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(i) 

SUMMARY 

Column separation on both the upstream and downstream sides 

of a valve in an aviation kerosene pipeline was the subject of an 

investigation involving the method of characteristics to solve the 

partial differential equations governing pressure transient propagation. 

Particular attention was given to obtaining accurate velocity results at 

the instant the predicted pressure at a section reached vapour pressure. 

A test rig utilizing L.56 aluminium alloy fuel piping and 

other aircraft standard components and pumping Aviation Kerosene 

Specification 2494, was employed to investigate the phenomenon and test 

the computing procedures. 

For separation upstream of a valve following closure, a 

comparison of the computed and observed results indicated an accuracy 

within 3% for the first peak following valve closure and 5% for the 

cavity duration. Computed results within 10% of the observed were 

obtained for the later peaks following cavity collapse. 

Observation and filming of the sequence of events downstream 

of the valve during and following closure indicated that the air released 

during initial separation remained out of solution. The effect of this 

air was significant but could be included, in terms of its partial 

pressure, in the cavity boundary equations. 

The predicted cavity collapse pressures were consistently above 

those observed. Predicted values of maximum and minimum pressures, and 

their event times, following valve closure were, at worst, within 10% 

of the observed results. 

Analysis of the released gas indicated that it had normal air 

composition. Measurement of column velocity from the films and the use of 

a hot film probe and anemometer supported the assumptions made with 

reference to column motion. The hot film probe results demonstrated that 

this flow measurement technique was practical in this application. 
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1. INTRODUCTION 

Pressure transients will propagate within any pipe network 

following a change in the steady state conditions of the system. The 

severity of the subsequent pressure variations will depend on a number 

of factors including the initial flow velocity and pressure in the 

pipeline, and the rate of change of the boundary conditions. Among 

the most common causes of pressure transient problems are inadvertently 

rapid valve closures or pump failures. Once a transient has been 

propagated it will continue to be reflected within the system until 

it damps due to frictional and vibrational effects. 

If the pressure at any point in a pipeline falls to the fluid 

vapour pressure, or in certain circumstances to the gas release pressure, 

then the fluid column will separate at that section and the separated 

columns will move under the influence of the prevailing pressure gradients 

between the cavity and the boundaries of the pipeline. The pressure 

generated on the collapse of the vapour cavity formed between the separated 

columns can be of destructive proportions even if any released gas in 

the region of the cavity is not redisso1ved by the returning fluid columns. 

This explains the interest in this particular transient phenomenon. 

The roots of pressure transient analysis, or waterhammer as 

the subject is commonly called, lie in the large scale water distribution 

and hydro-electric plant field. It is therefore not surprising that all 

the available work on column separation employed water as the working 

fluid. Pressure transient phenomena however occur throughout a wide 

range of engineering applications, from the large scale cases above, 

through chemical plant and aircraft fuel system applications to small 

scale installations such as fuel injection systems. 

The traditional method of analysis is the Schnyder-Bergeron 

graphical method first proposed in 1927. The more recent introduction of 
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digital computing, particularly allied to the numerical "method of 

characteristics" has enabled complex small scale systems to be 

accurately analysed without incurring the errors associated with the 

graphical method. 

It was the purpose of the research reported to extend the 

work on column separation to include its occurrence in aircraft fuel 

systems and to develop computing procedures capable of predicting the 

pressure fluctuations during and following cavity collapse in aviation 

kerosene. A comprehensive series of experiments was devised to in-

vestigate column separation on both the upstream and downstream side 

of a valve following closure, including the use of a high speed camera 

to record the sequence of events during cavity growth and collapse. 

Pressure and flow velocity records were made during the existence of 

the cavity by means of quartz crystal pressure transducers and a hot 

film constant temperature anemometer. The results obtained from these 

tests, together with full descriptions of the apparatus, test procedures 

and the programs and subroutines written in Fortran IV for use on an 

ICt 1905 computer are presented in this report. 

The application of the computing techniques to an analysis of 

the B.A.C./S.N.A.I.S. Concorde refuelling system is also presented as 

an appendix to the report. 
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2. HISTORICAL SURVEY 

The number of publications dealing with pressure transient 

phenomena, or waterhammer as the subject is often called, is vast and 

covers a period of roughly 80 years. The contributions to the literature 

range from the purely theoretical treatment of the subject, such as the 

attempts to use Lap1ace transform theory to predict pressure variations, 

through discussions of methods of analysis available at any time, for 

example the 1933 A.S.M.E./A.S.C.E. symposium, to reports of the occurrence 

of waterhammer, often destructively, in some particular plant or system. 

It would be inappropriate to include much of this literature 

in the present survey, particularly as there are a number of reviews 

in print (1, 2, 3). The scope of the present survey will be restricted 

to the following topics:-

(1) The development of the basic theory of pressure transient 

analysis and the growth of the methods commonly employed to predict 

transient pressure effects, either in the design or corrective stages 

of a system's life. 

(2) The development of the method of characteristics in this 

application, with particular reference to the advances made possible by 

use of the digital computer. 

(3) A review of the literature dealing particularly with column 

separation following transient propagation. The literature on this sub-

topic is limited and it is thought that the survey presented is complete. 

The term waterhammer will be used in this survey over the 

period when it was the common title for the subject, up to about 1960. 
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2.1 Foundation of waterhammer theory 

The first recorded work on waterhammer was carried out by 

Weber (4) and Michaud (5) who noted the oscillatory nature of the 

phenomenon and the influence of pipe wall elasticity. However neither 

realised the connection between the subject and the body of earlier 

work on sound wave propagation that can be traced back to Euler's 

solution of the wave equation in 1750 and subsequent work on blood 

circulation in 1775. During the next 100 years the data on sound wave 

propagation was extended by D'Alembert, Bernoulli, Thomas Young (1808) 

Savant and Liscovious (1825) and E.H. and W. Weber (1830). In 1848 

Wertheim noted that the acoustic velocity in submerged organ pipes was 

less than that predicted by the expression: 

appropriate for an unconfined mass of fluid. Helmholtz attributed 

this to the elasticity of the pipe walls in the same year. 

In 1878 Korteweg (6) established the equation for acoustic 

velocity in a fluid/elastic walled pipe system that was to form the 

basis of much further work: 

= 1/ (1 + DK/Ee)! 

Korteweg assumed that the longitudinal and bending stresses set up 

in the pipe wall could be neglected and that the wavelength of the 

propagated wave was long in comparison to the pipe bore. Comparisons 

presented between this equation and contemporary work by Kundt, 

Lehman and Dvorak display scatter between -10% and +4%. 

Lamb (7) extended this work to include the longitudinal 

stresses by considering the equations of motion along the radius 

and generating line of a pipe section. By substituting the relevant 

stress relationships Lamb obtained a cubic expression in c2. For 
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long wavelengths Lamb found that the two finite roots of this 

expression corresponded to two propagation velocities, namely: 

(1) the velocity appropriate for the fluid, the value being 

slightly less than Korteweg's prediction due to the in-

clusion of longitudinal stress. 

(2) a velocity slightly lower than the acoustic velocity of the 

pipe material, the reduction due to the elasticity of the 

fluid. 

At this time, Joukowsky (8) published the results of a 

comprehensive series of tests carried out at the Moscow Water Works, 

together with an independent derivation of Korteweg's wave speed 

equation. 

Joukousky's work is notable as it derived for the first 

time many of the basic equations for the subject. He realised the 

significance of the pipe period, i.e. the time taken for a pressure 

wave to return to its source from a system boundary, and derived the 

relation between pressure and velocity change during flow stoppage: 

6p • pc6V. 

In the special case of a flow stoppage in less than one pipe period 

this expression takes the form 

!SP - pcVo 

which is known as Joukowsky's equation. Similarly he appreciated the 

significance of the concept of reflection coefficients at dead ended 

pipes and reservoirs. The results presented in Simin's translation 

show a scatter of ±15% on the pressure results and ±2% on the wave 

velocity records, remarkable in view of the instrumentation available 

at that time. 

Joukowsky's conclusions are of interest as they formed the 

basis of the modern theory: 
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(1) The pressure transient is transmitted as a plane wave at 

constant velocity, the value of this velocity depending on pipe 

dimensions and elasticity, and the fluid Bulk Modulus and density. 

(2) Pressure amplitude remains constant along the pipe. 

(3) The concept of transmitted and reflected waves completely 

explains the periodic nature of the pressure records. 

Allievi was also active on waterhammer research and in his 

Notes 1-4, 1903-1913, (9) he established the Joukowsky relation by 

making the same assumptions as Joukowsky and Korteweg namely: 

(1) Frictionless pipelines. 

(2) Uniform pipe dimensions. 

(3) Homogeneous wall material. 

(4) Longitudinal and bending stresses insignificant. 

(5) Uniform velocity distribution in the flow. 

From assumption (1) and neglecting the convective terms in the equations 

of motion and continuity, the wave equation may be expressed as: 

= 

which may be solved by a general method proposed by Riemann and d'Alembert 

yielding: 

p - po = F(t + ｾＩ＠ + f (t - ｾＩ＠

where x is measured in the direction of initial flow, and the functions 

F, f represent pressure waves propagated in the -ve and +ve x directions 

respectively. 

Allievi used the above relationship to extend Joukowsky's 

work to slow valve closures by means of a set of interlocked equations 

intended to predict pressure variations upstream of the valve during 

and following closure. In order to extend the solution to other points 

along the pipeline Allievi proposed the first graphical method, which 
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was cumbersome and impractical but nevertheless served as an illus-

tration of the concept of the F, f travelling waves. 

The work of Joukowsky and Allievi has remained the corner-

stone of pressure transient analysis. Both predicted a single wave 

propagation velocity, neither realising the significance of Lamb's work, 

however in view of the state of communications at that time it is 

probable that they were unaware of it. Both assumed that the wave was 

plane, thus neglecting the inertial forces associated with radial 

fluid motion. Frictional effects were assumed insignificant, as were 

the mass and inertia of the pipe wall and the longitudinal and bending 

stresses set up. 

Of these assumptions, bending stress has been shown to be 

insignificant for all but the shortest wavelengths. The neglect of 

friction would normally result in an over-estimate of any pressure 

rise, however present graphical and numerical solutions do include friction 

approximations. 

Parmakian (10) proposed an approximation for the effect of 

longitudinal stress by the inclusion of a factor, cl' in the Korteweg 

wave speed equation, 

c/co • 1/(1 + (DK/Ee) cl)1 

where the value of cl depended on the pipeline restraint and Poisson's 

ratio. Halliwell (11) has shown that variations in Cl have a small 

effect compared to errors in Young's Modulus E. 

Skalak (12) following Lamb's work, assigned the two phase 

velocities to the propagation of a tensile stress wave in the pipe wall 

and to the propagation of the main transient in the fluid. The pipe 

wall stress wave was to be accompanied by a precursor wave travelling 

ahead of the main transient in the fluid. Experimental verification was 

provided by Thorley (13), together with evidence of transient dispersion. 
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Due to its small effect on predicted pressure and wave speed this 

improved theory is likely to remain of academic interest only. 

Thus the basic concepts of waterhammer theory were laid 

down by 1913, and have proved accurate up to the present time. The 

means required to analyse any system in terms of the likely water-

hammer pressure variations were not available, and the extension of 

such methods to provide rapid design information on waterhammer had 

to await the advent of the digital computer. 

2.2 Development of waterhammer analysis during the period 1910-1950 

It was 1925 before an English translation of Allievi's work 

was generally available. In this interim period a number of lesser 

known researchers were active, A.H. Gibson, de Sparre, and Rateau in 

Europe, Carpenter and Barraclough (14) and Peek (15) in the United 

States. The first significant contribution was made by Johnson (16) 

who, in 1915, developed a rigid fluid column ｴｨｾｯｲｹＬ＠ and N.R. Gibson (17) 

who developed Allievi's solution independently in 1920. 

In addition to this work, a series of approximate methods 

were proposed, some derived analytically while others were derived from 

piecemeal translations of European authors, notably A11ievi. The use 

of these formulae without either a full understanding of their limits 

of application, or the assumptions made initially, led to a wide range 

of predicted pressures for anyone case. 

Two early approximations were due to Vensano and Warren (18). 

Vensano's approximation was based on Joukowsky's work, however no 

allowance was included for variation in discharge at a closing valve, 

so that the theory was reasonable only for high head systems or rapid 

valve closures. Warren's approximation assumed a uniform pressure rise 

during closure, and for high head systems predicted a pressure rise on 

valve closure exactly half that predicted by Vensano. 
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Contemporary approximations due to Fanning, Talbot and 

de Sparre were compared by Kerr (3) for a typical valve closure in 

four pipe periods and result in predicted pressures varying from 

65% to 535% above the observed pressure rise. 

During this period the number of large scale water 

distribution systems and hydro-electric schemes built, particularly in 

the United States, made the provision of an accurate method of analysis 

vital, and this became available in the early 1930's in the form of the 

Schnyder-Bergeron graphical method. 

This graphical method of waterhammer analysis stemmed from the 

work of Loewy (20), Schnyder (21) and Bergeron (22, 23), however the 

origins of the method may be traced as far as Massau's (19) work in the 

period 1905-1910. For some reason Loewy's contribution has never 

received attention and the method is generally referred to by the names 

of its co-founders Schnyder and Bergeron. The method in its present 

form is outlined in Appendix 1 to this report. 

One of the major advantages of the method on its introduction 

was that frictional losses could be approximated by the inclusion of 

discrete pressure drops, commonly referred to as "friction joints", at 

a number of points along the pipeline. 

The method did suffer from a number of disadvantages, namely 

the possibility of cumulative graphical errors, the large time steps 

and restricted number of friction joints necessary to avoid undue 

diagram complexity and finally the inability to use the method, prior 

to its modification for use on a digital computer, as a design tool. 

The period between the introduction of the Schnyder-Bergeron 

graphical method and the widespread use of the digital computer, 

roughly 1930-50, saw a tremendous increase in interest in waterhammer, 

particularly in the United States where the A.S.M.E./A.S.C.E. waterhammer 
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committee held symposia in 1933 (24) and 1937. The graphical method 

has continued as the main method of analysis up to the present time. 

Angus, in a series of papers in 1937-40 presented the graphical 

solutions for the majority of cases likely to be met by the practising 

engineer (25, 26, 27). More recently, at the I.Mech.E. 1965 Symposium 

'Surges in Pipelines', Pearsall (28) and Marples (29) presented papers 

on the application of the method, while Harding (30) presented a version 

of the method for use with a digital computer. This 'computerized' 

version of the method has been successfully employed by a number of 

authors, including Hayashi and Ransford (31) and has become, following 

Harding's work, the standard method adopted by the British Hydromechanics 

Research Association in their transient consulting work, as described by 

Enever (32). 

One of the major problems in this period, 1930-50, was the 

inability to solve the complete differential equations defining transient 

propagation. The full equations of motion and continuity will be shown 

to be: 

! 2.£. + av + v3v + 2f VlYl 
p ax at 3x D 

V2.£. 
3x = 

= o 

o 

It can be seen, if the convective terms V3V/3x and V3p/3x 

are neglected, that the equation of motion is non linear due to the 

friction term. The simultaneous solution of these equations was con-

sidered impossible by some authors (10, 33) and led to the approximations 

included in the graphical solution of the frictionless wave equation. 

The most common approximation of this type considered a 

single friction joint located at either the upstream (10) or downstream 

end of the pipeline (34). These hypothetical obstructions were assumed 

to supply the same pressure loss as the whole pipeline. 
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This approach was improved on (23) by the introduction of a 

series of such friction joints at intervals along the pipe. This process 

was limited by the rapid increase in diagram complexity and the consequent 

lncrease in graphical errors. 

A number of analytical solutions to the complete equations were 

proposed (33, 35), involving the linearization of the friction term. 

Wood introduced Heaviside's operational calculus and presented an 

example of a simple pipeline and instantaneous valve closure. This work 

was followed by Rich who proposed. the use of Laplace-Mellin transforms. 

Both solutions involved the linearized friction term, which was a poor 

approximation for turbulent flow and resulted in complex mathematical 

solutions for even the simplest practical cases. 

Thus, up to about 1950, the best available method was the 

Schnyder-Bergeron graphical method. The introduction of the digital 

computer, particularly when allied to the method of characteristics 

greatly increased the scope and accuracy of waterhammer predictions. 

2.3 1950-1970, the introduction of the method of characteristics and 
improvements in the frictional assumptions made possible by 
digital computer methods. 

The method of characteristics is a general mathematical method 

that may be used to solve a pair of quasi-linear hyperbolic partial 

differential equations in two dependent and two independent variables, 

such as the complete equations defining transient propagation. 

The method was first proposed by Riemann in 1860 while he was 

studying the non linear problem of finite amplitude sound wave propa-

gation in air. Hassau in 1900 employed the method in connection with 

unsteady flow in open channels. The first known application to pressure 

transients was due to Lamaen (36) in 1947. Two later papers by 

Gray (37, 38) received wider attention, but neither considered the 

use of a computer. 
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Following Gray's work a considerable number of papers 

were presented in the United States employing the method of characteristics 

for transient pressure analysis. Among the first contributors were 

Ezekial and Paynter (39, 40) and more recently Streeter, with several 

co-authors (41, 42, 43, 44, 45). Paynter severely criticised Streeter 

and Lai (42) for not quoting Gray's pioneer work, however it would appear 

that Streeter's contributions were based on a description of the general 

method by Hary Lister (46), which is also used as a basis for the 

solutions presented in this report. 

Outside the United States a number of papers have been published 

employing this method, including those by Fox (47, 48), and by the present 

author (49, 50). Recently Evangelisti (2) presented a complete 

review of the method and its application to a number of common examples. 

Streeter and Lai (42) claimed that the method of characteristics 

was the equivalent of treating the frictional loss as an uniformly dis-

tributed pressure reduction along a pipeline. This is not strictly 

correct as the choice of finite difference technique effectively re-

introduces the concept of 'friction joints'. The improvement lies in 

the number of such joints, this may be increased indefinitely, the 

practical limit being supplied by the run time of any program. 

The basic assumption is however made that the steady state 

friction factor equations, depending on the Reynolds Number, based on 

the mean flow velocity, may be applied to transient flow. The effective-

ness of such a quasi-steady approximation for transient viscous effects 

has been seriously questioned, and it has been shown that the approximation 

underestimates the frictional damping observed in practice, although the 

agreement improves for low frequency disturbances or extremely slow 

valve closures. 
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The under-estimation of damping is particularly noticeable 

in transient laminar flow. Although a certain amount of work has been 

done on this topic, for example Brown and Nelson (51) and Holmboe and 

Rouleau (52), the results have not been in a form readily applicable 

to practical pressure transient problems. Zielke (53) presented a 

method that related the wall shear stress at any section in laminar 

transient flow to the instantaneous mean velocity and the weighted past 

mean velocities at that section. As the method of characteristics 

provides a step by step solution in terms of mean velocity at each pipe 

section, Zielke's method can be added to a characteristics analysis of 

a piping system. Robertson (54) and the present author applied Zielke's 

method to a rapid valve closure in a Shell Tellus 27 pipeline, which 

proved practical and close agreement was obtained between the predicted 

and observed pressure variations. 

The majority of pressure transient analysis refers to the 

occurrence of transients in turbulent pipe flow, but little work has 

been done as yet on an improved frictional representation for the 

turbulent regime. Wood and Funk (55) proposed a laminar boundary layer 

model to account for the viscous losses in transient turbulent flow. 

They assumed inviscid slug flow for the core with all the viscous losses 

occurring in the boundary layer. Close agreement was achieved for 

the simple single pipeline rig used, although the authors state that it 

is necessary to determine the limits of application of the quasi-steady 

approximation at present commonly employed. 

At the present time the use of digital computing methods 

allied to either the Schnyder-Bergeron graphical method or the numerical 

method of characteristics allows a reasonably accurate analysis of many 

transient phenomena to be carried out. As the roots of the subject lie 
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in the analysis of large scale water distribution systems and 

hydroelectric schemes it is not surprising that the literature is 

almost exclusively concerned with water as the working fluid. The 

occurrence of column separation has received little attention in 

spite of the destructive consequences of the phenomenon following, 

for example, a pump failure. The literature on column separation 

is reviewed separately below. 

2.4 Column separation accompanying pressure transients, 1937-1970 

The earliest work dealing specifically with column separation 

was due to Le Conte (56). Le Conte measured the pressure variation 

Uonediately upstream of a valve following a rapid closure and during 

the subsequent cavity formation at the valve. He concluded that the 

accurate prediction of the cavity collapse pressure rise was dependent 

on the method employed to calculate the cavity interface velocity. 

Le Conte assumed that the cavity formed filled the full cross section of 

the pipeline and that the pressure remained constant at the fluid vapour 

pressure appropriate for the particular working temperature. Similarly 

Bergeron (23) analysed the sequence of events following rapid valve 

closure and presented an estimate of the interface velocities during 

cavity growth and collapse. The valve boundary conditions in the graphical 

(p, V) plane were represented by two perpendicular lines, i.e. V = 0, and 

p • P
vap

' The relatively large time steps necessary to avoid an un-

managable graphical solution result in an insufficiently accurate cavity 

interface velocity, and this in turn results in ｩｮ｡ｾ｣ｵｲ｡ｴ･＠ cavity collapse 

pressures. Usually these collapse pressures are over-estimates of the 

observed values. Bergeron included a pressure-time trace for this upstream 

separation case taken from the work of Langevin, 1928, who employed quartz 

crystal pressure transducers and was possibly the first to use this 

measurement technique. Unfortunately Bergeron did not present an analysis 

of Langevin's test case. 
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Column separation upstream of a valve is the easiest case to 

analyse as the cavity formation is not affected by flow through the 

valve during the initial stages of cavity growth. Bunt (57) considered 

the occurrence of column separation downstream of a closing valve and 

concluded that pressure fluctuations of waterhammer intensity occurred 

following the return to the valve of the separated column. Binnie and 

Thackrah (58) employed a fast action valve to simulate pump shut down 

and found that column separation could occur downstream of the valve 

producing severe pressures on cavity collapse. They also noted the 

repetitive nature of the phenomenon. 

Gayed and Kamel (59), employing a test rig similar to Binnie 

and Thackrah's discovered the presence of a series of secondary pressure 

waves propagating within the downstream pipeline during the existence 

of the cavity. These waves have a simple explanation when the pipe is 

represented by frictionless line terminated by a pair of -1 reflecting 

surfaces and are merely caused by the reflection within the pipe of the 

initial negative pressure wave propagated by column separation. 

A number of investigators, for example Apelt (60) and Richards (61) 

have reported on the occurrence of column separation in practice. Apelt 

and Richards both conclude that the pressures generated on the rejoining 

of the separated column could be of destructive proportions and Richards 

particularly stresses the point that the cavity collapse velocity 

governs the subsequent pressure rise. These conclusions were supported 

by Duc (62) who photographed cavities formed at a high point in a pump 

discharge line following a pump failure. Duc observed that low pressures 

were maintained in the cavities during their growth and decay and that the 

pressure rise on collapse was very steep if not instantaneous. Duc also 

confirmed the repetitive nature of the phenomenon. There was no evidence 

in Duc's work to suggest that air release occurred either at the cavity 

or in the regions of fluid subjected to pressures below atmospheric 

pressures. 
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In many applications the rate of valve closure of pump stoppage 

1S so slow that the movement of a separated fluid column may be approxi-

mated by the criteria governing mass oscillations. This was the basis 

of an approximate method proposed by Kephart and Davies (63) and later 

expanded by Li (64). Li pointed out, correctly, that not every vapour 

cavity will result in cavity collapse. The deciding factors include 

the initial flow velocity, the pipe inclination and the elevation of the 

source of the transients, i.e. valve or pump, relative to the system 

boundaries. In some cases the cavity becomes a vapour column between 

the source and an interface that oscillates before coming to rest at an 

equilibrium position. In other cases the pipeline simply drains and no 

high pressures are generated. Li's work and the work reported by the 

present author refer only to the case where cavity collapse occurs. 

Li and Walsh (65) presented equations defining the maximum 

pressure on cavity collapse 1n a frictionless pipeline. Li (66) also 

dealt with the thermal effects of cavity formation and concluded that 

during cavity collapse the released latent heat raised the temperature 

and pressure at the cavity interface and vice versa during cavity growth. 

The net effect is to reduce the cavity size and collapse pressure rise, 

but the effect was so small as to be insignificant and may be neglected. 

In spite of the extreme sensitivity of the cavity collapse 

pressure to errors in interface velocity the graphical method of Schnyder 

and Bergeron has been used by a number of authors to predict column 

separation effects. Lupton (67) described the necessary procedures in 

1953 while more recently (1964) Carstens and Hagler (68), drawing on the 

work of one of their graduate students, describe the sequence of events 

and the necessary graphical procedures for separation upstream of a 

rapidly closed valve. They also presented results for column separation 

following pump failure. 

Air or gas release from water is not mentioned by any of the 

above authors as a factor in column separation calculations. Brown (69) 
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reported on the effect of entrained air in pump discharge lines and 

Lawson (70) considered the effect of trapped air in the fire services 

piping in tall buildings. Brown demonstrated that the presence of entrained 

air can be included in a solution by the method of characteristics by 

'lumping' it at sections along the pipeline. Lawson showed that high 

pressures can be generated on starting a pump if large quantities of 

air are trapped in the discharge line. This illustrates the error in 

the assumption that such air necessarily acts as a cushion for an approach-

ing fluid column. The pressure build up in the trapped air volume is 

relatively slow so that the approaching fluid column can attain an 

appreciable velocity before the air pressure becomes sufficient to retard 

the column. The final pressure generated when the fluid comes to rest can 

be extremely high, as demonstrated by Lawson's contribution. 

All the references quoted up to this point included Le Conte's 

assumptions that the vapour cavity filled the whole pipe cross section and 

that the pressure remained at vapour pressure during the growth and decay 

of the cavity. Baltzer (71) replaced these boundary conditions, for 

separation upstream of a valve following rapid closure, by assuming that the 

cavity formed would overlie the fluid and that the flow beneath the 

cavity would be subject to the viscous, open channel, transient flow 

equations. The results presented indicate that this model over-estimated 

both the cavity duration and collapse pressure rise by a factor of about 

1.5. The earlier assumptions, when allied to a method of characteristics/ 

digital computer solution, usually over-estimates cavity collapse pressures 

but under-estimates cavity duration due to the insufficient frictional 

damping supplied by the quasi-steady approximation. Baltzer attributed 

these over-estimates to the release of dissolved air from the water along 

the whole length of pipeline and supported this by observations of the 

growth of air bubbles along a glass pipe section during the existence of 

the cavity at the valve. 
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In view of the fact that none of the earlier literature 

mentioned air release and following the present author's own observation 

of water column separation (72) in a similar test rig, it is the author's 

opinion that the air bubbles observed by Baltzer were initially entrained in 

the flow. 

Following Baltzer's conclusions Weyler, Streeter and Larsen (73) 

re-examined the problem, employing the same test rig. They proposed a 

semi-empirical 'bubble shear stress' which would predict the increased 

momentum losses under column separation conditions. This 'bubble shear 

stress' arises from the non-adiabatic expansion and collapse of gas 

bubbles present throughout the low pressure flow region. The analysis 

was carried out by means of the method of characteristics, however in order 

to include the bubble shear stress in the equation of motion it was necessary 

to introduce a constant C which included all the 'numerical factors and 

unknown constants', such as the number of bubble nucleation sites per 

unit wall area. The computer was then programmed to carry out a series 

of solutions with varying C values until the predicted duration of the 

first cavity agreed with its observed value, the program then continuing 

with a complete pressure-time solution. This is at best a dubious procedure 

as C would be made to automatically include all other potential errors, 

such as an under-estimate of frictional damping, errors in steady state 

conditions and the effects of any vibration of the test rig. 

The papers referred to in this section are believed to 

accurately represent the available work on column separation. All the 

papers refer to water as the working fluid. The release of dissolved air 

in the region of a vapour cavity is totally neglected, with the exception 

of Weyler's work which was strictly confined to his test rig. 

The object of the work reported 1n this thesis is the extension 

of the method of characteristics solution to column separation in an 

aviation kerosene pipeline. Separation was studied on both sides of a 

closing valve and procedures are presented, which include the effect of 

air release from the fuel. 
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3. THEORY 

The theory of pressure transient analysis will be presented 

in this section, including the derivation of the basic differential 

equations, their solution in the particular 'no-friction' case and in the 

general case employing the method of characteristics. 

The solution of the full differential equations including a 

non-linear friction term, pipeline inclination and the convective terms 

will be presented in a general form applicable to any pair of quasi-

linear hyperbolic partial differential equations in two dependent and 

two independent variables. The necessary computing procedures required 

to deal with all the system boundary conditions met in the reported 

research will be outlined together with descriptions of the transient 

phenomena studied. 

Column separation on both sides of a closing valve will be 

discussed and the application of the method of characteristics to the 

cavity boundary conditions, including the effect of gas release, will 

be presented. 

3.1 Derivation of the basic differential equations governing the 
propagation of pressure transients 

The propagation of pressure transients within any piping 

network can be described by a pair of quasi-linear hyperbolic partial 

differential equations, namely the equations of motion and continuity. 

In this section these equations will be derived in a form that can either 

be simplified to allow the description of various transient phenomena or 

solved in a more complete form by the method of characteristics. 

3.1.1 Equation of motion 

Figure 1 illustrates the forces acting on an element of fluid 

in an inclined pipeline. To develop the equation of motion it 1S necessary 

to equate the total resolved force in the flow direction to the product 

of the elements mass and acceleration. 
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Referring to Figure 1 and resolving parallel to the axis of 

flow yields an expression for the total force: 

an aA 1 an aA 
pA - (p + ｾ＠ dx) (A + ax dx) + (p + '2 ｾ＠ dx) dX dx 

- ｔｯｾｄ＠ dx + mg sina = m (vav + ay) 
ax at 

(1) 

made up of two opposing pressure forces, a component of the pressure 

force due to the change in pipe cross section, friction force and the 

component of weight, which can be equated to the mass times accelerated 

term as shown in equation (1). 

It is reasonable to assume that changes in fluid density are 

small compared to the density, p, so that: 

1 aA 
m = p (A + '2 ax dx) dx 

Similarly, by assuming that products of small quantities may 

be ignored in an expansion of (1), the re-arranged terms are: 

..!. ｾ＠ + aV + Vav 
p ax at dX 

- g sina + 4To = 0 
pD (2) 

It is customary 1n pressure transient analysis to assume that 

the steady state friction factors apply so that: 

TO = i pf vlvl (3) 

where f is the friction factor. 

Substituting for To in (2) yields 

..!. ｾ＠ + av + V av _ g sina + 2f ｾ＠ = 0 
p ax at ax D 

(4) 

The equation of motion 1n the form expressed in (4) will be 

used throughout this analysis. The modulus or absolute-value sign 1S 

introduced in the friction term to ensure that the fluid friction force 

is always in opposition to the flow direction. 
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3.1. 2 Equation of continuity 

Fig. 2 illustrates the flow past two sections of an inclined 

pipeline Os apart. It is assumed that 

(i) the pipeline is slightly elastic and obeys Hooke's 

ｌ｡ｷｾ＠ i.e. Os may ｶ｡ｲｹｾ＠ as may the diameter; 

(ii) changes in fluid density may be neglected. 

By the principle of continuity, the net mass inflow of fluid 

per unit time must be equal to the time rate of increase of the mass 

in the volume it occupies. Referring to Fig. 2 this may be expressed as: 

pAV - (pAV + d (pAV) os) = d (pAos) 
dX dt 

Expanding and re-arranging terms yields 

- V (1. dV + 1. dA + 1. ｾ＠ ) \v dX A dX p dX 
1 dOS + I dP + I dA 
o;Tt pat Aat 

or 

dV + 1. (VdA + dA) + I (V!£ + dP_\ + I d os 
dX A ax at p dX ､ｾ＠ 6; ｾ＠

or ｾ＠ by calculus, 

dV + .! ciA + .! dp + .!.-. d os 
dX A dt p dt Os dt 

= o 

The terms in equation (7) represent: 

.. 0 

(5) 

(6) 

(7) 

1. the change in velocity between inflow and outlfow, at any instant; 

2. the change in pipe cross sectional area; 

3. compressibility of the fluid; 

4. possible elongation of the pipeline. 

These terms must be expressed as functions of the expansion of 

the pipeline and the compressibility of the fluid, before equation (7) 

can be transformed into a usable expression. 
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Compressibility of the fluid: 

For a liquid the Bulk Modulus K may be defined as: 

K = ｾＯＮＡ＠ dp 
dt p dt 

or in a form suitable for substitution into equation (7): 

3.1. 4 

1. dp _ 1. ｾ＠
P dt - K dt 

Expansion of the pipeline: 

(8) 

ａｳｳｵｾｮｧ＠ that £2 is the unit circumferential rate of strain, 

the increase in the radius of the pipeline is: 

hence the time rate of change of the cross-section of the p1pe is 

dA - .. 
dt 

Thus, substituting for the pipe cross sectional area A, yields:-

1 cIA 2 d£2 
A dt = dt 

or 1n a form suitable for substitution into equation (7) 

1. cIA = ｾ＠ (dO 2 _ 
A dt E dt 

lJ dOl' 
dt / 

(9) 

where 01 is the axial stress, 02 is the circumferential stress, ｾ＠ is 

the Poisson's ratio and E is the material Young's Modulus. 

3.1. 5 Elongation of the pipeline 

ｓｩｾｬ｡ｲｬｹＬ＠ the elongation may also be expressed in terms of the 

stresses in the pipe wall and the material Young's Modulus and Poisson's 

ratio. 

dq 
= ｾ＠

where £1 is the unit axial rate of strain. Expressing (10) as 

dq 

dt 
.. 1. (dol _ ｾ＠ d02) 

E "dt dt 

allows substitution in (7) for the pipe elongation term. 

(10) 
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Equation (7), the equation of continuity may now be expressed 

as: 

av + .! ｾ＠ +.! (d0 2 (2 - IJ) + dOl (1 - 21J») 
ax K dt E dt dt 

= 0 (11) 

To proceed further it is necessary to make some assumptions with respect 

to pipe restraint and whether or not the pipeline can be regarded as 

'thin walled' in order to obtain expressions for the stresses °1 and °2 , 

3.1. 6 Effect of pipe restraint 

Generally if the ratio of pipe bore to wall thickness is of 

the order 10 or greater, a pipeline may be regarded as thin walled. It 

therefore follows from standard theory, which will not be reproduced here, 

that if the pipe is subjected to a pressure change p then: 

1. axial stress 01 = ｾ＠
4e 

where D is the pipe bore and e its wall thickness, 

and = ｅＮＮＮＮＮｾ＠
4e dt 

2. circumferential stress °2 = ｾ＠
2e 

and d02 
dt 

= ｅＮＮＮＮＮｾ＠
2e dt 

Three restraint conditions are commonly considered: 

(12) 

(13) 

(14) 

(15) 

(i) pipeline restrained fully at the upstream end only so 

that both axial and circumferential stress and strain occur. 

Thus both equations (13) and (15) apply and equation (11) 

becomes: 

av + ｾ＠ (1. + ｾ＠ (1 - IJ») = 
ax dt K dE 4 I 

o 

(ii) pipeline anchored throughout against axial movement, 

dq = 0 
dt 

(16) 
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and equation (11) becomes: 

ｾ＠ + ｾ＠ (1 + ｾ＠ (1 - ｾＲﾻＩ＠
dX dt K eE J 

o 

(iii) expansion joints at frequent intervals along the 

(17) 

pipe, thus axial stress is zero hence the derivation of 

equation (11) is altered at equations (9) and (10) as 

= o 

hence equation (11) becomes: 

av + ｾ＠ (1 + ｾＩ＠
ax dt K eE 

o (18) 

Equations (16), (17), (18) are versions of the continuity 

equation commonly employed. Normally, it is sufficiently accurate to 

employ equation (18), however there are cases where the effect of the 

Poisson's ratio term is significant, these cases basically depending on 

the relation between the fluid Bulk Modulus, K, and the Young's Modulus, 

E, of the pipe material. 

(i) E > K, then the second term in the coefficient of 

dp/dt is usually smaller than the first, which is itself 

small, and the effect of ｾ＠ is not significant. 

(ii) E« K, then the second term in the coefficient of dpldt 

can be considerably greater than the IlK term and small 

variations in the multiplier containing ｾ＠ can be significant. 

3.1. 7 Velocity of propagation of pressure transients 

In an unconfined expanse of fluid the wave speed, co' with which 

sound waves would propagate is given by: 

(19) 

When the fluid is contained in an elastic pipeline the Bulk Modulus term 

must be modified to allow for the increase in pipeline dimensions, axial 

and circumferential. The wave speed in the pipeline can be expressed as 
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c (20) 

where K' is the effective Bulk Modulus term for the fluid/pipeline. 

The total volumetric strain £ for the pipeline/fluid combination 

for a pressure increment p may be expressed as 

Thus for 

write 

£ = p ( t + ｾ＠ (°2 (2 - ).I) + 01 (1 - 2).1»)) 

or e: = p 1 

K' 

the three restraint 

1 = 1 + D 
KT - -K eE 

1 - 1 + D 
KT K eE 

1 = 1 + D 
KT K eE 

cases previously mentioned it 

(5 - ).I) 
"4 

(1 - ).12) 

is possible 

Thus, by substituting the appropriate equivalent Bulk Modulus 

to 

and the corresponding wave velocity in the pipeline into equations (16), 

(17), (18) it is possible to write the continuity equation in a simplified 

form: 

av + 1 ｾ＠ = 0 
ax pc2 dt 

or, as will be used later in this analysis: 

pc2 av + ｾ＠ + V ｾ＠ = 0 
ax at ax 

(21) 
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3.2 Simplification of the basic pressure transient equations 

In order to describe some of the basic aspects of pressure 

transient propagation it is useful to re-write the equations of motion 

and continuity in the simplified form below: 

Motion l !E. + av = 0 
P dX at 

Continuity __ 1_ ｾ＠ + av = 0 
pc2 at ax 

i.e. these equations apply to a horizontal, frictionless pipeline 

where the convective terms vav/ax and vap/ax may be neglected with 

(22) 

(23) 

respect to av/at andap/at. Equations (22), (23) are a pair of linear 

differential equations that may be solved directly. By taking the 

partial derivative of (22) with respect to x and the partial derivative 

of (23) with respect to t it is possible to eliminate terms in V, hence 

the equations may be written as: 

(24) 

Similarly, terms in p may be eliminated yielding a second equation: 

= (25) 

For the one dimensional wave equation (24) there is an elegant 

solution known as D'Alembert's solution. 

and it is 

If f is a function possessing a second derivative then: 

at (t - .!) 
at c 

a2f (t - .!) 

a t2 c 

evident that 

= 

== 

f'(t-.!); 
c 

f" (t - .!); 
c 

a2f 

ax2 

-l£' ＨｴＭｾＩ＠
c c 

= 1 f" (t - .!) 
c2 c 

p = f (t .!) satisfies the equation: 
c 
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Similarly, if F is an arbitrary twice differentiable function, then 

p = F(t ＫｾＩ＠ is likewise a solution to the wave equation. Hence, 
c 

since (24) is a linear equation, it follows that the sum of F and f 

is also a solution. If p above is regarded as the pressure change 

from steady state Po then the solution of the wave equation takes the 

generally accepted form: 

p - Po - F(t + x) + f(t - ｾＩ＠ (26) 
c c 

Similarly, by substituting for ap/ax in (22) it follows that: 

V - Vo - - 1 fF(t + ｾＩ＠ - f(t - ｾﾻ＠ (27) 
pc \ c c) 

This method of solution of the one dimensional wave equation 

is named after the French mathematician Jean le Rond D'Alembert (1717 

1783). The D'Alembert solution is actually not a special method but 

rather a special application of a general method known as the method of 

characteristics (74). This form of the solution is particularly useful 

as it reveals the significance of the parameter c and its dimensions of 

velocity. 

Equations (26) and (27) form the basis of the graphical methods 

of transient analysis. The Schnyder-Bergeron graphical method is outlined 

in Appendix 1 to this report. 
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3.3 Physical significance of the F( ) and f( ) functions and 
their use to describe simple transient phenomena 

The two functions F(t + x/c) and f(t - x/c) are entirely 

arbitrary and may be selected to satisfy the conditions imposed at the 

boundaries of the system. Consider the simple pipeline illustrated in 

Fig. 3 consisting of a single horizontal, frictionless, uniform pipeline 

of length L terminated at the upstream end by a constant pressure 

reservoir and at the downstream end by a valve capable of instantaneous 

closure. 

As the F( ) and f( ) functions are arbitrary, the function 

F( ) may be interpreted as a wave moving in the -x direction, i.e. 

upstream so that x must decrease at a rate ct. This wave is normally 

referred to as an F wave and can be propagated by a change in conditions 

at the downstream end of the pipeline. 

Similarly the function f( ) may be interpreted as a wave 

moving in the +x direction, i.e. downstream. This wave is referred to 

as an f wave and can be propagated by a change in conditions at the 

upstream end of the pipeline. The significance of equation (26) is now 

clear, it implies that at any time t following the initial disturbance, 

the pressure at a point x in the pipeline may be found from a summation 

of the travelling F and f waves. It is assumed that these pressure waves 

travel at a uniform speed c and do not attenuate or change their shape 

either as they propagate along the pipeline or as they pass each other. 

Referring again to Fig. 3 let the disturbance be an instantaneous 

closure of the downstream valve. As mentioned above an F wave would be 

propagated upstream from the valve, however as the valve closure is 

instantaneous the f wave terms in (26), (27) are zero. 
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Hence applying (26), (27) at the valve at t 

p - Po = F(t + ｾＩ＠
c 

- 1 
PC 

F(t + ｾＩ＠
c 

Eliminating F( ) yields 

p - Po - - pC (V - Vo) 

where V - 0 as the closure was assumed instantaneous. 

o yields: 

Hence the pressure rise at the valve may be expressed as: 

!JP - PC Vo 

This is the maximum pressure rise possible on valve closure and the 

(28) 

(29) 

(30) 

(31) 

expression in this form is named after Joukowsky who first demonstrated 

its validity in 1897. 

The equations (28) to (30) apply not only for instantaneous 

closures but for any valve closure that is completed before the return 

to the valve of an f type wave from the upstream reservoir, namely any 

closure completed in less than one pipe period, tp, where 

- 2L/c (32) 

The sequence of events following valve closure in the simple 

pipeline considered may now be described. 

At the instant of valve closure (t = 0) the fluid nearest the 

valve is compressed, brought to rest and the pipe wall is stretched. 

This process is repeated upstream at the wave speed appropriate for the 

fluid/pipeline combination, Fig. 3 b, until at a time t = L/c all the 

fluid is at rest at the uniform pressure Po + pc Vo, all the momentum 

having been lost and all the kinetic energy having been changed into 

elastic energy. At this time L/c the wave front is at the reservoir 

inlet so that an unbalanced condition exists, since the reservoir 

pressure is assumed to be unchanged. This produces a reverse flow of 

fluid out of the pipeline into the reservoir and an attendant pressure 
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drop, f type wave, that propagates back downstream. This f wave 

returns the pressure to its initial Po value, i.e. a - pc Vo wave, 

and the velocity of the reverse flow behind the f wave is similarly 

- Vo, Fig. 3 d. The reservoir is thus said to have produced a 

negative reflection of the incident F wave, and so possesses a - I 

reflection coefficient. 

The f wave propagates towards the valve at the sonic 

velocity c and arrives at the closed valve at time t = 2L/c. At this 

instant the pressure along the whole pipeline is Po and the flow velocity 

is - Vo' Since the valve is closed at this instant no fluid is available 

to maintain the flow at the valve so that a low pressure, - pc Vo, F 

type wave develops and propagates upstream again bringing the flow to 

rest and resulting in a contraction of the pipeline walls, Fig. 3 f. 

It has been assumed here that the initial steady state pressure Po at 

the valve is sufficient for 

Po - pc Vo > Pvap (33) 

so that column separation does not occur. If equation (33) is not 

satisfied the fluid column parts from the closed valve face as a vapour 

cavity forms and can continue to move upstream for a considerable 

period before the prevailing pressure gradients reverse the flow and 

finally close the cavity. The closed valve, fully restrained and in the 

absence of separation, thus reflects an incident wave with equal 

magnitude and sign and is thus said to have a + I reflection coefficient. 

At time t • 3L/c the - pc Vo, F type, wave arrives at the 

reservoir, the fluid column is at rest and at a uniform pressure 

Po - pc Vo' An unbalanced condition again exists at the reservoir inlet 

which again produces an f wave reflection of the incident wave, having 

a magnitude pc Vo, which propagates downstream increasing the pressure 

at each section to its steady state value Po and re-establishing the 
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flow, Vo, in the downstream direction, Fig. 3 h. At time 4 Llc this 

wave reaches the closed valve and conditions are identical to those 

at the time of the instantaneous valve closure two pipe periods 

earlier. 

This process is repeated completely every 4 Lie. The 

presence of fluid friction, the imperfect elasticity of fluid and 

pipe wall together with the possible vibration of the pipeline, 

particularly at the closed valve, damp out the pressure waves and the 

fluid eventually comes permanently to rest at reservoir pressure. 

The simple pi,pe1ine system described can therefore be rep-

resented, following valve closure, by an attenuation free line terminated 

at the upstream end by a-I reflector and at the downstream end by a 

+ I reflector. This model can be employed to explain many of the pressure 

transient phenomena encountered. 

3.3.1 Pressure variation on either side of a valve positioned 
between two reservoirs following a rapid closure 

Fig. 4 illustrates a simple pipeline system consisting of 

two pipelines connecting two constant pressure reservoirs and joined at 

a valve. The pipelines need not have similar properties. The valve 

closure is assumed to be rapid, i.e. completed in a time less than the 

period, 2 Lie, of either pipeline. 

Consider the pressure variations on the valve upstream face. 

The maximum pressure rise pc Vo is generated as equations (28) (29) 

apply. The pressure rise time is i of the upstream pipe period as this 

is the assumed valve closure time. The pressure variations are 

illustrated in Fig. 4 and can be explained by use of the reflection 

coefficients derived previously. It is to be noted that the time 

taken for the pressure at the valve to fall from Po + pc Vo to Po - pc Vo 

is the valve closure time as the f type wave and its F type reflection 
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are both present at the valve between the times t = 2 Llc and t = 2 Llc 

+ tc where tc is the valve closure time. 

Similarly the pressure variation at the mid point of the upstream 

pipe can be explained by reference to the F, f waves. It is to be 

noted that the maximum pc Vo pressure is only generated at this point 

if the valve closure time, and hence the time taken for the wave front 

to pass any point, is less than Llc, otherwise the F and f waves overlap 

and reduce the pressure generated. For the valve closure in i pipe 

periods points closer to the reservoir than 3/16 L register a maximum 

pressure rise progressively less than pc Vo, culminating in a constant 

pressure at the reservoir inlet. 

Pressure variations on the downstream face of the valve are 

also illustrated in Fig. 4. For convenience the pipelines are considered 

to be equal in length and properties. Applying equations (26), (27) 

at the valve downstream face at t = tc, it will be seen that it is an f 

type wave that is propagated downstream from the valve, the F( ) 

function may be neglected if tc < 2 Llc, hence: 

hence 

p - Po f (t - .!) 

v - Vo ,. 1 
pc 

c 

f(t - ｾＩ＠

c 

p - Po - pc (V - Vo) 

and as V· 0 at t ,. tc 

p - Po - - pc Vo 

Subsequent pressure variations are explained by the same methods as 

(34) 

outlined for the upstream case. It is to be noted that equation (33) 

must be satisfied on the downstream face of the valve for the waveform 

illustrated in Fig. 4 to apply. If equation (33) is not satisfied 

column separation occurs on the downstream face of the valve. 
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Application of the method of characteristics for the 
solution of the equations of motion and continuity 
defining transient propagation 

The technique described in this section is entirely general 

(46) and may be employed to obtain the numerical solution to a pair of 

simultaneous quasi-linear hyperbolic partial differential equations of 

the first order in two dependent and two independent variables. Linear 

combinations of the two differential equations, i.e. the equations of 

motion (4) and continuity (21) will be sought which contain derivatives 

of the two unknown functions in one direction only. For the type of 

equation considered there are two such directions, known as characteristic 

directions, along which finite difference approximations may be applied. 

Both first and second order finite difference approximations will be 

discussed. 

3.4.1 Derivation of the characteristic equations 

The differential equations defining transient propagation have 

been derived as: 

L1 = ｾ＠ + P (VaV + aV) + (2pfVlYl - pg sin a) = 0 
ax ax at D 

L2 - v ｾ＠ + ｾ＠ + pc2 av = 0 
ax at ax 

i.e. equations in two independent variables (x, t) and two dependent 

variables (p, V). 

It will be assumed that all the functions involved are 

continuous and possess as many continuous derivatives as may be required. 

Further it will be assumed that nowhere does the relation exist that: 

I V • V (35) 

Consider a linear combination of L1, L2 

L • Al Ll + ｾ＠ L2 (36) 

L - Ｈｾｬ＠ + ｾＲ＠ V) ｾ＠ + ｾＲ＠ ｾ＠ + p Al av 
ax at at 

+ p(Al V + ｾＲ＠ c2) av + ｾＱＨＲｰ＠ f vlYl - Pg Sln a) (37) 
dX D 
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Any two pairs of values of (AI, A2) will yield equations in every 

respect the equivalent of LI and L2. If t = t(x) is the equation to 

a curve then dt/dx is the slope of the tangent to the curve at any 

point, and further, if p = p (x, t) and V = V(x, t) are solutions to 

Ll, L2 then it follows by calculus that: 

dp = ｾ＠ dx + ｾ＠ dt 
ax at 

dV = av dx + av dt 
ax at 

The differential expression L now becomes: 

L = A2 ｾ＠ + PAl dV + Al (2pf Vl!l - pg sin a) 
dt dt D 

if the constants AI' A2 are chosen so that: 

and 

dx = (AI + A2 V)/A2 from (38) 
dt 

dx = (AI V + A2 c2)/AI from (39) 
dt 

(38) 

(39) 

(40) 

(41) 

(42) 

Thus in the differential expression (40) the derivatives of (p, V) are 

combined so that their derivatives are in the same direction, namely 

dt/dx - the characteristic direction. 

The ratio Al/A2 may now be found: 

Al = dx - V dt = c2 dt 
ｾＭＭＭ］ｾＭ

A2 dt dx - V dt 

hence 

(43) 

For the case of hyperbolic partial differential equations, two distinct 

roots of the above quadratic exist. This excludes the exceptional case 

of all three coefficients vanishing. 

The slope E = dt 
dx 

may now be introduced, where E satisfies the equation: 
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may now be introduced, where e: satisfies the equation: 

hence 

or 

(V2 - c2) e:2 - 2Ve: + 1 = 0 

e: - (2V ! I (4V2 - 4(V2 - c2»)/2(V2 - c2) 

E - (V ! c)/(V2 - c2) 

Thus the slope of the two characteristics 10 the (x, t) plane may be 

expressed as: 

dt - 1 
dx V ± c 

Values of Al/A2 may now be found, by solving (41), (42) with (44). 

Hence if dt - 1 then from (41) --dx V + C 

simi larly 

dt - 1 then 
dx V - c 

Al • -c 
AI 

Returning to the differential expression (40) and 

dividing through by PAl yields 

A2 dp + dV + (2f ｖｾ＠ - g sin a) dt = 0 
PAl D 

Substituting for Al/A2 yields two equations applicable along the two 

characteristic directions C+ and C-:-

dV + !... dp + (2f ｖｾＭ g sin a) dt = 0 } vC D 
c+ 

dt • dx/ (V + c) 

dV - 1 dp + (2f VM- g sin a) dt = 0 } pc D 
c 

dt • dx/(V - c) 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(SO) 
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It will be noted that equations (47) to (50) only contain 

total derivatices of all the variables. According to the derivation, 

every solution of the original equations (4), (21) satisfies the 

system of equations (47) to (50). 

It is important to note that the first equation in each pair, 

i.e. (47), (49) only applies if the second is satisfied, i.e. (48) and 

(50) • 

3.4.2 Finite difference approximations 

Two finite difference approximations are described below: 

1st order finite difference approximation may be expressed in the form 

/1 f(x) dx ｾｦＨｸｯＩ＠ (Xl - xo) 
Xo 

(51) 

while the 2nd order expression is: 

[1 
Xo 

f(x) dx ::!!::l 
2" 

(f(xo) + f(xl» (Xl - xo) (52) 

Referring to Figure 5 let P be the point of intersection of 

the C+ and C- characteristics through Rand S. The significance of the 

restriction imposed by equation (35) now becomes apparent as the slope 

of the C- line would be infinite if that condition were not satisfied. 

It is assumed that all (x, t, P, V) values at R and S are known and 

that it is necessary to solve for (x, t, P, V) at P. 

Applying (51), the linear or rectangular rule approximation 

to (47) - (50) yields: 

(53) 

(54) 
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Similarly, applying (52), the trapezoidal rule approximation to (47) 

to (SO) yields: 

Vp _ V
R 

+ 1 (1 
2p ｾ＠

(56) 

(57) 

ｾ＠ - ｾ＠ • 1 (Vp + ｾ＠ + VR + cR) (tp - t R) 
2 

and Vp - Vs - 1- (1- + 1-) (Pp - PS) + (! «f vlvl)p 
20 cp Cs D 

Generally the use of the second set of equations (57) to 

(58) 

(59) 

(60) 

(60), involves an iterative procedure as the coefficients, particularly 

f in (57), (59) are no longer independent of the unknowns. In fact f 

depends on the value of Reynolds Number based on Vp. 

3.4.3 Solution of the characteristic equations in the (x, t) plane 

There are two common methods available for solving the two 

sets of equations presented above. One method is the grid of characteristics, 

which is particularly simple if dx/dt depends on (x, t) only. In this 

case equations (54), (56) or (58), (60) can be integrated immediately 

and the grid defined before the calculations for (P, V) commence. 

Alternatively the method of specified intervals may be 

employed in the t direction, the values of (P, V) at the start of each 

interval being related to those at the end by equations (53), (55) or 
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(57), (59). In any event the solution will proceed as illustrated in 

Figure 6, each successive set of points being based on known values 

ODe time step earlier and the slopes of the characteristic lines. It 

will be noted, that in the absence of boundary conditions in Figure 6, 

the calculations triangulate to an apex point. 

3.4.4 Grid of characteristics method 

Starting with known conditions at time To at a number of 

points along the pipeline the grid of characteristics results in an 

irregular mesh pattern as shown in Figure 7. This is due to the varying 

values of dt/dx at each section. Thus in any calculation employing this 

method, values of (x. t)p as well as (V, P)p have to be calculated at 

each computing step. resulting in a disorderly computational method. 

3.4.5 Method of specified time intervals 

In this method ｾｴ＠ and ｾｸ＠ are specified, reducing the 

calculations to the solution for (V, P), for example at point D1 in 

Figure 7. The value of ｾｴ＠ muat be such that the characteristics through 

Dl intersect CD and ED within the mesh size. thus: 

ｾｴ＠ ｾ＠ ｾｸＯＨｖ＠ + c) (61) 

An interpolation is therefore required at the start of each calculation 

step in order that the base values (V, P)R • (V, P)s are known. 

