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ABSTRACT

This work examines the following statistical distributions

as possible models for the distribution of claim amounts in general

insurance:

1 - The lognormal
2 - The Weibull

3 - The inverse Gaussian
(A new 3-parameter form is introduced)

4 - The Parcto

5 = The truncated lognormal
(as a model for large claim amounts)

¥,

6 - The gamma
(as a model for the distribution of the square root
of claim amounts)

The properties .of the above distributions are investigated and various
methods of estimation of their parameters are explored. The method
of multinomial maximum likelihood for estimating the'paramcters is
favoured because data on claim amounts is generally in grouned
frequency format. To find these estimates a computing tcchnique is
proposed which avoids solving a complicated set of non-linear
equations. A procedure which avoids solving non-linear equations

is also suggested for the least squares estimation of the 3-parameter
lognormal, 3-parametcr Weibull and the Pareto distribution of the
second kind. In order to show how the various methods work in
practice they are applied to an actual set of accidental 'damage claim
amounts. Goodness-of-fit tests are used to judge the agreement
between the model and sample values. ¢ Chi-square and the

Kolmogorov-Smirnov tests are reviewed and a new test statistic is



proposed which measures the overall agrecment between the model
and sample values in meonetary terms. The application procedures
for all these tests are described.

Inflation is likely to be the main cause of the increase in
the size of claim over time. Therefore, its effects con the
parameters of various mpdels are examined. A method is suggested
for predicting the future distribution of claim amounts which

uses the parameters of a past model after being adjusted for

it C———— gy w—

inflation. This predictive method is demonstrated on the

accidental damage data whenever a suitable model is found.

Vi



CHAPTER 1

INITRODUCTION

1.1 Definition

: 1 . : :
General insurance  is defined as all classes of insurance
other than life insurance (or assurance). For a thorough comparison

between lifc and general insurance reference may be made to

Benjamin (1977). Fundamentally, general insurance has the following

distinguishing features as compared with life assurance:

1 - Claim size not known in advance and often without limit.

2 - Premium changes from year to year because contracts are
normally renewed annually.

3 - More than one claim can arise under the same policy.

4 - Volatility; large variances of both claim frequency
-and claim amount especially the latter.

1.2 Basic Problems of Insurance

In insurance we are faced with the problems of charging
adequate premiums to cover a certain risk and the setting up of
reserves adequate to meet the cost of futurc claims with some margin
of profit. In lifc assurance, where the claim amount is known in
advance or can be detcrmined by actuarial mcthods, these problems
have been solved by the use of the life table (which provides a

model for the probability of survival) in conjunction with discounting

el
—y

functions. In general insurance, however, wherc the size of claim is
most usually not Xnown in advance, a prior cstimate of the future

cost of claims is essential to the calculation of reserves. This

e S

cost is a combinatica of the frequency of claims andl their size. Tt

i

il R

] -~ Somctimes referred to as Nen-life insurance.



is possible to treat each of these components of the cost separately
by collecting scparate statistics on the frequency and size of claims.

In this work, we are concerned with the size of claims only. No claim

_

amount table exists for the calculation of the probability of

occurrence of a claim of a certain size.

1.3 Statistical Modelling v

It is known that many random factors affect the size_ gf the clg—li_m.
Statistical modelling 1s recognized as a rational tool of analysis for
problems in all areas of science and cngineering where data variation
cannot be ignored. Therefore, it commands considerable attention in
the solution of the basic insurance problems. Statistical modelling
assumes that there is a claim amount distribution underlying the
risx process. This distribution, once detcrmined, enables us to
calculate thc probability that if a claim occurs it will be not
greater than a certain size. The shape of the claim amount distributicn
1s important in premium determination and reserves calculations. As
Beard (1974) states, 'a good theoretically derived model would be of
considerable help in dealing with practical estimation problems
arising from the random fluctuations which arise in the relatively
small samples (in terms of the large claims) which commonly are all
that is available'. In some classes of general insurance business
reinsurance is sought due to the likelihood of occurrence of very
large claims. In that case, the examination of the area (the
probability) under the upper tail of the distribution is necessary

for the insurance company's decision about 'retentionl' before

reinsurance. In motor insurance the policyholder may opt to pay

some firstmart of any own damage claim ('volumtary excess') in

return. for a reducticn in the premium. The appropriate deduction,

e

1 - That part of the risk which the insurance company wishes to
bear without help {ron the reinsurer.

Y/
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in this case, may be calculated by examining the lower tail of the
claim amounts distribution. The essence of statistical modelling
approach is, thercfore, to find a statistical distribution as a
model for the claim amounts experience of the particular class of
insurance in which we arec intercsted. There are two stages involved.
At {irst we have to demenstrate from theorctical considerations of the
problem that a specific statistical distribution can model the claim
amounts experience. Sometimes it is not readily obvious how the
model could be theoretically derived and we have to start immediately
from stage two. That is, by fitting our intuitive model to samples
of data from past experience and, perhaps, by using statistical

goodness-of-fit tests satisfy ourselves that the specific model

actualiy agrees with the claim amounts experience for our particular
class of business. Once we have found a model and gathered
sufficient knowledge about its parameters and how they behave with
respect to time, we will be able to use statistical tcchniques to
predict the distritution of the claim amounts arising during any
future pericd. This is our main objective in this approach.

In practice a solution to our problem,even starting from stage
two as mentioned zbove, is not easily obtainable because of many
undesirable factors such as insufficiency of the data, heterogeneity
of the data and data being only available in a certain form (e.g.
srouped or/and truncated). The empirical distributions of claim
amounts are by nature skewed to the right, i.c., there are many
small claims and much fewer larger claims. This leads us to the
examination of positively sl:é*wed statistical distributions as possible
models. It is also important to study truncated distributions since
in practice, as in reinsurance, data on claims above a certain size
in)’ mnay be a\railable. Some of the models which have been nore

often employed are referred to below.

3



1.4 A Review of the Appllcations of Statistical Distributions
to Claim n‘mmmfs Data in General Insurance

Studies have been made which involve fitting statistical
distributions to claim size data. Beard (1955) has fitted the
lognormal to the American fire insurance property damage claim size
data. Beard {1957) gives a numerical example of the application of
the lognormal and log-Pearson type I distribution$ to an experience

of fire claims in Dermark. In Beard (1964) a lognormal dlatrlbutlon

M_ - — —_ _

- e

is fitted to a sample of scttled motor 1nf*u1"ancc claims, ploperty
damage and liability claims mlxcd. Bc,nc‘:crt (1062) fits lognon.,al

-,

distributions to claims data from fire insurance, accident insurance
and motor third party insurance. Harding (1968) uses a truncated
lognommal distribution as a model for the original amount of a claim

- falling under the excess of loss reinsurance of motor business

contracts. Ferrara (1971) fits lognormal distributions to fire
insurance claim size data from several different industries. Benckert
and Jung (1974) fit logmormal and Pareto distributions to data on
‘claims in fire insurance of dwelling houses reported between 1958

and 1969 by Swedish fire insurance companies. Finger (1976) uses the
lognormal distribution as a medel for claim amounts in liability
insurance. Bickerstaff (1972) uses the lognormal as a model for the
distributicn by size of auto collision claims.

The lognormal seems to be the most successfully used model in

general insurance. However, the above references do not deal extensively
with the various methods of estimating the paramcters of the lognormal

distribution, and the efficiencies of these methods, nor de they examine

sorme of the other skewed distributions.,

1.5 Objectives and Cutline of the.Study

It was with the above remarks in mind that the present work was



started. We studv several skewed distributions as modecls for claim
amounts in general insurance. In order to show the applications of

these models in practicc we apply their theoretical methods to a

set of real data from motor insurancc Accidental Damage (AD) claim
" __-___—____/

amounts. A doscription of the data will be provided in secticn

1.6.

Goodness-cf~-fit tests are used frequently in the present work
to examine the agreement between a model and sample values. Therefore,
in chapter 2 we consider several of thesc tests. The morc widely
used Chi-square test is reviewed and a new test statistic is proposed
to supplement it. This statistic measures the overall agreement
between a medel and sample values in monetary terms and, therefore,
its value can be easily intcrprected. The importance of this
statistic is demonstrated in examining the agrecment between
predicted and actual distributions since, in that case, it indicates
by how much we have overpredicted or underpredicted the total cost
of claims.
The Kolmogorov-Smirnov test for goodness-of-fit is a well established,
but less frequently used, test which is also reviewed in Chapter 2.
The application procedures for all three statistics are described and,
in later chapters, demonstrated on the AD data.

- Because of the immortance of the lognormal distribution in
general insurance it is extensiv;ely studied in Chapter 3. The two
and three parameter cases are considered. After defining the distributicn
its properties are examined and a theoretical justificat.ién for the
emergence cf the lognormal distribution as a model for claim amounts
is provided. Tests of lognormality and various estimation methods are

suggested for the two parameter case when data only in grouped form

L



are available. These are later demonstrated cn the AD data. A
computer simulation is carried out to measure the efficiency of
different methods of estimation. The multinomial maximun likelihood
(MML) method which is most suitable for grouped data is studied and,
with the wide availability of computers, a technique is suggested
for finding the estimates of the parameters. This iterative
procedure maximizes the Iloglikelihood function directly, via a
search for the optimum solution, starting from a set of initial

values. The effects of inflation on the parameters arc then

cons idereii/ancgi predictions are made f“or t}ie dzlstribution of claim
amounts, in a future period, by using different indices of wages
and prices. The agreement between the actual and predicted claim
amounts are tested by the goodness-of-fit tests described in
Chapter 2. The 3-parameter case is then studied. A method of
estimation which involves the least squares technique and a

search for the location parameter is suggested which-avoids solving
non-linear equations. The method of MML is also modified for the
3-paramecter case. These methods are then applied to the AD data.
The effects of inflation on the parameters are studied and distributions
of claim amounts during future periods arc predicted.

In Chapter 4 the Weibull distribution which belongs to the
exponential family is studied. The two and three parameter cases are
examined, very much on the same lines as for the lognormal distribution.
The same methods of estimation as for the 3-parameter lognormal are
modified for the 3-parameter Weibull distribution.

Chapter S is devoted to the study of the inverse Gaussian (or inversec
nornal) distribution. This 1s a skewed distribution with a shape

similar to the lognormal, the garmma and the Weibull distributions.



