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ABSTRACT 

This thesis deals with the influence of fire on the behaviour of steel concrete composite 
floors. A theory has been developed to calculate deflections during the fire and the 
ultimate strength of the composite floor under such conditions. The solution is based 

on the finite difference method. It takes temperature-dependent material properties into 

account. 

The method of analysis comprises two parts; the first is thermal analysis, enabling 
temperatures to be calculated as a function of fire exposure time. The second is 
strength analysis for calculating the strength of composite floor with material 
properties affected by temperature. 

For the heat flow analysis, the cross-scction is divided into mainly rectangular 
elements. Sloping boundaries are approximated by triangular elements. The heat 
transfer from the fire to the surface is considered as well as heat conduction to the 
neighbouring points. At internal points, heat conduction to all the neighbouring points 
is considered. 

To calculate the deflections, the floor is divided into a two-dimensional mesh. The 
deflections are calculated for each mesh point based on orthotropic plate theory. The 
differential operators are replaced by the finite difference formulae. This reduces the 
governing differential equation into a system of linear algebraic equations. To 
calculate the plate rigidities, it is necessary to find curvatures for all mesh points in the 
two planes using finite difference operators. The thermal strains are superimposed on 
the mechanical strains associated with curvatures to find the net strains, and then 
stresses are calculated using the non-linear temperature dependent stress-strain curves. 
Integrating the stresses, the internal stress resultants are calculated. The above method 
has been programmed in Visual Basic. 

To validate this method, a comparison with a number of fire tests has been carried out 
for both thermal and mechanical behaviour. The temperatures at comparable points are 
generally close to each other. Comparisons have also been carried out for calculated 
mid-span deflections by this method and the published test results. The results show 
excellent correlation between the tests and the new method. 

A parametric study has carried out on floors with different boundary conditions when 
subjected to in-plane forces for two fixed and simple ends. Comparison of mid-span 
deflections between the fixed and simple end conditions has shown that fixed edges 
have better fire resistance than simply supported when not subjected to in-plane forces. 
It has found that in-plane forces had little effect on deflection rates at initial stages of 
the fire. These only appeared at later stages. When subjected to in-plane forces in one 
direction only the floor showed better response. 

The conclusion from the parametric study is that in-plane forces at different edges play 
a significant role in the behaviour, as the surrounding structure provides restraint 
increasing the fire resistance of the structure within the fire compartment. 
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To check the applicability of this method, a comparison between Bailey's design 

method and the present numerical analysis method was carried out. The maximum 
deflections were calculated by the new method using the Span/20 criterion for 
deflection. Good agreement was obtained with the Bailey's design method for slabs 
with both simply supported edge conditions and clamped edge conditions. 

The developed method has been shown to accurately predict the nonlinear response of 
composite floors in fire and gives satisfactory prediction of thermal and mechanical 
behaviour of composite floors in fire. It has been shown that the new method is an 
appropriate tool for the analysis of composite floors exposed to fire. 
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NOTATION 

C heat capacity 

dA mesh element area in mm' 
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Proposed time increment 

dt appropriate time increment 
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Dy the flexural rigidity of the plate in the y-direction 

D, y the effective torsional rigidity 

E,, 
o 

Young's Modulus of steel at 20 'C 

Joyo Yield stress of steel at 20 T 

compressive strength of concrete at temperature Tin 

(N/MM2) 

40 Strength of concrete at 20 T 

f. 
max 

Tensile strength of steel at temperature Tin (N/mm2) 

Hinax maximum value of the coefficient of heat transfer 

during exposure to the standard fire, W/m2'C 

K thermal conductivity 

K, the thermal conductivity of the concrete 

Reduction value for concrete 
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K. 
x 

maximum thermal conductivity of the concrete 

KPI Reduction factor for steel corresponding to f,, 
Y. 

K, 
t 

Reduction factor for steel (in elastic range) 

mxý MY Moments in x and y direction respectively 

nx, ny, In-plane forces per unit length 
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ij at time m 
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a Stress 
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a coefficient of linear thermal expansion. 
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GLOSSARY OF TERMS 

Ambient temperature: Being at room temperature (20 
0 
Q. 

Coefficient of thermal The change in linear dimension per unit length divided by 

expansion: the temperature change. 

Conduction: The flow of heat from one part of a substance to another 

part. 

Conductivity: The rate at which heat is transmitted through a material. 

Convection: A method of transferring heat by the actual movement of 

heated molecules. 

Creep of concrete: A time-dependent deformation that occurs while concrete is 

under sustained stress. 

Deflection: The displacement of the composite floor under elevated 

temperature. 

Deformation: The act of changing the shape or dimensions of the floor 

resulting from stresses. 

Emissivity of fire: The amount of radiative heat the fire emits relative to the 

radiative heat emitted by a perfect black body at the same 

temperature. 

Equations of The equations relating a state of static equilibrium of the 

Equilibrium: composite floor when the resultant of all forces and 

moments are equal to zero. Three equations must be fulfilled 
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simultaneously: Sum of the forces in the X-direction must 

equal zero, sum of the forces in the Y-direction must equal 

zero, and the sum of the moments about any point must 

equal zero for a two dimensional structure. 

Equivalent Fire The time during which a specified compartment or structure 

Exposure: is submitted to ISO standard fire in order to obtain the same 

severity (effect) as the real fire curve. 

Fire resistance: Fire resistance is a measure of the ability of the structure to 

resist collapse, fire spread or other failure during exposure to 

a fire of specified severity. 

Fire severity: It is a measure of the destructive impact of a fire, or a 

measure of the forces or temperatures which could cause 

collapse or other failure as a result of the fire. 

Fixed-End Support: A condition where no rotation or horizontal or vertical 

movement can occur at that end. This type of support has no 

degrees of freedom. Three reactive forces exist at the rigidly 

fixed end. 

Insulation: Resistance to the transfer of heat, or limitation of the 

increase on the unexposed face. Or 

The rise of temperature on the unexposed face. 

Integrity: Resistance to fire protection or ability of the resist 

penetration by flames or hot gases through opining (e. g. 

cracks). For composite floors it is assumed that the integrity 

criterion is fulfilled because of the steel sheet. Or ability of 

the floor to resist penetration of flames through the 
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formation of cracks and openings. 

Isotropic: A material having equal physical properties along all axes. 

Moment: The tendency of a force to cause a rotation about a point or 

axis which in turn produces bending stresses. 

Neutral Axis: The surfaces in the floor where the stresses change from 

compression to tension, i. e., represents zero strain and 

therefore zero stress. 

Non-linear behaviour: The strain or deflection of the floor is no longer proportional 

to the stress applied. 

Orthotropic plate: A plate which has different elastic properties in two 

mutually perpendicular directions in the plane of the plate. 

Pin Connection or A connection where no moments are transferred from one 

Support: member to another, only axial and shear forces. This type of 

support has one degree of freedom, it can freely rotate about 

its axis but it cannot displace in any direction. Two mutually 

perpendicular reactive forces exist at the pin and their lines 

of action pass through the centre of the pin. 

Poisson's Ratio: Defined as the ratio of the unit lateral strain to the unit 

longitudinal strain. It is constant for a material within the 

elastic range. 

Proportional Limit: The point on a stress-strain curve where the linear 

relationship between stress and strain ends and usually 

coincides with the material yield point. 

Rigidity coefficients The resistance to flexure of a plate strip having a unit width 

D.,, Dy: and a thickness, in the x- or y-direction, respectively. 

xxi 



Roller Support: This type of support has two degrees of freedom, it can 

freely rotate about its axis or displace in one direction in the 

plane. Only one reactive force exists at a roller which acts 

perpendicular to the path of the displacement and its line of 

action passes through the centre of the roller. 

Specific heat: The rate of temperature rise of a given material to a given 

amount of heat energy. 

Stability: Resistance to collapse and/or excessive deflection. 

Stiffness: The resistance of a structural member to deflection due to 

loading. 

Strain: The shortening or elongation caused by an applied stress. 

Stress: A compression or tensile force acting on an element divided 

by the area which it acts. 

Surface Emissivity: The ratio between the radiative heat absorbed by a given 

surface and that of a black body surface, equal to heat 

absorptive ability of a surface. 

Tensile Strength: The longitudinal pulling stress a material can withstand 

without tearing apart or the maximum tensile stress the 

material can sustain. 

Tension: A condition caused by the action of stretching or pulling of a 

component. 

Thermal conductivity: The rate that heat energy is able to transfer (conduct) 

through a given material and is defined as the ratio of the 

heat flux to the temperature gradient. 

Thermal diffusivity: It is described as an index of the ease or difficulty with 
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which concrete undergoes temperature change and, 

numerically, is the thermal conductivity divided by the 

product of specific heat and density. 

Thrust: The horizontal component of a reaction or an outward 

horizontal force. 

Torsional rigidity: The resistance of a plate element to twisting. 

Yield Point (fy): Is that unit stress at which the stress-strain curve exhibits a 

definite increase in strain without an increase in stress which 

is less than the maximum attainable stress. 

Young's modulus: The slope of the linear portion of the stress-strain plot for a 

given material found by dividing the unit stress by the unit 

strain. This is also called Modulus of Elasticity (E). 
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EQUATIONS 

Equation New No. 

Tf =750[1-e 
-3.79553ýth- J+170.41ýt-, 

+T. (2-1) 

Tf =345loglo(8t+l)+T, (2-2) 

f, = fj3c,,,,, / vu)/(2 + (c,, 
r,, s 

/ EU)3) for: (2-3) 

L= f,, (' - C. xv" - vu))) for: c. <cstress <ce (2-4) 

f, =0 for: e,, r.. 
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f (. -, tress* 
Jap Cap -6) (2 

Cap (K *f 
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pt ay 
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d 
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a ap 
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b2= Ea (Va 
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ap 
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(famax 
1 
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(2-11) 

fy famax (2-12) 

ff Cae - -6stress 
Y au Cae - Eau 

(2-13) 
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(3.1) 
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ý2 
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00 T j 00 00 
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Ks =54-3.33( 
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(3.7) 

100 
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p, C, (-0.013 T+ 10.5) m For 500 < T.: sWO OC 

* 106 j -3 oCl p, Cc 2.7 m For T> 600 OC (3.12) 

K, =-0.00085T+1.9 W1mC For O.:! ý Ts' 800 (3.13) 

Kc = 1.22 W1mC For T> 800 OC (3.14) 

p, C, (0.004T + 3.3) 106 Jm-3 OC' For 0.:: 5' T 
-s' 

650 OC (3.15) 

(0.068T + 38.3) 106 jM-3 OC' For 650 < Ts' 725 oc p C (3.16) 
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CHAPTER1 

INTRODUCTION 

1.1 General 

Fire safety can have a major impact on the overall conception of buildings, i. e. on 

architectural conception, on the design, on the cost, etc. The objectives of fire safety 

are a historical concept, and a properly designed building system greatly reduces the 

hazards to life and limits property loss. The Great Fire of London in 1666 [Malhotra, 

1956] was the single most significant event which has shaped legislation of today. The 

rapid growth of the fire through adjacent buildings also highlighted the need to 

consider the possible spread of fire between properties when the rebuilding work was 

done. So the first building construction legislation was therefore requiring buildings to 

have some form of fire resistance. 

The research on fire safety design started as far back as 1928 of [Inberg, 1928]. 

Building Control took on the greater role of Health and Safety through the first Public 

Health Act in 1875. This Act had two major revisions in 1936 and 1961, leading to the 

first set of national building standards, The Building Regulations 1965. 

The Building Regulations apply to building work (i. e. in the UK) and set standards for 

the design and construction of buildings to ensure the safety and health for people in or 

about those buildings. UK Building Regulations 2000 [BR2000] specifies the specific 

requirements for each category of structural element in a building in terms of 

resistance to collapse. The minimum period of fire resistance for the elements of most 

structures is 30 minutes. Part B of UK Building Regulation 2006 [BR2006] covers all 



fire precautionary measures that are necessary to provide safety from fire that will 

safeguard building occupants, persons in the vicinity of buildings, and fire fighters. 

Requirements and guidance cover means of escape in case of fire, fire detection and 

warning systems, fire resistance of structural elements, fire separation, protection, 

compartmentation and isolation to prevent fire spread and conflagration, control of 

flammable materials, and access and facilities for fire fighting. 

Today the concept of fire safety design has been improved significantly and become 

more rational. The fire safety objectives in the present European Fire Codes are 

explicitly based on the life safety objective [CEC, 1990a], then to confine the fire 

within the compartment in which it started. From a life safety point of view, the 

designer must ensure that collapse of primary structural members will not occur before 

the occupants of the building have had a reasonable chance to reach an area of safety. 

A more general objective of structural fire protection in a building is given by 

Malhotra, 1982, in that it is to maintain the integrity of safe areas, to restrict the size of 

fire and to prevent the building structure from becoming unstable. 

The ability of a structure to resist collapse (in fire) depends primarily on the behaviour 

of its elements at elevated temperatures. The behaviour of structures exposed to fire is 

usually described in terms of the concept of fire resistance, which is the period of time 

under exposure to a standard fire time-temperature curve. The level of fire resistance 

required for different elements of a structure has traditionally been governed by codes 

based on the occupancy, height and area of a building. The codes normally require that 

load bearing elements and assemblies (walls and columns) have a fire resistance rating 
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at least equivalent to that required for the supported assembly (floor or roof), to 

represent the minimum levels of fire safety deemed acceptable to society. Such 

requirements, which are specified in terms of fire resistance ratings for different 

elements and assemblies, can be traced at least as far back as the publication in the 

USA of the first edition of the Uniform Building Code in 1927. 

Structural design for fire safety is one aspect of performance based fire safety analysis 

and design of buildings. Over the past decade, there has been considerable interest in 

performance-based. structural design for fire, particularly internationally. 

Fire resistance requirements are fixed by National Codes in terms of the time an 

isolated element should resist the action of a Standard Fire as defined by the heat 

exposure given by IS0834. Fire resistance times of 15,30,60,90,180, and 240 

minutes are specified depending upon the number of storeys; these times can also be a 

function of the occupancy of the building and of the fire load. For a member to fulfil a 

given fire resistance requirement, it is necessary to ensure that the temperature 

developed in the member at the required fire resistance time (taking into account its 

Section Factor and any insulation which may be applied) is less than the critical 

temperature necessary to cause failure which is also known as the "critical 

temperature". 

The temperature-time curve was conceived as a basis for legislation and regulation in 

1906. National standards for fire tests were adopted first in the USA in 1917 and 

subsequently in the UK and Europe. The fire resistance time is the time, in the standard 

IS0834 fire test, taken by the member to reach the critical temperature. This time 



varies according to the section size. The thicker the floor the slower is the heating rate 

and therefore the greater is the fire resistance time. In a building in which a natural fire 

occurs the hcating rate is also influenced by the member location. 

The solution then requires predicting the behaviour of structural elements exposed to 

fire. The importance of predicting behaviour of structural elements exposed to fire, as 

part of the general safety of buildings, is normally based on standard fire tests 

[Newman G M, 1989]. However, it is now possible to predict the behaviour of a 

structure during a fire by numerical analysis method. The most common forms of 

analysis are finite element method and finite difference method. The structure under 

consideration is divided into many small elements, the response of each of which can 

easily be determined. By determining the response of the individual elements and 

knowing the interaction between these elements, the overall behaviour of the structure 

can be predicted. 

1.2 Fire development 

To understand the behaviour of a structure in case of fire requires determining fire 

development in the compartment, the temperatures in the structural elements and 

finally, the mechanical behaviour. 

In a real fire, the speed of the increase of temperatures depends principally upon the 

combustible material and the level of ventilation. The temperature-time curves in a fire 

compartment designate the characteristics and intensity of fire developing process. A 

typical temperature development in the compartment is shown in Fig. 1.1, which 

includes three phases: fire growth, full development and decay. 
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Fig. I -I Temperature-time curve for a typical fire 

In the fire growth phase, ignition is the first event in the fire process followed by slow 

growth of fire. The period is important for evacuation and fire fighting. Usually, it is 

not of significant influence on the structure. After flashover, the second event in the 

fire process, the fire enters into the fully developed phase, in which the temperature of 

the compartment increases rapidly and the overall compartment is engulfed in fire. The 

highest temperature, peak event, highest rate of heating and largest flame occur during 

this phase, which gives rise to the most structural damage and much of the fire spread 

in buildings. In the decaying period, the temperature decreases gradually. 

1.3 Equivalent Fire Severity 

Due to the large variety of possible temperature-time curves in buildings, the 

assessment would be very expensive if the building elements were tested for each 

particular fire curve. Therefore, a standard curve is necessary to enable comparisons to 

be made. 



According to this principle, Inberge [Inberge, 1928] obtained the first quantified 

relationship of equivalent fire exposure and fire load to have equivalent severity if the 

areas under each curve are equal, by burning office furniture and papers in a room and 

measuring the temperature attained. Nevertheless a lot of fire tests are submitted to 

standard fire curves. The most notable difference between these curves and the curve 

for a real fire is that the first has no phase representing the decay of temperatures after 

the fire load has been burnt out. They are represented in Fig. 1-2. The concept is that 

the effect of a real fire on a structure is equivalent to the effect of a standard fire for the 

duration of the equivalent time on the same structure [Franssen, 2003]. 

M 

300 

0 

RAnARD 

30 60 90 

Fig. 1-2 Equivalent fire severity on equal area basis [Franssen, 2003] 

The basic idea of the equivalent area hypothesis is that the area of the temperature time 

curve under standard fire above a certain baseline corresponding to equivalent fire 

exposure should be equal to that under the real fire. 
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1.4 Development of Numerical Methods 

It thus becomes a necessity for engineers in performance based fire engineering design 

and also to have tools to perform this design. The behaviour of a structure in fire may 

be established experimentally. The experiments are performed in specially designed 

furnaces in which the temperature of the surrounding air changes with time according 

to a prescribed law. Due to reasons of economy the furnaces are often small, so that the 

majority of experiments have to be limited to testing of single structural elements of 

small size. Such a method is time consuming and the scatter of results can be wide, so 

that only if the number of specimens is sufficiently large, the results are statistically 

reliable, which makes the experiment expensive. 

To overcome these drawbacks, a considerable amount of research has been directed 

towards the development of numerical methods which enable the behaviour of a 

structure to be predicted by much less expensive computer programs. Several 

researchers have devised models and methods in order to simulate the behaviour of 

structures under a fire environment. An example of the simulations is the problem of 

the decision whether it is more advisable to demolish and rebuild than to repair the 

building which has sustained a fire [Cioni et al., 2001 ]. A number of numerical 

methods of the fire resistance of reinforced concrete structures have been reviewed in 

Chapter 2. 

The numerical analysis of the behaviour of a structure in fire requires the 

determination of the interaction between fire and structure. This interaction can be 

divided into three steps. In the first step, calculate the change of the fire temperature 

with time (the fire scenario) is calculated. In the second step, the change of 
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temperatures with time in the structure is calculated as the result of the time and space 

dependent heat transfer from fire into the structure. This requires a thermal analysis of 

the structure in which the heat conduction problem is solved. The effects of the heat 

radiation and the heat convection from fire to the structure surface are accounted for 

via the boundary conditions. The final step consists of the determination of the 

temperature dependent mechanical response of the structure. 

1.5 Fire Resistance Analysis 

Fire resistance analysis of reinforced concrete structures is important part in the design 

for understanding the thermo-mechanical behaviour of a structure during fire. In fire 

design, the ability of a structure for the exposure to heating is calculated according to 

the standard temperature-time curve for a specified combination and for a stated period 

of time [Eurocode 1 -EN1991-1-2]. The two important points of a fire design are that 

required period of time is based on the expertise of fire safety regulators and that the 

fire heating is represented by a standard temperature-time curve or natural fire curve. 

The Eurocodes allow the structures to be calculated either under the ISO standard fire 

curve or under a natural fire curve. 

The ISO curve and ASTM curve are the most widely used standard fire curves for the 

purpose of experimental testing of elements. These curves are a very poor 

representation of reality. They are completely independent of conditions that will 

govern a real fire. For example, the same curve is used in a large industrial hall or in a 

small room. But for a number of years the concept of time equivalence has been used 

to assess natural fire severity in terms of an equivalent period of exposure to a standard 

heating curve. The concept relates the maximum temperature achieved by a structural 



member in a natural fire to the time taken for the same member to reach the same 

temperature in a standard fire test. This concept has been extensively validated and 

provides an indication of performance relative to a fire resistance period widely 

understood by designers and checking authorities. The concept of equivalent fire 

exposure is a bridge between the realistic fire curve and the standard fire curve. 

The fundamental step in designing structures for fire safety is to verify that the fire 

resistance of the structure (or each part of the structure) is greater than the severity of 

the fire to which the structure is exposed. This verification requires that the following 

design equation be satisfied: 

Fire resistance ?: Fire severity 

where fire resistance is a measure of the ability of the structure to resist collapse, fire 

spread or other failure during exposure to a fire of specified severity, and fire severity 

is a measure of the destructive impact of a fire, or a measure of the forces or 

temperatures which could cause collapse or other failure as a result of the fire 

[Buchanan, 2001]. 

1.6 Composite Construction 

To satisfy the demand from industry for long-span solutions, which could 

accommodate a high degree of mechanical services and provide minimum depth 

solutions, research led to the innovation of composite construction; incorporating 

composite slab using steel decking, composite beams, composite columns and slim 

floor construction. Composite construction has been much more common in buildings 

in North America than in the UK [SCI, 2006]. However, as designers became aware of 

the benefits of composite construction, this form of construction has extended to UK 



multi-storey commercial buildings. To develop and validate this new system, a 

comprehensive series of ultimate load and fire tests were undertaken in the UK and 

Europe. 

These materials can be used in mixed structural systems where members consisting of 

steel and concrete act together compositely. These essentially different materials are 

completely compatible and complementary to each other; they have an ideal 

combination of strengths with the concrete efficient in compression and the steel in 

tension; concrete also gives thermal insulation to the steel at elevated temperatures. 

It should be added that the combination of concrete cores, steel frame and composite 

floor construction has become the standard construction method for multi-storey 

commercial buildings in several countries. Much progress has been made, for example 

in Japan, where the structural steel/reinforced concrete frame is the standard system for 

tall buildings. The main reason for this preference is that the sections and members are 

best suited to resist repeated earthquake loadings, which require a high amount of 

resistance and ductility. 

