
Papanagnou, C.I. (2007). Modelling, optimisation and control of series supply chains and 

production processes. (Unpublished Doctoral thesis, City University London) 

City Research Online

Original citation: Papanagnou, C.I. (2007). Modelling, optimisation and control of series supply 

chains and production processes. (Unpublished Doctoral thesis, City University London) 

Permanent City Research Online URL: http://openaccess.city.ac.uk/8532/

 

Copyright & reuse

City University London has developed City Research Online so that its users may access the 

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are 

retained by the individual author(s) and/ or other copyright holders.  All material in City Research 

Online is checked for eligibility for copyright before being made available in the live archive. URLs 

from City Research Online may be freely distributed and linked to from other web pages. 

Versions of research

The version in City Research Online may differ from the final published version. Users are advised 

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact 

with the author(s) of this paper, please email the team at publications@city.ac.uk.

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


MODELLING, OPTIMISATION AND CONTROL OF 

SERIES SUPPLY CHAINS AND PRODUCTION 

PROCESSES 

By 

Christos I. Papanagnou 

SUBMITTED IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

AT 

CITY UNIVERSITY OF LONDON 

NORTHAMPTON SQUARE, ECIV OHB 

JULY 2007 

Copyright by Christos I. Papanagnou, 2007 



ST COPY 

AVAILA L 

Variable print quality 



CITY UNIVERSITY OF LONDON 

DEPARTMENT OF 

SCHOOL OF ENGINEERING AND MATHEMATICAL SCIENCES 

The undersigned hereby certify that they have read and rec- 

ommend to the School of Engineering and Mathematical Sci- 

ences for acceptance a thesis entitled "Modelling, optimisa- 

tion and control of series supply chains and production pro- 

cesses" by Christos 1. Papanagnou in partial fulfillment of the re- 

quirements for the degree of Doctor of Philosophy. 

Dated: July 2007 

External Examiner: 
Prof. Antonios Kokossis 

Research Supervisor: 

Examing Committee: 

Dr. George Halikias 

Prof. David Stupples 

ii 



CITY UNIVERSITY OF LONDON 

Date: July 2007 

Author: Christos 1. Papanagnou 

Title: Modelling, optimisation and control of series 

supply chains and production processes 

Department: School of Engineering and Mathematical Sciences 

Degree: Ph. D. Convocation: August Year: 2007 

Permission is herewith granted to City University of London to 

circulate and to have copied for non-commercial purposes, at its discretion, 

the above title upon the request of individuals or institutions. 

Signature of Author: 

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND 
NEITHER THE TRANSFER THESIS NOR EXTENSIVE EXTRACTS FROM 
IT MAY BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE 
AUTHOR'S WRITTEN PERMISSION. 

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED 
FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS 
WORK (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER 
ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH 
USE IS CLEARLY ACKNOWLEDGED. 

iii 



Zwar geht in der Welt 

alles mit natur12chen Dingen zu. 

Nichtsdestotrotz ist das Ergebnis 

wunderbar. 

'Das Erbe des Neandertalers " 

Hoimar von Ditfurth 

iv 



Table of Contents 

Table of Contents v 

List of Tables viii 

List of Figures x 

Abstract xiii 

Acknowledgements xv 

Nomeclature xvi 

Abbreviations xvii 

1 Introduction 1 
1.1 Supply Chain and Logistics 

....................... 1 
1.2 Survey of Literature 

........................... 
11 

1.3 Main objectives of the research work .................. 
20 

2 Modelling methods and control problems in supply chain networks 24 

2.1 Modelling methods in supply chains ................... 
24 

2.1.1 Theory of Finite State Machines 
................. 

26 

2.1.2 Queueing systems ......................... 
32 

2.1.3 Petri Nets 
............................. 

35 

2.2 Control problems in Supply Chains 
................... 

46 

2.2.1 Inventory control ......................... 
46 

2.2.2 Control theory and supply chain ................. 
56 

2.2.3 Stochastic models ......................... 
57 

3 Bullwhip effect in Supply Chain 77 

3.1 Introduction 
................................ 

77 

3.2 Causes of the bullwhip effect ....................... 
79 

3.2.1 The impact of demand forecasting 
................ 

79 

3.2.2 The impact of lead time 
..................... 

80 

3.2.3 The impact of batch ordering .................. 
81 

3.2.4 The impact of supply shortages ................. 
81 

3.2.5 The impact of price variations .................. 
82 

V 



3.3 Quantifying the bullwhip effect ................... 
S2 

3.4 Control the bullwhip effect ........................ 
84 

3.4.1 Supply chain model ........................ 
84 

3.4.2 Stochastic state space for analysing the bullwhip effect under 
white noise customer demand profiles .............. 

90 
3.4.3 Computation of model's covariance matrix ........... 

93 
3.4.4 Characterisation of Bullwhip effect ............... 

100 
3.4.5 Stochastic state space for analysing the bullwhip effect under 

autoregressive customer demand profiles ............ 
105 

3.4.6 Customer service level 
...................... 110 

4 Analysis of optimal policies, information-sharing and estimation 
methods in series supply chain 115 
4.1 Introduction 

................................ 115 
4.2 Analysis of information-sharing and optimal policies .......... 

116 
4.3 Analysis of estimation schemes ...................... 

122 
4.3.1 Estimation method 1: Use of partial information derived by 

covariance ............................. 
123 

4.3.2 Estimation method 2: Structured covariance approximation 124 
4.3.3 Estimation method 3: Use of covariance matrix structure and 

its properties ........................... 
127 

5 Modelling supply chains using Coloured Petri nets 134 
5.1 Description of the supply chain model .................. 

135 
5.2 Description of the Hierarchical Coloured Petri Net 

........... 
137 

5.2.1 Prime page Supply chain ..................... 
137 

5.2.2 Sub-pages Retailer and Manufacturer 
.............. 

139 
5.3 Simulation results and performance analysis .............. 

147 

Modelling methods in aluminium rolling industry: A case study 153 

6.1 Introduction 
................................ 

153 

6.2 Description of production line for lithographic strip products ..... 
156 

6.2.1 Phase 1: Shop floor 
........................ 

157 

6.2.2 Phase 2: Litho centre ....................... 
159 

6.2.3 Phase 3: Levelling process and quality control ......... 
161 

6.3 Modelling issues for the Bridgnorth Aluminium. production process . 
162 

6.3.1 Introduction to production process modelling ......... 
162 

6.3.2 Software tool description 
..................... 

164 

6.3.3 Graphical User Interface (GUI) 
................. 

169 

6.3.4 Implementation of software tool ................. 
170 

6.4 Modelling cases and simulation performance .............. 
174 

6.4.1 Scenario 1: Simulation based on current production plant 

settings and layout 
........................ 

177 

6.4.2 Scenario 2: Installing of an additional annealing machine 

operating in parallel with the other three ............ 
180 

vi 



6.4.3 Scenario 3: Reducing pre-set times the coils remain in High- 
Bay during cooling and after annealing ............. 1 S4 

6.4.4 Scenario 4: The effect of order fluctuations based on current 
production plant ....................... ... 

188 
6.4.5 Performance and simulation results analysis .......... 191 

Conclusions and further work 

Bibliography 

A Proofs of Lemmas and Remarks 
A. 1 Proof of Lemma 2.2.1 

................... 
A. 2 Proof of Lemma 3.4.1 

................... 
A. 3 Proof of Lemma 3.4.2 

................... 
A. 4 Proof of Lemma 3.4.3 

................... 
A. 5 Proof of Remark 3.4.1 

.................. 
A. 6 Proof of Lemma 4.3.2 

................... 

198 

202 

217 

217 

219 

220 

220 

220 

222 

B State space model computations 223 
B. 1 State space model for a three-stage series supply chain ........ 

223 
B. 2 State space model for a four-stage series supply chain ......... 

225 

C Simulation reports for chapter 6 227 
C-1 Simulation results for Scenario 1.................. 

... 
227 

C. 1.1 Statistical results for locations usage ........... ... 
227 

C. 1.2 Statistical results for crane moves at each location 
... .... 

228 
C. 2 Simulation results for Scenario 2.................. 

... 
228 

C. 2.1 Statistical results for locations usage ........... ... 
228 

C. 2.2 Statistical results for crane moves at each location 
.... ... 

228 
C-3 Simulation results for Scenario 3.................. 

... 
229 

C. 3.1 Statistical results for locations usage ........... ... 
229 

C. 3.2 Statistical results for crane moves at each location 
.... ... 

229 
CA Simulation results for Scenario 4.................. 

... 
229 

C. 4.1 Statistical results for locations usage . ........... ... 
229 

C. 4.2 Statistical results for crane moves at each location 
.... ... 

230 

D MATLAB programme code for chapter 6 233 

vii 



List of Tables 

3.1 Simulation results of the supply chain model with backorders 
..... 

112 

4.1 Summary of optimal policy results ................... 
122 

4.2 Estimated and true parameters (method 1) 
............... 

125 

6.1 The 18 different coil types 
........................ 

166 

6.2 Excel worksheet input file with coil types 
................ 

167 

6.3 BWG times in minutes for the 18 different coil types 
......... 

172 

6.4 Annealing times in hours for the 18 different coil types 
........ 

173 

6.5 Cold rolling times in minutes for the 18 coil types (4 groups) ..... 
173 

6.6 The Excel input file of 168 coils used in simulation runs ........ 
177 

6.7 Total crane movements of each location for Scenario 1......... 179 

6.8 Percentage of each location's average use for Scenario 1........ 180 

6.9 Total crane movements in each location for Scenario 2......... 183 

6.10 Percentage of each location's usage average for Scenario 2....... 183 

6.11 Total crane movements in each location for Scenario 3......... 187 

6.12 Percentage of each location's usage average for Scenario 3....... 188 

6.13 The Excel input file of 168 coils used in Scenario 4........... 189 

CA Percentage usage (%) in each location for Scenario 1...... 
.... 

227 

C. 2 Crane moves at each location for Scenario I.......... 
.... 

228 

C. 3 Percentage usage (%) in each location for Scenario 2...... 
.... 

229 

CA Crane moves at each location for Scenario 2......... 
..... 

230 

C. 5 Percentage usage (%) in each location for Scenario 3...... 
.... 

231 

C. 6 Crane moves at each location for Scenario 3......... 
..... 

231 

C. 7 Percentage usage (%) in each location for Scenario 4..... 
..... 

232 

viii 



C. 8 Crane moves at each location for Scenario 4.............. 232 

D. 1 Inputs and outputs of function deliver-process 
......... .... 

234 

D. 2 Inputs and outputs of function update- buff 
........... ..... 

234 

D. 3 Inputs and outputs of function update- Mahbay-new 
...... .... 

236 

DA Inputs and outputs of function update-in-B WG- buff 
...... .... 

236 

D. 5 Inputs and outputs of function update- bwg 
........... .... 

23 7 

D. 6 Inputs and outputs of function updat e- output- buff 
....... .... 

237 

D, 7 Inputs and outputs of function update- buffl-n 
......... .... 

237 

D. 8 Inputs and outputs of function update- anneall-n ........ .... 
238 

D. 9 Inputs and outputs of function update- ouL anneal- buff 
..... .... 

239 

D. 10 Inputs and outputs of function update-in- cold-roll- buff 
.... .... 

239 

D. 11 Inputs and outputs of function update- co Id-roll 
......... .... 

240 

D. 12 Inputs and outputs of function update- out- co Id-roll-b uff .... .... 
240 

ix 



List of Figures 

1.1 A typical supply chain network ..................... 2 

1.2 Structure of Thesis 
............................ 22 

2.1 Simple modeling process ......................... 25 

2.2 Representation of a System with u inputs and y outputs ....... 
27 

2.3 Represantation of a System under the time discreteness assumption . 
28 

2.4 Represantation of a Finite State Machine 
................ 30 

2.5 A simple queueing system ........................ 32 

2.6 A closed queueing system ........................ 35 

2.7 A simple Petri net ............................ 36 

2.8 A simple Coloured Petri net ....................... 39 

2.9 Inventory level with fixed order size ................... 48 

2.10 Inventory level with lead time and the corresponding reorder level 
.. 

50 

2.11 Buffer stock imposed on the deterministic EOQ model ........ 
51 

2.12 Probability of running out of stock Pf z>K, I= ce .......... 
52 

2.13 Probabilistic inventory model with shortages .............. 
53 

2.14 Estimation of unknown gain ....................... 
67 

3.1 Demand variability through supply chain ............... . 
77 

3.2 The five causes of bullwhip effect ................... . 
78 

3.3 A series supply chain with n stages .................. . 
85 

3.4 The block diagram of node i of the series supply chain ....... . 
89 

3.5 The supply chain with defined inputs and outputs in each node 90 

3.6 Boundary between demand amplification and attenuation regions 102 

3.7 Detailed model of each supply chain node ............... . 
103 

3.8 Theoretical and empirical distributionsOf Z2,, ............ . 
104 

x 



3.9 Boundary between demarA amplification and attenuation regions: 4- 

node model ................................ 100 

3.10 The three-node supply chain with (AR) filter 
.............. 106 

3.11 Frequency response of the (AR) filter 
.................. 

108 

3.12 Boundary between demand amplification and attenuation regions with 

the (AR) filter 
............................... 110 

3.13 Number of delay days between orders and deliveries when k, =I... 113 

3.14 Number of delay days between orders and deliveries when k, = 1.2 
.. 

114 

4.1 Optimal policy k* = f*(k, ) and boundary between amplification and 2 

attenuation regions ............................ 
121 

4.2 Probability density function of IP2 
................... 

122 

4.3 Probability density function of 
IP2-01,2 

............... 123 

4.4 Cost function in covariance structured approximation (method 2) 126 

4.5 Estimates of k, using method I and 2 as functions of data length 127 

4.6 Cost function in inverse covariance structured estimation ....... 
133 

5.1 A series five-node supply chain ...................... 
135 

5.2 HCPN describes an overview of supply chain with four different nodes 138 

5.3 The subnet Retailer 
......................... ... 

qQ 

5.4 The subnet Supplier 
........................ ... 

140 

5.5 The subnet Distributor 
....................... ... 

141 

5.6 The subnet Manufacturer 
..................... ... 

142 

5.7 HCPN from Figures 5.2 - 5.6 represented as a many-tuple .... ... 
143 

5.8 The declaration box of supply chain HCPN 
............ ... 

144 

5.9 The subnet Retailer for (MA) techniques ............. ... 
146 

5.10 The subnet Retailer for (ES) techniques ............. ... 
147 

5.11 Inventory levels in AO policy ...................... 
148 

5.12 Inventory levels in MA policy ...................... 
149 

5.13 Inventory levels in ES policy ....................... 
150 

5.14 Backorders in AO policy ......................... 
151 

5,15 Backorders in MA policy ......................... 
151 

5.16 Backorders in ES policy ......................... 
152 

xi 



6.1 Production line of Bridgnorth Aluminium 
............. .. 

158 

6.2 Hierarchical structure of the simulation flow 
............ .. 

166 

6.3 Buffer allocation in Litho centre ................... .. 
168 

6.4 Graphical User Interface for the simulation tool .......... .. 
1_10 

6.5 A snapshot of all High-Bay activities during a simulation run .-. .. 
175 

6.6 Throughput rate for Scenario I................... 
.. 

178 

6.7 Annealing furnaces occupancy for Scenario 1............ 
.. 

179 

6.8 Cold-rolling machine usage for Scenario 1.............. 
.. 

180 

6.9 BWG occupancy for Scenario 1................... 
.. 

181 

6,10 Crane movements in total for Scenario 1.............. 
.. 

182 

6.11 High-Bay storage area occupancy for Scenario 1.......... 
.. 

183 

6.12 Throughput rate for Scenario 2................... 
.. 

184 

6.13 Annealing furnaces occupancy for Scenario 2............ 
.. 

185 

6.14 Cold-rolling machine usage for Scenario 2.............. 
.. 

186 

6.15 BWG occupancy for Scenario 2................... 
.. 

187 

6.16 Crane movements in total for Scenario 2.............. 
.. 

188 

6.17 High-Bay storage area occupancy for Scenario 2.......... 
.. 

189 

6.18 Throughput rate for Scenario 3................... 
.. 

190 

6.19 Annealing furnaces occupancy for Scenario 3............ 
.. 

191 

6.20 Cold-rolling machine usage for Scenario 3.............. 
.. 

192 

6.21 BWG occupancy for Scenario 3................... 
.. 

193 

6.22 Crane movements in total for Scenario 3.............. 
.. 

193 

6.23 High-Bay storage area occupancy for Scenario 3.......... 
.. 

194 

6.24 Throughput rate for Scenario 4................... 
.. 

194 

6.25 Annealing furnaces occupancy for Scenario 4............ 
.. 

195 

6.26 Cold-rolling machine usage for Scenario 4.............. 
.. 

195 

6.27 BWG occupancy for Scenario 4................... .. 
196 

6.28 Crane movements in total for Scenario 4.............. 
.. 

196 

6.29 High-Bay storage area occupancy for Scenario 4.......... 
.. 

197 

xii 



Abstract 

In recent years supply chains have gained the attention of both academia and 
industry. In this thesis, a novel state-space model of a multi-node supply chain 
is presented, controlled via local proportional inventory-replenishment policies. The 

model is driven by a stochastic sequence representing customer demand. The model is 

analysed under stationarity conditions, guaranteed to arise if the control parameters 

lie in a certain range which is identified and a simple recursive scheme is further 

developed for updating the covariance matrix of the system in closed form, i. e., as 

an explicit function of the control parameters. This allows us to analyse the effect 

of inventory policies on the "bullwhip effect" (demand amplification) for chains with 

an arbitrary number of nodes. 

The three-node model is subsequently analysed in detail under information- 

sharing and the optimal policy is derived, which minimises inventory fluctuations 

(and inventory mean) under a probabilistic constraint related to downstream 

demand. It is shown that this policy can never lead to demand amplification in 

the chain, as long as the gain parameter of the downstream node lies in the stability 

region. Finally, issues related to estimation schemes based on local historical data are 

discussed. The main results and conclusions are illustrated via numerous examples 

and simulations. 

An alternative model of the supply chain is also developed using timed 

Hierarchical Coloured Petri Nets (HCPN). This approach considers supply chains 

as event-driven systems and studies decentralised control structures by analysing 

the impact of various continuous inventory policies and known forecasting methods 

followed by supply chain participants. CPN-Tools [fCPN] are used for the design 

of decision-making policies and simulation results are presented to highlight the 

main issues arising in real systems and to provide insights for future modelling and 

xiii 



simulation work. 

Finally, a detailed case study is undertaken, for the production line of the "Brid- 

ngorth Aluminium Ltd" company which produces high quality rolled aluminium 

lithographic strips. An efficient representation for such production processes is pro- 

vided and subsequently used for an extensive analysis and performance evaluation 

through appropriate metrics. In particular, the work addresses the implementation 

of an overall model in a simulation environment, capable of integrating the various 

aspects of the specific production management processes. 

xiv 



Acknowledgement s 

I would like to thank Dr. George Halikias, my supervisor, for his many suggestions 

and constant support during this research. I am also thankful to Professor Nick 

Karcanias for his guidance through the first year of survey of literature and for his 

useful ideas and experience in the field of control and supply chain management. 
I would also thank Mr. Graham Flukes production manager, Mr. Sneyd Gareth 

supply chain manager, and Mr. Yannis Angelis purchasing manager in "Bridgnorth 

Aluminium Ltd" 
, who expressed their interest in my work. I am also grateful to my 

brother Elias who was the link between me and the "Bridgnorth Aluminium Ltd" 

company . 
Without him this collaboration would never have achieved. 

I should also mention that my postgraduate studies in City University were 

supported by the Greek State Scholarship Foundation. 

Of course, I am grateful to my father loannis who instilled courage into me, my 

mother Catherine and Evi for their patience and love. Without them this work would 

never have come into existence. 
Finally, I wish to thank all my colleagues and academic staff at Control 

Engineering Research Centre (CERC) in City University of London, especially Dr. 

Efstathios Milonides and Professor David Stupples, for their useful advices. 

This thesis has been written using the YI)ýX typesetting system and its 

implementation has been achieved through MiKTeX (Version 2.4) packages. 

xv 



Nomeclature 

/it = E(xt) Mean of the signal xt 

a Standard deviation 

Var(xt) =a2 Variance of signal xt 

N(, a, 0-2) Normal distribution of mean y and variance 0-2 

Gi Node i in series supply chain 
4) Manufacturer node in series supply chain 

ii(t) Inventory of node i at time t 

. 
TPj (t) Inventory position of node i at time t 

Oj, j+j (t) Amount of orders placed by node i to node i+I at time t 

Oj*(t) Standing orders of node i at time t 

Yj'j- 1 (t) Amount of products dispatched from node i to node i-1 at time t 

spi (t) Target Set-point of node i at time t 

L Lead time 

ki : Inventory replenishment gain factor of node i 

wj, l : Left input vector of node i in series supply chain 

Wi, r 
Right input vector of node i in series supply chain 

zj, l Left output vector of node i in series supply chain 

Zi, r 
Right output vector of node i in series supply chain 

Aj The i-th eigenvalue of a matrix 

trace(-) Sum of the diagonal elements of a matrix 

Vec(. ) : Vectorisation operator 
2: Frobenious norm 11 ' 

11F 

xvi 



Abbreviations 

AO : Aggressive Ordering replenishment policy 
APS : Advanced Planning and Scheduling 

ARMA : Autoregressive and Moving Average 

BWG Levelling, stretching and degreasing machine centre 
CPN Coloured Petri Nets 

CPFR Collaborative Planning Forecasting and Replenishment 

CRM Customer Relationship Management 

DES Discrete Event Systems 

EDI Electronic Data Interchange 

EO Q Economic Order Quantity 

ERP Enterprise Resource Planning 

ES : Exponential Smoothing replenisment policy 
FIFO First-In First-Out 

FSM Finite State Machines 

HC : Holding Cost 

HCTPN : Hierarchical Coloured Timed Petri Nets 

iid : independent and identically distributed 

IMC : Internal Model Control 

JIT : Just in Time 

LIFO : Last In First Out 

LTI : Linear Time Invariant 

MA: Moving Average replenishment policy 

MTO : Make To Order 

MRP : Manufacturing Resource Planning 

MPC : Model Predictive Control 

OC Ordering Costs 

SC Shortage Costs 

SCC Supply Chain Council 

SIRO Service In Random Order 

TCU Total Cost per Unit time 

TSM Cold rolling machine centre 

WMS Warehouse Management Systems 

xvii 



Chapter 1 

Introduction 

1.1 Supply Chain and Logistics 

In recent years supply chains have gained the attention of both academia and 

industry. The distribution of products with shortened life cycles, and the 

continuously increasing customers' expectations has led companies to invest more on 

supply chain management. Producers have made an effort to reduce product costs 

significantly while maintaining excellent product quality and customer high level of 

services. The globalisation of markets together with the elimination of import trade 

duties and restrictions has also forced manufacturers to look for ways to improve their 

competitive positions by focusing on supply chain management. Many companies are 

discovering that significant savings that be achieved by managing their supply chain 

more effectively. At the same time, information and communication systems have 

been widely implemented providing access to elaborate data from all the components 

of the supply chain. Although the main research work is related to manufacturing 

systems and the transport of finished products, supply chains also arise in service 

systems. 

