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1. Introduction

Application of the Fourier transform for option pricing was pioneered by, among others, Stein
and Stein (1991), and Heston (1993), who viewed the integral pricing formula as a “closed-
form solution". Bakshi and Madan (2000) formalized the economic foundations for Fourier
transform based pricing and the interpretation of the characteristic function spanning the pay-
off universe of all derivative instruments. Carr and Madan (1999) found that, by performing
the Fourier transform of the European option with respect to the strike price, the FFT can be
used to perform the inversion. Following Carr and Madan (1999), the Fractional Fast Fourier
Transform (FRFT) method was developed by Chourdakis (2005). The FRFT addressed a short-
coming of the FFT by providing greater resolution of option prices within the range of strike
prices being considered. Chourdakis (2005) demonstrated that the method could deliver prices
up to 45 times faster than the FFT without substantial loss of precision. Subsequently, three
new numerical methods for pricing options have emerged: (i) Integration-Along-Cut (IAC)
method, described in Boyarchenko and Levendorskiı̆ (2002) and refined in Levendorskiı̆ and
Xie (2012), (ii) the Cosine (COS) method of Fang and Oosterlee (2008) that utilizes a cosine ex-
pansion and Fourier transform inversion, providing fast and accurate prices across many strike
prices simultaneously, and (iii) the Convolution (CONV) method of Lord et al. (2009) that
builds upon the Quadrature (QUAD) method of Andricopoulos et al. (2003) and the enhanced
QUAD-FFT method of O’Sullivan (2005), and provides efficient pricing across multiple strike
prices. A few variants of the FFT have also been developed, for example, the generalized
FFT of Boyarchenko and Levendorskiı̆ (2002) and the inverse FFT (iFFT) of Boyarchenko and
Levendorskiı̆ (2008).

Alongside these developments, progress has also been made in approximation techniques
for option pricing. Recently, Kristensen and Mele (2011) have provided a general approxima-
tion framework based on Taylor series expansions of the difference between the actual option
price under the selected asset model and that under an auxiliary pricing model for which a
closed-form solution is available. Carr and Madan (2010) provide a closed-form saddle-point
approximation for a range of asset models and demonstrate its effectiveness for pricing deep
out-of-the-money options for which the FFT method can be less effective. Indeed, as noted by
Boyarchenko and Levendorskiı̆ (2011), it should be stressed that in the context of calibration,
for each maturity date, the number of strike prices is limited to about two to three dozens, and
therefore it is often quicker to invert the Fourier transform directly by numerical integration
than to apply the FFT method.

This paper continues the pursuit of real-time option pricing and develops a practical and
efficient approximation framework to address the valuation of European options under a gen-
eral continuous-time asset model from the class of exponential semimartingale processes. This
class is rich and encompasses the majority of models utilized in finance for pricing derivatives.
Examples include (i) the general families of (jump) diffusion processes such as the Black and
Scholes (1973) model, the Merton (1976) model and the mixed exponential model of Cai and
Kou (2011), (ii) pure jump Lévy processes such as the general class of linear combinations
of Gamma (LG) processes, recently introduced by Kaishev (2013), which includes as spe-
cial cases, the variance gamma (VG) process introduced by Madan and Seneta (1990) and the
bilateral gamma process considered by Küchler and Tappe (2008), the KoBoL model of Bo-
yarchenko and Levendorskiı̆ (2000) (a special case of which is known as the CGMY processes
of Carr et al. (2002)), and the generalized hyperbolic models (see Eberlein (2001)), and (iii)
affine processes, characterized by Duffie et al. (2003), which include the Heston (1993) model
and the Bates (1996) model. For properties of some of the particular examples of semimartin-
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gale models see Eberlein et al. (2008).
We will refer to our option pricing framework as the Fourier transform B-spline method

(FTBS). There are two key parts of the method. First, use of a Fourier transform based pricing
integral. Second, use of B-splines, which are very flexible piecewise polynomial functions, to
approximate integrand functions in the Fourier transform pricing integral. For the latter we use
the Lewis-Lipton representation, provided in Lewis (2001) (see also Lewis (2000)) and Lipton
(2002). This method utilizes the Fourier transform to provide an option valuation formula as
a contour integral in the complex plane and can be considered as a generalization of the ap-
proach of Carr and Madan (1999). Formulas for option pricing in Lévy models, in the form
of inverse Fourier transform integrals appeared already in Eq. (30) and (31) of Boyarchenko
and Levendorskiı̆ (1998) (see also Boyarchenko and Levendorskiı̆ (2000)). Several authors
have utilized the Fourier transform for option pricing. For example, Boyarchenko and Leven-
dorskiı̆ (2002) develop a numerical pricing method using a generalized FFT, and Quittard-Pinon
and Randrianarivony (2010) apply this to price European options. In their more recent work,
Boyarchenko and Levendorskiı̆ (2011) develop new efficient implementations of the Fourier
transform method: (i) based on the truncation of the infinite trapezoid rule and using a novel
application of summation by parts, (ii) a new family of pricing methods entitled the payoff
modification with Fourier transform methods (PMwFT), and (iii) conformal parabolic and hy-
perbolic iFT methods, which utilize a conformal map, and yield an integral with a much better
rate of convergence. Option pricing under particular models, namely the Heston model and
VG process, are considered in Levendorskiı̆ (2012) and Innocentis (2011) respectively. The
above methods are promising additions to the option pricing literature. We note that method
(iii) above is particularly effective for accurately pricing deep out-of-the-money options, which
we are not considering in our paper.

Bouziane (2008) utilizes the Fourier transform approach to the problem of pricing inter-
est rate derivatives. In common with Carr and Madan (1999), and Chourdakis (2005), these
methods introduce truncation error and sampling error as described by Lee (2004).

Generalizations of the Fourier pricing framework has recently been considered by Dufresne
et al. (2009) and by Eberlein et al. (2010). The latter authors have shown that it is valid for
the more general class of exponential semimartingale models of the underlying asset price
dynamics.

In what follows, we utilize the extension of the Fourier transform pricing method provided
by Eberlein et al. (2010), and assume the exponential semimartingale model for the asset price
evolution. Our method is based on three key ideas. First, we represent the integrand of the
Fourier transform pricing integral as a product of (i) a trigonometric function dependent on the
option strike price, and (ii) the semimartingale process characteristic function multiplied by a
Fourier transform of the option payoff with unit strike price, which is independent of the actual
strike price. Second, we interpolate the strike price independent function of part (ii) by a linear
combination of B-splines of a fixed (low) order. In this way, we express the Fourier transform
pricing integral as a sum of integrals of a B-spline multiplied by the trigonometric function of
part (i). Third, we interpret these integrals as Peano representations of divided differences of
appropriate trigonometric functions. As a result, we obtain an explicit, closed-form expression
for the option price in the form of a linear combination of low order divided differences of
trigonometric functions, as shown in Theorem 2 of Section 3.3.3. The coefficients in this linear
combination are obtained from the spline interpolation of the strike price independent function
of part (ii). Consequently, the only strike price dependent part of our option pricing expression
are the divided differences. Therefore, the FTBS method can be used for efficient evaluation of
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option prices not just for one fixed strike price but simultaneously for a whole set of different
strike prices in a given range. Although the divided differences calculation is dependent on
the strike price, it does not depend on the choice of asset model and hence they can be pre-
computed.

The option price evaluation under our method is very fast and accurate since the semimartin-
gale process characteristic function of part (ii) above is interpolated and, hence, computed at a
relatively small number of interpolation sites, and the knots of the interpolating spline are op-
timally located, as described in Section 3. To our best knowledge, optimal spline interpolation
theory has not been used in the option pricing literature before. In summary, for any choice of
an exponential semimartingale model for the underlying asset price process, the option price
calculation using our method becomes a simple procedure of (i) fitting a spline function ex-
pressed as a linear combination of B-splines to a simple variant of the characteristic function,
and (ii) computing a linear combination of the B-spline coefficients and the pre-computed di-
vided difference factors for the choice of strike price and interest rate. As demonstrated in
Section 4, this process is extremely quick and allows us to compute the option price with any
required accuracy.

For example, under the VG process, we can calculate European option prices across 31
different strike prices accurate to five significant figures in under 20 microseconds, which im-
plies a computation time of under one microsecond per option. These computation times are
achieved using a modest computational environment, as described in Section 4, and do not
make use of parallel processing techniques. Our method therefore has a wide range of applica-
tions in finance, ranging from pricing, marking, and hedging to calibration and high-frequency
trading.

There are several key advantages of our method over existing approximation methods for
option pricing. First, truncation error is eliminated by transforming the Fourier transform pric-
ing integral to the unit interval. Second, our method is able to compute accurate option prices
with lower sampling error than other methods when using only a small number of interpolation
sites. This is evidenced by our numerical examples, see Figure 1 of Section 4. Finally, the
divided difference calculation is model independent and can therefore be pre-computed and
stored in a data file for future use. This enables the FTBS method to compute asset prices ex-
tremely quickly at a higher level of precision than is possible using alternative approximation
methods, for most of the asset price models that we have investigated, see Figure 1 of Section
4, and Tables F.6, F.7, and F.8 of Appendix F. We note that we are unaware of any similar
existing approximation methods in the option pricing literature. This is confirmed by the re-
sults of the numerical comparison of our FTBS method with five other state-of-the-art option
pricing methods, namely the FFT, FRFT, IAC, COS, and CONV methods, which as we show
are very competitive. In order to make this comparison computationally fair, we have diligently
implemented all the six option pricing methods to the best of our ability in C++ using identical
hardware.

In this paper, we illustrate the FTBS method for computing the price and sensitivities of
European options but note that the method is more general and can be applied without adjust-
ment to any contingent claim without early exercise or path dependent features. Additionally,
the method can be adapted for pricing exotic options, as demonstrated in Haslip and Kaishev
(2013) for the problem of pricing discrete lookback options.

This paper is organized as follows. The next section reviews the Fourier transform pricing
framework that underlies our FTBS method. In Section 3, we introduce the application of
B-spline interpolation theory to option pricing and show how the Peano representation of a
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divided difference with respect to a B-spline kernel is applied to provide a closed-form formula
for pricing and computing the sensitivities of European options across all strike prices. Section
4 assesses the numerical performance of the FTBS method across a wide range of different asset
price models and provides detailed comparisons to the existing methods listed above. In Section
5, we consider the cross-sectional calibration of the Heston model and the stochastic volatility
jump diffusion model of Bates (1996) to the implied volatility surface, and demonstrate the
effectiveness of the FTBS method relative to the FFT and FRFT methods. Section 6 concludes
the paper, and the appendices provide tables and some detailed proofs that are omitted from the
main text.

2. Pricing options using the Fourier transform

In this section, we introduce the notation and assumptions of the continuous-time asset price
model and provide a short recap of the Fourier transform pricing framework for the valuation
of European options.

2.1. Notation and model assumptions
Let the stochastic process X = (Xt)t≥0 with X0 = 0 be defined on a continuous-time proba-
bility space (Ω,F ,Q) with a standard complete filtration {Ft, t ≥ 0}. We assume that X is a
semimartingale with respect to the filtration {Ft, t ≥ 0}, so that it satisfies X = M +A where
M = (Mt)t≥0 is a local martingale with M0 = 0 and A = (At)t≥0 is a bounded variation pro-
cess with A0 = 0. Let St ≥ 0 denote the price at time t > 0 of an asset whose price dynamics
follows an exponential semimartingale process given by

St = S0e
(r−q)t+Xt , (1)

where r is the risk-free interest rate, and q is the continuous income yield provided by the as-
set. In Eq. (1), the probability measure Q is assumed to be the risk-neutral measure under the
assumption of no arbitrage, where e−rtSt is a martingale. For further properties of semimartin-
gales we refer to Jacod and Shiryaev (2003).