Building with composite elements experienced a renaissance during the 1980's, 

resulting in a profusion of new construction concepts and structural details [Johnson, 

1985]. Single composite elements, such as isolated beams, columns and slabs are 

shown in Fig. 1-3. 
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Fig. 1-3 Composite Elements 

Attention is drawn to the effect of this form of construction on other more general 

problems such as fire resistance rating, speed of construction, flexibility and final 

fitting out. 

The use of composite elements has certain advantages. In particular, a composite beam 

has greater stiffness and usually a higher load resistance than its non-composite 

counterpart [Lawson, 1989]. Consequently, a smaller steel section is usually required. 

The result is a saving of material and depth of construction. 
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Composite construction, particularly that using profiled steel sheeting, allows rapid 

construction. Also the weight of steelwork required in composite construction is 

significantly less than if the materials were used independently. There is no need for 

expensive false work and formwork because the steel beam is able to sustain the self 

weight of steel and concrete, by itself or with the assistance of a few temporary props. 

Formwork can be replaced by profiled steel sheeting. 

The use of composite steel/concrete components in buildings is becoming increasingly 

important in fire resistant design because they offer several choices for influencing the 

rise in temperature of the steel [Eurocode 4, Part 1.1]. The two complementary 

materials, structural steel and reinforced concrete are shown how composite action is 

achieved in the case of composite, beams, columns and slabs. 

1.6.1 Composite beams 

Composite beam is one of the most common structural systems which have been 

widely used for long span floors. Composite beams are described in terms of the steel 

section, concrete slab and connectors used in a typical building floor. The structural 

behaviour of a typical composite beam is described by reference to the strain and stress 

in each component part. The slab usually spans between parallel steel sections and its 

design is normally dictated by this transverse action. Consequently the span, depth and 

concrete grade are determined separately and are known prior to the beam design. 

Composite beams, subject mainly to bending, consist of a steel section acting 

compositely with reinforced concrete. The two materials are interconnected by means 

of mechanical shear connectors. Fig. 1-4 shows typical composite beam cross-sections. 
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Composite beams, even with small steel sections, have high stiffness and can carry 

heavy loads on long spans [Lawson, 1989]. Unpropped composite beams need the steel 

section to be strong and stiff enough to carry the weight of wet concrete. Simply 

supported composite beams, subject to sagging moments, fail by yielding of the steel 

section, crushing of the concrete slab or shear of the connectors. 

Continuous composite beams need to be designed to resist both sagging and hogging 

bending. The slab reinforcement carries the tensile strain in the hogging region. The 

steel section must also be checked for possible buckling. 

concrete slab 

comectors 

steel sectic 

Fig. 1 -4 Typical composite beam cross-sections 

For non-composite construction, the steel sections alone are designed to carry the load 

acting on the floor plus the self weight of the slab. The steel section is symmetric about 

its mid depth and has a neutral axis at this point. The section strains around this neutral 

axis and both the outer faces tensile and compressive stresses are identical. The 
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concrete slab is not connected to the steel section and therefore behaves independently 

and has its own neutral axis. The bottom surface of the concrete slab is free to slide 

over the top flange of the steel section and considerable slip occurs between the two. 

For composite construction, the concrete slab is connected to the steel section; both act 

together in carrying the load as the connections resist the slip between the slab and 

steel section. The composite section has a single neutral axis often close to the top 

flange of the steel section and is non-symmetric. The tensile and compressive stresses 

at the outer faces are therefore dependent upon the overall moment of inertia (1) of the 

composite section and their distance from the single neutral axis. Fig. 1-5 shows the 

difference between composite and non-composite construction, for a similar load, the 

extreme stresses generated in the first are much smaller than generated in the second 

because of (I) value of the composite section is normally several times that of the steel 

section. This difference also has an effect on the stiffness of the beams [Eurocode 4, 

Part 1-1]. However the span of the beam often dictates how much of the slab may be 

assumed to help in the longitudinal bending action. 

The connection between the slab and steel section may be made in many ways. In 

general it is using discrete mechanical keys. The most common form of connector is 

the headed stud. 
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Fig. 1-5 The difference between composite and non-composite beam for a similar load 

The fire resistance of composite beams may be calculated using the method described 

in Eurocode 4 Partl -2 [Eurocode 4 1994 Partl -2] or may be presented as a specified 

deflection against time using numerical analysis. The behaviour under fire conditions 

depends on both the thermal and structural responses. Variation in temperatures within 

the cross-section of composite beams supporting a concrete slab can occur when the 

difference in exposure to heat its parts, as the temperature of the bottom flange and the 

web is often much greater than that of the top flange. 

In the UK, the fire performance of composite members and protection materials are 

typically specified up to a 2.0% maximum strain level according to BS5950 Part 8 

[BSI5950] and a deflection limit of span/20 is commonly used in structural fire design 

practice. 
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1.6.2 Composite coIumns 

In the 1960s, intensive research commenced on the assessment of resistance of 

columns, in which the steel cross-section acts together with the surrounding concrete. 

These columns could not be designed at that time by the rules for steelwork or by those 

for concrete structures. The result of this research work was described in various 

publications. Further research works have been used in [Eurocode 4, Part 1.1], which 

deals with composite construction in buildings. Composite columns can be either 

partly or totally encased open sections, or alternatively, they may be concrete filled 

tubes as shown in Fig. 1-6 which illustrated in [Eurocode 4, Part 1.1]. All cross- 

sections are symmetrical about both axes and in addition can be reinforced. 
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Fig. 1-6 typical cross-sections of composite columns as described in [Eurocode 4, Part 
1.1] 
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Eurocode 4 gives limiting ratios for exposed steel parts of composite columns to 

ensure that local buckling does not occur [Eurocode 4, Part 1.1]. Additional to that, 

this code gives simplified rules for calculating the resistance of a composite column to 

axial load. 

There are many advantages associated with the use of composite columns: small cross- 

sections, for example, can be designed to withstand high loads; similarly, sections with 

different resistances, but identical external dimensions, can be produced by varying 

steel thickness, concrete strength and additional reinforcement. Thus the outer 

dimension of a column can be held constant over a number of floors in a building, 

simplifying architectural detailing. Economic efficiency also results from the use of 

concrete -a low cost material - and from the time saved by using the highly developed 

connection techniques of steelwork construction. 

Virdi and Dowling presented a new design method for composite columns [Virdi and 

Dowling, 1976]. This method unifies the design of concrete filled circular tubular 

section, under concentric loading with that of other types of concentrically loaded 

composite columns, such as encased sections and rectangular filled tubes. 

For fire protection, higher percentages of reinforcement can be provided, but may not 

be taken into account in the design, according to Eurocode 4 [Eurocode 4, Part 1.1]. 

Lie [Lie, 1994] outlines the mathematical model used to calculate the fire resistance of 

circular concrete filled steel columns without testing. Also Franssen outlined a review 

of simplified calculation methods applicable to steel columns and underline some 
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characteristics of their behaviour in frames under fire conditions. In addition, they 

illustrate the analysis of the fire resistance of a real structure [Franssen et al, 1992]. 

Sebastjan, Bojan, Miran and Igor presented a finite element formulation for the 

thermo-mechanical, transient, and non-linear analysis of reinforced concrete columns 

in fire [Sebastjan et al., 2004]. They determined the temperature distributions over the 

cross-sections of the column in fire as a function of time. They compared their 

numerical results for the resistance time with the calculations based on Eurocode 2, 

2002. 

1.6.3 Composite Floors 

The use of the solid reinforced concrete slab is being replaced more and more by metal 

decking. Orthotropic metal-decked composite slabs have been widely used in recent 

decades. Due to this large increase in the use of composite floor systems in buildings, 

it is necessary to give a light on some important issues of using composite floor and to 

understand their behaviour in case of fire. Profiled steel sheeting acts as permanent 

formwork during concreting. The principal components of a composite floor system 

are shown in Fig. 1-7. It consists of- 

-Steel I Beam 

-Profiled steel decking 

-Concrete topping 

-Shear studs 

-Reinforcement 
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Fig. 1-7 Basic components of the composite floor system [Newman G M, 1989] 

The profiled steel sheet and concrete topping are interconnected in such a manner that 

horizontal shear forces can be resisted at the steel-concrete interface. Slip at the 

interface must be prevented completely or partly, as should vertical separation of the 

steel decking from the concrete topping. 

The overall depth is usually 100 to 150 mm. The height of the steel sheet varies 

between 45 and 80 mm with a thickness between 0.7 and 1.5 nim. It acts as permanent 

formwork and as reinforcement to the concrete as well as preventing evaporation of 

water content on the fire exposed surface and prevents spalling. The steel sheet, also, 

plays an important part in improving integrity (the ability of the floor to resist 

penetration of flames through the formation of cracks and openings) and insulation 

aspects fire resistance; it acts as a diaphragm preventing the passage of flame and hot 

gases, as a shield reducing the flow of heat into the concrete [Newman G M, 199 1 ]. 

Normally, the concrete is reinforced with a light anti-crack mesh, and may also contain 

additional bars, usually placed within the ribs. The reinforcement, in many instances a 
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standard reinforcing mesh, is either A 142 (142mm 2 /m reinforcement) or A193 

(193MM2 /m rcinforcement). 

Rapid construction minimises costs. The use of the decking as a safe working platform 

during construction speeds up the work of other trades. The minimal steel 

reinforcement required can be fixed quickly and large areas of floor poured using 

pumped concrete. By shortening the construction programme, the impacts on the 

public within the construction site zone, such as noise, dust and traffic congestion are 

minimised. Due to the intrinsic efficiency of composite construction and the 

displacement of concrete by the profile shape, considerably less concrete is used than 

in conventional reinforced concrete construction [Corus, 2006]. 

Composite flooring systems are structurally efficient, thereby minimising the resources 

used in constructing and reducing the waste generated when it is necessary to 

deconstruct it. Less resources means fewer site deliveries and less localised traffic 

congestion. Composite floor systems are stiffer, stronger and lighter than many other 

floor systems. This means that the weight and size of the primary structure and the 

foundations can often be reduced; again minimising resource consumption and end-of- 

life waste generation. Steel can be recycled without degradation in terms of its 

properties or performance. The recovery rate of steel construction products from UK 

demolition sites is more than 90% [Ley et al., 2002]. Using resources carefully through 

design, has positive environmental benefits and low cost. 

Composite flooring has several health and safety benefits, both in the factory during 

production and on site during construction. Decking is manufactured under factory 
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conditions that provide a much safer and less hostile working environment than the 

construction site. Steel decking provides a safe working platform for workers on that 

floor and protects workers below from falling objects. Steel decking can be efficiently 

stacked in bundles, minimising site storage and easing access and movement around 

the construction site. 

Composite floor systems offer good fire resistance because the deck plays an important 

part in maintaining integrity and insulation. Several fire tests performed in the UK 

have shown that the composite floor can achieve 30 minutes fire resistance without any 

additional fire protective measures. Actual fires in steel buildings in England, 

Broadgate and Churchill Plaza, and full scale fire tests have shown that the unprotected 

composite slabs do not collapse during a severe fire [Bailey et al., 1999]. 

1.7 Summary 

Given the importance of performance of composite floors in the behaviour of the entire 

structural frame, as highlighted in Section 1.6.3 above, it will be shown in the next 

Chapter that research on composite floors has focused on either fire tests or on 

numerical analysis based on finite element method. Recognizing the complications 

involved in modelling the behaviour of composite floors using the finite element 

method, a need was perceived to develop an alternative method, based on the finite 

difference approach, which would be simpler to use but would provide sufficiently 

accurate results. 
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1.8 Objectives of the Present Study 

The objectives of the present research are: 

- To develop a numerical method based on the finite difference approach to 

analyse the thermal and mechanical behaviour of composite floor exposed to 

fire. 

- To investigate fire resistance of the composite floor by developing a user 

friendly computer program for simple and rapid determination based on the 

above mentioned numerical method. 

- To verify the developed numerical method and the associated computer 

program by using experimental and calculation data published in literature. 

- To investigate the effects of in-plane force and boundary conditions for the 

composite floors subjected to fire. 

- To demonstrate the applications of the numerical method in developing design 

aid. 

1.9 Scope of work 

A review of literature is given in Chapter 2. It includes technical methods for 

analyzing, computer programs available, material properties, and fire tests on 

composite floors. 

Chapter 3 describes a new technique for analyzing composite floors subjected to non- 

uniform temperature distribution across the depth of the cross-section. The floor is 
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divided into a two-dimensional mesh, the plate rigidities are calculated taking into 

account the effect of temperature on the internal stress. There are substituted in the 

governing differential equations alongside the finite difference formulae for each point 

of the mesh. The resulting simultaneous algebraic equations are then solved to 

determine deflections. 

Chapter 4 deals with comparison between the numerical method developed in this 

investigation and the experimental results carried out by other researchers on 

composite floor exposed to fire to verify the capability of the method for predicting 

fire temperature, strength, deflection and deformation. 

In Chapter 5 the analytical method proposed in this thesis is illustrated through 

examples, the effect of in-plane forces on the composite floor subjected to elevated 

temperature using the computer program developed. In order to show the capability of 

the developed method, parametric studies on various edge and in-plane forces under 

fire conditions are presented. 

The discussion of results, conclusions and recommendations for future studies are 

included in Chapter 6. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

The literature review has been organised in the sections covering development of fire, 

experimental investigations, and analytical and numerical modelling. 

2.2 Development of Fire 

The establishment of the British Fire Protection Committee (BFPC) at the end of 19'h 

century marks the beginning of a scientific approach to research into structural fire 

resistance [Malhotra, 1956]. In 1932 the publication of a standard (BS476) defined 

tests for fire resistance. 

In Japan, Kawagoe [Kawagoe, 1958] first proposed that one might be able to estimate 

the outcome of a fire scenario. He found that the rate of mass loss and the rate of heat 

released by the fire were proportional to the ventilation factor of the compartment 

vertical opening. 

Kawagoe and Sekine [Kawagoe et al., 1963], have computed temperature-time curve 

by integrating the energy balance of compartment fires with the time. Due to the 

lengthy computation needed at that time, Lie [Lie, 1974] has proposed a parametric 

expression fitted to Kawagoe's computed temperature-time curves. The parametric 
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method is easier to apply (as it has no iterative process) and is expected to lead an 

equivalent quality of the results. 

There are different ways of determining the fire resistance rating of structural members 

and assemblies (columns, beams and floors). Since the early 1920's, the most common 

method is the furnace test using gas as the fuel. The temperature history in the furnace 

is controlled by a designated fire curve, typically those of "standard fires". Usually, 

furnaces are equipped with devices to measure temperatures, and deformations, and to 

load specimens. Fire tests in furnaces are carried out by exposing certain surfaces of a 

test specimen to heating in a manner that simulates its exposure to heating in a fire 

[Abrams and Gustaferro 1968]; [Wade 1992]. A specimen is considered fire resistant 

during a test up until the point it does not satisfy certain testing criteria with respect to 

stability, integrity, and thermal insulation. The greatest disadvantage of this 

conventional design approach is that designers must conforin to every essential detail 

of the tested assemblies for the fire resistance ratings to be applicable in actual 

construction. A modification in the design requires testing of a new specimen or a 

detailed engineering evaluation to show that the proposed modification will not be 

detrimental to the fire resistance rating of the assembly. This situation has severely 

restricted structural design innovation by enticing the design professional to specify 

already-tested designs instead of engineering new systems [Gosselin, 1987]. 

In the late 1960's, empirical equations presenting correlations of fire resistance test 

results with important design parameters of steel and concrete became available 

[SNBCC, 1985]. Some of these equations were developed on the basis of theoretical 

predictions, which were themselves validated by test results. A narrow database limits 
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the usefulness of the empirical equation, as only a limited range of design parameter 

values become available to the designer. The numbers of test results used in the 

establishment of the empirical relationship are also considered, to evaluate the 

confidence level one can place on the predicted results. Also, care is taken to ensure 

that the proposed construction materials are similar to the ones tested in all important 

aspects, such as resistance to cracking or spalling and thermal conductivity. 

Full-scale fire tests are performed on structural systems. These tests give a more 

realistic representation of fire performance because they simulate the performance of a 

system as opposed to the study of discrete elements or small-scale assemblies. The 

major drawback of full-scale testing is that it is extremely expensive in comparison 

with furnace testing. The full-scale testing took place in 1995 in Cardington, UK. A 

series of fire tests were carried out on an eight-storey, steel-concrete composite 

structure. As an outcome of the Cardington tests, numerous numerical and theoretical 

models have been developed to simulate the performance of the structure. 

Lie [Lie 1992] defined Standard fire test time-temperature curves for various countries 

which are idealized simulations of room fires. The heat load imposed on a test 

specimen is calculable at any point during testing. The most widely used standard test 

conditions are the ASTM El 19 (United States and Canada) and ISO 834 (Australia, 

New Zealand, and England) [Buchanan 2001]. A simplified equation that 

approximates the ASTM E 119 curve is given by [Lie 1992]: 

Tf =T+ 750[l -e 
-3.79553ýt-,, J+170.414th 

(2-1) 
0 
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Temperature values for the ISO 834 fire follow this equation: 

T =T +345log (8t+l) (2-2) 
f0 10 

Where: 

T: Initial temperature in *C 
0 

t: time in minutes 

th : is the time after the start of the fire in hours 

Other national standards include British Standard BS 476 Parts 20-23 [BS 1987], 

Canadian Standard CANIULC-S 10 1 -M89 [ULC, 1989] and Australian Standard AS 

1530 Part 4 [SAA, 19901. All other international fire resistance test standards specify 

similar time-temperature curves [Lie, 1995]. 

In recent years, considerable research has been undertaken with a view to developing 

analytical methods for calculating the fire resistance of structural elements and 

assemblies which rely on structural mechanics and heat transfer principles to assess 

structural response under fire conditions. Procedures are being validated against fire 

resistance test results for columns, beams and floor slabs. These represent the newest 

design approach and open the way to an entire field of design possibilities. Thus, the 

complete problem of designing for fire resistance can be broken down into three 

components: 

0 prediction of fire severity, 

0 determination of the heat transmission from fire to the structural elements, 

m calculation of the strength and deformation of structural elements. 
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The events following the attack on the World Trade Center showed that it is essential 

to have the best possible understanding of how structures will behave in the event of a 

fire. This requires: 

-A detailed understanding of the fire conditions 

- The interactions between the fire and the structural elements 

- The sequence of the time for evacuation processes. 

Different methods and tools have been developed to study each of these aspects. 

Structural and fire behaviour depend on each other. It is important to understand the 

relationship between fire and structural elements. Material properties will change and 

it is accepted that all parameters describing the material strength will deteriorate. The 

geometrical features of structures are also affected by fire since materials expand with 

temperature and the constraints inherent to the geometry of the structure result in 

significant generation and redistribution of stresses. 

The coupling of structure and fire could be examined by testing each individual 

element against a standard fire curve and obtaining the failure time of the structural 

element. The test could be substituted by calculations that use as input the standard fire 

ISO-834 [IS0834], "parametric curves" [Petterson et al., 1976], or the output of the 

calculations performed from the design fires. Time equivalences between the standard 

tests, the "parametric curves" and "computed fires" can be established (Law M]. A 

parametric temperature-time curve for structural fire design purposes is developed for 

small and medium compartment fires [Zhongcheng et al., 2000] based on fire load and 

compartment properties. The parametric curves are proposed in the Eurocode 1 
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[Eurocode 1 -ENV 1991-1-2] published in 1993 dealing with the action on structures 

exposed to fire. [Ma and Makelainen 2000], [Barnett 2002] proposed two other 

methods for obtaining parametric temperature-time curves. In these methods the shape 

of the curves is closer to the temperature-time curve measured during full-scale fire 

tests. 

Fire safety engineers have in their hands a large number of reliable and sophisticated 

design tools. These tools can still be improved but currently are in many cases 

appropriate for design purposes. Modem structural design for fire is making more and 

more use of these tools. The advantage of this approach is that it introduces more 

physical analysis to the design process and allows a more adequate quantification of 

performance and uncertainty. The evolution of design, and of the tools used in the 

process, is geared towards an increase in integration and efficiency and a constant 

reduction in uncertainty and error. 

2.3 Experimental Investigations 

However, to accurately predict the fire resistance of a composite structure, it is 

important to understand the behaviour of each element in case of fire. The 

understanding in this field of research and development has increased significantly in 

the last two decades in particular. The measurement or assessment of fire resistance 

has traditionally been done by subjecting a representative specimen to a standard fire 

test. Although this technique has provided regulatory authorities with a useful 

classification scheme and has improved our understanding of the fire performance of 

various structural systems, its cost has been a major deterrent to design innovation. In 

recent years, theoretical calculation procedures and numerical analysis have been 
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developed and used in research and consultancy to engineer fire resistance which offer 

an economical alternative to testing. 

There have been a number of natural fire tests and real building fires in a number of 

countries. Complementary analytical and experimental research projects have 

investigated the behaviour of natural fires and helped to improve knowledge of 

material, component and behaviour of structure at elevated temperatures. This was 

shown throughout the 1980s and 1990s, when the investigation of the fire event 

developed in a large scale building fire test in (198 1, American Iron and Steel 

Institute), a partly completed 14-story office block on the Broadgate development in 

(1990, London), fire tests in William Street (1992, Australia), full-scale fire tests on an 

8-storey composite steel-framed building in Cardington (1995,1996, UK), and a fire 

test at TNO in the Netherlands in September 1996 as part of an ECSC research project. 

2.3.1 Large Scale Building Fire Test: 1981, (AISI) 

The American Iron and Steel Institute (AISI) undertook a fire research project as part 

of a Research Associate program at the National Bureau of Standards (NBS, now the 

National Institute of Standards and Technology-NIST) [Gewain, 1982a; Gewain, 

1982b]. In 198 1, a two-story, four-bay steel frame structure was erected on the NIST 

campus in Gaithersburg, MD. 

