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Abstract. Analysis of human mobility is currently a hot research topic in data 

mining, geographic information science and visual analytics. While a wide 

variety of methods and tools are available, it is still hard to find 

recommendations for considering a data set systematically from multiple 

perspectives. To fill this gap, we demonstrate a workflow of a comprehensive 

analysis of a publicly available data set about mobile phone calls of a large 

population over a long time period. We pay special attention to the evaluation 

of data properties. We outline potential applications of the proposed methods.  

Keywords: visual analytics, mobility data, call data records. 

1   Introduction 

Nowadays, huge amounts of movement data describing changes of spatial positions of 

discrete mobile objects are collected by means of contemporary tracking technologies 

such as GPS, RFID, and positions within mobile phone call records. Extensive 

research on trajectory analysis has been conducted in knowledge discovery in 

databases [1], spatial computing [2], and moving object databases [3]. Automatically 

collected movement data are semantically poor as they basically consist of object 

identifiers, coordinates in space, and time stamps. Despite that, valuable information 

about the objects and their movement behavior, as well as about the space and time in 

which they move can be gained even from such basic movement data by means of 

analysis [4]. 

Movement can be viewed from multiple perspectives: as consisting of continuous 

paths in space and time [5], also called trajectories, or as a composition of various 

spatial events [6]. Movement data can be aggregated in space, enabling identification 

of interesting places and studying their activity characteristics, and by time intervals, 

enabling similarity analysis of situations comprising different time intervals as well as 

detection of extraordinary events. 

For the most comprehensive analysis of movement data, the analyst would look at 

the data from all perspectives: mover-oriented, event-oriented, space-oriented, and 

time-oriented. However, data properties often limit possible directions of analysis. 

In this study, we consider the D4D fine resolution call data records (CDR) set of 

Ivory Coast [7] from multiple perspectives. To set the scope we first evaluate the 



properties of the data that restrict potentially applicable movement data analysis 

methods (Section 2). A first analysis step is to study spatio-temporal patterns of 

calling activities at multiple resolutions of time. To this end we apply spatio-temporal 

aggregations by antennas, counting number of calls per day (Section 3) and per hour 

(Section 4). To further identify different kinds of activity neighborhoods and to study 

their spatial distribution we then characterize antennas by feature vectors of hourly 

activities within a week and cluster them by similarity of the feature vectors (Section 

5). In order to identify peak events – i.e., time intervals during which extraordinarily 

large number of people made calls in one location simultaneously - we compare time 

series comprising counts of distinct phone users per time interval and antenna 

(Section 6). This procedure allows us to identify large-scale events that, possibly, 

happened in the country. We use trajectories of mobile phone subscribers for 

reconstructing flows between major towns and between activity regions of the country 

(Section 7). Finally, we make an attempt at semantic interpretation of individuals’ 
personal places, such as home and work locations, based on these user trajectories 

(Section 8). We conclude this paper with an outline of a general procedure of data 

analysis from multiple perspectives (Section 9) and a short discussion on the results 

and possible directions for further work. 

2   Evaluating Data Properties 

In analyzing movement data, it is important to take into account the following 

properties [14]: 

• Temporal properties:  

o temporal resolution: the lengths of the time intervals between the 

position measurements; 

o temporal regularity: whether the length of the time intervals 

between the measurements is constant or variable; 

o temporal coverage: whether the measurements were made during 

the whole time span of the data or in a sample of time units, or there 

were intentional or unintentional breaks in the measurements; 

o time cycles coverage: whether all positions of relevant time cycles 

(daily, weekly, seasonal, etc.) are sufficiently represented in the 

data, or the data refer only to subsets of the positions (e.g., only to 

work days or only to daytime), or there is a bias towards some 

positions. 

• Spatial properties: 

o spatial resolution: the minimal change of position of an object that 

can be reflected in the data; 

o spatial precision: whether the positions are defined as points (by 

exact coordinates) or as locations having spatial extents (e.g. areas). 

For example, the position of a mobile phone call is typically a cell 

in a mobile phone network; 

o spatial coverage: are positions recorded everywhere or, if not, how 

are the locations where positions are recorded distributed over the 



studied territory (in terms of the spatial extent, uniformity, and 

density)? 