Numerous definitions of a supply chain have been suggested while what is meant 

by " supply chain" appears to be different for various companies across industry. lt 

has also been argued that we should not talk about "chains", as what is described by 

this term is much more complex entity. Real "supply chains" look more like complex 

"networks" with information and goods flowing across and between firms (echelons) 

I 



at all parts of the system. A supply chain is a network of facilities and distribution 

options that performs the functions of procurement of materials, transformation 

of these materials into intermediate and finished products, and the distribution 

of these finished products to customers. Supply chains exist in both service and 

manufacturing organisations, although the complexity of a chain may vaxy greatly 

from industry to industry and company to company. In a typical supply chain, raw 

materials are procured and items are produced at one or more factories, shipped to 

warehouses for intermediate storage, and then shipped to retailers and customers 

whose satisfaction is a measure of a company's success. Consequently, to survive in 

the present global competitive environment, organisations need to show a heightened 

awareness to customers needs 

Figure 1.1 

A typical supply chain network is illustrated in 

Products flow 

do 

Information flow 

Manufacturers Distributors Intermediate 
Suppliers 

Figure I. I: A typical supply chain network 

Another term that has been widely used in recent years is "logistics". It has been 

2 

Retailers Customers 



noticed through the study of supply chains that managing directors and people who 

deal more with the practical aspect of supply chains within companies, in contrast 

with academics, use the term logistics to describe the flow of goods and information. 

It can been argued that logistics and supply chains have both similarities and 

differences. Logistics summarises all activities connected with the supply, storage, 

and carriage of goods (transportation) or services. Therefore, logisticians in most 

companies focus more on how to create intelligent warehouses and flexible facilities 

in distribution centres (i. e. packaging and loading of finished products) by upgrading 

equipment such as forklifts and wreckers, and on how to manage better the inventory 

in a storehouse by using special software tools and computerisation. They also focus 

on how to improve transportation services and other related issues like customs duties 

and customs declaration. 

Leaving the borders of companies and considering the whole logistics network 

as a work-flow process, which needs to be modelled and controlled with well- 

defined inputs-outputs and constraints between individual parts, we encounter the 

problem of supply chain management, or to use a more precise term, to supply- 

pro duction-distribution network management. Thereby, supply chains involve a 

type of integration of all individual parts (manufacturer, distributors, suppliers 

and customer). Using this holistic and process oriented viewpoint, supply chains 

appear more like as a system of a continuous flow of materials and information. 

This macroscopic view can also underlie the appliance of quantitative methods for 

modelling, planning and control. Therefore, it can be inferred that logistics deal only 

with a part of the supply chain process, which draws, materialises and checks the 

effective and efficient flow and storage of materials, services and relative information 

from the point of creation to the point of consumption, and concentrates on the 

satisfaction of requirements of customers. 

The concept of logistics and supply chains seem to be appeared many years 

ago. Alexander the Great [Eng78] in 3rd century B. C introduced first the inclusion 

of Logistics in strategical planning. Supply Chain was the basis of Alexander the 

3 



Great's strategy and tactics during his expedition to Asia. He was aware of the 

significance of military intelligence and securing methods for both provisions and 

transportation. Alexander's logistic system inspired many other military governors 

including Julius Caesar and Napoleon. 

Although the idea of logistics and Supply Chain was first demonstrated bly 

Alexander the Great, Leo VI the Wise (866-912) the Byzantine Emperor in 900 

A. D introduced the notion of logistics in his book "Tactica". Leo VI describes 

the appropriate arrangement in time of both provision and cannons according to 

soldiers' needs and the preparation of the campaign in terms of time and space 

(battlefield and camp) computation. He presents logistical tactics, and also suggests 

the establishment of a special provision and transportation corps, responsible for the 

estimation of the opponent's strength, and providing solutions for the next possible 

movement, future plans and allocation of their own armed forces. 

Despite several economic, cultural and technological changes the main goal of 

logistics and supply chain has remained the same, i. e to transfer finished products 

from a manufacturer site to a (sometimes global) end customer in the presence of 

other players in the market. The term "players" used here suggests the existence 

of a "game" in which participants cooperate and/or compete with the objective of 

winning end customers from other companies. It is clear that with the passage of time 

supply chains have become more complex, dynamic and heterogeneous. Increasing 

customer demand has led those involved in supply chain management to develop 

more efficient and effective supply chain networks. 

Logistics as an area of study first gained attention in the early 1900 with the 

distribution of farm products, as part of an organisational strategy and as a way 

of providing time and place utilities to sell these products. Supply chains in the 

modern sense, i. e. as a flow of products and information first appeared in the 20th 

century. In 1913 Henry Ford coined mass production of the automobile in the wide 

market by using assembly lines and material flow hard automation. This artefact has 

led to the creation of shopping stores (outlets) and the establishment of sale-points 

4 



outside the borders of the main production areas. Meanwhile, the construction 

of roads and the evolution of transport has allowed many alternative ways of 

products' carriage and ameliorated the conditions of shipping, on which today's 

transportation system is based. Technological innovation and the development 

of communication together with the globalisation of the market has changed the 

business environment which has shown in recent years to be more complex and 

competitive. The internet created yet another major shift, allowing people to 

purchase from their homes. This increased the needs for delivery through multiple 

channels and the coordination of returns. In between, the exponential growth of 

computer technology and information was a tremendous breakthrough in business 

computing. Businesses introduced a wide range of application such as manufacturing 

planning (MRP), computer aided engineering (CAD) and inventory management 

systems [EP97], [GBSOI], [BHT+96]. Information technology (IT) is essentially 

the platform for businesses to develop advanced software programmes and resource 

planning applications (ERP) [DDVKOO], [Fre0l], [Mer0l]. Shared information 

among multiple individual and functional areas of a company is the vehicle for 

partners to have real time access on information and applications related to supply 

chain. This "extraction" and sharing of information is called Electronic-Data 

Interchange (EDI) and nowadays tends to be a competitive advantage for many 

companies [MHM03], [LSS03], [MB04]. Another useful application of computers and 

software implementation is the development of Warehouse Management Systems 

(WMS) which make distribution centres and warehouses run more efficiently 

and profitably [VRZOO], [KMPS051. Advanced Planning and Scheduling (APS) 

technology and Customer Relationship Management (CRM) are decision support 

systems that help a company to develop advanced decision support systems 

and to obtain better selection of business partners and customers during the 

material flow among the several stages of the supply chain, especially the upstream 

levels [dKG03], [Hei02j. 

Many companies today make an effort to develop systems in which products 

5 



are 17 pulled" through the manufacturing process from the end rather than ` *1 pushed" 

through from the beginning. Each section of the production process makes the 

necessary units only when they are required by the next stage of the manufacturing 

process, or by distributors or customers. These systems are known as Just in 
Time (JIT) production systems and first appeared in TOYOTA in the early 1950's. 

Many manufacturing companies have followed this idea by developing J1T systems 

(some managers also refer to them as "lean production") and managed to increase 

throughput time, which increases productivity [KK02], [Mer0l], [vdVHH041, [KH03]. 

JIT systems on the other hand require large networks of subcontractors and they are 

based on long-term relationships and mutual trust, essential factors that are difficult 

to find in today's supply chains. 

The activities executed in the frame of a supply chain today vary from company 

to company and depend mainly on their organisational structure. The majority of 

today's supply chain activities concentrate on key issues such as customer service, 

minimising total cost and delivery time, inventory control, flow of products and 

pertinent information, and order processing. Methods for improving of all these 

issues are extremely discussed in supply chain literature, via techniques related to 

supply chain management, planning, integration, coordination, design and operation. 

The Supply Chain Council (SCC) developed in 1998 a supply chain operations 

reference model as the cross-industry standard for supply chain management [Cou03]. 

This process reference model contains a standard description of management 

processes, a framework of relationships among the standard processes, and standard 

metrics to measure process performance. In most cases, however the management 

and analysis performed by companies is based on experience and intuition. 

The area of supply chains is very broad and it would be impossible for a research 

thesis to cover all relevant topics in depth. Although supply chains are very complex 

networks there are some key factors that have gained the attention of researchers. 

Recently, significant attention is given to the control problem of supply chains. The 

motivation for this stream of research has arisen from problems faced by a diverse 

6 



set of companies dealing with the flow of products and information throughout the 

supply chain. At the heart of the control problem is decentralised decision making, 

production capacity and inventory levels in all echelons of the supply chain, holding 

costs of inventory, minimising lead times, demand variability and demand forecasting. 

Supply chain management is becoming increasingly aware that the overall 

efficiency of company's operation is related to inventory level existing within the 

company. Inventory control is an issue which many researchers and practitioners 

have found important and a great amount of work on inventory control, (also referred 

in the literature as inventory management) has been published in the last 40 years. 

There are obviously advantages to having a large inventory of raw materials and 

components parts. It gives manufacturing companies protection against temporary 

price rises, and delays in the delivery of finished products due to shortages, strikes, 

orders that get lost, incorrect or defective shipments, and so on. Inventory managers 

can also take many advantages of quantity discounts in purchasing. Having a large 

inventory of finished goods allows a company to meet varying product demand 

profiles and be more flexible in product scheduling, with longer production lead 

times and reduced costs because of larger production runs with fewer set-ups. If 

managers have a long delivery lead time there is always a risk that some customers 

may go to other suppliers or that new competitor will enter the market. 

On the other hand, keeping an inventory involves various costs. Storage requires 

warehousing, more packaging facilities, and administration. Handling goods involves 

labour costs, and unsold goods have to be protected and insured. All this money 

could perhaps be more profitably spent in several other ways. Furthermore, there is 

always a risk of obsolescence, theft or breakage, especially for those firms producing 

high-tech products with a short life cycle. If an inventory of finished products gets too 

large, it may be necessary to reduce prices to stimulate demand. Some organisations 

(notably wholesalers and retailers) have an inventory of finished products only, 

while many industrial companies or businesses hold different types of inventory in 

order to achieve better inventory management. A company's stockholding policy is 

7 



implemented by explicit rules which determine the manner and time certain decisions 

concerning the holding of stock should be made. This set of rules is kno'wn as an 
inventory policy. 

As stated earlier, in contrast with logistics, a supply chain network within a 

company can be seen as a delivery system, by which goods and information can 
be moved from one place to another as well the means by which goods undergo 

the transitions in manufacturer sites from raw materials to finished goods. Like 

any system with inputs, outputs and its dynamic variables, a supply chain's input 

can be considered as the demand customer patterns, output typical metrics that 

companies use to assess their supply chain's performance, while dynamic variables 

consist of all those parameters which are (directly or indirectly) affected by the 

flow of information and goods within the supply chain networks. Hence, any 

change in these dynamic variables has great sway in the output of the system. 

Considering the metrics associated with the amount and time the goods being 

delivered to customers, companies need to decide how to strike the right balance 

between customer satisfaction (by storing a lot of extra supplies) and the efficiency 

of having inventory just when it is needed. Customer satisfaction (or resentment) 

relates to customer service level, mainly determined by the amount of time the goods 

reach the customers after orders are placed. Thus customer satisfaction (output) 

depends on the inventory policies of the companies which participate in the supply 

chain network. 

The way the companies deliver goods to downstream participants of their supply 

chains is also linked with the total-order delivery. Supply chain managers must 

frequently decide if it could be better to hold onto an order until all the parts of 

the order are ready. In this case, when the order is complete, it is shipped to the 

downstream Participant. Alternatively, the company could immediately ship the 

products on hand, and follow up with a second shipment. This decision is taken 

principally by manufacturers by dint of product postponements, when the last few 

steps of production process for a product can be postponed until demand for it arises. 

8 



There are also several other metrics within a supply chain system. A common 

metric [Sch03] is that of logistic costs which can be divided to Holding Costs (how 

much a company pays to store its goods in warehouse each day and the costs for the 

number of warehouses), Ordering Costs (the costs to process an order), Shortage 

Costs (the penalty costs arising when a company is running out of stock) and 

M-ansportation Costs (the total cost of moving goods to and from a company's 

facilities). Logistic costs are also associated with customer satisfaction since it is 

often possible to measure the direct costs of providing a certain level of customer 

service. 

Another issue pertaining to dynamic variables is the amount of orders that a 

company must place to the upstream parts of its supply chain. Managers must 

often show anticipation by taking decisions about order quantities with a perspective 

of future inventory changes and demand patterns. These logistical postures have 

led managers to adopt forecasting techniques in order to predict future customers' 

demand. However, due to rapid market changes and supply chain complexity, 

there is no currently proposed demand forecasting technique that is universally 

valid. Managers who are considered competent to perform this task, often have 

the ability to visualise the demand forecasting problem holistically by understanding 

and implementing the concepts of effective forward-looking supply chain management 

and do not necessarily rely on demand forecasting trends [Poi99]. 

An important factor that affected the supply chain management was the growth 

of third-party logistics or 3PL [Men99]. 3PL began to proliferate in the 90's and 

involved the voluntary outsourcing of a company's transportation function to an 

outside firm catering specifically to the logistics market. 3PL has wrested distribution 

and logistics from in-house activities and has helped managers to deal with the 

lack of skills, capabilities or infrastructure required to manage the complexities of 

the global environment. Outsourcing has also helped also managers to understand 

the globalisation objectives of the company and to ensure in many cases that 

requirements for achieving these objectives are a part of the outsourcing decision. 

9 



Schechter and Sander [SS01] allege that during the coming century smart 

logistics will increasingly become the strategic differentiator between companies that 

succeeded and those that drop behind. Colossal companies have created so far 

tremendous value for their shareholders by seeing the logistical light and considering 

supply chain management as a competitive weapon. 

Companies that will be deemed to comprise advanced technology as an asset 

will be always on the front and those that will keep up with logistics evolution. 

Burt et al. [BDS03] argue that industry, companies and government will continue to 

have a supply management function - one which grows in importance. Many of the 

manual activities previously performed by purchasing personnel are being automated 

or reassigned so that supply professionals focus on producing high value. Buyers of 

the future will understand the entire supply chain, all innovation trends and global 

capacity. They will develop suppliers worldwide, who will meet their needs and 

they will segment and articulate where their suppliers fall within their portfolios. 

E-procurement will be one of the most exciting developments in supply management 

in recent years. Buyers will be no longer responsible for non-value-adding activities 

and paperwork processing. Meanwhile, they will be increasingly empowered to place 

orders through the Internet directly to supplier. Web-based tools will facilitate the 

flexibility to allow companies both to view deep into the supply chain to see how 

their suppliers are performing and to reconfigure their supply chain as circumstances 

demand. This new tendency will bring over present supply chains to the new era of 

value chains where companies will recognise the importance of demand in addition 

to supply. 

The opportunity to improve supply chain performance by sharing information 

has long been acknowledged, Much of the focus thus far has been on exchanging 

inventory and product movement data throughout the supply chain. More recently, 

companies have found that sharing information relating to market intelligence 

and promotional plans can dramatically improve forecasting, thus smoothing the 

replenishment process [Ba104]. Increasingly, the goal is to replace physical assets 

10 



with information in such a way that every member of this extended supply chain 

benefits. 

One of the first signs of this has been the development of Business-to-Business 

(B2B) exchanges in which groups of manufacturers create an electronic hub linking 

suppliers and buyers (e-business and e-commerce) [Sch03]. These exchanges will 

lead to virtual supply chains able to support both relationships and collaborative 

partnerships. The choice of which to adopt is not a function of technology, but rather 

good supply chain management. A virtual supply chain will exploit technology to 

allow a company or an organisation to connect, align ways of working and transact 

for an optimum period. Relationships will not be exclusively transactional, nor are 

virtual supply chains at odds with long term strategic relationships. On the contrary, 

the technology which underpins a virtual supply chain also underpins integrated 

product development, collaborative forecasting and synchronised flow. 

1.2 Survey of Literature 

Supply chain management literature is vast and rapidly expanding. In this research 

work we restrict our attention in issues which are related to inventory control, 

decentralised supply chains, modelling and simulation methods and the use of control 

theory in supply chains. The inventory management problem was first studied in 

1960 by Clark and Scarf [CS60] who developed a periodic review inventory control 

model for a serial multi echelon inventory system without setup costs and assuming 

a finite planning horizon. By using a base-stock control framework they established 

that while inventories are managed locally, ordering policy at each node is optimal. 

Federgruen and Zipkin [FZ84] extended these results further by studying the optimal 

policies in the infinite-horizon case. Muckstadt and Thomas [MT80] adapted the 

Clark and Scarf model ([CS60]) to a specific situation and conducted a computational 

study. A direct generalisation of [CS60] is presented in [Ros89], where an inventory 

model of an assembly system with random demands and proportional costs of 

11 



production and stock holding activities is considered. Axsdter [Axs93], [, A-xsg8j 

evaluates different inventory policies where all the stages in supply chain place orders 

in batches. 

Several inventory policies can be found in literature [ZipOO], [vHSVVY03], [ML88]. 

Those policies where decisions concerning replenishment are based on the current 

inventory level are known as "Re-order level policies". In this type of policy an 

order for replenishment is placed when the inventory level (stock, on-hand) drops to 

or below a fixed value ý known as the reorder level. The amount of inventory held 

can be reviewed continuously or periodically. When decisions are made on a time 

basis then the inventory policy is known as "Re-order cycle policy". In (s, S) policies 

[FZ84], [Cap85] the stock on-hand is reviewed periodically, where S represents the 

fixed inventory level and s the level to which the stock on-hand drops at review for 

a further replenishment order (S - s) to be placed. Muckstadt and Thomas [MT80] 

present an (s - 17 s) ordering policy where after each demand taking place at a stage, 

an order is placed for one unit, bringing on-hand plus on-order inventory at the 

stage up to s units. Axsdter [Axs98] considers an (R, Q) policy, where while the 

installation stock level declines to or below Ra batch of size Q is ordered. (R, S)- 

policy discussed in [vHSVV-Y03] follows the "Re-order cycle policy" where every R 

time units (Re-order interval) an order is placed to return the inventory position to 

S. 

Decision making at each stage in supply chains has also gained a lot of atten- 

tion recently. Many important problems arise when decisions are made locally and 

therefore the supply chain can not be controlled by a central supervisor, i. e., with- 

out full information or with distorted information. Distorted information within a 

supply chain can lead to very high inefficiencies, such as excessive inventory invest- 

ment, ineffective transportation, poor customer service, lost revenues/profits, and 

misguided capacity plans or missed production schedules [LPW97a]. Chen [Che98] 

assesses the value of centralised demand information and how this value depends 

on several key system parameters, i. e., lead-times (the time needed for the goods 

12 



to be delivered to the downstream level after they have been dispatched by the 

upstream level of supply chain), batch sizes, number of stages in supply chain, 

and demand variability. An important issue of more recent research work is de- 

centralised control design and decentralised supply chain formation when the model 

itself is a framework that combines different decision policies at separate supply chain 

stages [CPA99], [LLBCOO], [AMOO], [JK04], [PLGYT01], [GP04], [CA98]. Welsh and 

Wellman [WW03] present a simple model of supply chains with hierarchical sub- 

task decomposition, and resource contention. They use agents to choose locally 

optimal allocations with respect to prices. Agents are able to communicate with 

each other in order to solve challenging competition problems, while multi-agents 

systems can provide supply chain integration. Watson and Zheng [WZ05] present 

decentralised serial supply chains subject to order delays and information distortion 

by sharing real-time sales data across all stages of supply chains whereas Carama- 

nis and Anli [CA98] describe a hierarchical decomposition framework that facilitates 

near-optimal dynamic production control through coordinated decentralised decision 

making. Lee and Billington [LB93] develop a model framework from which general 

supply chain inventory problems can be tackled. This model has been applied to the 

Deskjet printer decentralised supply chain structure at Hewlett-Packard company. 

In order to estimate total market potential, companies need to forecast the 

number of buyers and the average quantity that they intend to purchase. Wrong 

estimates can result in excessive inventories and increase of costs, or on the contrary, 

to lost sales due to insufficient production and shortages. This provident task 

is called demand forecast or market forecasting. There are various methods of 

forecasting although they all depend on past information, surveys and interviews 

of a statistically selected sample of customers [Jar9l], [MWH98]. The selection of 

a forecasting model influences the performance of the supply chain and the values 

of information sharing [ZXL02]. Forecasting can be very difficult when there is 

uncertainty on demand, in periods when demand is amplified or fluctuates sharply 

between low and high values [MP95]. 

13 



Kahn [Kah871 presents a model for production decisions and demonstrates ho, "- 

demand uncertainty has effect on inventories. A framework comparing the variance 

of demand to the variance of replenishment orders at different stages of a supply 

chain is presented in [BC981. Albertson and Aylen [AA03] report a successful 

approach to forecasting UK manufacturing stock behaviour sponsored by a leading 

European metals manufacturer. Another method that has attracted the attention 

of a considerable number of companies recently is the Collaborative Planning, 

Forecasting, and Replenishment (CPFR) process [Sei03]. CPFR is the sharing 

of forecasts and related both long and short term business information among 

participants in supply chains to improve the flow of goods to the downstream supply 

chains levels. 

Lee et al. [LPW97a], [LPW97b] made an important observation in supply chains. 

They discover that demand variability increases as one moves to the upstream parts 

of supply chains. They also found that there is empirical evidence that orders placed 

by a retailer are more variable than the actual customer demand (orders) received by 

that retailer. This phenomenon was coined first by managing directors in Procter and 

Gamble (P&G) who named it the "bullwhip effect"' (derived from the observation 

that even small variations in actual customer demand can "bash the whip" for 

upstream parts of supply chain, causing them to alternately order more than the 

actual demand). (P&G) directors observed that even though customer demand for 

Pamper's diapers was constant for a certain period, the orders placed by retailers to 

their wholesalers appeared with significant fluctuations over time. Sterman [Ste891 

discusses the bullwhip effect in the context of a simulated industrial production and 

distribution system developed at MIT; the "Beer Distribution Game". Although the 

"bullwhip effect" is a new term, the analysis and impact of demand amplification 

was first studied by Forrester [For6l]. 