The structure dimensions were 9.75mx 12.20m and 6.1 m high. The frame was sized to 

represent a floor at mid-height of a 20-story office building and was fabricated of hot 

rolled structural steel sections fastened to columns with high-strength bolts. The floor 

slab at the second floor level was subjected to a design live load of 3.8kN/m2 and 
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consisted of normal weight concrete on a steel deck. During each of the tests, one 

4.88mx 6.1m x 3.05m high bay of the test frame was exposed to fire and the structural 

steel and metal deck protected with spray-applied fire protection material. 

Temperature measurements were recorded during and after the tests through the slab 

thickness, along the beam profile, on the columns in the test bay, and within the fire 

compartment. Vertical deflections were measured across the exposed portion of the 

floor slab and horizontal deflections were measured along the columns and spandrel 

beams of the test bay and in the fire compartment. During the test, the compartment 

peak mean temperature reached 1059"C, and the maximum temperature on the steel 

beam, protected by the 1.24cm of spray-applied material, reached 640'C. At the 

conclusion of this test, the floor assembly had a deflection of 16.51 cm. and continued 

to carry the load. 

-Concrete (normal wt), fd - 3000 Ipsl 

rWWF 6x6- W1.4 x W1.4 

*-Steel Deck - 2'. 20 gage. Composite 

Butt Ends of Steel 
rConcreto Deck Over 

. 
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Deck 
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2-8 Details of beam and floor assembly for large scale NBS tests [Richard, et at., 
2001] 

2.3.2 Cardington flre Test 

In June 1990 a fire developed on the first floor of the 14-storey Broadgate building in 

London, UK during construction. The total duration of the fire was in excess of four- 

and-a-half hours, atmosphere temperatures in the fire were estimated to have reached 

over 1000'C. 

The floor was constructed using composite long-span lattice trusses and composite 

beams supporting a composite floor slab. The floor slab was designed to have 90 

minutes fire resistance. The steel structure was partially unprotected at this stage of the 

construction. Despite some large deflections there was no collapse of any of the 

columns, beams, or floors. 

At the time of the fire, not all the steel columns were fire protected. In cases where 

they were unprotected, the column had deformed and shortened by approximately 100 

mm. These columns were adjacent to much heavier columns that showed no signs of 

permanent deformation. It was thought that this shortening was a result of restrained 

thermal expansion. The restraint to thermal expansion was provided by a rigid transfer 

beam at an upper level of the building, together with the columns outside the fire 

affected area. 

The composite floor suffered gross deformations with a maximum permanent vertical 

displacement of 600 mm some failure of the reinforcement was observed. In some 
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areas, the steel profiled decking had debonded from the concrete. This was considered 

to be caused mainly by steam release from the concrete, together with the effects of 

thermal restraint and differential expansion. No structural failure had occurred and the 

integrity of the floor slab was maintained during the fire 

The Broadgate fire prompted BRE to conduct a large scale test program on an 8 storey 

composite steel frame at their test facility in Cardington, UK. The Cardington frame 

fire tests [Kirby 2000] in the 1990s provided a wealth of experimental evidence about 

how whole frame composite steel-concrete structures behave in fire. 

The Cardington frame survived a number of full scale fire tests despite having no fire 

protection on the steel beams (the unprotected steel often reached temperatures in 

excess of 900*C). The columns were generally protected to their full height. In all tests 

there was considerable deflection of the composite floor slab in the region of the fire. 

Furthermore, for most of the duration before runaway failure (not observed at 

Cardington), thermal expansion and thermal bowing of the structural elements rather 

than material degradation or gravity loading govern the response to fire [Usmani et al 

2001]. Large deflections were not a sign of instability and local buckling of beams 

helped thermal strains to move directly into deflections rather than cause high stress 

states in the structure. 

During 1995 and 1996, six fire tests were carried out on the 8-storey composite steel 

and concrete building at Cardington Laboratory of the Building Research 

Establishment (BRE) in the United Kingdom [Newman, 1999]. The purpose of these 

tests was to investigate the behaviour of a real structure under real fire conditions and 

33 



to collect data that would allow computer programs, which are capable of analyzing 

structures in fire, to be verified. The building was constructed as a modern steel framed 

office with composite metal deck floors. The structure was five bays wide almost 1000 

m2 in area by 33 m high, and beams in the tests were designed as simply- supported 

acting compositely with a concrete slab cast on metal deck. Columns were fully 

protected up to the steel sheet of the floors and the steel beams and steel sheet of the 

trapezoidal composite deck were unprotected. The fire generated temperatures of over 

1200'C. The building survived without collapse of any structural element [European 

joint research programme, 1999]. The composite floors suffered large deflections more 

than span/20 but there was no structural collapse, (see Fig. 2-9). During fire, the floors 

provide support to the beams when they are designed to act compositely with the floor 

slab. The floor was effectively restrained on the boundaries. The steel beams were 

heated at a much greater rate than the concrete floor giving rise to a differential 

temperature gradient through the floor system. Eventually, the beam will reach its 

thermal buckling capacity and the rate of vertical deflection increases in the floor. 
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Fig. 2-9 Slab deflection after a fire in the Cardington building. No collapse occurred 
even though reached temperatures up to 1 100'C [Bailey and Moore, 1999; Allam, 
Burgess and Plank, 1999] 

Also the test program included one test on a restrained beam assembly on the seventh 

floor. During this restrained assembly test, the maximum beam temperature reached 

was about 900'C and the maximum deflection was about 25.4 centimetres. 

At the conclusion of the test, the floor assembly continued to support its applied load. 

The rise in deflections in beams and restrained beams subjected to a large temperature 

gradient result in an increase in tensile force corresponding increase in vertical 

deflection. These tests provided a wealth of information about temperatures in the fire 

atmosphere and the protected and unprotected steel. 

Unfortunately, there is considerably less information on the temperatures attained in 

the concrete slab. The temperatures through the depth of the slab were recorded only at 

a few points and in terms of the structural modelling, this has been just about adequate. 

There were no temperatures recorded in the slab in Test 4 (Office demonstration test). 

The extensive testing of composite construction at Cardington has shown that: - 

- Floors provide support to bemns in fire conditions and structure stability can be 

maintained at very high temperatures. 

- Deformation does not happen suddenly or unexpectedly but proceeds by slow, 

visible ductile movement. 
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Following the full scale tests at the Cardington steel building, an independent test was 

conducted at the Building Research Establishment (BRE) to simulate the behaviour of 

simply supported composite floor under fire conditions [Bailey and Moore, 2000]. 

The slab measured 9.5m x 6.5m and was built with a trapezoidal-shaped composite 

steel deck beneath it, which retains most of their strength at elevated temperatures, has 

been tested to failure at ambient temperature. The troughs of the steel deck were 60mm 

deep and the slab had an overall thickness of 150mm. 

After the slab was cast, the steel decking was later removed from beneath the slab, 

leaving the concrete slab reinforced only with the reinforcement mesh. The absence of 

the steel decking represented the depleted strength and stiffness of the slab. However, a 

steel mesh was provided to resist shrinkage and temperature stresses. 

The slab was vertically supported at the perimeter on beams and columns but it was 

horizontally unrestrained. Major differences between the tested slab and the behaviour 

of a heated slab in an actual building have been highlighted. The slab failed at a 

uniformly distributed load of 4.81 kN/M2 with a full depth crack forming in the first 

instance across the shorter span of the slab followed by a full depth crack on one of the 

diagonals. 

2.3.3 Australia, William St. fire tests 

The 41-storey steel framed building at William Street in the centre of Melbourne was 

the tallest building in Australia when completed in 197 1. The steelwork around the 
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inner core and the perimeter steel columns was protected by concrete encasement but 

the steel beams and the underside of the metal deck of the composite floors were fire 

protected with an asbestos-containing product. The building's sprinkler system was of 

a light hazard category with no sprinklers in the ceiling spaces. 

After 20 years the building became due for its first refit. During a reftirbishment 

program, a decision was made to remove the hazardous asbestos. At the time of the 

refurbishment, the required fire resistance was 120 minutes. Normally this would have 

entailed the application of fire protection to the steel beams and to the soffit of the very 

lightly reinforced slab (Australian regulations have been revised and now allow the 

soffit of the slab to be left unprotected for 120 minutes fire resistance). In addition, the 

existing light hazard sprinkler system required upgrading to meet the prevailing 

regulations. 

A series of four fire tests was carried out to obtain data when the beams and slab were 

unprotected. The tests were to study matters such as the probable nature of the fire, the 

performance of the existing sprinkler system, the behaviour of the unprotected 

composite slab and castellated beams subjected to real fires, and the probable 

generation of smoke and toxic products. 

A test building was constructed at the BHP Laboratories in Melbourne which 

simulated a section (144m 2) of a typical storey of the building. Natural fire tests were 

carried out with real office fumiture. 
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Four fire tests were conducted. The first two were concerned with testing the 

performance of the light hazard sprinkler system. These two tests showed that the 

existing light hazard sprinkler system was adequate. The structural and thermal 

performance of the composite slab was assessed in Test 3. The supporting beams were 

partially protected. Atmosphere temperature peaked at 1254"C. The slab supported the 

imposed load. The maximum temperature recorded on the top surface of the floor slab 

was 72C. The underside of the slab had been partially protected by the ceiling system, 

which remained substantially in place during the fire. 

In Test 4, columns were protected, but the beams, above a non-fire rated suspended 

ceiling, were unprotected as well as the slab. The atmosphere temperature peaked at 

1228'C. The maximum temperature reached at any point on a beam above the non-fire 

rated suspended ceiling was 6321C at 112 minutes with a deflection of only 120mm in 

a 12m span (span/100). 

It was concluded from the four fire tests that the existing light hazard sprinkler system 

was adequate and that no fire protection was required to the steel beams or soffit of the 

composite slab. Any fire in the William Street building should not deform the slab or 

steel beams excessively, provided that the steel temperatures do not exceed those 

recorded in the tests. As a result of the tests and a risk assessment programme, this 41 

storey building was approved by the city authorities with unprotected beams and slabs. 
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2.3.4 Fire Research-TNO Building and Construction Research (Netherlands, 

1996) 

A major fire test was carried out at TNO in the Netherlands in September 1996 as part 

of an ECSC research project [Corus]. The specimen tested consisted of a single span of 

deep-deck normal-weight concrete slab, simply supported at four comers. The overall 

dimensions of the test specimen were 5.6m x 4.6m, with the edge beams spanning in 

the shorter direction. The overall depth of the slab was 290mm. The test load including 

self-weight was 6.65KN/M 2, a typical office building load intensity. The slab was 

unrestrained against thermal expansion and was reinforced to achieve 120 minutes' fire 

resistance. In a numerical study, the tested material properties of structural steel, 

concrete and reinforcement were used. Further details are available from Reference 

[Corus] 

2.3.5 Building Research Association of New Zealand (BRANZ) Limited 

At University of Canterbury, New Zealand 2002, the fire tests of six concrete slabs 

were conducted to investigate the behaviour of unrestrained simply supported slabs in 

a controlled furnace enviromnent. The floor slabs consisted of three reinforced 

concrete plain flat slabs and three different proprietary composite steel-concrete slabs. 

The composite floor measured 3.3m by 4.3m and had total thickness 130mm. The floor 

was simply supported on all four sides over the furnace with no horizontal restraint. 

The slabs were subjected to a live load of 3. OkPa and were heated on the underside 

with the time temperature curve following the ISO 834 standard fire for three hours. 

The floor was supporting the loads for the full duration of three hours without collapse. 

By three hours, the temperatures had reached 1100 'C and high temperatures were 
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measured across the depth of the floor. The temperatures of the reinforcing steel 

exceeded 700'C. The floor suffered extensive surface cracking and large mid-span 

deflections (up to 270mm). The slabs with higher steel contents and closer bar spacing 

suffered only surface cracking, while the slabs with the lower steel content suffered 

full-depth cracks. 

The structural fire resistance of the slabs in the tests exceeded the predictions of code 

recommendations. 

Before the test started, the composite floor had already cracked on the top surface due 

to mishandling when it was shipped [Lim, 2002]. Approximately 5 minutes after the 

start of the test, the steel sheet at the bottom surface started to buckle and debond from 

the concrete. Fig. 2-10 shows the steel sheet debonding from the slab, creating a gap 

between the decking and the concrete. After 20 minutes, diagonal cracks started to 

form at the east and west sides of the slab, where the comers were held down. Small 

pieces of concrete also spalled off the sides of the slab. As 3 hours approached, the 

initial crack (due to mishandling) had widened significantly, flames started to penetrate 

this crack. 
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Fig. 2-10 Debonding of the Steel Sheet [Lim, 2002] 

Fig. 2-11 shows the large deflections in the composite floor after the fire test. A large 

crack (up to 9mm wide) had formed across the middle of the slab in the longitudinal 

direction and horizontal cracks running across the short span at regular parallel spaces, 

which corresponded to the position of the bars ofthe reinforcing rnesh. 

* 

Fig. 2-11 Deflected slab after the fire test [Lim, 20021 
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2.3.6 Experimental of restrained floor during a fire 

[Lin et al. 1983] have conducted a large number of fire tests on restrained concrete 

floor slabs exposed to ASTM El 19 fire. Their test results showed that the performance 

of the floor slabs was not greatly affected by the degree of restraint, except near the 0% 

and 100% restraint conditions. Under zero restraint, the floor will behave as simply 

supported and will result in a lower fire resistance. At full restraint, the high resisting 

forces could result in a compressive failure. 

The Portland Cement Association has also carried out tests showed that almost any 

amount of restraint greatly enhanced the fire resistance of the floors as they were able 

to support their loads considerably longer than for the simply supported condition 

[Issen et al, 1970]. 

2.4 Analytical and Numerical Modelling 

The traditional way of establishing the fire resistance of composite structural member 

is by test according to the British Standard [BS476] Part 20 or a similar standard such 

as [IS0834]. 

Recently, considerable research has been undertaken with a view to developing 

calculating methods to determine the fire resistance of structural elements. British 

Standard [BS5950] Part 8, describing calculation methods for the fire engineering 

design of steel structural members. European codes, describe simple methods of 

assessing fire resistance by calculation for concrete members [CEC 1990a] and 

composite members [CEC 1990b]. 
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Anderberg have questioned whether the support condition occurs in real construction 

and have recommended simulating different degrees of restraint by different axial 

stiffnesses [Anderberg et al, 1982]. They have used a non-linear finite element 

program, CONFIRE, to investigate the structural behaviour and fire resistance of 

concrete members exposed to fire. Their analysis was on simply supported concrete 

slabs with different amount of allowable horizontal expansion of the slabs. Their 

analyses showed that the fire resistance of the floor slabs did not increase with 

increasing axial restraint. 

2.4.1 Thermal Analysis 

Thermal analysis is used to calculate the temperature history in each structural 

element. The temperature rise always lags behind the fire temperature because of the 

thermal inertia inherent in the material and the tendency for heat to flow to cooler 

material adjacent to the heated area. Insulation can greatly slow the temperature rise in 

protected elements. 

Basic heat conduction theory can predict the temperature history in fire-exposed 

structures when thermal material properties of concrete, steel, and insulation are 

known. 

There are a number of finite element computer codes that solve the heat conduction 

equation with fire-boundary condition like FIRES-T3 (Iding, et al., October 1977] and 

TASEF [Sterner et al., 1990]. All of these codes discretize the equations into a set of 

linear equations expressed by the matrix relationship. All thermal analyses start with 

discretizing the structural members into finite elements and defining boundary 
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conditions, both fire-exposure boundaries and other boundaries where heat may escape 

from the member into adjoining parts of the structure or into the environment. The 

thermal material properties should be defined for all components, and the time- 

dependent fire curve to be specified. The equations are then solved to obtain the 

temperature history in all parts of the structural member during the fire. Such 

temperatures form the basis for a structural analysis of each structural element and the 

structure as a whole. 

Fire is usually represented by a temperature-time curve which gives the average 

temperature reached during the fire. International standards are based on the standard 

fire defined by the heat exposure given by the ISO 834 curve or similar standard curve. 

In some cases reference can be made to natural fires which have different temperature- 

time relationships depending on fire load density and ventilation conditions. However 

the thermal properties of the proposed material are needed. In the UK, the thermal 

response of various construction materials and assemblies to standard fire conditions in 

accordance with BS476 has been recorded in various publications since 1950s. 

The response of a structural element exposed to fire is governed by the heating rate of 

the element which is directly related to the section factor of the element. Jose has 

reviewed the different approaches used to establish the thermal boundary conditions 

required to properly analyse a structure in the event of a fire [Jose, 2004]. 

The main objective of the thermal analysis is to certify that a structure fulfils the 

thermal requirements and to supply the full two or three dimensional temperature 

distribution as input for the structural analysis. In the case of composite floor systems, 
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the layers have different thermal conductivities in different directions. The thermal 

analysis for structural fire problems can be divided into two parts: 

I- The heat transfer across the boundary from the fire into structural members by 

convection and radiation. 

2- The heat transfer within structural members by conduction. The general solution of 

the heat transfer equation is possible by means of computer programs. 

However, in fire, heat is transferred from fire to the floor system by convection and 

radiation which depend on the exposed area and the difference between fire and floor 

system temperature. The heat transferred by convection is less than 10% of the radiant 

heat [Trinks et al., 1961]. The temperature of the surface of the exposed object will be 

very close to the temperature of the environment. In this region, changes of the order 

of 10% will have little effect on the surface temperature and thus on the temperature in 

the exposed object. Therefore, to simplify the heat transfer, the convection heat 

transfer may be neglected and any other fire conditions can be assumed, using an input 

time-temperature history for the fire. Internal heat generation can be neglected; and 

three-dimensional problems can be considered as two-dimensional or one-dimensional 

idealizations. 

The thermal analysis for composite floor system can define the temperature profile 

through the cross-section by using test data presented in tables or charts which are 

published in codes or design guides. These test data are generally based on standard 

fire conditions. [Huang 1995]'s model is used to predict temperature distribution 

within the cross section of the composite slab. The thermal properties of concrete and 
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steel (thermal conductivity, specific heat, and specific mass) are considered as 

temperature-dependent. The thermal conductivity decreases as a function of 

temperature; the specific heat increases as a function of temperature. 

In Eurocode 4 composite slabs are treated as equivalent solid slabs with an effective 

depth (H 

ed 
and the steel decking is ignored in fire conditions. This method is not 

applicable to deep-deck slabs with rebar in the ribs. Eurocode 4 defines fire resistance 

in term of standard classes, ranging from 30 to 120 minutes (and beyond) in 30-minute 

intervals. Only exposure from below is considered, which in practical cases will 

always be decisive. As stated above, the presence of the rib makes composite slabs 

different from flat ones in both thermal and structural behaviour. 

A number of models have been developed for modelling of composite slabs in fire. 

(Gillie et al., 2001] described a method of modelling composite floor slabs using a 

stress-resultant approach. A drawback of this method is that the model does not allow 

stresses to be output from the analysis. 

[Elghazouli et al., 2001) developed a model in which the composite slab was treated 

as an orthogonal elasto-plastic grillage of beam-column elements, and temperature 

variations were introduced across the two orthogonal cross-section directions as well 

as along the element length. The deflections were obtained from the integration of the 

orthogonal beam-column elements. The effects of in-plane shear and Poisson's Ratio 

are ignored. 
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2.4.2 Material Properties at Elevated Temperature 

Most of the rational design methods consist of applying the usual structural mechanics 

design principles with due consideration given to the impact of elevated temperatures 

on the thermal and mechanical properties of the primary construction materials. 

The mechanical properties of all common building materials decrease with elevation of 

temperature. Mechanical properties of concrete and steel change with increasing 

temperature as illustrated by means of stress-strain diagram as shown in Figs. 2-1 and 

Figs. 2-2. Further data available in tabular form in [Euocode 4] relates the yield stress, 

elastic limit, and the initial elastic modulus at a given temperature with those at 20"C. 

Creep is implicitly taken into account in the stress-strain relations. 
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Fig. 2-1 stress-strain curve for 

concrete at fire temperature 
[Euocode4] 
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Fig. 2-2 stress-strain curve for steel 
at tire temperature [l, uocode4] 

The mechanical properties for concrete and steel have been analysed by Hertz and 

approved that the counpressive strength, the tensile strength and the modulus of 
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elasticity decrease and the ultimate strain increases. For steel the modulus of elasticity, 

the yield stress and the tensile strength decrease [Hertz, 1999]. 

The properties of these materials at room temperature are well understood. During the 

mid-forties the Building Research Station provided some data on the high temperature 

properties of concrete and steel. These were based on work carried out by [Stradling, 

1922] on concrete and steel. Abrams deals with concrete and steel and makes reference 

to their use in fire-resisting construction [Abrams, 1979]. 

It is essential to have a clear understanding of the material properties at elevated 

temperatures. Therefore needs review of previous studies on the properties of the 

material used. 

(a) Concrete 

Concrete is inherently fire resistant and is usually treated as a fireproofing material. 

This inherent characteristic of the fire resistance of concrete results largely from the 

low thermal conductivity and heat capacity. These features give the ability to resist the 

transmission of heat from the fire exposed faces of the structures to the unexposed 

faces. 

Malhotra described in Fig. 2-3, the loss of compressive strength of concrete gradually 

under increasing temperatures [Malhotra, 1956]. So, one must make sure that structural 

elements have been designed with sufficient reserve strength to support the applied 

loads for the projected duration of fire exposure. 
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Fig. 2-3 Effect of temperature on compressive strength of concrete [Malhotra, 1956] 

Some of the early experiments on the thermal defon-nation of concrete have been 

reported by [Abrams, 1979], (Bocca, et al., 2000], [Harmathy, 1970], and [Schneider, 

1983], and show that deformation of concrete is dependent upon a number of factors 

such as type of aggregate, heating rate and the level of externally applied forces. 