• Mover set properties: 

o number of movers: a single mover, a small number of movers, a 

large number of movers; 

o population coverage: whether there are data about all movers of 

interest for a given territory and time period or only for a sample of 

the movers; 

o representativeness: whether the sample of movers is representative, 

i.e., has the same distribution of properties as in the whole 

population, or biased towards individuals with particular properties. 

• Data collection properties: 

o position exactness: How exactly could the positions be determined? 

Thus, a movement sensor may detect an object within its range but 

may not be able to determine the exact coordinates of the object. In 

this case, the position of the sensor will represent the position of the 

object in the data; 

o positioning accuracy, or how much error may be in the 

measurements; 

o missing positions: in some circumstances, object positions cannot 

be determined, which leads to gaps in the data; 

o meanings of the position absence: whether absence of positions 

corresponds to stops, or to conditions when measurements were 

impossible, or to device failure, or to private information that has 

been removed. 

 

The provided data set [7] comprises a total of 55,319,911 CDRs distributed over 

ten individual chunks of between 4.8 and 6.5 million records, each corresponding to a 

set of two-week time intervals. Of these, 47,190,414 CDRs are associated with one of 

the 1,214 antennas and thus be referenced by the corresponding antenna’s geographic 
coordinates. CDR temporal references are given with minute accuracy (i.e., seconds 

were suppressed) ranging from December 5, 2011 till April 22, 2012. Aggregation of 

geo-referenced calls by days (Figure 1) shows that some days (e.g. March 24, 2012) 

have much less number of calls than neighboring days. This observation suggests that 

quite many call activities are missing in the database, especially in April 2012. In 

addition, 8,129,497 calls refer to unknown antennas (id=-1), with maximal count 

166,621 calls on April 1, 2012. Because these CDRs could not be geo-located and 

thus not related to other calls originating from the same location they were ignored 

during data import. 

The figure also suggests obvious call peak patterns at New Year, Easter, and, to 

some extent, at Christmas 2011. Other peaks correspond to public holidays like The 

Day after the Prophet's Birthday (Sunday, February 5, 2012) and Post African Cup of 

Nations Recovery (Monday, February 13,2012)1.  

                                                           
1 Public holidays in Ivory Coast in 2012: 

http://www.asaralo.com/index.php?option=com_content&view=article&id=2367:public-

holidays-in-cote-divoire&catid=160:african-public-holiday&Itemid=2598 



 

Fig. 1. Daily counts of calls.  

  

Fig. 2. Space-Time Cube displaying the full 20-week data set of CDRs integrated into 

trajectories (sequence of calls with the same user id) with time increasing from bottom to top of 

the cube. Besides expected daily cycles e.g. in the area of Abidjan one can spot missing days 

(near the top), and very clearly the distinct pattern of bi-weekly “false trip” movement caused 
by re-assigning user IDs to different mobile phone users in other parts of the country between 

data chunks.  

Wikipedia2 suggests that religion in Ivory Coast remains very heterogeneous, with 

Islam (almost all Sunni Muslims) and Christianity (mostly Roman Catholic) being the 

major religions. Muslims dominate the north, while Christians dominate the south. 

Unfortunately, the amount of data available for the northern part of the country does 

not allow comparison of patterns in respect to religious holidays. 

                                                           
2 http://en.wikipedia.org/wiki/Ivory_Coast#Religion 



A considerable constraint in terms of mobility pattern analysis and semantic 

interpretation (Sections 7 and 8, respectively) arises from the anonymization 

procedure applied to the data [7]. Each of the 10 data chunks is a subset of 50,000 

distinct mobile phone subscribers tracked over 2 weeks. User IDs associated with 

each CDR are obviously not real, traceable customer IDs but rather consecutive 

integer numbers. And while a given user ID is unique with respect to one data chunk, 

integers are reused (i.e., the counter was reset) between different chunks. This means 

that it is not possible to analyze movement patterns or flows over periods exceeding 

two weeks, or generally cover time intervals distributed over multiple chunks 

(compare Figure 2). 