Both methods have their particular applications, for example 

the grid of characteristic method would be employed for a system 

including a highly deformable pipe where use of the specified time 

intervals method would result in large errors following the interpolation 

procedure. In the majority of transient problems the wave speed c can 

be con.idered constant for a uniform length of pipe, hence the use of 

.pecified time intervals. This has advantages when dealing with complex 

pipe network. where various pipes have different wave speeds. 
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3.4.6 Simplification of the equations 

Generally, for the work reported, the simplification that: 

dx 
dt • ± c is justified as c »> V, i.e. of the order 

400:1. This simplification is the equivalent of neglecting the con-

vective terms VdV/dX and Vdp/dX in equations (4), (21). 

The simplification also means that there is no difference 

between the grid of characteristics and specified time intervals 

methods as the slope of the characteristics is constant for anyone 

pipeline. The stability criterion must still be maintained, i.e. 

6t .s 6x/c 

Further, if 6t • 6x/c, the characteristics through Dior BI intersect 

the base line at C. E and A. Figure 7. 

For the application to be reported the equations may be 

further simplified by eliminating the pipe inclination terms, sin a, 

as the pipes used were horizontal. 

Thus equations (53) to (56) may be expressed as, referring 

to Figure 5:-

Vp - V + __ 1 (Pp - PR) + ! 6t (fvlvl)R = 0 
R pc D 

(62) 

dx 
dt • c (63) 

and 

V - V - 1 (Pp - PS) + 2 6t (fV Ivl)s .. 0 
P S D pc 

(64) 

c 

dx at • -c (65) 

Similarly equations (57) to (60) reduce to: 

Vp - V
R 

+ l- (Pp - PR> + 6t«fVl v l)p + (fvlvl>R) = 0 
pc D 

(66) 

dx 
dt - c (67) 
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and 

Vp - Vs - l- {Pp - PS> + 6t {{fVlvl>p + {fVlvl>s> = 0 
PC D 

dx 
dt • -c 

3.4.7 Discussion of friction loss 

(68) 

c 
(69) 

The basic difference between the use of the 1st or 2nd order 

finite difference approximations is the inclusion of the (fvlvl)p 

term in the second case. This is the equivalent of concentrating loss 

at each section along the pipeline whereas the first method only 

considers friction losses at the adjacent sections to the one being 

solved. The inclusion of this term leads to an iterative solution for 

Vp as fp • f (Vp) whereas the 1st order approximation results in a 

pair of equations in {P,v>P' directly solvable. 

It can be shown that if the pressure variation at a point is 

plotted against the number of pipe sections considered, the resulting 

curve reaches a stable value for about half the number of pipe sections 

if the 2nd order equations are employed. Against this must be set the 

slightly more time consuming solution to the equations containing the 

(fvlvl>p term. 

3.4.8 Magnitude of the time step 

The limitation on the size of 6t has already been mentioned, 

i.e. 6t < 6x/{V + c) so that the characteristics through Bl fall within 

the segment AC • 26x, in Figure 7. In dealing with systems of more 

than one pipe it is obvious that an equal time step must be chosen for 

all the pipes so that the calculation may proceed in an orderly fashion. 

This is of particular importance at any junction of two or more pipes. 
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In this report, whenever a system containing more than one 

pipeline is considered, the time step employed was calculated from:-

6t - etc. (70) 

The values of 6x for each pipe are arranged so that (70) is satisfied 

by suitably arranging the number of sections in each pipeline. This 

may require slight aporoximations to the lengths of individual pipes 

but this is accepted practice. 

3.4.9 Effect of employing 6t < 6x/c 

In some cases it is necessary to reduce the time step 

employed, for example if the rate of cavity volume change is excessive 

errors may occur and result in an unstable solution. The simplest 

method of reducing the time step is to employ the interpolation technique 

mentioned above with respect to the method of specified time intervals. 

Referring to Figure 15, it will be seen that if 6t < 6x/c the charac-

teristics through P pass through Rand S and not A, C. Conditions at 

R, S may be found by interpolating linearly between AB, BC. This 

introduces an error as the transients arriving at A, C, B at time Tare 

assumed to effect conditions at R, S at that time. The extent of the 

error depends on the ratio: 

Z - 6t
l 

- A.R 
6to A.B 

(71) 

and also on the number of time steps calculated in this manner as the 

error would be cumulative. 

The method does, however, approximate to a representation of 

the spreading or dispersion of the wave front which in fact does occur 

as the transients propagate along a pipeline. 
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3.5 Application of the characteristic equations to the solution 
of various boundary conditions 

Figure 8 illustrates a simple pipeline bounded by two 

unspecified conditions. The limits of solution without reference 

to the boundary conditions are shown. 

All internal points B to F can be solved for Ｈｐｾ＠ V) directly 

+ from the C , C equations previously derived. For the remainder of 

this report these equations will be used in the form: 

VVJ,I • KI - K2 PPJ,I 

for the C+ characteristic, 1st order finite difference, where 

K2 - I/pcJ 

vv, pp represent conditions at time t + 6t, while V, P 

represent conditions at time t. 

Similarly for the C line 

VVJ,I • K3 + K4 PPJ,l 

where K3 • VJ,I+I (1 - 2f 6t IVJ 1+1 1)- PJ ,I+l /pcJ 
D ' 

K4 - I/pcJ 

f • l6/Re, Re < 2300 

for the laminar flow regime and similarly 

f • 0.079/Re!, Re >2300 

(72) 

(73) 

(74) 

(75) 

(76) 

(77) 

(78) 

(79) 

for 'smooth pipe' turbulent flow, and I represents the section number 

within pipe J. 

The simultaneous solution of (72) and (75) for points B - F 

can be readily programmed and will yield the pressure and velocity 

(PP, VV) unknowns at these sections at 6t time intervals. The 2nd 

order equations may be similarly expressed, however this results in 

2 terms in (PP, VV, fVV ). 

The problems of programming transient analysis are almost 

entirely concerned with satisfying boundary conditions. For example 
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+ it is necessary to solve the C or C equations above with some other 

(P,V) relation at all pipe boundaries, such as pipe ends, junctions, 

valves or vapour cavities. The main advantage of the method is 

that procedures to deal with the solution of the appropriate equations 

at any boundary may be prepared in isolation from the rest of the 

system. This makes the method ideal for a subroutine based analysis 

of any system. In the following section boundary condition solutions 

will be presented for all the cases met in the research reported. 

The analysis presented will assume that the 1st order finite 

difference are employed. The solutions using the 2nd order equations 

would follow an identical derivation in each case with the exception 

that, if the friction factor is calculated at each time step, an 

iterative procedure would be necessary to obtain a solution in terms 

of VVp. 
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3.S.1 Boundary formed by a valve normally discharging to atmosphere 

Figure 9 illustrates a pipeline terminated by a valve which, 

while open, discharges to atmosphere. The boundary condition at the 

valve must be dealt with in two parts:-

1. During valve closure:-

The boundary condition is supplied by the valve steady state 

discharge coefficient:-

(80) 

where 6Po is the steady state pressure drop across the valve and Vo 1S 

the corresponding initial flow velocity. 

Note that for this case it is preferable to use gauge pressure for the 

P, pp arrays, and this is the case for programs SEPP to SEPD. 

In practice T is known as a function of valve open angle. 

During closure this may be monitored and T calculated by a cross 

plotting procedure. See Appendix 2. 

Equation (80) may be solved with the C+ characteristic through 

sections N at time t and N+l at t + 6t, i.e. VVN+l = Kl - K2 PPN+I 

Substitution yields a quadratic solvable for VV N+l, 

2 
VVN+I + KS VVN+I - Kl 

K2 

2 
where K5 • (TVo) /6Po 

2 
and hence PPN+ I • (VVN+ I ) /KS. 

2. Following valve closure:-

K5 - 0 
K2 

The valve boundary is now 'no flow' i.e.: 

VVN+I - 0 

This assumes no separation or vibration at the closed valve. 

Hence PPM+ l • Kl/KZ. 

(81) 

(82) 
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3.5.2 Pipeline terminated by a constant pressure reservoir 

Figure 10 illustrates a pipeline terminated at both ends 

by constant pressure reservoirs. 

1.) Upstream reservoir. 

If there is assumed to be no local loss at the reservoir 

exit it follows that the pressure at the pipe inlet is the reservoir 

pressure, 

hence PPI • PR1 

and the velocity can be found from the C characteristic, 

1. e. VV • K3 + K4 . PRl 
I 

If the exit loss is assumed to have the form 

then 

PPI • PRl -! p kl vv11vvl l 
2 

(83) 

(84) 

(85) 

and substitution of this into the C- characteristic yields a quadratic 

to be solved for VV l • 

2.) Downstream reservoir. 

The same procedure applies with the modification that it is 

the C+ characteristic that must be solved with either 

PPN+ l • PR2 (86) 

or (87) 

if the inlet loss is considered. 

Normally the minor losses are insignificant and need not be 

included. 
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3.5.3 Boundary formed by a valve mounted between two pipelines 

The particular interest of this system, as illustrated in 

Figure 11 is that, for a slow valve closure, the presence of the 

downstream pipeline influences the transients propagating upstream of 

the valve during closure, and vice versa. 

The available equations to be solved for the four unknowns, 

(VV, PP)l,Nl+l and (VV, PP)2,1 are:-

1. Valve pressure-discharge coefficient:-

VV1,Nl+l - TVo1 ;!«PP1,NI+I - ｐｐＲＬＱＩＯｾｯＩ＠ (88) 

2. Flow continuity:-

(89) 

3. C+ characteristic for pipe I between point (1, NI) at time t 

and point (1, Nl+l) at t + ｾｴＮ＠

VV1,Nl+l • Kl - K2 PPI,Nl+l 
(90) 

4. C- characteristic for plpe 2 between point (2,2) at time t 

and (2,1) at t + ｾｴＮ＠

VV 2,l • K3 + K4 PP2,1 

From (89), (90), (91) 

PP1,N1+1 - PP2,1 • -1 (VV l ,N1+l - Kl) 
K2 

also, from (88) 

-1 
K4 

(AI VVl Nl+l - KJ) - , 
A2 

PP1,Nl+l - PP2,l • ｾｯ＠
(VoI T )2 

VV 2 
l,Nl+l 

2 
= KS VVl,Nl+l 

thus a quadratic in VV1,N+l may be formed: 

VV 1•N1 +1 + VV 1,Nl+l 1 1 + 1 
2 ( ( A ｊｾ＠KS K2 A2K4 

1 
KS 

(91) 

= 0 (92) 



- 47 -

The remaining pressure and velocity terms may be calculated 

by substitution into (89), (90)1 (91). 

Following valve closure the system must be considered as 

two separate pipelines. The upstream boundary, in the absence of 

separation becomes: 

VVI,NI+I • 0 

Similarly, in the absence of column separation downstream of the valve 

the boundary equation becomes:-

VV 2,1 • 0 

however in low head systems it is likely that separation will occur 

here, possibly complicated by air release, and this will be dealt with 

in the 'column separation' section. 

3.5.4 Boundary formed by the junction of two pipelines 

This case is included as it represents the modification to 

the test rig caused by the inclusion of a glass observation section 

downstream of the valve during the later tests reported. Figure 12 

illustrates such a junction. 

The available equations to be solved for the unknown pressure 

and velocity terms at t + ｾｴ＠ are:-

1. Flow continuity Q1 • Q2 

VVI,NI+1 Al • VVZ,1 AZ 

2. Pressure continuity: 

PP1,NI+I • PP2,1 

(93) 

(94) 

It is assumed that the minor loss at the junction IS insig-

nificant. 
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3. The C+ characteristic between point (1, NI), at time t, and (I,Nl+l) 

at t + ｾｴＮ＠

VVl,Nl+l - Kl - K2 PPl,Nl+l (95) 

4. The C characteristic between points (2,2) at time t and (2,1) 

at t + ｾｴＮ＠

VV 2,l - KJ + K4 PP2,1 (96) 

It is assumed in this case, as in the previous example that 

the value of ｾｴ＠ is the same for both pipelines and that the necessary 

｡､ｪｵｳｴｭ･ｮｾｩｮ＠ section length, 6x, have been made. 

Substitution yields:-

pp - KIA1 - K3 A2 2,1 
(97) 

K2AI + K4 A2 

The remaining PP, VV values may now be calculated. It will 

be seen that the equations apply equally to changes in wave speed, 

caused by material or pipe thickness changes, or to pipe bore alteration. 

In this case it is useful to apply the simplified equations (26), 

(27) to the junction to obtain an impression of the effect of such a 

junction on the pressure transients propagating in a pipeline, see 

Panaakian (10). 

Let Fl be the incident wave at a junction between two infinite 

pipelines, fl be the reflection of Fl produced at the junction and F2 

be the pressure propagated from the junction along pipe 2. It will be 

seen that f2' the reflection of F2 produced by the upstream system 

boundary, viII be zero as it is assumed that the wave fronts are short 

compared to the distance to the nearest reflector. 

Toos applying (27) and the continuity equation: 

601 - ｾｑＲ＠

yields: 

Al (Fl - f l ) - A2 F2 
(98) 

eC l ee2 
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Similarly as the pressure at the junction is the sum of the F, f waves 

present at any time, 

The reflection coefficient may be defined as: 

and the transmission coefficient as 

Eliminating F2 from (98), (99) yields: 

(Fl - f l ) Al • A2 (F I + f l ) 

Cl C2 

hence C • R AI/cl - A2/c2 

AI/c l + A2/ c2 

and c,. .. 2 AI/cl 

AI/cI + A2/c2 

(99) 

(lOO) 

These equations allow a physical interpretation of the effect of a 

junction between two pipelines. 
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3.6 Application of the method of characteristics during column 
separation 

All the analysis previously described ｾｮ＠ this section was 

based on the assumption that vapour pressure or air release pressures 

were not reached anywhere in the piping systems described. Care was 

taken to include this restriction in both the description of the 

pressure variations following valve closure, Section 3.3 and during 

the derivation of the various boundary conditions in Section 3.5. 

If the pressure at any point in the fluid column falls to 

vapour pressure, due to the transients passing through the system, 

then the fluid column will separate and a vapour cavity or pocket will 

form. The subsequent growth and collapse of such cavities depends on 

the system boundary conditions, however such discontinuities in the 

fluid column can lead to the worst pressure variations to be ex-

perienced by a piping system and are therefore of great importance 

as a design criterion. 

The method of characteristics may be employed to calculate 

the pressure-velocity-time histories of such cavities, and their 

subsequent collapse pressures. In this section the modifications to 

the method and the equations needed to define the cavity boundary 

conditions will be described for the two cases considered in this 

report, i.e. column separation upstream of a closed valve and down-

stream of a closing valve, with possible air release in the second case. 

3.6.1 Column Separation upstream of a closed valve 

Figure 4 illustrated the pressure and velocity variations 

to be expected on the upstream face of a valve following a rapid closure. 

If the pressure at a point in the up,tream pipeline falls to vapour 

pre.sure. a cavity forms and the uniform, repeating waveform of Figure 4 

is disrupted. Following a rapid valve closure the pressure in a low 
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head system is most likely to fall to vapour pressure at the 

valve itself at the end of the first pipe period, i.e. this 

coincides with the arrival at the closed valve of the f = -pcVo 

transient and its reflection as an F = -pcVo transient. 

Equation (33) i.e.:-

Po - pcVo > p vap 

described the initial conditions to be satisfied if this separation 

of the column were to be avoided. Figure 13 illustrates the 

expected pressure variation if such a cavity formed. The closed valve 

boundary equation is no longer 

VVN+l = 0 

but PPN+l = Vapour pressure 

(102) 

(103) 

referring to Figure 15, as the cavity may be regarded as a constant 

pressure zone having the same reflective properties as a constant 

pressure reservoir. The cavity interface velocity will initially be 

negative, i'-e. the column will move towards the reservoir, the magnitude 

of this velocity being given by solving (103) with the C+ characteristic 

between point N at time t and N+l at time ｴＫｾｴＬ＠ Figure 15. The column 

will continue to move towards the reservoir until it is brought to 

rest by the prevailing adverse pressure gradient. It is then accelerated 

back towards the closed valve by this same pressure gradient between 

the cavity and the upstream reservoir. 

It is assumed throughout the analysis presented that the 

total length of a vapour cavity and its drift, for a cavity at some 

internal pipe section, is small compared to a pipe section 6x. This 

allows, for example at the valve, the characteristic between Nand N+l 

to be applied between N and the cavity/fluid interface. 
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The cavity is also assumed to fill the full cross section 

of the pipe so that its volume may be calculated from an expression: 

(104) 

The cavity is considered closed when the result of equation (104) at the 

end of a time step is zero or negative. The pressure generated on cavity 

collapse, assuming that there is no released air in the cavity, 1S given 

by: 

ｾ＠ = pcVclos (105) 

where V 1 is the velocity at the cavity-fuel interface at the instant c os 

of collapse. 

Following cavity collapse the 'no-flow' boundary equation (102) 

again applies. The pressure variation in Figure 13 includes a step on 

the peak recorded at the valve following cavity collapse. This step 

can be explained by reference to the F, f wave model. At the instant 

of cavity formation an F wave of maximum magnitude: 

F = -(Po - Pvap) 

is propagated towards the reservoir and this wave may be imagined to 

be reflected up and down the pipeline between two constant pressure 

zones, 1.e. - 1 reflectors, representing the reservoir and the vapour 

cavity, for as long as the cavity exists. As the collapse of the 

cavity is unlikely to coincide with the end of a pipe period it is 

likely that the f wave produced at reservoir by the arrival of the F 

wave above will arrive at the closed valve at some time following cavity 

collapse. At the instant of cavity collapse the reflection coefficient 

representing the valve will change from - 1 to + 1 so that the arriving 

f wave of maximum magnitude: 

will be reflected as a + F wave resulting in a step pressure rise at 

the valve of maximum magnitude 2f. 
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There are now two systems of pressure waves propagating 

within the pipeline, namely the system caused by initial valve closure 

and later modified by the presence of the cavity and a second system 

caused by the pressure rise pcV I on the first cavity collapse. Such 
c os 

a sequence of events would follow any subsequent cavity collapse 

resulting in an increasing number of steps on the subsequent pressure 

peaks, depending on the local time relation between any cavity collapse 

and the arrival at the valve of the earlier transients still propaga-

ting within the system. This leads to the possibility that the peak 

pressure at the valve following column separation may exceed pcVo. 

Following the collapse of the final cavity the regular 

type of wave form will be re-established with a frequency of c/4L, 

thus the presence of a cavity may be deduced if the phase separation 

of two consecutive peaks exceed two pipe periods. 

3.6.2 Application of the method of characteristics to column 
separation upstream of a closed valve 

The above boundary conditions represent Bergeron's proposals 

for a graphical solution. Previous papers dealing with solution of 

transient problems by the method of characteristics have tended to 

mention these in passing, proposing a simple translation into charac-

teristic notation, Streeter (45) and Fox (47). 

In the proposed approach it is intended to examine more 

carefully the solutions to the characteristic equations obtained during 

and following the opening of a vapour cavity. It will be assumed that 

the vapour formed is concentrated at the computing section first dis-

playing vapour pressure, and that the cavity will occupy the full bore 

of the pipeline at that section. 

Following the formation of the vapour cavity a pressure 

transient of vapour pressure magnitude will propagate along the pipeline. 
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Depending on the local conditions between the cavity and the reservoir, 

the pressure for a considerable length of the pipeline will fall to the 

fluid's vapour pressure. It will be assumed that the length of pipeline 

so affected remains a continuous liquid column at vapour pressure rather 

than a mixture of liquid and vapour. 

Returning to the example illustrated in Figure 13 following 

the formation of a cavity at the valve the pressure for a considerable 

length of the pipeline will fall to vapour formation level, during this 

process the values of the pressure and velocity at the computing sections 

produced by the solution of the simultaneous equations (62, 64) or 

(66, 68) must be treated with caution. Accurate values of velocity can 

only be obtained if the times at which the pressure at a section reaches 

the vapour pressure of the fluid corresponds to the end of a computing 

time step. Normally it is not to be expected that this will occur. For 

example at a given time the computed value of the pressure at a closed 

valve may be well below vapour pressure, indicating that the vapour 

formation level was reached at some intermediate time during the 

preceding time step. Similarly the computed values of pressure in 

the p1pe section affected by cavity formation may be well below vapour 

pressure as the numerical solution to the appropriate pair of equations 

does not suffer from the limitation that the pressure cannot fall below 

vapour formation level. Replacing the computed values of pressure 

below vapour pressure by the fluid's vapour pressure and continuing 

the calculation is not felt to be sufficiently accurate as the computed 

velocity results would then be 1n error. The importance of this lies 

in equation (105) as the magnitude of the cavity closing pressure depends 

only on the closing flow velocity and so a cumulative velocity error 

initiated on the opening of the cavity could lead to an error in the 

cavity closing pressure. 
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In the proposed approach the time of occurrence of vapour 

pressure at any of the computing sections is obtained by interpolation 

between the computed pressure values at the beginning and end of a time 

step, at section ri' the time at which vapour pressure was reached 

would be:-

T - TS(i) = T - ｾｔ＠ x ＨｐｔＭｾｔ＠ - VAP) / ＨｐｔＭｾｔ＠ - PT) 

Where PT < VAP, ｐｔＭｾｔ＠ > VAP. 

(106) 

From this equation it is possible to determine the times at which vapour 

pressure was reached at each of the sections displaying computed pressures 

below vapour formation level and thus at which of the sections the pressure 

first reached vapour pressure, i.e. the section with the maximum TS(i) value, 

TSMAX. This section can then be considered to be the location of the 

first vapour cavity and by interpolating all the computed pressure and 

velocity results back to this time, by using an expression of the form 

(107) 

it is considered that a more accurate representation of the conditions 1n 

the pipeline at the instant of cavity formation will be obtained. The 

velocity of opening of the cavity may be calculated from the appropriate 

characteristic, in this case 62 or 66, Figure 15. It will be seen from 

the form of these equations that it will be necessary to calculate the 

values of pressure and velocity at the adjacent section at a time ｾｔ＠

prior to cavity formation and this can be done by interpolation between 

values at that section at times ＨｔＭｾｔＩ＠ and ＨｔＭＲｾｔＩＮ＠ The cavity drift 

velocity will be very small compared to the transient propagation 

velocity and so it is reasonable to assume that the cavity remains 

stationary. 

The above procedure 1S repeated during each subsequent time 

step to determine the time of occurrence of vapour pressure at each 
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of the computing sections lying within the p1pe length affected by cavity 

formation until no new sections display computed pressures below or 

equal to the fluid's vapour pressure. The solution then continues by 

full time increments until (104) indicates cavity closure. It is not to be 

expected that this will correspond to the end of a time increment and 

interpolation of the conditions back to the instant of cavity closure 

should yield a more accurate estimate of the conditions prevailing in the 

pipeline. The whole procedure is repeated until sufficient energy has 

been dissipated and no new cavities form. 

Following slow valve closures, i.e. flow stoppage in a time 

much longer than a single pipe period it is possible for the first cavity 

formed to be at some point along the pipeline and not at the closed 

valve. Figure 14 illustrates this case. The solution above for the 

valve cavity possibility can be used to deal with this case with one 

modification. Consider that the first cavity forms at the midpoint of 

the pipeline. The fluid column at this time will have a direction of 

flow towards the reservoir. The cavity may be allowed to form but the 

pipeline must now be split into two sections, upstream and downstream of 

the cavity. The fluid velocity at the two fluid/cavity interfaces can 

be found from the C+ and C- characteristics at that section solved with 

(103), Figure 15. The pressure conditions between the cavity and the 

closed valve will initially be above vapour level but during the subsequent 

computation steps the pressure in this pipe section will fall to vapour 

pressure. The sorting and interpolation procedures described above can 

again be used to determine the time of occurrence of vapour pressure and 

the correct velocity at each section. The flow direction will be established 

towards the cavity so that,when the pressure at the closed valve falls to 

vapour pressure,the 'no flow' boundary condition at the valve can no longer 

be maintained and a cavity is allowed to form. The solution then continues 

as before, the volume of the internal cavity being calculated from 
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(108) 

and the pressure resulting from its collapse by 

PT = - (Kl - K3)/2K2 (109) 

i.e. simultaneous solution of equations (72), (75). 

The value of the flow velocity at that section may then be calculated 

. h + from e1t er the C or C characteristic. 

During the growth and collapse of the internal cavity the 

volume of the valve cavity was monitored by (104) and following the 

collapse of the internal cavity the solution proceeds as before up to 

the collapse of the valve cavity. 

A complete program SEPD is included in Appendix 3 together 

with its flow diagram. SEPD incorporates the procedures outlined above 

together with the 2nd-order approximation in the finite difference 

equations and friction factor dependence on Reynolds' Number. 

3.6.3 Column separation downstream of a closing valve 

Figure 16 illustrates the pressure and velocity variations on 

the downstream face of a valve following closure and subsequent column 

separation. Figure 17 illustrates the boundary conditions at the valve 

during such a separation. 

The main difference between column separation upstream and 

downstream of a valve is that the upstream case occurs as a result of the 

negative reflections produced by the upstream boundaries during and 

following valve closure, whereas in the downstream case the column 

separation is caused by the negative pressure waves propagated downstream 

by valve closure. 

If the pressure does fall sufficiently to cause column separation 

the fluid column breaks at the valve downstream face and the column 

between the valve cavity and the downstream reservoir is brought to rest 
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by the adverse pressure gradient and frictional effects. This 

pressure gradient between cavity and reservoir then acts to drive the 

liquid back towards the valve, closing the cavity and compressing any 

released air, which may not necessarily be re-dissolved due to the time 

scale of events. The pressure finally reached when the column comes 

to rest at the valve can be of destructive proportions. 

The occurrence of column separation downstream of a closing 

valve is complicated when the working fluid is aviation kerosene by 

the necessity to include the possibility of air release in the model 

of the phenomenon. 

Air release from aviation kerosene is highly dependent on the 

degree of agitation supplied to the fuel (75, 76). In the downstream 

separation case studied, the severe agitation caused by the closing 

action of the particular type of valve used for the tests, a spherical 

plug valve, which is widely used in aircraft fuel systems, made the 

inclusion of air release in the downstream boundary equations imperative. 

During the existence of a cavity at the valve downstream face, 

the pipeline downstream of the valve may be represented by a line 

terminated by a -1 reflector at each end. In the case of a rapid valve 

closure, the pressure wave propagated into the downstream pipeline will 

have a maximum value: 

f = - (Po - Pvap) 

assuming that equation (33) is not satisfied and that air release does 

not occur. This wave will therefore be reflected within the downstream 

pipeline with alternate +f and -f values resulting in a 'saw-tooth' waveform, 

of frequency c/2L, at any intermediate point along the pipeline. The 

extreme ends of the line naturally display constant reservoir and vapour 

pressure respectively. The upper and lower limits of this waveform will 

be Po and Pvap as the wave front length is assumed to be less than 2L. 

The actual magnitude of the oscillation will depend on the initial steep-

ness of the pressure drop forming the cavity, thus a cavity formed follow-
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ing a slow valve closure would be characterized by a sawtooth waveform 

oscillating between limits between Po and Pvap but still of frequency 

c/2L. 

Column separation downstream of a valve is complicated by the 

fact that the air release pressure may be reached while the valve is 

still open. This will result in a mixture of air and fuel plus fuel 

vapour spreading downstream from the valve as the column separates. This 

slightly modifies the -1 reflection coefficient at the cavity, as the 

pressure is not strictly constant but depends rather on the sum of 

the vapour pressure and the partial pressure of any released air, however 

the general explanation is still valid. 

Following the collapse of the cavity and the stoppage of the 

returning column the reflection coefficient at the valve reverts to the 

+1 value appropriate for the 'no flow' case. This means that the 

secondary oscillation of amplitude (p - p ) is made to contribute to o vap 

the pressure rise at the valve in the same way as was fully described 

for the upstream separation case. Therefore in the case of a rapid 

valve closure the pressure recorded at the valve would have a value 

pcVclos + 2 (po - pvap) where Vclos is the maximum velocity attained by 

the returning column. 

It is also important to note that the presence of released 

gas 1n the cavity region does not necessarily act as a cushion to the 

returning column. The pressure build up due to the air is so slow that 

the returning column may achieve a relatively high velocity, resulting 

in high final pressureso As illustrated in Figure 16 the maximum flow 

velocity for the returning column is reached prior to the major pressure 

build up, which is in marked contrast to the 'vapour only' case illustrated 

in Figure 13 where the maximum velocity occurs at the instant of cavity 

collapse. 
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3.6.4 Application of the method of characteristics to column 
separation downstream of a closing valve 

Cavity formation downstream of a closing valve was considered 

with and without an allowance for the effect of any released air. 

(1) Cavity boundary conditions, air release neglected. 

An initial analysis was carried out using the techniques des-

cribed in Section 3.6.1, i.e. that the boundary condition at the cavity 

could be described by: 

P - VAP cav (110) 

in the absence of released air. 

If the pressure on the valve's downstream face falls to 

the fluid vapour pressure during closure then the boundary conditions 

represented by equations (88), (89) may be replaced by: 

and 

T = VVI,NI+I 
VOI 

PP2,1 = VAP 

(Ill) 

(112) 

If a cavity does form during closure the vapour is assumed to be 

concentrated at the valve. The length of the cavity is assumed small 

in comparison with a section length so that a valid characteristic may 

be drawn between the cavity/fuel interface, assumed to be at section 

(2, 1) in Figure 17 and section (2,2). 

• • + . The two remaining equat10ns are prov1ded by the C 11ne between 

sections (1, NI + 1) and (1, NI) and the C characteristic referred to 

above between (2, 1) and (2, 2). 

and 

VVI,Nl+l = VI,Nl (1 - 2f ｄｾｔｬ＠ IVl,Nl 1) - 1 (PPl,Nl+l - PI,Nl) 
pCl 

VV 2 1 = V2 2 (1 - 2f ｾｔ＠ IV2 21) + __ 1 __ (PP2 1 - P2 2) 
" D2' pC2 ' , 

(113) 

(114) 

The cavity interface velocity may be calculated directly from 

(114) while the upstream conditions can be expressed as a quadratic in 

PP1,N1+1' 
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During valve closure the volume of the cavity may be calculated 

from an expression: 

ｖｏｾ＠ = VOLT_ilT + Al ilT (VV2 1 + V2 1 - VV l Nl+l - VI NI 1) (115) 
2 ' , , , + 

assuming that the pipelines are of equal bore. 

Following valve closure the cavity will continue to grow until 

the separated column is brought to rest by the pressure gradient between 

the cavity and the downstream reservoir. During this period and the 

subsequent closing phase of the cavity its volume may still be calculated 

from (115) with the (VV, V)l,Nl+l terms zero. The collapse of the cavity 

is indicated by equation (115) having a zero or negative value at the 

end of a time step. The boundary at the closed valve then reverts to 

the 'no-flow' condition, equation (102) and the generated pressure is 

obtained directly from the solution of equations (114) and (102), 

resulting in an instantaneous pressure rise of pcV 1 • 
c os 

Subsequent cavities open at the valve due to the arrival of 

negative reflections from the downstream reservoir. This process 

repeats until sufficient energy has been dissipated. 

(2) Cavity boundary conditions including released air 

If the vapour cavity at the downstream face of the valve is 

considered to contain air, or a mixture of gases, then the boundary 

condition becomes: 

pp = P = VAP + PA 
2,1 cav 

{1l6) 

where PA is the partial pressure of any released gas within the total 

volume of the cavity. 

The value of PA may be expressed as 

PA = 
{ 

AIRVOL}n 
VOL 

• ATM (117) 

where n is the polytropic coefficient of expansion, AIRVOL is the 

quantity of air released measured at N.T.P. and VOL is the total cavity 

volume calculated from (115). Tn view of the introduction of the 

p.Voln - k expression it is necessary to employ absolute pressures in 

this analysis. 
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The total volume of air released from an aviation fuel at 

equilibrium at any particular pressure may be calculated from Henry's 

Law, and this is assumed to apply in this case. If K is the Bunsen 

solubility coefficient defined as the volume of gas, at N.T.P., which 

will dissolve in one unit volume of liquid under a partial pressure 

of one atmosphere, then the quantity of air released by a unit volume 

of the fuel at a pressure PK is given by 

AIRVOL = (ATM - PK) • K/ATM (118) 

where ATM = atmospheric pressure and PK < ATM. Fig. 18 illustrates the 

variation in Bunsen solubility ratio with fuel temperature. 

In this approach it will be assumed that the volume of fuel 

that gives up its dissolved air is the volume of fuel that passes 

through the valve between the time that the downstream pressure falls 

below atmospheric pressure and final valve closure. The work reported 

in (77) supports this as the air is clearly visible while the valve 

is still closing. 

The volume of fuel concerned may be calculated as: 

FUELV0Lr = FUELVOLT_6T + Al Ｖｾ＠ (VVl,Nl+l + Vl,Nl+l) (119) 

and the air released from 

AIRVOLT = FUELV0Lr (ATM - 0.5 (PP2 1 + P2 1» K 
, 'ATM 

(120) 

where the average value of the pressure on the downstream face of the 

valve during the time step is equated to PK in (118). 

During valve closure equations (Ill), (116), (113) and (114) 

can be used to determine the velocity and pressure conditions at the 

valve in the presence of separation. If n = 1 in equation (117) this 

results in a quartic in PPl Nl+l. , 
If n 1S taken greater than unity then the equations mentioned 

above reduce to a pair of equations in PP2 I' PPl Nl+1 which can be , , 
solved by an iterative process, Appendix 4. Appendix 5 includes full 

flow diagrams and print-out of these programs. 
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Following valve closure, and within the opening phase of the 

cavity, pressure and velocity conditions at the cavity interface can 

be calculated from (114) and (116). Air 1S assumed to be released from 

the fuel throughout the opening phase of the cavity. 

During the collapse phase of the cavity no air is allowed back 

into solution. This assumption is again supported by the observations 

carried out (77) which showed that free air was present in the region 

of the cavity even at the maximum pressures associated with cavity 

collapse. 

Negative pressure wave reflections produced at the downstream 

reservoir following cavity collapse lower the pressure at the valve and 

the cavity re-opens a number of times until sufficient energy has been 

dissipated. 

3.7 Calculation of conditions along the downstream pipeline during 
and following column separation at the valve 

The conditions at the internal points along the downstream 

+ pipeline can be calculated from the C ,C equations. During column 

separation at the valve a considerable length of the pipeline downstream 

of the cavity may fall to the fluid vapour pressure, this length will 

be considered as fuel at vapour pressure and not a mixture of fuel and 

vapour. The sorting and interpolation technique described in section 

3.6.2 was applied in all the programs predicting downstream separation 

to avoid possible velocity errors. 
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4. APPARATUS 

4.1 Properties of Aviation Kerosene Specification 2494 

Aviation Kerosene 2494 was employed as the working fluid 

throughout the tests reported. Relevant properties, taken from an 

Esso Data Sheet are reproduced below: 

Density 

V lSoC apour pressure, 

Kinematic viscosity 

Ratio of specific heat 
cp/cv at lSoC 

Air solubility, at lSoC 

Bulk Modulus 
(various sources) 

800 kg/m3 

0.7 kN/m2 abs. 

1.68 x 10-6 m2/s. 

1.033 

13.6% by volume. 

1.03 - 1.38 x 109 N/m2• 

Due to the scatter on the available Bulk Modulus figures this 

was measured by an ultrasonic technique at the working temperature. 

4.2 Pipeline configurations 

Two separate test rig layouts were designed to investigate 

column separation upstream and downstream of a valve. The LS6 aluminium 

alloy piping had a Young's Modulus of 72.4 • 109 N/m2 and Poisson's 

Ratio of 0.3. The glass pipe employed in the observation section down-

stream of the valve was assumed to have a Young's Modulus of 68.109 N/m2• 

4.2.1 Upstream separation, pipeline configuration 1 

Figures 19 to 22 illustrate the layout of the 15.24 m test 

pipeline, made up of five sections of L56 aluminium alloy piping of 

50.8 mm 0.0. and 0.9lS mm wall thickness (20 S.W.G.), supplied by B.A.C. 

to Concorde standards. The upstream reservoir was a 0.9 m3 (200 gallon) 

tank, pressure tested to SOO kN/m2• The downstream end of the pipeline 

was terminated by the test valve discharging to atmosphere. An English 

Electric 24 v. D.C. 28 amp submerged fuel pump was used to return kerosene 
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to the upstream reservoir tank, Figure 21. Flow measurement was 

obtained by means of a venturi meter in this return pipeline. 

Drain down and supply pipelines were also provided to 

connect the test system to a storage tank. 

4.2.2 Downstream separation, pipeline configuration 2-3 

The earlier layout was modified as shown in Figure 23. A 

second reservoir tank, 0.2 m3 (45 gallon), also tested to 500 kN/m2 

was mounted at the downstream end of the pipeline, Figure 24. The 

piping was the same as that used for configuration 1, two pipe sections 

upstream and three downstream of the valve in configuration 2. 

A more powerful Saunders Safran 3 phase A.C. pump was 

installed to return kerosene to the upstream reservoir. A bypass piping 

system was devised around this pump to allow the rig to be used for flow 

in either direction along the test pipeline, Figure 24. Compressed air 

supplies were connected to both reservoir tanks as shown in Figure 23. 

4.2.3 Observation of downstream column separation, pipeline 
configuration 2G 

In order to film and observe the separation of the fluid column 

downstream of the test valve, a 3.04 m glass observation section, 50.8 mm 

bore and 4.73 mm wall thickness was mounted downstream of the valve. The 

need to retain a pressure transducer at the valve and the adapters necessary 

between the glass pipe and the valve led to a 127 mm solid section between 

the valve centre line and the start of the glass piping, Figure 25. 

Figure 26 illustrates the layout of the lights and camera for these tests. 

The camera used was a Hycam rotating prism high speed 16 mm unit, capable 

of film speeds up to 10,000 frames per second and film lengths up to 130 m. 

Figure 27 illustrates the Hycam optical system. 
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4.3 Test valve design 

The valve used for all the tests was a Saunders Aircraft fuel 

valve, type E60FI6, a spherical plug valve of 47 mm bore. Figures 28 

and 29 illustrate the design of this valve. Adapters were made to permit 

the coupling of the valve to the pipeline and the mounting of pressure 

transducers 50.8 mm on either side of the valve centre line, in pipeline 

configurations 2 and 3. 

The valve was operated by a compressed air ram which, via a 

lever connection, turned the valve's plug through 900 , Figure 30. For 

the tests on pipeline configuration I the air supply to the ram was 

controlled by hand via two linked two-way valves. For tests on the later 

pipeline configurations this method was replaced by a solenoid valve 

and switch. Using this second method it was found that the ram motion 

was linear, and that the angle vs. time curve for any series of closures 

could be expressed solely in terms of the overall valve closure time. 

It is to be noted that, with the exception of a few early 

tests on pipeline configuration 1, the valve closing ram was mounted 

separately from the valve base plate, as shown in Figures 21 and 25 for 

configurations 1 and 2 respectively. 

The valve could be set to and closed from any open angle 

by means of an adjustable stop designed to prevent the ram returning 

to the valve fully open position. 

4.4 Pipeline restraint 

The test pipelines were supported on a series of wall mounted 

brackets, Figure 22. It was assumed that only the upstream end of the pipe-

line was fully restrained, this restraint being provided by the mass of the 

reservoir. During tests on pipeline configuration 2, extra support members 

were added bracing the valve base plate to the floor. 
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4.5 Instrumentation 

4.5.1 Layout of transducer stations 

Table 1 records the positions of the transducer mounting pads 

for all the pipeline configurations tested. Two aluminium pads, diamet-

rically opposed on the pipe centre line, were welded to each pipe section, 

at the mid length point by B.A.C. prior to delivery. These pads were then 

tapped 14 mm to allow the mounting of either the pressure transducers or 

the DISA probe support. Adapters were made up for use with the Honeywell 

transducers used for steady state measurement on pipeline 1. 

For pipeline configurations 2, 2G, 3 tappings were also provided 

50.8 mm on either side of the valve centre line, the tappings being made 

into the valve/pipeline adapter sections. 

4.5.2 Instrumentation for steady state conditions 

The initial flow velocity for all the tests was measured by 

means of a calibrated venturi meter and mercury manometer mounted in 

the return pipeline. Two meters were used: a 30.2 mm throat meter in a 

length of SO.8 mm bore piping in configuration 1, and a 22.8 mm throat 

meter in a length of 38.1 mm bore piping, that extended for 2 m on either 

side of the venturi meter, in configurations 2, 2G and 3. 

Pressure measurement was obtained at each reservoir tank by 

calibrated pressure gauges and, for pipeline configuration 1, by a Honey-

well inductance transducer and O.D. unit, rated for 0 - 70 kN/m2, mounted 

1 m upstream of the test valve. 
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4.5.3 Instrumention for transient conditions 

Figure 31 illustrates a typical instrumentation system 

consisting of quartz crystal pressure transducers (Kistler 70lA or 

Vibro-meter l2QP250) linked via piezo amplifiers to a storage oscil-

loscope, DISA hot film probe and constant temperature anemometer and 

a Honeywell Linear Displacement Transducer to monitor valve motion. 

Each of these will be described in detail below. 

4.5.4 Pressure transducers 

Quartz crystal pressure transducers were employed for all 

the transient pressure recording tests carried out. Two types were 

used, Kistler 70lA and Vibro-meter l2QP250, both these types were 

designed for the same specification giving a pressure range extending 

well beyond the pressures expected in the tests, i.e. pressure up to 

1600 kN/m2• The only difference between the two types lay in the con-

struction of the quartz measuring element, the Vibro-meter version 

consisting of a cylindrical element made up from a series of discs connected 

in series while the Kistler type consisted of a similar cylindrical element 

o split up into three 120 sectors connected in parallel. Both systems were 

claimed to be equally efficient. Variations in the pressure acting on 

the quartz elements produced an electrostatic charge output, the well 

known piezoelectric effect, which could be transformed into a voltage 

output suitable for display on an oscilloscope. In both cases the measuring 

element was completely separated from the transducer housing thus elimin-

ating the adverse effects of mechanical stresses and temperature variations. 

The Vibro-meter transducers were supplied complete with 14 mm 

threaded adapter and similar adapters were designed for the Kistler 701 

transducers, both types of transducers and their adapters are shown 1n 

Figure 32. 
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The advantages of quartz transducers were found particularly 

in their great measuring range and also in the fact that they could 

be statically calibrated. Great care was however required to avoid the 

effects of damp which produced uncontrollable drifting due to discharge 

of the electrostatic potential. 

4.5.5 Vibro-meter TA-2/e Piezo Amplifier 

TA-2/e piezo amplifiers were used in conjunction with the 

pressure transducers described above, for all the tests reported, together 

with a TP-220/A power unit, Figure 33. The power unit was supplied directly 

from the mains. The TA-2/e units were specifically designed for use 

with quartz transducers and transform the electrostatic charge generated 

by the transducers into voltage equivalents which could be amplified 

and displayed on an oscilloscope. 

Input sensitivity could be varied by a factor of 1:2000 in 

eleven calibrated steps. The unit also incorporated a selector switch 

for static or dynamic measurement which changed the time constant of 

the instrument. Pressure variations at frequencies less than 10 cls 

should be recorded on static mode, although this would not effect the 

accuracy of recording of any secondary pressure oscillations at frequencies 

up to 60 c/s. 

4.5.6 Tektronix 564 Oscilloscope 

This type of oscilloscope was used for all the tests, the main 

advantage offered being the split screen storage capability which allowed 

traces to be displayed on either the upper or lower halves of the 

screen for up to one hour while the other half was used to display other 

traces for comparative purposes. Alternatively the whole screen could be 

used in the storage mode or the unit could be operated as a normal 

oscilloscope. The oscilloscope amplifier and time base units were of the 

interchangeable plug-in type. The time base normally employed was the 
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3B3 while both the 4 channel 3A74 amplifier and the 2 channel 

3A3 differential amplifier were used. Figures 33 and 34 show the 

oscilloscope and the storage systems used. 

4.5.7 Tektronix time base plug-in unit type 3B3 

This plug-in unit was used for all the tests. Internal and 

external triggering systems were provided for both the normal and 

delayed time sweeps. The time sweep settings ranged from 1 microsecond 

to 1 second per division in 20 calibrated steps. The delay sweep operation 

had a continuous calibrated range from 0.5 microseconds after triggering. 

Sweep times were checked regularly using a time mark generator. The 

internally triggered single sweep facility used in conjunction with the 

screen storage mode was found to be the most useful combination. Careful 

adjustment of the level control enabled internal triggering to occur at 

the slightest pressure variation in the fluid. 

4.5.8 Tektronix four channel amplifier 3A74 

This amplifier was used for all the pressure measuring tests. 

The unit included four amplifier channels each with its own input coupling, 

attenuator controls, variable gain, position and a.c./d.c. mode controls. 

The channels could be used independently to produce a single sweep or 

together to produce mUltiple displays, e.g. the pressure variation at four 

points along the pipeline. Triggering could either be from channel 1 only 

or alternatively from the first channel to register a disturbance. 

Nine calibrated amplification steps were provided from 0.02 volts 

per division to 10 volts per division. These steps could be checked by 

means of the step wave output provided by the calibrator unit built into 

the oscilloscope. These steps were checked regularly by setting the 

0.02 volts per division deflection accurately and then comparing the 

screen deflections for the remaining control positions, the order of 

accuracy achieved being within 3% of the control settings. 
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In multiple channel operation there was a choice of two 

operating modes, chopped or alternate. In the alternate mode the 

oscilloscope time base generator internally switched channels at the end 

of each sweep while in the chopped mode an internal oscillator switched 

the channels at a free running rate of 500 Kc/s, the chopped mode was 

normally used during the tests. The bandpass was d.c. to 2mc., with a 

rise time of 0.17 microseconds. 

4.5.9 Honeywell Linear Displacement Transducer LD18 

A linear displacement transducer was employed to monitor the 

closing action of the valve, by direct connection to the valve closing 

ram, Figures 21 and 30. The output was also used to trigger the 

oscilloscope in the single sweep storage mode. 

The LD series of transducers is intended to be used with A.C. 

excitation. The transducer connects as part of an A.C. bridge, the coils 

forming two arms, and the output fed, via a demodulator to an appropriate 

recorder. Figure 35 illustrates a typical arrangement, coils A, B, C 

being internal, the remainder of the equipment included in the O.D. unit. 

The transducer was used in conjunction with a Honeywell Oscillator-

Demodulator unit, the connections being made with three core screened 

cable, the screen being earthed at one end. 

To maintain linearity it is essential that the slug remain 

within the transducer throughout its motion, hence a 0.4 m transducer with 

200 mm slug was necessary to accommodate the total 177 mm movement of the 

closing ram. 
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4.6 DrSA hot film probe and constant temperature anemometer 

4.6.1 Principle of operation 

Hot film anemometry is based on measurements of the convective 

heat loss to the surrounding fluid from a heated sensing element. The 

heat loss depends on the temperature, geometrical shape and dimensions 

of the probe and on the fluid's velocity, temperature, density and 

thermal properties. Assuming that only one of the fluid parameters 

varies, the heat loss can be interpreted as a direct measure of the 

quantity in question. 

4.6.2 Probe and anemometer 

The sensing element in a hot film probe is a thin metal film deposited 

on an insulating substrate. The sensor is placed on the leading edge of the 

probe and is connected by screened cable to the anemometer. The heating 

current is supplied by the anemometer, consisting of a Wheatstone bridge, 

in which the sensor forms part of one bridge arm, and an amplifier. The 

current flowing through the bridge heats the sensor, and the amplifier 

output voltage is a measure of the heat loss from the sensor. 

4.6.3 Static probe characteristics 

Due to the complexity of the equations governing convective heat 

transfer and the further complications arising from heat transfer by 

natural convej!ti<?n and ｾｯｾ､ＬＡ｣ｾｩｯｬｬ＠ through the film substrate, it is neces-

sary to determine the relation between fluid velocity and heat transfer 

experimentally. 

The fundamental work on two-dimensional heat transfer from 

cylinders in incompressible flow was carried out by L.V. King (78) in 

1914. King's Law may be expressed as: 
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Q = Kf ｾ＠ (1 + I (2TIp Cp dU)/Kf) (T-To) (121) 

where Kt thermal conductivity 

ｾ＠ wire length 

p density fluid 

Cp specific heat of fluid 

d wire diameter 

U fluid velocity 

T wire surface temperature 

To fluid temperature. 

However King's basic assumptions were not fully valid, as was 

later demonstrated by ColI is and Williams (79). Basically as the ratio ｾＯ､＠

normally used is small, compared to the values employed by experimenters to 

simulate two dimensional heat transfer, the two dimensional assumption 

breaks down and, as the thermal properties of the fluid were evaluated 

at the mean wire/fluid temperature, it becomes necessary to calibrate 

each sensor individually. 

The heat loss, Q, through the sensor will equal the power, P, 

supplied from the electric current, hence 

(122) 

For a hot film probe operating at a specific overheat ratio, 'a': 

a = (R - Ra)/Ra (123) 

where R, Ra are the operating temperature and fluid temperature wire 

resistance respectively, the relation between P and fluid velocity U 

becomes: 

a12 = A + BUn 

where A, B, n are determined by calibration. Generally this expression 

may be written as: 

(124) 

where V is the bridge output voltage and kl' k2 are found experimentally. 
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4.6.4 Dynamic probe characteristics 

The dynamic probe characteristics give the response of 

the unit to fluctuating flow. In the constant temperature operating 

mode the response is greatly influenced by the electronic ciruit. 

This closed loop response is the response of the entire probe-anemometer 

system and the frequency response is improved because of the negative 

feedback employed and the upper frequency limit is increased by a 

factor of several hundred compared to the constant current mode of 

operation, depending on anemometer's characteristics. For the 55AOl/ 

55A82 anemometer/probe combination the upper frequency limit is of the 

order of 5 kc. 

4.6.5 Constant temperature operation 

In the constant temperature mode, the resistance of the sensor, 

and hence its temperature, is kept constant. The bridge voltage provides 

a measure of the heat transfer, Figure 36. 

The bridge is in balance at a certain bridge voltage from the 

servo-amplifier. A change in the resistance of the sensor due to a 

change in the heat transfer will result in bridge unbalance, introducing 

an error voltage at the servo-system input. This voltage is used to 

adjust the bridge voltage and hence the sensor current so that the bridge 

is once more in balance. By this means sensor temperature variations are 

kept to a minimum. 

Constant temperature operation is particularly suited for 

measurements of high frequency flow fluctuations using both hot wire 

and hot film probes and for measurements of variations between widely 

different flow magnitudes. 
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4.6.6 DISA 55D10 Linearizer 

The relation between flow velocity U and anemometer output 

voltage V may be expressed by equation (124), namely 

V2 = k1 + k2 Un 

where kt, k2, n are determined experimentally. Examples of this type 

of relation are given in this report for a 55AB2 hot film probe and 

55A01 constant temperature anemometer. 

The DISA Linearizer is an electronic analog computer whose 

basic transfer function at a constant setting of the operating controls 

can be written as: 

V = K Ｈｖｾ＠
out 1n 

where K, V. and m are constants. 1no 

(125) 

By putting the anemometer output voltage V equal to the 

linearizer input voltage V. the following relation is found: 1n 

V = K (k1 + k2 Un - ｖｾ＠ )m out 1no 

Thus for ｖｾ＠ = k1 and m = l/n 1no 

(126) 

the 1inearizer output voltage will be directly proportional to the flow 

velocity U. 

4.6.7 Disturbing effects 

The following points ｡､ｶ･ｲｾｬｹ＠ effect the results obtained from 

the DISA probe. 

(1) Temperature changes in the fluid during measurement. 

(2) Contamination of the sensor element by dirt particles in the fluid. 

(3) Undisso1ved air in the fluid. 

(4) Gas release at the sensor surface. 

(5) Film wear due to chemical reaction or electrolysis. This is 

critical due to the thickness of the film, less than ｾＮ＠

(6) Vibrations of the probe result in the introduction of noise on the 

probe signal. 

(7) Non alignment of the probe and flow. 
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4.6.8 DISA 55A82 hot film probe and support 

Figures 37 and 38 illustrate the dimensions of the hot film 

probe used, together with the probe support and traversing device. The 

probe support was designed to fit the 14 mm threaded pads used for mounting 

the pressure transducers. A P.V.C. seal and retaining collar was fitted 

into the base of the upper support, which also carried the traversing 

screw and a clamping screw necessary to prevent the probe being blown 

out of the pipeline at high fuel pressures. The lower support was 

necessary due to the taper on the hot film probe body which would other-

wise have made sealing difficult. 

4.7 Air collection and analysis 

Figure 39 illustrates the apparatus employed to remove and 

collect the residual gas observed to have been left out of solution 

following column separation on the downstream side of the valve in pipe-

line configuration 2G. 

The oxygen content of this gas was measured by forcing it 

through alkaline pyrogallol and measuring volume reduction following 

oxygen absorption. 
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4.8 Fire prevention precautions 

Due to the danger of sparking across any insulated gap in 

the pipeline, i.e. neoprene seals etc., caused by the insulating properties 

of kerosene, care was taken to ensure that the rig presented a continuous 

electrical circuit, all seals and air gaps being bridged with conducting 

material. In addition to this electrical bonding care was taken in 

providing earth connections. 

The following precautions were also taken at the request of 

the G.L.C. fire department:-

(1) Storage tanks positioned outside the building and fire-

proofed glass installed in all windows 6m on either side and 

lOm above the site. 

(2) A pull cord operated isolation valve was mounted at the 

reservoir to test pipeline junction exterior to the building. 

(3) Fire warning and 'no smoking' signs as well as a number of 

fire extinguishers were positioned close to the rig. 
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5. EXPERIMENTAL METHODS 

5.1 Instrument Calibration 

5.1.1 Calibration of venturi meter and steady state pressure 
measuring instrumentation 

The venturi meters were calibrated by pumping fuel from the 

storage tank into the upstream reservoir via the supply and return lines 

illustrated in Figure 20. The pressure differentials across the meter, 

measured either by a mercury manometer or by a Honeywell 0 - 35 kN/m2 

inductance transducer, were compared to the flow rate calculated from 

the filling time of the reservoir tank. Calculation of the CD of the 

venturi meter used on pipeline configuration 1 yielded a value of 0.93. 

Calibration curves were then drawn for the flow in the test 

pipeline. 

The pressure gauges used to record reservoir pressures were 

calibrated up to 400 kN/m2 on the 'dead weight tester' and any variations 

from the supplied scales noted. 

The Honeywell inductance transducers, together with their O.D. 

units and leads were also calibrated on the dead weight tester up to 

their maximum permitted pressures. 

5.2.1 Linear Displacement Transducer 

Figure 40 illustrates the calibration curve for the Linear 

Displacement Transducer in terms of valve open angle. This curve was 

produced by noting the oscilloscope screen deflection for a valve movement 

from 900 open to some intermediate angle. The calibration of the oscil-

loscope amplifier channel 1 was checked for calibration prior to these 

tests by means of the calibrator unit built into the oscilloscope. 

The calibration curve obtained allowed angle vs. time data 

to be extracted from the output of the L.D.T. recorded on the oscilloscope 

during valve closure. 
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5.1.3 Quartz crystal pressure transducers 

The transient pressure measuring instrumentation was set as 

shown in Figure 31, with the transducers mounted in a dead-weight 

pressure tester. After the instrumentation had been allowed to 'warm up' 

for about 30 minutes the following procedure was carried out:-

(1) The amplification setting for each of the oscilloscope amplifier 

channels used, 2 - 4, was checked, by use of the calibrator unit, 

and any necessary adjustments made. 

(2) The piezo amplifiers were set in the static mode and the attenuator 

settings noted. 

(3) Each transducer was then calibrated in turn by loading the dead-

weight tester and noting the screen deflection. This procedure was 

repeated for the whole range of pressures expected, the oscil-

loscope amplifier settings being noted and altered when necessary. 

