-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by City Research Online

Popov, P. T., Salako, K. & Stankovic, V. (2015). Stochastic modeling for performance evaluation of
database replication protocols. Lecture Notes in Computer Science, 9259(9259), pp. 21-37. doi:
10.1007/978-3-319-22264-6_2 ISSN 0302-9743

CITY UNIVERSITY City Research Online
LONDON

FST 1894

Original citation: Popov, P. T., Salako, K. & Stankovic, V. (2015). Stochastic modeling for
performance evaluation of database replication protocols. Lecture Notes in Computer Science,
9259(9259), pp. 21-37. doi: 10.1007/978-3-319-22264-6_2 ISSN 0302-9743

Permanent City Research Online URL.: http://openaccess.city.ac.uk/11965/

Copyright & reuse

City University London has developed City Research Online so that its users may access the
research outputs of City University London's staff. Copyright © and Moral Rights for this paper are
retained by the individual author(s) and/ or other copyright holders. All material in City Research
Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research
The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries
If you have any enquiries about any aspect of City Research Online, or if you wish to make contact
with the author(s) of this paper, please email the team at publications@city.ac.uk.

https://core.ac.uk/display/42628907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Stochastic modeling for perfor mance evaluation of
database replication protocols

Peter Popov, Kizito Salako, Vladimir Stankovic

{P.T.Popov, K.O.Salako, V.Stankovic}@city.ac.uk
Centre for Software Reliability, City University London, UK

Abstract. Performance is often the most important non-functional property for
database systems and associated replication solutions. This is true atifeast in
dustrial contexts. Evaluating performance using real systems, however,-is com
putationally demanding and costly. In many cases, choosing dreteeveral
competing replication protocols poses a difficulty in ranking theséogols
meaningfully: the ranking is determined not so much by the guadlithe com-
peting protocols but, instead, by the quality of the avilaibplementations.
Addressing this difficulty requires a level of abstraction in which the ¢inpa

the comparison of the implementations is reduced, or entirely eliminated.
propose a stochastic model for performance evaluation of data®ation
protocols, paying particular attention to: i) empirical validatiom efumber of
assumptions used in the stochastic model, and ii) empirical vafidaitimodel
accuracy for a chosen replication protocol. For the empiraalations we used
the TPC-C benchmark. Our implementation of the model is bas&tbahastic
Activity Networks (SAN), extended by bespoke code. Theehothy reduce the
cost of performance evaluation in comparison with empirical neasnts,
while keeping the accuracy of the assessment to an acceptable lev

Keywords: stochastic modeling; database replication protocols; performance
evaluation diverse redundancy

1 I ntroduction

Performance evaluation of database systems is important and usual/tatatgcision
about which among many competing products to use. Performancat®raiia meas-
urements with real database systenascasmplex and expensive process. If comparison
of replication protocols is sought, the above problems argoonded by the fact that
the ranking among the compared protocols might be affected byheotiuality of the
available implementations of the compared protocols and the precisioa@cobithe
methods employed in the evaluation process itself.

Performance evaluation via stochastic modelling has some potential agbsairt
comparison with performance measurements using real systems:

e Saving on both the ICT infrastructure costs and the time taken faragieal. In our

own experience, performance measurement takes a lot of time, espegiatfpiif
mance needs to be measured in a wide range of conditions (varyikigae size
of the data processed by the tested system, hardware constraintshetcgsfwill
further escalate if getting high confidence in the performance evaluatiteces-
sary Performance measures, e.g. average transaction response time or thiyoughpu
may vary significantly between individual measureme8tschastic models may
offer dramatic cost-savings in these circumstances;

¢ Replication protocols which one to choose? Being able to compare replication pro-
tocols ata high level of abstraction (eliminating the limitations of a particular imple-
mentation) is useful before one commits to a particular solution. Typioaly pro-
tocols are compared with the performance of a single solution, laly N two
competing protocols be measured without the comparison being affgdteridual-
ity of the particular implementations. The ranking of the products naflgct the
quality of the implementations, rather than the quality, or lack theretfeaom-
pared replication solutions. Even if the protocol implementations haveshiahbly
optimised, the ranking might still depend significantly on precisely, reowl the
conditions under which, the evaluation was conducted (e.g. perfoenasarrheads
due to network delays or inaccurate measurement routines).

Model-based performance evaluation of database replication protm®lbeen
studied by others in the past. For instance, in [1] the authbts epplicitly model disk,
cache, CPU, network and concurrency control. Similarly, the reseai2hisrbased on
modeling CPU, disks, database log disks and network with the ainaloféag their
proposed replication protocel Database State Machine (DBSM). In [3] the authors
scrutinize various assumptions in modelling the performance of sig¢éSoconcur-
rency control mechanismsad conclude that different assumptions may lead to “contra-
dictory results”. Also, a variety of analytical models for distributed and repliceted-
bases have been proposed, e.g. as in the survelyikéyvise, a thorough survey and
classification of queuing network models for database systems perforinaicen in
[5]. Many models referred to above do not validate the modelling atismsperiously
while, contrastingly, the main contribution of [3] is in demonstratiogy building a
credible model starts with validating the modelling assumptions; this is thehaewe
take in this paper. The building of stochastic models that give wstyvperformance
evaluation results requesignificant effort in model validation. Only then can any ben-
efits from model-based evaluation (e.g. cost savings) be takensig.