Chhikara and Tolks (1978) state that scveral sets of cmpirical data
which they have investigated seem to be equally well represented
by the lognormal and the inverse Gaussian distributions. In the
absence of other considerations they recommend the use of the
inverse Gaussian distribution on the basis of the convenience of
vorking with it. Therefore, it secmed important to study and test
this distribution on the AD claims. Initially, the properties of
the distribution are examined and the methods of moments and MML
are suggested for the estimation of the parameters. These methods
are applied to the AD claims data and the effects of inflation are
investigated. We then introduce thc 3-parameter version of this
distribution by bringing in a threshold parameter. No mention of
this case is made in Chhikara and Folks (1978) or in Johnson and
Kotz (1970). We suggest using the MML method of estimation. This
method is then applied to the data. The effects of inflation on

the parameters are studied and predictions for future periods are

made and comapred with the actual experience by using gcodness-of-

fit tests.

Chapter 6 looks at the Pareto distributicns of the first and
second kinds. The properties and a graphical test are studied.
Various estimation methods are examined. In Chapter 7 we use the
method of MVML to fit this distribution to the upper t1ail of the
AD claims data, i.e., claims greater than 1600,

To study the tail of the claim amounts distribution, which
i1s of interest in reinsurance, we deal with the truncated lognormal
model in Chapter 7. The method of MML is developed and applied to
the truncated samples of AD data. The cffects of truncation at

different points are studied.



In Chapter 8 we examine the gamma aistributien. Beard (1978 -

personal cortumnication) suggests the gamma distribution as a model
for the distribution of the square root of the claim amount. We
would like to test this to see if by taking the square root of the
claim amount we can arrive at a better fitting model. For this
reason a different set of AD data was obtained where the claims
are grouped into different bands according to the square root of
their size. The data are better described in Chapter 8. The
properties of the gamma distribution are studied end the methods
of moments and MML are suggested for the estimation of the parameters.
These are then applied to the data. The effects of inflation on the
parameters are studied and predictions for future periods arc made.

A final discussion and a sumnary of the findings of the study

arc presented in Chapter 9.

The tables of results for every chapter arc presented at the

end of the chapter.

All the computer programs used in this work have been written
by the author in Fortran 4 language and have becn run via the
interactive terminals on the City University's ICL 1905E Computer.

The texts of the programs are presented in the Appendix.

1.6 The Accidental Damage (AD) Data

The important part of any data analysis 1s to have a reliable
set of data. Since we are looking for models of the distribution of
claim amounts we must be surc that the data used in the analysis has
been collected only from the experience of the particular class of
business we are investigating. In other words, the data must be

frce from heterogeneity in every respect. In addition, a considerable
amount of data is required and we need to look at the experience

over several periods.



A medium-sized, U.K., general insurance company provided us with

1 : : .
(AD), excluding windscreen, claim

some data of Accidental Damagc
amounts in respect of claims which occurred during certain periods
of time in the past. These periods are referred to as periods of
accident. The pertfolio from which these claims come was

comprehensively insured private cars. Data combined for all age
groups, vehicle groups, districts and type of use were available.
For claims up to £570 we were given the number of open and settled
claims grouped in bands of £30, i.e. £1-30, £31-60, ..cce.0..,8541-570.
For ammmts greater than £571 details of the individual claims were
made available. After some investigation we grouped these in the
following bands:

1571 - £600, £601 - £700,£701 ~ £300, etc.
until the band containing the maximum claim amount (or amounts) was
reached.
Data was provided in respect of scven periods of accident. Each
period covers three months of the calendar year. We were given data
from the quarter starting on 1.10.1973 to the onc ending on 30.6.1975.
For convenience sake we refer to the period, say, from 1.10.1973
to 31.12.1973 as '73/4th quarter'. There are, therefore, seven samples
of AD claim amcunts each corresponding to cne of the periods from

73/4th quarter to 75/2nd quarter. In each casc the data had been collected

at least six months after the end of the pericd of accident. The

incurred but not reported (IBNR) claims are assumed to be so few as not

to present a problem. This is because experience (of the insurance
company) shows that almost all AD claims are remorted and settled

within six months after the end of thz period of zccident. Zero

c:l::“:l.:‘i'_ms2

1 - Damage to the volicy holder's own vehicie.

2 = These are those claims in respect of which no payment is wade by
the insurance company either becaadse no paynent is requirved or
because the insurance company rccovers the cost from another insurer.

3
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were not included in the data.
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The relevant information for the construction of the AD claim
amount samples were extracted from the computer print-outs of the
insurance company's claim files. These were then stored in data
subfiles on our computer.

Computer program P1 was written to print the frequency distribution

of a given sample of AD data. The sample cumulative distribution
function and various relevant sample statistics are also calculated

and printed out. The program was run with the AD samples and the
results are given in tables (1.1) to (1.7). In each table the
column headed by 'NCIM > LB. AMOUNT' gives the number of those claims
in the sample whose amounts arc greater than the amount given by the
lower boundary of each interval. From this information we can, for
example, see that in 73/4th quarter therec were 89 claims with
amounts greater than £601l. The tables show that the number of such
~ claims has increased over time. The total number of claims in each
sample 1s on average about 2990 For the calculation of the sample
moments we have assumed that in each interval all the claims are for
an amount equal to the mid-point of that interval. An inspection
of the insurance company's claim file showed that this asswnptiop
was justified since the average amount of claim in each band was in

fact approximately cqual to the mid-point of that claim amount interval.

For the calculation of the median and mode linear interpolations in

the claim amount intervals were used.

From the tables we can see that the mean and the standard deviation of
the claim amcunts have increased over time while the coefficient of
variation has raiained quite stable at about 1.1. For each sample,

the frequency distribution, the coefficients of skewncss and kurtosis

as well as the relative positions of the mode, the median and the mean

all indicate the skewness and sharp peakedness of the clainm amounts

10




distribution. The sample statistics given in tables (1.1) to (1.7)

will be of use in later chapters.

1.7 Tables

1]




Table (1,1)

3 3 73/4TH QUARTER ¥ 3 3 % A

AMOUNT £ NO. OF CLAIMS CuM, o NCLM > LB. AMDUNT
1= .30 478 1570 3045
31—~ 60 518 32.71 2567
61—~ 90 a6 1 47 .85 2049
91—~ 120 359 59.64 1588
121= 150 239 67.49 1229
151- 180 213 74,48 990
181~ 210 148 79.34 777
211=- 240 102 R2.69 629
241~ 270 81 5 .35 527
271- 300 58 A7.26 a4 6
301~ 330 66 89 .473 3A8
331~ 360 45 90.90 322
361- 390 39 02 .18 277
391~ 4210 35 93.33 238
421~ 450 34 94,45 203
451~ 480 20 95,11 169
481- 510 29 96,06 149
511- 6540 14 96,52 120
541~ 570 8 96,78 106
~ 571= 600 9 97.08 98 -
601—- 700 29 08,03 £G
701~ ARON 18 oH,62 60
A01- 900 2 () 09.28 4
901-1000 6 99 .47 22
1001-1100 4 99 ,6 1 16
- 1101-1200 4 99,74 12
1201-1300 1 99,77 £
1301-1400 3 99,87 7
1401-1500 1 99,90 4
1501=1600 0 99,90 3
1601-=1700 1. 99,93 3
1701-1800 0 99.93 2
1801~-1900 () 99.93 2
1901-2000 1 G9,97 2
2001-2100 0 99 .97 1
2101-2200 0 99,97 1
2201-2300 § 99,97 1
2301-2400 1 100.00 1

TOTAL NO. OF CLAIMS= 3045

MEAN CLAIMN AMOUNT =150.36
STANDARD DEVIATION =175.48 -

COEFF. OF VARIATION= 1.17
MEDIAN N EEEEEEEEY 95 I97
MODE & & & &5 & 5 8 &0 8 P Ae T 42187

SARTBE1 =0KEWNESS = 3,50
B2 ... =KUSBTOSIS = 24,20
G eeeescosnssssnoee==0,107
02 lllllltilllliill=-0l5n6

GY IS COEFF., OF SKEWNESS FOP LOG OF CL. AMOUNTS
@ I6 EXCESS KURTOSIS FO™ LOG OF CL. AMUOUNTS,

1z




Table (1.2)

32 3 % # 74/15T QUARTER 3 3 36 3% *

AMOUNT £ NO., OF CLAIMS CUM. % NCLM > LB,
1= 30 38 1 15 .61 244 1
31—= 60 428 33.14 2060
61- 90 351 407 .52 1632
91~ 120 334 61.20 1281
121= 150 211 69.85 947
151- 180 133 75 .30 736
181~ 210 98 79.31 603
211- 240 82 82 .67 505
241~ 270 54 84 .88 4273
271- 300 52 857 .01 369
3017~ 330 53 69,18 317
331- 360 36 0,66 264
361- 390 29 91.85 228
391~ 421) 26 G2 .91 199
421~ 450 22 93.84% 173
451- 480 22 94,72 151
481~ 510 17 95 .41 129
511- 540 10 95 .82 112
541- 570 19 946,60 102
571- 600 aq 96,76 83
601- 700 26 97 .83 79
701~ BOO 2 98 .69 53
801- 900 11 99.14 32
901-1000 10 99 .55 21
1001-1100 5 99.75 11
1101=1200 ’ 99,84 6
1201-1300 1 99 .88 aq
1301-=1400 c 89 .96 3
1401-1500 ¢ 99,964 1
1501-1600 0 99 .96 1
1601-1700 0 99 .96 1
1701-1800 1 100.00 1

TOTAL NO. OF CLAIMS= 2441
MEAN CLAIM AMOUNT =149,85
STANDARD DEVIATION =172.20
COEFF. OF VARIATION= 1.15

MEDIAN scecveeseeee= 95,93
MODE ssvesesnsnseea= 41,87
6QRTB1 =0KEWNEGSS = 2,03
B2 ... =KURTOHIG = 14,24

G1 il.llli-lllliiii="ﬂin76
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G1 IS5 COEFF, OF SKEWNESS FOR LOG OF CL, AMOUNTS
G2 15 EXCESS KURTOGIS FOR LOG OF CL. AMOUNTS.
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Table (1.3)