In recent years there has been a potential interest on the bullwhip effect by 

many researchers and practitioners. Miragliotta [Mir06] presents an interesting 

'In literature can be found as "Forrester effect" or "Whip-lash" 

14 



extensive literature review on the subject of the bullwhip effect. He classifies the 

causes of this phenomenon by introducing a twofold distinction between lavers and 

mechanisms, whose interaction may lead to the bullwhip effect. The majority 

of the research work revolves axound the quantification and reduction of this 

phenomenon [Met97], [CDRSLOO], [DDLT02], [Gil05J. A motivation which is 

demonstrated by many researchers is the implementation of forecasting methods, 

where participants of supply chain can build their own forecasts based on the 

historical demand patterns of the downstream stages [HECOO]. Sun and Ren [SR05], 

study the impact of three known forecasting methods (moving average, exponential 

smoothing, and minimum mean square error) on the bullwhip effect in a two-stage 

supply chain consisting of a single retailer and a single manufacturer. Chen et 

al. [CRSLOO] use the same supply chain structure to measure the bullwhip effect 

and they demonstrate initially that the use of an exponential smoothing forecast by 

the retailer can cause the bullwhip effect. Then they contrast these results with the 

increase in variability due to the use of a moving average forecast. Zhang [Zha04b], 

Hosoda and Disney fHD04], and- Chandra and Grabis [CG04] continue their study 

by using optimal forecasting procedure that minimises the mean-squared forecasting 

error for a specified demand process. Customer demand is described by a first-order 

autoregressive process while the replenishment method is based on an order-up-to 

inventory policy. Xu et al. [XDE01] complement the above work by incorporating 

forecast uncertainty and alternative demand scenarios. This type of forecasting 

reckons the effectiveness of supply chain coordination programs in terms of linking 

information flows, reduces both the bullwhip effect and safety stocks, and investigates 

how these programs can be applied with stationary and non-stationary demand 

patterns. The same supply chain model with similar replenishment policy but with 

autoregressive and moving average (ARMA) demand process is presented in [Zha04a] 

Collaboration and information sharing between supply chain participants has 

become in recent years one of the main issues to alleviate efficiently and effectively 

the bullwhip effect. The value of information sharing and its advantages is presented 

15 



in [LSTOO]. [Fia051, [MPvLV02-1 and [ZT04]. Kim [KimOO] shows by developing a 

mathematical model that information sharing between two collaborator participants 

in supply chains can be sustainable only in cases where their relationship result in 

enhancing the profitability of both participants. Kok et al. [dKJvD+05] by applying 

stochastic multi-echelon inventory theory, they developed an advanced planning 

and scheduling system that supports weekly collaborative planning of operations by 

Philips Semiconductors and one of its customers. They discovered that their project 

has brought substantial savings to the company by eliminating simultaneously the 

bullwhip effect. A novel co-ordinated supply chain modelling approach is proposed 

in [LKL02], in order to capture the complexity of supply chains and provide the basis 

for supply chain integration. 

Bullwhip effect research is also interested in the control of inventories of all 

parts of supply chain. Moreover, the underlying structure of supply chain can be 

considered as complex system with dynamic behaviour, inputs, outputs, disturbances 

and a well-defined mathematical description. This has led many researchers to 

apply control theory and several control methods and techniques in order first to 

describe and then eliminate the bullwhip effect in supply chains. Dejonckheere 

et al. [DDLT031 measure the variance amplification of orders within order-up-to 

policies from a control engineering perspective and prove that classical order-up- 

to policies always generate a bullwhip effect. They consider demand patterns as 

inputs and the corresponding replenishment of production orders as outputs while 

the interactions between different parts of the supply chain are modelled by transfer 

functions. Hoberg et al. apply linear control theory to study the effect of three 

different inventory policies on order and inventory variability in a two-echelon supply 

chain. - 

A discrete control theory model of a generic model for a replenishment rule 

is presented in [DT03]. From this model, an analytical expression for bullwhip is 

derived that is directly equivalent to the common statistical measure often used in 

simulation, statistical and empirical studies to quantify the bullwhip effect. Extended 

16 



results obtained through statistical analysis and important insights in the dynamic 

behaviour of the replenishment rules are reported in [DDLT04]. Kim et al. [KCHH06] 

extend Dejonckheere et al. [DDLT03] and Chen et al. [CDRSLOO] works by including 

stochastic lead time and by providing expressions for quantifying the bullwhip effect, 

both with information sharing and without information sharing. 

Sheu [She04] presents a multi-layer demand-responsive stochastic optimal control 

strategy for alleviating, effectively and efficiently, the bullwhip effect. This 

control strategy estimates the time-varying demand-oriented logistics system states, 

which originate directly and indirectly downstream to the targeted member of a 

supply chain, and associates this estimated demand with different time varying 

weights under the goal of systematically optimising supply chain performance. 

Gaalman [Gaa06] uses stochastic optimal control theory to compare a proportional 

order-up-to policy to full-state-feedback order-up-to policy in supply chains with 

ARMA demand patterns. Riddalls and Bennett [RB011 apply a novel optimal control 

algorithm to a differential equation model of a production-inventory system in order 

to find optimal responses to bullwhip effect. Robust control strategies are used 

in [BBP06], to meet each time all possible current uncertain demands bounded in 

an assigned compact set, in multi-inventory systems. Rodrigues and Boukas [RB06] 

use H... control theory to design a state feedback controller to force the stock level 

to be kept close to zero even in cases of demand fluctuations. 

Braun et al. [BRF+03] present a Model Predictive Control (MPC) methodology 

as a robust, flexible decision framework for dynamically managing inventories and 

meeting customer requirements in supply chains. The advantages of the MPC 

framework as a tuned-scheme to provide acceptable performance in the presence of 

significant uncertainty, forecast error, and constraints on inventory levels, production 

and shipping capacity are also discussed. Perea-Lopez et al. [PLYG03] also 

describe an MPC strategy to find the optimal decision variables and to develop 

a responsive analysis tool to quickly update the decision making process. They 

show how an MPC implementation can maximise profit in supply chains with multi- 

17 



product and multi-echelon distribution networks with multi-product batch plants. 

A simulation-based optimisation framework involving simultaneous perturbation 

stochastic approximation is presented in [SWR06] as a means for optimally specifying 

parameters of Internal Model Control (IMC) and MPC based decision policies 

for inventory management and demand uncertainty. Hennet [Hen06] uses linear 

programming and MPC techniques to construct a stationary production and supply 

policy in order to react to random variations of deterministic demand profiles. 

A framework which captures the dynamic behaviour of supply chains by 

modelling the flow of materials and information within the supply chain is presented 

in [PLGYTOI] and [PGYTOO]. Both works also considers supply chains as 

decentralised systems and use concepts from dynamics and control, which allow 

the design of systematic decision-making processes for the supply chain. Using this 

approach, decisions are seen as the control or manipulated variables of a dynamic 

system, and an analysis of the impact of different heuristic control laws on the 

performance of multi-stage supply chains is achieved. Lin et al. [LWJ+04] present 

also a discrete time series supply chain model based on material and information flow 

balances. Mathematical expressions are derived to capture the quantity of products 

and information (orders) while transfer functions for each stage are obtained via 

z-transforms. The supply chain is then modelled as an overall closed-loop transfer 

function. Stability of the supply chain system is analysed by using the characteristic 

equation while control design rules are proposed to alleviate the bullwhip effect 

phenomenon. Daganzo [Dag03], [Dag04] examines the stability of supply chains in 

small and large demand perturbations and shows that all decentralised policies that 

reduce inventories on extended periods of reduced demand under certain conditions 

(i. e., reliable future demand information) are unstable and lead to bullwhip effect. 

. --rious computer simulation tools have been also proposed recently for the va, * 

analysis of supply chain performance [TC04]. Most of these tools model supply 

chains as discrete event systems and examine their behaviour following alternative 

methodologies. Typically, simulation tools can be used for quantitative analysis 

18 



(measurement/ prediction of variables) or even quantitative analysis (evaluation of 

reciprocal effects between individual processes). Chapter 6 describes techniques for 

modelling and simulating supply chains systems via Hierarchical Coloured Timed 

Petri Nets (HCTPN) [Jen97]. 

The use of Petri nets has been recently proposed in supply chain literature. 

Mevius and Pibernik [vMP04] present a special type of high-level Petri nets (XML- 

nets) to introduce an integral approach to supply chain process management. Elmahi 

et al. [EGE02] propose a Petri net model based on max plus algebra to control supply 

chains. Landeghem and Bobeanu [vLB02] present a method for modelling supply 

chains via Petri nets by using the well known example of the Beer Came, while Liu 

et al. [LKvdA04] develop a similar approach for modelling event relationships in 

supply chains. MakajiC'-NikoliC et al. [MNPV04] use Coloured Petri Nets to study 

the performance of a series supply chain by means of CPN-Tools [fCPN]. A HCTPN 

model has been constructed to study the bullwhip effect in decentralised supply 

chains where individual nodes use aggressive ordering (AO) based on deterministic 

customer demand patterns. A more generic approach is also presented in [B62]. 

Production management problems in industry play an essential role in the supply 

chain management area, by which managers can determine the production loading 

plan in order to satisfy the end customer demand [Bli86], [Lee96], [GKZI. Moreover, 

the bullwhip, effect leads to demand amplification in upstream nodes of supply chains 

(e. g., manufacturers) and may have a tremendous effect in production management 

of manufacturers. Thus, production planning in manufacturing involves in most cases 

the synchronisation with the downstream demand and thereby has a strong impact in 

warehouses of both manufacturers and other participants of supply chains [SRP+04]. 

A more detailed task in manufacturing is production scheduling where managers in 

the context of the optimal production planning must couple individual products with 

individual productive resources in the shortest times [MVJE05]. Scheduling can be 

a cumbersome task especially in cases when last minute changes are imposed by 

machine breakdowns, new high-priority orders arrival, and the occurrence of other 

19 



disrup-tions. Chapter 6 presents the modelling and simulation of an aluminium 

coils production plant, by providing an efficient representation for such production 

processes [FM84]. 

1.3 Main objectives of the research work 

9 Previous discussion shows that many researchers described the dynamics 

of supply chains using control theory in order to analyse known empZrical 

phenomena such as the bullwhip effect. The majority of those works cons'der 

a stmple supply chain consisting of a single retailer and a single manufacturer. 

The work presented in this thesis aims to analyse more complex models 

consisting of arbitrary number of nodes. 

* The analysis of the effects of certain aspects of proportional (continuous) 

inventory policies on the stability and performance of serial supply chains. 

Traditional inventory replenishment policies commonly used for supply chain 

control (e. g., (S, s) policies) have been extensively analysed in the literature. 

In contrast, continuous policies (e. g., P or PI policies) have only recently 

been proposed, apparently inspired from the area of classZcal process control 

engZneertng. TheZr main characteristic is that orders take place continuously, 

rather than being triggered by specific events (e. g., when inventory falls below 

a certain target level). Despite possible practical limitahons and other zssues 

related to the merits of continuous versus batch ordering, continuous policzes 

can in principle offer additional flexibility (e. g., by smoothing out flows) which 

can be beneficial for the stability and performance properties of the supply chain. 

An important objective of the work is to inveshgate the potential benefits of 

continuous policies on the stability and performance properties of the chain 

(e. g., customer satisfaction levels) and to develop a general methodology for 

modelling and analysing their effect in sertes supply chains. The analysis should 

include the case when nodes hold insufficient inventory to meet downstream 

20 



demand. 

The development of a simple stochastic series supply chain model and the 

analyszs of its properties in the steady-state, under white noZse end-customer 

demand-Profiles. Although a white-noise demand profile is clearly unrealistic 

for real supply chains (as it ignores, for example, trends, seasonal variations 

or more complex patterns) this assumption offers the advantage of sZmplicZty 

and can be easily extended to more complex cases, e. g., ARMA demand-profile 

models. The model should be tuned to the analysis of the dynamic properties 

of the chain, especially the effects of inventory policies on the bullwhip effect. 

e The undertaking of a thorough statistical (covariance) analysts of the model. 

rur this purpose a state space modelling approach is more suitable (rather than 

more traditional transfer function based techniques). In a certain sense, State- 

space and transfer function approaches are equivalent for discrete LTI systems. 

For example, if a transfer-funchon technique is followed, the covariance 

functions of the output variables of the system can be obtained by taking the 

inverse (two-sZded) Z-transform of the spectral density 4)(z) = a'G(z)G(z-'), 

where a2 is the varZance of the white-noise input and G(z) is the system's 

transfer function. However, the state-space approach is more direct and offers 

the followZng advantages: (a) State-space methods can be extended to time- 

varying and non-linear systems and (b) State-space techniques are more suZtable 

for covariance analysis. 

* The examMatton of the potential advantages of information-shamng between 

supply chain participants and the analysis of optimmation techniques for each 

node under full or partial Mformation, Further, it is aimed to study the 

applicability of local estimation schemes based on historical data in the absence 

of information sharing. 

9 The illustration of the main conclusions arising from the model via a detailed 

industrial case study. The main issues that need to be investigated include 

21 



the modelling and estimation of the cost and inefficiencies anszng from highly 

fluctuating demand patterns. 

I Chapter II 

I Chapter 21 

I Chapter 31 

Chapter 5 

Chapter 4 

Chapter 6 

Figure 1.2: Structure of Thesis 

As a result of this research work the following papers have been published: 

9 1. Papanagnou and G. D. Halikias (2005). A state-space approach for 

analysing the bullwhip effect in supply chains. In: Proceedings of the 

5th International Conference on Technology and Automation. Thessaloniki, 

Greece. pp. 79-85. 

* C. I. Papanagnou and C. D. Halikias (2006). Supply Chain Modelling and 

Control under proportional inventory-replenishment policies. In: Proceedings 

of the 12th IFAC Symposium on Information Control Problems in Manufac- 

turing. Saint-Etienne, France. pp. 277-282 

* 1. Papanagnou and G. D. Halikias (2006). Analysing different ordering poli- 

cies in a series supply chain by using Coloured Petri Nets. In: Proceedings of 

the 20th European Conference on Modelling and Simulation. Bonn, Germany. 

pp. 399-404 

The following work is under review in International Journal of Systems Science: 

22 



* C. 1. Papanagnou and G. D. Halikias. A state-space approach for analysing 

the bullwhip effect in supply chains under proportional inventory-replenishment 

poltues. 

The following title has been selected after an additional peer review process by 

Guest Editors to be published in one of the associated International Federation of 

Automatic Control (IFAC) journals as an extended version of the paper presented 

in the 12th IFAC Symposium on Information Control Problems in Manufacturing, 

held in Saint Etienne on May 2006. 

C. 1. Papanagnou and G. D. Halikias. Supply Chain Modelling and Control 

under proportional inventory- replenishment pohc%es: Covariance analysis, 

Information sharing, Optimisation and Local Estimation schemes. 

The remaining parts of this thesis are organised as follows. Chapter 2 introduces 

the main control and modelling methods used in this research work. Chapter 

3 discusses the bullwhip effect in supply chains and develops a stochastic state 

space model for its analysis. Chapter 4 discusses issues related to the selection 

of optimal policies, information-sharing and estimation schemes in series supply 

chains. Chapter 5 shows how Hierarchical Coloured Petri Nets can be used for supply 

chains modelling. Chapter 6 presents a case-study involving modelling methods for 

"Bridngorth Aluminium Ltd". Conclusions and further work issues are presented 

in chapter 7. Technical developments related to state space computations and the 

proofs of various technical results can be found in Appendix A and Appendix B. 

Simulation results and the software programme used in chapter 6 are included in 

Appendix C and Appendix D, respectively. The logical connections between the 

chapters of the thesis are illustrated in Figure 1.2. 

23 



Chapter 2 

Modelling methods and control 
problems in supply chain networks 

2.1 Modelling methods in supply chains 

In many fields of study, a system is studied indirectly through modelling methods, 

which describe it. Modelling methods are concerned primarily with the quantitative 

analysis of systems, and the development of techniques for design, control, and 

the explicit measurement of system performance based on well-defined criteria. 

Modelling methods must also cope with all dynamic characteristics of the system 

and should duplicate its observed behaviour. Modelling of a system requires the 

development of mathematical methods for describing its behaviour, by defining a set 

of measurable variables. A modelling process also presumes well-defined inputs and 

outputs as can been seen in Figure 2.1. In complex systems, like supply chains, a 

model can only approximate the behaviour of the real system. 

In continuous-time systems the state generally changes continuously with time, 

while in discrete time systems the state variables changes at discrete instances. The 

transition of the system from one discrete state to another is characterised by the 

events occurring between these instances. Such discrete-state systems are called 

Discrete Events Systems (DES) and their state transitions can be synchronised either 

by a global clock generator distributed to all its components or at various specified 

time instants. 

24 



INPUTS 0T 7f P T_-TS 

Model 

Figure 2.1: Simple modeling process 

Definition 2.1-1. A discrete event system is an event-driven system, if its state 

transition depends entirely on the occurrence of discrete evoiifs ()v(,!, ', Mw Tr FJw 

admissible time instances are taken from a continuous or 

above, then a discrete event system in continuous time or discrete time, respecti,,,, ely. 

We can define a supply chain system as a DES if we think for instance that the 

state, described by equations associated with the flow of information and products 

between its components (e. g., suppliers), changes every time an event take place 

(e. g., receipt of goods from an upstream level). Developers and practitioners 

are faced with a number of problems when it comes to specifying, simulating, 

designing, and optimising such complex systems. Due to numerous constraints, 

implementations typically comprise different models of computation and different 

types of optimisation. Examples of available tools include: 

1. Queueing systems 

2. Theory of Finite State Machines (FSM) 

3. Data flow descriptions such as marked graphs, synchronous data flow graphs 

or boolean data flow graphs 

4. Languages and automata 

25 



5. (Coloured) Petri nets 

6. General discrete event models. 

QueueZng systems and Petri nets are used widely for modelling supply chains. 

More specifically, queueing systems are used to capture more the system dynamics 

in multi-stage supply chains where each stage (node) consists of many intermediate 

participants which are acting competitively [RV99b], [RV99a], [BK04] and [AM02]. 

Similarly, system dynamical models have been considered by Sterman [Ste89] mainly 

to analyse competitive behaviour in multi-agent distribution systems. Problems of 

this type are not considered in this work which focuses instead in analysing the 

dynamics of series supply chains models for which purpose difference equation models 

and Coloured Petri Nets are more appropriate. 

Theory of Finite State Machines 

Types of variables 

Since complex systems have a lot of variables, it is very convenient to separate the 

variables which characterise the system into: 

1. Input variables, which represent the stimuli generated by systems other than 

the one under investigation, and which influence the system behaviour. These 

variables can also be denoted as excitation variables. 

2. Output variables, representing those aspects of system behaviour which are of 

interest to the investigator. These variables can also be denoted as response 

variables. 

3. State variables, which are neither input nor output variables. While the 

input and output variables are usually quantities which can be observed and 

measured, state variables are often unmeasurable. These variables can also be 

denoted as intermediate variables. 

26 



-- z1(t) 

x(2)(t) I: 

System 

X(Ul(t) 
O, > 

1. 

> zlyl(t) 

Figure 2.2: Representation of a System with u inputs and y outputs 

Schematically, we can use a black box to depict a system, with a finite number 

of accessible "terminals". The input terminals represent the excitation variables and 

are identified by arrows pointing toward the box. The output terminals represent 

the response variables and are identified by arrows pointing away from the box. The 

intermediate variables, which are of no direct interest, are assumed to be embedded 

inside the box. The input and output terminals, as well as the box itself, need not 

have any physical significance; they merely serve to place in evidence those system 

variables which are pertinent to the problem at hand. 

Figure 2.2 shows the black-box representation of a system having u input variables 

and y output variables, all assumed to be time-dependent. x(ý)(t), i=1,27 
..., u, 

denote the input variables, and z(j) (t), j=1,2 
7 ... 7 y, denote the output variables. 

Assumption of Time Discreteness 

The theory of Finite state machine is used in discrete time series. There are two 

important assumptions when we make a research on the time discreteness: 

e Each finite-state model is controlled by an independent synchronising source, in 

the following order: The system variables are not measured continuously, but 

only at the discrete instants of time at which a certain specified event, called 

a synchronising signal, is exhibited by the source. These instants of time are 

27 



x(l) v ZV 

x(2) V 

System 

xýU) 

10 

0. Z(y) 

Figure 2.3: Represantation of a System under the time discreteness assumption 

called sampling times, the v-th sampling time being denoted by tv 
I 
(v = 1,2,, 

* *) * 

9 The behaviour of the system at any sampling time t, is independent of the 

interval between t, and the previous sampling time t, 
-,. 

Thus, the true 

independent quantity is not time, but the ordinal number associated with the 

sampling times. Therefore, a system variable v(t) can be written as v, , which 

designates the value of variable v at the vth sampling time. 

Systems which conform with the time-discreteness assumption made above are 

said to be synchronous, while systems in which this assumption is not valid are called 

asynchronous systems. In this thesis for the case study presented in Chapter 6, our 

system is asynchronous system but the modelling approach considers the system as 

a synchronous system. 

Based on above notations, we can modify the Figure 2.2 so that it is in accordance 

with the time discreteness assumption. In Figure 2.3, x( '), i- 1) 21 
- ., u, denote the 

W input variables at time t, 
, and zv ,j= 

11 21 
... 7 y, denote the output variables at 

time t,. 

28 



Alphabet Finitude Assumption 

Besides the time discreteness assumptions mentioned above, another assumption to 

be made for the theory of finite state is that a variable v can assume only a finite 

number of distinct values. The set of values which the variable v can assume is called 

the v alphabet and denoted by V and each element in V is called av symbol. 

Let's assume a given system has a finite number of variables e 
(1) (2) (M) 

V) ev ev 7 at 

time t,. Based on the definition mentioned above about alphabet, we will have: 

E(')&E (2) 
(& (& 

where E is denoted as the alphabet of the system and E('), i == 19 2,..., m, is the e(') 

alphabet. We can also get: 

P PI P2 *,, Pm (2.1.2) 

where p is the size of E and pi is the size of Ej. If each variable e('), i=1,2, 
..., rn, 

has a finite size alphabet, we can conclude that the system has a finite size alphabet. 

Based on proof above, we can say, for a given system, if any input variable 

WW- 
xv 11 21 

... , u, and any output variable zý ,J=1,2,. y, has a finite 

alphabet, then the system has a finite input alphabet and a finite output alphabet. 