By referring to Fig. 2-4 we can calculate the concrete stress for a given strain by the 

following expression [EUROCODE 4,1994]: 

f, = / c. )/(2 +I ga, )3 ) 

f, = f, '(' - &, ". / C. Y(-O,. - C. ))) 

fý, 

for: :5r. (2-3) 

for: sc. < (2-4) 

for: estress ýt ece (2-5) 
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Fig. 2-4 Stress-strain relationship of concrete under compression at elevated 
temperature 

When: 

ff = compressive strength of concrete at temperature T, [N/MM2] 
= K, * 

c,, = concrete strain at the peak compressive stress, (corresponding to. f, ' ) 

", = ultimate concrete strain in descending 

: Reduction value 

Strength of concrete at 20 T 

(b) Steel 

Steel, as concrete, has the advantage ol'bcing noncombustible but this characteristic 

alone means little in trying to resist collapse. Its high thermal conductivity makes steel 

absorb heat much more quickly than other materials; thus if the structural member has 

a relatively small mass, its temperature will increase very rapidly. Steel theoretically 

responds the sarne in either tension or compression. Both the yield stress and modulus 

of elasticity of steel are important in determining load-carrying capacity, and decrease 

considerably with increasing temperatures are shown in Fig. 2-5 [Cote, et al., 1986]. 
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Fig. 2-5 Effect of temperature on modulus of elasticity (E) and yield stress (a) for A36 
steel. EO and ao represent ambient conditions [Cote, et al., 1986] 

[NIST, 2005] has carried out tests for steel properties at high temperature. [Anderberg, 

1988] and [Kirby, 2005], proposed a method to determine the stress-strain relationship 

of steel at elevated temperature based on the results from tensile testing. Steel loses 

considerable tensile strength at elevated temperatures. [Harmathy, T. Z. and W. W. 

Stanzak, 1970], defined the critical temperature of steel as the temperature at which 

only 60% of the original strength remains. The time it will take for these temperatures 

to be reached in a reinforced concrete member (slab, beam or column) depends on the 

thickness of concrete cover protecting the steel. 

[Hamerlink and Twilt, 1990] investigated the influence specific heat of steel on the 

thermal behaviour of composite slabs; as the steel sheet is very thin, the influence of its 

heat capacity on the heat transfer was found to be negligible. Therefore they assumed 

that the steel sheet at high temperatures loses its strength completely, and the floor is 

then structurally equivalent to a reinforced concrete slab. The necessary steel 

reinforcement for this purpose is provided in the form of a mesh, typically of 6mm. or 

7mm diameter bars arranged in spacing of 200 or 300min. 
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Also by referring to Fig. 2-6 and EUROCODE 4 we can calculate the steel stress for a 

given strain by the following expression. 

stress 
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Fig. 2-6 Stress-strain relationship of steel at elevated temperature 
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2.4.3 Strength Analysis 

Strength analysis is to determine forces and stresses in each structural element and 

whether local or progressive structural collapse would occur during the fire. The 

increase of the temperature of structural elements subjected to fire leads to a decrease 

in their mechanical properties such as yield stress, Young's modulus, and ultimate 
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compressive strength of concrete. The response of a structural member exposed to fire 

is governed by the rate that it is heated because the mechanical properties of materials 

decrease as temperature rises and, likewise, the structural resistance of a member 

reduces with temperature rise. 

James described an effort by the American Society of Civil Engineers (ASCE) and the 

Society of Fire Protection Engineers (SFPE) to develop a standard for performance- 

based structural fire protection analyses [James, 1999]. These methods apply to a wide 

variety of structural members comprised of concrete, masonry, steel, and timber. A 

description ofthe fire exposure focused on the heating conditions associated with the 

exposure. Material effects include material properties as a function of temperature 

along with physical or chemical effects of the elevated temperature exposure. Collapse 

occurs at the time when the structural resistance reduces to the applied action effects. 

This fire resistance time can happen in a very short time when the increase of 

temperature is rapid. Steel elements have an unfavourable behaviour in this respect due 

to the very high thermal conductivity of the steel. A rapid heating of the whole profile 

takes place as a result. In comparison, composite elements have a favourable behaviour 

due to the great thermal inertia of the elements and the low thermal conductivity of the 

concrete. 

Non-linear analysis is an effective tool to obtain an understanding of how structures 

behave in extreme fire conditions. Several researches are available which address the 

fire resistance design of composite structures, like [Lamont 2002] which represent 

Non-linear finite element analysis of composite structures used to assess the 

perfonnance of structures in fire. The results of analyses conclude that the unprotected 
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steel and composite floors can survive for considerable periods without failure; also 

the composite slabs are effective in acting as tension and compression membranes 

when large deformations occur, thermal expansion and thermal bowing effects 

dominate the structural behaviour. Non-linear analysis gives the most accurate 

understanding of actual behaviour [Usmani, 2001]. 

An analytical study on restrained/unrestrained fire ratings used the measured 

temperatures at various locations along the depth of the beam and slab to determine 

nominal flexural strength and capacity of a beam during the ASTM fire test [loannides 

and Mehta, 1997]. 

Gewain and Troup [ Gewain et al., 2001] offered an analytical procedure, using an 

assumed time-temperature history for the particular assembly and beam rating coupled 

with the known properties of the steel at various elevated temperatures, to calculate the 

nominal flexural strength of the beam. They also provided methods to increase the 

nominal flexural strength by accounting for the effects of rotational restraint due to 

connections and slab. Their study showed that, considering the combination of factors 

that occur in real buildings during real fires can have sufficient load-carrying capacity 

without even counting on any restraint. 

Compared to the methods available for the design of structural members at room 

temperature, shows the need for further development in the elevated temperatures. 
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(a) Orthotropic Plates 

An orthogonal-anisotropic plate is defined as a plate which has different elastic 

properties in two mutually perpendicular directions in the plane of the plate, designated 

x and y. The problem of an anisotropic plate was first studied by Gehring (1860) and 

Boussinesq (1879). According to Timoshenko a comprehensive treatment of an 

orthotropic plate, including a systematic solution of its differential equation, was first 

presented by Huber (1914) [Timoshenko, 1959]. 

Rajagopal developed a layered rectangular plate element with axial and bending 

stifffiess in which concrete was treated as an orthotropic material [Rajagopal, 1976]. 

Reinforced concrete beam and slab problems have also been treated as orthotropic 

plates by many other investigators e. g. (Lin and Scordelis 1975; Bashur and Darwin 

1978; Rots et al. 1985; Barzegar and Schnobrich 1986; Adeghe and Collins 1986; 

Bergmann and Pantazopoulou 1988; Cervenka et al. 1990; Kwak 1990). Many of these 

solutions are based on the finite difference approach 

(b) Numerical Methods 

Numerical methods are necessary to solve the heat flow equation. Many computer 

programs are available and it is now possible to carry out thermal analysis for very 

complex structural elements. 

Numerical methods can be used to predict structural behaviour and the interactions 

between the fires and the structures [Torero, et al., 2004]. The numerical modelling of 

fire scenarios has been developed and commercial software is available. Also a number 
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of researchers have developed numerical modelling approaches to study the behaviour 

of reinforced concrete structures in fire conditions. Ellingwood [Ellingwood and Lin, 

1991], and Huang [Huang and Platten, 1997] developed modelling software for 

reinforced concrete members in fire. A simpler model has been developed by Lie for 

the high-temperature analysis of circular reinforced concrete columns [Lie and 

Celikkod, 1991]. 

The use of numerical methods for the calculation of the fire resistance of various 

structural members has been gaining acceptance [Sullivan, et al., 1997], [Kodur, et al., 

1996]. These calculation methods are far less time consuming. For these calculation 

methods to be used with assurance, however, the material properties at elevated 

temperatures are required. The data on thermal and mechanical properties is being used 

to develop thermal and mechanical relationships, as a function of temperature. These 

relationships can be used as input to numerical models which in turn can be used to 

determine the behaviour of structural members at high temperatures. Zhuman and 

Hadjisophocleous [Zhuman et al., 2000] have presented numerical methods and 

verification examples for this development of fire in buildings and to predict fire 

endurance. 

There are two main types of numerical method available, the Finite Element Method 

and the Finite Difference Method. The majority of numerical analysis used today is 

based on the finite element method. During recent years the fast development of the 

finite element method has produced several efficient computer codes for analysing 

thermal problems. Characteristic advantages of finite element method are suitability 

for generally applicable and flexibility for complex geometrical forms. 
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The finite-difference method was the first numerical method to be used extensively for 

heat conduction [Anthony, 1995]. It remains a popular method, not because it is 

superior to other methods for heat conduction, but because it is easier to implement 

and is also the most useful numerical method for heat analytical problems. Utilizing 

the information produced by the heat transmission analysis, it may assemble a picture 

of the strength and deformation characteristics of a structural member at any given 

stage of the heat exposure. The stress, stability and deformation analyses normally 

require, as a first step, the use of a numerical method to define the interdependent 

elements and account for the non-uniform temperature distribution within the member. 

As in Fig. 2-7 [Lie et al. 1984], under fire conditions a non-uniform. temperature 

distribution in the concrete over the cross-section for a reinforced concrete column for 

each element, the incremental strain or deformation caused by the increase in 

temperature is calculated and a new stress level obtained with the help of the stress- 

strain relationship applicable for the temperature. 
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Fig. 2-7 Discretization of one-eighth section of a reinforced concrete column into an 
element network [Lie et al. 1984] 

The ECCS Technical Note on the calculation of the fire resistance of composite 

columns provides design information in the form of buckling curves for various cross- 

section dimensions, profiles and reinforcement and for periods of standard fire 

exposure of 30,60,90 and 120 minutes [ECCS, 1988]. 

Several approaches are available which address the fire resistance design of composite 

beams. Kruppa and Zhao represent a simple method to calculate the fire resistance of 

composite beams, covering both thermal and mechanical response [Kruppa and Zhao, 

1995]. 
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For this study the finite difference method has been chosen. The principal reason is 

that the finite difference method enables a wide variation of geometry, and material 

properties to be handled easily on small size computers. This method is also applied 

due to its simplicity in solving mathematically complex problems. 

2.4.4 Development of computer programs for composite floor exposed to Fire 

Several finite element packages are available for general nonlinear analysis of 

structure. For instance, programs available at City University include ANSYS and 

ABAQUS. These programs cannot be altered and therefore their capabilities are fixed. 

The programs cannot be conveniently used for fire analysis of composite floor. 

Several computer programs were specifically designed to model these high- 

temperature phenomena, including FIRES-RC II [Iding et al., July 1977], FASBUS II 

[Iding, et al., July 1987]. 

DLkNA and CEFICOSS are programs based on finite element method which could be 

used to analyse composite floors during fire exposure. Calculations with these 

programs take a lot of computer time on a large computer owing to the size of the 

problem. Furthermore, much effort is required from the user in learning the 

complicated structure of the code and the software producers are obliged to give much 

support in adapting these sophisticated programs. 

In 1968, the American Iron and Steel Institute sponsored research at Illinois Institute of 

Technology Research Institute (IITRI) to develop a nonlinear finite element structural 

analysis computer program. The aim was to enable engineers to assess the structural 
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performance of steel deck and structural concrete floors supported by steel framing 

under uncontrolled fire exposure. 

The program, FASBUS I (Fire Analysis of Steel Building Systems) was completed in 

1972 [Chiapetta, et al., 1972]. Refinements to the program to make it more user 

friendly were continued in 1978 at the University of California and later at the 

consulting firm of Wiss, Janney, Elstner and Associates (WJE). 

FASBUS II is a computer program for structural analysis only [Jeanes, 1985]. The 

program was completed in 1981 and is described in the WE Final Report [Bresler and 

Ming, 1982]. 

FIRES-T3 is a computer program for calculating heat transfer from fire to structure 

[Iding, et al., 1977]. TASEF-2 and STABA are computer programs for thermal 

analysis only. HADAPT program [S. Lamont, et al., 2001] has been used to model the 

heat transfer to the composite steel and concrete slab. These programs are based on 

finite element method and have many limitations leading to very general input 

instruction which tend to be cumbersome. 

Computer programs have also been developed based on the finite difference method 

such as TRAPSI [Lie, T. T. 1984] and (TACS-FIR) program [Ma, Z. and Makelainen, 

P., 1999] which coded in Fortran 77. The material thermal properties at elevated 

temperature can be selected by the user. The conductivity of concrete can be specified 
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to remain approximately as that at maximum temperature instead of the current 

temperature in the cooling phase. these programs for thermal analysis only. 

VULCAN is a computer program which has been developed at the University of 

Sheffield to model the behaviour of composite buildings in fire. The program is based 

on a 3D non-linear finite element procedure in which a composite building is modelled 

as an assembly of beam-column, spring, shear connector and slab elements. The beam- 

column line element is three-noded, and its cross-section is divided into a matrix of 

segments to allow for variation of temperature, stress and strain through the cross- 

section [Huang, et al., 2004]. Slabs are modelled using nine-noded layered plate 

elements based on Mindlin-Reissner theory, in which each layer can have different 

temperature and material properties [Huang, et al., 2003]. Both material and geometric 

non-linearity are considered in bearn-column and slab elements. 

2.5 Summary 

It has been shown that extensive research has taken place on fire resistance of 

structures. The analytical assessment of fire resistance includes four principal aspects: 

fire exposure, material effects, thermal response, and structural response considering 

the boundary conditions. 

There are several ways to determining the fire resistance. The most common method 

is the experimental fire test. Theoretical predictions, such as empirical equations, were 

developed and validated by curve fitting of test results. 
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Full-scale fire tests are expensive. As an alternative to full-scale fire tests, numerous 

numerical and theoretical models have been developed to simulate the performance of 

a structure exposed to fire. 

Considerable research has been undertaken on composite structural systems due to 

their characteristics of high strength and stiffness, ductility, and fire resistance. 

Conclusions drawn from the extensive testing of steel deck composite construction 

show that: 

- The ability of the beams and floors in a composite building to withstand 

temperatures up to 1200'C without fire protection shows that there are large 

reserves of fire resistance in modem steel deck composite buildings. 

- Floors provide support to beams in fire conditions and structural stability can 

be maintained at very high temperatures. 

Floors retain their integrity and the steel deck soffit prevents spalled concrete 

from falling. 

- Defonnation, if it occurs, does not happen suddenly or unexpectedly but 

proceeds by slow, visible and ductile movement 

- At Cardington and Broadgate, the beams were not fire protected. This had the 

effect of greatly increasing the distance the floor slab was spanning, but no 

collapse occurred. The reason is that in some of the Cardington tests the slab 

acted as a membrane and was supported by the colder perimeter beams and 

protected columns. 
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In view of the importance of composite floor in modem steel and composite structural 

systems, it becomes imperative to develop a tool for the detailed strength analysis of 

the floor, right up to collapse, using accurate structural mechanics. In the next chapter 

a new method of analysis of such floors is presented, using the versatile finite 

difference method. 
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CHAPTER 3 

THEORY 

3.1 Introduction 

A new method of analysis for composite floor system exposed to non-uniform heating 

under fire forms the key part of this research. This is a three-step process involving 

estimate of fire exposure, heat flow analysis for calculating temperatures, followed by 

a strength analysis to calculate deflections and eventual failure as the fire temperature 

grows. The strength analysis is influenced by the thermal analysis, but it assumed that 

the thermal analysis is not influenced by the strength analysis. 

The overall procedure is shown in Fig 3-1. 

Fire Exposure 

Material =Rosp: 
ol: lso Properties 

Structural Rosponss 

Fig. 3-1 Analytical method's framework 

The finite difference method is used to solve the heat flow problem and calculate the 

temperature distribution within the composite floor. The temperature values influence 

the strains and stresses. The finite difference method is also used to solve the 

orthotropic plate differential equation to determine equilibrium deflections at a given 
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stage of fire growth. The proposed method uses a novel approved for the calculation of 

plate rigidities, which are needed in the solution of the orthotropic plate equation. The 

new method takes into account fully nonlinear stress-strain relationships for steel and 

concrete. 

The following assumptions are made: 

I- The strain distribution due to bending is linear 

2- There is no slip between steel and concrete 

3- Shear deformations are ignored 

4- Creep is implicitly taken into account in the stress-strain relations according to 

Euro-code 4 (1994) 

5- The influence of the air gap between the steel sheet and the concrete mass is 

ignored. As the air gap has an effect similar to insulation, the assumption is on the 

safe side. 

6- The stiffness in the weak direction comes from the smaller thickness in the 

composite floor, ignoring the trapezoidal part of the deck. In the strong direction, a 

full profile of the deck is used 

3.2 Fire Curves 

The first step in this method is to predict the temperature of fire development. Fire 

exposure is usually described by a temperature-time curve of the surrounding air as 

experienced in typical fires. The analysis method is equally applicable for any fire 

curve, including user-specified natural fire curve. 
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3.2.1 Standard fire curves 

As has been discussed in chapter 2, much of the testing and analysis is based on tile 

standard fire curves. The most widely used test specifications are ISO 834 [ISO, 1975 1. 

In the ISO 834 the temperature T ('C) is defined by equation (2-2). 

The current analysis is equally valid for any fire curve such as the two shown in Fig. 3- 

2. 

1200 

- 1000 
u 

800 

600 

E 400 

200 

0 

Tfine (Mim) 

Fig. 3-2 Standard fire curves 

-IS0834 

- ASTM I'A 19 

For stability and precision, a criterion relating the time step to the element xvidth must 

be satisfied. An appropriate time increment should be equal or less than the proposed 

time increment [Lie, T. T. 1992] which is given by the condition: 

4K + 
dxHinax 

Where: 

(3.1) 
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dtp,.,, 
P., d : Proposed time increment 

PCC. -ýn = minimum thermal capacity of the concrete 

K. 
X = maximum thermal conductivity of the concrete 

Hmax =- 675 w/m 
2o C (maximum value of the coefficient of heat transfer during 

exposure to the standard fire) 

3.2.2 Natural Fire Curve 

In addition to standard fire curves, the analysis is valid also for a natural fire curve. 

There are many mathematical forms for describing natural fires. In this study, the 

parametric equation from [BS EN 1991-1-2] has been used. This takes account of fuel 

load, compartment dimensions, thermal properties of the compartment boundaries, and 

the quantity of unprotected openings that allow ventilation in a post flashover fire. 

The temperature of a parametric fire curve often rises more quickly than the standard 

fire curve in the early stages but, as the combustibles are consumed, it will begin to fall 

in temperature as illustrated in Fig. 1-2, Chapter 1. 

3.3 Theory of Thermal Analysis 

The thermal response is a solution of the heat transfer problem with fire at the exposed 

under side of the floor and the heat transfer to the floor. The types of heat transfer are 

conduction, convection, and radiation. Due to the profiled shape of the sheeting, heat 

transfer is essentially two-dimensional. Data needed for heat transfer calculation are 

material properties such as conductivity, specific heat and the convection and radiation 
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boundary conditions. Guidance on these data may be obtained from [Eurocode 4- 

1994, Part 1-2]. 

The main parameters with regard to the thermal behaviour depend on the geometry of 

the steel sheet, concrete depth, type of concrete and insulation. For the present, the 

trapezoidal profile as in Fig. 3-3 has been adopted for explanation of the method. 

Reinforcement 

Fig. 3-3 Trapezoidal metal deck composite floor 

Concrete 

Aetal deck 

It is assumed that the temperature of the surrounding air is a prescribed function of 

time. It is assumed that heat flow within the plane of the floor is negligible. To 

simplify the calculations it is assumed that the cross-section is symmetrical with 

respect to a vertical line, so that the temperature is also distributed over the section in a 

symmetrical way. In order to obtain the temperature and its gradients with sufficient 

accuracy, the cross-section has to be discretized with a relatively dense mesh, whether 

the calculations are done by the finite difference or the finite element method. 

The steel bars occupy only a small volume as regards the whole cross-section. Hence, 

it is assumed that the heat transfer is not influenced by the reinforcement. The 

temperature of the reinforcing bar does not significantly differ from the corresponding 
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concrete temperature [Zhao, 2000]. Lie and Irwin [Lie, et al., 1993] show that the 

differences in temperature in the concrete and in the embedded steel bar at the contact 

are small. The temperature in the steel bar is, therefore, assumed as being that of 

concrete at its location. 

The heat conduction problem is governed by the differential equation of heat 

conduction. The effects of heat radiation and heat convection from air to the floor 

surface are accounted for via the boundary conditions. 

Fourier's dimensional equation for heat conduction can be used if the thermal 

properties are constant (i. e. not temperature-dependent) and the heat transfer in the 

composite floor without moisture, is as given below: 

K(a 
2 T+O 2 

T) 
=PC 

OT (3.2) 
ax 2,2 at 

oly 

Where: 

K. thernial conductivity 

x and y: are the point coordinate in a two-dimensional space. 

T. temperature 

t: time 

p: density 

C- heat capacity 

As already indicated in [Eurocode 4], the thennal properties are dependent on 

temperature. Equation (3.3) has to be used instead of Equation (3.2), that is: 
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A AT A (Kjýý)+T(KAT)=pCAT- (3.3) 
x Ay y At 

3.3.1 Thermal Properties 

Material properties for concrete and steel are given in [Eurocode 4- 1989]. There are: 

Concrete 

p, =2350 kg/M3 

C, = 900 + 80( 
T 

)-4( 
T 

J/kg-K (3.4) 
100 100 

Kc =2-0.24( 
T 

+0.012( 
T) 

W/m. K (3.5) i; -O) 100 

0 Steel 

P, = 7800 kgIM3 

TT 

00 
(3.6) Cs = 470 + 20( 3.8(j: -- J/kg. K 

100 00) 

Ks = 54 - 3.33( 
T 

W/m. K (3.7) T; -O) 

Material properties for concrete and steel aj 

following: 

e Concrete 

-Thermal Capacity &C, 

p, C, = (0.005T + 1.7) * 106 jM, 3 oCI 

* 106 j -3 oCI 
p, C, = 2.7 M 

* 106 j -3 oCI p, C, = (0.013 T-2.5) M 

re given in (Lie T. T., 1992] as the 

For 0 
-:! ý T 

-:! ý 200 (3.8) 

For 200 <T 400 (3.9) 

For 400 <T 500 T (3.10) 
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* 106 j -3 oCl p, C, = (-0.013 T+ 10.5) m For 500 <T-:!! ý 600 T (3.11) 

106 j -3 oCl m p, C, = 2.7 For T> 600 OC (3.12) 

-Thermal Conductivity K, 

K, =-0.00085T+1.9 Wlm*C 

K, = 1.22 W1mC 

9 Steel 

-Thermal Capacity pC, 

For Os' T.:! ý 800 T (3.13) 

For T> 800 

* 106 j -3 oCl (0.004T + 3.3) m For OSTS 650 OC (3.15) 

* 106 j -3 oCl 
P, C, = (0.068T + 38.3) m For 650 < T.:! ý 725 *C (3.16) 

* 106 j -3 oCl p, C, = (-0.086T+ 73.35) m For 725 <TS 800 *C (3.17) 

* 106 j -3 oCl p, C, = 4.55 m For T> 800 O C (3.18) 

-Thermal Conductivity (IQ 

Ks=-0.022T+48 W1mOC For OSTS 900*C (3.19) 

Ks = 28.2 W1m For T> 900 OC (3.20) 

3.3.2 Solution by the Finite Difference Method 

Heat flow equations can be solved either by the finite element method or the finite 

difference method. The finite element method is appropriate for analysis of thermal 

problems with complex geometry. Many general-purpose computer programs are 

based on this method. Although computer processing times are no longer a significant 

disadvantage these methods still in role, greater complexity in formulation and 
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programming. For two-dimensional problems with relatively simple geometries it is 

therefore more convenient to use the finite difference method [Jaluria and Torrance, 

1986]. Hence, in this study, the thermal analysis based on the finite difference method 

is used to describe the heat flow in the composite floor exposed to fire. 