The foregoing suggests that we need a trustworthy, implementatiortiagmaslel-
based performance evaluation of database replication prat@déglsherefore, put for-
ward and rigorously validate a stochastic model for performance evalugtisrmodel
operates at a relatively high level of abstraction, e.g. hardwaoeinces (HW) are not
explicitly modelled; ve demonstrate how this level of fidelity, which implicitly takes
HW resources into account, is appropriate for our aims.

The stochastic model was implemented in the Mobius [6] modelling envinot)
enhanced with our own code: we cezbsuitably expressive representations of a data-
base replication protocol, clients and diverse database sesiegstiieStochastic Ac-
tivity Network (SAN) [7] formalism. The model and its assumptions were vatidate
(Sect. 5 for a diverse database replication protocol [8] using outementation of the
TPC-C an industry benchmark for performance evaluation of databasesserver

To investigate the efficacy of our proposed approach we procesdetiows. The

aforementioned server models were calibrated and validated usinticsfadiistribu-
tions obtained from experiments with real systems, each experimerdticonsf a sin-

gle client and a single server. In particular, for each serveelmie validation con-
sisted of a detailed statistical analysis to check/refute the model asswenasiovell as
comparing the distribution of transaction durations obseirvesperiments with those
obtained via simulation. Upon gaining sufficient agreement between experintent an
simulation we used the validated server models in simulating the behavior ofotioe pr
col under 1 client and 5 client loads. We examined how well thdatioruresults agree
with reality, by comparing the transaction duration distributiortainbd with those ob-
served in real system experiments.

The remaining sections of the paper are as follows. In Sect. Zesenp related
work. Sect. 3 describesstochastic model aidatabase server operation applicable to
range of database replication protocols, while Sect. 4 explains the medeiple-
mented for a particular replication protocol. Using data freah system experiments,
in Sect. 5 we present the validation of both the modelling assumptidiihkeamodek
behavior when suitably calibratefihe main simulation results are detailed in Sect.6
Sect.7is a discussion of the stochastic model approach and the results, arttl ®ee
cludes the paper, highlighting future work.

2 Related Work

In addition to the references “related work™ given in the Introduction, we would like
to summarise some relevant research on database replication protocddas®atpli-
cation has proved a viable method for enhancing both dependahilipegiormance of
DBMSs. Performance is typically improved by balancing the load betdegloyed
replicas, while fail-over mechanisms are normally used to re-distrithe load of a
failed replica among the operational ones to improve availability.

The common assumption in building database replication protocthlatisrashes
are the main type of DBMS failures. Under this assumption, usingad@lenticalrep-
licas (e.g.MS SQL servers) provides appropriate protection. Under this assumptio
which is used as the basis for all commercial solutions and most academie.gnes (
[9]), various performance and scalability improvements are viabhle.cbmmon belief
is, nonetheless, hard to justify recent research resulted in overwhelming evidence
against crash failures being of primary concéj,[[11]. Using the log of known bugs
reported for major DBMSs, it was observed that a majority featbn-crash failures
these failuresanbetolerated only by diverse replicatiorhis is why we chose a diverse
replication protocol one of the few we knowf — to illustrate our approach to model-
based performance evaluation. Our research focuses entirely on peideravaluation
and defers dependability modelling, and its impact on performanciitdioe work. In
so doing, the paper studies the best performance achievable ltigatiogpprotocol.

3 Stochastic Model of Database Server Operation

3.1 Modd of a Database Server

Modern relational database servers implenagtient-server architecture: a client sends

requests to a server in the form of SQL statements for the server tdeexeul the
server returns the result of each execution to the client. In thisaxsgrver may serve
multiple clients, concurrently. Each client establishes a connection (oakenarshare

the same one), via which a series of transactions is executed. &@action is a set of
serially executed operations (SQL statemertgjansaction is completed according to
the ACID properties, e.git is either committed (all the changes are made permanent)
or aborted (all the changes are discarded). In general, transacgams guaranteed to
be committed; there is uncertainty here, from both the client-sgysesm and its envi-
ronment, which ultimately determines the transactidate.

According to the TPC-C benchmark, each transaction made by ab#iengs to
one of 5 types- Delivery, New Order, Order Status, PaymentStock level The pro-
portionsin which each of these types occur are specified and define a probdisility
bution (transaction profile); during simulation, each client determinestgnansaction
by choosing it according to this distribution. In this wayardom sequence of transac-
tions is generated by the clients. These TPC-C transaction typesiaesl dgf 34 SQL
statement typegach of which can be a SELE(MELETE, INSERT or UPDATE

Executing a transaction takes time. Typically, how long a transasiiiciake is not
known beforehand; uncertainty lurks here, as vildle duration is dependent on the
nature of the transaction and its constituent statements, the relatafdr the transac-
tion, the conditions under which the transaction is executed and tiee @ecluding the
database state and loaBdr most applications, transaction’s duration is well-approx-
imated by the sum of its constituent stateniegisations. For a given server executing
statements of a given type, the statement durations follow some statiistichution—
one that is adequately approximated by collecting a suitably large samsplchadura-
tions from a server deployed on a real system test-bedfifst pass, we made direct
use of these distributiorss is foregoing any attempts to fit them to some member of a
yet to be determinetheoretical probability distribution familfi.hese distributions are
vital for our model. When a server executes a statement during simulatiarder to
determine how long this simulated execution will take, a random sangblargamount
of time is made according the statement’s related statistical distribution (which, im-
plicitly, captures HW configuration effects).

