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ABSTRACT 

This work examines the following statistical distributions 

as possible models for the distribution of claim amounts in general 

insurance: 

1- The lognormal 

2- The Weibull 

3- The inverse Gaussian 
(A new 3-parameter form is introduced) 

4- The Pareto 

5- The truncated lognormal 
as a model for large claim amounts) 

6- The gamma 
(as a model for the distribution of the square root 
of claim amounts) 

The properties. of the above distributions are investigated and various 

methods of estimation of their parameters are explored. The method 

of multinomial maxim mt likelihood for estimating the parameters is 

favoured because data on claim amounts is generally in grouped 

frequency format. To find these estimates a computing technique is 

proposed which avoids solving a complicated set of non-linear 

equations. A procedure which avoids solving non-linear equations 

is also suggested for the least squares estimation of the 3-parameter 

lognormal, 3-param_etor Weibull and the Pareto distribution of the 

second kind. In order to show how the various methods work in 

practice they are applied to an actual set of accidental damage claim 

amounts. Goodness-of-fit tests are used to judge the agreement 

between the model and sample valuos. The Chi-square and the 

Kolmogorov-Sriirnov tests are reviewed and a new test statistic is 

V 



proposed which measures the overall agreement between the model 

and sample values in monetary terms. The application procedures 

for all these tests are described. 

Inflation is likely to be the main cause of the increase in 

the size of claim over time. Therefore, its effects on the 

parameters of various models are examined. A method is suggested 

for predicting the future distribution of claim amounts which 

uses the parameters of a past model after being adjusted for 

inflation. This predictive method is demonstrated on the 

accidental damage data whenever a suitable model is found. 

vi 
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CRU"TER 1 

INI RODI TCTION' 

1.1 Definition 

General insurance' is defined as all classes of insurance 

other than life insurance (or assurance). For a thorough comparison 

between life and general insurance reference may be made to 

Benjamin (1977). Fundamentally, general insurance has the following 

distinguishing features as compared with life assurance: 

1- Claim size not knoi%n in advance and often without limit. 

2 -- Premium changes from year to year because contracts are 

normally renewed annually. 

3- More than one claim can arise under the same policy. 

4- Volatility; large variances of both claim frequency 

and claim amount especially the latter. 

1.2 Basic Problems of Insurance 

In insurance we are faced with the problems of charging 

adequate premiums to cover a certain risk and the setting up of 

reserves adequate to meet the cost of future claims with some margin 

of profit. In life assurance, where the claim amount is i o:: n in 

advance or can be determined by actuarial methods, these problems 

have been solved by the use of the life table (which provides a 

model for the probability of survival) in conjunction with discounting 

functions. In general insurance, however, where the size of claim is 

most usually not ie ot. n in advance, a prior estimate of the future 

cost of claims is essential to the calculation of reserves. This 

cost is a cc'mbinatic. -, of the frequency of claims and their size. it 

- Sometimes referred to as Non-fife insurance. 
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is possible to treat each of these components of the cost separately 

by collecting separate statistics on the frequency and size of claims. 

In this work, we are concerned with the size of claims only. No claim 

amount table exists for the calculation of the probability of 

occurrence of a claim of a certain size. 

1.3 Statistical Modelling 
_. 

ý('' 

It is ]mown that many random factors affect the size of the claim. 

Statistical modelling is recognized as a rational tool of analysis for 

problems in all areas of science and engineering where data variation 

cannot be ignored. Therefore, it coninands considerable attention in 

the solution of the basic insurance problems. Statistical modelling 

assumes that there is a claim amount distribution underlying the 

risk process. This distribution, once determined, enables us to 

calculate the probability that if a claim occurs it will be not 

greater than a: certain size. The shape of the claim amount distribution 

is important in premiun determination and reserves calculations. As 

Beard (1974) states, "a good theoretically derived model would be of 

considerable help in dealing with practical estimation problems 

arising frort the random fluctuations which arise in the relatively 

small samples (in terms of the large claims) which commronly are all 

that is available". In some classes of general insurance business 

reinsurance is sought due to the likelihood of occurrence of very 

large claims. In that case, the examination of the area (the 

probability) under the upper tail of the distribution is necessary 

for the insurance coy ; any's decision about 'retentioni' before 

reinsurance. In motor insurance the policyholder may opt to pay 

some first art of any on damage claim. ('voluntary excess') in 

return. for a. reduction in the prerni. ta, i. The appropriate deduction, 

1 -" That part of the risk which the insurance campany wishes to 
bear without help from the reinsures. 
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in this case, may be calculated by examining the lower tail of the 

claim amounts distribution. The essence of statistical modelling 

approach is, therefore, to find a statistical distribution as a 

model for the claim amounts experience of the particular class of 

insurance in which we are interested. There are two stages involved. 

At first we have to demonstrate from theoretical considerations of the 

problem that a specific statistical distribution can model the claim 

amounts experience. Sometimes it is not readily obvious how the 

model could be theoretically derived and we have to start irnnediately, 

from stage two. That is, by fitting our intuitive model to samples 

of data from past experience and, perhaps, by using statistical 

goodness-of-fit tests satisfy ourselves that the specific model 

actually agrees with the claim amounts experience for our particular 

class of business. Once we have found a model and gathered 

sufficient Ielowledge about its parameters and how they behave with 

respect to time, we will be able to use statistical techniques to 

predict the distribution of the claim amounts arising during any 

future period. This is our main objective in this approach. 

In practice a solution to our problem, even starting from stage 

two as mentioned above, is not easily obtainable because of many 

undesirable factors such as insufficiency of the data, heterogeneity 

of the data and data being only available in a certain form (e. g. 

grouped or/and truncated). The empirical distributions of claim 

amounts are by nature skewed to the right, i. e., there are many 

small claims and much fewer larger claims. This leads us to the 

examination of positively skewed statistical distributions as possible 

models. It is also inrportant to study truncated distributions since 

in practice, as in reinsurance, data on claims above a certain size 

only may be available. Some of the models which have been more 

often employed are referred to below. 

3 



1.4 A Review of the Applications of Statistical Distributions 
to Cl. a Amounts Data in General Insurance; 

Studies have been made which involve fitting statistical 

distributions to claim size data. Beard (1955) has fitted the 

lognonnal to the American fire insurance property damage claim size 

data. Beard 41957) gives a numerical example of the application of 

the lognormal. and log-Pearson type I distributions to an experience 

of fire ciairs in Denmark. In Beard (1964) a lognormal distribution 

is fitted to a sample of settled. motor insurance claims, property 

damage and liability claims mixed. Benckcrt (1962) fits lognormal 

distributions to claims data from fire insurance, accident insurance 

and motor third party insurance. Harding (1968) uses a truncated 

lognorinal distribution as a model for the original amount of a claim 

falling under the excess of loss reinsurance of motor business 

contracts. Ferrara (1971) fits lognormal distributions to fire 

insurance claim size data from several different industries. }3enckert 

and Jung (1974) fit lognormal and Pareto distributions to data on 

claims in fire insurance of dwelling houses reported between 1958 

and 1969 by Swedish fire insurance companies. Finger (1976) uses the 

lognormal distribution as a model for claim amounts in liability 

insurance. Bickerstaff (1972) uses the lognormal as a model for the 

distribution by size of auto collision claims. 

The lognormal seems to be the most successfully used model in 

general insurance. However, the above references do not deal extensively 

with the various methods of estirating the parameters of the lognormal 

distribution, and the efficiencies of these Methods, nor do they examine 

some of the other skc: aed distributions. 

1.5 Objectives and Cut line of the. Study 

It vas, with the ubýýýýr. Yc; narl: s iii mind that the -present work was 
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started. We study several skewed distributions as models for claim 

amounts in general insurance. In order to show the applications of 

these models in practice we apply their theoretical methods to a 

set of real data fron motor insurance Accidental Damage (AD) claim 

amounts. A description of the data will be provided in secticn 

1.6. 

Goodness-of-fit tests are used frequently in the present work 

to examine the agreement between a model and sample values. Therefore, 

in chapter 2 we consider several of these tests. The more widely 

used Chi-square test is reviewed and a new test statistic is proposed 

to supplement it. This statistic measures the overall agreement 

between a model and sample values in monetary terms and, therefore, 

its value can be easily interpreted. The importance of this 

statistic is demonstrated in examining the agreement between 

predicted and actual distributions since, in that case, it indicates 

by how much we have overpredicted or underpredicted the total cost 

of claims. 

The Kolmogorov-Smirnov test for goodness-of-fit is a well established, 

but less frequently used, test which is also reviewed in Chapter 2. 

The application procedures for all three statistics are described and, 

in later chapters, demonstrated on the AD data. 

Because of the importance of the lognormal distribution in 

general insurance it is extensively studied in Chapter 3. The two 

and three parameter cases are considered. After defining the distribution 

its properties are examined and a theoretical justification for the 

emergence of the lognormal distribution as a model for claim amounts 

is provided. Tests of 1ognormality and various estimation methods are 

suggested for the two parameter. case when data only in grouped form 
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are available. These are later demonstrated on the AD data. A 

computer simulation is carried out to measure the efficiency of 

different methods of estimation. The multinomial maximum likelihood 

(MML) method which is most suitable for grouped data is studied and, 

with the wide availability of computers, a technique is suggested 

for finding the estimates of the parameters. This iterative 

procedure maximizes the loglikelihood function directly, via a 

search for the optimum solution, starting from a set of initial 

values. The effects of inflation on the parameters are then 

considerecTand predictions are made for the distribution of claim 

amounts, in a future period, by using different indices of wages 

and prices. The agreement between the actual and predicted claim 

amounts are tested by the goodness-of-fit tests described in 

Chapter 2. The 3-parameter case is then studied. A method of 

estimation which involves the least squares technique and a 

search for the location parameter is suggested which avoids solving 

non-linear equations. The method of IWL is also modified for the 

3-parameter case. These methods are then applied to the AD data. 

The effects of inflation on the parameters are studied and distributions 

of claim amounts during future periods arc predicted. 

In Chapter 4 the Weibull distribution which belongs to the 

exponential family is studied. The two and three parameter cases are 

examined, very much on the same lines as for the lognormal distribution. 

The same methods of estimation as for the 3-parameter lognormal are 

modified. for the 3-parameter. Weibull distribution. 

Chapter 5 is devoted to the study of the inverse Gaussian (or inverse 

normal) distribution. This is a skewed distribution with a shape 

similar to the lognormal, the g aroma and the Weibull distributions 
. 
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Chhikara and Folks (1978) state that several sets of cmpirical data 

wich they have investigated seem to be equally well represented 

by the lognormal and the inverse Gaussian distributions. In the 

absence of other considerations they recornend the use of the 

inverse Gaussian distribution on the basis of the convenience of 

working with it. Therefore, it seemed important to study and test 

this distribution on the AD claims. Initially, the properties of 

the distribution are examined and the methods of moments and ML 

are suggested for the estimation of the parameters. These methods 

are applied to the AD claims data and the effects of inflation are 

investigated. We then introduce the 3-parameter version of this 

distribution by bringing in a threshold parameter. No mention of 

this case is made in chhikara and Folks (1978) or in Johnson and 

Kotz (1970). We suggest using the MML method of estimation. This 

method is then applied to the data. The effects of inflation on 

the parameters are studied and predictions for future periods are 

made and comapred with the actual experience by using goodness-of- 

fit tests. 

Chapter 6 looks at the Pareto distributions of the first and 

second kinds. The properties and a graphical test are studied. 

Various estimation methods are examined. In Chapter 7 we use the 

method of MM to fit this distribution to the upper tail of the 

AD claims data, i. e., claims greater than £600. 

To study the tail of the claim amounts distribution, which 

is of interest in reinsurance, we deal with the truncated lognormal 

model in Chapter 7. The method of A'IL is developed and applied to 

the truncated samples of AD data. The effects of truncation at 

different points are studied. 
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In Chapter 8 we examine the ganuna distribution. Board (1978 - 

personal co munication) suggests the gamma distribution as a model 

for the distribution of the square root of the claim amount. We 

would like to test this to see if by taking the square root of the 

claim amount we can arrive at a better fitting model. For this 

reason a different set of AD data was obtained where the claims 

are grouped into different bands according to the square root of 

their size. The data are better described in Chapter 8. The 

properties of the gamm distribution are studied and the methods 

of moments and rte, are suggested for the estimation of the parameters. 

These are then applied to the data. The effects of inflation on the 

parameters are studied and predictions for future periods arc made. 

A final discussion and a sumnary of the findings of the study 

are presented in Chapter 9. 

The tables of results for every chapter are presented at the 

end of the chapter. 

All the computer programs used in this work have been written 

by the author in Fortran 4 language and have been run via the 

interactive terminals on the City University's ICL 1905E Computer. 

The texts of the programs are presented in the Appendix. 

1.6 The Accidental Damage (AD) Data 

The important part of any data analysis is to have a reliable 

set of data. Since we are looking for models of the distribution of 

claim amounts we must be sure that the data used in the analysis has 

been collected only from the experience of the particular class of 

business we are investigating. In other words, the data must be 

free from heterogeneity in every respect. In addition, a considerable 

amount of data is required and we need to look at the experience 

over several periods. 
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A miedium-sized, U. K., general insurance company provided its with 

some data. of Accidental Damagel (AD), excluding windscreen, claim 

amounts in respect of claims which occurred during certain periods 

of time in the past. These periods are referred to as periods of 

accident. T h-- portfolio from which these claims come was 

comprehensively insured private cars. Data combined for all age 

groups, vehicle groups, districts and type of use were available. 

For claims iip to £570 we were given the number of open and settled 

claims grouped in bands of £30, i. e. £i-30, £31-60, 
........., 

£541-570. 

For aniouiits greater than £571 details of the individual claims were 

made available. After some investigation we grouped these in the 

following bands: 

£571 - £600, £601 - £700,701 - 5800, etc. 

until the band containing the maximum claim amount (or amounts) was 

reached. 

Data was provided in respect of seven periods of accident. Each 

period covers three months of the calendar year. Ile were given data 

from the quarter starting on 1.10.1973 to the one ending on 30.6.1975. 

For convenience sake we refer to the period, say, from 1.10.1973 

to 31.12.1973 as '73/4th quarter'. There are, therefore, seven samples 

of AD claim amounts each corresponding to one of the periods from 

73/4th quarter to 75/2nd quarter. In each case the data had been collected 

_ at least six months after the end of the period of accident. The 

incurred but not reported (IBNR) claims are assumed to be so few as not 

to present a problem. This is because experience (of the insurance 

company) shows that almost all AD claims are reported and settled 

within six months after the end of the period of accident. Zero 

claims2 were not included in the data. 

1- Damage to the policy holder's own vehicle. 
2- Thee are those claims in respect Of s rich no pa ninety "l rn . 

de by 

red or the insurance compan}' e: ' r ? 3eca1zse no na}ý, zcni is i eý, ui 
because the insurance company recovers the cost fron: another insurer. 
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The relevant information for the construction of the Al. ) claim 

amount samples were extracted from the computer print-outs of the 

insurance company's claim files. These were then stored in data 

subfiles on our computer. 

Computer program P1 was written to print the frequency distribution 

of a given sample of AD data. The sample cumulative distribution 

function and various relevant sample statistics are also calculated 

and printed out. The program was run with the AD samples and the 

results are given in tables (1.1) to (1.7). In each table the 

column headed by 'NCIII > LB. AMOUNT' gives the number of those claims 

in the sairple whose amounts are greater than the amount given by the 

lower boundary of each interval. From this information we can, for 

example, see that in 73/4th quarter there were 89 claims with 

amounts greater than £601. The tables show that the number of such 

claims has increased over time. The total number of claims in each 

sample is on average about 2600. For the calculation of the sample 

moments we have assumed that in each interval all the claims are for 

an amount equal to the mid-point of that interval. An inspection 

of the insurance company's claim file showed that this assumption 

was justified since the average amount of claim in each band was in 

fact approximately equal to the mid-point of that claim amount interval. 

For the calculation of the median and mode linear interpolations in 

the claim amount intervals were used. 

From the tables we can see that the mean and the standard deviation of 

the claim amounts have increased over time while the coefficient of 

variation has rurw. ined quite stable at about 1.1. For each sample, 

the frequency distribution, the coefficients of skewness and kurtosis 

as well as the relative positions of the rode, the median and the mean 

all indicate the skewness and sharp peakedness of the claim amounts 

10 



distribution. The sample statistics given in tables (1.1) to (1.7) 

will be of use in later chapters. 

1.7 Tables 

11 



Table (1.1) 

ý`## 73/4TH QUARTER 

AMOUNT £ NO. OF CLAIMS CUM. %%: NCLM > LB. AMOUNT 
1- . 30 478 15.70 3045 

31- 60 518 32.71 2567 
61- 90 461 47.85 2049 
91- 120 359 59.64 1588 

121- 150 239 67.49 1229 
151- 180 213 74.48 990 
181- 210 148 79.34 777 
211- 240 102 82.69 629 

-241- 270 81 85.35 527 
271- 300 58 117.26 446 
301- 330 66 89.43 3118 
331- 360 45 90.90 322 
361- 3.90 39 92.111 277 
391- 420 35 93.33 238 
421- 450 34 94.45 203 
451- 480 20 95.11 169 
481- 510 29 96.06 149 
511- 540 14 96.52 120 
541'- 570 8 96.78 106 

- 571- 600 9 97.08 98 
601- Inn 29 98,03 R9 - 701- Ron 18 9E1.62 60 
801- 900 20 99.28 42 
901-1000 6 99.47 22 

1001-1100 4 99.61 16 
1101-1200 4 99.74 12 

1201-1300 1 99.77 a 
1301-1400 3 99.87 7 
1401-1500 1 99.90 4 
1501-1600 [i 99.90 3 
160 1-1700 1" 99.93 3 

1701-1800 0 99.93 2 
1801-1900 0 99.93 2 
1901-2000 1 99.97 2 
2001-2100 0 99.97 1 
2101-2200 0 99.97 1 
2201-23(10 0 99.97 1 
2301-2400 1 100.00 1 

TOTAL NO. OF CLAIMS= 3045 
MEAN CLAIM AMOUNT =150.36 
STANDARD DEVIATION =175.48 
COEFF. OF VARIATION= 1.17 
MEDIAN ............ = 95.97 
MODE .............. = 42. A7 

SQRT61 =SKEWNESS = 3.50 
82 

... _KURTOSIS = 24.20 

-^ 107 
G2 ................ =-0.5f6 

G1 13 COEFF . OF SKEWNES: i FOn L0C; OF (, l.. AfA 0UN TS 
G02 15 EXCESS KURTOSIS FO LOG OF C: L. AfOOUNT`i. 
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Table (1.2) 

### 24/15T QUARTER ##### 

AMOUNT E NO. OF CLAIMS CUM. Of, NCLM > LB. AMOUNT 
1- 30 381 15.61 2441 

31- 60 428 33.14 2060 
61- 90 351 47.52 1632 
91- 120 334 61.20 1281 

121- 150 211 69.05 947 
151- 180 133 75.30 736 
181- 210 98 79.31 603 
211- 240 82 82.67 505 
241- 270 54 84.88 423 
27.1- 300 52 87.01 369 
301- 330 53 09.18 317 
331- 360 36 90.66 264 
361- 390 29 91.85 22B 
391- 420 26 92.91 199 
421- 450 22 93.81 173 
451- 480 22 94.72 151 
481- 510 17 95.41 129 
511- 540 1() 95.02 112 
541- 570 19 96.60 102 
571- 600 4 96.76 83 
601- 700 26 97.83 79 
701- 800 21 98.69 53 
801- 900 11 99.14 32 
901-1000 10 99.55 21 

1001-1100 5 99.75 11 
1101-1200 2 99.84 6 
1201-1300 1 99.88 4 
1301-1400 2 99.96 3 
1401-1500 0 99.96 1 
1501-1600 0 99.96 1 
1601-1700 0 99.96 1 
1701-1800 1 100.00 1 

TOTAL NO. OF CLAIMS= 2441 
MEAN CLAIM AMOUNT =149.85 
STANDARD DEVIATION =172.20 
COEFF. OF VARIATION= 1.15 
MEDIAN ............ = 95.93 
MODE .............. = 41.87 
SQRTB I -SKEWNESS = 2.83 
B2 ... =KURTOSIS = 14.24 
G1 .............. .. =-0.076 
G2 ................ =-0.503 

G1 IS COEFF. OF SKEWNESS VOR LOG OF CL. AMOUNTS 
G2 IS EXCESS KUR70SIS FOR LOG OF CL. AMOUNTS. 
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Table (1.3) 

#*### 74/2ND QUARTER -f*#** 

AMOUNT NO. OF CLAIMS CUM. % NCLM > LO. 

1- 30 351 14.73 2383 
31- 60 380 30.68 2032 

61- 90 382 46.71 1652 
91- 120 295 59.09 1270 

121- 150 211 67.94 975 
151- 180 142 73.90 764 
181- 210 114 7A. 68 622 
211- 240 101 82.92 508 

241- 270 57 85.31 407 
271- 3(10 51 87.45 350 
301- 330 39 89.09 299 
331- 360 36 90.60 260 
361- 390 25 91.65 224 
391- 420 24 92.66 199 
421- 450 27 93.79 175 
451- 480 18 94.54 148 
181- 510 21 95.43 130 
511- 540 17 96.14 109 
541- 570 12 96.64 92 
571- 600 11 97.10 80 
601- 700 30 98.36 69 
701- 800 13 9E3.91 39 
801- 900 11 99.37 26 
901-1000 4 99.54 15 

1001-1100 7 99.83 11 
1101-1200 0 99.83 4 
1201-1300 1 99.87 4 
1301-1400 1 99.92 3 
1401-1500 0 99.92 2 

1501-1600 1 99.96 2 
1601-1700 0 99.96 1 
1701-1800 0 99.96 1 
1801-1900 1 100.00 1 

TOTAL NO. OF CLAIMS= 23R3 
MEAN CLAIM AMOUNT =151.57 
STANDARD DEVIATION =167.98 
COEFF. OF VARIATION= 1.11 
MEDIAN ............ = 98.4A 

MODE .............. = 61.17 
SQRTB 1 =SKEWNESS =2 . 

88 

62 ... =KURTOSIS = 15.91 
G1 

................ =-0.14 
G2 ................ =--f). nb4 

G1 IS COEFF . 
OF SKE WNES S) - Fon LO1Ga 0F CL . j«% MCUN'i'S 

G2 IS FOP LOG OF CL. AMOUNTS. 

AMOUNT 
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Table (1.4) 

*3*## /4/3RD 1UARTE9 ##### 

AMOUNT E NO. OF CLAIMS CUM. % NCLM > LB. AMOUNT 

1- 30 362 12.93 2799 
31- 60 427 28.19 2437 
61- 90 383 41.87 2010 
91- 120 356 54.59 1627 

121- 150 283 64.70 1271 

151- 180 194 71.63 9138 
181- 210 137 76.53 794 
211- 240 97 79.99 657 
241- 270 86 83.07 560 
271- 300 71 85.60 474 
301- 330 64 87.89 403 

331- 360 45 89.50 339 
361- 390 44 91.07 294 
391- 420 25 91.96 250 
421- 450 26 92.89 225 

451- 480 22 93.68 199 
481- 510 25 94.57 177 
511- 540 14 95.07 152 
541- 570 14 95.57 138 
571- 600 17 96.18 124 

., _ 
601- 700 32 97.32 107 
701- 800 34 98.54 75 
801- 900 17 99.14 41 
901-1000 4 99.29 24 

1001-1100 9 99.61 20 
1101-1200 4 99.75 11 
1201-1300 0 99.75 7 
1301-1l00 1 99.79 7 

1401-1500 3 99.89 6 
1501-1600 0 99.89 3 
1601-1700 1 99.93 3 
1701-1800 0 99.93 2 
1801-1900 0 99.93 2 
1901-2000 0 99.93 2 
2001-2100 0 99.93 2 
2101-2200 1 99.96 2 
2201-2300 0 99.96 1 
2301-2400 0 99.96 1 
2401-2500 0 99.96 1 
2501-2600 1 100.00 1 

TOTAL NO. OF CLAIMS= 2 

MEAN CLAIM AMOUNT =166.13 
STANDARD DEVIATION =1RR. 70 

COEFF. OF VARIATION= 1.14 
MEDIAN ............ =109.6 7 

MODE .............. _ 48.39 
SORTOI -SKEWNESS = 3.42 
P. 2 

... =KUPPTOSIS = 24.04 
G1 ................ =-0.179 
G2 ................ 

G1 IS COEFF. OF SKEW'NE iii FOR LOG OF CL. AMOUNTS 
G2 IS EXCESS KURTOSIS FOR LOG OF CL, AMOUNTS. 



Table (1.5) 

##### 74/4TH QUARTER ##### 

AMOUNT £ NO. OF CLAIMS CUM. % NCLM > LB. AMOUNT 
1- 30 394 12.86 3064 

31- 60 452 27.61 2670 
61- 90 426 41.51 221A 
91- 120 348 52.87 1792 

121- 150 272 61.75 1444 
151- 180 219 68.90 1172 

181- 210 154 73.92 953 
211- 240 124 77.97 799 
241- 270 105 81.40 675 

271- 300 78 83.94 570 
301- 330 75 (36.39 492 

331- 360 58 8h. 28 417 
3611- 390 55 90.08 359 
391- 420 29 91.02 304 
421- 450 43 92.43 275 
451- 480 24 93.21 232 
481- 510 22 93.93 208 
51 1'- 540 24 9A. 71 I A6 
541- 570 19 95.33 162 
571- 600 14 95.79 143 

- 601- 700 42 97.16 129 
701- 800 28 98.07 87 
801- 900 20 98.73 59 
901-1000 17 99.28 39 

1001-1100 8 99.54 22 
1101-1200 5 99.71 14 
1201-1300 1 99.74 9 
1301-1400 5 99.90 8 
1401-1500 0 99.90 3 
1501-1600 1 99.93 3 
1601-1700 0 99.93 2 
1701-1800 0 99.93 2 

1801-1900 0 99.93 2 
1901-2000 0 99.93 2 
2001-2100 1 99.97 2 

2101-2200 0 99.97 1 
2201-2300 0 99.97 1 
2301-2400 1 100.00 1 

TOTAL NO. OF CLAIMS= 3064 
MEAN CLAIM AMOUNT =174.19 
STANDARD DEVIATION =194.03 
COEFF. OF VARIATION= 1.11 

MEDIAN ............ =112.91 
MODE .............. = 51.21 

SQFTB1 =SKEWNESS = 2.97 
82 ... =KURTOSIS 17.65 

Gi ................ =-0.199 
Cc' ................ =-0.429 

31 IS COEFF. OF SKEWNESS FOR LOG OF CL. AMOUNTS 
G2 IS EXCESS KURTOSIS FOR LOG OF CL. AMOUNTS. 
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75/1ST QUARTER *-W ** * 

AMOUNT £ NO. OF CLAIMS CUV" .% NCLkli > LU . 
1- 30 324 12.43 2607 

31- 60 31J 27.27 22133 
61- 90 345 40.51 1896 
91- 120 289 51.59 1551 

121- 150 25D 61.30 1262 

151- 1130 187 68.47 1009 
181- 210 1313 73.76 822 
211- 240 114 78.14 684 

241- 270 93 91.70 570 
271- 300 67 84.27 477 
301- 330 63 136.69 410 
331- 360 44 138.38 347 
361- 390 44 90.07 303 

391- 420 35 91.41 259 
421- 450 25 92.37 224 

451- 480 26 93.36 199 
4131- 510 1R 94.05 173 
511- 540 113 94.74 155 
541- 570 22 95.59 137 
571- 600 17 96.24 115 
601- 700 39 97.74 98 
701- 800 19 913.47 59 
1301- 900 18 99.16 40 
901-1000 12 99.62 22 

1001-1100 3 99.73 10 
1101-1200 1 99.71 7 

. 
1201-1300 1 99.81 6 
1301-1400 0 99.81 5 
1401-1500 1 99.85 5 
1501-1600 0 99.85 4 
1601-1700 1 99.68 4 
1701-1800 0 99.88 3 
1801-1900 0 99.88 3 
1901-2000 0 99.88 3 
2001-2100 1 99.92 3 
2101-2200 1 99.96 2 
2201-2300 0 99.96 1 
2301-2400 0 99.96 1 
2401-2500 0 99.96 1 
2501-2600 0 99.96 1 
2601-2700 0 99.96 1 
2701-21100 0 99.96 1 
2801-2900 0 99.96 1 
2901-3000 0 99.96 1 
3001-3100 0 99.96 1 
3101-3200 0 99.96 1 
3201-3300 0 99.96 1 
3301-3400 0 99.96 1 
3401-3500 0 99.96 1 
3501-3600. 1 100.00 1 

TOTAL NO. OF CLAIMS= 2607 
MEAN CLAIM AMOUNT =173.40 
STANDARD DEVIATION =195.30 

AMOUNT 

COEFF. OF VAf 1ATION= 1.13 
MEDIAN ............ =116.19 
MODE ..............: 48.50 

Sran'rr31 -SKEWNESS /--' . 39 
132 ... . =: KURTOFI = 18.4 -1 17 
G1 ................ =-0.23) 
G2 

....... =-0 . 394 



Tal P 
(1ý?, 

# #'" 75/2ND QUARTER #9--*# 

AMOUNT £ NO. OF CLAIMS CU", 1. % NCLM > LB. AMOUNT 
1- 30 302 12.10 2495 

31- 60 374 27.09 2193 
61- 90 332 40.40 1819 
91- 120 27? 51.50 1487 

121- 150 235 60.92 1210 
1'51- 180 167 6P, 

. 42 975 
181- 210 122 73.31 7138 
211- 240 110 77.72 666 
241- 270 80 60.92 556 
271- 300 72 83.81 476 
301- 330 47 65.69 1104 
331- 360 39 87.25 357 
361- 39n 40 88.06 318 
391- 420 3A 90.38 278 
421- 450 29 91.54 240 
451- 480 21 92.38 211 
481- 510 30 93.59 190 
511- 540 19 94.35 160 
541- 570 17 95.0.3 141 
571- 600 11 95.47 124 
601- 700 36 96.91 113 
701- 800 22 97.80 77 
801- 900 22 98.68 55 
901-1 [Ioo 11 99.12 33 

1001-11(10 4 99.28 22 
1101-1200 3 99.40 18 
1201-1300 3 99.52 15 
1301-1400 6 99.76 12 
1401-1500 2 99.84 6 
1501-1600 1 99.88 4 
1601-1700 0 99.88 3 
1701-1800 1 99.92 3 
1801-1900 0 99.92 2 
1901-2000 1 99.96 2 
2001-2100 0 99.96 1 
2101-2200 0 99.96 1 
2201-2300 1 100.00 1 

TOTAL NO. OF CLAIMS= 2495 

MEAN CLAIM AMOUNT =180.08 
STANDARD DE1/IATI_ON =204.79 
COEFF. OF. VARIATION= 1.14 

MEDIAN ............ =116.44 
MODE .............. = 49.45 

SQRTF31 =SKEWNESS = 3.07 

02 ... =KURTOSIS = 17.70 

Cl 
................. -0.1R4 

G2 ................ =-0.376 

GI IS COEFF. OF FKF'WNES ; FOR LOG OF CL. AMOUNTS 
G2 IS EXCESS KURTO IS FOR LOG OF CL. AMOUNTS. 
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CHAPTER 2 

Tests for Goodness-of-Fit 

2.1 Introduction 

The natural order of any statistical analysis involving the 

fitting of a theoretical distribution to a set of sample values is 

to fit the theoretical model first and then to test its agreement 

with the observed distribution of the sai le values. This problem 

of testing "the goodness-of-fit" (i: e. the adherence of the model 

to the data) will arise at various stages of the present work when 

we consider different statistical distributions as models for the 

distribution of claim amounts. Before considering the fitting 

methods for various distributions it is deem: d convenient to devote 

one chapter to the study of the theoretical bases and application 

procedures of some goodness-of-fit tests. 

Goodness-of-fit tests are performed to examine the agreement 

between the theoretical distribution of a random variable and its 

empirical distribution represented by a set of sample values. In 

other words, if xl, x2,..., xn are independent observations of a 

random variable X (for instance the claim amount) with an unknown 

distribution function F(Lx), then we are required to test the null 

hypothesis that 

H: F (x) = F0 (x) 

where Fo(x) is some particular distribution function. Any test of 

110 is called a. test of fit. Hypotheses of fit, Ho, may be 

classified as simple or composite. H0 is a sigle hypothesis if 

it specifies the values of all the parameters of F0(x). If the 

values of none of the parameters or only of some of them are specified 

by the nufl hypothesis týýe?: is is called a composite }iypothc. sis. 
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The reason for formulating the null hypothesis of a test of 

fit in terms of the distribution function is that the parametric 

hypothesis testing methods do not provide the means of testing 

whether observations come from a particular distribution with 

unspecified paramieters. In addition, by our intuition we expect 

that the distribution of sample observations would closely 

approximate the true distribution (Kendall and Stuart (1973)). 

It is in this sense that a goodness of fit test is a measure of 

the discrepancy between the sample and theoretical distribution 

functions. Savage (1953) characterizes a goodness of fit test by 

the following four properties: 

1- It is defined for samples from some large class of 

distributions. 

2- The null hypothesis is either some specified distribution or 

a class of distributions of which the functional form is 

known. 

3- For all null hypotheses, the test statistic used has the 

same distribution (at least asymptotically). 

4- The test is consistentl. 

In our work a test of goodness of fit will be required in 

two circumstances: 

(i) Fitting and Testing 

Let us assume that we have a sample of data representing 

the observed distribution of the claim amounts. We can 

postulate the form of the population distribution of 

this variable and use one of the appropriate estimation 

techniques, for that particular distribution, to estimate 

its parameters and, thus specify it completely. We will 

1- A test of hypothesis 1-I0 against a class of alternatives Hl- is said 
to be consistent if, c; en any member of Ht holds, the probability of 
rejecting Ho tends to 1 as scinpl e size (s) tends to infinity. 
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then need to test how well the theoretical and observed 
distributions agree. A good agreement will be taken as 

evidence that the assuned family of distributions is the 

correct form for the distribution of claim amounts. 

The null hypothesis in this case is of the composite type. 

Pr', d. ýction and Testing, 

We may predict a theoretical distribution, whose form and 

parameters are-completely specified, as the distribution 

of claim amounts in a particular period of accident 

occurrence. If a set of data representing the observed 

distribution for the same period already exists, we will be 

able to test how well the predicted and actual distributions 

agree. In this situation the null hypothesis of test is of 

a simple type. Evidence of a good fit can be used to 

recommend a prediction technique and support the assumption 

about the theoretical model. 

In. this chapter several goodness of fit tests will be studied. 

In Section 2.2 the Chi-square goodness of fit test will be dealt 

with in detail. To supplement the Chi-square test, and to avoid 

some of its shortcomings, a test statistic based on the weighted 

sum of the actual minus expected number of claims, in different intervals, 

will be proposed in section 2.4. The Kolmogorov-Smirnov test of 

goodness of fit, which is generally believed to be more powerful than 

the Chi-square test, will be studied in detail in section 2.6. Two 

other test statistics will be mentioned in section 2.9 but because 

they are not applicable to grouped data we will not study them in 

detail. 

2.2 The Chi-scauare Goodness-of-Fit Test 

This was the first goodness of fit test and it was introduced 

by Karl Pearson in 1900. 

Let us assizie that we have a sample of n independent observations of 

a random variable X, with distribution function F (x) 
. 

P'earson's 

test involves grouping the observations into, say, k mutually 
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exclusive categories such that nl be the number of observations in 
k 

category i and n=E ni 
i=1 

If the population distribution is completely specified by the null 

hypothesis as F(x) = Fo(x) (i. e. the form and all the parameters of 

Fo(x) are knouzi) and we assume that Iö is true, then the probability, 

poi, of a random observation falling into any category i can be 

calculated. If poi is multiplied by the total number of 

observations, n, we will find the expected frequency of class i, say noi' 

under the hypothesis H0. Apart from sampling variation there should 

be close agreement between ni and nof, the observed and expected 

frequencies respectively. The Chi-square goodness of fit test 

provides a probability basis for computing and deciding whether the 

discrepancy is too large to have occurred by chance. The test 

statistic, proposed by Pearson, is; 

2 
X2 =E 

(ni noi) 
i=1 not 

Large values of X2 indicate an overall lack of agreement between the 

observed and expected distributions. The null hypothesis which 

resulted in Hors should, therefore, be rejected for large values of 

x2. 

If when Ho is assumed true the sampling distribution of a test 

statistic is known and tractable, tables of its percentage points 

can be constructed. The sampling distribution of X2 is very 

complicated when the sample size is finite, but Cramer (1946) has 

shown that its limiting distribution, under Ho, is approximately 

Chi-square, X2, with k-i degrees of freedom (we assured F0(x) 
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as completely specified). 

In some situations the null hypothesis is composite such 

that usually only the form of the postulated distribution is laiown 

but not any, or some, of its parameters. If these parameters have 

to be estimated from the sample data, then the limiting distribution 

of X2 may depend on the method of estimation. With a poor method 

of estimation X2 may frequently have a large value even if the 

theory is correct (Cochran (1952)). In a general proof of the 

distribution of X2 the method of estimation must be asserted. A 

method that yields those values of the parameters which minimize 

X2 (mininun Chi-square method) may seem the most suitable. Fisher 

(1924) has shown that in the limit in large samples this method 

becomes equivalent to the method of multinomial maxi mm likelihood. 

The following theorem due to R. A. Fisher, states the principal 

theoretical result for the distribution of the Chi-square test 

" statistic when parameters of the distribution of X under the null 

hypothesis, Fo(x), are estimated from the sample data. 

Theorem 

If Fo(x), whose form is known, has r ui iown parameters, and 

if the corresponding multinomial maximum likelihood estimates 

are substituted for the unimovm parameters, then X2 is 

distributed, in the lint, as the Chi-square, x2, 

distribution with k-r-1 degrees of freedom. 

(A proof of this can be found in Cramer (1946)). 

Cochran (1952) states that any efficient method of estimation gives 

estimates which in the limit become identical with the maximtnn 

likelihood estimates. Thus, the Chi-square distribution with the 

appropriate reduction in the degrees of freedom is valid, as the 
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distribution of X2 statistic, for any efficient method of 

estimation. If fully efficient ordinary maximum likelihood 

estimators are used, then X2 does not have an as)mptotic 

Chi-square distribution. There will be a partial recovery of 

the r degrees of freedom lost by the multinomial inaximi 

likelihood estimators and the distribution of the Chi-square 

statistics, X2, will be bounded between a x2k-1 and a X2k-r-1 variable. 

Therefore the critical values should be adjusted upwards. As 

k becomes large x2k-1 and x2k-r-1 become so close together that 

the difference can be ignored (Kendall and Stuart (1973)). 

If individual observations are available in the sample, and 

the null hypothesis is that they follow a continuous density function, 

then the investigator must first group the observations into 

different mutually exclusive classes. Cochran (1952) mentions that 

the investigator has the choice of both the number of classes and 

the division points between them, but that his choice will affect 

the sensitivity of the test. According to Kendall and Stuart 

(1973) the whole asymptotic theory of the Chi-square test is 

valid as long as the k'classes into which the observations are 

grouped are determined without reference to the observations 

because there has been no provision in the theory for the class 

boundaries themselves being random variables. A rule suggested 

by Mann and Wald (1942) and by Gumbel (1943) is to choose the 

classes so that the expected frequencies are all equal to n/k 

where k, the nwnber of classes, is assumed given. Mann and Wald 

(1942) have developed a technique for finding the optimum nuTa)cr of 

classes for any sample size n such that the power of the test is 

never less than 21. The problems of the choice of the number of 

classes and class boundaries do not arise i hcn only a sample of 
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already grouped observations is available. Such is the case with 

our Accidental Damage data and the above problems are therefore 

pursued no further here. 

In the derivation of the sampling distribution of the Chi-square 

test statistic, a multinomial distribution is approximated by a 

multinormal distribution (see Cramer (1946) or Kendall and Stuart (1973)). 

When the nu:. ber of classes is large, and the expected frequencies are 

small, this approximation may not be satisfactory. It has been 

suggested by some authors that the expected frequency in any interval 

should not be less than S. For any expected frequency less than 

5, the usual procedure is to pool the adjacent classes together until 

this condition is removed. The number of degrees of freedom should 

then be calculated on the basis of the number of classes actually 

used, after pooling together, in the calculation of X2. Since the 

discrepancy between an observed and a postulated distribution is 

often most apparent in the tails, the sensitivity of the Chi-square 

test is likely to be decreased by excessive pooling at the tails 

(Cochran (1952)). Consequently the rule of minimum expected 

frequency of 5 should not be considered as inflexible. Cochran 

(1942) has shown that there is little disturbance at the 5% level 

when a single expected frequency is as low as 1. At 1% level the 

same is true if the degrees of freedom of the Chi-square distribution 

are greater than 6. He states that two expected frequencies as low 

as 1 may be allowed with negligible disturbance to the 5% level. 

The Oil-square goodness-of-fit test is commonly used when there 

is no clear alternative hypothesis. This necessarily precludes the 

computation of power. If there exists an alternative hypothesis, 

then the distribution of X2 under the alternative hypothesis is 

asymptotically a "non-central x2" with k-r-1 degrees of freedom 
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(where r pararieters have been estimated by the multinomial maximum 

likelihood estimators) and a non-centrality parameter which depends 

on the sample size. For the method of calculation of the limiting 

power function of the test see Kendall and Stuart (1973). 

The dependence of the power of the Chi-square test on the sample size 

is a weakness of this test, since with a small sample, an alternative 

hypothesis which has a large departure from the null hypothesis, Ho, 

may have a small probability of yielding a significant value of 

the test statistic. On the other hand, for a large sample, rather 

small and unimportant departures from the null hypothesis are likely 

to yield a significant value of the test statistic. 

Xe are two major shortcomings of the Chi-square test. lVhen 

testing the goodness-of-fit of a continuous distribution, grouping the 

observations into classes necessarily implies the loss of information 

by such grouping. Another shortcoming is that the X2 test statistic 

is based on the squares of the deviations between the actual and 

expected frequencies. This implies that the Chi-square test will not 

be sensitive to the pattern of signs of the deviations. 

? The Chi-square goodness-of-fit test is applicable to situations 

in tthich the alternative hypotheses are expressed in vague and general 

terms. Its main advantage is that when the hypothesized distribution 

is not completely specified the test can still be performed, in the 

same way as for a simple null hypothesis, simply by replacing the 

unknown parameters with efficient estimators and reducing the degrees 

of freedom. by the nmiber of estimated parameters. 

It was mentioned that the Chi-square goodness-of-fit test ignores 

the signs of deviations of the observed frequencies from the expected 

ones. It is, therefore, sometimes informative to examine the pattern 

of the signs of deviations. David (1947) has shown that if the null 

hypothesis is simple then all patterns of signs are equiprobable. 
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Therefore, when 11 is simple, if the hypothetical. distribution is 

the true population distribution, we expect the signs of deviations 

to have a random pattern rather than form a few clusters of 

deviations of the same signs. To test the randomness pattern of 

the signs, it is possible to use the "runs"' test (see, for instance, 

Bury (1975)). A simpler alternative method is to compare the number 

of changes of signs of deviations with the number of non-changes. 
z 

These two numbers should be approximately equal, provided that a 

large number of deviations exists and the pattern of signs is 

random (Benjamin and Haycocks(1970)). 

For. a composite null hypothesis, where all the parameters have to 

be estimated from the sample, Fraser (1950) has shown that all 

patterns of signs of deviations are not equiprobable. Therefore, 

the "runs" test for randomness or the simple comparison of the 

number of changes and non-changes of signs cannot be applied in 

' the case of a composite null hypothesis. 

2.3 App ication Procedure for the Chi-square Test 

The frequency distributions of our AD claim amounts samples, 

which were presented in Chapter 1, are skewed to the right and in 

grouped form. In this work, the Chi-square goodness-of-fit tests 

will be performed in situations (i) and (ii) mentioned in section 2.1. 

If estimates of the parameters of a hypothesized distribution are 

required, they will be calculated from the grouped data, as given, 

without any amalgamation of the intervals. there necessary, computer 

programs will be written to provide result tables, giving the actual, 

A, and the expected, E, frequencies as well. as deviations, A-E, for 

1- A "r&", in this case, is defined as a sequence of consecutive plus 
signs or minus signs. 

2- In the sequence ++T--+ there are two changes and three 
non-changes of signs. 
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every interval. The value of for any interval in which 
E 

the expected frequency is greater than or equal to 5, as well as 

the total of such values are also printed. For other intervals, 

i. e. where E<5, enough intervals will have to be pooled together 

to remove this condition. The values of 
LA-Fý2 

for the pooled 
E 

intervals will then have to be calculated, on an electronic desk 

calculator, and added to the total already given in the table. 

The number of degrees of freedom is calculated on the basis of the 

number of intervals actually used in the calculation of the final 

value of X2. Considering that the number of intervals used in the 

calculation of X2 is always more than 20, the value of X2 is 

expected to be large. Because of the skewness of the data the 

major contributions to the value of X2 are from the intervals in 

the lower tail of the distribution. The number of claims in the 

upper tail of the distribution, for instance, claims of amounts 

greater than £1200, is very small. IT erefore the contributions to 

the total X2 from, at most one or two, pooled intervals in the upper 

tail will be rather small, when compared with the value of X2, and 

may be ignored in many instances. This means that the total of 

(A-E) 
2 

E values are calculated by the computer, for the intervals with 

an expected frequency of greater than or equal to 5, may be safely 

taken as the value of the Chi-square statistic: However, for the 

calculation of the degrees of freedom, the number of pooled intervals 

will be taken into account. The above procedure saves us many 

unnecessary calculations on the desk calculator. 

Let us now assume that x is the value of our test statistic and 

v is its relevant n rber of degrees of freedom. We look up a table 

of ci iulati. ve percentage points of the Chi-square distribution, 
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with v degrees of freedom, and note the probability, P, that a 

2 
xv random variable will exceed the value of our calculated X2. 

In other words we find P such that 

P= Pr (X2 ^ X2) 
v 

We classify the result of the test, according to different values 

of P, as follows: 

If (i) P30.05 

or (ii)0.01, P< 0.05 

or (iii) 0.001 5P0.01 

or (iv) p<0.001 

then the difference between the observed and postulated distributions, 

tinder the null hypothesis, based on the given sample is respectively: 

(i) Not Significant 

(ii) Almost Significant 

Significant 

(iv) Highly Significant 

The above arbitrary classification is based on a 5% significance level. 

A different level of significance, say 10%, may be used if stronger 

confidence is required from the test. 

2 .4 
The Total Expected Loss Statistic, T 

It is not just the sign of the deviations that are considered 

important but their magnitude needs some attention too. It is generally 

expected that for a good fit the mag itude of the deviations should be 

small. For a random variable such as the claim amount whose distribution 

is skewed to the right, the frcqucncies in the intervals of the lower 
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tail of the sample histogram will be much greater than those in 

the upper tail intervals. Therefore, the magnitude of the 

deviations in the lower tail intervals will be generally greater 

than those in the upper tail. On the other hand, the claim amounts 

are larger in the upper tail than in the lower. Therefore, it is 

not very informative merely to look at the magnitude of the 

deviations. The above can perhaps be explained better by providing 

an example. Suppose that the (Actual-Expected) frequency in the 

£1-130 interval is equal to +100. In money terms this difference 

is on average equal to 

100 x £15.5 = 11550 

where 115.5 is the average claim amount in that interval. This is, 

in monetary terms, equivalent to a deviation of only 1 in the 

11501 - £1600 interval. We, therefore, suggest looking at the 

weighted deviation for each interval where the weight is the average 

amount of claim in the interval (the examination of our data showed 

that the mid-point of each interval is approximately equal to the 

average claim amount in that interval). We can also define the test 

statistic T as"the sum of the weighted deviations, i. e. 

k 
T 

ii 
£i(ni-noi) 

where fi is the mid-point of interval i, 
in 

ni is the actual frequencyLinterval i, 

not is the expected frequency in interval i, 

and k is the number of intervals. 

This statistic is a measure of overall agreement, in monetary terns, 

between a hypothesized distribution and the actual sample values. For 

a good fit we expect the value of T to be small. Every component of T, 

such as 
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ti (n1-nol) 

indicates, in money terms, a difference (or a loss) in interval i 

which we should expect to find between the observed distribution 

of claim amounts and its hypothesized distribution under the null 

hypothesis. Hence we call T the total expected loss statistic. 

As a better indicator of the difference between the observed and the 

postulated distributions we can look at the ratio of T to the 

total actual cost of claims (i. e. 
E 

f. n. ) for the sample. For a 
i=l 11 

good fit this ratio, expressed as a percentage, should be small. 

To illustrate this point, suppose that the total actual cost of 

claims for a sample of data, representing a particular period of 

accidents, is equal to £1,000,000. If the above defined ratio is 

equal to 2%, say, then the loss we would be incurring by adopting 

the hypothesized distribution under H0 as the true distribution of 

claim amounts would be equal to £20,000. It would then have to 

be decided, on the basis of the situation at hand, whether such a 

discrepancy can be allowed. When testing the goodness-of-fit of a 

predicted model to actual data, T indicates, in monetary terms, how 

far from reality our model is predicting. A set of values of T 

calculated from samples of actual data collected in the past and 

their predicted models can indicate the reliability and consistency 

of a prediction technique. This knowledge will be valuable when 

setting up reserves to meet the cost of future claims as calculated 

from a predicted distribution of claim amounts. I 

We have given some consideration to finding the sampling distribution 

of this statistic. We may use the method of derivation of the asymptotic 

distribution of the Chi-square test statistic and argue as follows: 

If the null hypothesis is simple, so that all the parameters of the 
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postulated distribution are known, then the probability poi that an 

observation (claim amount) will fall into interval i can be calculated 

on the asswnption that Ho is true. In the derivation of the 

asymptotic distribution of the Chi-square statistic it is shown that 

the quantities (ni-npoi)/V are approximately unit normal 

variates, and the x2 distribution emerges as the sum of the squares 

of these quantities (see Kendall and Stuart (1973)). If the null 

hypothesis is composite so that, say, r parameters have to be 

estimated from the sample, then poi will be a function of the r 

unknown parameters. In the proof of the asymptotic distribution of 

the X2 statistic it is again shown that when the r unknown parameters 

are estimated as the solution to a set of r homogeneous linear 

equations in the ni (for instance, estimation by maximum likelihood 

method), then the quantities (n. -npoi)/ ö will be unit normal 

variates (see Kendall and Stuart (1973)). Therefore, for the 

purpose of finding the sampling distribution of T, if the above condition 

in the case of estimation of the parameters holds, we can take it that 

in both cases of simple and composite hypotheses the quantities 

(ni-noi) where not = npoi 

are normally distributed with mean zero and variance noi, i. e. 

N(O, noi). 

Therefore, fi(n1-noi) are independent N(O, fi2noi) 

for i=1,2....... k 

and .kk 
T= 

"E1 
fi(ni-noi) is distributed as N(0, E fi2noi) 

=1 

It is thus possible to compare the standardized value of T with the 

critical values of the standard normal distribution. To justify 
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the multinormal approximation to the multinomial distribution, as in 

the case of the X2 statistic, we believe that the expected frequency 

in each interval should be greater than or equal to S. If this is 

not so, then enough intervals will need to be pooled together to 

remove this condition. 

2.5 Application Procedure for the T Statistic 

In this work we shall use the statistic T in addition to the 

formal Chi-square goodness-of-fit test. We are interested in T as a 

measure of the discrepancy, in monetary terms, between the observed 

and the postulated distributions. We shall not, therefore, concern 

ourselves with its sampling distribution or making comparisons of 

its standardized value with tables of standard normal cumulative 

percentage points. Hence intervals will not be pooled in the 

calculation of T. When fitting a distribution to a sample or 

comparing a predicted distribution with an observed one, the 

computer programs will produce a table of results. "Expected Loss", 

as defined in 2.4, will be calculated for each interval and 

printed in the table. The total expected loss, T, will also be 

produced. The ratio of the total expected loss to the total actual 

cost of claims, calculated as mentioned earlier in 2.4, will be 

shown at the bottom of the table as a percentage. 

2.6 * The Kolmogorov-Smirnov Goodness-of-Fit Test 

Two criticisms of the Chi-square goodness-of-fit test when used 

for continuous distributions' were the necessity for grouping the 

individual observations and the adoption of large intervals for 

small sample sizes. Both of these procedures result in loss of 

information. Besides, when there are k intervals, the 
2 

test 
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statistic is based on k comparisons between the observed and 

expected class frequencies, while there are n observations in the 

sample. Therefore, in such circumstances, it is preferable to have 

available test statistics based on individual observations. Several 

goodness-of-fit test statistics exist which are based on the 

individual sample observations and are functions of the deviations 

between the observed cumulative distribution of the sample (the 

empirical distribution function) and the cumulative distribution 

function under the null hypothesis. Let us first define the 

empirical distribution function: 

For a sample of n random observations xl, x2,....., xn we define 

the empirical distribution function Sn(x) as 

0 x<x(1) 

Ux) = r/n x(r) ,x< X(r+1) 

1 x(n) ,x 

The x(r) are the order statistics of the sample. Hence Sn(x) is 

simply a step function which gives the proportion of the observations 

less than or equal to x. 

The best known statistic of the above form is the Kolmogorov- 

&nirnov test statistic. his goodness-of-fit test was first proposed 

by Kolmogorov in 1933 and then developed by Smirnov in 1939. If 

ro(x) is assumed to be a continuous and completely specified 

population distribution function under the null hypothesis and 

Sn(x) to be the step function of the sample, then the test makes use 

of the statistic 
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U3 max ( Sn (x) - Fo (x) 1 
x 

It is expected that SnCx), for a random sample of n independent 

observations, is fairly close to the specified distribution function. 

If it is not close enough, then the distribution under the null 

hypothesis is not the correct population distribution. 

The maximum deviation D is a random variable whose sampling 

distribution is lcnoum and is independent of Fo(x), when the null 

hypothesis holds, provided that F0(x) is continuous (Massey (1951)). 

Therefore, D is a distribution free statistic. Its limiting 

distribution was derived by Kolmogorov himself. Smirnov (1948) 

gave a tabulation of the limiting distribution of D. Massey 

(1950-a) provided the method for evaluating tha distribution of D 

for small samples. Tables for determining the significance of D 

in finite samples were given by Birnbaum (1952). A table of the 

critical values of the test statistic D at different significance 

levels for sample sizes n=1 to 20, n= 25,30,35 and n> 35 

was given by Massey (1951). For the sake of convenience, the 

critical values of D for large sample sizes (n > 35) are reported, 

from his paper, in table (2.1) at the end of this chapter. 

When data is only available in grouped form, it is possible to 

calculate the deviations ISn(xi)- Fo(xi)I at each point xi'where 

xi is the upper boundary of interval i. Massey (1951) states that 

grouping the observations into intervals tends to 'Lower the value of 

D, and he-assert. s that for grouped data the appropriate significance 

levels are smaller than those given in his table. For ]arge sa-nples, 

however, grouping causes little change in the appropriate 

significance levels. If the nunber of categories is small, then 

important chi.. gcs can be expected in the significance levels for any 
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sample size. According to Massey (1951), the Kolmogorov-Smirnov 

Statistic, D, is correctly used only if the distribution Fo(x) is 

continuous and completely specified as regards form and all its 

parameters. The distribution of the maximum deviation, D, is not 

known when certain parameters of the distribution have to be 

estimated from the sample values. When we estimate the parameters 

of the population distribution from the data, we are in effect 

adjusting these parameters according to the sample values, and 

in consequence we should be making a closer fit of the hypothesized 

distribution to the sample values. Hence we expect that at the 

same significance level the critical value of D will be smaller 

than when F0(x) is completely specified. Therefore, in these 

circumstances, if the maximum absolute deviation exceeds the 

critical value Da(n), corresponding to a significance level a and 

read from an appropriate table of the critical values of D (for 

large sample sizes, n, see table (2.1)), then we cansafely 

reject the null hypothesis and conclude that the population 

distribution is not Fo(x). 

The distribution of the Kolmogorov-Smirnov test statistic 

when the parameters of Fo(x) are estimated from the sample values 

depends on the form of F0(x) and is very difficult to find analytically. 

Monte Carlo techniques can be used to calculate the approximate 

distribution function of this test statistic for each particular 

family of distributions (say, normal) Fo(x) under the null 

hypothesis. Lilliefors (1967) gives a table, based on Monte Carlo 

calculations, for use with the Kolmogorov-Smirnov statistic when 

testing whether a set of observations is from a normal population 

whose; wean and variance are not specified but must be estimated from 
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the sample. He suggests using the sample mean and variance (with 

denominator n-1) as estimates of the mean and variance of the normal 

population to specify F0(x). For large sample sizes (n > 40) the 

critical values of D at various significance levels are 

reproduced, From his paper, in table (2.2) at the end of this 

chapter. 

Lilliefors (1969) gives a similar table to be used when testing 

whether a set of observations is from an exponential population 

with unspecified mean. He suggests using the sample mean as the 

mean of the exponential population. 

2.7 Comparison Between the Chi-square and the Kolmogoroy-Sminiov 
Goodness-of-Fit Tests 

Massey (1951) argues that the Kolmogorov-Smirnov test may be 

always more powerful than the Chi-square test. He also points out 

that the K-S test, at least at the 50 per cent power level, will 

detect smaller deviations between the observed and hypothesized 

distributions than will the Chi-square test. Not enough is known 

about the power of either test to justify the preference for using 

X2 or D for testing a completely specified hypothesis (Birnbaum (1952)). 

However, Massey (1950-b) has established a lower bound to the power 

of the K-S test in large samples. 

We recall that two criticisms of the Chi-square test were the 

grouping of the observations when individual observations were 

available and the adoption of large intervals for small samples. Both 

of these procedures result im.. loss of information. The Kolmogorov- 

mirnov test, however, uses individual observations and hence may 

utilize information more cconpletely than the Chi-square test. 

For very small samples the C'hi-square test is not applicable at all 
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because its sampling distribution is not distribution free for 

finite sample sizes and is not known. The K-S test, however, may 

be used for very small. samrles. 

The major shortcoming of the K-S test is that when the 

parameters of the postulated distribution must be estimated from 

the sample values the test is not applicable because the sampling 

distribution of D is not distribution free and is not known. In 

such circumstances the limiting distribution of the Chi-square 

is easily modified by reducing the degrees of freedom. 

2.8 Application Procedure For K-S Test 

In our work, we can apply the Kol ogorov-Smirnov test to examine 

the goodness-of-fit of a predicted distribution of claim amounts 

to actual data (i. e. in situation classified under (ii) in Section 

2,1). In such cases the null hypothesis is of the simple form 

and we can use critical values of D given, for large n, in table 

(2.1). However, in situations classified under (i) in section 

2.1, when we fit a distribution with unspecified parameters to a 

sample of actual data, the null hypothesis will be composite and, 

as mentioned earlier, we cannot in general use the K-S goodness-of- 

fit test because tables of the critical values of D do not exist 

in these circumstances. There is, however, an exception in the case 

of the lognormal distribution. 

We say a random variable X is distributed lognormally if and only if 

Y= log X is distributed normally (see Chapter 3). Y= log X is a 

one-to-one function and hcnce we can use a test of normality for Y 

as a test of lognormality for X. Therefore, for the lognormal 

distribution we may use the Kolm. ogorov-&nirnov test statistic along 

with table (2.2) of its critical values for large sample sizes. As 
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we mentioned earlier, this table has been produced by Li. lliefors (1967) 

by using Monte Carlo techniques, and it is for testing the 

goodness-of-fit of a normal distribution with unknown mean and 

variance. 

We menti. oned earlier that if parameters are estimated from the 

sample values then the critical values of the K-S statistic would be 

smaller than those in the standard tables (of Massey (1951), for 

instance). This provides us with a means of safely rejecting a 

postulated distribution when its parameters have been estimated from 

the sample. For this purpose we need only to check that the absolute 

maximum deviation, D, exceeds the critical value Da(n), given in 

table (2.1) for large n, to conclude that the hypothesized distribution 

should be rejected at significance level a. If D does not exceed 

Da(n) then we cannot decide whether the null hypothesis should be 

rejected or accepted. 

Our accidental damage data are in grouped form. Therefore, we 

explain the method of calculating the Kolmogorov-S; nirnov test 

statistic, D, for this type of data. Let us assume that n 

observations have been grouped into k intervals such that xi and ni 

are respectively the upper boundary and the observed frequency of 

interval i. Suppose that under some null hypothesis the expected 

frequency for each interval has been obtained and that for interval 

i it is equal to noi. The above is all the information we need to 

calculate the value of the K-S test statistic, D, without resorting 

to the calculation of the empirical and theoretical distribution 

functions. This is because we can easily show that 

D max I Sn Cx1) - Fo fxi) 
x. 1 

E max 
1 31 

(l. 
. -1°j) I 

where i=1,2,...., k. 
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Therefore, if in a table which gives the above information, a 

column for (Actual-Expected) frequencies exists, we can rapidly 

calculate the D test statistic. For this purpose we need to add 

the successive values in this column, starting from the first 

interval, and to find the maximum absolute value of the cumulative 

sums which we obtain. We then divide this maximum absolute value 

by n, the sample size, and the result will be the value of the 

K-S test statistic D. 

Because the distribution of claim amounts is skewed to the right 

we expect that the largest deviations of the observed from 

expected frequencies would occur in the lower tail of the 

distribution. The deviations usually change sign from every 

interval, or every few intervals, to the next and so it is 

expected that the maximum absolute deviation, in the cumulative 

sum of the (Actual-Expected) frequencies, will occur somewhere in 

the laver tail of the distribution. Therefore, we need only to add 

the values of (Actual-Expected) frequencies for a few lower intervals 

to be able to calculate D. 

If the null hypothesis is simple, then we compare the value of 

D with the critical values of its distribution given in table (2.1) 

for large n. If Ho is composite and the distribution under the 

mill hypothesis is the two-parameter lognormal distribution, then 

we use table (2.2). 

Let P= Pr (D(n) a D) where D(n) is some value in the table of the 

critical values of D. In other words, P is the probability of finding 

a value from the distribution of the K-S statistic which is greater 

than that found from our sample. According to different values of 

P we can classify the result of the test as follows: 
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if (1) P>0.05 

or (ii) 0.01 ,P<0.05 

or (iii) P<0.01 

then the difference between the observed and the postulated 

distributions, under the null hypothesis, based on the given 

sample is respectively: 

(i) Not Significant 

(ii) Almost Significant 

(iii) Significant 

The above arbitrary classification is based on a 5% significance 

level. A different level of significance, say 101o, may be adopted 

if stronger confidence is required from the test. 

2.9 Other Goodness-of-Fit Tests 

There are two other goodness-of-fit tests which are, like the 

Kohnogorov-Sr, tirnov test, based on the deviation between the sample 

empirical distribution function and the hypothesized distribution 

function. These are: 

(i) Cramer-Von Mises 

(ii) Anderson-Darling 

test statistics. For the calculation of these statistics we require 

the sample order statistics, and hence we need to know the values 

of the individual observations. Most data on claim amounts, 

including our own AD data, are only available in grouped frequency 

form which does not allow the exact calculation of these statistics. 