2.2. The Fourier transform
The FTBS method is built on the foundations of the Fourier transform. We now introduce
this Fourier pricing method and develop a pricing formula for European options. In Section 3,
the pricing formula is approximated using an optimal spline interpolation, which provides fast
convergence to the true price.

The Fourier transform method provides a direct integration formula for option prices under
a range of payoffs, independent of the choice of an asset model.

Proposition 1 (European call option pricing formula). If MXT
(v) exists for all v ∈ (1, α)

with α > 1, then the European call option price, C(T,K), is given by

C(T,K) = −Ke
−rT

2π

iv+∞∫
iv−∞

e−izkφXT
(−z)

dz

z2 − iz
, (2)

where MXT
(v) =

∞∫
−∞

evxfXT
(x)dx, and

k = log(
S0

K
) + (r − q)T. (3)
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PROOF. The proof is straightforward and can be found e.g. in Eberlein et al. (2010) (see
Example 5.1 therein). �

The pricing formula in Eq. (2) is an interesting direct integration formula for the European
call option, but in this form it exhibits a number of difficulties. First, the choice of contour inte-
gration parameter, v, is important and has a significant impact on the behavior of the integrand
and, hence, the convergence properties of the formula. Lord and Kahl (2007) investigate the
choice of v in depth and provide optimal choice for particular asset models when pricing Eu-
ropean options. For a more recent investigation of the optimal choice of parameter of contour
integration see Section 2.7 of Boyarchenko and Levendorskiı̆ (2011). Second, the integration
must be performed over an infinite interval, and care must be taken to avoid truncation error.

In our presentation of the FTBS method, we prefer to utilize an alternative form of Eq. (2)
provided by Lewis (2001) and Lipton (2002).

Proposition 2 (Alternative European call option pricing formula). If MXT
(v) exists for all

v ∈ (α, β) with α < 1
2

and β > 1, then the European call option price, C(T,K), is given by

C(T,K) = S0e
−qT −

√
S0Ke

−(r+q)T
2

π

∫ ∞
0

Re
[
eiukφXT

(
u− i

2

)]
du

u2 + 1
4

, (4)

where k is given by Eq. (3).

Remark 1. The pricing formula in Eq. (4) can be considered a compromise (for the purpose
of ease of use) to Eq. (2), where instead of identifying the optimal choice of the contour
parameter for a particular asset price model, it is fixed at a level that generally performs well
across a range of models. In developing the FTBS method we have considered different contour
parameters, and we note that the method is applicable for choices different than v = 0.5.
However, for simplicity of the presentation, and ease of use of the method in deriving Theorem
2 of Section 3.3.3, we have chosen to use the above alternative form with v = 0.5, which works
reasonably well for a wide choice of models and parameters.

We refer the reader to Theorem 4 in Appendix C, which is a version of Theorem 2 that is
applicable in the general case v > 1, and note that this can easily be extended to the case
v < 0. We note that the simplified pricing formula Eq. (4) still exhibits the difficulty with the
truncation error of the upper limit of integration, which we address in the next section.

3. The Fourier Transform B-spline pricing method

In this section, we provide a full derivation of the FTBS method in the context of pricing Eu-
ropean call options on an underlying asset. In addition, we consider the problem of calculating
the Greeks and apply the FTBS method to compute the sensitivities of European call options.
However, as noted in the introduction, the method is more general and can be applied to a wider
range of options by modifying the payoff function in the pricing formula.

3.1. Simplification of the pricing formula
We now present an alternative representation of the pricing formula in Eq. (4) in which the inte-
grand is decomposed into the product of (i) a trigonometric function dependent on the option’s
strike price, and (ii) the real and imaginary parts of the semimartingale process characteristic
function multiplied by the Fourier transform of the option payoff with unit strike, which is
independent of the actual strike price.

6



Theorem 1 (Strike-separable pricing formula). If MXT
(v) exists for all v ∈ (α, β) with

α < 1
2

and β > 1, then the European call option price C(T,K) is given by

C(T,K) = S0e
−qT − 1

π

√
S0Ke

−(r+q)T
2 I(k), (5)

where

I(k) =

1∫
0

cos
(

1−t
t
k
)
s1(t)dt+

1∫
0

sin
(

1−t
t
k
)
s2(t)dt, (6)

s1(t) =
Re
[
φXT

(1−t
t
− i

2
)
]

1− 2t+ 5
4
t2

, s2(t) = −
Im
[
φXT

(1−t
t
− i

2
)
]

1− 2t+ 5
4
t2

, (7)

and k is defined in Eq. (3).

PROOF. Using the Euler identity, one can expand eiuk in Eq. (4) as cosuk + i sinuk. We then
express φXt(u− i

2
) in terms of its real and imaginary parts. Multiplying together and discarding

imaginary terms yields the following simplification for the integral in Eq. (4)∫ ∞
0

Re
[
φXt(u− i

2
)
]

cosuk − Im
[
φXt(u− i

2
)
]

sinuk

u2 + 1
4

du,

which we denote by I(k). We then make the change of variable u = 1−t
t

. Noting that the limits
u = 0 and u = ∞ correspond to t = 1 and t = 0, respectively, and du = − 1

t2
dt, the integral

becomes

I(k) =

∫ 1

0

Re
[
φXt(

1−t
t
− i

2
)
]

cos
(

1−t
t
k
)
− Im

[
φXt(

1−t
t
− i

2
)
]

sin
(

1−t
t
k
)

t2
[(

1−t
t

)2
+ 1

4

] dt.

Finally, by simplifying the denominator and defining s1(t) and s2(t) as above, the result fol-
lows. �

Remark 2. We make two important observations about strike-separable pricing formula in Eq.
(5). First, integration is now performed over the unit interval. Specifically, we have applied
the change of variables u = 1−t

t
which transforms the upper limit of integration from infinity

to zero, and the lower limits of integration from zero to one. Thus, integration is performed
over the unit interval [0, 1]. In this way we eliminate the truncation error which comes from the
necessity to truncate the limit at infinity in the original expression of Eq. (4). This means that
it is no longer necessary to carefully identify a truncation point for each asset price model by
considering how quickly the characteristic function decays to zero. Second, we have separated
the integrand into the product of cos

(
1−t
t
k
)

or sin
(

1−t
t
k
)
, which are dependent on the strike

price, and functions s1(t) and s2(t), which are independent of the strike price. This innovation
is one of the foundations of the FTBS method since it allows us to price options at different
strike prices in an extremely efficient manner.

The above remark highlights a significant improvement to many of the existing numerical meth-
ods of option pricing based on the Fourier transform, most of which require careful examination
of the characteristic function to minimize the truncation error in the resulting option price.
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3.2. The Greeks
Pricing is one key aspect of the field of derivatives, another equally important aspect is hedging,
which is crucial for effective risk management. We now consider the problem of computing the
Greeks and demonstrate how Eq. (5) is easily extended to calculate the option price sensitivi-
ties. We note that here we only consider the Greek sensitivities that are model independent and
therefore do not depend on the form of the characteristic function. For example, Vega is spe-
cific to the Black-Scholes model and does not exist in the same form for a general exponential
semimartingale process.

Corollary 1 (The Greeks). The sensitivities of the European call option price, C(T,K), to
movements in the asset price, interest rate, and the passage of time are provided by ∆C(T,K) =
∂C(T,K)
∂S0

and ΓC(T,K) = ∂2C(T,K)

∂S2
0

with respect to the asset price, PC(T,K) = ∂C(T,K)
∂r

with

respect to the interest rate, and ΘC(T,K) = ∂C(T,K)
∂T

with respect to the tenor. If MXT
(v)

exists for all v ∈ (α, β), with α < 1
2

and β > 1, then they can be computed as

∆C(T,K) = e−qT − 1

π

√
K
S0
e
−(r+q)T

2
[

1
2
I(k) + I ′(k)

]
(8)

ΓC(T,K) =
1

S0π

√
K
S0
e
−(r+q)T

2
[

1
4
I(k)− I ′′(k)

]
(9)

PC(T,K) =
1

π

√
S0Ke

−(r+q)T
2

[
1
2
I(k)− TI ′(k)

]
(10)

ΘC(T,K) = −qS0e
−qT +

1

π

√
S0Ke

−(r+q)T
2

[
T
2
I(k)− (r − q)I ′(k)

]
, (11)

where I ′(k) and I ′′(k) are the derivatives of the function I(k), defined in Eq. (6). These are
computed as

I ′(k) =

1∫
0

cos
(

1−t
t
k
)

∆s1(t)dt+

1∫
0

sin
(

1−t
t
k
)

∆s2(t)dt (12)

I ′′(k) =

1∫
0

cos
(

1−t
t
k
)

Γs1(t)dt+

1∫
0

sin
(

1−t
t
k
)

Γs2(t)dt, (13)

where
∆s1(t) =

1− t
t

s2(t), and ∆s2(t) = −1− t
t

s1(t), (14)

and

Γs1(t) =
1− t
t

∆s2(t) = −(1− t)2

t2
s1(t),

Γs2(t) = −1− t
t

∆s1(t) = −(1− t)2

t2
s2(t).

PROOF. The proof of the formulae for the Greeks is provided by careful application of the
chain rule when differentiating. We sketch the proof briefly for the case of ∆ and Γ and note
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that similar logic applies in the case of P or Θ. We begin with the proof for ∆C(T,K). From
Eq. (5), we have

∆C(T,K) =
∂C

∂S0

= e−qT − 1
2π

(S0K)−
1
2Ke

−(r+q)T
2 I(k)

− 1
π

√
S0Ke

−(r+q)T
2 I ′(k)

∂k

∂S0

. (15)

Noting that k = log(S0

K
) + (r − q)T , we obtain ∂k

∂S0
= 1

S0
. Simplifying Eq. (15) yields the

required result.
To obtain ΓC(T,K), one simply differentiates C(T,K) a second time, that is,

ΓC(T,K) = ∂∆C
∂S0

, and again makes careful use of the chain rule. This yields the expression in
Eq. (9). Finally, to obtain the expressions for I ′(k) and I ′′(k), we differentiate Eq. (6) under
the integral sign with respect to k,

I ′(k) =
d

dk
I(k) =

1∫
0

d

dk
cos
(

1−t
t
k
)
s1(t)dt+

1∫
0

d

dk
sin
(

1−t
t
k
)
s2(t)dt

= −
1∫

0

sin
(

1−t
t
k
)

1−t
t
s1(t)dt+

1∫
0

cos
(

1−t
t
k
)

1−t
t
s2(t)dt.

Defining ∆s1(t) and ∆s2(t) as in Eq. (14) provides the stated formula for I ′(k). The calcula-
tion of I ′′(k) follows precisely the same logic. �

We have developed simple integration formulae for pricing options and computing their
sensitivities. These form the foundations of the FTBS method and we now proceed to develop
closed-form approximations to compute them. In the next section we apply spline approxima-
tion theory to interpolate functions s1(t), s2(t), ∆s1(t), ∆s2(t), Γs1(t), and Γs2(t).

3.3. Developing the approximation formula
The standard approach in option pricing for the evaluation of Eq. (5) is to apply efficient nu-
merical integration techniques, such as the Gauss-Kronrod quadrature method, to calculate the
integral to the desired level of accuracy. In this section, we introduce a general approach for
evaluating Eq. (5) that utilizes spline approximation theory. We have chosen to apply spline
functions in developing our option pricing method, because they allow for the accurate approx-
imation of possibly complex and oscillatory functions. For example, see Figure 7 of Kaishev
et al. (2006), where B-spline basis functions are used to approximate the Doppler function,
which is wildly oscillatory, especially near the origin. There are two key ideas underlying the
spline approximation component of the FTBS method. First, we interpolate the functions s1(t)
and s2(t) by two linear combinations of B-splines of a fixed low order.