So, the time taken for serveto execute a given statement typa random varia-
ble, X;, with distribution functiorF;(x;). With n replicas, each statemeésimodelled by
a random vectorX;, X,, ..., X, . And, a continuous joint distribution function,
Fi, n(x1, x5, ..., x,), governs the stochastic process of executing the statement on the
replicas. What is the precise form of this function? One mightestispat the random
variables X;, are not independently distributed. Indeed, these random variablie
the time taken by each server to process a statement. So, if theestatesds to an
execution witha small amount of data being processed, then the time taken by the repli-
cas is likely to be short. Contrastingly, if the statement leads to a coanadysis of a
large amount of data, then a long time might be necessary for lailaeeAdmittedly,
the picture is more complex than this simplistic intuitive speculationtirtieetaken by
the server to process a statement involves processing some dataclatgedbetween
disk and RAM, etc. However, despite our detailed investigation ofairelations be-
tween TPC-C statement durations across the two servers we, ef@sincovered no
statistically significant evidence to reject an assumption that the duratemslepend-
ent (Sect. 5.3). Consequently, in our model, the joint distoibdi&ctors into the product
of the individual replicas related distributions §ampling the statement’s duration:

F1,2,...,n(x1,x2' v Xn) = Fi(xg) . By(xy,)

On arelated note, the duratidh,of a transaction on servirs the sum of the dura-
tions,X;,Y;, ... , Z;, of its constituent statements and transaction edge operatéemis (
commitandabor). That is, the relationship between these random variables is

We sought evidence from experiment to suggest plausible reldapserstween the
random variable§, X;,Y;, ... , Z;, and found evidence for two relationships: one indicat-
ing how, with an appropriate definition of “fast” and “slow”, fast/slow transactions tend
to becomprised of a significant number of fast/slow statements, and andtt@nship
which suggests that those statements in the transaction with significantlyaleegege
durations almost completely determine the transaction speed. Asafiss we chose
to model a gross approximation to both of these two effects oltbeing way. When
a transaction begins, we uniformly sample a numbedoetween 0 and 1, and treat this
number as defining thex x 100)th-quantile duration for each statement that will even-
tually form a part of the transaction. Then, at the point in simulatedvinena state-
ment duration is sampled, the sampling will either default to usingpthispecified
quantile with probability, or it won’t with probability 1 — p. This determines the sam-
pled durations for the statements and, thus, the distributiBnHdére,p is a model cal-
ibration parameter with a unique value per serverwhich gives us two-degrees of
freedom to achieve the best fit between measurements and simulationwheultsal-
ibrating the model.

3.2 Concurrency Control

When serving multiple clients, database servers use various @mgurcontrol
schemes to guarantee adequate data consisteiniéy also striving for the best perfor-
mance possiblerhey handle conflicts between simultaneously executing transactions,
which can result in aborting some. Thus, these schemes provigkelifievels of iso-
lation between concurrent transactioiée have chosen to model Snapshot Isolation
(SI) [12] - although not a standardized transaction isolation |é&viel offered by many
database servers (Oracle, MSSQL, PostgreSQL, etc.) as it improvesnpaiderby
eliminating conflicts between concurrent readers and writers of the samitedasta
Modeling the isolation level is also an important characteristic of qaroaph.

Under SlI, the detection and resolutionwfte-write conflicts— where two or more
concurrent transactions attempt to write to the same database item éstarkdjical
location)-is of primary importancé\rite-write conflicts arise naturally, and at random,
in multi-client applications. Consider that, for modelling these cagflan explicit no-
tion of “database logical locatidms absolutely necessary, but an explicit notion of data
at these locations is not! And, even these database locations areevdyt for conflict
detection as long as there are concurrent transactions attempting to #ritelocation.
This is very convenient: it allowed us to use a level of attfrafor our model which
consisted of choosing (in accordance with TPC-C) a database lotmti@meompany
eachsimulatedwrite statement, and recording this location (for conflict detection on
each server) when executing such statements.

In many situationsa priori, one may know neither where the next conflict will arise
in the databasenor precisely wherit will arise “Where” depends on the transaction

profile. For a given database location, if each client independently cHoose=cute a
transaction that attempts to write to that location, then the prabalbia conflict at that
location is the product of the probabilities desceibéach client’s concurrent choice.
“When” depends on the order in which the server executes the statements.

3.3 Measuresof Interest

Performance measurements are dictated by the specific context. Bemahperfor-
mance benchmark standards exist for databases\evg.tpc.org. These standards
commonly recommend steady-state measures, such as number ativasgzer time
unit or average transaction durati@i"C-C mandates using the number of New-Order
transactions (one of the 5 transaction types defined by therarighper minuteThis
metric implicitly takes into account all transaction types in the mix, asitiu#idual
throughput is controlled by the minimum percentages defined by dhdastl. Such
measures are not constantley vary over time even for steady-state mode of operation.
This variation can be captured by establishing the distributioreahttasure. We note
here that a TPC-C requirement is to report the @rcentile of frequency distribution
of response times for each transaction type. In our appraachnalysed the distribu-
tions of transaction durations.

4 DivRep Replication Protocol and SAN-based | mplementation

We demonstrate our approach for stochastic modeling of databasati@plprotocols
using DivRep replication protocol [&83] as an example.

4.1 The Chosen Database Replication Protocol - DivRep

DivRep is an eager, multi-master replication protocol, implemented aidéemare on
top of diverse database servers. It assumes the database servers anedaonifigS!.