Furthermore, it is seen that a single input symbol is enough to describe all u input 

variables and a single output symbol is enough to describe all y output variables at 

a given time t,. Therefore, we can replace all the input variables x(l), X(2) X(U) 

by a single input variable x, whose alphabet is defined as: 

X= X(1)OX(2)(g... (DX(U) (2.1.3) 

29 



xv -1 System 1 
-1, - ZV 

Figure 2.4: Represantation of a Finite State Machine 

where each input variable x(') 7i= 
1) 27... 

, u, has an alphabet X(i). 

Similarly, we can replace all the output variables Z(I), Z(2)1 
... I Z(Y) by a single 

input variable z, whose alphabet is defined as: 

z= (2.1.4) 

, where each output variable z(j), j=1,2,. 
.., y, has an alphabet ZW 

Also, we can get a new depiction as Figure 2.4. 

Definition of State 

Though we have mentioned that a state variable is neither input nor output variables, 

the concept of a state can be accurately defined only through the exact modelled 

system in the postulation of the basic finite-state model. The role of state in a finite 
a 

state model can be described through the following two statements: 

e The out symbol at the present sampling time is uniquely determined by the 

input symbol and state at the present sampling time. 

* The state at next sampling time is uniquely determined by the input symbol 

and state the present sampling time. 

Thus, roughly, for a finite state machine at any given sampling time, if and only 

if state and input variables are known, we can predict the output variables at this 

sampling time and the state variables at the next sampling time. 

30 



Like input and variables, we can use s 
(k) 
v, k= 1) 21. n, to denote state 

variables at the vth sampling time tv, also, we can replace all the output variables 
S(I)IS(2)1 ... , 

S(n) by a single input variable s) whose alphabet is defined as: 

S= S(1)øS(2)®... (2.1.5) 

where each state variable s('), k= 1) 2) 
... , n, has an alphabetS(k) 

The State Space Modelling process 

With the idea of a system state in mind, we are now in a position to enhance 

the modelling process of Figure 2.2. In addition of selecting input and output 

variables, we can also identify state variables. The modelling process then consists of 

determining suitable mathematical relationships involving the input u(t), the output 

y(t), and the state x(t). In particular, we are interested in obtaining expressions for 

x (t) given x (to) and the input function u (t), t >to. 

Definition 2.1.2. The set of equations required to specify the state x (t) for all t >to 

given x(to) and the function u(t), t >to, are called state equations. 

Definition 2.1.2 leads to the following Definition 2.1.3 for the state space: 

Definition 2.1.3. The state space of a system, usually denoted by X, is the set of 

all possible values that the state may take. 

The state equations could take several different forms. Most of systems, theory of 

finite state machine and control theory, however, are based on differential equations 

of the following form: 

Xk+l ý f(Xk)Uk, k) 

Yk 9 (Xk) 

An important point is that the selection of a state in any given problem is not 

unique. Finally, Definition 2.1.4 gives a definition of a finite state machine. 

31 



Definition 2.1.4. A finite-state machine M is a synchronous system with a finite 

input alphabet U ýUl) U2 up a finite output alphabet Y Y1) Y2) ... ) Yqj, a 

finite state set X {X1) X2) 
... i Xrj, and a pair of characterising functions gy and 

fx, given by: 

xv +I= fx (xv, U, V) 

YV 
= gy(uvlxv) 

where u, yv) and x, are, respectively, the input, output, and state variables of M 

at the v-th sampling time t,. 

2.1.2 Queueing systems 

Queues are important components in many discrete event systems. They are mainly 

used if we are faced with limited resources. As a consequence, entities have to wait 

until they can be served (e. g., people waiting in a line for a bank teller). A simple 

queueing system is depicted in Figure 2.5. 

QUEUE 

Entities 
SERVER 

Entities 
arrivals departures 

Figure 2.5: A simple queueing system 

In this diagram the circle represents servers and the left-opened rectangle a queue 

preceding the server. The slots in the rectangle represent the number of entities 

waiting to be served. Entities arrive to the queue and wait to be served. Examples 

of entities are people, tasks or jobs, while examples of servers include people, various 

types of machines, provided services etc. The basic idea behind queueing systems 

is that resources are unlimited and can be accessed in fair and efficient ways among 

different entities. Their main characteristics are. (i) the capacity of the queue 

and (ii) queueing discipline. The capacity of the queue is the maximum number of 

32 



waiting entities (queue length) and in many systems is assumed to be finite. Queueing 

discipline indicates the rule according to which the next entity to be served is selected 

from the queue. One widely used rule is called First-In First-Out (FIFO) as the 

entities are served in the ordering of their arrival. Other possibilities also exist such 

as Last-In- First- Out (LIFO) where the entities are served in reverse order of their 

arrival, or service in random order (SIRO). Another property we may need to specify 

in queueing models is the timing sequencing of events, as a server may need some 

time to deal with an entity, i. e. to process an event. A typical discrete event model 

of a queue involves events with values V=fa, dj where a denotes the arrival of a 

entity and d denotes its departure. A typical state variable x may denote the queue 

length, i. e. X= f 0,1,2,3 
.... 

1. A queueing system may be studied according to the 

waiting entity or in respect to the service provider. 

Analysis of a simple Queue 

We consider the simple queueing system depicted in Figure 2.5 with infinite storage 

space and a single server. The arrival process is associated with arrival events Ce of a 

stochastic sequence S= ýYl) Y2) Y3,, 
.. .1 where Yk is the kth inter-arrival time (time 

elapsed between (k - 1)th and kth arrivals) and Y, is the time of the first arrival. If 

we assume that Yk's are independent and identically distributed (iid), then a single 

probability distribution A(t) = P[Yk :5 t], k C- N* -f 01 can describe completely the 

inter-arrival time sequence. The mean of the distribution function A(t) is 

where A is the average arrival rate of entities. 

Since we now know the entities' arrivals we must calculate the servicing time. 

We can associate with d the servicing events of a stochastic sequence R= 

f Z1, Z2, Z3 
.... 

1, where Zk is the kth servicing time (time elapsed between (k - 1)th 

and kth services) and Z, is the time of the first service. If we assume that the Zk's 

are (iid), then a single probability distribution B(t) = P[Zk -! ý- t], kE N* - 101 can 

similarly describe the servicing time sequence. The mean of the distribution function 

B(t) is Ad ý -1 so that A is the average service rate of the server in the queueing 
I-L 

33 



system. In queueing systems we are also interested in calculating the traffic density 

which gives information about the utilisation of the system. We define p 

< 

Queueing systems are in general more complex than the system shown in 

Figure 2.5 and their analysis is more involved. The storage capacity of a queue 

usually denoted by K and the number of servers m define the structure of a queueing 

system. The design of the service facility may include parallel servers or servers in 

series. In the simple queueing system of Figure 2.5 K= oc and m == 1. There 

is a standard notation system (Kendalls notation) to classify queueing systems as 

A/B/m/K/p/E, where: 

A: is the probability distribution for the interarrival time 

B: is the probability distribution for the service time 

m: is the number of servers, m=1,2, 

K: is the number of entities, K=1,2,... 

p: is the system population 

E: is the queueing discipline 

Using above notation the system in Figure 2.5 is described by A/B/l/oo/, while 

system population and system discipline can vary. A common notation is also used 

for the A and B distributions: 

M: Poisson arrival distribution (exponential interarrival/service distribution) 

D: General distribution (with deterministic or constant interarrival/service times) 

G: General distribution (with an unknown mean and variance) 

GI: General distribution where interarrival/service times are iid 

34 



Queueing systems can be open or closed. In an open queueing system the number 

of arrival entities is infinite, while a closed queueing system (shown in Figure 2-6) 

can serve a finite number of entities. In this system an entity after being served 

always returns for more services and never leaves the system. 

Entities 
departures 

Figure 2.6: A closed queueing system 

In the case of a closed queueing system traffic denstty o,, is given by p, = -L 7 MtL 

where m is the number of servers. More details concerning queueing theory and more 

complex queueing systems can be found in [CL99], [Bos0l], [GH98]. 

2.1.3 Petri Nets 

Petri Nets (PNs) is one of the mathematical and graphical modelling tools well 

suited for describing and analysing discrete events systems (DES) 
- 

Petri nets allow 

us to model, verify, implement and visualise systems which contain concurrence, 

resource sharing or synchronisation. Petri nets offers numerous advantages for 

modelling (DES) systems and have been used in many different application areas 

with a high degree of success. A large variety of powerful and universal university 

and commercial tools have been developed for the analysis of Petri nets, providing 

models and algorithms to meet the needs in different application domains and achieve 

industrial or business standards. Petri nets were first introduced in 1962 by Carl 

Adam Petri [Pet62], while a major extension of his work was carried out at MIT in 

35 



the early 70's. In the 90's Petri nets were first used in industry to model flexible 

manufacturing systems and now they can be found in a wide variety of applications. 

Recently, Petri nets were used for design, modelling and performance analysis of 

supply chain systems, especially as a tool for computation of key factors of supply 

chains such as lead times, customer satisfaction and inventory levels. 

There are several different types of Petri, whose use each time depends on the 

main attributes of the application or the characteristics of the problem. Nevertheless, 

it would be impossible to discuss all these different types here. For the purposes of 

this research we use Coloured Petri nets (CP-nets or CPN). On the following section 

we introduce the main concepts of Petri nets and we restrict our attention to the 

principles of Timed Coloured Petri nets (TCPN). 

Petri net notation and definitions 

Petri Nets are bipartite directed multigraphs with two types of nodes; (i) circles which 

represents the states of the system called places, and (ii) bars which are associated 

with the events and are called transitions. These two different nodes are joined by 

directed arcs which can are connect places to transitions and transitions to places. 

A simple Petri net is depicted in Figure 2-7. 

PI ti p2 

C 
Figure 2.7: A simple Petri net 

In order for a transition to occur several conditions have to be satisfied. These 

conditions are stored in data associated with places which are viewed as the input 

to a transition. After the occurrence of a transition, places may be enabled which is 

viewed as the output of a transition. In Figure 2.7 p, and P2 are the input and output 

places for the transition ti, respectively. A transition can stand for a processor, event, 

36 



computation step or algorithm, task or job. An input place can represent buffers, 

preconditions, input data, conditions or input signals. Similarly output places can 

stand for buffers, Post-conditions, output data, conclusions Or Output signals. A 

marked PN contains tokens. Tokens are depicted graphically by dots and reside in 

places. A marking of a PN is a mapping that assigns a non negative integer (the 

number of tokens) to each place of the net. However, in high-level Petri nets such as 

CP-nets tokens can be not only non negative integers, but also boolean expressions 

or strings. The marking characterises the state of the PN. The existence of one or 

more tokens represents the availability of a resource, while the absence of tokens 

in places indicates that the resource is not available. The places and the marking 

capture the distributed nature of the system. The marking M can be represented by 

a token (i. e., M(Pl) 
--":: 1i M(P2) ý 0). In Figure 2.7 place p, contains a single token 

and therefore the current snapshot represents also the current marking ofthe PN- A 

formal definition of a Petri net is given next. 

Definition 2.1.5. A Petri net is a four-tuple: 

(P, T, A, M) 

where: 

P: is a finite set of places. 

T: is a finite set of transitions. 

A: is the set of arcs from places to transitions such that AC (P x T) U (T x P) 

M: is the marking of the set of the places P. 

Definition 2.1.5 states the main components of the ordinary Petri nets. In theory, 

ordinary and high-level Petri nets have exactly the same computational power but 

in practice, high-level nets have much more modelling power because they have 

37 



better structuring facilities, e. g. types and modules. With respect to description and 

simulation the two models are nearly identical but according to formal verification 

there are some differences. Each CP-net has an equivalent PT-net and vice versa. 

This equivalence is used to derive the definition of basic properties and to establish 

the verification methods. 

Several other kinds of high-level Petri Nets also exist. They all rely on the same 

basic ideas, but use different languages for declarations and inscriptions. Description, 

simulation and verification for the purposes of this research work are all done directly 

in terms of CP-nets which are discussed in the next section. 

Coloured Petri nets 

As it has been mentioned in the previous section, ordinary Petri nets have no types 

and no modules, but only one kind of tokens. With Coloured Petri Nets (CP-nets) it 

is possible to use data types and complex data manipulation. Each token has a data 

value attached called the token colour. The token colours can be investigated and 

modified by the occurring transitions. In CP-nets places are defined by ellipses while 

transitions are represented by quadrangles. Each place has the following inscriptions: 

Name (for identification), colour set (specifying the type of tokens which may reside 

on the place), and an mitial markmg (multi-set of token colours). Each transition has 

the following inscriptions: Name (for identification) and a guard (boolean expression 

containing some of the variables). An are may carry an expression which describes 

how the state of the CP-net changes when the transitions occur. When the are 

expression is evaluated it yields a multi-set of token colours. A simple CP-net is 

shown in Figure 2.8. 

CP-nets in contrast with ordinary Petri Nets can combine text, graphics and 

the use of a formal language (e. g. a programming language). Declarations and 

net inscriptions are specified by means of this formal language. To make a CP-net 

readable it is important to make a nice graphical layout, although this has no formal 

importance. 

38 



1' (1, CPN") 

IN I Xb I KINQi 

Figure 2.8: A simple Coloured Petri net 

INTXSTRING 

A binding assigns a token colour (i. e. a value) to each variable of a transition. 

A binding element is a pair (T, bi) where T, is a transition while bi is a binding for 

the variables of T,. For the simple Petri net depicted in Figure 2.8 a binding for the 

transition T, is given as follows: (Tj, <x=1, y=" CPN" >) - 
For any transition 

to occur, we must bind these two variables (these could be one or more) to values in 

their types in such a way that the arc expression of each incoming arc evaluates to 

a token value that is present in the corresponding input place. A binding element is 

enabled iff: (i) there are enough tokens (of the correct colours on each input-place), 

and (ii) the guard evaluates to true. When a binding element is enabled, a multi-set 

of tokens is removed from each input-place, and a multi-set of tokens is added to each 

output-place. A binding element may occur concurrently to other binding elements 

iff there are so many tokens that each binding element can get its "own share". The 

formal definition of a non-hierarchical CP-net is given below [Jen97]: 

Definition 2.1.6. A Coloured Petri net is a tuple CPN: 

(E, P, T, A, N, C, G, E, 1) 

where: satisfying the requirements below: 

E is a finite set of non-empty types, called colour sets 

2. P is a finite set of places 

T is a finite set of transitions 

39 



4. A is a set of arcs from places to transitions such that: 

*PnT=PnA=TnA=O. 

N is a is a node function. It is defined from A into PxTUTxP 

6. C is a colour function. It is defined as a mapping from P to E. 

7. G is a guard function. It is defined as a mapping from T to expressions such 

that: 

o Vt CT: [Type (G (t)) = 13 A Type (Var (E (a))) C E] 

9 where: Type(G(t)) is the type of the guard G(t) and Var(E(a)) 

is the set of variables in E(a). 

8. E is an arc expression function. It is defined as a mapping from A into expres- 

sions such that: 

o Va E A: [Type(E(a)) :::: ý C(P(a )ms A Type(Var(E(a))) 9 E] 

9 where: p(a) is the place of N(a). 

1 is an initialisation function. It is defined as a mapping from P into closed 

expressions such that: 

40 



o Vp G P: [Type(l(p)) = C(p)ms]. 

The set of colours determines the types, operations and functions that can be used 

in the net inscription (i. e. guards, arc expressions, colour sets etc. ). If desired, the 

colour sets can be defined by means of a many-sorted sigma algebra. We assume that 

each colour set has at least one element. Places, transitions and arcs are required 

to be finite and pairwise disjoint. In contrast with ordinary Petri nets, the net 

structure for pragmatic reasons can be empty (i. e. PUTuA= 0). Hence the user 

can define and syntax-check a set of colour sets without having to invent a "dummy" 

net structure. 

The node function maps each arc into a pair where the first element is the source 

node and the second the destination node. In contrast with classical Petri nets, a 

CPN can have several arcs between the same ordered pair of nodes. The colour 

function C maps each place, p, to a colour set C(p) and therefore each token on p 

must have a token colour that belongs to the type C(p). The guard function G maps 

each transition, t, to an expression of type boolean, i. e., a predicate. Moreover, all 

variables G(t) must have types that belong to E. The arc expression function E 

maps each arc, a, into an expression which must be of type Qp(a))ms. This means 

that each evaluation of the arc expression must yield a multi-set over the colour set 

that is attached to the corresponding place. Arc expressions can be omitted and this 

leads to a shorthand of empty. Finally, the initialisation function I maps each place, 

p, into a closed expression which must be of type C(p)ms, i. e., a multi-set over C(p). 

Analogously to arc expression an initial expression can be also omitted. 

Hierarchical Coloured Petri nets 

With CP-nets it is possible to make hierarchical descriptions. A large model can be 

obtained by combining a set of submodels. Hierarchical Coloured Petri nets (HCPN) 

allow a modeler to construct a large model by combining a number of small CP-nets 

41 



into a larger net. HCPN are very useful when coping with large systems, like supply 

chains, when there is a need to develop strong structuring and abstraction concepts. 

The basic idea behind HCPN is that we can relate a transition (called substitution 

transition) and its connecting arcs to a more complex CP-net, which usually gives a 

more precise and detailed description of the activity represented by the substitution 

transition. Thus, a HCPN contains a number of interrelated subnets called pages. 

A page may contain one ore more substitution transitions. 

Each substitution transition is related to a page, i. e., a subnet providing a 

more detailed description than the transition itself. The page is a subpage of the 

substitution transition. There is a well-defined interface between a substitution 

transition and its subpage. The places surrounding the substitution transition are 

called socket places and a subpage may contain a number of port places. Socket 

places are related to port places in a similar way as actual parameters are related to 

formal parameters in a procedure call. A socket place has always the same marking as 

the related port place. The syntax and semantics of hierarchical CP-nets have formal 

definitions similar to the definitions for non-hierarchical CP-nets. Each hierarchical 

CP-net has an equivalent non-hierarchical CP-net and vice versa. The two kinds of 

nets have the same computational power although hierarchical CP-nets have much 

more modelling power. 

Definition 2.1.7. A Hierarchical Coloured Petri net is a tuple HCPN: 

(S, SN, SA, PN, PT, PA, PP) 

satisfying the requirements below: 

1. S is a finite set of pages such that: 

e Each page sES is a non-hierarchical CP-net: 

(E,, P, T, A, N, C, G, E, 1, ) 

42 



e The sets of net elements are pairwise disjoint: 

V, SIi 82 GS: [S1 
-ý- S2 :::: * (P,, U T,, u A,,, ) npT UA 

( 
92 

U 
32 52) 

01 

2. SN CT is a set of substitution nodes 

3. SA is a page assignment function. It is defined from SN into S such that: 

9 No page is a subpage of itself: 

ýSosl 
... Sn G S*ln G N+Aso s, AVk EI... n: Sk G SA(SNSk-I)j - 

4. PN CP is a set of port nodes. 

5. PT is a port type function. It is defined from PN into fin, out, i/o, generall. 

6. PA is a port assignment function. It is defined from SN into binary relations 

such that: 

9 Socket nodes are related to port nodes: 

Vt c SN: PA(t) 9 X(t) X 
PNSA(t) 

e Socket nodes are of the correct type: 

Vt G SNV(pl7P2) c PA(t): [PT(P2) =ý general #, ST(pl, t) = PT(P2)] 

9 Related nodes have identical colour sets and equivalent initialization ex- 

43 



pressions: 

Vt E SIVV(PI 
i P2) c PA(t) : [C(Pl) : -- C(P2) A I(Pl) "-- >: -": 

I(P2) <>1 - 

PP G SMS is a multi-set of prime pages. 

Each page is a non-hierarchical CP-net, and we require that none of these have 

any net elements (places, transitions, and arcs) in common. Each substitution and 

port node are transition and place, respectively. A page may have port nodes even 

when it is not a subpage. The page assignment relates substitution transitions to 

their subpages and no page is a subpage of itself, while the port type divides the 

set of port nodes into input, output and general ports. The port assignment relates 

socket nodes with port nodes. Each related pair of socket/port nodes must have 

matching socket/port types. Moreover, they must have identical colour sets and 

equivalent initialisation expressions. Initialisation expressions are not required to be 

identical, but it is required that they evaluate to the same value. Note also that it is 

possible to relate several sockets to the same port, and vice versa. The prime pages 

is a multi-set over the set of all pages and they determine - together with the page 

assignment - how many instances the individual pages have. Often the prime page 

multi-set contains only a single page (with coefficient one). 

Simulation of Coloured Petri nets 

Petri Nets are executable. The graphical nature of Petri Nets allows the visualisation 

of the complexity of the system. Petri Nets capture the precedence relations and 

structural interactions of concurrent and asynchronous events. Petri Nets also 

subsume many other discrete event dynamical system models. 

CP-nets integrated with a set of robust computer tools provide (i) Construction 

and modification of CPN models, (ii) Syntax checking (e. g., types and module 

interfaces), (iii) Interactive simulation, to gain additional understanding of the 

44 



modelled system, (iv) Debugging procedures, (v) Automatic simulations, e. g., to 

obtain performance measures, (vi) Verification to prove behavioural properties, and 

(vii) State spaces (also called reachability graphs and occurrence graphs). 

In current research work we use CPN-Tools 
- developed by CPN Group at 

University of Aarhus in Denmark. In this computer tool, when a syntactical correct 

CPN diagram has been constructed, the CPN tool generates the necessary code 

to perform simulations. The simulation code calculates whether the individual 

transitions and bindings are enabled and the effect of occurring transitions and 

bindings. The code generation is incremental. Hence it is fast to make small changes 

to the CPN diagram. These CPN-tools have two kinds of simulations: An interactive 

simulation the user is in control, but most of the work is done by the system, and 

an automatic simulation where the system does all the work. A powerful simulation 

tool is a very important issue. If we consider a supply chain system with a vast 

number of states, the simulation, analysis and optimisation require a large amount 

of computational effort, while problems of realistic scale quickly become analytically 

and computationally intractable. 

CP-nets use standard (Markup-Language) ML declarations, net inscriptions and 

code segments are specified in a programming language called Standard ML. ML is 

strongly typed, functional language, while data types can be integers, reals, strings, 

booleans and enumerations or structured types such as products, records, unions, 

lists and subsets. 

Time analysis of CP-nets can be extended by introducing a time concept. This 

means that the same language can be used to investigate logical correctness, desired 

functionality, absence of deadlocks, performance, and can also remove bottlenecks, 

predict mean waiting times and average throughput, and compare different strategies. 