We therefore do not consider these statistics in the present work. 
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2.10 Tables 

Table (2.1) 

Critical values of the Kolmogorov-&nirnov Statistic Da(n), 

for testing completely specified distributions. 

sample size =n> 35 

Level of significance Ca) 0.20 0.15 0.10 0.05 0.01 

D Cn, 1.07 1.14 1.22 1.36 1.63 

a Vn 

Table (2.2) 

Critical values of the Kolmogorov-Smirnov Statistic, Da(n), 

for testing a normal distribution with unspecified mean and 
variance . sample size =n> 40 

Level of significance (a) 0.20 0.15 0.10 0.05 0.01 

D (n) 0.736 0.768 0.805 0.886 1.031 

a 
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CHAPTER 3 

The Lognormal Distribution 

3.1 Introduction 

Over the past century, the lognormal distribution has emerged as 

one of the most widely applied distributions in practical statistical 

work. Aitchison and Brown (1957) studied this distribution thoroughly 

and in 1957 published a book entitled "The Lognormal Distribution" 

in which almost all the results previously found by other people are 

collated. An extensive bibliography is also included. Their review 

of the literature shows that this distribution has successfully fitted 

data from various branches of science and engineering. A core up to 

date bibliography is provided by Johnson and Kotz (1970). 

References to the application of the lognormal distribution in 

the field of insurance were made in section 1.4. The papers by 

Benckert (1962) and Ferrara (1971) s1--em most relevant to the present 

work. In both papers, the lognormal distribution is fitted to several 

sets of claim size data from different branches of general insurance. 

The former, however, does not define or present the data and uses only 

maximum likelihood estimation formulae when individual observations 

are available. In the latter reference, grouped data are available and 

the three parameter lognormal distribution is fitted by a combination 

of the methods of quantiles and. least squares. We shall comment 

further on this procedure when we consider the estimation problem of 

the three parameter case. 

Aitchison and Broun (1957) deal extensively with the estimation 

problem where individual observatiors are available. Their treatment 

of estimation from grouped data is, however, so brief that it is 

contained in a few paragraphs. 
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Most data on claim amounts, including our accidental damage data, 

are avail. abl' in grouped form only. A substantial part of this chapter 

is, therefore, devoted to the problem of estimation from grouped data. 

The two and three parameter lognormal distributions are initially 

defined and some of their properties are derived. A theoretical 

justification for the emergence of the lognormal model for the 

distribution of claim amounts is put forward. In section 3.6, several 

tests of lognormality for the 2-parameter case are examined and the 

accidental damage data isthen tested. A simulation exercise is carried 

out to see how these tests perform when applied to actual samples of 

lognormal data. Estimation from grouped data, for the 2-parameter 

distribution, is studied in section 3.7. Several methods are 

considered and, in particular, a special technique is proposed for 

estimating the parameters by the method of multinomial maximum likelihood. 

A computer simulation is performed to measure the efficiency of various 

methods of estimation. In 3.8, the 2-parameter model is fitted to the 

accidental damage data and the results are analysed. The effects of 

inflation on the parameters of the model are next discussed and a 

technique for predicting the distribution of claim amounts during a 

future period is suggested. This is then tested on our AD data. Several 

indices of prices and wages are examined to find the appropriate index 

for changes in the accidental damage claim amounts over time. 

The 3-parameter case is dealt with next. A graphical test of 

lognormality is suggested which provides us with an approximate method 

of estimating the location parameter. In section 3.12, the estimation 

problem for grouped data is considered. A special technique for 

estimating the parameters by the method of least squares is suggested. 

The multinomiial maximum likelihood method is also modified for the 3- 

parameter case. These methods are then used to fit the 3-parameter 
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ix dcl. to our accidcntal dairage data. The results are analysed iii 

? 7ýý 

3.13. The theoretical effects of the rate of inflation on the 

parameters of the model are studied in 3.14. Predictions are made 

using accidental damage data from the far past and the results are 

compared with actual data from the past. Finally, the findings of 

this chapter will be discussed in the conclusion section 3.15. 

3.2 Definition 

A random variable X is said to be lognormally distributed if 

2 
and only if Y= log X is normally distributed. Let u and a be 

the parameters, mean and variance respectively, of the distribution of 

Y.. We denote its probability density and distribution functions by 

i2 fN(y; It ,? 
) and N(y; .1 ,ý) respectively, : here 

2 
cy; 11 to 

f 
and 

"N (y; , a2 ) 

for -co<y<o 

_ (Q / )-1 exp 
2(u )2] (3.2-i) 

Y 
fN (t; u , Q2) dt (3.2-2) 

2 

-Go <It <a* ; 0<a <a* 

The probability density function (p. d. f. ) of X can be derived, by 

using the transformation Y= log X, as 

fLN(X, u , ßs2) - (Qx�Z, r)-1 exp 2( 
log xe- )2 (3.2-3) 

2 
and its distribution function, LN(x; u ,c), will be 

22' 
LN (x; u Q) =N (log x; u a) (3.2-4) 

for x> 0; -c3 <u< co ;0<Q< 

2 
fLN(x; p , e) , as defined in (3.2-"3), is the p. d. f. of the two-parameter 

. Lognormal distribution. It is evideat that u and Q2 are not location 

or scale parameters for X. 
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If we rearrange (3.2-3) into 

f (a, U , c'2) = LQP (x/P) /] -ý exp 
{- 2[ log 

6x/p 

2} 
(3.2-5) 

where p= ell 

then it becomes obvious that p= ell and a are the scale and shape 

parameters respectively. It will be shown later that eu is the median 

of the two-parameter lognormal distribution. 

We can introduce a location parameter, c, into the model by replacing 

x by x-c in (3.2-3). The parameter c serves as a threshold below which 

a lognormal variable X is not realized. The p. d. f. of the three- 

parameter lognormal distribution is therefore 

fLN(x; c, u, Q2) ._[ o(x -- c)/ ] -1 cxpf -2[ 
lcg(x -ac) - u12} (s. z-6) 

2 
for x>c; -oo<u<c; 0<a < 

and its distribution function will be 

22 
LN(x; c, u, cr) = N(log(x - c) ;u a) (3.2-7) 

In the 3-parameter case it is log(X - c) which is distributed normally 

and not log X. 

3.3 Properties of the Two-Parameter Lognormal Distribution 

The following results can easily be derived for the two-parameter 

lognormal distribution (see, for instance, Aitchison and Brown (1957)). 

The distribution is unimodal and has a mode at 

Xmode = exp (u - a) (3.3-1) 

The median of the distribution is at 

xmedi = exp(P) (3.3-2) 

Moments of all orders exist and in particular the rth moment of X 

about zero is 
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of = E(Xr) = exp(ru +122 ra) (3.3-3) 

Heyde (1903) has shown that this distribution cannot be uniquely 

determined by its moments because there exist other distributions 

with the same moment sequence as {er} 

The mean of the distribution, which for simplicity we denote by a 

is at 

a= E(X) = ei = exp(u +2 (3.3-4) 

The rth central moment, er , can be expressed in terms of the rth 

and lower moments of X about zero. In particular 

'-e'2 (3.3-5) e2 = e2 
l 

3 
03 = e3 - 30,101 + 2011 '; (3.3-6) 

24 
04 = e4 - 4e1le3 + bei e2 - 3ei (3.3-7) 

2 

Hence the variance of X, denoted by 6, is 

,' --- 
2-22 

Var(X) =ß e2 = exp(2u +a )(e a 
- 1) 

which on using (3.3-4) gives 

22222 
g= aA where A= ea -1 (3.3-8) 

From(3.3-8) it is obvious that A is the coefficient of variation 
2 

of the distribution which depends on a only. 

From (3.3-6) and (3.3-7), 0 and o4 can be expressed in terms of a 

and a as 

03 =a3 (a 
6+ 

3), 
')8 

4(X12 
+ . 6X10 + 35x + 167 

64 
+ 3x 04 ) 

Hence the coefficients of skewness ard, kurtosis of the distribution, 

1 and ß2 respectively, are 
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ri=3_ A3 +3>0 (3.3-9) 

ý= 
q4 

=a+ 6x6 + 15X4 + 16x +3>3 (3.3-10) 2 
ß; 7 

which indicate that all lognon l densities are skewed to the right 

and that t}: --y are more peaked than their related normal densities. 

2 
For small values of A, and hence of a, 

i and ß2 are close to 0 

and 3 respectively. In such cases, the central portion of a lognormal 

frequency curve resembles a normal curve and may be approximated by it. 

From(3.3-3) it is evident that er is a product of e4 and 

.22 L-9- 

e2 which Laurent (1963) defines as the two "functional characteristics" 

of the distribution. The mean and variance of the lognormal distribution 

are non-functional in the sense that two lognormal populations may 

have the same mean or variance although they have different parameters 

and a22. This motivates the use of the median, ell , and the 

function ca as measures of central tendency and dispersion respectively. 

We can show that a simple relationship exists between the quantiles 

of the same order of the lognorrral and the standard normal distributions. 

2 
Let zq and xq be the quantiles of order q of N(z; 0,1) and LN(x; u, o ) 

respectively. Then by definition 

2 
N(zq; 0,1) =q= LN (xq; ua) 

i, e. =P (X , xq) =P (log X, log xq) =P (Y , log xq) 

(where Y= log X) 

u 
lo; x -u 

=P (Y - 

log ä 
=P- (Z* 

Q 

(where Z is the standardized normal variable) 

log xQ -u 
=N(p, i 
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logx -u 
Hence za = (3.3-11) 

or xq = exp (u + azq) (3.3-12) 

In particular, the median of N(z; 0,1) is at z0.50 = 0, hence 

from (3.3-12) the median of the distribution of X is, as mentioned 

earlier, at eu . 

Before concluding this section, we may note that the relative 

positions of the mode, the median and the mean, i. e. 

2 

eu-c' , eu and eu 
+° 

respectively 

prövide additional evidence that all lognormal densities are positively 

skewed. 

3.4 Properties of the 3-Parameter Lognormal Distribution 

The transformation x}x-c to obtain the 3-parameter distribution 

is only a translation along the x-axis. It leaves the shape of the 

frequency curve unchanged and only shifts it by an amount c along the 

x-axis. 

The location measures are, therefore, increased by c and hence 

Xmode =c+ exp(tt - Q) (3.4-1) 

Xmedian= o+ ex' (u) (3.4-2) 

i 
aý "mean =c+ exp(u + 

r) 
(3.4-3) 

The moments about the mean and the dispersion measures remain the 

same as for the 2-parameter case. In particular the variance, ßz, and 

the coefficients of skewness and kurtosis are the sa: re for both the 

two and three parameter lognormal distributions because they are all 

functicnr, of the central rrernents. The coefficient of variation becomes 
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A' where 

IM 

a== (3.4-4) i. e. +a 
= 1+c a 

which is a function of all three parameters. 
2 

The relationship between quantiles of order q of LN(x ; c, u, cr) and 

N (z ; 0,1) will, from (3.3-12). become 

X=c+ exp(11 + azq) (3.4-5) 

which is equivalent to zq =Q log(xq - c) - (3.4-6) 

3.5 The Lognormal Distribution as a Model for Claim Amounts 

Let X0 be the amount which an insurance company at the inception 

of a policy expects to pay in case of a claim on that policy (X0 can be 

considered closely related to the net premium). Suppose that there 

are n factors which affect the size of a claim on this policy, such 

as age, type of car, district, driving skill, climate, occupation, etc. 

Let Xj be the size of claim due to the effect of factors 1 to j only. 

If we assume that the effect of factor j is to irodify Xj_1 to Xj by 

multiplying it by a random perturbation U), i. e. 

xi x_1. U 

No UlU2 ... Uj 

then for a policy subject to n different factors we have 

X1 = Xo ujU? ... n 

where . {U1, U2, ... tin } is assumed to be a sequence of random 

variables With knoN joint distribution. Consequently 
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n 
log X1= log Xo +I log U. 

j =1 - 

provided that the joint distribution of U's is such that the central limit 

theorem applies to the sum of their logarithms, it follows that log Il will 

tend to normality for large n. Hence the amount of the claim will be 

(approximately) lognormally distributed . Ferrara (1971) and Finger (1976) 

also justify the lognormal nadel with arguments very similar to the above. 

3.6 Tests of Lognormality :- The 2-Parameter Case 

An irportant step in the identification of the statistical model is 

to test if our sample is likely to be from a population whose distribution 

belongs to a particular family of distributions. In other words, we should, 

as a first step, test if our sample is, say, from a logformal population. 

At this stage we are not interested in the parameters of the model but would 

just like to know if, on the basis of the saa'nple values, the assumption of 

lognornality is reasonable enough to allow further analysis according to 

this model. 

We consider three tests for the lognormal distribution. 

3.6.1 Graphical Test 

From equation (3.3-11) , i. e. 

Zq 
.Q 

lO-ý Xq Q 

it is obvious that the locus of the points (log xq , zq) is a straight 

lire. 1'hen these points are calculated fron a sarple and plotted on a 

rectangular co-ordinate system then, if the sample is frort a t1co parameter 

lognonal populaticn, the points should lie approximately on a straight 

line. 

To calculate zcu, quintile of order q of N(z; 0,1) distribution, 
' we need 
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to know q. This can be calculated from the sample empirical 

distribution function which we define as 

Total number of claims <x F(x) = P( 
%X x) ° Total number of claims in the sample 

(3 6-1) 

Therefore r(x) is simply the proportion of claims with amounts less 

than or equal to x. If we express this ratio as a percentage, then we 

call F(x) the sample cumulative percentage function. Hence, at the point 

Xq in the sample we take q= F(xq) and enter a table of the cumulative 

distribution function of the standard normal distribution in order toaind 

the value of the variate za. The point (log xq , zq) is thus determined. 

The use of a special graph paper called the "logarithmic probability 

paper" makes the above task easier. This graph paper has one of its 

axes graduated logarithmically while the other is graduated according to 

a standard nonral probability scale. Hence we only need to know and 

plot (xq, q%). The logarithmic axis converts xa to log xq while the 

probability axis converts the percentage proportion q to its corresponding 

standard normal variate za. 

3.6.2 The Skewness and Kurtosis Tests 

As mentioned earlier, if X has a lognomal distribution then log X 

is normally distributed. This suggests that a test of normality for 

log X is equivalent to a test of lognoYmality for X. Therefore, we 

may apply the skewness and kurtosis tests of normality on the transfonned 

values, log x, and infer from its result whether the original sample 

values are from a lognormal population. 

This test is based on g, and g2 , the sample coefficients of skewness 

and excess kurtosis respectively, for the distribution of log, X, i. e. 

In- 

g1 1 
m2 

(3.6-2) 
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and 

m4 
g2 `2-3 (3.6-3) 

m2 

where mr is the sample central moment of order r. 

Exact expressions for means and variances of gl and g2 are given in 

Cramer (1946) as : 

Er (gl) _0 (3.6-4) 

var(g1) _ (n6( 
n+3 

(3.6-5) 

E(92) =- 
n6l 

(3.6-6) 

var(g2) = 
24n(n-2)(n-3) 

2 (3.6-7) 
(n+1) (n+3) (n+5) 

where n is the sample size. 

we can, therefore, see by how many standard deviations g1 and g2 differ 

from their mean values. If the difference is less than, for instance, 

three standard deviations, then it is not significant, while if it is 

greater than or equal to, say, three standard deviations, then the difference 

indicates significant deviation from the assumption of normality under 

which the mean and variance have been calculated. 

Geary and Pearson (1938) have given the 5% and 1% probability points of 

gl and (g2 + 3) for various sample sizes. In large samples, however, the 

rough test of normality provided by comparing gl and g2 with the 

approximate values of their standard errors, namely 
/ 

and nn 

respectively, would be sufficient. 

3.6.3 Test in the (ýl, ßz) Plane 

Let ºýý1 and 62 be the coefficients of ske-mess and kurtosis, 
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respectively, for a distribution. Barton and Dennis (1952) divide the 

(ßl, 02) plane into different regions of unir, ýodal frequency curves. They 

show that in the (51, ß2) plane the lognormal distribution is represented 

by a straight line. This information provides us with another test of 

lognormality. 

Suppose that we are given several samples of independent observations 

on a random variable (say, claim amounts incurred during different 

and b2 
, 

i. e. the sample periods of accident). We can calculate V -b 

coefficients of skewness and kurtosis respectively. In large samples, 

V -bi. and b2 should be close to their population values ß and ß2. 

Therefore, we can plot the points (bl, b2), calculated for different 

samples, on a rectangular co-ordinate system of axes. If the underlying 

distributions of the populations from which our samples were derived are 

lognormal, we would expect the points (bl, b2) to lie, approximately, 

on a straight line. Therefore, with the availability of several samples, 

we can test whether the underlying model for the distribution of claim 

amounts is lognormal. 

3.6.4 Testing the Accidental Damage Data for 2-Parameter Lognornnalit 

We first applied the graphical test. Accidental Damage data for 

seven different periods of accident were presented in tables (1.1) to 

(1.7). For each sar, -ple, data is in grouped form and the sample cumulative 

percentage function, F(xl) qi%, has been calculated at each point 

x. which is the claim amount equal to the upper boundary of interval i. 

Considering the range of the claim amounts, the points (xi 
, qi) were 

plotted on a 3-cycle logarithmic probability paper which has its log 

axis (for claim anx)unt) graduated for increases of x up to one thousandfold. 

The plots for different periods of accident are presented in figures 

(3.1-a) and (3.1-b). To avoid producing a. too voluminous th3sis, these 
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Figure (3.1-a) - Points (x 
, F(-) ) plotted on lo, -. arithmic 

probability paper . 
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and other graphs have been reduced from their originals. jr, this case, 

they have been reduced to 
1 

of their original size. However, for the 

purpose of comparison between plots for different samples, it is more 

convenient to present these graphs as in figures (3.1-a) and (3,1-b). 

For each sample the points appear to lie approximately on a straight 

line. We have fitted this line by eye. The pattern of formation of 

the points about the line is the sane for all the samples. The deviations 

from the line seem to be greater at the tails of the distribution. 

It was deemed necessary to see what an actual sanp1e of two- 

parameter lognormal observations from a population similar to those from 

which our accidental damage data have been derived would look like when 

plotted on the logarithmic probability paper. A computer simulation exercise 

was, therefore, performed. We generated ten random samples each 

consisting of 2500 lognormal observations from the population with 

.2 4.5 and v=1; It will be shown later that these values of u and 
2 

are close to our estimates of the population parameters for the 

accidental damage data. The size of each sample was adopted as 2500 

because this figure is close to the size-of our AD samples. 

For each simulated sample, the random lognormal variates were grouped 

according to the same grouping format as for the AD samples, i. e. up to 

600 in bands of 30 and afterwards in bards of 100. The computer program 

P2 performed the task of simulation and then printed out a table of 

grouped data with its corresponding sample cumulative percentage function. 

The ten simulated samples, thus generated, were then each plotted on 

logarithmic probability papers in the same way as described for the 

accidental damage data. The plots are presented in figures (3.2-a), 

(3.2-b) and (3.2-c). 

In each case the points seem to lie approximately on the straight line 
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which has been fitted by eye. In the lower tail of the distribution 

the points seem to lie almost exactly on the line 
, unlike the behaviour 

of the accidental damage samples. The pattern of the points in the 

upper tail of the simulated samples is similar to that of the accidental 

damage data, i. e. the deviations from the line are more marked. This 

indicates that even from a sample of 2500 lognormal observations we 

cannot obtain a close fit to the straight line in the upper tail of the 

distribution. This is because the lognormal is a very skew distribution 

and observations in the tail are scarce. Therefore, we need a much 

larger sample size before we can see a true picture of the upper tail of 

the distribution. Hence we can safely assume that the pattern of the 

points in the upper tail of the accidental damage samples is by no means 

unusual to the lognormal distribution and should, therefore, feel 

satisfied that the distribution fits the upper tail reasonably well. 

The simulated samples, however, tell a different story in the. lower 

tail of the distribution. Here the points lie very much closely on 

the straight line-and the deviations from it are much smaller than in 

the case of the accidental damage samples. Therefore, the pattern of 

the points in the lower tail of the accidental damage samples is not 

consistent with that of the two-parameter lognormal distribution. We 

believe that this inconsistency could be partly because of the in- 

sufficiencies and inaccuracies of the data in the lower tail. Most 

policy holders do not claim for small amounts for fear of losing their 

full entitlement to no claim discount which, in some cases, is worth 

more than the amount they may recover by a claim. Therefore, the data 

in the lower intervals may be incomplete. On the whole, the assumption 

of two-parameter lognorriality as tested by this method seems reasonable 

enough to allow further analysis. 

Two other tests of lognormality, mentioned in 3.6.2, are the 

skewness and kurtosis tests of normality. The values of the coefficients 
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gl and g2 for each saq)le of the accidental damage data were calculated 

by program Pl. These were presented in tables (1.1) to (1.7) and are 

produced in table (3.1) at the end of this chapter. The standard 

errors of these coefficients, for large samples, have been calculated 

according to the formulae of section 3.6.2. These are presented in 

table (3.1. ) as well. From this table it is apparent that in four periods, 

namely 74/3rd quarter to 75/2nd quarter, the value of gl is greater than 

three times its standard error. Therefore, in these four cases, the 

underlying assumption of normality. for log X, and hence of two-parameter 

lognormality for X (the claim amount) should be rejected. For the 

remaining three periods, namely 73/4th quarter to 74/2nd quarter, the 

lognormal assumption for the distribution of claim amounts is supported. 

The values of g2 are significantly larger than their standard errors. 

Therefore, this test suggests that the assumption of two-parameter log- 

normality should be rejected. gl and g2 were calculated from grouped 

data with the assumption made, in section 1.6, about the concentration 

of the claims in each band at the mid-point of that band. This could 

affect the values of gl and g2 calculated from grouped data. A 

Sheppard's correction for the calculation of moments of log Xis not 

applicable exactly because the intervals of log X are not of equal 

length. 

It was decided to put the ten simulated lognormal samples to these 

tests. The values of g1 and g2 were calculated from the simulated 

grouped data in exactly the sane way as for the accidental damage data. 

Their standard errors for a sample of size 2500 were also calculated. 

The results are presented in table (3.2). The values of gl compare 

favourably with its standard error and, therefore, this test performs 

very well. The values of g2 are in most cases acceptable, but in the 

case of samples 1,7 and 8, E2 is greater than three times its standard 

error. 
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Therefore, the coefficients g1 and g2, even when calculated from grouped 

data, can be used to test normality for log X and, on the basis of the 

simulated samples, it seems that gl can indicate normality more 

accurately than g2. The comparison of the values of gl and g2 calculated 

from accidental damage samples with those for the simulated samples shows 

that the assumption of two-parameter lognonnality is, on the whole, 

reasonable. 

Another test of lognormality is the test in (ßl, ß2) plane 

which was mentioned in section 3.4.3. The values of ºý1 and b2 for 

the AD samples were calculated by program P1 and they were shown in 

tables (1.1) to (1.7). Figure (3.3) shows a plot of the points (bl, b2). 

These points, although some of them are very near each other, seem to 

lie approximately on a straight line. This supports the assumption of 

lognormality as the underlying model for the distribution of claim 

amounts. 

To see how this test performs when applied to actual lognormal 

samples, bl and b2 were calculated for each of the ten simulated samples. 

The points (bl, b2) are plotted in figure (3.4). They appear to lie 

approximately on a straight line. Therefore, this test can be applied to 

test lognormality. However, for reliable results we need a large 

number of points and hence a large number of samples. 
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Figure (3.3)'- Fart of the (bi 2) points for the Accidental 

Damaje data 
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3.7 Estimation of the Parameters of the 2-Parameter Lognormal 

Distribution 

Aitchison C-1-id Brown (1957) investigated thoroughly the problem of 

estimating tho parameters of the lognormal distribution when the value 

of each individual observation in the sample is available. Ibwever, 

their treatment of the problem in the case of grouped data is very brief 

and they point out that there are certain difficulties in the various 

methods of estimation. In this section we study the problem of 

estimation from grouped data. Some of the methods, described below, 

have been modified from methods of estimation for when individual sample 

values are given. Some others, such as the graphical, the least 

squares, and the multinomial maximum likelihood methods are directly 

suitable for grouped data. 

Let us assume that we have a sample of grouped data where n independent 

random observations on a random variable X (in our case, the claim 

amount) have been grouped according to their size into k intervals. 

Further, let ni be the number of observations (clams) in the class 

interval (xi_1, xi) such that 

k 

n=ýn; 
1y i=1 

It is usual, in the case of grouped data, to assume that all the values 

within any interval are concentrated at the mean of the portion of the 

distribution over that interval. If the distribution is the correct 

rodcl for the population from which the sample values have been derived, 

then for every relatively small interval, the mean of the portion of the 

distribution over that interiral can be considered as equal to the mean 

of sample values in the sp-me interval. Information on the average 

amount of claim in any interval was provided by the insurance company. 

This showed that for every interval the average amount was very nearly 
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equal to the value of the idd-point of that interval. We, therefore, 

feel justified in asstrdng that within any interval (xi_l, xi) the 

claims are concentrated at the point 

iL 
(xi-1 * Yid 

3.7.1 The Method of Moments 

(3.7-1) 

Let Sl and S2 be respectively the first and the second moments 

of the sample values abcut zero, i. e. 

1k S1 =n 
lýl 

nixi (3.7-2) 

k2 

S2 nil nixi (3.7-3) 

Estimation by the method of mments consists of putting S1 and S2 equal 

to their corresponding theoretical values from the distribution. Hence, 

by using equation (3.3-3) with r=1 and r=2 respectively, we will 

have 

S1 = exp (u +2 Q2 ) 

2 
S2 = exp (2p + 2Q ) 

2 
Solving the above sL'Tultareous equations for u: nd a we obtain 

2S2 log S2 

and 

Q2 - log S2 -2 log Sl 

(3.7-4) 

(3.7-5) 

(3.7-6) 

(3.7-7) 

^z 2 
where u and Q are the estimates of p and a respectively. We have 

given some consideration to the question of applying a Sheppard's 

correction to the second sample moment. however, numerical investigations 
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showed that this correction does not have a significant impact on the 

values of u and e2 . 
It has been suggested by some authors (see for 

instance, Geary and Pearson (1938)) that unless the grouping interval 

is more than one-third of the standard deviation of the sample, it is not 

really necessary to apply any corrections to the moments. A glance at 

tables (1.1) to (1.7) shows that for our AD samples the interval width 

for the majority of the bands, containing some 9510 of the total number 

of claims, is 30, while the standard deviation in each sample is at 

least six times that. From the above considerations a correction to the 

second moment is not deemed necessary. 

3.7.2 The Approximate Maximum Likelihood Method 

The word "approximate" in the title of this method is used because 

of the assumption of concentration of the claims in every interval at 

the mid-point of that interval. For a grouped sample, using the notation 

already adopted, the likelihood function L is 

2-kk -n1 " 
L= (2, ra)n/2 I1 xi exp 'ý' 

I ni (log xi 
-u )2 (3.7-8) 

i. =1 2a i=l 

I 

2 
The same values of u and a maximize both L and log L where 

log L=-n log 27r -2 log Q2 

k 
nlog x-1 

i=1 
ii 

2a 

kz 

ill (log xi-u) 
i=1 

(3.7-9) 

2 

The values of u and a which r, mxlmize log L are the solutions of the follow- 

ing two simultaneous equations, 

u1°ß 
_0 

loh I, 
=p 2 

t: ence, it can be easily shoum that p and Q the estimates of u and 
2 
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2 

a respectively are 

k 

iý =nG 
1=1 

and 

k 
^ý_ 1 
Cl` n i=1 

n1 log xi 

2 ^2 
nl(log xi) -u (3.7-11) 

3.7.3 The Method of Quantiles 

The relationship (3.3-12) between the same order quantiles of the 

lognormal and the standard normal distributions, namely 

xq = eu+ a zq 

is the basis of this method. Let xql and a2 be two different quantiles 

of orders al and q2 caleulatcd from the sample. These can be either 

selected as the upper boundaries of two different intervals or be 

calculated by interpolation in the intervals of X. The corresponding 

standard normal quantiles, zql and zq2 respectively, can be calculated 

by reference to a table of N(0,1) distribution function. and a2 the 
2 

estimates of u and a respectively, are the solutions of the following 

simultaneous equations 

x= eu+ czai 

aý 

A 
x eul azg2 
q2 

Hence z log x-z log x ^ 
_. 

3c g' ch (3.7-12) 
zq2 - LQ1 

and 

ä2 

log xa, log xq1 `2 

Zq2 Zql 
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It can be shown that this method is most efficient when the two quantiles 

are symmetrically placed (Aitchison and Brown (1957)). Let, therefore 

ql =q and q2 =1-q where q< 1/2 

then 

zal =zq=- t, say, where t>0since q<1/2 

and 

z2 = '1_a = 

Hence u and 
Q2 will be 

u=2( log xl_q + log xq ) 

and 

(3.7-14) 

ý2 
4t2 

(log xl_q - log xq) 
2 (3.7-15) 

Aitchison and Brown (1957) state that quantiles of order 27% and 73% 

estimate u with 81% efficiency and quantiles of order 7% and 93% estimate 
2 

c with an efficiency of 65%. We will later use these two sets of 
2 

quantiles to estimate u and a from the AD samples. To obtain the values 

of the c{uantiles linear interpolation in the intervals of x will be used. 

3.7.4 The Method of Median and Coefficient of Variation 

This is a very simple method which involves calculating the sample 

median and coefficient of variation, xmedian and V respectively, and 

putting them equal to their theoretical values fron the distribution. 

To find xmedian' in the intervals of x may be necessary. 

For the sanple coefficient of variation, V, we need to calculate the 

sample mean and standard deviation. The expressions for the median and 

coefficient of variation for the two-parameter lognormal distribution 

were given by (3.3-2) and (3.3-8) respectively. Hence 

inedian = ell 
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and 2 
V_= (e - 1) 2 

2 

The estimates of i and a will therefore be 

}log median (3.7-16) 

and a2= log (1 + v2) (3.7-17 ) 

This method can be considered as a combination of the methods of moments 

and quantiles. 

3.7.5 The Graphical Method 

This method is derived as a follow-up of the graphical test of 

loiormality mentioned earlier in section 3.6.1. Therefore, we know that 

the locus of the points (log xq, zq) is the straight line 

Z. =1 log x- 11 

Let us assume. that we have followed the procedure of section 3.6.1 and 

plotted the points (log xq , zq) from a sample of grouped data. Let us 

further assume that these points seem to lie approximately on a straight 

line. We can fit this line to the points by eye. The inverse of the 

gradient of the line will give an estimate of a and then from the intercept 

of the line we find the estimate of p. 

Aitchison and Brown (1957) suggest the following method when the 

logarithmic probability paper has been used to plot the points : 

From a table of the standard normal distribution function we notice that 

116% Z158ö -1 

and =_+1 284% 284.13% 

0 Z5oä = 
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Therefore, if we put the logno: 7na1 population quantiles of orders 16 a, 

50% and 84% equal to their corresponding values read from the straight 

line we will have 

u-Q x16%% =e 

u X50$ =e 

u+Q X84% =e 

Hence from (3.5-18) 

a 
u= log X50% 

Then from (3.5-19) 

ea _ 
X50% 

x160 

and from (3.5-20) 

Q X84% 
e= 

X50% 

a better estimate of eo would be 

ee 
X50% 

+ 
X84% 

2. 
X16% X50% 

Hence 

(3.7-1ß) 

(3.7-3.9) 

(3.7-20) 

(3.7-21) 

X50*- 112 Z_ log 
2(a+ X84% 

) (3.7-22) 
X16$ 50$ 

For grouped data, this method has the advantage that the data is already 

in the form required by it. 

3.7.6 The Method of Least Squares 

This is a variation of the graphical method. Instead of fitting a 

straight line by eye to the set of points (log xqj zq) we use the least 
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squares regression method to determine its equation. The theory of 

linear regression tells us that if the ur_creighted least squares li:: c 

through a set of m points (Ui, Vi), where i=1,2, ... , in , 
is 

V= aU+b 

then the coefficients a and b are 

_W- 
uv 

aÜÜ2 

and b. = V- aU 

mm 

where U= 
1Iu V= 

1 V. 
M i=1 1m i=1 1 

(3.7-23) 

(3.7-24) 

(3.7-25) 

M2m 

U=1 Ui and UV =1 UiV. 
m i_l m i=l i 

As we mentioned earlier, the point (log x, z) lies on the straight 

line 

z=Q log x-Q (3.7-26) 

Therefore, we can let 

U. = log xal and Vi = zq. 
i 

where xqi is the upper boundary of interval i, qi is the value of the 

sample cumulative percentage function at the point äi and zqi is 

the standard normal variate corresponding to qi, i. e. 

Z 
qi 2 

q1 exp 
2) dt 

The problem then is to calculate the coefficients a and b of the line 

V= aU+b 
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If our grouped data consists of k intervals, then i takes integer 

values frone 1 to k-1 because for the final interval ak =1 which 

results in an indeterminate value of zq. The values of zq can be 

obtained from a table of the standard normal cumulative distribution 

function. If this estimation procedure is programmed on the computer, an 

approximate formula for calculating zq from q should be used. Hastings 

(1968) gives the following approximate fornula for calculating the 

standard normal variate ,z, 
from ,p, the area under the upper tail 

of its - frequency curve : 

where 

- 
2.515517 + 0.802853t + 0.010328r 

Z=t 1+1.432788t + 0.1ß9269r + 13 8rt 
(3.7-27 

p_ 27r)-1 

r. = log 
2 

P 

J"0 exp (- 22)de 

z 

and t= 

, 0<p<0.5 

To use this formula in conjunction with the estimation method, we have 

to take 
p=1- qi where qi is as defined above. 

Let, therefore, V= aU +b be the equation of the least squares line 

where a and b have been calculated according to the formulae (3.7-24) and 

(3.7-25). A comparison between the equation of this line and that of 

its equivalence given by (3.7-26) shows that 

a= l/Q and b- --u/a 

a 
Hence u=- b/a 

and 
a2 _ a-2 

(3.7-28) 

0 
(3.7-29) 

3.7.7 The Mhultinomial Maximum Likelihood method 

This is by far the nxost suitable method for estimation of the 
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parameters from grouped data. Let us asswre that a sample of data as 

defined in section 3.7 is available. If we denote by pi the probabilit; " 

that the amount of a claim will fall in the interval (xi_1 - xi), then 

22 
pi = LN(x1; u, Q )' LN(Xi-1; u, a ) 

"_ -u 
pi=N(a ; 0,1)-N ( 

Y' 

Therefore, L, the likelihood function of the sample will be 

(3.7-3i) 

n: n. 
L= Pi i (3.7-32) 

n 
i=1 

i=1 1 

and that part of the loglikelihood function which depends on the parameters 

2 
V and will be 

k 
yi- u yi-1- u 'j 

log L== nl log 
[N( 

0,1) - N( 
Q; 

0,1) I 
J 

i-1 

(3.7-33) 

2 

The multinomial raximun likelihood estimates of u and a are obtained by 
2 

maximising L (or log L) simultaneously with respect to µ and a 

2 
Therefore, u and a are the solutions of the simultaneous equations 

alogL 
=0 

and 
alogL 

=0 
a02 

From these equations we cannot find an analytic solution for u 
and 

Q2 

Gjeddebaek (1949) has considered this problem and introduces and tabulates 

No functions to facilitate the interpolation involved in the solution of 

the above equations. His mrýethod, however, becomes very laborious even 

(3.7-30) 

; 0,1 ) where y- lag x 
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when the number of intervals is greater than 3. It is possible to 

use an iterative procedure to solve the system of non-linear equations 
2 

in u and a. Tallis and Young (1962) apply this method in the case of 

the 3-parameter lognormal distribution. 

We instead propose the use of an iterative method which maximizes 
2 

log L itself with respect to the parameters u and a. There are now 

many computer routines-available for maximizing a general function of 
1 

severable variables. We use one such routine provided by the NAG library 

of programs. This routine minimizes the function - log L (i. e. it 

maximizes log L) with respect to the unlaiown parameters by using a revised 

quasi-Newton method implemented by Gill and Murray (1972). Analytical 

derivatives of the function need not be supplied. To start the iterative 

process the initial values for u and a- are obtained by one of the 

simpler estimation methods described earlier. The procedure uses 

estimates of the gradient and curvature of the objective function to 

generate a sequence of points which are intended to converge to a 
4 42 

local maximum of log L. V and a thus obtained can then be used as the 

starting point in order to make sure that they are indeed the optimum 

points. If on inspecting a maximum found by the routine it is suspected 

that a 'better' solution exists, the remedy is to re-run the routine 

from another starting point closer to the expected solution. With the 

wide availability of the computer this is very much easier than the 

methods of Gjedd. ebaek or Tallis-and Young. 

In conclusion, we point out that there is another suitable method 

of estimation from grouped data which is called 'the modified Chi-square 

minimum method'. This involves minimizing a modified Chi-square type 

statistic with respect to the unknown parameters. Cramer (1946). 

1- Nottingham Algoritiunic Group 
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however, shows that this method is identical with the iruitinomial 

naximtn likelihood method. Therefore, we shall not consider the 

modified Cri-square minimum meted in this work. 

3.7.8 Measuring the Performance of Various Methods of Estimation 

A simulation exercise was carried out to see how well different 

methods of estimation perform in practice. 100 samples, each of size 

2500, were generated from the lognormal population with parameters 

2 

u=4.5 and a=I. These values for the parameters will be shown to 

be close to the values for our accidental damage (AD) data. The size 

of the simulated samples, 2500 
, 

is typical of the size of our accidental 

damage samples. In this way, simulated samples resembling the actual 

AD samples were produced. The computer program P3 was written for this 

task and samples of data grouped in the same format of intervals as for 

the accidental damage data were created. 

We define the numerical measures of efficiency of a particular method of 
2 

estimating u and a as 

N 
Eff(p) =R CUl u)2 (3.7-34) 

i=1 

Eff (Q2) N0-a )2 (3.7-35) 

i=1 

where u=4.5 $ a2 =1 and N= 100, and a1 are the estimates of 

and a2respectively, arrived at by the method in question from 

sample i.. For each pair of estimates (p 
,Q we can find, from 

forrulae (3.3-4) and (3.3-8)9 ai and $i which are the estimates of 

a and a the mean and standard deviation of the lognormal distribution 

respectively. ., i and ßi are then considered as estimates obtained 
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by the same method of esti. ̂ mation which was used to find ui and cri from 

sample i. Because a and 0 are functions-of both u and a, it is 2 

important to kiow how well a particular , method of estimation performs 

in estimating a and ß. 't'herefore, we can similarly define measures of 

efficiency for a and ß as 

N 
12 Eff(a) =N1 (ai - a) (3.7-36) 

i=1 

N 
Eff(ß) - (ßi - ß)2 (3.7-37) 

i=1 

2 
where, from 4.5 and a=1 we have, a= 148.41 and 8= 194.54. 

Men comparing two different methods of estimating a certain parameter, 

the one whose calculated measure of efficiency is smaller will be fudged 

as more efficient and hence will be preferred. 
2 

The computer program P4 was written to estimate u and a, from 

each of the 100 simulated samples, by the Methods of moments, approximate 

maximum likelihood, 27 and 73% quantiles, 7 and 93% quantiles, median and 

coefficient of variation and the least squares regression. The graphical. 

method was excluded from the exercise because the task of plotting 100 

sets of data points would have been very laborious. Besides, 'the 

efficiency of this method depends on how experienced the analyst is in 

using the graph paper and fitting the line by eye. The multinomial 

maximum likelihood method was not included because it is the most 

suitable method for estimating the parameters from grouped data and is, 

therefore, sure to be very efficient. 
2 

Program P4 produced estimates of p, v, a and e, by various methods, 

from each sample and calculated the efficiency of each method in 

estimating each parameter. Table (3.3) Shows the results of this 

simulation exercise. It is apparent that amongst the methods considered 
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the approximate it . 
xirumi Likelihood is the Timst efficient in estimating 

the parameters from the particular type of data we are dealing, with. The 

method of ?7 and 73% quantiles is the second best and nits use should be 

recommended when simplicity in calculations rather than maximum accuracy 

is the criterion. The efficiency of the method of median and coefficient 

of variation for estimating u is the same as that of the method of 27 and 
2 

73% quantiles, and for estimating e is the same as that of the method 

Ilk 
of moments. Therefore, the median can be used to obtain a good estimate 

of v. The method of 7 and 93% quantiles is not very accurate for our 

type of data. The methods of it inents and least squares regression 

-" appear to perform with nearly the same degree of accuracy. 

3.8-Application of the 2-Parameter Lognormal Model to the Accidental 

Damage Data 

The results of the tests of lognorrality carried out in section 3.6.4 

seemed reasonable enough to encourage us to fit the two-parameter log- 

normal model. to the accidental damage data presented in tables (1.1) to 

(1.7). An extensive computer program, PS , was written to estimate the 
2 

parameters i and a by all the methods described in section 3.7, except 

the methods of median and coefficient of variation and multinoi.. ia1 

maxiim. m likelihood. The former method was excluded because it can be 

considered as a combination of the methods of moments and quantiles. 

The latter will be dealt with separately. For each sample of data 

supplied as input, the program provides six relevant tables of results. 

For a particular period of accident, nsitily the 4th quarter of 1973 

which was presented in table (1.1), the results of a run of program P5 

are presented in tables (3.4-a) to (3.4-f). The first table, (3.4 -s), 

presents the estimates of u and a by different methods as well as some 

of their corresponding relevant distribution statistics. Table (3.4-b) 
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gives the expected number of claims, in each interval, calculated by 

using various sets of estimates. A table of actual minus expected. 

frequencies is produced as table (3.4-c). To allow the calculation or 

the'Chi-square statistic, values of 
(A 

E 
E) for each interval up 

to ? 000 and each set of parameters are presented in table (3.4-d). 

It was considered that for claim arounts greater than X1000 the expected 

number of claims in each interval would be less than 5. The total 
i 

of the 
(AEE 

values for each method of estimation and for intervals 

up to £1000 is provided, but these-totals need to be adjusted for 

intervals above £1000. To allow comparison between the actual cost of 

claims and that expected under the model by different methods of 

estimation, table (3.4-e) is produced. Each entry in this table is the 

product of the number of claims in an interval, and the average anount 

of claim in the sane interval (tr e average is assumed to be equal to te 

mid-point of the interval). Table (3.4-f) provides the expected loss 

and the T statistic, as defined in section 2.4 of chapter 2. 

Program P5 was run with data from other periods of accident as well. To 

avoid inclusion of a large number of tables, only the first table of 

each run, similar to table (3.4-a) are presented here in tables (3.5) 'Co 

(3.10). Relevant statistics such as the Chi-square, the T and the ratio 

of T to total actual cost have been added to each of these tables. 

Let us now closely examine the results produced for 73/4th quarter. 

A glance at table (3.4-a) shows that with the exception of the method of 

7 and 93% quantiles all the methods have produced almost similar results. 

Estimates of u are about 4.5 and of a2 about 0.9. The skewness and 

kurtosis of the frequency curve of the model are greater than those of the 

sample (see table (1.1)), hence indicating that the frequency curve of 

the model has a ]onger tail and is more peaked than the histogram of the 

sample values. Table (3.4-c) indicates that the disagreement between 
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the actual and expected number of claims is more marked in a few of the 

lo: -: er tail intervals. These differences are smallest for the approximate 

maximrai likelihood ; method. Table (3.4-d) in fact shows that the Chi- 

square statistic is smallest for that method although all the values of 

this statistic indicate a significant difference between the sample 

values and the model. It can be observed that the major contribution 

to the Chi-square statistic is from one or two cells in the lower tail 

of the distribution. We may recall that when we tested the data for 

lognormality, the points in the lower tail did not fit the straight 

line very well. We blamed the insufficiencies of the data in the lower 

tail intervals for this behaviour. The fit of the model to the data 

would have been very satisfactory if it were not for these one or two 

large contributions. In chapter 7, where we investigate the truncated 

lognormal distribution, the effects of discarding various intervals in 

the lower tail will be studied. 

Table (3.4-e) indicates that despite the large Chi-square values, the 

total cost of claims from the sample and the model are fairly close to 

each other. It is also inferred that although in terms of the number 

of claims only about 4% of the total lies in the upper tail, (greater 

than £600), in terms of the cost of claims about 17% of the total comes 

from the upper tail. Table (3.4-f) shows that the total expected loss 

is not, in fact, very large, except for 7 and 93% quantiles method and 

that the ratio of T to the total actual cost is quite small. 

For the method of approximate maximum likelihood we can apply the 

Kolmogorev-Smirnov test of goodness-of-fit in conjunction with table 

(2.2). The value of this statistic is D=0.023 which gives P <0"01 (see 

section 2.8) . Therefore this test, like the Chi-square, indicates 

significant differences between the model and the actual Sanple. 
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For other periods of accident results similar to those of the 73/4th 

quarter can be observed fron tables (3.5) to (3.1o). 

The above analysis supports the findings of the simulation exercise of 

section 3.7.8. Pinongst the methods considered, the approximate 

maximum likelihood gives the best fit of the model to the actual data 

in terms of the goodness-of-fit tests. The fact that for each sample, 

the Chi-square statistic is smallest for this method is not surprising 

if we recall the remarks of chapter 2 about the estimation method 

and its effects on the Chi-square statistic. The method of 27 and 

73% quantiles also produces satisfactory results and its use is recommended 

when a quick solution is required. 

Before commenting on the-suitability of this model for our type of data 

we will consider the estimation of the parameters by the method of 

multinomi. al maximum likelihood. 

Program P6 estimates the parameters by the technique described in 

section 3.7.7 and provides a table of results. For our accidental 

damage data, the results are presented in tables (3.11) to (3.17). For 

each sample, estimates of u and a2, and the values of the mean and 

standard deviation of the claim amount are provided. The tables are self- 

explanatory. If, for each sample, we compare the results of this method 

with those of the approximate maxiiraua likelihood, we will notice that 

the estimates are very close to each other but a slightly better fit 

has been provided by the present method. The Chi-square and the total 

expected loss statistics are smaller for each sample. The values of the 

Chi-square statistic still indicate significant differences between 

the model and the sample values. This can be seen to be supported by 

the Kolmogorov-Smirnov statistic. The actual minus expected frequencies 

are again large in just a few of the intervals and the pattern appears 
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to be consistent for all the samples. It is, however, encouraging that 

the values of the test statistics are not drastically large but 

that they are just about significant. 

The analysis so far shows that the method of multinomial maximum 

likelihood, as we expected, produces more satisfactory results when 

estimating the parameters from grouped data. Therefore, guided by this 

information, it will be the principal method which we shall use throughout 

the forthcoming stages of the present work. 

To see how closely the frequency curve of the model approximates 

the histogram of the sample values, computer program P7 was written to 

plot both of them. The graphs for various samples are presented in 

figures (3.5.1) to (3.5.7). 

(This section is continued after Figure (3.5.7)). 

76 



t{ ý'.. tiaýýr C'J 

73. 

77 

1,. 

1f;: 

17. 

16 

13. 

12. 

11. 

13. 

S. 

7: 

61 

31 

2 

6 

l4-1 

'. i 

: 2. 

ý. 

h'' 
. tr.. 

Eigare (3.5.1) 

hI , TC: rPAM or 73. '1111 GUA1 Tf. F L TA P. ND ""PAf. 

L(ý;, Nhf`': AL P. D. r. W'il1, MULTN. NAXL. f'AP4M! 11 .. 

MCwýt. SIE. SICMA 

2 20 -i(l, 
; 270 2eO -ý3, " 260 1 2t, 1Ü 1C S1O 51C 370 (>CC 1 

OF 73%1TF+ GUARTE. R DATA AND 2-PAP.: 

F. C. E". WITH FILLTN. MAXL. PAP. AiE. TCks 

SIGMA SL'. =i.:: 55 

iýýIj: i{S`ý1: : ý: ýi '. '% . 
I1ý~ 



ýý ýý (3-5-2) 

IFr.?. ai_4k '( 4 

2I. 

2o 'l 

s. 

1 f; 
=7. 

IFS 

IJ 

13. 

12 

3 22 Gf1 ; 2u afi ; CC 213 ?T.. 7C. cC 2.2 2aG 9c0 15e 9c;.. 51 

mac,? 
_, ': cýý 

Z. 

f, (X 

CUAPTr. P C; TA AND 7-PAP. 

ri tU. LTN 
.I 

A)(L 
. 

PAP. API': TC. R . 

SIGNA SQ. -. a 
. 
257 

-': rr 

NI+TC': PAN or "1'IL', T (JUMr1-I' CATA fNL1 : -PW. 

LOC"NOR! '. AL f . CO. r 
. 

Gl tti i: uLTN. I! AXL 
. 

PAI'"hll! 11'. K4, 

or, (ý f; ;2 fl, f, : ". tý :4 I'l, : 



: ':, 
Figure (3-5-311, 

22 
HISIC: F', AI1 Or- 7"1/2N("I :; t1AF*ICR L' TA AND 

. -PAS:. 

iý. L03NOF. MAL P. i. r. '.! Illy ilU11N. MXt_. r. AF'ßtVýTFRt; 

1' 
tii i MC+wý1 . '" i6 SIC"T7r 5O. -l . "';? 

1(. I 

. 7. 

1 rl' 

1S: 

lw 

13. 

12. 

11. 

C', 

E: 

5. 
. 

3. 

2: 

6ý g0,12C X56 T£; 3 213 24.0 27C :? ZO 3< 21, C _3 
120 13 18,1 5<., 1C 57< Ef'E 

1? ý1 
ý. E'i 

Z. 

ý, 

G4; ß 

'TER DATA AND 2-PPM.. 

ILTN. f1AXL. PF. r Ar'-JrFG 

SIGMA SO. -i.:: 3 

-z 
: ci OX4 -1 L: 



F. ure (3.5.4) 

!t I "'. ' ]V+ ýý f 

. s. 

F; I , tt1 . ('\ft ; 'F 'i 1' :. GAf '[$ EINTA ANU '-. i'AP. 
1 

ßt7 LOL"NC''`tt. f'W1 1h ULI N 
. 

h! AXt., 

19 r1c_y_q. fý? ' :, Trt1A ýyL, "'=1 .ý 
11 

1C. 

17. 

16 

In 

13. 

11. 

9 

3. 

2. 

ý 
50 12 ý. P . 6; 'I 212 24[a 270 210(1 2: T 35 ":: 7 1 F' 20 1'" 1c 513 59[: 5? i b 3f Co 

x1a-1 
5. ee 

1 
. 
5C 

i. Cp 

2. ßfr. 

1. 

G(11C; 

HISTCLR; 41 Cr 79/3; r, ý-LAP. TC. R DATA AND 2-PAP. 

LO; NCr"AL P. C. r. WITH MULTN. MAXL 
. 

PA. RAM': TFRS: 

MEW-1. G37 SIGMA SO 
. -1.. ^.. '1 

I - 

. 
' 

.; e ; 2; 



Pip. -are (3.5.5) 

'ArIF fi icy 

?i 51. ̂ . 51C 5-0 F P.: 

Xlü-ý 

5. ce 

Frr-±uvnc: 

9. Se. 

2.: C 

... 

STCC-PAM Or 7 . '1TFi GUART1 DATA AND 1-i AP. '. 

GNQF.! 1AL P. C F. WITH (1ULTN. f+AXL. PAPPMý: TFPý; 

W--. 571 SIGMA ýc. -1.0,55 

2 13 ff 
. 

I. ' 
_. *---"-" ---.. --. -... 



r 

7, 

ii 

1i 

1 

i 

1 

1 

Figure (3.5.6) 

A 
; Mr 

X13-t 
5 .e 

FreuC 

9 

4 
. cO- 

0 

Qt: 

{iIGTO. PAM ^` :5 1ST CIAP. Tf_P. DATA AND 'l. -PAP.. 

LO NOFMAL P. C: P. WITH i-, ULTN. MA)(L. PAPAMETC. P:, 

MLWa J. 6cý; 4 SIGMA SGG. --1. C^} 

- 

; :0 : i. IT 



2 

2i 

ti 

ti 

p 

i 

I: 

t'. 

t 

Fibure (3.5.7) 

:( 

x, a-, 
5M, 

9 . 'ý 

9. (; 

7 r. 

7"C 

- s" 
" 

4". J 

/. J 

1.? 

CATA AND 2-PAR. 

MAXI.. PA. PAMC-TFF. G 

SIGMA SO. -I. 2ý6 

: "; c : yt' c: """ �". " i; 



(section 3.8 continued) 

The multinomial maxinnm likelihood estimates have been used to plot 

the frequency curve. To -represent clearly the behaviour of the tail of 

the distribution, each curve consists of two parts. The graph at the 

top of the page represents the distribution up to £600 claim amounts, 

i. e. the lower tail. The bottom graph shows the upper tail of the 

distribution, i. e. claim amounts greater than £600. 

As previous results indicated, the discrepancy between the frequency 

curve and the histogram for each sample is more marked at the lower 

tail of the distribution. The possible reasons for this were mentioned 

earlier. The curve appears to model the histogram satisfactorily at 

the middle part and the upper tail of the distribution. The distinct 

mode and the long tail of the histogram are both portrayed by the frequency 

curve. The graphs show that shifting the curve, slightly, along the x 

axis (i. e. a 3-parameter lognormal model) or ignoring the lower tail 

(i. e. a truncated distribution) would produce models which would fit 

the actual data more closely. 

Judging by the results of the foregoing analysis, we are not 

satisfied that the two-parameter lognormal distribution is the correct 

model for the distribution of accidental damage claim amounts. However, 

the analysis has been constructive in showing how the model should be 

applied in practice. It has also been shown that, for our data, a 

modification of the model would provide better results. To complete the 

work on the two-parameter lognormal distribution we will study, in the 

next section, the effect of inflation on the parameters of the model 

and will suggest a means of-predicting the model of the future 

distribution of claim amounts. 
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3.9 Prediction of the Claim Amount Distribution :- The 2-Parameter 

Lognormal Model 

We are interested in the cost of future claims for both the 

calculation of premium rates and the setting up of reserves. -lie 

cannot, therefore, wait until all the claims have been notified and 

settled in order to find the cost of the claims. One way of solving 

this problem is by predicting the cost of the future claims. In this 

section we will suggest a technique by which the distribution of the 

claim amounts during any future period can be predicted. From this 

distribution, and assuming that we have a knowledge of the number of 

claims in the particular period , all the required information about the 

cost of claims can be obtained. The technique will be tested by using 

past data. The performance of this method will be examined by goodness- 

of-fit tests. In particular, the total expected loss statistic, T, 

will indicate, in monetary terns, how accurately the technique is 

performing in predicting the total cost of future claims. 

3.9.1 The Effects of Inflation on the Parameters ' of' the' Mädel 

In practice, it is usually observed that the same kind of claim 

costs more to settle than it previously did in the past. From tables 

(1.1) to (1.7) we can see that the mean claim amount has increased from 

one quarter to the next. It is generally believed that inflation is 

the main cause of the increase in the cost of claims over time. The 

increase may be due to other apparent factors the real roots of which lie 

in inflation. For instance, in the third party liability claims, the 

decision of the courts in awarding higher Compensations stems from the 

rise in the cost of living and higher wages. 

Let us assume that the effect of inflation is to increase a claim of 

size X to X(1 + i) after a period of time where i is the effective rate 
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of inflation during that period. If we assume that the distribution 

of X is the two-parameter lognormal with parameters 
2 (u, a ), by a 

transformation of variables it can be shown that X(1 + i) is distributed 

2 
as the two-parameter lognormal with parameters (p +d, a ) where we call 

d= log(1 + i) the force of inflation. Therefore, inflation affects 
2 

only p and leaves a unchanged. If we look at the multinomial maxirum 

likelihood estimates ofp , given in tables (3.11) to (3.17), we notice 

that they have generally increased from one period to the next. The 

mean and the standard deviation of the lognormal distribution, a and 
2 

respectively, are functions of both p and a (see section 3.3) and hence 

inflation increases both of them over time. After a period of time in 

which i is the effective rate of inflation, a and 0 will be increased to 

a(1 + i) and ß(1 + i) respectively. Tables (3.11) to (3.17) show that 

the mean and the standard deviation of the claim amounts have increased 

from one period to the next. 

3.9.2 The Prediction Technique 

For our accidental damage claims, investigation shows that nearly 

70% of the total cost of claims are reported and settled within the actual 

period (quarter) of accident. Another 25% are settled by the end of the 

second quarter. Therefore, it is reasonable to assume that all AD claims 

are settled in the middle of the period of accident. Hence, if the 

distribution of claim amounts during a period A, for instance, is 

2 
LN(x; u, a ), their distribution during a future period B will be 

LN(x; p+o, a2) where it is assumed that the rate of inflation from the 

middle of period A to the middle of period B is i and that d= log(1 + i). 

If sizeable parts of the total cost of claims are settled over various 

periods and, furthenrorc, if they take a] ong time after the end of the 

period of accident to be se. ttied (e. g. for the third party liability 
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claims), then the rate of settlement irrst be taken into consideration. 

A co, bined rate of inflation and settlement will be required for 

prediction purposes. 

Other factors such as seasonality may be affecting the nwrber and 

amount of claims during different periods of the year. For instance, in 

autumn and : winter, due to the bad weather conditions, it is likely to 

have more accidents and more claims for larger amounts. The data of 

tables (1.1) to (1.7) show that the number of claims for the 4th quarter 

of the year is greater than for the other quarters. To nullify the 

effects of such factors we suggest that each period of accident should 

be used to predict the distribution of claim amounts during the same 

period but in a future year(s). For instance, the model for the first 

quarter of 1974 should be used to predict that for the first quarter of 

1975 
, etc. 

We can use our available AD data to test this technique for three 

different periods of accident, namely, we can use 

73/4th quarter to predict 74/4th quarter, 

74/1st quarter to predict 75/1st quarter, 

and 74/2nd quarter to predict 75/2nd quarter. 

The question remains as to what should be the appropriate rate of inflation. 

It would be advantageous if we could show that changes in the parameters 

of the model, over time, correspond to changes in the value of a particular 

index of prices or wages. We shall consider three such indices 

1- Me General Index of Retail Prices. 

2- The Index of Average Earnings, Miscellaneous Services. 

3- The Index of Motor Vehicles Repair Costs. 

indices 1 and 2 are published in the "Monthly Digest of Statistics" 

which is a publication of the Central Statistical. Office. Two of the 

constituents of index 2 are the wages of rotor repairers and garages. 
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Index 3 is based on the experience of the Royal Insurance Company and is 

published by the Economic Advisory Group which is part of the British 

Insurance Association. The value of this index at the beginning of evti 

quarter of the year is given. By taking the average of the index values 

at the beginning and at the end of every quarter we can find the average 

index for that particular quarter. For indices 1 and 2 we take the 

average of the monthly values as the value of the index for each quarter. 

The percentage change in the value of an index from-one quarter to a 

future quarter indicates the rate of inflation to be used for prediction 

purposes. After we have predicted the distribution of claim amounts for 

one of the quarters mentioned above we can perform goodness-of-fit 

tests between the predicted and actual distributions. A consistently. 

good fit for different quarters will not only show the success of the 

prediction technique but will also indicate the particular index which 

should be used when predicting the distribution of accidental damage 

claim anbunts. Naturally, we have to use a forecast value of that index 

for periods in the future. 

3.9.3 Prediction for the AD Data 

To test the prediction technique, for the two-parameter lognormal 

model, we wrote computer program P8. We considered it important to see, 

first of all, what the predicted distribution would be like if inflation 

was ignored. For the three quarters mentioned in the previous section, 

the program was used with i=0. The results are presented in tables 

(3.18) to (3.20). Let us look at table (3.18) for 74/4th quarter. The 

program has produced a comprehensive table. The details of the predicted 

quarter, the quarter used for predicticn and its parameters as well as 

the rate of inflation and the index used for its calculation are provided. 
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The prediction parameters are computed and given as well as the actual 

ones. The n,.; ans and the standard deviations of the predicted and 

actual claim axrount distributions are also given. The output format for 

the rest of the table is similar to tables (3.10) to (3.17) and the 

column headings are self-explanatory. From tables (3.18) to (3.20) it 

is clear that when inflation is ignored parameter p is underestimated 

and the predicted mean and standard deviation of the claim amount are 

much smaller than the actual ones. Therefore, we should expect a major 

disagreement between the actual and the predicted distributions. 

This is shown by the large values of the Chi-square and total expected 

loss statistics. The large positive values of the total expected loss, T, 

indicate that the distribution is heavily underpredicted when inflation 

is ignored. Tables (3.21) to (3.23) show the results when inflation, 

according to the Index of Motor Vehicles Repair Costs, is taken into 

consideration. The results are now better, 'but still not quite satisfactory, 

as the large values of the Chi-square and T statistics indicate. Here, 

the negative values of T show that the distribution is over-predicted. 

Next we used the Index of Average Earnings. The results are given in 

tables (3.24) to (3.26). They show an improvement over the previous 

index. The differences between the predicted and actual parameters are 

smaller than before but the Chi-square statistics still show significant 

differences between the predicted and actual distributions. The absolute 

values of T are smaller but still show a large over-prediction. For 

_the_GeneralIndex 
of Retail Prices, the results are presented in tables 

(3.27) to (3.29). This index has produced the most satisfactory results 

amongst the indices considered. The prediction and actual parameters 

are close to each other and have produced the smallest values for the 

Chi-square and T statistics. The Chi-square statistics stil]. indicate 

significant differences between the predicted and actual distributions. 
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The total expected loss statistics, T, still indicate over-prediction. 

If we calculate the values of the Kolmogorov-F. anirnov statistic, D, 

from each of the tables (3.27) to (3.29) and compare them with the 

critical values of D in table (2.1), we shall find that respectively 

P 0.18 
,p0.15 and p 0.02 (see chapter 2, section 2.8). 

Therefore, on the basis of this test, the differences between the 

predicted and the actual distributions are not significant for the 74/4th 

and 75/1st quarters but are significant for the 75/2nd quarter. The 

large values of the Chi-square statistics are due to large contributions 

from one or two lower tail intervals. If it had not been for these 

intervals, the Chi-square values would have been satisfactory too. 

This again indicates that we should consider a modification of the model. 

The prediction technique performs satisfactorily, especially when used 

in conjunction with the General Index of Retail Prices. 

All the indices considered resulted in over-prediction. In predicting 

the claims cost, and hence in reserving, it is better to over-predict and 

be safe rather than under-predict and end up in a loss. However, there 

must be a balance between over-prediction and tying up too much funds as 

reserves. Therefore, we would prefer the General Index of Retail Prices 

to the Index of Motor Vehicles Repair Costs. Besides, the former 

results in closer agreement between the predicted and the actual 

distributions. This indicates that changes, over time, in the amounts 

of accidental damage claims correspond to charges in the General Index 

of Retail Prices. The major cost of any repair, in particular for serious 

accidents and hence for large claims, is for the replacement of the 

damaged parts rather than for the labour charge. Therefore, it seems 

reasonable that -accidental damage claim amounts should be subject to 

inflation according to an index of prices rather than wages. The 

inflation rates calculated prom the Index of Motor Vehicles Repair Costs 
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are too high. This index has been calculated from the experience of 

just one company and we can see that it does not agree with the 

experience of the company which has provided our data. One possible 

reason could be that the forwwer company may be insuring more expensive 

or luxurious cars. In the future stages of the present work we shall, 

therefore, only use the General Index of Retail Prices in our predictions. 

Before concluding this section it is not out of place to comment on 

the importance of our proposed total expected loss statistic, T. 

Table (3.27), for example, shows that we have predicted the total claims 

cost with a difference (or an error) of £16,844 which is 3.16% of the 

total actual cost. This is easily understood in a way that, say, the 

Chi-square or the Ko1n gorov-S-nirnov statistics are not. It is thus that 

we recommend the use of this statistic in actuarial work. 

3.10 The 3-Parameter Lognormal model 

our accidental damage data are from a portfolio of comprehensively 

insured private motor cars. There is a voluntary excess, of amount c 

(where c, 0), on these policies. For every claim of amount x+c, the 

insured pays the amount c and the insurance company pays the amount X. 