Full data replication is performed. Replication is performed at S@iersent level
While replicas execute SQL statements asynchronously inside a transaetemtion

of incorrect results failures proceeds in parallel by comparing thitsre$l5QL state-
ments produced by diverse database servers. Replica consistectuigied by execut-
ing transaction edgeperations “atomically” — the same order of commits and begins is
guaranteed on both replicas.iJ htomicity is achieved using a variant of 2-Phase Com-
mit (2PC). DivRep operates with twdiverse database replicas configured in a Fault-
tolerant node (FT-node).

An integral part of DivRep is the use of the NOWAIT feature of avi3Bwhich
raises an exception as soon as the DBMS detects that two concurrentitasissie mpt
to modify the same data item (e.g. to modify the same row of aadataable)This
feature is typically implemented as part of a locking protocolitridwesaction, which
finds the exclusive lock on a data item being taken by another concuieneseiction
will be interrupted by a NOWAIT exception, and the modifications efddrticular data
item by the interrupted transaction will be discarded by the DBMS. dfififie-shelf
products (e.g. Oracle, MSSQL, PostgreSQL, etc.) offer NOWAIT furaitgnAn im-
portant feature of DivRep is that only one repliea NOWAIT enabledThis asymmet-
ric configuration is important: write-write conflicts atgpically reported by a single

http://www.tpc.org/

replica— the one on which the NOWAIT is enabledvhile, on the other replica, trans-
action blocking will take place in case of write-write conflicts.

4.2 SAN-based Model of Client, Serversand DivRep

Our performance evaluation is carried out via Monte-Carlo simulatioareating an

application capable of running our simulation campaiéaithful representations of a
TPC-C client, diverse servers configured wgh and the DivRep protocol, were all
realized as atomic SAN models in a Mobius proj&cg.(1.); for further details see
http://openaccess.city.ac.uk/4744/

Submodel
Initializer ep_Client_DivSQL

Submodel Submodel Submedel Submodel
ClientSAN Middleware SAN TransactionSAN 1 TransactionSAN 2

Fig. 1. Composed model of Client, Server and DivRep, in Mobius modediitvironment.

The client SAN interacts with any of the server SANs (referreastdransaction-
SANs inFig. 1.), either directly or through the DivRep SAN. The client generadas-r
actions (statements and database location data) according to the TreCHiCation;
this is the only source of uncertainty in the client. The DivRep Spéiaies determin-
istically, coordinating the receipt and forwarding of statements and tHesresstate-
ment executions between the client and a pair of replicas. It does thienduléng the
same order of transaction edges across the replicas and synchroniziogctimeenicy
control actions across the replicas. And, the server SANs themaedveapable of ex-
ecuting and coordinating concurrent transaction statements, using NO&dltrans-
action blocking. The primary sources of uncertainty for thesersegels are the SQL
statement durations.

Each server model takes as inputs empirical distributions of statdmratibns; ob-
tained from real system experiments involving a client and the sangrepresenting
the duration distribution for each TPC-C statement type (34al) tdiogether with du-
ration distributions for the transaction eddesgin commit, abor) and the fact that there
are two servers, the number of input distributions to the nie@dl While this is a large
number of distributions the intention here is that the same distrisutidl be used for
different scenarios we may vary the number of clients or change the protocol alto-
gether. In this sensthe work of collecting the data to parameterizerniwlel is done
only once

This SAN-based model is meant to be reusable; e.g. evaluating therzerte of a
protocol under a new transaction profile could require siipynging input parameters;
evaluating a different protocol involves simply replacing the Diviemicmodel with
an adequatetomicmodel of the chosen protocol, etc.

http://openaccess.city.ac.uk/4744/

5 Statistical Analysisand Validation of M odeling Assumptions

5.1 Test Harnessfor Real System Experimentation

We built a test harness to evaluate the performance of DivRep and informodal-

based approach. It was deployed in a virtualized environment: 3 phgsigats (HP
ProLiant DL165 G5p) run VMware ESXi v4 hypervisor. Each physical nmactie-

ploys a set of virtual machines (VMs), which ran either Windows Zxver (64 bit),

or Linux Fedora Core 11 (64 bit). The client application is our ownidgsamentation

of the TPC-C benchmark. We performed the evaluation UsThgode consisting of 2

open source servers: FirebifeB), v2.1 and PostgreSQL (PG), v8.4. Each server and
the client application run in a separate VM, deployed on a separate physical machine.
The servers and the client application amthe WindowsOS. Our implementation of
DivRep has been executed on a separate VM, which runs FC 11.

We collected detailed logs: transaction durations, SQL statement durations, abort
counts etc. The precision for transaction and statement durations $€oands (nsec).
We ran several types of experiments. Firstly, we conducted single sgpaiments
without DivRep.The SQL statements’ durations obtained from these experiments were
used as input to the model (Sect. 3.1); the distributions of transaktiations were
used for model validation (Sect.5.4). They are as follows:
¢ Single FB, 1 TPC-C Client, 100k transactions. We exechitegetitions using the
same random number generator seed, and ran further repetittonggnchthe seed
value. There are about 2.8 million SQL statements instaneagpetition.
¢ Single PG, 1 TPC-C Client, 100k transactieremalogous ones as for 1FB above.

We also ran two types of DivRep experiments, configured with ande€ (FB,
1PG): i) 1 Client, 100k transactions, and ii) 5 Clients, each execullngrahsactions
(100K in total). There were 5 repetitiookeach type. The same seedsor the single
server experiments were usédhe resulting transaction duration distributions were
used for model validation.