In a timed CP-net each token carries a colour (data value) and a time stamp (telling 

when it can be used). Time stamps are specified by expressions. Time stamps can 

depend upon colour values and can be specified by probability distributions. This 

means that we can specify for instance fixed delays, interval delays and exponential 

45 



delays. Timed simulations have the same facilities as untimed simulations, e. g. we 

can switch between interactive and automatic simulation. Simulation reports tell the 

time at which the individual transitions occurred. More about Coloured Petri Nets 

and CPN-Tools can be found in [Jen97], [KCJ98], and [fCPN]. 

2.2 Control problems in Supply Chains 

Systems and control theory plays an intrinsic role in a wide range of technological 

areas. There is a strong growth in applications of control technology in production 

processes and the business environment. Systems theory is primarily driven by 

the desire for fundamental insight. Control technology is primary motivated by 

engineering problems, with technical relevance and feasibility as the main constraints. 

Nowadays, control techniques are used widely in complex systems like supply chains, 

where companies need to integrate two decision levels: control and planning. At the 

planning level of supply chains a coherent integrated planning of all nodes is needed. 

This integration not only applies to the material flows from raw material suppliers 

to finished product delivery, but also to the inventory control of each node, and 

information and product flows from the customer back to supply chain participants 

(nodes). Modern supply chain control methods are focused on inventory control and 

use of control theory to analyse the dynamic behaviour of the interactions between 

different parts of the chain. 

2.2.1 Inventory control 

An inventory model in a supply chain node represents the behaviour of an inventory 

system over time. It represents the diminishing inventory as goods are dispatched 

to the downstream level and the increase of inventory as goods are replenished 

following various inventory policies. Inventory control systems are designed primarily 

to cope with ranging demand situations by ensuring smooth flow of goods through 

the entire supply chain and maintaining low holding-costs. An inventory model 

46 



according to demand can be either deterministic or probabilistic. In a deterministic 

model demand from the downstream level is assumed to be known with certainty 

while probabilistic inventory models are stochastic and the demand is described 

by a probability distribution. Both models can be further classified according to 

continuous or periodic review policies. 

Quantitative models for inventory control 

The objective of any inventory manager in a company is to maintain the inventory 

at the lowest possible level to minimise cost, while meeting order demands from 

the downstream nodes. Ordering the right amount at the right time is a constant 

headache for managers, while the nature of the inventory problem consists of placing 

and receiving orders repeatedly. In order to tackle this inventory problem, many 

managers use a mathematical technique to determine the lowest total variable costs 

needed to order and hold inventory. This technique is called Economtc Order 

Quantity (EOQ) 
- 

1. Deterministic inventory models. 

If we consider the simplest inventory model with a constant rate demand, 

instantaneous order replenishment and no shortages we can define following 

Taha [Tah03j: 

y: Order quantity (number of units) 

D: Demand rate (units per unit time) 

to : Ordering cycle length (time units) 

Since the order quantity y is known, we can easily find the ordering cycle 

length to. Then, our aim is to find optimal values for y and to. Changes on 

inventory level as a function of time are depicted in Figure 2.9. An order of 

Y units is placed when inventory reaches the zero level, and is assumed to be 

47 



met instantly (lead-time is zero) at a constant demand rate D. Since no stock 

remains after the ordering cycle length, we need to place a new order. We 

know also that during the cycle the amount entering the inventory is y while 

the amount leaving is Dx to. Since these two entities are equal, then: 

y=tooD=ý-to= 
Y 

time units D 

Inventory 
level 

Orders are 
received 

me 

Figure 2.9: Inventory level with fixed order size 

The resulting average inventory level is 2 units. 2 

The first step of the analysis is to find the total cost of the cycle. Hence, we 

define the following two cost parameters: 

K: Setup cost associated with the placement of an order (reorder cost) 

h: Holding cost per inventory unit per unit time 

48 

Place order and 
receive delivery 



The total cost per unit time (TCU) is then computed as: 

TCU(y) = Setup cost per unit time + Holding cost per unit time 
K+ h(2)to 2 

to 

D) 

The optimum value of the order quantity y can be computed by minimising 

TCU(y) with respect to y. Assuming that y is continuous, the minimum cost 

per unit time is given by: 

ýKD 

h 
(2.2.1) 

Thus, the above equation defines the optimal order size every t* = 
0- time 0D 

units. 

In cases where a constant finite lead-time L occurs between the placement and 

receipt of an order, as shown in Figure 2.10, there is no benefit to order at the 

end of each cycle since each order should be timed to arrive just as existing 

stock runs out. To achieve this, we have to place an order a time L before the 

delivery is needed. Thus we should define a reorder level such that when the 

current inventory drops to this level an order is placed. 

Figure 2.10 assumes that lead time L is less than the ordering length cycle time 

t* which is not necessarily the case in general. In order to calculate the lead 0 

time for these special cases, we define the effective lead time as L, =L- nt*o I 

where n is a cycle integer n< -L. It can be inferred from the equation 2.2.1 
to* 

that EOQ does not depend on lead time. 

In case of price breaks (i. e., when the inventory item is purchased at a discount 

price if the order size exceeds a given limit q) the EOQ ý is: (see [Tah03]) 

9= 
y*, qG (0, y*) Uq EE (Q, 00) 

(2.2.2) 

qe(Y*IQ) 

49 



Inventory 
level 

Orders are 
received 

Reorder level 

I- L, I-L-1 I- L --ý Time 

Figure 2.10: Inventory level with lead time and the corresponding reorder level 

where > 

Lemma 2.2.1. The EOQ yi* for n items (n > 1) with limited storage faulities 

zs gzven as: 
r -2KR 7i -D -i 

V hi - 2, \*ai 
(2.2-3) 

where i is the index of the ith item, ozi is the storage area requirement per 

inventory unit for the ith item and A is the Lagrangian multiplier (A < 0). 

Proof. See Appendix A 

2. Probabilistic inventory models. 

1: 1 

A probabilistic EOQ model can be derived if we adapt to equation 2.2.1, which 

reflects the deterministic EOQ model, a probabilistic demand pattern by using 

an approximation that appends a constant buffer stock on the inventory level. 

The size of buffer is determined so that the probability of running out of stock 

50 



Inventory 
level ý 

B+y* 

B+ý4 

B 

Figure 2.11: Buffer stock imposed on the deterministic EOQ model 

during the lead time does not exceed a preassigned value. -We define: 

B: Buffer stock size 

L: Lead time between placing and receiving an order 

IL : Random varZable representing demand during lead time 

PL : Average demand durZng lead time 

07L 

: Standard demation of demand during lead time 

a: Mammum allowable probability of running out of stock during lead time 

We assume that demand 
-'ZýL 

during lead time L is normally distributed with 

mean ILL and standard deviation OL, that is 
-CL - 

N(PLi ý7L)- 

Figure 2.11 shows the relationship between the buffer stock B and the variables 

of the deterministic EOQ model that include the lead time, L, the average 

demand during lead time AL and y*. Note that L=L,. 

The probability relation used to determine B can be written as: 

Pf XL >B I-IL 1 
-`5 

a 

51 

I-L-1 I- L --ý J-L-ý I- L --ý Time 



RZ) 

Figure 2.12: Probability of running out of stock Pf z>K, I=a 

We can convert -rL 
into a standard N(O, 1) random variable by using the 

following transformation: 

z 
IL - AL 

(7L 

Thus, 

Pfz <BI< ce 
9L 

Let K, be the level at which the grey area depicted in Figure 2.12 is a, i. e., 

Pfz > Kj =a 

Hence, the buffer size must satisfy: 

B> OLKa 

The demand during the lead time L, usually is described by a probability 

density function (pdf) per unit time (e. g., per day, or month), from which 

the distribution of the demand during L can be determined. Given that the 

demand per unit time is normal with mean y and standard deviation o-, the 

52 

0z 



Inventory 
level I 

Figure 2.13: Probabilistic inventory model with shortages 

mean AL and standard deviation UL during lead time L, can be calculated as: 

PL= pL 

ý7L ::: '-- N/0 
-2L 

Note that the formula for ý7L requires L to be rounded to an integer value. 

The EOQ model described above is followed by many managers today despite 

the fact that the pertinent information regarding the probabilistic nature of 

demand is initially ignored or is restored at a later stage. There is still some 

doubt if this is an optimal inventory policy. To remedy this situation we need to 

develop a more accurate model in which the probabilistic nature of the demand 

is included directly to the formulation of the model. 

Moreover, a more realistic inventory policy must allow shortages of demand as 

depicted in Figure 2.13 and should call the quantity y whenever the inventory 

falls to level R. In a similar way to the deterministic case a reorder level R, 

is a function of the lead time between placing and receipt of an order. The 

optimal values of y and R are determined by minimising the expected cost per 

53 



unit time that includes the sum of the setup, holding and shortage costs. Let: 

(x) : Probability density function of demand x, during lead time 

D: Expected demand per unit time 

h: Holding cost per inventory unit per unit time 

p: Shortage cost per inventory time 

K: Setup cost per order 

We assume that unfulfilled demand during the lead time is backlogged and 

that no more than one outstanding order is allowed (single ordering policy). 

We also assume that demand distribution during lead time remains stationary. 

In order to find the setup cost we need to calculate the approximate number 

of orders per unit time :2 so that the setup cost per unit time is approximately Y 
±ý-D-. The average inventory I is given by: 
Y 

I= 
(y + EIR - xý) + EýR - xl 

=y +R-Eýxl 

The above formula is based on the average of the beginning and ending 

expected inventories of a cycle, y+ EýR - xj and EýR - xj, respectively. 

As an approximation, the expression ignores the case where R- Ef xj may be 

negative. The expecting holding cost per unit time thus is equal to hl. 

Shortages occur when x>R. Thus, the expected shortage quantity per cycle 

is: 
Ice(x 

- R)f (x)dx 

p is assumed to be proportional to the shortage quantity only, the expected 

shortage cost per cycle is Sp and based on 2 cycles per unit time, the shortage Y 

cost per unit time is DS,. 
y 

The resulting total cost function per unit time is: 

TCU(y, R) = 
DK 

+ h(y +R- Etxl) + 
Dp 

(x - R)f (x)dx 
y2Y 

IROO 

54 



The solutions for optimal y* and R* are determined from: 

aTCU 
_DK +h pDS 0 ay 

y22y2 

aTCU 
h- pD 00 

f (x)dx 0 aR yR 

The solution of above equations are given below: 

LD(K + oS) (2.2.4) y 'OS) 

ff 
(x)dx = 

hy* 
(2.2.5) 

Roo pD 

Using equation 2.2.4 and equation 2.2.7 we can not calculate y* and R* in closed 

form and therefore we need to use a numeric algorithm, e. g. the algorithm 

developed by Hadley and Whitin [HW63]. The proposed algorithm, converges 

in a finite number of iterations provided a feasible solution exists. 

For R=0, equation 2.2.4 and equation 2.2.7 become, respectively: 

LD (K + pEfxl) (2.2.6) 
h 

pD (2.2.7) 
h 

If ý>ýa unique optimal values of y and R exist. The solution method implies 

that the smallest value of y* is 2kd 
which is achieved when S=0. k ý- Eh 

The implementation of the above algorithm can be realised by following 2 steps: 

Step 1. First we use the -initial solution yj = 71* -ý 
ý2KD 

= hand let Ro 

We set i=I and go to the next step. 

* Step 2. Use yj to determine R, from equation 2.2.7. If R, ý-ý R, 
-, we 

terminate the procedure and we consider that the optimal solution is 

yi and R* = Iý.. Otherwise, use Iý- in 2.2.4 to compute yi. In this 

case we set i=i+I and repeat the second step. 

55 



2.2.2 Control theory and supply chain 

A supply chain is a dynamic system where inputs u(t) and Outputs y(t) are time- 

dependent. The state of such a system at a time instant t describes the system 

behaviour at that time in a measurable way. In addition to selecting inputs and 

outputs we should also identify state variables. In the modelling process then we 

have to determine suitable mathematical relationships between inputs, outputs and 

states x(t). These relationships encapsulate the dynamics of the system and allow us 

to obtain expressions for x(t) given x(to), and input u(t), t> to. The set of equations 

required to specify the state x(t) given x(to) and u(t) are called state equations, while 

the set of all the possible values x(t) may take is called state space of a system and 

denoted by X. 

The modelling process must provide the flexibility of choosing not only inputs 

and outputs but also the state variables depending on the problem of interest, 

although there is no unique state representation for a given system. Mathematical 

relationships between inputs, outputs and states can determine also the linearity 

or nonlinearity nature of the system. Supply chains are mainly nonlinear system 

and in practice the analysis of such systems is 
-a cumbersome task. Under certain 

conditions we can transform a nonlinear system to a linear one; such a system is 

studied in chapter 3. In the linear case we can represent the state equations of the 

model as: 

. 
ý(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) + Du(t) (2.2.8) 

In equation 2.2.8 if we assume that there are n state variables, p input variables 

and s output variables, then A is an nxn matrix, B is an nxp matrix, C is an sxn 

matrix and D is an sxp matrix. The elements of these four matrices are called model 

parameters. The study of the above state equations in the linear time-invariant case 

pertain to the analysis of the system in the time or frequency domain. 

In cases where the inputs and outputs variables of the system are defined at 

56 



discrete times we obtain a discrete-time system. If we consider a supply chain 

system where data is recorded only at regular discrete intervals (e. g., monthly) then 

we obtain a discrete-time supply chain model. In discrete time models, the time 

instances is a sequence of points to < tj ,:: ý ... 
tk- It is assumed that all intervals have 

the same length (sampling interval) T, i. e., tk+1 - tk 
'=-- 

tk - tk-1 = T, VkEN+. The 

real time variable is now replaced by an integer variable k, which is used as an index 

to indicate the number of intervals elapsed from a reference point, usually k=0. 

We can now define the corresponding input, output and state-vector for a discrete- 

time model as u(k), y(k), x(k), respectively. Thus the state space equations ( 2.2.8) 

become: 

x(k + 1) = Ax(k) + Bu(k) 

y(k) = Cx(k) + Du (k) 

where A, B) C, and D are matrices containing the system parameters. 

2.2.3 Stochastic models 

Stochastic processes 

A stochastic process ia a sequence of random variables 

ýXtj f 
... ) X-1 I -'ýo I xl) I 

(2.2.9) 

with joint probability distributions defined for all t1, t21 
... i 

tn 
- Since this description 

requires too much information to be of practical interest, we typically use the 

following two statistical characteristics of ýxtj: 

1. The mean: 

pt = E(xt) = 
f 

C, 

- coo 

where f.,, (-) is the probability density function of xt, and 

57 



2. The covariance function: 

CO 00 
R(t, s) = E{(xt -ILt)(x, -M, ) E(xtx, ) -ptg, = 

f-C, 

)O 

f-00 
xyft.,,, (x, y)dxdy 

where fxtx,, (-, -) is the joint density function of xt, x,. 

For a stationary process we assume that tit =p for all k and that R(t, s) depends 

only on the time difference t-s; hence to simplify notation we define in this case 

R(t, s) = R(t - s, 0) = R(t - s). A stochastic process of particular interest is the 

"white noise" sequence f xtj. For this process we have: (i) ut=O and (ii) Rt is 

constant for t=O, and R(t)=O for t :ý0. 

Given a stationary stochastic sequence f 77kj and its covariance function f R(k) II 

its spectral density function is defined as the (two-sided) Z-transform of f R(k) 1, i. e. 

00 
1: R(k)Z-k 

k=-oo 

The frequency content Of ý77kj may be obtained by evaluating 4D,,, (z) for z= Owl 

IzI < 7r, where w is the normalised angular frequency measured in rads/sample and 

hence 7r corresponds to one half the sampling frequency, i. e. 
CX) 

ýD, 7,7(ej') = 
1: R(k) e-jkw ýwj <7 

k=-oo 

The spectral density function of a white noise sequence is: 

IF(w) = R(O) = constant 

Hence the spectral density function of a white noise sequence does not depend on 

the normalised angular frequency w and has "equal content" at all frequencies. 

Stochastic signals and models 

We usually assume stationary, zero mean noise sequences {? 7kl - note that non-zero 

means can always be accommodated as a dc offset in the "deterministic" part of 

the model. This class of models is also too large for practical purposes. A simple 

widely-used class of models is generated by the output of a linear time-invariant (LTI) 

58 



discrete-time system driven by white noise. Hence we can user the LTI discrete-time 

state-space model (see also equation 2.2.9): 

x(k + 1) = Ax(k) + Be(k) 

y (k) = Cx (k) +De (k) (2.2.10) 

where fe(k)j, kEZ denotes a white vector-noise sequence of unit intensity, i. e. 

uncorrelated with E(ek) =0 and variance Var(ek) = a'. An LTI system can 

equivalently be defined via difference equations. The most widely used model is: 

* A(z-')ý7(k) = B(z-')ek, kGZ (ARMA model) , where A(z-') =I 

aiz-1 +---+ anz -n and B (z-1) = bo + b, z-1 +--. +b, z-m, and its two special 

cases: 

40 77k = B(Z-1)ek, kE 7, (Moving average (MA) model). The model name 

derives from the fact that 77k may be written as a (weighted) moving average 

of present and past samples of the input white noise sequence, i. e. 77k -"::::: 

boek+ blek-l+ 
-. -+b, 

e-k-m. 

9 A(z-')77(k) : --- ek, kcZ (Autoregressive (AR) model) 

Model name derives from the fact that 77k may be written in regression form with 

its past values (i. e. "with itself'), i. e. 

7A =( 71k 
-I 

77k-2 

-a, 

_a2 
77k-n 

-an 

Note we use z-' both as a Z-domain variable and as a time-domain (unit delay) 

operator. We have made the assumption that ý77kj must be stationary. We want to 

investigate the restrictions that this assumption imposes on the coefficients of Az(-') 

and Bz(-'), which defines the ARMA model. 

59 



Definition 2.2.1. The transfer function z ---ý G(z-1) is: (i) Stable iff z ---* G(z-1) 

has all its poles inside the unit circle aD, (ii) Minimum-phase iff z --+ G(z-') has all 

its zeros inside OD. 

Theorem 2.2.2. If f ek I, kEZ is a white noise sequence with constant variance then 

'qk=A-'(z-')B(z-')e-k defines a stationary process iff A-'(z-')B(z-') is stable. If 

A-'(z-')B (z-') is stable and has minimum phase, then f ekj can be recovered from 

ý77kj as ek=B-'(z-')A(z-1)71k, i. e., system is "invertible". 

Note that the ARMA model formally defines a stochastic difference equation. It 

is important to realise that here the underlying time-index set of this equation is Z 

(all integers, both positive and negative). Theorem 2.2.2 shows that when we drive 

the LTI system by white noise, the output is stationary iff the system is stable. 

Spectral properties of ARMA models 

Given a process f 77k I we define the covariance function as: 

R(k) = 
Eý77t77t-ký, k z= 0, ±I, +2 

and its spectral density function: 

00 

(D, 
7,7(z) 

E R(k)z-k 
k=-oo 

Note that: 
00 

'F(W) = "'1777(ejw) 1: R(k) Z-jwk 

k=-oo 

is the Fourier transform of the covariance sequence f .... 
R(-l), R(O), R(l) 1. 

Note also that due to stationarity: 

R(- k) = Ef ? 7t77t+k I= Ef7lt-k7ltl= R(k) 

and this implies that: 

00 

R(O) +E R(k) (Z-k +z k) 

k=-oo 

60 



so that: 

00 00 
R(O) + 1: R(k) (ejwk + e-jwk) = R(O) +21: R(k) cos(wk) 

k=-oo k=-oo 

which is a real function of w (in fact non-negative) - 
The spectral density of the output 

of a given ARMA model driven by white noise can be defined by the Theorem 2.2.3, 

see [DV85] 
. 

Theorem 2.2.3. Suppose that G(z-1) = A-I(z-')B(z-') is a stable transfer 

function. Then fqtl is defined by A(z-1)71t = B(z-')et, where jej, tEZ is a 

white noise sequence of unit variance, has spectral density: 

(D, q, q 
(Z) = 

B(z-') B(z) 
= G(Z-')G(Z) 

A(Z-1) A(Z) 

Proof. See [DV85]. 

Note that ARMA models give rise to rational spectral densities 

(2.2.11) 

Fý 

In fact the 

converse is also true since any rational spectral density function may be generated 

by an ARMA model driven by white noise. (This is established by showing that any 

function of the form Eký- R(k)Z-k with R(-k) = R(k) can be spectrally factored 
= oo 

in the form G(z-')G(z) where G(z-1) is rational). This result justifies the use of 

ARMA models. Most noise processes are adequately described by their spectral 

densities and these can be approximated (to any degree of accuracy) by rational 

functions. 

Note that many ARMA models of the form A(z-')? 7t = B(z-')et, tEZ 

correspond to a single spectral density given in 2.2-11. If we impose the restriction, 

however, that: 

I 
B(z-') 

z G(z-') 
A(z-1) 

is stable and minimum phase, the polynomials corresponding to (D,, (z) are uniquely 

determined (up to a sign) - 

61 



Calculation of covariance functions for ARMA models 

Given an ARMA model A(z-1), qt = B(z-')et where fetj is white noise sequence 

with unit covariance, we sometimes require to obtain f R(k) I in closed-form. There 

are several approaches for this. Consider for example the first order auto-regression 

77t - aqt-l = et with Icel < 1. Then: 

e Miiltiply by 77t-l and take expectations: 

2 Efqt-letl =0 =* R(l) - aR(O) =0 (2.2.12) 
t- 

* Next multiply by qt and take expectations: 

Ef77tetj (2.2.13) 

e Multiply through by et and take expectations: 

ýe2j 
=1 Eý77tet - aqtetl -E _t =ý, Ef77tetj =1 (2.2.14) 

* From equation 2.2.13, equation 2.2.12 and equation 2.2.14: 

R(O) _ OZ2 R(l) =I R(O) 
.2 

and R(l) 
ce 

Ce2 
(2.2,15) 

e Finally multiply through by 77t-k (k = 1,2,... ) and take expectations: 

Ef? 7t? 7t-k - W7t-kj - Elet? 7t-kl =0 =ý- R(k) = aR(k - 1) (2.2.16) 

Combining 2.2-15 and 2.2.16 gives: 

R(k) 
a (2.2.17) ::::: ý -j -- 

0-12 

which gives the covariance function in closed form. 