¥xx%%  74/2ND QUARTER %%

AMOUNT L°O NO., OF CLAIMS CUM. % NCLM > L0,
1- 30 351 14.73 2383
31—~ 60 380 30.68 2032
61- 90 382 46,7 1652
91~ 1210 295 59.009 1270
121- 150 211 67 .94 975
151- 180 142 73.90 764
181- 210 114 78 .68 H22
211= 2410 101 82.92 508
241~ 270 57 685,31 a07
271- 300 51 87.45 350
301- 330 39 89 .09 299
331- 360 36 90 .60 260
361- 390 25 91.65 22d
391- 420 24 92 .66 199
421- 450 27 93.79 175
451- 480 18 34,54 148
481- 510 2 1 95.43 130
511- 540 17 96.14 109
541~ 570 12 Qh,64 92
571- 600 11 97.10 80
601- 700 30 98 .36 69
701~ 800 13 98.91 39
B01- 900 11 99 .37 26
901-1000 4! 99 .54 15
1001-1100 7 99 .83 11
1101=1200 () 99 .83 4
1201-1300 1 99,87 4
1301-1400 1 99 .92 3
1401--1500 () 99 .92 s
1501-1600 1 99,96 2
1601-1700 0 99,96 1
1701-1800 0 99 .96 1
1801-1900 1 100,00 4

TOTAL NO. OF CLAIMS= 2383
MEAN CLAIM AMOUNT =%51,57
STANDARD DEVIATION =167.98
COEFF. OF VARIATION= 1.11
MEDIAN " 5 Q8 8 40 88 80" 98-48
MODE T RS 61-17
GARTB1 =SKEWNEGSS = Z2.4808
82 ... =KURTOSIS '

(G lllllllillllltli=-ol144
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G1 IS COEFF, OF SKEWNESS-FOR LOG OF CL. AMCUNTS
G2 15 EXCESO KU CTis FOR LOG OF CL. AMOUNTS,
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TRRHX 74 /38D QUARTER

AMOUNT £ NO. OF CLAIMGS
1- 30 367
31—~ 60 427
GGl 90 3873
91- 120 356
121- 150 2873
151~ 180 194
181~ 210 137
211=- 240 97
241=- 270 . B6
271- 300 71
301~ 330 64
331- 360 45
361~ 390 44
391- 4210 25
A21- 450 26
451- 480 22
481- 510 25
511= 540 14
541~ 570 14
571-= 600 17
601~ 7700 32
701~ 800 34
801~ 900 17
901-1000 4
1001=-1100 9
1101-1200 4l
1201-1300 0
1301-1400 1
1401-1500 3
1501-16010 {
1601-1700 1
1701-1800 [}
1801-1900 (
1901=2000 ()
2001-2100 0
2101=2200 1
2201=2300 4
2301=-2400 ()
2401=2500 0
2501=-2600 1

TOTAL NO. OF CLAIMS= 2299

MEAN CLAIM AMOUNT =166,13
STANDARD DEVIATION =188,70
COEFF., OF VARIATION= 1.14

MEDIAN ceeeeoseease=109.,67
MCDE ... cessvesee= 48,30
GARTH1 =SKEWNESS 53.4°2
B2 ... =KURTOSIS 24,04
G1 coesoscscnscnasea==01.179
G2 ------un--ltl:tt="U-Q‘5?

LI

G1 IS COEFF. OF GKEWNESS FOQ LOG OF CL. AMOUNTS
G2 186 EXCESS KURTOSIS FOR LOG OF CL. AMDUNTS,

CUM *

¥ ¢ 3 % 3¢

12 .93
2B.19
a1.87
54,59
64,70
71.63
76.573
79.99
d3.07
85 .60
87.89
89,50
91,07
91.96
92 .89
93.68
94 .57
95.07
95 .57
96.18
97 .32
98,54
G9.14
99,29
99 .61
99.75
99,75
99,79
99,89
99 .89
99 .93
99,93
99,913
99.93
99,93
99.96
99 .96
99 .96
09.96

100.00

%

NCLM > LB.
2799
24737
2010
1627
1271

988
794
657
560
474
403
339
294
2510
225
199
177
152
138
124
107

75

41

24

20

11
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MEAN CLAIM AVMOUNT
STANDARD DEVIATION =194.03
OF VARIATION=
cecrsasssnae=112,.01
coessssensense= 21,21

= 21-97
= 17.65

==0,199

COEFF.,
MEDIAN

MODE

GARTE 1
B 4

G1 ..

ol I0

AMOUNT £
1- 30
31— A0
61- 90
21—~ 120
121- 150
151- 180
181- 210
211- 240
241~ 270
271- 300
301- 330
331~ 360
361~ 390
391- 420
421~ 450
451~ 480
481- 510
5171-= 540
541- 570
571~ 600
601~ 700
701~ 80O
801- 900
901-1000
1001-1100
- 1101-1200
1201-1300
1301-1400
1401-1500
1501-1600
1601-1700
1701-1800
1801-1900
19012000
2001-2100
2101-2200
2201-2300
2301-2400
TOTAL NO.

= SKE

COeFF.

€ 3¢ 6 X% ¢

NO.

WNEGSS
=KURTCGIH

GZ" llnlnnnntl-n---'=-0.a29

OF

Table (1.5)

74/47H QUARTER

OF CLAIMS

394
a52
426

348
272
219
154
124
105
78
75
58
55
29
43
24
22
24
19
14
a2
28
2 ()
17

s 00 DO aa WM >y

16

CUM.

1T.11

¥ XK

12.86
27 .61
41.51
52.87
61.75
68,90

73.92
77 .97
81.40
83.94
86,39
86,28
90.08
91.02
92.43
93.21
93.93
94,71
95.33
95.79
97.16
98.07
98.73
99.28
99.54
99 .71
9% .74
99.90
99.90
99.93
99.93
96.93

99.93
99.93
99.97
99.97
99.97

10G.00

OKEWNZ 85 FOR LOG OF CL.
G2 IS EXCESH KURTOEIS FOR LOGC OF CL. AMOUNTS.

%,

AMOUNTS

NCLM > LB.
3064
2670
2218
1792
1444
1172

953
799
675
570
492
a17
359
304
275
232
208
186
162
143
129

a7

59

3G

22

14
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AMOUNT £
1- 30
31— 6O
61~ 90
91~ 1210
121- 15
151- 180
181~ 210
211=- 2410
201- 270
271~ 300
309~ 330
331- 360
361- 390
391=- 420
421- 45(}
451~ 480
481~ 510
511- 540
541~ 57(
571- 600
- 601=- 700
701~ 800
801~ 900
901-1000
1001=-1100
11011200
12011300
1301-=1400
140 1-1500
15011600
1601=1700
1701-1800
1801-1900
1901=20010
2001-2 100
2101=-2200
2201=-2300
2301-2400
2401=2500
2501=-2600
2601-2700
27012800
28012900
2901-3000
3001-=3100
3101-3200
32013300
33013400
3401-3500

333 %

3501-3600.

TOTAL NO.,

MEAN CLAIM AMOUNT
STANDARD DEVIATION
OF VARIATION

COEFRF .
MEDIAN
MODE
S53RTHAY
B2

$ & &

NO. OF CLAIMG

75/15T QUARTER

324
287
345
289
D5
187
138
114
93
67
63
44
44
35
25
26
18
18
22
17
39
19
18
12

— ) 0O 00D DO 00 00D D00 DD a2 W

OF CLAIMS= 2607

=OKEWNESRS .
=KURTOSTS =

N I I | B

=173.40
195.30

1173

116,19

48,50

44359
48,47
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12.473
27 .27
a0 .51
51.59
61,30
68,47
73.76
78,14
31.70
84 .27
6,69
88.28
90.07
91.41
92.37
23,36
94 .05
94,74
95.59
96 .24
97 .74
98,47
99.16
99 .62
99,72
99 .77
99 .81
99 .81
99 .85
99 .85
a9 .88
99 .88
9¢ .88
99 .88
99 .92
99.96
99.96
99,96
99 .96
99,96
99 .96
99.96
99.96
99,96
99,96
09.96
99 .96
09 .96
99 .96

100,00

NCLM
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22873
1896
1551
1262
1009
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224
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AMOUNT £
1- 30
31— 6O
61- 90
91~ 120
121=- 151
151~ 180
181- 210
211- 240
241~ 270
271- 300
301~ 330
331-~ 3640
361- 390
391~ 420
421- 450
451~ 480
481- 510
511- 540
541~ 570
571- 600
601~ 700
701- 800
801~ 900
9301-1000
1001-1100
11M01-1200
1201-1300
1301-1400
1401-1500
1501-1600
1601-1700
1701-1800
1801-1900
1901-2000
2001-2100
21012200
22012300
TOTAL NO,

MEAN

¥ K 3 e A

NO.,

CLAIM AMOUNT

Table (1.7)

75/2ND QUARTER

OF CLAIMS C

30

374

332

277

235

187

122
410

80

72
47
39
a0
18
29
o
3{)
19
17
11
36
2
2
11

A

3
3
6
2
1
0
1
()
1
0
0
1

1

OF CLAIMSG= 2495

=180.08

STANDARD DEVIATION =204.,79

COEFF.
MEDIAN

SARTEH1
B2 «e.

81 I!lIIII.IIIIl'iE""

62 N ¢ ¢ 0 8 % ® @ 2 &

OF . VARIATION=

1.14

-llitlrlllll=11614—4

=SKEWNESS
=KURTOGIG

- 49!45
- 3-07
-~ ?-70
=-{] 4 184

------=—U-3‘76

¥ ¥t

UM. %
12,10
27.06
40.40
>1.50
60,92
6B .42

73431
77.72
80 .92
83,81
H5 .69
87.25
88,86
90,38
91.54
92.38
93.59
94 .35
95.03
G5.47
96 .91
97 .80
oH .68
99.12
99.28
99.40
99.52
99.76
99 .84
99 .88
99.88
99.92
99.9<2
99.96
9996
99.96
00,00
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124
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15
12
6
4
3
3
2
2
1
1
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CEAPTER 2

A al——

Tests for Goodness-of-Fit

2.1 Introduction

The natural order of any statistical analysis involving the
fitting of a theoretical distribution to a set of sample values 1is

to fit the theoretical model first and then to test 1ts agreement

with the observed distribution of the sample values. This problem
of testing ""the goodnecss-of-fit" (i.e. the adherence of the model
to the data) will arise at various stages of the present work when
we consider different statistical distributions as models for the
distribution of claim amounts. Before considering the iitting
methods for various distributions it is deemed convenient to devote
one chapter to the study of the theoretical bases and application
procedures of some goodness-of-fit tests.