Therefore, it is reasonable to assume that the logarithm of the total 

amount of claim, i. e. log(X + c), and not just log X, is distributed 

normally. 

In a portfolio, c nay have several different values. Our data 

consists of payments by the insurance company only and the value of c 

for every claim is not known. We assume that c is the same for all 

policies and treat it as an unknown parameter. Hence, we are faced with 

a 3-parameter lognormal distribution. This was defined in section 3.2 

and some of its properties were given in section 3.4. 

84 



3.11 Test of Lo7ormality: - The 3-Parameter Case 

3.11.1 The Graphical Test 

It is useful to have a procedure for testing whether a given sample 

of data is from a 3-parameter lognormal population. Aitchison and Brown 

(1957) mention a graphical method of roughly estimating the unknown 

location parmpeter c. We suggest using this method as a test of 3- 

parameter legnormality. 

From equation (3.4-6) we know that if the random variable X is distributed 

2 

as LN(x; -c , u, a ) then the locus of the points (log(x + c), z) is the 

straight line 

Zß log(x+ c) -0 

Let us assume that we are given a sample of observations from a 3- 

parameter log o=: al distribution. If the value of c was lcno wm, then the 

set of points (log (x + c), z), calculated from the sample, should lie almost 

on a straight, line (line 1 in figure (3.6)). If o is unknown, and we. 

Z 

Figure (3.6) - Straight line plot for a sample from the 
3-parameter lognormal distribution 



underestimate it as c' (i. e., use c' < c) then the points will show 

a marked curvature in the lower tail values of x (curve 2 in figure 

(3.6)). If we over-estimate c (i. e. use c' > c) then the curvature 

would be in the opposite direction (curve 3, figure (3.6)). 

Therefore, as a test of 3-parameter lognormality for a given sample of 

data, we can initially plot the array of points (log x, z). If the sample 

is from a 3-parameter lognormal distribution, its graph will resemble 

curves 2 or 3 as above.. According to the shape of the graph we choose a 

value of c in the required direction towards the straight line. We 

plot the array of points (log(x + c), z) and, judging by the resulting 

graph, accept c or modify it again in the required direction. If a 

value c is found which makes the points (log(x + c), z) lie approximately 

on a straight line, we will be satisfied that the sample is from a 3- 

parameter lognormal distribution. This c can be considered as an estimate 

of the unknown location parameter of the distribution. By using this 

estimate we can then, as in the 2-parameter case, find estimates of 
2 

" and a. 

3.11.2 Testing the AD Data for 3-Parameter Lognormality 

Figures (3.1-a) and (3.1-b) showed that in the seven AD samples, 

the points (log x, z) deviated markedly from the straight line for 

the smaller values of x. We can now look at these plots and suggest 

that the correct model is the 3-parameter lognormal. They all show' that 

c=0 has, underestimated c and that some c>0 should be found to make 

the points tend towards the straight line. 

We wrote computer program P9 to plot the array of points (log(x + c), z) 

for values of c=0,10,15,20,25. To find these points from the sarple 

the procedure of section 3.6.1 and formula. (3.7-27) were used. The 

plots for the seven samples of data are presented in figures (3.7-a) 
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and (3.7-b). It can be seen that the directions of the curvatures for 

c=0 and 10 are opposite to that for c= 25. For c= 15 and 20 the 

points appear to lie more accurately on a straight line. Therefore, 

we are satisfied that our samples are from 3-parameter lognormal distribu- 

tions whose location parameters c have values between 10 to 20. 

3.1.2 Estimation of the Parameters of the 3-Parameter Lognormal 

Distribution 

The existence of the unknown location parameter c, in addition to 
2 

and a, makes the estimation problem more difficult. Aitchison and 

Brown (1957) do not deal with this problem for grouped data and only 

examine the case when values of the individual observations in the 

sample are given. They report methods of moments and quantiles where 

three moments or quantiles, respectively, of the sample are put equal 

to their corresponding population values. The method of maximum 

likelihood is also considered which results in a non-linear equation in 

c. They also report Kerrsley's (1952) method which consists of equating 

the mean and two quantiles of the sample to their corresponding population 

values. We can make assumptions, similar to the ones we made for the 

two-parameter case, and modify the above methods for use with grouped 

data (see section 3.7). However, as the analysis in the two-parameter 

case showed, these methods would not provide very satisfactory results. 

Their solutions may be of use, for example, in yielding initial values 

for the parameters to be used in an iterative method of estimation. 

Therefore, we will not consider these methods here. 

Johnson and Kotz (1970) report the methods mentioned in Aitchison and 

Brown (1957) and they do not consider estimation from grouped data. In 

actuarial literature, Ferrara (1971) uses the method of quantiles to 
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determine c first and then finds u and c by least squares regression 

(as in the 2-p ar=, eter case). 

In this section, we will examine two methods which are directly 

suitable for estimation from grouped data. The first one is the least 

squares regression method. We will suggest a procedure for finding the 

parameters which avoids solving non-linear equations. The second method 

is the multinomial maximum likelihood which produced most satisfactory 

results in the two-parameter case. This method will be modified and 

used for the 3-parameter case. As-we mentioned in section 3.7.7, Tallis 

and Young (1962) consider this method but they suggest equating the 

partial derivatives of the loglikelihood function, with respect to the 

parameters, to zero and solving iteratively the resulting set of non- 

linear equations. This is more laborious than our proposed procedure. 

3.12.1 The Method of Least Squares 

Let us assume that a sample of grouped data as defined in section 

3.7 is available. From section 3.4 we know that for the LN(x; - c, u, Q 
2 

) 

distribution relationship (3.4-6), i. e., 

zq 
1 log(xq + c) -Q 

holds. If the random variable X (the claim amount) is assumed to be 

2 
distributed as LN(x; -c pa ), we can use the least squares regression 

technique to find the estimates of the parameters. This consists of 

minimizing SSD (the sum of the squares of deviations) simultaneously 

with respect to c, u and a where, 

k-1 

" SSD = [Zi -Q log(xi + c) + ý' l (3.12-1) 
i=1 c 

One way to solve this problem would be to equate the partial derivatives 

of SSD, with respect to c, p and a, to zero. Dut this will result in a 
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system of non-linear equations in the parameters which has to be laboriously 

solved by an iterative technique. We, however, suggest a different 

method. Instead of searching for the set of parameters at which SSD 

attains its minimum, we propose finding the minimum value of SSD and 
AAA 

taking its corresponding estimates of the parameters (c 
, u, c ) as the 

required solution. Let us explain this method in nore detail. 

If our data is from a 3-parameter lognormal distribution, then 

there exists ac at which SSD attains its minimum - see figure (*) below. 

SSD 

Figure (*) - The Graph of SSD with respect to c. 

If we let c= co where co is some known value then the values of 

log(xi'+ co), for all i, will be known and hence (3.12-1) becomes 

similar to the SSD for the 2-parameter lognonnal distribution. Therefore, 

the values of uo and vo corresponding to co can be found by the least 

squares regression technique described in section 3.7.6. It will then 

be possible to calculate the value of SSD, from (3.12-1), -corresponding 

to (co' uo' ao). By choosing several different values for c and 

calculating their corresponding SSDs we can find a range of values of c, 

say (c1, c2), in which the SSD changes from a decreasing function to an 

increasing function. The mininram of SSD lies in this range. By taking 
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d, the required degree of accuracy for c, into consideration, we can 

choose suitable values of c in (cl, c2) and hence reduce the range 

gradually to (c ,c+ 
d) where SSD attains its minimum value at c 

22 

The set (c p, a) will be the required least squares estimates of 

(c, ti, a) respectively. This technique can be programmed on the computer 

and will then be much simpler and faster than solving a system of non-linear 

equations. 

Any prior knowledge about the maximum value of c should be utilized 

in choosing the initial range of c: For example, in the case of our 

accidental damage data we know that c, the voluntary excess, is at most 

M. Therefore, to examine the behaviour of SSD, we should initially try 

c=0,5,10,15,20,25 and 30. 

3.12.2 The Multinomial Maximum Likelihood Method 

This method was considered for the two-parameter lognormal 

distribution in section 3.7.7. In this section we will present 

the likelihood function for the 3-parameter case. Let us again assume 

that a sanpie of grouped data as defined in section 3.7 is available. 
2 

If x is assumed to be distributed as LN(x; -cuo), by adopting the 

notation of section 3.7.7, 

22 
pi = LN(xi; -c Ili Icy 

)- LN(xi-1; -c ,u ,Q) 

log (x1 + c) -u log (xi-1 + c) -u 
pi 'N(a; 0,1) -N(Q1 001) 

Therefore- the sample likelihood function will be proportional to L where, 

L Pi 
i=1 

and the loglikelihood function will be 
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k 

log L= nl log [ N(zi; 0,1) - N(zi-1,0,1) ) (3.12-2) 
i=1 

log(x1 + c) -u 
where zl =a 

We will adopt the technique, described in section 3.7.7, of maximizing 
2 

log L with respect to (c, u, a ). To start the iteration process we can 

use the least squares, or any other, estimates of the parameters. The 

set of estimates (C, 11 $a 
) which maximizes log L will be the required 

multinomial maximum likelihood estimates. 

3.13" Application of the 3-Parameter Lognormal Model to the AD Data 

We wrote computer program P10 to use the least squares method to 

estimate the parameters of a 3-parameter lognorml distribution 

from a sample of grouped data. The program was run on an interactive 

terminal which-made the task of estimation even simpler and faster. It 

was used to estimate the parameters for our seven samples of accidental 

damage data which were presented in tables (1.1) to (1.7). We explain 

the procedure for a particular sample, say, 73/4th quarter. After the 

sample data has been supplied to the program, it will require a value for 

c along with an integer 'IPRINT' which is either 0 or 1. IPRINT =0 

indicates that only the value of SSD is required. IPRINT =1 indicates 

that a comprehensive table of results is also required. The results of 

the computer rum to find the estimate of c for 73/4th quarter data are 

presented in table (3.30). We started by c=0 and increased c in steps 

of S. For each c its corresponding SSD was printed. We noticed that in 

the range (c = 15, c= 25) SSD changed from a decreasing function to an 

increasing one. Therefore, as a next step we tried c= 18 whose SSD 

shoved that the optimum c is in the range (18,25). Because an 
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accuracy of 1 is acceptable in the estimate of c, we then tried c= 19 

whose SSD indicated that the optimum c should be in the interval (20,25). 

We then tried c= 21 whose SSD was less than that of c= 20. Therefore, 

the optimum range was reduced to (21,25). As the next step we tried c= 22 

whose SSD was greater than that of c= 21. Therefore, with our required 

accuracy, c= 21 is the least squares estimate of c. This value was then 

-supplied to the program, with IPRINT = 1, and the-estimates of u and a2 

along with an extensive table of results were produced (see table (3.31)). 

Similar tables were obtained for other samples and the results are 

presented in tables (3.32) to (3.37). We can see that the value of c 

for our data ranges from 13 to 25 which is reasonable. has generally 

increased over time from 4.78 to 4.98 while v2 ranges from 0.67 to. 0.77. 

The means and standard deviations of the fitted rndels are very close to 

the means and standard deviations of the samples. The Chi-square statistics 

are smaller than in the 2-parameter case but still indicate significant 

differences between the fitted distributions and the actual sample values, 

except in the case of 74/4th, 75/ist and 75/2nd quarters where the X2 

values are not significant. The total expected loss statistics are very 

small and are at most 2% of the total actual cost. This indicates an 

overall agreement between the fitted models and the samples. It was 

important to see how closely the actual sample points lie on the least 

squares straight line. Therefore, we wrote computer program P11 to plot 

the sample points (log(xi + c) , zi) and the least squares line 

Z. log(x + 
c) 

QQ 

For the seven AD sau les the graphs are presente d in figures (3.8-a) 

and (3.8-b). The points, for each sample, generally lie closely on the line. 
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FIGure (3.8-a) 
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In the lower tails the fits are very good, unlike the large deviations 

which were observed in the 2-parameter case. It is encouraging to see 

that the introduction of parameter c into the model has produced more 

satisfactory results. 

-Computer program P12 was written to estimate the parameters by the 

nethod of mul tinomrdal maximum likelihood. This program was used with the 

samples of accidental damage data. 

z 
estimates of (c, p, Q ) were supplied, 

For each sample, the least squares 

to the program, as the starting 

values for the iteration process. The results for the seven samples are 

presented in tables (3.38) to (3.44). In each case the estimates of the 

parameters, the mean and the standard deviation of the fitted distribution 

and an extensive table have been produced. The estimates of c range from 

A 
10 to 21 with an average of about 15 which is reasonable. The values of u 

generally show an increasing pattern and are in the 4.65 to 4.91 range. 

a2 ranges from 0.71 to 0.86. We can observe that the Chi-square values 

are smaller than their corresponding values for the least squares method. 

They do not indicate significant differences, except for 74/1st and 74/3rd 

quarters, between the fitted distributions and the sample values. For 

74/1st and 74/3rd quarters the differences are, respectively, highly 

significant and significant, but we should note that the major contribution 

to the X2 values comes from just one cell in each case. The total 

expected loss statistics are small and are at most 1.2% of the total actual 

cost of claims. This indicates a very satisfactory general agreement 

between the theoretical models and the samples values. Values of the 

Kolmogorov-Srurnov statistics for all the samples were calculated, by 

using the. (Actual-Expected) column in each table, and were compared with 

the critical values of this statistic as given in table (2.2). Only for 

74/1st quarter this statistic indicated almst significant differences 

between the fitted distribution and the sample values. In all other cases 
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the differences were satisfactorily not significant. 

The least squares method is very easy to use but, as in the case of 

the 2-parameter lognormal, the multinomial maximum likelihood method has 

produced better results in terms of the goodness-of-fit test statistics. 

We, therefore, again recommend the use of this method in estimating the 

parameters of the distribution from grouped data. 

In order to see the agreement between the frequency curve of the 

fitted distribution and the histogram of the sample values we plotted then, 

for each of our seven AD samples, by using a modified version of program 

P7 to suit the 3-parameter lognormal model. The resulting graphs are 

presented in figures (3.9.1) to (3.9.7). For each sample, the rrultinomial 

maximum likelihood parameters have been used to plot the frequency curve. 

Each figure represents two graphs. One for claim amounts < £600 and the 

other for claim amounts > £600. The agreement between the frequency curve 

and the histogram is very satisfactory for all samples. The curve 

portrays the mode of the histogram. The large deviations in the lower 

tail between the curve and the histogram which were observed in the 2- 

parameter case (see figures (3.5.1) to (3.5.7)) have now disappeared. 

The long tail of the histogram has also been modelled very well by the 

distribution. We are, therefore, satisfied that the 3-parameter 

lognormal distribution offers a correct model for our accidental damage 

claim arrounts. Hence, we shall next consider the problem of predicting 

the distribution of claim amounts during a future period. 
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3.14 Prediction of the Claim Amount Distribution :- The 3-Parameter 

Lognormal Model 

The importance of predicting the future cost of claims was mentioned 

in 3.9 and here we will adopt techniques similar to those of that section 

for predicting the future distribution of claim amounts. To save us 

repeating some of the arguments of that section we suggest referring back 

to it at this stage. 

3.14.1 The Effects of Inflation on the Parameters of the Model 

Let us again assume that the effect of inflation on a claim of amunt 

X, during a period of time, is to increase it to U= X(1 + i) where i 

is -the rate of inflation, according to some appropriate index, for that 
2 

period. If X is assumed to be distributed as LN(x; c, u, a ), then by a 

transformation of variables we can show that U= X(1 + 1) will be 

distributed as : 
2 

IN(u; rc, u+d, a) where r=1+i and d= log(1 + i) 

Therefore, when the distribution of X is known, we can modify its parameters 

to obtain the distribution of claim amounts in a future period. The 

foregoing shows that inflation increases both c and I. in time but does not 
2 

affect a. This supports our intuition that the amount of voluntary 

excess, c, should go up in time due to the inflation. For our accidental 

damage data, the increase, over time, in the values of u is obvious from 

tables (3.38) to (3.44). The values of c for the later samples are also 

larger than for the earlier ones. 

Based on the results for the two-parameter case, we suggest that the 

technique of section 3.9.2 be used for predicting the distribution of 

accidental damage claim anounts during a future period. The appropriate 

index proved to be the General Index of Retail Prices and wo will use it 

here again. 
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3.14.2 Prediction for the AD Data 

To test the prediction technique on the accidental damage data, 

we modified computer program P8 for use with the 3-parameter model. For 
tl 

reasons presented in section 3.9.2, we used the parameters of the distri- 

butions for 73/4th, 74/ist and 74/2nd quarters to predict the 

distributions of claim amounts in 74/4th, 75/1st and 75/2nd quarters 

respectively. The appropriate rate of inflation in each case was 

calculated from the General Index of Retail Prices, as described in 

section 3.9.2. The results, in the form of extensive tables which allow 

comparisons between the actual and expected (predicted) distributions, are 

presented in tables (3.45) to (3.47). In all three cases the Chi-square 

statistics are relatively small, considering the amber of degrees of. 

freedom, and do not indicate any significant differences between the 

predicted distributions and the actual sample values. The total 

expected loss statistics are small and show an over-prediction of the 

total cost which is more satisfactory than an under-prediction. They 

are a small proportion of the total actual cost in all cases. The 

number of changes and non-changes of signs in the 'A - E' (i. e. , the 

actual minus expected frequencies) column are roughly equal. The 

Kolmogorov-Smirnov statistics were calculated from the results tables and 

in each case were compared with the critical values given in table (2.1). 

They showed that the differences between the actual and predicted 

distributions were not significant for 74/4th and 75/1st quarters but 

were almost significant for 75/2nd quarter. 

These results show a great improvement over those given in tables 

(3.27) to (3.29) for the 2-parameter model. The consistent satisfactory 

outcomes of the goodness-of-fit tests indicate the success of the 

prediction technique and the appropriateness of the General Index of Retail 
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prices for inflating accideiLal damage claim amounts. Various assumptions 

about the future rate of inflation or values of the parameters can be 

tested by this technique and the computer program associated with it. A 

value for the future rate of inflation and a set of parameters can be 

adopted as standard values and other rates and sets of parameters can then 

be tested against them. The total expected loss statistic, T, in 

each case will indicate, in terms of the easily understood amount of 

coney, by how much the assumptions differ frone each other. 

It may appear simpler just to increase the actual mean claim amount 

in a particular period by the effective rate of inflation between that 

period and a future one and to take the result as the mean claim ammunt 

for the latter period. Using the total number of claims we can than 

calculate the total expected cost of claims for the future period. But, 

it can be shown that this method will result in a much larger over- 

prediction of the total claims cost than by our distribution theory 

approach. For example, the sample mean claim amount for the 73/4th 

Quarter is £150.36 and the effective rate of inflation from this period 

to 74/4th quarter is 18.2% which yields a mean claim amount of £177.7 for 

the latter quarter. The number of claims for that quarter is 3064 

and hence the total expected cost would be £544,551 which shows-an over- 

prediction of £10,884, as compared with £4,093-by our approach. The 

former discrepancy is 2.03% of the total actual cost while the distribution 

theory resulted in a ratio of 0.77% only. Similar results can be observed 

for the other two quarters we have considered. Therefore, one of the 

merits of our distribution theory approach is that it results in accurate 

but smaller reserves. This means that the insurance company will not 

need to tie up funds in unnecessary reserves. 
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3.15 Conclusions 

In this chapter the two and three parameter lognormal distributions 

were studied as models for the distribution of claim amounts, in general 

insurance and in particular for motor insurance accidental damage claims. 

Simulation exercises showed that the graphical method is a good way of 

testing for lognormality. In the 3-parameter case, this test also 

provided a rough estimate of the location parameter c. It was observed 

that, even in large sanpples of (size 2500) observations from an actual 

lognormal population, the points (log x, z) deviate markedly from the 

straight line for values of x in the upper tail of the distribution. 

Therefore, in testing exercises, we should expect to find that the points 

in-the upper tail deviate from the straight line which may fit the 

rest of the distribution. 

Several methods of estimation for the 2-parameter case were considered 

and their efficiencies were calculated. It was observed that the 

approximate maximum likelihood method was the most efficient amongst them. 

It was mentioned that the most efficient mathod for-estimation from 

grouped data is the multinomial maximum likelihood method. A teclmique 

for estimating the parameters by this method was proposed and shown to 

provide better estimates (in terms of a closer agreement between the 

model and the actual data). For the 2-parameter case, the approximate 

maximum likelihood and the multinormal maximum likelihood methods gave 

approximately the same results and hence the use of the former method in 

this case should be recormiended. In the 3-parameter case our proposed 

technique for estimating the parameters by the least squares method was 

shown to be very sinVle when programed on the computer. Ho4; ever, the 

results produced by this method were not as satisfactory as those of the 

multinormal maximum lir. eli. hcod method. 

For the accidental damage data, it was found that the 3-parareter 
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form of the distribution is the appropriate model. The inflation was 

shown to be the main cause of the increase of the claim an, t over tim:.. 

We proposed a technique for predicting the distribution of the claim 

amounts in a future period. This involved updating the parameters c and 

j; with respect to an appropriate rate of inflation. The General Index 

of Retail Prices was shottin to provide the appropriate rate of inflation 

for accidental damage claims. We tested the prediction technique on 

data from the past and it proved to be very successful. 

The total expected loss statistic, T, was suggested in chapter 2 as. a 

goodness-of-fit measure. In the present chapter it was put to use and 

shown to-provide an easily understood measure (in monetary terns) of 

overgraduation or undergraduation. Its use is particularly recommended 

in prediction exercises where it indicates the extent to which a model 

is overpredicting or underpredicting the actual total cost of the claims. 

3.16 Tables 
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Cocfficicnts of skewness (gl) and excess kurtosis (g2) 

and their standard errors 
for the distribution of log X, where X= claim amount 

Table (3.1) 

Accidental Damage Samples 

Period of 
accident 

gl Se(g1 ) g2 Se(g2) 

73/4th quarter -0.107 0.044 -0.506 0.089 

74/1st " -0.076 0.049 -0.503 0.099 

74/2nd' -0.144 0.050 -0.464 0.100 

74/3rd -0.179 0.046 -0.352 0.092 

74/4th -0.199 0.044 -0.428 0.088 

75/1st " -0.237 0.048 -0.394 0.096 

75/2nd -0.184 0.049 -0.376 0.098 

Table (3.2) 

Simulated Samples 

Sample g1 g2 

1 -0.049 -0.328 
2 0.105 -0.143 

3 0.065 -0.167 
4 0.122 -0.122 
5 -0.007 -0.170 
6 -0.013 -0.209 
7 -0.037 -0.412 
8 -0.039 -0.369 
9 0.030 -0.223 

10 0.067 -0.272 

For all samples: Se(gl) = 0.049 

Se(g2) = 0.098 
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Table (3.3) 

Efficiencies of various methods of estimation for the 

Two-Parameter Lognormal Distribution 

Method of estimation Eff (ý) Eff (v2) Eff (a) Eff (ß) 

Moments 0.044 0.095 4.145 17.710 

Approx. Max. Likelihood 0.021 0.036 3.944 9.768 

7& 93% quantiles 0.131 0.188 7.267 24.493 

27 & 73% quartiles 0.026 0.050 4.634 12.186 

Median & Coeff. of 
variation 

0.026 0.095 7.525 24.561 

Least squares 
regression 

0.051. 0.104 4.363 18.999 
1 
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Table (3.4-a) 

73 /4TH QUARTER ***#* 

FITTING THE TWO PARAMET ER LOGNORMAL DIS. BY DIFF. METHODS. 

TABLE OF ESTIMATED PARAMETERS AND STAT ISTICS 

METHOD--> MAXIMUM 7&93 
ý% 276,73 % 

MOMNTS LIKELIHOOD QUANTILES QUANTILES GRAPHICAL RECRESSION 

STATISTICS 

MEWHAT 4 . 583 4.503 4 "325 4 "5 10 4.554 4.568 

SIGMA2H'AT 0.860 1.089 1.321 1.018 0.893 0 F176 

ALPHA=MEAN 150.359 
, 
155.669 146.318 155.935 "148.495 149.333 

BETA=S. D. 175.482 218.530 242.476 207.387 178.399 176,791 

COF OF VAR 1.167 1.404 1.657 1.330 "1.201 1.184 

MEDIAN 97.832 90.315 75.596 93.713 95.000 96.363 

MODE 41.417 30.400 20.179 33.846 38.882 40.125 

CKE -INESS 5.091 6.978 9.523 6.342 5.338 5 . 21 1 

" KURTOSIS 71.228 153.819 341.219 121.219 79.719 75.2613 

102 



Table (3.4-b) 

## 73/4TH QUARTER **##* 

EXPECTED NO. OF CLAIMS BY DIFF. MET HODS OF ESTIMATI ON 

T WO PARAM ETER LOGNORM AL DIS. 

AMOUNT f ACT. NO. MOMNTS MAX. LIK. 7(93°JQS 27f*73%Q S GRAPH. REG. 
1- 30 478. 318. 454. 654. 405. 349. 334. 

31- 60 518. 602. 613. 634. 607. 615. 609. 
61- 90 461. 501. - 458. 423. 469. 496. 499. 
91- 120 

. 
359. 373. 329. 290. ' 342. 365. 369. 

12 1- 150 239. 274. 240. 207. 250. 266. 270. 
151- 180 213. 203. 179'. ' 153. 187. 197. 200. 

" 151- 210 148. 153, 136. 116. 142. 148. 150. 
211- 240 102. 

- 
117. ' 106. 90.. 110. " 113. 115. 

241- 270 Al. 90. 83. 71. 86. ß?. 
. 

89. 
271-. 300 58. 71. 67. 57. 69. 69. 70. 
301- 330 66. 56. 54. 47. 56. 55., - 55. 
331- 360 45. 45. 44. " 35. a5. 44. 4t. 
361- 390 39. 37. 37. 32. " 37. 36. 36. 
391- 420 35. 30. 31. 27. 31. 29. 30. 
421-"450 34. ' 25. 26. 23. 26. 24, 24. 
451- 480 20. 21. 22. 20. 22. 20. 20, 
451- 510 '29. 17. 19. 17. '19. 17, 17. 
511- 540 1Q.. 14. "16. 15. 16. 14.. 14. 
541- 570 8.. 12. 14. 

_13.. 
14. 12. 12. 

571- 600 9. 10. 12. 11.. 12. 10. 10. 
601- 700 29. 25. 

. 
30. 28. 30. " 25. 25. 

701- 800 18. 16. 20. 19. 19. 16. 16. 
801- 900 20. 10. 14. 14. 13. 10. 10, 
901-1000- 6.. 7. 10. 10. 9. 7. 7. 

1001-1100 4. 5. 
. 

7: 7. 7. 5. 5. 
1101-1200 4. 3. 5. 6. 5. 3. 3. 
1201-1300 1. ?. 4. 4. 4. 3. . 2. 
1301-1400 3. 2. 3. 3. 3. 2. 2. 
1401-1500 1. 1. 2. 3. 2. 1. 1. 
1501-1600 0. 1. 2. 2. 2. 1. 1. 
1601-1700 1. 1. 1. 2. 1. 1. 1. 
1701-1800 (1. T. 1. 1. 1. 1. 1. 
1801-1900 0. 0. 1. 1. 1. 1. 0. 
1901-2000 1. 0. 1. 1. 1. 0. " 0. 
2001-2100 0. 0. 1. 1. 1. 0. 0. 
2101-2200 0. 0. 1. 1. 0. 0. ' 0. 
2201-2300 . 0. 0. 

" 
0. 1. 0. 0. 0. 

2301-2400 1.. Q. 0. 1. 0. 0. U. 

TOTAL 3045. 3043. 3043. 3043. 3044. 3013. 3042. 
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'. Cable (3-4-0 

##### 73/4TH QUARTER ## #, 

(ACTUAL - EXPECTED) CLAIM NO. S BY. DIFF. METHODS 

TWO-PARAMETER LOGNOR! 'AAL bIS. 

AMOUNT £ MOMENTS MAX. LIK. 7F, 93%QS 27G73%QS GRAPHCL AEG 
1- 30 160. 

' 
24. -176. 73. r 1 . 

144 
31- 60 -ý 4. -95. -116. -119. 97, -97. 

. 
-91 61- '90 -40: 3. 38. -El. . -35. 

. 
-3l. 91- 120 -14. 30. 69. 17. -6. -10. 121- 150 -35. -1,, 32. -1 1. -27. -31 151- 181) 10. 34. 60; 20. 16, 

, 
13. 

181- 210 -5. ' 12. 32. 6. 0. -2. 211- 240 -15. -4. 12. -8, -11. -13. 241- 270 -9. -2. 10, -5. -7ý -8, 271- 300 -13. -9. 1. -11. -11. -12. 301- 330 10. 12. " 19. 10. 11. 11. 
331- 360 0. 1. 7. 0. 3. 
361- 390 

' 
2. 2. 7. ' 2. 3. 3. 3. 

20 391= 4 5'. 4. B. 
421- 450 9. H. 11. 8. 10. 'ý0 

. -ý 
451- 480 -1. -2. , 0. -2. 0. ' 

0 

\ \ 
481- 510 12. 10. 12. 10. 12. . 

12. 
511- 540 

.. 
0.. -2. -1. -2. 0. 0. 

541- 570 -4. -6, -5" -t, " -4. - 4. 
... 571- 6001 -1. -3. -2. -3. -1, . -1 601- 700 4. -1. 1. -1. 4. . 

4 701- 800 2. -2. -10 -10 2. 
. 

2 801- 90-0 10. 6. 6. 7. 10. 
. 

10. 
901-1000 -1. -4. -4. -3. -1. -1 1001-1100 -1, -3. 

' -3. -3. 
. 

1 101-1200 1, -1 . -2. --1 " 1, 1, 1201-1300 -1, -3. -3. -3. -2. -1, 1301-1400 1. 0, 0.. n. i. 1' 
' 1401-1500 0. 

, -1 , -2. �1. 0. . 
0 

1501-1600 -1. -2. -2. -2. -1, 
. 

. -1 16111-1700 0. 0, -1, 0. 0 
0 

1701-1800 -1. 
-1ý 

' 
1801-1900 0; -10 0 
1901-2000 1. 0. 0 ' 

1 2001-2100 0. -1. -1, -1, 0, 
. 

0 
2101-2200 0. -1. -1. 0. 0 

, 
C 2201-2300 0, 0. -1. 0. . 

0. 
. 

0 2301-2400 1. 1. 0, 1" 1. 
. 

1. 

10^ 
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Table (3.4-d) 

73/4TH QÜARTE'R ##x#* 

" CHI SQ. GO ODNESS OF FI T- TEST FOR DIFF. ME THODS :. 

T WO-PARAMETER LOGNORMAL DIS. 

AMOUNT $ MOMNTS MAX. LIK. 
(A- 

7ET93%QS 
E)**2/E 

27&73%QS GRAPHCL REG. 

1- 
... 

30 
....... 
80.503 

........ 
1.2 9 

.. 
47.364 

......... 
13.158 

........ 
47.682 

......... 
62.014 

31- 60 11.721 14.723 21.224 13.049 15.299 13.598 

61- '90 3.1,94 0.020 3.414 0,136 2'. 470 2.894 

91- 120 0.525 2.736 16.417 0.845 0.099 0,271 

121- 150 4.471 0.004 4.947 0.484 2.741 3.559 

151- 180 0.493 6.4513 23.529 3.615 1.299 0.845 

181- 210 0.163 1.059 8.828 0,254 0.000 0.027 

211- 240 1.923 0.151 1.600 0.582 1.071 1.470 

241- 270 . 0.900 0.048 1.408 0.291 0.557 0.719 

271- 300 2.380 1.209 0.018 1.754 1.754 2.057 

301- 330 1.786 2.667 7.681 1.786 2.200 2.200 

331- 360 0.000 0.023 1.. 289 0.000 0.023 0.000 
361- 390 0.108 0.108 1.531 0.106 0.250 0.250 

391- 420 0.833. 0.516 2.370 0.516 1.241 0.833 

421- 450 
. 

3.240 2.462 5.261 2.462 4.167 4.167 

451- 480 0. Cet A 0.1132 0.000 0.182 0.000 0.000 

4131- 510. 8.4-/1 5.263 8.471 5.263 8.471 8". 4 71 

511- 540 0.000 0.250 0.067 0.250 0.000 0.000 

541- 570 1.333 2.571 1.923 2.571 1.333 1.333 
571- 600 0.10r) 0.750 0.364 0.750 0.100 0.100 1 
601- 700 0.640 0.033 0.036 0.033 0.640 0.6,10 

701- 800 0.250 0.200 0.053 0.053 0.250 0.250 

Sol- quo 10.000 2.571 2.571 3.769 10.000 10.000 

901-1000' 0.143 1.600 1.600 1.000 0.143 0.143 

DOTAL cxzsQ, 133.8 54.7 174.3 59.9 102.3 116.5 

D. F. 24 26 26 25 24 24 

P< 0.001 0.001 0.001 0.001 
, 

0.001 0.001 
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Table'(3.4-ej / 

***-X* 73It1 TH QUA TER ## ** 

ACTUAL AND EXPECTED CLAIMS COST BY DIFF. METHODS 

TWO PARAMETER LOGNORMAL DIS. 

AMOUNT £ ACTUAL A40MNTS MAXLIK . 7&93%OS 27&730 QS GRAPHCL REG .' 1- 30 7409, 4.929. 7037. 1013?. 6277: 5409. 5177. 
31- 60 23569. 27391. 27891. 28847. 27618. 27983. 27710. 
61- 90- 3481)5. 37825'. 34579. 31936. 35410. 37448. 37674, 
91- 120 37874. 39351. 34709. 30595. 36081. 38507, 38929, 

121- 150 32384. 37127. 32520. 28040. 
, 

33875. 36043. 36585. 
151- 180 35251. 33596. 29624. 25321. 30948, 32603. 33100, 
181- 210 28934. 299.11. 2E5ß8. 22676. 27'761. ' 28934. 29325. 
211- 240 23001. 26383. 23903. 20295. 24805. 25481, 25932. 
241- 270 20695. 22995. 21206. 18140. 21973. 22464. 22740, 
271- 300 16559. 20270. 19128. 16273. 19699. 19699. 19985, 
301- 330 20823. 17668. 17037. 14829. 17668. 17352. 17352. 
331- 360 15547. 15547. 15202. 13129. 1,5547, 15202. 15547. 
361-'390 14644. 13893. 

. 
13893. 12016. 13893. 13518. 13518. 

391- 420 14193. 12165. 12570. " 10948. 12570. 11759. 12165,. 
421- 450 14807. 10887. -11323, 1.0016, 11323. 10452. 10452. 
451- '180 93111.. 9775. 10241. 9310, 10241. 9310. 9310, 
481- 511) 14369. 8423. 9414. 11423. 9414. 8423. 8423. 
511- 540 7357. 7357. E408, 7882. 8408. 7357. 735 7. 
541- 570 4444. 6666. 7777. 7222. 7777-. 6666. 6666, 
57 1- 600 5269. . 5855.. 7026. 6440. 7026, 

_ 
5855. 5855. 

601- 700 18864, 16262. 19515. 18214. 19515. 16262. 16262. 
701- Bon 13509. 12008. 15010, 14259. 14259. 12008. 12009, 
801--900 17010. 8505, 11907. 11907. 11056, 8505. 8505. 
901-1000 5703. 6653. 9505. 9505. 6554. 6653. 6653, 

1001-1100 4202. 5252. 7353. 7353. 7353. 5252: 5252. 
1101-1200 4602. 3451. 5752. 6903. 5752. 3451. 3451. 
1201-1300 1258. 2501. 5002. 5002. 5002. 3751. 2501 
1301-1400 4051. 2701. 4051. 4051. 4051. 2701. 

. 
" 270 1, 

1401-1500 1450. 1450. 2901. 4351. 2901. 1450. 1450, 
1501-1600 0. 1550, 3101. 

. 
3101, 3101. 1550. 1550, 

1601-1700 1650. 1650. 1650. 3301. 165Q. 1650. 1650, 
1701-1800 0, 1751. 1751. 1751. 1751. 1751, 1751, 
1801-1900 0. 0. 1850. 1850. 1850. 1850, 0. 

% 1901-2000 1950. 0, 1950. 1950. 1950. 0, 0. 
2001-2100 0. 0. 2050. 2050. 2050. 0. 0. 
2101-2200 0. 0. 2150. " 2150. 0. 0 0. 
2201-2300 0. 0. '0. 22.50. 01 o, 0. 
2301-2400 2350. 0. - 0. 2350. 0. 

, 
o. 0. 

.... 

TOTAL CL CAST 
........ 

457843. 
........ 

451757. 
........ 

'165582. 

........ 

43479;, 
......... 

469117. 
........ 

447327. 

. 
... .... 

4.475'i 1, 
N 

N 

J 
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Table (3.4-i) 

##* 73/4TH QUARTER ***+ý 

EXPECTED LOSS BY DIFF . METHODS: (A-E)-(CLAIM AMOUNT) 

' TWO-PARAMETER LOGNORMAL DIS. 

AMOUNT £ MOMNTS MAX. LIK. 7&9301, 
-QS 

27Ci73%QS - GRAPHCL REG, 
1-- 30 240. 372. -2728. 1131. 1999. 2232. 

31-" 60 -3822. -4322. -5278. -4049, -4413. . -4140. 61- 90 --3020. 227, 2869. -604. -2642. -2869 91- 120 -1477. 3165. 7279. 1793. -633-. 
. 

-1055. 121- 150 -4742. -135. 4336. -1490, -3658, -4200. 151- 180 1655. 5627. 9930. 4303. 2648. 2151, 
181- 210 -978. 2346. 6256. 1173. 0. -391. 211- 240 -3382. -902. 2706. 

. -1804. -2480. -2931, 241- 279, -2299. -511. 2555. -1277. -1788. -2044. 
271- 300` -3711. -2569. 286. -3140. -3140. -3426. 
301- 330 3155. 3786. 5994. 3155. " 3470. 3-1,70, 
331- 360 0. 346. 2418. 0. 346, 0. 
361- 390 751. 751. 2628. 751. 1126. - 1126. 
391- 420 2027. 1622. 3244. 1622. 2433. 2027. 
421- 450 3919-. 3484. 4790. 34134. 4355. 4355. 
451- 480 -466. -931. . 0. -931. 

" 0. 0 
481- 510 5946. - 4955. 5946. 4955. 5946, , 

5946. 
511- 540 

% 
0, -1051, -525. -1051, 0, 2 

. 
511- 570 -2222. -3333. -2777.. -3333. -2222. -2222. 571- 600 -585. -1756. -1171. . -1756, -585. -585, 601- 700 2602. -651.. 651. 

. -651. 2602. 2602. 
" 701- 800 1501. -1501. -751. -751. 1501. ' 1501. 

801- 900 8505. 5103. 5103. 5953. 8505. 8505, 
901-1000 -951. -3802. -3802, -2851. -951. -951. 1001-1100 -1050. -3151. -3151. -3151, - -1050, -1050. 1101-1200 1150. -1150, -2301. -1150, 1150, 1150, 

1201-1300 -1250. -3751. -3751. -3751. ' -2501. -1250 1301-1400 . 1350. 
. 
0. 0. 0. 1350. ' 

. 
1350. 

1401-1500 0. -1450. 
" 

-2901, -1450. 0. 0, 
1501--16011 -1550. -3101. -3101. -3101. -1550. 

. 
-1550. ` 1601-1700 0. 0, -1650. . 

01 0. 0 
1701-1800 -1751. -1751. ,. -1751. -1751, -1751. -1751. 1801-1900 0, . -1850. -1850, 

-1850, 
-1850,. 0. 

1901-2000 1950. 0. 0. 0. 1950. 1950 
2001-2100- 0. -2050. -2050. -2050. 0, 

. 
0 

2101-2200 0. '-2150. -2150, 0. 0. 0. 
2201-2300 0,, 0, -2250. 0. 01 p. 

,. 2301-2400 2350. 2350. 0, 2350. 2350. 2350. 
............. 

TOTAL 

..... 

6(0,86, 
.......... 

77739. 

.................. 

2305.1. -11274. 

........ 

10516, 
....... 

10301. 

1OTAL EXP. LOSS 

--------------= 1.33% -"1.69'/1 5.03% -2.4f`ß, 1 2.30° 2.. 25^. 1'OTAL ACT. COST 

I 
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Table (3.5) 

ýti Kx 74 / 1: i T NtJAn'TER ** x** 

FITTING 1 -HE TWO PARKMET ER L()GNE; HMAL 0: 16. BY DIFF. METHODS 

"AHLE: [if: E5i :i MA TED PMHAIAE+ T EH S /AND SiAT : (ST': CS 

METHOD--> FlAXINUM3 7i; c3 /1 27(, 73 ^l, 

MUPANIS l:: IKEI_: (H(l[l[) [-itlllý TILES ialýKýJ'i : it. Es GRAPHICAL. Fl(: GRESSICht 
......... ........ ........ .... .......... .......... .......... .. 

Sih TY. i. i?: CS 

M"E1144 AT 4.5A9. 4.497 4.3112 4.51? 4.511 
"4.581 

"1 

SX(zMA2HAT (1 . 
942 1 . [IAA) 1.. 33A 0 97 3 0,975 (i . 

A53 

ALPHA= FAN 149-F45-3 1 Eiu 599 15(I 
. 

(17f, 1110.995 140.125 1414.534 

BETA=U. 1). 172 .l 
()ä 216.901 251.666 191.132 1911-411 173.4 05 

., - (: (JF OF VAR . 
1.1a9 1.004 1.677 1.203 1.205 1.160 

MEDIAN 98.371 09.707 76, A66' 91.603 91 . 1)00 97.620 

MOUE 42.3Q 1 30 . 200 20.164 34 . 
625 34 

. 322 41.615 

SKEWNESS , ý1f+5 6976 9.746 5.951. 5.977 5.042 

KURTOSIS 67.1(15 153. x2 362.56() 104. ()21 104.779 64.626 

7'C:, ".:. CH: SQ. 139.3 56.4 142.2 60.9 67o Q 128.2 

D. ý'" 23 24- 24 23 23 23 

p< 0.001 0.001 0.001 0.001 0.001 o. od1 

T 3876 1197 20559 10161 11812 5391 

T 
," 1 

0 
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Table (3,6) 

7 4/2ND QUARTER 
. 

##" x* 

FITTING'THE TWO PARAME TER LOGNORMAL DIS. BY DIFF. ME THO'DS 

TABLE OF ESTIMATE D'PARAMETERS AND STAT ISTICS 

METHOD--> MAXIMUM 7', 93 °', 27F, 73 °% 
MOMNTS LIKELIHOOD QUANTILES QUANTILES GRAPHICAL REGRESSION 

. """"""""""""""""" "a""""""""" """"""""""""""""r"""r """"""""" """"""""""" 

STATISTICS 

1.1EWHA T 4.620 4.531 4.377 4.576 4.564 4.609 

SIGMA2HAT" 0.801 1.057 1.306 0.9311 0.913 0.818 

ALPHA=MEAN 151.574 --157.531 152.969 155.186" 151.505 151.201 

BETA-S"'D. 167.980 215.867 250.932 193.447 1114.977 170.169 

COF OF VAR 1.108 -1.370 1.640 1.247 1.221 1.125 

MEDIAN 101.543 92.862 79.622 97.107 96.000` 100.430 

MODE 45.572 32.269 21.572 38.023 38.544 44.308 

SKEWNESS 4.686 6.684 9.335 5.677 5.48.3 4.802. 

KURTOSIS 58.669 138.092 324.022 92.424 84.993 62.099 

TOTAL (: N! SQ. 136.3 52.2 142"5 64.3 
. 

87.1 ' 119.3 

-n" 
F. 25 24 25, 24 23 - 24 

F< 0.001 0.001 0.001 0.001 0.001 0.001 

T 3786 -4373 16604 -1293 4025 5616 
T 

Lý , ýC. '" CCST 
1 
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Table (3.7) 

xk* 74/3P[) UUAP E! 1 *** . 

"F7 º_NG YHE TWO OA' A ME TEH LOGNUHj! %[. [)): S. HY 01 FF 
. 

"A -f HUU 

'IA(ILE OF ES"iXMAiE- [) PPRA, '4'r. 'iEH S H'f) 1; iAI 1h IC`i 

}1E i H7i)__> ýMX: +: M1J 4 WI C19 7, 21 ; "):; *ýý 

Mtl'1N i.; LIKE: t. 1H1)(10 0U/tN ILE; ) GHAHH12AL r1E: G(? c.:;; 1!., '; ' 

ýfE:: HÄT a. 6U 4,622 llfiy 4 . 
67/1 

ii7; zMi 2HP T (I "R2 
1.1162 1 , 

253 0.020 fl, 71 t), ý; E, L+ 

1l6.1: aý1 6h 1f' 4,21?. 1E, A, (1: 44 1. '7fI. 6, i" 1'"5,, '1ý, n 

i; E ýH=ci, iº. 9. f1.2 ? 3: '. )i, 11 ?q ; f03C)2 21,74 1U3.4 '7 

(; [IF oof- VF. ý' 1.1 iý, 1, : i')5 1,5A 1 1 
. 22'' I, 2P 1 1,1'72 

! ";, )1F. CJ äi. 23'' 1(14. ` 1? 1(15. IV,?. 1K, 

c' [! 7J ; i'+ ý? 2 4.22 n1 . 
7ý, a r 

. 
741; X15,133 

týf. E ", i: E.:;;; tL"c'') h, 'ý? ý, ý. fýcý'I 5.1,40 P 5"12Fi 

(4.2-,. i 14(1.2't 2h0"t, ý1 F'7,14: i 1cI: i. 51° 72.401 

` TOTAL Cz, z: Q. 1117,3 69.4 171.3 34.1 " 76.5 111.6. 

` D. F. 24 26 26 "24 2Q 2d 

p< 0.001 0.001 0.001 0.001 0.001 0.001 

T '35 6 -9106 19541 ý8? _A 5013 ; <1 

T 
; "r; o... 

rý-ýw, E-" d. 2; ß 
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Table (3.8) 

##** 74 /4TH QUARTER **ý`## 

FITTING THE TWO PARAMET ER LOGNORM AL 025. BY DIFF. METHODS 

TABL. E O F ESTIMATED PARAMETER S AND STAT ISTICS 

METHOD--> MAXIMUM 7(, 93 % 27F', 73 01, 
'MOMNTS LIKELIHOOD QUANTILES DUANTILES GRAPHICAL . REGRESSION 

STATISTICS -. 

MEWHAT 4.757 4.658 4.491 4.702 4.727 4.730 

SIGMA2HAT 0.807 1.103 1. "278 1.021 0.836 0.833 

ALPHA=MEAN 174.1116- 182.958 168.915 
, 
183.668 171.620 171.769 

BETA=S. D. 194.033 259.553 271.767 244.844 196.111 195.838 

COF OF VAR 1.114 1.419. 1.609 1.333 1.143 "1.140 i 

MEDIAN 116.361 105.410 89.168. 110.215 113.000 113.26a 

MODE 51.927 34.990 24.848 39,087 
.. 

49.001 49 . 24A 

SKEWNESS 4.724 7.111 8.991 6.368 4.921 4.902 

KIURTOSIS 59.784 161 , 2.74 293.892 122.451 65: 763 65.176 

TOTAL CHISZ" 215.3 61.3 166.1 63.8 160.8 167.6 

25 27 27 27 
. 
25 25 

pC 0.001 0.001 0.001_, 0.001 0.001 0.001 

T 6102 -15853 32546 -20139 12375 13712 

ký " - 1 -3%' 6% -3. aö 2.3;; 2: 6'ý 
cosT 
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Table (3.9) 
. 

, 

xý ,. xx 75 /1; 'i (1LfAfi'i Efi ý: * xx 

F :[TYx. d; i 'i HE YW(1 P/ fil; r. 1E Y EH L(1GN(1RM Hl. [)I 
" 

HY C)FCFF 
" 

METHODS 

A' CF E:: i'i : ý: "-; r; 'i E[i fýP, R MME'i E R1 1i AND S i, T xs'i IG-i 

MET HO[)--> i4AX 3'MUJ'-" 27`*: 13 

ý4C1(iIN- ; LXKEl_1H(1('C) : 4tiA; V Ty LE .ý' J! 1. . 
Nýiý : L[- E f1 A I. 1TCHL f'HE i I(: id 

""""". """"""""""" """""s"""""" """""""""" """""r""" """"""""""""""". ""w 

^IEWHAT a""JaF, 4 1661u a"5() el a, 711 4,14'; d, 7(fi! 

11: 1f C1; 'i (I 
" 
Fi1 z) 1. (l )6 1 

"21 
R 1 . '(1 12. C) 

"1 41i (I 
" 

R65, 

ftl. i*i='kIEA N 173"((! 2 102.4`-, '' 16R"6R(1 1A4. _1R 175 
. 

6FA R 170,11° 

5.3(1 2Ci: i"f fl 265"FO') 2 4.3.961 2(12 . c) 13 1UC'"306 

Ct)i aF " V: \ f; 1.12 1 
. 

30f1' 1. '7C, 1.32'3 1.1 R5 
r 

1.172 

:c (1 (fltiýJ 175.1?. R 9(Ih. 5'11 «(1.392 111.1'7 115"00 0 11f1"/11e1 

M (1Cl(: 50 
. 
750 2ý, 

"04 
14 [i (1 

"[110 CIýJ, 273 4ý , 
513 

c: i . 
'1ý:: [i C"sýil(ý P ho R, h4(J h. 1Rf) 5; (IOfi ß) 

. 
1?. 7 

ý 1ýý: ýi ýw: i l: i ý'ý 
.J 

71 1 CI'J 
" 

i: iýi jrýý- 
" 

(lýav i1 ýý 
,!, 

h, 2 ( 
.4 

L2 72 
. 

413 

TOTAL 149.6 70.9 164.7 72.2 125.1 
. 113.7 

D. F. 24 27 27 21 244 ;4 

P< 0.001. 
. 

0.001' 0.001 0.001 0.001 0.001 

T 3370 -14909 24317 21324 -368 14956 

0.7 , _ 3.3; - 5.4': -4.7. '')' -0 1 zj 
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Table (3010) 

* 75 /2ND QUARTER *# *- 

FITTING THE TWO PARAMET ER LOGNORMAL"DIS" BY DIFF. METHODS 

TABLE OF ESTIMATED PARAMETERS AND STAT ISTICS 

' METHOD--> MAXIMUM 7e93 27E73 °ý 
. 

MOMNTS LIKELIHOOD QUANTILES QUANTILES GRAPHICAL REGRESSION 

STATISTICS 

ME1, '+HAT 4.778 4.687 4 "544. 4.720 4.754 4.754 

9, IGMA2HAT 0.830 1.103 1.270 1.021 0.82A 0.854 

ALPHA=MEAN 180.083 188.317 177.515 186.914 175.482 177.882 

BETA=S"D. 204.790 267.145 284.045 249.142 199.193 206.621 

COF OF VAR 1.137 1.419 1.600 1.333 1.135 1.162 

MEDIAN 118.919 108.501 94.078 112.170 116.000 116.056 

MODE 51.857 36.018 26.423 40.397 50.688 49.401 

SKEWNESS 4.882 7.111 8.897 (1.367' 4.868 5.052 

KURTOSIS 64.551 161.244 285.982 122.392 64.111, 69.946 

T0T/L CHISQ" 145.1 50.6 121: 8 52.3 140.2 116.5 

D. F. 24 27 27 27 24 27 

p 01001 0.004 0.001 0.003 0.00. 0.001 

T 4871 

T 
COST t Till' T. 

-5951 25634 -10189 

ý1. ý`ä 5.?; '4) 

15935 11176 

3.51 , 2.5% 
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**l Y W0.4)AIIAr�CYFR L0GN0f1MAL [)I 3. x 

73/4T; -+ QUARTER DATA 

ESTIMATION EBY'MULTINOMIAL MAX. LIKELIHOOD METHOD : - 
MEW = 4.5163 " SIG%IA2=-. 1.0553 

MEAN= 155.080 S. D. = 212.237 

N 

AMOUNT £ ACTUAL. EXPECTED ACTUAL- EXPECTED 
CL. NO. Cl.. NO. EXPECTED LOSS (A-E)**2/E 

1- 30 47R. + 434. 44. 682. 4.1161 
31- 6(} 

, 
518. 613. -95. -4322. 14.723 

6,9C 461. 463. -2. -151. 0.009 
91- 120 359. 335. 24. 2532. 1.719 

121- 150 239. 245. -6. -813. 0.14i* 7 
151- 160 213. 182. 31. 5130. 5.280 
181- 210 "140. 139. 9. 1759. 

. 
0.: )83 

211-- 240. ' 102. 107. -5. -1127. 0.234 
24 1- 270 81. 84 

. -- 3. -767. 0,10 7 
271- 300 56. 67. -9, -2509, 11209 
301-330 66. 55. 11. 347.0. 2.200 

i- 361 45. 45. 0. 0. 0.000 
361- 390 39. 37. 

. 
2. 7` 1. 0.108 

391- 420' 35. 31. 4. 1622. " 0.516 
421- 450 34, 26. 8. 3484. 2.462 
451- 480 20'. 22. -2. -931. 0.182 
491- 510 29. 19. 10 , 4955. '5 . 263 
511- 540 14. 16. -10 r' 

7'1 
- 

^2 
-'; _1", 

ri n -, c 

-651. u. 033 
701- 800 '18. 19. -1. -"751. 0.053 

601- 900 20. 13. 7. 5953. 3.769 
901-1000 . 

6. ' 9. -3. -2FI51. 1.000 
9001-110: 1 4. 7. -3. -3151. 12E? f, 

1101-12(10 4. 5. -1. -1150. 0.290" 
1201-1300 1. 4. -3. -3751. 
1301-1400 3. o... 0. 

1401-1500 1. -1. -145(). 1.778 
15; 11-16(10 0. 2. -2. -3101. 
16(11-1700 1. 1. (, 0. 

1 701-"'1ä0O 0. 1. -1 . -1751 . 
19Q1-l900 0. 1, -1. -1650. 
1901-2000 1. 1. (l. 0. 
2001-2100 0. 1.. -1. -2050. 
2101-2200 0. 0. 0, 0', 
2201-2300 0. 0., . 0. 0. 

23(11-24(1" 

------- 

1. 

----------- 

(1k 

----------- 

1. 

----------- 

23 5(l. 

---- - 
' P. -ea6 

---- 
TOTAL 3045. 3C; 4` . 

-------- - 
-F,:,: ý " 

----- 1----ý 
53.375 

e. - 25 
" P ýý 1 < Q. ü 

TOTAL EXP, L. )ý; s . 

TO AL AT /ý L/ 
A Y. l ll 

5I 1ý. 0*1 

pC. 
114 



Table (3: 12) 

T: UO-PARAMETER LOGNORMAL DIS. 

74/18T (dUP. f1TER DATA 
I 

ESTIMATION 'Y MULTINOJ"MAL MAX. LIKELIHOOD 'V, ETI! OD : - 
MEi'1 = 6.5098 SIGP4A2- 1.0572 

MEAN^ 1,54.070 S. D. = 211.156 

AMOUNT £ ACTUAL EXPECTED ACTUAL- EXPECTED 
CL.. NO. CL. NO. EXPECTE D LOSS (A-E)**"2/E 

1- 30 381. 352. 29. 450. 2.389 

31- 60 428. 493. -65. "-2957. 8.570 

61= 90 351. 372. 
- -21. -1585. 1.185 

91- 120 334. 26A. 66. 6963. 16.254 
121- 150 

, 
211. 195. 16. 2168ß 1.313 

151- 180 133. 145. -12. -1986. 0.993 
181- 210' 98. 110., -12. -2346. - 1.309 

ý1 1- 240 82. 115. -3. -677. ' 0.106 

241-, 270 54. 67. -13. -3321. 2.522 

271- 3(1(1 52. 
- 

54. -2. -571. 0.074 

301- 330 53. 43. 1t1. 3155. 2.326 
331- 360 36. -35. 1. 346. 0.029 

3E61- 390 29. 29. 0. 0. 0.000 

391- 420 26.. 24. 2. P11. 0.167 

421- 450 22. 20. 2. 1371. 0.200 

451- 480 22. 17. 5. 232'7. 1.471 
481- 510 17. 15. 2. 9911. 0.267 

511- 540 10. 13. -3. -1576. 0.692 

541- 570 19. 11. P. 4444. 5.818 
571- 600 4. 9. -5. -2927. 7.778 
601- 700 26. 24. 2. 1301. 0.167 

701- 800 21. 15. 6. 4503. 2.400- 

Sol- 900 11. 11. 0. 0. 0.000 

901--1000 10. 7. 3. 2851. 1.286' 
1001-1100 5. 5. 0. 0. 0.000 

1101-1200 2. 4. -2. . -2301. 
1201-1300 1. 3. -2. -2501. 2.2r<, 
1301-1400 2. 2. 0. 

. D. 

1401-1500 11. 2. -2. -2901. 
1501-1600 0. 1. -1. -1550. 
1601-1700 0. 1. -1. -16511. 
1701-1600 is 1" 1)" 0. 2.2s? 6 

TOTAL 2441 .' 2433. 2329. 
- 

56.0-9.6 
-- 

. ----------- --------. --- -------- -------- ------------ --------------- 
O. F. 24 

TOTAL EX'r'. LOSS P `0.0c! 

0.6 f1, KOL - S1 T, ft? JGV ý00? _; r0 Ti! AC: 7. C['S 
P < 0.01 

1'5 



*#* TWO-PARAMETER LOGNORMAL DIE. 

1/2ND [ JA. i1TEH DATA 

ESTIMATION BY MULTINOMIAL MAX. LIKEi_IH000 METHOD 
MEW - 4.5462 SIGMA2= '1. n 126 

MEAN= 156 : 407 S. D. = -207.061 

AMOUNT £ ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS (A-E)**2/E 

1- 30 -3`51. 312. 39. 60 . 4.875 
"31- 60 380. 473. -93. -4231, . 

18.205 
61- 90 382. 367. 15. 1132. 0; 613 
91- ' 120 295. 268. 27. " 2848. 2.720 

121- 150 211. 1970 14. 1897. (). 995 
151- 180 142. 147. -5. -828. 11.171) 
181-" 2101 114. 112. 2. 391, f). 033 6 
211- 240- 101. ' - 87. 14. 3157. 2.253 

. 
241- 270 57. 68. -11. -21110. 1.779 
271-. 3n0 51: 54. -3. -857. '0.167 
301- 330 39. 44. -5. -157.7. 0.5E, ß; 
331- 360 30. 36. . n. ' 0, 0. CIO0 
361- 390 25. 29. -. -4. -1502. 0.552 

'391- 420 24. 24. 0, - 0. 0.000 
421- 450 27. 

" 
21. 6. 2613. 1.714 

451- 480 18. 17, 1. 466. 0. n59 
481- 510 21, 15. 6. 2973. 2.400 
311- 540 17.. 13. 4. 2102. 1.231 
541- 570 12, 11. 1. 555. Ell. 091 
571- 600 11. 9. 2. 1171. 0.444 
601- 700 30. 23. 7. 4553. 2.130 
-701- 800 13. 15. -2. -1501. 0,267 
801- 900 11, in. 1. 851. 0.100 
901-1000 4. 7. -3. -2851. 1.286 

1001-1100- 7. 5. 2. 2101, 0.800 
1101-120() 0. 4. -4. -4602, 
1201-1300 1" 3. -2. -2501. 5), 142 
1301-1400 1. 2. -1. -1350, 
1401-º500 0. -2. . -2901, 
1501-1600 1. 1. 0. 0. 

1601-1700 0, 1. -1. "-1650. 

" 1701-1800 0. 1. -1. -1751. 
1E? 01-1900 1. 1. 0. 0. 3,12 

TO TAL 
------- 

----------- 

---------- 

? 38i. 
---------- 

- 

2370, 

----------- -------- 

_ 
-349Fi. 

ý.. - 

---- ------------ 

-Sý. 
rO; 

----- 

------------ 

TOTAL EXP. LOSS P \.. 0.001 

------ ---------_ 
TOTAL ACT. COST KOI, - S: '. I "c7 T 0.0^3 

P < 0.01 

116 



' 
#* TWO-PARAMETER LOG"yfRMAL DIS. *#* 

"74/3RD QUARTER DATA 

" ESTIMATION BY MULTINOMIAL MAX. LIKELIH00D METHOD 
-MEW = 4.6371 SIGMA2= 1.0112 

MEAN= 171,1 9 S. D. = 226.355 

I% 

AMOUNT £ ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS (A-E)*"*2/E 

1- 30 362. 315. 47. 726. 7.013 
31- 60 427. 518. -91. -4140. . 

15.986 
61- 9T1 383. 421. -38. -2869. 3.430 

. 91- 120 356. 317. 39. 4115. 4.798 
121- 150 283". 238. 45. 6097, 8.508 
151- 180 194. 181. 13. 2151. 0.934 
181- 210 137. 140. -3. -587, 0.064 
211- 240 97. 110. -13. -2931. 1,536 
241- 270 86. 87. -1. -256. 0.011 
271- 300' 71. 70. 1. 286, 0,014 
301- 330 64. 57. 7. 2208. 0,860 
331- 360 45. 47. -2. -691. 0. Q85 
361- 390 44" 39. 5. 11377. 0.641 
391- 420 25. 33. -8.1 -3244. 1.939 
421- 450 26. 27. -1. -436. 0.037 
451- 480 22, 23. -1. -466. 0.043 
481- 510 25. 20. 5. ' 2477. 1.250 
511-'540 14. 17. -3. "-1576. 0,529 
541- 570 14. 15. -1, -555. 0.067 
571- 600 17. 13. 4. . 2342. 1.231 
601- 700 - 32. 32. 0., 0. ' 0.000 
701- 800 34. 21. 13. 9756. 8.048. 
801- 900 17. 15. 2. 1701. ' 0.267 
901-1000 4. 10. -6. -5703. 3.600 

1001-1100 9. 7. 2. 2101. 0.571 
1101-1200 4. " 5. -1, -1150. , 

0.200 
1201-1300 " 0. 4. -4. -5002. 
1301-1400 1. 3. -2. -2701. 

' 
5.115 

1401-1500 3. 2. 1. 1450, " . 
1501-1600 Q. 2. -2. -3101. 
1601-1700 1. 2. -1. . -1650. 0.667 
1701-1800 0. 1. -1. -1751. 
18o1-1900 0. 1. -1. -1850. 
1901-2000 0.. 1, -1. -1950. ' 
2001-2100'" 0. 1. -1. -2050, 
2101-220.0 1. 1. 0. 0. 

2201-2300 0. 0. 0.. 0. 
2301-2400 . 0. 0. 0. 0. 
2401-2500 0. 0. 0. 0. 

2501-2600 1. 0. . 1 1. 2550. 1. COG 

: E:::::: : EEEEI::: :: EE::::: ::::::::::::: EEI... 
'69,27A 

1)- . _26 

TOTAL EXP. LOSS P<0.001 

---------------- 
TOTAL ACT. COST X CL - 'D X0.029 

i1T P<0.01 



* TWO-PARAMETER LOGNORMAL DIS, ##* 

74 /4TH QUARTER DATA. 

ESTIMATION BY MULTINOMIAL MAX. LIKELIHOOD METHOD i 
MEW = 4.6722 SIGMA2= 1.0562 

UUEAN- 181.329 S. D. = 248.325 

'¼ 

AMOUNT £ ACTUAL 'EXPECTED ACTUAL- EXPECTED.. 
CL, X00. CL. NO. EXPECTED LOSS (A-E) **2 /E 

1-- 30 394. 340. 54. 837. 8.576 
31-- 60 452. 547. -95. -4322. 10.499 
61- 90 426, 447. -21. -1585. 0.987 
91--120 348. 339. 9. 950. 0.239 

121- 150 272. 257. 15. 2032. 0.875 
151- 180 219. 198. "21. 