This procedure of multiplying by past samples and taking expectations works 

in general. The result is surnmarised in the following theorem [DV85] (Yule-Walker 

equations): 

62 



Theorem 2.2.4. Let ýR(O), R(1), R(2) 
.... 

I be the covariance function of the stable 

ARMA rnodel A(z-')77t = B(z-')et, where A(z-1) + aiz-' ++a,, z-n and 

B(z-1) = bo + bjz-1 +... + bz-' and suppose that 901 91) 92) is the untt-pulse 

response of A(z-')-'B(z-1). Then: 

mn 

E 
aiR(f - 1) =E bigi-e f 

i=O i=max(O, f) 

=0 

Proof. See [DV85]. 0 

Note that the first m+1 equations for f-0,1,2,. 
.., m involve 2m +I 

unknowns R(-m),..., R(O),..., R(m) which may be solved by using the relations 

R(-i) = R(i). Using these values as initial data, the higher order R(i)'s can be 

determined recursively using the remaining Yule-Walker equations. 

A second method for determining the covariance function is via contour 

integration. Recall that given 77t satisfying A(z-')97t=B(z-')et the spectral density 

is given by equation 2.2.11. Also, T(w) == 4P.,, (ejI) is the inverse Fourier transform 

of JR(O), R(±l), R(±2) 
.... 

Hence the R(i)'s can be obtained as the Fourier 

coefficients of T(w), i. e. 

R(k) 4), 
7,7(ej, 

)ejkdw (k = 0, ±1, ±27 
J 

-7r 
j7r 

27rj 

27rj OD 

')(0') k-ld(e3 . 

(D, q, q 
(Z) Zk- ldz 

This is a contour integral in the complex plane around the unit circle aD which may 

be calculated using Cauchy's residue theorem. Thus, assuming that z --+ oDn, 7(Z)Zk-1 

has only simple poles inside aD (write themf ZI, Z27 ... , zpj), then: 

z, zi 
R(k) =Z Res«D� (Z)Zk-11 zi )=Z "M (Z 

- Zi) e1717 (Z) Z 
k-1 

f 

63 



Means and covariance fanctions of scalar random variables can also be defined 

for vector random variables. These can be alternatively thought of finite truncations 

of (infinite) stochastic processes. For a vector random variable: 

XI 

X2 

Xn 

we can define its mean: 

E(xl) 

E(X2) P2 
E(X) 

L E(Xn) jL An j 

and its covariance matrix: 

R= R�, 
ý = Et QC - E(X» QC - E(X»'ý = E(XX') - Mli' 

This can be written in full: 

Ril R12 
... 

Rln 

R= 
R21 R22 

... 
R2n 

Pt-nl Pt-n2 Pt-nn 

where Ik. j = E(xixj) - pipj. The symmetry of covariances Rij = Rjj implies that R 

is symmetric and positive semi-definite [Kij02]. 

A case of special interest is when X is normally distributed. In this case the joint 

density function f (x) is given by: 

1- (x -ju)1R-1 -pL) 

(27r) 
12ý 

v/ -die t _(R) 
(e 

provided that R is positive definite, where x= 
(Xl) X2i ... i Xn)'. Note that the 

marginal distributions are normal and xt - N(pt, Rtt). If the covariance matrix is 

not positive definite, the random variables are linearly dependent in a stochastic 

sense, and some special treatment is required. 

64 



Definition 2.2.2. A symmetric matrix A is positive definite if, for any non-zero 

vector c, c'Ac > 0. A is called positive semi-definite if, for any vector c, cAc 
-> 

0. 

Stochastic state-space models 

The standard state-space stochastic model we will be using is of the form given in 

equation 2.2.10: 

x(t + 1) = Ax(t) + Be(t) 

y(t) = Cx(t) + De(t) 
(2.2.18) 

As usual, Ik denotes the state vector (at time-index k), Yk is the system output 

vector and ek the system input vector; we assume that the ek's are uncorrelated, 

zero-mean, and that COV(e-k) = E(eke-1) =I for all k. We can give two different k 

interpretations of this model: (i) The time set is Z+ (non-negative zeros only); in 

this case we need to specify the (joint) statistics of the initial state vector xO and eo 

to properly define the processes Xk and Yk; (ii) The time set is Z (all integers); in 

this case xI, and Yk are the outputs of the ARMA models Xk = (zI - A)-'Bek and 

Yk = [C(zl - A)-IB + Djek in the sense discussed earlier. 

Theorem 2.2.5. [DV85] Suppose that in 2.2.10 the time index is Z+, the initial 

state xo has zero mean and covariance Po, and that xo is uncorrelated with ekfor all 

k. Then P(k) :::: -- COV(--"k) satisfies: 

P(k + 1) = AP(k)A'+ BY, P(O) = Po 

and 

Cov(yk, yk-j) = CP(k)C'+ DD', i=0 

=CAjP(k-j)C'+CAj-'BD', j=1,2,..., k 

(2.2.19) 

If A is stable then P(k) -4 P as k --ý oo where P is the unique solution of the 

(discrete) Lyapunov matrix equation: 

P= APA+ BB' (2.2.20) 

65 



Furthermore if Po =P then P(k) = P, Vk > 0. Next suppose that the tZme index is Z 

and that A is stable. In this case {Xkl and 4kj are wide-sense stationary processes, 
E(Xk) == 0) COV(Xk) 

=P and: 

COV(Yki Yk-j) = CPC+ DD', j=0 

= CAIPC+ CAj-'BD', j>0 

Here P is again the (unique) solution of the Lyapunov equation 2.2.20. 

The proof can be found in [DV851. 

Linear least-squares estimation 

Postulate a model of the form: 

Y=xo+e 

where: 
Yi el 01 

y 
Y2 

e 
e2 02 

and X (E 7rxq 

ý Yn )\ en i Oq i 

Here y and X are known, 0 is the vector of parameters to be estimated (unknown) 

and e is a noise/disturbance vector (unknown). 

Example: Consider a linear system which consists of a simple unknown gain 0 

and whose output is corrupted by a noise sequence et (see Figure 2.14). In this case 

model equations may be written as: 

Yi Ul el 

Y2 U2 
o+ 

P- 21 

Yn un en 

or as y= XO + e,. 

66 



fet} 

{u unknown gain 0 

Figure 2.14: Estimation of unknown gain 

Least squares estimate 

In least squares estimation we choose 0 to minimise the sum of squares of the 

"residuals" (errors), i. e., we minimise 
n 

J(O) = 
E( 

_ XTO)2 (y 
_ 

XO)T(y 
_ 

Xo) yi i 

Here xT is the i-th row of matrix X ("regression vectors"). To find the minimising z 
0, first expand J(O): 

j(o) = 
(YT 

_ 
OTXT)(Y 

_ 
Xo) = YTY -20TXTY + OTXTXO 

Setting the derivative to zero: 

OJ(O) 
= -2XTy + 2XTXO =0=: ý, XTXý = XT 

y (Normal equations) ao 

Note that X'X is a square (q x q) matrix and therefore the normal equations can be 

solved uniquely if XIX is non-singular, or equivalently if X is of full column rank. 

In this case, therefore, the normal equations have the unique solution: 

(X T X)-1 XT 

Statistical properties least squares 

Now assume that there is a "true" parameter 0, treat e as a vector of random variables 

and examine the statistical properties of ý. Assume that: 

1. E(e) == 

E(ee T) 
= 0-2. r 

67 



i. e., the ei's are zero mean, uncorrelated with common variance g2. 

Note that since y= XO + e, the yj's are random variables, and hence any linear 

combination of these, Vy say, is also a random variable. Thus ý= (XTX)-lXTy 

is a vector of random variables and as such it will have a probability distribution. 

(Consider this as follows: Perform a sequence of random experiments, each time with 

a different realisation of the random vector e (drawn from the same distribution) and 

record in a histogram the percentage (successes over trials) that the estimate falls 

an interval of the histogram. In the limit (as the number of experiments increases 

and the histogram partitioning becomes finer and finer) we will have obtained the 

statistical distribution of 
6). 

The question now arises is when 6 is a "good" estimate. It is natural to say that 

0 is "good" if the following two conditions are satisfied: 

e The statistical mean of 0 coincides with the true parameter 0, i. e. if the 

estimates' average over noise realisations e (in the limit) is equal to 0. 

* The variance of 6 is small, i. e., the statistical spread of the estimates (for 

different noise realisations) around the mean is small. 

We start with the unbiasedness property: 

Theorem 2.2.6. ý is unbiased. 

Proof. See [DV85]. 

Next we calculate the covariance of 0: 

Theorem 2.2.7. COV(ý) = U2(XTX)-l. 

Proof See [DV85]. 13 

Theorem 2.2.8.6 is BL UE ('Best Linear Unbiased Estimate ), i. e., given any 

estimate ý of the, form 0= By (linear) such that E(By) =0 for all 0, then 

COV(O) < cov(ý3)- 

Proof See [DV85]. D 

68 



Estimation of noise variance 

Consider the model 

Y=xo+e 

in which e is an- vector of zero mean, uncorrelated random variables with common 

variance or 2 and 0 is a q-vector. We still assume that X is deterministic and that 

its columns are linearly independent. The parameter vector 0 is constant (but 

unknown). Assume also that the noise variance U2 is unknown. A natural estimate 

of the variance or 2 is: 

_n 
nE 

(y - XO)7'(y - XO) 
i=l 

Since 0 is unknown, however, we may try 6 instead. It turns out that the estimate: 

I 
(y 

_ 
Xý)T(y 

_ 
Xo) 

n 

(which is the "maximum-likelihood estimate of a') is biased. An unbiased estimate 

of u' is given in the next theorem. Before presenting this theorem some background 

material on the trace of a matrix is included. 

The trace of a matrix: For a square, (n x n) say, matrix S, its trace is defined 

as the sum of its diagonal elements, i. e., 

trace(S) Sii 

Trace(. ) is a linear operator: trace(A + B) = trace(A) + trace(B), and trace(aA) = 

atrace(A) for every scalar a. Another useful property is that trace(AB) = trace(BA) 

whenever the products AB and BA are both defined. Check this: If AE R"' and 

BE R"' (so that both products are defined), then: 

(AB)ii =E 
AikBki 

k 

and hence 

trace(AB) - 
Z(AB)ii 

=ZZ AikBki = 
ýý Z BkiAik = 

Z(BA)kk 
= trace(BA) 

iijkik 

69 



Another useful property of trace (not used here) is that 
n 

trace(S) = 
j: Aj(S) 

i=l 

where Ai (S) are the eigenvalues of S. 

Theorem 2.2.9. 

&2 =1 (y 
_ X6)T(y 

_ Xý) 
n-q 

is an unbiased estimate of o- 2 

Proof. See [HJ90] 

and hence P is an unbiased estimate of 0-2. 

Least squares estimation for dynamic systems 

Consider the ARMA model 

A(z-')Yk = B(z-')Uk + ek 

in which 

+ alz-1 + a2Z-2 +-.. + a, z-' 

and 

B(z-1) = bo + blz-1 + b2Z-2 +-.. + bmz-m 

We require to estimate the parameters: 

0= [a, a2 
... an I bo b, ]T 

El 

from input-output measurements (ui 
, yi), i=1,2 

7 .... 
N. The model equations may 

be written as: 

Yk : ': [-Yk-1 
- Yk-2 ---- Yk-n I Uk ... Uk-m]O + ek 

for k= 17 2j... 
7 
N, or, in matrix form: 

Yl -YO -Y-1 -Yl-n 

Y2 -Yi -YO -Y2-n 

YN -YN-1 -YN-2 -YN-n 

Ul 
... Ul-m el 

U2 ... 
U2-m 

1 

o+ 
e2 

UN ... 
UN-m eN 

70 



This is now in the form y= XO +e and the parameter vector 0 may he estimated 

by least squares. 

Note 1: The 'regression matrix' X is partitioned as X= [Xl I X21) in which X, 

and X2 have a special ("Toeplitz") structure, i. e., entries along main diagonals are 

identical. 

Note 2: The upper triangular parts of T, and T2 contain data yj and ui, i<0 

which represent initial conditions. If these data are unavailable we use O's to fill 

these positions. 

Note 3: In this case X is a random matrix (since y is random and correlated 

with e), so standard least square (LS) theory does not apply. In particular: 

For any finite n, 0 is biased. 

0 is asymptotically unbiased (i. e. 
IiMN, E(ON) 

=0 for all 0 if the el's are 

uncorrelated and theUk's are "persistently exciting" (see next). 

e0 is biased even asymptotically if the6- k's are not white. 

Asymptotic convergence in the case of white/ correlated noise is examined in the 

following examples: 

Example 1: (white noise) 

Consider a second-order autoregressive model for simplicity: 

Yk Yk-1 Yk-2 
)+ 

ek k= 11 2n 
a2 

) 

In this case, 
Yi Yo Y-I el 

Y2 Y1 Yo -a, +e2 
a2 

Yn j\ Yn-I Yn-2 /\ en 

and hence the least squares estimate is given by: 

Ö= (XTX)-'XTy == (XTX)-'XT(XO + e) - 
(0 + XTX)-'XTe 

71 



Now, 

XTX:: = 
Yo 

( 

Y-1 

Yo 

Yl 
... Yn-I Yi 

YO ... Yn-2 

Yn-1 

Y-1 

Yo 
2 Ek=l Yk-1 

En 

( 

k=l Yk-lYk-2 

Yn-2 

n 
k=l Yk-lYk-2 

En2 
k=l Yk-I 

or 
1 En 21 En 1XTX 
n k=1 Yk-1 

n k=1 Yk-IYk-2 

n1I: n 1 En 
1 y2 

n k=1 Yk-1Yk-2 
n k= k-1 

Under ergodicity assumptions, the "sample covariances" converge to the "true 

covariances" and hence: 

lim 
1 

XTX = 

Ryy (0) Ryy (1) 

Ryy (1) Ryy (0) 

) 

Also, 

e, 

1 En lXTe Yo Yl ... Yn-1 e-2 
n 

Yk-lek 

nn Y-1 YO ... Yn-2 Ek=l Yk-2ek 
n 

en 

so that: 

lim 
1 

XT e 
E(Yk-le-k) 

0 
n--+oo n E(Yk-2e-k) 

since clearly the pairs (Yk- 
Ii e-k) and (Yk-2 P-k) are uncorrelated. Hence: 

I(XTX)I-l 1XTe 
On 0=---ý0 

nn 

as n --+ oo, so that limnoo 6n 
=0 and the LS estimates are asymptotically unbiased. 

Example 2: (Correlated disturbances) 

Consider now the model 

Yk = ayk-, + Wk7 Wk = e-k + Cek-I 

in which f ej is white (E(e-k) 0, Var(ek) 0-2). In this case, 

Yl Yo W1 

Y2 Yl W2 

a+ 

Yn Yn-1 Wn 

72 



which is in the form y= Xa + w. Hence, 

nn 

XTX 2_1) XTY = 
E 

Yk Y, 
YkYk-1 

k=l k=l 

and hence least-squares estimate is 

En 
k=l YkYk-1 hn 

n2 Ek=l 
Yk-1 

and hence 
1 I: n 

IiM (Lýn) 
= liM n k=l YkYk-I 

_Ryy 

(1) 

n--+oo n-4oo 1 En 2_ - 
n k=l Yk 1 

Ryy (0) 

under appropriate ergodicity assumptions. Now 

Yk - aYk-1 + e-k + Ck-1 

Multiplying by Yk-, and taking expectations: 

E{YkYk-11 = aEfy'-, I+E{e-kYk-ll+cE{e-k-lYk-11 
=: ý- Ryy(l) = aRyy(O)+cE(ekYk) k 

(2-2.21) 

Multiplying by ek and taking expectations: 

ElYke-kl = aEýYk-le-kl + Ele2 ý+ cEf ek-le-kl => E(Ykek) = 0- 
2 (2.2.22) k 

Substituting (2.2.22) in (2.2.21): 

Ryy(1) = aRyy(0) + CU2 =ý> liM hn 

n-oo 

and hence there is an asymptotic bias: 

Cu 
2 

asymptotic bias -- Ry, 
y 

(0) 

Note: Ryy(O) may be calculated explicitly as: 

Ryy (0) =u 

2(C2 + 2ac + 1) 

1- a2 

co- 
2 

a+ ZY _(O) 

73 



Recursive least-squares 

We consider a modification of the least-squares algorithm which updates the old 

estimates as new data come in. Consider the standard model: 
T 

Yi xi el 
T 

Y2 X2 
o+ 

e2 

1 

Yn Xn en 

which we now write as Y, = XO + E, to keep track of dimensions 
- 

The least-squares 

estimate of 0 at time t=n is given by: 

T TV On = 
(XnL Xn)- Xn 

In 

Define P,,: = (XTX,,, )-'; then 

Yi 
n n-1 

= Pn ETiYi 
= Rn E, 

XiYi + XnYn 
n 

Pn 
( 

Xi Xn 
)( 

ý Yn 

Now 

Hence 

n-1 n-1 

Pn-I xiyi XiYi =: 
Pn 

6n 
== Pn ýPn--11ýn-l 

+ XnYn 
I 

But, 

P -1 
TT 

= X,, Xý = XZýjXn-l + XnXn = P, 'ý-'j + XnXn 
n 

Substituting we get 

-1 T) 
On ý-- Pný(Pn - XnXn) n-1 + XnYnj 

or 
On ýý On-1 - Pnln-ZýnOn-l + PnXnYn 

and thus 
T- 

On 7-- On-1 + PnXn(Yn - XnOn-1) 

To find a recursive update of Pn we have to use the "matrix inversion lemma": 

74 



Lemma 2.2.10. For any three matrices A, B and C of compatible dimensions such 

that A and A+ BC are inverttble, 

(A + BC)-l = A-' - A-lB(I + CA-'B)-'CA-1 

Proof. See [HJ901. 

The updating formulae of recursive least squares can be summarised as: 

On 
n-1 + PnXn(Yn 

- Xn07i-1) 

Tp Plý-lXI'Xn 
n-I Pn Pn-l 

I+x Tp 
n n-lXn 

11 

Note 1: Computationally demanding matrix inversion is now completely 

avoided. Also, there is no need to store the old data; at time t=n we receive 

new information from the data (Xni Yn) and we update the old estimates (Pn-1) On-1) 

to produce the new ones (Pn) 6n) 
- 

Note 2: The updating formula for 0, is intuitively appealing: The "predicted" 

value of y,, given information up to time t=n-I is 

Ynin-1 - ln0n-1 

When new information arrives at time t=n in the form of a new measurement (Yn) 
i 

this is compared with the predicted value to generate the "prediction-error": 

enln-1 - Yn - Ynjn-I ýý Yn XT0 n n-1 

The new estimate ý, is then a correction of the previous estimate 0, by an amount 

proportional to the prediction error. 

Note 3: Modified recursive least-squares algorithm: A slight disadvantage 

of the least-squares recursion is that (in its present form) it cannot be started at time 

t=1, since the matrix P.,, is only defined when X,, X, is non-singular, or equivalently 

when X,, has full column rank. A necessary condition for this is that n>q, i. e., 

that we have at least as many measurements as the number of parameters to be 

estimated, A possible solution is to wait for at least no ý: q measurements until 

75 



XTX 
o no n is invertible, calculate Rno and Ono by matrix inversion (i. e., as in batch 

lea, st-squares), and proceed from then on recursively. An alternative approach is to 

start the recursions at time t=I by choosing reasonable initial conditions 00 and PO 

(e. g. in the absence of any information we can take 6o 
=0 and Po = ! I., where'E is 

a small positive number) - 
It can be shown that this initialisation corresponds to the 

minimisation of: 

n 
Jn (0) (Yi 

-X 
0) 2+1 (0 

- 
Ö0)TP l(0 

- 
bo) 

ij 

i=l 

This performance index differs from the "true" least-squares cost by a fixed amount 
60)TR 

2 
ý-, (0 

- 
ý0). As n increases, the deviation from the true cost decreases 

in relative terms. For small n, Jn(O) can be made approximately equal to the least- 

square cost by choosing PO sufficiently large, e. g. PO = 
! Iq for a small positive E 

c, as suggested previously. Note that from a previous result the covariance of the 

2(XýXz)-I 
= Or2p estimated vector is o, 7n 

(assuming that En is white with variance 

0- 2) 
. 

Thus, in statistical terms a "large" PO reflects a high initial uncertainty around 

the initial estimates Oo. 

76 



Chapter 3 

Bullwhip effect in Supply Chain 

3.1 Introduction 

Bullwhip effect is a major concern for all parts of supply chain because customers' 

demand variation can lead to inefficient use of resources, high costs due to 

overstocking, poor customer services, and increase of inventories when they try 

to maintain a given service level. This phenomenon is better understood in 

supply chains with many intermediate stages when demand information flows within 

different parts is distorted significantly. The impact of information distortion is more 

apparent to upstream stages (e. g., manufacturers) as it can been seen in Figure 3.1. 

Since variability in orders placed by a supplier is significantly higher than variability 

in customer demand, upstream levels are forced to carry more safety stock than 

downstream levels. Therefore, upstream levels must use advance forecasting methods 

and establish closed relations in terms of cooperation with the downstream parts of 

supply chain in order to avoid the symptoms of demand volatility. 

Information flow 

Customers' 
Demand 

ýManufactur / ýýSu 

5p ier Supplier Customer 

Products flow 

Figure 3.1: Demand variability through supply chain 

Thus, it is important to find techniques and methods that will allow us to control 

77 



the increase of variability in supply chains. For this purpose we need first to identify 

and understand the main causes contributing to the bullwhip effect. Sterman [Ste89] 

shows how human behaviour such as misconceptions about inventory and demand 

information may cause the bullwhip effect. Lee et al [LPW97a] identify five major 

causes of this phenomenon shown in Figure 3.2. 

1. Demand forecasting 

2. Order batching 

3. Price fluctuation 

4. Rationing and shortage gaming 

5. Lead times 

Demand 
forecasting 

Lead time 
Batch 

Ordering 

BULLWHIP EFFECT 

PriCe supply 

variations shortages 

Figure 3.2: The five causes of bullwhip effect 

In the next sections we discuss these main causes and we analyse the bullwhip effect 

using modelling and control methods in supply chains. 

78 



3.2 Causes of the bullwhip effect 

3.2.1 The impact of demand forecasting 

As it is discussed in previous chapters managing directors at each level use different 

inventory control policies in order to better forecast the demand from the downstream 

participants of supply chains. We consider a supply chain where every single node 

follows a simple inventory control policy where inventory level raises up to a target 

level (reorder point) in each period. The reorder point yt is set equal to the average 

demand during lead time AL plus a multiple of the standard deviation gL of the 

demand during lead time- 

Yt ýý AL + KO-L 

where /-. is a parameter chosen to meet a desired service level. 