5.2 Mode Assumptions Validation

As indicated in Sect. 3.1, the time a server takes to execute aSfdlestatement is
modeledasbeing sampled from a distribution of statement times derived fronuneeas
ments on a real system testbed with the respective server. As igdtpratdice, we
estimated and excluded an initial transient period from the measurements.100k
recorded transactions, the length of the transient period forseaodr was established
to be about the first 30k transactions for FB, and aboutr#i@®k transactions for PG

To determine these lengths, we divided the duration of the experirt@btinin. peri-

ods. For each of these “bins”, we identified the response times of those transactions that
complete at times which fall in the same bin, from which we computed thetraean
action response time for each biid. 2). We observed consistent transients across rep-
etitions of the same experiment; the graphs shown here are based oneoof\b repe-
titions of each experiment type (Sect.)8MNe also produced exponential moving aver-
ages By considering a range of lags over which to perform the ngoaeragesa lag

of 10k observations manifested the transient trend component most accuratly. T
“moving averages” results were consistent with the “binned averages” results.

http://www.firebirdsql.org/

Avg. transaction response time per period; period=5min

CE RG] 5
o oo o o 0% _ag%%0 o
o . %a o @ "09 o, %00, o
o ogogo, oo o 2 o o
g0g” 0B Tomtefy)

1 Ge+08

T T T T T T
0 10 20 30 40 S0

Ao response time (nsec)

1.2e+08

Avg. transaction response time per period; period=5min

35e+07

Aorg. response time (nsec)

Fig. 2. “Binned averages” graphs for determining Transients periéa the experiments: “1FB,
1 Client, 100k transactions” (top) and“1PG, 1 Client, 100k transactichgottom)

Additional verification of the truncated data representing a steady-state pratdss ca
seen from the Autocorrelation function (ACF) graphs of the transactiatialutime-
series. The maximum lag is roughly half of all the transaction iostambserved in our
proposed steady stateéig. 3 shows the ACF graphs of transaction durations for the
1FB and 1PG experiments. The graphs are clearly consistent with thatieflya sta-
tionary random process. And, while not strictly applicable, we also rgménted
Dickey-Fuller (ADF) [L4] statistical tests to check if the transaction durations form a
stationary process. For both servers, at the 1% significance-learel whs statistically
significant evidence to reject the null-hypothesis that the observedgzes are non-
stationary. The ADF is from a family of so-calledit-roottests; it assumes a certain
functional form (a shiftedntegrated autoregressive proceas a suitable model for
the time-series under the null hypothesis. We do not have any redsaiet@ such a
functional form might be applicable here.

ACF

0 5000 10000 15000 20000 25000 30000 35000 0 10000 20000 30000 40000

Lag Lag

Fig. 3. Autocorrelation function (ACF) of the steady-state transaction dagtfor the experi-
ments: “1FB, 1 Client, 100k transactions” (left) and “1PG, 1 Client100k transactions” (right).

After discarding the transactions in the transient periods, wethse@maining SQL
statement logs to construct populations of times representing the deifatieach state-
ment of a particular statement type. Recall, from Sect. 3.1, that eaghSofrinsaction
types consists of a series of statements. For instance, the ndmataements in New-
Order transactions ranges from 26 to 66 (there is a loop and a “conditional” in the im-
plementation). For each of these statement types and each-ssugdr asNew-Order

1 (NO1) on FB- we constructed a population of all instances of the statement type see

within those transactions belonging to the steady state. This definagdtiern distri-
bution, for the statement type on a given server, to be useddimualation.

For most statement types during simulation, a statement’s duration on a given server
is sampled, independently, according to the statement’s duration distribution. Conse-
quently, for the given statement type, the time-series of observatibdig for the state-
ment is trivially weakly stationary. To attempt to refute this, we sosigttistical evi-
dence of non-stationity in the time-series of statement durations from the real-system
experiments. However, for our chosen configurations of the setkierACF graphs for
the time-series shadeither no, or negligible, evidence of non-stationary behakigr (
4).

ACF
0.2

T T
0 500 1000 1500
Lag

Fig. 4. ACF of Payment 9 statement steady-state duratidi€j, 1Client, 100k transactions”.

5.3 Correlation of SQL Statements Durations

Are the SQL statement durations correlated across the servers;téorcasdoes a
statement with a long duration on FB imply that the statement will also hiavigy a
duration on PG? The same RNG seed value was used when executingfeitiger
single server (LFBr 1PG) experiments under the “1 Client, 100k transactiorisload.
Since these are single client experiments, the same sequence of database miansactio
and SQL statements was executed ithbBor each of the 34 TPC-C statement types
and the transaction edge operations, we calculated the Pearson Correlatimie@beff
(CC) between the two servers. The calculation, based on steady-stashdatd 0
significant correlation: the CC values for SQL statements types weéhe irange [-
0.01, 0.05], while the values for the transaction edges iratiger[-0.001, 0.041]; in-
deed, a surprising result. Although not a proof of statistical independéepcevides
evidence against linearly correlated statement/edges durations, andisseobngth
our choice of modelling the statement /transaction edges durations as statistieall
pendent across two servers (see Sec}. 3.1

54 Client-Server System Model Validation

The validation of our model proceeds by simulating the single-client/stegler ex-
periments (Sect. 5.1) and comparing the results thereof with exptalrobeervations
from the real system. But firstre studied the variability in the real system experiments
to determine the extent to whidiese observations are reproducible.