The cross-section is divided into five parts, mainly rectangular elements. Sloping 

boundaries are approximated by triangular elements as shown in Fig. 3-4. The concrete 

depth is important as regards the temperature on the unexposed side. 

dy2 

Fig. 3-4 the cross-section is divided into rectangular and triangular elements 

The temperature at any point is designated as T,,, 
. 
For a problem in transient 

conduction the temperature at any time will be denoted by Tl, 'j . 
The next time step is 

labelled as m+ I and the temperature at that instant as Ti, TJ+1 * 

3.3.3 Heat Flow at an Internal Node 

Whenever a temperature gradient exists, heat will flow from the higher temperature to 

the lower temperature region. The heat transfer is considered for the control-volume 

finite-difference method, as this method is widely used in the numerical simulation of 

heat transfer [Eymard, et al., 1998,2000]. The method first defines the control volume, 
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which is a fixed region in space bounded by a control surface through which licat can 

pass. Next are defined all the energy flows into and out ofthe control volume 

boundaries and the volumetric terms, including the heat generation and energy storage 

terms. This method has been described by Frank and Mark I Frank, et al., 1993]. The 

current analysis is based on this method. 

Fig 3-5 shows the control volurne, in two-dimensional conduction for internal node. 

The control volurne size is Ax by Ay, and it is centred about the node ij. the x nodcs 

are identified by: 

I)Ax i= 1,2 

y., = (i - I)Ay j=1,2,....., 

(i-l: j-l) 

(i- I 

(i- 1 li- 1) 

(; 1+1) 

(i-j- 1) 

Node 

olume Boundary 

1 1) 

Fig. 3-5 Control Volume For Two Dimensional Conduction (hitcrnal node) 

74 



The principle of conservation of energy for the control volume can be stated as 

follows: 

Rate of heat conduction 
into control volume 

+ 

Rate of heat generation 
into control volume 

Rate of energy storage 
inside volume 

The overall heat balance on the control volume, ignoring heat generation into control 

volume is therefore: 

Yým. - T' TýM. - TýM. 
-K( 

i-l, j Ay + 1,1 Ili I 
AX) 

AX 

Tm. Tm 

AY 

- Tm. Tým. + Tm 
(3.21) 

-K( 

ýM+I, 
j I'LAY+ i, j+l I, J. Ax) +, pcAxAy I, J ij 

Ay At 

Dividing by KAxAy therefore the inside node's temperature for the next time step is: 

K(T, m 
- I'm - I'm - Tim 

,j+ j) 
K(Tm 

TM+l = TM 
At + 1, j j) 

K(Tm 
,j j) 

+-( ++ 
pcAxAy AY 2 Ax 2 Ar 2 

(3.22) 
K(T,, m 

j_l 

AY 2 

where: 

TM+l -ý temperature at the time (jm+])dt 
Q 

K= the thermal conductivity of the concrete. 

p= density of concrete 

c= pacific heat of concrete 

Rate of heat conduction 
out of control volume 

=+ 
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Variable thermal conductivity appropriate for determining the flux at the left and right 

faces of the control volume in Fig. 3-5 can be calculated as suggested by [Patankar, 

1980]: 

2k 
1, jk i-l, j_ (3.23) K 

2k 
i' ik i+ IL (3.24) 

left k. right k. + k. 
1, jII, j I, iI+ Ij 

K 
2k 

jk ij-1 (3.25) K= 
2k 

ijý-, j+l (3.26) 
bOttOm k. +k toP k. +k 

1, j ij-1 I, j ij +I 

3.3.4 Heat Flow at a Boundary Node 

At the boundaries of the floor (exposed and unexposed surface), relations exist 

between the heat transfer in the floor and the heat transfer between surface and the 

compartment. Since the steel sheet is very thin, the influence of its heat capacity on the 

heat transfer can be neglected. 

At the exposed surface of the floor, it is required that the heat flow to the floor is in 

balance with that into the floor. 

Consider the control volume ax. 
dy 

as shown by the shaded area in Fig. 3-6. 
2 
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Node 

dary 

x 

Fig. 3-6 Control Volume for Two-Dimensional Conduction (Boundary) 

From point ij, it is assumed that following same procedure of heat flow in the internal 

node but here the heat is transferred by conduction to tile three neighbouring points. 

Then adding the heat transfer from fire to an elementary surface region along the 

boundary elements during a period which = Q. tl,, v 

When: 

Q=-ac c, [(T"'+273) 4 (T + 2) 
7 3) 4 (3.27) 

.fJ, 

Whcre: 

Q= heat flow out of the bottom face in y direction at point ij at time ill 

a=5.67 * 10-8w / 111 
2K4 

(Stefan Boltzmann Constant) 

-vl = emissivity of the fire 

C, = emissivity ol'the concrete 
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The emissivity of a surface is defined as the ratio between the emissive power, (energy 

emitted per unit time and per unit area), of that surface and a black body having the 

same temperature. Emissivity depends on the same temperature and the material of the 

surface and varies between 0 and I [Holman, 1986]; [Sala, 1986]. With regard to 

surface materials it seems more logical to use the absorptivity property. According to 

Kirchhoff s law, absorptivity equals emissivity if the system is in equilibrium. Rather 

than both properties, it is common to use the emissivity property, as is done in this 

thesis. 

Then the control volume energy balance is as following: 

K'ij + Ki' 
,j ,j 

(T, 
+mi, j- T�mj ) dy +I ij li j+ i+ 

-- - +. j+ 
K' (Tm - Tm ) 

dx 
dx 2 dy 

M M+1 M 
i-,, j + K" (T" - Tm ) dy Ij I, j i-l. j__ + pc(dxdy) (Tl. j -T,, j) +Q. dx (3.28) 

2 dx 22 dt 

Equation (3.28) can be rearranged to give an equation for the boundary temperature at 

the next time step: 

K(TI'j+1 -TIM , J) J) dy 
T., m+I=Tin 2dt jK 

(T, 
+n,, 

Tj'n 
+ 

(pcdxdy),, j dy 
dx+ 

dx 2 (3.29) 

K(T' -T' i-1, J) dy m 
dx 2+Q, 

"j dx) 

Following sarne procedure for inclincd boundaries as illustrated at Fig. 3-7. 
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dary 

Fig. 3-7 Boundary control volume for inclined node 

The inclined boundary temperature at the next time step is: 

III K(P" j) tlx 
K(ý - Till' -i- 

Tili, ) 
(IV (IV (11, 1n+1 = 171 + 

4dt 
t- i, j+l j (3.30) TiJ T"-j 

(pedydy)i, j dy 2 th 222 

3.3.5 Formula which take moisture influence into account 

It is assumed that the moisture evaporates as soon as a certain temperature is reached: 

I OOT. For evaporation ofthe moisture a certain M1101,111t 01'CIlCI-gy IS IleCdCd. ThIS 

retardation is schernatically illustrated in Fig. 3-8. 
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1 

Fig 3-8 Delay tY in heating due to moisture 

For taking the moisture influence into account, a simple sub-program is used in the 

present research. The energy needed for this evaporation is calculated with Equation 

(3.3 1) for internal node and (3.32) for boundaries. 

m TM) 
M+l = Tm + 

dt K(Ti, j+l - id To 
"J (pc, dxdy),., + p,, c,, (D 

{- 
dY2 

(3.31) 

- TM) 
M 

-TM) K(T'" -T,, m, ) K(T,, K (T, 
+ i+l, j +- 'i + J-1 

-Q dX2 dX2 d2 y 

Also introducing the moisture effect 

M 

-TM) MA 2dt K(Ti, 
j+l "I dx Tw TIM +I I- 
dY2 J (pcdxdy),,, +p. c,,, (D. (3.32) 

K(Tm - T' Wj j) dy K (T,, j - T, 
-',. j) 

dy 
+ +- -, I, QM, x) dx 2 dx 2 jd 

Where: 

p,, C,, = 4.2 * 106 jM, 3 *C, l (Thennal capacity of water) 
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The temperature at the central point represents the temperature of the elements. The 

temperature of each element is stored for use in calculating the material properties in 

the strength analysis. The element temperature is output at the specified times. 

3.4 Theory of Strength Analysis 

The analysis of the strength response of a composite floor exposed to fire is essentially 

a solution of the deformation problem. Study of the strength response to fire leads to 

the understanding of the mechanisms behind the deformation response. 

Orthotropic plate theory forms the basis of this analysis. The present method uses an 

innovative method for calculating the plate rigidities required in the analysis. 

In the classical orthotropic plate theory, since the plate thickness is constant and the 

plate material is continuous, as required by the general conditions, the different elastic 

properties in the two principal directions must be due to different modulus of elasticity, 

Ex: A Ey and different Poisson's ratios v.,,: A vy. 

The elastic properties of an orthotropic plate are defined by three rigidity coefficients: 

D., = the flexural rigidity of the plate in the x-direction 

Dy = the flexural rigidity of the plate in the y-direction 

Dv = the effective torsional rigidity 
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The rigidities D., and Dy, characterize the resistance to flexure of a plate strip having a 

unit width and a thickness t, in the x- or y-direction, respectively and are defined by 

the fonnulas: 

D, = 
E., t 3 

Dy= 
Eyt 3 

(3.33) 
12(l - vvy) 12(l - v,, vy) 

The effective torsional rigidity, Dxy , characterizing the resistance of a plate element to 

twisting, is based on certain analytic consideration. An approximation for the effective 

torsional rigidity of orthotropic plate is obtained by Huber [Timoshenko, 1959] and 

defined by the formula: 

D, 
Y= 

VbýD--y (3.34) 

A reasonable approximation can be introduced. In this study the following 

approximation has been used: 

Dxy= Dy (3.35) 

The following differential equation for orthotropic plate often referred to as Huber's 

equation, can be used to determine composite floor deflection [Szilard, 1974]. 

d 4W 
d 4W d 4W 

D,, 
dX4 + 2D., 

y dX2dy2 + Dy 
dy 4=q 

(3.36) 

Where: 

w= Deflection of the plate at any point in the space coordinates 
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q= the loading intensity at any point, expressed as a function of the co-ordinates x 

and y, force per unit area 

D, DY, D., 
Y = Rigidities of the orthotropic plate 

The rigidity in the above equation, is a measure of the member's stiffness and 

incorporates both material and cross-section properties. As evident in these equations, 

for a given moment, curvature, and hence deflection, will increase with a decrease in 

the rigidity. The following differential equations relate the section rigidity to deflection 

for a given moment: 

d 2W 
dw 

Mx = Dj T- +0 (3.37) 
dX2 Y -7-2) 

dy 

d 2W 
d 2W 

My =DY(y ý; T) 
vT+vx- 

(3.38) 

'Y 

3.4.1 Proposed method 

Strains are related to deflections through curvature, and stresses are related to strains 

through constitutive relations. The temperature level and its distribution across the 

section affect these properties. The difference in the rigidities in the two perpendicular 

directions results from different geometric properties rather than different modulus of 

elasticity of the material as in the classical orthotropic plate theory. 

As a consequence of the non-uniform temperature distribution in the cross-section and 

changing material properties, thermal strains and stresses develop during fire exposure. 
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From these, it becomes necessary to consider the effect of elevated temperature on the 

plate rigidities as these will no longer be constant in the cross section as the fire 

develops. 

In order to determine the plate rigidities, a new calculation method has been adopted. 

The innovation in the present method is that the plate rigidities are calculated taking 

into account the effect of temperature on the internal stresses, which in turn contribute 

to the internal moment. By relating curvatures to the bending moments, the plate 

rigidities can be calculated. 

The calculation procedure can be summarized in these steps: 

- The floor is divided into a two-dimensional mesh. 

- The deflections are initially assumed for each mesh point. In subsequent step, 

previously calculated deflections will be used to predict the deflections. 

- The curvatures are calculated for all mesh points in the two planes using finite 

difference operators. 

- The curvature (0.,, and 0y) for all the points are calculated using the finite 

deference formulae. 

w O(i + 1) + WO(i 
- 1) - 2w 

O(i) ol =-- Aý 
(3-39) 

OY =w 
o(i + n) 

+w 
o(i - n) - 

2vtý(j) 
(3-40) 

Aly 

- The cross-section of the floor is divided into elements to determine the thermal 

response, using the procedure outlined in section 3.3.2 above. 
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- Using the mesh for the cross section as for thermal analYsis, the net strains 

from thermal strains and mechanical strains are determined. 

Stresses are calculated using the non-linear temperature dependent stress-strain 

curves. 

- Internal forces are calculated through summations of these forces over the 

rectangular and triangular elements of the cross-sectional grid. 

- Iteration is needed to perform for ensuring that the value of total force matches 

the applied in-plane force. For unrestrained edges, the in-plane force has to be 

zero. 

- Moments calculated in the two-directions. 

- The plate rigidities may then be calculated using equations (3.36) 

The framework of the strength analysis is shown in Fig. 3-9 
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Strength An*sis 

I 2-D Floor mesh I 

I assume deflecfion shape I 

calculate curvature 

I calculate strains and stresses I 

I Internal forces I 

Rigidifies 

New II 
cumahres I oments 

Deflecfions 

Fig. 3-9 Framework of the Mechanical Analysis 

3.4.2 Solution of orthotropic plate equation 

Once the time dependant distribution of the temperature over the cross-section has 

been determined in the thermal analysis, the novel non-linear finite difference 

formulation is used to determine the mechanical response of the reinforced concrete 

composite floor subjected to fire. 

An arbitrary plan area of the floor can be divided into n,, xny division as shown in 

Fig. 3-1 1. 
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For the initial deflection shape of the floor, the following formula may be used to find 

the initial deflection at the meshing points (m, k). 

ASin7*x' Sin "*Yk 

ab 

When: 

1,2,3 
...... and k=1,2,3, .... 

"1 
x 
L 

m-l , 
k+l m , 

k+l m-+ l, k+l 

m; l, k k m4 -1. k 

m-l , 
k-1 mi k-1 m+ l, k-1 

Yj 

Fig. 3 -10 Floor Plan 

x 
1 

As stated above the solution is obtained by the finite difference method, the curvature 

then can be calculated in the two planes by using finite difference operators as in 

formula (3-40) for x-direction and formula (3-41) for y-direction: 

d2 (W. )., 
k 

_ 

(Wo)m, 
k+l 

+ (Wo)m-l, 
k- 

2(wo)m, 
k (3-42) 

dX2 6X2 

d2 (Wo)m, 
k, 

= 

(W. )., 
k, l 

+ (Wo)., 
k-l- 2(wo)., k (3-43) 

d22 y Ay 
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The cross-section at Fig. 3-12 and Fig. 3-13 analyzed on the basis of the geometry, 

mechanical properties of the components (steel and concrete), and the temperature 

distribution obtained from the thermal analysis. The cross-sectional properties 

(moment capacity, rigidity, and deformation) are presented as a function of time and 

using stress-strain relations. To simplify the calculation, the same mesh is used as for 

the calculation of the temperatures of the floor's cross-section. 

H. A 

x- x 

IdX11 

7y-2 
M. A 

dy2 

Y3 

Y-Y 

Fig. 3 -11 Cross-section in X-Direction Fig. 3-12 Cross-section in Y-Direction 

3.4.3 Strains Calculation 

The thermal strains are superimposed on the mechanical strains associated with 

curvature to find the net strains. To calculate the strains, the following procedure is 

adopted: 

a- Calculation of thermal strain 

In each element of the cross section, temperature increase causes a thermal expansion 

and a decrease in strength and elastic properties. Consequently, the moment capacity 
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and flexural stiffness of the cross section decrease. The thermal expansion coefficients 

of concrete and steel increases with temperature as illustrated in Fig. 3-14. It shows 

that the expansion of concrete stops at high temperatures, (beyond 700 OC), 

[EUROCODE 4,1994] because of shrinkage. 

CX * 10-3 

16-- 

12 

8 

4 

020 200 400 660 800 1000 1200 oc 

Fig. 3-13 Thermal expansion of concrete and steel as a function of the temperature 

The rate of change of thermal expansion with temperature (AUL), denoted as the 

coefficient of thennal expansion (a), is not constant, especially for concrete. 

The thermal strains that occur at free expansion are determined at every element of the 

cross-section by: =a. T 

According to the [Eurocode 4- 1994, Part 1-2], the following equations are used to 

determine the thermal strains in the elements of concrete cross section: 

89 



ethermal 
-= -1.8 x 10' +9X 10-6 

xT+2.3xlO-"T' For 20'C:: 5 T 
--5 

700 'C (3-44) 

9, h�,.., = 14 x 
10-3 For 700'C < T--5 1200 'C (3-45) 

The following equations are used to determine steel thermal strain: 

= -2.4 x 10-4 
+ 1.2 xI 0-'T + 0.4 xI 0-'T -2 For 20'C:: 5 T:! ý 750 'C (3-46) 

ethermal ý-- - 
11 X 10 -' 

Ethermal 
"= -6.2 x 10-' +2x 10-5 T 

For 750 OC < T: 5 860 T (3-47) 

For 860'C < T:! ý 1200 T (3-48) 

b- CalcuIation of Bending Strain 

The bending strain can be obtained by multiplying the curvature with the vertical 

distances of each element in the cross-section from the neutral axis in the two planes: 

ebending 
"= Z. d2 y/dX2 (3-49) 

When: 

Z: the vertical distances of each element in the cross-section from the neutral axis in 

the two planes 

x and y: plane coordinates 

eXbending 
--"ý 

Zx 
ii X OXm, 

k (3-50) 

eYbending ý Zy ii )ý OYm, k (3-51) 

When: 

-CXbending = bending strain in x-direction 

EYbending 
= bending strain in y-direction 

90 



Z. ij = the distance from element centre to the neutral axis in X-Direction 

Oxrn, k = curvature at point (m, k) in x-direction 

Zy ij = the distance from element centre to the neutral axis in Y-Direction 

OYm, k = curvature at point (m, k) in y-direction 

In the present analysis, curvatures are approximated by the finite difference formulae. 

c- Calculation of Strain due to Stress 

The difference between the actual bending strains and the free thermal strains in a 

cross-section are defined as stress-related strain SeeFig. 3-14. 

estress = Cbending - ethermal 

(a) 

Fig. 3-14 Strains on Reference co-ordinate of the cross-section 

This would be the strain in the absence of any thennal effects. 

Strain 

(b) 
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3.4.4 Stresses in Concrete and Steel 

The net strains form generated stresses in the elements of the cross-section. 

Internal forces in the cross-section can be calculated from the following integrals: 

p= fadA (3-53) 

M. 
ý = fc. 

ýdAZ.,, 
(3-54) 

My = faydAZY (3-55) 

In the context of plates, these forces are calculated for a unit width of the plate. 

In view of the numerical procedure adopted, the integrations are replaced by 

summations over the rectangles and triangles of the cross-sectional grid. 

Iteration needs to be performed for ensuring that the value of (p) matches the applied 

in-plane force. For unrestrained edges, (p) has to be zero. 

The position of the neutral axis can be determined by trial and error; i. e., assuming a 

neutral axis, calculating the strain and stress at various points of the section and 

equating the compressive and tensile forces. Once the neutral axis is determined, the 

moment can be calculated easily by summing the moments of all the forces on the 

section. 

3.4.5 Calculation of Rigidities 

The moments are calculated as a function of the curvature which changes as a function 

of time. At a given point of time, the plate rigidities are calculated as follows: 
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DM (3-56) 
" d'wldX2 

D= 
M- 

(3-57) 2W/d 2 Ydy 

As discussed in section 3.4, equation (3.35), an approximation is made to use 

D., 
y = Dy 

3.5 Solution of the differential equation 

The differential equation (3-36) of orthotropic plate can be used to determine the 

composite floor deflection. In the finite difference method, numerical solution of the 

differential equation for deflection is obtained for chosen points of the floor, referred 

to as nodes. To apply the finite difference method at a node, the differential equation is 

replaced by the finite difference expression, relating the given node. This method 

makes possible the analysis of rectangular plates for any of the usual types of edge 

conditions. 

Solution by finite differences provides a means of determining a set of deflections for 

discrete points of a plate subjected to fire and edge conditions. The deflections are 

determined at all mesh points satisfying finite difference relations which correspond to 

the differential expressions of the usual plate theory. 

The equilibrium shape is obtained using the Newton-Raphson iteration procedure. The 

plate rigidities are substituted in the governing differential equations alongside the 

finite difference formulae for each point of the mesh as presented in Fig. 3- 10. 
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The finite difference expression at nodes near the boundary has to be modified before 

solving for the unknown. The following sections demonstrate how this is done for a 

plate. 

3.5.1 Finite difference equations at an interior node of plate 

Fig. 3-15 represents a portion of the interior of a plate subdivided by grid lines into 

rectangular grid elements. The grid lines are spaced Ay units apart in the y-direction 

and Ax units apart in the x-direction. The intersections of the grid lines will be referred 

to as grid points. Certain of these, lettered for identification and the central point of the 

group will be called the pivotal point. The double letters refer in every case to the 

deflection at the individual point so lettered. 

Fig. 3-15, a portion of the interior of a plate division 
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In order to solve equation (3-36) by a finite difference method, the identifying letters, 

which were used in Fig. 3-11, for each point will be used to represent the value of the 

deflection, w, of the floor at that point. 