Moreover, a check for repeated combinations of user ID and time stamp produced 

5,225,989 pairs that occurred 12,861,168 times in the database. The duplicates have 

been removed. This operation thus reduced the number of geo-referenced CDRs in the 

database by about 25%. 

3   Assessing daily aggregates for antennas 

We have aggregated the remaining CDRs by antennas and days, producing daily time 

series of calls for each of the 1,214 antennas. Figure 3 presents an overview of their 

statistical properties. The upper part of the image shows the call counts’ running 
average line (in bold) and dynamics by deciles (grey bands, min = 0, 10%, 20%, …, 
90%, max = 5584) over time. Vertical lines correspond to weeks. The lower part of 

the image uses segmented bars to represent distribution of antennas categorized by 

their daily call counts. The darkest blue denotes absence of any calls at those 

antennas; blue colors correspond to intervals from 1 to 50 calls per day, yellow 

represents 50 to 100 calls, orange and reds – more than 100 calls. 

 

 

Fig. 3. Top: dynamics of deciles of counts of call per antenna distributions. Bottom: daily 

proportions of antennas with N calls in intervals of 0 (darkest blue), 1..10, 10..50, 50..100 

(yellow), 100..200, 200..500, 500..1000, and more than 1000 (darkest red) per day. Note that in 

the upper image, corresponding interval boundaries are indicated in the scale to the left.  

We can make the following general observations: 



 Too few data records on Dec 5, 2011 even though CDR time stamps for 

that day cover the entire 24h period.  Gradual increase of counts of antennas without activity (0 calls per day) 

from Dec 6, 2011 till March 27, 2012.  Several days with missing data on many antennas (March 29, April 1, 

April 10, April 15, April 19).  Absence of typical weekly patterns with different amounts of calls at 

working days and weekends. 

 

 

Fig.4. Mosaic (segmented) diagrams show counts of calls for all antennas in the whole country. 

Counts are represented by colored segments ranging from blue (0 calls) through yellow 

(50..100 calls) to red (more than 1,000 calls). Diagram rows correspond to weeks (top to 

bottom – from week 1 to week 20) and columns to days of week (left to right: from Monday to 

Sunday) 

These general observations do not reflect the geographic distribution of patterns. 

To take the geography into account, we represent the call counts on maps by mosaic 

diagrams. A mosaic diagram consists of a pixel grid with each pixel representing one 

day’s call count by color, using the same color coding as in Figure 3. The pixels are 
arranged in 2D as in a calendar sheet: columns correspond to days of week (from 



Monday to Sunday, from left to right) and rows correspond to weeks (from 1 to 20, 

from top to bottom). Figure 4 shows the entire country, Figure 5 a close-up of the 

region of the towns Abidjan and Abobo. The large consecutive sections of dark blue 

colors in many diagrams suggest that the data contain systematically missing portions. 

In particular, data are completely unavailable 12-14 weeks for many antennas in the 

northern part of the country, and for more than 16 weeks in the southern part of 

Abidjan. 

  

 

Fig. 5. Close-up view of the region of the towns Abidjan and Abobo. The mosaic diagrams are 

encoded in the same way as in Figure 4 and use the same color coding.  

Another observation is that all columns in the diagrams look quite similar. This is 

very different from mobile phone usage patterns observable in Europe and the USA 

where weekends differ strongly from working days in terms of calling counts. There, 

calls from the downtown areas of large cities are quite rare on Saturdays and Sundays 

in comparison to weekdays. We cannot find such patterns in the D4D data set. This 

suggests that the life style and temporal organization of economic activities in Ivory 

Coast differ significantly from those cultural regions. Therefore a straightforward 



application of analysis methods developed primarily for European countries is not 

valid. 

One more complexity of the data is caused by the data sampling and 

anonymization procedures [7]. For each two-week period, a subset of 50,000 

customers has been selected. It is not guaranteed that the subsets represent population 

samples with similar demographic and economical characteristics. Indeed, clustering 

days by feature vectors comprising counts of calls at each antenna, followed by 

assigning colors to clusters by similarity [8] clearly demonstrates the dissimilarity of 

patterns in consecutive two-weeks periods (Figure 6). Additionally, this display also 

does not give any evidence of differences between week days and weekends. 