_ 
3475. 2.227 

181- 210 154. " 154. 0. 1 0. 0.000 
211- 240 124. 122. 2. 451. 0.033 
241--270 105. 98. 7. 1788. 

"0.500 271- 300 78.. 79. -1. =286. 0.013 
301- 330 75. 65. 10. 3155. 1.538 
331- 360 58. 54. 4. 1382. 0.296' 
361- 390 55. 45. 10. 3755. 2.222 
391- 420 29. 38. -9. -3649. 2.132 
421- 450 43. 32. 

. 
11. 4790. 3.781 

451- 480 24. '. 28. -4. -1852. 0.571 
4111- 510 22. 24. -2. -991. 0: 167 
5 540' 24. 20. 4. 2102. 0.800 
541- 570 19. 18. 1. 555'. 0.056 
571- 600 14. 16. -2. -1171. 0.250 
601- 700 42. 39. 3. 1951. 0.231 
701- 800 211.. 26. 2. 1501. 0.154 
801- 900 20. 18". 2., 1701. 0.222 
901-1000 17. 13., 4. 3802. 1.231 

1001-1100 8. 10. -2. -2101. 0.400 
1.101-1200 5. 7. -2. -2301. 0.571 
1201-1300 1. 5. -4. -5002; 3.200 
1301-1400 5. 4. 1. 1350. 

1401-1.500 0" 3. -3. -4351 . 0.600 
1501-1600 

.. 
1. 3. -2. -3101. 

1601-1700 "0. . 
2. -2. -3301. 

1701-1800 0. 
' 

1 2. -2. -3501. Sýýa3 
1801-1900 0b 1. -1. -1850. 
1901-2000 0. -1. -1950. 
2001-2100 1. 1. 

. 
0. Q, .. 

2101-2200 -2150. 
2201-2300 0. 1. -1. -2250. 
2301-2400 1. " 1. 0. 0. 2.667 

--------------, ------------------. -------------------- ----------- 
TUTAL. 

---------- 

3064. 
---------- 

3059. 

------------ ----------- 
-10147. 

------------- ----- ------- 
D. F. = 27 

TOTAL EXP. LOSS F <. C. 001 

------- -------- 
TOTAL ACT. COST ,., Ko' 

"F '; C. C2 

. 118 



Tab. 
7f /1 STi QUARTER DATA 

ESTIMATION By MULTINOMIAL M. AX. LIKELIHOOD METHOD : 
MEW - 4,6839 8IGMA2= 1.0241 

MEAN= 180.540 S. D. = 241.173 

AMOUNT £ ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS (A"-E) **2 /` 

1- 30 324. - 275. 49. ' . 760. 8.731 
31- 60 

, 
31-17. 463. -76. -3458. 12.475 

"61- 90 345. 384. -39. -2944. 3.961 
91- 120 289. 293. -4. -422. (1,055 

121- 150 " 
253. 223. 30. 4065. 4.036 

151- 180 187. 171. 16. 2648. 
. 

1,497 
181- 210 138. 133. 5. 978. 0.188 
211- 240 114. 105. 9. 2029. 0.771 
241- 270 93. 84, 9. . 2299. 0.964 
271- 300 67. 68, -1. -286. 0.015 
301- 330. 63. 56. 7. 2208. 0.875 
331- 360 44, 46.. -2. -691. 0.087 
361- 390 44. 39. 5. 1877. 0.641 
391- 420 " 35. 32. 3. 1216. 0.281 
421- 450 25. 

. 
28. 

-3. -1306. 0.321 
451- 480 26. 23. 3. 1396. 

. 
0.391 

481- 510 18. ' 20. -2. -991. 0.200 
511- 540 18. " 17. 1, 525. 0.059. 
541- 570 22. 15. 7. 3888. 3.267 
571- 600 '. 17. 13. 4. 2342. 1.231 
601- 700 39. 

. 
33. 6. 3903. 1.091 

701- 600 19. 22. -3. -2251. 0.409 
801.900 18. - 15. 3. 2551. 0.600 
901-1000 12. 11. 1. 951. 0.091 

1001-1100 3. 8. -5. -5252. 3.125 
1101=1200 1. 6. -5. -5752. 4.167 
1201-1300 11 4" -3. ' -3751. 
1301-1400 01 3. -3. -4051. Z 5.14Z 
1401-150[) 1. 3. -2. -2901. 
1501-1600 0. 2. -2. -3101. 

. 
1601-1700 1. 2. -1, -1650. z" "571 ý 

. 
1701-1800 0. 

.1. -1 " -1751. 
1801-1911. ) 0. 1. -1� -185,0 

, 
1901-2000 0+ 1. -1. -1950. 
2001-2100 1. 1.4 01 0. 
2101-"2200 1. 

, 
1. 0. 0, 

2201-2300 0. 
_ 

1. -1. -2250. 
2301-2400> 0. 01 01 
2401-250'0 0. 0. 0. 01 
2501-2600 0. 0. 0. 01 
2601-2700 0. a. 01 01 
2701-28[)0 0" 0" 0. 0' .e 
2801-2900 0. 0. t). 0. 
2901-3000 0. 0. 01 0. 
3001-3100 0. 0. 0. 0, 
3101-3200 0. 0. 09 00 
3201-3300 0. 00. a. 0. 
3301-34(10 0. 01 0, 0. 
3401-3500 0. 0. C� 0 
3,01-3600 1. 0. 1. - 3550. 

Ti3S AL 

------------ 

2607. 

---------- 
2603. 

------------- 

--__--_- 

------ 

_- -ý- 
-9423. 

--, 
ý; 

_.. _ 
50.7- 

TO AL EXP LOSS 

---- ------------ -------- 
T 

- 
. 

_ _-. - ---_- _ 
ý -2.. 1% 

'Q. 01 
p ý'> 

... 
! 

r0TAL A,;, T 
, COST 



'Talb? e 
(31-17) 

# TWO-PARAMETER LOGNORMAL DIS 
.## 

75/2NU QUARTER DATA 

ESTIMATION BY MULTINOt. 1IAL MAX. LIKELIHOOD METI-10D 
MEW = 4.7006 SIGMA2= 1.0562 

MEAN= 186.551 S. D. = 255.479 

AMOUNT F, ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. No. EXPECTED LOSS (A-E )* '2 /E 

1- 30 3.02. 264. 38. 589. 5.470 
31- 60 374. 435. - -61 . -27751.. 8.554 
61- 90 332. 360. -28. -2114. 2.178, 
91- 120 277. 276. . 1. 105. 

. 
0.004 

121- 150 235. 211. ' 24. 3252. 2.730 
151- 180 187. 163. 24. 3972. 

. 
3.534 

181- 210 122. 127. 
. -5. -978. 0.197 

211- 240 110" 
. 

101. 9. 2029. 0.802 
241- 270 80. 81. -1. -256. 0.012 
271- 300 72. 66. 6. 1713. 0.545 
301- 330 47. 55. -8. -2524. 1.164 
331- 360. 39. 45. -6. -2073. 0.800 
361- 390 40. 38. 2. 751. 0.105 
391- 420 38" 32. 6. 2433. 

. 1.125 
421- 450 29. "27. 2. 871. 0.148 
451- 480 21. 23. -2. . -931. 0.174 
481 *- 510 30. 

. 
20. 10. 4955. 5.000 

511- 540 19. 17. 2. 1051. 0.235 
541- 570 17. 15. 2. 1111. 0.267 

571- 600 11. 13. -2. -1171. 0.308 
601- 700 - 

36.. 34. 2. 1301. ' 0.. 1 1A 
701- 800 22. 23. -1. -751. 0.043 
801- 900 22. if,, 6. 5103. 2.250 
901-1000 111 1 1. () . 0. 0.000 

1001-1100 4. 8. -4. -4202. 2.000 
1101-1200 3. 6. 

' 
-3. -3451. 1.500' 

-1201-1300 
3. 

. 
51 -2. -2501. p. EO0 

1301-1400. 6. 
- 

4. ' 2. 201. 

1401-1500 " 2. 3. -1 . -1450. 1 1 J3 
1501-1600 1. 2. -1. -1550. 

. 

1601-1700 0., 2. -2. -3301. 
1701--1800 1. 1" 0. 

. 
0" 1.800 

1801-1900 0. 1. ' -1. -1850. ' 

1901-2000 1. 1. '. 00 " 0. 

2001-2100 0. 1. -1. -2050. 
2101-2200 0. '1. -1. -2150. 
2201-2300 

--- 

1. 
----- 

------ 

11 
----------- 

0. 
---------- 

0. 
............ - 

11000 
- 

TOTAL 

- ----------- 

2495. " 

---------- 
. 
2.489. 

----------- ----------- 

---- 

-4142'. 
----------- 

------------- 

44.605 

------------- 
D. 

- 
F. a 27 

TOTAL EXP. LOSS P<0.02 

--------------- _ -O. 9 
TOTAL ACT. COST 

YOL -. 3MIP OV D 
.. 0,020 

1'o 



Table (3.18) 

**' TWO-PARAMETER LOP NORMAL DIS. *** 

PREDICTION OF 74/4TH QUARTER CLAIMS COST 
USING 73/4TH QUJARTER, MULTIN PMIAL MAXLIK. PARAMETERS 

MEW= 4.516 SIGMA2_1.056 
INFLATION RATE 1= 0.07* C ALCULATED FROM 
INFLATION IGNORED. 

PREDICTION PAR AMETERS ARE : - MEW= 4.516 SIGMA2_1.056 
MEAN CLAIM AMOUNT= 155.09 S. D. L212.36 

ACTUAL 74/4TH PARAMETE RS : - MEW= 4.672 SIGMA2=1.056 
MEAN CLAIM AMOUNT= 181.27 S. D. =248.21 

AMOUNT £ AC T. NO. E XP. NO. A-E EXP. LOSS (A-E)**2/E 
1- 30 394. 437. -43. -667. 4.231 

31- 60 452. 616. -164. -7462. 43.662 
61- 90 426. 466. -40. -3020. 3.433 
91- 120 34.9. 337. l i. 1160. 0.359 

121- 150 272. 246. 26. 3523. 2.748 
151- 180 219. 183. 36. 5958. 7.082 
181- 210 154. 139. 15. 2933. 1.619 
211- 240 124. 108. 16. 3608. 2.370 
241- 270 105. 85. 20. 5110. 4.706 
271- 300 78. 68. 10. 2855. 1,471 
301- 330 75. 55. 20. 6310. 7.273 
331- 360 58. 45. 13. 4491. 3.756 
361- 390 55. 37. 16. 6759. 8.757 
391- 420 29. 31. -2. -811. 0.129 
421- 450 43. 26. 17. 7403. 11.115 
451- 480 24, c2. 2. 931. 0.182 
481- 510 22. 19. 3. 1486. 0.474 
511- 540 24. 16. 8. 4204. 4.000 
541- 570 19. 14. 5. 2777. 1.786 
571- 600 14. 12. 2. 1171. 0.333 
601- 700 42. 30. 12. 7806. 4.800 
701- 800 28. 20. A. 6004. 3.200 
801- 900 20. 13. 7. 5953. 3.769 
901- 1000 17. 9. 8. 7604. 7.111 

1001-1100 8. 7. 1. 1050. 0.143 
1101-1200 5. 5. 0. 0. 0.000 
1201-1300 1. 4. -3. -3751. 
1301-1400 5. 3. 2. 2701. 

1401-1500 0. 2. -2. -2901. 
1501-1600 1. 2. -1, -1550. 
1601- 1700 0. 1. -1. -1650. 
1701-1800 0. 1. -1. -1751. - 
1801 1900 0, 1. -1. -1850. 
1901-2000 0. 1. - 1. -1950. 
2001-2100 1. 1. 0. 0. 

2101-2200 0.4 0. 0. 0. 

2201-2300 0. 0. 0. 0. 
2301-2400 1. 0, 

-- - 

1. 

-------- 

2350. 
- ------------------------- 

TOTAL 3064 3062 
----------- 

66786. 
---------- 

128.509 

CHI SQ. STAT. =13?.; , D. F .. ýO P<O. C01 

TOTAL ACTUAL COST = 533707. 
TOTAL EXPECTED COST = 466921. 

TOTAL EXP. LOSS 

--------------- 12.51 ll, 
TßTAI_ ACT. COST 12 



*** TV, Wun-F'ARnr. Mrc"" GNPiJntvS 
un. 

nLnt_ nZ$. 
1aý 1. ie } r_fi 

Iý. üuýv %ýKý n` jýýý 

PREDICTION OF 75/1ST QUARTER CLAIMS COST 
USING 74/1ST QUARTER MULTINOMIAL MAXLIK. PARA METERS 

MEW- 4.509 SIGMA2=1.057 
INFLATION RATE I= 0.0% CALCULATE[) FROM 
INFLATION IGNORED. 

PREDICTION PARAMETERS ARE : - MEW= 4.509 SIGMA2.1.057 
MEAN CLAIM AMOUNT= 154.08 S. D. -211. o4 ACTUAL 75/1ST PARAMETE RS : - MEW= 4.684 SIGMA2=1.024 
MEAN CLAIM AMOUNT= 180.55 S. D. =241.17 

AMOUNT £ ACT. NO. E XP. NO. A-E EXP. LOSS (A_E)**2/E 
1- 30 324. 376. -52. -806. 7.191 

31- 60 387. 527. -140. -6370. 37.192 
61- 90 345. 397. -52. -3926. 6.811 
91- 120 289. 286. 3. 316. 0.031 

121- 150 253. 209. 44. 5962. 9.263 
151- 180 187. 155. 32. 5296. 6.606 
181- 210 138. 118. 20. 3910. 3.390 
211- 240 114. 91. 23. 5186. 5.813 
241- 270 93. 72. 21. 5365. 6.125 
271- 300 67. 57. 10. 2855. 1.754 
301-'330 63. 46. 17. 5363. 6.283 
331- 360 44. 38. 6. 2073. 0.947 
361- 390 44. 31. 13. 4881. 5.452 
391- 420 35. 26. 9. 3649. 3.115 
421- 450 25. 22. 3. 1306. 0.409 
451- 480 26. 18. 8. 3724. 3.556 
481- 510 18. 16. 2. 991. 0.250 
511- 540 18. 13. 5. 2627. 1.923 
541- 570 22. 12. 10. 5555. 8.333 
571- 600 17. 10. 7. 4098. 4.900 
601- 700 39. 25. 14. 9107. 7.840 
701- 800 19. 16. 3. 2251. 0.563 
801- 900 18. 11. 7. 5953. 4.455 
901-1000 12. A. 4. 3802. 2.000 

1001- 1100 3. 6. -3. -3151. 1.500 
1101- 1200 1. 4. -3. -3451. 
1201-1300 1. 3. -2. -2501. 
1301-1400 0. 2. -2. -2701. 
1401-1500 1. 2. -1. -1450. 
150 1-1600 0. 1. -1. -1550. 
1601- 1700 1. 1. 0. 0. 
1701-1800 0. 1. -1. -1751. 
180 1-1900 0. 1. -1, - 1850. 

1901-2000 0. 1. - 1. -1950. 
200 1-2100 1. 0. 1. 2050. 
2101-2200 1. 0. 1. 2150. 

2201-2300 0. 0, 0. 0. 

2301-2400 0. 0. 0. 0. 
2401-2500 0. 0. 0. 0. 

2501-2600 0. 0. o. 0, 
2601-2700 0. 0. 0. 0. 

2701-2800 0. 0. o. 0. 
2801-2900 0. 0. 0. 0. 
2901-3000 0. 0. 0. 0. 
3001-3100 0. 0. 0l 0, 
3101-3200 0. 0. 0. 0. 
3201-3300 0. 0. 0, 0. 
3301-3400 0. 0. 0. 0. 
3401-3500 0. 0. o. 0, 
3501- 3600 

----------- -- 

1. 

--- 

0. 1. 3550. 

- - ------------ 
TOTAL 2 c607 2602 

--------- ---------- 
60567. 

---------- 
135.703 



Table (3.19) 
- continued 

CHI SQ. STAT. =141.1 , 
D. F. _ 

27 P<0.001 

TOTAL ACTUAL COST = 452059. 
TOTAL EXPECTED COST _ 391491. 

TOTAL EXP. LOSS 

--------------- = 13.40 % 
TOTAL ACT. COST 

0 
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Table (3-20) 

*x TWO-PARAMETER LOGNORMAL DIS. ***" 

PREDICTION OF 75/2ND QUARTER CLAIMS COST 
USING 74/2ND QUARTER MULTINOMIAL MAXLIK. PARAMETERS ; 

MEW= 4.546 SIGMA2r1.013 
INFLATION RATE I= 0.0% CALCULATED FROM ; 
INFLATION IGNORED. 

PREDICTION PARAMETERS ARE ; - MEW= 4.546 SIGMA2-1.013 
MEAN CLAIM AMOUNT= 156.41 3. D. =207,14 

. 
ACTUAL 75/2ND PARAMETE RS : - MEW= 4.701 SIGMA2=1.056 

MEAN CLAIM AMOUNT= 186.61 S. D. =255.51 

AMOUNT £ ACT. NO. E XP. NO. A-E EXP. LOSS (A-E)**2/E 
1- 30 302. 327. -25. -388. 1.911 

31- 60 374. 496. -122. -5551. 30.008 
61- 90 332. 384. -52. -3926. 7.042 
91- 120 277. 281. -4. -422. 0.057 

121- 150 235. 206. 29. 3929. 4.083 
151- 180 187. 154. 33. 5461. 7.071 
181- 210 122. 117. 5. 978. 0.214 
21 1- 240 110. 91. 19. 4284. 3.967 
241- -270 80. 71. 9. 2299. 1.141 
271- 300 72. 57. 15. 4282. 3.947 
301- 330 47. 46. 1. 316. 0.022 
331- 360 39. 37. 2. 691. 01108 
361- 390 40. 31. 9. 3379. 2.613 
391- 420 38. 26. 12. 4866. 5.538 
421- 450 29. 21. 8. 3484. 3.048 
451- 480 2.1. 18. 3. 1396. 0.500 
481- 510 3o. 15. 15. 7432. 15.000 
511- 540 19. 13. 6. 3153. 2.769 
541- 570 17. 111 6. 3333. 3.273 
571- 600 11. 10. 1. 585. 0.100 
601- 700 36. 24. 12. 7806. 6.000 
701- 800 22. 16. 6. 4503. 2.250 
801- 900 22. 11. 111 9355. 11.000 
901- 1000 111 7. 4. 3802. 2.286 

1001-1100 4. 5. -1. -1050. 0.200 

11(31-1200 3. 4. -1, -1150. 
1201-1300 3. 3. 0. 01 
1301-1400 6. 2. 4. 5402. 
1401- 1500 2. 2. 0. 0. 

1501-1600 1. 1. 0. 0. 

1601- 1700 0. 1. -1. -1650. 
1701-11300 1. 1. 0. 0. 

1801- 1900 0. 1. -1. -1850. 
1901-2000 1. 11 0. 0, 
2001-2100 0. 0. 0. 0. 
2101-2200 0. 0. 0. 0. 

2201-2300 1. 

-- 

0. 

------ 

1. 2250. 

--------------------- 
TOTAL 2495 2491 

------------------------------ -------- 

67002. 
- 

----------- 

114.147 

---------- 

GIII SQ. STAT. = 118.5 " D. F 
.= 27 P<0,001 

TOTAL ACTUAL COST = 44930 8. 
TOTAL EXPECTE D COST = 38230 6. 

TOTAL EXP. LOSS 

-w 14.91 124 
TOTAL ACT, COST 



. &able t5.21y--- 

-`* x TWO-PARAMETER LOGNORMAL DIS. ### 

PREDICTION Ur 74/4TH QUARTER CLAIMS COST 
USING 73/4TH QUARTER MULTINOMIAL MAXI. TK. PARAMETERS ; 

MEW= 4.516 SIGMA2=1.056 
INFLATION RATE I=29.2' CALCULATED FROM 
INDEX OF MOTOR VEHICLES REPAIRS COST. 

PREDICTION PARAMETERS ARE :- MEW= 4.772 SIGMA2=1.056 
MEAN CLAIM AMOUNT= 200.38 S. D. =274.36 ACTUAL 74/4TH PARAMETERS :- MEW= 4.672 SIGMA2=1.056 
MEAN CLAIM AMOUNT= 181.27 S. D. =248.21 

t 

AMOUNT £ ACT. NO. EXP. NO. A-E EXP. LOSS (A-E)**2/E 
1- 30 394. 287. 107. 1658 39.892 

31- 60 452. 501. -49. -2229. 4.792 
61- 90 426. 430. -4. -302. 0.037 
91- 120 348. 337. 11. 1160. 0.359 

121-= 150 272. 262. 10. 1355. 0.382 
151- 180 219. 205. 14. 2317. 0.956 
181- 210 154. . 62. -8. -1564. 0.395 
211- 240 124. 130. -6. -1353. 0.277 
241- 270 105. 106. -1. -256. 01009 
271- . 300 78. 137. -9. -2569. 0.931 
301- 330 75. 72. 3. 947. 0.125 
331- 360 58. 60. -2. -691. 0.067 
361- 390 55. 51. 4. 1502. 0.314 
391- 420 29. 43. -14. -5677. 4.558 
421- 450 43. 37. 6. 2613. 0.973 
451- 480 24. 32. -8. -3724. 2.000 
481- 510 22. 27. -5. -2477. 0.926 
511- 540 24. 24. 0. 0. 01000 
541- 570 19. 21. -2. -1111. 0.190 
571- 600 14. 18. -4. -2342. 0.889 
601- 700 42. 47. -5. -3252. 0.532 
701- 800 28. 32. -4. -3002. 0.500 
801- 900 20. 22. -2. -1701. 0.182 
901- 1000 17. M. 1. 951. 0.063 

1001-1100 8. 12. -4. -4202. 1.333 
1101-1200 5. 9. -4. -4602. 1.778 
1201- 1300 1. 7. -6. -7503. 5.143 
1301- 1400 5. 5. 0. 0. 0.000 

1401-1500 0. 4. -4. -5802. 
1501- 1600 1. 3. -2. -3101. 
1601-1700 0. 3. -3. -4951. 
1701- 1800 0. 2. -2. -3501. 
1801- 1900 0. 2. -2. -3701. 
1901-2000 0. 1. -1. -1950. 
2001-2100 1. 1. 0. 0. 
2101-2200 0. 1. -1. -2150. 
220 1-2300 0. 1. - 1. -2250. 
2301-2400 1. 1. 0. 0. 

2401-2500 0, 1. - 1. -2450, 
2501-2600 0. 1. -1. -2550. 
-- 

roTAL 
- 

------------ 

3064 

--------- 

3063 

---------- ----- 
-68464,, 

- - 

----------- 

--67.603-y 

---------- 

CHI SQ. ST AT. =53.2 , 0" F"= 31 p , 0000'! 

TOTAL ACTUAL COST = 533707. 
TOTAL EXPECTED COST = 602172. 

TOTAL EXP. LOSS 

j2- ; {ETA ACT, COST 



# '# TWO-PARAMETER LORNOHMAL 013.3t## Table i;; 
4 

PREDICTION OF 75/1ST QUARTER CLAIMS COST 
USING 74/ 1ST QUARTER MULTINOMIAL MAXI. IK. PARAMETERS 

MEW= 4.509 SIGMA2=1.05'7 
INFLATION RATE IL33.9"/o CALCULATED FROM 
INDEX OF MOTOR VEHICLES REPAIRS COST. 

PREDICTION PARAMETERS ARE :- MEW= 4.801 SIGMA2=1.057 
MEAN CLAIM AMOUNT. 206.32 S. D. =282.72 ACTUAL 75/1ST PARAMETERS :- MEW= 4.684 SIGMA2=1.024 
MEAN CLAIM AMOUNT= 180.55 " S. D. =241.17 

AMOUNT £ ACT. No. EXP. NO. A-E EXP. LOSS (A-E)**2/E 
. 1- 30 324. 233. 91. 1410. 35.541 

31- 60 387. 415. -28. -1274. 1.889 
61- 90 345. 361. -16. -1208. 0.709 
91- 120 289. 286. 3. 316. 0.031 

121-. 150 253. 223. 30, 4065. 4.03.5 
151- 180 187. 176. 11. 1820, 0.688 
181- 210 138. 140. -2. -391. 0.029 
211- 240 114. 113. 1. 225. 0.009 
241- 270 93. 92. 1. 256. 0.011 
271- 300 67. 75. -8. -2284. 0.853 
301- 330 63. 63. 0. 0. 0.000 
331- 360 44. 53. -9. -3109. 1.528 
361- 390 44. 44. 0. 01 0.000 
391- 420 35. 38. -3. -1216. 0.237 
421- 450 25. 32. -7. -3048. 1.531 
451- 480 26. 28. -2. -931. 0.143 
481- 510 18. 24. -6. -2973. 1.500 

. 
511- 540 18. 21. -3. -1576. 0.429 
541- 570 22. 18. 4. 2222. 0.889 
571- 600 17. 16. 1. 585. 0.063 
601- 700 39. 41. -2. -1301. 01098 
701- 800 19. 28. -9. -6754. 2.893 
801- 900 18. 20. -2. -1701. 0.200 
901-1000 12. 14. -2. - 1901. 0.286 

1001- 1100 3. 11. -8. -8404. 5.818 
1101-1200 1. Be- -7. -8053. 6.125 
1201-1300 1. 6. -5. -6252. 4.167 
1301-1400 0. 5. -5. -6752. 5.000 
1401-1500 1. 4. -3. -4351. 
1501- 1600 0. 3. -3. --4651. 
1601-1700 1. 2. - 1. -1650. 
1701-1800 0. 2. -2. -3501. 
1801- 1900 0. 2. -2. -3701. 
1901-2000 0. 1. - 1. -1950. 
2001-2100 1. 1. 0. 0. 
2_101-2200 1. 1. 0. 0. 
220 1-2300 0. 1. - 1. -2250. 
230 1-2400 0. 1. - 1. -2350. 
2401-2500 0. 1, 

. - 1. -2450. 
2501-2600 0. 0. 0. 0. 
2601-2700 0. 0. 0. 0. 

2701-2800 0. 0. 0. 0. 
2801-2900 0. 0. 0. 0. 
2901-3000 0. 0. 0, 0. 
3001-3100 0, 0. 0, 0, 
3101-3200 0. 0. 0. "3ý 
3201-3300 0. 0. 0. 0. 
3301-3400 0. 0. 01 0. 
3401-3500 0. 0. 0. n 
3501-3600 1. 0. 1. 3550. 

---------------------- ---------------- ----..... ----... -. .. -------- 
TOTAL 2607 2603 -7153. °,. 74.701 



Table (3.22) 
- continued 

CHI SQ. STAT. -£35.1 , D. F. = 30 P<0.001 

TOTAL ACTUAL COST = 452059. 
TOTAL EXPECTED COST = 523597. 

TOTAL EXP. LOSS 

--------------- _- 15.82 % 
TOTAL ACT. COST 

127 



T'' if (3.23) 

*-x* TIWWO-PARAMETER LOGNORMAL DIS. *** 

PREDICTION OF 75/2ND QUARTER CLAIMS COST 
USING 74/2ND QUARTER MULTINOMIAL MAXLIK. PARAMETERS ; 

MEW= 4.546 SIGMA2=1.013 

INFLATION RATE I=33.3% CALCULATED FROM ; 
INDEX OF MOTOR VEHICLES REPAIRS COST. 

PREDICTION PARAMETERS ARE :- MEW= 4.833 SIGMA2=1.013 
MEAN CLAIM AMOUNT= 208.50 S. D. =276.12 

ACTUAL 75/2ND PARAMETERS :- MEW= 4.701 SIGMA2=1.056 

MEAN CLAIM AMOUNT= 186.61 S. D. =255.51 

AMOUNT £ ACT. NO. EXP. NO. A-E EXP. LOSS (A-E)**2/E 

1- 30 302. 199. 103. 1596. 53.312 

31- 60 374. 385. -11. -500. 0.314 
61- 90 332. 345. -13. -982. 0.490 
91-. 120. 277. 277. 0. 0. 0.000 

121- 150 235. 219. 16. 2168. 1.169 

151- 1130 187. 173. 14. 2317. 1.133 
181- 210 122. 138. -16. -3128. 1.855 

211- 240 
. 

110. 111. -1. -225. 0.009 

241- 270 80. 91. - 11. -2810. 1.330 

271- 300 72. 75. -3. -857. 0.120 

301- 330 47. 62. -15. -4732. 3.629 

331- 360 39. 52. -13. -4491. 3.250 

361- 390 40. 44. -4. -1502. 0.364 

391- 420 38. 37. 1. 406. 0.027 

421- 450 29. 32. -3. -1306. 0.281 
451- 480 21. 27. -6. -2793. 1: 333 

. 
481- 510 30. 24. 6. 2973. 1.500 
51 1- 540 19. 21. -2. -1051. 0.190 

54 1- 570 17. 18. -1. -555. 0.056 
571- 600 11. 16. -5. -2927. 1.562 

601- 700 36. 40. -4. -2602. 0.400 

701- 800 22. 27. -5. -3752. 0.926 

801- 900 22. 19. 3. 2551. 0.474 

901- 1000 11. 14. - 3. -2851. 0.643 

1001-1100 4. 10. -6. -6303. 3.600 

1101-1200 3. 8. -5. -5752. 3.125 
1201-1300 3. 6. -3. -3751. 1.500 

1301- 1400 6. 5. 1. 1350. 0.200 
1401-1500 2. 4. -2. -2901. 
1501-1600 1. 3. -2. -3101. 
1601-1700 0. 2. -2. . -3301. 
1701-1800 1. 2. -1. -1751. 
1801-1900 0. 2. -2. -3701. 
1901-2000 1. 1. 0. 0. 

2001-2100 0. 1. - 1. -2050. 
2101-2200 0. 1. -1. -2150. - 
2201-2300 1. 1. 0. 0. 

230 1-2400 0. 1. -1. -2350. 
240 1-2500 0. 1. - 1. 

----- 

-2450. 
-------- ----------- 

TOTAL 

----------- 

--------- 

2495 

--------- 

---------- 

2494 

---------- 

- 

------ 

-- 

"-63269. 
---------- 

------------ 

82.792 

----------- 

CHI SO. STAT. =91.9 , D. F. = 30 P <o. ooi 

TO TAL 
TOTAL 

TOTAL 

TOTAL 

ACTUAL COST = 44930A. 
EXPECTED COST = 512577. 

EXP. LOSS 

- --14.0A % 128 
ACT. COST 



Table {. 2d) 

## TWO-PARAMETER LOGNORMAL DIS. ### 

129 

PREDICTION OF 74/4TH QUARTER CLAIMS COST 
USING 73/4TH QUARTER MULTINOMIAL MAXLIK. PARAMETERS 

MEW= 4.516 S; GMA2 =1.056 
INFLATION RATE I= 23.5% CALCULATE D FROM 
INDEX OF'AVE. EAR NINGS, MISCELLA NEOUS SERVICES. 

PREDICTION PARAMETERS ARE : - MEW= 4.727 SIGMA2=1.056 
MEAN CLAIM AMOUNT= 191.54 S. D. =262.26 

ACTUAL 74/4TH PARAMET ERS : - MEV9= 4.672 SIGMA2=1.056 
MEAN CLAIM AMOUNT= 181.27 S. D. =248.21 

AMOUNT £ AC T. NO. EXP. NO. A-E EXP. LOSS (A-E)**'2/E 
1- 30 394. 310. 84. 1302. 22.761 

31- 60 452. 522. -70. -3185. 9.387 
61- 90 426. 438. -12. -906. 0.329 
91- 120 348., 338. 10. 1055. 0.296 

121- 150 272. 260. 12. 1626. 0.554 
151- 180 219. 202. 17. 2813. 1.431 
181- 210 154. 159. -5. -978. 0.157 
211- 240 124. 127. -3. -677. 0.071 
241- 270 105. 102. 3. 767. 0.088 
271-"300 78. 83. -5. -1427. 0.301 
301- 330 75. 69. 6. 1893. 0.522 
331- 360 58. 57. 1. 346. 01018 
361- 390 55. 48. 7. 2628. 1.021 
391- 420 29. 41. -12. -4866. 3.512 
421- 450 43. 35. 8. 3484. 1.829 
451- 480 24. 30. -6. -2793. 1.200 
481- 510 22. 26. -4. -1982. 0.615 
511- 540 24. 22. 2. 1051. 0.182 
541- 570 19. 19. 0. 0. 0.000 
571- 600 14. 17. -3. -1756. 0.529 
601- 700 42. 43. - 1. -651. 0.023 
701- 800 28. 29. - 1. -751. 0.034 
801- 900 20. 20. 0. 0. 0.000 
901- 1000 17. 15. 2. 1901. 0.267 

1001-1100 8. 11. -3. -3151. 0.818 
1 10 1- 1200 5. 8. -3. -3451. 1.125 
1201- 1300 1. 6. -5. -6252. 4.167 
1301- 1400 5. 5. 0. 0. 0.000 
1401-1500 0. 4. -4. -5802. 
1501-1600 1. 3. -2. -3101. 
1601- 1700 0. 2. -2. -3301. 
1701- 1800 0. 2. -2. -3501. 
1801- 1900 0. 2. -2. -3701. 
1901-2000 0. 1. -1. -1950. 
200 1-2100 1. 1. 0. 0. 
21 01-2200 0. 1. -1. -2150. 
2201-2300 0. 1. -1. -2250. 
2301-2400 1. 1. 0. 0. 
2401-2500 0. 1. . -1. -2450. 

- 
TOTAL 3064 

---------------------- 

3061 

------- 
. 

-------- 
-42168. 
---------- 

51,237 

- --------- 

CHI SQ. STAT. =65.0 , 
D. F. = 30 P<o. 001 

TOTAL ACTUAL COST = 533707. 
TOTAL EXPECTED COST - 575876. 

TOTAL EXP. LOSS 

-- -----------= -7.90 % 
TOTAL ACT. COST 



Týri0 -FAR ; METER LOGNORMAL DIS. Table (3.25) 

PREDICTION OF 75/ 1ST QUARTER CLAIMS COST 
USING 74/1ST QUARTER MULTINOMIAL MAXLIK. PARAMETERS 

MEW= 4.509 SIGMA2=1.057 
INFLATION RATE I=28.3"/0 CALCULATED FROM 
INDEX OF AVE. EARNINGS, MISCELLANEOUS SERVICES. 

PREDICTION PARAMETERS ARE :- MEW= 4.758 
MEAN CLAIM AMOUNT= 197.69 

ACTUAL 75/ 1ST PARAMETERS :- MEW= 4.6134 
MEAN CLAIM AMOUNT= 180.55 

AMOUNT £ 
1- 30 

31- 60 
61- 90 
91- 120 

121- 150 
151- 180 
181- 210 
211- 240 
241- 270 
271- 300 
301- 330 
331- 360 
361- 390 
391- 420 
421- 450 
451- 480 
481- 510 
511- 540 
541- 570 
571- 600 
601- 700 
701- 800 
801- 900 
901- 1000 

1001- 1100 
1101-1200 
1201-1300 
130 1- 1400 

1401-1500 
1501- 1600 
1601-1700 
1701-1800 
1801-1900 
1901-2000 
2001-2100 
2101-2200 
2201-2300 
2301-2400 
2401-2500 
2501-2600 
2601-2700 
2701-2800 
2801-2900 
2901-3000 
3001-3100 
3101-3200 
3201-3300 
3301-3400 
3401-3500 
3501-3600 

SIGMA2.1.057 
S. D. =270.90 

SIGMA2=1.024 
S. D. =241.17 

(A-E)**2/E 
21.231 

4.687 
1.437 
0.014 
4.329 
0.971 
0.007 
0.145 
0.180 
0.493 
0.150 
0.720 
0.095 
0.028 
1.161 
0.000 
1.087 
0.200 
1.471 
0.267 
0.000 
1.885 

0.000 
0.077 
4.900 
5.143 
4.167 

2687 2611; 
---------------------------------------------------------- 

TOTAL 5O77C+. 54.845 

ACT. NO. 
324. 
387. 
345. 
289. 
253. 
187. 
138. 
114. 

93. 
67. 
63. 
44. 
44. 
35. 
25. 
26. 
18. 
18. 
22. 
17. 
39. 
19. 
18. 
12. 

3. 
1. 
1. 
0. 
1. 
0. 
1. 
0. 
0. 
0. 
1. 
1. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

0, 
0. 
0. 
0. 
1. 

EXP. NO. 
251. 
432. 
368. 
287. 
222. 
174. 
137. 
110. 

69. 
73. 
60. 
50. 
42. 
36. 
31. 
26. 
23. 
20. 
17. 
15. 
39. 
26. 
18. 
13. 
10. 
7. 
6. 
4. 
3. 
3. 
2. 
2. 
1. 
1. 
1. 
1. 
1. 
1. 
1. 

_ 0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

A-E 
73. 

-45. 
-23. 

2. 
31. 
13. 

1. 
4. 
4. 

-6. 
3. 

-6. 
2. 

-1. 
-6. 

0. 

-5. 
-2. 

5. 
2. 
0. 

-7. 
0. 

-1. 
-7. 
-6. 
-5. 
-4. 
-2. 
-3. 
-1. 
-2. 
-1. 
-1. 

0. 
0. 

-1. 
-1. 
-1. 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
1. 

EXP. LO SS 
1131. 

-2047. 
-1736. 

211. 
4200. 
2151. 

195. 
902. 

1022. 

-1713. 
947. 

-2073. 
751. 

-406. 
-2613. 

0. 

-2477. 
-1051. 

2777. 
1171. 

0. 

-5253. 
0. 

-951. 
-7353. 
-6903. 
-6252. 
-5402. 
-2901. 
-4651. 
-1650, 
-3501. 
-1850. 
-1950. 

0. 
0. 

-2250. 
-2350. 
-2450. 

0. 
0, 
0. 
0, 
0. 
0, 
0. 
0, 
0. 
0. 

3550. 



Table (3.25) 
- continued 

CHI SQ. STAT. = 68.0 . D. F. = 30 P <0.001 

TOTAL ACTUAL COST = 452059. 
TOTAL EXPECTED COST = 502837. 

TOTAL EXP. LOSS 

---------------=-11.23 % 
TOTAL ACT. COST 

0 
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Table (3.26) 

*" TWO-PARAMETER LOGNORMAL DIS. 

PREDICTION OF 75/2ND QUARTER CLAIMS COST 
USING 74/2ND QUARTER MULTINOMIAL MAXLIK. PARAMETERS 

MEW= 4.546 SIGMA2=1.013 
INFLATION RATE I=29.5% CALCULATED FROM 
INDEX OF AVE. EARNINGS, MISCELLANEOUS SERVICES. 

PREDICTION PARAMETERS ARE :- MEW= 4.805 SIGMA2a1.013 
MEAN CLAIM AMOUNT= 202.55 S. D. =268.25 ACTUAL 75/2ND PARAMETERS :- MEW= 4.701 SIGMA2=1.056 
MEAN -CLAIM AMOUNT= 186.61 S. D. =255.51 

AMOUNT C ACT. NO. EXP. NO. A-E EXP. LOSS (A-E)**2/E 
1- 30 302. 210. 92. 1426. 40.305 

31- 60 374. 396. -22. -1001. 1.222 
61- 90 332. 350. -18. -1359. 0.926 
91- 120 277. 279. -2. -211. 0.014 

121- 150 235. 218. 17. 2304. 1.326 
151- 180 1887. 172. 15. 2482. 1.308 
181- 210 122. 136. -14. -2737. 1.441 
211- 240 110. 109. 1. 225, 0.009 
241- 270 80. 89. -9. -2299. 0.910 
271- 300 72. 73. -1, -286. 0.014 
301- 330 47. 60. -13. -4101. 2.817 
331- 360 39. 50. -11. -3800. 2,420 
361- 390 40. 42. -2. -751. 0.095 
391- 420 38. 36. 2. 811. 0.111 
421- 450 29. 31. -2. -871. 0,129 
451- 480 21. 26. -5. -2327. 0.962 
481- 510 30. 23. 7. 3468. 2.130 
51 1- 540 19. 20. -1. -525. 0.050 
541- 570 17. 17. 0. 0, 0.000 
571- 600 11. 15. -4. -2342. 1.067 
601- 700 36. 39. -3. -1951. 0.231 
701- 800 22. 26. -4. -3002. 0.615 

801- 900 22. 18. 4. 3402. 0.889 
901- 1000 11. 13. -2. -1901. 0o308 

1001-1100 4. 10. -6. -6303. 3.600 
1101-1200 3. 7. -4. -4602. 2.286 
1201-1300 3. 5. -2. -2501. 0.800 
1301-1400 6. 4. 2. 2701. 

1401-1500 2. 3. -1. -1450. 1501-1600 1. 3. -2. -3101. 
1601-1700 0. 2. -2. -3301. 
1701-1800 11 2. " -1. -1751. 
180 1-1900 0. 1, -1. - 1850. 
1901-2000 1. 1, 0. 0, 
2001-2100 0. 11 -1, -2050. 
210 1-2200 0. 1. -1. -2150. 
2201-2300 11 1. 0. 0, 
230 1-2400 

- 

0. 

------- 

1, " 
-------- 

- 1, 

- 
-2350. 

---- ------- 
TOTAL 

------------ 

-- 
2495 

--------- 

2490 

-------- 

------ 

------- 

----------- 
-44057. 

----------- 

---------- 
65.984 

---------- 

CHI SQ. ET AT. = 72.6 
, D. F . -JO P<t'). 001 

TOTAL ACTUAL COST = 44930A. 
TOTAL EXPECTED COST = 403365. 

TOTAL EXP. LOSS 

--------------- _-9.81 % 132 
TOTAL ACT. COST 



Table (3.27) 

*** Two-rAnAMETER LOGNOfl MAL. DIS. *** 

PREDICTION OF 74/4TH QUARTER CLAIMS COST 
USING 73/4TH QUARTER MULTINOf4IAL h"AXLIK. PARA METERS 

MEW= 4.516 SIGMA2=1.. 056 

INFLATION RATE I= 18.2% CALCULATED FROM 

GENERAL IN DEX OF RETAIL PRICES. 

PREDICTION PAR AMETERS ARE : - MEW= 4.683 SIGMA2=1.056 
MEAN CLAIM AMOUNT= 183.32 S. D. =251.00 

"ACTUAL 74/4TH PARAMET ERS : - MEW= 4.672 SIGMA2=1.056 

MEAN CLAIM AMOUNT= 181.27 S. D. =248.21 

AMOUNT £ AC T. NO. EXP. NO. A-E EXP. LOSS (A-E)**"2/E 

1- 30 394. 334. 60. 930. 10.778 
31- 60 452. 542. -90. -4095. 14.945 
61- 90 426. 445. -19. -1434. 0.811 

91- 120 348. 339. 9. 950. 0.239 
121- 150 272. 258. 14. 1897. 0.760 
151- 180 219. 199. 20. 3310. 2.010 

181- 210 154. 155. -1. -195. 0.006 

21 1- 
. 
240 124. 123. 11 225. 0.008 

241- 270 105. 99. 6. 1533. 0.364 

271- 300 78. 80. -2. -571. 0.050 
301- 330 75. 66. 9. 2839. 1.227 
331- 360 58. 55. 3. 1036. 0.164 
361- 390 55. 46. 9. 3379. 1.761 
391- 420 29. 39. -10. -4055. 2.564 
421- 450 43. 33. 10. 4355. 3.030 

45 1- 480 24. 28. -4. -1862. 0.571 

481- 510 22. 24. -2. -991. 0.167 
511- 540 24. 21. 3. 1576. 0.429 

541- 570 19. 18. 1. 555. 0.056 
571- 600 14. 16. -2. -1171. 0.250 

601- 700 42. 40. 2. 1301. 0.100 

701- 800 28. 27. 1. 751. 0.037 
801- 900 20. 19. 1. 851. 0.053 

901- 100 0 17. 13. 4. 3802. 1.231 
1()01-1100 8. 10.. -2. -2101. 0.400 

1101-1200 5. 7. -2. -2301. 0.571 

120 1-1300 1. 6. -5. -6252. 4.167 
1301-1400 5. 4. 1. 1350. 

1401-1500 0. 3. -3. -4351. 
150 1- 1600 1. 3. -2. -3101. 
1601- 1700 0. 2. -2. -3301. 
1701-1800 0. 2. -2. -3501. 
1801- 1900 0. 1. -1. - 1850. 

190 1-2000 0. 1. - 1. -1950. 
2001-2100 1. 1. 0. 0. 

2101-2200 0. 1. -1. -2150. 
220 1-2300 0. 1. - 1. -2250. 
2301-2400 1. 

- - 

1. 

------ ------ 

0. 

------- ----- =-- 

0. 

--------- - ------------------- - ------------------- 
TOTAL 3064 

--------------------- 

- - 
3062 

------- -------- 

- 
"-16844. 

---------- 

--- -------- 
46.748 

----------- 

CHI SQ. STAT. = 55.5 , 
D. F.:; Q 

TOTAL ACTUAL COST = 533707. 
TOTAL EXPECTED COST = 550551. 

TOTAL EXP. LOSS 

"f0". AL ACT. COST 

P<O. 003 

J\CL - Jig: ;. +1NC 
D=0.01 

9 

pý: 0.18 



Table (3.28) 

*** TýýO-PARAVETEFi LOGNORMAL DIS. *-. t 

PREDICTION OF 75/1ST QUARTER CLAIMS COST 
USING 74/1ST QUARTER MULTINOMIAL MAXLIK. PARAMETERS 

MEW= 4.509 SIGMA2=1.057 
INFLATION RATE I= 20.3% CALCULATED FROM ; 
GENERAL INDEX OF RETAIL PRICES. 

PREDICTION PARAMETERS ARE - MEW- 4.694 SIGMA2-1.057 
MEAN CLAIM AMOUNT= 185.36 S. D. =254.00 ACTUAL 75/ 1ST PARAMETERS : - MEW= 4.684 SIGMA2-1.024 
MEAN CLAIM AMOUNT= 180.55 S, D, =241.17 

AMOUNT C ACT. NO. EXP. NO. A-E EXP. LOSS (A_E)**2/E 
1- 30 324. 280. 44. 682. 6.914 

31- 60 397. 457. -70. -3185. 10.722 
° 61- 90 345. 377. -32. -2416, 2.716 

91- 120 289. 288. 1. 105, 0.003 
121- 150 253. 220. 33. 4471. 4.950 
15 1- 180 187. 170. 17. 2813. 1.700 
181- 210 138. 133. 5. 978. 0.188 
21 1- 240 114. 105. 9. 2029. 0.771 
241- 270 93- 85. 8. 2044. 0.753 
271- 300 67. 69. -2. -571. 0.058 
301- 330 63. 57. 6. 1893. 0.632 
331- 360 44. 47. -3. -1036. 0.191 
361- 390 44. 39. 5. 1877. 0.641 
391- 420 35. 33. 2. all. 0.121 
421- 450 25. 28. -3. -1306. 0.321 
451- 480 26. 24. 2. 931. 0.167 
481- 510 18. 21. -3. -1486. 0.429 
511- 540 18. in. 0. 0. 0.000 
541- 570 22. 16. 6. 3333. 2.250 
571- 600 17. 14. 3. 1756. 0.643 
601- 700 39. 35. 4. 2602. 0.457 
701- 800 19. 23. -4. -3002. 0.696 
Sol- 900 18. 16. 2. 1701. 0.250 

41 
90 1- 1000 12. 12, 0. 0. 0.000 

1001- 1100 3. 9. -6. -6303. 4.000 
1101-1200 1. 6. 

-5. -5752. 4.167 
1201- 1300 1. 5. -4. -5002, 3.200 
130 1- 1400 0. 4. -4. -5402. 
140 1- 1500 1. 3. -2. -2901. 

% 150 1-1600 0. 2. -2. -3101. 
160 1-1700 1. 2. 

-1, -1650. 
170 1- 1800 0. 2. -2. -3501 . 
180 1-1900 0. 1. - 1. -1850. 
190 1-2000 0. 1. - 1. -1950. 
2001-2100 1. 1. 0. 0, ' 
2101-2200 1, 1. 0. 0. 
2201-2300 0. 1, - - 1. -2250, 
230 1-2400 0. 11 -1, -2350. 
2401-2500 0. 0. o. 0 
2501-2600 0. 00. 0. . 

0. 
2601-2700 0. 0. 0. 0. 
2701-2800 0. 01 0, 0. 
2801-2900 0. 0.. 0. 0. 
2901-3000 0. 0. 0. 0. 
3001-3100 0. 0, o, 00 
3101-3200 0. 0. 0. 0 
3201-3300 0. 0, 0. . 

0. 
3301-3400 0. 0. 0. 0. 
3401-3500 0. 0, 0, 0, 
350j-360f) I. 0. 1. 3550. 



Table (3.28) 
- continued 

--------------------------------------------------------- 

TOTAL 2607 2606 -23439.46.941 

--------------------------------------------------------- 

CHI SQ. STAT. = 57.7 ., 
D. F. = 29 P<o. 003 

TOTAL ACTUAL COST = 452059. 
TOTAL EXPECTED COST = 475498. 

TOTAL EXP. LOSS KOT - S: 1'IIRL; OV D= 0.022 
--------------- - -5.19 % 
TOTAL. ACT. COST P=0.15 

135 



Table (3.29) 

* TWO-PARAMETER LOGNORMAL DIS. ý*** 

PREDICTION OF 75/2ND QUARTER CLAIMS COST 
USING 74/2ND QUARTER MULTI NOMIAL MAXLIK. PARAMETERS 

MEW= 4.546 SIGMA2=1.013 
INFLATION RATE I= 24.3^ CALCULATED FROM 
GENERAL IN DEX OF RETAIL PRICES. 

PREDICTION PAR AMETERS ARE ;- MEW= 4.764 SIGMA2=1.013 
MEAN CLAIM AMOUNT= 194.42 S. D. -257.48 

ACTUAL 75/2ND PARAMET ERS :- MEW= 4.701 SIGMA2=1.056 
MEAN CLAIM AMOUNT= 186.61 S. D. =: 255.51 

AMOUNT £ AC T. NO. EXP. NO . 
A-E EXP. LOSS (A-E)**2/E 

1- 30 302. 226. 76. 1178. 25.558 
31- 60 374. 412. -38. -1729. 3.505 
61- 90 332. 357. -25. -1887. 1.751 
91- 120 277. 280. -3. -316. 0.032 

121- 150 235. 217. 18. 2439. 1.493 
151- 180 187. 170. 17. 2813. 1.700 
181- 210 122. 134. -12. -2346. 1.075 
211- 240 110. 107. 3. 677. 0.084 
241- 

. 
270 f30. 86. -6. -1533. 0.419 

271- 300 72. 70. 2. 571. 0.057 

301- 330 47. 58. -11. -3470. 2.086 
331- 360 39. 48. -9. -3109. 1.687 
361- 390 40. 41. - V. -376. 0.024 
391- 420 38. 34. 4. 1622. 0.471 
421- 450 29. 29. 0. 0. 0.000 
451- 480 21. 25. -4. -18626 0.640 

-481- 510 30. 21. 9. 4459. 3.857 
51 1- 540 19. 19. 0. 0. 0.000 
541- 570 17. 16. 1. 555. 0.063 
571- 600 11. 14. -3. -1756. 0.643 
601- 700 36. 36. 0. 0. 0.000 
70 1- 800 22. 24. -2. -1501. 0.167 
801- 900 22. W. 5. 4252. 1.471 

901-1000 11. 12. -1. -951. 0.083 
1001-1100 4. 9. -5. -5252. 2.778 
110 1-1200 3. 7. -4. -4602. 2.286 
1201-1300 3. 5. -2. -2501. 0.800 
1301-1400 6. 4. 2. 2701. 
1401-1500 2. 3. -1. -1450. 
1501- 1600 1. 2. -1. -1550. 
1601-1700 0. 2. -2. -3301. 
170 1- 1800 1. 2. -1. -1751. 
1801-1900 0. 1. " -1. -1850. 
1901-2000 1. 1. 0. 0. 

20 0 1-2100 0. 1. -1. -2050. 
210 1-2200 0. 1. - 1. -2150. 
2201-2300 1. 1. 0. 0. 

---------------------- 
TOTAL 2495 

---------------------- 

------ 
2492 

------ 

-------- 

-------- 

----------- 
-26028. 

----------- 

---------- 
52.728 

---------- 

CHI SQ. STAT. =57.3 , 
D. F., 

-- 
29 P<0.003 

TOTAL ACTUAL COST 
- 44930R. 

TOTAL EXPECTED COST = 475336. 

TOTAL EXP. LOSS 

---. ----------_ - -. 5.79 'Y% 
TOTAL ACT. COST 

<OL-sMPNOý! D=0.030 

P -- 0.02 



Table (3.: 0) 

LOGNORMAL DISTRIBT. JTIOr: ** 

ESTIMATTY03 PAA-. APO, TER C BY THJ LEAST S rT ARE3 REGRESSION; I'JIOD 

7314TH QUAHTM DATA 

INPUT 

c ]TIIBT 

U. o 

C= 0.00 SSD=0.15923_ 
5. 

C= 5.00 SSD=0.10475_ 

10. [1 

15.0 

20. () 

25. n 

C= 10.00 SSO=0.0722E1_ 

C 15.00 SSD=0.05536_ 

C= 20.00 SSD=0.04983_ 

G- 25.00 SSD=n, o5281_ 

18. C) 

C= 18.00 6Sa=0.050BA- 

19.0 

G= 19.00 Be Cl=0.05018__ 

21.0 

Ov 21.00 ")SD-0,04982- 

22. 

C= 22.00 SSD=0.05013_ 

137 



Table (3.31) 

73/4TH (QUARTER DATA 

C=01.00 
PARAMETERS OF THE LOGNORMAL DIS. ESTIMATED OYL. S. REGRESSION : - 

MEW = 4.778 SIGMA SO. = 0.730 

MEAN= 150.219 S. 0. = 177.489 

SSD=0.050 

AMOUNT £ ACTUAL. EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS (A-E)**2/E 

1- 30 478. 499, -21. -325. 0.834 
31- 60 518. 504. 14.. 637. 0,389 
61- 90 461. 429. 32. 2416. 2.387 
91- 120 359, 337. 22. 2321. 1.436 

121- 150 239. 260. -21.. -2845. 1.696 
151- 180 213. 200. 13. 2151. 0.845 
181- 210 148, 154, -6.. -1173. 0.234 
211- 240 102. 121. -19. -4284. 2.983 

241- 270 81, 95. - -14. -3577. 2.063 
271- 300 58. 75.. -17.. -4853. 3,853 
301- 330 66, 61. 5. 1577. 0.410 

331- 360 45. 49. -4. -1382. 0.327 
361- 390 39,. 40, -1, -376, 0.025. 
391- 420 35.. 33. 2, all. 0.121 
421*- 450 34. 27. 7. 3048. 1.815 
451- 480 20. 23. -3. -1396. 0.391 
. 481- 510 29, 19, 10, 4955. 5.263 
511- 540 14, 16, -2. -1051. 0.250 
541- 570 8. 13, -5. -2777. 1.923 
571- 600 91 11, -2. -1171. 0.364 
601- 700 29. 27. 2. 1301. 0.148 
701- 800 18. 17. 1, 751. 0.059 
801- 9(10 20, 11. 9. 7654. 7. °364 
901-1000 6. 7. -1. -951. 0.143 

1001-1100 4. 5. -1. -1050. 0,2C0 
1101-1200 4. 3, 1. 1150. 

1201-1300 1. 2. -1. -1250. 0.000 
1301-1400 3. 2. 11 1350. 
1401-1500 1. 1. 0. 0, 

Al 
1501-1600 0. 1, -1. -1550. 
1601-1700 1. 1. 0. 0. 
1701-1800 0. 1. -1. -1751. 
11301-1900 0. 0. 0. 
1901-2000 1. 0. 1. 1950. 

2001-2100 0. 0. 0. 0. 
2101-2200 0. 0. 0. 0. 
2201-2300 0, 0, 0, 0. 
2301-2400 1. 0. 1. 2350. 

---------- ------------ ---------- ------------ -------- - ------ 
fl., 142 

TOTAL 

---------- 

3045. 
------------ 

3044. 
---------- ----------- 

2660. 
---------- 

35. o/ý0 

D. F. X23 
TOTAL EXP. LOSS P_ 004 

% ---------------= 0.6 % 

TOTAL ACT. COST 

138 



Table (3.32) 

C=23.00 
PARAMETERS OF THE 

MEW = 4.819 

MEAN= 150.820 

SSD=D . 223 

74/iST (QUARTER DATA 

LOGNORMAL DIS. ESTIMATED ßY L. S. REGRESSION : - 
SIGMA S(. = 0.679 

S. D. = 171.348 

AMOUNT r ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS (A-E)**2/E 

1- 30 . 381. 377. 4. 62. 0.042 
31- 60 428. 396. 32. 1456. 2.586 
61- 90 351. 346, 5. 378.. 0.072 
91- 120 334. 276. 58. 6119. 12.188 

121- 150 211. 214. -3. -406. 0.042 
151- 180 133. 166. -33. -5461. 6.560 
181- 210 98. 128. -30. -5865. 7.031 
211- 240 82, 100, -18. -4059. 3.240 
241- 270 54. 79. -25. -63E17. 7.911 
271- 300 52. ' 62. -10. -2055. 1.613 
301- 330 53. 50, 3. 947. 0.180 

"331- 360 36. 40. -4. -1382. 0.400 
361- 390 29. 33, -4. -1502. 0.485 
391- 420 26. 27. -1. -406. 0.037 
421- 450 22. 22. 0. 0. 0.000 
451- 480 22. 18, 4. 1862. 0.889 
481- 510 17. 15. 2. 991. 0.267 
511- 540 10. 13, -3. -1576. 0. "692 
541- 570 19. 111 8. 4444. 5.818 
571- 600 4. 9. -5. -2927. 2.778 
601- 700 26. 21, 5. 3252. 1.190 
701- 800 21. 13. 8. 6004. 4.923 
801- 900 11. 8. 3. 2551. 1.125 
901-1000 10. 51 5. 4752. 5.000 

1001-1100 5. 4. 1. 1050. 
1101-1200 2. 2,. 0. 

0'167 
1201-1300 1. 2. -1. -1250. 
1301-1400 2, 1, 1351). 
1401-1500 0, 1. -1. -1450. 
1501-1600 0, 1, -1. -1550. 
1601-1700 0. 0. " 0. 0. 
1701-1800 1. 0. 1. 

- 

1751. 

--------- .? 00 
.... -----0 

TOTAL 2441. 2440. 

----- ------- 
-109. 

--- 

65.438 

------ ----------- 
U. F. e TOTAL EXP. LOSS 

----- ---- ---- P 0.001 
TOTAL ACT. COST 

139 

hk. --- 



Table (3.33) 

74/2ST QUARTER DATA 

C=21.00 
PARAMETERS OF THE LOGNORMAL DIS. ESTIMATED BY L. S. REGRESSION : - 

MEW = 4.824 SIGMA S(.. = 0.666 

MEAN= 152.721 S. O. = 169.077 

SSD C. 133 

AMOUNT £ ACTUAL. EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS, (A-E)**2/E 

1- 30 351. 333, 18, 279.. 0,973 
31- 60 -380, 386. -6,. -273. 0.093 
61- 90 382. 344, 3A, 2869, 4,198 
91- 120 295, 276. 19, 2004, 1,308 

121- 150 211, 215. -4, -542, 0.074 
151- 180 142, E 166, -24. -3972, 3.470 
181- 210 114. 129, -15. -2933. 1.744 
211- 240 101, 100,. 1, 225. 0.010 
241- 270 57. 79. -22. -5621. 6.127 
271- 300 51, 62, -11, -3140, 1.952 
301- 330 39, 50. -11, -3470. 2.420 

331- 360 36.. 40. -4. -1382. 0.400 
"361- 390 25. 32. -7,. -2628. 1.531 
391- 420 24, 26, -2. -811. 0.154 
421- 450 27, 22, 5. 2177. 1.136 
451- 480 18, 18. 0, o. 0.000 
481- 510 21, 15. 6. 2973. 2.400 
511- 540 17. 12. 5. 2627. 2.083 
541- 570 12. 10. 2. 1111. 0.400 
571- 600 11, 9. 2. 1171. 0.444 
601- 700 30. 21. 9. 5854. 3.857 
701- 000 13. 13. 0. 0. 0.000 
001- 900 11, 8. 3. 2551. 1.125 
901-1000 4. 5. -1, -951. 0.200 

1001-1100 7. 3. 4. 4202. 
1101-1200 0. 2. -2. -2301. 01800 
1201-1300 1. 2. -1. -1250. 
1301-1400 1, 1. 0, 0. 

1401-1500 0. 1. -1. -1450. 
1501-1600 1. 11 01 00 
1601-1700 0, 0. 0, 

1701-1800 0, 0. 0. 
1801-1900 1. 0. 1. 1850. 0.260 

TOTAL 

---------- 

2383. 
----------- 

2381. 

------------ 

---- 

------------ 

---- 
-829. 

--------- 

-" --- - 
100 

37 

----------- 
D. F. x 22 

TOTAL EXP, LOSS p: 0.02 
---------------= -0.2 % 
TOTAL ACT. COST 

140 



Table (3.34) 

74/3RD QUARTER DATA 

C=19.00 
PARAMETERS OF THE LOGNORMAL DIS. ESTIMATED BY L. S. REGRESSION 

MEW, = 4.857 SIGMA SO. = 0.731 

MEAN= 166.520 S. D. = 192.635 

SSD=0.103 

AMOUNT £ ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS (A-E)**2/E 

1- 30 362. 369. -7, -108, 0.133 
31- 60 427. 433. -6. -273. 0.083 
61- 90 383. 388, -5. -378. 0.064 
91- 120 356. 315. 41. 4325. 5 . 337 

121- 150 283. 248. 35. 4742. . 4.940 
151- 18U 194. 195. -1. -165. 0.005 
181- 210 137. 153. -16. -3128. 1.673 
211- 240 97. 121. -24. -5412. 4.760 
241- 270 86p. 97, -11.. -2810. 19247 
271- 300 71. 78. -7. -1998. 0.628 
301- 330 64. 63. 1. 316. 0.016 
331- 360 45, 51. -6. -2073. 0.706 
361- 390 44.. 42. 2. 751. 0.095 
391- 420 25. 35. -10. -4055. 2.857 
421- 450 26. 29. -3. -1306. 0.310 
451- 480 22. 24. -2. -931. 0.167 
481- 510 25. 21. 4. 1982. 0.762 
511- 540 14. 17. -3. -1576, 0.529 
541- 570 14. 15. -1. -555. 0.067 
571- 600 17, 13. 4. 2342. 1.231 
601- 700 32. 31. 1. 651. 0.032 
701- 800 34, 19. 15. 11257. 11.842 
801- 900 17. 12. 5. 4252. 2.083 
901-1000 4. 80 -4. -3802. 2.000 

1001-1100 9. 6. 3. 3151. 1.500 
1101-1200 4. 4,. 0. 0. 0.000 
1201-1300 01 3. -3. -3751. 
1301-1400 1, 2. -1. -1350. 3.200 
1401-1500 3. 2. 1. 1450,. 
1501-1600 0. 11 -1. -1550. 
1601-1700 1. 1.. 0, 0. 
1701-1800 0. 1. -1. -1751. 1801-1900 01 1. -1. - 1850. 
1901-2000 0. 0, 0. 0. 
2001-2100 0. 0. 0. 0ý 
2101-2200 1. 0, 

, 
1. 2150. 