The finite difference expression for equation (3-36) can be written as: 

d 4W= Wm-2, k- 
4Wm-l, 

k + 6Wm, 
k-4Wm+l, k 

+ Wm+2, k 
(a) 

dX4 &4 

_d4w 

4Wm, 
k-2(Wm+l, k 

+ Wm-l, k 
+ Wm, k+l 

+ WMA-I) + Wm+l, k+l 
+ Wm+l, k-I 

+ Wm-l, k-I 
+ Wm-l, k+l 

dX2dy2 AX2A 2 
y 

(b) 

d 4W= Wm, k+2 - 4w,.,,,, + 6Wm, 
k-4Wm, k-I 

+ Wm, k-2 

d44 
(C) 

y AY 

When the above operators (a), (b), and (c) are substituted in equation (3-36), the 

following finite difference scheme is obtained: 

W, 
-2 k-4Wm-l, k+6Wm, k-4W.., I, k + Wm 

4.2, k D, 
&X4 

+ 

2D 
'y 

4Wm, 
k-2(Wm+l, k 

+ Wm-l, k 
+ Wm, k+l 

+ Wm, k-1) 
+ Wm+l, k+l 

+ Wm+l, k-I 
+ Wm-l, k-I 

+ Wm-l, k+l 

&2AY2 

Dy 
Wm, k+2- 4wm, k+1+6W., k - 

4w,.,, 
-, 

+ Wm, k-2 
=q 

,&4 y 

(3-58) 

This equation can be represented by a stencil as given in Fig. 3-16. The stencil is 

moved from point to point in the mesh to obtain the required algebraic equations for 

the internal points. 
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Fig. 3 -16 Stencil for mesh-points. aI= Ay / Ax 

This may be considered as an operator to form an array. Each element of the array 

represents the coefficient of the deflection of one of the grid points in a group similar 

to that shown in Fig. 3-16 above. 
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Since the solution deals with discrete points the following form for a general interior 

node m, k is: 

[coefficients]{w., 
kj=q1D 

When w.,, represents the deflection at a general interior node, q represents the force 

at at a general interior node and D is the rigidity of the plate. Similar equations are 

written for all the nodes in a plate. 

The solution of the equation (3-36) by the finite difference method also requires proper 

finite difference fonnulae for the boundary conditions. The coefficients of nodes at or 

near the boundary are modified with appropriate boundary conditions. 

3.5.2 Finite Difference Equations at Boundaries of plate 

Some boundary conditions usually encountered in engineering are presented in the 

following: 

- Simply supported edge (movable in the plane of the plate) 

- Hinged edge (or simply supported edge immovable in the plane of the plate) 

-Rigidly clamped edge 

-Free edge 

-Elastically supported (stress-free) edge against rotation 

A summary of some typical boundary conditions is given in Fig. 3-17. 
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I 
ro- - 

I (a) Iringe Support 

l(c) Fixed Support 

I 
(e) Translational Spring 

10 t (b) RoUer Support 

ý 
117 ýftonal 

SpriAg 

ý- 
-0ý m ý(f) 
Free 

ýEdge 

Fig 3-17 Various boundary conditions 

(a) Hinge support: 

A hinge support represent is a pin connection to a structural assembly and it does not 

allow translational movements as in Fig. 3-17a. It assumed to be frictionless and to 

allow rotation with respect to the others. 

(b) RoHer support: 

A roller support is a kind of support that permits the attached structural part to rotate 

freely with respect to the foundational to translate freely in the direction parallel to the 

foundation surface as in Fig. 3-17b, no translation movement in any other direction is 

allowed. 

(c)Fixed edge: 

A fixed edge, Fig. 3-17c, does not allow rotation or translation in any direction. 

(d) Rotational spring: 

A rotational spring represents a support that provides some rotational restraint but 

does not provide any translational restraint, Fig. 3-17d. 
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(e) Translational spring: 

A translational spring can provide partial restraints along the direction of deformation, 

Fig. 3-17e. 

(f) Free edge: 

Fig. 3-17f shows the boundary condition for free edge. It is entirely free; there are no 

bending and twisting moments and also no vertical shearing forces. 

(i) Simply supported edge 

The deflections and moments along the edge of simply supported vanish at all 

boundary points. The analytical expression for the boundary condition in this case is: 

a2W 
192W 

W=0, -+v-=O (3-59) 
aX 2"2 cy 

For the finite deference expression the fire condition translates to w,,, =0 for the grid 

points on the boundary of simply supported edge. At a straight edge parallel to y-axis. 

a, W alW 
-=0, which gives 0 (3-59a) 
ay 2 TxT = 

In order to formulate the boundary conditions with vanishing deflections, the equations 

for the adjacent node had to be established, so there is a need to identify some fictitious 

points obtained by continuation of the network beyond the boundary of the plate. By 

means of equation (3-59a), the simple support conditions in Fig. 3-18 shows that (LL) 

the value of w to be associated with wI is equal to - wp. 
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rTý- 
- ktýf- 

Fig. 3-18 Simply supported adjacent node 

Hence, the values of the deflection points outside the grid should be introduced to 

express the grid points adjacent to the boundary and in the comer. Here wp represents a 

deflection whose magnitude at any grid point is a function of the four adjoining grid 

elements. Then the deflection at the fictitious points, such as w,, is equal in magnitude 

and opposite in direction at all adjacent points to the simply supported edge. 

The finite difference form for deflections at fictitious points explained in Fig. 3-19 is 

stated as: 

wil = -wp 
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wa 

Fig. 3-19 Boundary condition for simple support 

When w, represent zero deflection 

Fig. 3-20 and Fig. 3-21 show the method used in this case. The plate is divided into 

grid elements and the grid points numbered systematically for identification. 

Coefficients can be modified from equation (3-58) when a pivotal point is adjacent to 

the comer or to an edge. 

IAX4 

Fig 3-20 Pivotal point adjacent to a simply supported edge 
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Each coefficient multiplied by Wm, k denotes the deflection at the respective point m, k 

to form a number of finite difference equations in matrix form. Thus, there remain only 

the deflections of the interior nodes so the total number of unknown deflections will 

not exceed the number of equations. In the case of rectangular mesh, Ax and Ay are 

mesh width in x and y direction respectively and based on a= Ay/Ax. 

In 

Fig 3-21 Pivotal point adjacent to a simply supported comer 
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(ii) Built-in edge (Fixed edge) 

The boundary condition representing a fixed edge, Fig. 3-22 and Fig. 3-24, can be 

treated in a same manner. The deflection at all points on a built-in edge and slope of 

the deflected surface normal to the edge are zero. 

In order to formulate the boundary conditions for built-in edge, it should be first 

establish the equation for interior points next to the edge, Fig. 3-22 and Fig. 3-24, by 

applying the operator (3-58). 

Fig 3-22 Pivotal point adjacent to a fixed edge 
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Next we have to eliminate the deflection at fictitious points outside the boundary of the 

plate. This is done by means of relation w,, = wp for the points LL and P in Fig. 3-18. 

At a fixed edge, the slop and the deflection both have zero values. This results in the 

following expression, Fig 3-23, for the deflection of the fictitious point. 

Wil ý WP (3-60) 

Which represent zero deflection and slop at point w,. 

WP 
Fig. 3-23 Boundary condition for fixed edge 

Thus, after modifying equation (3-58) to take care of the boundary conditions, remain 

only the deflections of the interior points in this equation and the total number of such 

unknown deflections will not exceed the number of equations of the type (3 -5 8). 
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Fig 3-24 Pivotal point adjacent to a Fixed edge comer 

(c) Free edge 

In the case of a free edge the number of such difference equations will be increased by 

the numbers of such points beyond the boundary condition of the plate. At a free edge, 

the bending moment is zero and there should not be any transverse forces [Szilard, 

1974]. 

For an edge parallel to the x-axis, following are the boundary conditions. 

a2W CJ2W alw D3W 

-+V-=O, [- + (2 - v). ]=o 
&2 Ggy 2 &3 2 

And for an edge parallel to the y-axis following are the conditions: 

a2W a2W C13 W 03W 

-+v-=O, [- + (2 - v) =0 (3-62) 
O'y 2 &2 ()ýy 3 I; T2W' 
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Poisson ratio is taken to be v=0.3 

If the point m, k is at the boundary as in Fig. 3-25, it requires four fictitious points 

placed outside the plate in order to give a better approximation to the boundary 

conditions. 

k 

a 

b 

c 

L_Mý-2 lk 

Fig 3-25 Boundary condition for free edge 

b 

I 

Deflections at these fictitious points can be expressed in term of deflections of the 

mesh points located on the plate. An approximate solution of the equations (3-61) and 

(3-62) satisfying boundary conditions for free edge is forniulated by finite difference 

method associated with the procedure as in Sec. 3.5.1. Using the notation of Fig 3-25, 

the finite difference form becomes: 

(Mx)m, 
k = -(2 + 2V)Wm, k + Wm+l, k + Wm-l, k + V(Wm, k+l + Wm, k-1) ý-'O 

Wm-l, k = (2 + 2v)Wm, k - Wm+l, k - V(Wm, k+l + Wm, k-1) 

(3-63) 
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= (6 - 2v)(Wm+l, k - Wm-l, k) + 2(l - V)(Wm-l, k-I + Wm-l, k+l 

- Wm+l, k+l - Wm+l, k+l) - Wm+2, k + Wm-2, k ` 

(3-64) 

Wm-2, k = -(6 - 2v)(W. 
+I, k - Wm-l, k) - 2(l - V)(Wm-l, k-I + Wm-l, k+l - Wm+l, k+l - Wm+l, k+l) + WM+2, k 

(3-65) 

(mx)m, k+l = -(2 + 2v)Wm, k+l + Wm+l, k+l + Wm-l, k+l + V(Wm, k+2 + Wm, k) = 

Wm-l, k+l = (2 + 2v)Wm, k+l - Wm+l, k+l - V(Wm, k+2 + Wm, k) (3-66) 

(mx)m, k-I = -(2 + 2v)wm, k-I + Wm+l, k-I + Wm-l, k-I + V(Wm, k-2 + Wm, k) = 

Wm-l, k-I = (2 + 2v)Wm, k-I - Wm+l, k-I - V(Wm, k-2 + Wm, k) (3-67) 

The above four equations are substituted in equation (3-56) to eliminate the fictitious 

points. Then the following finite difference representation of the free edge condition is 

obtained. 

(-(6 - 2v)(wm+l, k - ((2 + 2Y)m, k - wm+l, k - V(wm, k+l + 'm, k-1))) - 2(l - v) 

(((2 + 2v)'m, k-I - Wm+lk-I - V(wm, k-2 + Wm, k)) + ((2 + 2v)wm, k+l - Wm+l, k+l - V(wm, k+2 + Wm, k)) 

-'m+l k+l -wm+l, k-l)+ wm+2, k)-4((2+2v)m, k -wm+l, k -V(wm, k+l +wm, k-1))+6wm, k -4wm+l, k +wm+2, k Dx 
AX4 - 

4wm, k - 2(wm 
+ l, k + ((2 + 2V)W,, k - W, +I, k - V(wm, k+l + W,, k-1)) 

wm, k+1 +wm, k-1)+wm+I, k+1 +wm+I, k- I+ ((2+2')Wm, k-I -wm+l, k-I -V(wm, k-2 +wm, k)) 

2DXy 
+ ((2 + 2v)wm, k+l - Wm+l, k+l - V(wm, k+2 + Wm, k)) 

Ax2Ay2 

Dy 
wm, k+2-4wm, k+1+6wm, k-4wm, k- I+ wm, k-2 

=q 
Ay4 
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Poisson ratio is substituted to get this expression: 

10.48wm, k I O. 8, 
M+I, k2wm+2, k -4.06wm, k+l +0.42wm, k+2 -4.06wm, k-I +0.42wm, k-2 

Dx 
+2.8wm+l, k-I + 2.8wm+l, k+l 

Ax4 
+ 

2Dxy -1,8wm, kl. 2wm, k+11.2m, k-I -0.3wm, k-2 -0.3wm, k+2 
+ 

Ax2Ay2 

Dy 
wm, k+2-4wm, k+1+6wm, k-4wm, k-l+wm, k-2 

=q 
, &y4 

The equation is divided by &X4 
, and a= Ay/Ax is substituted 

a4Dx(IO. 48wm, k I O, 8wm+l, k2wm+2, k -4.06wm, k+l +0.42wm, k+2 -4.06wm, k-I +0.42wm, k_22,8wm+l, k-12.8wm+,, k+, )+ 

a22DXy(-1.8wm, kl. 2wm, k+11.2m, k-I -0.3wm, k-2 -0.3wm, k+2)+ 

DY(wm, k+2-4wm, k+l + 6wm, k -4wm, k- I+ wm, k-2)=q&x4a4 

(3-68) 

A similar procedure can be followed to define various boundary conditions with finite 

difference expression. 

3.6 In-Plane Forces 

In an orthogonal plate, the moment at a point depends on the local curvatures, and 

represented by the moment equations in the x and y directions as illustrated above in 

the previous section. If there are forces acting at the boundaries of the middle plane of 

the plate, n,,, ny, and n,, y, these should be considered in deriving the differential 

equation of the deflection surface. As shown in Fig. 3-26 the plate deflects, carrying 

the original plane middle surface into curved shape. 
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w. Fig. 3-26 Simply supported slab subýjectecl to fire and in-plane lorce 

3.6.1 In-Plane Forces Response of Boundaries 

The response of a plate to in-plane actions is influenced by its boundary conditions. 

In-plane forces can occur when the displacernents ofthe plate parallel to its middle 

surface are hindered by the Support I Sz1lard, 19741. l'urthermore, they are applied 

directly at the boundaries. 

If the temperature of the plate is raised, such expansion, 1,01, most Sti-11OLIral materials, 

is directly proportional to the change in temperature. I lowever, in the case ofnon- 

uniform heating across the plate thickness, the plate cannot expand Irccly because of' 

the restriction of continuity which prevents their free elongation. Although the plate 

may be physically free to move at the boundaries, it is imposed by certain boundary 

conditions which account for in-plane stresses and moderate deflections. Another 
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cause of providing deflections, in-plane forces, arises due to temperature variations. 

Consequently, self-equilibrated thermal stresses are produced. 

The governing differential equations of orthotropic plate under in-plane forces shown 

below: 

D 
d4W 

+ 2D 
d4W 

+D 
d4W 

=q+n., 
d2W 

+n 
d2W 

+n 
d2W 

(3-69) X dX4 XydX2dy 2Y dy4 dX 2 XY y2 ý; ýd-y Yd 

The solution of this equation must satisfy the prescribed boundary conditions for a 

given manner of loading and support. 

3.6.2 Solution of In-plane Forces by Finite Difference Method: 

Two types of edge conditions, for rectangular plate, simply supported and fixed edge, 

are described. 

(i) Simply supported with in-plane forces 

As for the simply supported case which was discussed in Section (3.5.2), the 

differential operators are replaced by the finite difference formula. This reduces the 

governing differential equation into a linear algebraic equation. 
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D, 
Wi-2, j - 4wi-,, j + 6wi, j - 4wi+,, j + WI+2, j 

+ 
AX4 

2D 
4wi, j - 2(wi+,, j + wi-,, j + wi, j+l + wi, j-, ) + wi+,, j+l + wi+,, j-l + wi-,, j-l + wi-,, j+l 

+ 
XY AX2, &y2 

D 
Wi, j+2 - 4wi, j+l + 6wi, j - 4wi, j-l + Wij-2 

y Ay 4 

nx 
wi+,, j - 2wi, j + wi-,, j 

ny 
wi, j+l - 2wi, j + wi, j-l 

_q AX2 &y 2 

(Wi-2, j - 4wi-,, j + 6wi, j - 4wi+,, j + Wi+2, j )Ay4 
Dx 

AX4Ay4 -+ 

2D., 
y 

(4wi, j - 2(wi+,, j + wi-,, j + wi, j+l + wi, j-, ) + wi+,, j+l + w, +I, j-l + W, _I, j_l + W, _I, j+, )Ax2, &y2 

AX4Ay4 

D 
(WIJ+2 - 4wi, j+l + 6wi, j - 4wi, j-l + Wij-2 ), &X4 

y AX4Ay4 

nx 
(wi+,, j - 2wi, j + W, _I, j)Ax2Ay4 

. ly 
(wi, j+l - 2wi, j + W,, j_, ), &X4Ay2 

-q AX4Ay4 6X4Ay4 

Letting 

Ay 

Ax 

D. (wi-2, 
j - 4w, 

-,, j 
+ 6w,,, - 4wi,,, 

j + w, +,, j)a 
4+ 

2D., 
y 
(4w,,, - 2(w,.,, j + wi-,, j + w,, j,, + wi, j-, 

) + w,,,, j+, 
+W 

i+l, j_l 
+W 

i_l, j_l 
+W 

1_1 J+I)a2 
+ 

Dy (W,,, 
+2- 4w,,, 

+, + 6w,, j - 4w,, j-, + WQ-2) - 

n. (wi+,, j - 2w,, j + W, 
_,, J), 

ýX2a 4- ny (w,, j+, - 2w,,, + Wl, j_, 
)AX2a2 

= qAX4a4 

(3-70) 
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Applying the above equation to all the mesh points, we obtain a matrix of finite 

difference equation. This equation can be fonnulated in stencil form as given in Fig. 3- 

27. 

Ay 
AX 

-4 

.x 2D,,, at)2---4' 
4 a2 

-- 2D a2 

-n X2a 0 113) 

- 4,6x a4 
T6b, 

a4 
D, a4 -4D no a3 + SD a2 IV V 

3 

n,, &x2 a4 2nAX2a4 

2n &X2a2 
y 

4,6xa4 

-, n 

2 4D,, a2 D,, a4 
n,, &xga4 

4 4v 

, 

)- 

-4Dga2 
2Dva2 2D, 

va2 
n ý8, x 2ci 2 

q, &X4a4 

Fig. 3-27 Stencil for mesh point with in-plane force 

Coefficients can be modified from equation (3-70) when Pivotal point is adjacent to a 
comer. 

lberefore, the equation of the comer points is given in a diagrammatic form as in Fig. 

3-28. 
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Dy, 

-4Dy, 

-4DXyc? 

ny6x2m2 

5 Xýl BDxym2 

2nxAx2m4 
2ny, Ax2m2 

2D., m2 

-4D. m4 
-4D., o? 
-n. 6ý2M4 

D. m4 

= q, &X4a4 

AY 
Ax 

Simply Supported 

Fig. 3-28 Stencil for comer points for simply supported subjected to in-plane force 

A similar procedure can be followed when the pivotal point is adjacent to the edge. 

This is schematically shown in Fig. 3-29. 
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0 Dy, 
a 
P. 
:3 En 

-: 
11 

2 

S 
-4Dy 

En 2D,, 
ycu2 xy 

nyAX2M2 

6Dy 
5D. iL4 

-4D. m4 BDxym2 

-4D., m2 2n., Ax2m4 
-nXAX2Cx4 2nyAx2m2 

-4Dy, 

-4Dxym2 
2D., m2 

n AX2M2 

Dy 
a= 

AY 

Ax 

m4 

= q, &X4a-4 

Fig. 3-29 Stencil for adjacent points for simply supported subjected to in-plane force 

(ii) Built-in edge (Fixed edge) with in-plane forces 

The boundary condition representing a fixed edge can be treated in a similar manner 

for both, comer and adjacent points. 

Now all tenns of the differential equation of the plate (3-69) which have finite 

difference form of (3-70), and using (3-60) to eliminate all derivatives of w can be 

expressed for fixed edges. The results of these mathematical treatments are given in a 

diagrammatic form in Fig. 3-30 for points adjacent to the comers and Fig. 3-31 for 

points adjacent to the edges. 
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Fig. 3-30 Stencil for comer points for fixed edge subjected to in-plane force 
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Dy 

-4Dy 

-4D. ym2 
2D. 

ym2 
2 nyAx2 m 

6Dy 

- 

C4D 

. m4, 7 D. ýL4 

4DX, 
14 

2 
xg 

nxA m4 

BDx, m 
4 -4Dxym 

,a M4 
2nxAx2m 

_n 2ny6xFmFý 

) 

X2 

ýý 
m4 

= q, &X4a4 

-4Dy 

_4D. ym2 
2D. 

ym2 

nyAx2m2 

Dy 
a= 

AY 

Fig. 3 -3 1 Stencil for adj acent points for fixed edge subj ected to in-plane force 

Various edge conditions can be modified numerically as explained in the previous 

Sections by using similar formulation. 

3.7 The effect of in-plane forces on shortening 

At elevated temperature and increasing deflection the edges attempt to move inwards, 

forming deformation along edges. 

The procedure to calculate the shortening Axi in Fig. 3-32 is done by: 
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- Calculate the deflections for all mesh points of the floor plan 

- Calculate Lx(i) for each line in x-direction, when i=1,2,3 

- Finally, calculate Ax(i) for each line by: 

Axi = Span - Y_ Lxi (3.71) 

Fig. 3-32 Effect of in-plane force on shortening 

3.8 Computer Program (CU-ACCEF) 

In the present research a computer program has been developed to predict the 

performance of thermal and structural behaviour of composite floors at elevated 

temperatures. The program is labelled (CU-ACCEF) "ýQity 11niversity- Analysis of 

steel Concrete Composite floor Exposed to Fire". It is written in Visual Basic and is 

based on finite difference method as explained in the previous sections. 

The behaviour of the composite floor is simulated as a function of time using the 

temperature distribution in the cross-section of the floor which evaluated from the 

thermal analysis. 

3.8.1 Thermal Analysis by (CU-ACCEF) Program 

The thermal analysis is performed ahead of the mechanical analysis. 
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To perform the thermal analysis, the dimensions of the cross-section, number of 

division in each plane, and the duration of a fire are first defined. This is done with 

input data entered into the Text Box in the user interface Fig 3-33. To view the cross- 

section on the screen, one needs to run the program and then press Draw from the 

menu bar and choose Section and Element. 
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Fig 3-33 Input screen of the thermal analysis 
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The output screen shows the cross-section with descretized elements as in Fig. 3-34. 