 

 

Fig. 6. Similarity of situations during 7 days x20 weeks, represented by assigning colors to 

segments of the diagram according to the cluster the corresponding day belongs to.  

4   Analyzing hourly aggregate patterns for antennas 

Taking into account the properties of the data, we decided to aggregate calls by 

antennas for hours of day and days of week, irrespectively of calendar dates. Figure 7 

shows mosaic diagram maps for two locations, the country’s capital (Yamoussoukro) 
and a port town (San Pedro). Like in Figures 4 and 5, the diagrams consist of 

segments representing call counts by colors, from dark blue (no calls) through yellow 

(50-100 calls per hour) to red. The segments of each diagram are arranged by days of 

week (Monday to Sunday from left to right) and by hours of day (from 0:00 on top to 

23:00 at bottom). 

One can see different temporal signatures of calling activities. Thus, in some 

antennas calls are more frequent at evening times, some have uniform distribution of 

call counts during daytime hours, while yet others have similar distributions at 

morning and evening times etc. However, the total amounts of calls differ 

significantly from one antenna to another, thus making direct comparison and 

grouping quite difficult. 



   

Fig. 7. Mosaic diagrams show hourly absolute counts of calls for 7 days of week (by columns, 

from Monday to Sunday) and 24 hours of day (from 0:00 to 23:00) in Yamoussoukro and San 

Pedro.  

   

Fig. 8. Similarly to Figure 7, mosaic diagrams show hourly show counts of calls for 7 days of 

week (by columns, from Monday to Sunday) and 24 hours of day (from 0:00 to 23:00) 

normalized by average count per antenna in Yamoussoukro and San Pedro.  

To compensate for different amounts of calls at different antennas, we have applied 

normalization to each time series by its own mean and standard deviation values, see 

Figure 8. The resulting images convincingly demonstrate that there exist distinct 

patterns of hourly calling activities at different antennas. Moreover, these patterns 

tend to be clustered in geographical space. For example, almost all antennas in the 

outskirts of Yamoussoukro are characterized by dominant evening call pattern, while 

in the city centre calls are distributed uniformly during day. There are only few 

evidences of different calling activity patterns on Saturdays and Sundays (i.e., in the 

two rightmost columns of the diagrams) in comparison to working days. One such 

example can be found in the southern part of San Pedro, and some others in the 

southern part of Yamoussoukro. 



5   Clustering antennas by similarity of hourly aggregate patterns 

Visual inspection and comparison of mosaic diagrams has limited applicability. We 

can perform it for selected cities and regions, but can’t apply systematically for the 
whole country. Instead, we can apply clustering of antennas according to mean-

normalized hourly activity profiles over week. We’ve used k-Means and varied the 

desired number of clusters from 5 to 15, the most interpretable results have been 

obtained with N=7. Lower number of clusters mixes several behaviors, while large 

counts extract small clusters with too specific behaviors. 

The results are presented in Figure 9. Seven time graphs show profiles of the 7 

clusters for 7 days of week. Centroids of the clusters have been projected onto the 2d 

plane by Sammons mapping [9] (middle left). Following the ideas of [10], colors have 

been assigned to the clusters according to these 2D positions, thus reflecting relative 

cluster similarities. The representative feature vector of the cluster centroids are 

presented by mosaic diagrams (middle right, days of week in columns, hours of day in 

rows, similarly to Figures 7 and 8), with their placement again corresponding to the 

respective centroid’s Sammons projection. Using these visualizations, we can suggest 
some interpretations to the clusters: 

Cluster 1: High calling activity in the evenings, irrespective of the day of week. Such 

a profile is typical for residential districts with a high proportion of 

employed population. 

Cluster 2: Uniform calling activity during the day, with some increase in the morning 

on Monday, Wednesday, Friday and Saturday. 

Cluster 3: High calling activity in the evenings, medium activity in mornings, and 

decreased activity in the middle of the day (except Sundays) 

Cluster 4: High calling activity during working hours (except Sundays), with 

extremes in mornings. Such a profile is typical for business districts. 