By this method an individual calibration curve was obtained for each 

transducer circuit, i.e. including the cables, piezo amplifier, 

transducer and the oscilloscope amplifier channel. Each circuit was 

colour coded to avoid errors arising from the use of an uncalibrated 

unit. 

(4) The gain adjustment controls were adjusted on the piezo amplifiers 

corresponding to oscilloscope channels 3 and 4 in order to equalise 

the calibration factors to the measured value for channel 2. 

(5) Simultaneous calibration of all three channels was then carried out 

to ensure that all the transducers had the same factor. 

This procedure was repeated at frequent intervals during all 

the tests reported. The calibration factor for the Kistler 701A or 

Vibro-meter l2QP250 transducers and associated amplifiers was found to be 

constant at 450 kN/m2/volt. 
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5.1.4 Oscilloscope Time Base 

The time base for the Tektronix 564 was checked by means of 

a Time Mark Generator (TMG). The TMG was plugged into the oscilloscope 

and the time base set to 10 ms/division. The output from the TMG 

was also set to one pulse every 10 ms. If the time base was correctly 

adjusted the pulses should correspond to the screen divisions. A screw 

adjustment on the oscilloscope could be used to correct the time base 

calibration if necessary. The procedure was then repeated for a whole 

series of time base settings to eliminate any error due to a faulty TMG 

output. 

5.1.5 DISA 55A82 hot film and anemometer/linearizer system 

Two methods were employed to calibrate the anemometer equipment. 

The first involved mounting the probe on the valve closing ram, which was 

directly linked to the Linear Displacement Transducer, and comparing 

their respective outputs as the ram propelled the probe through a bath of 

kerosene, Figure 41. 

Figure 42 illustrates the type of trace recorded on the 

oscilloscope, it can be seen that the probe reacts rapidly to the increase 

in ram velocity, as represented by the slope of the Linear Displacement 

Transducer output. The low values of overheat ratio were necessary due 

to the use of the probe in a liquid, comparable tests in air would have 

required a 1.6 overheat ratio. 

A computer program, in Fortran IV, was written to fit a poly-

nomial to the L.D.T. output, by the 'least squares' method, the resulting 

equation being differentiated to give probe velocity. Direct comparison 

between these figures and the anemometer output is reproduced in Figure 43. 

The values of kl, k2 and n in equation (124) are now apparent. It was 

possible to combine the curves in Figure 43 as shown in Figure 44, the 

'best line' again being fitted by the least squares program. This cali-
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bration was used for the hot-film tests on pipeline configuration 1. 

The second method involved mounting the probe in the test 

pipeline and, by recirculating the fuel through the rig at various flow 

rates, obtaining a direct comparison between the venturi meter reading 

and the anemometer output. This method was used in conjunction with a 

DISA linearizer unit, which resulted in a direct Volts vs. Velocity 

relation, and the later pipeline configurations 2 and 3. Generally this 

was simpler than the previous method but did suffer the disadvantage that 

the velocity measured by the probe was the centre line velocity which 

could be compared to the mean velocity measurement provided by the 

ventuir meter, or to a theoretical centre line velocity based on the 

venturi meter result. 

The expression for this from Pao (80) was:-

Vcl = Vm (1 + 3.75 I (f/2» 

where f = 0.079/Re1• 

(127) 

The value of the exponent m, equation (125), was set by trial 

and error; the anemometer output was set equal to a particular centre 

line velocity and the value of m checked by systematically reducing the 

flow rate and comparing the anemometer output to the new theoretical 

centre line of velocity from (127) above. A value of 1.98 was found 

satisfactory, the observed linearity being illustrated in Figure 45, 

together with the results of equation (127). Figure 45 was used for the 

hot film tests on pipeline configurations 2 and 3. 
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5.2 Measurement of basic parameters necessary for a solution 
by the method of characteristics 

5.2.1 Measurement of valve characteristic 

The valve pressure-discharge characteristic, T, forms the 

necessary boundary condition during valve closure. This characteristic 

was measured for the test valve in both pipeline configurations 1 and 

2 by noting the discharge through, and the pressure drop across the 

valve for a range of valve open angles, while the rig recirculated 

fuel continuously under steady conditions. Discharge was measured by 

means of the venturi meter while the pressure drop in pipeline configuration 

1 was measured by a Honeywell 0 - 35 kN/m2 inductance transducer 1 m 

upstream of the valve. In pipeline configuration 2 the pressure was 

measured 1 m on either side of the valve by means of a pair of U-tube 

manometers, a mercury manometer for the small open angles, i.e. large 

pressure drop, while a tetrabromoethane manometer was used for the 

larger open angles. As tetrabromoethane combines with kerosene a 100 mm 

column of water was used to separate these liquids in each manometer arm. 

Figure 46 illustrates the results of these tests together with 

the open area ratio vs. valve angle curve supplied by the valve manufacturers. 

5.2.2 Measurement of the Bulk Modulus of aviation kerosene at room 
temperature 

Due to the difficulty found in obtaining an accurate figure for 

the Bulk Modulus of the fuel used it was decided to measure this indirectly 

by an ultrasonic method. Figure 47 illustrates the apparatus used, a 

Solatron G01377 pulse generator was used to produce a pulse frequency of 

2Mc. These pulses were transmitted through a bath of kerosene by an ultra-

sonic transducer of PZT4 brush crystal and reflected from a submerged plate. 

The process was monitored on a storage oscilloscope and measurements of 

the acoustic velocity of the fluid made from the known separation of the 

source and reflector. Figures 48 and 49 illustrate the oscilloscope 

traces recorded. 
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The above process was repeated with distilled water to monitor 

the accuracy of the method. 

5.3 Test procedures 

5.3.1 Measurement of the transient propagation velocity in the test rig 

In order to make accurate measurements of the time taken for a 

transient to pass from one point to another along the pipeline it was 

necessary to produce a pressure wave front as close as possible to a step 

profile. It was therefore necessary to employ small initial open angle 

settings and reasonably high upstream reservoir pressures in pipeline 

configuration 1 in order to produce as steep a transient as possible on 

valve closure. The passage of the transients was recorded at two trans-

ducer points, Tl - 1.25 m upstream of the valve, and T3 - 7.8 m upstream 

of the valve. A number of different methods were employed to measure the 

wave speed, employing the Tektronix 564 storage oscilloscope with and 

without the time sweep delay facility of the 383 plug in time base unit. 

Table 4 sets out these methods. 

5.3.2 Column separation on the upstream side of the valve 

8y maintaining low pressures in the upstream reservoir tank, 

Figure 19 and varying the initial open angle of the valve it was possible 

to carry out a series of tests ranging from the 'no separation' case for 

low flow rates and small open angle settings up to the production of 

column separation lasting up to 0.2 seconds following the closure of the 

test valve from a fully open initial setting. 

The test procedure was as follows: 

(1) The instrumentation was allowed to warm up for at least 

30 minutes. Normally the four channels would be taken 

up with the L.O.T. on channel 1, acting as a triggering 

signal, pressure transducers at X/L - 0.918 and 0.498 

on channels 2 and 3, and possibly the OISA hot film probe 

on channel 4. 
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(2) The fuel was recirculated through the test rig con-

tinuously until steady conditions had been achieved. 

Steady state pressure and velocity values were noted, 

together with the valve open angle. The flow velocity 

was controlled by varying the power supply to the D.C. 

pump. 

(3) The valve was closed by operating the pneumatic ram via 

the linked two-way control valves. 

(4) The signal from the L.D.T. produced as soon as the ram 

started to move triggered the single sweep on the 

oscilloscope resulting in a presentation of the output 

from the four channels that could be photographed with 

a polaroid camera. 

(5) The amplification settings of each channel were noted 

together with the time base and any time delay employed. 

The above procedure could be repeated for a series of flow rates 

or initial valve settings. 

5.3.3 Column separation downstream of a valve, pipeline 
configurations 2, 2G, 3 

A similar test procedure to that outlined above was used for 

these tests. The steady state values of both reservoir pressures and 

the flow rate were recorded following the establishment of steady state 

conditions. Three main parameters were varied, namely: the flow rate, 

the valve closure time and the line pressure. The flow rate was set 

by a control valve in the return pipeline, Figure 23 , direct pump control 

was no longer possible on a 3 phase A.C. supply. The valve closure time 

was controlled by a pressure reducing valve in the ram compressed air 

supply line. The valve was operated by a solenoid valve and switch. 
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The line pressure was controlled by a pair of pressure 

reducing valves in the compressed air supply to the two reservoir 

tanks. This allowed column separation for constant flow rate and 

valve closure time to be investigated for a range of absolute line 

pressures. 

The pump feeding the return line was shut down simultaneously 

with test valve closure to minimize any error arising from a reduction 

in downstream reservoir pressure, this would occur if the pump continued 

to pass kerosene from the downstream tank to the upstream reservoir. 

5.3.4 Observation of cavity formation downstream of the valve 

The procedure outlined above was followed for these tests. 

The camera and lights were set up as shown in Figure 26. The camera 

was switched on and the valve closed as soon as the note of the camera 

drive indicated that the film had reached a steady speed, in these 

tests 1000 frames/second. The valve closure mode was included in the 

film by means of a pointer and linking arm that moved through the 

camera's field of view as the ram moved. Similarly each test film in-

cluded the steady state conditions for the test on a card mounted on the 

pipe support, together with a scale marked in cm to give a direct 

measure of the extent of the separated region. 

5.3.5 Residual gas collection and analysis 

The gas collection and analysis apparatus illustrated in 

Figure 39 was used for three separate functions: 

(1) Air bleeding during the setting up of steady state conditions. 

Valve J was opened to allow any air trapped in the pipeline 

during filling to be removed. 
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(2) Gas collection. Following test valve closure and the final 

damping of the transients the residual gas located down-

stream of the valve was driven through valves A, 8, by the 

downstream reservoir pressure, into the converted 50 cc. 

burette. With valves e, F, G shut and valves D, E open it 

was possible to collect the gas In the burette while the 

displaced kerosene passed out of the system through valves 

D, E. 

Following the complete collection of the residual gas, 

closure of valves 8, E and opening of valve F allowed the 

volume of the collected gas to be measured at atmospheric 

pressure by moving the reservoir down. 

(3) Gas analysis. Prior to the collection of the released gas 

in the burette the system was used to draw the alkaline 

pyrogallol up to valve I by opening valves I, G, D and F 

and lowering the reservoir, all other valves being shut. 

With valve I shut kerosene was then forced up to valve I, 

all displaced air being expelled through valve H. 

Procedure (2) above was then carried out. With valves D, F, 

G, I open and all others shut it was possible to force the 

released gas into contact with the alkaline pyrogallol, and 

conversely to return any undissolved gas to the burette, by 

raising and lowering the reservoir. This process was repeated 

until no volume change occurred following each contact of the 

gas and the alkaline pyrogallol. 
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6. DISCUSSION OF RESULTS 

6.1 Presentation of experimental results and 
discussion of computer programs 

The results from the investigation of column separation 

upstream and downstream of a valve following closure are presented 

separately. The same general format is employed in each section, 

namely: 

1. Polaroid photographs taken from the storage oscilloscope, 

or, for the early tests, tracings from such photographs. 

2. Comparison between observed and predicted pressure or 

velocity-time curves at a number of sections along the 

pipeline. 

3. Comparison between the observed and predicted values of 

certain variables, such as cavity duration or collapse 

pressure. 

4. Tables, where possible compiled by the computer as output, 

indicating the effects of a variation in computing technique, 

basic assumption or test condition. 

This layout of results is supplemented with data on fuel 

properties and appendices describing the computer programs. 

All the programs written to predict pressure variations 

during and following column separation were coded in Fortran IV for 

use on an I.C.L. 1905 digital computer. The university 1905 central 

processor had a core store of 32,768 24 bit words with a cycle time of 

2 microseconds, and a hardware floating point arithmetic unit. Output 

peripherals consisted of a line printer, 1000 lines/minute maximum 

speed, and a tape punch. The transient programs SEPP to SEPK required 

up to 24K store, although efforts were made to reduce this to below 

the 2lK limit set for the use of the computer unit's automated JUNE 

system which, in theory, gave a turn round time of less than 24 hours 

on any program. 
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Full descriptions of the transient programs are presented 

in Appendices 3 and 5. A number of other programs were employed 

during the reported research, particularly a curve fitting program 

based on the 'least squares' method set out by McCraken and Dorn (81) 

already mentioned in connection with the calibration of the hot film 

probe. This program formed the basis of the CURPIT subroutine employed 

in transient programs SEPE-K for valve characteristic manipulation. 

6.2 Measurement of the transient propagation velocity 

The measured values of acoustic velocity in kerosene and 

distilled water are shown in Tables 2 and 3. Comparison between the 

value for distilled water and that quoted by Pearsall (82) was felt to 

justify the use of the method for the measurement of the acoustic 

velocity in kerosene at the working temperature (17.SoC). 

The Bulk Modulus of kerosene was calculated from the 

expression: 

K • (28) 

and was found to be 1.26.109 N/m2• The range of values quoted by 

Shell, Esso, B.A.C., Saunders Valve Co. and Pearsall (82) was 1.03 

to 1.38.109 N/m2• 

Wave speed in the pipeline was calculated from 

· ?O + 
DK 
Ee 

where Cl • 1.25 - u and is the value appropriate for a pipeline fully 

restrained at the upstream end. The value of the wave speed was thus 

found to be 917.1 mise Tables 5 and 6 present the measured values by 

the four methods employed, Table 4. It can be seen that method 2, 

employing the time delay facility on the oscilloscope, proved the most 

accurate. This method involved delaying the internal triggering of the 

instrument by a set time following the start of valve motion thus 

enabling a small part of the pressure-time trace to be examined in detail, 
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in this case that section containing the maximum pressure levels 

at the two transducer stations, TI-T3, 6.55 m apart. The results 

obtained by measuring the pipe period at the first transducer, 

1.25 m upstream of the valve, displayed a slightly greater scatter. 

The average observed value of wave speed was found to be 919.85 m/s 

and this figure was used in the subsequent calculations. 

Mention has already been made of the rig modification 

necessary to avoid the vibrations introduced into the system by the 

pneumatic ram slamming closed. Figure 50 illustrates the pressure 

traces adjacent (1.25 m) to the valve for tests before and after the 

ram was mounted independently. These curves also display the desired 

characteristic for wave speed measurements, i.e. the maximum pressure 

levels are attained in less than one pipe period. 

6.3 Analysis of column separation upstream of a closed valve 

Table 7 summarises the recorded tests. It can be seen that 

by varying the valve initial open angle, together with the reservoir 

pressure, a range of flow conditions were obtainable. 

Figure 51, Plate 1 illustrates the pressure traces following 

a rapid valve closure where column separation did not occur due to 

the low initial flow rate. The traces reproduced illustrate the 2L/c 

pipe period and the damping due to fluid friction and possible vibration 

of the pipeline. 

Figures 51, 52, 54 and 55 illustrate the effect of increasing 

the valve closure time for two initial open angle settings, 270 and 

900 • The pressure variations recorded during the slower valve closures 

illustrate the effect of the valve characteristic of spherical plug 

valves. As can be seen the maximum rate of pressure rise occurs over 

a relatively small part of the plug rotation and the peak pressure is 

attained before the valve is fully shut, however it is doubtful whether 
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a valve of this type passes fuel below an open angle of 150 • 

This trend is repeated in Figure 53, illustrating the 

effect of an increase in initial valve open angle. 

As can be seen from Figure 54 the amplification setting of 

the instrumentation was adjusted so that the first peak following valve 

closure could be accommodated on the oscilloscope screen. The tables 

dealing with the measurement of acoustic and transient propagation 

velocities stressed that readings can only be taken to within! 0.1 

of a screen division under most circumstances and although this 

represents a small error on the first pressure peak the magnitude of 

the error will increase for each subsequent peak reaching a maximum 

of perhaps 10% on the third pressure peak. 

The Schnyder-Bergeron graphical method has already been 

mentioned and Figures 56 and 57 illustrate its application to one 

particular case, with a valve initial opening of 250 • The smallest time 

increment practical on the scale used was an eighth of a pipe period. 

As can be seen from Figure 58 this led to the prediction of excessive 

pressure peaks, an effect caused by considering time increments that 

were too large to yield an accurate estimate of the variation in flow 

velocity at the fluid/vapour interface at the closed valve. Referring 

to Figure 56 more points between 5A and 6A on the line OA - 8A would 

have resulted in more points between 2lA and 22A on the 'cavity at 

closed valve boundary line' which in turn would have given a smoother 

variation in flow velocity at the cavity. In Figure 58 the graphical 

results for pressure and velocity variations at the valve are compared 

to those obtained from the numerical solution via the method of 

characteristics. 
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The first program employing this numerical method used 

to deal with the case mentioned above (Run 3, 13/11/68) assumed that 

the 1st cavity formed at the valve, employed 1st order or rectangular 

rule approximation for integration, constant friction factor, the 

sorting and interpolation procedures outlined previously and a time 

increment 6T - 6x/c where 6x was a tenth of the pipelength. As 

mentioned previously this value of 6T is the maximum for which a 

stable solution may be expected but its use can lead to misleading 

results if the rates of change of pressure are high, for example the 

instantaneous pressure rise following cavity collapse. This program 

was known as SEPP and a comparison between its output and the observed 

results for this test run is shown in Figure 59. As can be seen the 

output from this program again displayed the peaks predicted by the 

Schnyder-Bergeron solution, however their magnitude was reduced. Both 

methods indicate the formation of a second cavity at the valve at 

t • 4.5 pipe periods, this being the result of the high pressures 

predicted on the collapse of the first cavity. The observed results 

did not indicate such a cavity as the pressure recorded did not fall to 

vapour pressure and the 2nd and 3rd observed peaks were two pipe periods 

apart which could only be possible by transient propagation through a 

continuous fluid column, no vapour cavities existing anywhere along the 

pipeline. 

The time increment was further reduced by putting 6x equal to 

a thirtieth of the pipe length resulting in a further decrease in the 

peaks although they were still predicted. It was therefore decided to 

reduce the time increment by interpolation by writing 6T - ｾｸＯＲ｣Ｌ＠ 6x being 

a tenth of the pipelength. The results from this modified version of 

SEPP are also shown in Figure 59, the comparison between observed and 

computed results now being very close. 
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The divergence between the observed and predicted pressure 

variations following 1st cavity collapse and the marked improvement 

due to the inclusion of an interpolated time step from the instant 

of cavity formation can be explained by an examination of the 

assumptions made and the order of events within the pipeline. 

Following a rapid valve closure of the type illustrated in 

Figure 59, the pressure drop at the valve at time 2L/c may be extremely 

steep, so that the pressure wave propagated upstream as the cavity 

forms will have a value: 

as mentioned earlier. This wave will be represented within the 

numerical solution and will be assumed to propagate within the pipeline 

between two -1 reflectors, at the cavity and the upstream reservoir, 

until the cavity collapses. 

On cavity collapse an instantaneous pressure rise of 

magnitude pcVclos is assumed to propagate upstream from the valve. 

and the reflection coefficient at the valve reverts to a +1 value 

appropriate to a zero flow boundary condition. 

This pressure rise can be seen in Figure 59 at 2.75 pipe 

periods. The (po - pvap) wave, reflected from the upstream reservoir, 

arrives at the closed valve at some time within the next pipe period 

and results in a 2(po - p ) pressure rise at the valve, due to the vap 

change in reflection coefficient. In this period. 2.75 - 3.75 pipe 

periods, the pcVclos wave has been reflected at the reservoir and 

arrives at the valve at 3.75 pipe periods as a -pcVclos wave. 

resulting in a pressure drop of 2pcVclos. These events are clearly 

illustrated in Figure 59 and are responsible for the peak pressure 

predicted at 3.75 pipe periods by the numerical solution without 

interpolation. 
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The final event of interest following first cavity collapse 

is the arrival at the valve of a -(Po - pvap) wave from the reservoir 

at 4.5 pipe periods, Figure 59, which would result in a further pressure 

drop of 2(po - Pvap) , and the formation of a second cavity at the 

valve. 

The major assumption in the numerical solution is that the 

pressure fronts propagate with no change in shape, however the waves 

do disperse continually from the instant of their propagation. It 

has been shown by Skalak (12) and Thorley (13) that this dispersion 

follows an expression: 

e _ Ktl/3 

where e is the slope of the wave front, t is the time of wave observation 

measured from the theoretical propagation of the observed transient as 

a step wave, and K is a constant determined experimentally. Thus both 

the (po - Pvap) and pcVclos pressure waves that produce the pressure 

variations recorded disperse continually and this can be clearly seen in 

the observed curve in Figure 59. The sharp peaks predicted are removed 

as the wave front lengths have increased so that waves of different 

sign overlap. 

The improvement found by reducing the time step by interpolation 

can now be explained as the interpolation procedure necessary to produce 

the base conditions for the next time step effectively spreads the wave 

front. It is implicit in the interpolation that transients arriving at 

any point at a time T are assumed to influence conditions a given 

factor of a pipe section ahead of themselves at that time. 

From the form of the dispersion equation it can be seen that 

the rate of dispersion will be more severe the closer the propagated 

transient is to a step wave, i.e.: 
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21J 

Thus the beneficial effect of interpolation will be a 

maximum in cases such as Figure 59 where/following a rapid valve 

closure/both the (po - pvap) and pcVc10s waves are initially steep. 

Examination of the computed results for the first series of 

tests showed that it was insufficient to consider cavities to be 

formed only at the closed valve. Analysis of slow valve closures, 

particularly in the cases employing an initially fully open valve setting, 

predicted vapour pressure first at some point along the pipeline 

upstream of the valve. SEPP was modified to deal with this possibility 

by considering the pipeline as two separate fluid columns separated by 

the vapour cavity and the simultaneous presence of a cavity at the 

closed valve if the pressure there fell to vapour pressure. The 

sorting and interpolation procedures designed to ensure correct velocity 

solutions during cavity formation were employed for both columns, the 

calculation advancing by a time increment 6x/2c following the first 

indication of vapour pressure. A typical result is shown in Figure 60 

where the first cavity is predicted at the mid-point of the pipeline 

followed by a cavity at the valve. The collapse of the first cavity is 

shown on the lower trace at a time 3.5 pipe periods after the start of 

valve closure, the computed and observed results at that time agreeing 

reasonably. The collapse of the valve cavity occurs 2.5 ｰｾｰ･＠ periods 

later. 

SEPP in this modified form was transferred to magnetic tape 

and employed for the analysis of all the recorded tests shown in Table 

7. Figures 61 to 66 compare the observed and computed results for a 

number of representative cases while Figures 67 to 71 compare the 

computed and observed values of the pressure peaks and their phase, at 

the two transducer stations normally employed i.e. 0.498 and 0.918 of the 
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pipe1ength from the reservoir, and the duration of the cavities 

predicted at the valve. 

Generally the agreement was good, within 3% for the magnitude 

of the first peak following valve closure and the duration of the 

vapour cavities, within 5% for the phase of the observed pressure peaks 

and generally within 10% for the amplitude of the pressure peaks 

following cavity collapse. The solution was found to be sensitive 

to small errors in the input data, i.e. errors in steady state 

velocity, reservoir pressure and the valve closure-time curve. It is 

to be remembered that any errors in this input data will carry through 

the calculation so that discrepancies in results for the 2nd and 3rd 

peaks and their phase will be due to some extent to them. 

As already mentioned the use of the interpolated time incre-

ment ｾｸＯＲ｣＠ will produce a cumulative error. Although this method has 

been accepted for cases involving very high rates of change of pressure 

and velocity it can lead to errors whose magnitude depend to a large 

extent on the computation section pipe1ength. In this analysis the 

pipe sections considered have been kept to a minimum length, some 

1.5 m. This procedure contributes to the discrepancy in the observed 

and predicted phase of the 2nd and 3rd peaks following valve closure. 

These results will also be affected by the magnitude and phase 

of the first peak. Examination of the computed results showed that 

generally the first observed peak occurred earlier and had a greater 

magnitude than that predicted. This in turn would lead to the prediction 

of a 'weaker' first cavity as the computed pressure changes following 

the first pressure peak would tend to be less steep than those observed 

and so a cavity of shorter duration would be predicted bringing forward 

the phase of successive pressure peaks. This is supported by the results 
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for the duration of the valve cavity. Generally it was found that in 

cases such as Run 3, l3/ll/68J Figure 59, where close agreement was 

achieved for the first pressure peak following valve closure, the re-

mainder of the trace also displayed above average agreement. 

The predicted magnitudes of the 2nd and 3rd pressure peaks 

were less accurate, within ＱＰＥｾｷｩｴｨ＠ the exception of the 3rd peak observed 

at X/L = 0.9. These errors illustrate a major weakness in all the 

methods at present available for the solution of pressure transient 

problems, namely the correct representation of transient damping. In 

SEPP the friction factor was assumed constant at its steady state value, 

however this can not be expected to accurately represent the damping 

during pressure transient propagation. The effect, if any, of varying 

friction factor with the Reynolds Number at each pipe section at each 

time step was investigated by including a procedure based on: 

f = l6/Re, Re ｾ＠ 2300 

f = 0.079/Re1, Re > 2300 

into the existing program, this being known as SEPB. Two representative 

tests are summarised in Tables 8 and 9. Little effect was found, due 

to the Reynolds Number range of the tests, 12,000 - ＵＵｾｏｏｏ＠ which would 

only allow small changes in friction factor, and the pipe section length. 

Due to this lack of damping the excessive pressure predicted 

for the collapse of the first valve cavity would lead to the prediction 

of a 'strong' second cavity at the valve. Examination of the computed 

results for those cases displaying excess pressure rise on the collapse 

of the first cavity showed that the opening of the second cavity at the 

valve affected conditions for a considerable pipelength, vapour pressure 

being predicted as far along the pipeline as X/L = 0.5 whereas the 

observed results showed low pressures approaching vapour pressure but 

not actually reaching it. This would not preclude the actual formation 
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of a second cavity at the valve, this was found to occur in most 

cases as its presence was shown by the phase separation of the 

2nd and 3rd peaks observed at X/L = 0.918 and 0.498, i.e. a phase 

separation greater than two pipe periods. Closure of this predicted 

cavity would produce a computed pressure rise in excess of the observed 

value. 

The damping supplied by pipeline vibration is neglected in 

the analysis presented. This could be a significant factor, particularly 

at a closed valve on cavity collapse. The effect of this vibration is 

to modify the 'no-flow' boundary equation as the fluid in contact with 

the valve face will continue to move until the vibration is restrained. 

Due to the scale of the pressure rise times even a small valve movement 

can be significant. If this motion continues for longer than one pipe 

period, the full pressure rise will not be realised due to the arrival 

of reflected pressure waves from the upstream boundaries of the system. 

This topic will also be mentioned in the discussion of separation 

downstream of a valve. 

The two programs so far mentioned, SEPP and SEPB employed 

1st order or rectangular rule approximation for the friction term. 

Second order integration was employed in program SEPD, together with 

the provision of Reynolds Number dependent friction factor. The 

results from the analysis of three representative cases are again shown 

in Tables 8 and 9. The basic difference between the 1st and 2nd order 

approximations is that the first considers friction loss to be concen-

trated at alternate pipe sections while the second considers friction 

loss at each section. No appreciable improvement was found, this being 

due to a number of factors including the short length of each pipe 

section, the Reyno1ds Number range and the value of the time increment, 

i.e. some 0.8 mi11esecond. 
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The effect produced by varying the time increment following 

the formation of the first vapour cavity according to the expression: 

6T = Z. 6x/c, 0.2 < Z ｾ＠ 1.0 

was investigated by SEPC, a program employing the same procedures 

as SEPB. Tables 10 and 11 illustrate the results obtained. The 

previously mentioned error arising from the use of this form of 

decreased time step is clearly shown by the phase of the pressure 

peaks following valve closure and subsequent cavity collapse. The 

elimination of the excessive pressure peaks predicted by both the 

graphical method and the numerical method for Z = 1.0 is also illustrated 

by these results and indicates one beneficial side effect of employing 

values of Z < 1.0. 

6.4 Measurement of fluid velocity during transient propagation 
by means of a DISA C.T.A. and hot film probe 

Calibration of the DISA 55AOl anemometer and 55A82 hot film 

probe by mounting the probe on the valve closing ram gave the expected 

relation between output voltage and probe velocity, namely: 

Volts2 = IIVelocityl 

Steady state centre line velocities in the test pipe were measured using 

this equipment and close agreement was achieved with the corresponding 

velocity based on the venturi meter reading. 

Figures 72 and 73 illustrate the pressure-velocity-time 

traces obtained for three typical tests. It is apparent that the form 

of the above relation makes direct reading from the velocity traces 

impossible. Referring to Figure 72 it will be seen that the velocity 

reversal times agree with the theoretical 2L/c pipe period. It is 

important to note that the anemometer is only calibrated for flow 
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where the hot film forms the leading edge of the probe, thus results 

during the reverse flow time regions, where the film is in the wake 

of the probe body, are meaningless. Further the quantity recorded 

is strictly Ivli. 

It will be seen that the probe output does not approach the 

zero velocity line during transient propagation. This apparent error 

is magnified considerably by the form of the recorded output, and 

further any local secondary flows, which must exist in a transient flow 

condition, would also contribute to the output voltage of the 

instrument. 

In order to compare the observed and predicted velocity 

variations it is necessary to repeat the probe results as shown in 

Figure 74 which is taken from the test illustrated in Figure 73, Plate 1. 

Reasonable estimates of the maximum velocity of the returning fuel 

column prior to cavity collapse at 8 pipe periods, and of the flow 

reversal time, i.e. the start of cavity collapse, at 5.5 pipe periods 

were obtained. The agreement on the reversal time is possibly surprising 

as there would be a time 1Qg on the probe results as the flow re-

established over the film, however this may be obscured by the fact 

that centre line velocities are compared to mean velocities and it is 

l£kely that the centre line flow would reverse earlier than the 

predicted mean velocity reversal. 

The usefulness of these tests was severely limited by the form 

of the anemometer output. Later tests on the downstream side of the 

valve employing a DISA 55D10 Linearizer unit produced more conclusive 

evidence of the agreement between observed and predicted velocity variations. 

Generally the tests indicated that the assumptions made with 

regard to the movement of the separated column were justified. Further 

the results confirm that the frequency response of 5 kc quoted for the 

instrumentation in the C.T.A. mode was sufficient to deal with the 

ｯｳ｣ｩｾｬ｡ｴｩｯｮｳ＠ recorded. 
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6.5 Column separation downstream of a closing valve 

6.5.1 Initial tests on pipeline configuration 2 

Figure 75 reproduces the pressure-time records obtained at 

two points downstream of the valve in pipeline 2 following valve 

closure. Column separation is indicated by the form of these pressure 

variations, however there are some notable differences between these 

records and those obtained for separation upstream of a closed valve, 

e.g. the general smoothness of the traces and the absence of an 

instantaneous pressure rise on cavity collapse. 

As mentioned in Section 3 two basic mathematical models were 

used, one based on a 'vapour only' cavity and the second based on air 

release during the opening phase of the cavity. 

Figure 76 compares the observed pressure variation downstream 

of the valve with the results of the 'vapour only' program, SEPE. 

SEPE employed the 1st order finite difference equations plus Reynold's 

Number dependent friction factor. Reasonable agreement was achieved 

for the magnitude of the pressure peaks, however the times of cavity 

collapse and the general shape of the pressure variations were 

considerably in error. 

In order to improve on the assumptions made for the valve 

boundary conditions during separation it was decided to observe the 

separation of the column and to attempt to record on film the actual 

sequence of events. 

6.5.2 Observation of column separation downstream of a closing valve 

The observation and filming tests had two main objectives: 

1. To gain a qualitative impression of the sequence of 

events during the duration of the cavity. 

2. To measure the velocity of the fluid column during both 
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the opening and closing phases of the cavity's 

existence and to link this information with the 

simultaneous pressure records. 

Figure 77 presents both the pressure variation downstream of 

the valve during and following closure, Plate 1, and the extent of 

the vapour/gas/fuel mixture Plates a - j. The 16 mm film used did not 

print and enlarge well, explaining the poor quality of the photographs. 

The sequence of events during cavity formation may now be 

traced. 

1. Column separation occurs as a result of pressure reduction 

downstream of the valve. In the low head piping system employed a 

sufficiently large pressure drop may be achieved while the valve is still 

closing. This is confirmed by Plate a, where the valve pointer indicates 

that the valve is still open, while the presence of the released gas is 

clearly visible. It must be noted that there was a 127 mm steel section 

between the valve and the glass pipe, so that by extrapolating the film 

results it appears that column separation and gas release was initiated 

as soon as the pressure fell below atmosphere. 

2. The separated column is decelerated, by the adverse pressure 

gradient between the cavity and the downstream reservoir and by friction. 

Plates b, c, d illustrate this phase and the maximum extent of the 

mixture. 

3. The column is accelerated back towards the valve, collapsing 

the cavity and compressing any undissolved gas. The final velocity will 

be less than the initial interface velocity on separation. Plates e, 

f illustrate this phase. 

The shape of the pressure variations in Figure 77 Plate 1 can 

be explained in terms of the effect caused by the released gas observed. 
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The returning column initially causes little pressure increase in the 

released gas, so that the velocity of the column continues to increase. 

Once the pressure exceeds the downstream reservoir pressure the 

column is decelerated rapidly, the pressure of the released gas 

increasing until the column comes to rest. Thus the pressure 

variation would be expected to display a slow increase from the 

instant of column reversal, terminated by a smooth but rapid final 

rise, which agrees with Plate 1, Figure 77. 

Reflection of this pressure rise negatively at the downstream 

reservoir results in a pressure drop at the valve sufficient to re-

open the cavity as the reflection coefficient at the valve during the 

period following cavity collapse was +1. Figure 77 Plates g, h, i 

illustrate the sequence of events during the second low pressure region 

on Figure 77 Plate 1. This process is repeated until sufficient energy 

has been dissipated and the fluid column comes to rest at the reservoir 

pressure. 

A number of points emerged from these tests: 

1. Gas release and column separation may occur before the valve 

is fully closed. 

2. Gas remained out of solution throughout the high pressure 

regions and did not re-dissolve following final damping of the transients. 

Figure 77, Plate j illustrates this residual gas at the valve, however 

due to the poor reproduction of the film the extent of this residual 

bubble overlying the fluid is not well defined in the photograph. 

3. The vapour/fuel/released gas mixture was full bore in the 

pipeline. The buoyancy of the bubbles had no visible effect during the 

existence of the first two cavities. 
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4. No gas was observed to come out of solution ahead of the 

interface between the separated column and the cavity region. This 

indicated that there was no entrained air in the flow initially and 

that the agitation supplied at the valve was the deciding factor in 

the gas release phenomenon. 

5. Liberated gas did not go back into solution but remained 

concentrated at the valve. This explains the subsequent damped 

pressure traces. 

Thus the first objective of these tests was achieved and the 

program was modified to include the effect of the released gas on the 

cavity pressure as well as the effect of its continued presence as the 

new valve boundary condition. Results from the first of these 

modified programs, SEPF, where n = 1.0 was taken as the polytropic 

coefficient of expansion, i.e. isothermal conditions, are presented in 

Figure 76 to provide a direct comparison with both the observed and the 

predicted 'vapour only cavity boundary' pressure variations. The 

agreement is seen to be greatly improved. 

Figures 78 and 79 compare both the observed values of the 

volume of the released gas/vapour/fuel mixture and the cavity interface 

velocity with those calculated by SEPK, a program employing the 

boundary conditions outlined above plus a modification to allow for the 

presence of the glass/ aluminium junction 3.04 m downstream of the 

valve. This boundary condition has already been described in Section 

3.5.4. 

One of the basic assumptions made in the derivation of the 

equations defining transient propagation is that the velocity profile 

is initially uniform and remains so during the passage of a pressure 

transient. Figure 80 illustrates the probable distortion of the flow 

through the valve during closure, which quite obviously violates the 
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above assumption. This explains both volume and interface velocity 

discrepancies. The velocities measured from the movement of the 

interface refer, at least while the valve is closing, to a high 

speed stream of fluid flowing along one side of the pipe. Once the 

valve has closed it is probable that the velocity assumption becomes more 

reasonable, as is indicated by the close agreement between the observed 

and predicted times of maximum cavity volume and cavity collapse. It is 

interesting to note that a calculation based on the valve open area 

ratio and the predicted column separation velocity yields a figure 

comparable to the velocity of the separated column measured from the 

first frames to record the presence of the gas/fuel mixture. 

The observed velocities, Figure 79, for the opening phase of 

the first cavity were obtained by fitting a polynomial to the observed 

cavity volume results of Figure 78 and differentiating the resulting 

equation. Direct velocity measurements from the film were found to 

be highly inaccurate due to a multiplication of the measurement errors 

involved. 

During the collapse phase of the cavity it is likely that 

events in the pipe are obscured by a layer of bubbles close to the 

pipe walls, so no measured velocity values for this phase are included 

in Figure 79. 

The second objective of these tests was therefore only partly 

achieved however two points were worth noting: 

1. The uniform velocity distribution assumption breaks down during 

the initial opening of the cavity. 

2. The mixing that occurs due to the high speed fluid stream 

passing along one wall of the pipe probably results in gas release from 

the volume of fluid immediately downstream of the valve. 
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Figure 81 summarises the maximum extent of the gas/vapour 

mixture observed from a series of films. Following these tests the 

pipeline was converted back to configuration 2 and a further series of 

tests carried out to check the validity of the new boundary conditions 

included in the analysis. 

6.5.3 Further tests on pipeline configuration 2 

The difference between the 'vapour only' and vapour plus 

released gas boundary conditions at the cavity may be summarised by 

the two equations defining cavity pressure: 

p ,.. p 
cav vap 

for the 'vapour only' case following a pressure reduction to vapour 

level, 

or: p ,.. p + P . 
cav vap a1r 

for the released gas case following a pressure drop to below atmospheric 

pressure, 

where = (AIRVOL) n 

\VOL 
ATM 

The necessary solutions and the programs are presented in Sections 3 

and Appendices 4, 5. 

Figures 76 and 82 confirm that the inclusion of the gas terms 

is significant, particularly with reference to the times of cavity 

collapse and the general shape of the pressure variations. 

Figures 83 and 84 compare the pressure reduction at the valve 

during two closure rates. The vapour only assumption predicts a much 

steeper pressure reduction than was observed. The use of n = 1.0 in 

the partial pressure calculations is supported by these results and 

by Tables 12 to 14. This assumption seems reasonable as the volume 
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of gas involved ｾｳ＠ small and thoroughly mixed with the fuel which 

would be likely to act as a heat sink during separation. 

The cavity at the valve re-opens a number of times before 

the fluid finally comes to rest. The inclusion of released gas 

in the system model improves the decay rate predicted for the duration of 

these cavities and their collapse pressures, Figure 76. 

Solution of the cavity boundary equations involving values 

of n > 1 were carried out by program SEPG, Appendix 5. It was found, 

for both SEPF and G, that an instability in the results obtained for 

the peak pressures was possible if the rate of change of cavity volume 

was too great. The simplest way to avoid this was to reduce the time 

step, by interpolation, if the change in volume across any time step 

exceeded half the volume at the start of that time step, thus: 

ｉｆＨｖｏｾ＠ - ｖｏｾ｟ｾｔ＠ • GT. 0.5 V0Lr) ｾｔ＠ • ｾｔＯＲ＠

This method was used throughout subsequent tests. 

6.5.4 Pressure variation at a point some distance downstream of 
the valve, in pipeline configuration 2 

Pressure variations 4.04 m downstream of the valve are illustrated 

in Figures 75, 82 and 85 and generally follow the variations at the 

valve with the exception of the secondary pressure oscillations recorded 

during column separation at the valve. These have already been ex-

plained in terms of the -1 reflection coefficients at the cavity and 

downstream reservoir. This model must be altered slightly as the 

cavity pressure is strictly dependent on the gas partial pressure so that 

as this decreases during the opening phase of the cavity the reflection 

coefficient is greater than -1 and, conversely, as the air pressure 
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increases during cavity closure1less than -1. This accounts for 

the reduction in the amplitude of the oscillations during cavity 

closure. These secondary oscillations are accurately predicted by 

the analysis, Figures 82 and 85. The frequency of this wave form 

is c/2L, or 47.34 cls for configuration 2 based on a wave speed of 

919.85 m/s. 

If the flow contained any entrained air, or if any air was 

released from the fuel along the length of pipeline subjected to 

pressures below atmosphere, then the wave speed would be drastically 

reduced. The measured frequency of the secondary oscillations was of 

the order 45-48 cls, accurate measurement being difficult, however the 

change in frequency that would be caused by the presence of free air 

would be so great as to make these measurement errors insignificant. 

Thus the assumption that the effect of the released air can 

be concentrated at the valve is justified as is the assumption that 

it is the agitation supplied to the fuel that is responsible for the 

release of the dissolved air at the valve. 

The steepness of these secondary oscillations depend on the rate 

of valve closure, initial flow velocity and line pressure. Generally 

the steepness would increase if the initial flow rate or the valve 

closure rate is increased. 
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6.5.5 Effect of varying the steady state conditions, 
pipeline configuration 2. 

The tests described above resulted in a program, SEPI, which 

employed the released gas at the valve as the boundary condition during 

and following separation, a value of n = 1.0, the time step reduction 

technique to avoid pressure instability due to rapid cavity volume change 

and a series of sorting procedures which identified and printed the 

maximum and minimum pressures and their event times together with the 

separation velocity and steady state conditions. This program removed 

the line printer speed limitation imposed on earlier programs and allowed 

6 - 10 test cases to be analysed in the time taken to analyse one where 

all the pressure-velocity results for each time step were printed. 

Pipeline configuration 2 was used for a series of tests in-

volving the variation of three steady state parameters, namely the 

initial flow velocity (1 - 3 m/s), the downstream reservoir pressure 

(102 - 420 kN/m2 abs.), and the valve closure time (0.08 - 0.3 s). 

Figure 86 Plates I - 6 illustrate the effect of varying the 

valve closure rate. The initial separation velocity decreases with 

increasing valve closure time, as does the volume of the cavity. The 

quantity of gas released is also likely to be reduced. Plates 5, 6 

illustrate the lower cavity collapse pressures and reduced cavity 

duration that accompany a reduction in separation velocity. A reduction 

in the amplitude of the secondary pressure oscillations with increasing 

valve closure time is also illustrated. 

Pressure reduction at the valve during closure and the minimum 

recorded pressures are illustrated in Figures 87 and 88. The dependence 

of the minimum pressure on valve closure rate is illustrated. As both 

cavity volume and separation velocity decrease with increasing valve 

closure time, the recorded pressure drop decreases with increasing valve 

closure time. 
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A decrease in the initial flow velocity reduces both cavity 

duration and collapse pressure. This effect, plus the secondary 

pressure fluctuations 4.04 m downstream of the valve are shown in 

Figure 89. 

An increase 1n the line pressure by controlling the downstream 

reservoir pressure increases the pressure gradient between the cavity 

and the reservoir so that cavity duration is reduced, Figure 90. 

Results from a series of tests, represented by the above 

mentioned polaroid photographs, were compared to the theoretical results 

from SEPI. It is to be noted that the theoretical curves drawn are only 

valid between the limits shown. For example the cavity collapse pressure 

vs. initial flow velocity curve could not be drawn through the origin, 

as at some small initial flow velocity, separation would not occur and 

the procedures would become invalid. 

It is to be noted that the valve closure time 1S taken to 

describe the whole valve closing mode as the ram motion is linear and 

so all the valve open angle vs. time relations during closure belong to 

the same family of curves. 

Figures 91 to 106 illustrate the comparison between observed 

and predicted values of the maximum and minimum pressures recorded and 

their event times for the first cavity formed downstream of the valve. 

A number of general points are illustrated by these curves 

and by the results presented in Tables 17, 18, produced as output by 

SEPI. 

(1) The cavity collapse pressure rise displays a dependence on 

both valve closure rate and downstream reservoir pressure. The pressure 

generated on cavity collapse is composed of twoccomponents, namely the 

pressure generated by the stoppage of the returning column and secondly a 

component arising from the change in valve reflection coefficient from 

-1 during cavity existence to +1 following cavity collapse. 
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If the returning column is brought to rest, from the maximum 

velocity attained, in less than one pipe period, then the pressure 

generated would have a value pcVclos' where Vclos is the maximum velocity 

reached by the returning column. 

During the existence of the cavity at the valve, the initial 

transient propagated downstream from the valve on separation will be 

reflected at the downstream reservoir and at the cavity with a change 

of sign, resulting in a 'sawtooth' waveform of c/2L frequency. This 

transient has a maximum value (Po - Pvap) , which would be generated if 

the pressure drop producing separation occurred in less than one pipe 

period. 

In the particular test rig employed this maximum pressure drop 

(po - Pvap) is approximately equal to the downstream reservoir pressure 

PR2. The contribution of this secondary pressure oscillation to the 

pressure rise following cavity collapse therefore has a maximum value of 

2.PR2, recorded at the valve. 

In order to generate the maximum PR2 amplitude secondary 

pressure oscillations, the pressure drop producing separation should 

occur, in theory, in less than one pipe period. For a spherical plug 

valve this condition may be achieved by an overall valve closure 1n 

excess of one pipe period due to the valve's closing characteristic. 

An increase in the downstream reservoir pressure reduces the 

critical column separation velocity and the subsequent value of pcVclos' 

as indicated in Table 17, for one valve closure rate and flow velocity. 

The second component, 2PR2, increases with line pressure, so that it 

would be possible for the peak pressure recorded to remain roughly con-

stant for a range of downstream reservoir pressures, Table 17. 

An increase in the valve closure time again reduces the column 

separation velocity and the pcVclos value. The contribution from the 
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secondary oscillation will also decrease as the amplitude of the 

secondary oscillation decreases with increasing valve closure time, 

as illustrated by Figure 86. With reference to Table 17 it can be 

seen that the sum of (pcVclos + 2PR2) is consistently greater than the 

predicted peak pressure, due to the fact that the secondary wave 

amplitude does not reach the maximum value (p p ) It is to be o - vap . 

noted that the fastest valve closure time, 0.08 seconds, still represents 

a 3 pipe period closure, Figure 75 illustrates the amplitude of secon-

dary oscillations encountered at this closure rate. 

A combination of the above relations explains the form of the 

collapse pressure curves, Figures 91 to 94. 

It will be seen that the maximum and minimum pressures are 

expressed as variations from the steady state as these were the values 

recorded during each test. 

(2) The cavity duration is highly dependent on the reservoir 

pressure, due to the influence of the reservoir pressure on the pressure 

gradient between the reservoir and the cavity that drives the separated 

column. 

(3) The minimum pressure recorded during first cavity growth 

increases with decreasing valve closure rate. 

(4) The time of minimum pressure recorded during the cavity growth 

is also highly dependent on the reservoir pressure. 

Generally the observed results for the first cavity formed 

were within 5 - 10% of their predicted values, however there is a con-

sistent trend visible throughout the results that warrants further ex-

planation. The pressures generated on cavity collapse were consistently 

lower and occurred consistently later than those predicted. This 

comparison tended to improve with increased line pressure or increased 

valve closure time. A number of factors contribute to this discrepancy. 
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(i) At low line pressures the possibility of cavitation at either 

the pump or the control valve in the return pipeline, Figure 23, 1S 

increased. Any entrained gas produced in this way and carried into the 

test pipe would reduce and delay the cavity collapse pressure rise. 

However, as this would also reduce the wave speed in the test pipeline 

and as no evidence of this was found on measuring the frequency of the 

secondary pressure oscillations, this effect may be assumed to be 

insignificant. 

(ii) The vibration of the valve following cavity collapse could 

produce the reduction in collapse pressure noted. Referring to Figures 

86 to 90 it can be seen that the major pressure rise occurs in 5 - 10 ms 

so that a valve movement of 1 mm in this time would be the equivalent 

of 0.2 - 0.1 m/s, which could represent 10% of the maximum velocity of 

the returning columo. 

Referring to equations (28) to (30), that apply if a fluid 

column is brought to rest in less than a pipe period it follows that: 

ｾ＠ = pc (V - Vo)' 

If V \ O,but rather 10% of Vo due to axial valve motion, then the full 

pcVo pressure rise will not be attained until the valve, and hence the 

fluid in contact with it is brought to rest by the restraint of the valve 

supports. If this does not occur prior to the return of a reflection from 

the system's boundaries then the pcVo value will not be reached. 

Recent work by Wood (83) has demonstrated that for a simple 

reservoir - pipeline - restrained valve system the effect of valve res-

traint can be predicted if the stiffness of the restraining spring is 

known. Wood's work confirms earlier work by the present author (84) where 

the axial motion of a simple gate valve following rapid closure was 

monitored using a Wayne Kerr vibration meter and the velocity results 
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obtained compared to the step in the pressure rise to pcVo caused by 

this valve motion and its subsequent restraint. It was found, for a 

given valve closure rate and applied restraint, that the ratio of the 

valve axial velocity to the initial flow velocity remained a constant, 

having a value up to 20% depending on the applied restraint. The 

relevance of this can be seen from the cavity collapse pressure rise 

vs. initial flow velocity curves where the % discrepancy remains a 

constant over a wide range of initial flow velocity. 

Wood's work could not be directly applied to the test rig 

due to the difficulty in representing the upstream pipeline, valve 

supports etc. by an equivalent spring system. 

The restraint applied at the valve was varied, however this 

had no noticeable effect and it is probable that the tolerance on the 

ball of the valve is sufficient to allow the slight axial movement 

necessary to delay the generation of the maximum pressure until the 

return of a negative reflection from the downstream reservoir. 

(iii) The time of cavity collapse 1S highly sensitive to the down-

stream reservoir pressure so that any error in the steady state value 

fed as data to the program would yield a significant error on the 

comparison of the cavity duration. 

As mentioned in the test procedures care was taken to shut 

down the pump at the same instant as the valve was closed to ensure 

that the downstream pressure did not fall during the growth of the cavity. 

It can be seen from the theoretical curves 1n the 'carpet graphs', 

Figures 99 to 104, that an error of the order of 5 kN/m2 on the down-

stream reservoir pressure would be sufficient to account for the recorded 

discrepancy. As the collapse time results were consistently later than 

those predicted it is likely that the error arose from the pump, during 

slow down, removing a small quantity of fluid from the reservoir and thus 

lowering the pressure. The compressed a1r supply to the tank was controlled 
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by a two way regulator valve, however it is probable that a drop of 

5 kN/m2 would be insufficient to open the compressed air supply line. 

(iv) An underestimate of the air released in the program would have 

the effect of reducing the predicted cavity duration. The flow vis-

ualisation tests indicated that the air release was underestimated by 

the proposed analysis, due to the flow distortion caused by the closure 

of the spherical plug valve that resulted in a region of vigorous mixing 

downstream of the valve, implying that a greater volume of fuel released 

its air than that passing through the valve between separation and valve 

closure. 

(v) In this reported analysis the gas released is assumed to 

have the normal 3.76:1 nitrogen-oxygen ratio, however there is evidence 

(75, 76, 85) that the released gas has a nitrogen to air ratio of 2:1, 

Figure 107. The assumption that the fuel is saturated with air is 

supported by Figure 108 reproducing tests carried out for B.A.C. by 

Shell and R.A.E. 

However this data is based on tests reproducing a slow reduction 

in tank pressure. Poulston and Thomas (76), in a paper discussing gas 

release and foaming during aircraft climb, state that oxygen has a higher 

solubility coefficient in fuel than nitrogen, Figure 18, and that the gas 

dissolved is richer in oxygen than is normal air. It would be expected 

from "thermodynamic reasoning" that, during slow de-gassing, the gas 

first evolved would be close in composition to air, but the oxygen con-

centration of the gas evolved would rise continuously as more gas was 

released. Therefore it is likely that this data does not apply to a 

pressure reduction occurring in milli-seconds. 

The validity of the steady state air release data was checked 

by an analysis of the air released from the fuel and the results will 

be discussed later. 
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(vi) The pressure in the cavity 1S governed by both the fluid vapour 

pressure and the partial pressure of the released air. The value of 

vapour pressure at normal working temperature, l7.50C, was taken as 

0.7 kN/m2, however there is evidence (85»)Figure 109 to suggest that this 

could be an underestimate as tests by Shell and R.A.E. (unpublished) 

have indicated that actual fuel does tend to have a scatter in properties. 

A small increase in vapour pressure would reduce the driving pressure 

gradients and delay the collapse of the cavity. 

(vii) As already mentioned in both the literature survey and the 

theory sections, the steady state friction factor is assumed to apply 

during transient flow. This is accepted practice but results in an under-

estimate of the damping so that the cavity duration is underestimated and 

the collapse pressure rise is overestimated. 

All the factors mentioned above would tend to act in the same 

way, confirming the trends on cavity duration and collapse pressure. 

Points (i), (ii) and (iii) are factors of the rig design. Increasing the 

overall valve closure time reduced the shock loading on the valve on 

cavity collapse and the comparison on peak pressure was consequently 

improved. 

Increasing the downstream reservoir pressure would reduce the 

percentage error on the driving pressure gradients and the comparison on 

cavity duration would improve. 

The remaining factors, with the exception of (vii), could be 

allowed for in the program, however it was the object of the work reported 

to employ as far as possible only data readily available from manufacturer's 

specifications. It was felt that this would be the way any of the com-

puting procedures developed would be used in practice. 
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Figures 95 to 98 illustrate the minimum pressures recorded 

at the valve. Scatter on measured values of time of minimum pressure 

1S accounted for by the practical difficulty that the pressure-time 

curve is very flat in this region even on an increased Y-axis as shown 

in Figure 87. The minimum pressure results indicate that the air 

release is a significant factor. 

6.5.6 Comparison of the observed and predicted results for the 
second cavity formed at the valve, pipeline configuration 2. 

SEPI was also used to predict the values of maximum and minimum 

pressures and their times of occurrence for the second cavity formed down-

stream of the valve, and Figures 110 to 116 illustrate the comparisons 

achieved. 

It is to be noted that any discrepancies caused by points (i) - (vii) 

for the first cavity above will come through the calculations and adversely 

effect the results achieved for the second cavity. Thus the comparisons 

obtained are in the 10 - 20% bracket, however the observed duration of the 

second cavity would still be within 10% of its predicted value. 

5.6.7 Collection and analysis of the released gas, pipeline 2 

The residual gas downstream of the valve following final cavity 

collapse was collected and its volume measured, at atmospheric pressure, 

for a range of valve closure rates and line pressures and two initial 

flow rates, Figures 117 and 118. The agreement was found to be reasonable, 

the volume collected being 1.25 - 1.5 times that predicted, the agreement 

improving with increased line pressure. This comparison agrees with the 

observation tests which indicated that the severe mixing immediately 

downstream of the valve during valve closure led to a greater volume 

of released gas. 
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Table 15 records the results of an analysis of the collected 

gas. When allowance 1S made for the vapour content of the gas mixture, 

some 0.6% by volume, it is seen that the gas mixture contained, on 

average, about the 3.76:1 nitrogen-oxygen ratio of normal air. This 

supports the assumption that, for a relatively rapid decrease in pressure 

during and following valve closure, it is reasonable to ignore the 

possibility of further oxygen release. 