Goodness-of-fit tests are performed to examine the agreement
between the theorctical distribution of a random variable and its
empirical distribution represented by a set of sample values. In
other words, 1if X15Xgyeee,X, ATC independent observations of a
random variable X (for instance the claim amount) with an unknown

distribution function F(x), then wc are rcquired to test the null

hypothesis that
Ho : F(x) = Fo(x)

where FO (x) is some particular distribution function. Any test of

Ho is called a test of fit. Hypotheses of fit, Ho, nay Ee

classificd as simple or composite. H, is a simple hypothesis if

it specifies the values of all the parameters of F O{X}. If the

values of none of the parameters or only of scme of them are specified

bv the null hypothesis then Ho is called a composite hyvpothesis.

14



The Treason for formulating the null hypothesis of a test of

fit in terms of the distribution function is that the parametric

hypothesis testing methods do not provide the means of testing

whether observations come from a particular distribution with

unspecified parameters. In addition, by our intuition we expect

that the distribution of sample observations would closely

approximate the true distribution (Kendall and Stuart (1973)).

pighge i e R W

It is in this sense that a goodness of fit test is a measure of

the dlscrcpuncy betwcen.the ample and.theo ctlcal dlSLTIbUtldn

functions. Savage (1953) characterizes a goodness of fit test by

the following four properties:

1 - It is defined for samples from some large class of
distributicns.

2 - The null hypothesis is either some specified distribution or
a class of distributions of which the functional form is
known.

3 - For all null hypotheses, the test statistic used has the
same distribution (at least asymptotically).

4 - The test 1s consistentl.

In our work a test of goodness of fit will be required in

two circumstances:

(1) Fitting and Testing

1-.

Let us assume that we have a sample of data representing
the observed distribution of the claim amounts. We can
postulate the form of the population distribution of

this variable and use one of the appropriate estimation

techniques, for that particular distribution, to estimate
its parameters and thus specify it completely. We will

A test of hypothesis H, against a class of alternatives Hj is said

to be consistent 1if, vhenkdny member of Hi holds, the probability of
rejecting Hy tends to 1 as sarmple size(s) tcndstxylnfxnlty

2




then need to test how well the theoretical and obscrved

distributions agree. A good agreement will be taken as

evidence that the assumed family of distributions is the
correct form for tne distributicn of claim amounts.

The null hypothesis in this case is of the composite type.

(ii) Prediction and Testing

We may predict a theoretical distribution, whose form and
parameters are -complctely specified, as the distribution

of claim amounts in a particular periced of accident
occurrcnce. If a sct of data representing the observed
distribution for the same period already exists,we will be
able to test how well the predicted and actual distributions
agrce. In this situation the null hypothesis of test 1s of
a simple type. Evidencc of a good fit can be used to

recomnend a predicticn technique and support the assumption
about the theoretical model.

In this chapter several goodness of fit tests will be studied.
- e T

In Section 2.2 the Chi-square goodness of fit test will be dealt

with in detail. To supplement the Chi-square test, and to avoid

some of its shortcomings, a test statistic based on the weighted

sun of the actual minus expected number of claims, in different intervals,
will be proposed in section 2.4. The Kolmogorov-Smirnov test of

goodness of fit, which is generally believed to be more powerful than

the Chi-square test, will be studied in detail in section 2.6. Two

other test statistics will be mentioned in section 2.9 but because
they are not applicable to grouped data we will not study them in

detail.

2.2 The Chi-sauare Geodness-cf-Fit Test
This was the first goadﬁess of fit test and it was introduced

by Karl Pearson in 1900.

Let us assume that we have a sample of n independent observations of

a random variable X, with distribution function F (x). Pearsoir's

test involves groupang the observations inte, say, k mutually

2i



exclusive categories suca that n, be the number of observations in
k

=%

category i and n = I n, .
i=1

If the population distribution is completely specified by the null
hypothesis as F{x) = FO&) (i.e. the form and all the parameters of
P:‘O (x) are known) and we assume that H, 1s true, then the probability,
Po;» Of a random observation falling into any category i can be
calculated. If P,; 1s multiplied by the total number of

observations, n, we will find the expected frequency of class i, say ;o
under the hypothesis Ho' Apart from sampling variation there should

be close agreement between n, and n the observed and expected

oi’
frequencies respectively. The Chi-square goodness of fit test
provides a probability basis for computing and deciding whether the
discrepancy is too large to have occurred by chance. The test

statistic, proposed by Pearson, is:

Large values of Xz indicate an overall lack of agrecment between the
observed and expected distributions. The null hypothesis which

resulted in noi's should, therefore, be rejected for large values of

X,

If when Ho is assumed true the sampling distribution of a test

statistic is known and tractable, tables of its percentage points

2

can be constructed. The sampling distribution of X¢ is very

complicated when the sample size is finite, but Cramer (1946) has
shown that its limiting distributicn, under fl, 1is approximatcly

: 2 .=
Chi-square, X , with k-1 degrees of freedcm (we assumed F (x)

22



as completcly specified).
In some situations the null hypothesis is composite such
that usually only the form of the postuiated distribution is known

but not any, or some, of its parameters. If these paramecters have
to be estimated from the sample data, then the limiting distribution

of Kz may depend on the method of estimaticn. With a poor method

of estimation X2

may frequently have a large value even if the
theory is correct (Cochran (1952)). In a general proof of the
distribution of X* the method of estimation nust be asserted. A
method that yields those values of the parameters which minimize
X (Jninimlwn Chi-square method) may seem the most suitable. Fisher
(1924) has shown that in the limit in large samples this method
becomes equivalent to the method of multinomial maximum likelihood.
The following theorem due to R.A. Fisher, states the principal
theoretical result for the distribution of the Chi-square test

statistic when parameters of the distribution of X under the null

hypothesis, F (x), are estimated from the sample data.

Theorem

If Fo(x), whose form is known, has r unknown parameters, and
if the corresponding multinomial maximum likelihood estimates
2

are substituted for the unknown parameters, then X" is

distributed, in the limit, as the Chi-square, xz,

distribution with k - r - 1 degrees of freedom.

(A proof of this can be found in Cramer (1946)).

Cochran (1952) states that any efficient method of estimation gives
estimates which in the limit become identical with the maximum

likelihood estimates. Thus, the Chi-square distribution with the

apnropriate reduction in the degrees of freedom is valid, as the

™D
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2

distribution of X" statistic, for any efficient method of

estimation. If fully efficient ordinary maximm likelihood

2

estimators are uscd, then X does not have an asymptotic

Chi-square distribution. There will be a partial rccovery of
the r degrees of freedom lost by the multinomial maximum

- likelihood estimators and the distribution of the Chi-square

2

statistics, X° » Will be bounded betwcen a sz-l and a x"; _._y variable.

Therefore the critical values should be adjusted upwards. As

2 Y
‘ mes large and
k beco &C X k-1 X k-r-1

the difference can be ignored (Kendall and Stuart (1973)).

become so close together that

If individual observations arec available in the sample, and
the null hypothesis 1s that they follow a continuous density function,
then the investigator must first group the observations into
different mutually exclusive classes. Cochran (1952) mentions that
the investigator has the choice of both the number of classes and

the division points between them, but that his choice will affect

the sensitivity oif the test. According to Kendall and Stuart
(1973) the whole asymptotic theory of the Chi-square test is
valid as long as the k classes into which the observations are |
grouped are determined without reference to the observations
becausc there has been no provision in the theory for the class
boundaries themselves being random variables. A rule suggested
by Mann and Wald (1942) and by Gumbel (1943) is to choose the
classes so that the expected frequencies are all equal to n/k
where k, the number of classes, is assumed given. Mamn énd Wald
(1942) have developed a technique for finding the optirum number of
classes for any sample size n such that the power of the test is
never less than 3. The problems of the choice of the nurber of

classes and class boundaries do not arise vhen only a sample of
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already grouped observations 1s available. Such is the case with
our Accidental Damage data and the above problems are therefore
pursued no further here.

In the derivation of the sampling distribution of the Chi-square

test statistic, a multinomial distribution is approximated by a

multinormal distribution (see Cramer (1946) or Kendall and Stuart (1973)).

shen the number of classes is large, and the expected frequencies are
small, this approximation may not b_e satisfactory. It has becen
suggested by some authors that the expected frequency in any interval
should not be less than 5. For any expected frequency less than
5, the usual procedure is to pool the adjacent classes together until
this condition is removed. The number of degrees of freedom should
then be calculated on the basis of the number of classes actually
used, after pooling together, in the calculation of XZ. Since the
discrepancy between an observed and a postulated distribution is
often most apparent in the tails, the sensitivity of the Chi-square
test is likely to be decreased Ly excessive pooling at the tails
(Cochran (1952)). Consequently the rule of minimum expected
frequency of 5 should not be considered as inflexible. Cochran
(1942) has shown that there is little disturbance at the 5% level
when a single expected frequency is as low as 1. At 1% level the
same is true if the degrees of freedom of the Chi-square distribution
are greater than 6. He states that two expected frequencies as low
as 1 may be allowed with negligible disturbance to the 5% level.

The Chi-square goodness-of-fit test is commonly used when there
is no clear alternative hypothesis. This necessarily precludes the

computation of power. If there exists an alternative hypothesis,

then the distributicn of X% under the alternative hypothesis is

asymptotically a 'non-central XZ,, i1th k-r-1 degrees of freedom
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(where r parameters have been estimated by the multinomial maximm

likelihond estimators) and a non-centrality parameter which depends
on the sample size. For thc method of calculation of the limiting
power function of the test see Kendall and Stuart (1973).

The dependence of the power of the Chi-square test on the sample size
is a weakness of this test, since with a small sample, an alternative
hypothesis which has a lérgc departure from the null hypothesis, Ho,
may have a small probability of yielding a significant value of

the test statistic. On the other hand, for a large sample, rather
small and unimportant departures from the null hypothesis are likely
to yield a significant value of the test statistic.