2201-2300 0, 0. 0, 0. 
2301-2400 0. 0. 0. 0. 
2401-2500 0. 0. 0. 0. 
2501-2600 11 0. 1. 2550. 0,000 

TOTAL 2799. 
- 

2798. 
---------- ---------- 

1095. 

-- 

--------- 
46 .2 68 

TOTAL EXP. LOSS 

--------------- 
O. F. 24 

------ -------- _ 0.2 % p 0.004 

TOTAL ACT. COST 141 



Table (3.35) 

74/4TH NUAHTEF3 DATA 

C=25.00 
PARAMETERS OF THE LOGNORMAL DIS. ESTIMATED BY L. S. REGRES8ION : - 

MEW = 4.959 SIGMA SQ. = 0.669 

MEAN= 174.089 S. D. = 194.322 

SSD=D. 124 

AMOUNT F ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS (A-E)**2/E 

1- 30 394. 382. 12. 186. 0,377 
31- 60 452. 434. 18. 819. 0.747 
61- 90 426. 406. 20. 1510. 0.985 
91- 120 348. 342. 6. 633. 0.105 

121- 150 272. 277. -5. -678. 0.090 
151- 180 . 219. 221. -2. -331. 0.018 
181- 210 154. 177. -23. -4496. 2.989 
211- 240 124. 141. -17. -3833. 2.050 
241- 270 105. 114. -9. -2299. 0.711 

271- 300 78. 92. -14. -3997. 2.130 
301- 330 75. 75. 0. 0. 0.000 
331- 360 58, 61. -3. -1036. 0.148 
361- 390 55. 50. 5. 1877. 0.500 
391- 420 29. 42. -13. -5271. 4.024 
421- 450 43. ' 35. 8. 3484. 1. f129 
451- 480 24. 29. -5. -2327. 0.862 
481- 510 22. 25. -3. -1486. 0,360 
511- 540 24. 21. 3. 157fß. 0.429 
541- 570 19. 18. 1. 555. 0,056 
571- 600 14. 15. -1. -585. 0.067 
601- 700 42. 37. 5. 3252. 0.676 
701- 800 28. 23. 5. 3752. 1.087 
801- 900 20. 15. 5. 4252. 1., 667 
901-1000 17. 10. 7. 6653. 4.900 

1001-1100 H. 7. 1. 1050. 0.143 

1101-1200 5. 5. 0. ' 0. 0.000 
1201-1300 1. 3. -2. -2501. 
1301-1400 5. 2. 3. 4051. 0.200 
1401-1500 0. 2. -2, -2901. 
1501-1600 1. 1. 0. 0. 
1601-1700 0. 1. -1. -1650. 
1701-1800 0. 1. -1. -1751. 
1801-1900 0. 1. -1. -1850. 
1901-2000 0. 0. 0. 09 
2001-2100 1. 0. 1. 205(1. 

. 
2101-2200 0. 0. . 0. 0 . 
2201-2300 (l. 0. 0. 0 
2301-2400 1. (1. - 1. 2350. 2350. 1.500 

------------------------------ ---------- -- - ---- ------- TOTAL 

---------- 

3064. 

------------ 

3065. 

---------- ----------- 
1059. 28.647 

--------- 
D--. 

-- ------- 
TOTAL EX}'. LOSS 

P 1U 0 
---------------- 0.2 . 
TOTAL ACT. COST 
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C; =13.00 1a. 
bZi! i 

t7.75` 

PAF1AMr TEHS OF THE LOGNORMAL. DIS. ESTIMATED By L. S. REJRESSION 
MEW = 4.831 SIGMA SO.. 0.773 

MEAN= 171.413 S. D. - 199.14? 

SSD=0.50f 

kýý -- 

AMOUNT E ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS (A_E)**2/E 

1- 30 324. 298. 26. 403. 2.268 
31- 60 387. 411. -24. -1092. 1.401 
61- 90 345. 370. -25. -1887. 1.689 

91- 120 289. 299. -10. -1055. 0.334 
121- 150 253. 235. 18. 2439. 1.379 
151- 180 1.87. 184. 3. 496. 0.049 
181- 210 138. 144. -6. -1173. 0.250 
211- 240 114. 114. 0. 0. 0.000 
241- 270 93. 91. 2. 511. 0.044 
271- 300 67. 73. -6. -1713. 0.493 
301- 330 63. 59. 4. 1262. 0.271 
331- 360 44. 49. -5. -1727. 0.510 
361- 390 44. 40. 4. 1502. 0.400 
391- 420 35. 33. 2. 811. 0.121 
421- 450 25. 211. -3. -1306. 0.321 
451- 480 26. 23. 3. 1396. 0.391 
481- 510 18. 20. -2. -991. 0.200 
511- 540 18. 17. 1. 525. 0.059 
541- 570 22. ' 14. 8. 4444. 4.571 
571- 600 17. 12. 5. 2927. 2.083 
601- 700 39. 30. 9. 5854. 2.700 
701- 800 19. 19. 0. 0. 0.000 
801- 900 18. 12. 6. 5103. 3.000 
901-1000 12. 8. 4. 3802. 2.000 

1001-1100 3. 6. -3. -3151. 1.500 
1101-1200 1. 4. -3. -3451. 
1201-1300 1. 3. -2. -2501. 3.571 
1301-1400 0. 2. -2. -2701. 
1401-1500 1. 2. -1. -145(1. 
1501-1600 0. 1. -1. -1550. 
160 1-1700 1. 11 0. (1 O 
1701-1800 0. 1. -1. -1751. 
1801-1900 0. 1. -1, -1850. 
1901-2000 0. 0. 0. 0. 
2001-2100 1. 0.. 1. 2050. 

2101-2200 1. 01 1. 2150. 
2201-2300 0. 0. o. 0. 
2301-2400 0. 0. 0. 0. 
2401-2500 0. 0. 0. 0. 
2501-2600 0. 0. 0. 0 
2601-2700 0. 0. 01 01 
2701-2800 0. 0. 0. 0 
2801-2900 . 0. 01 p. , 

0. 
2901-3000 0. 0, 0. 0. 
3001-3100 0. 0. 0. 0. 
3101-3200 0. 0. (1. 0. 
3201-3300 0. 0. (1. 0, 
3301-3400 (1. 0, n, 0. 
3401-350, ) 0. 0. 0, tl 
3501-3600 1. 0. 1. . 

3550. 1.125 

, ýL ToT 2607. 

---------- 

2604. 
------ 

------------- 

---------- 

------- 

--ýA7ýº. __-_- -30. '133- 

TOTAL EXP. LOSS 

--- ------------ 
D. F. 

P 

------- 
u23 

> 0.10 
------ 

T 
--------- = 2.2 143 TOT AL. Al T. ensT 



Table (3.37) 

75/2ND QUARTER DATA 

C=25.00 
PARAMETERS pF THE LOGNORMAL DIS. ESTIMATED BY L. S. REGRESSION ; - 

MEW = 4.979 SIGMA SQ. = 0.692 

MEAN= 180.416 S. p. = 205.254 

SSD=0.086 

AMOUNT £ ACTUAL, EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS. (A-E)**2/E 

1- 30 302. 309, E -7. -108. 0,159 
31- 60 374. 345, 29, 1319, 2,438 
61- 90 332. 323,. 9, 680, 0.251 
91- 120 "277, 273. 4, 422, 0.059 

121- 15Q 235. 222, 13. 1761. 0.761 
151- 180 187. 179, 8, 1324. 0.358 
181- 210 122. 144, -22, -4301. 3.361 
211- 240 110, 116, -6, -1353. 0.310 
241- 270 80*, 94, -14, -3577. 2.085 
271- 300 72, 76. -4, -1142, 0.211 
301- 330 47, 63, -16, -5048, 4,063 
331- 360 39, 52. -13, -4491. 3,250 
361- 390 40. ' 43, -3,. -1126. 0.209 
391- 420 38, 36, 2, 811, 0.111 

. 421- 450 29, 30. -1. -436. 0,033 
451- 480 21, 25, -4. -1862,. 0.640 
481- 510 30, 21, 9, 4459, 3.857 
511- 540 19. 18, 1, 525, 0,056 
541- 570 17. 15, 2. 1111, 0.267 
571- 600 11, 13. -2. -1171. 0.308 
601- 700 36. 33, 3, 1951. 0. "273 701- 800 22. 21. 1, 751. 0.048 
801- 900 22, 13, 9. 7654. 6.231 
901-1000 11, 91 2. 1901, 0.444 

1001-1100 4, 6.. -2.. -2101. 0.667 
1101-1200 3. 4, -1. -1150. 
1201-1300 3, 3. 0, 01 0.143 
1301-1400 6, 2, 4. 5402, 
1401-1500 2, 2, 0, 0, 
1501-1600 11 11 0. 0. 
1601-1700 0. 11 -1, -1650. 
1701-1800 1. 1, 0, 00 
1801-1900 0, 1, -1. -1850. 
1901-2000 1, 0, 1, 1950. 
2001-2100 0, 0. 0. 0, 
2101-2200 0. 0, U, 
2201-2300 

------- 

1, 

------- ----- 

0. 

---------- ----------.. 

2250, 

--------- 
2.000 

---------- --- 
TOTAL 

---------- 

2495. 

------------ 

2494. 

---------- ----------- 

2905. 

--------- 

- 
32.501 

----------- 
D. F. =23 

TOTAL EXP. LOSS 

--------------- 0.6 % P =0,09 
TOTAL ACT. COST 
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'Table (3.3£3 } 

#** 3-PARAMETER LOGNORMAL DIS. ##* 

73/4TH QUARTER DATA 

ESTIMATION BY MULTINOMIAL MAX. LIK ELIHOOD METHOD t- 
C= 14.01 MEW= 4.700 SIGMA SQ. = 0.8 03 

MEAN. 150.159 S. D. = 102.166 

AMOUNT P ACTUAL EXPECTED ACTUAL- EXPECTED 
Cl.. NO. CL. NO. EXPECTED LOSS (A-E) **2 /E 

1- 30 470. 477. 1. 15. 0.002 
31- 60 51R. 535. -17. -774. 0.540 
61- 90 461. 443. 18. 1359. 0.731 
91- 120 359. " 340. IP. 2004. 1.062 

121- 150 239. 257., -18. -2439. 1.261 
151- 180 21'3. 196. 17. 2813. 1.474 
101- 210 148. 150. -2. -391. 0.027 
211- 240 102. 117. -15. -33P2. . 

1.923 
241- 270 Al. 92. -11. -2810. 1.315 
271- 300 5A. 73. -15. -4202. 3.0 2. 
301- 330 66. 50. A. 2524. 1.103 
331- 360 45. 47. -2. -691. 0.005 
361- 390 39. 39. n. 0. 0.000 
391- 420 35. 

. 
32. 3. 1216. 0.281 

421- 450 . 
34. 26. H. 3404. 2.462 

451-- 400 20. 22. -2. -931, 0.1 R2 
401- 510 29. 1R. 11. 5450. 6.722 
5.11- 540 14. M. -2. -1051. 0.250 
541; - 570 8" 13. -5. -2777. 1.923 
571- 600 9. 11. -2. -1171. 0.364 
601- 700 29. 

_ 
27. 2. 1301. 0.148 

701- 800 1R. 17". 1. 751. 0.059 
801- 900 20. 11. 9. 7654. 7.364 
901-1000 . 

6. 7. -1. -951. 0.143 
1001-1100 4. 5. 

- -1. -1050. 0.200 ' 
1101-1200 4. 4, ' 0. 0. 
1201- 1300 1. 3. -2. -250 1. 0457.1 
1301-1400 3. 2. 

. 
1. 1390. 

1401-1500 1. 1. ' n. 0. 
1501-1600 0ti 1. -1. -1550. * 
1601-1? 00 1. 1. 0. 0. 
1701-1800 0. . 1. -. 1. -1751. 
1001-1900 0. 0. 0. 0; 
1901-2000 1" 0. 1. 1950. 
2001-2100 0. 0. 0. 0. 
2101-2200 0. 0. 0. 0. 
2201-2300 0. 0. 0. n. 
2301-? 

_400 
--- 

1. 

----------- 

0. -- 

- ----- 

1. 2350. 0.167 
------- 

TOTAL 3045. 
- -- - 
' 3042. 

----------- -- ------------ 
5721 " 

------- 

- -- - 
`, 3-4 ý1 "t 

- --------------- -- --------- -----.. ------------------- - 
---- 

D. F. P> 
TOTAL EXP. LOSS P > 0.07 

TOTAL ACT. COST 
k; CL - S, Yov D ; ̂ 7 

P 
>0. 

)n 
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Table (3,39) 

*** 3-PARAMETER LOGNORMAL DIS. *** 

74/1ST QUARTER DATA 

ESTIMATION BY MULTINOMIAL MAX. LIKELIHOOD METHOD t- 
C= 10.40 MEW= 4.650 SIGMA S0. = 0.1) 58 

MEAN- 150. 222 S. D. = 1R7.204' 

AMOUNT f, ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS (A-E)**2/E 

"1- 30 381. 379. 2. 31. 0.011 
31-"" 60. 428. 444. -16. -72R. 0.577 
61- 90 351. 359. -8. -6114. 0.178 
91- 120 334. 271. " 63. 6646. 14.646 

121- 150 211. 203. R. 1084. 0.315 

. 
151- 180 133. - 154. -21. -3475. 2.864 
181- 210 98. 118. -20. -3910. 3.390 
211- 240 82. 91. -9. -2029. " U. "890 
241- 270 54. 72. -18. -4599. 4.500 
271- 300 52. . 57. -5. 71427. . 

0.439 
301- 330 53. 46. 7. 2208. 1.085 
331- 360 36. . 37. . -1. -346. 0.027 
361- 390 

. 
29. 30. -1. -376. 0.033 

391- 420 26. 25. 1. 406. 0.040 
421-. 450 22. 21. 1. 436. 0.048 
451- 481) 22. 17.. 5.. 2327. 1.471 
4A 1- 510 17. 15. 2. 991. 0.267 
511- 540 10. 12'. -2. -1051. 0.333 
541- 

. 
570 19. 11. R. 4444. 5.818 

571- 600 4. 9. - -5. -2927. 2.778 
601- ? on 26. 22. 4. 2(, n2.. - 0.727 
701- 800 21. 14. 7. 5253. 3.500 
801- 900 11. 9. 2. 

. 
1701. 0.444 

901-1000 10. 6. 4. 3802. 2.667 
1001-11J0 5. 4. 1. 1050. 
1101-1200 2. 3. -1. -1150. 000 0 1201-1300 1. 2. -1. -1250. 

. 
130 1-1400 2. 2. 0. 0. 
1401-1500 

. 
0. 1. -1. -1450. 

1501-1600 0. 1. -1 .- 1550. 
1601-1700. 0. j. -1. -1650. 
X701-1800 1. 1. 0. 0 

'-_------- ----------- ----------- --------- 
. 

-------------- - 
2.000 

- TOTAL 2441. "2437. 4457. 49 207 . 

D. F. 22 TOTAL EXP. LOSS " 
--------------- 1.2 a DY <o 

. 001 

TOTAL ACT. DOST ICO:, 0.020 

P <0.03 
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Table (3040 
- 

### 3-PARAMETER-LOGNORMAL DIG. *** 

74/2ND QUARTER DATA 

EST IMATION BY MULTINOMT AL MAX. LIKEL IHOOD METHfD : - 
C= 14,. 94 MEW= 4.735 SI GMA SQ. = 0.760 

MEAN= 151.518 S. D. = 177-. 583 

AMOUNT £ ACTUAL EXPECTED 
, 

ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS (A-E)**2/E 

1- 30 351. 348. -3. 46. 0.026 
31- 60 380.. 411. -31. -1410. 2.338 
61- 90 382. 349. 33. 2491. 3.120 
91- 120 295. 272. 23. 2426. 1.945 

, 
121- 150 211. 207. 4. 542. 0.077 

151- 180 142. 158. -16. -2648. - 1.620 
181-_'210 

" 
114. 122. -8, -1564. 0.525 

211- 240 101. 94. 7. 1578. 0.521 
241- 270 57. 

. 
74. -17. -4343. 3.905 

271- 300 51. 59. -a.. -2.284. 1.085 

301- 330 39. 47. -8. -2524. 1.362 
331- 360 36. 38. -2. -691. 0.105 
361- 390 25. 

. 
31. -2253. 1.161 

391- 420 '24. 25. -1. . -406. . 
0.040 

421- 450 27. 21. 6. 2013. 11714 
451- 480 18. 17. 1. ' 466. 0.059 

481- 510 21., 15. 6. 2973. 2.400 
511- 540 17. 12. 5. 2627. 2.083 
541- 570 12. 10. 2. 1111. 0.400 
571- 600 11. 9.. 2. 1171. 0.444 
601- 700 30. 21.. 9. 5854. ` 3.857 
701- 800 . 13. . 13. 0. , 0. 0.000 
801- 900 11. R. 3. 2551. 1.125 
901-1000 4. 6. 

-2. -1901. 0.667 
1001-1100 7. 4. 3. - 3151. 
1101-1200 0. 3. -3. -3451. " 
1201-1300 

, 
1. 2. -1. -1250. 

x"000 

1301-1400 1. 1. 0. 0. 
1401-1500 0. 1. -1. -1450. 
1501-1600 " 1. 1. 0. 0. 

, 1601-1700 0. 1. -1. -1650. 
1701-1800 0. 0. 0. . 0. 

-180 1-1900 " 1. 0. 1. 
_ 

1850. 0.667 

---------- 
TOTAL 

----------- 
2383. 

--------- 
2380. 

------------- ----------- 
3626. 

-------- 
31.248 

----------- ----------- --------- -----; 
D. F. 24 

TOTAL EXP. LOSS . 
_-_-_ ---------- = 1.0 % 

.. 
P 0.07 

TOTAL ACT. CAST 
1; OL - SP,, lI 

. 
NOV D 0'. 01 i 

P>0�20 
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Table (3.4,1) 

xý` 3-PAHAMETEH LOGNOF8 AL DIS. 

74/3H0 ((UARTER DATA 

ESTIMATION BY MULTINQMIAL MAX. LIKELIHOOD METHOD ; -- 
Cs 15.67 MEW- 4. ß21 SIGMA' 5Q. = 0.759 

MEF, rd= 165.694 S. D. = 193.304 

-AMOUNT £ ACTUAL EXPECTED ACTUAL- EXPECTED 

CL. NO. CL. NO, EXPECTED LOSS (A-Ej**2/E 

1- 30 362. 359. 3. 46. 0.025 
31- 60 427. 446. -19. -865. 0.809 

61- 90 383. 395. -12, -906. 0.365 

91- 120 356, 318. 38. 4009. 4.541 

121- 150 283. 249. '34. 4607. 4.643 

151- 180 194. 194. 0. 0. 0.000 

181- 210 137. 152. -15. -2933. 1.480 

211- 240 97. 120 -23. -5186. 4.408 

241- 270 86. 95. -9: -2299-. 0.853 

271- '3.00 71. 76. -5. -1427. 0.329 
301- 330 64. 

. 
62. 2. 631. 0.065 

331- 360 45. 50. -5. -1727. 0.500 

361- 390 44. 41. 3. 1126. " 0.220 

391- 420 25. 34. -9. -3649. 2,382 

421- 450 20'. 28. -2. -871. 0.143 

451-. 480 22. 24. -2. --931. 0.167 

481- '510 25.. 20.. 5. 2477. 1.250 

511- 540 14. 17. -3. -1576. 0.529 

541- 570 14. 15. -1. -555. 0.067 

571- 600 17. 12.. 5. 2927.. 2.083 
601- 700 32. 30. 2. 1301. ' 0'. 133 

701- Boo 34. 19. 15. 11257. 1.1.042 
801- 900 17. 12. 5. ' 4252. - 2.083 

901-1000 4. 8. -4. ' -3802. 2.000 

. 
1001-1100 9. 6. 3, 3151. 1.500 

1101-1200 4.0 4. , 0. 0. 

120.1-1300 0. 3. -3. -3751. 1.286 
13011-1400 1. 2., -1. -1350. 
1401-1500 3. 7, ". 1. 

. 
1450. 

1501-1600 0. 1. -1. -1550. 
1601-1700 1. 

. 
1.. 0. 0. 

1701-1800 0. 1. -1. -1751. 
1801-1900 0. 1. -1. -1850. 
1901-2000 0. 0. 0. 0. 

2001-2100 0. 0. 0. 
. 
0. 

2101-2200, '1. U. 11 2150. 

2201-2300 0. 00 0. 0. 

.. 2301-2400 0. 0. 0. 0. 

2401-2500 ' 0. 0. 0. 0. 

2501-2600 

---- 

1. 

----------- 

0. 

---------- 

1. 

------------ 

2550. 

----------- 
0.125 

-------- ------ 
TOTAL 2799. 2797. 4956. 43.828 

D . F. ?3 
TOTAL EXP. LOSS 

---... -- ---------ý 1 .1 
aro P 0.006 

TOTAL ACT. COST Y0i - SMIRNOV D 0.01 

P>0.05 
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as ble 3.42) 

3-PARAMETER LOGNOft 

74/4TH QUARTER 

ESTIMATION BY MULTINOMIAL MAX. 
C= 18.18 MEW= 4.878 

MEAN= 174.458 

L1AL DIS. * -* 

DATA 

LIKELIHOOD METHOD : - 
SIGMIA SQ. = 0.766 

S. D. = 206.685 

AMOUNT £ ACTUAL EXPECTED ACTUAL- EXPECTED' 
CL. NO. EXPECTED LOSS (A-E) **2 /E 

1- 30 394. 393. 1. 15. 0.003. 
31-, -60 452. 462. - -10. -455. 0.216. 
61- 90 426. 414. 12. 906.. 0.34E 
91- 120 348. 338. 10. 1055. 0.296 

121--150 272. 269. 3. 4'06. 0.033 
151- 180 219. 212. 7. 1158. 0.231 
181- 210 154. 168. -14. -2737. 1.167 
211- 240 124. 134. -10. -2255. 0.746 
241- 270 105. 108. -3. -767' 0.083 

, 
271- 300 78. 87. -9. -2569. 0.931 
301- 330 75. 71. 4. 1262. 0.225 
331- 360 58. 59. -1. -346. 0.017 
361- 390 55. 49. 6. 2253. 0.735 
391- 420 29. 40. 

. -Il. -4460. 3.025 
421- 450 43. 34. 9. 3919. 2.382 
451- 480 24. 29. -5. -2327. 0.862 
481- 5.10 22. 24. -2. -991. 0.167 
511- 540 24'. 21. 3. 1576. 0.429 
541- 570 19.. 18. 1. 555. 0.056 
571- 600 14. 15. -1. -585. 0.067 
601- 700 42. 37. 5. 3252. 0.676 
701- 800 28. 24. 4. 3002, 0.667 
801- 900 20. 16. 4. 

. 
3402. 1.000 

901-1000 17. 11. 6. 5703. 3.273 
1001-1100 8. 7. 1. 1050. 0.143 
1101-1200 5. 5. 0. . 0. 0.000 
1201-1300 1, 4. -3. -3751. 
1301-1400 5. 

, 
3. 

, 
2. 2701. 0.143 

1401-1500 0. 2. , -2. -2901. 
1501-1600 1. 2. ' =1. -1550. 
1601-1700 0. 11 -1. -1650. , 1701-1800 

_ 
0. 

. 
1. -1. -1751. 

1801-1900 0. 1. -1. -1850. 
1901-2000 0. 1. -1. -1950. 
2001-2100 1. 00 1. 2050. 
2101-2200 0. 0. ` 0. 0. 
2201-2300 ' 0.. 0. 0. 0. 
2301-2400 

11 ----------- 

1. 

----------- 

0. 

----------- 

1. 

------------ 
2350. ", 

------- 
3,1'25 

TOTAL 

---------- 

3064. 

----------- 
3060. 

----------- ------------ 

-- 
3722. 

-- " 

------------ 
21.044 

------- 
DF. . ' = 2/1 

TOTAL. EXP. LOSS - P > 0.10 
----- ----------- n ^7 ct i ----- -- u ", / rr 

TOTAL ACT. CnST 
SI: MNOv D =0-C, (17 

P >0.20 



75/ *, S i QUAK i CR DATA 
Hin {7 A7, ` 

ESTIMATION i'v' MULTINOMRIAL MAX. LIKELIH0ü0 METHOD 
C= 21.00, N", EW 4.915 SIGMA SQ.. 0. -4n 1 ̂ ! 

MEAN= 173.207 S. D. = 197.536 

AMOUNT C ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. N0. CL. NO, EXPECTED LOSS (A_E)**"2/E 

1- 30 324. 325. -1. -15. 0.003 
"31- 60 387. 383. 4. 182. 0.042 
61- 

. 90 345. 352. -7. 
' -52R. 0.139 

91- 120 289. 292., -3. -316. 0.031 
121- 150 "253. 234. 19. 2574. 1.543 
151- 180 187. 186. 1. 165. 0.005 
181- 210 138. 147. -9. -1759. 0.551 
211- 240 114. 117, -3. -677. 0.077 
241- 270 93. 94. - -1. - -256. 0.011 
271- 300 67. 76. -9.. -2569. 1.066 
301- 330 63. 62. 1. 316. 0.016 
331- 360 44. 51. -7. -2418. 0.961 
361- 390 44. 42. 2. " 751. 0.095 
391- 420 35. 35. 0. 0.. 0.000 
421- 450 25. 29. -4. -1742. 0.552 
45"1- 480 26. 24. 2. * 931. 0.167 
481- 510 18. 21. -3. -1406. 0.429 
511- 540 18. 17. 1.. 525. 0.059 
541- 570 22. 1"5. 7. 31388. 3.267 
571-. 600 17. 13. 4. 2342. 1.261 
601- 700 39. 31. 8. 5204. 2.065 
701- 800 19. 19. 0. 0. 0.000 
801- 900 18, 13. 5. 4252. 1.923 
901-1000 12. ß. 4. 3802. . 2.000 

1001-1100 3. 6. -3. -3151. 1.500 
1101-1200 1. 4. -3. -3451. 
1201-1300 1. 3. -2. -2501. 3.571 
1301-1400 0. 2. -2. -2701. 
1401-1500 1. 2. -1. -1450. 
1501-1600 0. 1. -1. -1550. 
1601-1700 1. 1. 0. 0. 
1701-1800 0. 

. 1. -1. -1751. ,. 
1801-1900 0. 1. -1.. -1850. 
1901-2000 0. 0. 
2001-2100 1. 0. 1. 2050. 
2101-2200 1.. 0. 1. 2150. 
2201-2300 0. 0. 00. 0. 
2301-2400 0. 0,, 01 0. 
2401-2500 0. 0.. 0. 
2501-2600 0. 0. 
2601-2700 0. 

. 
0. . 0. 0ý 

2701-2800, 0. 
. 

0. 0. 0. 
2801-2900 . 

0. 0. 0. 0. 
2901-3000 0. 0. 0. 

. 
0. 

3001-3100 0. 0. 01 
3101 -3200 0. 0. 0. 0 
3201-3300 0. 0. 0. . 

0. 
3301-3400 0. . 0. 0. 10», , 3401-3500 0. 0. 0. 
3501-3600 1. 0. 1 3550 .. 

---- ----------- ----------- 
. 

-- 
TOTAL 

__-.... ------ 

2607. 

----------- 

2{07. 

----------- 

-- 

----------- 

----------- 
2510. 

----- 

----- -- 

- 

TOTA! EXP 1 05S 

X4... ------ 
1?; C7 . (ß. v07 D 

.F. 23 ` p>G. 
'. 20 

"----- ---------= 0 .6 % p C. 1ý 
TOTAL P. C [, r'iC, T 



. 44) Table 0 

---------- ---- 
TOTAL ACT. COSTr i: OL - ;; MU! "lo 

151 

" #'"` 3-PARAMETER LOGNORMAL DIS. *** 

75/2N0 UUAP+ T ER DAT A 

ESTIMATION BY MULTINOMIAL MAX,. LIK ELIHOOD METHOD ; - 
C- 15.16 MEW= 4.872 SIGMA SQ. = 0.8 07 

MEAN- 180.409 S. D. = 217.852 

AMOUNT £ ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS (A-E)**"2/E 

1- 30 ; 302. 302. 0. 0. 0.000 
31-. 60 374. 376. -2. -91. 0.011 
61- 90 332-. 337. 

.. -5. -378. 0.074 
91- 120 277. 275. 2, 211. 0.015 

121- 150 235. 218. 17. 2304. 1.326 
151- 180 1137. 

. 
173. 14. 2317, 1.133 

"181- 210 
* 

122. - 137. -15. -2933. - 1.642 
240 2-11 110, 110. 0. o. 0.000 

241- 270 f; 0, 89, 
-'-9. -2299. 0.910 

271- 300 72. 72. 0. 
, 

0. 0.000 
301- 330 47. 59. -12. --3786. 2.441 

-331--, 
360 39. 49. -10. -3455. 2.041 

" 361- 390 40. 41. -1. . --376. 0.024 
391- 420 38. 34. 4. . 1622. 0.471 
421- 450 19. . 29. 0. 0. 01000 
451- 480 219 '24" -3. " -1396. 0.375 

. 
481- 510 30. . 21* 9. 4459. 3.857 
511- 540 19. 18. 1. 525. "0.056 
541- 570 17. 15. 2. 1111. 0.267 
571- 600 11. 13. -2. -11710 0.308 
601- 700 36. 339 3. 1951. 0.273 
701- 800 22. 21. "1. 751. 0.048 
801- 900 22, 14. 

. 
H. 6804. 4.571 

901-1000 11. 10. 1. 951. 0.100 
1001-1100. 4. 7. -3. -3151. 1.286 
1101-1200 3. 5. 

- 
-2. -2301. O. 11C 

1201-1300 3. 4. -1. -1250. 
1301-1400 6. 3. 3. 4051. 0.71 
1401-1500 2. 2. 0, !1 
1501-1600- 1. 

. - 2. -1. -1550. 
1601-1700 0. 1. -1. -1650. 
1701-1800 1. 1. 0. 0"40 

"" 
1801-1900 - (3. 1.. -1. -1850. 
1901-2000 1. 1. - 0, 

, 
06 

2001-2100 " 0. 0. 0� 0l 
2101-2200 0. " 

0. 
.O0 U 

2201-2300 1. 0. 1. 
." 2250. 

0.1700 
------------ 0------------------- ------------------------- 

------- 

TOTAL 

----------- 

2495. 

---------- 

24970 

---------- ----------- 
1669, 

--------------- 
23.897 
-------- 

TOTAL ERP. LOSS 
0, F. 

p 
24 

.ý0.10 

.ý 



*** S-PARAMETER LOGNORMAL DIS. *x 

PREDICTION OF 24/KITH QUARTER CLR1? MS COST 
USING 73/4TH QUARTER PArIAM TERS 

C= 14. P MEW'= 4.700 SICMA2=C. Rh3 

ti 
INFLATION HATE I=1R. 2°+ CALCULATED PROM 
GENERAL INDEX OF PETAIL PRICES 

-PREDICTION PARAMETERS ARE .- C= 16.5 MEW- 4.867 SIGMA2=0. H03 
MEAN CLAIM AMOUNT=e 177.62 S. D. =215.53 

ACTUAL 74/4TH PARAMETERS :- C= I R. 2 MEW- 4.87R SIGMA2=0.7F, 6 
MEAN CLAIM AMOUNT= 174.47 S. D. =2n6.72 

AMOUNT £ ACT. NO. EXP. NO. A-E EXP. LOSS (A7E)*"*2/E 

. 1- 30 394. 1 394.. 1 0. 0. 0.000 
31- 61 452. 464. -12. -546. 0.310 
fý1- 0 426. 412. 14. 1057. 0.476 
91- 120 348. V335. 13. 1371. 0.504 

121- 150 272. 266. 6. 813. 0.135 
151- 180 219. 210. 9. 14 P9. 0.386 
181- 210 154. 167. -13. -2541. 1.612 
211- 240 124. 133. -9. -2029. 0.609 
241- 270 105. 107. -2. -511. 01-037- 
271- 300 ? S. 87. -9. -2569. 0.931 
301- 330 75. 71. 4. 1262. 0,225 
331- 360 `F8. 59. -1. -346. 0.017 

361- 390 55. 49. 6. 2253. 0.735 
391- 420 29. Al. -12. -4866. 3.512 

421- 450 43. 34. 9. 3919. 2.382 
451- 480 24. 29. -5. -2327. 0. R62 V 
481- 510 22. 25. -3. -1486. 0.360 
511- 540 24. 21. 3. 1576. 0.429 

. 
541- 570 19. 18. 

. 
1'" 555. V 0.056 

571- 600 14. 16. -2. -1171. 0.250 
601- 700 42. 39. V 3. 1951. 0.231 
701- 800 2R. 25. 3. 2251. 0.360 
801- 900 20. 17. 3. 2551. 0.529 
901-1000 117. 12. 5. 

. . 
4752. 2.083 

0 1001-110 A. R. 0. f1. 0.000 
, 1101-1200 5. 6. -1. ' -1150. 0.167 

1201-1300 1, 4. -3. -3 151 . 
1301-1400 5. 3. 2. 2701. 
1401-1500 0. 2. -2. -2901. 
1501-1600 1.. 2. -1. -1550. 
1601-1700 0. 1. -1. -1650. 
1701-1800 0. 1. -1. ' -1751. 
1801- 1900 

, 
0. 1. -10 -1 P50. 

1901-2000 0. 1. -1. -1950. 
2001-2100 1. 1. 0. 0. 
2101-2200 0. U. C;. 0. 
2201-2300 0. 0. 0. U. 
2301-2400 V 1. 0. 1.. 2350. 

------. ----- 
TOTAL 

------------ 

-------- 
3064 

-------- 

---------- 
3061 

---------- 

------- 

------- 

---------- 
-4093. 

---------- 

---------- 
16.599 

---------- 

CHI SO. STA, T 
."= 20,67 > 

0-F--28 

TOTAL ACTUAL COST = 53? 707. 
TOTAL EXPECTED COST = 

TOTAL EXP. LOSS 

TOTAL ACT. COST 152 

P=C;. FýS 

t Ti 0.0 

i' 7 ß'. 2O 



sable (3,46) 
PREDICTION OF 75, % 1ST (, MARTER CLAIMS COST 
USING ?L /1"- QL! RTER M JLT. PIiAXKIK. PARAMETERS ; 

C= 10.4 MEVI= 4,650 SIGMA2=0.050 
INFLATION PATE I_20.3°- CALCULATED C. pq 

'GENERAL IN:? EX OF RETAIL PRICES 

i 

hhl- 

PREDICTION PARAMETERS ARE "- L'- 12.5 MEW= 1,835 SIGMA2=0.85P 

" MEAN CLAIM AMUUNT= 18U. 71 S. D. =225.20 
ACTUAL 75/1ST PARAMETERS C= 21.1 MEW= 4.9.15 SIGMA2=0. -710 

MEAN CLAIM AMOUNT= 173.32 3. D. a197.69 

AMOUNT 'f ACT. 140. EXP. NO. A-E EXP. LOSS (A-E)**2/E" 
1- 30 324. 321. 3.. 46. 0.028 

"31- 
60 387. 404. -17. -774. 0.715 

61- 90 345. 355. -10. -755. 0.282 

. 
91- 120 2A9. 285. 4. 422. 0.056 

121- 150 253. 225. 28. 3794. 3.484 
151- 190 1817. 177. 10. 1655. 0.565 
1R1-'210 138. 140. -2. -391. 0.029 
211- 240 114. 112. 2. 45-1. 0.036 
241- 270 93. 90. 3. 767. 

. 
0.100 

271- 300 67. 73. -6. -1713. 0.493 
301- 330 63. 60. 3. 947. 0.150' 
331- 360 44. 50. - -6. -2073. 0.720 
361- 390 44. 42. 2. 751. 0.095 
391- 421) 35. " 35. 0. 0. 0.000 
421- 450 25. 29. -4. -1742. 0.552 
451- 4R0 26. ' 25. 1. 466. 0.040 
481- 510 in. 21. -3. -1486. 0.429 
511- 541) 18. 18. U. " 0. 0.000* - 
541- 570 22. 16. 6. 3333. 2.250 
571- 600 17. 14. 3. 1756. 0.643 
601- 700 39. 34. ' 5. 3252. 0.735 
701- 800 19. 22. -3. -2251. 0.409 
801- 900 18. 15. 3. 2551. 0.600 
901-1000 12. 10. 2. 1901. 0.400 

1001-1100 3. 7. -4. -4202. 2.286 
1101-1200 1. 5. -4. -4602. 3.200 
1201-1300 1. 4. -3. -3751. 
1301-1400 0. 3. -3. -4051. 
1401-1500 1. 2. -1. -1450. 

"1501-1600 0. 2. -2. -3101. 
1601-1700 1. 1. 0. 0. 
1701-11300 0. 1. -1. -1751. 
1801-1900 0. 1. -1. -1850. 
1901-2000 0. 1. -1. -1950. 
2001-2100 1. 1. 0. 0. 
2101-2200 1. 0. 1. 2150. 
2201-2300 0. 0. 0.1 0. 
2301-2400 0. 0. 0. 0. ` 
2401-2500 0. 0. 0. 0. 
2501-2600 0. 0. . 0. 0. 
2601-2700 0. 0. 0. 0, 
2701-2900 0. 0. 0. 0. 
2801-2900 0. 0. 0. 0. 
2901-30001 0. 01 01 0. 
3001-3100 t3. 0. 0. 0. 
3101-3200 U. 0.. 0. 0. 
3201-3300 0. 0. 0. 0. 
3301-3400 0. 0. 0. 0. 
3401-3500 0. 0. 0. 0. 
3501-3600 

- 

1. 0. 1. 3550. 
---- ------- 

T0TAt. 
-------- 

26;; -7 

----------- 

2601 

----- ----------- 

-I tý 1 . ", 2. 

---------- 

1 f1.29'7 



Table (3.46) 
- continued 

CHI SO. STAT. = 25.76 , D. F. = 2E) 

TOTAL ACTUAL COST = 452059-- 
TOTAL EXPECTED COST - 462161. 

TOTAL EXP. LOSS 

--------------- - -2.23 °c 
TOTAL ACT. COST 

R 

y 

P>0.50 

KOL - S"IIR? d0V I= 0.01 

- P> 0.20 



Ta! C 

## j-PARAMEiE. I IA, 
_ 

: 1ý::, **s. 

1i 

hkhl- 

'Pi1E DICTION OF ? 5/2ND QUARTE9 CLAIMS COST. 
USING 74/2ND WUARTER MULT. MAXLIK. PARAMETERS 

Ca 14.9 MEW= 4.735 RIGMA2so. 76n 
INFLATION RATE I=24.3% CALCULATED FROM : 
GENERAL INDEX dF RETAIL PRICES 

PREDICTION PARAMETERS ARE :- C= 1R. 5 MEW- 4.953 SIGMA2 =. 760 
MEAN CLAIM AMOUNT= 108.44 S. D. =220. x1" 

ACTUAL 75/2 ND PARAMET ERS C= 15. 2 MEW= 4.072 SIGMA2=0. At)7 
MEAN CLAIM AMOUNT= 180.29 S. 0. =217.79 

AMOUNT f ACT. NO. EXP. NO. A-E EXP. LOSS (A-E)**2/E 
1- 

, 
30 302. 

. 
279. 23. 356. 1.896 

31- 60 3? 4. 349. 25. 1137. 1.791 

, 
(, )1- 90 332. 325. 7. 528. 0.151 
91--120 277. 273. 4. 422. 0.059 

121- 150 235. 222. 13. 1761. 0.761 
151- 180 187. 170. 9. 1409. ' ' 0.45 5 
181- 210 122. 143. -21. -4105. 3.0P4 
211- 240 110. 116. -6. -1353. 0.310 
241- 270 00.. 94. -14. -3577. 2.085 
271- 300 72. 77. -5. -1427. 0.325 
301- 330 47. 63. -16. -5040. 4.063 
331- 36n 39. 52. -13. -4491. 3.250 
361- 390 40. 44. - -4. -1502. 0.364 
391- 420 30. 37. 1. 406. 0.027 
421- 450 

_29. 
31. -2. -871. 0.129 

451- 400 21. 26. -5. -2327. 0.962 
481- 51Q 30. 22. A. 3964. 2.909 
511- 540 19. 1q. 0. 0. , 0.000 
541- 570 17. 16. 1.. 5550' . 0.063 
571- 600 11. 14. -3. -1755. 0.643 
601- 700 36. 35. 1. 651. 0.029 
701- 900 22. 23. -10 -751. 0.043 
001- 900 22. 15. 7. 5953. 3.267 
90 1-1000 11. 10. 1. 951. 0.1(10 
001-1100 4. 7. -3. -3151. 1.206 

1101-1200 3. 5. -2. -2301. 0.300 
1201-1300 3. 4. -1. -1250. 
1301-1400 6. 3. 3. 405 1. 
1401-1500 2.. 2. 0.. 0. 
1501-1600 1. 2. -1. -1550. 
1601-1700 0. 1. -. 1. -1650. 
1701-1000 1. 1. 0, 0, 
1001--1900 0. 1, 
1901-2000 1. 1. 0. 
2001-2100 . 

0.. 0. 0. 0. 
2101-2200 0. 0. n. 0. 

," 2201-23(10 11 . 0. 1, 
. 

2250, 

TOTAL 
. 

------------ 

2495 

---------- 

2490 

------- ------- 
-14407. 

. 

---------- 

. _--20.05(_- 

------------- 

GHI ", Q. STAT. _ 29a9 , 
D. F. = ý", 

T(. UT'A'L AGTUAL GQ; 3T 

TOTAL EXPECTED COST - 46379. 

TO1AL EX! ". LD,: S 

-3 
TOTAL Ai; T_ý 

.? _? 
"ý' 155 C. ST 

p>o, o 
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CHAPTER 4 

The Weibull Distribution 

4.1 Introduction 

The Weibull distribution is named after Waloddi Weibull, the 

Swedish physicist, who in 1939 derived it empirically from practical 

considerations of the size effect on failures in solids. He used this 

distribution as a model for the breaking strength of materials. 

The Weibull is a flexible distribution which is related to 

the exponential family. For a suitable choice of parameters, it is 

positively skewed with a tail longer than that of the exponential 

distribution. Over the years, it has been used to represent the 

distribution of random outcomes of various phenomena in science and 

engineering. Weibull (1951) has fitted this distribution to data on 

1- yield strength of Bofors steel ; 

2- size distribution of fly ash ; 

3- fibre strength of Indian cotton ; 

4- statures for adult males, born in the British Isles ; 

etc. 

In recent years the Weibull distribution has become one of the most 

widely used statistical distributions in the fields of reliability, life 

and fatigue testing of engineering systems and their components. A 

bibliography on this distribution and its applications appears in 

Johnson and Kotz (1970). 
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The (negative) exponential distribution has been used in 

general insurance, and in particular in fire insurance, as a model for 

the distribution of claim armunts (see, for instance, Ramachandran (1970)). 

It is important to see how the more flexible Weibull distribution 

would perform in this respect. In addition, the fact that the Weibull 

has successfully represented the distribution of positively skewed 

random variables, in various fields, encourages us to consider its 

application as the model for the distribution of claim amounts in 

general insurance. Therefore, in this chapter, the Weibull distribution 

will be initially defined and some of its properties will be mentioned. 

Then a graphical procedure will be suggested for testing whether a 

particular set of data may be regarded as a sample from a 

Weibull population. The accidental damage data will then be tested 

accordingly. In section 4.6 the least squares and multinomial maximum 

likelihood methods of parameter estimation from grouped data will be 

considered. These methods will then be used to fit the Weibull model 

to the samples of accidental damage data. The effects of the inflation 

on the parameters of the model will be studied in section 4.8. Finally, 

the conclusions of this chapter will be discussed in section 4.9. 

4.2' Definition 

A random variable X is said to have a 3-parameter Weibull 

distribution if its distribution function, denoted by 

W(x ; C, A, B) is of the form 
. 
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P(X x) =1- exp 
[_ (x - ClB 

;x>C (4.2-1) 
J 

=0 

for A>O, B>0, -oo <C<° 

This distribution is related to the standard exponential distribution 

via the transformation 

Y= (X - C\B (4.2-2) 

which leads to P(Y <, y) =1- e-y ,y>0 

Hence Y has the standard exponential distribution (i. e. with mean = 1). 

The. probability density function (p. d. f. ) of X, denoted by fw(x; C, A, B), 

is 

= 
B/x-CB-1 x-CB fW(x, C, A, B) A`A) exp -`Aj; x> C (4.2-3) 

It is apparent that C is a location parameter below which the values of 

X are not realized. C is often called the threshold parameter. A 

and B are scale and shape parameters respectively. If in (4.2-1) 

and (4.2-3) we put C=0 we will have the 2-parameter Weibull 

distribution and probability density functions respectively. 

4.3 Properties of the Weibull Distribution 

In this section we will briefly report some properties of the 3- 

parameter Weibull distribution. More details on this can be found in 

Johnson and Kotz (1970), Bury (1975) or Mann et al. (1974). The 

properties of the 2-parameter distribution will be obtained by putting 

C=0 in the following. 
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The Ii`eibull distribution can represent various shapes through 

the parameter B. In particular, when B<1 the p. d. f. is monotone 

decreasing, with a tail longer than that of the exponential distribution, 

and there is no mode. For B=1 this distribution becomes equivalent 

to an exponential distribution with C and A as location and scale 

parameters respectively. For B>1 the p. d. f. of the Weibull 

distribution is unimodal, with the node at 

xC+A[ (B - 1)/B] 
1/B 

defined in (4.2-2), has the standard exponential distribution. 

In this case the p. d. f. is positively skewed for B<3.6 

(approx. ), and negatively skewed for B>3.6 (approx. ). For B=3.6 

(approximately) the shape of the Weibull distribution will be similar 

to that of a normal distribution. 

To find the moments of X about zero we use the fact that Y, as 

" Let Z=XAc therefore Y= ZB and X=C. + AZ. 

The rth moment of Z about zero is 

9 al 

R A: 

E (Zr) =E 
[(ZB)r/B 

=E (Yr/B) =B th moment of Y about zero 

hence from the theory of exponential distribution it follows that 

(4.3-1) 

E (Zr) =r(+ 1) 11 (4.3-2) 

Therefore moments of Z and hence of X can be obtained. For r=1 

we have E (Z) =r(,, + 1) 

Therefore the mean of X. will be 

E (X) =C+A r( + i) (4.3-3) 
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and by using r=2 in (4.3-2) we can derive the variance of X as 

' var(X) -A 
{(2 

+ 1) - 
[r (B 

+ 1) ]2} (4.3-4) 

The coefficients of skewness and kurtösis can be obtained as 

complicated expressions involving the Gamma functions. These are 

derived in Bury (1975). 

The median of the distribution can easily be shown to be at 

x=C+A (log 2)1/B (4.3-5) 

The quantile of order q is at 

xC +A log 
1 1/B 

(4.3-6) 

i-a 

In many applications there is usually no explicit theoretical 

justification for the use of the Weibull distribution as a model. 

However, if a negative exponential model can be justified, or 

shown to be reasonable, for a random phenomenon, then its replacement 

by a Weibull distribution will. allow greater flexibility in the model. 

It is with these remarks in mind, and the fact that the exponential 

distribution has been used as a model for claim amounts, that we 

study the Weibull distribution in this chapter. 

4.4 The Graphical Test for the Weibull Distribution 

We explain this test for the 3-parameter case. For the 2- 

parameter Weibuil distribution the argument holds by putting C=0. 
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Let uS denote the cumulative distribution function 

W(x; C, A, B) simply by W(x) where 

11 (x) =1- exp -ACB] 

Hence 

1- W(x) = exp 
(xAC)B 

A 

by taking natural logarithm twice on both sides and simple manipulations 

we can show that 

log log 
1 -1 «(x =B log (x - C) -B log A (4.4-1) 

Therefore the locus of the points 
( 

log(x - C), log log 
1 -1W W(X7) 

is 

a straight line. This provides us with a means of testing if a sample 

of data is from a Weibull population. Let us assume that we are given 

a sample of n independent observations on the random variable X. At 

a particular value :: i we define the sample empirical distribution 

" function F(xi), which is an estimate of ta(xi), as 

F(xi) = the proportion of observations 4 xi (4.4-2) 

Therefore if the value of C is knowm, for the 3-parameter case, and 

the sample is from a Weibull population we would expect the points 

(i. 
og(xj - C) 

, 
log log 

1-l, Xi 

) 
to lie approximately on a straight 

line - say, line 1 in figure (4.1). The parameters A and B can be 

estimated from the slope and intercept of this line. The use of a 

special graph paper called the N'eibull probability paper makes the tasks 

of calculations, for plotting the points, and of estimation of the 

parameters easier. On this graph paper, one of the axes is scaled 
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r4 

bO 0 
ho 
0 

r-i 

=C 

>C 

<C 

log (X - C) 

Figure (4.1) - Graph of the points 
(log(x 

- C), log log 1- F(x1) 

logarithmically while the other is graduated such that the proportions 

F(x) are converted to log log 
1 _1F x. 

Therefore, for plotting, 

only the points (x - C, F(x)) need to be calculated. There are 

special scales provided on the paper which allow, after a successful 

fit of a straight line to the points by eye, the estimates of the 

scale and shape parameters to be read from the graph. 

So far we have assumed that the value of C is known. If this is 

not so then the values of x-C cannot be calculated. In this case C 

has to be estimated beforehand. If we use Cl for C where Cl >C 

(i. e. if we overestimate C) then, because this will have a larger 

impact on log(x - C) for smaller values of x, we will find that the 

points lie on a convex curve - plot 2 in figure (4.1). If we 

underestimate C (i. e. use C' < C) then a concave curve will be obtained 

plot 3 in figure (4.1). We faced the same problem in section 3.11 

on testing for 3-parameter log normality The procedure which was 

13 
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applied in that section can be adopted here. Therefore we try 

various values of C and for each value plot the points 

1 (log 
(x - C) 

, 
log log i_ `F; 

X,. 
By observing the resulting 

plots we decide on the best value of C which rectifies the points to 

lie approximately on a straight line. If, in fact, such aC exists 

then we can conclude that our sample is from a 3-parameter Weibull 

population. If necessary, the parameters A and B can then be estimated, 

as before, from the slope and intercept of the line. 

The initial value of C to be tried always is C=0 which will 

either indicate that the sample is from a 2-parameter Weibull population 

or, alternatively, that by choosing C=0 we are underestimating or 

overestimating C. If it indicates underestimation then the mdel will 

involve a positive location parameter and its distribution function 

can be expressed as 

W(x; C, A, B) =1- exp 
L(XA C) B 

(4.4-3) 

If C=0 indicates overestimation then the model may involve a negative 

location parameter. Hence, for the sake of avoiding the use of 

negative values for parameter C, the model can be expressed as 

W(x; -C, A, B) =1- exp 
[-( X+ C} BI 

;C>0 (4.4-4) 
AJ 

4.5 The Weibull Graphical 'Test ' on 'AD 'Data 

We wrote the computer program P13 to use a sample of grouped 

data, as input, and to plot the points 
(log(x 

)-Cs log log g 1- x) 
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for various values of C. For each sarple of accidental dai-age data, 

as presented in tables (1.1) to (1.7), values of C=0,10,15,20 

and 25 were supplied to the program. For each C, the program then 

calculated and plotted the resulting array of points. The graphs 

for each of the seven samples of data are presented in figures 

(4.2-a) and (4.2-b). It can be seen that for each sample, C=0 

has produced a concave curve with a marked deviation from a straight 

line in the lower values of x. Therefore C=0 has underestimated 

the true value of C. On the other hand, for C= 25, for each sample, 

a convex curve has been produced indicating an overestimation of C. 

For each sample C= 10 also indicates an underestimation of C. 

Therefore the true value of C, in each case, must lie between 10 to 25. 

In fact it is apparent from the graphs that C= 15 or 20 are about the 

best choice to make the array of points lie on a straight line. 

There are slight deviations from the straight line in the upper tail 

values for each sample. These are, as in the case of the lognormal 

distribution, due to lack of sufficient observations in the long tail 

of the sample histogram. 

We feel justified that a 3-parameter Weibull model with a positive 

location parameter C, in the range of 10 to 25, and cumulative 

distribution function of the form (4.4-3) may be used to represent the 

distribution of our accidental damage data. 

We Imow that some policy holders do not claim for small amounts 

because their no claim bonus is worth more than the amount they would 

recover by a claim. Considering that our proposed Weibull model involves 

terms of the form x-C we may interpret parameter C as the anount 

below which claims are not made. 
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Figure (4.2-a) 
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Figure (4.2-b) 
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4.6 Estimation of the Parameters of the leibull Distribution 

The estimation problem for the Weibull distribution has been 

dealt with by various authors. However, rast of the concentration 

appears to have been on estimation from ungrouped data and for the 2- 

parameter distribution. Kao (1956) considered the methods of least 

squares and maximum likelihood for tmgrouped data when the scale 

and shape parameters, A and B respectively, are unknown. In 

addition, in Kao (1958) he dealt with estimation from grouped data, 2- 

parameter case, by the methods of nnultinomial maximum likelihood 

and minimum Chi-square. 

The method of moments can be used which involves equating the firs:. 

two (or three in the 3-parameter case) s Vle moments to their 

corresponding population values and solving the resulting equations 

for the unknown parameters. Dubey (1963) reports that he has found 

" the asymptotic efficiencies for the roment estimators of the location 

and scale parameters when the shape parameter is known. These, he 

states, depend on the value of the shape parameter and are quite high 

in some cases. 

The method of quantiles may also be used for estimation. This 

consists of equating two (or three in the 3-parameter case) sample 

quantiles to their corresponding population values. Dubey (1967) 

has applied this method for estimating parameters of the 2-parameter 

distribution. He states that the 17 and 97% quantiles give an 

estimate of the shape parameter which is asymptotically 66% efficient 

when compared with the maximum likelihood estimator. The 40 and 82% 

quantiles estimate the scale parameter with an asynptotic efficiency 

of 82%. 
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A relatively quick and easy method of estimating the parameters 

of the Weibull distribution is the graphical method which we explained 

as part of the Weibull graphical test in section 4.4. This method 

has been fully explored by Kao and we can, for example, rifer to 

Kao (1959). 

Haan and Beer (1967) deal with estimation from ungrouped data 

by the ordinary maximum likelihood method for the 3-parameter Weibull. 

In this case a system of equations involving powers of the unknown 

parameters need to be solved iteratively. 

When data only in grouped form is available the estimation problem 

usually becomes more complicated. It is possible to assume that the 

observations in every interval are concentrated at the mid-point of 

that interval and hence use the estimation procedures for ungrouped 

data. This assumption, cven when reasonably justified, results in 

some loss of efficiency and may introduce certain biases in the 

estimators. Therefore, as we showed in the 2-parameter lognormal 

case, it is best to use methods which are directly suitable for 

grouped data. Of these, the most efficient method is the multinomial 

maximum likelihood. This, as we mentioned earlier, was considered 

for the 2-parameter Weibull by Kao (1958). In the present work we 

will extend this method to the case when all three parameters are 

unknown. In addition, we will consider the method of least squares 

and will propose a computing technique for estimating all three unknown 

parameters. 

Let us assume that we have a sample of grouped data where n inde- 

pendent random observations on a random variable X (in cur case, the 

claim amount) have been grouped according to their size into k mutually 

exclusive intervals. Further, let ni be the number of obsertiaticns 
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(claims) in the class interval (xi_1 
, xi) for i=1,2..., k such 

that 
k 

n= nl 
i=1 

Also, let us assume that X has a 3-parameter Weibull distribution 

with the cumulative distribution function of the form 

W(x; C, A, B) =1- e{- 
(x 

A 
C)B 

x>C (4.6-1) 

We define the sample empirical distribution function as 

F(x) = the proportion of observations <x (4.6-2) 

In. the following sections we shall use the above notation. Although 

we will be considering the estimation problem of the 3-parameter 

ti; Weibull distribution, the methods can be directly used for the 2-parameter 

Weibull by putting C=0. 

4.6.1 The Method of Least Squares 

We showed in section 4.4 that if our sample is from a Weibull 

population then the points 
(log (x1 - C), log log 

1 -1F xi 
)' 

for i=1, ..., 
k-1 are expected to lie on the straight line 

log log =B log(x - C) -B log A (4.6-3) 

It should be noted that we cannot use xk because F(xk) =-1 and hence 

will be ind3terninate.. To find the unknown parameters we 1-F (xk) 

can use the least squares regression technique which consists of 
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(1 

riinindsing SSD, the stur. of squares of deviations, where 

k-1 
SSD = 

[log 
log 

1 -F(x 
-B log(xi - C) +B log A (4.6-4) 

i=1 i 

simultaneously with respect to A, B and C. If we equate to zero the 

partial derivatives of SSD, with respect to A, B and C, we will 

produce a set of non-linear equations in the parameters which can be 

solved, laboriously, by an iterative method. In addition, for this 

purpose starting values for the parameters need to be obtained by 

a-quick method of estimation, say, the graphical. 

We instead suggest using the computing technique which we proposed for 

the 3-parameter lognormal distribution in 3.12.1. 

Let Vi = log log 1-F () and U1 = log (xi - C) . 
i 

If C was known, or was fixed, to be equal to Co, say, then the points 

(Ui, V1) would be coiapletely determined from the sample. Hence a 

straight line, say 

V= all +b (4.6-5) 

could be fitted by the least squares regression technique with values 

of a and b calculated from (3.7-24) and (3.7-25) of chapter 3. The 

estimates, of the unknown parameters A and B would then be 

B=a (4.6-6) 

and � A= exp (- ä) (4.6-7) 

Because the value of C is unknown our computing procedure, 

described fully in section 3.12.1, is to find directly the minimum 

value of SSD simultaneously with respect to C, A and B. For this 

purpose we fix C, systematically, at different values and for each 
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value estimate A and B. according to the previous paragraph, and find 

their corresponding value of SSD from equation (4.6-4). Hence we find 

that value of C, with the required degree of accuracy, and its 

corresponding parameters A and B which give the miniwarm value of 

SSD. These values of A, B and C are the least squares estimates of 

the Weibull parameters. Notice that for this procedure we do not 

require anv starting values for the parameters. The procedure when 

programmed on the computer is very fast (depending on the required 

degree of accuracy) and easy to use on the interactive terminals. 

4.6.2 Multinomial Maximum Likelihood Method 

This method was previously considered for the lognormal distribution 

in section 3.7.7. Here we will give the loglikelihood function for 

the 3-parameter Weibull distribution. The computing technique to 

find the estimates of the parameters, by maximizing the loglikelihood 

is that described in section 3.7.7. 

Let us assume that we have a sample of grouped data as defined in 

section 4.6. Let pi be the probability that an observation (claim) 

occurs in the interval (xi_1, xi). Adopting the notation of 4.6, we 

have. 

pi = W(xi; C, A, B) - W(xi_1; C, A, B) 

for i=2,3, ... ,k 

and 

pl = W(xl; C, A, B) - {V(C; C, A, B) 

Using (4.2--1) we have 

cB xi_CB 
Pi. = exp - 

(~l, -lA exp -) -A 

for i. = 2,3, ... ,k 
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and 
xlC 

B 

p1 - 1-eýL A- 

The likelihood function of the sample is proportional, to L where 

,k ni 
L=i pi 

and the loglikelihood function, log L, is 

k 

log L= nl log pi 
i=1 

xl -CB 
= nl {1 - exp 

B 
x. -Ck C_e1 

(4.6-8) 

i=2 CA) ICCA )B1} i=2 

The maximum likelihood estimates of the parameters are obtained by 

simultaneously maximizing log L with respect to A, B and C. The 

computing procedure of section 3.7.7. requires starting values for the 

parameters. The least squares, or some other, estimates of A, B and C 

may be used for this purpose. 

4.7 Application of the Weibull Model to the AD Data 

We wrote computer program P14 for estimating the parameters of the 

Weibull distribution, by the least squares method, from a sample of 

grouped data. This program mas run with samples of accidental damage 

data as presented in tables (1.1) to (1.7). For each sample first 

C=0 (i. e. the 2-parameter Weibull) was tried. The program provided 

estimates of the parameters., A and B, as well as an extensive table of 

2 
results. The Chi-square statistic, X, was calculated by the program 
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as a measure of agreement between the fitted model and actual sample 

values. A sui ry of the results is presented as part of table (4.1). 

It is apparent that A has increased over time while B is, approximately 
2 

constant, about 0.9. Me X statistics are large for all the samples, 

hence indicating a general disagreement between the model and actual 

sample values. Examination of the components of the Chi-square 

statistics showed that very large contributions are made by a. small 

number of the intervals in the lower tail of the distribution. 

For each sample, the 3-parameter distribution was then fitted by 

finding the optimum value of C as described in section 4.6.1. The 

results are summarized in table (4.2). It can be seen that estimates 

of C, the anaunt below which claims are not made, is about 120. The 

values of A and C have generally increased over time. Because the 

mean and standard deviation of the Weibull distribution are functions 

of all three parameters, they showed an increasing trend over time as 

well. The Chi-square statistics are considerably smaller than in the 

2-parameter case. However, they still indicate highly significant 

differences between the model and actual sample values. Again the 
2 

major contributions to X values are from 2 or 3 of the intervals only. 

The total expected loss statistics are relatively small as indicated 

by R, the ratio of T to total actual cost of claims. Therefore, the 

3-parameter Weibull distribution provides a better fit, in terms of 
2 

the X statistic, to the actual data. 

To see how closely the least squares line fits the sample points 

the computer program P15 was written to plot them. The graphs for 

the accidental damage data arc presented in figures (4.3-a) and (4.3-b). 
2 

Despite the large values of the X statistic we observe that the 

sample points lie very closely on the least squares line. This, of 
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Figure (4.3-a) 
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course, was expected from the graphical test which we carried out 

previously. 

We next wrote computer program P16 to estimate the parameters of 

the 2-parameter Weibull distribution by multinomial maximum likelihood 

(IiIL) method in order to see how the results compare with those of the 

least squares method. For each of the accidental damage samples the 

least squares estimates of A and B were used as starting values for 

the iteration process. A summary of results is presented as part of 

table (4.1). We can see that the estimates of A are very nearly the 

same as their corresponding values by the least squares method but the 

values of B are slightly larger. The Chi-square values, however, are 

considerably smaller even when the slightly smaller degrees of freedom 

are allowed for. The required pooling of the intervals, in the upper 
2 

tail of the distribution, for the calculation of the X statistics 

were different from those of the least squares method. This resulted 

in the difference in degrees of freedom. The ? C2 statistics, as 

before, show significant differences between the model and actual 

sample values. Based on the Chi-square goodness of fit test it is 

observed that the 2-parameter Weibull distribution does not provide a 

satisfactory model for the distribution of accidental damage claim 

amounts. 0' 

Computer program P17 was written to estimate the parameters of 

the 3-parameter Veibull distribution by DfiIL method. For accidental 

damage samples, the least squares estimates of the parameters A, B and 

C, as given in table (4.2), were used as starting values for the iteration 

process. For each sample the progr= prints estimates of the parameters, 

the mean and the standard deviation of the fitted distribution of 
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claim amounts and also an extensive table which, for each interval, 

provides the actual, the expected and the actual minus expected 

number of claims as well as the expected loss and the contribution to 

the Chi-square statistic (for those intervals where the expected 

number is greater than 5). The results for the accidental damage 

samples are presented in tables (4.3) to (4.9). The estimates of C 

are about 15 and the estimates of A are smaller than their corresponding 

values by the least squares method. The values of A, the estimates of 
2 

A, have generally increased over time. The X statistics are smaller 

than their corresponding values by the least squares method. However, 

they still indicate significant differences between the model and the 

actual sample values. The major contribution to the Chi-square 

statistic is from few intervals only. Otherwise the agreement in most 

of the intervals is satisfactory. The total expected loss statistics 

are small and in every case are less than It of the total actual cost. 