In this way we express each of the two integrals in the expression for I(k) in Eq. (6) as
a linear combination of integrals of a B-spline multiplied by cos(1−t

t
k) and sin(1−t

t
k), respec-

tively. Second, we interpret these integrals as Peano representations of divided differences of
appropriate trigonometric functions and obtain an explicit, closed-form expression for the op-
tion price. The latter is in the form of a linear combination of low order divided differences of
trigonometric functions and is provided in Theorem 2 of Section 3.3.3. The coefficients in this
linear combination are obtained from the spline interpolation of the strike price independent
functions s1(t) and s2(t).
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Our method is very fast and accurate for two main reasons. First, since we extract the
oscillatory components, cos

(
1−t
t
k
)

and sin
(

1−t
t
k
)
, from the integrand in Eq. (4), the remaining

functions, s1(t) and s2(t), are smoother and better behaved. Hence, the approximation of
these functions requires only a relatively small number of interpolation sites at which they are
computed and interpolated. The second reason is that, given fixed interpolation sites, the knots
of the interpolating spline are optimally located, following Gaffney and Powell (1976) and
Micchelli et al. (1976). Therefore, the optimal interpolating spline provides the best possible
bound for the spline interpolation error. Moreover, it can be shown (see De Boor (2001),
Chapter XII) that as the number of interpolation sites and knots increases, the error bound
decays at the rate O (|t|n ), where |t|:= maxi (ti − ti−1) is the mesh size of the sequence of
knots. In other words, the spline approximation quickly converges to the integrand function
as the number of interpolation sites, and hence knots, increases. Therefore, the FTBS method
provides a very accurate approximation of the option price, and requires far fewer evaluations
of the approximated integrand function than using direct numerical integration. In the following
sections, we provide a brief introduction to B-splines and divided differences and formalize the
ideas we have described in this section to establish our main option pricing result presented in
Theorem 2 of Section 3.3.3.

3.3.1. Splines, B-splines, and divided differences
In order to derive our main result given in Theorem 2, we require some background material
on splines which we briefly introduce. Let n and l be positive integers and consider an interval
[a, b] ∈ R, partitioned by the points a = tn < . . . < tn+l < tn+l+1 = b called knots. We
define the spline function, s(t) of order n, degree n − 1, as a piece-wise polynomial function
which coincides with a polynomial of degree n − 1 between the knots tn, . . . , tn+l+1. The
polynomial pieces are smoothly joined at the knots tn+1, . . . , tn+l so that the spline is n − 2
times continuously differentiable on the interval [a, b]. To introduce the set of B-spline basis
functions, we add n − 1 additional knots at each end of the interval [a, b]. Thus, we define the
extended set of knots {ti}2n+l

i=1 so that t1 = · · · = tn = a, a < tn+1 < · · · < tn+1 < b, and
tn+l+1 = · · · = t2n+l = b.

As known by the Curry-Schoenburg theorem, polynomial splines on {ti}2n+l
i=1 form a linear

space of functions, an element, s(t), of which is represented as

s(t) =

p∑
i=1

ciMi,n(t), (16)

where ci are constant coefficients, p = l + n, and Mi,n(t) are the B-spline basis functions. The
latter are defined on {ti}2n+l

i=1 as the n-th order divided difference of the function
f(y) = n (max {(y − t), 0})n−1 = n(y − t)n−1

+ , that is,

Mi,n(t) = Mi,n(t; ti, . . . , ti+n) = [ti, . . . , ti+n]f(y).

The n-th order (n ≥ 0) divided difference of a function f(t) is defined recurrently as

[ti, . . . , ti+n] f(t) =
[ti+1, . . . , ti+n] f(t)− [ti, . . . , ti+n−1] f(t)

ti+n − ti
, (17)

where [ti] f(t) = f (ti) and the points {tj}i+nj=i are pairwise distinct. In the case when one or
more points are repeated, a derivative based formula provided in Eq. (B.1) of Appendix B.1,
which appears in Ignatov and Kaishev (1989), can be used to calculate the divided difference.

10



The B-spline basis functions, Mi,n(t), i = 1, . . . , p, have some nice properties, see e.g.
De Boor (2001), that will be very useful in deriving our pricing formula Eq. (22). In particular,
we need the elegant Peano representation of the n-th order divided difference of a function f(x)
given as

[ti, . . . , ti+n] f(x) =

∫
R

Mi,n(t; ti, . . . , ti+n)
f (n)(t)

n!
dt, (18)

where f (n) is the n-th derivative of f . For a proof of Eq. (18) see, for example, De Boor (2001),
Chapter IX.

Note that the B-spline Mi,n(t) appears as the kernel in the Peano representation given in
Eq. (18). This is important since in the derivation of the pricing formula in Eq. (22), we
need to evaluate integrals of the form

∫
R
Mi,n(t; ti, . . . , ti+n)ψ(t)dt, with ψ(t) = cos

(
1−t
t
k
)

or ψ(t) = sin
(

1−t
t
k
)
. We shall see that it is possible to express such integrals in the form of

Eq. (18) and thus eliminate integration; replacing it with the evaluation of a simple low order
divided difference of a function ψ̃(t), whose n-th derivative coincides with ψ(t). Therefore, the
Peano representation plays a fundamental role in obtaining our main result, the option pricing
formula given by Eq. (22) in Theorem 2.

3.3.2. Optimal B-spline interpolation
In this section, we use the spline function, s(t), defined in Eq. (16), to interpolate the integrand
functions, s1(t) and s2(t). from the strike-separable pricing formula, given in Theorem 1. Since
these functions are defined on the interval [0, 1], we assume that [a, b] ≡ [0, 1] in the definition
of the knot set {ti}2n+l

i=1 . To avoid complicating the notation, we illustrate this step only for
the function s1(t). The same reasoning and similar notation applies for s2(t). Denote the set
of ν interpolation sites, which are alternatively referred to as data sites, as τ = {τ1, . . . , τν},
with τ1 = 0, τν = 1, and τi < τi+1, i = 1, . . . , ν. The optimal spline interpolation problem
can now be stated as follows. For the fixed set of appropriately located data sites τ , find the
interpolating function s(t), and the function C(t) that satisfy the inequality

|s1(t)− s(t)| ≤ C(t)‖s(n)
1 (t)‖, (19)

where ‖f‖ = max{ |f(t)| : a ≤ t ≤ b} and C(t) is as small as possible for all t ∈ [0, 1]. In
order for the bound in Eq. (19) to be valid, we also assume that the functions s1(t) and s2(t)
are continuous and have bounded n-th derivatives. We note that these assumptions hold for the
implemented semimartingale asset price models, as illustrated in Section 4. Furthermore, the
interpolation method developed here works even if some of these assumptions are not satisfied,
in which case it may not be possible to assess the error of approximation using the bound in
Eq. (19).

Gaffney and Powell (1976) and Micchelli et al. (1976) independently solved the optimal
interpolation problem in Eq. (19). It turns out that the optimal interpolant, s̃(t), is a spline
function of order n with exactly l = ν − n optimally located internal knots, {t̃i}n+l

i=n+1, and
linear coefficients c̃i for i = 1, . . . , l + n. We refer to Gaffney (1978) for details of how to find
these optimal knots and coefficients. As noted by De Boor (2001), choosing the l internal knots
to be the averages of the data sites τ , that is,

tn+i =
(τi+1 + . . .+ τi+n−1)

n− 1
, i = 1, . . . , l, (20)

provides a very good approximation to the optimal knot set, {t̃i}n+l
i=n+1. We have tested the

theoretically optimal knot set, implementing the subroutine SPLOPT of De Boor (2001) and
11



have not found any significant improvement. We therefore recommend the averaging method
in Eq. (20) as the efficient knot selection procedure.

Another important parameter of the interpolation process is the degree n− 1 of the spline.
Popular choices are quadratic, n = 3, or cubic, n = 4. We considered both choices and found
that numerically the cubic spline does not offer additional precision over the quadratic spline,
while increasing the computational complexity. There is also some evidence in approximation
theory literature, see, for example, Marsden (1974), suggesting that quadratic splines often
provide better fits than cubic splines. We therefore have chosen to work with quadratic splines,
and in the rest of the paper we therefore use n = 3.

In summary, for given data sites τ , the choice of which is discussed in Section 3.4.1, we
follow the optimal interpolation scheme described above. We obtain quadratic spline approx-
imants, s̃1(t) and s̃2(t) to s1(t) and s2(t), that are in the form of Eq. (16). The approximants
s̃1(t) and s̃2(t) are defined by the sets of knots {t1,i}6+l1

i=1 , {t2,j}6+l2
j=1 and coefficients c1,i, c2,j for

i = 1, . . . , p1, j = 1, . . . , p2, where p1 = l1 + 3 and p2 = l2 + 3. We note that for the com-
putation of the Greeks, additional splines are used to interpolate the functions ∆s1(t), ∆s2(t),
Γs1(t), and Γs2(t).

3.3.3. The Fourier transform B-spline pricing formula
In this section, we utilize the optimal B-spline interpolation scheme presented above to develop
the main result of this paper, the FTBS pricing formula. We first return to the strike-separable
pricing formula in Eq. (5) of Theorem 1 and define C̃(T,K) to be the approximation to Eq.
(5) by replacing s1(t) and s2(t) by their spline approximants s̃1(t) and s̃2(t) respectively. That
is,

C(T,K) ≈ C̃(T,K) = S0e
−qT −

√
S0Ke

−(r+q)T
2

π
Ĩ(k), (21)

where

Ĩ(k) =

1∫
0

cos

(
1− t
t

k

)
s̃1(t)dt+

1∫
0

sin

(
1− t
t

k

)
s̃2(t)dt.

We note that in what follows we assume that MXT
(v) exists for all v ∈ (α, β) with α < 1

2

and β > 1. To express Eq. (21) in a closed-form and eliminate integration, it suffices to (i)
substitute s̃1(t) and s̃2(t) which are splines of the form given by Eq. (16), (ii) take summation
in front of integration, and (iii) apply the Peano formula in Eq. (18) to each integral in the
linear combination. The latter integrals are of the form

∫
R
Mi,n(t; ti, . . . , ti+n)ψ(t)dt, with

ψ(t) = cos
(

1−t
t
k
)

or ψ(t) = sin
(

1−t
t
k
)
, which are in the required form to apply the Peano

representation. Therefore, as described in Section 3.3.1, one needs to find the function ψ̃(t)
whose n-th derivative coincides with ψ(t). Following this approach, we give our main result
stated by the following theorem, whose proof is given in Appendix B.2.
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Theorem 2 (The Fourier Transform B-spline pricing formula).
Let {t1,i}6+l1

i=1 , {t2,j}6+l2
j=1 and {c1,i}p1

i=1, {c2,j}p2

j=1 be the sets of knots and linear coefficients of the
quadratic spline interpolants, s̃1(t) and s̃2(t), respectively, where p1 = l1 + 3 and p2 = l2 + 3.
Additionally, let k = log

(
S0

K

)
+ (r − q)T . The pricing formula of a European call option is

given as

C(T,K) ≈ S0e
−qT − 1

π

√
S0Ke

−(r+q)T
2 Ĩ(k), (22)

where for k 6= 0

Ĩ(k) = 6

p1∑
i=1

c1,i[t1,i, t1,i+1, t1,i+2, t1,i+3]f1(t, k)

+ 6

p2∑
i=1

c2,i[t2,i, t2,i+1, t2,i+2, t2,i+3]f2(t, k), (23)

and f1 and f2 are defined as

f1(t, k) =
1

12

{
t

(
−(k2 − 2t2) cos

k(t− 1)

t
− 5kt sin

k(t− 1)

t

)
+ kCi

(
k

t

)(
−6kt cos k + (k2 − 6t2) sin k

)
− k Si

(
k

t

)(
6kt sin k + (k2 − 6t2) cos k

)}

f2(t, k) =
1

12

{
t

(
−(k2 − 2t2) cos

k(t− 1)

t
− 5kt sin

k(t− 1)

t

)
+ kCi

(
k

t

)(
6kt sin k + (k2 − 6t2) cos k

)
+ k Si

(
k

t

)(
−6kt cos k + (k2 − 6t2) sin k

)}
.