X@e are two major shortcomings of the Chi-square test. When
testing the goodness-of-fit of a continuous distribution, grouping the
" observations into classes necessarily implies the loss of information
by such grouping. Another shortcoming is that the X% test statistic
js based on the squares of the deviations between the actual and
expected frequencies. This implies that the Chi-square test will not

be sensitive to the pattern of signs of the deviations.

« The Chi-square goodness-of-fit test is applicable to situations

in which the alternative hypotheses are expressed in vague and general

terms. Its main advantage is that when the hypothesized distribution
is not completely specified the test can still be performed, in the

same way as for a simple null hybothesis, simply by replacing the

unknown parameters with efficient estimators and reducing the degrees

™

of freedom by the number of estimated parameters.
It was mentioned that the Chi-square goodness-of-fit test 1gnores
the signs of deviations of the observed frequencies from the expected
oncs. It is, therefore, sometimes informative to examine the pattern
of the signs of deviations. David (1947) has shown that if the null

hypothesis is simple then all patterns of signs arc equiprobable.
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Therefore, when Ho 1s simple, 1f the hypothetical distribution is
the true population distribution, we expect the signs of deviations
to have a random pattern rather than form a few clusters of
deviations of the same signs. To test the randomness pattern of

the signs, it 1s possible to use the "runs"1 test (see, for instance,
Bury (1975)). A simpler alternative method is to compare the number
of changes of signs of deviations with the number of non-changesz.
These two numbers should be approximately equal, provided that a
1a¥‘ge nunber of deviationsexists and the pattern of signs is
random (Benjamin and Haycocks(1970)).

For.a com.posite null hypothesis, where all the paramecters have to |
be estimated from the sample, Fraser (1950) has shown that all
patterns of signs of deviations are not equiprobable. Therefore,
the '"runs' test for randomness or the simple comparison of the

number of changes and non-changes of signs cannot be applied in

the case of a composite null hypothesis.

2.3 Application Procedure for the Chi-square Test

The frequency distributions of our AD clainm amounts samples,
which were presented in Chapter 1, are skewed to the right and in
grouped form. In this work, the Chi-squarc goodness-of-fit tests
will be performed in situations (1) and (12 mentioned in scction 2.1.
If estimates of the parameters of a hypothesized distribution are
required, they will be calculated from the grouped data, as given,
without any amalgamation of the intervals. Vhere necessary,computer
programs will be written to provide result tables, giving the actual,

A, and the expected, E, frequencies as well as deviations, A-E, for

1- A "nm'', in this case, is defined as a sequence of consecutive plus
signs or minus S1ons.

2- In the sequence +++--+ there are two changes and three
non-cha:mes of signs.
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(A-E)*
E

the expected frequency is greater than or equal to 5, as well as

every 1interval. The value of for any interval in which

the total of such values are also printed. For other intervals,

i.e. where E < 5, enough intervals will have to be pooled together
2
(A-E)
L

intervals will then have to be calculated, on an electronic desk

for the pooled

to remove this condition. The values of

calculator, and added to the total already given in the table.

The number of degreces of freedom is calculated on the basis of the
number of intervals actuvally used in the calculation of the final

value of Xz. Considering that the number of intervals used in the
calculation of Xz 1s always more than 20, the value of Xz 1S

expected to be large. Because of the skemm&sé of the data the
major contributions to the value of Xz are from the intervals in
the lower tail of the distribution. The number of claims in the
upper tail of the distribution, for instance, claims of amounts
greater than £1200, is very small. Therefore the contributions to
the total X from, at most one or two, pooled intervals in the upper

2

tail will be rather small, when compared with the value of X“, and

may be ignored in many instances. This means that the total of

*-B)’
E

an expected frequency of greater than or equal to 5, may be safely

values are calculated by the computer, for the intervals with

taken as the value of the Chi-square statistic. However, for the
calculation of the degrees of freedom, the number of pooled intervals
will be taken into account. The above procedure saves us many

unnecessary calculations on the desk calculator.

"
Let us now assume that X“ is the value of our test statistic and

v is its relcvant number of degrees ot freedom. We look up a table

of cumulative percentage points of the Chi-sguare distribution,
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with v degrees of freedom, cnd note the probability, P, that a
2
X v random variable will exceed the value of our calculated Xz.

In other words we find P such that

V

We classify the result of the test, according to different values

of P, as follows:
If (i) P > 0.05

or (ii) 0.01 < P < 0.05
or (1i11)0.001 ¢ P <« 0.01
or (iv) P < 0,001

then the difference between the observed and postulated distributions,

wnder the null hypothesis, based on the given sample is respectively:

(1) Not Significant
(ii) Almost Significant
(iii) Significant

(iv) Highly Significant

The above arbitrary classification is based on a 5% significance level.
A different level of sienificance, say 10%, may be used if stronger

confidence is required from the test.

2.4 The Total Expected Loss Statistic, T )

It is not just the signs of the deviations that are considered

important but their magnitude needs some attention too. It is generally
expected that fer a good fit the magnitude of the deviations should be
smail. For a random variable such as the claim amount whose distribution

is skewed to the right, the frequencies in the intervals of the lower
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tail of thc sample histogram will be much greater than those in
the upper tail intervals. Therefore, the magnitude of the
deviations in the lower tail intervals will be generally greater
than those in the upper tail. On thc other hand, the claim amounts
are larger in the upper tail than in the lower. Therefore, it is
not very informative merely to look at the magnitude of the
deviations. The above can perhaps be explained better by providing
an example. Suppose that the (Actual<Expected) frequency in the

£1-£30 interval is equal to +100. In money terms this difference

is on average equal to

100 x £15.5 = £1550
wvhere £15.5 is the average claim amount in that interval. This 1s,
in monetary terms, equivalent to a deviation of only 1 in the
£1501 - £1600 interval. We, therefore, suggest looking at the
weighted deviation for each interval where the weight is the average
amount of claim in the interval (the examination of our data showed
that the mid-point of each interval is approximately equal to the
average claim amount in that interval). We can also define the test

statistic T as.the sum of the weighted deviations, i.e.

k

T=. f0n;)

where f; is the mid-point of interval 1,
n

n; is the actual frequencylinterval i,

n,s is the expected frequency in interval i, )
and Xk is the number of intervals.
This statistic is a measure of overall agreement, in monetary temms,
between a hypothesized distribution and the actual sample values. For

a good fit we expect the value of T te be small, Every component of T,

such us
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£y (ny-ngs)

indicates, in money terms, a difference (or a loss) in interval i
which we should expect to find between the observed distribution

of claim amounts and its hypothesized distribution under the null

hypothesis. Hence we call T the total expected loss statistic.
As a better indicator of the difference between the observed and the
postulated distributions we can look at the ratio of T to the

: . K
total actual cost of claims (i.e. % fini) for the sample. For a

good fit this ratio, expressed as ; ;ercentage, should be small.

To illustrate this point, suppose that the total actual cost of
claims for a sample of data, representing a particular period of
accidents, is cqual to £1,000,000. If the above defined ratio 1s
equal to 2%, say, then the loss we would be incurring by adopting
the hypothesized distribution under Ho as the true distribution of
claim amounts would be equal to £20,000. It would then have to

be decided, on the basis of the situation at hand, whether such a
discrepancy can be allowed. When testing the goodness-of-fit of a
predicted model to actual data, T indicates, in monetary terms, how
far from reality our model is predicting. A set of values of T
calculated from samples of actual data collected in the past and
their predicted models éan indicate the reliability and consistency
of a prediction technique. This knowledge will be valuable when

setting up reserves to meet the cost of future claims as calculated

from a predicted distribution of claim amounts. u..
We have given some consideration to finding the sampling distribution

of this statistic. We may usc the method of derivation of the asymptotic

distribution of the Chi-square test statistic and argue as follows:

If the null hypothesis is simple, so that all the parameters of the



postulated distribution are known, then the probability p oi that an
observation (claim amount) will fall into interval i can be calculated
on the assumption that H  1is true. In the derivation of the
asymptotic distribution of the Chi-square statistic it is shown that
the quantities (n;-np_.) /@;‘i are approximately unit normal

variates, and the XZ distribution emerges as the sum of the squares

of thesc quantities (see Kendall and Stuart (1973)). If the null
hypothesis is composite so that, say, r parameters have to be
estimated from the sample, then poi'will be a function of the r
unknown parameters. In thc proof of the asymptotic distribution of
the Xz statistic 1t is again shown that when the r unknown parameters
are estimatcd as the solution to a set of r homogeneous linear

equations in the n. (for instance, estimation by maximum likelihood
method), then the quantities (n;-np oi) //lm will be unit normal
variates (see Kendall and Stuart (1973)). Therefore, for the

purpose of finding the sampling distribution of T, if the above condition

in the case of estimation of the parameters holds, we can take it that

in both cases of simple and composite hypotheses the quantities

(ni-noi) where n,. = np..

arc normally distributed with mean zero and variance n., i.e.
N (O’noi)'
| | | )

Therefore, fi (ni-n 5 i) are independent N(O,f ;n oi)

for 1 = 1,2,00004,4K
and .

K e e k o,
T = .3 f.(ni-noi) is distributed as N(O, © £.“n .)

It is thus possible to compare the standardized value of T with the

critical values of the standard normal distribution. To justify
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the multinormal approximation to the multinomial distribution, as in
the case of the X° statistic, we believe that the expected frequency
in each interval should be greater than or equal to 5. If this is

not so, then enough intervals will neced to be pooled together to

remove this condition.

2e5 Application Procedure for the T Statistic

In this work we shall use the statistic T in addition to the

formal Chi-square gocdness-of-fit test. We are interested In T as a

—————

measure of the discrepancy, in monetary terms, between the observed

. -

and the postulated distributions. We shall not, therefore, concern

ourselves with its sampling distribution or making comparisons of
its standardized value with tables of standard normal cumulative
percentage points. Hence intervals will not be pooled in the
calculation of T. When fitting a distribution to a sample or
comparing a predicted distribution with an observed onc, the
computer programs will produce a table of results. "Expected Loss',
as defined in 2.4, will be calculated for each interval and
printed in the teble. The total expected loss, T, will also be
produced. The ratio of the total expected loss to the total actual

cost of claims, calculated as mentioned earlier in 2.4, will be

shown at the bottom of the table as a percentage.