The estimates of B are smaller than 1 for each of the sairples. This 

means that the 1eibull frequency curve resembles the exponential 

curve, but with a longer tail, and has no mode. Therefore, the model 

ignores the distinct mode of the histograms of the accidental damage 

data. 

To see how closely the frequency curve of the 3-parameter Weibull 

rmdel agrees with the histogram of the sample values we modified 

computer program P7 to plot them. The graphs are presented in 

figures (4.4.1) to (4.4.7). In each case the exponential shape of the 

curve, with no mode, is observed and the tail of the curve is seen to 

be shorter than the tail of the histogram. Large deviation between 

the curve and the histogram can be observed at several intervals. This 

could, of course, be expected. by looking at the large values of actual 
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minus expected frequencies in the tables. It can be noticed that 

the frequency curve fits the sample histogram rather well in the 

middle but not at the tail values. The agreement between the frequency 

curve of the model and the histogram of the data is not satisfactory 

for any of the samples. 

From the above analysis we can conclude that the Weibull 

distribution does not provide an adequate mdel for the distribution 

of the accidental damage claim amounts. 
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4.8 The Effects cif ' Iriflatiori *ft, * the Parameters of the Weibull. Model 

Following the argument of chapter 3 about the effects of inflation 

on the ; arameters of a model, it is considered important to study these 

effects theoretically for the Weibull distribution. We will need to 

allow for such effects when predicting the future distribution of 

claim amounts for a class of general insurance business in which the 

Weibull yodel has been found to represent the distribution of claim 

amounts. 

Let us again assume that the effect of inflation is to increase 

a claim of amount X to X(1 + i) over a period where i is the effective 

rate of inflation for that period. If X is distributed as a 2- 

parameter Weibull with distribution function V, (x; A, B) then by a 

transformation of variables we can show that Z= X(1 + i) is distributed 

as a Weibull W(z; Ag, B) where g=1+i. 

If X has a 3-parameter Weibull distribution, W(x; C, A, B), then again 

by a transformation we can show that Z= X(1 + i) is distributed as 

W(z; Cg, Ag, B). Therefore inflation increases the parameters C and 

A but leaves the shape parameter B unchanged. The mean and the 

standard deviation of the Weibull distribution are functions of all 

three parameters and hence both increase over time due to inflation. 

Although it has been found that the Weibull model is not completely 

adequate for the distribution of accidental damage claim amounts, 

nevertheless the increasing trends of C and A can be observed from the 

tables of results. 

Since the 11eibull is not a very satisfactory model for our data 

we do not use it to predict the distribution of claim am is during 

future periods. 
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4.9 Conclusions 

The 2 and 3 parameter ý`'eibull distributions were studied in this 

chapter as models for the distribution of claim amounts in general 

insurance and in particular for the accidental damage claim amounts. 

The Weibull distribution has been regarded as a more flexible model than 

the exponential distribution and hence its use in various classes of 

general insurance, where the latter has been successfully applied, is 

recommended. An interpretation was offered for parameter C as the 

amount below which claims were not made. The multinomial maximum 

likelihood method is preferred to the least squares method for 

estimating the parameters of the Weibull distribution since the former 

method produced smaller Chi-square statistics and hence a better 

agreement between the model and actual sample values. The 3-parameter 

distribution represents our accidental damage data better than the 

2-parameter distribution when judged by the Chi-square goodness-of- 

fit test. i-bwever, even the 3-parameter model does not satisfactorily 

represent the distribution of accidental damage claim amounts. This 

was indicated by the significant differences between the nadel and the 

actual sample values as judged by the values of X2. The value of the 

shape parameter B was found to be less than 1 which indicates that 

the model has an exponential-like shape with no mode. Hence the model 

ignored the distinct mode which is observed in the histograms of our 

sample values. It was observed that for each sample the frequency 

curve of the model had a shorter tail than the histogram of the data. 

The inflation was shown to affect the location and scale parameters, 

C and A respectively, but to leave the shape pur, :, eter, B, unchanged. 

The effect of inflation in increasing C over time is plausible as it 

is expected that with inflation the amount below which clams are not 

made should be increased. 
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We may note down in conclusion that the 3-parameter Iveibull 

nadel was riot found to be as adequate as the 3-parameter lognormal 

model in -representing the distribution of our, accidental damage claim 

antunts. 

4.10 Tables 
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Table (4.1) 

Two-parameter Weibull model fitted to accidental damage data by 
two methods of estivation 

Least Squares Method Mult. Max. Likelihood Method 

Period of 
accident 

A B X2 (D. F. ) A B X2 (D. F. ) 

73/4th quarter 143.3 0.853 224.4(24) 147.4 0.969 136.8 (21) 

74/1st 146.5 0.899 182.0(22) 146.6 0.966 148.0 (21) 

74/2nd " 150.6 0.914 157.1(22) 150.7 0.998 115.8 (21) 

74/3rd " 163.6 0.886 235.6(24) 165.5 1.000 160.6 (22) 

74/4th " 172.5 0.911 162.8(24) 173.0 0.994 122.4 (22) 

75/1st 169.5 0.878 181.3(24) 176.5 1.040 87.5 (22) 

75/2nd " 178.6 0.900 166.3(24)_ 
1 

178.4 0.988 118.4 (22) 

Table (4.2) 

Three-parameter h'eibull m del fitted to accidental damage data by 
least squares method 

Period of 
accident 

C A B 
2 

X (D. F. ) R% 

73/4th quarter 21 108.4 0.740 100.5 (23) -0.2 

74/1st " 19 114.4 0.780 83.3 (22) -0.2 

74/2nd " 19 118.4 0.796 75.1 (22) -0.8 

74/3rd 22 123.9 0.760 137.0 (24)_ 
_-0.6 

74/4th " 20 136.4 0.794 75.3 (24) 
-0.2 

75/1st " 22 129.9 0.761 102.0 (24) -0.2 

75/2nd 21 139.5 0.782 74.2 (24) 
-0,3 

i 
N. B. -X is the Chi-square statistic with (D. P. ) degrees of frecdcm. 

R is the ratio of total expected loss statistic, T, to the 
total actual cost. 
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Table (4-3.1). 

1! 
### 3-PARAMETER WEIBULL DIS. 

73/4TH QUARTER DATA 

ES TIMATION BY MULTINOMI AL &'AX. LIKELI HOOD METHOD ; - C= 15.73 A= 1 22.088 f3= 0.832 

MEAN= 150,349 S. D .= 162,617 

-AMOUNT £ ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS (A-E)**2/E 

1- 30 478. "482", -4. -62. 0.033 
31- 60 518. 590, -72. -3276. 8.786 
61- 911 461. 407. 54. 4077. 7.165 
91- 120. 359. 304. 55, 5802. 9.951 

121- 150 239. 234. 678. 0.107 
151- 180 213. 184. 29, 4799. 4.571 
181- 210 148, 147, 195. 0.007'" 
211"- 240 

, 
102. 119. 

-3833. 2.429 
241- 270 

. 
81. 96. -15. -3832. 2.344 

271- 300 58. 79. -21. -5995. 5.582 
"301- 330 66. 

, 
65, 1. 316. 0.015 

331- 360 45. 54. -9. -3109. 1,500 
361- 390 39.. 45. -6. -2253. 0.800 
391- 420 35. 37.. -2. -611. 0 108 
421- 450 34. 31. '1306. . 

0.290 
451- 480 20. 2.6. -6. -2793. 1.385 
481- 510 29. 22. 7. 3468, 2.227 

_511- 
540 14. 

. 18. -4. -2102. 0.889 
541- 570 8. 15. -7. -3888. 3.267 
571- 600 9. 13. -4. -2.342'. 1,231 
601- 700 29. 31. -2. -1301. 0,129 
701- E300 

_ 
18. 18' 0. 0, 01000 

801- 900 20. 11. 9. 7654, 7.364 
901-1000 6. 6. 0. 0. 0.000 

1001-1100 4, 4. 0, 0l I 
1101-1200 4. 2. 2. 2301. 

0,000 

. 1201-1300 1. 1. 0. 0. 
1301-1400 3. 1. 2. 2701. 
1401-1500 1. 1. 0, 0. 
1501-i609 0. 0. 0. 0. 
1601-1700 1. 0. 1, 1650.. 
1701-1800. 0. 0. 0, 0. 
1801-1900 0. 0. 0. 0. 
1901-2000 1, 0. 1. 1950. 
2001-2100 0. 0. 0. 0. 
2101-2200 0. 0. . 0, 0. 
2201-2300 o. . 0. 0. 0. 
2301-2400 1. 0, 1. 2350. 

---------- ------------ -------- -------------- ----------- . 
9.600 

TCOTAL. 3045. 3043. 3651. --- - 

. D. F. =22 TOTAL EXP. LOSS 
Y < 0.001 

--------------- =. 0ý8 ,o 
TOTAL ACT, CnST - 
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Table (4.5,2) 

3-PARAMETER. WEI©ULL DIS. #** 

14/16T QUARTER DATA 

ESTIMATION BY MULTINOMIAL MAX. LIKELIHOOD METHOD t- 
C- 

. 
16.64 A=, 119.529 B= 0.819 

MEAN= 149.887 5.. D. - 163.820 

AMOUNT £ ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS (A-E)**2/E 

1- 30 381. 384. -3. ' -46. 0.023 
31- 60 428. 

. 
485. -57. -2593. 6.699 

61- 90 351. 328.. - 23. 1736. 1.613 
91- 120 334. 243. 91. 9600. 34,078 

121- 150 211. 186. 25. 3387. 3.360 
151- 180 133. 146. '. -13. -2151.. 158 1. 
181-, 210 98. 1.16. -18. -3519. 

, 2.793 
211- 240 82. 94. -12. ' -2706. 1.532 
241- 270 54. 76. -22. -5621. 6.368 
2,71- 300 52. 62. 

-10. -2855. 1.613 
301- 330 53. 51. 2. 631. 0.078 
331- 360 36. 42. -6. -2073. 0.857 
361- 390 29. 35. -6. -2253. 1.029 
391- 420 26. 29. -3. -1216. 0.310 
421- 450 22. 25. -3, '-1306. 0.360 
451- 480 22. 21. 1. -466. 0.048 
481- 510 17. 17. ' 0. 0. 0.000 
, 511- 540 10. 15. -5. -2627. 1.667 
541- 570 19. 12. 7. 3868. 4.083 
571- 600 " 4. 10. -6. -3513. 3.600 
601- 700, 26. 25. 1. ' 651. 0.040 
701- 800 21. ' 15. 6. 4503. 2.400 
801- 900 11. 9. 2. ' 1701. 0.444 
901-1000 10, 5. 5. 

- 4752. 5.000' 
1001-1100 5. 3. 2. 2101.. 
1101-1200 2. 2. 0. 0. 
120 1-1300 1. 1 ., 0l 0. 
1301-1400 2. 1. 1. 1350. 
1401-1500 o. 1. -1. -1450. 
1501-1600 0. 0.. 0. 0. 
160 1-1700 0. 0. 0. 0. 
17.01-1600 

---------- 

1. 

----------- 

0. 

--.. _------ 

1. 

"'- 

1751. 
. . 

_- - -- 
1.125 

TOTAL 2441. ' 2439. _ 
2586 

-- 
OD. 279 O. P79 

--------------- .. ---- -------------- -------------------- -- 
' D. F. , ýL1 TOTAL EXP. LOSS 

----- _-_-------= 0.7 "w P <0.001 
TnTAL ACT. Cn ST 
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Table (403D3) 

*** 3-PARAMETER WEIBI$LL DIS. *** 

74/2ND NUARTER DATA 

ESTIMATION BY MULTINOMIAL MAX. LIKELIHOOD METHOD : - 
C= 15.32 A- 126.376 E3 0.862 

PAEAN= 151.603 S. D. - 158.593 

AMOUNT £ ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS (A-E)"""2/E 

1- 30 351.. 354. -3. -46. 0.025 
31- 60 380. 451. -71. -3230. 11.177 
61- 90 382. 321. 61, " 4605. 11.592 

91- 120 295. 243. 52. 5486.. 
. 

11.128 

` 121- 150 211. 189. 22. 2981. 2.561 

151- 180 . 
142, 150. -8. -1324. 0,427 

181- 210 114. 120. -6. -1173. 0.30 1 
211- 240 101. 97. 4. 902. 0.165 

"241- 270 57. 79. -22. -5621. 6.127 

271- 300- 51. 64. -13. -3711. 2.641 
301- 330 39. " 53. -14. -4417. 3.698 

331- 360 36. 43. -7. -2418. 1,140 
361- 390" 25. " 36. . -11. -4130. 3.361 
391- 420 24. 30. -6. -2433. 1.200 
421-. 450 27. - 25. 

. 
2. 871. 11.160' 

451- 480 18. 21. -3. -1396. 0.429 

481- 510 21. . 17. 4. 1982. 0,941 
511- 540 17. 14. 

_3. 
1576. 0.643 

541- 570 12. 12. 0. 0. 0.. 000 

"571- 
600 '11. 100" 1. 585. 0.100 

601- 700 30. 24. 6. 
. 3903. 1.500 

701- 800 13. 13. 0. 0. 0.000 
801- 900 11. Be 3. 2551. 1025 
90-1-1000 4. 59 -1. -951. 0.200 

'1001-1100 
7. 3. 4. 4202. 

1101-1200 0. 1 2. -2. " -2301. 
1201-1300 1. 1. 0. 00 

1301-1400 1.. 1. U. 01 

1401-1500 0. 
" 

0. 0. 0f 
1501-1600 1. 0. 11. 1550. 
1601-1700 0. 0. 0. 0, 

. 
1'101-1800 0. 0. 0. 0. 
11301-1900 1. 0. 1. 1850. 2.7°6 
-------------------------------- -------------------------------- 

TOTAL 
----------- 

2383. 
---------- 

2386. 
----- ------ - ---------- 

-106. 
----------- 

63,124 
-------- - 

D. F. =21 TOTAL EXP. LOSS 
r 

-----------------a -010 % , 
<0.001 

TOTAL ACT. COST 

4 
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Table ('1,3.4) 

11 
. 

.. *** 3-PARAUETER WETf3UL. L DIS, 
, *** 

74/3RD QUARTER DATA I 

ESTIMATION BY MULTINOMIAL MAX. LIKELIHOOD METHOD : - C- 16.07 A= 139.472 B= 0.867 

MEAN= 166.012 S. D. = 173.566 

AMOUNT £ ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS (A-E) **2 /E 

1- 30 362. 366. -4. -62. 0.044 
31- 60 427. 5.02. -75. -3412. 11.205 
61- 90 383. 365. 18. 1359. 0.88A 
91- 120 356. 281. 75". 7912. - 20.018 

121- 150 283. 223. 60. 8130. 16.143 
151, - 180 194. 1791. 15. 2482. 1.257 
181- 210 137. 146. -9. --1759. 0.555 
211- 240 97. 119. - -22. -4961. 4.067 
241- 270 . 

86. 981 -12. -3066. 1.469 
271- 300 

. 
71. 82. -1.1, 

-3140. 1.476 
301- 330 64. 68,, 

-4. -1262. 0.235 
331- 360 45. 57. -12, -41.46. 2.526 
361- 390 44. 48. -4. -1502. 0.333 
391- 420 - 25. 40. " --15. -6082. 5�625 
421- 450 26. 34. -80 -3484. 1,882 
451- 480 22. 28. -6. -2793. . 1.286 
481- 510 25. 24. 1., 496. 0.042 
511-. 540 14. 20. -6. -3153. _ 1.800 
541- 570 14. 17. ' -3. -1'666. 0.529 
571- 600 17. 15. 

. 
2. 1171. 0,267 

601- 700 32. 35. -3. -1951, 0.257 

"701- 
800 34. 

. 
21. 13. -9756. 8.048 

801- 900 17. 12. 5. 4252. 2.083 
901-1000 4. 8. -4. -3802. 2.000 

1001-1100 9. 5. 4. 4202. 3.200 
1101-1200 4. 3. 1. 1150. 
1201-1300 0. 2. -2. -2501. 
1301-1400 1. 

, 
1. 0. 001 

1401-1500 3. 1. 2. 2901. 
1501-1600 0. 0. " 0. 0. 
1601-1700 1'. 01 1. " 1650. 
1701-1800 0". 0. 0, 0. 
1801-1900 0. 0. 0. 0. 

1901-2000 0. 0. 0. 01 
2001-2100 0. 0. 0. 01 

2101-2200 1. 0" 
. 

1" 2150. 
2201-2300 0. 0. 0. 0. 

2301-2400 0. 0. 0, 0. 

2401-2500 0. 0. 
_ 

0, 0. . 
2501-2600 

- 
. 

1. 
- 

0. 1. 2550. 2: 286- 

TOTAL 

----------- 

2799. 

----------- 

2800. 

----------- ----------- 
141gß'-- 

-------- 

-----__ý__ 
92.722 

----------- 
D. 'E. ^2 

TOTAL EXP. LOSS 

--------- 
0.3 ° P <0.001 

TOTAL ACT. COST 
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Table 
`4-3-5) 

*# 3-PARAMETER WEIBULL DIS. '*** 

74 /4TH QUARTER DATA 

ES TIMATION BY MULTINOMIAL AJAX. LIKELIHOOD METHOD : - C= 15.15 A= 148 . 275 E= 0.871 

" MEAN= 174.111 S. O. = 183.102 

"AMOUNT £ ACTUAL EXPECTED ACTUAL- 'EXPECTED 
CL. NO. CL. NO, EXPECTED LOSS. (A-E)**2/E 

1- 3.0 394. 397. -3. -46. 0.023 
31- 60 452. 522. -70. -3185. 9.387 
61- 90 426. 386. 40. 3020. 4.145 
9.1-"120 348. 302; 46. 4853. , 7.007 

121- 150 272. 241. 31. 4200. 3.988 
151--'180 219. 196. 23. 3806. 2.699 
181-210 154. 161. 

-7. -1368. 0.304 
211- 240 124. 133. -9. -2029. 0.609 
241.270 

. 
105. 111. 

-6. -1533. 0.324 
271- 300 78. " 93. -15. -4282. 2.419 
301- 330 75. 78. --3. ' -947. 0.115 
331- 360 58. 65. 

-7. -2418. 0.754 
361- 390 55. 55. 0. ' 0. 0.000 
391--420 29. 47. -18. -7299. 6. x94 
421-' 450 -43. 40. 3. 1306. 0.225 
451 480 24. 34. -10. -4655. 2.941 
48'1- 510 22. 29. -7. -3468. 1.690 
511-"540 24. 25. -1. . -525. 0.040 
541=- 570 19. 21. - -2. 

-1111, 0.190 
571='600 14. 1A. -4. -2342. 0.889 
601- 700 42. 43. 1. -651. 0.023 
701- 800 28. 26., 2. -" 1501. 0.154 
801- 900 20. 16. 4. 3402. 1.. 000 
901-1000 17. 10. 7. 6653. 4.900 

1001=-1100 a. 6. -2. 2101. 0.667 
1101-1200 5. 4. 1. 1150; F 0.290 
1201-1300 1. 

" 
2. -1. -1250. 

1301-1400 5. 2. 3. 4051. 
1401-1500 0. 1. -1. -1450. 
1501="1600 1. 1. 

- 
0. 01 

1601-1700 0. 0. 0. 0. 
1701-1800 0. 0. 0. 0. 
1801-1900 0" 0. 0. 0. 
1901'-2000 0. 0. 0. 01 

2001-2100 1.. 0. 1. 2050. 
2101=2200' 0. 0. 0. 0. 
2201-2300 0. 

, 
0. 0. 0. 

2301-2400. 

------------- ----------- ------------ 

1. 

-------- 
2350� 

--------- 
1. . 500 

TOTAL` 3064. _ 3065. ----- 1, ------- 
_ -------"--------------.. - ---» .. -------- , -----i--.. --------.... 

--- 
5 

L 
-ý.. 

ý 
-- 

ý 

TOTAL EXP. LOSS 
D. F. s' 

---------------= 0.4 % P Co. (, )al TOTAL ACT. COST 
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75/ 7ST N. "AfTE° L, "-, Y 

FM LI// 
a-ul-a. (4.3.6/ 

ESTIMATION BY MULTINOMIAL MAX. LIKELIHOOD METHOD ; C- 14.89 
. 

A= 149.659 E3= 0.890 

MEAtJ= 173.325 ;. o. = 178.362 

A(ACUNT £ ACTUAL. EXPECTED ACTUAL-- EXPECTED 
CL'. NO. CL. NO. EXPECTED LOSS (A-E)* 2/E 1- 30 324. 326. -2,. -31. f'i. 012 

31- 60 387. 439. -52, -2366. 6.159 
61- 90 345. 330. 15. 1132. 0.682 
91- 120 289. 260. 29. 3059. 3.235 121- 150 253. 209. 44, 

- 5962, 9.263. 
151- 180 1(i7. 170. 17. 2813. 

" 1,700 
181- 210 138. 1461. -2, -391. , 0.029 
211° 240 114. i16. 

-2. -451. 0.034 
2411 - 270 93. 96. -3. -767. 0.094 
271- 300 67. 80. 

-13. -3711. 2.112 
, 301-, 330 63. 67. 

-4. -1262. 0.239 
331- 360 449 56, -12, * -4146. 2.571 
361- 390 44. 47. -3. -1126. 0.191 
391- 420 35. 40. -5. -2027. 0.625 

'421- 450 25. 34. -9, -3919. 2,382 
`451-. 4130' 26. 29. -3. ý-1396. 0.310 
-. 481- 510 

. 
18. 24. -6, -2973. 1.500 

511'- 540 18, 21. -3. -1576. 0.429 
541-570 22, 18. 4. 2222. 01889 
-57.1- 600. 17. 15. 2. 1171. 0.267 

"601-'700 390 36. 
' 

3. 1951. 0.250 
701- -800 19. 21. -2. -1501. 0.190 
801-- 900 18. 13:. 5. 

. 4252. ' 1.923 
901-1000 12. . 8" 4. 3602, 2.000 

1Q01-1100 3, 5. -2. -2101. 
1101-1200 1. 3. -2.. -2301'. 

aý 00 

1201'-1300 1, 2. -1. -1250. 
1301-1400 00 

" 
1. -1, -1350. 

1401-1500 1. 1. U. U. 
1501-160: ) 0" 0. 01 01 
1601. -1700 

1. 0. 1. . 1650. 
:, 1701-1800 0. 0. 0. 00 
1801-1900 0. 0. 01 0. 

, 
1901-2000 0. 0. 00 0. 
2001-2100 1. 0. 1. 20501, 

2101-2200 1. 0. 1. 2150. 
2201-2300 o, 0. . 0. 00 
2301--2400 01 0" 0. 

% 
00 

2401-2500 0. 0, [): p. 
2501-2600 0.. 0. 0. 00 
2601-2700 0. p. a. 0. 
2701-2800 0. 

. o. 0. 0 
28012900 U. 0. * 01 0.. 

'2901-3000 0. . 09 0. 0. 
3001-3100 0. 0. 01 0. 
3101-3200 U. U. 

. 
U. 

. p. 
3201-3300. 0. 01 0.. 

3301-3400 0. - 0. 01 0, 
3401-3500 0, 0, 0, 0. 
3501.3600 1, 01 1" 3550 
----- ----.. w _.. w-_--_-s_ ---w _. ýw-.. w -.. wM------- ----------- - _0. 

c, ()G 

TOTAL 2607L. 2607, 1 120 
. ,. n <p-) 

,,, -------------------------------------------------- 

TOTAL EXP. LOSS D. F. G?. 

---- .... _--_-_. -- 0,2 9 
.° 

4t, 
a 2 

TOTAL ACT,. C: 0. )ß 



(x.. 3.7) 

'3-PARAMETER 1r+E'IBULL DIS. 

75/2ND QUARTER DATA - 

ES TIMATION BY MULTINOMIAL MAX. LIKELIHOOD METHOD ; - 
C= 16.52 A= 150 , 912 B= 0.856 

MEAN= 179.934 
"S. D. = 191.534 

AMOUNT £ ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. ' NO. EXPECTED LOSS (A-E) *2 /E 

1- 30 302. 305. -3. ' -46. 
' 0.030 

31- 60 374. 428. -54. -2457. 6.813 
61- 90 332. 312. 20. 1510. 1.. 282 
91- 1.20 277. 243. 34. 3587. 4.757 

121- 150 235. 195. 40. 5420. 8.205 
151- 180 187. 159. 28. 4634. 

. 4.931 
181= 210 122. 131. -9. -1759. 0.618 " 

' 211- 240 1.10. 108, 2. 451. 0.037" 
241- 270 80. 90. -10. -2555. 1.111 
271- 300 72. 76. -4. -1142. 0.211 
301- 330 47. 64. -17. -5363. 4.516 
331- 360 39. 54. -15. -5182. 4.167 
361- 390 40. 46. -6. " -2253. 0.783 
391- 42.0 38. 39. -1. . -406. 0.026 
421- 450 29. 33. -4. -1742. 0.485 
451- 480. 21. 29. -8. -3724. 2.207 
481- 510 30. 24. 6. 2973. 1.500 
511- 540 19. 21. 

. -2. -1051. 0.190 
541- 570 17. 18. -1. -555. 0.056 
571- 600 11. 16. -5. -2927. 1.562 
601- 700 36. 38. 

. -2. -1301; 0.105 
701- 800 22. 24. -2., -1501. 0.167 
801- 900 22. 15. 7. 5953. 3.267 
901-1000 11. 9. 2. 

. 
190,1. 0.444 

1001-1100 4. 6. 
-2. 

" -2101. 0.667 
1101-1200 3. 

" 
4. -1. --1150. " 

0,250" 
1201-1300 3. 2. 1. 1250. 

1301-1400 6. 2. 4. 5402. 
1401-1500 2. 1. 1. 1450. 
1501-1600 1. 1. 0. . 0. 
1601-1700 0. 0. 0., 

, 
0. 

1701-1800 1. 0. "" " 1. 
.- 

1751. 
1801-1900 

. 
J. 0. 0. 0. 

1901-2000 1. 0. 1. 1950. 
2001-2100 0. 0. 0. 0. 
2101-2200 0. 

, 
0. 0.. 0. 

2201-2300 
------- -- 

1. 
----------- 

0. 
------------ 

1. 
----- - 

2250. 13.! ()0 
-- 

TOTAL 

----------- 

2495. 

----------- 

2493. 

------------ 

- ---- 

---------- 

---------- 
-" 

3266. 

------- 

61.065 

- ----------- 
D. F, 

------- 
=23 TOTAL EXP. LOSS 

---------------- 
0.7 % P<0.001 

TOTAL ACT. COST 
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CHAPTER 5 

The Liverse Gaussian Distribution 

5.1 Introduction 

This is a uninodal and positively skewed distribution which in 

recent years has been shown to represent the distribution of random 

outcomes of various phenomena. The name inverse Gaussian (or inverse 

normal) was proposed by Tweedie (1947) who noticed the inverse 

relationship between the cumulant generating function of this distribution 

and that of the normal distribution. Tweedie (1957) investigated the 

statistical properties of this distribution and indicated analogies 

between its statistical analysis and that of the normal distribution. 

In recent years this distribution has been studied by many authors. 

Johnson and Kotz (]. 970) provide a bibliography, and Chhikara and Folks 

(1978) give a review of the development since 1915 of the inverse 

Gaussian distribution and of the statistical methods based upon it. 

The frequency curve of the inverse Gaussian distribution is 

similar in shape to that of the other skewed distributions like the 

lognormal, the gamma or the Weibull. It is, therefore, important to 

consider the application of this distribution in the fields where one, 

or some, of the others have been successfully used as a model. Chhikara 

and Folks (1978) give examples of sets of data equally well fitted by 

the lognormal and inverse Gaussian distributions. They point out that 

when more than one distribution fits a set of data equally well and 

there is no evidence (based on the physical considerations of the 

problem) in favour of a particular nadel then it is best to use that 

which is more convenient to work with. An advantage of the inverse 

Gaussian distribution over the lognormal is that its statistical 

properties and inference procedures are well developed for small sample 

situations. 

If)t O 



Applications of the inverse Gaussian distribution in various 

fields have been reported by many authors. It has been successfully 

used in life-testing and reliability studies by Chhikara and Folks 

(1977). Hasofer (1964) considered it as a model for emptiness of a dari. 

Lancaster (1972) used it as a model for the duration of strikes. We 

have not cone across the use of this distribution in insurance, and 

it is therefore considered important to study it as a model for the 

distribution of claim amounts. 

In the literature, only the 2-parameter inverse Gaussian distribution 

his been considered. We will, however, introduce a location 

parameter into the model and will name it the 3-parameter inverse 

Gaussian distribution. Professor J. L. Folks, in a personal communication 

with the author (1978), acknowledges that this is an original idea arcs 

that this form of the distribution (i. e. the 3-parameter) has not been 

previously considered. We will later show that the 3-parameter 

distribution provides a better model for the accidental damage data. 

In this chapter we will initially define the 2 and 3 parameter 

inverse Gaussian distributions and will mention some of their 

properties. The problem of estimation from grouped data is next 

considered. In section 5.5 the inverse Gaussian models will be fitted 

to our seven samples of accidental damage data and the results will 

be discussed. The effect of inflation on the parameters of the model 

will be studied in section 5.6 and, for the accidental damage data, 

the distribution of claim amounts during a future period will be 

derived and compared with the actual data. The findings of this 

chapter will be sunrarized in section 5.7. The tables will be presented 

in section 5.8. 

5.2 Definition 

A random variable X is said to have a (2-parameter) inverse 
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Gaussian distribution if its probability density function (p. d. f. ), 

denoted by f 
IG 

(x; u , a) , 
is of the form 

2 
IG 

(x; tý ýxý _ (X/2'rx ) 
1/2 

Pxp (_x(x_i) /2u2X) 
'x>0 

=0 otherwise 

where }i and X are two independent and positive parameters. This 

distribution is thus a member of the exponential family. A is a shape 

parameter while p is only partially interpretable as a location 

parameter. 

Shuster (1968) has shown that the inverse Gaussian distribution function, 

denoted by IG(x; u, a), can be expressed in terms of the standard 

no-mal distribution function, N(z; 0,1), as : 

IG(X; u, a) = N(zl; 0,1) + eta/u rß(72; 0,1) (5.2-2) 

where 
Zl = 

. 
(A/x): 

V2 
(-1 + x/u) 

z2 = -(x/x) (1 + x/u) 
I't 

1e will show later in this chapter that the 2-parameter inverse 

Gaussian distribution does not provide a satisfactory model for the 

accidental damage claim amounts. This fact, together with the"concepts 

of 3-para eter lognormal and SWleibull distributions, led us to consider 

a 3-parameter inverse Gaussian distribution where one of the parameters 

is a location (threshold) parameter below which the values of the 

random variable X are not realized. Hence we introduce the unk noun 

location parameter c into the nwdel and assume that X-c, rather 

than X, is distributed as in (5.2-1). 

We say that a random variable X has a 3-parameter inverse Gaussian 

distribution if its p. d. f., denoted by fIG(x; c, u, X), is of the form 

2 

IG(x, 
[a/21r (x-C)3) exp[-x (x-c-u)` /2 i (x-C)] ;X>c 

=0U Lll--Il iSC 
(J"2-�) 

88 1 



The transformation x- x-c is only a translation along he x-axis. 

Therefore, the distribution function of X(i. e. the 3-parameter inverse 

Gaussian random variable) is obtained from (5.2-2) by replacing x by 

X-C. 

In our research into the literature on the inverse Gaussian 

distribution, we have not come across the 3-parameter distribution of 

the form (5.2-3). In fact, as we mentioned earlier, Professor Folks 

in a personal communication with the author confirms that the idea of 

a 3-parameter inverse Gaussian distribution, with one of the parameters 

being an unknown location parameter, has not been considered before. 

This new form suggests, as an area for research, the study of th3 

statistical properties and the estimation and inference problems for 

the 3-parameter distribution. We shall deal with these problems in 

this chapter as far as is relevant to the present work. It will be 

shown that the 3-parameter distribution provides an adequate model for 

our accidental damage claim amounts. 

5.3 Properties of the inverse Gaussian Distribution 

In this section, we first outline briefly sorge properties of 

the 2-parameter distribution with p. d. f. of the form given by (5.2-1). 

for more details and proofs reference should be made to Johnson and 

Kotz (1970) or TNAreedie (1957). 

Moments of all orders exist and in particular the rth positive 

integral moment of X about 0 is given by Tweedie (1957) as : 

1 
I E (Xr) =r 
S=0 

In particular E (X) 
2 

and E (X ) 

hence var(X) 

r-l+s )s 

s! (r-1-s)! 2x 

(5.3-2) 
23 -1 

+ua (5.3-3) 
3 

ä (5.3-4) 
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Also I: (X3) = 11 
3+ 

311 x-1+ 31_a ` (5.3-5) 

4 ý4 5 
_1 

6 
-2 

73 

and E(X =p+ 611 X+ 1511 X+]. Su X (5.3-6) 

Parameter p is, therefore, the population mean and is a measure of 

location. This model, unlike for instance the lognormal model, possesses 

the useful characteristic that one of its parameters is the population 

mean. 2 

The coefficient of variation for this distribution is ý- 
2 

where 

4, >0 (5.3-7) 

The coefficients of skewness and kurtosis, V-O1 and g2 respectively, are 

(5.3-8) 

02 =3+1=3+ 15q-i (5.3-9) 

The shape of the distribution depends on + only and, since ý>0, its 

frequency curve is skewed to the right and more peaked than the normal 

frequency curve. The distribution becomes more and more nearly normal 

when ý is increased. 

The distribution has a single mode which is located at 

or 

r2y 
+ )2 Xmode -u{ (1 _} (5.3-10) 

` 4x 2 

9z 31 
+ 

44,2) 
2ý (5.3-11) xirýode -u (1 

The mode of the distribution is in general located to the left of 

its mean because 

Xnn de 
t 

u 

but when ý is increased to infinity x, rode wiil converge to 11 . It is 

possible to express the inverse Gaussian p. d. f. in terms of the pair 

of parameters (u, ý) or (x, ý) , 
but the form give, by (5.2-1) is 
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generally considered as the standard form and is most usually used 

in the literature. The one parameter form which is obtained by putting 

p=1 in (S. 2-1) is knom as the standard Wald distribution. 

The properties of th4 3-parameter inverse Gaussian distribution, 

whose p. d. f. was given by (5.2-3), can be deduced from those of the 

2-parameter. The transformation x -} x-c is one of translation along 

the x-axis only and, therefore, the measures of location will be 

increased by c while the measures of dispersion and the moments about 

the mean will be unchanged. Hence, for the 3-parameter distribution 

we will have : 

E (X) =c+u (5.3-12) 

var(X) = l' (5.3-13) 

=r2 

112 1 
Xinode c+ u{ (1 + 

9u2) 
- 2ý } (5.3-14) 

tt 4ý JJ 
3/2 

and Coeff. of variation =u (5.3-15) 
[X(c )] 2 

which is a function of all three parameters. 

5.4 Estimation of the Parameters from Grouped Data 

The problem of estimation from a sample of data containing the 

values of individual observations has been dealt with by Schrodinger 

and his maximum likelihood estimators are reported in Chikkara and 

Folks (1978). Here we concentrate on the estimation from a sample 

of grouped data. when all the parameters are assumed unknown. 

Let us assume that we have a sample of grouped data where n independent 

random observations on a random variable X (in our case the claim 

amount) have been grouped according to their size into k nutually 

exclusive intervals. Further, let n1 be the niunber of observations 

(claims) in the class interval (xi_l, xi), for i=1,2, 
... ,k, 
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and such that 

k 
n= n1 

i=1 

Also let us assume that X has a 2-parameter inverse Gaussian 

distribution of the form (5.2-1). The method of moments can be used 

to estimate the parameters. This involves putting as many sample 

moments as there are unknown parameters equal to their corresponding 

population values and solving the resulting equations for the unknown 

parameters. For the 2-parameter case the sample mean and coefficient 

of variation may be used. The sample mean is the moment estimator of 

and, when the values of individual observations are known, is 

equal to its maximum likelihood estimator (see Johnson and kotz (1970)). 

Therefore the sample mean is an unbiased and efficient estimator of u. 

In calculating the sample moments from grouped data the usual assumption 

about the concentration of all the observations in each interval at 

the mid-point of that interval may be made. In the 3-parameter 

case, as well as the sample mean and coefficient of variation, the 

third central moment, which is independent of c, should be used to 

yield sufficient equations in the unknown parameters. 

It was observed in the previous chapters that the method of 

multinomial maximum likelihood yielded the best fits of the models 

to actual data. Here we consider this method for the 3-parameter 

inverse Gaussian. The 2-parameter case can be similarly dealt with by 

putting c=0 in the following exposition. 

Let us assume that the have a sample of grouped data, as defined earlier, 

and that random variable X has a 3-parameter inverse Gaussian distribution 

with p. d. f. of the form (5.2-3) and distribution function given by : 

(see section 5.2) 

IG(x; c, u, X) ° N(: 1,0,1) + e2ý/u N(z2; 0,1) for x>c 

=0 otherwise (5.4-1) 
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where zi = (a/ (x - c)) 
2 (-1 + (x - c) /u ) 

and 1 
z2 c)) 

/ 
(1 + (x - c)/ 

Let pi be the probability that an observation (claim, in our case) 

occurs in the interval (xi-1, xi) , 
for i=1,2, a. ,k, where 

Pi = IG(xi ; c, u, X) - IG(xi-1; c, p, X) (5.4-2) 

which can be expressed in terms of the standard normal distribution 

function by using (5.4-1). The likelihood of the s . ple will be 

proportional to L where 
k 

ni 
L= 

i=1 
pi 

The loglikelihood equation, log L, can thus be expressed as 

k 

log L= nl log pi 
i=1 

The rnaximun likelihood estimates are the set of parameter values 

(c, u, Jý ) which maximizes log L. The iterative computing technique 

which was described in section 3.7.7 of chapter 3 can be used to 
AA 

maximize log L and yield the set (c, u, a). This technique requires 

initial values for the parameters in order to start the iteration 

procedure. The estimates of the parameters obtained by the method 

of mments can be used for this purpose. 

5.5-Application of the Inverse Gaussian Model to AD Data 

We wrote computer program P18 to estimate the paraieters of the 

2-parameter inverse Gaussian distribution by the multinormal maximum 

likelihood , (ASS; [. ) , method. This program was run with the samples 

of accidental danage data which were presented in tables (1.1) to (1.7). 
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For each sample the estimates of the parameters u and were found 

by the method of moments. The statistics given at the bottom of each 

of the tables (1.1) to (1.7) made the above task very easy. The 

moment estimates were supplied to program P18 as starting values for 

the iteration process. The program produced an extensive table of 

results for each sample. These are summarized in table (5.1). The 

estimate of u in each case is practically equal to the sample mean 

(refer to tables (1.1) to (1.7)). The values of u and A show a generally 

increasing trend over time. The ratio of the total expected loss 

statistic, T, to the total actual cost is small in each case. This 

indicates an overall agreement between the model and actual data. The 

Chi-square statistics are, however, large and indicate significant 

differences between the model and actual sample values. The examination 

of the components of this statistic, for each sample, showed that 

2 
very large contributions are made to the value of X by only one or 

two intervals. in the lower tail of the distribution. For example the 
2 

first and second intervals account for some 60% of the X values. 

Therefore, the agreement between the nodel and actual sample values is 

reasonable except in the lower tail. In terms of the Chi-square 

statistic the 2-parameter lognormal model provided a better fit to the 

actual sample values than the present model has. 

The frequency curve of the inverse Gaussian distribution is very 

similar to that of the lognormal distribution. To improve the fit of 

the model to the actual data, we considered the idea of a 3-parameter 

inverse Gaussian distribution similar to the idea of a 3-parameter log- 

normal distribution. We, therefore, assumed that X+c, and not X, is 

distributed as an inverse Gaussian distribution, with parameters u and 

x, where c is an unk noun parameter which can be interpreted as the 

voluntary excess on the policy. This assumption simply means that the 

total amount of claim, X+c, (which consists of the amount X paid by 

194 



the insurance company and the amount c borne by the policy holder) 

has an inverse Gaussian distribution.. The remarks we made about 

parameter c of the lognormal model, in section 3.10, are valid here 

as well and it is useful to refer back to then at this stage. 

We, therefore, assume that c is fixed for all policies but that its 

value is unknown, and proceed to estimate it, along with u and x from 

the data. The computer program P19 estimates the 3 parameters from 

a sample of grouped data and prints an extensive table of results. 

For the accidental damage data of tables (1.1) to (1.7) the results are 

presented in tables (5.2.1) to (5.2.7). 

The estimates of c show an increase over time and are generally 

greater than their corresponding values for the 3-parameter lognormal. 

model. The mean claim amount of the model is, in each case, practically 

equal to the sample mean. The standard deviations are also close to 

their corresponding actual values and in each case are smaller than 

those obtained by the 3-parameter lognormal model. The Chi-square 

statistics are smaller than in the 2-parameter case. and (except in 

two or three cases where large contributions from one or two cells 
2 

have resulted in large values for X) do not indicate any significant 

differences between the model and the actual sample values. The Chi- 

square statistics are practically equal to their corresponding values 

for the 3-parameter lognormal model. The total expected loss statistics, 

T, are also small and are at most 1% of the total actual cost. This 

indicates a general agreement between the model and the sample values. 

To see how closely the frequency curve of the model agrees with 

the histogram of the sample, we wrote computer program P20 to plot 

them. The ML estimates of c, u and X, given in tables (5.2.1) to 

(5.2.7), were used to plot the frequency curve of the fitted model for 

each sample. The graphs are presented in figures (5.1.1) to (5.1.7). 

We observe an overall agreement be , Teen the curve and the histogram 

for each sample. In particular, the cunfe has portrayed the distinct 
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mode and the long tail of the histogram very well. The curves look 

remarkably similar to those for the 3-parameter lognormal distribution 

given in figures (3.9.1) to (3.9.7). However, the latter curves have 

a slightly fatter and longer tail. 

The above analysis shows that the 3-parameter inverse Gaussian 

distribution is an appropriate model for the accidental damage claim 

amounts, This model produces results very similar to those of the 

3-parameter lognormal distribution. 
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5.6 Prediction of the Claim amount Distribution 

The importance of predicting; the future, cost of claims was 

mentioned in section 3.9 (chapter 3). Here, we will adopt techniquez, 

similar to those of that section for predicting the distribution of 

claim amounts, during any future period, when the underlying model is 

the inverse Gaussian distribution. To save us repeating some of the 

arguments of that section, we suggest referring back to it at this stage. 

5.6.1 The Effects of Inflation on the Parameters of the Model 

Let us again assume that the effect of inflation on a claim of 

amount X is to increase it, over a certain period, to U= X(i + i) 

where i is the rate of inflation according to some appropriate index 

for that period. If X is assumed to be distributed as the two- 

parameter inverse Gaussian, IG(x; u, X) then, by a transformation of 

variables, we can show that U= X(1 + i) will be distributed as 

IG(u; ru, ra) where r=1+i. If X is assumed to have the 3-parameter 

inverse Gaussian distribution IG(x; c, u, X) then similarly it can be 

shown that is distributed as IG(u; rc, ru, rA). Therefore when 

the distribution of X is known we can modify its parameters to obtain 

the distribution of claim amounts in a future period. The foregoing 

shows that inflation increases all the parameters of this model over 

time. This is reflected in the estimates of the parameters from 

different samples presented in table (5.1), for the 2-parameter 

distribution, and in tables (5.2.1) to (5.2.7) for the 3-parameter case. 

The data analysis of section 5.5 showed that the 2-parameter 

inverse Gaussian distribution is not an adequate model for the accidental 

damage claim amounts. Therefore, we will not consider this model for 

prediction purposes. The 3-parameter distribution, however, was shown 

to be a satisfactory model and hence we suggest using the technique 

of section 3.9.2 for predicting the distribution of accidental damage 
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claim amounts during a future period. In chapter 3 it was shoi: rn tý. at 

the appropriate index for calculating the rate of inflation for 

accidental damage claims is the General Index of Retail Prices. We will 

use the same index here again. 

5.6.2 Prediction for the AD Data 

To test the prediction technique on the Accidental Damage (AD) 

data we wrote computer program P21 for the 3-parameter inverse Gaussian 

model. For reasons presented in section 3.9.2 we used the I%HL estimates 

of the parameters of the distributions for 73/4th, 74/1st and 74/2nd 

quarters to predict the distributions of claim cmounts in 74/4th, 

75/1st and 75/2nd quarters respectively. The rate of inflation in each 

case was calculated from the General Index of Retail Prices as described 

in section 3.9.2. The results for the AD data are presented in tables 

(5.3.1) to (5.3.3). These are in the form of extensive tables which 

allow comparisons between the actual and predicted distributions. 

In all three cases the Chi-square statistics are relatively small, 

considering the number of degrees of freedom, and do not indicate any 

significant differences between the predicted distributions and the 

actual sample values. The total expected loss statistics are small, 

and show anover-prediction of the total cost, by at most 3.9%, which 

is more acceptable than any under-prediction. The Kolmogorov-Smirnov 

statistics were calculated from the tables and in each case were 

compared with the significance points of table (2.1). They showed that 

the differences between the actual and predicted distributions were 

not significant for 74/4th and 75/ist quarters but were almost significant 

for 75/2nd quarter. 

Our prediction technique, therefore, provides a satisfactory mean:, 

of predicting the future distribution of claim amoimts when the rnder"- 

lying model is the 3-parameter inverse Caussien distribution. For the 
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AD data the values of the goodness-of-fit test statistics are verg 

similar to those obtained from the 3-Parameter lognormal distributions 

in tables (3.45) to (3.47). This is only to be expected since, as 

we mentioned earlier, these two nodels are very similar to each other. 

The lognomal model, however, resulted in smaller values for the total 

expected loss statistics and hence overpredicted the total actual 

cost by a smaller amount. 

5.7 Conclusions 

In this chapter the 2-parameter inverse Gaussian distribution was 

initially defined and then modified to a three parameter distribution 

by the introduction of a location parameter. The properties of these 

distributions were considered and their problems of parameter estimation 

from grouped data were dealt with. The multinomial maximum likelihood 

method was suggested for these purposes. The two and three parameter 

distributions. were next considered as models for the distribution of 

accidental damage claim amounts. It was shown that the 2-parameter 

distribution is not an adequate model, while our proposed 3-pararmeter 

distribution provides a very satisfactory model which is as good as 

the 3-parameter lognormal. The effects of inflation on the parameters 

of the model were studied, and the future distribution of claim amounts 

was predicted. It was shown that our prediction technique produces 

satisfactory results when the underlying model is the 3-parameter inverse 

Gaussian distribution. 

The similar features of the 3-parameter inverse Gaussian and 

lognormal models were pointed out at various stages. Although the latter 

distribution has a slightly longer tail, and produced a Slightly better 

fit to the data, either of the two models may be satisfactorily used. 

The ATIL method can be used for estimation of parameters in both cases 

with equal labour. The distribution functions of both yodels are 
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expressed in terns of the standard normal distribution function. It 

is, however, possible to test if a given sample of data is from the 

lognormal distribution, while similar tests do not exist for the 

inverse Gaussian model. This is an advantage of the former model 

since, if the test indicates that the sample is not very likely to be 

from the distribution under consideration, then further analysis can 

be avoided. The existence of a theoretical justification for the 

emergence of the lognormal model as the distribution of claim amounts 

is another strong point in favour of that model. On the question of 

convenience in use, we believe that, with the wide availability of 

computers,, either model is equally suitable. 

5.8 Tables 
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Table (5.1) 

Two-parameter inverse Gaussian model fitted to 

the accidental damage data by 

the multinomial maximun likelihood method 

Period of Accident u R% X2 (D. F. ) 

73 4th Quarter 150.60 96.77 0.6 96.3 (25) 

74 1st it 150.07 96.19 0.7 84.1 (25) 

74 2nd " 151.82 103.06 0.5 90.2 (25) 

74 3rd " 166.33 111.48 0.3 123.5 
. 
(25) 

74 4th " 174.40 111.03 1.0 116.4 (26) 

75 1st " 173.62 114.91 1.1 113.5 (26). 

75 2nd " 180.27 113.72 0.5 
. 
96.1. 

.. 
(26) 

R The ratio of the total expected loss statistic, T, to the 

total actual cost of claims 
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" Table tß. 2,1) 

**- 3-PARAMETER INV. GAUSSIAN DIS, *** 

73/4TH QUARTER DATA 

E5TIMATi0 4' BY MULTINOMI AL MAX. LIKELI HOOD METHOD :- 
"C. 18.05 MEW= 1 68.034 LAM DA- 166.536 

MEAN= 149.984 S. D .- 168.789 

AMOUNT C ACTUAL EXPECTED ' ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS (A-E)**2/E 

1- 30 478, 474. 4. 62. 0.034 
31- 60 518. 554. -36. -1638. 2.339 
61- 90 461. 437. 24. 1812. 1.318 

"91- 120 359. 328. 31. 3270. 2.930 
121- 150 239. 247. -8. -1084. 0.259 
151- 180 213. 18qß 24. 3972. 3.048 
181- 210 148. 

. 147. 1. 195. 0.007 
211- 240 102.. 116. -14. -3157. 1.690 
241- 270 91. 92. -11. -2810. 1.315 
271- 300 58, 75. -17. -4853. 3.853 
301- 330 66. 61. 

. 
5. 1577. 0.410 

331- 360 45. 50. -5. -1727. 0.500 
361- 390 39. 41. -2. ' -751. 0.098 
391- 420 35. 34. 1. 406. 0.029 
421- 450 '34. 29. 5. 2177. 0.862 
451- 480 20. 24. -4. -1862. 0.667' 
481- 510 29. 20. 9. 4459. 4.050 
511- 540 14. 17. -3. -1576. 0.529 
541- 570 8.. 15. -11. -3888. 3.267 
571- 600 ' 9. 13. -4. -2342. 1.231` 
601- 700 29. 30. -1. '-651. 0.033 
701- 800 18. 19. -1. -751. 0.053 
801- quo 20. 12. 8. 6804. 5.333 
901-1000 6. 7. -1. -951. 0.143 

1001-1100 4. 5. . -1. -1050. 0.200 
1101-1200 4. 3. 11 1150. 
1201-1300 1. 2.. -1, -1250. 
1301-1400 3. 1. 2. 2701. 
1401-1500 1. 1. 0. - 0. 
1501-1600 0. 1. -1. -1550. 
1601-1700 1. 0. 1. 1650. 

1 1701-1800 0. 0. 0. 0, 
1801-1900 0. 0. 0. " 01 
1901-2000 1. 0. 1. 1950. 

2001-2100 0. 0. 
. 

0. 0. 
2101-2209 0. 0. 0. . 0. 
2201-2300 0. 0. 0. 0, 
2301-2400 
---------- 

1. ' 
----------- 

0. 
-------- w.. 

1. 
-. r.. r. ýwr------- 

2350. 
----------- 

2.000 
------- 

TnTAL 

---------- 

3045. 
. 

----------- 

3044. 

---------- -------------- 

2645. 

----------- 

35.397 

------- 
D. F. = 22 

TOTAL EXP. L065 

--------------- 0.6 % ii 0.025 
TOTAL ACT. COST 

202 



i 

Table (5.2.2) 

3-PARAMETER INV. GAUSSIAN DIS. "*** 

74/1S11' WUARTER DATA 

ESTIMATION BY MULTINOMIAL MAX. LIKELIHOOD METHOD : - 
C= 15.08 MEW= 164.632 LAMDA- 153.065 

MEAN= 149.553 0 6.0. = 170.739 

AMOUNT £ ACTUAL. EXPECTED ACTUAL- EXPECTED 
CL, NO. CL, NO. EXPECTED LOSS (A-E)* *2/E 

1-" 30 381, 377. 4, 62, 0,042 
31- . 

60 428, 458. -30. --1365. 1.965 
61- 90 35 4. 354. -3. -227. 0,025 
91- 120 334. 262, 72, 7596. 19.786 

121- 150 211. 196, 15. 2032. 1.148 
151- 180 133. 149. -16, -2648. 1.718 
1"81- 210 98, 115. -17. -3323, 2.513 
211- 240 82. 91, . -9, -2029. 00890 
241- 270 54, 720 -18, -4599. 4.500 
271- 300 

. 
52, 58. "-6. . -1713. 0.621 

301- 330 53. 48, 5. 1577. 0.521 
331- 360 

. 
36. 39. -3. -1036. 0.231 

361- 390 29, 32. -3. -1126. 0,281 
391- 420 26, 27, -1. -406, 0.037 
421- 450 22. 23. -1. -436. 0.043 
451- 480 22. 19. 3,. 1396. 0,474 
481- 510 17, 16. 1. 496. 0.063 
511"- 540 10, 14, -4" -2102. 1,143 
541- 570 19. 12, 7. 

. 
3888. 4.083 

571- 600 4. 10, -6. -3513. 3.600 
601- 700 26, 24. 2, 1301. 0.167 
701- 800 21, 15, 6. 4503. 2.400 
801- 900 11,1 10. 1,, 851. 0.100 
901-1000 10. 6. 4, 3802. 2.. 667 

1001-1100 5. 4. 1. 1050. 
1101-1200 2.. 3. -1. -1150, 0.000 
1201-1300 11 

. 
2. -1. -1250. 

1301-1400 2. 1. 1. 1350. 
1401-1500 ' 0. 11 -16 . -1450. 
1501-1600 0. 1" -10 -1550. 
1601-1700 0. U, 06 

. 
0. 

1701-1800 1, 0. 1. 1751. 0.200 
------. - ------ .. ------------ ------ "---- .. --. ---------------------- 

TOTAL 24'41. 2439. 1731. ' 49.2.18 
---------------------"------- r--------------------- -------- ----- 

TOTAL EXP, LOSS - I' < t1,001 
--------------- 0.5 % 
TOTAL ACT. COST 

203 



Table (5.2.3) 

3-PARAMETER INV. "GAUSSIAN DIS. ** 

74/2ND QUARTER DATA 

ESTIMATION BY MULTINOMIAL MAX. LIKELIHOOD METHOD : - 
C= 19.46 MEW 170.666 LAMDA= 1R2039 

MEAN= 
. 
151.20A S. D. = 164. SH7 

0 

AMOUNT F ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO., CL. NO. EXPECTED LOSS (A-E)**2/E 

1- 30 351. 316. 5. 78. 0.072 
31- 60 3A0. 424. -44. -2002. 4.566 
61- 90 382. 345. 37. 2793. 3.968 
91- 120 295. 263. 32. 3376. 3.894 

121- 150 211. 200. 11. 1490. 0.605 
151- 180 142. 153. -11. -1820. 0.791 
181- 210 114. 119. -5. -978. 0.210 
211- 240 101. 94. 7. 1578. 0.521 
241- 270 57. 75. -18. -4599. 4.320 
271- 300 51. 6n. -9. -2569. 1.350 
301- 330 39. 49. -10. -3155. 2.041 
331- 360 36. 40. -4. -1352. 0.400 
361- 390 25. 33. -Fl. -3004. 1.939 
391-" 420 24. ' 27. 

. -3. -1216. 0.333 
421- 450 27. 23. 4. 1742. 0.696 
4'51- 480 18. 19. -10 -466. 0.053 
4R1- 510 21. M. 5. 2477. 1.562 
511- 540 

"17. 
14. 3. 1576. 0.643 

541- 570 12. 11. 1. 555. 0.091 
571- 600 11. 10. 1. 5F15. 0.100 
601- 700 30. 23. 7. 4553. 2.430 
701- 800 13. 14. 

" -1. -751. 0.071 
Sol- 900. 11. 9. 2. 170 1. 0.444 
901-1000 4. 5. " -1. -951. 0.200" 

1001-1100 7. .. 3. 4. 4202. 
1101-, 1200 0. 2. -2. -2301. 
1201-1300 1. 1. 0. 0. 
1301-1400 1. 1. 0. " 01. 
1401-1500 0. 1. -1. -1450. 
1501-1600 1. 0. 1. 1550. 

"1601-1700 0. 0. o. 0. 
1701-1800 0. " 0. 0. 0. 
1801-1900 

---- ---- 

1. 

------------ 

0. 

---------- 

1. 

----------- 

1850. 

----- - 

1.125 

TOTAL 

--------- 

2383. 

------------ 

2380. 

---------- ----------- 

- - 

. 
3466. 

------- 

------------- 
32.127 

- -- 
" 

------------ 
D. F. 21 

TOTAL EXP. LOSS 
---------------- 

y 0. (15 

TOTAL ACT. COST 

204 



Týb1c (5. ". 4) 

i 
*3 -PARAMETER ENV. GAUSSIAN DIS. 

74/3RD QUARTER DATA 

ES TIMATION BY MULTINOMIAL MAX. LIKELIHOOD METHOD ; - C= 20.92 MEW- 186.695 LAUUDA-, 199.955 

MEAN= 165 . 775 S. D. = 180.398 

AMOUNT £ ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. 'N0. EXPECTED LOSS (A-E)**2/E 

1- 30 362. 356. 6. 93. 0.101 
31- 60 427. 462. -35. -1592. 2.652 
61- 90 383. 393. -. 10. -755. " 0.254 
91- 120 356. 308. 48. 5064. 7.481 

. 121- 150 283. 239. 44. 5962. 8.100 
151- 180 191. 187. '7. 115B. 0.262 
181- 210 137. 147. -10. -1955. 0.660 
211- 240 97. 118.1 -21. -4735. 3.737. 
241- 270 66. 95. -9. -2299. 0.853 
271- 300 71. 77. -6. -1713. 0.468 
301- 330 64. 64. 0. 0. 0.000 
331- 360 45. 53. -8. . -2764. 1.208 
361- 390 44. - 44. U. 0. 0.000, 
391- 420 25. 37. -12. -4806. 3.092 
421- 450 26. 31. -5. -2177. 0.006 
451- 480 22. 26. -4. -1862. 0.615 
481- 510 25. 22., 3, . 1486. 0.409 
511- 540 14. 19. -5. -2627. 1.316 
541- 570 14. 16. -2. -1111. 0.250 
571- 600 17. M. 3. 1756. 0.643 

" 601- 700 32. 34. -2. -1301. 0.118" 
701- 800 34. 21. 13. 9756. 8.048 
801- 900 17. 13. 4. 3402. 1.231 
901-1000 4. 9. -5. -4752. 2.778 

1001-1 100 9. 6. 3. 31 51 . 1.500 
1101-1200 4. 4. 0. 0. 0.000 
1201-1300 0. 2. -2. -2501. 
1301-1400 1. 2. -1. -1350. 
140 1-1500 3. 1. 2. 2901. 
1501-1600 0. 1, -1. -1550. 
1601-1700 1. 1. 0. 0. 
1701-1800 0. 0. 0. 0. 
1801-1900 0. 0. 0. 0. 
1901-2000 0. 0. 0. 00 
2001-2100 0.. o. 0. 0. 
2101-2200 1. 0. " 1. 2150. 

11 2201-2300 "0. U. 0. 0. 
2301-2400 0.. 0. 0. 
2401-2500 0. 0. 0, 0. 
2501-2600 

----------- 

1. 

----------- 
. 0. 

---------- 

1. " 
----- 

2550. 0. roo 

TnTAL 

----------- 

2799, 

----------- 

' 2802. 

---------- 

----- 

----------- 

--------------------- 
-481.47.401 

----------- 
" 

----- 
D. f=. 

------- 
a 23 

TOTAL EXP. LOSS 
-----.. . -------- - -0 r1 

Ci 
[, 
!ý 

f1/'ý/ 
L: 

0.002 

TOTAL ACT. nST 

205 



Table 

*** 3-PARAMETER INV. GAUSSIAN DIS. * 

74/4TH QUARTER DATA I 

ESTIMATION BY MULTINOMIAL MAX. LIKELIHOOD METHOD t- 
c= 23.99 MEW= 197.730 LAMDA= 211.827 

MEAN= 173,740 S 
. D. = 191.03A 

AMOUNT r'. ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS (A-E)**2/E 

1- 30 394.. 390. 4. 62. 0.041 
31- 60. 452. 479. -? 7. -1228. 1.522 
61- 90 426. 413. 13. 

. 
982. 0.409 

91- 120 348. 329. 19. 2004. . 1.097 
121- 150 272. 259. 13. 1761. 0.653 
151- 180 219. 205. 1A. 2317. 0.956 
181- 210 - 154. 164. -11). -1955. 0.610 
21 1- 240 ' 

. 124. 132. -8. -1804. 0.485 

" 241- 270 -105. 107. -2. -511.. 0.037 
271- 300 78.. 88. -1n. -2855. 1.136 

31)1- 330 75. 73. 2. 631. 0.055 
331- 360 58. 61. -3. -1036. 0.14P 
361--390 55. 51. 4. 15112. 0.314 
391- 420 29. 43. -14. -5677. 4.558 
421- '450 43. 30. 7. 3048. 1.361 
451- 480 24.. 31. -7. -3258. 1.581 
481- 510 22. 26. -4. -19A2. 0.615 
5,11- 540 24. 23. 1. 525., 0.043 
541- 570 19. 19.. 0. 

_ 
0. 0.000 

571- 600 14. 17. -3. -1756. 0.529 
601- 7110 42. - 41. 1. 651. 0.024 
701- 800 28. 26. 2. 1501. 0.154 
601- 900 20. 17. 3. 2551. 0.529 
901-1000 17. 11. 6. 5703. 3.273 

1001-1100 8. 
, 

7. 1. 1050. 0.143 
1101-1200 5. 5. 0. a, 0.000 
1201-1300 1. 3. 

. -2. º -250 1. 
1301-1400 5. 2. 3. 4051. 0.200 
1401- 1500 0. 2. -2. -2901. 
1501-1600 1. 1. 0. 0. 
1601-1700 0. 1. -1. -1650. 
1701-1800 0. 1. -1. -1751. 
1P01-1900 0. 0. 0. 0. 
1901-2000 n. 0. 0. 0. 
2001-2100 1. 0. 1. 2050. 
2101-2200 

. 
0. n. 0. n 

2201-2300 0. 0. 0. () . 
2301-2400 1. 0. 1. 2350. 0.800 
---------- ------------ ---------- ------------------------------- 

TOTAL 30611. 3063. 1875. 21.274 

TOTAL EXP. LOSS 

---------------- 0.4 y 7 0.10 
TOTAL ACT. COST 

206 



75%1$T QUARTER DATA Table (ßi2.6) 

ESTIMATinN BY MULTINt1MIAL MAX. LIKELIHOOD METHOD ; - C= 26.28 MEW= 199.227 LAMM 230.747 

MEAN= 172,943 S*Do-. 1A5.120 

AMCUNNT. £ ACTUAL. EXPECTED ACTUAL- 'EXPECTED 
CL. NI O, CL. NO, EXPECTED LOSS (A-E 21G 

1- 30 3249 
. 
322� 2; 31. 0.3 

31- 60 387, 
-399. -12, -546. 1 0.361 

61- 90 345. 351. -6. - -453. 0.103 
91- 120 289. 284. 5. 528, 0.080 

121- 150 253. 225, 28. 37949 3.484 
151-. 180 187, 179, 86 1324. 0.358 
181- 210 

. 
1389 143.. -5.,, -978.; 0.175 

'211- 240 114. 115. -1, -225. 01009 
241- 270 939 949 -1, ' -256. 0,011 
271- 300 67. 77. -101 -2855. 1.299 
301- 330 63. 63. 0. 00 0.000 
331- 360 449 52. -8, -2764. 1.231 
361- 390 44, 44,. 0, () . 0.000 
391- 420 

. 
35. 37. -2, .. -811.. 0,108 

421- 450 25. 31. -6. -2613. 1.161 
451- 480 26. 269 0, 0.000 

'481--; 510 18. 22, -4. -1982. 0,727 
51.1- 540 18. 19. 