Cluster 5: Very low calling activity, with only small differences between day and 

night. This is quite typical for unpopulated areas and for antennas masked 

(in terms of call handling) by neighboring antennas. 

Cluster 6: Similar to cluster 3, however with a less prominent evening pattern but 

more prominent morning pattern, and increased activity on Saturdays and 

Sundays. 

Cluster 7: Similar to clusters 3 and 6, but with decreased activity on Sundays. 

Our experience of analyzing mobile phone usage data in different countries 

suggests that cluster 1 corresponds to residential districts with high proportion of 

regularly employed population, in other words, people having fixed out-of-home 

work schedules, and that cluster 4 represents business districts. We guess that cluster 

2 either represents regions with a mix of residential and business land use, or 

businesses with irregular schedules. Major transportation corridors (main roads, 

railways) can be characterized by similar temporal patterns, too. Clusters 3, 6 and 7 

may represent mostly residential areas with partly employed population, or population 

with flexible work schedule.  

The three maps at the bottom of Figure 9 show, from left to right, the spatial 

distribution of the clusters for the whole country, its southern part, and the city of 



Abidjan, respectively. We can observe that our possible interpretations correspond to 

geographical patterns. 

 

 

Fig. 9. Normalized temporal signatures of antennas are used for defining 7 clusters by k-Means. 

Time graphs in the upper panel show profiles of these clusters during 7 days of week. Colors 

are assigned to the clusters according to positions of cluster centroids in Sammons mapping 

(middle). Representative activity profiles for the clusters are shown by 2D mosaic diagrams in 

the yop-right. The maps at the bottom show spatial distributions of the clusters for the whole 

country (left), south-west part (center) and the region around Abidjan (right).  

6   Peak detection from hourly time series at antenna level 

Besides examining regular, everyday-life activity patterns we further want to detect 

interesting events that attracted many people. For this purpose, we need to count the 

number of different people per antenna cell and time unit (rather than the total number 

of calls / CDRs as used in the previous sections). It should be noted again that data 

have been provided in 2-weeks portions with repeated user IDs across the different 



portions, therefore limiting time intervals eligible for such analysis in this particular 

data set due to the inability to distinguish users between data chunks. 

We focus our further analysis on trajectories (sequences of positions) of different 

users during last two weeks of the data set. This is the only period that contains rather 

complete geographic coverage, see Section 3 for details. For each distinct antenna we 

have computed hourly counts of distinct user IDs active at this antenna. These counts 

roughly represent the presence of people in antenna cells. If a person made several 

calls from the same antenna, we assume that he did not move away between the calls. 

It should be noted that this assumption may be incorrect in some cases, in that people 

may transition out of an antenna’s cell and back without making a call at another 
antenna in the meantime. 

 

   

Fig. 10. The time graph at the top shows time series of counts of mobile phone users grouped 

by antennas, at 1 hour resolution. Peaks with magnitude of at least 20 users over 3 hour 

intervals are marked by yellow crosses. Counts of peaks are shown in 2d periodic event bar at 

the bottom-left. Positions of peak events are shown on the map of the country in the bottom-

center map and in the space-time cube at bottom-right.  

Figure 10 (top) shows a time graph with a selection of time lines corresponding to 

antennas. Straight horizontal lines on April 10, April 15 and April 19 correspond to 

missing data that we already identified earlier in Figures 1 and 3. To find unusual 

concentrations of people at antennas, we have searched for peaks of averaged 



presence magnitudes exceeding 20 distinct peoples over a sliding, 3 hours time 

window [11]. The appropriate parameters for magnitude threshold and time window 

width have been defined using a sensitivity analysis procedure as suggested by [12]. 

In particular, the time graph in Figure 10 (top) only shows lines for those antennas 

that exhibit at least one such peak event. The horizontal event bar immediately below 

the time graph shows the counts of events over time. The 2D periodic event bar in 

Figure 10 (bottom left) shows counts of peak events per 24 hours of day (columns) 

and 14 days of two weeks (rows). The map (bottom-center) and space-time cube 

(bottom-right) show spatial and spatio-temporal distributions of peak events. 