2.6 % The Kolmogorov-Smirnov Goodness-of-Fit Test

Two criticisms of the Chi-square goodness-of-fit test when used
for continuous distributions were the necessity for grouping the
individual observations and the adoption of large intervals for
small sample sizes. Both of these procedures result in loss of

information.  Besides, when there are k intervals, the X% test
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statistic is based on k comparisons between the observed and
expected class frequencies, while there are n observations in the
sample. Therefore, in such circumstances, it is preferable to have
available test statistics based on individual observations. Several
goodness-of-{it test statistics exist which are based on the
individual sample observations and are functions of the deviaticns
between the observed cwnﬁlative distribution of the sample (the
cmpirical distribution function) and the cumulative distribution
function under the null hypothesis. Let us first define the

empirical distribution function:

For a sample of n random observations X19Xgs 00000, X WE define

the empirical distribution function Sn()::) as

° X < X(1)
Sn(x) = T/p X(r) § X <€ Xp1)

1 x(n) <X

The X(y) are the order statistics of the sample. Hence Sn(x) is
simply a step function which gives the proportion of the observations

less than or equal to X.

 The best known statistic of the above form is the Kolmogorov-
Smirnov test statistic. This go&dness-of—fit test was first proposed
by Kolmogorov 1n 1933 and then developed by Smirnov in 1039, If
Fo (x) is assumed to be a continuous and completely specif.:ied
population distribution funct.ion under the null hypothesis and
Sn(x) té be the step function of the sample, then the test makes use

of the statistic
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D = mii{x |S_(x) - F_(x)]

It is expected that Sn(,x), for a random sample of n independent
observations, is fairly close to the specified distribution function.
If it is not close enough, then the distribution under the null
hypothesis is not the correct population distribution.
The maximum deviation D is a random variable whose sampling
distribution is known and is independent of FO (x) ,when the null
hypothesis holds, provided that F 5 (x) is continuous (Massey (1951)).
Therefore, D is a distribution free statistic. Its limiting
distribution was derived by Kolmogorov himself. Smirnov (1948)
gave a tabulation of the limiting distribution of D. Massey
(1950-a) provided the method for evaluating the distribution of D
for small samples. Tables for determining the significance of D
in finite samples were given by Birnbaum (1952). A table of the
critical values of the test statistic D at different significance
levels for sample sizes n =1 to 20, n = 25, 30, 35 and n > 35
was given by Massey (1951). For the sake of convenience, the
critical values of D for large sample sizes (n > 35) are reported,
from his paper, in table (2.1) at the end of this chapter.

When data is only available in grouped form, it is possible to
calculate the deviaticns ISn(xi)- FO (xi)! at each point xi' where
Xs is the upper boundary of interval i. Massey (1951) states that
grouping the observationsinto intervals tends to lower the value of
D, and he ‘asserts that for grouped data the appropriate significance
levels are smaller than those given in his table. For Jarge samples,
however, grouping causes little change in the appropriate
significance levels. If the numoer of categories is small, then

important changes can be expected in the significance levels for any

ol
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sample size. According to Massey (1951), the Kolmogorov-Smirnov
Statistic, D, is correctly used only if the distribution E (x) is
continuous and completely specified as rcgards form and all its
parameters. The distribution of the maximum deviation, D, is not
known when certain paramcters of the distribution have to be
estimated from the sample values. When we estimate the parameters
'of the population distribution from the data, we are in effect
adjusting these parameters according to the sample values, and

in consequence we should be making a closer fit of the hypothesized
distribution to the sample values. Hence we expect that at the
same significance level the critical value of D will be smaller
than when F 5 (x) is completely specified. Therefore, in these

circunstances, if the maximun absolute deviation exceceds the

critical value D (n), corresponding to a significance level a and

read from an appropriate table of the critical values cf D (for
large sample sizes, n, see table (2.1)), then we can safely

reject the null hypothesis and conclude that the population

distribution 1s not F0 (x).

The distribution of the Kolmogorov-Smirnov test statistic °
when the parameters of Fo (x) are estimated from the saniple values
depends on the form of Fo (x) and is very difficult to find analytically.
Monte Carlo techniques can be used to calculate the approximate
distribution function of this test statistic for each particular
family of distributions (say, normal) F_(x) under the null
hypothesis. Lilliefors (1967) gives a table, based on Monte Carlo
calculations, for use with the Kolmogorov-Smirnov statistic when
testing whether a set cf observations is from a normal population

whose mean and variance are not specified but must be estimated from

!
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the sample. lle suggests using the sample mean and variance (with
denominator n-1) as estimates of the mean and variance of the normal
population to specify FOCX). For large sample sizes (n > 40) the
critical values of D at various significance levels are

reproduced, from his paper, in table (2.2) at the end of this
chapter.

Lillicfors (1969) gives a similar table to be used when testing
whether a set of observations 1s from an exponential population
with unspecified mean. He suggests using the sample mean as the
mcan of the cxponential population.

2.7 Cog]g; arison Between the Chi-squarc and the Kolmogorov-Smirnov

Goodness-o0f-Fit Tests

Masscy (1951) argues that the Kolmogorov-Smirnov test may be

| always more powerful than the Chi-square test. He also points cut

that the K-S test, at least at the 50 per cent power level, will

detect smaller deviations between the observed and hypothesized
distributions than will the Chi-square test. Not enough is known

about the power of either test to justify the preference for using

Xz or D for testing a completely specified hypothesis (Birmbaum (1952)).
However, Massey (1950-b) has established a lower bound to the power

of the K-S test in large samples.

We recall that two criticisms of the Chi-square test were the
grouping of the observations when individual observations were
available and the adoption of large intervals for small samples. Both
of these precedures result in loss of information. The Kolmogorov-
Smirnov test, however, uses individual observations and hence may
utilize information more completely than the Chi-sauare test.

For very small samples the Chi~square test is not applicable at all
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because its sampling distribution is not distribution free for
finite sample sizes and is not known. The K-S test, however, may
be used for very small samples.

The major shortcoming of the K-S test is that when the
parameters of the postulated distribution must be estimated from
the sample values the test is not applicable because the sampling
distribution of D is not distribution free and is not known. In
such circumstances the limiting distribution of the Chi~square

is easily modified by reducing the degrees of freedom.

2.8 App lication Procedure For K-S Test

In our work, we can apply the Kolmogorov-Smirnov test to cxamine
the goodness-of-fit of a predicted distribution 'of claim amounts
to actual data (i.e. 1n situation classified under (ii) in Section
2:1). - In such cases the null hypothesis is of the simple form
and we can use critical values of D given, for large n, in table
(2.1). However, in situations classified under (i) in section
2.1, when we fit a distribution with unspecified parameters to a
sample of actual data, the null hypothesis will be composite and,
as mentioned earlier, we cannot in general use the K-S goodness-of-
fit test because tables of the critical values of D do not exist
in these circumstances. There is, however, an exception in the case
of the lognormal distribution. |
We say a randem variable X is distributed lognormally if and only if
Y = log X is distributed normally (see Chapter 3). Y = 1hog X is a
one-to-one function and hcnce we can use a test of normality for Y
as a test of lognommality for X. Therefore, for the lognormal
distribution we may use the Kolmogorov-Smirnov test statistic along

with table (2.2) of its critical valuecs for large sample sizes. As
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we mentioned earlier, this table has been produced by Lilliefors (1967)
by using Monte Carlo techniques, and it is for testing the
goodness-of-£fit of a normal distribution with unknown mean and
variance.

We mentioned earlier that 1f parameters are estimated from the
sample values then the critical values of the K-S statistic would be
smaller than Fhose in the standard tables (of Massey (1951), for
instance). This provides us with a means of safely rejecting a
postulated distribution when its parameters have been estimated from
the sample. For this purpose we need only to check that the absolute
maximum deviation, D, exceeds the critical value Da (n), given in
table (2.1) for large n, to conclude that the hypcthesized distribution
should be rejected at significance level a. If D does not exceed
Du (n) then we cannot decide whether the null hypothesis should be
rejected or accepted.

Our accidental damage data are in grouped form. Therefore, we
explain the method of calculating the Kolmogorov-Smirnov test
statistic, D, for this type of data. Let us assume that n
observations have been grouped into k intervals such that X and nj
are respectively the upper boundary and the observed frequency of
interval i. Suppose that under some null hypothesis the expected
frequency for each interval has been obtained and that for interval
i it is equal to n s The above is all the information we need to
calculate thc value of the K-S test statistic, D, without resorting

to the calculation of the empirical and theoretical distfibution

functions. This is because we can easily show that

Z (n. -n_.)i

jsi 4

_ - Y - T -1
D = mix Sn(li) F OCXiJ ' = m?-x
1

‘V]lcre i = l,Z"'..’kI
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Thercfore, if in a tablc which gives the above information, a
column for (Actual-Expected) frequencies exists, we can rapidly
calculate the D test statistic. For this purpose we need to add |
the successive values 1n this column, starting from the first
interval, and to find the maximm absolute value of the cumulative

sums which we obtain. We then divide this maximum absolute value
by n, the sample size, and the result will be the value of the
K-S test statistic D,

Because the distribution of claim amounts is skewed to the right
we expect that the largest deviations of the observed from
expected'frequencies would occur in the lower tail of the
distribution. The deviations usually change sign from every
interval, or every few intervals, to the next and so it is
expected that the maximum absolute deviation, in the cumulative
sun of the (Actual-Expected) frequencies, will occur somewhere in
the lover tail of the distribution. Therefore, we nced only to add

the values of (Actual-Expected) frequencies for a few lower intervals

to be able to calculate D.

If the null hypothesis is simple, then we compare the value of
D with the critical values of its distribution given in table (2.1)
for large n. Ii H0 1s composite and the distribution under the
null hypothesis is the two-parameter lognormal distribution, then
we use table (2.2).
Let P = Pr (D(n) > D) where D(n) is some value in the table of the
critical values of D. In other words, P is the probability of finding
a value from the distribution of the K-S statistic which is greater
than that found from our sample. According to different values of

P we can classify the result of the teost as follows:
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If (1) P > 0.05

oT (ii) 0.01 < P < 0.05

or (1ii) P < 0.01

then the difference between the observed and the postulated
distributions, under the null hypothesis, based on the given
sample 1s respectively:

(i) Not Significant

(ii) Almost Significant

(1i1) Significant
The above arbitrary classification is based on a 5% significance

level. A different level of significance, say 10%, may be adopted

if stronger confidence is required from the test.