6.5.8 Measurement of column velocity with a DISA hot-film 
probe, in pipeline configuration 2 

Following the partial failure of the filming tests to produce 

values for the velocity of the separated column, during cavity collapse, 

it was decided to attempt to record these by means of the hot film probe 

and Constant Temperature Anemometer. In view of the problems encountered 

during measurements upstream of the valve, concerning the interpretation 

of the probe output, a DrSA 55DlO Linearizer unit was incorporated, 

Figure 31, and adjusted so that:-

Output Volts = ICentre Line Velocity I 
Figures 119 Plates 1 - 4 illustrate two tests on test pipeline 2, 

involving the hot film probe. Due to the necessity to point the probe 

'upstream' relative to any flow to be recorded, each test was repeated 

with the probe rotated through 1800
• Thus Plates 1 and 2, and Plates 3 

and 4 refer to two tests. 

Figures 120 to 122 were compiled from the oscilloscope traces 

for a series of such tests. With reference to Figure 120 it will be 

seen that the assumptions made with reference to the variations in the 

velocity of the separated column were justified. The steep velocity 

reduction corresponding to the collapse pressure rise is clearly visible. 
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A number of assumptions were made in the use of the hot film 

probe for this purpose:-

(1) The probe was assumed to accurately record velocity as soon 

as the flow reversed and re-established across the film. 

In actual tests there would be a time lag while this 

occurred. 

(2) The probe is assumed to line up correctly with the flow 

direction, whereas in practice secondary flows would be 

bound to effect the results. This can be seen on Figure 119 

Plates 1 - 4 as the probe output does not reach the zero 

flow line. 

(3) The probe records centre line velocity whereas the predicted 

results refer to the mean velocities. 

By the use of two probes and support equipment it would have 

been possible to record column velocity for both the opening and closing 

phases of the cavity during a single test, however it is regretted that 

the second linearizer unit was not available. 
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6.6 Use of SEPI to provide a design envelope for pipeline 
configuration 2 

SEPI was modified to calculate conditions up to the time at 

which the column separated downstream of the valve for a series of valve 

closure rates and line pressures. By repeating the calculations for a 

series of initial flow velocities from 0.03 m/s upwards in 0.015 m/s 

steps it was possible to identify and print out the initial velocity at 

which column separation would first occur for a given valve closure 

rate and downstream reservoir pressure. This modified program, SEPJ, 

produced the results illustrated in Figure 123, where the volume Al - A4 

represents the 'no-separation' conditions for pipeline configuration 2. 

As can be seen the design conditions from this envelope would 

hardly be of practical interest in this case as the flow rates to avoid 

separation were so small. The program was therefore allowed to continue 

and to identify and print the initial flow rate for which cavity collapse 

pressure first exceeded 1000 kN/m2 above line pressure. It is to be 

noted that for all these calculations it is assumed that the valve closing 

ram motion is linear so that the angle-time curve of the valve is des-

cribed by the overall closure time and the calibration curve of Figure 40. 

Figure 123 volume Bl - 4 • AI - 4 illustrates the new design 

envelope when column separation is accepted. This procedure could be 

employed for any piping system and illustrates the vast potential of 

the method as a design tool. 



- 120 -

6.7 Pressure variation upstream of the valve in pipeline 
configuration 2 

Figure 124 Plates 1-3 illustrate the pressure variations 

upstream of the valve during and following closure. Plates 1, 2 

illustrate the expected pressure oscillations following valve closure, 

and in the absence of column separation, having a frequency of c/4L. 

The effect of valve vibration on cavity collapse can be 

seen, particularly in Plate 2, where an increased amplitude oscillation 

is introduced into the trace upstream of the valve. This would support 

the assumption that the ball of the spherical plug valve is displaced 

axially following downstream cavity collapse. 

Figure 124, Plate 3 and Figure 125 reproduce the traces for 

column separation upstream of the valve, the predicted values being 

calculated by SEPH, a program identical to SEPF up to valve closure and 

thereafter dealing only with the upstream pipeline. The cavity boundary 

conditions were constant vapour pressure, no air release, and full bore 

cavity growth, effectively the same conditions as employed in the earlier 

work on upstream separation, Section 6.3. 

The pressure rise on valve closure follows the same pattern 

as previously recorded, Section 6.3. Due to the need to monitor pressure 

and velocity downstream of the valve, as well as the Linear Displacement 

Transducer output, pressure variations upstream of the valve were not 

normally measured during the tests on pipeline configuration 2. Table 16 

lists the results of some tests where this pressure was recorded and 

indicates the degree of accuracy obtained for the peak pressure and peak 

pressure time. 
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6.8 Tests on pipeline configuration 3 

It was possible to use the second test rig, Figure 23, for 

flow in either direction along the test pipeline. Figure 126 illustrates 

the separation upstream and downstream of the valve in configuration 3. 

Figures 127 and 128 illustrate the observed and predicted values of 

maximum and minimum pressures and their event times for the first and 

second cavities formed downstream of the valve for a particular valve 

closure rate and line pressure. Close agreement is again seen to have 

been obtained, generally the same comments as made with reference to 

pipeline configuration 2 apply to these results. 
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7. CONCLUSIONS AND FURTHER WORK 

The results presented indicate that the propagation of 

pressure transients and subsequent pressure fluctuations in an aviation 

kerosene pipeline may be accurately predicted by a numerical solution 

of the wave equations based on the method of characteristics programmed 

for a digital computer. 

The transient propagation velocity in the fuel/pipeline system 

was found to be within 0.2% of the calculated value. The maximum 

pressure variation predicted upstream of a valve following closure, and 

in the absence of column separation, was found to be within 3% of the 

observed value for a wide range of test conditions. 

The tests involving column separation and cavity formation 

upstream of a closed valve showed that the assumptions that the cavity 

pressure remained a constant at the fluid vapour pressure and that the 

cavity volume could be based on a full pipe bore flow interruption were 

justified. 

The predicted duration and collapse pressure rise for the first 

and second cavities formed were found to be generally within 5% and 10% 

respectively of the observed values. 

Column separation downstream of a valve, both during and follow-

ing valve closure was studied. The release of dissolved air from the 

kerosene, due to the agitation supplied by the valve motion, was found to 

be significant but could be included in the cavity pressure expression 

1n terms of its partial pressure. 

Observation of the sequence of events at the valve during and 

following closure indicated that this released air did not redissolve. A 

series of programs employing this released air as the valve boundary 

condition predicted the values of minimum and maximum pressures and their 
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event times during and following separation to within 10% at worst. 

The peak pressures observed were consistently below those predicted. 

A value of n = 1.0 was found to be satisfactory for the coefficient of 

expansion of this released gas. 

Measurement and analysis of the released gas indicated that 

its nitrogen-oxygen ratio was that of normal air and that its volume was 

some 1.25 to 1.5 times that predicted by the proposed analysis. This 

discrepancy was due to the flow distortion at the valve during closure 

which resulted in severe mixing immediately downstream of the valve. 

The filming tests failed to provide an accurate measurement 

for the interface velocity during cavity collapse. The use of a hot-

film probe and Constant Temperature Anemometer to record centre line 

velocity improved on these results, however it is considered that the use 

of a linearizer unit is essential in any further work of this type. 

Generally the computing procedures developed accurately 

predicted the column separation phenomena for both the cases studied. 

The use of these procedures to provide a 'design envelope' for a particular 

piping system was illustrated. The procedures described in this report 

have already been applied by the author to an analysis of the Concorde 

refuelling system. 

The work reported on the use of the anemometer equipment 

indicated that this was practical. Due to the repeatability of the 

tests it is considered that velocity profile measurements during transient 

propagation could be obtained, particularly if two probes could be 

employed to measure flow in opposing directions. 

The test rig was not specifically designed to allow observation 

of the separation, hence the 127 mm solid section between the valve centre 

line and the glass piping. It would be useful to redesign this part of 

the apparatus. 
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Further work, both experimental and analytical is required 

in connection with the vibration of the valve, following cavity 

collapse, in order to improve the predictions of pressure and cavity 

duration decay. 
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Fig. 5 C+ and C- characteristic lines drawn in the (x,t) plane. 
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Fig. 6 General solution by the method of characteristics. 
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(8) Grid of characteristics. 
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Fia. 7 Comparison between the grid of characteristics, which requires 
solution for x, t as well as P, V, and the method of specified 
time intervals. 
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Fig. 8 Limit of solution in the (x,t) plane without reference 
to either of the pipeline boundary conditions. 

G 

I 
1 

Pipeline 
boundary 
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To 
1 2 /:iT a /:iX/C N N+l 

--===-;!-I"""""'" 
PRl ＮＮＮＮＮＬｲＭｾＭＭ｟＠ , 

PR2 

. 
Upstream reservoir, 
exit loss kl 

. Downstream reservoir 

Section 

Flow 

1 

Upstream 
boundary 

inlet loss k2 

I I 

2 
N 

Fig. 10 Boundary conditions for a pipeline terminated at each 
end by a reservoir. 

N+l 

Downstream 
boundary 

Upstream boundary, solve C- characteristic with PPl = PRl - IpVV12kl 

Downstream boundary, solve C+ characteristic with PPN+l = PR2 + ｉｰｖｖｾＫｬｫＲ＠

vv . N+l 
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Valve 
boundary 

(2,1) 

(l,N+l) 

(2,2) 

Fig. 11 Boundary conditions for a pipeline with an internal valve. 

(a) Open valve, pressure above gas release level. Solve C+ and 

C- characteristics above with ａｬｾｊｬＬｎＫｬ＠ = A2 VV2,l 

VVl,N+l a ,V01 I (PP1,N+l - PP2,1)/6Po 

(b) Closed valve boundary, no separation on either side, 

VV1,N+l - VV 2,l - 0 
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Junction 
boundary 

r ｉｬｘｬＭＭＭＹｾｴＭｉＭＭｬＧ＠ - 6x2 ----4 
I I J 777777/7\ S '.ss $ $ 8 

7 7 1IIIza $ , 8 5 , 

r I I 

Section 1 t N+l 
2 t 1 2,2 

Fig. 12 Boundary conditions at an internal junction of two pipelines. 

Solve C+, C- characteristics with the pressure and flow 
continuity equations. 
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Cavity formed following 
valve closure 

ｾＭＭＭＭＭＭＭＭＭＭＭＭＭＭｾＭＭＭＭＭＭＭＭｾｾｲ＠ ,-

\ 

Flow, Vo 

Pipeline configuration I 

pcVo 

Pressure rise on 

cavity ｃｏｬｾ＠ ,-_ ... 

ｾ＠ Duration ｶ｡Ｑｶｾ＠
_____ cavity 

Flow reduction during 

f 
'. 

L 

Velocity 
\ valve closure 

\ 
\ Cavi ty opens 
\ as pressure drops 
\ to vapour level 

\ 
I 

\ I 
\ I 

" 
, 

" "'.' 
, 

I 2 

,'-' 
, I 

, I 
l I 

3 

VCLOS 

4 

Time, plpe periods 

Fig. 13 Column separation on the upstream side of a 
valve following a rapid closure. 
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Upstream 
reservoir 
PRI 

L 

.. ... \ Vs • Flow, Vo , t , 
JI 
ｾ＠

' ... 
Pipeline Configuration 1. 
Followin g a slow valve closure 
i.e. TC » 2L/c, the first cav1ty may 
be formed at an internal pipe section. 
The flow between the cavity and the 
valve is then represented by Vs. 

, 

... 
ｾ＠
ｾＬ＠
10.1 

Due to flow Vs, pressure at the valve drops 
to vapour pressure and a secondary cavity 
opens. The internal cavity will collapse 

ｾ＠ ____ f_i_r_s_t __ f_O_I_l_o_w_e_d __ b_y __ ｴ｟ｨ｟･ｾｶｾ｡ｾｬ｟ｶ｟･＠ __ c_av __ i_ty __ . ____ Ｍｍｾ＠
... 

2 

,. , \ , 
.J. Ｏ｜ｾ＠

/, 
Internal cav1ty. 

Pressure rise following 
closure < pcVo 

"., 

Valve 
cavity. 

Collapse secondary 

Collapse 
internal 
cavity 

｣｡ｖｩｾ＠

Time, pipe periods 

Fig. 14 Column separation upstream of a valve following a . 
slow valve closure. 
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p 

!::.Tl = Z.!::.x/c. !::.Tl 

Z < 1 

c 

!::.T = !::.x/c !::.T 

Upstream 
reservoir 

i-I 

Internal 
vapour 
cavity 

i i+l N 

Valve 
cavity 

N+l 

Fig. 15 Boundary conditions in the event of column separation upstream 
of the valve. 

Open cavity boundary, PPi' PPN+I = VAP 

Closed cavity at valve, VVN+l = 0 

Closed internal cavity, solution reverts to C+, C- characteristics normal 
for an internal pipe section. 
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, TCl·-------..... 1 
"', 

Pressure IVelocityl 

'" ' -, -----
Po 

ATM. 

VAP. 

/ 
I 

I 

Flow V 

/ 

ｾ＠ \ 

1 
- -

Pressure vs. Time ) 
) on the downstream side 
) of the valve. 

IVe10cityl vs Time ) 

TC - Valve closure time. 
PMl, PCl - Minimum pressure during cavity 

growth and cavity collapse 
pressure. 

TMl, TCl - Minimum pressure time and cavity 
collapse time. 

Time 

T 
PR2 

Pipeline configuration 2, 3 

o 

Ｏｾ＠
Cavity formed Downstream 
downstream of reservoir 
the valve. 

Fig. 16 Column separation on the downstream side of a 
closing valve. 
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Valve boundary 
and assumed cavity 
location. 

Fuel + \ VV 
Vapour +. \ 2,1 
Released ail-+ 

I 

ｾｉ＠

Fuel 

Actual cavity I 
interface Vol/A 2 . 
from valve. 

I,N+l 2,1 2,2 

Fig. 17 Separation downstream of a closing valve. 
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K = 

ｾ＠

Air Volume Released (N.T.P.) 
Fuel Volume 

Oxygen 

Normal 
working 
range 

Nitrogen 

o 25 
Fuel Temp. °c 

Fig. 18 Air solubility in Aviation Kerosene (Spec. 2494) (B.A.C. data) 



Air vent and compressed air 
inlet 

Emergency fire valve 

Control valve 

Test pipeline, 5 sections of 20 SWG 
LS6 alloy pipe, 15.24 m in length, 
50.8 mm 0.0. 

Flow 

Saunders E60F16 
S.P. valve, discharging 
to atmosphere 

English Electric submerged 
centrifugal 28 v D.C. pump ---- • 

I' ( .... , , J . . .. 

Venturi meter Non return valve 

Fig. 19 Layout of test rig, pipeline configuration 1. 

,.... 
ｾ＠
\0 



0.91 m3 (200 gall) 
reservoir tank 
tested to 
585 kN/m2 

Transducer _______ _ 
stations 

Submerged fuel 
pump 

- 150 -

Storage 
tank 

Control and isolation 
valves 

- Supply line 

I 

Fig. 20 Plan view of pipeline configuration 1 illustrating drain 
and supply lines' and storage tank. 



Fig. 21 Valve end of pipeline configuration 1, illustrating 
the independently mounted valve closing ram and the 
submerged fuel pump. 



i . 22 va1v in pip 1in configuration 1, 
support bra K'tS. 



ｾ＠

-

--

Air vent and compressed 
air supply 

/ 
0.91 m3 upstream 

reservoir tank 0.22 m3 downs am 
reserVOlr / 

5.8 m of 50.8 mm O.D. 

,/ 
L56 piping 3.04 m Observation Section 

_____ Air vent and 

｜ｾｾｾ＠
r--

compressed 
air supply 

n .m. 
ｾＰＮＸ＠ mm bore glass 

fi). 
ｾ＠ Ｍｾ＠ ./ 

/' 0.127m ,-• .// 

----
Spherical plug 

Flow 
Aluminium alloy pipe, 

valve 6.7Om, 50.8mm O.D. 

Control valve Venturi meter Non-return valve 
1nl n 
IX ..:::::::.. wo 

ｾ＠- F 1 nu " J 
ｾ＠

Return pump 

Fig. 23 Layout of test pipeline configuration 2G, illustrating the position of 
the glass observation section. . Pipeline configuration 2 is as above but 
with the glass replaced by a standard L56 section of the same length. 

ｾ＠

----

i 
--1 
-" -, 

!-' 
Ut 
W 



Fig. 24 Downstream reservoir, pipeline configuration 2, 
illustrating the compressed air supply and th pump 
bypass piping. 



Vdlve mounting, pipclin onfiguration 2, illu trating 
and the indcp nd ntly mount d v )v 



- 156 -

750 wat t I amps 

/' 
(-.61 m, .38 m, ｏｭｾ＠

50.8 mm bore glass pipe 
Ｇｾ＠

---Fuel 
flow 

(-.61 rn, -.15 rn, Om) 

(-.46 rn, -.46 rn, .15 

/ 
ｭＩｾ＠

(-.23 rn, -.91 rn, Om) 

-
• 

\ 

\ 
\ 
11 

, 

Q x. y. z. 

/ (.05m, .76m, -.23m) 

/Y , 
ｾｸ＠

.127 m 

/ , 

/ 

'Hycam' 16 nun camera fitted with 
wide angle 25 ｾｮ＠ focal length lens. 

Camera settings:- f8 at 1000 
frarnes/s 

Fig. 26 Arrangement of camera and lights - plan view. 
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RU Ay Lf,.S 

Fig. 27 Schematic layout of the Hycam optical system. 
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Fig. 28 Saunders Aircraft Fuel Valve, Type E60F16, 
a spherical plug valve used for all the tests 
reported .. 
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Scale: Full Size 
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Ｚｾ＠

-----.- ... 

- ｾ＠ I o 
o <» 

_._+-

Fig. 29 Side view section and plan view of Saunders E60Fl6 spherical 
plug valve used for all the tests reported. 
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Scale: Full Size 
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/ 

Fig. 30 Plan view of valve closure mechanism. 
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- Tektronix 564 
Storage Oscilloscope 

- 3B3 Time Base Unit 

------ Four Channel 
3A74 Amplifier Unit 

All connections made with screened co-axial cab1 e. 

ＭＭｾＭＭ -, Optional connection 

I to Channel 4 -- 0.0 -Unit for 
L.O.T. -

:r ｾ＠ / orSA 55A01 
Constant Temperature 
Anemometer and 
55DIO Linearizer Vibro-Meter Amplifier 
Unit Unit, TP-220/A 

Power Unit and 3 
TA-2/e Piezo Amplifiers 

Vibro-Meter 12QP250 
/ transducers 

ｾｾＢＧＭ" e r Flow 1 .' orSA 55A82 hot film J probe - Linear Oisp1acem ent , Transducer. 

Fig. 31 Typical instrumentation layout on pipeline configuration 2. 
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Fig. 32 Vibro-meter l2QP250 and Kistler 701A 
quartz crystal pressure transducers. 



General view of the instrumentation mploy cl, left to 
right: DISA 55AOl C.T.A. and 55DlO Linearizer, 
Tektronix 564 oscilloscope, Vibrometer TA-2/C ｰｾ･ｺｯ＠
amplifiers and the Honeywell O.D. unit. 
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Storage mode - electrons from writing and flood guns 

4+225v. 
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Non-storage mode - electrons from writing gun only. +120v 

Fig. 34 SchematiC view of the Tektronix 564 storage system. 
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FERRO·MAGNETIC 
SLUG 

CENTRE 
ｾＭＭｔａｐｐｅｄ＠

---. -" WINDING 

: POWER r - - - - - - - - - , 
SUPPLY • : DEMODULATOR ' 

L -ｾｾＺｾｒｾＺｒ＠ I ｴｾＱＱＭＭＭ -" -- ｾ＠ ｾｅｾＺＮ＠

Fig. 35 Typical arrangement of Honeywel1 Linear 
Displacement Transducer, Q.D. unit and 
recorders. 



Hot film 
probe 
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Bridge current 

Servo amplifier 

Fig. 36 Schematic layout of DISA 55A01 Constant Temperature 
Anemometer and 55A82 hot film probe. 
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Clamping screw 

ＭＭＭＭｾ＠
Scale: Full Size 

--- Probe Support 
P.V.C. sealing ring 
in upper support 

-----
Mounting pad, welded 

ｾ＠ to pipe, tapped 14 mm 

ｉ］Ｋ］］］］ｌｾ＠

ＺｚＺＺｚＺＺＺｚＺＺＺＺｚＺＺＺＺＺＺ｣ＺＺＺｉ］］］］ＺＺＺｚＺＡＺＺ］］ｾｾＺＺ､ｾ＠ t-r--------1o.---------

7 

Flow 

ｉｾ＠
79 nun 

i ｾ＠
22 nun 

uunIb: r-
Fig. 37 DISA 55A82 hot film probe and support mounted on 

the pipeline. 



Fig. 38 nISA hot film probe : top to bottom: 
55A82 probe, low r 14 mm adaptor, P.V.C. 
seal and retaining collar, upper adaptor 
with traversing screw and clamping device, 
and nISA probe support and cable connector. 
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Adjustable 
reservoir ｾ＠ ro----' 

-Alkaline 
pyrogallol to 
dissolve released 
oxygen 

p--:x-----.I 
E 

c 
ＭｾＭＭｾＭＭＭｰＭＭＭＭＭＭＭＭＭＭＭＭＭＭ ---... Waste 

J 

Flow 

Test valve 

Fig. 39 Air collection apparatus as used in tests on 
pipeline configuration 2 
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Valve 
shut 

Transducer travel = 177 mm 

SHUT 

Valve open 
angle (JP 

200 1----

400 

600 1---

800 

OPEN 1 2 3 

Screen deflection, divisions 
at 0.5 vo1ts/div. 

Fig. 40 Calibration curve for linear displacement transducer. 



Pneumatic ram 
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-

----
II 11 

Not to scale. 
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L , 
JJ.LtJ.n ..IJ.c1U, ｊＮＧｕｾ＠ L.L .... 1U 

ｾ＠ probe and support 

Support bracket, 
tapped 14 mm to 
accept probe support. 

ｾＭ 'I""" ................ 
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Fig. 41 Schematic layout of DISA hot film probe calibration 
attachment mounted on valve closing ram. 

Linear Displacement 
Transducer 
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---- Bath of kerosene. 
Probe travel: 177 mm 

...... ....., 
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Probe overheat ratio 1.10 

Plate 1 50 ms/D 

Fig. 42 Plates 1, 2 illustrate the results employed for the 
calibration of the unlinearized DISA 55A82 hot film probe. 
Direct comparison between the probe output ｾｮ､Ｇ＠ the L.D.T. 
yields a relation of the form VOLTS2 a VEL.! , , 

Traces 1, 2 - L.D.T. - 0.5 volts/Diy. 

1 ,2 - DISA - 2 volts/Diy. 

Probe overheat ratio 1.155 

Plate 2 0.1 s/Div. 

Note - total L.D.T. travel - 177 mm. 
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a "" bl0 

a "" 1.05 

.90 1. 35 

ｖ･ｬｯ｣ｩｴｹｾ＠ (m/s) ｾ＠

Fig. 43 Calibration curves for DISA 55A82 hot film probe obtained 
by means of the probe mounting attachment fitted to the 
valve closing ram. Velocity estimated from L.D.T. output. 
This calibration employed for tests on pipeline configuration 1. 
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800 Overheat 
Symbol ratio, a. 
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A 1.10 
)( 1.155 

VO - zero flow vol tage reading. 
400 

(Velocity, m/s) ｾ＠

Fig. 44 Calibration curve for nrSA 55A82 hot film probe used on 
pipeline configuration 1. 
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n 
-

J 

Vel = Vm (1+3.75 1f72) 

f = 0.079/Rei 

-., 
I 

G Observed volts. 

-

2 

1 

Overheat ratio = 1.10 

1 2 3 

Veloci ty m/s 

Fig.45 Calibration curve for DISA 55A82 hot film probe 
and linearizer unit used on pipeline configurations 
2 and 3. 
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Fig. 46 Valve characteristic and open area ratio vs. open angle. 
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Ultrasonic transducer 
PZT4 from brush 
crystal 

/ Reflector ｐｉｾ＠

Pressure 
pulse 

Reflection 

I 

ｾ｡ｮｫ＠ containing distilled water 
or kerosene 2494 

Screened co-axial cable 

Solatron 
GO 1377 
Pulse 
Generator 

Tektronix 
564 'scope 
with 3B3 
time base and 
3A74 amplifier 

Pulse frequency 2 Mc. 

200 mA 

Fig. 47 Layout of apparatus used to estimate the bulk modulus 

I 

of kerosene at room temperature and atmospheric pressure. 
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Fig. 48 Initial pulse and 8 reflections in kerosene 2494. 
Separation transducer -plate 152 mm, time base 
0.2 ms/Div, fuel temperature l7.50 C. 

Fig.49 3rd, 4th, 5th reflections in kerosene 2494 
measured by use of delay time base. Separation 
152 mm, delay time 0.4 ms, time base 50 ｾｳＯｄｩｶＬ＠
fuel temperature l7.50C. 
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Pipeli,ne configuration 1 

1 

2/3 

5 ms/Div 

Plate 1: Pneumatic ram and valve on common base. 

Fig. 50 Pressure variations at two points upstream of the valve 
following closure, and illustrating the influence of 
vibrations transmitted by the closing action of the ram. 

Traces 1. L.D.T. 
2. Pressure 1.25 m upstream of the valve. 
3. Pressure 7.8 m upstream of the valve. 

1 

2 

3 

5 ms/Div. 

Plate 2: Pneumatic ram mounted separately to 
eliminate vibrations. 
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Pipeline configuration 1 

o = 0.15 m/s, PR1 = 160 kN/m2 abs, a = 200 

1 

ＲｾｾｾｾＭＭＭＫＭＭｾｾＭＭｾＭＭＫＭｾ＠

Plate I 20 ms/Div 

Fig. 51 Pressure variation at two points upstream of 
the valve following closure. 

Traces: 1. L.D.T. 
2. Pressure transducer 1.25 ｾ＠ upstream of valve. 
3. Pressure transducer 7.8 m 4pstream of valve. 

Pressure scale: 45 kN/m2/Div (Plate 1) 
90 kN/m2/Div (Plate 2) 

Vo = 0.503 m/s, PRI = 156 kN/m2 abs, a = 27° 

ＱｾｾｾｾＭＭＭＭｾｾｾＭＭＭＭｾｾ＠

ＲｾｾｾｾＭＭＭＭｾｾｾＭＭｾｾｾ＠

Plate 2 20 ms/Div 
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·Pipeline configuration 1 

Vo = 0.503 m/s, PRl = 156 kN/m2 abs, a = 27° 

1 

2 

3 

20 ms/Div 

Fig. 52 Pressure variations at two points upstream 
of the valve following closure. 

Traces: 1. L.D.T. 
2. Pressure transducer 1.25 m ｵｰｳｴｲｾ｡ｭ＠ of valve. 
3. Pressure transducer 7.8 m upstream of valve. 

Pressure scale: 90 kN/m2/div. 

o = 0.503 m/s, PRl = 156 kN/m2 abs, a = 270 

20 mS/Div. 



Pipeline configuration 1 

Vo = 0.41 m/s, PRl 

1 

2 

3 

Plate I 
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108 kN/m2 abs, a =42.5 

20 ms/Div 

Fig. 53 Pressure variation at two points upstream of the 
valve following closure. 

Traces: 1. L.D.T. 
2. Pressure 1.25 m upstream of the valve. 
3. Pressure 7.8 m upstream of the valve. 

Pressure scale: Plate 1 : 90 kN/m2/Div 

Plate 2 : 225 kN/m2/Div. 

o = 1.4 m/s, PRl = 120 kN/m2 abs, a = 52.50 

1 ""'-:::J-+---

2 ｾｾｾｾｾＫＭＫＫＭＫｾｾｾｾｾｾ＠

Plate 2 50 ms/Div 
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Pipeline configuration 1 

Vo = 1.45 m/s, PRl = 114 kN/m2 abs, a 750 

1 

2 

3 

50 ms/Div 

Fig. 54 Pressure variation at two points upstream of the • 
valve following closure. 

Traces 1. L.D.T. 
2. Pressure 1.25 m upstregm of the ｾ｡ｬｶ･Ｎ＠
3. Pressure 7.8 m upstream of the valve. 

Pressure scale: 225 kN/m2/Div. 

Vo • 1.5 m/s, PR1 = 114 kN/m2 abs, a = 900 

1 

2 

3 

50 ms/Div 
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Piperine configuration 1 

Vo = 1.5 m/s, PRl = 114 kN/m2 abs, a = 900 

1 

2 

3 

50 ms/DiVe 

Fig. 55 Pressure variation at two points upstream 
of the valve following closure. 

Traces 1. L.D.T. 
2. Pressure 1.25 m upstream of the valve. 
3. Pressure 7.8 m upstream of the valve. 

Pressure scale: 225 kN/m2/Div. 

o = 1.5 m/s, PR1 = 114 kN/m2 abs, a = 900 
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50 ms/Div. 
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Fig. 56 Schnyder-Bergeron analysis' of pressure variations at the valve following 
a rapid valve closure in 0.03 s. Vo = 0.29 mls, a = 250 

PRl = 130 kN/m2 abs. 
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Pipeline configuration 1 

;'Graphical method, time step L/4c 
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Fig. 58 Comparison between a graphical and numerical analysis of one test case. 
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Pipeline configuration 1 

Valve clousre in 0.08 s 

1st primary cavity predicted at X/L = 0.5, 
followed by. a secondary cavity at the 
valve. 2nd primary cavity at the valve. 
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Fig. 60 Pressure variations at two points upstream of the valve following 
closure compared to the predicted variations. 
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Pipeline configuration I 

Cavities form at the valve. 

/ Predicted, X/L = 0.9 
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I Observed, X/L = 0.918 
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Fig. 62 Predicted and observed pressure variations at two points upstream of 
the valve. 
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Pipeline configuration 1 

Cavities predicted at the valve 

Predicted, X/L = 0.9 

Observed, X/L = 0.918 
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ｆｩｧｾ＠ 63 Pressure variation at two points upstream of the valve following 
closure. 
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Pipeline configuration 1. 

Primary cavities predicted at the valve. 

ｾ＠
Predicted X/L = 0.9 

I 
Observed X/L 0.918 = / 
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Initial conditions:- Vo = 0.78 m/s, PR1 = 115 kN/m2 abs. 
pcVo = 570 kN/m2, a = 45°, 2L/c = 0.0326 s, 
X measured from reservoir, valve closure in 0.08 s. 
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Fig. 64 Predicted and observed pressure variations at two points upstream 
of the valve following closure. 
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Pipeline configuration 1. 

Primary cavities predicted at the valve. 
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Fig. 65 Predicted and observed pressure'variations at two points upstream 
of the valve following closure. 
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I I I I 
Pipeline configuration 1. 

1st primary cavity predicted at X/L = 0.4 followed 
by a secondary cavity at the valve. 2nd primary 
cavity predicted at the valve. 
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Fig. 66 Comparison between the observed and computed pressure variations 
at two points upstream of the valve following valve closure. 
Initial conditions:- Vo = 1.22 mls, PRl = 113.0 kN/m2 abs., 
a D 650

, valve closure in 0.085 s. 



Computed 
pr ssur> 
(X/L ｾ＠ n.9) 
k '/m2 

600 

ｾＨＩｏ＠

ｾｯｯ＠

- 196 -

Pipeline configuration 1. 

L = 15.24 m, X m asured from 
reservoir 

t:) 2nd pressure p ak 
Computed = 1.093 lbs2rve 
St. Dev. = 35.0 kN/m 

3rd pressure peak 
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Fig. 67 Comparison between th computed and observed values ot the 
pressure ris above teady stat at the 1st and 3rd 
record d pressur peaks following valv closure. 
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Pipeline configuration 1. 

Vo = 0.29 m/ s , PR1 = 158 kN/m2 nbs, ex. = 220 

1 

2 

3 

ＲＧｾＭＭＭＭＭＭ ＭＭＭＭＭＭＭＭＭｾＭＭＭＭＭＭＭＭＭＭＭＭＭＭｾ＠

20 ms/Div. 

Fig. 72 Pressure and centre line velocity varia ion following 
a rapid valve closure recorded 1.25 m upstream of th 
valve. 
DISA. overhea t ratio on 55A82 - 1.10 

Traces 1. L.D.T. 
2. DISA probe, 2' - zero v locity line - 5 volts/D'v. 
3. Pressure variation - 90 kN/m2/Div. 

Vo = 0 .29 m/s, PR1 = 158 kN/m2 abs, ex. = 220 
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.5 S/D'v. 
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ｐｩｰｾｬｩｮ･＠ configuration 1 

Vo 
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2 
3 

2' 

1.45 m/s, PR1 

Plate 1 

114 kN/m2 abs, a = 750 

50 ms/Div 

Fig. 73 Pressure and centre line velocity variation 
1.25 m upstream of the valve following 
closure. DISA 55A82 probe used, unlinearized, 
overheat ratio = 1.10 

Traces 1. L.D.T. 
2. DISA 55A82, 2' - zero velocity line. 
3. Pressure variation. 

Scales: Plate 1 225 kN/m2 /Div., 5 volts/Div. DISA 
Plate 2 450 kN/m2 /Div. , 5 volts/Div. DISA 

Vo = 1.144 m/s, PRl 133 kN/m2 abs, ｾ＠ ｾＴＵﾰ＠
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Pipeline configuration 1. 

1st primary cavity formed at X/L = 0.5 
follmved by a secondary cavity at the valve • 

/ Predicted x/L = 0.9 

I 
I 

/ 
Observed X/L = 0.918 

Initial conditions, Vo = 1.45 m/s, a = 750 ｾ｜＠

Valve closure in 0.09 s PRl = 114 kN/m2 

L = 15.24 rn , 2 L/c = 0.0326 s, 
pcVo = 1035 kN/m2 
X measured from reservoir. 
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Fig. 74 Pressure and centre line velocity variations compared to those 
predicted upstream of the valve following closure. 
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Pipeline configuration 2. 

Fig . 75 Pressure variations at two points along the 
pipeline downstream of the valve . 

Vo = 1. 75 m/s 

PR2 222 kN/m2 abs. 

Scale: 0 ,05 s/x.div . 
225 kN/m2/y.div. 

Traces 1. L. D. T. 

2/3. Transducers 50.8 mm and 4.04 m downstream 
of the valve. 
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Fig. 76 Comparison between the observed pressure variation at the valve 
downstream face and the predicted pressure variations from both 
the vapour only (SErE) and vapour + air (SEPF) programs. Initial 
conditions, Vo = 1.75 m/s, PR2 = 102 kN/m2 abs. 
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Fig. 77 Plate 1 illustrates the pressure variations 
recorded on the downstream face of the valve, 
in pipeline configuration 2G, during closure 
and subsequent column separation. 
Plates a - j are reproduced from the high speed 
film, 1000 frames/second, made of the column 
separation at the valve for the same test case 
as Plate 1. Plates a - i illustrate the growth 
and collapse of the first and second cavities 
while Plate j illustrates the residual air at 
the valve after the transients have damped out. 
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a. 0·054 s. 

b. 0·096 s. 
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c. 0-164 S. 

d. 0-2365. 
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e. 0·284 s. 

f. 0·3145. 
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g. 0·475. 

h. 0·52 s. 
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• 
I. 0·5 s. 

j. 4· 0 s . 
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Fig. 78 Comparison between the observed and predicted cavity volume for the 
first cavity formed following valve closure. Initial conditions, 
Vo R 1.75 m/s, PR2 = 102 kN/m2 abs, TC = 0.08 s. 
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Fig. 79 Comparison between observed and computed fuel - cavity interface 
velocity for the first cavity formed following valve closure. 
Initial conditions, Vo = 1.75 m/s, PR2 = 102 kN/m2 abs, TC = 0.08 s. 
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Fig. 81 Comparison between the maximum observed extent of the 
vapour/fuel/air mixture and that predicted by the 
analysis of the glass/aluminium pipeline. 

Downstream reservoir pressure constant at 102 kN/m2 abs., 
valve overall closure in 0.08 s. 
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Fig. 82 Comparison between the observed and predicted pressure 
two points along the pipeline downstream of the valve. 
conditions, Vo = 1.75 mls, PR2 = 222 kN/m2 abs, and an 
closure time of 0.16 s. 
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Fig. 86 Plates 1 - 6 illustrate the effect of 
varying the overall valve closure 
time (Te) for a range of initial flow 

---velocities (Vo) and downstream reservoir 
pressures (PR2). 

Common scales for plates I - 6: 

1. L.D.T. 
2. Pressure transducers 
3. Time base 

Common trace layout from 

1. L.D.T. 

.5 volts/y dive 
225 kN/m2/y dive 
0.05 sec/x dive (Pla,tes 1-4) 
0.10 sec/x,div. (Plates 5-6) 

the top of each plate: 

2. Pressure transducer 5.08 cm downstream of valve. 
3." "4 • 04 m " "" 
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Fi 86 Plate 3 . 
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Plate 5. 

2.743 m/s 
205 kN/m2 abs. 
0.16 s 

Plat 6. 

2.743m/s 
205 kN/m2 abs. 
0.28 s 
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Pressure variations on th' downstream 
fac of the valve during closure. Note 
that the traces re pr s nt th same t st 
repeated with a chdnge in oscilloscope 
time base. 

1.75 m/s 
222 k,'/m2 abs. 

Time base = 0.05 and 0 .02 s I x div. 
45 kN/m2/y div. 

1. L.D.T, 
2. Pressure transducer 5.08 cm 

downstream of th valve. 
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ｾｩｮｩｭｵｭ＠ pressures recorded at the valve 
tor tIN \)vl't'all valve llusurL times. 

1.75 mls 
ＲｾＲ＠ k. 1m2 dbs. 

0.0') s / X div. 
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2. Pr ssure transducer 5.08 cm downs tream 

ut thp valve. 
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Plat 1. Vo 2 .743 m/s 

Plat 2. Vo 1. 75 m/ s 

Fig. 89 Plates 1, 2 above illustrate th ffe t of a 
r duction in initial flow velocity for a 
'onstant valve closure time (0.16 secs) and 
downstream reservoir pressur (309 kN/m2 abs.) 
Scales and layout as Fig . 86, (Plates 1 - 4) 
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Pressure variations recorded 5.08 cm 
downstream of the valve during two 
cons cutive tests illustrating the 
effect of a variation in downstream 
r servoir pressure (PR2). 

L.O.T. .5 ｶｯｬｴｓＯｾ＠ div. 
Pressure transducer 225 kN/m /y div. 
Time base = 0.05 s / x div. 

1. L.O.T. 
2. Pressure variation, PR2 • 378 kN/m2 abs. 
3. Pressure variation, PR2 240 kN/m2 abs. 

Initial velocity for each test, Vo = 2.743 m/s 
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Fig. 91 Pressure rise. (PCl), above steady state, on the downstream face of the valve following the collapse of the first 
vapour cavity, for a range of initial flow velocities (Vo) and downstream reservoir pressures (PR2). 
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Fig. 93 Pressure rise PCl, above steady state, on the downstream face of the valve following the collapse of the first 
cavity, for a range of initial flow velocities (Vo) and downstream reservoir pressures (PR2). 
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Fig. 95 Minimum pressure (PMI), expressed as a drop below steady state, 
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cavity formed downstream of the valve for a range of initial 
flow velocities (Vo) and downstream reservoir pressures (PR2). 
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reservoir pressures (PR2). 
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Fig. 98 Minimum pressure (PMl) expressed as a drop below steady state, at 
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for a range of initial flow velocities (Vc), and downstream 
reservoir pressures (PR2, 
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Fig. 103 Time to m1n1mum pressure (TMl), and subsequent cavity collapse (Tel), for the first cavit, formed downstream of 
the valve, for a range of initial flow velocities (Vo) and downstream reservoir pressures (PR2). 
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Pipeline configuration 2. 
/Predicted TCI, TMI, vapour + air. 
n = 1.0 

TCI vs. TC 
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Fig.104 Minimum pressure (TM1) and subsequent cavity collapse 
time (Tel) for the first cavity formed downstream of 
the valve for a range of valve closure rates TC. 
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Pipeline configuration 
/Predicted PCl, PMl, 
vapour + air, n = 1.0 

Vo = 1. 75 m/s 
PR2 = 222 kN/m2 abs. 
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Fig. 105 Minimum pressure and cavity collapse pressure at the valve 
downstream face, for the first cavity formed for a range 
of valve closure rates. Pressures expressed as variations 
from steady state. 
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Fig. 106 Peak pressures recorded at the valve downstream face following 
first cavity collapse (PCl) and cavity collapse time (TCI) for 
a range of overall valve closure times (TC). Initial flow 
velocity and line pressure constant, pressures expressed as 
variations from steady state. 
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Fig. 107 Oxygen concentration of released air for Aviation Kerosene 2494 
(B.A.C. data) 
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Fig. 108 Oxygen solubility in Aviation Kerosene 2494 with time 
(B.A.C. Data) 
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Fig. 109 Variation of the vapour pressure of Aviation Kerosene (Spec. 2494) with temperature and 
typical sample scatter. (Shell, B.A.C. data) 
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Fig. 110 Pressure rise PC2, above steady state, on the downstream face of the valve following the collapse of the 
second vapour cavity for a range of initial flow velocities (Vo) and downstream reservoir pressures (PR2). 
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Fig. 111 Pressure rise PC2, above steady state, on the downstream face of the valve ｦｯＱｬｾｎｩｮｧ＠ the collapse of the 
second vapour cavity for a range of initial flow velocities (Vo) and downstream reservoir pressures (PR2). 
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Overall valve closure time 0.08 s. 
Pipeline configuration 2 
/Predicted PM2, vapour + air, n = 1.0 
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Fig. 112 Minimum pressure (PM2) expressed as a drop below steady state, 
at the valve downstream face, during the growth of the second 
cavity formed downstream of the valve for a range of initial 
flow velocities (Vo) and downstream reservoir pressures (PR2). 
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Fig. 113 Minimum pressure (PM2), expressed as a drop below steady state, 
at the downstream face of the valve during the growth of the 
second cavity downstream of the valve for a range of initial 
flow velocities (Vo) and downstream reservoir pressures (PR2). 
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Fig. 114 Time to minimum pressure (TM2) for the second cavity formed downstream 'of the valve, for a range of initial 
flow velocities (Vo) and downstream reservoir pressures (PR2). 
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Fig. l15Time to cavity collapse (TC2), for the second cavity formed downstream of the valve, for a range of initial 
flow velocities (Vo) and downstream reservoir pressures (PR2). 
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valve for a range of initial flow velocities (Vo) and ､ｯｾｾｳｴｲ･｡ｭ＠ ｲ･ｳ･ｲｶｾｩｲ＠ pressures (PR2). 

'" Vl 
.::-



- 255 -

20 

Residual 
Air Volume 106 

16 

.1 .2 

0 

c:> (!) ｾ＠---Q ,..,.- --e- E) 

/ 
/' C) 

Symbol 

(1) (:) 

(2) -0-

(3) 4-

0 

PR2 kN/m2 abs 

136 

170 

Ｏ
｣ｾｭｰｵｴ･､＠ residual 
alr volume, n = 1.0 

.3 

Valve closure time, seconds. 
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Pipeline configuration 2. 
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Plates 1 - 4 illustrate the velocity 
variations recorded with a DISA hot-
film anemometer mounted 1 m downstream 
of the valve, on the pipe centre line. 
Probe output linearized by use of a 
DISA 55DlO unit. 

Common scales for plates 1 - 4: 

L.D.T. .5 volts/y dive 
DISA probe 2 volts/y dive 

Trace layout: 

1. L.D.T. 
2. Hot-film probe. 
3. Pressure transducer 5.08 cm downstream of valve. 
4. " " 4.04 m " "" 
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Plate 1. Probe directed upstream. 

Plate 2. Probe directed downstream. 

2.66 m/s Te • 0 . 14 s 
120 kN/m2 abs. 

450 kN/m2/y div. for pressure-time 
traces 3, 4. 
Time base = 0.1 s / x div . 
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Fig . 120 Pressure and velocity variations downstream of the valve during and 
follm"ing valve closure and the growth and collapse of the first 
cavity. Initial conditions, Vo = 2.67 m/s, PR2 = 120 kN/m2 abs, 
Te = 0 .14 s. 
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Fig. 121 Pressure variation on the downstream face of the valve and centre 
line velocity variation l.m. downstream during and following valve 
closure and the growth and collapse of the first cavity. 
Vo • 2.74 m/s, PR2 = 309 kN/m2 abs. 
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Fig. 122 Pressure and velocity variation downstream of the valve up to first cavity collapse. 
Initial test conditions,' Vo = 1.75 m/s, PR2 = 222 kN/m2 abs. 
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Plates 1 - 3 illustrate pressure variations 
on both sides of the valve during closure for 
a range of initial flow velocities (Vo) and 
valve closure times (TC). 

Common scales for plates 1 - 3. 

1- L.D.T. .5 ｶＰＱｴｳＯｾ＠ div. 
2. Pressure transducers 225 kN/m /y div. 

Common trace layout from the top of each plate. 

1- L.D.T. 
2. Pressure transducer 5.08 cm upstream of valve. 
3. " 11 5.08 cm downstream of valve. 
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Fig . 124 Plate 1. 

Vo 2 .743 m/s PR2 309 kN/m2 abs. 
Time base 0 .05 s / x div. 

Fi . 124 P la te 2 . 

Vo : 2 .29 m/s PR2 = 309 kN/m2 abs. 
Tim bas = 0.05 / x div . 
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Fig. 124 Plat 3. 

Vo 1.75 m/s PR2 = J09 kN/m2 bs. 
Time bas = 0.01 S / x div. 
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variation on the upstr am [ac of th valv following 
closure. 
Initial conditions:- Vo = 1.75 m/s, 
PR2 = 309 kN/m2, valve closur in 0.07 s. 
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ｶ｡ｬｶｾＬ＠ together with the centre ｬｩｮｾ＠ velocity 
variation recorded by the DlSA probe, folluw-
ing valve operation. For the above test ｴｨｾ＠
pip 1in configuration was chang d by initially 
pumping kerosene in the normal 'rev rse flow' 
direction by m ans of the pump bypass ｳｹｳｴｾｭＮ＠

2.43 m/s PR2 136 kN/m2 abs. 

L.D.T. . 5 volts/y div. 
OISA probe 5 vol sly div. 
Pressure transducers 225 ｫｎＯｭＲ Ｏｾ＠ div. 
Time base • 0.05 5 I x div. 

1. L.O.T. 
2. OISA probe, directed upstream, 1 

of the valve. 
3/4. Pressure transducers 5.08 cm on 

of the valve. 
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Pipeline configuration 3. 
Overall valve closure time 0.16 s 
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Fig. 127 Hinimum pressure" and cavity collapse pressure at the valve 
downstream face, for the first and second cavities formed, 
for a range of initial flow velocities. Pressures expressed 
as variations from steady state. 
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ri,_ 128 Minimum pressure and cavity collapse times for the 
first and second cavities formed downstream of the 
valve following valve closure. Note that this 
figure refers to the 'reversed' test rig, i.e. 
shorter pipeline downstream. 
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PIPELINE CONFIGURATIONS 

I 2 2G 

XI Xl Xl 
m m m 

Reservoir 0 Reservoir 0 Reservoir 0 
T5 
T4 
T3 
T2 
TI 

Valve 

1.67 T5 1.67 T5 1.67 
4.10 T4 4.10 T4 4.10 
7.44 Valve 5.8 Valve 5.8 

11. 30 X2 X2 
13.99 m m 
15.24 Valve 0 Valve 0 

T3 1.0 T2 4.3 
T2 4.04 Tl 7.41 
Tl 7.15 Reservoir 9.74 

Reservoir 9.74 

Table 1 Layout of pressure transducer stations Tl - 5 for pipeline configurations 1, 2, 2G. 
Note that on 2, 2G, 3 there were two additional 
tappings 50.8 mm on either side of the valve 
centre line. Pipeline 3 is the reverse of 2. 
Xl measured from upstream reservoir 
X2 measured downstream from valve. 



LIQUID TEMP. SEPARATION REFLECTIONS DISTANCE TIME TIME 
SOURCE AND MEASURED TRAVELLED BASE TAKEN 
REFLECTOR. 

°c m m ]ls/D ms 
DISTILLED WATER 22.30 0.3048 1 - 2 0.6096 50 4.1000 

22.30 0.3048 2 - 3 0.6096 50 4.1000 

22.30 0.3048 1 - 2 0.6096 50 4.1250 

22.30 0.3048 2 3 0.6096 50 4.1250 

22.30 0.3048 1 - 3 ':'.2182 100 8.2000 

KEROSENE 2494 17.50 0.3C48 1 - 2 0.6096 50 4.7500 

:i7.50 0.3048 2 - 3 0.6096 50 4.7750 

17.50 0.1524 1 - 3 0.6096 50 4.7750 

17.50 0.1524 1 - 3 0.6096 100 4.8000 

17.50 0.1524 1 - 4 0.9144 100 7.15CO 

17.50 0.1524 1 - 5 1.2182 100 9.5000 

TABLE 2 ACOUSTIC VELOCITY MEASUREMENTS CARRIED OUT TO DETERtvlINE 
BULK MODULUS OF r:EROSENE, 

EXPECTED WAVE 
ERROR ｓｐｾｾｊ＠

:!: % m/s 

1.22 1490.0 

1.22 .1490.0 

1.21 1482.0 

1.21 1482.0 

1.22 1490.0 

1.05 :255.0 

1.04 1275.J 
N 
...... 
N 

1.04 1275.0 

2.09 1270.0 

1.40 2.280.0 

1.05 1285.0 
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ｾ＠ .. IQt:ID ｲＺｅｾｐ＠ hCJUS?:LC '1t::LOCITY ERROR 
ｾａｾｕｾｅＡＩ＠ QUCJ!'SD 

°c m/a m/a % 

DISTILLED 22.3 ｾＮＱＡＸＶＮ＠ 00 1489.00 0.202 
WAT2:R :t c. 271: % 

AV: A"!'I ｏｾＡ＠ '-7.5 1276.33 r:o n:::.LIABLE 
KE?O:EN:: :t (). 700% ｆｉｇｕｩｾ［ｾＮ＠

ＲＴＹＯｾ＠ • 

3 



METHOD 
No. 

1 

2 

3 

" 
TABLE 4 
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DESCRIPTION 

MEASUREtlZNT OF THE; 
ｔｉｴｉｾ＠ TAKEN FOR A 
TP.ANSIENT TO TRAVEL 
FROM T1 TO RESERVOIR 
AND BACK -27.98 m 

T1 TO T3 TRANS IT 
TIME -6.55 m 

APPROX. TItI.E 
MEASURED. 

30 ms 

TIME EXPECTED 
BASE SCATTER 

5 rosIn ! 0.20. 

- DELAY ·2 ms/n ! 0.10. 
TIME BASE USED. 

I mslD ! 0.10. 

NO TIME DELAY ·5 ms/n ! 0.1D. 
USED. 

ｓｕｦｬｊｉｾｒｙ＠ OF THE METHODS U3ED TO f'1EASURE THE TRANSIENT 
PROPAGATlON YEWCI'l'Y THP.0YGH THE TEST SECTION, 

Pipeline configuration 1, transducer stations TI, T3 refer to 
Table 1. 
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DATE Vo (xo WAVE SPEED NUMBER OF METHOD OF 
rn/s 

READINGS MEASURE!-1EN'l' 

10/10/68 0.110 22.5 910 4 1 
ｾＱＷ＠ 4 1 
80 2 1 

11/10/68 0.170 22.5 934 4 3 
895 2 2 

17/10/68 0.352 25.0 915 8 1 
932 9 1 
900 7 1 
ｾＱＰ＠ 2 1 
85 2 1 

940 4 4 
910 2 4 

11/10/68 0.323 25.0 914 2 1 

29/10/68 0.365 25.0 885 4 1 
914 2 1 
900 2 1 
ｾＲＰ＠ 4 2 
96 2 2 

935 2 4 

30/10/68 0.299 25.0 914 2 1 
935 2 1 
903 2 2 
910 2 2 
919 4 2 
923 2 2 
935 2 4 
907 4 2 
919 2 2 

6/11/68 0.327 25.0 930 12 2 
934 6 2 
915 8 2 
922 2 2 
912 12 2 
938 6 2 
932 2 2 
926 4 2 
917 4 2 
924 12 2 
940 4 2 
916 2 2 
908 2 2 

7/11/68 0.285 24.0 933 14 2 
924 28 2 
916 12 2 
912 20 2 
938 2 2 

l:,ABLE 5 SUMMARY OF WAVE SPEED MEASUREMENTS. TEMP. = 11.5OC 
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WAVE SPEED AVERAGE SCATTER 
COMPUTED OBSERVED DIFF. METHOD OBSERVED EXPECTED 

m/s m/s % % ｾ＠ % 

917.113 919.850 0.295 1 1.3,-4.35 3.3 

2 1.96,-2.72 2.8 

3 1.52. 1.4 

4 2.18. 5.0 

TABLE 6 COMPARISON ｂｅｾＴｅｅｎ＠ TIre OBSERVSD AND COMPUTED 
VALUES OF THe TnANsr;NT ｰｦｾｏｐａｇａｔｉｏｎ＠ TILOCITY 
THROUGH THE TSST SECTlm:. TL::rt.P. = 17.5 C. 



DATE 

13/11/68 

18/11/68 

26/12./68 

17/2/69 

18/2/69 

26/2/69 

27/2/69 

28/2/69 

TABLi!: 7 
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HUN Cto Vo pra Te POSITION :'st. 
Ho. m/s kN 1m2 s CAVITY. 

- 90.0 0.989 6.05 .08 X/L=0.5-VALVE 
2 42.S 0.413 6.05 .04 VALYL 
3 2S.0 0.293 27.6 .03 ｖａＮｌｖｾ＠

1 20.0 0.IS0 57.7 .03 -----
1 27.0 c.::'03 54.0 .04 VALVE 
2 27.0 0.503 54.0 .072 VALVZ 
3 27.C 0.503 54.0 .100 

1 50.0 1.096 18.4 .07 VALVE 
2 42.S 0.790 18.4 .065 VALYL 
3 32.5 0.487 18.4 .050 VALVE 
4 57.5 1.40 18.4 .• 085 VALVE 
5 57.5 1.40 18.4 .095 VALVE 

... 36.0 0.67 20.4 .065 VALVE 
2 36.0 0.67 20.4 .065 VALvr.::. 
3 52.5 l.26 20.4 .090 VALVE 
4 52.5 1.26 20.4 .100 VALV: 

] 65.0 1.21 11.9 .085 X/L=O.4-VALVE 
2 70.0 1.38 12.3 .080 ｘＯｌｾｏＮｩｴ｟ｖａｌｖｅ＠
3 75.0 1.45 12.3 .090 X/L=0.5-VALVE 
4 75.0 1.45 12.3 .130 VALV2. 
5 SO.O 1.50 12.3 .130 ｖａｌｖＭｾ＠

- 4S.0 c.487 5.44 .cBo X/L=0.6-VALVE 
2 4S.0 0.615 0.S0 .000 X/L=0.5-VALVF. 
3 45.0 ｏＮｾ｡Ｕ＠ 13.60 .c80 VALVE 
4 45.0 o. 68 1'7.00 .080 ｖａｌｖｾ＠

5 45.0 :.100 2
r

l.20 .000 VALVE 
6 45.0 _.144 30.60 .080 VALV2. 
7 45.0 0.980 22.40 .080 VALVE 
8 ＴｾＮＰ＠ 0.968 22.10 .080 VAiNi. 