We can observe that peak events are frequent in the middle of the day and early in 

the evening. There are only few exceptions. Thus, several peak events happened 

during the 15:00 – 16:00h interval on Monday and Fridays of the 1st week, and late in 

the evening of Saturday of the 2nd week. By clicking the corresponding segment of the 

periodic event bar, we select the corresponding antennas and time series (see Figure 

11). We can see that these peaks happened in 4 different towns in different parts of 

the country. The time series profiles for those regions indicate that these peaks are 

rather unusual. We guess that some kind of connected public events happened 

simultaneously in these regions. 

 

  

Fig. 11. Peaks that happened at 21:00 on the 2nd week’s Saturday and their containing time 
series are highlighted in the time graph (left). Simultaneously, their positions are marked on the 

map (right).  

It is interesting to relate the magnitude of peaks with the maximal values of the 

time series. We found two extreme cases of time series with peaks of more than 20 

people contained in time series with maximum (peak) values of about 40 but average 

daily values of only about 10..15 people (Figure 12). Both events happened in 

Abidjan. Probably, some local events happened at about 10:00 on Monday and at 

21:00 of Thursday in these locations. 

We found that peak events happened in almost all major towns of the country. To 

get a flavor of mobility of mobile phone users in Ivory Coast, we outlined areas 

around the peak events and then calculated counts of direct transitions between these 

locations, see Figure 13. The thickness of the arrows reflects the magnitude of flows 

between the corresponding places during the two-week period. This map shows us the 

strength of connections between locations of different activities. 

 



 

Fig. 12. Peaks on Monday morning (yellow cross) and Thursday evening (green cross) are 

shown on top of two time series with otherwise usually low presence of calling activities. Both 

peaks have happened in Abidjan.  

 

Fig. 13. Flows between regions that correspond to peaks in people presence.  

7   Analysis of flows 

To explore the mobility flows more systematically, we have applied a method for 

generalization and summarization of trajectories [13] to the phone user trajectories 

over last two weeks. The method extracts so-called characteristic points of 

trajectories, aggregates these points in space with a desired resolution, and finally 

uses the medoids of the resulting spatial clusters as seeds for generating a Voronoi 

tessellation of the territory. The method simplifies trajectories while minimizing their 

distortion with respect to the corresponding original, full-detail version. 



Figure 14 (left) shows the original trajectories rendered with high level of 

transparency (about 99%). This representation gives us a hint about major flows, but 

does not allow quantifying them. Figure 14 (right) shows the flows between 

aggregated regions as well as the accumulated counts of distinct users recorded in 

each region during the two-week period. 

We can observe the consistency between the flow maps in Figures 13 and 14, 

respectively. However, the latter map uncovers more structural details. In particular, 

we can see a branch connecting Abidjan with the mid-eastern region of the country. 

There are only relatively few direct connections between Abidjan and Yamoussoukro, 

and fewer still between these two and towns in the northern part of the country. This 

indicates that despite the existences of several local airports, people mostly use 

ground transportation and make phone calls / send SMS during their lengthy trips. By 

contrast, air travel typically manifests itself as long-distance flows since the mobile 

phone is switched of or out of range during flight with no calls at intermediate 

antennas. 

Further analysis (omitted here for space / time constraints) could allow us to 

identify temporal patterns of flows and assess usual travel times between different 

locations. We could also find frequent sequences of visited regions and assess the 

dynamics of such trips.  

 

  

Fig. 14. All trajectories during last two weeks drawn as accumulation of semi-transparent lines 

(left). Trajectories are summarized by 28 aggregated regions (Voronoi polygons) of 

approximately 100km radius. Flows between regions are represented by red arrows with flow 

magnitudes encoded in the arrow width. Counts of mobile phone owners registered in each area 

are shown by yellow bars.  

8   Semantic analysis of personal places 

To identify routine trips of people and to obtain interpretations of their personal 

places, we have applied the procedure proposed in [144] to a small subset of 

trajectories that are characterized by large numbers of calls in different locations. We 

have used a sample of the data consisting of 86 trajectories recorded during the last 



two weeks of the data period and with bounding rectangle diagonals exceeding 5km. 