In order to determine its target inventory level, each stage of the supply chain 

must forecast both the expected demand and the standard deviation of demand. 

This forecasting can be done using any of a number of forecasting techniques, for 

example, moving average or exponential smoothing. In the moving average forecast, 

the forecast average demand per period is simply the average of the demands observed 

over some fixed number of periods, say p periods. In the exponential smoothing 

forecast, the forecast average demand per period is a weighted average of all of 

the previous demand observations, where the weight placed on each observation 

decreases with the age of the observation. An important observation of all forecasting 

techniques is that as more data are observed, the more we modify the estimates of 

the mean and the standard deviation in customer demands. 

Any forecasting technique can cause the bullwhip effect. To understand this, 

note that one property of most standard forecasting methods is that the forecast is 

updated each time a new demand is observed. Therefore, at the end of each period, 

each stage will observe the most recent demand, update this demand forecast based 

on this demand, and then use this updated forecast to update the target inventory 

level. It is this updating of the forecast and order-up-to point in each period that 

79 



results in increased variability in the orders placed by this stage. Finally, note that 

if a node follows a simple order-up-to inventory policy in which does not update 

the desired inventory level in each period, then would not see the bullwhip effect. 
In other words, if in every period each stage places an order to raise the on-hand 

inventory to the same fixed level, then the orders seen by the upstream level (e. g. 

manufacturer) would be exactly equal to the customer demand seen by a downstream 

stage. Therefore, the variability in the orders seen by the upstream levels would be 

exactly equal to the variability of the customer demand, and there would be no 

bullwhip effect. 

Inaccuracy of forecasts is a continuing problem for most businesses. It seems no 

matter how sophisticated are forecasting techniques, the volatility of demand proves 

that the forecast will be wrong. 

3.2.2 The impact of lead time 

Whilst many forecasting errors are the result of inappropriate forecasting method- 

ology the root cause of these problems is that forecast error increases as lead time 

increases. Lead times can add to the bullwhip effect by magnifying the increase 

in variability due to the demand forecasting. To understand this, note that lead 

times increase the target inventory level, i. e., the longer the lead time, the larger the 

inventory level required. In addition, if as discussed above, a downstream partici- 

pants update their target inventory level in each period (using demand forecasting), 

then longer lead times will lead to larger changes in the target inventory level, and 

thus more variability in the orders placed by these participants. For example, if the 

demands seen by a retailer are independent and identically distributed (iid) from a 

normal distribution with mean M. and variance a', then an approximately optimal 

order-up-to inventory level in period t is: 

yt = LAL 

80 



where L is the lead time, AL is an estimate of I. L, and UL is an estimate of 0-. In this 

case, we clearly see that if, from time t to t+1, our estimate of A changes by 
-ý, 

then our order-up-to level will change by LA, where L 
-> 

1. In other words, any 

changes in our estimates of the parameters of the demand process will be magnified 

by the lead time. 

3.2.3 The impact of batch ordering 

Another major cause of the bullwhip effect is the "hatching" of orders. The impact 

of batch ordering is quite simple to understand: if a downstream level e. g., a retailer 

uses batch ordering, then the manufacturer will observe a very larger order, followed 

by several periods of no orders, followed by another large order, and so on. Thus the 

manufacturer sees a distorted and highly variable pattern of orders. 

Caplin [Cap85] considers the impact of batch ordering on the bullwhip effect. 

As we have seen in survey of literature, he considers a retailer who follows a 

continuous review (s, S) inventory policy in which the retailer continuously monitors 

the inventory level, and when the inventory level drops to s, places an order to raise 

the inventory level to S. Note that for an inventory policy of this form, when the 

retailer places an order, the size of that order, Q=S-s, is fixed and known. In this 

case, since the size of the order is fixed, the variability of the orders placed by the 

retailer is due only to the variability in the time between orders, i. e., the variability 

in the time it takes for the inventory level to fall from S to s. Caplin proves that, 

if the demands faced by the retailer are iid, then the variance of the orders placed 

by the retailer is greater than the variance of the customer demand observed by the 

retailer, and that the variance of the orders increases linearly in the size of the orders, 

i. e., the variability will increase linearly in Q. 

3.2.4 The impact of supply shortages 

A fourth cause of the bullwhip effect is associated with anticipated supply shortages. 

If a retailer anticipates that a particular item will be in short supply, he may place an 

81 



inflated, unusually large order with the upstream suppliers, because usually supplier 

will ration out the product among his customers based on the size of their orders. 
This rationing distorts the true demand pattern and gives the manufacturer a false 

impression of the market demand for the product. When the period of shortage is 

over, the retailer goes back to its standard orders, leading to an kinds of distortions 

and variations in demand estimations. An interesting discuss of the impact of this 

type of gaming on the variability in a supply chain can be found in [LPW97a]. 

3.2.5 The impact of price variations 

A final cause of the bullwhip, effect is the frequent price variations seen throughout 

a supply chain. For example, many retailers will offer products at a regular retail 

price with periodic price promotions and clearance sales. Clearly, when the price 

for an item changes, the customer demand for that item will also change. For 

example, during a promotion campaign the retailer will see higher than usual 

demand, while after the campaign, the retailer may observe unusually low demand. 

Therefore, periodic price promotions can cause distorted demand patterns and 

increased variability in demand (stocking up). This phenomenon is observed at 

other stages of the supply chain as well. For example, when a manufacturer offers a 

trade promotion, retailers may place unusually large orders and stockpile inventory, 

and may not order again for several periods. Again, this causes distorted demand 

patterns and increases the variability in demand. 

3.3 Quantifying the bullwhip effect 

In order to better understand and control the bullwhip effect, it would also be useful 

to quantify the bullwhip effect, i. e., quantify the increase in variability that occurs 

at every stage of the supply chain. This would be useful not only to demonstrate the 

magnitude of the increase in variability, but also to show the relationship between 

the demand process, the forecasting technique, the lead time and the increase in 

82 



variability. 

To quantify the increase in variability for a simple supply chain, consider a two 

stage supply chain with a retailer who observes customer demand and places an order 

to the manufacturer. Suppose that the retailer faces a fixed lead time, so that an 

order placed by the retailer at the end of period t is received at the start of period 

t+L. Also, suppose the retailer follows a simple periodic review policy in which 

the retailer reviews inventory every period and places an order to bring its inventory 

level up to a target level. If we assume that the review period is one then the optimal 

order-up-to inventory level in period t as we have seen is given by equation 3.2.1. 

If we assume that the retailer uses one of the simplest forecasting techniques, the 

moving average, then in each period the retailer estimates the mean demand as an 

average of the previous p observations of demand. The retailer also estimates the 

standard deviation of demand in a similar manner. If we denote D the customer 

demand in period i, then: 
D 

and 
2 

lyi 

Pt 

t-1 
_ 4t)2 

i=t-P(Di 
p-1 

Note that the expressions above imply that in every period the retailer calculates 

a new mean and standard deviation based on the p most recent observations of 

demand. Then, since the estimates of the mean and standard deviation change 

every period, the target inventory level will also change in every period. 

In this case, we can quantify the increase in variability by calculating the 

variability faced by the manufacturer and compare it to the variability faced by 

the retailer. If we denote Var(D) the variance of the customer demand seen by 

the retailer, and Var(C) the variance of the orders placed by that retailer to the 

manufacturer (relative to the variance of customer demand), then: 

Var(C) 
>+ 

2L 
+ 

2L 

Var(D) -p7 
(3.3.1) 

Note that equation 3.3.1 presumes that demands are identically and independently 

83 



distributed (iid). 

It is easily verified, see [SLKSL03] that in a supply chain with centralised demand 

information where each stage of the supply chain has complete information on the 

actual customer demand: 

Var(Ck) 2 (Ek 
I Li) 2 (Ek 

I 
Li )2 

>I+- i= + i= Vk. (3-3.2) Var(D) pp2 

In the case of decentralised demand information where the retailer does not 

provide the upstream stages with any customer demand information: 

Var (Ck) k 
2Li 2L? 

+ '), Vk. (3.3-3) Var('D) +pp2 

where VarCk is the variance of the orders placed by stage k. 

Note that equation 3.3.3 for the variance of the orders placed by the kth stage of 

the supply chain is similar to the equation 3.3.1 but now the variance increases in a 

multiplicative way at each stage of the supply chain. Also note that the variance of 

the orders becomes larger as we move up the supply chain, so that the orders placed 

by the manufacturer are more variable then the orders placed by the retailer. 

3.4 Control the bullwhip effect 

3.4.1 Supply chain model 

We consider a simple series multi-stage supply chain as shown in Figure 3.3. There 

are n individual stages between generic Customer and Manufacturer and we denote 

as i the intermediate supplier index (i > 1). The supply chain depicted in Figure 3.3 

also shows the flow of goods and information (orders) within the supply chain and 

is treated as a pull supply chain whereas production and distribution are demand 

driven and are based on actual customer demand. If we assume a simple scenario 

where no forecasts techniques are used by the suppliers the basic operation of the 

supply chain is follows: When a Customer (node 1) places an order at the Retailer 

level (node i-I), the order is assigned as backlog order (orders to be processed) 

84 



ip-1 Information flow 

, Products flow 

Dispatch 
ofgoods 

Customei 
Demand 

�I 
A 

'I 

Figure 3-3: A series supply chain with n stages 

of the retailer. If the inventory holds enough products retailer dispatches them to 

the customer and places the same amount of orders to the upstream level. If this 

is not the case, retailer dispatches all the products held in inventory and places a 

replenishment order to upstream supplier. When products arrive, they are shipped 

to the customer and all the backlog orders are cleared. This process is repeated in 

all stages of the supply chain until the orders reach the most upstream level (node 

n) e. g., Manufacturer. We assume that supply chain does not experience any delay 

in the flow of information but it does experience delay in the flow of products. This 

delay is known as lead time which is one of the causes of the bullwhip effect discussed 

in previous section. 

Supply chain presumes that all the n-stages are making decisions locally and 

that there is no global supervisor. Thus, each stage is considered as decentralised 

system operating independently. As it can be inferred by Figure 3.3 the nodes have 

two kinds of inputs and outputs. Products and information flows, products when it 

sends or receives products and information when it receives or places orders. 

Let li(t) denote the inventory level of node i at time t. We let also Yi, i-, (t) 

indicate the amount of goods dispatched to downstream node i-1 by the upstream 

node i at time instant t. We also introduce a time delay L, which is the lead 

time needed for the goods to be delivered to the downstream node (i. e., the goods 

dispatched at time t are delivered at time t+ L). However7 due to the need for 

85 



examination and administrative processing, this new delivery is only available to a 

customer at t+L+1. The model is based on [LWJ+04], from where additional 
details can be obtained. 

Balancing the inventory li(t) of node i at time step t gives: 

-Ti 
(t) li (t - 1) Yi+ I, i (t - L) - Yi, i- I (t) 

where Ij(t - 1) is the inventory level at node i at time step t-I and Yi, i+, (t - L) 

represents the products dispatched by the upstream node i+I to node i, which is 

assumed to arrive with a delay of L time steps. Although inventory level is a key 

variable in supply chain operation, each node i can better monitor the changes in 

inventory level at time t by using inventory position, IPj(t), which is given by: 

lpi (t) = Ipi (t - 1) + Yi+,, i (t) - Yi, i- i (t) 
(3.4.2) 

Another reason of using the inventory position IPj (t) instead of actual inventory 

. 
1i(t) is mainly because its calculation in each step does not depend upon the lead 

time L. Since the minimisation of inventory fluctuations is a key issue for supply 

chain managers, inventory position can provide useful information about changes in 

inventory levels. These changes can be analysed easily by choosing the inventory 

position IPj(t) as a state variable as it will be discussed later. 

As it has been mentioned before we consider the supply chain network as a 

decentralised control system - where there is no global moderator and decisions are 

taken locally at each node, e. g., corresponding to managers aiming to hold their 

stocks at certain levels or to meet expected future demand, following a series of 

rules which are known as inventory policies. Hence, the amount of orders placed 

at the upstream level must satisfy certain criteria such as minimising holding costs, 

avoiding shortages and maximising profits. The resulting decentralised structure of 

the system is one of the main contributory factors of the bullwhip effect - in a sense it 

is analogous to the 'string oscillations' observed in automated highway systems due 

to the lack of proper 'preview information'. Whereas co-operation between supply 

chain managers (e. g., by sharing information) would certainly help to alleviate the 

86 



bullwhip effect, unfortunately most enterprises regard these data as proprietary and 

are reluctant to share them. Techniques for forcing co-operation between supply 

chain participants are considered in the next chapter. 

We denote by Oj, j+j (t) the amount of orders placed by node i to node i+1, given 

by: 

ki(SPi - lPi(t)) (3.4-3) 

where SPj represents a target set-point (assumed constant) and ki is the correspond- 

ing inventory replenishment gain factor. 

Note that the size of the order placed corresponds to an inventory control 

policy. We consider that inventory managers on each stage are aware of allowing 

the downstream customer node to order as much as it wants, but managers do not 

guarantee that the demand order can be fulfilled. 

Oj, j+j (t) in equation 3.4.3 can be negative if inventory position is higher than the 

set point. In this case we allow the downstream node to revoke its order. Although 

we assume that there is no delay on information flow, an order at time t will only be 

processed at time t+I in similar way that products delivered at time t+L and are 

only available to a customer at t+L+1. 

Thus, we need to introduce a new variable representing the amount of order to be 

processed at time t+1 by a node i. This variable is called standing order. Standing 

orders of note i at time step t, Oj*(t), evolve according to the difference equation: 

o Oi-i, i(t) + Oj*(t - 1) - Yi, i-, (t) 
(3.4.4) 

We assume that an order can be accumulated to the next time step if it is 

not fulfilled, since each customer has only one supplier in our series supply chain. 

Therefore, the standing order for node i at time t is the sum of the order placed plus 

any unfulfilled order at time t. 

Equation 3.4.4 presumes that if there is enough inventory to satisfy the standing 

order at t+1, all the orders will be delivered. Otherwise, the inventory will be cleared. 

Similarly, if the downstream node already has too much inventory, the upstream node 

87 



will just stop to deliver since return of goods is not taken into consideration. We can 

summarise above remarks as follows: 

0) 

0ý(t - 1) <0 
Yi, i-i (t) Oj*(t-1), 0: 50j*(t-1): 51j(t-l) (3.4-5) 

T- 
li(t - 1), 0< li(t - 1) < Oj*(t - 1) 

The ordering and delivery times have been assumed so far continuous although in 

practice they are discrete. Thus, the supply chain system can be viewed as a linear 

discrete system. We can represent above equations in z-transform and derive a 

discrete time model.. Hence Inventory balance 1j(z) is given by: 

ZZ1 
(Z-'Yi+i, i (Z) - Yi, i- i (Z» 

inventory position lPi(z): 

Ipi(z) =: zz 1 (Yi+i, i (Z) - Yi, i-i (Z» 

orders to be placed Oi, i+, (z): 

Oi, i+l (z) = ki (SPi (z) - lPi (z)) 

and standing orders Oý(z): 
2 

Yi, i-i (Z» 

and: 
01 

(Z), Z-loi 

Z-10ý(z) <0 

0< Z-lo*W < Z-1 ii (Z) i 

< Z-'Ij(z) < Z-'Oi*(z) 

(3.4.6) 

(3.4.7) 

(3.4.8) 

(3.4.9) 

(3.4.10) 

Figure 3.4 shows the simplified block diagram of the node i derived by 

equation 3.4.6 - 3.4-10. 

Although the above mathematical model seems simple it captures the basic 

dynamic behaviour of a series supply chain system. A real supply chain can many 

intermediate nodes and products. In a decentralised system, the inventory dynamics 

does not really depend on how many customers or suppliers the node has, since all 

88 



C 

Figure 3-4: The block diagram of node i of the series supply chain 

customer demands can be defined into an aggregate demand. Obviously, if every node 

has sufficient inventory and has the same lead time, the distribution of order would 

not affect the system dynamic behaviour. We can assume that different suppliers 

have different inventory levels with different lead times, and investigate the optimal 

order allocations. If the processing of order and delivery of different products do 

not interfere with each other, each product can be viewed as a separate supply 

chain. One may impose constraints that total inventory is limited by storage space 

and contrive an inventory control policy accordingly, although in a pure pull system, 

each stage does not hold any inventory and only places orders. Various complications 

can be introduced and analysed using our basic model. However, it is important to 

understand the basic dynamic behaviour, before such complications are introduced. 

For the purposes of further analysis it is assumed that there is always enough 

stock at each node to meet the demand, so that Yj, j-j(t) =: Oj*(t - 1). This implies 

that the amount of goods dispatched to node i-1 from the upstream node i at 

time t is the amount of standing orders of node i at time t-1. This is essentially 

89 



a linearisation assumption also made in [LWJ'041 which simplifies the subsequent 

analysis. In addition, since the covariance analysis of the following section does not 
depend on SPj, we may set SPj =0 for simplicity. 

3.4.2 Stochastic state space for analysing the bullwhip effect 

under white noise customer demand profiles 

We now consider the series supply chain model depicted in Figure 3.5. 

- Information flow 
Products flow 

z1, l 

Wl, 
i 

Zl, i z 
i-1, I 

Zl, r Zi-], r 

Wl, 
i 

Wl, 
r 

�I 
A 

I' /\ 

Wn, l 
Wn, 

r 

Figure 3.5: The supply chain with defined inputs and outputs in each node 

Each stage Gi has two inputs wi, j and wi,, and two outputs zi, j and zi,, (left and 

right respectively) - 
It can be inferred from the nature of figure's interconnections 

that wi, j - zi-,,, and wi,, = zi+,, l. Index I represents the left part of each node while 

r represents the right part of inputs and outputs. The terminal node ýD representing 

the Manufacturer site is assumed to be a simple time delay. Thus the manufacturer 

always delivers the order he receives with a delay of one time step. If we assume 

that the input and output of the system are wl,, and zl,,, respectively then we can 

Zi, l Zi+i, l Znj 

Z ir Zi+], 
r 

Zn, r 

90 

wi-i'l Wu Wi+i, i Wi-l, 
r 

Wir Wi+l, 
r 



derive the model equations in form: 

ýb(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) + Du(t) (3.4.12) 

where y(t) = z1,1 and u(t) = wl,,. The model equations for each separate node can 

be expressed in state space form as: 

xi(t + 1) = Aixi(t) + Bi, lwi,, (t) + Bi,, wi,, (t) = Aixi(t) +( Bi, l Bi,, 
wi'l(t) 

Wi, r 
(t) 

and 

Zi, l W Co 
xi(t) + 

Di, 11 Di, lr wi, l (t) 

Zi, r 
W Ci, 

r 

)( 

Di, 
ri 

Di, 
rr Wi, r 

(t) 

The above state space refers to node i. We can easily obtain the state space for 

each individual node if we simply substitute the node i with the corresponding node 

index. 

The equivalent state-space model of the Manufacturer node is: 

xo(t + 1) = Apxo(t) + Bozi+,,, (t) 

and 

Wi+i, r(t) = CIDXO(t) 

Due to our previous assumption we have AO = Do =0 and BO = Qp = 1. The state 

space form of the node i given above can be written in more concrete form as: 

xi(t + 1) 
1 -1 

xi (t) +01 ui (t) (3.4.13) 
0010 

and 

Yi (t) 
01 

xi (t) +00 ui (t) (3.4.14) 

- ki ki 

)(0 

-ki 

) 

91 



where yj(t) and ui(t) are the (two-dimensional) vector outputs and inputs of node i, 

respectively. The overall state space model for a series supply chain with three and 

four stages can be found in Appendix B. 

As mentioned previously, the inventory level Ii and the amount of goods Yj, j-j 

dispatched by node i to its downstream stage are both important variables for 

decision making. By making these decisions, managers can manipulate and control 

the entire supply chain system. By choosing IPj(t - 1) and Yj, j-j(t) as state space 

variables, all other variables of the node can be easily calculated. 

The state space model given by equation 3.4-13 and 3.4.14 can be written as: 

lpi(t) 1 -1 lpi(t - 1) 
Yi, i-l(t + 1) 00 Yi, i-i (t) 

+01 
Oi-i, i(t) (10 
Yi+i, i(t) 

and 

Yi, i -I 
(t) 01 lpi(t - 1) 

Oi, i+i (t) - ki ki Yi, i-i (t) 

+00 
Oi-i, i(t) 

0 -ki Yi+i, i(t) 

+0 spi(t) 
ki 

) 

i. e., we choose: xi(t) = (lPj(t-1)Yi, i-l(t))'7 Wi, l(t) = Oi-l, i(t)i Wi, r(t) :: --- yi+l, i(t)i 

and zi,, (t) =: 

Note that the assumed inventory replenishment policy is continuous (rather than 

periodic). We also not consider variations in the set-point levels, i. e., SPi(t) are 

assumed to be constant. As these do not affect the covariance analysis performed in 

the next section, they can be set to zero. 

92 



3.4.3 Computation of model's covariance matrix 

In this section we outline a method for calculating the covariance matrix of the state- 

vector x(t) of the overall model developed in the previous section using symbolic 

computations. In our application, symbolic computations are essential, since we 

wish to obtain the solution as a function of the gain parameters ýkjj, which will 

allow further investigation of the bullwhip effect using our model. We first outline 

a general solution method based on Kronecker matrix products and vectorisation 

operations [HJ95]; subsequently, the special structure of the state-space model is 

exploited to derive a simple recursive solution procedure which can be applied to 

models of arbitrarily high complexity. 

Consider the LTI discrete-time state-space model: 

x(t + 1) = Ax(t) + Be(t) 

y(t) = Cx(t) + De(t) 

(3.4.15) 

(3-4-16) 

where fe (t) I denotes a white vector-noise sequence of unit intensity, representing 

customer demand, assumed to have been applied as input to the model since the 

infinite past. Then, assuming that A is asymptotically stable (all eigenvalues of A 

have modulus less than one), the (steady-state) covariance of the state-vector x(t), 

E(x(t)x'(t)), is given by the (unique, positive semi-definite) solution of the discrete 

Lyapunov equation [DV851: 

P- APA'- BB'= 0 (3-4.17) 

Fýurther, E(yy) = CPC+ DD'. In our case, A depends linearly on n parameters 

ki, k27 
-, 

kn which are assumed constant (but possibly unknown). Hence, the 

solution of 3.4.17 is the steady-state covariance of x(t) for all t, for all combinations 

of jkjj for which A is asymptotically stable. It is shown next that this condition is 

satisfied if and only if the parameter vector k= (kj, k21 
-, 

kn) lies in the hypercube: 

Kn= (0,2)' := tk EI 1Zn :0< ki < 21 i= 11 21.. 
., nl 

This agrees with a parallel result in [DDLT03]. 