90.0 0.970 5.:0 .096 X/L=0.7-VALVF. 
2 90.0 0.970 5.10 .142 X/L=0.4-VALVE 
3 90.0 0.970 5.10 .200 X/L=0.6-VALVii. 
I. 90.0 1.500 11.90 .124 VALVE .. 
5 90.0 1.500 .11.90 .144 X/L=0.7-VALVE 

ｓｕｾＱｦＮＱａｒｙ＠ OF RECOnDED TESTS AND ｔｈｾ＠ PflliDICTE:D 
POSITIONS OF 'l'liZ VAPOUI1 CAVITISS ｆｏｲｵＺｾｄＮ＠

POSITION 2nd. 
CAVITY. 

VALVE. 
VALVE. 

-----
VALVE 
VALVE 

VALVE 
VAINi. 
VALVE 
VALVZ 
VALVE 

VALVE· 
VALVE 
VALVE 

VALVE 
VALVE 
V/UNE 
VALVE 
VALVE 

VALVZ 
VALVE 
VALVE 
VALVE 
VALVE 
VALVE 
VALV2. 
VALVE 

VALVil. 
VALVZ 
VALVE 
VALVE 
VALVE 

Pipeline configuration 1. L = 15.24 m, X measured from reservoir. 
All pressures kN/m2 gauge. 
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X/L SEPP SEPB SEPD OBSERVED. 

1ST PEAK PRESSURE 0.9 694.35 694.20 694.35 690.00 
PHASE 0.0768 0.0768 0.0768 0.0750 

2ND PEAK PRESSURE 0.9 456.00 455,40 455.40 385.00 
PHASE 0.2579 0.2579 0.2579 0.2600 

3RD PEAK PRESSURE 0.9 295.60 ＲＸＴＮｾＰ＠ 284.70 207.00 
PHASE 0.3791 0.37 8 0.3788 0.3900 

1ST PEAK PRESSURE 0.5 594.16 594.16 594.16 572.20 
PHASE 0.0833 0.0833 0.0833 0.076 

2ND PEAK PRESSURE 0.5 413.38 412.69 412.76 372.60 
PHASE 0.2531 0.2530 0.2530 0.2500 

3RD PEAK PRESSURE 0.5 255.37 254.47 254.48 200.10 
PHASE 0.3742 0.3739 0.3739 0.3800 

1ST CAVITY X/L= 0.5 0.5 0.5 
PHASE 0.0997 0.0997 0.0997 0.1000 
DURATION 0.0381 0.0381 0.0381 0.0400 
CLOSING PRESSURE 92.53 92.46 92.46 69.00 

1ST VALVE PHASE 0.1015 0.1015 0.1015 0.1000 
CAVITY DURATION 0.1353 0.1346 0.1352 0.1400 

2ND VALVE PHASE ＰＮＲｾＱＸ＠ ＰＮＲｾＱＷ＠ ＰＮＲｾＱＷ＠ 0.2900 
CAVITY DURATION 0.0 63 0.0 50 0.0 51 0.0800 

PRESSURE IN ｫｎＯｭｾ＠ PHASE-DURATION IN SECONDS. 

TABLE 8 ｃｏｍｐａｒｉｾｏｎ＠ ｾｅｾｾｾｾ＠ ｉｈｾ＠ OUIfUl OE ｓｾｦｦＮ＠
ｾｅｐｂｉ＠ ｓｅｦｾ＠ Ｘｎｾ＠ ｉｾ＠ ｾｾｾＧｒｖｅｾ＠ ｾｾｹｾｾ＠
FOR RUN 1 13 11 8 
Pipeline configuration 1, L = 15.24 m, 
X measured from upstream reservoir. 
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X/L SEPP SEPB SEPD OBSERVED. 

1ST PEAK PRESSURE 0.9 242.05 242.05 242.12 236.33 
PHASE 0.0325 0.0325 0.0325 0.0340 

2ND PEAK PRESSURE 0.9 180.40 180.30 180.30 175.95 PHASE 0.1136 0.1136 0.1136 0.1150 

3RD PEAK PRESSURE 0.9 138.90 138.80 138.80 127.65 
PHASE 0.1754 0.1754 0.1754 0.1700 

1ST PEAK PRESSURE 0.5 196.65 196.58 196.65 
PHASE 0.0374 0.0374 0.0374 

2ND PEAK PRESSURE 0.5 ]47.87 147.80 147.80 
PHASE 0.1071 0.1071 0.1071 

3RD PEAK PRESSURE 0.5 108.60 108.60 108.60 
PHASE 0.1738 0.1738 0.1738 

1ST VALVE PHASE 0.0572 0.0572 0.0572 0.0600 
CAVITY DURATION 0.0312 0.0312 0.0312 0.0280 

PRESSURE l. 
IN kN/m, PHASE-DURATION IN SECONDS. 

TABLE .2.. COMPARISON BETWEEN THE OUTPUT OF SEPP. 
SEPB

fi 
SEPD AND THE OBSERVED RESULTS 

FOR _UN 3. 13/11/6$. 

Pipeline configuration 1, L = 15.24 m, 
X measured from upstream reservoir. 



Z= 1.0 0.8 0.6 0.4 0.2 OBSERVED. 

X/L 

1ST PEAK PRESSURE 0.9 694.20 690.00 
PHASE 0.0768 0.0768 

2ND PEAK PRESSURE 0.9 488.00 473.00 462.50 447.00 434.00 385.00 
PHASE 0.2648 0.2608 0.2582 0.2572 0.2551 0.2600 

3RD PEAK PRESSURE 0.9 443.50 345.00 310.50 277.50 250.00 207.00 
PHASE 0.4128 0.3924 0.3824 0.3751 0.3700 0.3900 

1ST PEAK PRESSURE 0.5 594.00 572.20 
PH1SE 0.0833 0.0760 

2ND PEAK PRESSURE 0.5 467.60 441'.00 418.0'0 404.50 387.00 372.60 
PHASE 0.2599 0.2556 0.2533 0.2526 0.2516 0.2500 

366.60 318.00 238.00 
I'.) 

3RD PEAK PRESSURE 0.5 271.50 220.00 200.10 ｾ＠
PHASE 0.4047 0.3882 0.3775 0.3699 0.3645 0.3800 

1ST CAVITY X/L= 0.5 0.5 0.5 0.5 0.5 
PHASE 0.0997 0.0997 0.0997 0.0997 0.0997 0.1000 
DURATION 0.0375 0.0377 0.0380 0.0381 0.0387 0.0400 
CLOSING PRESSURE 87.00 92.00 92.40 92.80 95.30 69.00 

1ST VALVE PHASE 0.1015 0.1015 0.1015 0.1015 0.1015 0.1000 
CAVIw:i DURATION 0.1355 0.1358 0.1352 0.1344 0.1340 0.1400 

2ND VALVE PHASE 0.2693 0.271·2 0.2714 ＰＮＲｾＱＶ＠ ＰＮＲｾＱＴ＠ 0.2900 
CAVITY DURATION 0.1120 0.0987. 0.0884 0.0 13 0.0 00 0.0800 

PRESSURE IN ｫｎＯｭｾ＠ PHASE-DURATION IN' SECONDS. 
PRIOR TO COLUMN SEPARATIONDT ］ｄｾｃＬ＠
FOLLOWING SEPARATION DT = ｚＪｄｾ｣Ｎ＠

TABLE 10 &;FFECT OF VARYING THE TIME INCREMENT ｆｏｌｾｾ＠ THE 1ST. 
INDICATION OF ｖａｐｬｪ｛ｊｾ＠ ｐＡｩｴＺｾｕｒｅＮ＠ rtUN' 1.I3=:-. -
Pipeline configuration 1, L = 15.24 m, X measured from upstream reservoir. 



Z= 1.0 0.8 0.6 0.4 0.2 OBSERVED. 

X/L 

1ST PEAK PRESSURE 0.9 240.05 236.33 
PHASE 0.0325 0.0340 

2ND PEAK PRESSURE 0.9 176.80 205.50 190.00 175.80 167.50 175.95 
PHASE 0.1180 0.1146 0.1138 0.1131 0.1123 0.1150 

3RD PEAK PRESSURE 0.9 lT6.50 144.40 143.20 132.20 124.00 127.65 
PHASE 0.1823 0.1798 0.1759 0.1748 0.1747 0.1700 

1ST PEAK PRESSURE 0.5 196.65 
PHASE 0.0374 

166.00 144.00 136.80 
N 

2ND PEAK PRESSURE 0.5 212.00 152.50 ex> ..... 
PHASE 0.1115 0.1081 0.1070 0.1066 0.1068 

3RD PEAK PRESSURE 0.5 173.40 l28.40 114.00 103.80 96.400 
PHASE 0.1758 0.1746 0.1730 0.1735 0.1741 

1ST VALVE PHASE 0.0572 0.0572 0.0572 0.0572 0.0572 . 0.0600 
CAVITY DURATION 0.0315 0.0314 0.0313 0.0312 0.0313 0.0280 

PRESSURE IN ｫｎＯｭｾ＠ PHASE-DURATION IN SECONDS. 
PRIOR TO COLUMN SEPARATION DT = ｄｾｃＬ＠
FOLLOWING SEPARATION DT = ｚＪｄｾ｣Ｎ＠

TABLE 11 EFFECT OF VARYING THE TIME INCREMENT FOLLOWING THE 1ST. 
ｾ＠ ｬｾｉｃａｔｉｏｎ＠ OF VAPOUR PRESSURE. RUN I1 Ｑｾｚｉｉｚ｢ＸＮ＠

Pipeline configuration 1, L = 15.24 m, X measured from upstream reservoir. 



Vo m/s 

TC s 

PR2 kN/m2 abs 

T (separation) s 

V (separation) m/s 

P (separation) kN/m2 abs 

Minimum pressure kN/m2 abs 

T (minimum pressure) s 

T (cavity collapse) s 

V (cavity collapse) m/s 

Maximum pressure kN/m2 abs 

T (maximum pressure) 5 

AIRVOL 106 m3 

FUELVOL 106 m3 

Maximum cavity volume 106 m3 
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Vapour Vapour + air 

only n = 1.0 n = 1.2 n = 1.4 

1. 75 

0.08 

102.6 

0.051 

1.59 

0.7 

0.7 

0.173 

0.284 

-1.45 

1200 

0.298 

154.5 

0.03 

1. 74 

101.5 

6.07 

0.198 

0.338 

0.03 

1. 74 

101. 5 

3.86 

0.195 

0.325 

0.03 

1. 74 

101.5 

2.55 

0.192 

0.317 

-1.522 -1.522 -1.525 

1265 1272 1280 

0.348 

12.0 

93.2 

212..0 

0.339 

12.2 

93.21 

217.0 

0.335 

12.4 

93.23 

212.5 

Observed 

1. 75 

0.08 

103.2 

7.0 

0.20 

1180 

0.365 

Table 12 Comparison between the 'vapour only' "and released air boundary 
conditions at the valve during the existence of the lst.cavity 
formed. 

Note: V (cavity collapse) is the maximum velocity of the 
returning column prior to cavity collapse. 

T (minimum pressure) is the time of maximum cavity 
volume. 



v m/s o 
Te s 

PR2 kN/m2 abs 

T (separation) s 

V (separation) m/s 

P (separation) kN/m2 abs 

Minimum pressure kN/m2 abs 

T (minimum pressure) s 

T (cavity collapse) s 

V (cavity collapse) m/s 

Maximum pressure kN/m2 abs 

T (maximum pressure) s 

AIRVOL 106 m3 

FUELVOL 106 m3 

Maximum cavity volume 106 m3 
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Vapour + air 
Vapourr-______ ｾＭＭＭＭＭＭＭＭｾＭＭＭＭｾ＠
only n = 1.0 n = 1.2 n = 1.4 

1. 75 

0.08 

222 

0.056 

1.41 

0.7 

0.7 

0.11 

0.155 

-1.29 

.052 

1. 56 

101.5 

6.50 

0.114 

0.162 

-1. 26 

0.052 

1.56 

101.5 

4.14 

0.114 

0.16 

-1.25 

0.052 

1. 56 

101. 5 

2.7 

0.113 

0.159 

-1. 25 

1255 1250 1245 1252 

0.170 0.178 0.176 0.175 

- 3.84 3.96 4.04 

56.6 

30.3 

68.0 

30.4 

66.6 

30.4 

65.8 

Observed 

1. 75 

0.08 

222 

7.0 

0.12 

1242 

0.19 

Table 13 Comparison between the various boundary conditions applied 
at the valve during the existence of the 1st cavity. 



Vo m/s 

TC s 

PR2 kN/m2 abs 

T (separation) s 

V (separation) m/s 

P (separation) kN/m2 abs 

Minimum pressure kN/m2 abs 

T (minimum pressure) s 

T (cavity collapse) s 

V (cavity collapse) m/s 

Maximum pressure kN/m2 abs 

T (maximum pressure) s 

AIRVOL 106 m3 

FUELVOL 106 m3 

Maximum cavity volume 106 m3 
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Vapour + air 
ｖ｡ｰｯｵｲｾ＠ ______ ｾ＠ ________ ｾ＠ ______ ｾ＠

only n = 1.0 n = 1.2 n = 1.4 

1. 75 

0.16 

222 

0.116 

1.18 

0.7 

0.7 

0.158 

0.190 

-0.878 

960 

0.205 

26.9 

0.104 

1.452 

101.5 

14.40 

0.167 

0.204 

-0.907 

1010 

0.221 

5.78 

4.93 

43.4 

.104 

1. 452 

101.5 

10.45 

0.167 

0.203 

-0.912 

1020 

0.220 

6.0 

4.94 

42.10 

0.104 

1.452 

101.5 

7.8 

0.166 

0.196 

-0.902 

1018 

0.218 

6.2 

4.94 

41. 3 

Observed 

1. 75 

0.16 

222 

13.8 

0.16 

995 

0.23 

Table 14 Comparison between the various boundary conditions applied 
at the valve during the existence of the 1st cavity. 



Vo 
m/s 

2.74 
11 

11 

11 

11 

11 

" 
" 
" 

2.74 

1. 75 

" 
" 
" 
" 
11 

11 

11 

11 

11 

11 

1.75 
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PR2 TC Number Volume Volume following 
kN/m2 s. of valve collected treatment with % Oxygen 
abs. closures cc alkaline pyrogallol cc 

1 2 3 4 

240 .16 2 35.7 31.5 29.5 29.2 29.0 19.0 

240 .14 2 32.5 28 26.5 26.3 26.3 19.9 

309 .14 2 29.0 24.6 24.0 23.2 23.2 20.5 

170 .24 1 25.5 22.5 21.0 20.0 20.0 21.3 

170 .12 1 31.5 29.10 27.5 25.0 25.0 20.6 

136 .14 1 2B.O 24.0 23.2 22.5 22.4 20.0 

205 .12 2 36.5 30.0 29.0 2B.B 28.8 20.8 

119 .17 1 25.5 22.0 21.0 20.5 20.5 19.8 

188 .16 1 24.0 22.0 20.0 19.3 19.2 20.5 

102 .16 1 3B.O 34.0 33.0 30.2 30.0 20.8, 

136 .OB 2 32.0 29.0 27.0 25.B 25.4 21.2 

136 .12 1 18.0 16.0 15.0 14.6 14.6 19.6 

136 .16 1 23.0 20.0 19.0 18.8 .18.6 19.7 

136 .20 1 22.0 19.0 1B.0 n.5 17.5 20.4 

170 .10 2 24.0 22.0 20.0 19.0 19.0 20.8 

170 .14 2 26.0 22.0 20.7 20.7 20.7 20·.2 

170 .18 2 28.0 24.0 22.8 22.4 22.4 .20.0 

170 .24 2 26.0 22.0 21.5 20.9 20.9 19.7 

205 .12 3 30.0 27.0 26.5 24.5 24.1 19.9 

205 .16 3 30.0 2B.0 25.0 24.0 23.5 21.5 

205 .20 2 22.0 20.0 18.0 17.5 17.5 20.8 

205 .28 3 25.0 22.0 20.5 20.5 19.9 20.3 

Table 15 % Oxygen concentration of the residual air collected 
downstream of the valve following final cavity collapse. 



Vo 
m/s 

1. 75 

1. 75 

2.74 

1. 75 

2.74 

2.66 

1. 75 

2.74 

2.29 

0.655 

0.655 

0.990 

0.990 

1.25 

1.25 

1.57 

1.57 
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Predicted Observed 

PR2 TC 
kN/m2 s. Pc T Pc T 
abs. kN/m2 kN/m2 s. s. 

abs. abs. 

222 .08 1035 0.067 1070 0.065 

104 .08 895 0.062 930 0.060 

309 .16 750 0.123 760 0.120 

222 .16 600 0.133 600 0.140 

222 .16 650 0.124 625 0.120 

119 .18 400 0.135 410 0.130 

309 .07 1340 0.050 1320 .048 

309 .20 720 0.120 720 .115 

309 .10 1100 0.062 1130 0.06 

104 .11 350 0.082 360 0.08 

104 .08 500 0.053 480 0.05 

104 .12 618 0.079 600 0.08 

104 .08 773 0.061 780 0.06 

104 .14 500 0.101 470 0.10 

104 .08 898 0.057 900 0.06 

104 .13 618 0.102 630 .10 

104 .08 1038 0.057 1050 .055 

Table 16 Comparison between the observed and predicted 
pressure rise during valve closure immediately 
upstream of the valve in pipeline configuration 2. 
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VO PP TC TSEP VSEP FUELVOL VOL 
m/s kN/m abs s s m/s cc cc 

ｾ＠ ｾＮＷＴＳ＠ ＱｬＵＮｾＲＷ＠ a.CB' 0.036 ?676 100.693 356.131 
..... 
ID ='.'.3 ｾＰＴＮＷＷＴ＠ 0·1)81 G.043 ｾＮＵＷＳ＠ 76.595203.B60 
..... ....., 

o 
ｾ＠

2.7.3 ＲｾＳＮＷＲＲ＠ 0·OB1 0.047 2.469 59.176 135.904 

ｾ＠ 2.743 ＳＴＲﾷｾＷｵ＠ 0·081 G.05, 2·359 42.129 96.467 
ｾ＠
rt 

!-to 
1'1 

§ 
en 
t'<1 
"tI 
H 

"C ..... 
"C 
(') ..... ..... 
::s 
('I) 

(') 
o 
::s 
H'I ..... 
00 
ｾ＠
1'1 
III 
rt ..... 
o ::s 
N 

2.743 135.927 0. 1 62 ｾＮＰＷＵ＠ 2.645 180.082 316.856 

2.743 204. 7 74 0·162 C.086 2·514 134.413 154.588 
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10. APPENDICES 

Appendices 1 to 6 cover the derivation of equations 

not provided in the main text, together with print out 

of the computer programs and their flow diagrams. 
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10.1 Appendix 1 Schnyder-Bergeron graphical method 

The method is based on the d'Alembert solution of the wave 

equations defining transient propagation: 

= F(t + x/c) + f(t - x/c) (1.1) 

v - V (x, t) 0 = - ｾ｣＠ [F(t + x/c) - f(t - x/c)j (1. 2) 

where V and p are the flow velocity and pressure at a section x at 

time t. F(), f( ) are pressure waves moving in the -ve and +ve x 

directions respectively at the wave speed c. 

Eliminating f( ) from (1.1), (1.2): 

= pc (V(x,t) - Vo) + 2F (t + ｾＩ＠
c 

(1.3) 

Consider particular values X, T for the variables x, t and 

re-write (1.3) as: 

= pc(V(X T) - Vo) + 2F(T +!) 
, c 

(1. 4) 

If an observer is assumed to travel in the -ve x direction 

with velocity c, the F( ) function will be constant as the observer 

travels with the wave, thus: 

F(t ＫｾＩ＠ = F(T + !) (1.5) 
c c 

The F( ) function may now be eliminated from (1.3), (1.4):-

p - p (x,t) (X,T) = (1. 6) 

Referring to Figure 1.1, equation (1.6) represents line 1. 

By an identical process the second transient line, 11, on 

Figure 1.1 can be shown to represent an observed travelling in the +ve 

x direction at velocity c. Line 11 is represented by the equation: 

= (1. 7) 
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In order to calculate the (V, p) unknowns it is necessary to 

solve a pair of equations. Two possibilities exist. 

1. Either equation (1.6) or (1.7) may be solved graphically 

with a boundary condition known in terms of p and V, i.e. 

a valve discharge relationship, a closed end where V = 0 or 

a reservoir where p is a constant. 

2. Internal points along a pipeline may be solved by the inter-

section of lines I and lIon Figure 1.1. 

A combination of 1 and 2 together with the application of 

continuity at junctions allows complex problems to be investigated. 

Friction losses may be incorporated by the inclusion of a 

number of discrete pressure drops along each pipeline. 

The above method has been shown to be accurate, however it 

does suffer from possible graphical errors which may be cumulative. 

Further it is an analysis method with little or no design capability. 

It is in the design of systems that the computer based method of 

characteristics is preferable. 

It will have been noticed that the sign convention used has 

been +ve x in +V direction. This is contrary to the standard practice 

on the Schnyder Bergeron method but was adopted in order to agree with 

the convention employed in the numerical solution. 



p 
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Fig. 1.1 Characteristic transient lines in the (P,V) plane 
used in the Schnyder-Bergeron graphical method. 
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10.2 Appendix 2 Preparation of the valve discharge - pressure 
characteristic for input into the programs 
during valve closure. 

The valve steady state discharge coefficient was known as 

a function of the valve open angle. During closure the open angle of 

the valve was monitored by a Linear Displacement Transducer connected 

to the valve closing ram. Two curves are therefore available, Figure 

2.1, to define the relationship between time, t, and valve discharge 

coefficient, T. 

During the analysis of column separation upstream of the 

valve by programs SEPP, SEPB, SEPC and SEPD the following procedure was 

followed. 

1. Each curve was fed into the program as a series of points 

having (T, a) and (a, t) co-ordinates respectively. 

2. Values of a for each time step ｾｔ＠ from t = 0 to t = TC 

(valve closure) were calculated by linear interpolation from 

the (a - t) data co-ordinates. 

3. Using the a array set up by (2) a T array was similarly 

produced from the (T - a) data by linear interpolation 

between the two data points bracketting the a value concerned. 

These procedures were carried out in the MASTER segment of 

SEPP, B, C and D. 

A different method was chosen for the programs employed to 

analyse separation downstream of the valve in order to improve on the 

linear interpolations necessary above. 

The method chosen was to fit polynomial curves to both the 

angle-T and angle-time lines. Each curve was split into a number of 

sections and a polynomial fitted, by the method of least squares, to each 

section. 

If the angle-T curve ｾｳ＠ split into n sections and each is 

fitted with a polynomial of order m then a series of n equations are 
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obtained of the form:-
m+l 

.) j-1 T = C(i, 1) Ｋｾ＠ C(i, J • a (2.1) 
a j=2 

where a is the open angle of the valve. 

Similarly for the time-angle curve, if it is split into p sections 

each represented by a polynomial of order q then 

= 
q+1 

D(k, 1) + L D(k, t). tt-1 
t=2 

(2.2) 

represent a series of equations defining the angle vs. time curve. 

In the programs presented in Appendix 5 these sets of 

equations are produced by Subroutines PRELIM and CURFIT. 

During the valve closure procedure it is necessary to calculate 

the value of T for each time step. The value of time t is substituted 

into the appropriate equation in set (2.2). The value of at is then 

substituted into the appropriate equation in set (2.1) and this yields 

a value for Tt. The search and substitution procedures involved here 

are carried out by Subroutines INTER which deals with both substitutions. 
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Steady state T vs. open 
angle curve 

ｾ＠ Typical sectional break-up 
ｾ＠ of curve, n = 4 

450 

Valve open angle 
00 

Shut 

Open angle vs. time 
curve 

To + Tc/2 

Typical break-up of 
curve, p = 3 

Time 
To + TC 

Fig. 2.1 Illustration of cross plot procedure for valve characteristic. 
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10.3 Appendix 3 Computer programs written to predict column 
separation upstream of a closed valve 

Four programs were written in Fortran IV, based on the 

method of characteristics solution, to predict pressure variations 

upstream of a closed valve during and following column separation. 

1. SEPP 1st order finite difference equations, friction factor based 

on the initial flow Reynold's Number. Time increment reduced 

following column separation from ｾｸＯ｣＠ to ｾｸＯＲ｣＠ by interpolation. 

Vapour cavities allowed for either at some internal pipe section 

or at the valve. 

2. SEPB Identical procedures to SEPP except that the friction factor 

at each section was calculated for each time step from the 

local Reynold's Number. 

3. SEPC Identical procedures to SEPB. Program designed to investigate 

the effect of a variation in the time increment following 

separation, i.e. ｾｔ＠ = ｚｾｸＯ｣Ｌ＠ where 1 > Z > o. 

4. SEPD 2nd order finite difference equations, friction factor 

calculated for each section at each time step from the local 

Reynold's Number. Vapour cavities again allowed for at the 

valve and at an internal pipe section. 

All these programs accepted pressure data in gauge pressures 

and similarly all output pressures were gauge values. A linear 

interpolation technique was used to produce the Tat array needed as a 

boundary condition at the closing valve. 

This appendix contains a complete print-out of SEPD together 

with flow diagram and notation. The second order C+ C- equations may be 

written as: 

Vp - VR + 1- (Pp - PR) + ｾｔＨｦｖｉｖｉＩｰ＠ + (fVlvl)R) = 0 
pc D 

(Pp - PS) + ｾｔＨｦｖｉｖｉＩｰ＠ + (fvlvl)s) 
D 

= o 
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i.e. in a similar form to the 1st order equations, the (P, R, S) 

notation referring to Figure 5 in the text. 

or, for the C+ characteristic: 

= K1 - K2 Pp (3.1) 

and for the C- characteristic: 

= K3 + K4 Pp (3.2) 

All internal points can be solved from (3.1), (3.2) above as they 

reduce to: 

= o (3.3) 

however as Yp = f(V p) it is necessary to employ an iterative procedure. 

The value of Yp may be approximated by: 

(3.4) 

and a value of Vp calculated from (3.3). This value may be used to 

calculate fp from either: 

fp = ＱＶＡｒｾ＠ ｒｾ＠ < 2300 

or fp = 0.079!Rep 
1 

ｒｾ＠ > 2300 

and a comparison made with the assumed value of Yp. 

The various boundary conditions may be solved directly with 

either (3.1) or (3.2), the above iterative procedure being incorporated 

into the solutions, which have already been fully described for the 1st 

order equations. 



Notation employed in SEPD 

AC 

AN 

BA, BB, BX, VC 

C 

D 

DT 

DTR 

F 

FACT 

Fl, F1D 

lNTM, ICAV, JY 

JS 

KlNV1S 

MA, ZMA 

M, ZM 

NRUN 

N, ZN 

PO, PR 

PL 

P, PP, Pl 

BEN 

ROUTE 

RHO 

TC 
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Valve open angle 

Values of the open angle of the 
valve during closure 

Values of discharge-pressure 
characteristic during valve closure 

Transient propagation velocity 

Pipe bore 

Time increment used in the solution 
prior to cavity formation 

Correction for exact time of cavity 
closure 

Friction factor 

Interpolation factor 

Frictional loss terms within the 
pipe sections upstream and downstream 
of an internal cavity 

Route markers 

Section at which vapour cavity first formed 

Fuel kinematic viscosity 

Number of points on the valve characteristic 
vs. open angle curve 

Number of points on the valve open angle vs. 
time curve 

Number of data sets 

Number of pipe sections 

Reservoir pressure 

Pipe length 

Pressure at a section 

Reynolds Number 

Route marker 

Fuel density 

Valve closure time 



TRANS 

TS 

TSMAX 

TMAX 

VAP, VAPI 

VOL, VOLX 

VO 

V, VV, Vl 

VCLOS 

VD 
VU 

Y2 
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Transition Reynolds Number -2300 

Time of occurrence of vapour pressure 
at each of the pipe sections displaying 
pressures below vapour pressure at the 
end of a tUne step 

Maximum value of TS for that tUne step 

Run time of solution 

Fuel vapour pressure 

Volume vapour cavities 

Initial flow velocity 

Velcoity at a section 

Cavity collapse velocity 

Velocity conditions downstream and 
upstream of an internal cavity 

Slope of characteristic 
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FLOW DIAGRAM FOR SEPD 

Read in values of valve discharge-pressure 
characteristic for a number of valve settings. 

ｾ＠
Read in valve open angle for a series of time 
steps during closure. i 
Crossplot to give valve characteristic vs. 
time curve. Interpolate at DT intervals. 

t 
Read in basic program parameters, PL, RHO, VAP, 
D, N etc. 

Calculate steady 
i 

state conditions at T = o. 

Print out column h 
.i 

eadl.ngs. 

Print out calculated vi1ues of pressure, velocity, 
time, valve characteristic and cavity volume and 
position. 

Update time T = T + DT 
V 

If T > TMAX go to FINISH 

f 
. f 

Trans er values l.n VV, PP arrays into V, P as base 
conditions for next calculation. 

If DT < Dx/c interpolate between V,P(i) and 
V,P(i ± 1) to obtain arrays PU, PD, VU, VD. 

t 
If DT < Dx/c go to B else A. 

A. Solution prior to ｾ｡ｶｩｴｹ＠ formation. 
y 

CALL FRICT to calculate friction factor at each 
internal section. i 

V 
CALL INTERNAL to calculate pressure and velocity 
conditions along the pipe. 

l .. 
CALL VALVE to calculate condl.tl.ons at the valve 



No vapour 
; pressure 

indicated 
Goto write 
Statements. 

Check 
equal 
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all pressure values for results 
to or below vapour 1ressure. 

Values of TS(i) calculated to give 
times at which vapour pressure was 
reached at each section. 

CALL SORTER to yield TSMAX and JS, 
the position of the 1st cavity. 

f 
If JS < N + 1, ICAV = 1 else 2. 

t 
Interpolate VV, pp arrays back 
to (T - TlMAX) 

CALL CAVITY to calculate interface 
velocity on cavity formation. 

t 
Put DT = DT/2 if this is 1st cavity 
formed. 

t 
Goto write statements. 

B. Solution following cavity formation. , 
CALL INTERNAL. If ICAV = 1 then CALL CAVITY for 
interface velocities. ｾ＠

Calculate pressure at closed valve if ICAV = 1. 
t 

Calculate TS(i) for any new section displaying vapour 
pressure. 

ICAV - 1 < 

Separation at 
an internal 
section. 

! 

---------.-------- - -> ICAV = 2 

Separation at the 
closed valve. 

+ 
CALL CAVITY for 
interface velocity. 



If pressure at ｾ＠

closed valve also 
falls to VAP then 
form secondary 
cavity having 
volume VOLX 
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CALL SORTER for time of occurrence 
of ｶ｡ｰｯｾ＠ ｰｲ･ｳｳｵｾ･＠ at any new section. 

Interpolate VV, pp arrays back to 
(T - TSMAX) 

i' 
Calculate cavity volume VOL. 

I 
V 

If VOL < or = 0 column rejoined. 
Calculate time error DTR if VOL < 0 
and interpolate condition back to 
(T - DTR) J 
calculate cavity closing velocity 
VCLOS and subsequent pressure rise 
pcVCLOS 

Calculate flow velocity I 
at collapsed internal -<--
cavity position 

ｾ＠

Put flow velocity 
ＭＭＭＭＭＭｾ＠ at valve zero 

* Put VOL = VOLX 
VOLX .. 0 
ICAV .. 2 

Continue as for cavity 
formed at valve only 
until its collapse • 

. ｾ＠
Gato ｷｲｾｴ･＠ statements. 

FINISH. 

Put route markers 
ICAV, JS = 0 
Put VOL = 0 

Gato lrite statements. 
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MASTER S::PD 
c 
C S E p·O ! 5 THE 4 T H I N A SE k lE S 0 F PR C G R A M S W R mEN I N FOR T RAN 4 
C DESIGNED TO ｐｒｾｄｉｃｔ＠ PRESSURE AND VELOCITY VARIATIONS IN A 
C SIMPLE PIPELrNF rOLLchrt'JG VALVE CLOSURE. IN PARTICULAR 
C SEPD IS DESIGNEO TO PHEIJICT THE PhESSURf: VARIAiIONS DURING 
C AND FOLLJwlNG ｾｈｅ＠ rORMArION OF ｖａｾｏｕｒ＠ CAVITIES IN THE FLUID 
C COLut1N. THE .!IPf'RllACH TO THE SOLuT I ON OF THE QUAS I ｾｌ＠ I NEAR 
C HVPERBGLIC PARTIAL ｄｉｆｲｾｒｅｎｔｉａｌ＠ ｅｾｕａｔｉｏｎｓ＠ DEFINING THE 
C PROPAGATION OF PRESSURE TRANSIENTS ALONG THE ｐｉｐｾｌｉｎｅ＠ IS 
C V I A T H ｾ＠ 'J U MER I r: A L ｴｾ＠ E T H 0 LJ U F C H A RAC: T E R 1ST I CS. THE E X 1ST A NeE 
c OF MORE THAN Ot,lE VAPOuR CAVITY IN THE PIPE AT ONE TIME IS 
C DEALT WITH BY A SORTING AND ｉｎｔｅｒｾｏｌａｔｉＰｎ＠ PROCEEDURE WHICH 
C ALSO ENA3LES ALCURATE PREDICTION CF THE VELOCITY AND 
C PHESSURE ｃｕｎｄｉｾｉｕｎｓ＠ IN lHE ｐｉｐｅｌｉｾｅ＠ DURING THE FORMATION 
C OF THE VAPOUR CAVITIES. 

C THE ｐｒｪｇｾａｍ＠ CAI: 8E SPL! 1 I NTO A NLMBER UF SECT IONS: .. 
C 1. IN:JUT OF THE VAl.Vrc ｄｉｓｃｈａｒｇｴＺｾｐｒｅｓｓｕｒｅ＠

c CHARACTERISTIC vs. VALVE ｏｐｾｎ＠ ANGLE CURVE. 
C iN:JUT OF THE VALVE OPEN ａｾｇｌｅ＠ VS. TIME CURVE. 
C 2. CRJSS-PLOT OF ｔｈｅｾｅ＠ TWO ｃｕｒｾｅｓ＠ TO GiVE VALVE 
C CHARACTERISTIC vs. TIME ｃｕｒｾｅ＠ WHICH IS USED 
C AS THE OPEN VALvE BOUNDARY CONDITION IN THE 
C ｓｕｾｓｅｑｕｅｎｔ＠ SOLUTIUN. 
C 3. ｓｏｾｕｔｉｏｎ＠ OF THE WAVE EQUATIlNS. THREE POSSIBILITIES 
C ａｒｾ＠ DEALT ｗｉｔｈｾＭ

C A. NO VAPOUR CAVITIES PREDICTEl AS THE PRESSURE REMAINED 
C Al:3JVE VAPOUR FOrHlr\TION LEVEL. 
C B. A VAPOUR CAVITY ｉｾ＠ FIRST PREDICTED AT THE CLOSED 
c VA_VE. 
C C. ｔｈｾ＠ FIRST CAVITY IS PREDICTED AT ｾｏｍｅ＠ INiERNAL 
C ｓｅＺＺ［ｔｉｯｲｾＮ＠

C FOR THE SOLUTION ｔｾｅ＠ PIPELINE IS ｾｐｌｉｔ＠ INTO 10 EQUAL 
C ｓｾｃｔｉｏｎｓ＠ ANU PRESSURE AND VELOCITY CONDITIONS AT EACH 
C 0 F THE S t: ARE P R PH E 0 [) U! B Y THE P K 0 G R Ml A T THE END 0 F 
C EACH ｔｉｍｾ＠ STEP TOG[THER WITH THE VOLUME OF ANY 
C CAVITIeS PRESHJT. 

C 5 E P D E ｾＱ＠ P _ 0 Y S 2 I1 Don DE R LJ R T R A 0 E Z 0 i 0 A L R U L F. A P PRO X , 
C I NTH EFl NIT E D 1 F FER [('J C t: E Q U A T I L N S. F R leT ION FA C TOR I S 
C ｃｏｎｓｉｄｅｒｾｄ＠ DEP[NVANT ON REYNOLDS ｾｕｍｂｅｒ＠ ａｾｄ＠ IS 
C ｃａｌｃｕｌａｔｾｄ＠ AT ｾａｃｈ＠ SEcTION FOR lACH TIME STEP, 

REAL r<INVIS 
DIM f: N S I 0 \j T ( 6 :j , ) , B ( ti j r, ) , B A ( B ': D ) I F3 ｾ＠ ( 8 J !') ) , v c ( 8 0: ) , A ( 2 5 0 ) I A N ( 2 5 0 ) , 

1 P 1 (31 ) I V 1 L.; 1 ), U v ( ｾｾ＠ 'i ), 0 v ( ｾｾ＠ 1 ). V V U (31 ), v V n (31 ), F 1 0 ( 31 ) , 
1 At:> (5 ), P ( ? ': >, pp ( :; :; ) I V ( 5 :.1 ), V V ( 5 ;j ), A X ( 5 0 1_' ), B X ( 5 0 0 ) ,TS ( 11 0 ) . 
ＲｲｆＨｾ＠ ), ｾＱ＠ (52), RE(5J), ｘｌＨＵｾＩ＠ ,VU(31),PU(30),VD(3U),PD(30) 

ｃｏｍｈｏｾ＠ ｾＬ＠ DT,(INVIS, THANS, ｄＬｙＲＬｙＵＯｐｆＬｖｾｐＯｖｃｈｴｒＬｊｓＯｖｲｌｏｓ＠

c . ' 
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C SEdTION Ｍｃｒｏｾｓｐｌｏｔ＠ OF INPUT DATA - COMMON TO ａｾｌ＠ TESTS ON 
CONE VALV SETTING, 
G 

READ ( 1. 115 ) NRUN. KINV1S, ｔｒａｾｓ＠

115 F'ORI'IAT ( 13. 2F10,t!) 
KINV1S = KINVIS 1 ＱｾｏｏｏｾＮｏ＠
NX :' 

45 NX:: NX + 1 
READ ( 1, ＱＧｾ＠ 0 ) IIA. ZI1A. AC 

100 FORMAT C 14, 2F1U,4 ) 
DANG = ａｾ＠ I ZM/"\ 
DO 11:; 1, fv1A+1 

ｉｾ＠ ( 1-'1 ) 2,2/ 3 
2 A(1) :; AC 

GJTO 
3 A(1) :; ;:,(1-1) ., DANG 
1 READ ( 1. 101 ) BX(I) 
1 0 1 F' 0 R t1 A T ( F 1 :: • 4 ) 

READ ( 1. 1,3 i P L,e, L: N 1 N, D. FI H 0 
READ ( 1, 11C ) VAPI 

Ｑｾｑ＠ FORr-lAT (F1',4) 
AREA:; 3.1417 ｾ＠ ( D**2 ),1 4,v 
VAP = ｖａｾＱ＠ * ＱＴＴＬｾ＠

C ｒｅｍａｉｎｄｾｾ＠ OF PROGRAM ｒｅｾｅａｔｅｄ＠ FUR EACH DATA SET, 
READ ＨＱＮＱｾ＠ .• 2) 11\ 

18 = Cl 
4 18 = 13 + 1 

READ ( 1. 111 ) IOAY, IMTH, IYEAR, INUM 
111 FORMAT C 414 ) 

WrnTE (2,500') IOAY, ItI;TH, IYEAF\, INUM 
5 0 Cl 1 r 0 R M A T ( 5 X. <; " H T R I, N S I E f'i T T EST SO" CON COR D E 2 IlL O. D. 2 0 S ｾ＠ G. L 5 6 

1, F U E L P ｾ＠ PEA N ; i 5 A U t'oj D E R S E 6ll r 1 6 S. P. V A L V E ., //5 X, 8 H D ATE = I 

212,3H I ＮｉＲＮｾｾｈ＠ / .14. ',H oI 15X, 1cHRUN NUMBER:: ,14. 1H •• 11 ) 
102 FORMAT (13 ) 
103 FORMAT ( ＳｆＱｊＮｾＬ＠ 13, 2F10.4 ) 

VOLX = 0.:.· 
VOL =j,J 

ROUTE = .•. ' 
NP/dH :; .: 
DD 5J I = 1, MA + 1 

50 88(1) = 3X(I) 
RE l\ 0 ( 1, 1 1';'; ) M , Z M I 1 C 
GDT = TC / ZM 
DO 8 le: 1.M+1 

I=- ( le ｾ＠ 1 ) 6,6,7 
6 T<IC) = C',:J 

GJTO a 
7 HIC) = TCIC-1 ) ... GDT 

GJTO 8 
8 'READ 1. 1 :,1 ) AN<lC) 

DO 9 10 : 1, M-1 
DJ 1; .. IF. = 1, MA 
13 = lE ... 1 

IF ( AN(IU) - ACIG) 10. 11, 12 
11 0(10) = nu(IG) 
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GOTD 9 
12 S = ( BfHIE) - 8l:HIG» I Ol>NG 

B(IO) = BBCIG) ｾ＠ S * C AN(lD) - A(IG» 
GOTO 9 

"10 CONTINUE 
9 CONTINUE 

C 
C PHINTED ｾｈｅｃｋ＠ ON CROSSPLOT 

WHITE' 2, 20. 1 ) 

2 iJ rJ FUR r1 AT C 15 X, 'J HT ( I P ), " X , 6 H A N CIf- ), 2 X I ) 
DO ＳＺｾＹｉｊ＠ = 'J M+1 

3009 \vRlrE ( ｾＬ＠ 2010) TeIQ), AN<IQ) 
ＲＰｾＹ＠ ｾｏｒｍａｔ＠ ( 2F1U.4 ) 

WR1TE ( 2, 2029) 
2029 rORMAT ( 15X, :;HACIR), i:X, 6HBBCIfd, 2XI ) 

DO 3}191S = ｾＬ＠ HA.1 
3:19 WRITE ( 2, 2014) ACIS), ＸｾＨｉｓＩ＠

WRITE ( 2,2 1 39, 
203Q FORMAT ( 15X, ｾＩｈｔＨｉｔ＾Ｌ＠ ｾｘＬ＠ 5HB<ITJ, 3XI ) 

DO 3 201V = 1, H+1 
88(IV) = S(IV) 

ＳｇｾＹ＠ WRITE ( 2, 2019) T(IV',B8(!V) 

C ｓｅｃｔｉｏｾ＠ 2 - ｉｎｔｅｒｐｏｌｾｔｉｵｎ＠ OF VALVE CHARACTERISTIC FOR THE 
C REQUIRED NUMBEn OF TIME INTERVALS. 

OT =PL I ｣Ｊｺｲｾ＠

u =" ( re / OT ) + 2. C; 

JU = U 
JA = 1 
Y = 1. " 
DU 9"('. IT = 1,1'1+1 
T ( IT) = T ( IT) j} 1 ;": Ｎｾ＠ e . ｾｊ＠

900 88(IT):: tHHIT) * 1080,0 
[H = DT It 1: DO,r) 
GOT = GDr * 1i'.,P,'j 
T C = T c: 11- 1:: () 0 • ｾＱ＠
DO 13 J : 1, I U 

F ( J -1 ) 14, 14, 15 
14 T(J) = O,U 

GJ1D 16 
15 TCJ) = '7(J-1) ... liT 

GJTD 16 
1f) S = ( B8(JA)-Bf:;(JA+1 »/GDT 

F" ( T(J) - Y':'GDI ) ＱＷＯＱ｢ＬｾＹ＠

17 8'(J) = 88(JA)-Sa(T(J)-(Y-1,O) * GOT) 
GJTO 2: 

18 BO\(J) = BB (JA.J..1) 

JA. = JAd 
Y=Y+1.!; 
GJTO 2L 

19 ｂａＨｊＩｾ＠ B:3(JA+1 )-( (R8(JA+1 )-B8(JA+r»*(T(J) .. Y*GDT>/GDT) 
JA = JA + 1 
Y = Y + 1,'1 
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GOTD 20 
20 11=" ( T(J) - rc ) 13, 21,22 
22 J=J-' 

GClTO 21 
13 CONTINUE 
21 DO 23 JB = 1, J 

T(JB) :; T(J8) 11:")",:n.o 
23 8(J8) = 9A(,)B) 11 UOD. 0 

OT = DT 1 ＱＧｾＡｊｊＮｑ＠

GOT = GDT 1 ＱｑｾｾＮｮ＠

T C = T C I Ｑ［ｾ＠ 0 Q • 0 

C INTERPOLATION CHECK -
WRITE ( 2, 2049) 

2J4Q FORMAT ( 13X, ｾｈｔｉｍｅＬ＠ 7X,4HB(I) ) 
WRITE ( 2, 205 ) ( T(JC), 8(JC), ｾｃＺＱＬ＠ J ) 

205 FURMAT ( 2F1J.4 ) 

C SECTION 3 - SOLUTION [Jr THE WAVt: EQUATIUNS. 
C ALL LENGTHS MEASURED FROM RESERVOIR. 

Hb\O ( 1, 1;:4 ) PO, VO, TMAX 
104 FDRMAT ( ＳｆＱＰＮｾ＠ ) 

C STEADY STATE CONDITIONS. 

WRITE ( 2, 185 ) N 
105 ｆｏｒｦＧＱｪｾｔ＠ ( 5X, Ｔｾ［ｈｔｒａｎｓｾｅｎｔ＠ PRESSuRE: AND FLUID VELOCITY AT 1/ , 

1 12, 49HPOINTS ALONG A SINGLE PiPE FOLLOWING VALVE MOTIWN, 
2 1/ ). 

REN :; AB5( VD ) * n I ｋｉｾｖｉｓ＠

IF ( REN - TRAtJS ) 81, b2, 82 
8 1 r = 1 6 . (: IRE N 

GOTD 83 
8? F = ..•. 79 1 R E ｲｾ＠ * * r:.? 5 
Ｘｾ＠ WRITE ( 2, 186 ) 
106 .FURMAT ( 5X, 2JHINITIAL ｃｏｎｄｉｔｉｏｎｾＺＭＬ＠ 2XI/ ) 

WRITE ( 2, ＱｾＷ＠ ) PO, 'JO, PL, C, RrO, D, N, F, VAPI 
1 U 7 FOR i1 A T ( 5 X, ｾＵ＠ H P 0 =, V,). 2, 6 HP. S • 1 ., 4 X , 3 H V 0 =, F 6 • 2, 6 H F T I SEC, 

1 4 X I 3 H P L =, F 6 . ｾｾＬ＠ 2 H FT, 4 X / ｾ＠ X I 2 H C =, F 8 • 2, 6 H FT 1 SEC, 4 X , 4 X , 
2 4HR-IO:,F6.2,11HSLUGS/ClJ.FT, ISX, 2HD::, F6.2,3HFT., 
3 4 )( , 2 H N ::, I 3 , ,+ X , 2 H F ::, F 6 • 4 , 4 X , 4 H V A P = , F 6 • 4 , 6 HP. S. 1 ., 11) 

WRITE ( 2, 180C ) AC, re 
10QC rORMAT(5K,13HOPEN ANGLE = ,F5.1,5X,11HCLOSURE IN ,F6.3,4HSECS,II) 

XL ( 1) :: '). ' 
DU 84 I :: 2, N+1 
XLCl) :: ｾｌＨＱＭＱＩ＠ + 1.81 ZN 

84 CUNTINUE 
WRITE ( t., 1U8 ) ( XLtI), 1= 1, Nolo 1 ) 

108 'FURMAT ＨＺ［ｘＬＴｈｔＡｍｅＬＶｘＬｾｈｖｌＬＵｘＬＴｈｘＯｌ］ＬＱＱｆＷＮＴＬＳｘＬＱＲｈｖｏｌｕｍｆＮ＠ VALVE, 
1 ＱｾＹｘＬ＠ Ｑｾｈｃａｖｉｔｶ＠ CU.FT., /1 ) 

PO:: PO lI- ＱＴＴＮｾＬ＠

FUR :: ＲＮｾ＠ * RHO * r • PL * ＨｖｏｾＪｾ＠ ) 1 ( D * ZN ) 



Pr< : PO 
:.. A = j. 0 
D W 2 4 K A : 1, t·J.' 

Af.,=AA ... 1,. 
V(KA) : VO 
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P(KA) = PR - (AA-1. J ) * FCR 
Ｒｾ＠ ,P(KA) = P(KA) / 144.C 

i 1,'11: = O. : 
Vc ＨｾＩ＠ = i,', 
ｾｒｉｩｅ＠ (2.19) iIMF.,VCCr, >,(V(KA),KA=1,N+,), (AP(KA),KA=1,N+1) ,VUL 

109 ｲｕｒｍａｔＨＲｾＱＮＴＬｾｘＬＲｈｖ］ＬｾｏｆＷＮＲＬｆＷＬＲＯＲＲｘＬＲｈｐ］ＬＱＱｆＷＬＲＬｆＱＳＬ｡Ｏ＠

V2 = ＱＮｾ＠ / ( C * RHO) 
ｖｾ＠ = ( VJ**2 ) / ( Y2 * P(N+1) ) 
K t:3 = 1 
J!:) = ' 
I L; A V = ;) 
INTM = Q 
JY = 0 

C CALCULATION OF INTERIOR PUINTS, 

Ｒｾ＠ TIME = TIME'" DT 
Ki:l = KB ... 1 
VCCKB) = 8CKB) / B(1) 
DU 91 LX = 1, tJ+1 

91 TS(LX) = 0.0 

IF ｉｎｔｾ＠ - 1 ) 56, 57, 57 

C INTM OENJTES WHETHER DT=DX/C OR =CX/2C. 

C 

S6 CALL ｆｾｉｃｔ＠ ( V, 1, N ... ｾＬ＠ F'1 ) 
DU 26 ｾ＠ = 1, N-1 

LA = L .;.. 1 
CALL INiERNAL (1,LA,P,Y,P,V,r1,F1,VV,PP) 

26 CONTINUE 

C BJUNDARY CONDITIONS:-
C 1. CJNSTANT PRESSURe HESERVOIM, 

CALL iNiERNAL (1,1,P,V,P,V,F'1,F1,YY,PP) 
c 
c C. VALVE BOUNDARY-

IF ( TIM= - iC ) 27, 28, 28 
C 2A. O?EN VALVE-

27 VCHAR = VC(KB) 
GALL VA_VE ＨｐＬｖＬｆＧＱＬｖｖＬｾｐＩ＠

GOrD Ｒｾ＠
c 
C 2B. C_DSED VALVE-

2 a v C ( r( B) = . ., 
IF ( RQuTE - 1.': ) 34,35,38 

3 4 V V ( N ... ｾＩ＠ = '.,. 'J 
PP(N.') = peN) • (Y(N)-O.5*F1 (N)*VCN)*ABS(YCN»)/Y2 
IF ( INTM, LE. 1) GOrD 9uOu 
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C ｃａｾｃＮ＠ INTERNAL POINTS WHEN DT=OX/;C,THIS SECTION 
C ONLY USED IF A CAVITY HAS BEEN INCICATED. 

57 CALL FRICT ( VU, 2, N+':, F1 ) 
CALL FRICT (VD, 1, N, F10 
DD 261 I = 2, N 

If ( I-JS ) 57':,572,571 
572 PP(JS) = VAP 

TS(JS) ='.0 
CA L LeA V I T Y (-1. '.: , 1 , I , VD, PO, F 1 D, 'v VD) 
CALL GAI/ITY ( 1 •. ',1,I,VU,PU, F'1,'vVU), 

GUTO 261 
571 CALL INTERNAL ＨＲＬｉＬｐｕＬｖｕＬｐｄＬｖｏＬｆｾＬｆＱＰＬｖｖＯｐｐＩ＠

2 6 1 C 0 rH I NU:: 
CALL INTERNAL (2,1,PU,VU,PD,VO,F1,F1D,VV.PP) 

VC(KB) = .'.e 
IF ( IeAV - 1 ) 264, 264, 263 

2 64 V V ( N + 1) ｾ＠ f,). 0 
PP(N+1 ):(VU(N.i )+Y2*PLJ(N+1 ) .. ,).5*F'1 eN.1 )*VUCN+1 )*ABSCVUCN+1» )/Y2 

263 IF ( ROUTE .. 1.;1 ) 9000, 35, 29 
90 fJ 0 KZ = r' 

IF ( ｔｉｾｅ＠ .. ｏＮＲＶＸｾＩ＠ 573, 574, 574 
574 KZ=;; 
573 ｋｚ］ＺｾＧ＠

C THE NEXT PROCEEDURE CALCULATES VALUES OF TS(I) THE 
C TIME OF OCCURENCE OF VAPOUR PRESSURE AT ｾｎｙ＠ SECTION. 

o 0 2:) 1 1 = 1, N + 1 
VX = PP(I) + ABS<VAP) 
IF ( VX - G.D ) 202, 201, 203 

202 TS(1) ｾ＠ ｄｔＪＨｖａｐＭｐｐＨｉﾻＯＨｐｃｉＩｾｐｐＨｉﾻ＠

JF C PCI) .. YAP ) 2U21, 2021, 201 
2G?1 TSCI):; J.,; 

PPCl) = iJAP 
GDTU 2 .. 1 

ＲＰｾ＠ KZ = KZ + 1 
2 (11 Cu.'H I NUE 

If (KZ - (N+1 » ＲｕＧｾＧ＠ 29, 29 
20 4 CALL SJRTER TS, TSMAX, J1 ) 

IF ( J1 - N+1 ) 2116, 207, 2u7 
2(}6 ICAV = 1 

JS = J1 
GOTU 2.8 

2:)7 IGAV:: 2 
20A TIME = TIME" TSMAX 

C THE FOLLJWING INTERPOLAl ION GIVE THE PRESSURE AND VELOCITY 
C ｃｏｎｄｉｔｉｏｾｓ＠ IN 'HE PIPELINE AT ThE INSTANT THAT VAPOUR 
C PRESSURE WAS FiRST REACHED . .. . 

FACT = ( DT - TSMAX ) I OT 
DO 2 9 I = 1, N+1 
VV(I) = VCI) + FACT*(vV(I)-V(I» 
PP(!) :: ;l(1) + FACT *(PI-'(!)-P(l» 
PC}) = P1 (I) + FACT*CP(1)-P1 (r» 
vc I) = V1 (1) + FACT * ( ｖＨｉＩＭｶｾ＠ (I» 

209 CU,'HINUE 
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IF ( INT'1. EQ, 1) GOTO 91.;01 
CAt.L rRICT ( V, 1, N-1, F1 ) 

IF ( ICAV - 1) 21; .. , 21[J, 211 
.21 (1 CA L LeA V I T Y ( 1. 11 , U, J S I V, P, r 1 , V V l. ) 

CALL CAVITY (-1 ＮＰＬｾＬｊｓｽｖＬｐＬｆＢｖｖｾＩ＠
PP(JS) = YAP 
GOTO ＲｾＲ＠

211 PPCN+1):: YAP 
CALL CAVITY ＨｾＮｃＬｕＬｎ＠ ... 1,V,P,F'1,VV) 

GOTO ＲｾＲ＠
9iJ'11 IF ( !CAV. GT. 1) GO"IO 9U1l2 

VD(JS) = '.5*('JCJS)+V(J5+1» 
vueJS) :: ｾＮＵ＠ * C V(JS) + V(JS-1) 
PU(JS) = :.5*(P(JS)+P(JS-1» 
PDCJS) = ｾＮＵＪＨｐＨｊｓＩＫｐＨｊｓＫＱﾻ＠

CALL FRICT ( VU, JS. JS, F1 ) 
CALL FRICT ( VD, JS, JS, F1D ) 
CALL CAVITY ＨＱＮＧﾷＮＧＬＱＬｾｓＬｖｵＬｐｕＬｆＱＬｶｖｕＩ＠

CALL CAVITY C-1,f,,1,JS,VU,PD,F1D,VVD) 
PP(..)S) :; VAP 
GOTO 212 

90n2 PPCN+1) ; YAP 
VU(N+1 ＩＺＺｾ｜ＮＵＪＨｖＨｎＩＫｖＨｎ＠ ... 1») 
PU(N+1 )=J,5*(P(N).PCN"'1» 

CALL FRICT ( VU. N+1, N+1, F'1 ) 

CALL CAVITY ＨＧｉＮｏＬＱＬｎＢＧｾＬｖｕＬｐｕＬｲＱＬｖｖＩ＠

GOTD 212 
212 ROUTE:; 1. L 

I NTM = 1 
IFeJY-1) 99, 29, 29 

99 OT = OT / 2.0 
GOTD 29 

C THE NEXT SECTION DEALS WITH CAVITY FORMATION AT SOME 
C INTERNAL PIPE SECTION AND WITH ｔｈｾ＠ FORMATJON OF A 
C SECONDARY CAVIiY AT THE CLOSED VALVE, ThE PRESSURE 
C RISE DUE TO THE ｃｏｌｌａｐｓｾ＠ DF THIS INTERNAL CAVITY 
C IS CALCU_ATED IN THIS SECTION AS 15 THE SUBSEQUENT 
C ｖｾｌｏｃｉｔｙ＠ AT ITS LOCATION. 