The total number of call records in this sample is 133,029. First, we have identified 

stops as sequences of consecutive calls that occurred within 30 minutes and a 

rectangular region of less than 500m diagonal. Using these parameters extracted 7,149 

stops. The stops have then been clustered by means of the density-based clustering 

method Optics [155], separately for each trajectory. Parameters have been chosen to 

group points having at least 5 neighbors within 500m distance. Noise points not 

grouped into any cluster (1,300 points in total, or about 19% of the set) have been 

excluded from subsequent analysis as they are assumed to represent infrequently 

visited locations. For each cluster the counts of calls have been aggregated for every 

hour of the day. This resulted in time series comprised of 24 one-hour intervals 

assigned to each cluster. 

 

  

Fig. 15. Individual locations of repeated activities are shown by 500m buffer polygons for 

subscriber #548709. Hourly temporal signatures (according to hours of day) are shown by time 

flow diagrams. Spatio-temporal positions of calls are shown in the space-time cube. Red dots 

represent home-based calls, blue dots correspond to the person’s work place, and prurple to the 
primary location of her evening activities. Gray dots in the space-time cube represent irregular 

activities.  

Figure 15 shows routine activity locations for a single person, id #548709, in space 

and time. The “blue” place to the south was attended only during day time. Most 
probably, this is the work place of this person. We guess that she has regular work 

with fixed working times. The “purple” place in the middle is visited less frequently 
and only during evening times. We guess this is a place of repeated social activities of 

the person. Finally, the location in the north is characterized by activities at any times, 



including night times (but less during the day). We interpret this place as the person’s 
home. 

 

 

Fig. 16. Locations from other trajectories characterized by temporal profiles similar to that was 

identified as work in Figure 15.  

Interpretation of semantically meaningful personal places can be automated. For 

example, we can compute similarities of all 24-hour feature vectors to a selected 

vector corresponding to “work” activities, see Figure 16. This map shows locations 

and temporal signatures of places that can be interpreted as work locations for 

different mobile phone owners. Partial dissimilarity of the temporal profiles suggests 

different working hours. For example, some persons seem to be less active at lunch 

times. Spatial clustering of several people’s “work” places suggests concentrations of 
business locations in the city. 



A better quality of semantic interpretation could be achieved if CDRs included 

times and positions of both the beginnings and ends of calls. In this case it becomes 

possible to distinguish stationary calls from calls on move, and to estimate movement 

speeds during the latter. 

By applying the described procedure systematically to all subsets of the data and 

matching routine activity locations of persons in different subsets, it might further be 

possible to link partial trajectory corresponding to the same person in different data 

chunks (see Section 2). However, such re-integration may be harmful in terms of 

personal privacy [166]. 

9   A general procedure of analysis  

In this section, we attempt to outline a general procedure for analyzing movement 

data from multiple perspectives. For the most comprehensive analysis of movement 

data, the analyst would look at the data from all perspectives: mover-oriented, event-

oriented, space-oriented, and time-oriented. Such an analysis would include the 

following groups of tasks: 

• Mover-oriented tasks dealing with trajectories of movers:  

o Characterize trajectories as units in terms of their positions in space 

and time, shapes, and other overall characteristics. 

o Analyze the variation of the positional attributes in space and time. 

o Discover and investigate occurrences of various types of relations 

between the movers and the spatio-temporal context, including 

other movers. 

• Event-oriented tasks dealing with relevant spatial events, in particular, 

events that have been extracted from trajectories, local presence 

dynamics, or spatial situations in the process of the analysis: 

o Characterize the relevant events in terms of their spatio-temporal 

positions and thematic attributes.  

o Discover and investigate occurrences of various types of relations 

between the events and the spatio-temporal context, including other 

events.  

• Space-oriented tasks dealing with a set of places of interest (POI) and 

local dynamics (temporal variations) of presence and flows: 

o Define a set of relevant POI.  

o Characterize the POI in terms of the local presence dynamics. 

o Characterize binary links between the POI in terms of the flow 

dynamics. 

o Discover and investigate temporal and ordering relations between 

the POI. 