For k = 0, Ĩ(k) simplifies to

Ĩ(k) =

p1∑
i=1

c1,i +

p2∑
i=1

c2,i. (24)

Note that Ci(x) and Si(x) are the trigonometric special functions defined as

Ci(x) = −
∞∫
x

cos y
y
dy and Si(x) =

x∫
0

sin y
y
dy, respectively.

PROOF. Provided in Appendix B.2 �

While the functions f1 and f2 in Theorem 2 may appear complicated, they can be evaluated
efficiently. Their trigonometric integrals can be computed using the Fortran library of Van-
devender and Haskell (1982), which provides 17 significant figures of accuracy using series
expansions with pre-computed coefficients. Calculation of the divided difference is simple us-
ing the standard recursive definition in Eq. (17) when the knots [ti, ti+1, ti+2, ti+3] are distinct.
In the case of repeated knots, the divided differences must be calculated using the derivative
based definition in Eq. (B.1) of Appendix B.1.
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Remark 3. We refer the reader to Theorem 4 in Appendix C, which is a version of Theorem
2 that is applicable in the general case v > 1, and note that this can easily be extended to the
case v < 0. It is worth noting that the more general Theorem 4 does not lead to any additional
computational complexity.

The following proposition gives a bound for the absolute error of the FTBS European option
price approximation. It shows that the FTBS method provides a fast convergence to the true
price as the numbers, ν and l, of data sites, τ and knots, {η̃j,i}3+l

i=3+1 increase, while the mesh
sizes |η̃j| := maxi (η̃j,i − η̃j,i−1) go to zero.

Proposition 3 (FTBS Option Price Error Bound). The absolute error of the FTBS European
option price, C̃(T,K) is bounded by∣∣∣C(T,K)− C̃(T,K)

∣∣∣ ≤ √S0K

π
e

(r+q)T
2

(
C̃1

∥∥∥s(3)
1 (t)

∥∥∥+ C̃2

∥∥∥s(3)
2 (t)

∥∥∥) , (25)

where C̃1 = C1

∫ 1

0

∣∣cos
(

1−t
t
k
)∣∣ dt , C̃2 = C2

∫ 1

0

∣∣sin (1−t
t
k
)∣∣ dt, Cj , j = 1, 2 are the constants

obtained from the optimal spline interpolation, s̃j(t) of sj(t), j = 1, 2, following Gaffney and
Powell (1976), and where ‖f‖ = max{ |f(t)| : 0 ≤ t ≤ 1}. The bound in (25) converges
to zero as the mesh sizes |η̃j| := maxi (η̃j,i − η̃j,i−1) go to zero, at a rate O (|η̃|3), where η̃ =
max (|η̃1|, |η̃2|), i.e., ∣∣∣C(T,K)− C̃(T,K)

∣∣∣ = O
(
|η̃|3
)

(26)

PROOF. Provided in Appendix B.3. �

Calculation of the Greeks under the FTBS method follows the same logic as Theorem
2. It uses additional B-splines to approximate functions ∆s1(t), ∆s2(t), Γs1(t), and Γs2(t).
We denote the respective approximants as ∆̃s1(t), ∆̃s2(t), Γ̃s1(t), and Γ̃s2(t). We can then
approximate the integrals I ′(k) and I ′′(k) from Eqs. (12) and (13) in closed-form using the
Peano representation in Eq. (23).

Proposition 4 (FTBS formulae for the Greeks).
Let {t1,i}6+l1

i=1 , {t2,j}6+l2
j=1 and {c1,i}p1

i=1, {c2,j}p2

j=1 be the sets of knots and linear coefficients of the
quadratic spline interpolants, s̃1(t) and s̃2(t), respectively, where p1 = l1 + 3 and p2 = l2 + 3.

Similarly, let the knots and linear coefficients of the quadratic spline interpolants ∆̃s1(t),
∆̃s2(t), and Γ̃s1(t), Γ̃s2(t) be denoted by {t∗1,i}

6+l∗1
i=1 , {t∗2,j}

6+l∗2
j=1 and {c∗1,i}

p∗1
i=1, {c∗2,j}

p∗2
j=1, where

p∗1 = l∗1 + 3 and p∗2 = l∗2 + 3 for ∗ ∈ {∆,Γ}.
The closed-form approximations for the Greeks are obtained by replacing functions I(k),

I ′(k), and I ′′(k) in Corollary 1 by their approximants Ĩ(k), Ĩ ′(k), and Ĩ ′′(k). Ĩ(k) is defined
in Theorem 2, and Ĩ ′(k) and Ĩ ′′(k) are defined as

Ĩ ′(k) = 6

p∆
1∑

i=1

c∆
1,i[t

∆
1,i, t

∆
1,i+1, t

∆
1,i+2, t

∆
1,i+3]f1(t, k)

+ 6

p∆
2∑

i=1

c∆
2,i[t

∆
2,i, t

∆
2,i+1, t

∆
2,i+2, t

∆
2,i+3]f2(t, k)
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Ĩ ′′(k) = 6

pΓ
1∑

i=1

cΓ
1,i[t

Γ
1,i, t

Γ
1,i+1, t

Γ
1,i+2, t

Γ
1,i+3]f1(t, k)

+ 6

pΓ
2∑

i=1

cΓ
2,i[t

Γ
2,i, t

Γ
2,i+1, t

Γ
2,i+2, t

Γ
2,i+3]f2(t, k),

for k 6= 0. If k = 0, this simplifies to Eq. (C.6) in Theorem 2.

PROOF. The proof follows the same reasoning as for Theorem 2 and is therefore omitted. �

3.4. Implementation of the FTBS method
The FTBS method is straightforward to apply and, unlike other numerical methods for op-
tion pricing, its implementation is largely independent of the underlying continuous-time asset
model. The key considerations in the implementation of the FTBS method are (i) the choice of
data sites, and (ii) the pre-computation of the divided differences [tl,i, tl,i+1, tl,i+2, tl,i+3]fl(t, k)
for l = 1, 2 in Theorem 2.

It should be noted that the spline approximants, s̃1(t) and s̃2(t), are independent of the strike
priceK. Since the divided differences can be pre-computed, as we will explain in Section 3.4.2,
the approximants’ strike price independence implies that the efficiency of the FTBS method for
pricing many options simultaneously across a quantum of strike prices is similar to that of
pricing a single option. This is analogous to the use of the FFT of Carr and Madan (1999) for
evaluating the price of European options for a range of strike prices.

3.4.1. Optimal selection of interpolation data sites
Somewhat surprisingly, the question of selecting data sites in spline interpolation has not re-
ceived significant attention in the literature on approximation theory, although some consider-
ations can be found in De Boor (2001). The selection of data sites depends on the smoothness
properties of the underlying function that is to be interpolated. In areas where the function is
less smooth and exhibits higher curvature, more data sites should be allocated to capture its be-
havior. Intuitively, the most efficient selection of data sites should extract the most information
from the function with minimum number of observations. Therefore, the allocation of data sites
across the unit interval should provide a greater weight to regions where the function exhibits
greater curvature. We identify the data sites to sample the semimartingale process characteristic
function by analyzing the curvature of functions s1(t) and s2(t) across a range of models and
parameter choices. Our selection is based on the criteria of a compromise set τ that performs
reasonably well across a large range of parameters, as opposed to being optimized for any par-
ticular model. We allocate the data sites in uniform bands: 60% to [0, 0.2), 20% to [0.2, 0.6) and
the remainder to [0.6, 1]. The allocation could be improved by developing optimal data sites
allocations for specific semimartingale processes and parameter ranges. We also examine the
use of uniformly spaced data sites in the unit interval. Although uniform spacing of data sites
produces accurate option prices, it is less efficient, since more data sites are allocated to regions
of low curvature of the functions s1(t) and s2(t) than is necessary for accurate interpolation.

3.4.2. Pre-computation of divided differences
In computing the divided difference [tl,i, tl,i+1, tl,i+2, tl,i+3]fl(t, k) for l = 1, 2, there are two
cases to consider: (i) the knots tl,i, tl,i+1, tl,i+2, tl,i+3 are all distinct, and (ii) some knots are
repeated once or more. In the former case, we can apply the recursive definition, given in Eq.
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(17), directly, which is simple to implement computationally. In the case of repeated knots, the
derivative definition, given in Eq. (B.1) of Appendix B.1, of a divided difference should be
applied.

In our case, we have to evaluate the divided differences at the following repeated knots:
[0, 0, 0, tl,4]fl, [0, 0, tl,4, tl,5]fl, [tl,k+3, tl,k+4, 1, 1]fl, and [tl,k+4, 1, 1, 1]fl for l = 1, 2. Although
algebraically involved, these are easily explicitly expressed with the aid of symbolic algebraic
software, such as Mathematica, as shown in Appendix B.4. Note that, since the divided differ-
ences at repeated knots are evaluated just a single time at the endpoints, their complicated form
does not have an impact on the time it takes to compute the option price.

Returning to the FTBS pricing formula in Theorem 2, we make an important observation.
The divided differences of functions f1(t, k) and f2(t, k) across the knots {t1,i}6+l1

i=1 ,
{t2,i}6+l2

i=1 depend only on the choice of knots and k. They are independent of the choice of the
exponential semimartingale process. Therefore, for a fixed set of data sites and corresponding
optimal knots, we can pre-compute the divided differences for different values of k and do not
need to calculate this each time an option is priced for a different value of k. Furthermore, if we
use the same data sites and knots for the Greeks, then the pre-computed divided differences can
be applied for both pricing and computing the option price sensitivities. In all our numerical
examples provided in Section 4, we pre-compute the divided differences using the allocation
of data sites described in Section 3.4.1. We find that this choice of data sites provides very
accurate results across the wide range of models considered.

The pre-computation of divided differences is a significant advantage of the FTBS method,
since pricing options becomes a simple procedure of fitting the functions s1(t) and s2(t) using
B-spline interpolation, and then computing the sum in Eq. (23) of products of the B-spline
coefficients and the pre-computed divided differences. The divided differences can be pre-
computed in two ways, depending on the option pricing application. First, for the purposes
of calibration, one would need to compute the divided differences for a fixed set of values of
k. This set is determined by the relevant strike prices and maturity times, the interest rate,
and the dividend rate, at the calibration date (see Eq. (3)). Therefore, at the beginning of
the calibration process, the divided differences can be pre-computed exactly for all required
values of k. This is a very fast process that takes approximately one to two milliseconds, and
is negligible relative to the overall calibration time (see Table 1 of Section 5, where calibration
times are measured in the order of seconds). Second, in the case of real-time applications, such
as high frequency trading, it may be necessary to compute option prices for values of k that are
rapidly changing. For example, as time elapses, the share price will move, and maturities will
shorten. In this case, it is necessary to pre-compute the divided differences at a fine resolution
of possible values of k.