35 DO 2611 I = 1, N+1 
IF e I - JS ) 352, 353, 352 

353 ppe..)S) = VAP 
T 5 ( J S) = ':. tl 
GOTO 2611 

ＳＵｾ＠ IF C PP(I) ｾ＠ YAP ) 262, 1261, 261 1 
262 TS(I) = JT*(VAP-PP(I) '/lP(I)-PP<I» 

.1f ( PCI) - YAP ) 2621 , 2621, 261 1 
2621 PP( I) :: VAP 
1261 TS(I) :: ｾＮｴＧ＠

2611 CONTINUE 
IF ( ICAV • 1 ) 773,173, 73 

773 CALL SOIHER ( "'5. TSMAX •• .11. ) 
IF ( TSHA.X .. ｊＮｾ＠ ) 47 7 , 477, 488 

488 rAcT = ( DT - TSMAX)/ 01 
TJME = TIME - 7SMAX 
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DU 49Q I = 1, N.1 
If,( 1- JS) 491, 492, 491' 

491 VV(I):: veil • FACT*(VV(I)-VCI» 
PP(I) = ｾＨｉＩ＠ + ｆａｃｔＪＨｐｐＨｬＩｾｐＨｉﾻ＠

GOTD 499 
492 VVD(I) = DVeI) + FACT*(VVDCI)-DV(!» 

VVU(I) = UV(I) + FACT *,(VVUCI)-UvCI» 
PP(!) :: VAP 

499 cONTINUE: 
.477 VOL = ｖｏｾＭａｒｅａＪＨｄｔＢｔｓｍａｘＩＪＨｖｖｕｃｊｓＩＫｕｖＨｊｓＩＭｖｖｄＨｊｓＩｾｄｖＨｊｓﾻＯＲＮＰ＠

IF C PP (\J + 1 ) - V A P) 5 ＬＮｾ＠ U I ｾ＠ 0 0, 6 (I 0 
500 CALL CAVITY (1.;,;,1,N·1,VU,PU,F"I,VV) 

VOLX :: VOLX ＭａｒｅａＪＨｄｔＢｬｓｍａｘＩＪｃｖｖｾｎＮＱ＠ )+VCN.1 »/2.0 
6CO IF ( VOL - ｾＮｏ＠ ) 377, 3H8, 399 
399 ROUTE:: 1. u 

Goro 29 
377 OTR = ＭｖｊｌＯＨａｒｅａＪｏＮＵＪＨｖｖｕ･ｊｳＩＫｵｖＨｾｓＩｾｖｖｄＨｊｓＩＭｄｖＨｊｓﾻＩ＠

I f' ( V 0 LX. 3 T • Ｚｾ＠ • 0 ) VD L X = V 0 L X - D T R * ARE A iI 0 • 5 * ( V V ( N + 1 > - V ( N + 1 ) ) 
TIME = TIME - DTR 
FACT = ( DT - oTR ) / Dl 
DO 4 ,i I:, I = 1, N., 
IF ( I - JS ) ＴｾＱｾ＠ 4G2, 401 

401 VV(I):: vel) + FACT*(VV(I)-V(I» 
PP(I) = ｾＨｉＩ＠ + FACT*(PP<l>-P(I» 
GOTD Ｔｾｏ＠

402 VVD(I):: DV(I) ... FACT*(VVD(I)-DV( ｉﾻｾ＠

VVUCI) = UVeI) ... FACT*(\VU(I)-UV( 1» 
PPC 1> :: VAP 

401) cONTINUE 
388 VCLOS =(vvueJS) - VVD(JS» / 2.0 

PP(JS) = YAP + VCLOS I Y2 

CALL ｊｾｔｅｒｎａｌ＠ (2,JS;Pu,VU,PD,VD.F1,F1D,VV,PP) 
IF (PP(\l+1)-VAP) 6)1, 6G1, ＶｾＲ＠

6Q1 VOL = VO_X 
IGt.,V = 2 
ROU T E :: 'i.;: 

GOTD 6.3 
6 II 2 V 0 L :: ",'; 

IGA,V = :: 
R 0 U T E = ＧｾＮ＠ ＺＮｾ＠

603 J Y:: 1 :" 
JS = t, 

GOTD 29 

C THIS SECTION DEALS WITH THE fORMAl ION OF A VAPOUR 
CCAVITY AT THE CL USED VALVE. THE GhOWTH AND DECAY 
C ｜ｾｾ＠ A SECJNDARY VALVE CAVITY AND I1S CLOSING PRESSURE 
C ARE DEALT WITH IN THIS SECTION FOLLOWING THE COLLAPSE 
C OF THE !'Hr:RNAI. PIPE Sr:cTJON VAPOlR CAVITY MENTIONED 
C ABOVE. 
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C SEPARATIJN AT CLOSED VALVE. 

73 PP('N+1) = YAP 
CALL CAVITY ('"G,1,N-1,VU,PU,F1,VV) 
CALL ｓｏｾｔｅｾ＠ ( TS, TSf'lAX, J1 ) 
IF ( ｔｓｾａｘ＠ .. 0.0 ) 47, 47, 48 

48 FACT = ( OT- TSMAX ) I OT 
TIME = TIME" TSMAX 
DO 49 I = 1, tJ.1 
VV(l) = '1(1) -+- FACT*(VV(I)-V(J» 
PP(I) = PCI) + FACT*(PP(!)-P(!» 

49 CONTINU= 
47 VOl = VJL .. AREA*(DT-TSMAX)*(VV(I\+1 )+V(N+1 »/2,0 

If ( VOl" :LO ) 37,38,39 
39 ROUTE:; ｾ＠ ,; 

GOTO 2C) 
37 DTR = ＭｖｊｌＯＨａｒｅａＪｃＮＵＴＱＭＨｖｖＨｎＫＱＩＫｖＨｉｾＫＱﾻＩ＠

TIME = TiME - DTR 
FACT = ( OT .. DTR ) I 01 
DO 40 I X = 1, N+' 
VV(IX) = V(IX) + FACT * VV(IX) - V(IX» 
PP( IX) = P( IX) + FACT * PP( IX) .' P( IX» 

40 CONTINUE 
C cOLUMN ｒｾｊｏｉｎｅｄＮ＠

38 VCLOS = VV(N-1) 
V V ( N + 1) = ;!, 0 
PP(N+1) = 'lAP + VCLOS I Y2 
NPATI-! = \.: 
VOL : u.:) 

ICAV ;: .r 
JS·: ) 

ROU TE = J. i! 

JY = 1 
GOrD 29 

C THE FOLLOWING SECTION DtALS WITH lHE PRINTING OUT OF 
C RESULTS ｾｎｄ＠ THE ｃａｌｃｾｌａｲｉｏｎ＠ OF THE BASE CONDITIONS 
C rOR ｔｈｾ＠ ｾｅｘｔ＠ TIME STEP. 

29 IF ( reA" .. 'j ) '291, 292, 291 
291 0 U 3:J L C = 1, N + 1 

'11 (Le) = V(Le) 
P1(LC) = P(LC) 

V(LC) = VV(LC) 
ａｾＨｌｃＩ＠ = PP(LC)/ 144.J 

3J P(LC) = ｾｐＨｌｃＩ＠
W RI T E ( 2, ｾ＠ 9>T I HE, VC (K 13 ) , ( v (L D) , L 0 = 1 , N + 1 ) I ( A P ( L D) , L D = 1 , N + 1 ) , V OL 
Goru Ｓｃｾ＠

ＲＹｾＧ＠ DO 3. 1 ｌｾ＠ = 1, N+1 
U V ( Le) ］ＺＧＮｾＺ＠

DV ( L C) = • '.' 
P<LC) =P,;)(LC) 
ａｾＨｌｃＩ＠ = PP(LC) I 144,0 
IF ( Le - JS ) 3U2, ＳｾＳＬ＠ 3£4 



302 V(LC) = VV(LC) 
ｕｖｾｌｃＩ＠ = VV(LC) 
GOTO 3,1 

303 V(LC) = VVU(LC) 
UV(LC) = VVU(LC) 
DV(LC) = VVD(LC) 
GOTO 3,1 
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304 V(LC) = VV(LC) 
DV(LC) = VVCLC) 

.301 CONTINUE 

C 

ｗｒｉｔｅＨＲＱＱｾＹＱ＠ )TIME,VCCKBJ, (UV( 1),1=1 ,N+1), cove I), I=1,N+1), 
1 ＨａｐＨｉＩＬｉｾＱＬｎＫＱ＠ ),VOL,vS 

1091 ｆｕｒｍａｔＨＲｾＱｾＮＴＬＱｘＬＳｈｕｖ］ＬＧｏｆＷＮＲＬｲＷＮｾＯＲＧｘＬＳｈｄｖ］ＬＱｄｆＷＮＲＬｆＷ ＮＲＯＲＲｘＬ＠

1 2HP=, 11 F7.2,r,:: .• 8,I31 ) 
3 0 Q P U ( 1) = j. ｾＬＡ＠

VU ( 1) :: ＬＭＬＬｾ［＠

PlHN+1) :: U.O 
V()(N+1) :: ｾＮｏ＠

DO 14 I:: 1, N 
PO(I) = _ .5* (P(I)+P(I·1» 
I F e J ｾ＠ J S ) 7 i, 1 , 7 4 2, :' 4 1 

741 VDeI) = ｾＮＵＪ＠ ev(I) + VCI.,» 
GOTO 74 

742 VDeI) = j.5 * ( DV(l) + VCI.1 » 
7A CONTINUE 

DO 75 I :: 2, N+1 
Pu(I) = PD(I-1> 
VU(l) :: ｖｄＨｩＭｾＩ＠

75 cONTINUE 

C RUN "TIME CHECK -
IF ( ｔｉｈｾ＠ - THAX ) 25, 31, 31 

C NUMBER ｯｾ＠ DATA SETS CHECK -
31 IF ( 13 - lA ) 4, ;)2, ＺｾＲ＠

32 ｬｾ＠ ( NX - NRUN , 45, ｾＶＬＧ＠ 46 
46 PAUSE 

STOP 
END 
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SUBROUTINE VALVE ( P,V,A1,XV,XP ) 

c VALVE ｓｏ｟ｖｾｓ＠ THE OPEN VALVE ｂｏｕｾｄａｒｙ＠ CONDITION. 

DIMENSIJN P(1' ),V(11 '/A1 (11 ),XVC'1 ),XP(11 ).A3C A:1) 
cOMMON ｾＬｄｔＬｋｉｎｖｉｓＬｔｒａｉＧｓＬｄＬｙＲｊｹｾＬｐｒＬｖａｐＬｖｃｈａｒＬｊｓＬｖｃｌｄｓ＠
X K = V ( Ｇｾ＠ ) + Y 2 * P ( N ) - ., • ') * 1\ 1 < N ) .. V ( N ) a A B S ( V ( N ) ) 
Ir ( ｖｃｾａｒＩ＠ 6,5,6 

5 X V ( N+ 1 ) = \). n 
XP (N+1 ) = XK I Y2 
GOTO 7 

6 Z, = , ＮｾＯＨｙＵＪｖｃｈａｒＪＢＲＩ＠
AX = ａｾＨｎＫＱＩＯＲＮｊ＠

4 Z2 = 1.J/(Z1+fX) 
XV(N+1) = ｓｑｒｔﾫＨｚＲＯ＿ｏＩＪＪＲＩＫｚＲＪｘｋＩＭＲＮＵｾｚＲ＠

CALL rRiCT ( ｘｖＮｎＫＱＯｎｾＱＬａＳ＠ ) 
A 3 ( N + -j) = A 3 ( i 1+1 ) /2 • ｾ｝＠

EROR = «A3(N"-1)/AX)-'!.Q)*1uO.G 
IF ( ｾＸｓＨｅｒｕｒＩ＠ - 5.J ) 2,2,3 

3 AX = A3(N+1) 
GOTO 4 

2 
7 

XP(N+1) = 
RE r URtJ 
ENLJ 

. ' 

X t\ - X V ( N + ｾ＠ ),' (1 • l) + A 3 ( N ... 1 ) .. A 8 5 ( X V ( N + 1 ) ) ) ) I Y 2 
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SUBROUTINE CAVITY ( SLuPE,INTM,}'V,P,A1,)(V ) 

C CAVITY ｃｾｌ･ｕｌａｔｅｓ＠ THE ｖｾｌｯ･ｉｔｉｅｓ＠ AT WHICH THE 
C COLUMN S=PARATES. 

OP1ENSIO\J V(11 ),P(11 ),A1 (11 ),XV(1' ),A2(11) 
COMMON ｾＬｄｔＯｋｲｎｖｬｓＬｔｈａｎｓＬｄＬｙＲＬｙＵＬｐｒＬｖａｐＬｖ･ｈａｒＯｊｓＬｖ･ｌｏｓ＠

IF ( INTM - 1 ) 1,2,2 

2 A:: Vel) 
ti = PCI) 
C :: A1(I) 
GOlD 3 

1 IF" (SLJPE ｾＱＮＱＲＬＱＲ＠

12 A = V(I-1) 
8 = P(I-1) 
C = A';(I-1) 
GOTO 3 

11 A = V(I+1) 
B = P ( 1 + 1·) 
C=AHI+1) 

3 

ｾ＠ 3 
4 

I) 

6 
. 1 

9 

XK = A-SLOPE*Y2*(VAp-8)-O.5*C*A*ABSCA) 
ex = A1(I)/?'.:j 
IF (eX) 13,14,13 
uo (XK) 4,5,5 
SIGN;: 1,'.: 
GOlD 6 
SIGN:: -1.f; 
XV(I) :: (SIGN/(2.,j*cX»-SIGN*SQR1«(1.0/(2.0*eX»**2+ABS(XK) 
i ex) ) 
IF ( XV(J) ) 9,7,9 
CALL FRIer ( XV,J, LA2 ) 

A2(1) :: A2(1)/2.J 
ER 0 R :: « A 2 ( I ) I eX) - 1 • 0 ) * 1 I) '.: • 0 
IF ( ａｾｓＨｅｒｏｒＩ＠ - 5.0 ) 7,7,8 

8 ex = A2(I) 
GOTD 6 

14 XV(I):: XK 
7 RETURN 

END ... 
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SUBROUTINE FRICT ( U, 11, 12, AI ) 

C FRIer CA_CULATES FRICTIUN FACTOR AS A FUNCTION OF 
C REYNDlOS NUMBER, 

REAL KI'JVIS 

DIMENSID'J U(31), A1 ＨＳｾＩ＠
COMNON 1\1, DT, KINVIS, TkANS, D 
DU 1 I = 11, 12 
I F ( U ( 1 » 3, 2, 3 

2 A = .--.:.: 
GO TO 4 

3 - RE= AAS(J(I» * D I K!NVIS 
IF ( RE - TRANS ) 5, 6, 6 

5 A = ＱＶＬｾ＠ I RE 
GOTD 4 

6 A = .. ｾＷＹ＠ I RE ** ｾＬＲＵ＠

4 A 1 ( I) :: 2. '; * A * 0 T I 0 
CONTINUE 
RETuRN 
END 

SUclROUTINE SORTER u, W, J 

C SORTER D::TERMIilES THE TIME AND SECTION WITHIN THE PIPE 
C AT WHICH VAPour PRESSURE WAS FJRSl REACHED. 

OIMENSIO'J UC':1!j) 

COMMON 'J ,DT 
OT = OT * , ｩｾ＠ et]. n 

W = ｾＧ＠ , 0 
DU 2 I :: 1 , N+1 
U ( I ) .- \J( I ) * 'I r- (; 0 , 0 

IF ( U(I),EQ.O':' ) U ( 1 ) = o , 0 
IF ( W - U ( 1 ) ) 3, 2, 2 

3 ' ,J = I 
W = U ( I ) 

2 CONT!NU:: 
w = W I 1 :' "." (J 

[)T = OT I 1 :; u 0 • n 
ｒｅｔｕｒｾｾ＠

E:NlJ 
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SU8ROUTINE INTERNAL ( INTH,I,P,V,P1,V1,E,E1,XV,XP 

C INTERNAL SOLVES THE CHARACTERISTIC EQUATIONS O( AT EACH 
C INTERNAL PIPE SECTION. DUE TO ThE 2ND ORDER APPROX. 
C INtEGRATION AND THE ｖｾｒＱａｂｌｅ＠ FRICll0N FACTOR 
C AN ITERATIVE PROCEEDUHE 15 ｎｅｾｄｅｄ＠ TO CALCULATE VELOCITY. 

_ DIMENSrO\l P(11 )/P1 (11 "VC11 ),V1 ＨＱｾ＠ )/EC11 ),E1 (11 ),C3(11), 
1 XP(11),X:V(11) 

COMMON ｜ｪＬｄｔＬｋｉｎｖｉｓＬｔｈａｾｓＬｄＬｙＲＬｙＵＬｐｒＬｖａｐＬｖｃｈａｒＬｊｓＬｖｃｌｏｓ＠

1 F C I - 1 ) 1, 1 ;J I 1 
1 IF ( INTM. GT. 1 ) GOTD 2 

A:;; P(I-1) 
B :;; V(l-1) 
C :;; E(I-1) 
A1 = P1(I+1) 
81:;; V1<I+1) 
C1 = EHl+1) 
GOTD 3 

2 IF ( I-JS ) 21,22,21 

Ｒｾ＠ XP(I):;; YAP + VCLOS/v2 
XK = VCI) - Y2*(XP(I)·P(I»"O.5*ECI)*V(I)*ABS(V(I» 
C X = E ( I ) I 2 • ｾｾ＠
GOTO ,5 

21 A=p(I) 
B = Vel) 
C = E(l) 
A1 = P1(1) 

81 = VHl) 
-C1 = E1(l) 

GLlTO 3 
'1 0 IF ( IN T M. G T. 1 ) GoT U 1 2 

ｘｾ＠ = ｖＨＲＩＫｙＲＪＨｐｒＭｐＨＲﾻＭｅＨＲＩＪｏＮｾＪｖＨＲＩＪａＸｓＨｖＨＲﾻＩ＠
ex-: E(1)12.(' 
GOTD 16 

12 XK=V1 (1 )+Y2*(PR-P1 (1 )-O.5*E1 (1 )*V1 (1 )*ABSCV1 (1» 

ex:;; EH1)/?.;; 

16 XP(1):;; PR 
GOTD 15 

3 XP(I);: .5*«A+A1)-+-(CB-81)"O.5*(C*8*ABS(B) 
ＭｃＱＪｂＱＪｾｂｓＨＸＱ＠ »)/Y2) 
XK = .. 5*(B+B1+Y2*(A-A1 ＩＭｯＮＵＪＨｃＪｾＪａＸｓＨＸＩ＠

1 +C1*A',*ABS(81)) 
ex = (C+C1 )/4. r. 

1, IF e XK ) 4,5,5 
4 SIGN = 1.: 

GOlD 6 
5 SIGN = ＭＱＮｾＩ＠
6 XV(I)=(SlGN/(?C*CX»)-SIGN*SQR1«(1 .O/(2.0*CX»**2+ABseXK)/CX» 

CALL FRICT ( XV,I,I,C3 ) 
C3(I) = C3(I)/2.0 
EROR = (CC3(I)/CX)-1.Q)*1li!i.O 

•.. 1 F ( ｉｾ＠ 8 S (E R fl ｲｾＩ＠ - 5. C ) 7, 7, 8 
A ex = c3 Cl) 

GOTD S 
? RE:rURN 

E:NiJ 

FINISH 
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Valve boundary equations during column 
separation on its downstream face 

The four equations necessary to define the boundary 

conditions on both sides of a closing valve in the presence of an 

air/vapour cavity on its downstream face are: 

PP2 ,1 = VAP + PA (4.1) 

T = VV1,N1+1 ;( AP 
PP2.1 ) PP1,N1+1

0 

V01 
(4.2) 

VV1,Nl+l = K1 - K3PPl ,Nl+l (4.3) 

VV2 ,l = K2 + K4 PP2 ,l (4.4) 

where ｋｾ＠ = 1/pc1 
note that K2, K3 notation is reversed 
relative to the main text. 

K4 = l/pc2 

Kl = V1,N1 (1 - 2f ｾｔｬｶｬ＠ NIl) + P 1,N1 K3 
D ' 

K2 = V2,2 (1 - 2f ｾｾｉｖＲＬＲＱＩ＠ - P2,2 K4 

K5 
_ 2 -, 
- Ｈｾｐ＠ 0/ (V 01 T) ) 

The expression for PA, the partial pressure of the released 

air, may be written as 

PA = I AIRVOL\ n ATM 
, VOL 1 

where n is the polytropic coefficient of expansion. 

(4.5) 

Two cases will be dealt with, namely n = 1 and n > 1. 

Case 1: n > 1 

The available equations may be written as: 

A2 = K5 (B - (C + VAP» 

A = K1 - K3 B 

(4.6) 

(4.7) 
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D = K2 + K4 (C + VAP) 

C = PA 

where A = VV1,Nl+l' B = PP1,N1+1' D = VV 2,1' and C = partial 

pressure released air. 

(4.8) 

(4.9) 

The volume of the cavity (VOL) and its air content (AIRVOL) may be 

calculated as: 

(4.10) 

where AR is the pipe cross sectional area and 6T is the time increment. 

Put K8 = ｖｏｾ｟Ｖｔ＠ + K9 (V2,1 - Vl ,N1+l) 

K9 = AR 6T 
2: 

and substituting for A, D in (4.10) from (4.7), (4.8) yields 

ｖｏｾ＠ = K12 + K13 C + K14 B 

where 

K12 = K8 + K9 (K2 + K4 VAP - K1) 

K13 = K9 K4, K14 = K9 K3. 

(4.11) 

The quantity of air present at any time is assumed to have 

been released by the fuel that passed through the valve between the 

instant considered and the time at which the pressure first fell below 

atmosphere. This quantity of fuel may be expressed as: 

FUELVOLT = FUELVOLT_6T + ｾ＠ 6T(A + V1,N1+1) 

and the quantity of released air: 

ａｉｒｖｏｾ＠ = ｆｕｅｌｖｏｾ＠ (ATM - 0.5 (C + VAP + P 2 Ｑﾻｾ＠
, ATM 

where K is the Bunsen solubility coefficient at the working temperature. 

Substitution in (4.9) then yields: 

C = tK18 + K9 A)(lIl - 112 C1 n ATM (4.12) 
K12 + K13 C + K14 B 

where 

K18 = ｆｕｅｌｖｏｾ｟Ｖｔ＠ + K9 V1,N1+1 
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W1 = (ATM - O. 5 (V AP + p 2 ,1» K/ ATM 

W2 0.5 K/ATM 

Substituting for A in (4.12) yields an expression in terms of B, C 

«KlO - Kll B) (Wl - W2 C)( n 
C = l K12 + K13 C + K14 B J ATM (4.13) 

where 

KlO = K18 + K9 Kl 

Kll K9 K3 

Equation (4.13) may be expressed as: 
n+l l/n 

Xo C n + Xl C + X2C + X3 = 0 (4.14) 

if B is known. 

Similarly from (4.6) and (4.7) a quadratic may be formed in terms of 

B and C: 

B2 - B \K5 + 2Kl K3} + __ 1 __ (K12 + K5(C + VAP» = 0 

[K32 K32 
(4.15) 

The method of solution is as follows: 

1. Use C = P2,1 as a starting value as the change in pressure 

across any one time step is small. 

2. Substitute for C in (4.15) and solve for B. 

3. Substitute for B in (4.14) and solve for C. 

4. Compare the two values of C, if the difference is too 

great, say above 0.5% repeat the above procedure using the 

new C value as a starting value. 

The procedures in program SEPG are carried out by Subroutines 

VALVE and AIRV. The remaining unknowns can be calculated by 

substituting C into equations (4.6) to (4.9). New values of FUELVOL, 

VOL, and AIRVOL may also be calculated. 

If the valve is closed at the end of the time step being 

considered A = 0 in equation (4.10) and the cavity volume becomes: 

VOLT = K12 + K13 C 
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where K12 = K8 + K9 (K2 + K4 VAP). 

Equation (4.13) becomes: 

C = \K18 (W1 - W2 c;L n ATM 
l K12 + K13 cJ (4.16) 

which may be solved directly for C. The pressure in the cavity 

PP2,1 and the interface velocity VV2,1 may now be calculated. The 

upstream conditions may be calculated using VV 1,N1+1 = 0 as the 

boundary. 

Following valve closure the calculations of the cavity 

boundary conditions may be split into the opening and closing phases. 

1. Opening phase: Air continues to be given up by the 

maximum value of the FUELVOL term: 

hence AIRVOL = ｆｕｅｌｖｏｾ＠

and ｖｏｾ＠ = K8 + K9 D 

where K8 = ｖｏｌｔ｟ｾｔ＠ + Kg V2,1 

(W1 - W2 C) 

C = (K10 - K11 cl n ATM 
l K12 + K13CJ 

where KlO = ｆｕｅｌｖｏｾ＠ W1 

Kll = KlO W2/Wl. 

(4.17) 

Equation (4.17) may be solved for C and values obtained for 

the cavity pressure and interface velocity during the 

opening phase. 

2. Closing phase: No air is allowed back into solution, hence 

Case 2: 

AIRVOL = FUELV01MAx (Wl - W2 C)MAX 

and C = 5 AIRVOL C L n 
lk12 + 13 J 

AIM (4.18) 

thus yielding the required boundary conditions at the 

cavity. 

n = 1 

Equations (4.6) to (4.9) may be written as: 
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A2 = K5 (B - C) (4.19) 

A = K1 - K3 B (4.20) 

D KZ + K4 C (4.21) 

C = VAP + AIRVOL ATM (4.22) 
VOL 

where C = PP2,1 and A, B, D, Kl-5 have the same values 

as in case 1. 

Following case 1 the cavity volume may be written as: 

where 

V0Lr = K12 + K13 C + K14 B 

K12 = K8 + K9 (K2 - K1) 

and K8, K9, K13, K14 have the same values as in case 1. 

The quantity of air released may be expressed as: 

ａｉｒｖｏｾ＠ = ｆｕｅｌｖｏｾ＠ (ATM - 0.5(C + P2 1» K 
, ATM 

Substitution in (4.22) yields: 

C = VAP + (K6 + K7A + K18) (loll - W2 C) 
ｾ＠ VOL 

where K6 = FUELVOL
T

_
llT ATM 

K7 = AR 6T ATM/2 

K18 = K7 V1,N1+1 

loll = (ATM - 0.5 P2 1) K/ATM , 
W2 = 0.5 K/ATM 

Substituting for A in (4.24) from (4.20) yields: 

C • VAP + (K20 - K21C - K22B - K23BC) 
\ K12 + K13C + K14B 

where K20 = W1 (K18 + K6 + K7 K1) 

K21 = K20 W2/W1 

K22 = loll K7 K3 

K23 = W2 K7 K3 

Similarly, from (4.19) and (4.20) 

C = B - A2/K5 

(4.23) 

(4.24) 

(4.25) 



- 322 -

C = B(l + 2K1 K3) - K32 B2 - K12 (4.26) 
K5 K5 K5 

Equation (4.26) can be used to calculate C2 and values of C and C2 

may then be substituted into (4.25) yielding a qua.tic in B: 

where 

CO B4 + Cl B3 + C2 B2 + C3 B + C4 = 0 

CO = K13 K34 

K52 

Cl = -2 K13 K17 K32 - Kl4 K32 + K23 K32 
K5 K5 K5 

C2 = -K12 K3 2 + K13 Kl72 + 2K13 Kl2 K32 

K5 K5 2 

+K14 K17 + VAP Kl3 K32 - K21 K32 - K23 K17 
K5 K5 

C3 = K12 K17 - 2K13 K17 K12 K14 VAP 
K5 

Kl4 K12 
K5 

- K13 K17 VAP + K22 + KZ1 K17 + KZ3 K12 
K5 

C4 = -K12 K12 + K13 K14 - K12 VAP + VAP K13 K12 
K5 K52 K5 

-K20 - K2l Kl2 
K5 

and K17 = 1 + 2 K1 K3 
K5 

(4.27) 

Equation (4.27) may be solved by Newton's Method, the required 

root is known as the pressure change across one time step is small so 

that B - P1,N1+1 may be used as a starting value. 

These procedures in programs SEPF, SEPH, SEPI, SEPJ and 

SEPK are carried out in Subroutine VALVE. The remaining unknowns may 

be calculated by substituting B into equations (4.19) to (4.22). New 

values of AIRVOL, FUELVOL and VOL may also be calculated. 
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If the valve is closed at the end of the time step being 

calculated a different procedure is required as T = 0 implies K5 = 0 

and the program would fail at equation (4.27). In this case, put 

A = 0 so that: 

ｖｏｾ＠ = KB + K9 D 

and 

ａｉｒｖｏｾ＠ = (K6 + K18)(W1 - W2 C) 

Substituting in (4.21) and (4.22) yields: 

C = VAP + (K6 + K18)(W1 - W2 C) 
K8 + K9 (K2 + K4 C) 

(4.28) 

which reduces to a quadratic in C. This procedure is also allowed for 

in Subroutine VALVE. 

Following valve closure the calculations of the cavity 

boundary conditions may be split into the opening and closing phases: 

1. Opening phase: air continues to be given up by the maximum 

value of the FUELVOL term; hence from equations (4.21), (4.22) 

where 

and 

PP2,1 

K24 

K6 

= VAP + K6 (W1 - W2 PP2,1) 

K24 + K9(K2 + K4 PP2,1) 

= ｖｏｾ｟ｾｔ＠ + K9 V2,1 

= ATM ｆｕｅｌｖｏｾ＠

Equation (4.29) may then be solved for PP2 l' , 

(4.29 ) 

2. Closing phase: the air content is assumed constant at its 

maximum value. This effectively reduces equation (4.29) to 

= VAP + AIR..ATM 
K24 + K9(K2 + K4 PP2,1) 

where AIR = FUELVOh .... (W1 - W2 C . ) 
ｾ＠ mln 

These procedures are carried out in Subroutine CAVITY. 
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10.5 Appendix 5 Computer programs written to predict column 
separation downstream of the valve 

Two models of this phenomena were studied, namely cavity 

formation with and without air release from the fuel passing through 

the closing valve. All the programs, SEPE - SEPK employed the 1st 

order finite difference equations, with friction factors based on local 

Reynolds Number at each section at each time step. A polynomial curve 

fitting technique was used to provide the T vs time data during valve 

closure. The programs, SEPF-K employing the released air model accepted 

input pressures in absolute values due to the introduction of the pVoln 

= k expression. 

1. SEPE Vapour only case. Cavity assumed to form when pressure 

falls to fluid vapour pressure. Pressure rise on cavity 

collapse instantaneous. 

2. SEPF Released air case, cavity opens at atmospheric pressure due 

to air release. Coefficient of expansion taken as n = 1.0. 

3. SEPG Identical to SEPF except that 1 < n ｾ＠ 1.4. 

4. SEPH Investigation of column separation upstream of a valve 

positioned between two reservoirs. Upstream cavity 

unaffected by released air. n = 1.0 assumed downstream as 

in SEPF. 

5. SEPI Identical to SEPF except that output statements at every time 

step replaced by a sorting procedure designed to select 

maximum and minimum pressures, their event times and maximum 

cavity volume values etc. 

6. SEPJ Version of SEPI designed to investigate the limits of steady 

state parameters necessary to either avoid or restrict 

column separation. 

7. SEPK Identical to SEPF but including a glass/aluminium junction 

3 m downstream of the valve. 
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This appendix contains flow diagrams for SEPE, SEPF and 

SEPG together with flow diagrams for the VALVE and CAVITY subroutines 

dealing with the boundary conditions at the cavity interface. 

The notation included in this report has been kept close to 

that employed in the programs. Additional notation, together with 

descriptions of all the subroutines employed in SEPE-K are also included. 
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A.5.l Description of subroutines used in SEPI-K 

Subroutine PRELIM. 

This procedure transforms the input data from the valve 

characteristic - angle and angle - time curves into a form suitable 

for use in the following procedure CURFIT. 

Subroutine CURFIT. 

This procedure is designed to fit a polynomial of any given 

order to a suitable number of points. The coefficients of each 

polynomial curve are stored by PRELIM. 

Subroutine INTER. 

This is a cross plotting procedure. For any given time INTER 

calculates the valve angle and can then be called a second time to 

calculate the value of valve characteristic appropriate to that angle. 

Subroutine FRICT. 

FRICT calculates the friction factor at each section of the 

pipeline at each time step. 

Subroutine VALVE. 

This subroutine calculates the pressure and velocity conditions 

on each side of the valve during closure. If separation occurs on 

the downstream side of the valve the procedures outlined in this report 

are employed to calculate the cavity pressure, air content, volume 

and interface velocity. A flow diagram for VALVE is included in this 

appendix. 

Subroutine RESERVOIR. 

RESERVOIR calculates the velocity at the inlet to each reservoir 

tank, the constant pressure boundary condition being assumed. 

Subroutine INTERNAL. 

This procedure calculates the pressure - velocity conditions 

at each internal section along the pipeline by solution of the C+ and 

C characteristic equations. 
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Subroutine CAVITY. 

This subroutine calculates the pressure and interface velocities 

at the cavity. For a cavity forming at the valve the effect of 

released air is included. A flow diagram for this subroutine is 

included in this appendix. 

Subroutine VAPOUR. 

The pressures at each section of the pipeline are checked for 

calculated values at or below the vapour pressure of the liquid. If 

the calculated pressure is less than vapour pressure the time during 

the preceding time step at which it passed through the vapour level 

is calculated. 

Subroutine SORTER. 

This procedure uses information from VAPOUR to determine the first 

section to display pressure below or equal to the fluid vapour pressure. 

Subroutine FACTOR. 

This subroutine is used to interpolate all pressure-velocity 

results back to the time of first occurrence of vapour pressure. The 

necessary interpolation factor is calculated from the output of 

SORTER. 

Subroutine AIRV 

This procedure is called by VALVE and CAVITY in SEPG to solve an 

. (n+l)/n l/n equat10n of the form ax + bx + ex + d = O. 
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A.5.2 Notation employed in SEPE - SEPK. 

The notation below is arranged in the order in which the 

terms appear in SE PH 

NRUN 

IJ 

KINVIS 

TRANS 

VAPI, VAP 

RHO 

N, ZN 

PL 

C 

D 

VO 

A 

DT, DTO 

ICAV 

PRl, PR2 

TMAX 

ZDT, ZDTO 

M 

NSAVC 

NPAVC 

VC, B, VCHAR 

AN, AI, AX 

NSAT 

NPAT 

T, TIME, Tl 

Cl, C2 

TC 

Number of test cases to be computed 

Counter 

Kinematic viscosity fluid 

Transition Reynolds number 

Vapour pressure fluid 

Density fluid 

Number of sections in each pipe 

Length of each pipe 

Wave speed 

Pipe bore 

Initial velocity 

Area of each pipe 

Time increment 

Marker indicating presence of a cavity 

Reservoir pressures 

Maximum time for each test case 

Interpolation factor 

Order of polynomials to be fitted by CURFIT 

Number of sections in angle-valve characteristic curve 

Number of points in each section of above curve 

Valve characteristic 

Valve angle 

Number of sections in angle-time curve 

Number of points in each section of above curve 

Time measured from start of valve motion 

Coefficients of polynomials fitted to VC-AN and 

T-AI curves. 

Valve closure time 



V 

REN 

FF, Fl, FlD 

FDR 

AP, P 

RO 

ATM 

VOLX 

FUELVOL 

AIRVOL 

VOL 

VOL2 

KB 

INTM 

Vl, Pl 

VV, pp 

TS 

TSMAX 

Jl 

FACT 

Wl, W2 
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Velocity at a pipe section at time T 

Reynolds Number 

Friction factor 

Frictional loss per pipe section 

Pressure at a section at time T 

Marker indicating cavity condition, i.e. opening or 

closing 

Atmospheric pressure 

Maximum volume cavity 

Fuel giving up its air 

Volume of released air at N.T.P. 

Cavity volume at time T 

Cavity volume at ｔＭｾｔ＠

Counter 

Marker indicating whether ｾｔ＠ = ｾｸＯ｣＠ or < ｾｸＯ｣＠

Velocity and pressure at time ｔＭｾｔ＠

Velocity and pressure at time ｔＫｾｔ＠

Time at which vapour pressure was reached at each section 

Maximum value of TS array in each time step 

Section having maximum TS value in each time step 

Interpolation factor 

Constants relating to air concentration 

The notation in the subroutines follows the above list 

closely. 



- 330 -

A.S.3 Flow diagram for SEPE, SEPF, SEPG 

Read data: pipe lengths, bore, wave speed, No. of sections in 
each pipe, initial flow velocity, fluid density and viscosity, 
transition Reynolds Number and maximum calculation time TMAX. 

Read in interpolation factor ZDT to be used if separation 
occurs. 

Read in order of the polynomials to be fitted to the T - angle, 
angle - time curves for the valve closure. 

Read in number of sections, the number of points in each section 
and their co-ordinates for the above curves. 

CALL PRELIM and CURFIT to fit the required polynomials 
which are stored in the form 

m+l j-l 
ｔｾ＠ - C (i, 1) + l C (i,j) ｾ＠

j=2 

q+l t-l 
ｾｴ＠ = D (k,l) + l D (k,t) t 

t=2 

Calculate steady state values (V,P) as arrays along both 
pipelines. 

Calculate time step ｾｔ＠ = ｾｸＯ｣＠

Assign steady state values to VCHAR, VOL, VOLX, AIRVOL, 
FUELVOL, etc. 

A. WRITE T, TIME, (V,P) for both pipes. 

Update time, TIME + ｾｔ＠

CALL INTER to calculate TT 

CALL VALVE 
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CALL INTERNAL, RESERVOIR for both pipes. 

Check valve position at end of time step: 

Valve open 
Goto B 

Valve closed 
Goto C 

B. Re assign VV, pp arrays into V,P arrays as a base for 
next time step and goto A. 

D. Update time, TIME + 6T 

Check state of cavity - if 'vapour only' case (SEPE), Goto E. 

1st cavity opening: 
V°Lt>V°Lr_ 6T 
FUELVOL is assumed 

1st cavity closing 
and subsequent boundary 
conditions 

to continue to release 
air. Marker RO in 
CAVITY call statement 

AIRVOL held constant 
at its maximum value, 
RO = 3 

- 2 CALL CAVITY 
CALL CAVITY 

G CALL INTERNAL and RESERVOIR 
for downstream pipeline. 

Check pp (2,2 ｾ＠ N 2 + 1) for 
values below or equal to vapour 
pressure by calling VAPOUR 
and SORTER. 

If positive CALL FACTOR to 
interpolate conditions back to 
instant of vapour formation 

If a cavity exists at the valve 
calculate its volume. 

Goto C. 

E. If PP(2,1) > VAP Goto F 
If VOL > 0 cavity open, call CAVITY with RO = 1 and 
calculate new value of VOL. 
If VOL ｾ＠ 0 cavity shut, VV(2,l) = 0 and 

PP(2,l) = VAP + pcVCLOS. 
Goto G. 

F. Calculate PP(2,l) from C- characteristic and boundary equation 
VV(2,l) = 0.0. 
Goto G. 
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C. WRITE TIME, (VV, PP) for downstream pipeline 
and cavity volume. 

Check rate of volume growth. 

If ｉｶｯｾＱ＠ < 10.5 * (VOLT - VOLT_6T)I 

then divide time increment by 2. 

If ｉｶｯｾＱ＠ > IVOLT_6T I revert 

to original time increment. 

Reassign (VV,PP) arrays as (V,P) as a base 
for next time step. 

If 6T < ｾｸＯ｣＠ then carry out interpolation procedure 
using value of ZDT to give PU, VU, PD, VD arrays 
as a base for the next time step. 

If TIME < TMAX Goto D 

FINISH 
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AS.4 Flow diagram for Subroutine VALVE 

VALVE calculates valve boundary conditions at time T. 
Check valve position at time T: 

Open 
Check pressure P(2,l} at 
time T - ｾｔ＠ against 
atmospheric pressure ATM. 

P(2,1} > ATM 
Goto C 

Closed 
No flow boundary on 
upstream side of valve. 
Goto A 

P(2,1} < ATM 
Goto A 

C. Calculate conditions on both sides of the valve 
assuming no separation. 

Check pressure PP(2,1} at time T 
against ATM. 

PP(2,1) < ATM 
Column separated at valve 
CALL FACTOR to 
interpolate conditions 
along both pipelines 
to time at which column 
separated. 
Goto B 

PP(2,1) > ATM 

Goto B 

A. Check valve position at time T, if 'vapour only' case Goto D. 

Open: 
Calculate boundary conditions 
on both sides of the valve 
using valve characteristics T, 

C+ and C- lines and 
PP(2,1) = VAP + PA as the 
four required equations. 

Closed: 
Calculate downstream 
conditions only from 
C- line and PP(2,1) = VAP + PA 

Calculate FUELVOL, AIRVOL and cavity VOL. 

Goto B. 

B. Return to Master Segment. 

D. If PP(2,1) ｾ＠ VAP, Goto B. 
If PP(2,1) < VAP, calculate boundary conditions on both sides 
of the valve using T, C+ and C- lines and PP(2,1} = VAP, as 
the required equations, then Goto B. 
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AS.S Flow diagram for Subroutine CAVITY 

CAVITY calculates pressure and interface 
velocity at a cavity boundary. 

Check value INTM 

INTM > 1 
PU, VU, PD, VD arrays 
are used as base 
conditions. 

INTM = 1 
P, V arrays are 
used as base 
conditions. 

SLOPE indicates which cavity interface velocity 
is to be calculated. Applies only to internal 
cavity. 

Check ｶ｡ｬｾ＠ RO. 

RO < 1 : 
No air in vapour cavity, 
PP(2,l) = VAP, VV(2,l) direct from 
C- characteristic. 

RO = 2 
Cavity opening, 
FUELVOL is still assumed 
to be releasing air. 

Return to Master Segment. 

RO = 3 
Cavity closing, 
AIRVOL held at its 
maximum value. 
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SEPE mas ter segment and 

VALVE and CAVITY subroutines 
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ｔａｓｾａＯｓｾｐｅＵＲＶＱＶｓｗａｆｆｉｅｌｏＯ＠

ｾｪＮＩａｇｅＱｑＶＹＷＱ＠

SECONDS500 
PR I iH6 000 
C 0 ｴＱｾＩ＠ 1 ｾ＠ ERr 0 R T R A, N 

LISTCLP) 
PROGRAM(SEPE52212) 
ｉｎｐｕｔＱＺＺｬｃｾｏ＠

OUTPUT2;;LPQ 

911 

9 

1 

THACE" 
END 

HASTER SE PE 
REAL_KINVlS 

• 
o r MEN S I Q'J N P A V C (1 0 ) , VC (1 0 I 5 0 ) I AN (1 0 , 5 0 ) , C 1 (1 0 , 1 0 ) , I'J PAT (1 0 ) I C 2 ( 1 0 , 
1'.. 10),A1 (10,10),T(10,10),T1 (500),AX(5011).B(5no>. T5(2.'I1), 
2AP(2,41), V1 (2,41 ',P1 (2,41 ),V(2.41 ) .• ｰＨｾＬＴＱＩ＠ .PP{2,41 >.VV(2,41), 
3Z(2,41). VU(2,41 ),PU(2.41 ),VJ)(2.41 >,PI)(2,41 ),r1 (2,41 ).F1D(?,41), 
4 A(2',D(2),CC?),DT(2),ICAV(2),PL(2),ZN(2),N(2),VO(2) 
ｃｏｍｍｄｎｍｊｋｉｎｖｉｾＬｔｒａｎｓＯｖｃｈａｈＯｄｐＯｒｈｏＬｐｒＱＯｐｒＲＬｎＮｖｄＲＮｚＲ＠ ,YAP 

5 , TIME ,OT 
READ(1,1Q1 )NRUN 
IJ = 0 
NPATH :; Q 
IJ = IJ + 1 
REAO(1,102) KINVIS,TRANS 
ｾｅａｄＨＱＬＱＰＲＩ＠ VAPI,"HU 
YAP = VA?I 
DO 9 I = 1, 2 
READ (1,101) N(I) 
REAO(1,103)PL(I),C(I),ZN(1),D(I"VOCI) 
FORMAT(5F10.4) 
A(I) ｾ＠ 3.1417 * (0(1)**2)/ 4,0 
OT(})= PL(!)/(CCI)*ZN(I» 
leAve!) = Q 
cONTINUE 
READ ＨＱｾＱＰＲＩ＠ PR1,UP 
RI!:AD (1.,02) TMAX,ZDT 
KINVIS. c KINVlS/10COOO,O 
READ ( 1,101 ) M 
READ ( 1,101 ) NSAVC 
DO 1 1=1, NSAVC 
READ ( 1,101 ) NPAVC(1) 
READ ( 1, 102 ) ( ｶｱｾｉＬｋＩＧａｎＨｉＬｋＩＬｋ］ＱＬｎｐａｖｃ･ｬＩ＠
CONTINUE 
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ｃａｾｌ＠ ｐｒｅｾｊｈ＠ ( AN,VC,NSAVC,NPAVC,C1 
READ ( 1,101 ) NSAT 
DO 2 !=1, NSAT 
READ (L101 ) NPAT(I) 
REAO(1,102) (A1(I,K),T(I,K),K=1,NPAT(I» 

2 CONTINUE 
CALL ｐｒｅｾｉｈ＠ (T,A1,NSAT,NPAT,C2) 
nTX= OT(1) 
Tt-a Te NSAT, NPATCNSAT» 
KMAX = ｔｾＯｕｔｘ＠ + 1.0 

101 F'ORMAT(r 3) 
102 ｦｏｒｍａｔＨＲｾＱＰＮＴＩ＠

REA 0 ( 1 , 1 11 ) I U A Y I I M T H, I YE: A R J I NU f1 
111 FORMAT (414) 

W R I T E ( 2, 2 0 4 ) I DAY , HlT H I lYE A R, I NUM 
2;)4 FORMAT(8-iDATE = ,j2,3H / ＬｉＲＬｾｈ＠ / ,1 4 ,I,12HRUf'J NUMBER = ,14,1H" 

1 11) 
C lNITIAL CONDITION!:) ALOIJ(i BOTH rIpE SEc'rIONS. 