The necessary step here was to test if the samples of transactions slotatadmed
from different repetitions of the same real system experiment cometemgsame dis-
tribution. If true, we could then compare transaction duratigtmntdutions from our Mo-
bius-based model withinyof the respective distributions obtained from real system ex-
periments, using an appropriate statistical test to determine if thibutisins are suita-
bly similar. So, with this goal in mind, we constructed the Empirical CumulativiiDis
bution Functions (ECDFs) of transaction durations from two 1f@rxent repetitions
(Fig. 5). Visual inspection of these ECDFs rewhto significant difference.

We, however, performed a two-sample, two-sided Kolmogorov-Smi(l8) test
(see the text box iRig. 5 for its results)- one of the most general non-parametricstest
for checking if two samples are drawn from the same continuoutbdiiin. I is sen-
sitive to differences in both location and shape of the ECDFs dfvtheamples. The
test indicated that, at a 1% significance-level, there is statistically signiéuatgnce
to reject the hypothesis that the two samples of transaction duratimesrom the same
distribution. Similar surprising results were obtained for othespdithe 1FB experi-
ment with the same or different seed values; this is true for 1PGiregpértoo. The
point to note here is that our sample sizes are atypically lamging between 65-70K
transaction durations in each experimetitis is a veritable “embarrassment of riches”.
With so much sample data comes a lot of “tiny deviations between the distributions”
evidence, amounting to significant evidence as far as the discrimipatwgy of the KS
test is concernedLd]. To illustrate the unhelpful level of sensitivity at play here, con-
sider that the maximum vertical distance between the ECDFs being-tékeed value
from the KS test is 2%; a very small distance indeed. And, the distributions “fared no
better” when other statistical tests were applied (e.g. Chi-Square test).

FBRep1Seed4153_vs_FBRep1Seed3061978 txns durations

10

e

08
.

Two-sample Kolmogorov-Smirnov test

06

Fn(x)
s

data: s1TxnDurs[, "Duration"] and s2TxnDurs[, "Duration"]
| D =0.0202, p-value = 9.038e-13
[alternative hypothesis: two-sided

04

02

00

T T T
0.0e+00 5.0e+08 1.0e+09 1.5e+09

Transaction durations (nsec)

Fig. 5. ECDFs of transaction dations for “1FB, 1C, 100k transactionS” experiment. The dark
line represents the repetition with the seed 4153; the light-cblioeethe 8ed3061978.

What, therefore, would be the basis of a useful comparison besiaalation results
and experimental observation, if even repetitions of the same expedreemit guar-
anteed to pass a KS tedt2 chose to compare the distributions using: 1) ECDFs plots,
2) QQ-plots, 3) average transaction durations and 4) the sataptiard deviations, all

of which give acceptable agreement across experiment repetitions.

In our simulation campaigns, each simulated run simulates 1 min 40 (steanoly
state) server operation, with a total of 1000 runs per campaigrcriteria for a suitable
number of runs was that the number of statement requests madédnt and the num-
ber of statements executed by each server were requiredvergerwith a relative
standard error of less than 10%. We simulated a single client interadgting single
FB server, from which we obtained a distribution of transactioations. This distribu-
tion and the corresponding distribution from experiment are plottEdyiré (left hand
side). The close agreement between the distribytinasifested in the plot, is further
evidenced by the corresponding QQ-pleity(6, right hand side); the only noteworthy

deviations between the distributions occur in the upper 2.5% of thibulions. Fur-

thermore, the average transaction durations from simulation and expesaraeb63

msec and 166 msec, respectively, with related standard deviatidréSafec and 1.75
sec. A similar exercise was carried out for the PG server. Again, the simudatio
experiment were in close agreement: the average transaction duratid@smnasec and
44 msec for the simulation and experiments, respectively, with theastiaeviations

of 1.34 sec and 0.99 sec.

1 Client/Firebird Transaction Duration (Empirical CDF) 1 ClientiFirebird Transaction Duration QQ-ploat
(o) «
- o L
© o S
~© & @ /‘
T — =" i
Q = ~ e
E o £ -
S o = 4
? o <@
v " T
x =
5 © & .
g E -
£ -
=3 i -
— Simulation P4
2 1 ClientiF rebird <
© T T T T T « T T ! T T
0.0 0.5 1.0 1.5 20 0.0 0.3 1.0 1.8 2.0

Duration (sec) Simulated Duration (sec)

Fig. 6. Comparison of transaction-duration ECDFs (left), @f@plot for transaction durations
(right), from simulation and a real system experiment of ti#B, 1C, 100k Transaction's
Similar graphs were obtained for the “1PG, 1C, 100k Transactions” experiment.

6 Results

Having gained sufficient confidence in the model, we simulated a single cliersdint

ing with 1 FB and 1 PG server via DivRep. The distributidesiated significantly in

this case, with the simulated transaction duration distribution having thstsions

than its experimental counterpart. The shapes of the distributionsyéQwvere quite
similar. This suggested that there might exist a systematic overheadarpauiment.

To illustrate the extent of this overhead, we intragilec log-normally distributed over-
head in our simulatiofsresulting in much better agreement between the simulated and
experimental distributiond=(g. 7). The average transaction durations from simulation
and experiment are 225 msec and 236 msec, respectively, with relateddstiewia
tions of 1.21 sec and 1.10 sec.

The conjecture about the overhead is, indeed, plausible: théematd implement-
ing the replication protocol relies on Java RMI (Remote Method Inwogatchnology,
which is known to introduce significant transport latencies.