2.9 Other Goodness-of-Fit Tests

There are two other goodness-of-fit tests which arec, like the

Kolmogorov-Smirnov test, based on the deviation between the sample
empirical distribution function and the hypothesized distributicen
function. These are:

(i) Cramer-Von Mises

(ii)  Anderson-Darling
test statistics. For the calculation of these statisfics we require
the sample order statistics, and hence we need to know the values
of the individual observations. Most data on claim amom;ts ,
including our own AD data, are only available in grouped frequency
form which does not allow the exacf; calculation of these statistics.

We therefore do not consider these statistics in the present work.
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2.10 Tables
Table (2.1)

Critical values of the Kolmogorov-Smirnov Statistic D (n),

for testing completely specified distributicns,
sample size = n > 35

Level of significance (o) 0.20 0.15] 0.10 | 0.05 | 0.01

D (n)

Table (2.2)

"Critical values of the Kolmogorov-Smirnov Statistic, D, (n),

for testing a normal distribution with unspecified mean and
variance . sample size =n > 40

Level of significance (a) 0.20 .15 | 0.10 0.05 | 0.01

| i oni fics ' 0
D (m) 0.736 |0.768 l0.805 lo0.886 |1.031
“ Y n Y n Y n Yy n Y n
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CHAPTER 3

The Lognormal Distribution

3.1 Introduction

Over the past century, the lognormal distribution has emerged as

one of the most widely applied distributions in practical statistical
Iwork. Aitchison and Brown (1957) studied this distribution thoroughly
and in 1957 published a book entitled '"The Lognormal Distribution'
in which almost all the results previocusly found by other people are
collated. An extensive bibliography is also included. Thelr review
of the literature shows that this distribution has successfully fitted
data from various branches of science and engineering. A more up to *
date bibliography is provided by Johnson and Kotz (1970).

References to the application of the lognormal distribution in

the field of insurance were made in secticn 1.4. The papers by
Benckert (1962) and Ferrara (1971) sjeem most rclevaent to the present
work. In both papers, the lognormal distribution is fitted to several
sets of claim size data from different branches ot general insurance.
The former, however, dces not define or present thc data and uses only
maximam likeliﬁood estimation fermulae when individual observations

are available. In the latter reference, grouped data are available and

the three parameter lognormal distributicn is fitted by a combination

of the methods of quantiles and least squares. We shéll comnent

- s e

further on this procedurc when we consider the estimation problem of
the three pararmeter case. |

Aitchison and Brown (1957) deal extensively with the estimation
problen where individual absen‘atiérﬁ are available, Their treatment
of estimation from groupsd data is, hewever, so brief that it is

contained in a few paragraphs.,
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Most data on claim amounts, including our accidental damage data,

are available in grouped form only. A substantial part of this chapter

is, therefore, devoted to the problem of estimation frem grouped data.

_____._.—--"'_"_'-_-""—-'r— A — —— -

el —

The two and three parameter lognormal distributions are initially
defined and some of their properties are derived. A theoretical
justificaticn for the emergence of the lognormal model for the
distribution of claim amounts is put forward. In section 3.6, several
tests of lognormality for the 2-parameter case are examined and the
accidental demage data is then tested. A simulation exercise is carried
out to see how these tests perform when applied to actual samples of
lognormal data. 'Estimation from grouped data, for the 2-parameter
distribution, 1s studied in section 3.7. Several methods are

considered and, 1n particular, a special technique is proposed for
estimating the parameters by the method of multinomial maximum likelihood.
A computer simulation 1s I?erfomed to measurc the efficiency of various
methods of estimation. In 3.8, the 2-parameter model is fitted to the

accidental damage data and the results are analysced. The effects of

inflation on the parameters of the model are next discussed and a

T mam movdiey —

T ——
—— ey

technique for predicting the distribﬁtion of claim amounts during a
future period 1s suggested. This 1s then tested on our AD data. Several
indices of prices and wages are examined to find the appropriate index
for changes in the accidental damage claim amounts over time.

- The 3-parameter case is dealt with next. A graphical test of
lognormality is suggested which provides us with an approximate method
of estimating the location parameter. In section 3,12 , the estimaticn
problem for grouped data is considered. A special technique for
estimating the parameters by the method of least squares is suggested.

The multinomial maximum likelihood method is also modified for the 3-

parameter case. These methods are then used to fit the 3-parancter
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model to our accidental damage data. The results are analysed in
3.13. The thoorctical cffects of the rate of inflation on the

parameters of the model are studied in 3.14, Predicticns are made
using accidental damage data from the far past and the results are

compared with actual data from the past. Finally, the findings of

this chapter will be discussed in the conclusion secticn 3.15.

3.2 Definition

A random variable X is said to be lognormally distributed if

| 2
and only if Y = log X is normally distributed. Let y and ¢ Dbe

the parameters, mean and variance respectively, of the distribution of

Y.. We denote its probability density and distribution functions by

2 2
4 £.(y; w,o ) and Nlyju,s ) respectively, vhers

2 - -y 2
] - fN(Y; wyo ) = (ov2n) 1 CXp ["%" (Y_G_”) J (3.2-1)
and | '
2 v 2
‘ ﬂ,f" Nysuso ) = J fN(t; u,0 )dt - (3.2-2)
2
for =< y < w > ~® < |1 < o r 0<co <=

The probability density function (p.d.f.) of X can be derived, 'by'

using the transformation Y = logX, as

2 — - - 2

f.. . X;u,0 ) = (ox¥Zn) 1exp [— 3 ( logX-u ) (3.2-3)
, LN VA o
t/’
2
and its distributicn function, LN(X;u,c ), will be
2 , 2 "'
> IN(x;p 0 ) = N{ogXx;u,o) (3.2-4)
. 2
for x>0 ; =-o <y <o ; O0<0 <o

2 o - . -
fLN(x.HJ g ) , as defined 1n (3.2-3), is the p.d.f. of the two-parameter

2

tognorral distribution. It is evideat that y and ¢~ are not lecaticn

h\h‘--

or scale parameters tor XA.
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If we rearrange (3.2-3) into

£ (5w ,62) = [op (x/p) ¥ 21] . exp {- %—[1—0%}‘;/3)-]2 } (3.2-5)

where p = e
then it beccmes obvious that p = e" and o are the scale and shape

parameters respectively. It will be shown later that e" is the median
~of the two-parameter lognormal distribution.

We can introduce a location parameter, ¢, into the model by replacing
X by x - cin (3.2-3). The parameter c serves as a threshold below which
a.lognérmal variable X 1s not realized. The p.d.f. of the three-

paramcter lognomal distribution is therefore

CE GG e ) = [l - C)/ER "‘erp{ - %—[1—"“"';———2-;—“]2} (3.2-6)

2
for X>C; ~o<uy<w; O0<g <x

and its distribution function will be

- :
IN{(x; cu,0 ) = N(logx=-¢) ; u,o) (3.2-7)

In the 3-parameter case it is log(X - c¢) which is distributed normally

and not log X.

3.3 Properties of the Two-Parameter Lognormal Distribution

" The following results can easily be derived for the two-parameter
lognormal distribution (see, for instance, Aitchison and Brown (1957)).

'The distribution is unimodal and has a mode at

Xmode - &P -o0) (3.3-1)

The median of the distribution is at
o e

Xnedian ~ €XPH) (3.3-2)

L

Moments of all orders cxist and in particular the rth moment of X

P

apout zcro 1S
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, 1 22 .
6! = BX') = exp(en +7Tr0 ) (3.3-3)

Heyde (1963) has shown that this distribution cannot be uniquely
detemmined by its moments because there exist other distributions

with the same moment sequence as {e;'} .

> The mean of the distribution, which for simplicity we denote by « ,

- - - - Hq'-Iu_
“— o m eyt -
b - e
- moma

gl

2
o = EX) =96, = exp(u+ %v ) (3.3-4)

The rth central moment, 6, , can be expressed in terms of the rth

and lower moments of X about zero. In particular

0 T 0 o (3.3~5
2 7 1 | . )
6' = 6, - 38j0) ¢+ 20'3 {1(3 3-6)
5 3 12 11 G-
0, = 0 - d4olo! + 6ol 0! - 36! (3.3-7)
1 4 13 1 2 1 .
| 2
% Hence the variance of X, denoted by B8 , is
. H,f m e e e e TR — 2
, . 2 |
Var (X) = g = 62 = exp (211 + g )(ec _ 1)
vhich on using (3.3-4) gives
2 2 2 5 02 |
b = od vhere A =en - (3.3-8)

P = XN ﬁo\[’éfﬁ

From(3.3-8) it is obvious that A is the coefficient of variation

2
of the distribution which depends on ¢ only.

From (3.3-6) and (3.3-7), 0z and 0, can be expressed in terms of o

and A as

07 = as(ke + SAhj

04 = aq(llz +bllo + ]SAB + 16A6 + 3Ah)
Hence the cg?fficients of skewness 'and-lcartosis of the distribution,
/B_J'_ and B, respeét&véﬂ , are
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53 3

'/Ei = = = X +53 >0 (3.3-9)
0
04 8 6 L 2

BZ o= ..T = | A < 6A + 15l +- 16A + 3 P 3 (3-3"10)
B

which irdicate that all lognormal densities are skewed to the right
and that they are more peaked than their related normal densities,

2
For small values of A , and hence of ¢ , /Ei and B, are close to O

and 3 respectively. In such cases, the central portion of a lognormal

R e e me, W Wy g, em ema W oy

frequency curve reserbles a normal curve and may be approximated by it.

From(3.2-3) it is evident that 6' 1is a product of e and

Y
2 2
rog
e ¢ which Laurent (1963) defines as the two "functional characteristics'

of the distribution. The mean and variance of the lognormal distribution

are non-functional in the sense that two lognormal populations may

have the same mean or variance although they have differcnt parameters

2 . .
v and o . This motivates the use of the median, e" , and the

2
function ¢° as measures of central tendency and dispersion respectively.

b o We can show that a simple relationship exists between the quantiles
Jo

e R N, pEaea——— R

of the same order of the lognormal and the standard normal distributions.