C 

DO 22 I :I 1, 2 
nO 22 K = 1, N (l ) +1 
V(I,K) ;; VO(I) 

22 CONTINUE 
CALL FRIeT (O,OT,1,V,1,N(1)+LF1) 

30 

CALL FRIer ＨｄＬｄｔＯＲＯｖＬＱＬｎＨＲＩｾＱＬｆＱＩ＠
DO 23 I = 1, 2 
REN = ASS(VO(l»*D(I)/KINVIS 
FF :: O,079/REN**O.25 
FOR ｾ＠ 2.0*RHO*FF*PLc 1>*(V OCI )**2)/(D(I>*ZN(I» 
AA = 0.0 
0023 K=1, N<I)+1 
XR =' PR1 
IF ( !. Ea. 2) XR= P(1dH1)+1) - DP 
AA = AA + 1 .0 
P<I,K):: XR" (AA .. 1.0)* FDR 
AP(J,K) ::P(I,K)/1000.0 
cONTINUE: 
PR2 :I pC2·,IH2) ... 1) 

,TlME=O.O 
Z2 = 0.0 
VOL = 0.0 
VC H A R:: 1. 0 
WRITE<2,200) 
ｃａｌｃｕｌａｔｉｕｉｾ＠ INTERNAL POINTS DURING VALVE ｃｌｯｳｵｲｾｅ＠

K8 = 1 
INTM :: 1 
WRITE(2 .• 201 )TIHE,VCHAR, (V(1 ,K),K::1,N(1 ).1,3), (V(2,K),K:1 ,N(2)+1, 

1 2 ) , ( A P (1 , K ) , K :: 1 I N ( 1 ) ... 1 , 3 ) , ( A P ( 2 .' K ) , 1< = 1 , N ( 2 ) + 1 , 2 ) 
TIME:: TIME'" DT(2) , 
KB = K8 + 1 
T1(KB) :: TIME 
CALL Ａｎｔｾｒ＠ ( KB,T1,',NSAT,NPAT,KMAX,c2,AX ) 
CALL Ａｎｔｾｒ＠ ( KB,AX.AN,NSA VC,NPAVC,KMAX,C',8 
VCHAR :: 3(K8) 
DO 31 I = 1, 2 
C A. L L ! N T : RNA L (1, N, 1 , G , v , P , F 1 , P , v , F 1 ,. V V • PP) 
CALL ｒｅｓｾｒｖｏｉｒ＠ ＨｉﾷＱｾｃＬｖＬｐＬｆＱＬｖｖＬｐｐＩ＠

GONTINUi:: 



c 

c 

C 

38 

39 
3:? 
34 

33 

36 

35 

64 
37 

40 
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ｃｾｌｌ＠ VALVE ( ｖＬｐＬｆＱＬｃＬａｾｖｕＬｖｖＬｲｰ＠ ) 
IF' ｾ＠ Z2. GT I 0.0) GOTD 38 
GOTO 39 
ｖｖＨＲＬｾ＠ )=V(2,2)+CPP(2,1 )-P(2,2»/CRHO*C(2» 

1 -F1(2,2) * V(2,2) * ABS(V(2,2» 
VOL = ｖｏｾ＠ + A(2)*Di<2)*O.5.(VV(2,1)+V(2,1)-VD2-V01) 
IF' (VCHAR) 32.32,33 
IF' cpp(2,1) - YAP) 34,34,33 
PP(2,1) ;: YAP 
VV(2,1) ;: VC2,2) + <YAP - PC2,2»/CRHO * C(2» 

1 -F1<2,2) * V(2,2) * ASS (V(2,2» 
ICAV(2) ;: 2 
V02 ;: 0.0 
NPATH :: 1 
OT(2) ::: OT(2) * ZOT 
GO TO 33 
DO 35 I ;:. 1, 2 
DO 36 1\ ;: 1, N ( I ) +1 
V 1 ( I , K) ;:. V ( I , ｴｾ＠ ) 
P1(I,K) = P(I,K) 
V (I,K) =. VV(I,K) 
P (I,K) ;: PP(!,K) 
APCI,K) :. P(I,K)/10nO.Q 
CONTINUf:: 
CALL FRIer (0,DT,[,V",N(I)+1,F1) 
CONTINUE 
V01 :: Vo2 
WRITE(2 .. 2fl1.)TIME,VCHAR, (V<1 ,to,K;:1,N(1 )+1 ,3), Ｈ｜ＧＨＲｾｋＩＬｋＺＺＱ＠ ,N(?).;.1,2 

1 ), CAPr;1 ,Kid<=1 ,N(,I )+1,3), (AP(2,K) .K=' ＬｎＨＲＩＫＱＯｾＩ＠
IF' C NPATH. E(L 1) GOTo B3 
lr C ｖｃｈｾｒＩ＠ 37,37,30 
Iv(ICAV(2» 40,40,41 
LABEL 4u DENOTES NO VAPOUR FORMED UP TO VALVE CLOSURE TIME 
CALL RES:::fH'OIR (2,1 ,C,V,hF1 ,VV,PP) 
VALVE BnUNUARY, NO VAPOUR POCKET. 
VV(2,1);: 0.0 
pp(2,') = RHO*C(2)*CF1(2,2,*V(2,2)*ABSCV(2,2»-V(2,2» + p(2,2) 
CA L L I N T = R ｉｾ＠ A L (1 IN J 2, C • v , P , F 1 .' P J V , F 1 , V V • Pp) 
CALL VAPJuR (2,N,DT,VAP,P,pp,KZ,PP,TS) 
IF (KZ - (N(2)+1)J 43' 33' 33 
LABEL 43 ｉｎｄｉｃａｔｾｓ＠ PRESENCE UF FUEL VAPOUR. 
FACT = (DT(2)-TS(2,1 »/uT(2) 
DO 45 K : 2, N(2)+1 
CALL FACTOR (2,K,K,K,K_K,V.P,V1,P1,VV.PP,V,p,FACT.VV.PP.V,P) 
CONTINUE 
CALL FRIeT ( O,DT,2,V,2,2,F1 ) 
pp(2,1) : YAP 
VV(2,1) : V(2,2)+CVAP-P(2,2»)/(RHO*C(2»-F1 (2,2).V(2,2)*ABS(V(2,2) 

1 ) 
rIME = rIME - TS(2,1) 
ｬｃｾｖＨＲＩ＠ : 2 
DT(2) = OT(2)· ZDl 
TNTH .:: 2 
ｖｉｪｾ＠ = 010 
GOTO 50 

4i TIME = TIME ... IlT(?) 
NPATH = 2 
ｬｾ＠ ＨｬｃａｖＨＲﾻＶｵＬＶＰＬｾｾ＠



C 

C 

c 
c 
C 

c 

61 
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, 
LA8EL 61 DENOTES VAPOUR pOCKET AT VALVE. 
CALL ｒｅｓｾｒｖｏｉｒ＠ (2,2,C,VU,PU,F1.VV,PP) 
CALL ｉｎｔｾｒｎａｌ＠ C2,N,2,C,VU,PU,F1,PD,VD,F1D.VV,PP) 
CALL CAvITY (-1.0,2,C,2,1,VAP,VD,PD,F1D.VV,PP) 
CALL vAPOUR (2,N,UT,VAp,P,PP,KZ,PF,TS) 
C ｾ＠ L. L S 0 R T E H (N ( 2 ) +1 ITS, 2, LJ T , T S tl A X , J 1 ) 
FACT = (DT(2)-TSMAX)/DT(2) 
TIME = TIME" TSMAX 
DO 63 K =1,N(2).1 
CALL ｆａｃｲｏｒＨＲＬｋＬｋＧｋＬｋＬｋｾｖＬｚＬｐＬｚＬｖｖＬｚＬｐｐＬｚＬｆａｃｔＮｖｖｊｚＬｐｐｊｚＩ＠

63 CONTI ｎｕｾ＠
VOL = ｖｄｾ＠ ... A(2).(DT(2)"TSMAX)*(VV(2,1 )+V(2,1»/2.0 

64 

67 

65 

60 

73 

75 

'l8 

IF (VOl) 64,65,50 
DTR = -VO L/CA(2)*O.5*(VV(2,1 )+V(2,1» 
TIME = TIME -DTR 
FACT = (OT(2)- DTK)/OT(2) 
DO 67 K = 1,N(2)·1 
CALL FACTDR(2,K,K,K,K,K,V,Z,P,Z,VV,Z,PP,Z,FACT,VV,Z,PP,Z) 
CONTINUE 
COLUMN R:JOINED. 
VCLOS =." VV(2,1) 
ｖｶＨｾＬＱＩ＠ = 0.0 
pP(2,1) : VAP ｾ＠ VCLUS*RHO*c(2) 
VOL = 0.0 
ICAV(2) :; 0 
GOTD 50 
LABEL 60 INDICATES THAT THE VAPOUR CAVITY AT THE VALVE HAS 
COLLAPSED. 
CALL"RESERVOIR (2,2,C,VU,PU,F1,VV,PP) 
VALVE BOJNDARY/NO VAPOUR PRESENT. 
VV(2,1) = 0.0 
PP(2,1) = RH(J*C(2)*(F"1D(2,1)*VD(2,1)*ABSCVD(2 1»-VD(i' 1»",Pll( 

1" 2,,) , '". 
CALL !NT2RNAL (2,N,2,C,VU,PU1r"PD,VD,F1D,VV,PP) 
CALL VAPOUR (2,N,DT,VAp,p,PP,KZ,PP,TS) 
Jf(KZ ＭＨｾＨＲＩＫＧﾻ＠ 73,50,50 
LABEL 73 INDICATES VAPOUR PRESENT. 
FACT :«OT(2)-TS(2,1) )/llT<2» 

"DO 75 K : 2, N(2)·1 
CALL FACTOR ( 2,K,K,K,K,K,V,Z,P,Z,VV,Z,PP,Z,tACT,VV,Z,PP,Z) 
CONTINUf: 
DO 78 I = 1, 2 
Z(2, I )=P1 (2, I )+FACT*(P(2, I )-P1 (2, I» 
Z (2, 1"2):: V1 (2,1) Ｋｾ＠ ACT"" (V (2, I) -V1 (2, I » 
CONTINUt: 
PO(2,1) = Z(2,1)·ZDT*(Z(2,2)·Z(2,1» 
VO(2,1) : Z(2,3)+lU T*(Z(2,4)-Z(?,3» 
WRITE ( 2,,02) PD(2,1), VV(2,1) 
CALL FRl:;T<D,OT,2,VD,1",f1D) 
PP(2,1) = VAP 
V v"( 2,1) :: VD ( 2 , 1) + ( V A P .. P D ( 2 , 1 ) ) I ( RHO * C ( 2 ) ) 

1 "F1D(2,1) * VD(2,1) * .AtlS(Vl)(2,1» 
TIME = TIME - T5(2,,) 
ICAV(21 = 2 
ｉｎｔｩｾ＠ = 2 
VOL = 0.0 
GOTD 50 
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C LABEL 50 DENOTES ｷｒｉｔｾ＠ UUT OF RESULTS SECTION. 
50 DO 51 K = 1, N(2)+1 

V1(2,K) = V(2 .. K) 
P 1 (2, K) = P ( 2 , 10 
p(2,K) = PP(2,K) 
V(2,K) = VV(2,K) 
APCI,K) = P(I·K)/1000.O 

51 CONT I NUE 
83 Vu(2,1) = 0.0 

pU(2,1) : 0.0 
VD(2,N(2)+1)= 0.0 
PO(2,N(2)+1); 0.0 
DO 52 K:2,N(2).1 
VU(2,K) :. VC2,K) + lOT * (V(2,K -1) - V(2,K» 
PU(2,K) = P(2,K) + lOT * CP(2,K -1) - p(2,K» 

52 CONTINUE 
DO 53 K = 1,N(2) 
VO(2,K) = V(2,K) .20T * (V(2,K+1) - V(2,K» 
PO(2,K) = P(2.K) +ZUT * (P(2,K+1) - P(2,K» 

53 GONT! NUE 
ｃａｾｌ＠ FRleT (D.DT,2,VU,1jN(2)+1,F1) 
GALL FRleT <U,DT,2,VD,1,N(2)+',F1r,> 
WRITE(2,203)TtME, ＨｖＨＲＬｋＩＧｋ］ＱＬｎＨＲＩＮＱＬＲＩＬＨａｐＨＲＬｾＩＬｋ］ＱＬｎＨＲＩＫＱＬＲＩＬ＠

1 VOL . 
IF ( ｔｉｈｾＮ＠ GT. TMAX) GOlO 99 
IF (NPATH, EQ. 1) GOTD 84 
GOTO 41 

2 ,; 0 FOR HAT ( 1 H 1 , 1 0 11T I M Eve HA R , 5 X , 1 8 H ( 0 • ? * l 1) Src T 1 UN S , , 11 H V A l V E 
1 ,,18HCO.2*l2) SECTIONS.,II) 

201 FORMAT(2::'5.3,4HV = ,3f"7,2,7X,6f'7.2,1,10X,4HP = ,3F'7.2,7X,6F7.2,1/) 
202 FORMAT(F5.3,5X,4H V= 128X,6F7.2,/10X,4HP = ,28X,6F7·2,11) 

203 ｆｏｾｍａｔＨｆＵＮＳＬＵｘＬＴｈ＠ v= ,26X,6F7.2,/10X,4IiP = ＬＲＸｘｴＶｾＷＮＲＬｾＱＲＬＸＬＱＯＩ＠
9q IF" C !J. EQ, NRUN) GUTU 98 

STOP 
E"40 

... 
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ｓｕｂｒｏｕｔｉｾｅ＠ VALVE ( V,P,A1,C,A,VO.VV,PP 
ｄｉｍｅｎｓｉｏｾ＠ ｖＨＲＮＴＱＩＬｐＨＲＱＴＱＩＬａＱＨＲＬＴＱＩＬｎＨＲＩＬｖｏＨＲＩＬｾＨＲＩＬａＨＲＩＬ＠

1 PP(2,41).VV(2,41) 
1 ,DT(2) 
1· , Z(2,41) 
ｃｏｾｍｏｎ＠ M,KINViS,TRANS,VCHAH,DP,RHC ,PR1,PR2.N,VD2,Z2 ,YAP 

5 , TIME , Di 
X1 =V(1"N(1) )-A1 C1 ,rH1) '*V(1 ,N(1) >*ABS(VC1 ,N(1» >+P(1 ,N(1» 

1 /(RHO*CC1)' 
X3=VC2,2)-A1(2,2'*V(2,2)*A8S(V(2,2»-P(2,2,/(RHO*C(2» 
IF ( ｖｃｈｾｒＮ＠ GT. 0.0) GOTD 10 
vo2 = Q.1l 
VV(1,N(1).1) = 0,0 
PP(1,N(1).·,) = RHU*C(1)*X1 
GOTD 13 
X5=( (\ICH4,R*voe1) "'*2>1DP 
IF ( p(2.1), LE, VAP) GOiO 12 
X6=RHO*< CC(2)*A(1 )/ld2) ).C(1» 
X1=RHO*«C(2)*X3)+(X1*C<1 ») 
VVC1,(N(1 ＩＫＱﾻｾＭＨｘＷＯａｈｓＨｘＷﾻＪｘＵＪｘＶＯＲＮＰ＠ +(X7/ABseX7»*SQRT 

1 «(X5*X6)/2.0>**2.0 +X5*ABS(X7» 
VV(2,1) = VV(1, (Ne, ).1) )*A(1 )/,11.(2) 

VD2 = VV(2,1) 
PP(1,(NC1).1» = HHrJ*C(1)*(X1-VV(1,CN(1)+1))) 
PP(2,1) = RHO" C(2) .. (VV(2,1)-X3) 
IF' ( PP(2,1).LE.VAP ) . GOTD 12 2 
GOTD 13 
TS = OT(1)* ( VAP"'PP(2,1) )/(P(2,1 )"PPC2,1» 
fACT:': ( OT(1 )-TS>/DT(1) 
00 15 I = 1,2 
00 15 K = ＧｾｎＨｉＩＫＱ＠
CALL FAGrOR(I,K,K.K,K,K,P,V,Z,Z,PP,VV,Z,Z FACT pp VV Z Z) 
CONTINUE I ,," 

TIME:: TIME .. T5 
G(JTO 13 
X6 = X5* RHO * C(2) 
x7 ; x5 *. ( VAP • RHO*C(2) * X1 ) 
VV(1,N(1)+') = -X6/2.0 +(SOR1{(X6**2)-4.0*X7»/2.0 
v 0 2 = V '/ ( 1 , N ( 1 ) + 1 ) 
PP(1,N(1)+1) = RHU*C(1,*(X1-VV(1,f\(1)+1» 
Z2 = 1.0 
RETURN 
END 
ｓｵ｡ｒｏｕｔｩｾｅ＠ RESERvn:R ＨｉＬｉｎｔｾＬｃＬｖＮｆＬａＱＮｖｖＬｰｐＩ＠
DIMENSION CC2',V(2,41 ),P(2,41 ),A1 (2,41 ).VVC2,41 ),PP(2,41) ,Ne?) 
cOMMON M,KINVJS,THANS;VCHAR,UP;RHC,PR1 ,PR2 IN 
Y?'= 1.0/(RhO *C(l» 
JF (1-1) ',1,2 
PP(1,1) = PR1 
IFCINTH" 1) 3,3,4 
VveI,1) = Vel,2).Y2*(PR1-P(1,2»-A1 (I,2)*V(I,2}*A8S(VCl,2» 
GUTD 5 
vve!,1) = vel.1)+Y2*(PR1·P(I,,» -A1el,1)*v(I,1)*ARS(VCT,,» 
GOTD 5 
p'pe2, PH I ).1» = PR2 
JF(INTH - 1) 6,6,7 
VV(I,tN(I)+1» = V(I,N(1»-Y2*(PR2-p(I,NCI»)-A1 ＨｉＬｎＨｉﾻＪｖＨｉｉｾＨｊﾻ＠

1 * 11 A S ( v ( J , I j e 1 ) ) ) 
GO TO 5 
ｖｖ･ｉＬ･ｾｻｉＩＫＱﾻ］＠ V(!,N(I).1 ＩＭｙＲＪＨｐｒＲＭｰＨＱＬＨｎＨｉＩﾷｾ＠ ») 

1 • A 1 .( I , ( N ( I ) ... 1 ) ) * v ( 1 , (N ( 1 . ) + 1 ) ) * ,', B S ( v ( I , ( N ( I ) ｾＮ＠ 1 ) ) 

RETURN 
END 
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SUBROUTINE CAVITY (SLOPE,lNTM,Cc,I,J,VAP,V,P,A1,XV,XP) 
DIMENSION V(2,41 ),P<2,41 ),A1 (2,41 ),XV(2,41 ).XP(2,41 ),CC(2) 

COt'1MON :'1,KINVlS, TRANS,IfCHAR,'DP,RMO 
Y2 = 1.0/(HHO *CC'I» 
I F" (I N T ｉｾ＠ .. 1) 1, 2 , 2 

? A = Vq.J) 
B :: pq,J' 
C = A1(I,J) 
GDTO 3 

, IF" (SLOPE) 4,5,5 
'5 A:: V(I,J-1) 

B = p(I,J .. 1) 
C = A1(I,J-1) 
GO TO 3 

4 A = V(J,J ... 1) 
8 :: p<I,J+1) 
c:: A'(I,J+1) 

.,i XP(I,J) = YAP 
XV(I,J) = A - SLOPE * y2 * (VAP .. B) - C*A*AOS(A> 
RETURN 
END 

ｓｕｂｒｏｕｔｉｾｅ＠ VAPOUR (J,N,IJT,VAP,P,PP,KZ,PPX,TS ) 
OIMEf'.JSIO'J P(2,41),PP(2,41),PPX(2,41),TS(2,41)JH(2),OT(2) 

. KZ = 0 
no 3 K ::: 1, N<I)+1 
TS(l,K) :: 0.0 
X = PP(!,K) ... ABS(VAP) 
X1= ｐＨｉＮｾＩ＠ + ABS(VAP) 
IF (X) 2,6,4 

2 TSCI,K):: ｄｔＨｊＩＪＨｖａｐＭｐｐＨｉＧｋﾻＯＨｾＨｬＯｋＩＭｐｐｃｉＬｋﾻ＠
IV (X1) ＵＯｾＬＳ＠

5 TS(I,K) = 0.0 
6 PPX(I/K)= VAP 

QOTD 3 
4 KZ:: KZ ... 1 

'PPX<l,K) :: PP(l,K) 
3 CONrINUf: 

RETURN 
END 
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SEPF master segment and 

VALVE and CAVITY subroutines 



I 

ｔａｓｾｫＯｓｅｐｆＵＲＶＱＶｓｗａｆｆｉｅｌｕｉ＠

SPA:JE16900 
S=CJIJOS500 
PRI,H9000 
ｃｏｾｪｐ＠ I LER FORTRAN 

LlST(I.P) 
PROGRAM(SEPF52616) 
INPUT1:CRO 
OUTPUT2=l.PO 
TRACE2 
END 

MASTER ScPF 
REAL KINIJIS 

. 
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. . - - - --- ... 

o I ME N S 1 0'4 N P A V C ( 1 0 ) , VC ( 1 0 ' 50 ) , AN ( 1 0 , 50 ) , C 1 ( 1 0 , 1 0 ) , N PAT ( 1 0 ) , C 2 ( 1 0 , 
1 1 0 ) , A 1 ( 1 0 , 1 0 ) , T ( 1 U , 1 0 ) , T1 ( 20 0 ) , A X ( 200 ) I B ( ? 00 ) , T S ( 2 , 21 ) I 

2AP(2,41), V1 (2,41 )/P1 ＨｾＬＴＧ＠ ),V(2,41 ),PC2,41 ),PP(2,41 ),VVC2 / 41). 
3Z(2,41), VU(2/41 )JPU(2,41 )/VD(2,41 >,PIJ(2,41 ),F, (2,41 ),HO(2,4'1), 
4 A(2),0(2),C(2),DT(2),ICAV(?),PL(2),ZN(2),N(2),VO(2) 

COMMONM / KIN VlS / TRAIJS,VCHAH/ DP,RHo,PR1,PR2,N,VD2,Z2 ,YAP 
1 , VOL, FUEL VUL, VU 1 
2 ,OT/AIRVOL 
3 ,Z 
4 . I TIME 

READ( 1,101 ) NRUN 
IJ ;: 0 

98 I J = I J + 1 
ｒｅａｄｃｾＬＱＰＲＩ＠ KINVI:l,TRAtJS 
READ(1,102) VAPI,HHO 
YAP = ｖａｾｉ＠
DO 9 I :: 1, 2 
READ (1,101> N(I) 
REAU(1,103)PL(I),C(I),ZN(1),D(I),VQCI) 

103 ｆｏｒｍａｔＨＵｾＱＰＮＴＩ＠
A<I) ;: 3.1417 * (0(1>**2)1 4.0 
otel>= Pl.CI)/cceI)*ZN(l» 
leAve!) = 0 

9 CONTINUE 
DTO= DT(2) 
READ (1,102) PR1'(Jp 
READ C1,102) lMAX,ZUT 
zoro :: ZOT 



KINVIS = KINVIS/100000;O 
READ ( 1,1U1 ) M 
READ ( 1,101 ) NSAVC 
DO 1 ! =" NSAVC 
RC:AD ( 1,101 ) NPAVCCl) 
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READ ( 1, 102 ) ( VCC1,K),AN(I,K),K=1,NPAVCCI) 
1 CONTINUE 

CALL PRELIM ( AN,VC,NSAVC,NPAVC,C1 
READ e 1,101 ) NSAT 
DO 2 1=1, t.lSA I 
READ (1.101 ) NPATCI) 
READ(1,102) (A1(I,K),TCI,K)/K=1,NFATCI» 

2 CONTINUE 
CALL ｐｒｾｾｊｍ＠ (T,A1,NSAT,NPAT,C2) 
OTX ;; OT(1) 
Te = T( ｾｓａｔＬ＠ NPAT(NSAT» 

1 0 1 tOR M A T ( I 3) 
102 ｆｏｒｍａｔＨＲｾＱＰＮＴＩ＠

READ(1 ,111) IDAY, IMTH,IYEAf'<, INUll 
111 fORMAT (414) 

W R I T E ( 2, 2 0 4 ) I j) AY, It" H 1 IV EAR, I N lJ M 
204 t='ORMAT(B-IOATE:: = #I2,3H 1 ,r2,3H I ,I4,1,12HRUN NUMBER = .I4,1H., 

1 11) 
. C INIrIAL CONDITIONS ALONG BUTH rIpE SECTIONS. 

DO 22 I :: 1, 2 
DO 22 K :: 1, N(I)+1 
V(I,K) = VUeI) 

2;? CONTINUE 
CALL F"RI:T (0.rJT,1;V,1,N(1)+1,F1) 
CALL FRlcr (0,DT,2,V,1,N(2)+1,F1) 
DO 23 1 :: 1, 2 
REN = ABSCVO(I»*O<l)/KiNVIS 
Ft = ｏＮＰＷＹＯｒｅｎＪＪＰＮＲｾ＠
FOR = ＲＮＰＪｒｈｏＪｆｆＪｾｌＨｉＩＪｃｖｕＨｉＩＪＪＲＩＯＨｏＨｉＩＪｚｎＨｉﾻ＠
AA = 0.0 
0023 K =1, N(1)+1 
XR = PR, 
IF ( T. EO, 2) XR:: P(1,N(1).1) - OP 
AA = AA. +. 1 .0 
p(I,K) = XR - (AA· 1.0)* FOR 
AP<I,K) = P{J,K} 11000.0 

23 CONTINUe 
PR2 = P(2,N(2>+1) 
TIME=O.O 
ATM :: 14.7*6894.76 
RO = 3,0 
Z2 :: 0.0 
Z4 ::: 0.0 
VOLX :: 0.0 
FuELVDL = 0.0 
AIRVOL = 0.0 
VOL :: 0.0 
VCHAR=1 .0 
WRITE(2,200) 

C CALCULArION INTERNAL PUINTS DURING VALVE cLOSURE 
•.. KB = 1 

INTM = 1 
W R I T E ( 2., 201 ) TIME, VC.I A R, (V ( 1 I K ) I K =, , N ( 1 ) .1 , 3 ) I ( V ( 2 I K ) , K:: 1 I N ( 2 ) ... 1 I 

1 2) , ( A P ( 1 , 10 d< = 1 , N ( 1 ) + 1 , 3 ) I (A P ( 2 I K ) , K = 1 , N ( 2 ) + 1 , 2 ) 

30 TIME:: TIME + DT(2) 
K8 : KB + 1 
11 (I(B) = TIMt: 
CALL INTER ( ｋＸ［ｔＱＬｔＬｎｓａｔＯｎｐａｔｾｋｈａｘｊｃＲＬａｘ＠ ) 
CALL ｉｎｔｾｒ＠ ( KB,AX,AN,NSAVC,NPAVC,KMAX,C1,B 
VCHAR = iH ｋｾＩ＠
nil 31 t = 1, 2 
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CALL INTERNAL (1,N,I,C;V.P,F1,P,V,F1,VV,PP) 
CALL REseRVOIR CI,1,c,v,p,r1 ,VV,PF) 
CONTINUE 
CALL VALVE ( V,P,F1,C,A,VU,VV,PP ) 
IF C VCHAR. Ea. 0.0 ) ｄｔｃｾＩ＠ = DTO·ZOTO 
VOL1 = VOL 
DO 35 I :. 1, 2 
DO 36 K : 1, N(I)+1 
VHJ,K) :: V(I,K) 
P1(I,K) = P(I,K) 
V (I,K) = VV(I,K) 
P (I,K) = PP(l,K) 
AP(I,K) = P(I,K)/1000.0 
cONTINUE 
CALL FRI::T (D,DT,1,v,1,NCI)+1,F1) 
cONTINUE 
v01 = V02 
W R I T E ( 2 , 2 0 1 ) T I t·l E , v C H A H I (V (1 , K ) , K = 1 , N (1 ) + 1 , 3 ) , (V ( 2 • K ) , K:: 1 , N ( 2 ) .1 , :2 

1 ),(AP(1,K),K=1,N(1)+,,3),(AP(2,K).K=1,N(2)·1,2) 
IF ( ｖｃｈｾｒＩ＠ 83,03,30 
TIME = TIME + DT(2) 
LABEL 61 DENOTES VAPOUR pIJCI':E:T AT VALVE. 
CALL RES5RVOIR (2,2,C,VU,PU,F1,VV,pp) 
CALL ｉｎｔｾｒｎａｌ＠ (2,N,2,C,VU,PU,F1,PO,VO.f10,VV,PP) 
IF ( VOLX. GT. 0,0 ｾ＠ GOTU 184 
IF ( VOL. LT. VOL2 ) VOLX = VCL2 
IF ( VOL. LT. VOL2) . RU :: 2.0 
IF' (VOL, LT. VOL2) l4 = 1.0 
ｬｾ＠ ( Z4. Ea, 1.0) GOTO 183 
VCHAR = r"U!::LvuL 
CALL CAVITY ( -1,O,2.C,2,1,VAP,RO,A,OT,AIRVOl,VOL.VD,PD.F10, 

1 VV,PP) 
IJOL2 = vOL 

VOL = VOL. + Q.5*A(2)*DT(2)*(VV(2,1 )+V(2,1» 
W1 = ( ATM " O.5*P(2,1».O.136/ATr 
W2 = O.5*O.13o/ATM 
AJRVOL = ( W, - W2 * PP(2'1» * rUELVOL 
VOL1 = VOL . 
WRITE ( 2, 7u 1 ) AIRVOL, fUELVOL 

701 FORMAT ( ?F 1?,8 ) 
Goro 50 

183 ｚＴＺＺｾＮｏ＠

CALL CAVITY ( -1,0, 2, C, 2, 1, VAP,2.oJ A, OT, AIRVOL. VOL. 
1 VD, PD, F10, vv, pp ) 

CALL VAPOUR (2,N,UT,VAP,P,PP,KZ,PF,TS) 
CALL SOHTER (N(2)+1,TS,2J UT,T5HAX,J1) 
ｆｾｃｔ＠ = (OT(2)-TSMAX)/DT(2) 
TIME ｾ＠ TIME M TSMAX 
DO 63 K ;1,N(2)+1 
CALL fAC TOR(2,K,K,K,K,K,V,Z,P,Z,VV,Z,PP,ZJ fAC T,VV,Z,PP,Z) 

63 ｣ｏｾｔｉｎｕｅ＠
VrJL2 = VOL 
ｖｏｾ＠ = VOL + 0.5* A(2)*(DT(2)-lSMAX).(VV(2,1 ).V(2,1» 
GOTO 50 

C LABEL 50 DfN01ES WRITE nUT or ｒｅｓｾｌｔｓ＠ SECTION. 
5'J DO 51 K = 1, N(2)+1 

V1(2,K) = V(2d,) 
P1(2,K) :: P(2.K) 
p(2,K) = pp(2,K) 
AP(I,K) = PC{,K)/1000.0 
V(2,K) = VV(2,K> 

51 cO;H 1 NuE 
1 F' ( AB S ( v 0 L 2 :.' v nL, ), uT. ( 0 .. 33* V 0 L) ) GOT 0 91 
IF ( '101.. GT. VOL2) GOTU 92 
GOTD 83 

91 DT(2):: OT(2) / 2·0 



ZOT = DT(2) I DTD 
GOTD 83 

92 DT(2) = OTO * ZOTU 
ZDT = lOrO 

83 VU(2,1) = 0,0 
PU(2,1) = 0.0 
VO(2,N(2)+1)= 0.0 
PO(2,N(2)+1)= 0.0 
DO 52 K=2,N(2).' 
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VU(2,K) : V(2·K) + lDT * (V(2,K -1) - V(2,K» 
PU(2.K) = P(2,K) ... ZDT * <p(2,K -1) - p(2,K» 

5? CUNTINUE 
DO 53 K = "N(2' 
VO(l,K) = ｖＨＲｾｋＩ＠ ·2DT * (V(2,K+1) - V(2,K» 
PD(2,K) = P(2'K) "'ZUT * Cp(2,K+1) - P(2,K» 

53 ｃｏｎｔｉｎｕｾ＠

CALL FRIeT (D.DT,2,VU",N(2'.1,F1) 
CALL FRIeT (n,DT,2,VD,1,NC2)+1,F1C) 
NL = N (2) I 5 
WRITE(2,20J)TIME,CV(2rK),K=1,N(2)+1,NL),(AP(2,K)/K=1,N(2)+1.NL" 

1 . VQL 
ｬｾ＠ ( TIM2. GT. THAX) GOlD 99 
GOTD 41 

2 i) (; F' f) R 11 A T( 1 H 1 , 1 0 In I M E V C If A R , 5 X, 1 8 H ( 0 • 5 * L 1) S L G T ION S • , 1 1 H V ,\ L V E 
1 ",8H(O.2*L2} SECTIONS.,II) 

201 ｲｏｒｈａｔＨＲｾＵＮＳＬＴｈｶ＠ = ,3F7.2,7X,6F7.2,1,10X,4HP = ,3F7.2,7X,6F7.2,11) 
2 ] 2 F' 0 R ｉｾ＠ A T ( F 5 • 3 , 5 x , 4 H V = '28 X , 6 F 7 • 2 I 11 0 X • 411 P :: , 28 X • 6 F'., · 2 , 11 ) 

＿ｏｾ＠ rnRMAT(rS.3,5X,4H v= ,28X,6F7.2,/10X,4HP = ,28X,6F7.2,F12.8,11) 
9y IF ( !J. Ea, NRUN) GOTD 98 

STuP 
·END 
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ｓｕＹｒｏｕｔｬｾｅ＠ VALVE ( V,P,A1,C,A,VO,VY,PP ) 
DIMENSIO\J V(2.41 ),1-'(2,41 ),A1 (2,41 ),N(2),YO(2),(;(2),A(2), 

1 I PP(2,41),VY(2,41) 
2 , OT ( 2) . 
3 ,Z(2,41) 

COMMON H,KINVIS,THANS,VCHAR,DP,RHO ,PR1,PR2,N,VD2,Z2 ,VAP 
1 , VOL, FUELVOL, VD1 
2 ,DT,AIRVDL 
3 ,l 
1 , Tl ME 

ATM = ＱＴＮＷｾＶＸＹＴＮＷＶ＠
X 1 ;:: Y ( 1 I N ( 1 ) ) - A 1 ( 1 , r! (1 ) ) ... V ( 1 , N ( 1 ) > * AB S ( Y ( 1 , N ( 1 ) ) ) + P ( 1 , N (1 ) ) 

1 ICR4u.C(1» 
X 3:: V ( 2; 2) - A 1 (2 ,2) * \' ( 2,2) * A B S ( V ( 2 • 2) ) .. P ( 2 ,2) I ( R 11 Cl" C ( 2 ) ) 
Z3 = 0.0 
IF ( ｖｃｈｾｒＮ＠ GT. 0.0) GOTD 10 
VV(1,N(1)+1) = 0.0 
PP(1,N(1 )+1) = ｒｈｕｾｲＮＨＱ＠ >*X1 
Z3 = 1.0 
GOTD 12' 

10 X5=("CHAR*VOl1) )**2)/DP 
IF ＨｐＨＲＬＱＩＮｇｔＮａｔｍｾ＠ VOL = 0,0 
ｉｾ＠ ( P(2,1).LE.ATM) GOTD 121 
X 6 :: RHO"( ( C ( 2 ) * A ( 1 >I A ( 2 ) ) ... C ( 1 ) ) 
X7::RHO*«C(2)*X3)+(X1*C(1 i» 
VV(1, (N(1 )+1) )=-(X7/AtiS(X7) >*x5*X 6/2.0 +(x7/ABS{X7) )*SQRT 

1 «(X5.X6)/2.0>**2.0 +X5*ARS(X7» 
11 PP(,,(N(1'+1» = RfjO*C(1)*(X1-VV(1,(N(1)+1») 

VV(2,1) :: VV(1, (N(1 )+1> )*A(1 )/,'\(2) 
pp(2,1) :: t1H[) * C(2) * (VV(2,1)-x3> 
IF ( PP(2,1). LE. AIM) GOlO 122 
OPOT 1: P;;>(1,N(1>+1) - P(1,N(1>"'1) 
GOTO 13 

12) T5 = OT(,''*(t..™-PP(2,1 »/<p(2/ 1 >-PP(2,1» 
rACT = ( 0T<1 )-TS>/DT(1) 
DO 151 =1,2 
DO 15 K = 1,tJ(I>·1 
ｃａｌｾ＠ ｆａｃｔｏｒＨｬＬｋＬｋＬｋＬｋＯｋＬｐＬｖＬｚＬｚＬｰｰＬｙｖＬｚｾｚＬｆａｃｔＬｐｐＬｖｖＬｚＬｺＩ＠

15 CONTINUf 
Tlr-1e = TIME .. T5 
GOTD 13 

121 Z2 = 1.0 
y1 = X1 
y2 = x3 
y3 = 1,0 I ＨｾｈｏＢｃＨＱＩ＠ ) 
y4 = 1.0 I ( HHO*C(2) ) 
Y6 = ｾｕｆｾｖｏｌ＠ * ATM 
Y7 = 0.5.'\(1 )*0f(1 )"'ATM 
Y16 = Yl*V(1,N(1)+1) 
Y16 = Y18 + y6 
Y6 = 0.0 
1041 :3 ( ａｈｴＭｏＮｾＪｐＨＲＬＱ＠ »*O.136/ATM 
W2.= ｏＮＵＪｏＮＱｾＶＯａｔｍ＠
ys :3 VOl + ｏＮＧｪＪｾＨＲＩＪｄｔＨＲＩＪＨｖＨＲＬＱＩＢｖＨＱＬｎＨＱＩＫＱｽＩ＠
y9 = O.5*A(2)*DT(2) 
IF' ( Z3. ElL 1.0> GOT0125 



Y5 = X5 
y10 = Y7*Y1 .Y18 
Y11 = Y"l*Y3 
Y12 = ye ... Y9*(Y2-Y1) 
Y13 = Y9*Y4 
Y14 = Y<hY3 
Y15 = 0.0 
Y16 = 0·0 
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Y 1 7 - 1. 0 • 2· 0 * Y 1 * Y 3 -1 . 0 / Y 5 
Y20 = Y10 - w, .' Y 6 
Y21 = Y10*W2 
Y22 = Y1 1 ＪｾｩＱ＠
Y23 = Y11*W2 
AX = ( Y3**4)*Y13/(Y5**2) 
C1 = ﾫＨｾＲＮＰＪｙＱＷＪｙＧＳＪｶＳＪＪＲＩＯｙＵＩﾷＨｙＱＴＪｙＳＪＪＲＩＯｙＵＩＯａｘ＠

,1 .«.v23*Y3**2)/Y5)/AX 
C2=«(.Y12*Y3**2)/v5).Y13*2.0*(CY3*Y1/Y5)**2).Y17*CV13*Y17. V14» 

1 / AX 
1 - «Y21*Y3**2)i Y5 .V23*Y17)/AX 
2 .(Y13*VAP*tY3*-2)/Y5)/AX 

C3 = (Y12*Y17-(2,O*Y13*Y1 7+Y1 4 )*(Y1**2)/Y5·Y16)/AX 
1 -«-Y21*11 7,- Y22 - (Y23*Y1**2)/y5)/AX 
2 +VAP*(-Y 14-Y13*Y17)/AX , 

C4 = ﾫｃｙＱＪＪＲＩＯｙＵＩＪＨｙＱｾＪﾫｙＱＪＪＲＩＯｙＵＩＭｙＱＲＩＭｙＱＵＩＯａｘ＠
1 ＢＨｙＲＰＮＨｙＲＱＪｾＱＪＪＲＩＯｙＵＩＯａｘ＠

2 4 +VAP*«Y13*(V'-**2)/Y5)-Y12)/AX 
81 = P(1,N(1)+1) + DPOT 

50 B = 81 •. . 
F8 = 8**4·C1*B**3+C2*B**2+C3*B+C4 
rOB = Ｔ［ｏＪｂｾＪＳＫＳＬｏＪｃＱＪｕＪＪＲＫｃＲＪＲＬｏＪｂＪＱ＠ ,0+63 
81 = B - FB/FUB 
If (A8S«B-81)/B).GT.O.005) ｇｾｔｏ＠ 50 
ｐｐＨＱＬｾＨＱ＠ )+1) = 81 
VV(1,N(1 )+1): X1- Y3*s1 
plJ(2,1) : B1 - (VV(1,N(1)+1)**2)/X5 
vv(2,1) = X3+Y4*PP(2,1) 
GOTO 6 

12C; Z.3 = 0.0 
82 = ( ｶｾｐＪＨｹｂＫｙＹＪｹＲｽＫｹＶＫｙＱＸＪｗＱ＠ )/(Y9*y4) 
81 = ( yS+V9*Y2-VAp*y9.Y4+Y1 8*W2)/(Y9*y4) 
PP(2,1) = - ( ｂＱＯＲＮＰＩｾｓｑｒｔﾫＨｂＱＯＲＮＰＩＪＪＲＩＫｒＲＩ＠
VV(2,') = Y2 +Y4*PP(2,1) 
GOTO 6 

6 rUE L V 0 L = F U E LV 0 L ... O. 5 *A (1 ) * D T ( 1 ) * ( v v ( 1 , N (1 ) +1 >+ V ( 1 , N (1 ) + 1 ) ) 
Vo2 = VV(1,N(1)+1> 

. ACON = w1' - W2 * PP(2,1) 
" AIRVOL = ACON * FUELVOL 

vot. = Yt3 + Y9*(VV(2,1 )-VV(1, N(1 ) ... 1» 
DPOT = PP(1,N(1)+1) .. P(1,rH1H1) 

13 ｒｾｔｕｒｎ＠
END 
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ｳｵ｡ｒｏｕｔｬｾｅ＠ CAVITY ( ｓｌｏｆｅＬｊｾｔｍＬｃｃＬｉＬｊＬｖａｐＬｒｏＬａｒＬｄｔＮａｉｒＯｖｏｌＬｖＬｾＬ＠
1 A1, )(V,XP ) 

DIMENSION \1(2,41 ＩＬｐＨＲｾＴＱ＠ )IA1 (2,41 ),XVC2,41 ),XPC2,41 ),CI:(2) 
1 , DT(2), AR(2) 

COMMON H,KINVIS,TrANS,VGHAR,DP,RHO 
ATM = 14.7*6894.76 
Y2 = 1.0/(RHD *CC(I» 
IF" (INTM" 1) 1,2,2 

2 A:: VCI.J) 
8 :: P(I,J) 
C :; A1C),J) 
GO TO 3 

1 IF' (SLOPE) 4,?,5 
5 A:: VCI·J-1) 

8 :; P(I,J-1) 
C = A1(!,J .. 1) 

GOTD 3 
4 A = V(I,J·1) 

B :; P(I,J+1) 
C = A 1 ( I, J+1 ) 

3 . IF" ( RO. GT. 1.0 GOT06 
XP(l,J) :: VAP 
XV(I,J) :: A - SLOPE * y2 * (VAP - B) - C*A*_SS(A) 
GOTD 7 

6 IF ( RQ. EQ. 3,0) GOTO 8 
y6 = AIR * 14.7 * 144,0 
Y16 = 0.0 
GOTO 9 

8 Y6 = ｖｃｲｬｾｒ＠ * 144.0 * 14 .. 7 
W2 :: 0.5·0,136/ATM 
W1 :; ( ArM .. 0.5 * XP<I,J» * 0.136.1 ATM 
Y16 :: y6 * W2 
Y6 = Y6 * ｾＱＱ＠

9 Y25:: 0.5 * ａｾＨＱＩ＠ * DT(2) 
Y24:: VOL + O.5*AR(2)*DT(2)*XV( 1,J) 
y24 :: y24 ... y 1 6 
y4 = v2 
Y 2 :: "* ( 1. 0" C * A B S ( /\ ) ) + S L. 0 P E * Y 4 '*' 8 
81 = ( Y2 4+Y2*Y25-VAP*Y2 5*y4)/(Y2 5*y4) 
B2 = ( v4P*(y24+Y25*y2)+y6)/(Y25*Y4) 
XP(I,J) :: -<S1/2.0)+SQRT«(B1/2.0)**2'+B2) 
XV(I,J) :; Y2+Y4*X P(1,J) 
IF < RO • EO • 3,0) UP = W1 '-W2* XP (1, J) 

7 R.ETURN 
ENO 
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SEPG master segment and VALVE, 

AIRV and CAVITY subroutines 



ｔａｓｋａＯｓｾｐｇＵＲＶＱＶｓｈａｆｆｉｅｌｕｉ＠

SEC· INOS, 0 0 
S P Id.: £;1 9 6 9 7 
P rn,II" 9 tl 0 0 
COI'I" i \..f:R ｦｏＧｒｮｾａＮｎ＠

LJST(LP) 
ｐｾｏｇｒａｍＨｓｦＮｐｆｾ＿ＧＶＱＶＩ＠

ｊｎｐｕｔＱ］ｃｾｏ＠

ｏｕｔｐｕｔＲＺＺｾｐｏ＠

TRACc2 
END 

MASTER SEPG 
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REAL KINVlS ' 
D J MEN S 1 L1 \j N P A V C ( 1 0 ) , VC ( 1 0 I 50 ) , AN ( 1 0, 50 ) I C 1 ( 1 0 , 1 0 ) , N PAT ( 1 0 ) I G 2 (1 0 , 

1 ＱＰＩＬａＱＨＱＰＬＱＰＩＬｔＨＱＨｪＬＱＰＩＮｔＱＨＲＰＰＩＬａｘＨＲＰＰＩＮａＨｾｉｪｏＩＯｔｓＨｾＬＲＱＩＬ＠

2AP(2,41), V1(2,41)JP1(2,41),V(2,41),P(2,41),Pp(2,41),VV(2,41). 
3Z(2,41). VU(2,41 )JPU(2J41 ),VP(2,41 ),PU(2.41),F1(2.41).F1D(2,4,), 
ＴａＨＲＩＬｄＨＲＩＬｃＨＲＩＬｄｔＨＲＩＬｉｃａｖＨｾＩＬｐｌＨＲＩＬｚｎＨＲＩＮｎＨＲＩＬｖｏＧＲＩ＠

COMHONH,KIN VIS,TRANS,VCHAR,UP,RHO,PR1,PR2,N,VD?,Z2 ,YAP 
1 , VOL, FUELVOL, VD' 
2 Ｌｊｊｔｾａｉｒｖｄｌ＠

3 ,l 
4 , 1JME 

READ(1 ,'01 )NRUN 
IJ = 0 
NPATH = 0 

98 IJ = IJ + 1 
REAO(1,102) KINVIS,TRANS 
REAO(1,102) VAPI,RHO 
VAP = VAPl 
DO 9 I = 1, 2 
READ (1,101) Ne!> 
ｒｾａｄＨＱＬＱＰＳＩｐｌＨｉＩＬｃＨｉＩｴｚｎＨＱＩＬｄＨｉＩＬｖｏＨｉＩ＠

103 ｆｏｒｍａｔＨＵｾＱＰＮＴＩ＠
A(I) = 3.1417 ｾ＠ (O(!)**2)1 4.0 
UTeI)= ｐｾＨｉＩＯＨｃＨｉＩＪｬｎＨｬﾻ＠
leAve!) = 0 

9 CONTINUE 
UTO = DT(2) 
Rt:AD (1/1 ocn PR1, or' 
READ ＨＱｾＱＰＲＩ＠ TMAX,ZDT 
ZuTO = lvT 
KINvIS ; ｾｬｎｖＡｓＯＱＰＰＰＰＰＮＰ＠

READ ( 1,101 ) M 
READ ( 1,101 ) NSAVC 
DU 1 ! =1, NSAVC 
READ (1,101) NPAVCCl) 
READ ( 1, 102 ) ( VC(LK)/Ardl/K),K=l,NPAVC(I) 
CONTINUr:: 
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CALL ｐｒｅｾｉｍ＠ ( AN.VC,NSAVC,NPAVC,C1 
READ ( 1,101 ) NSAT 
D (J 2 ! = 1, ｾｊ＠ SAT 
READ (1',101 ) NPAr(I) 
REAO(1,102) (A1 (I,K), T( 1,K),K=1,NPAT( I» 

2 CONTINUt: 
CALL ｐｒｦｾｬｍ＠ (1,A1,NSAT,NPAT,C2) 
DTX = Of(1) 
rc = T( 'JSAT, tJPA1UiSAT» 
KMAX = lC I nTX + 1.0 

1(11 rClRMAT(I3) 
102 FORMAT(2;10.4) 

REA D ( 1 , 1 11 ) lOA Y , I M T H, lYE A R, I N lJ H 
111 FORMAT (414) 

WRITE(2, 204) IOAY, IMTH, PEAR, INUM 
204 FORHAT(8;DATE = ,)2,3H I ,12.3H I ,I4,1,12HRUN NUt1BI::R ｾ＠ ,I4,1H., 

1 In 
c INITIAL :ONDITlONS ALONG ｾｏｔｈ＠ PIpE SECTIONS. 

uo 22 I : '" 2 
DO 22 K = 1., N ( I ) +1 
V(J,K) = va(p 

22 CONTINU,::: 
CA L L F R I ｾ＠ T (D, D T I 1 " V , 1 , tJ( 1 ) + 1 , F 1 ) 
CALL fRICT CO,DT,2,V,',N(2).1/F1) 
DO 23 I = 1, 2 . 
REN = A8S(VO(I»*D(!)/KINVIS 
FF = 0,o79/REN**O·2? 

. FOR = 2. O*RHO*FF*PL cl )*(Vu( r )**2)/(D( I )*ZN( I» 
AA = 0.0 

00 23K ;1, N(!>+1 
XR :; PR1 
11 (!. EfL 2) XR= P(1,N(1)+1) ... OF 
AA=AA+1.0 
P(I,K) :' XR .. (AA - 1.0)* FDH 
AP(I,K) :; P(I,K)/1 uOO,O 

2:S CONTINUE 
PR2 = P<2,N(2).1) 
TIME=O.O 
NT = 2 
RO = 3.0 
Z2 = 0,0 
Z4 = 0.0 
VOl.X = 0.0 
rUELVOL = 0.0 
AIRVOL :: 0.0 
XN = 1.0 
VOL = 0·0 
VCHAR=1.0 
WRITE(2.200) 

C ｃａｌｃｕｌａｔＱＰｲｾ＠ INTERNAL PUINTS DUf<ING VALVE CLOSUr:1E 
KB = 1 
INTH = 1 

•. WRITE(2',201 )TIME,VCHAR, (V(1 ,K),t\:1 ,N(1)+1 ,3), ＨｖＨＲＬｋＩＮｋＺＺＱＮｎＨＲＩＫｾＮ＠
1 2 ) , ( A P ( 1 , K ) , K = 1 , N (1 ) + 1 • 3 ) • ( A P ( 2 , ,< ) , K = 1 , N ( 2 ) + 1 • 2 ) 

30 TIME = TIME. DT(2) 
K8 = KB .. 1 
T1 (KA) : TIM!:: 
CALL ｉｎｔｾｈ＠ ( KB,T1,T,NSAT,NPAT/ KMAX,C2,AX ) 
CALL !NTER ( KB / AX,AN,NSAVC,NPAVC,KMAX,G1,B 
VCHAR = 3(KB) .. 



C 

c 

3A 
33 

36 

35 

41 

1 &4 
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DO 31 I :: 1, 2 
CALL INfERNAL (1 ,N, I,C,V,P,F1.P,V,F1 ,VV,PP) 
CALL ｒｅｓｾｒｖｏｉｒ＠ (I,1,C,V,P,F1,VV,PP) 
ｇｏｎｲｉｎｕｾ＠ . 
CA L L V A L. V E ( V, P, F1 , C, A , VU, V V I I,' P ) 
IF ( ｖｃｈｾｒＮ＠ EO. 0.0 ) UT(2) = DTO*ZDTO 
VOL1 :: V JL 
DO 35 I ｾ＠ ", 2 
DO 36 K:: 1, N(1)+1 
VHI,K) -, V(I,K) 
P1(l,K) :: P(I,K) 
V (I,K) = VV(I,K) 
P (I,K) :: PP(!,K) 
AP(I,K) :; P(I,K) I 1000.0 
CONTINUE 
c_LL FRIer (D.DT,I,V,1,N(I'+1,F1) 
CONTINUE 
VD1 :: VI)2 
WRITE(2,201)TTHE,VLHAR,(V(1,K),K::1,N(1).1,3),(V(2,K),K=1,N(2)·1.2 

1 ), (AP(1 ,K),K;;1 ,IH1 )+1,3), (AP(2,K) ,K:1,N(2).1 ,2) 
IF ( ｖｃｾＴｒＩ＠ 83,83,30 
TIME:: TIME + nT(2} 
LABEL 61 DENOtES ｖａｐｏｬＱｬｾ＠ pllCI<:,l::T AT VALVE. 
CA L L RES E Rv 01 R (2" 2 , C I V lJ , P U J F 1 , V V , PP) 
CA L L ! N T :: RNA L ( 2 , rJ, 2 le, VU. P U , F 1 , PO, VD, F 1 D, V V , pP) 
IF ( VOLX, GT. 0.0) GOTU 184 
IF' ( VOL. LT. VOL2 ) VOlX .= VGL2 
IF ( VOL. LT. VOL2) RU = 2.0 
1 F ( 11 0 L. LT. V 0 L 2 ) ,4 = 1. 0 
IF' ( 7.4, EO. 1.0' GOTO 183 
VCHAR = ;UELVOL . . 
CALL CAVITY ( -1,O,2,C,2,1,VAP,RO,A,DT,AIRVOL,VOL,VD,pn,F10, 

1 VV,PP) 
VOL2 = VOL 

VOL = VO;,. + 0.5*A(2)*DT(2> .... CVV(2,1 >+V(2,1» 
141 = ( ATM .. ｏＮＵＪｦｊｾＲＯＱﾻＪｏＮＱＳＶＯａｔｍ＠
w2 = ｏＮｾＪｏＮＱＳＶＯａｔｍ＠
AIRVOL :: ( H1 - W2 * PpC2'1»* fUELVOL 
VOL1 :'! VOL 
WRITE ( 2, 70' ) A I RVClI,.., F"lJl:l.VOL 

701 FORMAT ( 2f 12,8 ) 
GOTO 50 

18.3 Z4 = 1,0 
C4LL CAVITY ( .. 1,0. 2, C. 2, 1, VAP,2.0. A, DT. AIRVOL. VOL. 

1 VD' PV, F1D, VV, pp ) 
VOL.2 == VOL 
CALL. VAPQUR. (2,N,UT,VAPJP,PP,KZ,PP,TS) 
CALL SORTER (N(2)+1,TS,2,DT,TSMAX,J1) 
FACT = (OT(2)-TSHAX)/UT(2) 
TIME ｾ＠ TIME - TSMAX 
DO 63 K =1,N(2)+1 
CALL ｲａｃｔｏｒＨＲＬｋＬｋＮｋＬｋＬｋＯｖＬｚＬｐＬｺＬｶｶＬｺＬｐｐＬｚＬｆａｃｔｾｖｖＯｚｦｐｐＮｚＩ＠

63 cONTINUE 
VOL = ｖｯｾ＠ + 0.5* A(2)*(DT<2)-TSMAX)*(VV(2,1)+V(2,1» 

. 'GOTO 50 
LABEL 50 ｄｅｎｯｲｾｳ＠ WRITE OUT OF RESULTS SECTION. 

51) nO 51 K = 1, N(2)+1 
V1(2,K) == V(2'iO 
p1(2,K) = P(2,K) 
p(2,K) = pp(2,K) 
V(2,K) : VV(2,K) 
AP(I,K) = PCI,K) I 1000 ,0 

51 CONTINUE 
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IF ( ABS( VDL2 - VOL). tiT. (O.33*VOL» GOTD 91 
IF ( VDl. GT. VOL2) GOTD 92 
GOTO 83 

91 DT(2) = OT(2) / 2.0 
ZOT = DT(2) I DTO 
GOTD 83 

9? DT(2) = OTO * ZOTO 
ZuT = ZOTU 

83 VU(2,1) = 0.0 
PU(2,1) :; 0.0 
VO(2,N(2)+1)= 0.0 
p!)(2,N(2)+1):: 0.0 
DO 52 K=2,N(2)+1 I 

VU(2,K) = V(2,K) ... lDT * (V(2,K -1) - V(2,K» 
PU(2,K) = P(2,K) • 20T * <P(2,K -1) - p(2,K» 

52 CONrINUf. 
DO 53 K =."N(2' 
VO(2,K) = V(2.K) ·ZOT * ＨｖＨＲＬｋｾＱＩ＠ - V(2,K» 
PO(2,K) = P(2,K) ·ZVT* CP(2,K+1) - P(2,K» 

53 CONT I.NJE 
CALL FRIer (0,DT,2,VU",t\;(2)+1,F1) 
CALL FRier (O,DT,2.VD,1,N(2).1,F1C) 
NL = N ( 2) / 5 
W R I T E ( 2 I 2 0 .3 ) T 1 t-1 E, ( v ( 2 , K ) , K = 1 I N ( 2 ) + 1 1NL ) I < A P ( 2 • I: ) I K = 1 I N ( 2 ) ... 1 · N L ) , 

1 vOL 
IF" ( TIM::, GT. TMA;<) GOlD 99 
GOTD 41 

200 FORMA"!" ( 1H1,10HTIME VCHAR,5X,18HCO.5*L1) SrcTIONS.,11H V.\LVE 
1 ,,1 8H<O,2*L2) SECTIONS,,//) 

201 ｆｏｒｍａｔＨＲｾＵＮＳＬＴｈｶ＠ = ,3F7.2,7X,6f7.2,/,16x,4HP = ,3F7.2,7X,6F7.2.1/) 
212 ｆｏｒｍａｔＨｆＵｾｊＬＵｘＬＴｈ＠ v= ,28X,6F7.2,/10X,4HP = ,28X,6F7.2,/I) 

203 ｲｏｒｍａｔＨｾＵＮＳＬＵｘＬＴｈ＠ v= ,28X,6F7.2,/10X,4HP = ,28X.6F7.2,F12.8,/I) 
9Q IF ( JJ. EO. NRUN) Gor(J 98 

STOP 
END 

,", . 
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SUBROUTINE VALVE ( V,P,A1,C,A,VO,VV,PP ) 
o 1 ME N S I D ｾ＠ V ( 2 I 41 ) I r ( 2, 41 ) I A 1 (2, 41 ) , N ( 2 ) I VD ( 2 ) • t; ( 2 ) I A ( 2 ) , 

1 PP(2,41),VV(2,41) 
2 , DT(2) 
3 ,ZC2,41) 

COMMON H,KINVIS,THANS,VCHAR,DP,RHO ,PR1,PR2,N,VD2,Z2 ,YAP 
1 I VOL, FUElVDL, VD1 
2 ,DT,AIRVOL 

... 3 , Z 
1 , TIME 

XN = 1.4 
ATM = 14.7*6894.76 
X 1 = V ( 1 , N (1 ) ) - A 1 ( 1 , ｴｾ＠ ( 1 ) ) * V (1 I N (1 ) ) .. AB 5 ( V ( 1 , N (1 ) ) ) ... P ( 1 , N ( 1 ) ) 

1 ICRHO*C(1» 
X:5 = V ( 2, 2) - A 1 ( 2, 2) * V ( 2 I 2'* AB S ( VC 2, 2) ) "P ( 2, 2) I ( R; 1 r) * C ( 2) ) 
Z3 = 0.0 
IF C VCHAR. GT, 0,0) GUTO 10 
VV(LNC1)+1) = O,U 
PPC1,NCO·1) = ｒｈｕｾｃＨＱＩＪｘＱ＠
Z3 = 1. 0 
GUTO 121 

10 X5=«VC HAR*VO(1) h*2)/DP' 
IF (P(2,1>.GT.ATtO VOL = 0.0 
Ir ( p(2,1).LE.ATM) GO TO 121 
X6=RHO*( (C(2)*A(1 )/A(2, )+C(1» 
X7=RHO*( (C(2)*X3)+(X1 *C(1») 
VV(1, (N(1 )+1) )=-(X7/ABS(X7) )*X5*X6/2. 0 +(X7/ABS(X7) )*SQRT 

1 «(Xs*X6)/2·0)**2.0 +X5*ABS(X7» 
11 PP(1,·(N(1>+1)l = RIHJ*C(1)*()<1-VV(1,(N(1>+1») 

VV(2,1) =·VV(1,CN(1)+1»*A(1)/A(2) 
PP(2d) :; RHO ... C(2) * (VV(2,1 )"X3) 

·IF" (PP(2,1>, LE. ATM) GOTU 122 
o POT :: pp ( 1 , N (1 ) ... 1) .. P ( 1 ｾ＠ ｲｾ＠ Ｈｾｉ＠ ) -+- 1 ) 
GOTD 13 

122 TS:::I nT(1)*(ATM .. ｐｐＨＲＬＱﾻＯＨｐＨＲＱＱＩＭｆｐＨＲＧｾｉﾻ＠
FACT:: ( DTC1 )-T5)/I:)1(1) 

DO 15 I = 1,2 
DO 15 K·:; 1,N(I>+1 
CALL ｆＢａｃｔｏｒＨｉＬｋｾｋＬｋＯｋＬｋＬｐＬｖＬｚＬｚＬｐｐＬｖｖＬｚＬｚＬｆａｃｔＬｐｐＬｖｖＬｚＬｚＩ＠

15 CONTINUE 
T I ME:: T I!1 E .. T S 
GDTO 13 

121 Z2 = 1.0 
Y1 = X1· 
y2 = X3 
y3 :; 1.0 I ( HHO*C(1) ) 
y4 :; 1,0 I ( ｋｈｏＪｃＨｾＩ＠ ) 
y7 :; Q.5 .. A(1 )*DT(1) 
Y16 = FUELVOL + Y7*V(1,N(1)+1) 
W1:; (ATM-O.5*(P<2,1> ... VAP»*Q.136/AH1 
ｗｾ＠ .:; O.5.0.136/ATM 
yB = VOL ... ｏＮＵＪａＨＲＩＪｄｔＨＲＩＪＨｖＨＲＬＱＩＢｖＨＱＬｾｊＨＱＩＫＱﾻ＠
Y9 = O.5*A(2)*DTC2) 
Y1Q = Y7 .. Y1 +Y16 
'1'11 :; y7*Y3 
Y12 = '1'8 + Y9*<Y2-Y1+Y4*VAP)· 
Y13 :; '1'9·'1'4 
Y14 :; Y9l1oY3 
IF (Z3. FQ. 1.0) GllT0 125 
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Y5 = X5 
C 2 = ,p p ( 2 I 1 ) 
01 = ( ?O*Y1*Y3.Y5)/Y3**2 

50 C1 = C2 
D2 = (Y5*(C1+VAP)+Y1·*2)/Y3**2 
B = ( 01/2.0> - SURT«D1/2.0)**2 - 02 ) 
iJ4 = (Y10-Y11*8)*W1*ATI1**<1.0/XN) 
D5 :: ( Y10"Y'11*B)*W2*ATM**(1. 0/XN) 
06 = V12+V14*8 
CALL AIRV ( D6,Y13,U4,D5,C2 ) 
Ir (ABSCCC1-C2)/C1).r,r.O.005) GOTD 50 
ｰｐｃＲＬｾＩ＠ = C2 + YAP 
02 =(V5*(C2+VAP)+Y1**2)Jy3**2 
81 = (01 / 2.0> - SQRT«U1/2.0)**2 - 02) 
PP(1,N(1 )+1) = 81 . 
VV(1 ,N(1 )+1):: X1-Y3*B1 
pP(2,1) :; 01 - (VV(1,N(1)+1)**2>1X5 
ｖｖＨＲＬｾＩ＠ = X3+Y4*PP(2,1) 
GOTO 6 