Using this lognormal overhead, we proceeded with a final compassoulating 5
clients interacting with the servers via DivRep. The ECDF and QQ-fldtrdte how
the deviations in the shapes of the distributions have become piaeable Fig. 8).
Despite these deviations, the average transaction durations from simulatexpariel
ment are 380 msec and 338 msec, respectively, with related standatobdsvif 0.836

1 The use of the lognormal distribution is purely illustr®, and not based on this distribution family being
optimal, in some sense, for modelling overheads.

sec and 0.880 sec. Given the size of the standard deviationtfranrevice the mean),
this indicates that the two averages are remarkably close.

1 Glient/DivSQL Transaction Duration (Empirical CDF} 1 Clien¥DivSQL Transaction Daration QQ-plot

e <]

~ o

w | g
- e @& W R
g g " — e
T« = -
5 o g
] .
it g
v &
3 £ e
3 E
[@ i

o~ g e

< i

— Simulation
o 1 —=- 1 ClientDivS0L o |
@ T T T T = T T T T T
0.0 05 10 15 20 0.0 0.5 10 1.5 2.0
Duration {sec) Simudated Duration (sec)

Fig. 7. Comparison of transaction-duration ECDFs (left), @@ plot for transaction durations
(right), from simulation and a real system experiment of tfigRep,1C, 100k Transactiof's

5 Clients/DivSQL Transaction Duration (Empirical CDF}

Q]
|
=]
<
2
g o |
S
a°
il
-«
s
o
]
o
N
=]
— Simulation
< == 5 Clisnts/DivSQL
=]

T T T
0.0 05 1.0 16 20

Duration (sec}

Fig. 8. Comparison of transaction-duration ECDFs from simulation and a real sygienmaent
of type“DivRep,5C, 20k Transaction eath

7 Discussion

Arguably, model-based performance evaluation of replication protocolatlsex am-
bitious premise; there are many reasons to doubt whether it is practicalezd, even
possible to evaluate a protocol’s performance without actually building and deploying

it. For one thing, what would such a performance measure actually forearreal
system? And, certainly, in the process of building an accurate noomgeshould not be
surprised by: i) having to make choices about the level of abstractiatelfiaelity)
at which to operate; ii) model parameterization of, possibly unknowable, gt@ram
Even when performance evaluation is conducted on real systemsarthenany con-
siderations to take into account, such as the accuracy of the measuringsmatio
ployed or the generality of the results obtafedhd, yet, it is precisely for all of these

2We changed the precision of the measurements from msec tdesaase a significant proportion of the
statement durations were in the sub msec range, pregergirom simulating these durations accurately.

reasons that the results of our studies are not only promigirey suggest that model-
based evaluation is feasiblébut surprisingly so.

For instance, consider the question of model fidelity. In buildingvmdels we ab-
stracted away many seemingly important details. Our clients and seaveraid ex-
plicit notion of detailed data that is manipulated, stored to and retrieved from-a data
base; only time-sensitive, sufficiently detailed database locations are generabed for
purposes of conflict occurrence and detection. The servers do nabtmioit notions
of executing the SQL statements. Despite these simplifications the modelkacthiev
correspondence with experiment reported in Secthése modelling simplifications
were maddy, first, identifying those sources of uncertainty that are cruciayfstem
performance- such as statement durations, conflict occurrence and the transaction pr
file — and then including only those aspects of the real world that we deeceskary
to adequately represent these uncertainties in our model.

Model parameterization was not daunting. As a first pass, the use ofcahpDFs
as direct model inputs meant that we did not have to identify suitedaectical distri-
butions (and their attendant parameters) to approximase B@DFs. At 74 distribu-
tions, this would have been a tedious exercise at best.

A possible advantage of simulation is the speed with which resultbtiaed. The
1 Client/1 FB experiment took 4hrs 28mins to complete and aldming to simulate.
The biggest difference was for the 1 Client/DivSQL experiment, which saw the experi-
ment complete in 6hrs 35mins, whereas the simulation took aboutslOmin

While there isa good agreement between the simulation and experimental results
(especially in terms of the averages and standard deviations), the elisagre are also
worth noting. For, our current model represents a stylized systeinich there are no
overheads resulting from, say, the protocol itself or the netwairke®en the clients and
servers. This means that our validated model gives a distributioh istan estimate of
the best performance an implementer of the protocol can hope to acloievatter how
skilled the implementer isThe usefulness of this bound is in pointing out that any sig-
nificant discrepancy between the bound and the performance of a speatificol im-
plementation indicates that the implementation is sub-optimal.

8 Conclusions

We presented a stochastic model for performance evaluation of @ataplsation pro-
tocols. An implementation of the model, using a combination of the Mobadeling
environment, its SAN formalism and our own codebase, is presented.otietimcre-
ated to be reusable in a variety of scenafite® model assumptions, and its accuracy
with respect to thehosen database replication protocol’s performance, are rigorously
validated. The measurements obtained from experiments conductegtansystems
testbed were used to validate the model. For this validationseethe TPC-C bench-
mark— executedn both the model and the real systems testbed.

The model enables performance evaluation of database replicaitongi{s), and
therefore their comparisoModel-based evaluation allows for eliminating the ictpa
on areplication protocdk performance, of overhead duetlie protocol’s specific im-

plementation. If the ordering between several replication protedisven by imple-
mentation overheads, model-based evaluation gives a ranking of thatrepljmroto-
cols based on their optimal performance.

