier tail than the Exponential one, but they are not ordered stochastically over the entire loss
spectrum, which explains this potential misunderstanding.

We have displayed the optimal risk allocation only for α = 0.995, and further explanations
underpin our choice. It is not surprising that the VaR corresponding to the insurer total loss
at various levels from 3.7 increases as the targeted level α ∈ [s∗∗, 1] becomes more conservative.
Therefore, it is futile to analyse the cedent efficient frontier from this perspective. No matter what
risk level is used, the insurer is facing the same capital requirement, and it is at a 99.5% level for
any insurance or reinsurance company that operates in the European Union (EU), which will soon
become mandatory. Under this framework, we argue that the global optimality is attained if the
cedent chooses the confidence level requested by Solvency II.

The risk capital generated by any insurance company business is usually sustained by its very
own shareholders, who in turn expect a capital return. The latter aligns with the well known Cost of
Capital (CoC) approach, which is especially used whenever traditional evaluations available within
the financial markets are not applicable for quantifying the cost of transferring the liabilities to
another counter-party. Specifically, the CoC evaluation of a generic liability, Z, is evaluated by
(1− δ)E(Z) + δV aR0.995(Z) in our setting. The value of δ is usually set as the sum of the risk free
interest and a risk premium naturally expected by the shareholders. Thus, any risk allocation from
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the efficient frontier described in 3.6 has a liability evaluated via the CoC method given by

CoC(γ; 0.995) := (1− δ)E
(

L
(

R∗
1[X ], R∗

2[X ]
)

)

+ δV aR0.995

(

L
(

R∗
1[X ], R∗

2[X ]
)

)

= (1− δ)

∫ xF

V aRγ (X)

F̄ (x) dx+ δ
(

V aR0.995(X)− V aRγ(X)
)

+

+(1 + ρ)

∫ V aRγ(X)

V aRs∗∗(X)

F̄ (x) dx+

∫ V aRs∗∗(X)

0

g
(

F̄ (x)
)

dx.

for any targeted confidence level γ ∈ [s∗∗, 1]. The latter is illustrated in Figure 5.1 for all three
loss distributions discussed in the beginning of the current section whenever δ = 10%. It can be
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Figure 5.1. CoC evaluation of the insurer total liability for various values of γ and
β = 0.6 for respectively, Pareto (solid), LogNormal (short dash) and Exponential
(long dash) loss distributions.

observed that the cedent would prefer to choose from its efficient frontier the risk allocation that is
optimised for the 99.5% confidence level. In addition, the most expensive choice is attained in the
case in which the insurance company prefers to minimise its total VaR-based risk at γ = 90.9%.
This underpins the fact that the diversification through reinsurance is sensible to the regulatory
capital requirements that the insurance company should meet.

Table 5.2. VaR of the Insurer Total loss at 0.995 level: Theorem 3.2 setting

Exponential LogNormal Pareto

One Reinsurer 1, 683.15 1, 650.24 1, 721.28
Two Reinsurers 1, 502.49 1, 463.79 1, 508.16

β = 0.4 (10.73%) (11.30%) (12.38%)
Two Reinsurers 1, 349.53 1, 313.10 1, 336.97

β = 0.3 (19.82%) (20.43%) (22.33%)
Two Reinsurers 1, 216.89 1, 187.14 1, 195.10

β = 0.2 (27.70%) (28.06%) (30.57%)
Two Reinsurers 1, 099.80 1, 078.76 1, 074.74

β = 0.1 (34.66%) (34.63%) (37.56%)

Finally, this section is concluded with some numerical examples that show the diversification gain
provided by the strategy given in Theorem 3.2 as compared to Theorem 2.1. That is, we assume
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the same particular parametric loss distribution assumptions as used earlier. As before, the first
reinsurer chooses a security loading factor ρ = 1. In addition, the second reinsurer charges its
premium based on the average worst 1 − β events, where β ∈ {0.1, 0.2, 0.3, 0.4}, i.e. β < ρ∗ = 0.5
always holds. All results are summarised in Table 5.2. Clearly, a reduction in the value of β reduces
the level of reinsurance premium, and therefore, the overall risk decreases, and the diversification
gain (given in parentheses) increases.
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