12? Z3 = 0.0 
y12 = V8 + Y9* (y2+y4*" Af') 
Y20 :: V1 8 *w2*ATM**(1. 0/XN) 
Y21= V18*W1*A1H**(1 .Q/XN) 
X1 = PP(211) 
CALL AIRY ( V12, Y13, Y21,Y20,X1 ) 
pp(2,1) ｾ＠ X1 • YAP 
VV(2,1) ;z V2 +y4.pp(2,1) 

GDTD 6 
6 VUELVOL = fUELVOL ... O.5*A(1 )*DT(1 "Io(VV(LN(1 ).1 ).V(1,N(1 )+1» 

VD2 = VI/(1,N(1)+1) 
AeON = 1011 - 1042 • PP(2,1) 
'AIRVDI. :: AeON * FUELV[)L 
VOL = YB + Y9*(VV(2,1 ) .. VV(1,N(1 ).1» 

13 RETURN 
END 
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5 U 8 R 0 UTI N f C A V I T Y ( S L. 0 PE I I N T M , CC, I , J , V A P , R 0 , A R , 0 T I A I R , V 0 L , V , rl I 

1 A1, XV,XP ｾ＠

ｄｉｍｅｎｓｉｏｾ＠ V(2,41),P(2,41),A1(2,41 ),XV(2,41).XP(2,41),CC(2) 
1 , DT(2), AR(2) 

COf1MON M, KINVIS, ｮｾａｎｓＯｆｕｅｌｖｕｌＬ＠ OP, RHO 
ATM = 14.7*6&94.76 
XN = 1.4 
Y2 :: 1 .O/(RHO *CC<I» 
IF (INH1 - 1) 1,2,2 
A = V(J,J) 
8 = P<!,J) 
C = A1(I,J) 
GO TO 3 
]F" (SLOP=) 4,5,5 
A = VCI,J"1) 
B = P<I,J-1) 
C = A1(I,J-1) 
GOTO 3 
A = VlI.J·1) 
B = P(I,J·1) 
C :: A1(l,J+1) 
IF' (RU. GT. 1.0) GOT(J6 
XP ( I, J) =. V AP 
XV(I,J) = A - SLOPE * y2 * (VAP - B) - C*A*A8S(A) 
GOTO 7 
IF ( RD. EO. 3.0) GU10 8 
W1 :: AIR*ATM**(1 tU/XN) 
W2 = 0.0 
Gcna 9 
W2 = Q.5*O.136*FIJELVOLoII-Alfl**(1.0/XN)/ATM 
W1 = ﾫｾｔｍＭｏＮＵＪＨｘｐＨＲＧＱＩＫｖａｐﾻＪｏＮＱＳＶＯａｔｈＩＪｲｕｅｌｖｏｌＪａｔｍＪﾷＨＱ＠ ＮｏＯｘｾＩ＠

y25 :: 0.5 * AH(1) * OT(2) 
Y24 = VOL + O.5*AR(2)*UT(2)*XV(I,J) 
y4 :: Y2 
Y2 :: "*<1.0-C*ASS<A»·SLOPE*'f4*B 
V12 = Y24+Y25*(Y2+Y4*VAP) 
Y13:: Y25*Y4 
X1 = XP(I,J) 
CALL AIR" ( Y12,' Y13, \'h ,W2, X1 ) 
XP(2,1) ;: X1 + YAP 
XV(l,J) :: y2+Y4*XP(J,J) 
If:" ( RD t E:Q • 3.0) DP = W1 '''W2 * XP <1, 'J) 

RE:TURN 
E'ND 
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S U G K lJ U 7 i Ｎｾ＠ t: AIR Y ｾ＠ A, B, C, C, X 1 
XI\! = 1.4 
11\1 :: 1 

1 X::,{ 1 

f X = H ｾ＠ X 11- * ( ( X 1'4+ 1 • U ) I X N) ... A * X * * (1 • 0 I X N) M C 
1 ... U * X 

D F X ;: « X N ... 1 • II ) .,. 13/ X ｲｾ＠ ) * X ... * (1 • 0 I X N ) + ( A I X N ) * 1 • 0 I ( X"'''' ( ( X N - 1 • 0 ) I X N ) ) 
2 + n 

X 1 = X - r X I DF X 
IF ( ａｾｪｓＨｏＺＱＭｘＩＯｘＩＮ＠ Lt. O.Ou5 ) GOlD 2 
I PJ ;':, If\! ... 1 
GUTI) 1 

2 t( E: T iJ R N 
E i'I:) 



A.S.9 

- 360 -

Subroutines common to programs 

SEPE, SEPF, SEPG 
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ｓｕＸｒｄｕｔｉｾｅ＠ CUHFIT(X,Y,N,H,C) 
ｄｉｍｆｎｓｉｑｾ＠ ｘｃＵｮＩＬｙＨｾｏＩＬｹｙＨＵｕＩＬｾｒｏｒＨＵＰＩＬｰＨＲＰＩＬｃＨＱＱ＠ ),8(11 ),A(11,11) 

C THIS SUBROUTINE FIrs ｅｘｐｆｒｬｾｅｎｔａｌ＠ DATA TO A POI.YNOMIAL 
C VUNCTION. iT ALSO CALCULATLS THE ERROR 8ETWEEN ｅｘｐｅｒｉｈｾｎｔａｌ＠
C VAL0ES ａｾｄ＠ CALCULATED VALUES. 
29 Mx2=M*2 

DO 1 I=1,MX2 
p(I)=O.O 
DO 1 J=1, N 

1 P(I)=PCI)+X(J)**1 
NXY=N 
NI=M+1 
DO 2 1=1,NI 
D02J=1,NI 
K:I+J-2· 
IFCK-O) 3,3,4 

4 ACI,J';;P(K) 
GOTD 2 

3 A(1,1)=NXY 
2 CONTINUE 

8(1 )=0,0 
DO 5 ,J=1 I NXY 

5 B(1)=8(1)+yeJ) 
DO 6 I=2,NI 
8(1)=0,0 
DO 6 .J=1, NXY 

6 8(1)=8CJ)+yeJ)*X(J)**(1-1> 
c PIVOTAL CONDENSATION 

NM1=NI"1 
DO 7 K=1,Nn1 
KPI=K·1 
L=K 
DO aI=KPI,NI 
ｉｆＨａＸｓｃａＨｉＬｋﾻＭａｂｾＨａｃｌＬｋﾻＩ＠ 8,8,9 

9 L=I 
8 CONTINUE 

ｉｾＨｌﾷｋＩ＠ 10, 10, 11 
11 DO 12 ｊ］ｾＬｎｉ＠

TEMP=A(K,J) 
A(K,J)=A(L,j) 

12 A(L,J)=TEMP 
TE:MP=8CK) 
BCrO=8(L) 
IHL>=TEMo 

C ELIMINATION, 8ACK ·SOLUTION, RESULTS. 
10 00 7 != ｾｐｬＯｎｉ＠

ｲｾｃｔｏｒ＠ = ACI,K)/ACK,K) 
A<I,K) = 0.0 
DO 13 ｊ］ｾｐｉＬｎｉ＠

13 A(I,J)=A(I,J)-FACTOR*A(K.J) 
7 H(l)=B(l)-FAC TO R*tiCK) 

ｃＨｎｉＩｾＸＨｾｉＩＯａＨｎｉＬｎｩＩ＠

I=NH, 
14 JP,=I·,· 

SUM=o.O 
DO 15 J=IP1,NI 

15 ｓｕｍ］ｓｕｈＫｾＨｉＬｊＩＪｃｃｊＩ＠

CCI) :: C3(1)-SUM)I''\(III> 
1 = 1-1 
IF"(I-O) 21,21,14 

21 on 22 J=1,NXY 
YY(J)::C( 1) 
00 22 K::2IM+1 
YY(J)::YYCJ)+c(K)*X(J)**(K-1 ) 

22 CONTINUE: 



DO 51 J=1,NXY 
51 ｑｒ］ｑｒＫＨｙＨｊＩＭｙｖＨｊﾻｾﾷＲ＠

KDEGR :: ( NXY ｾ＠ 1 ) 
OEGR=KDE3R 
VARIN = )R / OEGR 
DO 25 1=1, NXY 
IV ( y(l» 251, 252. 251 

252 EROR(I) = 0.0 
GOTO ?5 
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251 ｅｒｏｒＨｉＩ］ＨｙＨｉＩＭｙｙＨｬﾻＯｙＨｉｾ＠

25 CONT I flUE 
WRITE<2,104) M 

104 rORMAT(1'"l1,1/5X,30HORD[R Or pROPOSED POLYNOMIAL =. r3,116X, 
1 21riPDLYNDHIAl. cONSTANTS.,/) 
WRlrE(2,105) (I, C(I), lc1,M+1) 

105 FORMAT( lOX. ＱｈｃＬｉＲｾＲｈ］Ｌ＠ F10.4) 
WRITE(2,106) VAR1N 

106 rORMAT(10X, ＱＰｈｖａｈｉａｎｃｾ＠ =, f10.5) 
WRITE(2,107) 

107 fORHA T (1QX,10HINPU7 DATA.5X,BHCALC. Y .• ＵｘｾＵｈｅｒｒｮｒＬＯＹｘＬＱｈｘＬＹｘＮ＠
1 1H'(,9X,2Hyy,5X,6H1 .. YY/Y,//) 

WRITE(2.108) <XCI>,y(l),yVrl),EROR(l), I=1,NXY) 
10B rORHAT(5X,4F10.4) 

RETURN 
ENU 



- 363 -

SUBHOUTT"lF. PRt:LJM ( X1,Y1,N1,N2,C1 ) 
COMMON M 
DIMENSIll'J X1(1Q,50),Y1(10,50>,N2(10>,C1C10,10>, 

1 X(50),Y(50),CC10) 
DO 1 ! ::: 1 I N1 
NXY = N2CI) 
DO 2 K ;:: 1 I N2( 1) 
XCK) :: X1(l,K) 
YCK) :: y,(I,K) 

2 CONTINUE 
ｃｾｌｌ＠ CUR;IT ( X,Y,NXY,H/C 
Dn 1 K :; 1, M+1 
G1 (I,K) = CCK) 

1 CONTINUE 
RETURN 
END 

sua R 0 UTI ｾ＠ E I N r ER ( K', X , X 1 , N 1 I t,J 2 , K M A X I C 1 I Y ) 
COMMON M I 

o I MENS I O'J X ( 2 0 0 ) , X 1 (1 0 I 5 0 > , ｾＱＲ＠ ( 1 0 ) , C 1 C 1 0 , 1 0 ) , Y ( 2 0 0 ) 
X(1) ;: X1(1,1) 
00 1 I ::: 1, N1 
Ir ( X(1) - X(K» 4,4,5 

4 IF ( XCK). GT· X1Cr,N2(1») Goro 1 
Goro 3 

5 IF ( .. X(K) - X1(I,N2(J») 1,3,3 
3 Y(K);: CHI,1) 

DO·2 .J ;: 2, .t1+1 
Y(K) :: YCK) + C1CI,J>*XCK)4*(J-1) 

2 CONTINUE 
I ;: N1 

1 ｃｏｾｔｉｎｕｅ＠

3 

5 

6 
4 
1 

RETURN 
END 

ｓｕｂｒｏｬｊｔｉｾｅ＠ fRIcr (D,OT,I,U,I1,I2,A1 ) 
REAL KINVIS 
ｄｉｍｅｎｓｉＡＩｾ＠ O(2),DT(?),lJ(2,41 ),.A1 (2,41) 
cOMMON M,KINVlS, TRANS 
01) 1 K ::: 11, 12 
IF ＨｕＨＱＬﾷｾﾻ＠ 3,2,3 
A = O.U 
GOTO 4 
RE' = ABSCU(I,K».U(I)/KINVIS 
ｩｾﾷ＠ Ｈｒｾ＠ - TRANS) 5,6,6 
A = 1 6 • III R f: 
GOTD 4 
A ｾ＠ O.079/RE4*O.25 
A1(I,K)::: 2.04A*DT(j)/D(1) 
CONTINUE 
RETURN 
END 
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SUB R 0 U T 1\j E I N T ERN A I. C I tJ HI, N, I , C, V, P, A 1 , P 1 , V 1 , A 1 D, V V , PP) 
DIHENSION V(2.41 )'['(2,41 )IA1 (2,41 )IV1 (2,41 ),P1 C?,41 )IA10(2,41), 

1 VV(2,41 ),PP(2,41 ＩＬｃＨｾＩＬｾｃＲＩ＠
COMMON M,KINVlS,THANS,VCHAR,DP,RHO 
y2 = 1 .O/CRHO * C(j» 
IF' (INTM" 1) 1,1,2 

1 DO 3 L :: 1, N(I).1 
L1 = L+, 
L2 = L+2 
VV(I,L1) :: O,5*(VCI,L)""VC1,L2)+V2*(P(I,L) .. P(I.l.2»-(A1CI,L).VCJ,L) 

1 *ASS (V ( I,l) ) ""A1 ( I • L2) *V ( I. L2) *ABS (V ( I ! L2) ) ) ) 
pp(I,L1) :: O.5*«P(I,L)+p(I,L2)+(V(I,L)-V(I,L2)/Y2)-CA1(I,L) 

, *VC[,L)*ABS<VCI,L»-A1(I,L2)*V(I,L2)*ABS(VCI.L2»)/Y2) 
3 CONTINUE 

GO TO 4 
2 DO -5 L = 2 I N ( I ) 

VV(I,L) = O.5*(VCI,L)+V1(l,L)+Y2*CP(I,L)-P1 (I,L» ＢＨａＱＨｉＬｌＩｾ＠

1 V(!,L)*ABS(V(I,L)4A1D(1,L)*V1(] .L)*ABS(V1(I,L»» 
pp ( I , L) :: 0 • 5 * ( ( P Cl, L ) +') 1 ( ! .. L ) 01- (V ( I , L ) - V 1 ( I , L ) ) I Y 2 ) .. ( A 1 ( I , L ) * V { I , L 

1 ) * A B 5 ( V ( I , L ) ) .. A 1 D ( 1 , L ) * V 1 ( I , L ) * A 8 S ( V 1 ( I- L ) ) ) / Y 2 ) 
5 cONTINUe 
4 RETURN 

END 

SUB R 0 lJ T 1 ,\j ERE S E R V LJ ,R (1 1 I N T ｾ＠ , C I V , P , A1 , V V , PP) 

oIt1ENSIO\j C(2),V(2,41 "P(2,41 ),,lI1 (2/41 ),VV(2,41 ),PP(2,41) ,N(2) 
ｾｏｍｍｏｎ＠ M,KINVlS,THANS,VCHAR,DP,RHO,PR1,PR2 ,N 
Y2= 1.0/(RHO .cel» 
I F" (I - 1) 1, 1 I_ 2 

1 PPC1,1) = PR1 
IF'CINH1 - 1> J,3,4 

3 VV(I,1): VCI,2)+Y2*CPR1.PCI,2»-A1CI,2).V(I,2)*ABSCV(l,2» 
GOTO 5 

4 VVCI,1) = V(I.1).Y2*(PR1.PCl,1» "A1CI,1).V(I,1)*ABS(V(I,1» 
GO TO 5 

2 PP(2,(Ne I )+1» ;: PR2 
IF(INTH - 1) 6,6,7 

6 VV(I,(NlI).'» = ｖＨｊＬｎＨｉﾻＭｙＲＪＨｐｒＲＢｐＨｉＬｎＨｊﾻＩＭｨＱＨｉＬｎｃｉﾻＪｖＨｉＬｾＨｉﾻ＠
1 *iIPS(V(I/N(l» ) 

GOTO 5 
7 ｖｖＨｉＬｾｎＨｉＩＫＱﾻ］＠ V(!,N(t)+1 )-Y24 ( PR2-Pel,(NC})+1 ») 

1 - A 1 { 1 , et! ( 1 ) + 1 ) ) .. V ( I , (N CI).1 ) ) * A 8 S ( V ( I , e N ( I ) + 1 ) ) 
S RETURN 

END 
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SUBROUTINE VAPOUR (I,N,UT,VAP,P,PP,KZ,PPX,TS ) 
D I M t N S ｆｊﾷｾ＠ P ( 2 , 4 1 ) , P p ( ? , 4 1 ) , p P X ( 2 , 4 1 ) ITS ( 2, 41 ) , rn 2 ) I n T C ? ) 

KZ = 0 
00:5 K = 1, N(I)+1 
TSCI,K) :: 0.0 
X1 ; P(I.K) - YAP 
X :: PP(I,K) - YAP 
IF eX) 2,6,4 

2 TSCI,K) ｾ＠ DTe!)*(VAP-PPCI,K»/(peI,K)-PPCI,K» 
IF' eX1) 5,?,3 

5 TS(I,K):: 0.0 
6 PPXCI,K>: YAP 

GOTO 3 
4 KZ = KZ +1 

PPX( I I K) :: PP( I,K> 
3 ｃｏｾｔｉｎｕｅ＠

RETURN 
END 

SUBROUTINE SORTER (K,LJ,),LJTdoj,J) 
DP1ENSlu\l U(2,41). DT(2) 
J :: K + 1 
W :: 00'0 
DO 2 t A :: 1, K 
IF ＨｾＨｉﾷ＠ IA>,EQ.DT(r» Uel/IA) = 0.0 
IF 01 .. ｾｊｃｬ､ａﾻ＠ 3,2,2 

3 J:: lA . 
W: U(I,IA) 

2 CONTINUE 
HETURN 
END 
FINISH 

SUBROUTINE FACTOR (I,J1 ,J2,J3,J4,J5,X1,X2,X3,X4,Y1 .Y2,Y3,Y4, 
1 FACT, XA,XB,XC,XP) 
｛ＩｉｍｅｎｓｉｻＩｾ＠ X1 C2,41 ),X2(2,41 ),X3(2,41 ),X4C2,41), 

1 I • Y1(2,41 ),y2(2,41 ),y3(2,41 ),y4(2,41), 
2 XA(2,41 >,XB(2,41 ),XC(2,41 ),XD(2,41) 

X A ( I , .J 5 > = X 1 ( I , J ｾＩ＠ + ｾＮ＠ 1<. Cl'" \ Y 1 ( \ , J 1 ) - X 1 ( J , J 5 ) ) 
XBCI,J5) = X2(I,J5) + ｲａｃＱＮＨｹｾＨＡＬｊＲＩＭｘＲＨｉＬｊＵﾻＩ＠
XC ( 1 , J 5 ) :: X 3 ( ! , J 5) ... r AcT'" ( Y 3 ( I , .J 3 ) - X 3 ( I , J 5 ｾＮ＠ ) 
X IJ ( I , J 5) = X 4 ( I I J 5) ... FA eT .. ( Y 4 ( I , .,; 4 ) -.X 4 ( I , J 5 ) ) 
RF.TURN 
ENO 
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of British Aircraft Corporation 



- 367 -

SUMMARY 

A pressure transient analysis of the Concorde refuelling system is reported. 

The theoretical approach is via the method o( characteristics applied to 

solve the partial differential equations defining transient propagation. A 

computer program written in Fortran IV for use on an IBM 360/50 machine is 

presented together with representative predicted pressure variations following 

closure of all tank inlet valves. It is hoped that this program will be a 

useful tool in the continuing development of the system. 



NOTATION 

A 

ACON 

AI RV 

Ant 

Cl, C2, C3 

c 

D 

DP 

FULV 

FK1, FK2 

f 

I, J, K 

K 
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Pipe cross sectional area 

% dissolved air released at any pressure 

Quantity of air released from the fuel during column 
separation downstream of a valve 

Atmospheric pressure 

Constants in relation for inwards relief valve characteristic 

Wave speed 

Pipe bore 

Pressure drop across a valve in steady state condition 

Quantity of fuel giving up its dissolved air 

Minor loss coefficients at a pipe junction 

Steady state friction factor 

Pipe identification markers 

Bunsen solubility coefficient 

KI, K2, K3, K4 Constants calculated at each time step from known P, V, and 
pipe properties ｾｔ＠ earlier 

P 

PP 

Pav 

PR 

QR 

RHO 

t, T 

V 

Vo 

VV 

VCLOS 

VOL 

VOLA 

Pressure at a pipe section 

Pressure at a pipe section to be calculated at ｴｩｾ･＠ T + ｾｔ＠

Average pressure at one section over one time step used in 
air release volume calculation 

Pressure at aircraft R.C.U. 

Discharge through relief valve 

Fluid density 

Time 

Mean sectional velocity 

Initial flow velocity 

Velocity to be calculated at T + ｾｔ＠

Cavity collapse velocity 

Volume of cavity formed upstream of a valve 

Volume of an air/vapour cavity at time T + ｾｔ＠



VOLB 

x 

t 

Ax 

At 
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Volume of an air/vapour cavity at time T 

Distance measured along the pipeline in the direction of 
ini tial flow 

Fluid density 

Valve discharge coefficient 

Length of a pipe section within a pipelength 

Time step 

Pressure differential across the relief valve 
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INTRODUCTION 

The possible occurrence of pressure transients in a piping network following 
any change in the steady state boundary conditions has been recognised for 
many years as a major design criterion. In the past the most common cases 
related to large scale water distribution systems and hydro-electric schemes 
and it is in these fields that much of the pioneer work on the subject'is to 
be found. 

Recently the application of computing techniques (1, 2, 3) to pressure 
transient analysis has enabled a much wider range of problems to be dealt 
with, particularly small scale systems which would be too complex for an 
accurate application of the more traditional graphical methods (4, 5). 

Similarly the vast majority of the work reported relates to water as the 
working fluid. It is the purpose of this paper to report the application of 
computing techniques to predict pressure transient phenomena in the B.A.C.I 
SNIAS Production Concorde refuelling system. This system contains a large 
number of tanks and inter connecting pipelines in a relatively small area, the 
working fluid being Aviation Kerosene Spec. 2494. 

The reasons for the propagation of possibly destructive transients together 
with a full description of the system, the mathematical models employed and 
a flow diagram for the computer program are presented. It will be noted that 
the system has a relatively low operating head so that column separation is 
a distinct possibility and recent work on column separation by one of th(! 
present authors is heavily drawn on (6, 7, 8). 
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DESCRIPfION OF REFUELLING SYSTEM 

The Concorde 1s refuelled by use of a composite Fuel Sub-system which is 
used also as a means of adjusting the aircraft C of G (Trim Transfer) and 
discharging fuel overboard (Jettison). The sUb-system is in two halves, 
right and left hand, the main teature ot each half being a 2i/3"bore pipe 
which runs between the front and rear trim tanks. This pipe is known as 
the main trim transfer pipe. The layout ot the system is shown in' Figure 1. 

To torm the refuelling installation each main trim transfer pipe is 
connected to a Refuelling Control Unit, through which the ･ｸｾ･ｲｮ｡ｬ＠ refuelling 
supply is delivered to the aircraft and thence to tuel tanks via 
val ve-cont rolled branch pipes of 1" to 2" diameter. 

Fuel, from either bowser or hydrant supply, is delivered to each Refuelling 
Control Unit through two flexible 2t" hoses, hose end pressure controllers 
maintaining a constant 50 p.s.i.g. at the aircraft inlets. 

Each Refuelling Control Unit contai ns a valve which shuts off the flow 
under certain failure conditions. Correct fu('l distribut.ion is obtained by 
the use of an appropriately sized restrictor in each refuelling branrh pipe, 
so that nominally nIl tanks become full at the srune time. The refuel valves 
in each branch pipe arc electrically operated open or shut spherical plug 
type, controlled by tank level and/or quantity sensors. 

An inward (tank to pipe) relief valve is sited in eaeh main trim transfer 
pipe adjacent to the R.C.U. This is to alleviate the separation ･ｦｦＨＧｾｴ＠
which may occur when the Refuelling Control Unj t is closed, following a 
failure, under full flow conditions. 

The left hand side refuels 7 tankf'l and the right hand 6 tanks. The 
asymmetry is due to the jnclusion of some fuselage cells. 

Typical flow rat.es are 10 to 400 igpm in the main pipes and 40 to 200 igpm 
in the branch pipes. 

Velocities vary from 3 to 30 ft/s in the main pipes and 5 to 70 ft/so in 
the braoch pipes. 

The, length of each main trim transfer pipe is awroxi matE>ly 1'00 ft. and the 
branch pipes are up to 10 ft. long. 

Most of the piping is Aluminium Al]oy but some use is made of, Stainless 
Steel. A typical pipe wnll thickness is 0.8 mm. 

Design Criteria 

Consistent with a short "turn-around" time the refuelling of the aircraft 
will take approximately 20 minutes. Hence the fuel flow rates and 
velocities already mentioned. 

With an obvious need for pipes to weigh as little as possible and yet fulf111 
stringent airworthiness and maintainability reqUirements, the surge pressures 
that may be imposed on the fuel Flystem form important design criteria. 
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Fig. 1 CONCORDE REFUELLING SYSTEM 
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Fuel tank shut-otf levels have to be controlled accurately over a wide 
range of possible conditions& e.g. normal or single tank refuelling, fuel 
uplift temperatures from -30 C to +450 C, aircraft busbar voltage variation, 
etc. Consequently, it is necessary for tank inlet valves to shut ｴｾ＠ .as 
short a time as possible consistent with the control at surge pressures. 

If certain failures occur during refuelling (e.g. loss at electric power) 
it is imperative that flow into the aircraft shall cease. Again this must 
be achieved in as short a time as possible consistent With the control of 
surge pressures. 

Development Problems 

In order to achieve an optimum time of closure the valve manufacturers are 
required to demonstrate, during development, that valve closure produces a 
surge pre ssure tha t is within the piping limitations. This is done with 
the valve(s) mounted in a pipe of representative length proportions and 
material , and the maximum design rate of flow applied. At the same time 
measurement is made of the amount of t uel passed through the valve after 
initiation of closure. 

complete fuel system testing is carried out on a special full size Total 
Fuel System Rig (T.F.S.R.) which is used to verify designed performance and 
to detect any unusual conditions. For example, testing on the Prototype 
standard T.F.S.R. revealed that closing of the Refuelling Control Unit 
resulted in a high transient pressure being recorded in the main trim transfer 
pipe. After consultation it was realised that this was due to a"separation 
effect" adjacent to the Refuelling Control Unit. Subsequent testing with an 
inwards re lief valve showed that t hi s all evia ted the problem. 

Program Objectives 

In the past remedial design action has been taken following further testing 
on a system rig. However this is an expensive and time consuming process. 
An alternative approach would be to employ a computerised model of the 
aircraft system to highlight possible problems in advance of the rig test 
program, investigating fully the effects of various possible design actions 
which could later be verified on the test rig. 

As. this is a relatively new application of the techniques described in this 
paper it is important at this stage to obtain a confidence level for the 
calculations from parallel rig and computer results. 

Program Capabilities 

The following cases are considered in the initial computer program :-

(a) Normal refuelling all reasonable sequences of 
refuelling valves closure. 

abnormal sequence of all 
.refuelling valves closing 
simultaneously. 



(b) 

(c) 

Single tank refuelling 

Refuel Control Unit 
closure 
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each rpfuelling valve closing under 
individual refuelling conditions. 

under conditions varying from minimum 
to maximum flow. 

Various inputs such as valve closing characteristics can be changed to 
investigate their effects. 

THEORY 

Derivation of basic equations 

Transient pressure phenomena are commonly described by a one dimensional model 
with time, t, and distance, x, as independent variables and pressure, P, 
and mean sectional velocity, V, as dependent variables. By applying momentum 
and continuity principles to an untapered section, 6x, of a pipeline the 
equations governing transient propagation may be derived. 

Equation of motion: ap + P (av + V av) + 2pf vM = 
ax at ax D 

o (1) 

Continuity of equation: ap + V ap + pc2 av = 0 (2) 
at ax ax 

These equations are a pair of quasi-linear hyperbolic partial differential 
equations which may be transformed into a pair of total differential equations 
whose validity is restricted to certain lines in an x-t plane known as 
characteristics. The necessary mathematical procedures have been fully 
reported elsewhere (9, 10) and lead to the following equations: 

valid along 

In most practical 

dV :t: 1 dP+ 2f Vill = 0 
dt C dt 

dx = V :!: c 
dt 

cases V « C 

dx "" :!: c 
dt 

D 

so that the above relation may be 

(3) 

(4) 

reduced to 

(5) 

which corresponds to neglecting the non-linear convective terms vav/ax and 
V ap/ax in equations (1, 2). 

Application of a first order finite difference approximation to equations 
(3, 5) yields the following relationships, referring to Fig. 2 below. 

V P D' V A (1 - 2f V A I V A 16T ) + ..L (P A - Pp) (6) 
D pc 

Vp = VB (1 - 2f vBIVBI6T) - 1 (PB - Pp) (7) 
D pc 

:: - (9) 

where all necessary values at A and B are known. 
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P-V 
relation for 
boundary 

P-V relation 
for boundary 
G 

p 

T 

1 

Fig. 2 Development of the solution in the (x,t) plane 

Equations (6) and (7) are referred to as the C+ and C equations between 
points (i) and (i ± 1) and may be expressed in the form 

Vp • Kl - K2 Pp 

Vp • K3 + K4 Pp 

which will be used for the remainder of this paper. 

(8) 

(9) 

Values of V and P at all internal points along the pipeline may be 
｣｡ｬ｣ｵｬ｡ｴｾ､＠ directly from equations (6) and (7). The conditions at the 
boundaries of the pipe may be ｳｩｾｩｬ｡ｲｬｹ＠ calculated from the appropriate 
characteristic (C+ at G, C- at F) and a P-V linking boundary equation, e.g. 
a valve discharge coefficient relation or for a junction of two or more 
pipelines the continuity of pressure and flow equations. 

The friction factor, f, included in the above equations is assumed to be 
the steady state friction factor calculated at each section from the usual 
Reynolds Number expressions. 
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Choice of time step 

In order to maintain a stable solution the value of 6T must obey the 
relation 

(10) 

If 6T - 6x/c then the conditions at P at time To + 6T can be calculated 
from the known values of pressure and velocity at sections A, B at time To. 
Similarly if 6T < 6x/c the conditions at PI at time TI + 6T can be cal-
culated from known values at R, S at time Tl . The values of pressure and 
velocity at R, S can be found by interpolat1ng between AlCl, Cl Bl. 

In a mUltiple pipe network the time step employed must satisfy the relation 

(11) 

where suffix (i) refers to each pipe in the system. Generally as the value 
of wave speed is likely to vary through a piping network it follows that the 
value of 6T is dictated by the fastest wave speed in the shortest pipe. 

Similarly as it is necessary for each pipe to have an integer number of 
sections slight adjustments in pipe length are required, although these can 
be minimised if the acceptable time step is very small. Figures 3 and 4 and 
Tables 1 and 2 illustrate this procedure. 

Allocation of base conditions for each time step 

Referring to Fig. 2 it will be seen that each time step uses the results of 
the previous set of calculations as a base condition. In order to conserve 
storage space it is common practice to overwrite the base arrays P, V at 
time T with the values of pp and VV calculated for time T + 6T to allow the 
solution to advance to T + 26T etc. 
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Fig. 3 - SCHEMATIC REFUELLING SYSTEM - RIGHT HAND 
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0 Refuelling Valve Tank 11 

'V Refuelling Control Unit 28 
27 29 30 

·26 

lIJ Inward ReUef Valve 
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Tank 9 

Fig. 4 - SCHEMATIC REFUELLING SYSTEM - LEFT HAND 
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Pipe Bore Flow Length ft. No. of Wave speed 

NUmber ft. ft 3/ s • ActuaJ. Assumea sections. ft/so 

-1 0.26 1.975 0.5 0.0000 NIL ZERO 
2 0.20 0.940 1.50 2.8498 1 2600 

3 0.16 ZERO 1.00 2.9597 1 2700 

4 0.20 0.940 2.00 2.8498 1 2600 
0 0.16 0.328 0.75 2.9597 1 2700 
6 0.20 0.612 2.40 2.8498 1 2600 

7 0.16 ZERO 1.00 2.9597 1 2700 
8 0.20 0.612 3.60 2.8498 1 2600 
9 0.16 0.100 0.75 2.9597 1 2700 

10 0.20 0.512 2.50 2.8498 1 2600 

11 0.20 ZERO 3.00 2.8498 1 2600 

12 0.20 0.512 5.50 5.6996 2 2600 

13 0.20 ZERO 11 .50 11,3992 4 2600 

14 0.20 ZERO 2.25 2,8498 1 2600 

15 0.20 1.035 25.00 25.6483 9 2600 

16 0.08 0.097 9.50 9.6990 3 2950 

17 0.20 0.938 9.00 8.5494 3 2600 

18 0.16 . 0.534 3.00 2.9597 1 2700 

19 0.20 0.404 6.00 5.6996 2 2600 
20 0.16 ZERO 1.00 2.9597 1 2700 
21 0.25 0.404 5.00 5.5897 2 2550 

22 0.08 0.114 0.75 3.2330 1 2950 

23 0.25 0.290 10.00 8.3845 3 2550 

24 0.25 0;290 5.00 3.6166 1 3300 
25 0.25 ZERO 1.25 3.9463 1 3600 
26 0.20 0.290 1.23 4.0000 1 3650 
27 0.12 ZERO 1.00 3.9463 1 3600 
28 0.25 0.290 1.25 3.6166 t 3300 
29 0.20 ZERO 4.50 3.3979 1 3100 
30 0.20 ZERO 3.00 2.9597 . 1 2700 

Tab 1 e 1 - LEFT HAND SYSTEM 
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iP1pe Bore Flow Length ft. No. of Wave speed 
I Number ft. ft3/ s • Actual Assumed sections ft/so 

t 0.26 1.777 0.50 0.0000 NIL ZERO 

2 0.20 1.222 1.50 2.8893 1 2600 
3 0.16 0.588 1.00 3.0000 t 2700 
4 0.20 0.634 3.50 2.8893 1 2600 
5 0.16 ZERO 1.00 3.0000 1 2700 
6 0.20 0.634 3.60 2.8893 1 2600 , 
7 0.16 0.100 1.00 3.0000 1 2700 
8 0.20 0.534 2.40 2.8893 1 2600 
9 0.20 ZERO 3.00 2.8893 1 2600 

10 0.20 0.534 5.40 5.7787 2 2600 
11 0.16 0.534 1.00 3.0000 1 2700 
12 0.20 ZERO 7.30 8.6680 3 2600 
13 0.20 ZERO 8.00 8.6680 3 2600 
14 0.20 ZERO 3.00 2.8893 1 2600 
15 0.20 0.555 25.00 26.0040 9 2600 
16 0.08 0.097 9.50 9.8328 3 2950 
17 0.20 0.458 9.00 8.6680 3 2600 
18 0.16 0.344 3.00 3.0000 1 2700 
19 0.20 0.114 6.00 5.7787 2 2600 
20 0.16 ZERO 1.00 3.0000 t 2700 
21 0.25 0.114 5.00 5.6673 2 2550 
22 0.08 0.114 0.75 3.2776 1 2950 
23 0.25 ZERO 10,00 11 .3346 4 2550 
24 0.25 ZERO 5.00 3.6670 '1 3300 
25 0.16 ZERO 2.00 3.0000 1 2700 
26 0.25 ZERO 1.50 4.0000 1 3600 
27 0.20 ZERO 5.40 6.8894 2 3100 
28 0.25 ZERO 0.50 4.0000 1 3600 
29 0.20 ZERO 3.00 3.0000 1 2700 
30 0.16 ZERO 2.00 3.0000 1 2700 
31 0.12 0.344 1.00 2.9446 1 2650 

Table 2 - RIGHT HAND SYSTEM 
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Application of the method of characteristics to the Concorde Tefuelling-a')'!tem 

The major advantage of the method of characteristics is that boundary 
conditions can be dealt with in isolation enabling, by an efficient use 
of subroutines, the same procedures to be used for a range of different 
piping configurations. 

Apart from the internal pipeline sections the necessary calculations for the 
Concorde refuelling system involve the following boundary conditions: 

(1) Closure of tank valves and possible column separation in the 
upstream pipeline (6). 

(2) Closure of the Refuelling Control Unit under failure conditions 
involving the possibility of column separation in the downstream 
pipeline (8) and the operation of an inwards relief valve. 

(3) Series (2 pipe) and branch (3 pipe) junctions. 

(4) Tank valves left open or fully shut during refuelling, these tank 
inlets possibly fitted with non-return valves. 

(5) Dead ended branch pipes. The possibility of upstream column 
separation to be allowed for in cases (4) and (5). 

Befuelling Control Unit 

Two assumptions were made with regard to the R.C.U. 

(1) The supply to the aircraft is assumed to be represented by a 
constant pressure source located upstream of the R.C.U. (11). 

(2) The R.C.U. is assumed to be mounted directly onto the main 
trim transfer pipe opposite the inwards relief valve. 

Section No. 

Steady 
State 
Pressure 
Loss 
DP(J) 

Constant Pressure Source 
PR ,-________________ __ 

R.C.U. 

ＭＭＭＭＭＭＭＭＭＭＭＭＭＭｾｾＭＭＭＭＭｊｹｶｊＬｾｬＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭ

i\x
I 

1,2 1,1 K,l 

I 1 

• VV 1 K, 

ｩ｜ｾ＠ ｾ＠

K,2 

Inwards relief valve 

Fig. 5 Layout of R.C.U. and main trim transfer pipeline 
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The available boundary equations at the above junction, in the absence of 
column separation are: 

Valve discharge coefficient: 

PP(J,l) = PR - DP{J) VV(J.l)IVV(J,I)1 (12) 

(T VO (J» 2 

Flow and pressure continuity at the junction: 

VV(J,l)A(J) VV(K,l)A(K) + VV(I,l)A(I) (13) 

pp (J, 1) PP (K ,1) = pp (1,1) (14) 

These four equations may be solved wi th the two C- characteristics drawn 
between points (K,1) and (K,2) and (1,2). 

Solution yields a quadratic equati('H solvable for VV(J ,1) in terms of 
known pressure and veloe; ty v:11ues one time step earlier, pipeline 
characteristics such as wave speed, and the discharge coefficient (T) for 
the valve. If the R.e.U. is open throughout the solution the value of T 

is held at 1.0. If the flow reverses through the inlet pipe the R.C.U. 
acts at a non return valve and the expression VV(J,I) = 0 replaces 
equation (12). 

Column separation downstream of the closing R.C.U. 

If column separation occurs downstream of the R.C.U. during closure then 
the flow continuity equation (13) above must be replaced by a relation 
governing the pressure within the forming cavity. It has been found (8) 
that air release from the kerosene cannot be ignored and it is reasonable 
to consider that the column separates, due to air release, at atmospheric 
pressure (7). 

The necessary equation is: 

PP(K,l) = YAP + AIRV . ATM 
VOLA 

(15) 

where AIRV ｾｳ＠ the quantity of released aIr at N.T.P. and VOLA is the cavity 
volume. 

The cavity volume is calculated from 

VOLA = ｖｏｾｂ＠ + ｾｾｔＨａＨｋＩＨｖｖＨｋＬｬＩ＠ + V(K,l»+ A(I)(VV(I,l) + V(I,l»-

A(J)(VV(J,l) + V(J,l») (16) 

at time T where VOLB is its volume at T - 6T. The values of the interface 
velocities VV(K,l), VV(I,l) can be calculated directly from the two C-
characteristics previously mentioned once PP(J,l) is known. 

The quantity of air releaspd ":' to time T at any pressure below atmosphere 
is calculated from 

AIRV T = FULV x AeON (17) 

where FULV is the quantity of fuel giving up its dissolved air and is 
assumed to be that volume of fuel pasping through the valve between the 
instant of colulm1 separat ion anel the t) me T. AeON is the % of dissolved 
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air released at any pressure calculated from Henry's Law and the Bunsen 
Solubility Coefficient i.e.:-

ACON • «ATM - Pav) K/ATM (18) 

where Pav is the average pressure across one time step. 

The value of FULV can be calculated from an equation siudlar to (16): 

FULVT • FULVT- 6T + 16T A(J) (VV{J,l) + V{J,l» (19) 

Solution of equations 12, 14, 15 together with the two C- characteristics 
between (K,l) and (K,2) and (I,2) yields a pair of equations in PP{J,I), 
VV{J,l) which can be solved by an iterative process. 

Inwards Relief Valve 

In the event of column separation following the closure of the main inlet 
valve an inwards relief valve passes fuel from an adjacent tank into the 
main transfer pipe. The action of this valve is assumed instantaneous and 
the quantity of fuel passed is assumed to be given by the valve's steady 
state discharge coefficient. 

R.C.U. Shut 

Cavity 
VV(I,I) PP {K,l)-VAP+PA VV(K,I) 

Relief valve opening into 
fuel tank at atmospheric 
pressure 

Fig. 6 Layout of Relief Valve 

The discharge through the relief valve is assumed to be of the form: 

QR • Cl + C2 6P + C3 6P2 

During the growth of the cavity, i.e. pressure PP(K,I) falling, it will be 
assumed that the volume of fuel FULV mentioned above continues to give up 
its dissolved air in accordance with Henry's Law. If the pressure drops 
sufficiently to open the relief valve then the fuel passing into the area 
of the cavity will also be assumed to give up its dissolved air. As the 
cavity collapses, but with the relief valve still open, the fuel passing • 
into the pipe will be assumed to release its air but none of the previously 
released air will be allowed back into solution. Recent high speed filming 
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(7) of cavity formation in kerosene pipelines support this assumption. 
Following the closure of the relief valve the released air will be assumed 
to remain out of solution and form the boundary condition at this location. 

It is necessary to calculate the cavity interface velocities VV(I,I), 
VV(K,l) and the cavity pressure PP(K,l). The available equations are the 
two C- curves for pipes I andK referred to previously together with 
equation (15). 

The value of AIRV can be calculated from 

AIRV • (FULV + QR.DT)ACON (20) 

The volume of the cavity may be calculated as: 

VOLA • VOLB + DT (A(K)(VV(K,l) + V(K,I» + A(I) (VV(I,l) + V(l,l») 
2 

-Q M R 

Series and Branch Junctions 

(21) 

The values of pressure and .elocity at a pipeline junction can be calculated 
from the ｡ｾｰｲｯｰｲｩ｡ｴ･＠ flow continuity and pressure continuity equations solved 
with the ｾ＠ and C- characteristic equations joining the junction conditions 
at time T to the adjacent pipe section conditions at T - 6T. 

Tank Inlet Valves 

Generally during valve operation only two equations are necessary, the 
valve discharge coefficient relation and the C+ characteristic joining 
section (J, N(J» at time T - 6T to (J, N(J) + 1) at T. 

Section No. 

Pipe J 

J,N(J) 

Tank inlet 
valve 

ｾ＠

J,N(J)+l 

Fig. 7 Tank Inlet Valves 

Tank at 
atmospheric 
pressure 
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Tbe available equatiOD8 are: 

VV(J,N(J) + 1) • T Vo (J) /PP(J, N(J) + 1) - ATM 
,- DP (J) 

(22) 

wbere DP(J) is tbe pressure drop across the fully open valve at an initial 
flow velocity Vo(J) , 

and 

VV(J,N(J) + 1) • Kl (J) - K2(J)PP(J,N(J) + 1) (23) 

Substitution yields a quadratic solvable for VV(J,N(J) + 1). 

A number of separate operating conditions were considered and these are 
outlined below: 

(1) Valve closing: 

Solution of (22), (23) above together with the values of T as 
tbe valve closes. 

(2) Valve open, no non-return valve fitted: 

Solution of (22), (23) with T • 1.0. 

(3) Valve open, fitted with a non-return valve: 

Tbe non-return valve is assumed to act instantaneously BO that if 
the flow reverIes through the tank inlet the valve is considered shut and 
the no-flow boundary equation (24) solved with the characteristic (23) 

VV(J,N(J) + 1) • 0.0 - (24) 

(4) Valve closed or dead ended branch: 

The no-flow boundary equation (24) is again solved with the ｡ｰｰｲｯｰｲｩ｡ｴｾ＠
c+ characteristic equation. 

(5) Column separation upstream of a closed valve or in a dead ended branchl 

If the pressure at the closed valve falls to the liquid vapour preslurr 
then equation (24) is replaced by a pressure boundary relation: 

PP(J,N(J) + 1) • VAP (25) 

which .ay be solved with the c+ ｾｨ｡ｲ｡｣ｴ･ｲｩｳｴｩ｣ｳ＠ (23) to give the cavity 
interface velocity. The growth of the cavity may be monitored and the 
pressure on its collapse calculated from 

PP(J,N(J) + 1) • VAP + pc VCLOS (26) 

where VCLOS is the final interface velocity before cavity collapse. 
no-f1ow15oundary equation can then be re-employed. 

The 

If column s.paration occurs upltream of a cloled non-return valve then the 
collapse of the cavity is assumed to open the valve and the applicable 
boundary equation is equation (22) with T • 1.0. 
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Valve discharge characteristics 

In the above approach it has been assumed that a relation of the form 

T - f(time) 

was known. Nor.ally t is known in terms of valve open angle or area ratio, 
which in turn can be monitored against time during closure. This results 
in two sets of curves, 

t - f(angle) , 

angle - f(tiae). 

These may be cross plotted and values of t interpolated for each time step. 

Concorde Refuelling Computer Programs 

Two programs have been written, the first calculates the pressure transients 
in the system and outputs the pressures to the line printer and to a 
ｴ･ｾｯｲ｡ｲｹ＠ file, the second reads this file and plots the pressure variations 
against time for each tank inlet. 

Both programs have been written in FORTRAN IV and have been tested on an 
IBM Systa.J360 Model 50 Computer with an offline Calcomp X-Y digital plotter. 
The larger progr .. requires 40,000 words (160,000 bytes), plus buffer space, 
for execution. 

A flow diagr .. for the pressure transient program is set out below. 
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FLOW DIAGRAM FOR CONCORDE ｾｌｌｉｎｱ＠ PROGRAM 

Begin 

Assign steady state values for VOL(I), VOLl(I), FULV, AIRV, AeON 

ｾ＠
Read data: order of polynomials to be fitted to valve characteristics, 

number of fuel tanks, 
pressure of constant source, 
pressure loss through refuelling control unit. 

For each tank valve input :- ｾ＠
parameter to define valve state (e.g. always open, closing, 

etc.), 
parameter to define existence of non-return valve, 
pressure discharge coefficients/valve angle coordinates 
valve angle/closure time coordinates 

ｾ＠
For each tank valve call PRELIM and CURFIT to fit required polynomials 
to the above coordinates. 

ｾ＠
Input relief valve characteristics in terms of gall/min versus pressure 
diCCerential Jl 
Input vapour pressure of fuel, density, air solubility, maximum 
computing time, kinematic viscosity of the fuel, number of pipes, 
interpolation factor for separation. 

+ For each pipe in the system input:-

pipe length, 
fuel velocity, 
pipe diameter, 
wave speed, 
number of sections, 
pressure losses due to bends and couplings in the pipe .. 

lit I: axL -Calculate the time step 

C'-

Working downstream froo the ｭ｡ｩｮｾｮｬ･ｴ＠ call LOSS for each pipe to 
obtain the steady-state values of velocity (VV) and pressure (pp) 
at each section. 

l. 
Transeer values in VV, pp arrays lnto V, P arrays as base conditions 
for calculation at the next time step. 

1 
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1 
For each pipe call FRICT to calculate triction tactors at the internal 
sections. 

Output to printer and disc tile, Ｘｴ･｡ｾｳｴ｡ｴ･＠ pressures at valves, 
junctions and dead-ends. 

+ • 
Update the time T-T+6T 

ｾ＠
Call INLET to calculate tlow conditions at the main inlet. 

+ 
Check it R.C.U. closing 

./ ｾ＠
R.C.U. closing Check pressure 

at inlet valve 

ｾ＠
Pressure greater 
than source 
pressure PR 

ｾ＠
Set velocity to 
zero. Treat 
main inlet &I 

dead end and 
calculate tlow 
tor 2-pipe junction 

GOTO (B) 

Calculate VV and pp 
using valve discharge 
characteristic and 
tlow pressure continuity 
equations 

.. R.C.U. closed 
GOTO (D) 

(C) For each dead-end call TANK to obtain VV and pp at the end section. 

+ Check dead end pressure 

Lell than or Ｎｱｕｾ＠ ｾｴＮｲ＠ than vapour pressure 
'Yapour pressure 

+ Set pre8sure equal to 
vapour pressure and 
VOLl(I) • (VOL(I) 

ｾ＠
For each tank inlet call TANK to 
VV and pp at the 'Yal 'Ye. 

ｾ＠7it7 
calculate the boundary 

to zero 

conditions 

1 
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On the first time step (KB-2) DP(Il)- P(I,N(I)+l)-ATM 

ｾ＠
Call INTER to calculate valve discharge coefficient. 
It valve completely ｯｰ･ｮｾｷｬＮｾ＠ . 
It valve completely closeQ ｾＮｾ＠

ｾ＠
Check pressure at valve 

Pr ••• ure below ｶｾｳｳｾＮ＠ between vapour Pressure abOY. 
pressure: pressure and atmospheric; atmosphere I 

Set pressure equal to and valve equipped with NRV, Solve for VV 
vapour pressure Set velocity to zero as and pp using 
VOLl(I).VOL(I) N.R.V. assumed closed value ot ｾ＠
ICAV(I)-l tor no NRV. ｾ＠

-2 tor DV. ______ 

ｾ＠ ---------
Working downstream trom the main inlet call JUNCT tor each junction, 
to set up the boundary conditions for VV and pp at sections adjacent 
to the junctions. 1. 
For each pipe call PIPE to calculate VV and PP at the internal sections 
using the boundary conditions from INLET, TANK and JUNCT from the 
previous time step. 

Call VAPOUR to check tor any pressure values falling below vapour 
pressure. 

110 vapour press 
indicated 

1 

ｾＮ＠
Values of TS(I,K) calculated to 
give times at which vapour pressure 
was reached at each section 

ｾ＠
Call SORT to yield time at which 
a section first falls to vapour 
pressure 

Call FACTOR to interpolate the pressure-
velocity values back to this instant 
of time. 

TIME - TIME-TSM 

ｾ＠
Call CLOSE to check tor cavities closing 

ｾ＠
For each ripe check on value tor leAV(I) 

ｉｬｾ＠
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lCAV(I)-l 
Separation at a 
closed valve 

ｾ＠
It ｖｏｾＬｉｃａｖＭ［Ｌ＠
can ty shut, VV-'J. ｾ＠
&8 neY boundary 
condition 

ICAV(I)-2 
Separation at a 
closed N.R.V. valve. 

ｾ＠
It VO'L-fj.ICAVw4 
N.R.V. assumed 
to reopen due to 
returning fuel 
column. 

Reuaip VV. pp UT8¥8 into V,P arrays as a base tor the next time 

.tep. 1 
Output pressures at 

ｾ＠
tank valves, dead. ends and junctions 

Update time T - T+6T 

ｾ＠
It T < noWt Goto(A) 

ｾ＠
STOP 

R.C.U. -eloaing 

ｾ＠
Check pressure at inlet val Ye. 

/ 
Pressure greater than 
atmospheric. 

ｾ＠
Calculate VV pp values 
at inlet junction f'roIl 
R.C.U. discharge 
characteristics and 
now and pressure con-
tinuity 

"i 
It indicated junction 
pressure below atmospheric 
interpolate back to instant 
atmospheric prellure 
reached. 

ｾ＠
GOTO (C) 

ｾ＠
Pressure less than atmospheric 

ｾ＠
If R.C.U. still closing 
calculate separation pressure 
and cavity interface velocities 
with reference to R.C.U. 
discharge characteristics. 

ｾ＠
GOTO (C) 
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R.C.U. closed - cavity formed 
on it. downstream side. 

ｾ＠
Check cavity pressure against 
relief valve opening pressure 
di fferential 

Relief ｙ｡ｬｙｾ＠
Closed 

• Cavity grow. at 
wn inlet. 
Pressure and interface 
velocities calculated 
based on effect of released 
air vithin carit7. 

ｾ＠
ooro (C) 

ｾ＠
Relief val Ye 

Open. 

ｾ＠
Fuel passes into 
cavity trom relief 
tank, giving up dis-
solved air. Cavity 
pressure and interface 
velocities calculated 
based on effect of this 
released air within 
vapour cavity. 

ｾ＠
GO'ro CC) 
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Discussion of Results 

Figures 8 to IS represent the predicted pressure variations at the ReU 
and tank inlet valves during and following the simultaneous closure of all 
the tank inlet valves in an overall closure time of 1.29 seconds. The 
curves clearly split into two distinct sections, pressure variations up 
to and following tank inlet valve closure. 

Up to valve closure the system is subjected to positive pressure waves 
propagating away from each valve, however as the valve closure times are 
far in excess of the local pipe periods, from both the adjacent junctions 
and the main inlet, negative reflections from these boundaries will tend to 
give the pressure variation at the valve its characteristic 'maximum pressure 
before valve closure' shape. The presence of positive pressure waves from 
the other closing valves does tend to cloud the picture, however the curves 
are of a shape that can be expected from an analysis of the system based on 
known boundary reflection coefficients. 

The supply to the aircraft has been assumed to be represented by a constant 
pressure reservoir. This is justified by the fact that the Hose End 
Pressure Controller maintains a constant pressure at the inlet to the RCU. 
This assumption would lead to a reverse flow through the RCU following tank 
inlet valve closure, however this could not occur on the aircraft so that 
the RCU has also been assumed to act as a non-return valve. This explains 
the pressure fluctuations predicted following tank inlet valve closure as the 
system becomes a piping network with all boundaries represented by closed 
valves and dead ends so that the pressure waves present at valve closure are 
reflected internally vith very little damping. In practice this pressure 
variation would damp quickly due to natural wave front dispersion, which is 
not included in the model, system vibration and fluid friction. 

ｾｯ＠ interesting points emerge from the curves obtained, namely the depe9dence 
of spherical plug valves on a small central part of their rotation for Ilow 
stoppage and the effect of the change in valve characteristic obtained by the 
use of the restrictor plates, particularly on tank 6. Figures 16 to 19 
illustrate the valve characteristics for all the tank inlet valves On the 
aircraft and the normal one speed rotation closure mode. It will be 
appreciated that a two speed valve motion could be used to reduce transient 
pressures while keeping the val.e overall closing time constant. 

An important consideration is the likely accuracy of these results. In the 
absence of any test rig results, the appropriate point in the system testing 
progra..e viII not be reached till next year, the only measure of accuracy 
i. that supplied by work on transients in kerosene reported elsewhere (6, 7. 
8). In this case accuracy within 10% could be expected. but depending entirely 
on the ｡ｾ｣ｵｲ｡｣ｹ＠ of the ｡ｳｳｾｴｩｯｮｳ＠ made relating to the RCU and the accuracy 
of the valve characteristics .eaaured by one of the authors at Flight 
Refuelling. During later program' runs to consider the effect of column 
leparation following RCU shut down the accuracy would be expected to decrease 
due to the ｣ｾｬ･ｸｩｴｹ＠ of the solution caused by the release of dissolved air. 
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Conclusions and Further Work 

A ca.puter prograa has been written and found to give an acceptable 
qualitative picture of pressure transients in the Concorde refuelling 
.y.tea following tank inlet valve closure. The quantitative results 
appear reasonable but an esti .. te of the program accuracy will have to 
await the appropriate full .cale te.t. on the fuel system test rig. 

The progr .. viii al.o be used to investigate column separation on closure 
of the Refuelling Control Unit. 

It i. hoped to extend the vork to include the Trim Transfer and jettison 
Ｎｵ｢ＭＮｹｳｴｾｭｳ＠ of the aircraft. 
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