We now describe an algorithm to implement the pre-computation of the divided differences
in this second case. Let kmin and kmax denote the minimum and maximum moneyness of the
options being considered, where we define the moneyness of an option as k = log

(
S0

K

)
+ (r−

q)T . For example, if we consider the range for log(S0

k
) to be [−1, 2], r − q to be [0%, 10%],

and T to be [0, 10], then the possible range for k could be assumed to be [kmin, kmax], where
kmin = −1 and kmax = 3. Note that this covers the full market of typically traded call options.
For example, if S0 = 100, then strike prices could range from K = 15 to 270 over any choice
of r − q ∈ [0%, 10%] and T ∈ [0, 10]. We denote the divided differences as

DvD1
i (k) = [t1,i, t1,i+1, t1,i+2, t1,i+3 ]f1(t, k)

DvD2
j (k) = [t2,i, t2,j+1, t2,j+2, t2,j+3]f2(t, k),
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where i = 1, . . . , p1 and j = 1, . . . , p2.
To approximate DvD1

i (k) and DvD2
j (k) for a given k ∈ [kmin, kmax], we divide the in-

terval [kmin, kmax] uniformly using N evenly spaced points with width δ = kmax−kmin
N−1

. The ex-
pressions DvD1

i (km) and DvD2
j (km) containing the divided differences should therefore be

pre-computed for i = 1, . . . , p1, j = 1, . . . , p2, andm = 1, . . . , N , where km = kmin+(m−1)δ.
Thanks to modern computing power, the values of DvD1

i (km) and DvD2
j (km) across per-

missible values of i, j, and m can comfortably be held in RAM at a very fine resolution. This
reduces the need for interpolation in the case where km < k < km+1 for some m ∈ 1, . . . , N .
For example, if N is chosen such that the spacing δ = km − km−1 between neighboring km is
δ = 1E-5, then, for p1 = p2 = p = 100 knots, kmin = −1 and kmax = 3, the total memory
required to store all values of the pre-computed divided differences is under one gigabyte. This
is well within the capability of standard computing systems. In such an implementation, it is
reasonable to choose the nearest km to the specified k, hence, avoiding the need for interpola-
tion.

Since the B-spline interpolation of s1(t) and s2(t) can be performed very quickly and with
good precision, the FTBS method is able to compute precise option prices in a very efficient
manner. Moreover, once the divided differences have been pre-computed and the B-splines
have been fitted, computing the price of options for different strike prices requires only calcu-

lating S0e
−qT − 1

π

√
S0Ke

−(r+q)
2 and performing p1 +p2 multiplication and addition operations,

as can be seen from Eqs. (22) and (23). Since typically only 50 to 100 data sites are required,
this computation is extremely fast.

If a coarser partition of [kmin, kmax] is employed to approximate k, then simple linear in-
terpolation can be applied to compute the required vector of divided difference between the
neighboring values of kj . This adds only a slight overhead to the calculation, requiring an ex-
tra p multiplication, p division, and 4p addition operations, as is evident from examining the
formula for linear interpolation.

Finally, we note that in the implementation, the divided differences should be stored in
contiguous memory in a simple array, since the appropriate memory offset for specified indices
i, j, and m can be computed directly. This ensures that the divided difference array for valuing
an option can be accessed instantly.

3.4.3. Recommended configuration and algorithm implementing the FTBS method
In our implementation of the FTBS method we have used identical sets of data sites and knots
for the quadratic spline interpolants, s̃1(t) and s̃2(t) to minimize the number of evaluations of
the asset price process characteristic function. In Algorithm 1 and Algorithm 2, we provide a
simple implementation of the FTBS method, which is applied in Section 4 for all the numerical
examples. In order to provide practical recommendations for the configuration of the FTBS
method, in Table F.3 of Appendix F we provide prescriptions for choosing the number of data
sites required to achieve a desired level of precision, for all the asset price models considered
in the paper.

4. Numerical evaluation of the FTBS method

As described in Section 1, a variety of different methods for pricing European options have
been developed in recent years. In order to assess the effectiveness of the FTBS method, we
compare it to the key state-of-the-art methods in the literature, to both verify its accuracy in
pricing European options, and provide a guide to the relative speeds of the different methods.
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Algorithm 1 Pre-computation of divided differences (using identical sets of knots for interpo-
lation of functions s1(t) and s2(t))
Input:

• Number of knots ν + 3.
• Array specifying knots {ti}ν+3

i=1 (note that t1 = t2 = t3 = 0, tν+1 = tν+2 = tν+3 = 1).
• Array {kj}NK

j=1 corresponding to selected strike prices {Kj}NK
j=1 defined by kj =

log
(
S0

Kj

)
+ (r − q)T .

Output:
[ti, ti+1, ti+2, ti+3]fl(t, kj), for i = 1, . . . , p, j = 1, . . . , NK , and l = 1, 2.

for j = 1, . . . , NK do
Compute [0, 0, 0, t4]fl(t, kj), and [0, 0, t4, t5] fl(t, kj), for l = 1, 2 using (1) and (2) in
Appendix B4.
for i = 3, . . . , ν − 2 do

Compute [ti, ti+1, ti+2, ti+3]fl(t, kj) for l = 1, 2 using the recursive definition (19).
end for
Compute [tv−1, tv, 1, 1]fl(t, kj), and [tv, 1, 1, 1]fl(t, kj), for l = 1, 2, using the derivative
based formula provided in Eq. (B.1) of Appendix B.1.

end for

We have diligently implemented each pricing method to the best of our ability in C++, using
identical hardware, and therefore the computation times are all directly comparable. The details
of the implementation of each pricing method is outlined in Appendix D.

We examine the precision of the FTBS method for a variety of different exponential semi-
martingale processes. The numerical examples consider the following asset models: (i) the VG
process of Madan et al. (1998), (ii) the Heston stochastic volatility model of Heston (1993),
(iii) the KoBoL model of Boyarchenko and Levendorskiı̆ (2000) (a special case of which is
known as the CGMY processes of Carr et al. (2002)), (iv) the double exponential jump dif-
fusion (DEJD) model of Kou (2002), and (v) the mixed exponential jump diffusion (MEJD)
model of Cai and Kou (2011). Comparing the effectiveness of the FTBS method with such a
variety of models assists in providing evidence for the robustness of our approach.

To judge the numerical efficiency of the FTBS method, we compare it to (i) the Fast
Fourier Transform (FFT) of Carr and Madan (1999), (ii) the Fractional Fast Fourier Trans-
form (FRFT) of Chourdakis (2005), (iii) Integration-Along-Cut (IAC) method of Levendorskiı̆
and Xie (2012), (iv) the Cosine (COS) method of Fang and Oosterlee (2008), and (v) the Con-
volution (CONV) method of Lord et al. (2009).

Our main numerical comparison considers the computation time, for a specified level of
precision, of pricing European options across multiple strikes prices. This is our main case of
interest, since this is necessary for the efficient and accurate risk-neutral calibration of asset
models to the observed implied volatility surface. This comparison is carried out across the VG
process, Heston model, and KoBoL model. As a second comparison, we consider the efficiency
of the FTBS method for pricing an European option at a single strike price.

Finally, in Appendix E, we provide some additional numerical comparisons that consider
the precision of the FTBS method for computing the Greeks, and also for pricing options under
the mixed exponential- and double exponential jump diffusion models.
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Algorithm 2 Computation of European option prices using the FTBS method (using identical
sets of knots for interpolation of functions s1(t) and s2(t))
Input:

• Number of data sites ν.
• Array specifying data sites τ = {τ1, . . . , τν} with τ1 = 0, τν = 1, and τi ∈ (0, 1) for
j = 2, . . . , ν − 1, allocated uniformly, according to the empirically justified rule: 60%
in [0, 0.2), 20% in [0.2, 0.6) and 20% in [0.6, 1).
• The constants S0, r, q, T , {Kj}NK

j=1 strikes prices.

Output: {C(T,Ki)}NK
j=1

1. Compute knots {ti}ν+3
i=1 , using the approximation in Eq. (22) for the interior knots.

Therefore, t1 = t2 = t3 = 0, t3+j =
τi+j+τi+j

2
for j = 1, . . . , v − 3, and tν+1 =

tν+2 = tν+3 = 1. Note that in our computational implementation, the same knots will
be utilized to interpolate functions s1(t) and s2(t), that is we take p = p1 = p2(= ν)
and ti = t1,i = t2,i, for i = 1, . . . , ν + 3.

2. Define kj = log
(
S0

Kj

)
+ (r − q)T , j = 1, . . . , NK . Retrieve pre-computed divided

differences [ti, ti+1, ti+2, ti+3]f1(t, kj), and [ti, ti+1, ti+2, ti+3]f2(t, kj), for i = 1, . . . , p
and j = 1, . . . , NK , from in memory array.

3. Compute quadratic spline approximants, s̃1(t) and s̃2(t) to s1(t) and s2(t) using func-
tion SPLINT of De Boor (2001). This routine will return the linear coefficients
{c1,i}pi=1 and {c2,i}pi=1 (see Section 2.3).

4. Compute option prices using Theorem 2. That is, first compute Ĩ(kj), using formula
(25), and then C(T,Kj) using formula (24), j = 1, . . . , NK (see section 2.3.3).

In all cases, the data sites for the B-spline approximations are allocated as described in
Section 3.4.1. Our calculations utilize the exact pre-computation of divided differences as
described in Section 3.4.2. Calculation times are reported in milliseconds, and the number of
data sites for the FTBS method is denoted by N for consistency with other methods.

All our numerical implementations are in C++ using a standard laptop computer with an
Intel Core I7-3610QM processor.

4.1. Numerical comparison for pricing options at multiple strike prices
We compare the FTBS method to the COS method, the FFT, and FRFT methods. We consider
pricing European options under three different asset price models, the VG process, the Heston
model, and the KoBoL (CGMY) model.

Following Chourdakis (2005), we consider three sets of parameters for each asset price
model: “low”, “bench”, and “high”. See Tables F.6, F.7, and F.8 of Appendix F for the
parameter values. This is an important aspect of testing the effectiveness of different numerical
methods for option pricing, since for applications such as calibration (and even for calculation
of prices in a given model), it is vital that the pricing method provides accurate prices across the
entire parameter space of the asset price model. For example, as demonstrated in Levendorskiı̆
(2012), even a numerical scheme which calculates prices with the relative error of order of 2E-5
when used for calibration may produce the parameters rather different from the true ones, and
prices of barrier options calculated using these parameters may differ by 30% from the true
prices.
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In the case of the VG process, and Heston model, these parameter sets are taken directly
from Chourdakis (2005), and in the case of the KoBoL (CGMY) model, we have utilized
parameters that represent low, medium, and high levels of volatility (based on densities a, b,
and e, from Figure 1 of Carr et al. (2002)) and have used the same maturities as Chourdakis
(2005).

In Figure 1, we provide a graphical comparison of the FTBS method to the above pricing
methods, and across the above asset price models. Specifically, we compare the calculation
time to the level of precision for pricing European options across 31 strike prices in a single
computation, where the axes are in logarithmic scale. The precision level is defined as the
maximum absolute error across the 31 computed option prices. Note that for the multiple strike
comparison, we computed the reference option price values using integration in Mathematica
to compute the inverse Fourier integral with very high numerical precision, and verified the
correctness of the reference prices by applying each option pricing method at its highest level
of accuracy (by setting N to a large integer).

The computation times and precision levels underlying the graphs in Figure 1 are provided
in Tables F.6, F.7, and F.8, of Appendix F, where we provide several measures of precision.
Namely, we give (i) the absolute error, which is the maximum absolute error, (ii) mean error,
which is the average absolute error, and (iii) RMSE, which is the root mean square error.

The numerical examples provide evidence that for the problem of pricing European options
across multiple strike prices, the FTBS method achieves excellent efficiency, that is, a com-
bination of accuracy and speed, across the different exponential semimartingale models and
numerical pricing methods considered. In particular, for the VG process, the FTBS method
dominates the other three option pricing methods at all precision levels considered from 1E-4
to 1E-71.

For the Heston model, the FTBS method dominates all other comparison pricing methods
except for the COS method. The FTBS method is preferable to the COS method when pricing
options under the Heston model for precision levels below approximately 1E-6 precision. This
can be seen visually in Figure 1, where the lines for FTBS (Heston) and COS (Heston) cross-
over around 1E-6 precision for the low and high parameters sets (and around 1E-8 for the bench
parameter set). For higher levels of precision the COS method is preferable.