. -1, -525. 0,053 
541- 570.. 22. 16, 6. 3'333. 2.2 50 
571- 600 17. 14, 3. 1756, 0.643 
601- 700 39. 34. 5, 3252. 0.735 
701- 800 19. 21, /-2, -1501. 0.190 
801- 900 18. " 13, 

- 5. 4252, 1,923 
901-1000 12. 9. 3. 2851. 1.000 

1001-1100 3. 6. -3. -3151. 11500 
1101-1200 1. 

" 
4. -3, --3451'. 

1201-1300 1. 2. -1, -1250. 2.667 
1301-1400 2. -2. -2701, 
1401-1500 

. 
1. 1, 0, 01 

1501-1600 0. 
-1550. 

" 1601-1700 01 00 
1701-1800 0, " 0, 0. 

. 0 
1801-1900 00 01 0. 01 

'1901-2000 0. Ö. 01 0. 
2001-2100 1, 0. 1. 2050. 
2101-2200 1, 0, 11 2150, 
2201-2300 011 0. 0. () 
2301-2400 0. 0. 0, , 

01 
2401-2500 04 0. 0, 0. 
2501-2600 011 0. 01 0, ' 
. 26(11-2700 00 0. 0. 01 
2701-2800 00 0, 0a 0, 
28k') 1-2901) 01 0. 0. 0 
2901.3000 08 '0, 0. 0. 
3001-3100, 01 0. 0., 01 
3101-3200 0. 0. 
3201-3300 00 00 
3301-3400 0. (1, u. U; 
3401-3500 0. 01 00 0: 
3501-3600 

----------- 

1, 

----------- 

011 

------------ 

1 

---------- 

355(), , 

- 
'0. cloo* 

TO1AL 
----------- 

2607. 
---- ------ - 

2607. 
----------- -------~--- 

----------- 
1260, ' 

---------- 

---------- 
9ei f111) 8P 

------mow-- 

TOTAL EXP. LOSS 

p>0.440 
Treat. r, r, 7. (; ýýT 



f 

Table (5.2.7) 

3-PARAMETER- INV. GAUSSIAN CIS, *** 

75/2ND QUARTER DATA 

ESTIMATION BY MULTINOMIAL MAX. LIKELIHOOD METHOD ; - S 21.49 MEW- 201.211 LAMDA= 203.077 

MEAN= 179.717 5. D. = 2009285 

AMOUNT E ACTUAL. EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS (A-E)**2/E 

1- 30 302. 299. 3. 46. 0.030 
31- 60 374. 390. -16. -728, 0.656 
61- 90 332. 336, E -4, -302. 0.048 
91- 120 277. 267. 10. 1055. 0.375 

121- 150 235. 210. - 25. 3387. 2.97e 
151- 180 187. 166-. 21. 3475. 2.657 
181- 210 122. 133. -11, -2150. " 0.910 
211- 240 110. 108, 2. 451, 0.037 
241- 270 80. 88. 

-8. -2044. 0.727 
271- 300. 72. 

, 
72. 0. 0. 0.000 

301- 330 47. 60. -13. -4101. 2,017 
331- 360 39. 50, -11. _ -3800. 2.420 
361-. 390 40. 42. -2. -751. 0.095 
391- 420 38,, 36. 2. 811. 01111 
421- 450 29, 30. -1, -436., 0,033 
451- 480 21. 26.. -5. -2327, 0,9612 
481- 510 30, 

. 
22. 8. 3964. 2.909 

511- 540 19. 19. 0. 0. 0.000 
541- 570 $7.. 17, 0. 0. 01000 
571- 600 11. 14. --3. -1756. 0.643 

" 601- 700 36. 36. 0. 0. 0.00'0 
701- 800 22. 23. -1, -751. 0.043 
801- 900 22. 15. 7: 5953. 3.267 
901-1000 11. 10. 1. 951. 0.100 

1001-1100 4. 7. -3. -3151. 1.286 
1101-1200 3. 5. -2. -2301. 0.600 
1201-1300 3. 3. 0, 0o , 
1301-1400 6. 

. 
2. 4, 5402. 3.200 

1401-1500 2,. 2. 0, 0, 
1501-1600 1. " 1. 0. 00 
1601-1700 0. 1. -11 -1650, 
1701-1800' 1. 1. 0, 0l 
1801-1900 00 0. 0. 0. 
1901-20010 1. 0: 1, 1950. 
2001-2100 0. 0. 0. 0. 
2101-2200 " 0. "'0. 0, 

. 
U. 

2201-2300 
----------- 

1. 
---------- 

0. 
- ----- 

1. 
---- 

2250. 0 . Poo 

TOTAL 

----------- 

2495. 

---------- 

2491. ' 

------------ ----------- 

3447. 

---------- 

'--23*101 

---------- 
U. F. m 24 

TOTAL EXP. LOSS 

. ------ -------- = 0.8 °5 P>0.10 
TOTAL ACT, COST 

208 



Table (5.3.1 

*** 3-PARAMETER INV. GAUSSIAN DIG. *** 

PREDICTION OF 74/4TH QUARTER CLAIMS Cn ,T 
USING 73/4TH QUARTER MULT. HAXLIK. PARAMETERS 

C= 18.1 MEW= 168.034 LAt1DA= 166.536 
INFLATION RATE I=18.2°: CALCULATED FRnt! 
GENERAL INDEX OF RETAIL PRICES 

PREDICTION PARAMETERS ARE :v C=21.4 MEW=19f. 616 LAMDA=156.846 
MEAI1 CLAIM AMOUNT= 177.22 S. D. =199.51 

ACTUAL 74/4TH PARAtETERS :- C=24.0 MEY! =197.730 LAMDAm211.827 
UEAN CLAIM AMOUNT= 173.73 S. D. -191.04 

AMOUNT £ ACT. NO. EXP. NO. A-E EXP. LOSS (A_E)**2/E 
1- 30 394. 386. A. 124. 0.166 

31- 60 452. 486. -34. -1547. 2.379 
61- 90 426. 413. 13. 982. 0.409 
91- 120 348. 326. 22. 2321. 1.485 

121- 150 272. 255. 17. 2304. 1.133 
151- 180 219. 202. 17. 2813. 1.431 
181- 210 154. 161. -7. -1368. 0.304 
211- 240 124. 130. -6. -1353. 0.277 
241- 270 105. 106. -1. -256. 0.009 
271- 300 78. 87. -9. -2569. 0.931 
301- 330 75. 72. 3. 947. 0.125 
331- 360 58. 60. -2. -691. 0.067 
361- 390 55. 51. 4. 1502. 0.314 
391- 420 29. 43. -14. -5677. 4.558 
421- 450 43. 37. 6. 2613. 0.973 
451- 480 24. 31. -7. -3258. 1.581 

, 
481- 510 22. 27. -5. -2477. 0.926 
511- 540 24. 23. 1. 525. 0.043 
541- 570 19. 20. -1. -555. 0.050 
571- 600 14. 17. -3. -1756. 0.529 
601- 700 42. 43. -1. -651. 0.023 
701--800 28. 28. 0. 0. 0.000 
1101- 900 20, 18. 2. 1701. 0.222 
901-1000 17. 12. 5. 475?. 2.0113 

1001-1100 A. 8. 0. 0. 0.000 
. 1101-1200 5. 6. -1. -1150. 0.167 

1201-1300 1. 4. -3. -3751. 
1301-1400 5. 3. 2. 2701. 
1401-1500 0. 2. -2. -2901. 
1501-1600 1. 1. 0. 0. 
1601-1700 0. 1. -1. -1650. 
1701-1800 0. 1. -1. -1751. 
1801-1900 0. 1. -10 -1850. 
1901-2000 0. 0. 0. 0. 
2001-2100 1. 0. 11 2050. 
2101-2200 0. 0, 0, 0. 
2201-2300 0. 0. 0. 0. 
2301-2400 1. 0.. 1. 2350. 

------------ 
TOTAL 

--------- 
3064 

---------- 
3061 

------ ---------- 
-7528. 

---------- 
20.185 

------------------------------------- -------------------- 

CHI SQ. STAT. - 21.825 . D. E. = 27 F>0 10 , . 

TOTAL ACTUAL COST - 533707. 
TOTAL EXPECTED COST s 541234". i'OL - SI: T(NOV I= 0.015 

1> 0.20 ý 
TOTAL EXP, LOSS 
---------------- - 1.41 % 
TOTAL ACT, C05T 209 



*** 3-PARAMETER INV. GAUSSIAN DIS. # "* 

PREDICTION RF 75/13T QUARTER CLAIMS COST 
Table (5.3.2) 

USING 74/13T t JARTER MULT. MAXLIK. PARAMETERS 

C= 15.1 MEW- 164.632 LAMDA= 153-065 
INFLATION RATE I=20.3°', CALCULATED - FROM 

. GENERAL INbEX GF RETAIL PRICES 

PREDICTION PARAMETERS ARE :- C-1A. 2 MEW=198.052 LAMDA=: 184.137 
MEAN CLAIM AMOUNT= 17909 S. D. =205.40 ACTUAL 75/1ST PARAMETERS 

.- C=27.6 MEW=199.260 LAMDA=239.515 
MEAN CLAIM AMOUNT= 171.66 S. D. =181.75 

AMOUNT C ACT. NO. EXP. NO. A-E EXP. LOSS (A-E)**2/E 
1- 30 324. 314. 10. 155. 0.318 

31- 60, 387. 423. -36. -1638. 3.064 
61- 90 345. 356. -11. -E831. 0.340 
91- 120 289. 278. 11. 1160. 0.435 

121- 150 253. 216. 37. 5013. 6.3311 
151- 180 187. 170. 17. 2813. 1.700 
181- 210 138. 136. 2. 391. 0.029 
211- 240 114. 109. 5. 1127. 0.229 
241- 270 93. 89. 4. 1022. 0.160 
271- 300 67. 74. -7. -1990. 0.662 
301- 330 63. 61. 2. 631. 0.066 
331- 360 44. 51. -7. -2418. 0.961 
361- 390 44. 43. 1. 376. 0.023 
391- 420 35. 37. -2. -811. 0.108 
42_1- 450 25. 31. -6. -2613. 1.161 
451- 480 26. 27. -1. -466. 0.037 
481- 510 18. 23. -5. -2477. 1,087 
511- 540 18. 20. -2. -1051. 0.200 
541- 570 22. 17. 5. 2777. 1.471 
571- 600 17. 15. 2. 1171. 0.267 
601- 700 39. 38. 1, 651. 0.026 
701- 800 19. 25. -6. -4503. 1.440 
801- 900 18. 16. 2. 1701. 0.250 
901-1000 12. 11. 1. 951. 0.091 

1001-1100 3. 8. -5, -5252. 3,125 
1101-1200 1. 5. -4. -4602. 3.200 
1201-1300 1. 4. -3. -3751. 
1301-1400 0. 3. -3. -4051. 
1401-1500 1. 2. -1. -1450. 
1501-1600 0. 1. -14b -1550. 
1601-1700 1. 11 0, 0. 
1701-1800 0. 1. -1. -1751. 
1801-1900 0. 1. -1. -1850. 
1901-2000 0. 0. 0. 0. 
2001-2100 11 0. 1. 2050. 
2101-2200 11 0. 1. 2150, 
2201-2300 0. 0. 01 0. 
2301-2400 0. 0. 0. 0. 

2401-2500 0. 0. 0. 04 
2501-2600 0. 0. 0. 0. 
2601-2700 0. 0. 0. 0. 
2701-2800 0. 0, 0. 0. 
2801-2900 0. 01 0. 0. 
2901-3000 0. 0. 0. 0. 

3001-3100 0. 0. 0. 0. 
3101-3200 0. 0.. 0. 0, 
3201-3300 0. 0. 0. 01 
3301-3400 0. 0. 0. 0. 
3401-3500 0. 0. 0. 0. 
3501-3600 

------------- 

1. 

-------- 

0. 

---------- 

1. 

------ 

3550. 

----------- --------- 
TOTAL 26t)7 2606 -15375.26.809 



Table (5.3.2) 
- continued 

CHI SQ. STAT. °32.619 , D. F. =27 
9 P70. ß0 

TOTAL ACTUAL COST = 452n59. 
TnTAL EXPECTED COST = 467433. KOL - SM. IRROV D=0.15 

TOTAL-EXP. LOSS P> 0.20 

---------------= -3.40 % 
TOTAL ACT. COST, 
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11 Table (5.3.3) 

3-PAfAMETER INV. GAUSS-AN DIS. 

PREDICTION OF 75/2ND QUARTER CLAIMS CnST 
USING 74/2ND QUARTER MULT. IMAXLIK. PARAMETERS 

C= 19.5 MEW= 170.666 LAMDA= 182.839 
INFLATION RATE I=24.3° CALCULATED FROM 
GENERAL INDEX OF RETAIL PRICES 

PREDICTION PARAMETERS ARE :- C=24.2 UE'W=212.138 LAMDA=227.269 
MEAN CLAIM AMOUNT= 187.90 S. D. -204.95 

ACTUAL 75/2ND PARAMETERS :- C=21.5 MEW=201.211 LAMOAa203.077 
MEAN CLAIM AMOUNT= 179.71 S. D. =200.28 

AMOUNT F, ACT. NO. EXP. NO. A-E EXP. LOSS (A-E)**2/E 

1- 30 302. 273. 29. 450. 3.081 

31- 60 374. 366. 8. 364. 0.175 
61- 90 332. 326. 4. 302. 0.049 
91- 120 277. 267. 10. 1055. 0.375 

121- 150 235. 214. 21. 2845. 2.061 

151- 180 187. 171. 16. 2648. 1.497 
181- 210 122. 138. -16. -3128. 1.855 

211- 240 110. 113. -3. -677. 0.080 
241- 270 80. 93. -13. -3321. 1.817 
271- 300 72. 77. -5. -1427. 0.325 

301- 330 47. 64. -17. -5363. 4.516 
331- 360 39. 54. -15. -5182. 4.167 
361- 390 40. 45. -5. -1877. 0.556 
391- 420 38. 38. 0. 0. 0.000 
421- 450 29. 33. -4. -1742. 0.485 
451- 480 21. 28. -7. -3258. 1.750 
481- 510 30. 24. 6. 2973. 1.500 
511- 540 19. 21. -2. -1051. 0.190 
541- 570 17. 18. -1. -555. 0.056 
571- 600 11. 16. -5. "-2927. 1.562 
601- 700 36. 39. -3. -1951. 0,231 
701- 800 22. 25. -3. -2251. 0.360 
801- 900 22. 16. 6. 51913. 2.250 
901-1000 11. 11. 0. 0. 0.000 

1001-1100 4. 7. -3. -3151. 1.286 
1101-1200 3. 5. -2. -2301. 0,800 
1201-1300 3. 4, -1. -1250. 
1301-1400 6. 2. 4, 5402. 
1401-1500 2. 2. 0. 0. 
1501-1600 1. 1. 0. n. 
1601-1700 0. 1. -1. -1650. 
1701-1800 1. 1, 0. 01 
11301-1900 0. 0. 0. 0» 
1901-2000 1. 0. 1. 1950, 
2001-2100 01 0. 0. 0. 

2101-2200 0. 0. 01 n, 
2201-2300 

------ 

1. 

---------- 

0. 

---------- 

1. 

------ 

2250. 

--- ----- 
TOTAL 

----------- 

2495 

--------- 

2495 

----------- ------ 

------- 
-17725. 

---------- 

----------- 
31.021 

----------- 

CHI SO. STAT. " 352.72 ,0F. ¢ 27 , r> 0. to 

TOTAL ACTUAL CnIT = 4493118. 

TOTAL EXPECTED COST - 467033. KOL - =r'ýý-ý'cv ýý 0.035 

TnTAL EXP. LO; CS 
P <O. O1 

---------------r -3 -94 % 
TOTAL ACT. CO 9T 212 



CHAPTER 6 

The Pareto Distribution 

6.1 Introduction 

The Iareto distribution, which is positively skewed and has a long 

tail, was originally proposed by Vilfredo Pareto as a model for the 

distribution of incomes over a population. It has also been successfully 

used to model empirical distributions of claim amounts in general 

insurance and, in particular, in fire insurance. Benckert and 

Sternberg (1957), Anderson (1971) and Benckertand Jung (1974) have 

used this distribution as a model for fire insurance claim amounts. 

In this chapter we will study this model and will consider its 

application to the accidental damage claim amounts. The Pareto 

distributions of the first and second kind will be initially defined 

and some of their properties will be studied. A graphical test will be 

discussed for the purpose of determining whether a given sample is likely 

to be from a Pareto population. We will then apply this test to our 

accidental damage data and will, in the event, show that the Pareto 

distribution is not a satisfactory rmdel. The estimation problem is 

next dealt with and the effects of inflation on the parameters of the 

model will be discussed. 

6.2 Definition 

A random variable X is said to have a Pareto distribution of the 

first kind if its distribution function, denoted by P1(x; A, B), is of 

the form 
A 

P1(x; A.. B) =1- 
(i. ) 

A, B > O, x. B 

This is a special form oE Pearson Type Vl distribution. The probability 

density function (p. d. f. ) of X is 

fi`A+1 
fý, 

ý 
(x; A, B) =Bt Y) A, 13 > 0, B (G . 2-21 
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where A and B are the sham and scale parameters respectively. 

A random variable X is said to have a Pare-to distribution of the second 

kind if its distribution function, denoted by P2(x; C, A,. B), is of he 

. bn 

P2(x; C, A, B) =1- 
()A 

A, B > 0, x >. B-C (6.2-3) 

This is sometimes called the Lomax distribution and is also a Pearson 

Type Vi. it differs fron Pl(x; A, ß) by having the location parameter 

C which acts as a threshold below which the values of X are not 

realized. The p. d. £. of X is given by 

A+1 
fß, 

2 (x; C, A, B) =C iB -ff A, B > 0, x3B-C (6.2-4) 

6.3 Properties of the Pareto Distribution 

In this section we will mention some of the properties of the 

Pareto distribution of the first kind. For more details reference should 

be made to, for instance, Johnson and Kotz (1970). 

For the distribution P1(x; A, B) it can be shown that the rth moment of 

X about zero is 

r 
E(XT) _ 

Tr (if A> r) (6.3-1) 

Hence the mean of the distribution of X is 

E(X) = 
AB (if A> 1) 
A-1 

(6.3-2) 

The variance of X can be shown to be 

2 

var(X) _ 
AB (if A, 2) (6.3-3) 

(q-i) (A-2) 

Therefore the mean and variance of tho distribution exist when A>1 

and A>2 respectively. 

The coefficient of variation of X is x where 
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1 

2A=1 (if A- 2) 
A(A-2) 

(6,3.4) 

which is a function of A, the shape parameter, only. As the mean of 

the distribution does not always exist, the single mode of the distribution 

which is located at B may be used in its place. 

The median of the distribution is at 

Xmedian = B(2)i/A (6.3-5) 

In general the quantile of order q is xq : where 

X= B(1 - q) 
-'/A 

O<a<1 (6.3-6) 
a 

The properties of the Pareto distribution of the second kind can 

be obtained from those of the first kind since the former distribution 

is derived from the latter by the transformation x -" x+C. This is 

a translation which leaves the shape of the frequency curve of P1(x; A , B) 

unchanged and only shifts it by an amount -C along the x-axis. The 

measures of central tendency are, therefore, decreased by C while 

the moments about the mean and the measures of dispersion remain the 

same as for the first kind. 

6.4 The Graphical Test for the Pareto Distribution 

It is possible to test graphically if a given sample is likely 

to be from a Pareto population. For the distribution of the first 

kind given by (6.2-1) we can show that 

log(1-P1) = -A log x+A 1og B (6.4-1) 

where P1 = P1 (x; A, B) 

Therefore the locus of the points (logx 
, log(l - 11)) is a straight 

line whose gradient and intercept are A and Alogl3 respectively. LCt 

us assui e that we are giver. a samplo of n independent rundem 
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observations from n Pareto distribution. If we define the sample 

empirical distribution function as 

F(x) = the proportion of observations 6x (6.4-2) 

then we can use F(x) as an estimate of Pl(x; A, B) at point x. Hence 

if we plot the points (log x, log(1 - F(x))) on a rectangular system 

of co-ordinate axes, or plot(x, l-F(x)) on logarithmic axes, we should 

find that the points lie approximately on a straight line. If the 

points do not appear to lie approximately on a straight line, we conclude 

that the sample is not from a Pareto population of the first kind. 

For the Pareto distribution of the second kind, equation (6.4-1) 

becomes 

log (1 - P2) = -A log (x + C) +A log B (6.4-3) 

where P2 = P2(x; C, A, B) 

Hence the locus of the points (109(x + Q, log (1 - P2)) is a straight 

line. When C is unknown the first step is to assinne C=0 and to plot 

the resulting points (as in the case of the 3-parameter lognormal and 

Weibull distributions). If the sample is from a population with C not 

equal to zero, judging by the curvature of the resulting curve, we 

should choose another value for C such that the points are rectified 

to lie approximately on a straight line. If such aC exists, we conclude 

that the sample is from a Pareto population of the second kind and 

riay use this value of C as a graphical estimate of the unknown parameter 

C. This technique was described, in detail, in sections 3.11 and 4.4 

for the 3-parameter lognormal and Weibull distributions respectively. 

6.5 The Pareto Graphical Test on AD Dzta 

To test if the Pareto distribution can be used as a model for the 

accidental damage (AD) data we wrote coiputer program P22. From a 
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given saiiple of data, the program calculates the empirical distribution 

function F(x) at each sample value x and then plots the points 

(log x, log (l -F (x)) . For the seven samples of Al) data which were 

given in tables (1.1) to (1.7) the graphs are presented in figures 

(6.1-a) and (6.1-b). It is observed that for each sample the points 

lie approximately on a curve which is far from a straight line. The 

points in the upper tail of the sample values lie almost on a straight 

line, but the curvature in the lower tail values is so marked that even 

an addition of C to the values of x( and hence a Pareto distribution 

of the second kind) does not seem likely to rectify the points enough 

to lie on a straight line. We, therefore, conclude that the Pareto 

distribution is not a possible model for the distribution of our AD 

claim amounts. However, as indicated by the graphs, such a model may 

very well fit the distribution of the larger claims in the sample. 
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Figure (6.1-a) 
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6.6 Estimation of the Parameters of the Pareto Distribution 

Although the results of the previous section were not encouraging, 

for the sake of completeness of the present work, we deal with the 

problem of estimation from grouped data. Several methods of estimation 

such as the methods of moments, quantiles, graphical, least squares 

and maximum likelihood have been studied by various authors and a 

review is provided in Johnson and Kotz (1970). Some of these methods 

are directly applicable for estimation from grouped data while others 

(like the noments, quantiles and maximum likelihood) can be modified 

for this purpose in the same way as we described for the 2-parameter 

lognormal distribution. In this section, we explain briefly the method 

of least squares and them concentrate on the multinomial maximum 

likelihood (. &NL) method. 

The least squares method is based on the relationship (6.4-1). 

Instead of fitting a straight line to the points (log x, log(1-F(x)))by 

eye, we use the least squares technique to find the unknown coefficients 

of the line. For Pl(x; A, B) this is straightforward. For P2(x; ' C, A, B) 

when C is unknown, in order to avoid solving a system of non-linear 

equations in the parameters, we can use the computing technique which we 

suggested for the 3-parameter lognormal and Weibull distributions in 

sections 3.12.1 and 4.6.1 respectively. 

The AML is a very suitable method of parameter estimation from 

grouped data and it produces efficient estimators. Estimation of the 

parameters of the Pareto distribution of the second kind, P2(x; C, A, B), 

will be dealt with here but the same argent applies for Pl(x; A, B) 

by putting C=0 in the following exposition. 

Let us assune that we have a sample. of grouped data where n independent 

random observations on a random variable X (in our case he claim 

amount) have. been grouped according to t1heir size into k nni. tually exclusive 
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intervals. Iurther, let nl be the number of observations (claims) in 

the class interval (x i-1 xi) for i=1,2, ... ,k, such that 

k 

n= ni 

i=i 

If X is distributcd as P2(x; C, A, B), given by (6.2-3) 
, 

i. e. 

P2 (X; C, A, B) =1- (X$` )A (6.6-1) 

then let pi be the probability that an observation (claim) occurs 

in the interval (xi_1, xi), i. e. 

pi = P2(xi; C, A, B) - P2(xi-1; C, A, B) (6.6-2) 

for i=1,2, ... ,k 

from (6.6-1) it follows that 

pi. = x1B + 
)A - (1 

x+C 
)A (6.6-3) 

therefore the sample likelihood function will be proportional to L where 
1i yak r.. ". ... ý... ".. .ý 

k 

L= pi 
ni (6.6-4) 

i=1 

and the loglikelihood function will be 

k 
log L= nllog p1 (6.6-5) 

i=1 

from (6.6-3) it follows that 

k 
log L + n1 log [(x±11+c)A 

)A (6.6-6) 

AA 

The naxirzl likelihood cstioates, (C 
,A, 

B), of the parameters are 

obtained by maximizing logL sir: ultaneý, usly with respect to A, B and C. 

To avoid solving; non-linear equations (which is a laborious task when k, 
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the number of intervals, is large) we suggest the computing tecxMique 

described in section 3.7.7 for maximising log L with respect to A, B 

and C. To start the iteration process we can use a set of estimates 

found by one of the simpler, but less accurate, methods. For instr. nce, 

the moments, quantiles or graphical estimates (or their combination) 

may be used. The set (C, A, B) which ma irrizes log L will be the 

required DINS, estimates. 

The graphical tests showed earlier that the Pareto distribution does 

not represent our AD data. Therefore, we will not attempt to fit 

this model to the complete histogram of the data. However, figures 

' (6.1-a) and (6.1-b) showed that the points corresponding to the upper 

tail of the distribution of claim amunts lie approximately on a 

straight line. In chapter 7 we will fit this model to the upper tail 

of the AD histograms and will compare its fit with that of the truncated 

lognonnal distribution. 

6.7 The Effects of Inflation on the Parameters 

Following the argument of chapter 3 abcut the effects of inflation 

on the parameters of a model, it is considered important to study 

these effects theoretically for the Pareto distribution. We will need 

to allow for such effects when predicting the future distribution of 

claim amounts for a class of general insurance business in which the 

Pareto model has been found to represent the distribution of claim 

amounts. 

Let us again assume that the effect of inflation is to increase a 

claim of amount X to U= X(1, + i) over a period where i is the effective 

rate of inflation for that period. If Xis distributed as a Pareto 

distribution of the second kind with p. d. f. fP2(x; C, A, B) then by a 

simple trarsfoiration of variables we can show that U is distributed as 
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a Pareto distribution of the second kindwith p. d. f. fP2(u; rC, A, rB) 

where r=1+i. Therefore inflation affects the parameters C and }3 

but leaves the shape parameter A unaltered. The results for the 

Pareto distribution of the first kind can be deduced from the above by 

putting C=0. 

6.8 Conclusions 

The Pareto distribution was studied in this chapter as a model 

for the distribution of claim amounts in general insurance and, in 

particular, for the accidental damage claim amounts. 

The Pareto distribution, as well as other positively skewed distributicns 

like the lognormal, has been shown to represent empirical distributions 

of many socio-economic and other naturally occurring quantities. In 

section 6.1 reference was made to the uses of Pareto distribution in 

fire insurance. A graphical procedure was described which may be used 

to test if a sample is likely to be from a Pareto population. Our AD 

data proved not to be from such a population. However, points 

corresponding to the upper tails of the histograms appeared to lie 

approximately on a straight line as shown in figures (6.1-a) and (6.1-b). 

This indicates that the tail of the distribution of claim amounts may 

well be modelled by the Pareto distribution. As a matter of fact, Johnsen 

and Kotz (1970) mention that lognormal distribution fits well the 

distribution of income over a large part of the income range but diverges 

markedly at the extremities. On the other hand, it has been observed 

that the fit of the Pareto curve is rather good at the extremities 

of the income range but the fit over the whole range is often rather poor. 

If we consider that income and claim amount are to some extent correlated 

as represented by the sure at risk, ther.. the above conclusion from the 

n aphical tests about the tail of the distribution of our AD claim amounts 

becones plausible. 

rI 

I 
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We proposed the NEC rretl-iod of parameter estimation from grouped data 

but did not apply it to the AD data in this chapter. In chapter 7 this 

method will be used to fit the Pareto model to the tails of our AD 

samples. 

The effects of inflation on the parameters were studied and it was 

shown that both C and B are increased while A, the shape parameter, remains 

unchanged. 
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CHAPTER 7 

Truncated Lognormal Distribution 

7.1 Introduction 

Often, in practice, data only of claim amounts above a particular 

sum are available. For example, the excess of loss reinsurer has 

only access to data of claim amounts above the retention point, E. 

Such data, for a particular class of business, may be represented by 

the incomplete (or truncated) histogram in figure (7.1). 

N 

c- 

U 

44 
0 

Figure (7.1) - A"truncated distribution fitted to a histogram 
of inconiplete data 

As another example, the above histogram may represent claim amounts 

data, available to an insurance co1Tpany, in respect of a class of 

insurance business where the policy holder pays any loss up to the 

'voluntary excess' : mount E. The histogram in figure (7.1) can, therefore, 

represent the empirical claim arrotmt distribution when it has been singly 
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truncated fron below at the 'point of truncation' E. 

If we lclow that a particular statistical distribution represents the 

complete distribution of claim amounts, then we may be able to fit a 

truncated form of that statistical distribution to the incomplete data 

as represented in figure (7.1). Essentially, we find a model with 

probability density function f whose tail fits the incomplete empirical 

distribution (see figure (7.1)). That part of the curve f which lies to 

the right of the truncation point E is the frequency curve of the 

truncated distribution. Barding (1968) considers the truncated lognormal 

model for the distribution of excess of loss reinsurance claim amounts 

of motor business. 

The studies of the previous chapters of the present work showed that 

the lognormal model represents the distribution of our accidental damage 

(AD) claim amounts. The 2-parameter lognormal produced a 'better' fit 

.n the sense of smaller Chi-square statistics) to the actual data than 

the 2-parameter inverse Gaussian distribution. Therefore, in this chapter 

we shall consider the truncated lognormal distribution. As we are only 

interested in the tail of the distribution, only the 2-parameter model 

will be dealt with. Initially, the truncated lognormal distribution will 

be defined and some of its properties will be mentioned. Then the problem 

of estimation of the parameters from grouped data will be considered 

and the multinomial maximum likelihood method will be proposed. By 

using this method, two problems' related to our AD data will then be 

studied ; these are discussed below :- 

1- In chapter 3 we noticed that the significant differences between 

the 2-parameter lognoir. ýal distribution and the actual sample values were 

caused by large contributions to the Chi-square statistic by one or two 

of the intervals in the larger tail values. In that chapter we indicated 

that the disagreement could-be due to the inaccuracies and incorpleteness 
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of the data in the lower tail intervals because in order to re, -, lain 

entitled to their substantial no-claim discounts some policy holders 

do not claim. small amounts. As the claims in the lower tail are 

financially less important, it was suggested that the data should be 

truncated at the upper boundary of these intervals to see if a more 

exact fit to the rest of the data would be obtained. Therefore,, in 

this chapter, we will fit the truncated lognormal distribution to samples 

of our AD data, as presented in tables (1.1) to (1.7), but truncated 

at 130 or £60 or £90. The results-for different points of truncation 

will be examined and compared with those of chapter 3 for the complete 

samples. 

2- The larger claims form the tail of the claim amount distribution 

and because of their financial importance a higher degree of agreement 

between the model and the empirical distribution is required in this 

region. Therefore, it is important to find out if a truncated distribution 

fitted to the tail of the histogram of sample values produces a 'better' 

fit. For our AD data we truncate the samples at 1600 and fit the 

truncated lognormal model to the tail of the actual sample values. The 

results will then be compared with the tails of the fitted lognormal 

distributions in chapter 3 to see if, in fact, truncation does produce 

a 'better' fit in this region. 

The histograms of our AD samples in figures (3.5.1) to (3.5.7) indicate 

that the Pareto distribution with its mode at 1600 Is likely to fit the 

empirical distribution of claim amounts greater than 1600.. The graphical 

tests of chapter 6 also implied a Pareto model for the tail of our AD 

histograms. The Pareto distribution is much simpler to fit and develop 

mathematically than the truncated lognormal distribution. Therefore, to 

compare the performance of these two models we will, in this chapter, also 
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fit the Pareto distribution to samples of claim amounts greater than 

£600. 

As was mentioned previously, the excess of loss reinsurance claim 11 

amounts data are available only in the truncated form and hence the treat- 

ment of the present problem is applicable in that context. 

The findings of this chapter will be summarized in the conclusion 

section and the tables will be presented in section 7.6. 

'7.2 Definiticn'and'Sdme Properties of'the'Truncated Lognormal Distribution 

We say a random variable X has a truncated lognormal distribution 
2 

if its distribution function, denoted by TLN(x, E; u, o ) is of the form 

222 
TL1ý1(x, E; µ, ý) 

I; N(x; i; d) -L (E; u, Q) for x>E (7.2-1) 
1- LINE ;u, a) 

=0.......................... otherwise 

where E is the point of truncation and LN ("; u, o 
2) is the distribution 

function of a lognormal random variable, with parameters u and a2 , as 

defined in chapter 3 by (3.2-4). Hence the probability density function 

(p. d. f. ) of the truncated lognormal distribution, which we denote by 

£TIN(X, E ; u, a ), is : 

2 

2 fLN (X; u"7 ) 
fTLN(x, E; u, a )= for x>E (7.2-2) 

1-LN(E; u, a2) 

where fLN ; 11,02 is the p. d. f. of a lognormal random variable, with 
2 

parameters u, a, as given by (3.2-3). 

The rth moment of X about zero can be shown (see for instance, 

Aitchison and Brown (1957)) to be 

E(Xr) = exp(r u± 
ýr2a. )Z '- LN(x.; u+ ro?, a21 (7.2-3) 

1- LNN(E u>o2) 
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12 1-1 
From (3.3-3) we lo ow that exp(ru +2ra) is the rth moment about zero 

of the 2-parameter lognormal distribution. The remaining expression 

on the right land side of (7.2-3) can be expressed in terms of the 

standard normal distribution function by using relationship (3.2-4). 

Hence Quensel (1945) expresses (7.2-3) as : 

(rth moment if not truncated) 
1- N(U -ra; 0,1) 

(7.2-4) 
1-N(U; 0,1) 

where U= 
log E 

and N( "; 0,1) is the standard normal 

distribution function. 

The mean of the distribution of X is, therefore, 

E(X) exp (u+ 21 
2) iu -Q; 0,1) (7 . 2-s) 

1 -N(U ; 0,1) 

and the variance of X can be shown to be 

22 1 ^exp (u+ )2 
Var(X) = exp(Q ) [1-N(U-2a; 0,1)] [1-N(U; 0,1)] - 

1- N(U; 0,1) 

21 

(7.2-6) 

7.3 Estimation of the Parameters 

In this section we study the problem of estimating the parameters 

ý, and c2 for a TL. N(x, E ; u, ß2) dist: ibuticn with the 1aown point of 

truncation E. This problem has been dealt with by several authors. 

Aitchison and Brown (1957) describe the maxiniun likelihood method when 

values of the individual observations in the sarple are available. They 

suggest using the tables given by Hald (1949) for carrying out the 

inverse interpolation required in this method. Harding (1968) explains 

this method for fitting the truncated lognormal modal to the third party 
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excess of loss reinsurance claim amounts of n for insurance business. 

The quartile, and graphical methods are not applicable since an 
2 

estimate of LN(E ; u, Q ) (i. e., the area under the complete frequency 

2 
curve of 11\1(x ; 1,, a ) and to the left of the truncation point) is 

required but there is no information on this. 

The method of moments may be used which involves putting the first and 

second sample moments equal to their corresponding theoretical values 

given by (7.2-3). Ho' ever, there is no easy way of solving the resulting 
2 

equations for u and a except by trial and error. Grundy (1952) has 

considered estimation, from grouped data, by the method of moments for 

the truncated normal distribution. His method may be used for the 

truncated lognormal distribution since log x is normally distributed. He 

gives expressions for adjusting the first and second sample moments about 

zero when they are calculated from grouped truncated data. 

Tallis and Young (1962) have considered estimation from grouped data by 

the nultinomial maximum likelihood, (. »L), method but their technique 

involves solving iteratively a system of non. -linear equations in the 

parameters. 

We will adopt the AIINL method but will apply the computing technique, 

described in section 3.7.7, of maximizing the loglikelihood function 

iteratively with respect to the parameters. 

Let us assume that we have a sample of grouped data where n 

independent random observations-(clams) on a random variable X (claim 

amount) have been grouped according to their size into k nutually 

exclusive intervals. Further, let us assume that each claim is for an 

arnount greater then E (the truncation point) and that ni is the number 

of claims in the class interval (xi_1, xi) , for i=1,2, 
... ,k 

and with .: o = r, such that 

2 L8 



k 

n= ni 
i=1 

2 
If X is distributed as a TLN(x, E ; ;,, Q ) distribution given by (7.2-1), 

then let pi be the probability that the size of a random observation 

(claim) will fall in the interval (xi-1, xi)' i. e. 

22 
pi = TLN(xi, E; u, Q )- TLN(xi-1' E'i, ) (7.3-1) 

From (7.2-1) it follows that 

LN(xi; u, Q2) - LN(xi-1 ; u, Q2) 
(7.3-2) pi - 

1-LN(E; u, Q2) 

Therefore, the sample likelihood function will be proportional to L 

where k 

_ 
TT n. 

Lýj pi 1 (7.3-3) 
i=1 

and the loglikelihood function will be 

k 
log L ni log pi (7.3-4) 

i=l 

From (7.3-2) and remembering that from (3.2-4) 

2 logx- u LN(x ; u, a )=N(Q; 0,1) 

we can write (7.3-4) as : 

+u logt =-n log(N ( Log E 
0,1)) + 

0 

k log x. -ux. u 
+ ni1og NC a; o, 1/ - N(log 

of 
; o'i/ 

(7.3-5) 

2 
The maxini^i likelihood estimates (p, o) of the parameters are obtained 

by maximizing log L sinultaneously with respect to u and a2 . To avoid 

solving non-linear equations in the parameters wo suggest the computing 

technique described in section 3.7.7 for maximizing log L with respect to 
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2 
u and a. To start the iteration process we can use the estimates of 

2 
u and a w1-ich we found for the complete samples in chapter 3. If such 

a 1nowledge about the possible values of u and a2 is not available they. 

the method of moments should be used to work out a set of ( u, a2 ) for 

starting the iteration process. In any case, the penalty for choosing 

a very inaccurate set of (11, Q2) as starting values is a few more iterations, 

which is not really a problem when the computer is used. 

7.4 Applications to the AD Data 

Computer program P23 was written to estimate the parameters of the 

truncated lognormal distribution by multinomial maximum likelihood, (MIL), 

method. The complete samples of the AD data which were presented in 

tables (1.1) to (1.7) are input to the program and a truncation point is 

specified. in chapter 3 we showed that for our data the estimates of the 

parameters of the complete 2-parameter lognormal distribution were 

A 4.5 and v2 1. These values are specified as initial values 

of the parameters to start the iteration process. 

We first dealt with problem 1 put forward in section 7.1, i. e., 

truncation in the lower tail sample values. Each sample of AD data was 

truncated respectively at E= 30, E= 60 and E= 90, and the parameters 

of the truncated model were estimated. In each case the computer program 
2 

gave the estimates of p and a and an extensive table of relevant statistics. 

As an example, for the 73/4th quarter data the results of the computer 

runs are given in tables (7.1), (7.2) and (7.3). The results for all 

the samples have been summarized in tables (7.4) to (7.7). The correspon- 

ding results for complete samples, which were given in tables (3.11) to 

(3.17), are also reproduced for the sake of comparison. Table (7.4) 

gives the estimates of p. We notice that truncation has given rise to 

larger values of u compared with the corresponding values for complete 
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samples. Fora 2 we can see, from table (7.5), that truncation has 

resulted in smaller values. Tables (7., I) to (7.3) show that the 
2 

contribution to the Chi-square statistic, X, by different intervals is 

2 
generally small. The values of X statistic for complete and truncated 

2 
samples are presented in table (7.6). For complete samples the X 

values showed significant differences, at 0.05 level, between the 

2 
LN(x ; u, a ) model and actual sample values for every period of accident. 

The values of these statistics for truncated samples are considerably 

smaller and, except for 74/1st and 74/3rd quarters, do not show any 

significant differences, at 0.05 level, between the actual sample values 

and the truncated fitted models. Table (7.7) gives the ratio of the 

total expected loss statistic, T, to the total actual cost of claims. 

We observe that smaller values have been obtained for truncated samples 

indicating a better overall agreement between the model and actual 

sample values.. The above analysis shows that truncation in the lower 

tail sample values of the AD data gives rise to a more exact fitting 

statistical model compared with the 2-parameter lognormal distribution 

for the complete sample. However, the fit does not seem to improve when 

truncation is carried on beyond the first interval (E = 30). In terms 

of the Chi-square goodness-of-fit test statistics, the results for the 

truncated (E = 30) and 3-parameter lognormal (see tables (3.38) to (3.44)) 

distributions are very similar. The latter distribution is, however, 

easier to work with and to develop mathematically. For the AD data, we, 

therefore, recommend the use of the 3-parameter lognormal distribution. 

The second problem we put forward in section 7.1 was the application 

of the truncated lognormal as a model for the distribution of large AD 

claim amounts. We, therefore, used progra'n P23 with our samples of AD 

data. Each sample was truncated at f; 1600 and (u = 4.5, a' L 1) were 

specified as starting values for the iteration process. rar each sample 
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the computer program produced the estimates of u and v2 as well as a 

table of relevant statistics. The results are presented in tables 

(7.8.1) to (7.8.7). We can see that u is larger than for complete samples 

while a2 is considerably smaller. The actual means and standard deviations 

of'the truncated samples are given in table (7.11). From tables (7.8.1) 

to (7.8.7) we can see that the mean claim amounts of the fitted models 

are approximately equal- to their corresponding sample values. The standard 

deviations of the models are greater than their actual values but this 

could be because we are fitting a curve with an infinite range to a sample 

which has a finite range. From the tables of results it is apparent 

that the contributions to the 
Z 

statistic are generally small and that 

the overall X2 statistics, except for 74/3rd quarter, do not indicate 

any significant differences between the model and actual sample values. 

The total expected loss statistics are small and are at most 5% of the 

total actual cost of claims. This indicates an overall satisfactory fit 

of the model to the sample values. 

To see how the truncated lognormal model performs against the, mich 

simpler to use, Pareto distribution, we wrote computer program P24 to 

estimate, from a truncated sample, the parameters of the Pareto distribution 

of the first kind. This program uses the MhL method of estimation. 

The program was then modified to estimate the parameters of the Pareto 

distribution of the second kind. In each case the estimates of the 

parameters by the method of moments were input as starting values for 

the iteration process. These programs were run with truncated samples 

(at B= 600) of our AD data. For a particular sample, 73/4th quarter, 

the results are given in tables (7.9) and (7.10). A summary of the results 

for all samples are presented in tables (7.12) and (7.13). For the 

Pareto distribution of the first kind the mean claim a, 'rnunt from each model 

is approximately equal to its corresponding sample mean. The standard 
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deviations of the models are greater than their corresponding sample 

values as we are fitting a curve with an infinite range to a sample 
2 

with a finite range. The X statistics show that, with the exception 

of 74/3rd quarter, there are no significant differences, at 0.05 level, 

between the model and actual sample values. The ratios of the total 

expected loss statistics to the total actual. cost of claims are larger 

than their corresponding values for the truncated lognormal distribution. 

For the Pareto distribution of the second kind, P2 (x ; C, A, B), 

parameter C can be interpreted as the 'voluntary excess' on the policy. 

Estimates of C for each sample are given in table (7.13). They vary 

considerably from each period of accident to the next. The mean claim 

amounts are much closer to their corresponding sample values. The 

standard deviations of the models are larger than their actual values but 

are smaller than their corresponding values according to the Pareto 

distribution of the first kind. The X2 statistics are smaller than 

their corresponding values in table (7.12) and do*not indicate any 

significant differences between the model and actual sample values. The 

ratios of the total expected loss statistics to the total actual cost of 

claims are generally smaller than those given for Pl (x ; A, B) in table 

(7.12) but are larger than their respective values for the truncated 

lognormal distribution. In terms of the X2 goodness-of-fit test 

statistic, P2(x ; C, A, B) has provided a more exact fit to the AD data 

than Pl (x ; A, B) distribution. In fact, the fit is almost as good as 

that of the truncated lognormal distribution. One obvious reason for 

this is that Pl(x ; A, B) has two parameters while P2 (x ; Cl A, B) and 

TLN(x, E ;. u, Q 
2) 

each have three parameters. Therefore, given good 

computer facilities, we would prefer the truncated lognormal model, for 

the distribution of large AD claim amounts, though just as good a fit may 

be obtained by P2(x ; C, A, B) or even P1 (x ; A, B) distributions. 
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7.5 Conclusions 

In this chapter we considered the trancated lognormal distribution 

as a model for the incompl;: te distribution of accidental damage claim 

amounts. The method of M' was described for the estimation of parameters 

from grouped data. The model was then fitted to samples of AD data 

truncated at lower tail values. It was shown that by ignoring the first 

claim a'nount interval this model would satisfactorily fit the AD samples. 

In terms of the Chi-square goodness-of-fit statistic the fit was as 

good as that of the complete 3-parameter lognormal distribution. Because 

this latter distribution is relatively simpler to use and to develop 

mathematically its application, in place of the truncated lognormal 

distribution, was recommended. 

Next, the trincated lognormal distribution was considered as a 

model for the distribution of large claim amounts. Our AD samples were 

truncated at 1600 and the model was fitted to the incomplete samples. 

It was shown that a very satisfactory fit is provided by the truncated 

lognormal distribution. For the sake of comparison, the Pareto 

distributions of the first and second kind were also fitted to the same 

truncated samples. The P2 (x ; C, A, B) provided a fit as good as the 

truncated lognormal distribution. It was suggested that when computing 

is not a problem the latter model should be used. Otherwise P2(x ; C, A, B) 

or even the Pareto distribution of the first kind may be used as models 

for large AD claim an unts. 

The effects of inflation on the parameters of the truncated 

distribution were not studied, but because of the relationship between 

the complete and truncated lognormal distributions we can easily arrive 

at these effects by following the exposition of section 3.9. It may, in 

fact, be shown that inflation increases parameter u but leaves a2 unchanged. 

7. E Tables 
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T ble '(7.1) 

TRUNCATED 2-PARAMETER LOGNORMAL DIS. *** 

73/4TH QUARTER DATA 

, 
ESTIMATION BY MULTINOM_CAL MAX. LIKELIHOOD METHOD :-' 

MEW= 4.654 SIGMA SQ. = O. B62 

MEAN=-175.678 S. D. = 231.181 

AMOUNT C ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS (A-E)* 2/E 

31- 60 518, ' 522. 
-4, -182. 0.031 

61- 90 461. 452. 9. 680, 0.179 
91- 120 359. 346. 13. 1371. (1,488, 

121- 150 239. 260.. -21. 
-2A45. 1.696 

151- 180 213. 196. 17. 2813. 1.474 
181- 210 148. 149. 

-1. -195. 0.007 
211- 240 102. 115, 1-13. -2931. 1.470 
241- 270 81. 90 

, -9. . -2299. 00900 
2.71- 300 5E3, 72. -14. -3997. . 

2.722 
301- 330 66. 57. 9. 2839. 1,421 
331- 360 45. 46. -1. -346. 0,0'22 
361- 390 39, 38. 1. 376. 0.026 
391- 420 35, 31. 4. 1622. 0,516 
421- 450 34. 26. 8. 3484, 2,462 
451- 480 20. 22. 

-2, -931. 0,182 
481- 510 

. 
29. 18 ,. 11. 5450o 6.722 

511- 540 14, 15. -10 -525. 0,067 
541- 570 S. 13, -5, -2777. 1,923 
571- 600 9. 11, 

-2, -1171, 0.364 
601- 700 29. 27. 2., 1301, 0.148 
701- 800 18, 17. 1. . 751, 0.059 
801- 900" 20, 9. 7654, 7.364 
901-1000 6, E3, 

-2, -1901. 00500 
1001-1100 4, 5. ' -1. -1050. 0.200 
1101-1200 4, 4. 0. 0. 0.000 
1201-1300 3. -2. -2501. 

-1301-1400 3. 2. 1. 1350. 01 0.2010 
" 1401-1500 1. 2. -1. -1450. 1501-1600 0. 1. -1, -1550, 

1601-1700 1. 0. 0ý . 
1701-1800 0. 

-1: -1751. 
1801-1900 0, 1. -1. 

-1850. 
1901-2000 1, 0. 1. 1950, 
2001-2100 0. 0, 0, 0. 
2101-2200 0. 0. 0. 0. 
2201-2300 0, 0, 0, 0. 
2301-2400 1, 0, 1, 235(; 

---------- ------------- ------------- ---------- 
, 

---------- 
0.667 

TOTAL 

--------- 

2567, 

----------- 

2562. 

----------- ------------- 

--- 
3737, 

------------ 

------- 
31.809 

---- 
DEo 

--- 
r`4 TOTAL EXP. LOSS ' 

-- = n. 8 P>0.10 
TOTAL ACT. COST 
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Table (702) 

'ý# TRUNCATED 2-PARAMETER LOGNORMAL DIS. *## 

' 73/4TH QUARTER DATA 

ESTIMATION BY MULTINOMIAL MAX. LIKELIHOOD METHOD : - 
MEW= 4.633 SIGMA 'SCE .=0., 

881 

MEAN- 208.871 S. D. = 202.444 

AMOUNT F. ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS (A-E)**2/E 

61- 90 461. 459. 2. 151. 0.009 
91- 120- 359. 348. 11. 1160.. 0.348 

121- 150 239. 260. 
. -21,. -2845. 1.696 

151-180 213. 195. 18, 2979. 1,662 
181- 210. 148. 149. " -1. -195. 0.007 
211- 240 102. 115. -13. -2931. 1,470' 

241- 270 81. 90. -9. -2299. (1.900 
271- 300 58. 71. -13. -3711. 2.380 
301- 330 66. 57. 9. 2839. 1.421 
331- 360 45. 46. -1, x-346, 0.022 

361- 390 
, 

39. 38; 1. 376. 0,026 
391- 420 ' 35. ' 31. 4. 1622. 0,516 
421= 450 34. 26. 8, 3484. 2.462 
451- 480 20. 22. / 

-2, -931. 0.182 
481- 510 29. 18. 11. 5450. 6.722 
51l- 540 14. 15. -1, -525. 0.067 
541- 570 Be 13. -5, -2777. 1.923 
571- 600 9. 11. -2. -1171. 0.364 

zoo 00 01 9, 27. 2. 1301. 0,148 
- 7 1 17. 1. 751. (1.059' 

801- 900 20. 11. 9. 7654. 7.364 
901-1000 6. 8. 

-2. -1901. 0.500 
1001-1100 4. 5. " -1. -1050. 0.200 
1101-1200 4. 4. " ' 0, 0. 0.000 
1201-1300 1. 3. -2. -2501. 
1301-1400 3. 2. 1, 1350. 0,200 
1401-1500 1. 2. -1. -1450. , " 1501-1600. 0. 1. -1, -1550. 
1601-1700 11 

. 
1. U. 0. 

1701-1800 0. 11 -1. -1751. 
1801-1900, 0. 

. 
1. -1. .. -1850. 

1901-2000 1. 0. 1". 1950. 
2001-2100 0. 0, 0. 0. 
2101-2200 0. 0, ne. (0, 
2201-2300 0. 0. 0. 0. 
2301-24011. 

------ ------- 

0. 

- 

. 1, 

--------- 
. 2350. 0,667 

' ---- 
TOTAL '. 

----------- 

---- 
2049. ' 

----------- 

--------- 
2047. 

---------- 

- - 

----------- 

---------- 
3631. 

----------- 

---------- 
51.17 

--------- 
D. F. '23 

TOTAL EXP. LOSS 
--------------- 0.9 9, P >0.10 

TCOTAL ACT. CAST 
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Table (703). 

*#}- TRUNCATE: [? 2-PMAAMETEH LOGNORMAL DIS. 

73 /a H (-WARTER DATA 
t 

ESTIMATION BY MIJLTINUMIAL MAX. LIKELIHOOD METHOD 
MEW- G; 64B : iý. (iMA ; i[, 1. a (1 

. 
E17(1 - 

MEAN= 2[t7.6[tU S. U. = 1El6.312 

AMOUNT £ ACTUAL. EXPECTED ACTUAL-' EXPECTED 
C[., NO. CL. NO, EXPECTED LOSS '(A-E)**2/E 

91'- 120 359. 3a5. 14. 1477. 0,56- " 
121- 150 239. 259,1 -2.11. -271[1. 1.544 
151- 180' 2.13 

. 
195. 1S, 2979.1 1.662 

181- 210 148. 149. 
-1. -195. (1.01)7 

21 1- 240 102.. 115. -1.3, --2931. 1,. 47(1 
24 1- 270 R1. 

-? 299. [! 
. 900 

271- 300 . 5R. 71, -13. -3711. .2 , 380 
301- 330 57. 21139. 1.421 

_ 
331- 360 a5., 116. -1 -3a6. 0.0122 
361- 90 39. 3R. 1 376. (1.026 
391- 11,21) 35. i1. 4. 1622. (I 11 2 
1121- 45(1 {c1. 26. 3484. 

. 
2 

. aF, 2 
451-. 480 2.0. 22. -2. -931. 0,1 R2. 
481- 510 29. 18. 11, 5450.. 6.722 
511 560 14. 15. 

. -1. -525. 0.067 
541- 57() 8. 13. -5. -2777. 1 "923 571- 600 9, ' 

. 
11, -2. ' -1171, 0.364 

601- 7(1(1 29. 27. 2. 1301. (1.148 
800. 1A. ' 17. 1.. 751. (1. (159 

801- 9(10 20. 11 
.. ' 90 7654. 7. '364 

9(11-10(º(t 6. 8. 
-2. -1901 " 0.500 

1(1 [t1-11(! 0 4. 
.. 

`_i" '-1. 
. -1050. 0.200 

11(11-12(1(1 4. a" o" 0". 01000 
1 eil 1-1 sui '. '. -7.. -25{11, 

1tºCO 3. 2. 1. 135C1. Ooc00 
1401-15(10 1. 2. 

150 1-1161111 (1. 1, -1. -1550. 
16(; 1-17O0 1. 1. 0. U. 
1 1U 1-10U(1 0, 

-1751. 
10(11-190f1 (I. 1" -1 . -1A5o. 19o1-20(1(1 1, 

21110 1-2100 
2101-22.00 U. U. U. o. 
2201-4 3011 0. 0. (i. U. 
2301-24on 

---------- 

I. 

------------ 
0. 

---------- 
1 

---------- 
2350. 

--------- 
0.667 

TOTAL 
------ ---- 

1500. 
------------ 

1504, 

---------- ---------- 

- 3932. 
---------- 

----------- 
3 ?. - 

------- 
T 

U. F. =22- 
TOTAL EXP, LOSS 

------ --------- I. o > 0.05 
TOTAL. ACT. COST 
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Table (7.4) 

W, estimates of u 
for complete and truncated AD samples 

Period of 
accident 

Complete 
sample 

E=30 E=60 E=90 

73/4th quarter 4.516 4.654 4.633 4.648 

74/1st " 4.509 4.624 4.581 4.296 

74/2nd " 4.546 4.685 4.592 4.604 

74/3rd " 4.637 4.765 4.758 4.581 

74/4th " 4.672 4.807 4.823 4.851 

75/1st " 4.684 4.821 4.881 4.891 

75/2nd " 4.701 4.815 4.849 4.830 

Table (7.5) 

MNL estimates of a2 
for complete and truncated AD samples 

Period of 
accident 

Complete 
sample 

E=30 E=60 E=90 

73/4th quarter 1.055 0.862 0.881 0.870 

74/1st " 1.057 0.896 0.935 1.142 

74/2nd " 1.013 0.815 0.901 0.892 

74/3rd " 1.011 0.821 0.828 0.960 

74/4th " 1.056 0.851 0.836 0.813 

75/1st " 1.024 0.815 0.754 0.747 

75/2nd " 1.056 0.880 0.846 0.861 

238 



Table (7.6) 

X2 statistic for complete and truncated AD samples* 

Period of 
accident 

Complete 
sample 

E= 30 E= 60 E= 90 

73/4th quarter 53.4 (25) 31.8 (24) 31.3 (23) 31.3 (22) 

74/1st " 56.9 (24) 49.1 (23) 47.8 (22) 38.9 (21) 

74/2nd 51.8 (24) 26.3 (22) 22.8 (22) 23.0 (21) 

74/3rd 69.3 (26) 41.6 (24) 41.6 (23) 35.8 (23) 

74/4th " 56.4 (27) 21.6 (25) 22.0 (24) 22.0 (23) 

75/1st 59.7 (26) 23.3 (24) 21.9 (23) 22.9 (22) 

75/2nd " 44.6 (27) 24.7 (25) 25.0 (24) 24.1 (23) 

* the number in () is the degrees of freedom 

Table (7.7) 

Ratio of the total expected loss statistic, T, to the 
total actual cost of claims for complete and truncated AD 

samples (in percentage) 

Period of 
accident 

Complete 
sample 

E= 30 E= 60 E= 90 

73/4th quarter - 1.5 0.8 0.9 1.0 

74/1st " 0.6 1.5 1.8 1.2 

74/2nd - 1.0 1.1 0.6 0.7 

74/3rd " - 1.0 1.1 1.3 0.7 

74/4th " - 1.9 0.6 0.4 
. 
0.6 

75/1st " - 2.1 0.5 0.6 0.9 

75/2nd -'0.9 0.7 0.4 0.7 
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Table (7,8.1) 

* TRUNCAT ED 2-PARAME TER LOGNOR MAL DIS. 

73/4TH'UU ARTER DATA 

ESTIMATION BY MULTINOMIAL MAX. LIKE LIHOOD METHOD : - 
MEW= 5.827 S IGMA SQ. - 0.3 50 

MEAN= 856. 558 "s . 
D. 

- 490.8n8 

AMOUNT £ ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS (A_E)**2/E 

601- 700 29. " 30. -1. -651. 0.033 
701- 800 18, " 20. -2. -1501. 0.200 

" 
801- 900 20. 13. 7. 5953. 3.769 
901-1000 6. 8. 

-2. -1901. 0.500 
1001-1100 4. 6. 

-2. -2101. 0.667 
1 101-1200 4., 4.. 0. 0. 
1201-1300 1. 3. -2. -2501. 
1301-1400 3. 2. 1. 1350. 

0.571 

1401-1500 1. 1. 0. 0. 
1501-1600 0. 1. -1. , -1550. 1 
1601-1700 1. 1. 0. 0. 
1701-1800 0. 0. 0. 0. 
1801-1900 0. 0. 0. 0 
1901-2000 1. 0. ' 1. 1950. 
2001-2100 0. 0.. 0. 0. 
2101-2200 0. 0. 0. 

. 
0. 

2201-2300 0, 0. 0. 0. 
2301-2400, 1. 0, 1. 2350. 0,8C0 

TDTAL 89. A9. 
------ --"------ 

1400. 
-- 

ýý- 
6. 

---------, ----------- ------------ ------------------------r------- 
D. F. -4 TOTAL EXP. 'LOSS 

----- ----------= 1.8 ry, P >0110 

TOTAL ACT. COST 
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Table (708.2) 

## TRUNCAT ED 2-PARAMETER LOGNORMAL DIS. 

74/15T QUARTER DATA 

ESTIMATION BY MULTINOMIAL MAX. LIK ELIHOOD ME THOD : - MEVr= 6.385 SIGMA SO. = D. 130 

MEAN= 816. 831 S. D. - 723. 298 

AMOUNT £ ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO, 

" 
CL. NO. EXPECTED LOSS (A-E)**2/E 

601- 700 26. 27. -1. -651, 0.037 
701- 800 21 ,, 19: -2. 1501. 0,21 1 

'801- goo 11. 13. -2. -1701, 0.308 
901-1000 10. 0, 2. 1901 

, (1.500 
1001-1 100 5. 5. 0. 01, 1" 0: 000 
1101-1200 2. 3. 

-1. -1150, 
1201-1300 1" 2. 

-1 . -1250. 
1301-1400 2. 1. 1. 1350. 
1401-1500 0"" 1. -1. -1450. 

11501-1600 0. 0. 0. 0, 
1601-1700 0. 0. 0. 0, 
1701-1000 1. 0. 1. 1751. "0,1.3 
----- 

TOTAL 

---------- 

79" 

------------ 

79. 

------------ 

--- 

-------- 

---------- 
300. 

----------- 

------------ 
?. tja 

----------- 
D. F. =3 TOTAL EXP. LOSS 

= 0.5 7, > 0' 50 
TOTAL ACT. COST . 
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Table (7.8.3) 

TRUNCATED 2-PARAMETER LOGNORMAL DIS. "#* 

74/2ND QUARTER DATA 

EST IMATION BY MULTINOMIAL MAX. LIKELIHOOD METHOD : - 
MEW- 5.265 SIGMA SQ. = 0 

.41 9 

MEAN- 804. 178 S. D. - 368.034 

AMOUNT f 'ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS (A=E)**2/E 

601- 700 30. 29. 1. - 651. 0.034 
701- 800 13.. 16. -3. -2251. 0.563 

"801-.. 
900 11. 9. 2. 1)11. 0.444 

901-1000 4.. 5. -0 6, -951. 0.200 
1001-1100' 7. 7. 3. 3. 4. 4202. 
1101-1200 U. 2. -2. -2301. 

. 1201-1300 1. 1. 0. 0. 
1301-1400 1. 1. 0. 0. 
1401-1500 0. 1. -1. -1450. 
1501-1600 1. 0. 1, 1550. 
1601-1700 0. 0. a. 0. 
1701-1800 0. 0. '"0. 0. 
1801-1900 

----- 

1. 

----------- 

0. 

---------- 

1. 

- 
1850. 1.125 

----- 
TOTAL 69. -- 

67. ------- --------------- 
3001. 

------- 
2.356 

--" -------- ------------------------------ -----"---------------- 

D. F. 12 2 
TOTAL EXP. LOSS 

-- . 
5.4 %" P =y 3Q 

TOTAL ACT. COST 
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Table (70804) 

*# TRUNCAT ED 2-PARAMETER LOGNOR MAL DIS. 

74/3RD QUARTER DATA 

ESTIMATION'SY MULTINOMIAL MAX. LIKE LIHOOD METHOD : - 
MEW- 5.596 S IGMA SQ. = 0.3 99 

MEAN= 842. 542 S 
. 
D. - 42.1.929 

AMOUNT C ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS (A-E)**2/E 

601- 700 
' 

32. 39. 
-7. -4553. 1.256 

701- 600. 34. 24. -' 10. 7505. 4.167 
801- 900 17. 15. 2. 1701. 11.267 
901-1000 4. 10. -6. ' -5703. 3.600 

1001-1100 9. 6. '3. 3151. 1.500. 
1101-1200 4. 4. 0. 0, 
1201-1300 0, 3. -3. -3751. 1,286 
1301-1400 1. 2. '-1. -1350. 
1401-1500 3. 1.. 2. 2901. 0 
1501-1600 0. 