2
Let Zq and xq be the quantiles of order q of N(z; 0,1) and LN(X} u,0 )

respectively. Then by definition

2
N(zq; 0,1) = q = LN(xq; U ,0 )

i.e. = P(X g Xq) = P(logX < log xq) = P(Y ¢ 1ogxq)
(where Y = log X) -
Y - log x_ =~ p
=p (—F ¢ —I1 )
o) C
log x - u
=P.(Zg ——de )

logx =
= N(—+— : O,])
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logx -y

&3
H

Hence (3.3-11)

exp(y + o0z q) | (3.3-12)

e
Il

orT

In particular, the median of N(z; O,1) 1is at 23.50 = O, hence

from (3.3-12) the median of the distribution of X 1s, as mentioned
~earlier, at e" .
Before concluding this section, we may note that the relative

positions of the mode, the median and the mean, 1i.e.

2

- + ] :
L H™ 20 respectively

e , e"

and e

provide additional evidence that all lognormal densities are positively

skewed.

3.4 Progerties of the 3-Parameter Lognormal Distribution

The transformation X + X - ¢ to obtain the 3-parameter distribution
is only a translation along the x-axis. It leaves the shape of the
frequency curve unchanged and only shifts it by an amount c along the
X-axis.

The location measures are, therefore, increcased by ¢ and hence

xmode = C + e):p (u - 0’) (3 -4"1)
Xmedian~ © 7 P (w) (5:4-2)
! = xmean = C + exp(p + -2-1:; ) (3.4-3)

e

The moments about the mean gnd the dispersion measurces remain the

same as for the 2-parametcr case. In particular the variance, 52 , and
the coefficients of skowness and kurtosis are the same {or both the

two and three parameter legnormal distributions because thcy are all

functicns of the central moments. Tle coefficient of variation becomes
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2! where

A= K
: _ B, A _
1.€. Ato= Cto T+c/a (3.4-4)

which is a function of all three parameters.
2
The relationship between quantiles of order q of IN(x ; c,u,0 ) and

N(z ;:0, 1) will, from (3.3-12), become

xq = C + exp(u + czq) (3.4~5)

: . N |
which is equivalent to z, = & log(x, - ¢c) - -‘-c:- (3.4-6)

7 & The Loenormal Distribution as a Model for Claim Amowumnts
3.5 The Lognormal V1STTIDULION as g modc’ 101 Lialln ATOWlS

Let X, be the amount which an insurance company at the inception

t

of a policy expects to pay in case of a claim on that policy (X, can be
considered closely reiated to the net premium). Suppose that there

are n factors which affect the size of a claim on this policy, such

as ‘age‘:,”type of car, district, driving skill, climate, occupation, etc.
Let Xj be the size of claim due to the effect of factors 1 to j only.

If we assume that the effect of factor j is to modify Xj-l to Xj. by

multiplying it by a random perturbation U;, 1.e.

J
X: = X. ., U,
3 A5-1 73

= X, U0, ... U

J

then for a policy subject to n different factors we have

&

g ve Un

Xn XO U

lU

where '{Ul , UZ y eve Un } 15 assumed to be a sequence of random

variables with known joint distribution. Consequently

&0



Il

log X = log X + jg_l long

provided that the joint distribution of U's is such that the central limit

L T

theorem applies to the sum of their logarithms, it follows that iog X will

ok

-_’-______.-

tend to normality for large n. Hence the amount of the claim will be

(approximately) lognormally distributed . Ferrara (1971) and Finger (1976)

also justify the lognormal model with arguments very similar to the above.

3.6 Tests of Locnormali 1= The 2-Parameter Case

An important step in the identificaticn of the statistical model is
to test if our sample 1s likely to be from a population whose distribution
belonés to a particular family of distributions. In other words, we should,
as a first step, test if our sample is, say, from a lognormal population.
At this stage we are not interested in the parameters of the model but would
just like to know if, on the basis of the sample values, the assumption of

lognornality 1s reasonable enough to allow further analysis according to

this model.

We consider three tests for the lognormal distribution.

3.6.1 Graphical Test

From equation (3.3-11) , 1.e.

= 1 - K
Zq 3 logxq -

it is obvious that the locus of the points (log X zq) is a straight
line. VWhen these points are calculated {rom a sample and p‘iotted on a
re:taﬁgular co-ordinate system then, if the sample is frem a two parameter
lognomeal populaticn, the points should 1lie approximately on a straight
line.

To calculate Zq , quantile of order q of N(z; 0,1) distribution; we need
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to know q. This can be calculated from the sample empirical

distribution function which we define as

Total number of claims g x

F(x) = $X) = Total number of Clairs in the sample (3.6-1)

r'-\
A

Therefore F{x) is simply the proportion of claims with amounts less

than or egual to x. If we express this ratio as a percentage, then we

call F(x) the sample cunulative percentage function. Hence, at the point
xq in the sample we take q = F(xq_) and enter a table of the cumulative
distribution function of the standard normal distribution in crder to iind
the valuc of the variate zq. The point (log x q , zq) is thus determined.
The use qf a special graph paper called the ''logarithmic probability

paper'' makes the above task easier. This graph paper has one of its

axes graduated logarithmically while the other is graduated according to

a standard normal probability scale. Hence we only nced to know and

plot (xq, q%). The logarithmic axis converts xq to log xq while the
probability axis converts the percentage proportion q to its corresponding
standard normal variate Zq'

3.6.2 The Skewness and Kurtosis Tests
________——-—-—-—-—-—-———-——-——_—""——_'

As mentioned earlier, if X has a lognormal distribution then log X
is normally distributed. This suggests that a test of normality for
log X is equivalent to a test of lognormality for X. Therefore, we
may apply the skewness and kurtosis tests of normality on the transformed
values, log x, and infer from its result whether the original samnple
values arc from a lognormal population. h
This test 1s based on g1 and gy the sample coefficients of skowness

and excess kurtosis respectively, for the distribution of logX, i.e.

(3.6-2)




"4
g8, = 45— =39 (3.6-3)
m
2
where m_, 1s the sample central moment of order r.

Y
Exact expressions for means and variances of g; and g, are given in

Cramer (1946 as :

E(g]:) = 0 (3.6-4)
var(g,) = ﬁ% - (3.6-5)
E(g,) = - 'ﬁg"f (3.6-6)
var(g,) = i:llglzimg)-z()nﬁ) (3.6-7)

where n is the sample si:ze.

We can, therefore, see by how many standard deviations g and g, differ
from their mean values. If the difference is less than, for instance,

three standard deviations, then it is not significant, while if it is

greater than or equal to, say, three standard deviations, then the difference
indicates significant deviation from the assumption of normality under

which the mean and variance have been calculated.

Geary and Pearson (1938) have given the 5% and 1% probability points of
£1 and (g2 + 3) for various sample sizes. In large samples, hovever, the

rough test of normality provided by comparing g, and g, with the
approximate values of their standard errors, namely / 2 and /—

respectively, would be sufficient.

3.6,3 Test in the (61,62) Plane

Let /é'i' and By be j:he coetficients of skewness and kurtosis,
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respectively, for a distributicn. Barton and Dennis (1952) divide the
(81,62) plane into different regions of unimodal frequency curves. Thev
show that in the (Bl, Bz) plane the lognormal distribution is represented

by a straight line. This information provides us with another test of

lognormality.

Suppose that we are given several samples of 1independent observations
on a random variable (say, claim amounts incurred during different
periods of accident). We can calculate ¥'b, and b, , i.e. the sample
coefficients of skewness and kurtosis respectively. In large samples,
/b, and b, should be close to their population values /8, and B,
Therefore, we can plot the points (bl, bz), calculated for different
sanples, on a rectangular co-ordinate system of axes. If the underlying
distributions of the populations from which our samples were derived are
lognormal, we would expect the points (bl, bz) to lie, approximately,
on a straight line. Therefore, with the availability of several samples,

we can test whether the underlying model for the distribution of claim

amounts is lognormal.

2.6.4 Testing the Accidental Damage Data for 2-Parameter Lognormalit

We first applied the graphical test. Accidental Damage data fo.r
seven differcnt periods cf accident were presented in tables (1.1) to
(1.7). For each sample, data is in grouped form and the sample cumulative
perceni:age function, F(.xi) = qi%, has been calculated at cach point
xi which is the claim amount equal to the upper boundary of interval 1.
Considering the range of the claim amounts, the points (xi y ;) were
plotted on a 3-cycle logarithiic probability paper which has its log
axis (for claim amount) graduated for increases of x up to one thousandfold.
The plots for different periods of acc::f.dent are presented in figures

(3.1-2) and (3.1-b). To avoid producing a tco voluminous thesis, these
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and other graphs have been reduced from their originals. In this case,
they have been reduced to %— of their original size. liowever, for the
purpose of comparison between plots for different samples, it is more
convenient to present these graphs as in figures (3.1l-a) and (3.1-L).
For each sample the points appear to lie approximately on a straight
‘line. We have fitted this line by eye. The pattern of formation of
the points about the line is the same for all the samples. The deviations
from the line seem to be greater at the tails of the distribution. '
It was deemed necessary to see what an actual sarple of two-
parameter lognormal observations from a population similar to those from
which our accidental damage data have been derived would look like when
plotted on the logarithmic probability paper. A computer simulation exercisz

was, therefore, performed. We gencrated ten random samples each

consisting of 2500 lognormal observations from the population with

p = 4.5 and '02 = 1; It will be shown later that these values of u and
02 are close to our estimates of the population parameters for the
accidental damage data. The size of each sample was adopted as 2500
because this figure is close to the size of our AD samples,

For each simulated sample, the random lognormal variates were grouped
according to the same grouping format as for the AD samples, i.e, up to
600 in bands of 30 and afterwards in bands of 100. The computer prograzﬁ
P2 performed the task of simulation and then printed out a table o‘f
grouped data with its corresponding sample cumulative percentage function.

The ten simulated samples, thus generated, were then each plotted on

logarithmic probability papers in the same way as described for the

accidental damage data. The plots arc presented in figures (3.Z-a),
(3- Z-b) Hnd (3- Z-C)-

In each case the points seem to lle appreximately on the straight line
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