Finally, for the KoBoL (CGMY) model, the FTBS method is preferable to the comparison
pricing methods, except in the case of the high parameter set, for precision levels higher than
around 3E-7, where the COS method is preferable. Therefore, for the KoBoL (CGMY) model,
we conclude that the FTBS method dominates all comparison pricing methods at precision
levels 1E-4 to 1E-6.

Hence, based on our numerical study, we can conclude that the FTBS method is the prefer-
able approximation method, relative to the other methods considered, for computing option
prices across multiple strikes prices for the VG process, and for the Heston model and KoBoL
(CGMY) model, for precision up to the level of 1E-6. The COS method has advantages when
greater precision is required for the latter models.

1Under the VG process, the COS method could not provide results at precision level 1E-8, so this was excluded
from the comparison
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4.2. Numerical comparison for pricing an option at a single strike price
While the FTBS method is best suited to the problem of pricing options across multiple strike
prices, it is also an effective method for pricing an option at a single specified strike price. We
now provide a numerical comparison of the FTBS method to a range of state-of-the-art methods
for pricing a single European option under the VG process. Specifically, we compare to (i) the
COS method, (ii) the IAC method, and (iii) the CONV method. Since the IAC method is only
applicable to out-of-the-money options, and the algorithm described in Levendorskiı̆ and Xie
(2012) is applicable for a restricted parameter set satisfying ν > T , we have only considered a
single set of applicable model parameters for this comparison.

As before, each method has been diligently implemented to the best of our ability in C++,
using identical hardware, and therefore the computation times are all directly comparable. The
details of the implementation of each pricing method is outlined in Appendix D. We note
that in the case of the COS method, convergence to the true option price is poor, and the
method failed to provide accurate prices using the put option formula for the selected VG
process parameter set (see the implementation notes for the COS method in Appendix D).
We therefore applied the call option formula directly, instead of applying the put-call parity,
as recommended by Fang and Oosterlee (2008) in Remark 5.2. Note that for the single strike
comparison, we computed the reference option price values by utilizing the enhanced Simpson
rule IAC method, as described in Section 5 of Levendorskiı̆ and Xie (2012).

In Figure 2, we provide a graphical comparison of the FTBS method to the above pricing
methods for the VG process, where in this case the precision level is defined as the absolute
error. It is seen that the FTBS method dominates the COS and CONV methods at all precision
levels, but does not outperform the IAC method for pricing a single option, although we note
the above parameter restriction for the IAC method.

0.001 

0.01 

0.1 

1 

10 

1.E-11 1.E-10 1.E-09 1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 

C
P

U
 T

im
e

 (
lo

g)
 

Precision (log) 

FTBS Method COS Method IAC CONV 
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5. Inverse calibration problem

As an effective test of robustness across options of all tenors and moneyness, and across the
entire parameter space of the asset model, we consider the effectiveness of the FTBS method
in the inverse calibration problem, as described by Cont and Tankov (2004). The inverse cal-
ibration problem seeks to identify the asset model parameters such that the discounted asset
price is a martingale, and the observed option prices in the market are given by their discounted
risk-neutral expectations. There are many approaches to solving the inverse calibration prob-
lem. They normally involve repeated computation of the price of options under the selected
asset model for many different combinations of the parameters. For example, the popular least
squares calibration method requires an exhaustive search of the parameter space across ob-
served options of all maturities and strike prices.

Several examples in the literature consider this problem. Duffie et al. (2000) perform a
cross-sectional calibration using observed option prices on the S&P 500 index for a wide range
of continuous-time asset models, including stochastic volatility and stochastic volatility jump
diffusion models. More recently, Schoutens et al. (2005) perform a similar analysis using a
large data set of European options. This data set consists of 144 European call option prices
with maturities ranging from less than one month up to 5.16 years. The prices are based on
the implied volatility surface of the Eurostoxx 50 index, which had a value of 2461.44 on
October 7th, 2003. In Figure 3, we show the implied volatility smile curves across the different
maturities at this date.
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Figure 3: Implied volatility curves for Eurostoxx 50 index on October 7th, 2003

For our calibration example, we use the more recent data set of Schoutens et al. (2005), since
it contains a wider range of maturities and, hence, provides a better test for the robustness of
numerical pricing methods. We consider two continuous-time models for the inverse calibration
problem: (i) the Heston stochastic volatility model, and (ii) an extension of the Heston model
introduced by Bates (1996) that includes log-normally distributed jumps that arrive according
to a Poisson process.

In our implementation of the cross-sectional calibration, we utilize a global optimization al-
gorithm, as described in Ingber (1989), to perform an exhaustive search of the parameter space.
Using this algorithm, we seek to find the model parameters that provide the closest match to
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the observed implied volatility surface, subject to the Feller condition, 2κvθv ≤ σ2
v , being sat-

isfied to ensure positivity of the asset price process. The inverse calibration problem therefore
provides an excellent test for the robustness of the FTBS method as it requires accurate pricing
at all maturities, strikes, and combinations of the model parameters. For comparison, we also
consider the same problem tackled by the FFT and the FRFT.

In Table 1, we show the results of the calibration exercise using different methods and the
reference parameters identified by Schoutens et al. (2005). For the Heston model, all three
methods provide similar calibrations and are in line with the reference parameters. The FTBS
method provides the fastest calibration, requiring just 9.2 seconds to find the optimum parame-
ters over a total of 21, 564 repeated price evaluations of the 144 call options. The FRFT method
performed the same task in 14.6 seconds, while the FFT method took a lengthy 714 seconds.
We note that it was necessary to change the so called dampening parameter for the FFT and
FRFT from the recommended value of Chourdakis (2005) to a value of three to avoid infinite
option prices being generated for some parameter sets.

For the Bates model, both the FFT and FRFT methods exhibit numerical instability over the
full range of parameters. In addition, the parameters obtained for the FFT and FRFT methods
are very different from the reference parameters and substantially increase the pricing error
compared to the calibrated Heston parameters. Therefore, we omit the results from these meth-
ods. Using the FTBS method, the Bates model is calibrated successfully, and we find two sets
of parameters which, while being quite different, provide a close fit to the observed option data.
The first is in broad agreement with Schoutens et al. (2005), in which the jump process has a
positive mean, and the asset price process and volatility process are perfectly negatively corre-
lated. The second set of parameters is structurally quite close to those identified in Duffie et al.
(2000), featuring negative mean jumps and correlation of −0.79 between the asset price and
the volatility processes. The latter, we believe, has better economic interpretation and suggests
that the inverse calibration process requires additional constraints to ensure the resulting fit can
be used reliably in important applications, such as pricing exotic options.

Table 1: Calibration results for the Heston and Bates models

Heston Bates
Ref. FTBS FFT FRFT Ref. FTBS1 FTBS2

N - 50 4096 64 - 150 150
κv 0.6067 0.6118 0.6011 0.6297 0.4963 0.5258 0.7423
θv 0.0654 0.0646 0.0646 0.0642 0.0650 0.0609 0.0357
σv 0.2928 0.2811 0.2788 0.2842 0.2286 0.2530 0.2302
ρ -0.7571 -0.6689 -0.6690 -0.6670 -0.9900 -0.9900 -0.7923
λ - - - - 0.1382 0.7906 0.1368
µJ - - - - 0.1791 0.0861 -0.1435
σJ - - - - 0.1346 0.0670 0.3541
Err 1.90E-04 1.90E-04 2.69E-04 1.16E-04 1.76E-04

Time 9.2s 714.2s 14.6s 135.5s 135.9s

Ref. denotes the reference calibration parameters from Schoutens et al. (2005).
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6. Conclusion

In this paper, we have presented an entirely new approach to approximating European-style
option prices that utilizes B-spline interpolation theory to provide an efficient closed-form so-
lution. Our framework works across the family of continuous-time exponential semimartingale
processes and other models whose characteristic function satisfies certain regularity constraints.
Our novel use of the Peano representation of a divided difference makes the FTBS method
extremely efficient. It enables us to evaluate the pricing integral in closed-form once the inte-
grands have been replaced by the B-spline approximants.

Through a very careful comparison to other methods in the literature, we have demonstrated
that the FTBS method provides accurate prices across the most widely adopted continuous-time
asset models and can provide computation times as low as one to two microseconds per option
when pricing a basket of options across a range of strike prices. Based on our numerical study,
we can conclude that the FTBS method is the preferable approximation method, relative to the
other methods considered, for computing option prices across multiple strikes prices for the VG
process, and for the Heston model and KoBoL (CGMY) model, for precision up to the level of
1E-6.

The applications of the FTBS framework are therefore wide ranging and will enable more
realistic asset models to be utilized in areas of finance in which computation time is a key
consideration. For example, pricing, marking, and hedging of large derivative portfolios as
well as high frequency trading are all areas that can benefit from accurate real-time pricing
under realistic continuous-time asset models.

We believe that our method also has useful applications in parameter estimation in econo-
metrics, when calibration incorporates cross-sectional option price information. We have pro-
vided a simple example of this by calibrating the Heston and Bates models to cross-sectional
option data. We have demonstrated the robustness of the FTBS method over the full range of
maturities and moneyness of options as well as the full model parameter space. The FTBS
method also has applications in maximum likelihood estimation, such as that considered by
Kimmel et al. (2007), in which cross-sectional information is incorporated and which requires
computation of option prices at each iteration of the likelihood search.
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Appendix A. Fourier transform

Table A.2: Payoff functions and their Fourier transforms for European-style contingent claims

Instrument Payoff Function Fourier Transform Strip of Regularity
w(x) ŵ(z) Sw

Call (ex −K)+ −Kiz+1

z2−iz Im z > 1

Put (K − ex)+ −Kiz+1

z2−iz Im z < 0

Covered Call min(ex, K) Kiz+1

z2−iz 0 < Im z < 1

Binary Call ex1{ex>K} −Kiz+1

iz+1
Im z > 1

Binary Put ex1{ex<K}
Kiz+1

iz+1
Im z < 1

Money Market 1 2πδ(z) Im z = 0

Note that δ(z) is the Dirac-delta function.

Appendix B. Fourier transform B-spline method and related proofs

Appendix B.1. The divided difference at repeated knots

[t0, · · · , t0︸ ︷︷ ︸
v0

, · · · , tm, · · · , tm︸ ︷︷ ︸
vm

]f =
m∑
i=0

Dvi−1gi(ti)

(vi − 1)!
, (B.1)

where

gi(t) =
f(t)∏l

j=0
j 6=i

(t− tj)vj
,

and Dvi−1gi(ti) is the (vi− 1)-th derivative of gi(t) evaluated at t = ti. For a proof see Ignatov
and Kaishev (1989).

Appendix B.2. Proof of Theorem 2

We begin with the first integral in Eq. (21).

1∫
0

cos

(
1− t
t

k

)
s̃1(t)dt =

1∫
0

cos

(
1− t
t

k

) p1∑
i=1

c1,iMi,3(t)dt

=

p1∑
i=1

c1,i

1∫
0

cos

(
1− t
t

k

)
Mi,3(t)dt

=

p1∑
i=1

c1,i

3!