We also demonstrated that savings in the model-based evaluation time nealy be v
significant in comparison with the measurements using real systems.

There are a number of ways in which the work can be furthetharmodel can
be improved. Currently, the model requires a more sophisticated nsutharaccount
for the effects of a significant increase in client load on servdorpgance. Undea
light load, the current server model is one of “infinite resource” [3]. However, under
heavy client loadsa realistic mechanism of server resource is essential for modelling
the chosen protocol accuratélye have begun experimenting with models of resource,
and the validation of their accuraeyo be completed follows the approach described
above for validating the other modelling assumptions. This will indludker investi-
gation of how the increased load will affect the surprising result3ft statement
durations are uncorrelated across the servers.

We intend to evaluate other replication protocols, e.g.1p, 17], to see how well
the model behaves.

In Sect. 3.1, we highlighted the fact that the parameteas &‘blunt” approach for
modeling the more nuanced relationships we observed between trarsactibtheir
statements. We expect that implementing algorithms which better approximateethes
lationships will result in even better agreement with experiment.

We also plan to explore the possibility of using the systematic daswegs between
simulated and observed distributions illustrated in the QQ-plotaré/aware that sim-
ilar systematic differences between models and respective observationeéavséd
in the past for model re-calibration to improve model accurb8ly [

The model has explanatory power which we would like to improve yfyben sig-
nificant overheads are detected by comparing simulation results with expetiores,
a better explanatory distribution for the overheads might be a gatistnibution with
parameters dependent on transaction length and transaction statement types.

The research presented in this paper considers a failure fieenement. A natural
extension would include evaluation of dependability attributes. For dgafaplts can
be injected by an appropriate data corrupting daemon in the erpégintestbed, or
modeled in the model-based approach. Different likelihoods of crash¢crash and
Byzantine failures can be simulatedperform a number of “what-if” analyses and ob-
serve the effects they have on dependability, and performance,abfatben system.

Acknowledgement

This work was supported in part by th&’s Engineering and Physical Sciences Re-
search Council (EPSRC) through the DIDERO-PC project (EP/J82D1%e would
like to thank the anonymous reviewers and Bev Littlewood foulsemments about
an earlier version of the paper.

References

10.

11.

12.

13.

14.
15.

16.

17.

18.

Sousa, A., et alTesting the dependability and performance of groapmunication based database
replication protocolsin Proc. of the Int. Conference on Dependable SystardsNetworks (DSN 2005)
2005.

Pedone, F., R. Guerraoui, and A. Schipidre Database State Machine ApproaBhstributed and
Parallel Databases, 20QR(1): p. 7198.

Agrawal, R., M.J. Carey, and M. Livngoncurrency control performance modeling: altenvestiand
implications.ACM Trans. Database Syst., 1982(4): p. 609-654.

Nicola, M. and M. JarkePerformance Modeling of Distributed and ReplicatedtabaseslEEE
Transactions on Knowledge and Data Engineering, 2I8{@): p. 645-672

Osman, R. and W.J. Knottenbebatabase system performance evaluation models: rA&egu
Performance Evaluation, 20169(10): p. 471-493.

Graham, C., et alThe Mobius Modeling Toolin Ninth International Workshop on Petri Nets and
Performance Models (PNPM 'Q3001. Aachen, Germany.

Sanders, W.H. and J.F. MeyBtpchastic activity networks: formal definitionscaconceptsin Lectures
on formal methods and performance analy2@02, Springer-Verlag. p. 315-343.

Popov, P. and V. Stankovitnprovements Relating to Database ReplicatiBRO, Editor. 2013, City
University London: EU. p. 60.

Cecchet, E., J. Marguerite, and W. Zwaenep@€lDBC: Flexible database clustering middlewane
USENIX Annual Technical Conference, Freeri2004.

Gashi, I., P. Popov, and L. StrigiRult tolerance via diversity for off-the-shelf piwcts: a study with
SQL database servereEEE Transactions on Dependable and Secure Compufiog, 24): p. 280-
294

Vandiver, B., et alTolerating byzantine faults in transaction procegsystems using commit barrier
scheduling in Proceedings of 21st ACM SIGOPS Symposium on Opega$iystems Principlef007,
ACM: Stevenson, Washington, USA. p. 59-72.

Berenson, H., et a\ Critique of ANSI SQL Isolation Leveldn SIGMOD International Conference on
Management of Datdl995. San Jose, California, United States: ACM PressYek, NY, USA.
Stankovic, V.Performance Implications of Using Diverse Redungafoc Database Replicationn
Centre for Software Reliability2008, City University London: London. p. 169.

Fuller, W.A. Introduction to Statistical Time Seriek996: Wiley.

Osborne, J.WBest practices in data cleaning: A Complete GuidEerything You Need to Do Before
and After Collecting Your Data2012: Sage Publishing: Thousand Oaks, CA.

Garcia, R., R. Rodrigues, and N. Preguitficient middleware for byzantine fault toleraratdbase
replication in Proceedings of the sixth conference on Computeesys (EuroSys '11)2011, ACM:
Salzburg, Austria. p. 107-122.

Vandiver, B.,Detecting and Tolerating Byzantine Faults in DatebaBystemsin Programming
Methodology Group2008, Massachusetts Institute of Technology: BostorZ. 1

Brocklehurst, S., et aRecalibrating Software Reliability Model.EEE Trans. Softw. Eng., 199106(4):

p. 458-470.