Dlý 'A- Edt CýVW. 5twgth Nout, 41 ý Prot 

Mw. @, o Tom Cakuate "Pc" 
C-e f. ý'teo 

y caimim. "k" 
Sho. InW 
Temasue 

12 .... Mowwo 

11 -, 
.., wV. -t-m-k- 

10 c 
9 -, -* 

,.. I-I-I-- 
_- W al F,. 

Ta"au. 

Heal Balance 

4 Legend Om 
3 

2 log-12 
17 

TEST 
I 

Sti 

Yl 

.......... 

......... 9 ---------- 
8 
7... 
6......... 
5....,.. ./ 
4........ . 
3 
2...... 

+J 

ý91 

0111213141518 TM2224 

" . . . I 

x 

Fig. 3-34 Discretization of the cross-section of the Composite Floor and position of 
temperature nodes 

Having descretized, the cross-section is then subjected to a time-temperature profile to 

determine the thermal distribution across the cross-section. The time-ternperature 

profile applied to the thermal program can be based on either the standard fire curve 
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built into the program or for a user-defined fire curve. The results of the thermal 

analysis are stored in a data file and can be viewed and printed. 

The program has been uses to investigate the effect of meshing on the temperature on 

the top surface. The different grid sizes are used in the analysis, Fig. 3-34. The number 

of element at the line of the centre of the lower flange range from 8 to 16 for the depth 

143mm. The variation of the top surface temperatures are shown in the flowing table: 

Table 3-1 Influence of mesh size 

Size (mm) 

AY 

Number of division Temperature CC) at 

the top after 60 min 

17.9 8 106.0 

11.9 12 105.4 

8.9 16 105.2 

As an example of output of temperature distribution across the cross-section for the 

mesh division 12, see Fig. 3-35 which shows the temperatures in the cross-section after 

5,30,60, and 120 minutes fire exposure. 
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Fig. 3-35 Temperature distributions when the composite floor exposed to fire 

In practice, the behaviour of fire-exposed floors is generally determined with respect 

to fire exposure from below. Exposure at the upper side of the slab Is less critical. Due 

to the profiled shape of the cross-section, the heat transfer in the floor is essentially 

two-dimensional with relative differences occur between temperatures of lower and 

upper face of the steel sheet. This is illustrated in the following graphs Fig. 3-36 and 

Fig. 3-37. The temperature at point I rapidly increases, the temperature located at 

point 2 increases less rapidly, at the temperatures by point 3 is higher than point 4 as a 

result of heat transfer from both the lower flange and the webs. The temperature 

increases located at point 5 and unexposed side (top surface) is relatively slow. 

Another effect is a variation of thickness in the cross section, causing temperature 
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differences, as can be seen by comparing temperature development in the points on 

lines above lower and upper flanges (points 4 and 5). 
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The flow chart of the thermal analysis program is illustrated in the following Fig. 3-38. 
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Fig. 3-38 The flow chart of CU-ACCEF program for thermal analysis 

3.8.2 Mechanical Analysis by (CU-ACCEF) Program 

In this part of the program, predicting the behaviour of simply supported and fixed 

reinforced concrete composite floor subjected to fire has been presented using the 

finite difference method. The stress analysis of the cross section was considered, 

incorporating the temperature-dependent strength degradation of the concrete, as well 

as the thermal strains. 
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The following required sequence of input is used for strength analysis for concrete and 

steel: 

a) Compressive strength of concrete 

b) Yield strength of steel 

c) Coefficient of thermal expansion for steel and concrete 

It is assumed that the lateral load remains the same during fire exposure. However, 

deformations increase and rigidity decreases due to increasing of thermal curvature. 

3.8.3 Discretization of the floor and the cross-section 

The floor is divided into a number of segments throughout its dimensions to take into 

account temperature distributions through the thickness of the floor. This is shown in 

Fig. 3-39. 
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The cross-section is divided as in thermal analysis, consisting of rectangular and 

triangular shaped elements. The deformations and stresses in the cross section 

temperatures, deformations, and stresses of each element are represented by those of 

the centre for the element. 

For two-dimensional (plane) problems, the axes are labelled x and y. The 

displacements are positive in the direction of x and y. The moments and rotations are 

positive in the counter-clockwise direction. The stresses are positive in compression 

and negative in tension. The bending moments in the floor are obtained as the 

summation of (cr. dA. Z) for each element in the cross-section. 

When: 

a =stress 

dA = mesh element area in mm2 

Z= the distance from the centre of the mesh element area to the neutral axis. 

3.8.4 Stress-strain relations of concrete and steel 

The stress-strain relations for concrete and steel are available as subroutine in the CU- 

ACCEF programme and described as in Fig 3-40 for concrete and Fig. 3-41 for steel. 

In the floor exposed to fire, the materials are subjected to bending strains, thermal 

strains, and stress related strains which obtained from the difference between bending 

strains and thermal strains. 
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Fig. 3-41 Stress-Strain relationship of steel at elevated temperature 
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The material properties available in the CU-ACCEF programme, as subroutines, are 

available for analysis at elevated and room temperatures. Material properties (steel and 

concrete) and temperature distribution are used as input data to calculate the 

deformation, stresses, and strength for various times during the exposure. The effects 

of elevated temperature on material properties with regard to the strength and rigidity 

of the floor are quantified. 

Thermal and mechanical properties of the concrete vary with time and location in the 

section. The tensile strength of the concrete and steel of composite floor acts near the 

bottom of the slab when the fire first occurs, but as the fire progresses, the bottom of 

the slab will expand more than the top, resulting in a deflection of slab. The tensile 

strength will decrease as the temperature increases and the difference in rigidity will 

generate. If the slab is thick and heavily reinforced, the compressive forces that occur 

can be quite large. 

3.9 Solution Procedure 

In this study the analysis covers different support conditions, different fire exposure 

and restraint stiffhess. 

In Eurocode 4 (Eurocode 4- 1994, Part 1-2], composite slabs are treated as equivalent 

solid slabs with an effective depth (H d- This method is not applicable here. In the 

thermal analyses, the temperature within its continuous upper portion varies in the 

horizontal plane due to the presence of the ribs. The thinner part is subject to higher 
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temperatures than the thicker part. The different temperatures in the thick and thin part 

of the floor have been considered in order to perform the structural analysis. 

For these, fire resistance is usually expressed in standard classes, ranging from 30 to 

120 minutes in 30-minute intervals. Only exposure from below is considered. In order 

to obtain reasonable agreement between the numerical and the experimental results 

which are discussed in Chapter 4, the contribution of the steel sheet decking was 

ignored for the fire limit state 

Due to the shape of the profile in Fig. 3-3, the temperature distribution within the depth 

of the floor is non-uniform in both planes. In order to take into account this factor 

within the developed computer program CU-ACSEF, a simplifying assumption was 

made in this study; the temperatures distribution within the depth of the floor cross- 

section are divided into five zones as discussed in Fig. 3-4. 

3.9.1 The description of thermal response 

The first step is determining the temperature distribution over the cross-section at 

discrete time is At during the fire. The two dimensional transient heat conduction 

problem was solved by the developed computer program. Thermal parameters, such as 

the conductivity k,, Fig. 3-42, the convection heat transfer coefficient Hc and the 

thermal capacity p, Q, were selected in such a manner that the calculated temperatures 

in concrete agreed as much as possible. Coefficient of thermal expansion is not 

constant and followed the formulas in Sec 3.3.1. The remaining parameters, needed in 

the analysis of the temperature response, were estimated on the basis of Eurocode 4 

[Eurocode 4- 1994, Part 1-2]. 
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Fig. 3-42 The variation of concrete conductivity k,, with temperature 

The temperature distribution over the cross-section of the floor, when exposed to the 

ISO standard fire, is illustrated in Fig. 3-35 for fire period 5,30,60, and 120 min, 

which is assumed to remain constant over the slab plan. That is, the fire underneath the 

floor is assumed to be uniform. 

3.9.2 The description of mechanical response 

Within an element, the curvature is considered to be changing with the temperatures 

and a resultant strain (and therefore stress) state at a boundary can be determined by 

satisfying the equilibrium conditions as illustrated in section (3.4.2), solution of 

orthotropic plate. Since the material properties vary with temperature and time, an 

incremental analysis procedure is adopted to evaluate the structural behaviour. The 

time steps taken by the condition was explained in Section (3.2). 

For each time step, each node in the floor is analysed. The stress-related strains for the 

concrete and the steel for all elements of the cross-section are then obtained using the 

stress-strain formulas modified for the element temperatures. Equilibrium at the cross- 
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section is checked to determine whether the summation of internal forces match the 

applied extemal forces. 

The strength is a function of the deflection in the floor. As the required strength now is 

known, this is used to determine the floor deflection at elevated temperature. 

The plate can be divided into arbitrary number of elements in the x and y-directions. 

To obtain the deflection shape, initially, it is assumed that the maximum deflection is 

at the line of the centre of the lower flange and equal to 0.5mm. Applying equation (3- 

41) in a similar manner to determine the initial deflection at all points: 

Wo(Ito45) -,, ý A. Sin Z(M - 1). A., 
Sin ; r(n - 1). Ay 

(3-70) 
L., LY 

When: m=1,2,3,..., 5 (in x-direction) 

n=1,2,3,..., 9 (in y-direction) 

This is illustrated as following in Fig. 343 : 
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Fig. 3-43 Obtained initial deflection shape by CU-ACCEF program 

The curvature in the two planes are derived as in equation (3-39) and (3-40). 

When: i=1,2,3,..., 45 (number of grid) 

The edge deflections and curvatures are zero. 

The following procedure was followed to find the predicted behaviour: 

(1) The position of the neutral axis (NAI) is initially assumed at zero distance from the 

lower flange of the cross-section, to calculate the stresses at all points. Parameters of 

the stress-strain relation of concrete and steel are taken from Tables 3.3 and 3.4 in 

Eurocode 4 [Eurocode 4- 1994, Part 1-2] as well as concrete strain at the peak 

compressive stress, reduction factor for concrete and steel. 

To find the net strains, the thermal and mechanical strains are determined as follow: 
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Cbending ««z Zi X Ox 

(z) is present the distance from element centre to the (NA I) 

At room temperature, 20 T, thermal strain calculated from equation (3-42) which is as 

the following: 

=-1.8 X 10-4 +9x 10-11 (T) + 2.3 X 10-11 (T)3 

Then the net strains estress are detennined in all points. 

As noted above, the temperature differentials develop between the upper and lower 

surfaces. These differentials lead to thermally induced bending which can increase 

deflections. A high temperature gradient through the depth of the floor will induce 

bending moments and additional deflections in the floor (see Equation 3-52 again). 

Stress is calculated as a function of temperature and strains, for given room 

temperature properties according to the description in Sec 3.4.2. The internal forces are 

obtained as a summation of all the stresses. 

Applying equations 2-3 to 2-13 to calculate the stress, the total internal force is found 

by: 

pi =I: o-xAA (3.73) 
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(2) Assume the position of the neutral axis (NA2) at the top surface. Then repeat the 

procedure (1) to calculate the internal forces P2 with new position of the neutral axis. 

Therefore the neutral axis (Z) determined by trial and error as follows: 

z=p, x NAl - P2 x NA2 
(3.74) 

A -P2 

(3) The procedure of the step (2) repeated with the new Z value until the convergence 

in the position of neutral axis. 

(4) Once the neutral axis is determined, recalculate the strain and stress at all grid 

points of the section until compressive and tensile forces add up to zero. 

EP=O 

After convergence, the moments for all mesh elements are obtained as follows: 

1-45 

zpxzi 

M 

The plate rigidities are calculated by: 

D=M., 
xd 2WIdX2 

D., is calculated in a similar manner for y-axis. 

The procedure of steps 1,2 and 3 is described in the following flow chart Fig. 3-43a. 
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To calculate the deflections, the finite difference operator (3-58) is applied to all 

internal mesh points to form a matrix as shown in Fig. 3-43b. 
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Fig. 3- 43b Matrix to find deflections during the time of fire 

The time dependent deflection evolution of the different boundaries was established 

and a set of typical results is presented by the following Chapters. 

The flow chart below describes the overall analysis procedure of the CU-ACCEF 

program, Fig. 3-44. 
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Fig. 3-44 The flow chart of the CU-ACCEF program 
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CHAPTER 4 

Experimental Verification 

4.1 Introduction 

In this chapter, the results are presented on thermal and mechanical response of 

composite floors exposed to fire, and compared against published experimentally 

measured values. 

The comparisons with fire tests have many objectives: 

I- To investigate whether the new method is able to represent accurately the response 

of composite floors to fire. 

2- To investigate prediction of the floor element temperatures. 

3- To give a good estimation of the floor behaviour in fire. 

4.2 Comparison of Thermal Analysis Results with Test Results 

4.2.1 Harnerlinck and Twilt 

Harnerlinck and Twilt [Hamerlinck et al., 1990] carried out tests on twelve specimens 

to investigate the thermal behaviour of composite floors during exposure to a standard 

fire. The variables were type of the steel sheet and concrete depth. Two different steel 

sheets were chosen. The specimen's dimensions were 1600x700 mm and the total 

depth was 143mm (for trapezoidal shape). Temperatures were measured on lines at the 

centre of the lower flange and upper flange of the steel sheet. The sheets were not 
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protected, additional reinforcement was applied, shrinkage-mesh reinforcement was 

used in the upper part of the specimens, and normal-weight concrete B25 was used. 

A distinction has made between lines at the centres of the lower and upper flanges of 

the steel sheet. The test showed great difference in temperature between upper and 

lower flange. These differences increase with increasing distance to the top of the 

floor. The location of given points in the test is illustrated in Fig. 4-1. It presents 6 

locations on a line at the lower flange and 2 locations on a line at the upper flange. 
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Fig 4-1 Position of given points and dimension of cross-section as in Hamerlinck and 
Twilt Test 

After 120 minutes standard fire exposure, a comparison is made between the calculated 

temperature results for CU-ACCEF program and the test results is presented 

graphically in Fig. 4-2 for a line at the lower flange, especially for temperature above 

100 'C. The poor agreement below 100 *C might be because moisture is transported to 

cool area at the upper side of the floor, where evaporation takes place. In this area, for 

temperatures below 100 'C, analysis temperatures are higher than test temperature. The 

result may be improved by adapting moisture analysis, in which moisture transport is 
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taken into account. In the present analysis moisture simply evaporates from any 

element. 

The temperature distribution at location D is significantly non-uniform. This may be 

influenced by a longitudinal reinforcing bar. 
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Fig 4-2 Comparison of analysis result with Hamerlinck and Twilt test result of 
developed temperature in different locations of the composite floor cross-section 

The initial temperature on the unexposed side was 20T. The average temperature of 

point F and G started to increase after 13 minutes. Between 39 and 81 minutes, the rate 

of temperature rise is lower compared to the other penods. This is possibly due to the 

increase of moisture on the top surface, therefore reducing the rate of temperature rise. 

Furthermore, the temperatures at comparable points C, E, F and G are generally close 

to each other. 
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Analysis: doted lines 
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Overall the comparison between the measured and calculated temperatures is very 

good. 

A temperature distribution through the depth of floor is illustrated in Fig. 4-3. It shows 

decreasing temperatures at increasing depth at various positions away from the heated 

floor surface, ranging from Omm (exposed face) to 143mm (upper face). It is evident 

that the depth has a significant influence on the development of concrete temperature, 

especially in the thick section. Additional to that as mentioned in chapter 3, the thermal 

properties (thermal conductivity, specific heat and density) depend on temperatures. 

Temperature 

Fig. 4-3 Temperatures through the depth of composite floor 

Different temperature developments in the locations and at the same level at upper and 

lower flange was graphically described as shown in Fig. 4-4. The graph shows 

significant variation, for both test and analysis method, between the temperature rise in 

point I and in point E. This is only to be expected because the first point is mounted 

on the thin section of the floor while the other point is mounted on the thicker part of 

the floor. 
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Fig 44 comparison of differences between location points at lower and upper. 

In order to investigate the temperature distribution along the cross-section, Fig. 4-5 

illustrates the output of the new method of analysis using concrete properties, as 

mentioned in Chapter 2, then compared with output of Hamerlinck and Twilt test. It 

also clearly shows temperature development between lower and upper surface after 60 

minutes as in (Fig. 4-5a) and 120 minutes as in (Fig. 4-5b). 
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Fig 4-5 temperature gradient through compared with Hanierlinck and Twilt test 

Fig. 4-5 graph (a) presents the temperatures measured after 60 minutes tire exposure in 

different places as given in the test from point A-G. It can be observed that there are 

differences of about 70 T at the lower surface in point A to 5T at the uppcr surface ill 

point G. This has been discussed above and the diftlerences are related to moisture 

content. 
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The graph (b) shows that the maximum temperature measured at the exposed face of 

the floor reached 1020'C after 120 min of the test while in the new analysis method 

reached to 1025T. In general, the temperatures at all comparative locations show very 

good agreement after 120 minutes fire. 

4.2.2 Halim, Hakmi and Leary 

Halim, Hakim and Leary [Halim et al., 1997] carried out tests to develop fundamental 

information on the behaviour of composite floors using a model fire test facility, on 

two specimens of composite floor subjected to fire in the laboratory of the Civil 

Engineering Department, University of Salford, UK. 

The specimen's dimensions were 1200 x900x I 10 mm. The fire resistance has 

checked with respect to integrity and insulation. The furnace temperature followed the 

standard time-temperature curve. 

The details of the sample cross-sections and the location of selected points to measure 

concrete temperatures are shown in Fig. 4-6 for Sample I and Fig. 4-7 for Sainple 2. In 

Sample 1, a light steel mesh was provided for fire resistance and to control cracking. 

Longitudinal bars were added in Sample 2 to study their effect on the fire resistance of 

composite floors. Also other positions were selected in the test to measure steel 

temperatures on the steel sheet, shrinkage steel mesh and longitudinal steel bars. 
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The temperature gradients through the depth of the floor have been calculated, with the 

same assumptions as for the above test, by the new analysis method. In Fig. 4-8 and 4- 

9, a companson is made between the test results and calculation results. 
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Fig 4-8 Comparison of analysis result with Halim and Hakim Test result (Sample 1) 
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Fig 4-9 Comparison of analysis result with Halim and Hakim Test result (Sample 2) of 
developed temperature in different location of the composite floor cross-section 

The curves for point C in Figs. 4-8 and 4-9 show the temperature distribution on the 

unexposed surface of each test sample throughout the fire test. The graph shows the 

maximum temperature value of 137 'C at 100 min fire time in case of Sample 1, while 

in the analysis method the unexposed surface temperature continued to rise. This is 

possibly because of spread of water evaporation on the unexposed surface in the tests, 

therefore reducing the rate of temperature rise. In Sample 2, the unexposed surface 

temperature, for both analysis and test results reached about 200 'C after 100 min fire 

times and the rate of rise temperature in Sample 2 was higher than in Sample I due to 

the existence of the additional reinforcement bars beside the shrinkage mesh in 

Sample2. 

Temperatures within the concrete depth are shown by curves A and B in Fig. 4-8 for 

Sample 1, and by curve D in Fig. 4-9 for Sample 2. Points A and B are at distances 30 

mm and 65 mm from the bottom of the floor, respectively; and D at 60 mm from the 
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bottom of the floor. The rise in the test temperatures is slower than for the analysis 

results again due to the presence of moisture. 

The temperatures of the steel sheet are shown by curves S1 and S2 in Fig. 4-8 for 

Sample 1, and by curve S2 in Fig. 4-9 for Sample 2. It can be seen that the rise in 

temperature in these curves is sharp and close to the analysis results. 

On the basis of comparison of thermal analysis results and thermal test results, it can 

be concluded that the present thermal analysis gives satisfactory prediction of the 

thermal behaviour of the composite floor exposed to fire. 

4-3 Comparison of Numerical Results with Mechanical Test Results 

4.3.1 Hamerlinck and Twilt 

The cross-section of simply supported and continuous slab illustrated in Fig. 4-10. 

The span was 3200mm, width of 650mm, total depth 143mm, and steel sheet thickness 

0.75mm, unprotected. The imposed load is equivalent to 3kN/M2, which is an in- 

service load usually applied in design office buildings. 
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i 650tr= 1 

Fig. 4-10 The composite floor as in Hamerlinck and Twilt tests 

All tests were performed on floors with 73mm steel sheet and 70mm. concrete depth. 

This concrete depth corresponds to a fire resistance of 120 minutes as regards the 

thermal-insulation criterion, which was calculated according to the European 

Technical Note [ECCS, 1983]. Yield stress of the steel sheet was 280 N/mm2 and not 

protected by insulation or suspended ceiling. The moisture content of each specimen 

was measured at several points of the cross-section. The average measured moisture 

content at the beginning of the tests amounted to 3.5% by dry weight. 

Temperature distribution was determined in different positions. They were performed 

on the steel sheet and in a number of points in the concrete as stated in the thermal test 

in 4-2-1. Hence calculated temperatures were available for the points to influence on 

the mechanical behaviour. 
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Input parameters were taken, such as geometry, mechanical properties at room 

temperature and at elevated temperature. The most important parameter varied in the 

test with considering the amount of additional reinforcement, both positive and 

negative. The centre of the longitudinal bars of the shrinkage mesh was situated 20mm 

from the top of the slab. 

Two tests on simply supported slabs were carried out to study the behaviour. In test 

specimen 1, no additional reinforcement was applied, in test specimen 2,10 10 bar in 

every 2 troughs as in Fig. 4-11 
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Fig. 4-11 Positions of the mesh reinforcement and additional bars as in Hamerlinck 

and Twilt test. All dimensions in mm 

Since it was shown in Section 4.2.1 that the discrepancies for temperature are slight, it 

may be expected that the mechanical analysis with the calculated temperature will 

provide results comparable to those of test results with measured temperatures. This 

will be illustrated by means of Hamerlinck and Twilt Test I and Test 2. 
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Harnerlinck and TwiIt Test 1 

Test I was carried out on a simply supported slab with no additional reinforcement. It 

was used to verify a fire resistance of 30 minutes. The loading was 5.7kN/M2 inclusive 

the dead weight. A fire resistance of 39 minutes was obtained taking the span/20 

deflection criterion (3200/20=160mm). 