1∫
0

f
(3)
1

(
1−t
t
k
)

3!
Mi,3(t)dt


= 6

p1∑
i=1

c1,i[t1,i, · · · , t1,i+n]f1(t, k),
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where f1 is chosen to satisfy f (3)
1 (1−t

t
k) = cos(1−t

t
k) and we have applied the Peano represen-

tation of the divided difference. We identify f1 through repeated integration of cos(1−t
t
k) with

respect to t. This is easily performed using symbolic integration in tools such as Mathematica
and yields the result presented in Theorem 2. The formula in Eq. (C.6) follows from Eq. (23)
noting that the cosine is equal to one for k = 0 and the integral of a B-spline is also one. The
proof for the second integral is similar and is therefore omitted. �

Appendix B.3. Proof of Proposition 3 (FTBS Lookback Option Price Error Bound)
From (Theorem 1, formula for the price C(T,K) ) we have∣∣∣C(T,K)− C̃(T,K)

∣∣∣ =
=

∣∣∣∣−√S0K

π
e

(r+q)T
2

(∫ 1

0

cos

(
1− t
t

k

)
(s1(t)− s̃1(t)) dt+

∫ 1

0

sin

(
1− t
t

k

)
(s2(t)− s̃2(t)) dt

)∣∣∣∣
≤
√
S0K

π
e

(r+q)T
2

(∫ 1

0

∣∣∣∣cos(1− t
t

k

)
(s1(t)− s̃1(t))

∣∣∣∣ dt+ ∫ 1

0

∣∣∣∣cos(1− t
t

k

)
(s1(t)− s̃1(t))

∣∣∣∣ dt)
≤
√
S0K

π
e

(r+q)T
2

(
max
t∈[0,1]

|s1(t)− s̃1(t)|
∫ 1

0

∣∣∣∣cos(1− t
t

k

)∣∣∣∣ dt
+max

t∈[0,1]
|s2(t)− s̃2(t)|

∫ 1

0

∣∣∣∣sin(1− t
t

k

)∣∣∣∣ dt)
≤
√
S0K

π
e

(r+q)T
2

(∥∥∥s(3)1 (t)
∥∥∥C1

∫ 1

0

∣∣∣∣cos(1− t
t

k

)∣∣∣∣ dt+ ∥∥∥s(3)2 (t)
∥∥∥C2

∫ 1

0

∣∣∣∣sin(1− t
t

k

)∣∣∣∣ dt)
which is the asserted bound noting that C̃1 = C1

∫ 1

0

∣∣cos
(

1−t
t
k
)∣∣dt and

C̃2 = C2

∫ 1

0

∣∣sin (1−t
t
k
)∣∣ dt. In the last inequality we have used the optimal spline interpolation

bounds max
t∈[0,1]

|(si(t)− s̃i(t))| = ‖si(t)− s̃i(t)‖ ≤ Ci

∥∥∥s(3)
i (t)

∥∥∥ , i = 1, 2 obtained by Gaffney

and Powell (1976). The rate O (|η̃|3 ) in (26) now follows applying to (25) a result by De Boor
(2001) (Theorem 22, page 154). This completes the proof of Proposition 3. �

Appendix B.4. Explicit formula for divided differences at repeated knots
We begin by noting that while functions fl(t, k), l = 1, 2, are undefined at t = 0, their limit as
t→ 0 exists. Therefore, in computing the divided differences at the repeated knot zero, we set
tl,1 = tl,2 = tl,3 = ε > 0, l = 1, 2, and consider the limit of the divided differences as ε→ 0.
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Proposition 5. Divided difference of [ε, ε, ε, t1,4] f1

This is given by

[ε, ε, ε, t1,4] f1 =
1

12ε3(ε− t1,4)3

(
ε3kCi

(
k

t1,4

)(
6kt1,4 cos(k)−

(
k2 − 6t21,4

)
sin(k)

)
+

ε3kCi

(
k

ε

)((
k2 − 6t21,4

)
sin(k)− 6kt1,4 cos(k)

)
+

k

(
ε3
(

Si
(
k

t1,4

)
− Si

(
k

ε

))((
k2 − 6t21,4

)
cos(k) +

6kt1,4 sin(k)
)
− k(ε− t1,4) sinc

(
k

ε

)(
cos(k)

(
−6ε2t1,4 + 2εk2 − k2t1,4

)
+

6ε2k sin(k)
))

+ ε3 cos(k)

(
ε
(
2ε2 − 6εt1,4 − k2 + 6t21,4

)
cos

(
k

ε

)
+

t1,4
(
k2 − 2t21,4

)
cos

(
k

t1,4

))
+ ε

(
ε3k(ε− 6t1,4) sin(k) cos

(
k

ε

)
+

ε2t1,4 sin

(
k

t1,4

)((
k2 − 2t21,4

)
sin(k)− 5kt1,4 cos(k)

)
+

5ε2kt21,4 sin(k) cos

(
k

t1,4

)
+ sin

(
k

ε

)(
k cos(k)

(
−ε4 + 2ε2

(
k2 +

3t21,4
)
− 3εk2t1,4 + k2t21,4

)
+ ε2 sin(k)

(
2ε3 − 6t1,4

(
ε2 + k2

)
+ 5εk2 + 6εt21,4

))))
.

(B.2)

PROOF. The simplest way to compute the divided difference with repeated knots is by using
Mathematica or a similar symbolic algebraic software package. The result in Eq. (B.2) can be
generated using the following expression in Mathematica

f1[t_] :=
1/12 (k CosIntegral[k/t] (-6 k t Cos[k] + (k^2 - 6 t^2) Sin[k]) +

t (-(k^2 - 2 t^2) Cos[(k (-1 + t))/t] -
5 k t Sin[(k (-1 + t))/t]) -

k ((k^2 - 6 t^2) Cos[k] + 6 k t Sin[k]) SinIntegral[k/t]);
g0[t0_, t1_] := f1[t0]/(t0 - t1);
g1[t0_, t1_] := f1[t1]/(t1 - t0)^3;
FullSimplify[1/2*D[g0[\[Epsilon], t14], {\[Epsilon], 2}] +

g1[\[Epsilon], t14]]

Similar logic is used to compute the other divided differences [ε, ε, tl,4, tl,5]fl,
[tl,pl−1

, tl,pl , 1, 1]fl, and [tl,pl , 1, 1, 1]fl for l = 1, 2. �

In the case of divided differences with repeated arguments, [ε, ε, ε, t1,4] f1, [ε, ε, ε, t2,4] f2,
[ε, ε, t1,4, t1,5] f1, and [ε, ε, t2,4, t2,5] f2, we are concerned with their limits as ε → 0. The latter
are easily determined, noting in particular that limx→±∞Ci(x) = 0, limx→±∞ Si(x) = ±π

2
, and

limx→±∞ Sinc(x) = 0. This leads to the following simplification of Eq. (B.2) as ε→ 0
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(B.3)

[0, 0, 0, t1,4] f1 =
1

24t31,4

(
−10At21,4 sin

[
A(−1 + t1,4)

t1,4

]
+

2ACi

[
Sign[A]A
t1,4

] ((
A2 − 6t21,4

)
sinA− 6At1,4 cosA

)
− 2t1,4

(
A2 − 2t21,4

)
cos

[
A(−1 + t1,4)

t1,4

]
+

A
(
6At1,4 sin[A] +

(
A2 − 6t21,4

)
cosA

)(
Sign[A]π − 2 Si

[
A

t1,4

]))
.

Similar analysis leads to the following expressions for the other repeated divided differences at
zero.

[0, 0, 0, t2,4] f2 =
1

24t32,4

(
−10At22,4 cos

[
A(−1 + t2,4)

t2,4

]
+ 2ACi

[
A

t2,4

] ((
A2 − 6t22,4

)
cosA+

6At2,4 sinA
)
+ 2t2,4

(
A2 − 2t22,4

)
sin

[
A(−1 + t2,4)

t2,4

]
−A

(
−6At2,4 cosA+

(
A2 − 6t22,4

)
sinA

)(
Sign[A]π − 2 Si

[
A

t2,4

]))
,

(B.4)

[0, 0, t1,4, t1,5] f1 =
1

24t21,4(t1,4 − t1,5)t21,5

(
Sign[A]A3π

(
−t21,4 + t21,5

)
cosA+

2t1,4t1,5

(
−
(
A2 − 2t21,4

)
t1,5 cos

[
A(−1 + t1,4)

t1,4

]
+

t1,4
(
A2−2t21,5

)
cos

[
A(−1 + t1,5)

t1,5

])
+2A

(
t21,5 Ci

[
Sign[A]A

t1,4

] (
−6At1,4 cosA+

(
A2 − 6t21,4

)
sinA

)
+ t21,4 Ci

[
Sign[A]A
t1,5

] (
6At1,5 cosA−

(
A2 − 6t21,5

)
sinA

)
+

t1,5

(
t1,4

(
Sign[A]3Aπ(−t1,4 + t1,5) sinA+ 5t1,4t1,5

(
sin

[
A

(
−1 +

1

t1,4

)]
+ sin

[
A(−1 + t1,5)

t1,5

]))
− t1,5

((
A2 − 6t21,4

)
cosA+

6At1,4 sinA
)
Si

[
A

t1,4

])
+ t21,4

((
A2 − 6t21,5

)
cosA+ 6At1,5 sinA

)
Si

[
A

t1,5

]))
,

(B.5)
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(B.6)

[0, 0, t2,4, t2,5] f2 =
1

24t22,4(t2,4 − t2,5)t22,5

(
2At2,4t2,5

(
Sign[A] ∗ 3Aπ(−t2,4 + t2,5) cosA+

5t2,4t2,5

(
− cos

[
A(−1 + t2,4)

t2,4

]
+ cos

[
A(−1 + t2,5)

t2,5
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+

Sign[A] ∗A3πt22,4 sinA− Sign[A] ∗A3πt22,5 sinA+

2At22,5 Ci

[
A

t2,4

] ((
A2 − 6t22,4

)
cosA+

6At2,4 sinA
)
− 2At22,4 Ci

[
A

t2,5

] ((
A2 − 6t22,5

)
cosA+ 6At2,5 sinA

)
+

2A2t2,4t
2
2,5 sin

[
A(−1 + t2,4)

t2,4

]
− 4t32,4t

2
2,5 sin

[
A(−1 + t2,4)

t2,4

]
− 2t22,4t2,5

(
A2 − 2t22,5

)
sin

[
A(−1 + t2,5)

t2,5

]
+

2A

(
t22,5
(
−6At2,4 cosA+

(
A2 − 6t22,4

)
sinA

)
Si

[
A

t2,4

]
+

t22,4
(
6At2,5 cosA−A2 sinA+ 6t22,5 sinA

)
Si

[
A

t2,5

]))
.

Appendix C. The FTBS method for alternative contour integrals

Theorem 3 (Strike-separable pricing formula). An alternative form of Eq. (5) for comput-
ing C(T,K) is given by

C(T,K) = −Ke
−rT+vk

π
I(k; v) (C.1)

where

I(k; v) =

1∫
0

cos

(
1− t
t

k

)
s1(t; v)dt+

1∫
0

sin

(
1− t
t

k

)
s2(t; v)dt

s1(t; v) =
Re
[
φXT

(−1−t
t
− iv)

] [(
1−t
t

)2
+ v − v2

]
+ Im

[
φXT

(−1−t
t
− iv)

] (
1−t
t

)
(2v − 1)

t2
(

[
(

1−t
t

)2
+ v − v2]2 +

(
1−t
t

)2
(2v − 1)2

)
s2(t; v) =

−Re
[
φXT

(−1−t
t
− iv)

] (
1−t
t

)
(2v − 1) + Im

[
φXT

(−1−t
t
− iv)

] [(
1−t
t

)2
+ v − v2

]
t2
(

[
(

1−t
t

)2
+ v − v2]2 +

(
1−t
t

)2
(2v − 1)2

)
and v ∈ (1, α), as in Proposition 1.

PROOF. Note that since the option price provided by the integral in Eq. (2) is real-valued, we
can rewrite it as

C(T,K) = −Ke
−rT

2π

iv+∞∫
iv−∞

Re

[
φXT

(−z)
e−izk

z2 − iz

]
dz, with v ∈ (1, α),

We now denote the real and imaginary parts of φXT
(−z) as φRe(z1, v) and φIm(z1, v) so that

φXT
(−z) = φXT

(−(z1 + iv)) = φRe(z1, v) + iφIm(z1, v)
30



where z1 ∈ (−∞,∞) along the integration path. For brevity, we write φRe and φIm, instead of
φRe(z1, v) and φIm(z1, v), keeping in mind that these are functions of z1 and v. We now rewrite
e−izk,

e−izk = e−i(z1+iv)k = evke−iz1k = evk [cos (z1k)− i sin (z1k)] .