1 
1. 

-1. -1550. 1601-1700 ' 1. 1. 0. 0. 
1701-1800 0.1 0. 0. 0,, 
1601-1900 0. 0. 0. 0. 
1901-2000 0. 0. 0. 0. 
2001-2100 0. 0. 0. 0. - 
2101-2200 1. 0. 1. 2150. ' 
2201-2300 0. 

. 
0. 0. 0. 

2301-2400 0. 0. 0. " 0o' 
2401-2500 0. 0. 0. 0. 
2501-2600 

---------- 
1. 

------------ 
0. 

------------ 
1. 

--------- 
2550. 01800 

TOTAL 

---------- 

107. 

------------ 

106. 

----------- 

- 
--------- - 

------------- 3050, 

------------- 

------- 
12.876 

------- 
TOTAL EXP. LOSS 

DF 

-- 
TOTAL . COST 

3.4 P = 001 v01 
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Table (7080 ) 

*# TRUNCATED 2-PARAMETER LOGNORMAL-DIS. 

74/4TH QUARTER-DATA 

ESTIMATION BY MULTINOMIAL MAX.. LIKELIHOOD METHOD 
MEW= 6.183 SIGMA SQ. = 0.223 

MEAN- 845.861 S. D. = 634.330 

AMOUNT £ ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO, EXPECTED LOSS (A-E)**2/E. - 

601- 700 42. - 43. -1. -651. . 
0.023 

701- Boo 28. 29. -1, -751. 0.034 
801- 900 20. 20. 

_ 
1 0. . 0. , 0.000 

901-1000 17. 13. 4. 3802. 1.231 
1001-1100 8. 8. 0, 0. 0.000 

. 1101-1200 5. 5. 0, 0. 0,000 
1201-1300 " 1. 

t 4. -3. -3751. 
1301-1400 5. 2. 3,. 4051. 01000 
1401-1500 0. 2. -2. -2901. 
1501_1600 1. 1, 0. 0", 
1601-1700 00' 1, -1, -1650. 1701-1800 0. 0. 0. 0. 
1001-1900 0. 0. 0. 0. 
1901-2000 0. 0. 0, 0. 
2001-2100 1. 0. 1. - 2050. 
2101-2200 0. 04 0. 0. 
2201-2300 0.1 0.. 0. 0. 
2301-2400 1. 0. 1. 2350, 0.200 

TOTAL 

---------- 

129. 

------------ 

128, 

---------- --------- 

- --2550. - 

----------- 

-----1,539 

--- -------- 
D. r" =5 

TOTAL EXP. LOSS 
- ---= 

2.3 % 
r>0.90 

TOTAL ACT, COST 

244 



Table (7.8.6) 

*# TRUNCATED 2-PAFIAMETER LOGNORMAL DIS. #** 

75/1ST QUARTER DATA 

ESTIMATION BY MULTINOMIAL MAX. LIKELIHOOD METHOD : - ME'W= 1.278 SIGMA SQ. - 1.614 

MEAN= 834.771 S. D. = 15.667 

AMOUNT E ACTUAL- EXPECTED ACTUAL- EXPECTED 
CL. NO.. CL. NO. EXPECTED LOSS (A-E)**2/E 

601- 700 39. 40. 
-1. -651. 0,025 

701- 800- 19. 22. -3. -2251. 0.409 
a01- 900 " 18. 12. 6. 5103. 3.000 
901-1000" 12. 8. 4. 3802. 2.000 

1001-1100 3* 
, 

5. -2, -2101. 0. e00 
1101-1200 1.1 

, 
3. -2. -2301. 

1201-1300 1. 2. ' -1. -1250.. .ý ooo 1301-1400 0. 2. -2. -2701. . 
1401-1500 1. 1. 0. 011 
1501-1600 0. 

-1550. 
1601-1700 1. 1ý 0. 0ý 
1701-1Ei00 0. ' 0. 0, 0. 
1801-1900 0. 0. 01 0. 
1901-2000 0. 0. 0, 01 
2001-2100 1. 0. 

"1. 205.0. 
2101-2200 1. 0. , 1. 2150. 
2201-2300 0. 0. 0, 0, 
2301-2400 0. 0. 01 0. 
2401-2500 0. 0. 01 0. 
2501-2600 0. 0. 0. 01 
2601-2700 _ 

0. 0. 01 0. 
2701-2600 0. 0; 01 0. 
2801-2900 0. 0. 0. 0. 
2901-3000 0. 0. 0. 00 
3001-3100 01 01 o0 

, o. 
3101-3200 0. 0. 

" 
0. 01 

3201-3300 0. 01 01 01 
3301-3400 0. 0. n. 0 
3401-3500 0. 0. 01 . 

01 
3501-3600 1. 0. 

" 1,. 3550. 0.000 
TOTAL 

----------- 

98. 

---------- 

97. 

----------- ----------- 
3850. 

------------- 
890; 4 

----- 
TfiTA1 r'XP I nqn 

D'F' m4 

---------------= 4.7 
TOTAL ACT. COST > 0D05 
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'Fable (7.8.7) 

TRUNCAT ED 2-PARAMETER LOGNO RMAL DIS. 

75/2ND QUARTER DAT A 

ESTIMATION BY MULTINOMIAL MAX. LIK ELIHOOD METHOD : - 
"MEW= 5.982 SIGMA SQ. = 0.32 4 

MEAN= 873.216 S. O. = 543.923 

AMOUNT f. ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS ( A-E)**2/E 

'. 601- 700 36. 36. 0.. 0. 0.000 
701- 800 22. 24. -2. -1501. 0.167 
801- 900 22. 16. 6. 5103. 2.250. 
901-1000 11. 11. 0. 0. 

1 0.000 
1001-1100 4. A. 

-4. -4202. 2.000 
1101-1200 3. 5., -2. -2301. 0., 800 
120.1-1300 3. 4. -1. . -12511. 
130,1-1400 6. 2. '4. 5402. 1,500 
1401-1500 

_ 
2. 2. 0. 0. 

1501-1600 1. 1. 0. 0. 
1601-1700 0. 1. -1. -1650. 
1701-1800" 1. 1. 0. 0. 
1801-1900 0. 0. 0. 0. 
1901-2000 1.; 0. 1. 1950. 
2001-2100 0. 0. 0. 0. 
2101-2200 0_0 

. 
0. 0. 0. 

2201-2300 

---------- 

1. 

------------ 

0. 

----------- 

1. " 

---- 

2250. 0,200 

TOTAL 113. 111. 
---- --------------- 

3801. 
------- 

6. ß17 

D. F. 5 
EXP. LOSS 

----- ---------- = 3.8 % P 0. -,, 3 
TOTAL ACT. COST " 

ti 

J 
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{ Table (7.9) 

PARETO DIS. RF THE 1ST KTND *** 
. 

734TH QUARTER DATA 

ESTIMATION BY MULTINOMIAL MAX. t. IKE L THn(1D METHOD i- 
A= 3.188 

MEAN= R75. 00(l S . D. = 449.738 

AMOUNT £ ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. 

. 
CL. NO. EXPECTED LOSS (A-E )**2 /E 

601-. 700 29. 35. -6. -3903". 
. 1.029 

701- 800 18. 19. -1. -751. 0.. 053 
801- 900 20. 11. 9. 7654. 7.364 
901-1000 6. 7. -1. -951. 0.143 

1001-1 100 4' 5. -1 . -1050. 0.2C0 
1101-1200 4. 3. 1. 1150. 
1201-1100 1. 2. -1. -1250. 0.600 
1301-1400 -3. 2. 1. 1350. 
1401-1500 1. 1. 0. 0. 
1501-1600 0. 1. -1. -1550. 
1601-17011 1.. 1", 0. 0. 
1701-1800 0. 1. -1. -1751. 
1801_1400 0. 0. 0. 0. 
1901-2000 1.. 0. 1. 1950.1 
2001-2100 0. 0. 0. o, 
2101-2200 0. - 0. 0. 0. 
2201-2300 0. 0. 0. o. 
2301-2400 1. 

------ 

10. 

------------ 
1. 

---------- 
2350. 

------- 
0,167 

TOTAL TOTAL 

---------- 

89. 

--------- 

88. 
------------ ---------- 

- 
3251, 

----- 

------------ 

------ - 

- 
D. F. 

------- 
-5 

TOTAL EXP. Lf) 3S 

-- 4.2 % P =0 10 
TOTAL ACT. COST , 
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Table (7,10) 

- *** PARETO DIS. OF THE 2ND KTND 

73 4TH QUARTER DATA 

-EST IMATION BY MULTINOMTAI. 
_ 

MAX. I. TKELIHOOD METHOD : 
A- 3.493 C- 27.94 

' iMEAN= 869. 306 S. D. - 368.417 

AMOUNT £ ACTUAL EXPECTED ACTUAL- EXPECTED, 
CL. Mf. Cl_. * NO. EXPECTED LOSS (A-E)**2/E 

601- 700 29. " 29. 0. 0. 0.000 

701- 800 18. 23. -5. . -3752. 1.087 

801-. 900 i 20. 13. 7. 5953. 3.769 
901-1000 6. A. -2. -1901. 0-. 500 

1001-1100 4. 5., -1 ." -1050. 0,2.00 
1101-1200 4. 

. 
3. 1. 1150; 

1201-1300 1. 2. -1. -1250. 0.000 
1301-1400 3. 1. 2. 2701. " 
1401-1'500 1 .. 1. 0. ' 0. ' 
1501-1600 0. 1, -1. . -1550. 
1601-1700 1. 1. " 0. 0. 
1701-1800 0. 

. 
0. 0. 0. 

1801-1ßO0 0. "0. 0. "0. 
1901-2000 1.. 0. 1. 1950. 

2001-2100 0. 0. 0. 0. 
2101-2200 0. 0. 0. 0. 
2201-23(10 0. 0. 0. 0. 
2301-2400 

------- 

1. 

----------- 

0. 

------------ 

1. 

-------- 

2350. 

---------------- 
2.7 0 

------- --- 
TOTAL 

-------- 

89. 

------ ----- 

87. 

------------ -------- 

4601. 

--------------- 
ß0ß6 

---=---- -- 
D. F. /. 

TOTAL EXP. LOSS 0010 
----- ---------- 6.0 % 
TOTAL ACT. COST 

248 

lag 



Table (7.11) 

Actual. r: can claim amount and standard deviaticn 
for AD sa, Ics truncated at E= 600 

Period of 73/4 74/1 74/2 74/3 74/4 75/1 75/2 
accident 

Mean 860.6 820.1 808.5 847.7 849.7 844.4 876.2 

S. D. 286.0 199.0 223.0 288.0 256.0 373.0 287.0 

Table (7.12) 

Pareto distribution of the first kind fitted to the 
tail of the AD samples. (B = 600) 

Period of 
accident 

A Mean S. D. X2 (ll. F. ) R* 

73/4th 3.188 875.0 449.7 9.2 (5) 4.2 

74/1st 3.568 834.3 352.7 5.8 (4) 4.6 

74/2nd 3.843 811.7 305.0 3.0 (3) 5.9 

74/3rd 3.344 856.7 404.1 17.0 (6) 5.9 

74/4th 3.259 866.3 427.8 9.6 (6) 3.8 

75/1st 3.544 836.6 357.7 10.5 (5) 7.6 

75/2nd 3.026 897.0 509.1 10.9 (6) 6.2 

Table (7.13) 

Pareto distribution of the second kind fitted to the 
tail of the AD samples (B = 600) 

Period of 
accident 

C A Mean S. D. 
2 

X (D. F. ) R* 

73/4th quarter 28.0 3.493 869.3 368.4 8.0 (4) 6.0 

74/1st tt 39.0 4.163 829.6 263.4 3.4 (3) 6.4 

74/2nd " 5.4 3.918 811.7 294.2 2.5 (3) 4.2 

74/3rd 43.0 3.938 848.3 291.4 5.4 (4) 3.6 

74/4th " 30.4 3.612 860.8 344.2 5.2 (5) 4.9 

75/1st " 11.5 3.686 835.6 330.6 8.2 (4) 5.1 

75/2nd 24.5 3.260 890.7 427.5 8.5 (5) 4.4 

*R is the ratio, in percentage, of the total expected loss 
statistic, ý', to. the total actual cost of claims. 
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CHAPTER 8 

The Gaimu Distribution 

8.1 Introduction 

The gamma distribution is another positively skewed distribution 

with a long tail which can assume a variety of shapes. It has, 

therefore, been a most appropriate statistical model in applied science 

work. Many sets of empirical data on positive valued random outcomes 

of various random phenomena in science and engineering have been 

represented by this distribution. Johnson and Kotz (1970) and Bury (1975) 

give bibliographies on the applications of this model and the formers' 

list includes references to the actuarial field as well. 

Beard (1978) argues that "the amount of damage (physical) will 

arise from impact and thus be related to the energy involved, that is, 

to the square* of the velocity". If X is the amount of loss, and in and V 

are the mass and the velocity of the car at the time of impact, 

respectively, then the above statement means that 

12 
X is proportional to 

2 mV 

and hence Z=/ is proportional to V (8.1-2) 

Beard (1978) then goes on to say that "velocity should have a reasonable 

shape" and in Beard (1978, personal communication) suggests the gamma 

distribution as a model for the distribution of velocity and hence of 

the square root of the claim amount. Therefore, the problem we shall 

consider in this chapter is- the application of the tti, -o-parameter gamma 

distribution as a nadel for the square root of the claim amount. It 

is immediately appreciated that data on the square root of the claim 

amount, and not on the claim. amount itself, are required. Mien a 
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grouped frequency distribucion of the claim amount is available, for 

instance like our AD data of tables (1.1) to (1.7), then the square roots 

of the boundaries of the claim amount intervals may be used to obtain a 

frequency distribution for the square root of the claim amount. This 

is, howetier, not satisfactory since the resulting intervals will be-of 

different lengths and the useful assumption which is cften made about 

the concentration of observations (claims) within each interval at the 

mid-point of that interval is unlikely to hold in reality. - 

Therefore the insurance company provided us with data on the square root 

of claim ar, unts. The claims are for accidental damage and are from 

the same portfolio of corprehensively insured private rotor cars which 

we mentioned in chapter 1. Data combined for all age groups, vehicle 

groups, districts and types of use were made available. Six samples 

relating to six periods of accident were provided. Each period consists 

of one quarter of the calendar year and all claims which occured during 

that particular quarter constitute a sample. The six periods of accident 

were 1976/3rd quarter to 1977/4th quarter. For each sample the number 

of claims grouped according to the square root of their size, i. e. Z 

as in (8.1-2), were provided for z up to 38. The grouping was in equal 

bands of length 2. Such a format for a particular sample would look 

like the following histogram 

square root of 
the claL, i amount 

up to 2 

2.01 -4 

4.01 -6 

number of claims 

nl 

n2 

n3 

....... . 

..... ... 

36.01 - 33 

.. 

n1.9 
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For larger claims details of individual claims were provided. We grouped 

these into zurther bands of length 2 until the band containing the 

largest claim (or claims) was reached. Because the square root of claim 

amount is not readily understood in monetary terms we squared the boun- 

daries of each interval for presentation of the data. The frequency 

distributions of the six samples of AD data can, therefore, be seen 

as the first two columns of tables (8.1.1) to (8.1.6). Both open and 

settled claims have been included in each sa-nple. For 1976/3rd quarter 

to 1977/2nd quarter the data were collected more than six months after 

the end of each period of accident and hence no more, or only few, 

claims are still to be reported. For 1977/3rd and 1977/4th quarters, 

as we can see from tables (8.1.5) and (8.1.6), the total number of claims 

are less than for other periods. This is because for these two periods 

of accident the data were collected, respectively, three months after 

the end and at the end of the periods. Therefore many more claims 

are still expected to be reported to complete the histogram in each 

case. We will not make any allowances for IBNR claims of these two 

periods but will judge the results of the model fitting in the light of 

the incompleteness of the data. 

Initially, *in this chapter, we will define the gannna distribution 

and will mention some of its properties. The estimation problem will 

be discussed next and the method of multincnial naxinwn likelihood Gm) 

will be described for estimation of the parameters from grouped data. 

This method will then be used to fit the garmra distribution to the AD 

square root data mentioned above. The results will be analysed and the 

goodness-of-fit tests will indicate the adequacy o, f. this model. The 

effects of inflation on the parameters of the model will be considered 

in section 8.5. These will then be used to . redid the future distribution 

of the square root of claim anuunts from past data. The actual and 
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predicted distributions will be compared, The findings of this 

chapter will be summarized in section 8.7. All the tables are presenteJ 

in section 8.8. 

8.2 Definition and Some Properties of the Ganmia Distribution 

A random variable Z is said to have a (two-parameter) gamma 

distribution if its probability density function, (p. d. f. ), which we 

denote by fG(z ; a, $) , 
is of the form : 

za-1e-z/O f (Z ; 0110 (8.2-1) 
G 

$aF (a) 

a -and ß are the shape and scale parameters respectively. r(a) is 

called "the gam a function" and is defined by 

r(a) - 
Jt'c 

-t dt (8.2-2) 

0 

which, by integrating by parts, can be shokn to be 

r (a) - (a-1) r (a-1) (for a> 0) (8.2-3) 

V, hen a is a positive integer r (a) is the factorial function, i. e., 

T (a) = (a-1) (8.2-4) 

If in (8.2-1) we put a= 1 then fG(z ; a, i) will be the p. d. f. 

of the standard gamma distribution. 

For a=B=1. (8.2-1) will give the p. d. f. of the exponential 

distribution. 

I£ 2 and a-2 then (8.2-1) will be the p. d. f. of the Chi-square 

distribution with v degrees of freedom. 

If we make a transformation, on the random variable Z, of the form 

z ->. z-c which is a translation along the --axis then (8.2-I) will. be the 

p. d. f. of the 3-parameter gam m distribution whose properties can be 
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easily derived from those of f0(z ; a, O). Therefore it will suffice 

to consider only the 2-parameter ganmra distribution here. Further 

reference can be made to Bury (1975) and Johnson and Kotz (1970). 

We denote the distribution function of fG(z a, ß) by G(z 

For the standard gamma distribution we have 

z 
1 

G(z ; al1) =räJz 
lez dz 

0 

(8.2-5) 

where the integral is called "the incomplete gamma function" and is 

denoted by rZ (a) 
. Therefore 

z(a) (8.2-6) G(z ; a, 1) 
r 

r (a) 

Since ß is a scale parameter we can show that 

G(z ; a, $) = G(ß ; a, 1) (8.2-7) 

hence the two parameter ganra distribution function is 

rz/ß(°`) 
G (z ; a, ) = (8.2-8) 

r (a) 

Let x2 v(u) 
denote the distribution function of a Chi-square random 

variable, U, with v degrees of freedom. As we mentioned earlier, 

fG (z ; a, 2) is the p. d. £. of a Chi-square random variable with v= 2a 

degrees of freedom. Hence the relationship between the gaim a and the 

Chi-square distribution functions will be 

2 
G(z ; a, ß) = G( 

Zß 
; a, 2) X2a (2ß ) (8.2-9) 

Therefore tables of the Chi-square ctnnulative distribution function may 

be used to calculate G(z ; a, ß). Pearson (1922) has, however, tabulated 

G(z 1), to seven decimal places, for 
a=0(. OS)1(0.1)5(0.2)51. 

more accurate tabulation. s, of G( z; a, l), to nine decimal places, have 
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been given by Harter (1564) fora = 0.5 (0.5) 75 (1)165. Pearson (1922) 

has shown t; cat, 

G(z ; ct, ß)=e 
O 

ýY +J/, 4 
(«+J+1) l 

J 
(8.2-10) 

where y>0 

For computing purposes, a good approximation to the value of G(z ; a, 0) 

can be obtained by taking sufficient terms in the above series. We 

shall use this formula in our estimation programs and other calculations 

involving the gana cumulative distribution function. The values of 

the complete gamra function r(. ) 
, as required in (8.2-10) are computed 

by a special routine which exists in the NAG1 library of computer routines. 

This routine is based on the Chebyshev expansion of the complete garra 

function which is given in Abramowitz and Stegun (1968). 

The rth moment of Z about zero can be directly obtained from (8.2-1) 

and (3.2-2) as : 

E (Zr) w ßr 
tr a+r 

(8.2-11) 

hence the expected value of Z is 

F(Z) = as (8.2-12) 

and the variance of Z can be show i tu be 
2 

Var(Z) = aß 

The coefficient of variation of Z is, therefore, equal to a-' which is 

positive and depends en the shape parasieter only. The 3rd and 4th central 

nornents of Z, denoted by a and 04 respectively, can be shown, by using 

(8.2-11) , to be 
3 

63 = 2aa (8 2-14) 

and 84 = 3aß 
4 

(rß+2) 
(5.2-15 

1- Nottin harn Algorithmic Group 
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The coefficient of skewness, yl , is, therefore, 

yl = 2a >0 (8.2-16) 

hence all gamma models are positively skewed. The coefficient of 

kurtosis is y2 where 

y2 =3+ 6a-1 >3 (8.2-17) 

which implies that all gamma densities are more peaked than normal 

densities. 

For large values of a, yl and y2*approach their normal values 0 and 3 

respectively. Thus for large a the central portion of the corresponding 

gamma p. d. f. should be well approximated by a normal p. d. f. 

lVhhen a ,l the gamma distribution has a single mode which is located at 

Zmode =ß (a-1) (8.2-18) 

For values of a<1 the gamma p. d. f. has a singularity at the origin 

and fG(z ; a, R) -} °° as z -'- 0. 

The median, and in general the quintile of order q, of the gamma 

distribution cannot be expressed in terms of its parameters but may be 

obtained, by interpolation, from tables of the gamma distribution function. 

As we mentioned in section 8.1 we intend to use the gamma distribution 

as a model for the distribution of Z, the square root of claim amount X. 

The mean and standard deviation of Z do not have any significance in 

monetary terms. Therefore, it is important to obtain the mean and 

standard deviation of X in terms of a and a, the parameters of the 

gamma model. The expected value of X is 

1) 

E (X) = E(Z). since Z= 

but from (8.2-11) and (8.2-3) it follows that 

E (x) r (a+1) (r . 2-19) 
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The variance of X is by definition 

2242 

Var (X) = E(X) - (E "X)) z- E (Z )- (11(X) ) 

On using (8.2-11), (8.2-3) and (8.2-19), respectively, it follows that 

42 6 
ar(X) =ßa (4a + 10 +ä) (8.2-20) V 

8.3 Estimation of the Parameters 

Johnson and Kotz (1970) deal with the estimation problem when values 

of individual observations in the sample are known. They consider the 

usual methods of moments and maxi= likelihood. We are, however, 

interested in estimation from grouped data. Therefore, in this section, 

we will consider the method of multinormal maximum likelihood GM). 

Let us assume that we have a sample of grouped data where n independent 

random observations (claims) on a random variable Z (in our case, the 

square root of the claim anwunt X) have been grouped according to their 

size into k mutually exclusive intervals. Further, let ni be the number 

of observations (claims) in the class interval (zi^1, zi), for 

i=1,2, ... ,k, such that 
k 

n= ni 
i=1 

If Z has a gamma distribution given by G(z ; a, $) in (8.2-7), then let 

pi be the probability that an observation (claim) occurs in the interval 

(z. 
-. 1, zi), i. e. 

ý 

pi = G(zi ; x, ý) 

For i= is taking zo = 0, 

pl = G(z1 ; a, a) 

- G(zi-1 
' a, ß) (8.3-1) 

for i=2,3, ... ,k 

(8.3-2) 

Therefore, the sariple 1.; kelihood function will be proportional to L 
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where 1. 
nl 

" (8.3-3) I. = P1 
i=1 

and the loglikelihood function will be 

k 
log L= nl log pi (8.3-4) 

: i=1 

where pi is as defined above. The values of G(zi ß) are calculated 

from (8.2-10). 
AA 

The maximum likelihood estimates of the parameters, (a, ß), are obtained 

by maximizing log L simultaneously with respect to a and ß. To avoid 

solving non-l: noar equations (which is a laborious task when k, the 

rjwnber of intervals, is large) we suggest the confuting technique 

described in section 3.7.7 for maximizing log L directly with respect 

to the unl<no;, m parameters. To start the iteration process we can use 

the moment estimates of a and ß. For grouped data the sample moments 

can be calculated by assuming that in each interval (zi_1, zi), -all the 

nl observations are concentrated at the mid-point of the interval, i. e., 

at (zi_1 + zi)/2. The sample first and second n ments when calculated 

can be put equal to their corresponding population values to yield the 

moment estimates of a and g. 

8.4 Application of the Camera Distribution to the AD'Sguare'Rdot Data 

To examine the adequacy of the garna distribution as a model for 

the distribution of the square root of the AD claim amount we wrote 

computer progr=, `P? for estimating parameters a and ß from a swrple 1 

of grouped data. The hu". method described in section 8.3 was used. 

The sw'nples of the square root. AD data, which were described in section 

8.1, were input to the prograi<<. For each saiiple the program colrputed 

and printed cut the N NI estimztes of a and 0, the shape and scale 
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paraneters respectively , of the gamma distribution. The mean and 

standard deviation of the claim amounts according to the fitted model 

were also produced. The program also provided an extensive table of 

results, giving in particular the values of the expected claim numbers, 

the expected loss and the contribution to the total X statistic for 
W. 

each claim amount interval. The results for the square root AD data 

are presented in tables (8.1.1) to (8.1.6). The original grouping of 

the data was in bands of length 2 but, for convenience in interpretation, 

we have squared the boundaries of each interval and, therefore, the 

grouping in the tables is in terms of the amount of claim and not its 

square root. From these tables we can see that a is greater than 1 

for all samples. Hence the model portrays the mode of the sample 

histogram. The actual minus expected claim numbers are not small and 

in few of the intervals the contributions to the X2 statistic are large. 

The Xi statistics are significant, at 0.05 level, for all the samples. 

These indicate significant differences between the model and actual 

sample values. 

The expected loss statistic for each interval was calculated by multiplying 

the actual minus expected claim number by the square of the mid-point 

of the original interval in terms of Z, the square root of the claim 

amount. The values of this statistic show considerable disagreement, in 

monetary terns, in the middle range of the claim account distribution. 

Our analysis shows that the 2-parameter gamma distribution is not an 

appropriate model for the distribution of the square root of AD claim 

amounts. The fit of this model to the AD square root data is worse 

than that of the 2-paramoter lognormal distribution to the AD data. Fence it 

seers that collection of data on the square root of the claim amount is an 

unnecessary task. To ponder on i: lry the fit. of the nedel should be so 
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poor we should examine the two assumptions which we made in section 8.1. 

These were : 

(i) - Z, the square root of the claim amount X, is proportional 

to the velocity of the car at the time of impact (since X 
2 

is proportional to 7 mV , the kinetic energy of the car 

at the time of impact). 

(ii) - The velocity of the car at the time of impact has a gania 

distribution 

As regards assumption (i), it may be more reasonable to assume that 

the claim amount X is proportional to mV, the momentum of the car at 

the tijre of impact, and not to its kinetic energy. Hence, if assumption 

(ii) holds, we should expect the claim amount X to have a gamma 

distribution. To examine this on our AD data samples, presented in tables 

(1.1) to (1.7), we used the method of moments to estimate the parameters 

a and ß. -Th. - estimates of a were less than 1 for each sample, hence 

indicating that the garnna model had no node to portray that of the 

histogram of the sample values. The model also had a much shorter tail. 

than the sample histogram. The values of the X2 statistic were 

calculated from each sample and its corresponding gamma model.. These 

were consistently large and indicated significant differences between 

the model and actual sample values. Again the fit was considerably 

poorer than that of the 2-parameter lognormal. This is not totally Un- 

expected since the lognormal model has a mode and a longer tail than 

the gaiima and is, therefore, more capable of representing the mode 

and the long tail of the claim amount histogram. 

There are no statistics available on the velocity of cars at the 

time of impact to allow the examination of assumption (ii). Therefore, 

even if assumption (i) or its revised form (X proportional to rr%o is 
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considered reasonable, there is no reason why Z, the square root of 

claim wount X, (or X itself) should have a gamma distribution since it 

is possible for V to have some other distribution. 

8.5 The'Effects of Inflation on the Parameters of the Model 

Although the gamma model proved not to be appropriate for the 

distribution of the square root of the AD claim amounts, however, to 

make this chapter complete, we consider the effects of inflation on 

the parameters of the model. We follow the exposition of section 3.9 

and investigate these effects theoretically. As was mentioned in that 

section, we would need to allow for such effects when a prediction of 

the future distribution of the square root of claim amounts is required. 

Let us, therefore, again assume that the effect of inflation is to 

increase a claim of amount X to U= X(1 + i) over a period of time where 

i is the effective rate of inflation, according to some suitable index 

of wages or prices, for that period. If Z- (Thas a gamma distribution 

with p. d. f. fG(z ; a, a), as given by (8.2-1), then by a transformation 

of variables it can be shown that 

= rZ where r= (1 + i) 

will have a gap-va distribution with parameters a and rß . Therefore 

inflation affects ß and leaves a, the shape parameter, unchanged. 

This means that when a gamma model is found appropriate for the distribution 

of Z, the square root of the claim amount from a particular class of 

insurance business, we can "update" the scale parameter ß, with 

respect to inflation, and hence obtain the distribution of Z in a 

future period. 

8.6 Prediction for theAD Square Root Data 
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For the purpose of demonstrating our prediction technique for 

the distribution of square roots of claim amounts ( despite the inadequacy 

of the gonna model for the AD data) we wrote computer program P26. The 

WL estü. ates a and for a particular period of accident and the rate 

of inflation, calculated from the General Index of Retail Prices, are 

input to the program. The parameters of the gamma model for the 

future period are then calculated and the program prints out an extensive 

table of results for comparing the actual and predicted distributions 

of the square root of the claim amount. To see the result of predicting 

one year ahead we used 1976/3rd and 1976/4th quarters to predict the 

distributions for 1977/3rd and 1977/4th quarters respectively. The 

results are presented in tables (8.2.1) and (8.2.2). The tables are 

self-explanatory, and wire can see that the actual minus expected number 

of claims is large for some intervals and that the Chi-square 

statistics are very large and indicate highly significant differences 

between the predicted and actual sample values. We did not expect to 

obtain satisfactory results, since the fit of the model to the actual 

data of 1976/3rd and 4th quarters was so poor in both cases. 

8.7 Conclusicns 

As we mentioned in the introduction to this chapter, encouraged 

by 
_a 

remark by Beard (1978), we studied the g an, ma distribution as a 

model for the distribution of the square root of the claim =aunt. The 

properties of the ¬aru a distribution were studied and the bM method 

was considered for estimation of its parameters from grouped data. In 

order to show the application of this mod. el in practice, we obtained 

six samples of the square root of AD claim amounts. The model was fitted 

to each sample by ML method and in each case it exhibited a sharper peal: 

262 



and a shorter tail than the histogram of the sample values. The Chi- 

scviare goodness-of-fit test statistic indicated highly significant 

differences between the model and actual sample values. Judged by 

this statistic, the fit in each case was worse than that of the 2- 

parameter lognormal model to the AD claim amounts as shown in chapter 3. 

In section 8.4, based on the assumption that the amount of claim should 

be proportional to the momentum of the car at the time of impact, we 

examined the ganuna distribution as a model for the distribution of the 

claim amount itself. Hence we fitted this model to the AD samples of 

tables (1.1) to (1.7). The values of a, the shape parameter, were less 

than 1 in each case. This indicated that the model ignored the distinct 

mode of the actual distribution of claim amounts. The model also 

exhibited a much shorter tail than the histograms of the samples. Judging 

2 
b) ,X statistic, a very poor fit was obtained. In each case, the fit 

was worse than that of the 2-parameter lcgnonnal distribution as shown 

in chapter 3. This was not surprising since the lognormal distribution 

has a longer tail than the gamma and also always possesses a mode. 

For the sake of a more complete study, the effects of inflation 

on the parameters of the gamma model, when used for the distribution 

of the square root of the claim amount, were considered. It was shown 

that inflation increases ß, the scale parameter, but leaves a, the 

shape parameter, unchanged. Predictions were made, using two samples 

of our square root AD data and, as expected fr ., the poor fit of the 

gamma model to the sample values, the predicted distributions were sho., n, 

by the X2 statistic, to differ significantly from the actual ones. 

Wo therefore ro j cct the gazitra distribution as ai cde1 for the 

distribution of JD claim amounts or the square roots of clam vnounts. 

For the latter, we b�lieve that the tasr, of collecting data on the square 
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root of claim amount is unnecessary when more adequate models, like 

the lognor 1, exist for the distribution of claim. amount itself. 

8.8 Tables 
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"2b1e i ß, 1.1i 

* TWD-PARAMETER GAMMA DIS. *#* 

76/3RD QUARTER DATA 

ESTIMATION By MULTINOMIAL MAX. LIKELIH000 METHOD : - 
ALPHA - 3.474 BETA=. 3.866 

MEAN=-232.223 S. D. = 262.746' 

AMOUNT £ ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO, CL. N0. EXPECTED LOSS,. (A-E)**2/E 

UPTO 4 14. 13. 11 1, 0,077 
4- 16 90, 116. 4, 36. 0,186 

16- 36 147. 178. -31. -777. 5.399 
36- 64 240. 243. -3. -147. (1,037 
64- 100 297. 271. 26. 2108, 2.494 

100- 144 
, 
290. 265. 25. 3028, 2,358 

144- 196 260. 239. 21, 3552. 1,1345 
196- 256 188. 204. -16. -3602. 1.255 
256- 324 175. 166�' 

' 
19, 2603. 0.486 

324- 400 119, 130 , -11, -3973. 0.931 
400- 484 76. 99. -23. -10148. 5.343 
484- 576 57. 74. -17, -8997. 3.905 
576- 676' 49. 54. -5. -3126. 0.463 
676- 784 45. 39. 6. 4376. 0,923' 
7134- 900 28.. 28, 

. 0, 01 00000 
900-1024 21, -20, 1, 

. 
'961. 0,050 

1024-1156 18. 1.4. 4. 4357, 1.143 
1156-1296 17. 9, 8. 9803. 7.111 
1296-1444 4. 6. -2. -2739. 0.667 
1444-1600 2. 4, -2. -3043. 
1600-1764 B. 3. " 5. 84017, . 
1764-1936 1. 2. -1, -1949. 
1936-2'116 1, 1. 0. 
2116-2304 2. 11 1. 2209. 
2304-2500 2. 1, 10 2401. 
2500-2704 0. 0, 0. 01 
2704-2916 01 0. 01 01 
2916-3136 0. 0. 00 0. 
3136-3364 0. 0, 0. 01 
3364-3600 0. 01 01 0. 
3600-3844 0. . 0. 0, 0. 
3844-4096 01 0, 01 00 
4096-4356 01 0. 0, 
4356-4624 01 0.. 06 0. 
4624-4900 01 0, 

. 0. 0. 
4900-5114 0. 0. 0, 0. 
51Rh1.. 5476 0. ' 01 0, 0, 
5 76-6776 0 1. 5626. 0 
------------ -------- Y... - ----------- ----------- --------------- --------- 

TOTAL 
.. --------- 

2152, 
--- . -- +---- 

2150. 
----------- ----------- 

11067, 
----------- 

36.767 
-- ----------- 

TOTAL EXP. LOSS 
2.2 as J !ýa 

TOTAL ACT. COST 
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Table (8.1.2) 

# TWO-PARAMETER GAMMA DIS. *#* 

76/4TH RUARTER DATA 

ESTIMATION BY MULTINOMIAL MAX. LIKELIHOOD METHOD t- 
ALPHA = 3.733 BETA= 3.888 

MEAN= 266.975 - S. D. - 290.604 

AMOUNT f. ACTUAL -EXPECTED ACTUAL- EXPECTED 
CL. NO, CL. NO. EXPECTED LOSS (A-C)**-2/E 

UPTO 
.4 

11. 10. 1. 1. 01.100 
4- 16 107. 82. 25. 226. 7.622 

16- 36 145. 192. -47. ' -1177. 11.505 

. 
36- 64 266. 287. -2.1. -1030. 1.537 

. 64- 1110 . 
361. 342. 19, 1541. 1.056 

100- 144 361. 354. 7. 8418.. n. 138 
144- 196 -359. 334. 25. 4228. 1.871 
196- 256 325. 296. 29. 6529. 2.841 
256- 324 252. 249. 3. 868. 0.036 
324 - 400 200. 202. -2. -722, 0.020 
400- 484 137. 159. 

. -22. -9707. 3.044 
X 484- 576 112. 122. -10. -X5292. 0.820 

576- 676 80. 92. ' -- 12. 4503. 1 *565 
676- 784 61. " 68. -7. -5'! 05. 0.721 
784- 900 51. 49. 2. 1683.. 0.082 

.. 900-1024 31. 35. -4. -3845. 0.457 
1024-1156 28. 25. 3, 

. 3268. 0.360 
1156-1296 24. 18. 6. 7352. 2.000 
1296-1444' 13. " 12. 1. 1369. 0.083 
1444-1600 8. 8. 00 0. 0.000 
1600-1764 . 4. 6. -2. -3363. 0.667 
1764-1936 9. . 4. 5. 9247. 
1936-21 16 1; - 3. -2. -4051. 1.286 
2116-2304 2. 2. 0. 0. 
2304-2500 2. 1. 1. 2401. 

. 2500-2704 1. 1. 0.. 
. 
0, 

2704-2916 0. 1. -1. -2810. 
2916-3136 0. 0. 0. 0. 
3136-3364 01. 0. 0. 0. 

3364-3600 1. 0. 1. 3482. 
3000-3844 . 1. 0. 1, 3722. 
3844-4096 0. 0. 0. 0, 
4096-4356 0. 
4356-4624 
---------- 

1. 
---- --- ---- 

0. 
--------- ! ---- 

1. 
----------- 

4490. 
---------- 

1.800 
-- 

ToTAL - 2954-. 2954. 6648. 
------------ 

39,610 

Q. F. -70 
TOTAL EXP. LOSS . 

0.8 " 
TOTAL ACT. COST 
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Table (8.1,3) 

-ý^# TEND-PARAMETER GAMMA DIS. 
- 

$** 

77 f 'i S'! ' QUARTER DATA 

ESTIMATION 0Y. MULTINOMIAL MAX. LIKELIH00D METHOD '; - 
. ALPHA = 3.822 BETA= 3.790 

MEAN= 264.715 S S. D. = 284-. 505 

AMOUNT ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS (A_E)**2/E 

UPTO 4 7. 7. 
. 

0. 0. 0.000 
4- 16 85. 62. 23. 208, 8.532 

16-. 36 107. 151. 
-44. -1102. 12,821 

36- 64 
0 6 

2069 
280 

22.9.. 
2 

-23. -1129. 2�310 
4- - 10 . 75. 5. 405, 0.091 

110- 144 328, 286. 42. 5087. 6.168 
144 196 299. 271. 28. 4736. 2.893 
196-. 256 262. 239. 23. 5178. 2.213 
256- 324 196. 201. 

-5. -1446. 0.124 
324- 400 151. 163, -12. -4334, 0,8113 
400- 484 104. 127. 

-23. -10148. 4.165 
484- 576 79. 97. -18. -9526. 3.340 
-576- 676, 62. 73. -11. . -6878. 1.658 
676- 784 50. 53. -3. -2188. 0.170 
784=- 900 45. 138. 7. 5889. 1.269 
900-1024 27. 27. 0. 0. 0.000 

1024-1156 22. 19. 3. 3268. 0.474 
1156-1296 8. 13. -5. -6127. 1,923 
1296-1444 16, 9. 7. 

. 
9586. 5.444 

1444-1600 8. 
. 
6. 2. 3043. 0.667 

1600-1764 6. 4. 2. 3363. 
1764-1936 4. 3. 1. 1849. 1.286 
1936-2116 5. 2. 3. 6076. 
2116-2304 2. 1. 1. 2209. 
2304-2500 . 0. 1. -1. -2401. 
2500-2704 0. 1. -1. -2602. 
2704-2916 0. 0. 0, 0. 
2916-3136 1. 0. 3026. 
3136-3364 0. 0. 0. 0, 
3364-3600 0, 0, 
3600-3844 0. 00 - 0. 00 % 
3844-4096 0. 0, 0. 0, 
4096-4356 

- 

1. 

---- 
" 0" 

------------ 

11 

----- w_w» 
4226. 

_- 
TOTAL L. 2361. 2358. 102fýH. 

- ----- 
K, 

------ ----------- - - ' 654 
- - --------- --.. _---ww_ww--__ww.. -_w_ w - ------ 

TOTAL EXP. LOSS 
D. F. '19 

--- .. 1.6% 
TOTAL ACT, COST 
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Table (8.1.4) 

* TWO-PARAMETER GAMMA *** DIS, 

77/2ND QUARTER DAT A 

ESTIMATION BY r ULTINOMIAL MAX. LIKE LIHOOD METHOD ; - 
ALPHA = 3.746 BETA= 3.941 

MEAN= 276.19A S. D. = 300.056 

AMOUNT £ ACTUAL. EXPECTED ACTUAL- EXPECTED 
CL. NO. - CL. NO. EXPECTED LOSS (A-E)*-K-? /E 

UPTO 4 5. 6. 
-1.. -1. 0.167 

4- 16 68. 51. 17. 
. 154. 5.667. 

16- 36 93. 
' 

120. 
-27. -676. 6.075 

36- 64 162. - '182. -20. -981. 2.198 
64- 100' 236. 219, 17, 1379. 1.320 

100- 144 237. 229. 8. 969. 0.279 
114- 196 240. 218, 22. 3721. 2.220. 
196- 256 209. 195. 

, 
14. 3152. 1.005 

256- 324 153. 
, 

165, 
. -12. -3470. 0,1373 

324- 400 137.. 135. " 2. 722. 0,030 
4(101- 484 99. 

. 
107. -8. -3530. 

' 0.598 
484- 576 71. 83. -129 -6351. 1.735 
576- 676 58. - 63. -5. -3126, 0.397 
6.76- 784 51. 47. 4. " 2917. 0.340 
784- 900 31. 34. -3. -2524. 0.265 
900-1024 22. 25. -3. --2884. 0.360 

1024-1156 14, ' 18, -4. -4357. 0.889 
1156-1296 15. 13. 2. 2451. 0.308 
1296-1444 10. " 9. 1. 1369. 0., 111 
1444-1600 10. 6. 4. 6086. 2.667 
1600-1764 2. 4, -2. -3363 
1764-1936 5. 

. 3. 2. . 
3699. ý, CCO 

1936-2116 5. 2.. 3. 6076. 
2116-2304 

, 
0. 1. -1. -2209. 

2304-2500 1. 1. 0. 0. 
2500-2704 2. 

. 
1. . 1. 

. 
2602. 

2704-2916 n. 0. 0. 
2916-3136 1. 0. 1. 3026. 

- 
3,200 

TOTAL 

---------- 

'1937. 

------------ 

1937. 

------------ --------- 

4848, 
---- 

-------------- 
X0.702_ 

-- 

-------- 

TOTAL EXP. LOSS 
D. F. 

-- - 

' --- 019 % P <0, 
' TOTAL ACT. COST 
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Table (8,1.5) 

## TWO-PARAMETER GAMMA OIS. ##* 

77/3RD QUARTER DATA' 

ESTIMATION By MULTINOMIAL MAX. LIKELIHOOD METHOD :- 
ALPHA = 3.331 BETA= 4.372 

MEAN= 275.774 S. D. = 319.158 

AMOUNT £ ACTUAL EXPECTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS (A-E)**2/E 

UPTO 4 9. 10. -1. -1. 0.100 
4- 16 96. 59. 37. 334. 23.203 

16- 36 67. 122. -55. -1378. 24.795 
36- 64 159. 169., 

_ -10. -491. 0.592 
64- 100 191. 192. - -1. -81. 0.005 

100- 144 189. 195. -6. -727. 0.1135 
144- 196 210. 182. 28. 4736. 4.308' 
196- 256 174. 161, 13. 2927. 1.050 
256- 324 158. 136. 22. 6362. 3.559 
324- 40G 107. 112. -5'. -1806. 0.223 
400-484 86. 90. -4. -1765.. 0.178 
484- 576 74. ' 70" 4. 2117. 0.229 

' 576- 676 56. 54. 2. 1251. 0.074 
676- 784 32. 41. -9. -6563. 1.976 
784- 900 21. 31. -10. -8413. 3,226 
900-1024 13. 23. -10. -9613. 4.348 

1024-1156 13. 17. -4. -4357. 0.941 
1156-1296 11. 12. -1; -1225. 0.083 
1296-14,14 14. 9. 5. 6847. 2.778 
1444-1600 5. 6. -1. -1521. 0.167 
1600-1764 4. 4. ' 0. 0.. 00000 
1764-1936 4" 3. 1. 18gq. 
1936-2116 2. 2. 0. 0. 0,200 
2116-2304 2. 2. 0. 0. 
2304-2500 3. 1. 2. 4803. 
2500-2704 1. 1. 0. 0. 
2704-2916 0. 1. -1. -2810. 
2916-3136 1. 0. "1. 3026. 
33136-3364 0. 0. 0. 0" 
"3364-3600 0. 0. 0. U. 
3600-3844 0. 0. 0. 0" 
3844-4096 0. 0. 0, 0. - 

4096-4356 0. 0. 0. 0. 
4356-4624 2. 0. 2. 8979. 3.200 

TOTAL 

---------- 

1704. 

----------- 

17050 

------------ ----------- 

24I9. 
µ- - 

------- 

75.4+0----- 

----- 
D. F. 

------------ 
_- ?0 

TOTAL EXP. LOSS 

----" ------ = 0 
"5 

oil v ý"! 1: 
TOTAL ACT. COST 
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Table (8,, 1.6) 

*** TWO-PARAMETER GAMMA DIS. *** 

77/4TH QUARTE n DATA 

ESTIMATION BY MULTINOwlI AL MIAX. LIKE LIH00D METHOD ; - ALPHA 2 . 690 BETA= 5.387 

MEAN= 289 . 606 S. D. = 375.684 

AMOUNT E ACTUAL EXP¬CTED ACTUAL- EXPECTED 
CL. NO. CL. NO. EXPECTED LOSS (A-E)**2/E 

UPTO 4 3. 6. 
-3, -3. 1.500 

4- 16 
. 

50. 25. 25. 226. 25.000 
16- 36 19. 1 . 42. ' -23. -576. 12.591 
36- 64 31. 51. -20. -981. 7.843 
64- 100 57. 54. 3-. 243. 0.167 

100- 144 54. - 52. 2. 242. 0.077 
144- 196 '(7. 48. 19. 3213. 7.521 
196- 256 42. 42. 0. 0. ' 

. 0.000 
256- 324 53. 36. 17. 4916. B. 028 
324- 400 24. 30. -6. -2167. 1.200 
400- 484 17. 25. -8. -3530. 2.560 
454-. 5.76 13. 20. -7. -3705. 2.450 
576- 676 2?. 16. 6. 3752. 2.250 
676- 704 10. 12. -2. -1459'. 0.333 
784- 900 9. 10. -1. -641. 0.100 
9O0-1024 13. 7. ; 6. 576E+. 5.143 

1024-1156 0. 6. 
. -6. . -6536. 6.000 

1156-1296 0. 4. -4. -4901. 
1296-1444 , 

0. 
. 

3. _. -3. -4108. ' 7.0Q0 
1444-1600 3. 2. 1. 1521. 
1600-1764 1. 2. -1. -1601. 01000 
1764-1936 5. 1. 4. 7396. 
1936-2116 2. 1. 1. . 2025. 
211E-2304 3. 1. 2. 4419. 
2304-2500 0. 1. -1. -2401. 
2500-2704 . 1. 0.. 1. 2602, 

' 2704-2916 1. 0. 1" 2810. 16.000 

TOTAL. 

----------- 

500. 

---------- 

497. 

---------- ----------- 

----------------------- 
0244.105.767 

------------- - 
D. F. 

- --------- 
= 17 

TOTAL EXP. LOSS 

------ -----. ---- 4.3 P <001 
TOTAL ACT. COST 
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Table (8.2.1) 

*** - (WO-PARAMETER GAMMA DIS. *** 

PREDICTION OF 7? /3RD (LJARTER CLAIMS CO ii 
USING 76/3RD (QUARTER PULT. MAXL. PARAMETERS 

ALPHA= 3.474 BETA= 3. A66 

INFLATION RATE I 1fß. 54 CALCULATED FROM 
GENERAL INDEX OF RETAIL PRICES. 

PREDICTION P!, HAPMETEf1S ARE ALPHA= 3.474 BETA- 4.173 
MEAN CLAIM AMOUNT= 2? 0.63 5. D. =306.19 

ACTUAL 7? /3HU PARAMETE RS : - ALPHA = 3.331 BETA= 4.372 
MEAN CLAIM hiAOLJNT= 275.75 S. D. =319. i5 

AMOUNT f, ACT . NO. E XP. NO. A-E E XP. LOSS (A-E) **2/E 
UPTC) 4 9. A. ' 1. 1. 0.125 

4- 16 96. 55. 41. 3? 0. 30.504 
16- 36 67. 119. -52. -1303. 22.723 
36- 64 159. 169. -10. -491. 0.592 
64- 100 191. 195. -4. -324. 0.082 

100- 144 189. 199. -10. -1211. 0.503 
144- 196 210. 186. 24, 4059. 3.097 
196- 256 174. 164. 10. 2252. n. 610 
256- 324 158. 139. 19. 5494. 2.597 
324- 400 107. 113. -6. -2167. 0.319 
400- 484 86. 90. -4. -1765. 0.178 
484- 5? ( 74. 70. 4. 2117. 0.229 
576- 676 56. 53. 3. 1876. 0.170 
676- 784 32. 40. -8. -5834. 1.600 
784- 900 21. 29. -8. -6730. 2.207 
900-1024 13. 22. -9. -8652. 3.682 

1024-1 156 13. M. -3* -3268. n. 563 
1156-1296 11. 11. n. n. 0.000 
1296-1444 14. 8. 6. 8216. 4.500 

144d-1600 5. 6. -1. -1521. 0.167 
1600-1764 4. 4. n. n. 
1764-1936 4. 3. 1. 1849. 
1936-2116 2. 2. n. n. 
2116-2304 2. 1. 1. 2209. 
2304-2500 3. 1. 2. 4803. 
2500-2704 1. 1. 0. 
2704-2916 0. n, n, n. 

2916-3136 1. 0. 1. 3026. 
3136-3366 0. 0. 0. 0. 

3364-3601) 0. 0. 0. 0. 
3600-3844 n. 0. n. n. 
3844-4096 n. n, n. n. 
4096-4356 01 0. n. 0. 
4356-4624 2. n. 2. [4979. 

------------ 
TOTAL 

----------- 

----------- 
1704 

----------- 

--------- 
17114 

--------- 

----- 

----- 

--------- - 
119V5, 

----------- 

----------- 
711.504 

----------- 

CHI 5W. STMT. = 81. g 7 n. F. = 21 F <. 01 

TOTAL. ACTUAL CURT = 47220fi. 
TOTAL. EXPECTED (; UET t 46(I223 . 

TOTAL E: Yf. LOS`* 

----------------- 2.54 
TOTAL ACT. COST 271 



Table (8.2.2) 

*** TWO-PARAMETER GAMMA DI: i. *** 

PREDICTION OF 7? /4TH QUARTER CLAIM(' COST 

USING 76/4TH QUARTER l4ULT. MAXL. PARAMETERS 

ALPHA= 3.733 (SETA= 3.888 
INFLATION RATE I=13. Cä CALCULATED FROM 
GENERAL INDEX OF RETAIL PRICES. 

PREDICTION PARAMETERS ARE : - ALPHA= 3.733 BETA- 4.133 
MEAN CLAIM AMOUNT- 31)1.80 5.0. -328.50 

ACTUAL 77/4TH PARAMET ERS : - ALPHA- 2.648 BETA- 5.387 
MEAN CLAIM AMOUNT.. 289.54 S. a. -3? 5.62 

AMOUNT F ACT. NO. * EXP. NO. A-E EXP. LOSS (A-E)**2/E 

n- 4 3. 1. 2. 2. 
4- 16 50. 12. 38. 343. 120.333 

16- 36 19. 28. -9. -225. 2.893 
36- 64 31. 43. -12. -589. 3.349 

-64- 100 57. 53. 4. 324. 0.302 
100- 144 54. 56. -2. -242. 0.071 
144- 196 67. 55. 12. 2030. 2.618 
196- 256 42. 5n. -A. -1801. 1.280 
256- 324 53. 44. 9. 26n3. 1.841 
324- 400 24. 36. -12. -4334. 4.000 
400- 484 17. 29. -12. -5295. 4.966 
484- 576 13. 23. -10. -5292. 4.348 
576- 676 22. 1H. 4. 2501. 0.689 
676- 784 10. 14. -4. -2917. 1.143A 
784- 900 9. in. -1, -841. n. IIU) 
900-1024 13. A. 5. 4807. 3.125 

1024-1156 n. 6. -6. -6536. 6.000 
1156-1296 0. 4. -4. -4901. 
1296-1444 n. 3. -3. -4108. 
1444-1600 3. 2. 1. 1521. 
1600-1764 11 1. Q. n. 

1764-1936 5. 1. 4. 7398. 
1936-2116 2. 1. 11 2025. 

21 16-2304 3. (31 3. 6628. 
2304-250(1 0. 0. 0. n. 

2500-2704 1. 0. 1. 2602. 
2704-2916 1. 

------ 

0. 

------- 

1. 

-------- 

281 n, 

----- ----------- TOTAL. 

----------- 

---- 
500 

--------- 

1198 

------- -------- 

------ 
-14A9 . 

----------- 

---------- 
157.258 

---------- 

CHI : C'I. STAT. r 191,6 , D. F. r17 P <. 01 

TOTAL ACTUAL COAT Q U15477. 

TOTAL EXPECTED COST = 146966. 

TOTAL EXP. LOIF3S 

--------------- 
TOTAL. ACT. CO,; T 
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CHAPTER 9 

Summary of Conclusions 

In this work several statistical distributions were examined 

as models for the distribution of claim amounts in general insurance. 

A chapter was devoted to the study of each. The results of examining 

the applicability of different distributions were summarized in the 

concluding sections of the various chapters. In those sections, 

where applicable, recommendations were made as to procedures to be 

adopted when testing whether a sample can be regarded as drawn from 

a particular distribution. The preferred method (methods) of 

parameter estimation for the model was also suggested and its 

performance on the accidental damage (AD) data was reviewed. In 

addition, the effects of inflation on the parameters of the 

model were summarized and, with appropriate models, the 

performance of the prediction technique on the AD data was reported. 

To avoid unnecessary repitition we suggest that for a sunnzry of 

the findings on each model reference should be made to the 

relevant conclusions at the end of each chapter. The purpose of 

this chapter is to summarize those aspects of the present work 

which are common to all the models considered and which may be 

useful in fitting distributions to general insurance data. 

Mien fitting statistical models to empirical data we have to 

deal with two problems. Firstly the estimation of the parameters 

of the model from the sample and secondly the testing of the 

agreement between the model and actual sample values. Due to the 

large number of claims, general insurance claim aýx unts data are 

I sually in grouped frequency format. ' Therefore the efficient 

method of rultinomial rw. Lmun likelihood ON, ) is reco : ended 

for. estimation from grouped data. Without the aid of computers 
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this method is not always practicable. However, as computers 

are now commonly available the M method should present no 

problems when our proposed computing technique is used to find 

the estimates of the parameters. Applications of this method 

were demonstrated on the AD data for various distributions. 

With some models, like the 3-parameter lognormal or Weibull, it 

is possible to use the least squares (LS) method of estimation 

which is simpler than the NIML method but less efficient. In 

such circumstances our LS computing technique is recommended 

in place of solving a system of non-linear equations. When no 

computer is at hand one of the other simpler but less efficient 

methods of estimation may be adopted. 

Due to the importance of testing the agreement between a fitted 

model and actual sample values we devoted Chapter 2 to the study of 

some goodness-of-fit tests. The Chi-square is the one test which 

is widely used by actuaries and others. As it is not possible to 

interpret the value of this statistic in monetary terms,, we 

recommended supplementing it by our proposed total expected loss 

statistic T. The T statistic is a measure of overall agreement in 

monetary terms between the model and the actual sample values. 

Another goodness-of-fit test which is usually more 'powerful' 

than the chi-square is the Kolmogorov-Smirnov test. This test 

does not appear to have been exploited in actuarial work. It is, 

therefore, dealt with in Chapter 2 where the application procedure 

for its use is also described. In practice, we recommend that, 

when conditions allow (see Chapter 2), all three statistics be used since 

in some cases they nay tell a slightly different story. In our 

analysis of the AD data whenever possible we used all these statistics 

for examining the goodness-of-fit of the models to the actual 

sample values . 
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One of the purposes of model fitting is the prediction of the 

future distribution of claim amounts and hence the future cost of 

claims to the insurer. Inflation is believed to be the main 

cause of increase in the claim amount over time. Therefore, its 

effects on the parameters of each model were studied. A prediction 

technique was proposed which consisted of updating the parameters 

of the past model with respect to a given rate of inflation, as 

calculated from a suitable index of wages or prices. These 

updated parameters were then used in the model for the distribution 

of future claim amounts. Mhenever a suitable model was found for 

the AD claim amounts this technique was deomonstrated on the past 

data and shown to perform very well (i. e. in terms of the goodness- 

of-fit tests, no significant differences were observed between the 

predicted and actual distributions). It was also shown that for 

AD claim amounts he appropriate index, for the calculation of the 

rate of inflation, is the General Index of Retail Prices. The 

effectiveness of our proposed total expected loss statistic, T, 

is clearly demonstrated when judging the agreement between the 

predicted and actual distributions since in that case it shows-by 

how much, in monetary terms, we have overpredicted or underpredicted 

the total cost of claims. The advantage of using a statistical 

model was made apparent in section 3.14.2 by the fact that it gave 

a smaller over-prediction of the total cost of claims than the 

simple method of updating the sample mean with respect to inflation. 

Therefore, the distribution theory approach has the merit of 

allowing the setting up of smaller, but accurate, reserves. 

It is not possible to recomr-iend any one distribution as the 

best model for the distribution of general. insurance claim amounts 

since different models may fit data from different classes of business. 
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Care must be taken to adopt a model which represents the special 

features of the data. For example, if the actual samples consistently 

exhibit a mode near the origin, we must use a model like the 

lognormal or the inverse Gaussian rather than the Weibull or the 

gamma which have no'mode when the value of their shape parameter 

is less than 1. If the histograms of the samples have very long 

tails then the lognormal, or the inverse Gaussian, would be more 

appropriate than the Weibull or the gamma since the former models 

have a longer tail. If we are interested in the distribution of 

large claims, the truncated lognormal or the Pareto distributions 

should be found more suitable. If two models are found to fit 

the same data equally well, then the one which has a thicker tail, 

and which may overpredict the total cost of claims slightly more, 

should be preferred. This is because it is wiser to overpredict 

slightly rather than underpredict the total cost of claims. We 

recommend the 3-parameter lognormal distribution as the model for 

the distribution of the AD claim amounts. The location parameter, 

c, of this model was interpreted as the amount of voluntary excess 

on the policy. This distribution clearly exhibited the mode and 

the long tail of the histograms of the samples. The agreements 

between the model and the sample values and between the predicted 

models and the sample values were satisfactory. Our proposed 

3-parameter inverse Gaussian distribution also presented the above 

features and gave almost as good a fit to the data. However, the 

lognormal distribution seems more desirable because we have a 

theoretical justification for it and because tests of lognormality 

are available. In addition a slightly better fit to the ýT 
data 

was provided by this distribution. For the distribution of ]arge 

AD claim amounts we recommend the truncated lognormal on the basis 
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of its good fit to the data, but almost as good results may be 

obtained by the simpler to use Pareto distribution. 

We believe that with the wide availability of computers all 

models are relatively easy to use. Therefore, it must be emphasised 

that the particular features of the data rather than the ease of use 

should be the criteria. in selecting a model. 
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APPFADI K 

Computer Programs 

pram Description pie 

P1 Prints sample frequency and cumulative distribution 220 
functions and a set of relevant sample statistics, 
(section 1.6)1. 

P2 Generates, a sample of 2500 lognormal random 281 

variates (u = 4.5, a2 = 1) and grcups them 
according to the format of AD samples. The 
sample frequency and cumulative distribution 
functions are printed; (section 3.6.4). 

P3 Generates 100 samples of 2500 lognormal random 281 

variates (u = 4.5, a2 = 1), (section 3.7.8). 

p4 Measures the performance of various methods of 282 
estimation on simulated lognomal samples, 
(section 3.7.8). 

P; Estimates parametimrs p and 2, of the 2-parameter 284 e- 
lognormal distribution, by various methods of 
estimation, (section 3.8). 

P6 Estimates parameters i and a2 , of the 2-parameter 286 i-- 
lognormal distribution by the AGIL method, 
(section 3.8). 

P7 Plots the histogram of a given sample of AD data 287 
and the frequency curve of 2-parameter logno renal 
model fitted to the actual data (section 3.8). 

Performs the prediction of the future distribution 289 
of claim amounts: - the 2-parameter lognonal 
model, (section 3.9.3). 

P9 Plots the points (log(x+c), z) for various values 290 
of c for the purpose of testing a given sample of 
data for 3-parameter lognorirality, 
(section 3.11.2). 

, 

Pio Estimates the parameters of the 3-parameter 291 
logior,,. al distribution by the method of least 
squares, (section 3.13). 

Pll plots the points (log (x+c) 
, z) , 

from the sample, 293 

and the ]east squares line fitted to them , (section 3.13). 

1- For each progr. ^*: the section r. tn: iber refers to the reievasrt section. 
in the text where the use of that parlAculaz combater prop. =1 i, 

mentioned for the first time. 
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profirar; Description Page 

P12 Estimates th': parameters of the 3-parameter 294 
lognormal distribution by the M4L method, 
(section 3.13). 

P13 Performs the Weibull graphical test, 295 
(section 4.5). 

P14 Estimates the parameters of the 3-parameter 296 
Weibull distribution by the method of 
least squares, (section 4.7). 

P15 Plots the points (log (x-c) 
, log log 11x) 297 

from the sample, and the least squares line 
fitted to them, (section 4.7). 

P16 Estimates the parameters of the 2-parameter 298 
Weibull distribution by the method of 
wL, (section 4.7). 

P17 Estimates the parameters of the 3-parameter 299 

. 
Weibull distribution by the IM method, 
(section 4.7). 

P18 Estimates the parameters of the 2-parameter 301 
inverse Gaussian distribution by the b\IL 

method, (section 5.5). 

P19 Estimates the parameters of the 3-parameter 302 
inverse Gaussian distribution by the M& 
method, (section 5.5). 

P20 Plots the histogram of a given sample of AD 303 
data and the frequency curve of the 3-parameter 
inverse Gaussian model fitted to the actual 
data (section S. 5). 

P21 Performs the prediction of the future distribution 305 
of claim amounts: - the 3-parameter inverse 
Gaussian model, (section 5.6.2). 

P22 Performs the Pareto graphical test, 306 
(section 6.5) 

P23 Estimates the parameters of the truncated lognormal 307 
distribution by the rDM method, (section 7.4) 

P24 Estimates the parameter A, of the Pareto 309 
distribution of the first kind, by the IMNI, 
method, (section 7.4). 

P25 Estimates the parameters of the Gamii a model by 310 
the TIC L method, (section 8.4). 

P26 Perfowsthe prediction of the future distribution 312 
of claim amounts :- the �a11"la i odel , 

(section W11.6). 
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