• Time-oriented tasks dealing with a set of time units and respective 

spatial situations: 

o Characterize the time units in terms of the spatial situations.  

o Discover and characterize the relations between the time units 

imposed by movers and/or events, in particular, similarity and 

change relations. 

This list of tasks is not meant to specify any order in which the tasks should be 

performed. During the process of analysis, tasks of different types intermix; however, 

they do not intermix fully arbitrarily but follow one another in certain logical 

sequences.  

It is not necessary that all types of tasks are included in an analysis. Only a subset 

of tasks may be relevant to the analysis goals.  

Based on our experience and the existing dependencies between the analytical 

methods in terms of their inputs and outputs, we can suggest a number of possible 

rational sequences of tasks in movement analysis. These task sequences are presented 

in Figure 17 in the form of flow chart. The tasks are represented by brief descriptions 

preceded by characters M, E, S, or T, which denote the possible task foci: Movers, 

Events, Space, and Time. 

Although the graph specifying the possible task sequences has a single root node, it 

does not mean that any analysis must begin with the task “Analyze trajectories as 
units” represented by this node. For a particular application, the characteristics of 

trajectories as units may be of no interest but analysts may be interested first of all in 

the positional attributes or in relations of movers to the context or in aggregated 

movement characteristics over a given territory. Furthermore, the analysis may 

initially focus on spatial events, in particular, when the movement data are originally 

available in the form of spatial events rather than trajectories, as, for example, data 

from Flickr or Twitter or data about mobile phone use. In the flow chart, the nodes 

where the analysis can start are marked by grey background. 

It is also not necessary that the analysis ends only when one of the terminal nodes 

is reached and the respective task fulfilled. The analysis may end in any intermediate 

node when the application-relevant analysis goals are achieved. The analysis may also 

continue by switching to another branch. In particular, there are two terminal nodes 

labelled “M: Analyze trajectories responsible for the discovered relations” (where 
relations between POI or time units are meant). Here it is assumed that a subset of 

trajectories is selected for which the analysis is done starting from the root node of the 

flowchart and following the left branch. 

Hence, there is no unique analysis procedure that needs to be followed in all cases 

but there are many possible procedures, where the steps are chosen depending on the 

application-specific analysis goals and ordered according to the dependencies 

between the inputs and outputs of the analysis methods. Nevertheless, the possible 

paths through the flow chart in Figure 17 specify a set of generic analytical 

procedures that can be useful in multiple applications.  



 

Fig. 17. The flow chart represents possible sequences of tasks in movement analysis.  

10   Conclusions 

In this paper, we report on analysis results of a medium-size set of call data records 

referring to antenna positions. The analysis was performed with V-Analytics – a 

research prototype integrating visual analytics techniques for spatial, temporal and 

spatio-temporal data that our group develops since the mid-90s [177]. We considered 
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the data from multiple perspectives, including views on locations of varying 

resolution, time intervals of different length and hierarchical organization, and 

trajectories. We detected a number of interesting patterns that could facilitate a variety 

of applications, including  Reconstructing demographic information (to replace expensive and 

difficult to organize census studies)  Reconstructing patterns of mobility (to enhance transportation studies)  Identifying places of important activities (for improving land use and 

infrastructure)  Identifying events (for improving safety and security)  Detecting social networks (for marketing purposes) 

 

While in some cases we considered the complete data set, we had to restrict parts 

of our analysis to the last two weeks of the provided data due to undesirable 

properties (namely, missing, incomplete or duplicate data records for several key 

regions for a large portion of the time period). However, most of the applied 

techniques scale (or can be scaled up conceptually) for much larger data sets. Some 

kinds of analysis that we planned to perform were simply impossible due to the data 

fragmentation into chunks with duplicate user IDs. For example, we were not able to 

build predictive models of people’s presence and mobility [188], as data for longer 

time periods are needed. We also did not search for interaction patterns between 

people and did not try to detect social networks. 

Limitation caused by data quality could be relaxed by joining the provided data set 

with data from publicly available sources such as Flickr and Twitter in future work. 

Textual aggregates of activity records could greatly facilitate understanding and 

deeper semantic interpretation of the data. 
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