Therefore (2) becomes

C(T,K) = −Ke
−rT

2π

∞∫
−∞

Re

(φRe + iφIm)
evk [cos (z1k)− i sin (z1k)]

(z1 + iv)2 − i(z1 + iv)︸ ︷︷ ︸
(∗)

 dz1 (C.2)

We expand (∗) into its real and imaginary parts

(∗) = z2
1 + 2ivz1 − v2 − iz1 + v = z2

1 + v − v2 + iz1(2v − 1)

Multiplying the numerator and denominator of the integrand in Eq. (C.2) by the complex
congruent of (∗) provides

C(T,K) =−Ke
−rT+vk

2π

∞∫
−∞

Re


a1+a2i︷ ︸︸ ︷

(φRe+iφIm)

b1−b2i︷ ︸︸ ︷
[cos (z1k)−i sin (z1k)]

c1−c2i︷ ︸︸ ︷(
z2

1 +v−v2−iz1(2v−1)
)

(z2
1 + v − v2)2 + z2

1(2v − 1)2

dz1.

Now, noting that Re[(a1 + a2i)(b1 − b2i)(c1 − c2i)] = a1b1c1 + a2b2c1 + a2b1c2 − a1b2c2, we
have the following expression for the pricing integral

C(T,K) = −Ke
−rT+vk

2π

 ∞∫
−∞

cos (z1k) [φRe (z2
1 + v − v2) + φImz1(2v − 1)]

(z2
1 + v − v2)2 + z2

1(2v − 1)2
dz1

+

∞∫
−∞

sin (z1k) [−φRez1(2v − 1) + φIm (z2
1 + v − v2)]

(z2
1 + v − v2)2 + z2

1(2v − 1)2
dz1

 . (C.3)

In order to simplify Eq. (C.3), we now show that the integrands in Eq. (C.3) are even
function with respect to z1. Examining the characteristic function of XT along the integration
path shows that

φXT
(−z) = EQ

(
e−izXT

)
= EQ

(
e−i(z1+iv)XT

)
= EQ

(
e−iz1XT e

vXn
)

= EQ
(
evXn [cos(−z1) + i sin(−z1)]

)
, since XT ∈ R

= EQ
(
evXn [cos(z1)− i sin(z1)]

)
= EQ

(
evXn cos(z1)

)
− iEQ

(
evXn sin(z1)

)
= φRe(z1, v) + iφIm(z1, v),
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where φRe and φIm are as defined in Eq. (C.3). Observe that φRe(z1, v) = φRe(−z1, v) and
φIm(z1, v) = −φIm(−z1, v), so that the real part of φXT

(−z) is even and the imaginary part is
odd. Now, in (C.3), denote the first integrand by f1(z1, v) and the second by f2(z1, v) so that

C(T,R) = −R
1−v

2π

 ∞∫
−∞

f1(z1, v)dz1 +

∞∫
−∞

f2(z1, v)dz1

 .
By inspection, using the even property of φRe and cosine, and the odd property of φIm and sine,
we have that both f1(z1, v) = f1(−z1, v) and f2(z1, v) = f2(−z1, v).

Using this even function property we can modify the integration limits of (C.3) to [0,∞),
noting the even function property and scaling by a factor of 2. We then make the substitution
z1 = 1−t

t
in Eq. (C.3) which provides the required result. �

Theorem 4 (The FTBS pricing formula for alternative contour integrals).
Let {t1,i}6+l1

i=1 , {t2,j}6+l2
j=1 and {c1,i(v)}p1

i=1, {c2,j(v)}p2

j=1 be the sets of knots and linear coeffi-
cients of s̃1(t; v) and s̃2(t; v) respectively, which are the the quadratic spline interpolants of
functions s1(t; v) and s2(t; v), as specified in Theorem 3, where p1 = l1 + 3 and p2 = l2 + 3.
Additionally, let k = log

(
S0

K

)
+ (r − q)T , and v ∈ (1, α), as in Proposition 1. The pricing

formula of a European call option is given as

C(T,K) ≈ −Ke
−rT+vk

π
Ĩ(k; v), (C.4)

where for k 6= 0

Ĩ(k; v) = 6

p1∑
i=1

c1,i(v)[t1,i, t1,i+1, t1,i+2, t1,i+3]f1(t, k)

+ 6

p2∑
i=1

c2,i(v)[t2,i, t2,i+1, t2,i+2, t2,i+3]f2(t, k), (C.5)

and f1 and f2 are defined as in Theorem 2. For k = 0, Ĩ(k; v) simplifies to

Ĩ(k; v) =

p1∑
i=1

c1,i(v) +

p2∑
i=1

c2,i(v). (C.6)

PROOF. The proof utilizes Eq. (C.1) of Theorem 3, and is similar to that Theorem 2, and
therefore is omitted. �
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Appendix D. Numerical implementation of pricing methods

The FFT and FRFT methods:
Our implementation of the FFT and FRFT methods carefully follows the description of Chour-
dakis (2005), and utilizes the numerical library of Frigo and Johnson (1998) in C++, which is
known to be one of the fastest implementations of the FFT available. Under the FFT and FRFT,
it is necessary to truncate the upper limit of the Fourier integral and select the number of grid
points for the numerical computation. We follow the recommendations of Chourdakis (2005)
in configuring each of the methods for the respective asset models.

The COS method:
Our implementation of the COS method precisely follows the description provided in Fang
and Oosterlee (2008). In particular, we have utilized Eq. (30) in Fang and Oosterlee (2008),
which enables option prices for different strikes to be obtained in one single numerical exper-
iment. The COS method requires a truncation limit for integration, and we have followed the
recommendation L = 10, specified in Eq. (49) and the calculation of the cumulants specified
in Table 11, both in Fang and Oosterlee (2008). We note that in the case of the Heston model,
we use only the first and second cumulant in defining the truncation range, as recommended
by Fang and Oosterlee (2008). Finally, we note that following Remark 5.2 of Fang and Oost-
erlee (2008), we have computed put option prices, and used the put-call parity to compute the
required call option prices. This is noted to remove sensitivity with respect to the choice of the
truncation parameter L.

The IAC method:
We have implemented the IAC method using the enhanced Simpson rule for the VG process
described in Levendorskiı̆ and Xie (2012). We thank Sergei Levendorskiı̆ and Jiayao Xie for
kindly providing their Matlab code which we directly converted into C++ in our implementa-
tion.

The CONV method:
Our implementation of the CONV method carefully follows Eq. (27) of Lord et al. (2009), and
again we utilize the numerical library of Frigo and Johnson (1998) for the computation of the
FFT. We note that Eq. (27) of Lord et al. (2009) is intended for use in pricing early exercise
options, and therefore provides option prices across a range of initial underlying asset prices
(as opposed to strike prices). Since we are not concerned with option prices at different initial
asset prices, we replace the outer discrete Fourier transform in Eq. (27) of Lord et al. (2009),
with a single summation corresponding to the required initial asset price. This provides the
optimal performance of the CONV method when it is applied for pricing European options at
a single initial asset price.
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Appendix E. Other numerical comparisons

We now provide further numerical comparisons to validate the numerical accuracy of the FTBS
method for computing the Greeks, and also the accuracy of options prices under additional as-
set price models.

The Greeks:
We compute the Greeks of European options under the Heston model using the FTBS method
and compare them to the results of Kristensen and Mele (2011) under their Taylor expansion
approximation method. The results of our comparison of the Greeks are provided in (a), (b),
(c), and (d) of Table F.9. Note that the reported exact option sensitivities are those provided
in Kristensen and Mele (2011). Across all levels of initial share price and volatility, the FTBS
method produces accurate results using only 50 data sites. Moving to 100 data sites yields
results to seven significant figures. The total computation time of the option price Delta’s and
Gamma’s in (a) and (b) of Table F.9 are just 0.02 milliseconds respectively using 50 data sites
for the 11 initial share prices, or equivalently, under two microseconds per option. In (c) and
(d) of Table F.9, the total calculation time increases to 0.84 milliseconds since we need to re-fit
the spline approximants for each initial volatility level V0. Overall, we have demonstrated that
the FTBS method provides greater precision than the approximation method of Kristensen and
Mele (2011), since we have precisely matched the reference prices, while achieving computa-
tion times as low as two microseconds per option.

The double exponential jump diffusion process:
We consider the pricing example under the double exponential jump diffusion process of Kou
(2002) that uses the enhanced FFT method described in Boyarchenko and Levendorskiı̆ (2002).
Quittard-Pinon and Randrianarivony (2010) produce the reference prices, and we provide our
numerical comparison in Table F.4. Using 500 data sites, the FTBS method produces prices
that are in agreement with the reference prices and are more accurate than the FFT results by
about one significant figure. Our computation time is only 0.2ms in total for the 11 options.

The mixed exponential jump diffusion model:
Cai and Kou (2011) report the prices of European call options under the Mixed Exponential
Jump Diffusion model using the EI method of Petrella (2004). Our results are presented in
Table F.5. Using 100 data sites, the FTBS method produces near identical prices. The FTBS
computation time is 0.05ms per option.
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Appendix F. Tables

Table F.3: Recommended configuration of FTBS method for desired level of precision

Accuracy VG Heston KoBoL / CGMY

1E-4 25 25 30
1E-5 35 50 70
1E-6 200 80 180
1E-7 400 170 450
1E-8 - 250 1050

Above is based on numerical results from Section 4 by considering minimum number of knots
required for desired precision across “low”, “bench”, and “high” parameter sets.

Table F.4: Comparison to the generalized FFT method results of Quittard-Pinon and Randria-
narivony (2010), C1 series, Table 2 (DEJD model)

FFT Error FTBS Error

90 -1.51E-08 6.56E-09
92 -1.61E-08 1.37E-10
94 -1.16E-08 -1.42E-09
96 -3.77E-09 -9.51E-10
98 2.02E-09 -6.65E-10

100 3.05E-08 -5.84E-10
102 4.62E-08 9.19E-10
104 3.28E-08 -9.62E-10
106 1.53E-08 -3.82E-10
108 7.86E-09 -6.95E-10
110 9.25E-09 -5.71E-09

Total time 16ms 0.2ms
Speed-up Factor 80×

DEJD parameters: S = 100, σ = 0.16, λ = 1, η1 = 10, η2 = 5, p = 0.4, r = 0.05, q = 0.
Calculation time reported for pricing 11 options. FFT method is using N = 4096 and FTBS method
uses N = 500.

Table F.5: Comparison to the EI method results of Cai and Kou (2011), Table 1 (MEJD model)

σ = 0.2 σ = 0.3
η1 λ EI Price FTBS Diff. EI Price FTBS Diff.

20 1 10.97472 10.97472 0.00000 14.59752 14.59753 0.00001
20 3 11.94485 11.94485 0.00000 15.29993 15.29994 0.00001
20 5 12.83076 12.83077 0.00001 15.96677 15.96678 0.00001
40 1 10.57572 10.57572 0.00000 14.31636 14.31637 0.00001
40 3 10.82050 10.82050 0.00000 14.48475 14.48476 0.00001
40 5 11.05846 11.05845 0.00001 14.65079 14.65079 0.00000

Mixed Exponential parameters: S = 100, σ = 0.2, λ = 5, η1 = 20, θ1 = 20, η2 = 50, θ2 = 50, p =
0.4, p1 = 1.2, p2 = −0.2, q1 = 1.3, q2 = −0.3, r = 0.05, q = 0, T = 1,K = 100.
EI parameters A = 18, n = 30, X = 10, 000. FTBS method using N = 100.
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