As temperatures were not measured at all elements of the cross section in the test, so in 

the analysis, temperatures were determined by interpolation between known 

temperatures. 

Other properties were adopted from [Eurocode-4], such as thermal expansion and 

mechanical properties at elevated temperatures. A fire resistance of 42.5 minutes was 

obtained taking the same criterion of span/20 deflection. This result is in line with 

ECCS Technical Note [ECCS, 1983], in which it is stated that a fire resistance of 30 

minutes can be assumed for slabs without additional reinforcement. 

Comparison of mid-span deflections between the analysis method and Hamerlinck test 

I is illustrated in Fig. 4-12. Good correlation with deflection is shown for the full range 

of the analYSes. 
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Fig. 4-12 Comparison of mid-span deflections for the analysis method with Hamerlinck 

and Twilt testl. 

Hamerlinck and Twilt Test 2 

Test 2 was designed to obtain fire resistance of 90 minutes applying tile Span/20 

deflection criterion. A span of 3200rnm was adopted. One ofthe supports was a hinge. 

The floor was supported from a frame by rneans of a flexible swing. The steel sheets 

were not protected by insulation. The additional bar reinforcement was positioned in 

the concrete trough with the height of 68mm above the lower flange ofthe steel sheet 

as in Fig. 4-11. 

Yield stress of the reinforcement was 500 N/mm 2 and the concrete compressive 

strength was 33.6 N/mrn 2. The test was terminated when the mid span deflection 

reached 266mm (Span/ 12). This occurred after 115 millUtes. 
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The behaviour of the specimen in Test 2 was simulated using the developed numerical 

method. Temperature distribution through the cross-section was deten-nined by 

considering the temperature development in various parts of the steel sheet. It has 

assumed that it contributes no strength in fire. This approach is used in EN 1994.1.2. 

As during a fire the steel sheet heats up rapidly, expands, and normally separates from 

the concrete. Deflections calculated by finite difference method as described in 

Chapter 3 are compared with the tested results at different times for mid span 

deflection. This is illustrated in Fig. 4-13. 

Deflections calculated by the new analysis method are close to deflections measured 

by the tests. Thus, the agreement is good as shown in the graph. 
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Fig. 4- 13 Comparison between numerical analysis method and Test 2 for mid-span 
deflections with additional reinforcement 
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The conclusion is drawn that the strength analysis method gives validated results for 

composite floor with and without additional reinforcement as in the tests. 

The main conclusion that can be drawn from the above comparisons is that the 

developed numerical analysis method which includes both thermal and structural 

analysis is appropriate to describe the overall deformation behaviour for composite 

floor exposed to fire. 
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CHAPTER 5 

Effect of In-Plane Forces and Edge Supports for Composite 

Floor Exposed to Fire 

5-1 Introduction 

In Chapter 3, the two dimensional orthotropic plate analysis was developed on the 

basis that the composite floor has various edges supported and is subjected to in-plane 

forces. For understanding the true behaviour of a composite floor when subjected to a 

fire, the influence of boundary conditions on the structural behaviour will now be 

examined. Several different boundary conditions have been used in the parametric 

studies described in this Chapter. 

The influence of the support conditions at room temperature and in fire response of the 

composite floor are examined by varying the in-plane force and supports along 

perimeter edges of the vertically-supported slab, where four different cases are 

considered as follows: 

(i) Simply supported without in-plane force 

(ii) Simply supported with in-plane force 

(iii) Fixed without in-plane force 

Fixed with in-plane force 
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The floor in cases (i) and (iii) is subjected to zero in-plane forces in x and y direction, 

whereas in cases (ii) and (iv) is prevented from pull-in along the edges thus in during 

in-plane forces. 

5.2 Properties of the Floor 

The composite floor, shown in Fig. 5-1, is considered here in a parametric study aimed 

at establishing the importance of various types of edge under fire conditions and in- 

plane forces. Two boundary conditions are considered, a rectangular plate with simply 

supported edges and a rectangular plate with fixed edges. 

Detaý A 

70rhm 

73mm 

Concrete 

Steel Sheet . )UU= 

Fig. 5-1 Cross-Section of the Composite Floor 

The span L,, is of 4600mm in the x-direction and Ly is of 3200mm in y-direction. The 

total thickness of the floor is 143mm. The load including self-weight was typical office 

building load intensity. 

154 



The characteristic values are as follows in Table 5-1: 

Table 5-1: 

Span (y-direction) = 3200 mm 

Span (x-direction) = 4600 mm 

Total Floor Depth = 143 mm 

Concrete Strength at 20 'C = 35 N/mm2 

Concrete tensile strengths =0 

Shrinkage reinforcement mesh = 06mm @ 150mm 

Additional reinforcement mesh = 010nun @ 300mm 

Deck type = Trapezoidal 

Deck Depth = 73 mm 

Steel Sheet Thickness = 1.5 mm 

Yield stress of steel at 20 OC = 460 N/mm7 

Youngs Modulus of steel at 20 'C =2 10000 N/mm' 

The fire temperature is assumed to follow the ISO standard curve. The temperature 

distribution and variation with time were calculated using the developed computer 

program CU-ACCEF. The program runs for 120 minutes fire exposure. 

5.3 Fixed and Simply supported edges without in-plane restraint 

The geometry and dimensions of the cross section data are given in Fig, 5-2 which also 

shows the mesh used. At each mesh element, the material properties and thermal 

expansion are calculated according to the corresponding temperature. 

155 



Detaý 

T 
70 

73 

1 

Fig 5-2 Geometry and dimensions of the cross section 

Fig. 5-3 compares the mid-span deflections from the previous analysis results for 

simply supported and fixed edge composite floor. The graph shows a fire resistance of 

10 1.5 minutes was obtained taking the L,, / 20 [BSI 1990] deflection criterion 23 0 mm 

for simply supported composite floor. The fire resistance of 116.5 minutes which is the 

time taken to reach the same value of L,, / 20 can be assumed for fixed supported for 

the same composite floor. The analyses stop when the time reaches to 120 minutes. 
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Fig. 5-3 Comparison of Central Deflection for Simply Supported and Fixed Edges 
Composite Floor subjected to fire 

5.4 Effect of edge restraint 

The role of in-plane forces in describing the behaviour of composite floor will be 

examined in this Section. 

Figs. 5-4 and 5-5 show the influence of in-plane forces and the effect of supports in the 

fire resistance. Fig. 5-4 compares the mid-span deflections for the simply supported 

composite floor during the fire affected by in-plane forces. The graph shows that in- 

plane forces had no effect on deflection rates during the initial stage of the fire up to 

about 40 min. The effect of in-plane forces only appeared at the later stage. The large 

decrease in deflection can be noticed when the floor is subjected to in-plane force in x- 

direction only. That may result from restrained thermal expansion during the fire. After 

80 minutes the floor deflected rapidly to about 105mm. its deflection rates gradually 
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decreased until the analysis stopped. The reason for this drop is the supports of simply 

supported edge do not anchor the forces as well as the surrounding structure is cooler. 

This is a helpful effect as it limits the additional forces generated by the restrained 

thermal expansion and increase the fire resistance. 

Fig. 5-4 Comparison of Central Deflection for Simply Supported Composite Floor 

subjected to fire with and without in-plane force 

With in-plane force in both directions, the difference in central deflections compared 

with the deflections without in-plane forces are still relatively small. The deflection 

curve shows a dip after 40 minutes and gradually increased until reach the same rate of 

the deflection without in-plane forces at 88 minutes and again decreases after 100 

minutes until the analysis stopped. Therefore there is no anchorage effect as the floor is 

free to pull. This is clearly a desirable behaviour here, as it reduces the force imposed 

on the floor by the expansion forces. 

The same floor, but assumed spanning between rigid end restraints, fixed edges. The 

changed behaviour is shown in Fig. 5-5. The key difference is that availability of in- 

plane forces. The graph shows the growth of deflections during the fire in three cases 
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with applying in-plane forces. In both x and y direction it is notable different in 

comparison with the actual levels of deflection in the absence of in-plane forces. 
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Fig. 5-5 Comparison of Central Deflection of Fixed edges with and without in-plane 
force for Composite Floor subjected to fire 

When applying in-plane forces in x-direction only, the deflection rates showed a 

fluctuated rate reduction for all the duration of the fire. The reason for this, the forces 

from fixed supports may increase the rigidity of the floor and prevent large downward 

deflections. 

But it can be seen that the deflection rate had significant change when applying in- 

plane forces in two directions in steady state until 92 minutes. After that there was no 

convergence on the result of the computer program. This change had a significant 

effect on the fire resistance. It clearly indicates tensions in the mid-span region of the 

floor and loses its strength. Since the slab expansion occurs in its own plane, and this is 

the plane in which the surrounding slab provides restraint, large thrusts can develop in 
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two directions. The fixed supports will form large compressive forces in the slab, even 

for small deflection. Therefore, the flexural resistance at mid-span can also be 

exceeded for a rigidly restrained. This will result in a reducing the strength as shown in 

Fig. 5-5, no convergence in the computer program, when applying in-plane forces in 

both x and y direction. 

To overcome this problem, additional reinforcement may then be required to resist 

stresses in the concrete from in-plane force in two directions. The shrinkage 

reinforcement mesh has changed from 06mm @ 150mm to 01 Omm @ 150mm. and 

the additional reinforcement mesh has changed from lbar 010mra @ 300mm to 2 bars 

010mm @ 300mm. 

Fig. 5-6 shows the vertical deflections after increasing the reinforcement of the same 

point shown in Figure 5-5. It can be seen that the fire resistance in the case of increase 

reinforcement is higher than the previous one for three cases, using the U20 criterion. 

The rate of deflection for the floors with additional reinforced can be seen to be less 

deflection than those for the equivalent floors. All the cases showed similar rates of 

deflection between 0 and 100 minutes. The floor with in-plane forces in x-direction 

had deflections lower than those without in-plane forces or forces in both directions as 

shown in Fig. 5-6. 

In addition the restraint to the floor comes from the surrounding cold structure, which 

is assumed to be 20 T in this analysis. The Cardington tests suggest that even edge 

panels can benefit enormously from transfer of loads from the weakening systems of 

bending and shear towards other mechanisms [Newman, 1999]. 
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Fig. 5-6 Comparison of Central Deflection of Fixed edges with and without in-plane 
force for Composite Floor subjected to fire after increasing the reinforcement 

The conclusion is reached that the effect of in-plane to fixed edges does not increase 

fire resistance up to about 90 minutes, but that beyond this it can increases the fire 

resistance in the floor if it is applied in x direction only or increased with 

reinforcement. 

Most importantly, the presence or absence of in-plane forces and different edges, 

played a significant role in the behaviour, as observed in the analysis presented by the 

above graphs. This is particularly evident in the response of the composite floor in 

which the edge restraints restrict the deflection during the fire. The deflection for 

restrained slab is lower compared to an equivalent unrestrained slab. The difference in 

applying the Nx and Ny can be seen. 

Since the reinforcement makes a significant contribution and it is an important 

performance factor to achieve a fire resistance period, it is important to investigate this 

phenomenon in the next Section. 
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5.5 Effect of reinforcement 

The influence of steel reinforcement on the structural behaviour has been investigated. 

The strength of the composite floor is typically based on the steel deck and concrete, 

with any anticrack mesh ignored. But the Fire Design method, [Bailey et al, 2000], 

ignores any contribution from the steel deck. This was considered following 

observations from actual fires, such as the Broadgate and Basingstoke fires [Structural 

fire engineering, 199 1 ], which showed that the steel deck had debonded and the 

composite floor suffered very large mid-span deflections but did not collapse. Full 

scale fire tests at the Cardington Large Building Test facility have also confirmed this 

behaviour. 

Since the deck is ignored, the strength of slab in a fire is based on the mesh 

reinforcement and concrete. Tberefore, this parametric study has been carried out to 

demonstrate the effect of the floor reinforcement on the structural behaviour of the 

composite floor by using the current analysis method and then showing some detail 

comparison with Bailey's Design Method [Bailey et al, 2000]. The choice of the type 

of reinforcement floor depends on several factors such as economy of construction, 

span and strength of serviceability requirements. 

In order to make more precise comparison with the Bailey Design Method two 

analyses for 9x9m square composite floors at elevated temperatures have been 

performed, Slab (1) was simply supported along two edges and clamped along the 

others. Slab (2) was clamped along all the four edges. The investigation was carried 

out by dividing the floor into equal sections in each the x and the y directions. 
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Two different anticrack meshes have been used for both slabs: 

A142: which means that area of steel equal 142mm2/m, 60@ 200mm. 

A393: which means that area of steel equal 393mm2/m, 100@ 200mm. 

The position of the mesh is based on an average axis distance of 45mm below the top 

of the slab as recommended by the design tables [Bailey, et al., (2006), ] with yield 

strength of 50ON/M2. 

The composite floor is assumed to be lightweight concrete constructed using a 

trapezoidal profiled steel decking. The concrete strength is 35 N/m2. The total depth of 

the floor is 130mm including 65mm. deep ribs. The design tables [Bailey, C. G., (2006), 

et al. ] are applicable to profiled steel decking up to 70 mm deep and for depth of 

concrete above the steel decking from 60 to 80 mm. 

The characteristic dead and imposed loads were assumed to be 4. lkN/ m2 and 2.5kN/ 

m2 respectively. From BS 5950: Part 8 [BSI 1990], the partial safety factors in fire are 

1.0 for dead loads and 0.8 for imposed loads, giving a total design load of 6. lkN/ rn 2 at 

the fire limit state. 

Bailey's design method assumes that the slab temperature varies linearly through its 

thickness. This assumption has not been used in this analysis. A non linear temperature 

distribution has been used across the thickness of composite floor. It is based on the 

ISO standard fire and the finite difference thermal analysis which has been explained 

in the previous Sections. The temperature of the lower flange of the composite floor is 
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used against the result of the deflections in the centre of the floor to analyze the 

various boundary conditions. This is described in Fig. 5-7 in the following section. 

5.5.1 Results of the analysis 

Fig. 5-7 compares the maximum vertical deflection predicted by this analysis method 

for the two reinforcement mesh for both slabs simply supported edge condition and 

clamped edge condition. Fire resistance with A393 reinforcement for both floors is 

higher compared to equivalent floor when using A 142 reinforcement using the L/20 

criterion. It can be noticed that the influence of reinforcement for simply supported 

case can be negligible up to about 420 OC, but beyond this point it becomes increasing 

significant. 
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Fig. 5-7 Central deflection with different reinforcement 

The maximum deflection of the composite floor also shows considerable difference 

between clamped and simply supported condition. Central deflections of the simply 
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supported slab are greater than the deflections for the clamped edge condition at 

elevated temperature. The clamped floor is restrained by the surrounding structure 

while being exposed to the fire. In this case, the boundary conditions have a more 

dominant effect on the deflection as the temperature is increased. It is evident that it 

becomes important to take into account the boundary support condition at high 

temperature. Although the limit of span/20 for deflection had been needed, there was 

no collapse of the floor at this stage. 

5.5.2 Comparison with Bailey Design method 

A simple design method has been recently developed by [Bailey et al, 2000] for 

calculating the performance of composite flooring systems subject to fire. The 

objective of this section is to show some detailed comparisons between the simple 

design method and the present numerical analysis method in order to check the 

applicability of this method. 

The ability of the floor reinforcement to sustain the tensile stresses caused at high 

temperatures and deflections is ensuring that failure of composite floors does not 

occur. The full derivation of the Bailey method for orthotropic reinforcement has been 

published elsewhere [Bailey, 2003] and will not be repeated here. 

Fig. 5-8 compares the maximum vertical deflections predicted by this analysis method 

and the Bailey Design Method for the two reinforcing meshes. 

The maximum deflection allowed according to Bailey's method is 435 mm and the 

corresponding failure temperature is 740 'C with A 142 mesh. Table 5-1 describe this 
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comparison. However, for A142 mesh in this analysis study shows the mid-span 

deflection 450mm, span/20, at a temperature of about 710 T which corresponds 

closely to the temperature at Bailey's method. For A393 mesh the Bailey's method 

gives failure temperatures in excess of 1100 OC which is also close to that indicated by 

this analysis study which reached to 1052 OC at a deflection level span/20. 
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Table 5-2: Comparison between Bailey method and the developed analysis method 

Bailey Current Analysis Mesh 

Method Method Reinforcement 

Maximum deflection 435 mm 450 mrn A124 

Corresponding 740 *C 710'C 

failure temperature 

Corresponding 1100 OC 1052 T A393 

failure temperature 

The simple design method always assumes simply supported edge conditions. The 

maximum deflections predicted in this study using clamped and simply supported 

condition are in good agreement with the simple design method. 

The results were compared with Bailey's simple design method (Bailey et al, 2000] 

showing that this method adequately represents the evolution of the floor deflection 

and also that a non-linear temperature rise gives a good representation of the 

temperature histories. 
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CHAPTER 6 

CONCLUSION 

6.1 New Method of Analysis 

The research described in the preceding chapters investigated the behaviour of 

composite floors exposed to fire. In particular a new method for describing their 

structural response has been developed. This is a three-step process involving estimate 

of fire exposure, heat flow analysis, followed by a strength analysis. 

As the first step in this method, a fire temperature calculation has been employed in 

order to predict the temperature development in the fire compartment as a function of 

fire exposure time. Secondly, a thermal response was used to calculate the temperature 

distribution and development in the cross section of the composite floor, considering 

the important parameters for thermal analysis, such as geometry of the steel sheet, 

thermal properties of components materials and concrete depth. Finally, by means of a 

mechanical response and given the thermal response, the structural performance of the 

full floor can be predicted. 

Heat balance equations were formulated using the finite difference method. For 

calculation of temperatures at a given time, the cross-section is divided into elements. 

The heat transfer from the fire to the surface is considered for the volume of boundary 

elements. Also heat conduction to the neighbouring points is considered. At internal 

elements of the cross-section, heat conduction to all neighbouring elements is 

considered. Both the conductivity and specific heat of concrete are included. 
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By using the developed program, the temperature distribution within the composite 

floor in fire can be evaluated without the necessity of testing. 

The mechanical analysis is based on orthotropic plate theory using the governing 

differential equation as described in Chapter 3. Finite difference method is used to 

solve the orthotropic plate differential equation to determine equilibrium deflections at 

a given stage of fire growth. The new method takes into account fully nonlinear stress- 

strain relationships for steel and concrete. 

The procedure is to calculate curvatures in the two planes for each element in the 

cross-sectional grid using the finite difference operators. The thermal strain are 

superimposed on the mechanical strains associated with curvatures to find the net 

strain then stresses are calculated using the nonlinear temperature dependent stress- 

strain curves. Integrating the stresses, the internal stress resultants are calculated then 

the internal force and the moment in both directions calculated. In view of the 

numerical procedure adopted, the integrations are replaced by summations over the 

elements of the cross-sectional grid. Iteration needs to be performed for ensuring that 

the value of internal force matches the applied in-plane force. For unrestrained edges, 

the internal force is assumed to be zero. The proposed method used a novel approved 

for the calculation of plate rigidities in both directions, which are needed in the 

solution of the orthotropic plate equation, taking into account the effect of temperature 

on the internal stress, which in turn contribute to the internal moment. 

The differential operators are replaced by the finite difference forniulae to reduce the 

governing differential equation into a linear algebraic equation. The stiffness in the 
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weak direction comes from the smaller thickness in the composite floor, ignoring the 

trapezoidal part of the deck. In the strong direction the full profile of the deck is used. 

Due to increasing temperature, the materials (concrete and steel) expand and their 

strength decreases. Moment capacity decreases and a thermal curvature is developed, 

resulting in an increase in deflections. 

6.2 Validation 

This method was successfully validated against experimental fire tests which have 

been carried out at the Centre for Fire Research-TNO Building and Construction 

Research [Hamerlinck and Twilt, 1989]. The tests comprised details for studying the 

thermal behaviour and the mechanical behaviour of composite floors during a fire as 

illustrated in Chapter 4). Also used were tests by [Halim, Halani and Leary, 1997] on 

two floors in the laboratory of the Civil Engineering Department, University of 

Salford, UK. The results show very good correlation between the tests results and this 

method results. This indicates that, the analysis method predicts behaviour very similar 

to that shown in the tests. 

The information produced by the developed computer program gives a picture of the 

strength and deformation of the floor at any given stage of the heat exposure. 

6.3 Parametric Study 

A parametric study using various boundary conditions was carried out. Particular 

consideration was given to the influence of various edges restraint conditions on the 

predicted responses. Examples undertaken with two conditions, simple support and 
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fixed edges, further conditions for different boundaries can be taken by following the 

described procedure in Chapter 3. However, some general conclusions can be drawn, 

as follows: 

- It is shown that fixed edges have better fire resistance than simple support which 

are not subjected to in-plane forces. 

- Simply supported composite floor has better fire resistance when subjected to in- 

plane force in one direction. 

- The effect of in-plane forces on floors with fixed edges has little influence on the 

deflection up to about 90 minutes. 

In-plane forces can increase the fire resistance of floors with fixed edges the forces 

are applied in one direction only. 

The enhancement of performance by addition reinforcement area was also studied. The 

analysis has demonstrated the enhancement of fire resistance which can be achieved by 

increasing the area of reinforcement mesh. The influence of reinforcement for simply 

supported floors can be negligible up to about 420 'C, but beyond this point it becomes 

increasing significant. 

Effects of boundary conditions and in-plane forces have been studied. It is clear from 

this study that surrounding structure provides restraint increasing the fire resistance of 

the structure within the fire compartment. The analyzed results indicate that in-plane 

forces provided by the surrounding parts cause an influence on the deformational and 

mechanical responses of the composite floor in fire. The restraints essentially cause the 

change in the strength in fire, which can be quantified using the calculated deflection 

by the developed method. 
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The composite floor behaviour could be well represented through this method of 

analysis which can provide information for design of composite floor in fire. 

6.4 Suggestions for future work 

Future work in developing this work could include the following: 

e Additional boundaries conditions can be added to the present program. In 

particular, boundaries with edge-beams would enable a more accurate simulation 

of modem composite floors. 

9 This method of analysis assumes uniform moisture content throughout the concrete 

floor. The analysis can be improved by properly considering transport of moisture 

from the fire zone to the cooler non-fire zones. 
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