93 



Lemma 3.4.1. Consider the (m + 1) - th node model 3.4.16 depending on m 

real gain parameters k= ýkjk21 
. .., 

kmj. Then the system is asymptotically 

stable if and only if kE Km. In particular, if A= A2m+l denotes the 'A- 

matrix of the state-space realisation of the system, then the ezgenvalues of A are 
11 - kj, 1 - 

k21 
.... 

1- km, 07 
... 

01, where the multiplicity of the zero eigenvalue is 

, rn + 1. 

Proof See Appendix A. F-1 

Next, let A0B denote the Kronecker product of two matrices A and B; let also 

vec(A) be the operation which stacks the elements of a matrix A in a column vector 

(sweeping along the rows of A). Applying the vec(. ) operation to equation 3.4.17 

and using the identity vec(ABC) = (Co A)vec(B) (see [HJ901 gives: 

(In2- A0 A)vec(P) = vec(BB) 

which may be solved as: 

vec(P) =(ln2- A (9 A) -'vec(BB') (3.4.18) 

The following Lemma guarantees that the indicated inverse in equation 3.4.18 exists. 

The Lemma shows that matrix 
In2- A (9 A is non-singular for all kE IC,. This is 

important as it ensures that the sYmbolic inverse of the matrix exists and can be 

expressed uniquely as a function of the ki's. Of course, the solution of the equation 

is a valid covariance matrix of the state x(t) only when kC Kn- 

Lemma 3.4.2. Matrix 
-Tn2 -AOA is non-singularfor all kG ICn- In fact, In2 -A(&A 

is singular if and only if (1 - ki)(1 - kj) =1 for any two indices i and j such that 

i<z<m and I <j <m, where n=2m+1. 

Proof. See Appendix A. 7 

The covariance matrix obtained in equation 3.4.18 essentially involves the solution 

of a system of n' linear equations in the elements of P, which depend parametrically 

on the ki's. Since the solution of the Lyapunov equation is symmetric, however, this 

94 



system of equations is redundant (with n(n - 1)/2 equations being repeated). The 

solution can be simplified using the following procedure: For a symmetric matrix P 

let V-ec(P) denote vec(P) with all the entries of P below the main diagonal eliminated. 

Clearly, if pE -Rnxn, then Ve-c(P) E Rr, where r= n(n + 1)/2. Define W EE -Rn 2 Xr 

so that vec(P) = WV-ec-(P), e. g. for n=2, 

100 

010 

oIo 

001 

Let also SC fl, 2,..., nj be the subset of the n(n-1)/2 indices of vec(P) which 

are eliminated when constructing Te-c-(P). Then equation 3.4.18 may be written as: 

V(ln2- A (9 A)WTe-c-(P) = Vvec(BB) (3.4.19) 

where VE -Rr x n2 denotes the unit matrix with all rows corresPonding to indices in 

S eliminated. Clearly, multiplication from the right by matrix V in equation 3.4.19 

eliminates the n(n - 1)/2 redundant equations. Further we have: 

Lemma 3.4.3. MatrzxV(ln2- A (9 A)W is non-stngular for all kE IC,. 

Proof. See Appendix A. F-I 

Thus equation 3.4.19 has the unique solution 

Te-c-(P) - 
[V(1ý2- A (9 A)W]-'Vvec(BB) 

from which P can be recovered as P= Te-c- I (p) 
- 

Example: Using the two methods described in the earlier part of this section the 

covariance matrices corresponding to the two and three-node models were obtained 

using the symbolic Matlab toolbox [oTC], as: 

101 
ki (2-ki) ki -2 

P3 010 (3.4.20) 

10 ki 
ki-2 2-ki 

95 



and 

1o ki-1 
kl(2-ki-) (ki-2)k 

1 LkL:: Il)k2 
(ki -2)k 

010 

P5 =I 

00 

ki-1 0 ki (k+2) (kl-l)kl (k+2)kl 
ýkj 

-2)k k2(2-ki)(k2-I)k (ki-2)k (ki-2)(k2-2)k 

10 (ki-I)kl ki (kl-l)klk2 
kl -2 (ki-2)k 2-ki (ki-2)k 

(ki-I)k2 0 (k+2)kl (ki - 1) ki k2 (k+2)klk2 
(ki-2)k (ki-2)(k2-2)k (2-kl)k (ki -2)(2-k2)k 

(3.4-21) 

respectively, where k= klk2- k2- kj. 

A still better method for calculating the covariance matrix of the state-vector is to 

use the special structure of the state-space model, which leads to a simple recursive 

updating algorithm. This is outlined in the following result: 

Lemma 3.4.4. Let (A2j+l, B2j+l) denote the (j + 1) - th node state-space model, 

depending on the j parameters ýkj, k2) 

.... 
kjj where j>1. Then: 

1. There is a state-space transformation defined by a permutation matrZx Qj, such 

that 

QjA2j+lQj :=A 
All 0 

A21 A22 

and 
QjB2j+l- B2j+l 

:=B 

in which: (i) All A2j-i, (ii) A21 
and 

A22 have rank one, and (ffi) B Zs of 

the form [Bl' 02j-1] 

2. The Lyapunov equation P- APA'- BB' =0 has a unique symmetric positive- 

96 



semidefinite solution P for all (kj, k2 kj) G (0,2) i. Let P be partitioned 

conformably with A, i. e., 

p 
Pll P12 

112 
P2 

2 
PI 

where P, PIl (2j - 1) x (2j - 1) E R(2j-l)x2 / (E R2 x 2. ) 
P12 

andP22 = P22 Then 

P11 = P2j-j where P2j-j is the covariance matrix of the j -th node model, i. e., 
the unique symmetric solution of the discrete Lyapunov equation: 

P2j-l -A2j-lP2j-, A'2 -B-, B' j-1 2j 2j-1 

Further, P12 and P22 have rank at most one and may obtained from the unique 

solutions of the linear equations: 

P12 - AlIP12AI22= AIIPIIA'2 
I 

and 

P22- A22 P22A' A 
22 21P,, A' A' 21+A22PI2 21 

A21 P12A' 22 

respectively. 

3. If (ki, k2) 
... 7 

kj) E (07 2)j, the Lyapunov equation: 

P2j+l - A2j+IP2j+, A' 
+1 - 

B2j+, B'+, =0 2j 2j 

has a unique symmetric positive semi-definite solution given by: 

P2j+l = Qj 

( 
P2j-l P12 

Qj 
P112 P2 

2) 

Remark 3.4.1, The Lemma 3.4.4 shows that the covariance matrix of the (j + I)-th 

node model may be obtained recursively from the solution of the j-th node model by 

solving two linear equations of order 2(2j - 1) and 4, respectively (in fact of order 

2j -I and 2, taking into account that P12 and P22 have both rank at most one). 

97 



This can be achieved by the vectorisation approach outlined earlier. Hence, the bulk 

of the computation involving the solution of a (2j - 1) x (2j 
- 1) matrix equation 

is completely avoided. After P has been assembled from P2j-,, P12 and P22, P2j+1 

may be obtained by reversing the permutation through matrix Qj. 

Proof. See Appendix A. El 

Example: In this example we demonstrate the construction of the covariance 

matrix of the 3-node model using the covariance matrix of the 2-node model by 

applying the procedure outlined in Lemma 3.4.4. Let A5 be the A-matrix of the 

standard state-space realisation of the 3-node system and Q5 the matrix resulting by 

permuting the fourth and fifth rows and columns of the 5x5 identity matrix. Then, 

Q5A5Q5 
All 0 

A2, A22 

where 

1 
-1 

1 

All 000 
A21 

0 

and 
A22 

- ki ki ki 
00 k2 

)(- 

k2 
- 

k2 

Let 

p 
P11 P12 

P11 2 
P2 2 

be the solution of the Lyapunov equation 

P- Q5A5Q5PQ5AQ5 == Q5B5BQ5 = B5B' 55 

partitioned conformably with A. Then PI, = P3, the covariance matrix of the 

standard 2-node state-space model given in equation (3.4.20), while P12 and P22 are 

the unique solutions of the matrix equ ions: 

P, 2= AlIP3A, + AllPl2A' (3.4.22) 
2 22 

and 
A22P / A', + A (3.4.23) 

22A/22+A2lP3A', + A22PI2 21P12A P2 
222 22 

98 



respectively. Consider first equation 3.4.22. Since P12 has rank one, we can write its 

first and second columns as a and Ace, respectively. Equation (3-4.22) can now be 

written as: 

( 
oz Ace 

)= (1 + A) ( Alia -k2A, la 
)+(s 

-k2S 
) 

where 

kl-l 0 
_kl(ki-1) ki-2 ki -2 

leading to the two equations 

+, \)Alla +s 

Aa = -k2 
[(l+ A)Ajjoz + s] 

Substituting the first equation into the second gives Ace = -k2a and hence A= -k2 

since a =ý 0 (for ce =0 implies that s= 0). Thus 

ce = (I - k2)Alla +s ==> ce = [I - (I - k2)Alll-ls 

Since All has rank one it can be factored as All = pq, where p and q are column 

vectors, e. g., by choosing 

11 

p0 and q 

-ki 

Using the matrix inversion Lemma (see [HJ90]), 

(1-(l-k2)pq)-l 
k2 

-pq 1+ 
1- k2 

All 
k2)qlp k, + k2 

- kik2 

and hence, after some algebra, 
ki-I 

k2 
(ki-2)(kl+k2-kik2 

a= -All s0 k, + k2- kik2 
ki (ki -1) 

T2---kl)(kl+k2-kik2) 

which implies that 

kl-l k2(ki-1) 

(ki-2)(kl+k2-kik2) (2-kj)(kj+k2-kjk2) 

P12 00 

ki(ki-1) kik2(ki-1) 
(2-ki)(kl+k2-kik2) (ki-2)(kl+k2-kik2) 

99 



Next consider equation 3.4-23. Writing 

P22 
y 

yz 

equation 3.4.23 can be written as 

xy x+ 2y +z -k2(X+ 2y + z) 1 -k2 
yZ -k2 

(X+ 2y + z) k 2(X 
+ 2y + z) kk2 2(-22) 

where we have defined 

IT - 

kl(2 - ki - k2+ kjk2) 

(ki - 2)(kik2 - ki - 
k2) 

Hence 
xy 

(x+2y+z+-y) 
I- k2 

2 yz 
-k2 

k2 

) 

Setting v=x+ 2y +z+ -y gives x=v, y= -k2v and z= k2v. Thus 2 

2k27/+ k27 2V +V= 
k2(2 - 

k2) 

and hence 

ki (2-ki -k2+klk2) kl(2-ki-k2+klk2) 

P22 

k2(2-k2)(kj-2)(kjk2-kj-k2) (2-kj)(2-kj)(kjk2-kj-k2) 

kl(2-ki-k2+klk2) kik2(2-kl--k2+klk2) 
(2-kj)(2-kj)(kjk2-kj-k2) (2-k2)(kj-2)(kjk2-kj-k2) 

Constructing P from its blocks PI, :: -- P3i P12 and P22 and applying permutation Q5 

from the left and the right gives P5 in the form given in equation 3.4.21. 

3.4.4 Characterisation of Bullwhip effect 

The covariance analysis carried out in the previous section allows us to analyse the 

effect of the inventory replenishment policies on the bullwhip effect. Recall that end- 

100 



customer demand has been modelled as a white-noise sequence. Hence, the variance 

of the demand signal at any node of the chain may be calculated easily from the 

covariance matrix. Consider as an example a three-node supply chain model. The 

orders placed by the second node (on the manufacturer) correspond to signal Z2,, 

and we can write: 

Z2, r(t) ý C2, 
rl2(t)+D22, rW2, r(t) -:::: 

C2, 
rX2(t)- 

k2 X -cP 
(t) 

or 

where 

Z2, r(t) = CX(t) 

c= (00 
-k2 

k2 
-k2 

and 

x1x1 xe XI(t) -(12 

Thus the demand amplification factor can be obtained from the variance Of Z2r) 0' 
2 

which is given as: 

22) C/ u =E(Z2, r) = C-Ir-5 kik2(2 + kik2- ki - 
k2) 

(3.4.24) 
(2 - ki)(2 - k2)(ki + k2- kik2) 

To find the regions in the (kj, k2) plane where demand amplification and demand 

attenuation occurs, this expression was set to one, and the resulting equation was 

solved to give k2 as a function of kj. This gives two solutions: 

223 
k2 f (ki) =2- 

5k, + 2k, \/4 - l2k, + l3k, - 4k, 
(3.4.25) 

2 (ki- 1)2 

which are valid for k, =ý 1. It can be easily seen that the positive square root should 

be chosen, as with this choice, ki values in the interval 0 :! ý- ki : f, ý 2 are mapped to 

k2 values inside the same interval. When k, =I equation 3.4.24 (with U= 1) shows 

that k2 - 1- Strictly, equation 3.4.25 does not define k2when k, = 1, although it 

can be easily verified by applying de L'Hospital's rule (twice) that defining k2 1 

in this case makes the function k2= f (kj) continuous and differentiable at k, 1. 

101 



The resulting curve is plotted in Figure 3.6, and indicates the boundary between 

the demand- amplification and demand-attenuation regions. As expected, aggressive 

replenishment policies (i. e., large values of k, and k2) reinforce the bullwhip effect. 

2 

1.8 

1.6 

1.4 

1.2 

. IZ4 1 

0.8 

0.6 

0.4 

0.2 

.................. ...... ............................................ 
.................. 

ATTENUATION REGION 

.......... .......... .......... 

0 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

kI 

Figure 3.6: Boundary between demand amplification and attenuation regions 

Example: In this example we illustrate the validity of the above expression 

with the results of a simple simulation based on a three-node supply-chain model. 

The first two nodes of the system (see Figure 3.3) representing the Distributor and 

Retailer were modelled in Simulink using equations 3.4-6,3.4.7,3.4.8 and 3.4.9, are 

shown in Figure 3.7. The Manufacturer is modelled as a simple unit delay, i. e., it 

is assumed that he is capable to meet any order placed on him with a delay of one 

time-period. 

End-customer demand was modelled as a normally- distributed white-noise 

sequence with mean p= 100 and variance a2=1. To ensure that the the linearity 

assumptions are satisfied throughout the non-linear simulation (i. e., that each node 

of the chain has sufficient inventory to meet downstream orders), inventories for 

both nodes were initialised as 11 (0) = 12(0) = 1000, while both set-points were 

102 



oi-l, i 

Figure 3.7: Detailed model of each supply chain node 

set as SPI = SP2 = 100. Stock replenishment gains were set as ki :: = 0.9 and 

k2 = 1.6, respectively. The simulation was then carried out over N= 10000 time 

steps. After removing the first few samples of the time series corresponding to Z2, r 
(representing demand placed on the Manufacturer) to eliminate any effects of initial 

transients, estimates of the mean and standard deviationOf Z2, r were obtained as 
AZ2, 

r = 99-96 and 
&Z2, 

r = 1.707. These compare favourably with the theoretical 

values PZ2, 
r = 100 and UII, r = 1.704 obtained via equation 3.4.24. The theoretical 

and empirical probability density distributions Of Z2,, are shown in Figure 3.8. 

Next consider the n= 4-node model. Symbolic computations in this case give 

the variance0f Z3, r (demand on manufacturer) as: 

2 
Ili kif( -0+ r1i ki(14 - -y - Fli ki)l 

u ý-Fv(kj - 2)(k2 - 2)(k3 - 2) 

where: 

(=I: i(4ki - 
2ki2), 

103 

- y+ 1 1+1,1 



oý 

2: 1 

0.15 

.0 m 

.0 

a- 
0.1 

0.05 

94 96 98 100 102 104 106 
Z2r 

Figure 3.8: Theoretical and empirical distributions Of Z2, r 

0=8 Ei: 
7, j 

kikj + EjOj k? kj(3 - kj), 
71 

-Y =5 Ej ki +2 Ejý, 
j kikj, 

ý= (kik2- ki - 
k2)) 

-F = (kik3- ki - 
k3)i 

'V = (k2k3- k3- k2) 

Note that all sums and products are taken over the three parameters (ki, k2, k3)- 

To characterise the bullwhip effect in this case we set g2 =I and solve the 

resulting equation (symbolically) to obtain a function of the form k3 =f (kj, k2) 

which characterises the surface boundary between the gain- amplification and gain- 

attenuation regions in (kj, k2, k3) parameter space. It can be verified numerically 

that for each pair (ki, k2) in the square IC = [0 2] x [0 2] there is exactly one real 

root of the equation u2=1 which lies in the interval 0< k3 :ý2. The function 

k3= f (ki, k2) is plotted in Figure 3.9. Due to the high complexity of the expressions 

involved, the explicit form of this function is not included here. In practice, it is 

preferable to generate a table of the surface over a grid of (kj, k2) values and use 

interpolation techniques if higher accuracy is required. 

104 



02 
k 

Figure 3.9: Boundary between demand amplification and attenuation regions: 4- 
node model 

3.4.5 Stochastic state space for analysing the bullwhip effect 

under autoregressive customer demand profiles 

In previous section a simple stochastic multi-node supply chain state-space model 

is developed and its properties analysed in the steady-state, under white noise 

end-customer demand- profiles. Although the white-noise demand profile offers the 

advantage of simplicity and modelling analysing convenience, it is unrealistic for 

real supply chains (as it ignores, for example, trends, seasonal variations or more 

complex patterns). In this part of the thesis we extend our study and we consider 

autoregressive (AR) customer demand profiles. 

We consider again the series supply chain depicted in Figure 3.4.5 consisting of 

three stages (e. g., Manufacturer, Distributor and Retailer) and we assume that the 

customer demand w(k) is driven through an (AR) filter such as: 

a)z-' 
e(k) 

ozz-1 
(3.4,26) 

where a is the demand autocorrelation coefficient with <I and e(k) is a white 

105 



r- -- 

Customer e(k) 
Demand wffl 

---n 

Figure 3.10: The three-node supply chain with (AR) filter 

noise signal. Thus, the external customer demand pattern faced by Retailer is an 

autoregressive process: 

(1 - az-')w(k) = (1 - a)z-'e(k) 

w(k) - aw(k - 1) = (1 - a)e(k - 1) 

w(k) = aw(k - 1) + (I - a)e(k - 1) 

w(k + 1) = aw(k) + (1 - a)e(k) 

Then the model equations for the filter H are given: 

xf (k + 1) = Af xf (k) + Bf e(k) (3.4.27) 

yf (k) = Cf xf (k) + Df e(k) (3.4.28) 

and the state space of the filter is: 

xf (k + 1) AB xf (k) 
+0 e(k) 

w(k + 1) 

)(0a 

w(k) 

)(1-a) 

where xf (k) represents the state of the AR filter, yf (k) is the output of the filter 

w(k), Af = a, Bf = (I - a), Cf =1 and Df = 0. 

Before study further the impact of the (AR) filter to the supply chain model it 

is useful to understand better the behaviour of the smoothing filter H. Such filters 

106 

Dispatch_, 
_ ofgoods r- 

I r- 



are low-pass filters and are used mainly in systems to remove unwanted noise, from 

a relatively slowly-varying signal and to create correlated data in multiple steps. By 

considering again the filter equation 3.4-26, the magnitude of the filter IHI is: 

IH(z)l = 
cez-, 

01(cosw + jsinw) 

and the magnitude of the corresponding spectral function IH(w)l is: 

IH(w)l - 
(I 

- ce) 

a(cosw + jsinw) 
(1 - a) 

acosw) + jcesinw 
(I - a) 

CaýeCOSCU 
)2 +ýn2W 

, 4)ý CV 2S jý 

a) 

+a -2 
2cecosw) 

Figure reffreqfilter shows the frequency response of the filter for three different a 

values, 0.2,0.5 and 0.8. 

Let us now denote as x(k + 1) = Ax(k) + Bw(k) the state space equation of the 

previous section supply chain system E driven now by w(k). Then, the overall state 

space form of the new supply chain system E' with the (AR) filter H is: 

j(k + 1) A BCf 1ý(k) 
+0 e(k) 

xf (k + 1) 

)(0 

Af 

)( 

xf (k) 

)( 

Bf 

) 

If we choose xf (k) - w(k) and y(k) = zi, l the output of the system E', then we 

can derive the state space form for the three-stage supply chain as: 

107 



0.9 

0.8 

0.7 

;:: Z 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 
1.5 2 2.5 3 IC 
rad/sec 

Figure 3.11: Frequency response of the (AR) filter 

xi(k + 1) 

X2(k + 1) 

xo(k + 1) 

w(k + 1) 

and 

1 
-1 

0 1 0 0) 

0 0 0 0 1 x, (k) 

00 1 -1 0 0 -Z; 2(k) 0 

-ki ki 0 -ki 0 0 
+ 

xo (k) 0 

00 - 
k2 k2 

- 
k2 0 

w(k) 0 

00 0 0 0 oz -a 

e(k) 

f x, (k) ) 

y(k) 010000 
12(k) 

xO (k) 

w (k) 

The above state space form does not include the set-points SP, and SP2. If we 

wish to monitor the changes on set-point levels we can write: 

108 



1 -1 0 1 0 0 0 0 0 
xi(k + 1) 0 0 0 0 0 1 0 0 x, (k) 0 
X2(k + 1) 0 0 1 -1 0 0 0 0 -T 2 (k) 0 
x, p (k + 1) -kl kl 0 -kl 0 0 k, 0 x, 5 (k) 0 
w(k + 1) 0 0 -k2 k2 -k2 0 0 k2 w (k) 

0 e(k) 
SPI (k + 1) 0 0 0 0 0 a 0 0 SPI (k) 

-a 
SP2(k+1) 0 0 0 0 0 0 1 o SP2 (k) 0 

0 0 0 0 0 1 0 1 0 

The characterisation of the bullwhip effect involves again the computation of the 

demand amplification factor which can be obtained from the symbolic computation 

of the varianceZ2, r/W1, I: 

E(Z2, 
r/Wl, l) - 

kik2f akik2( - CeO -(ý - 
20Z2 

(3.4.29) 

where: 

(k, - 2) (k2- 2)(ak2 + 1- a) (cek, +1- a)ý 

C= [akik2 -(2a + 1)(k, + k2)+ 5a + 4], 

0= [(3a + 2)(k, + k2)- (k 2+k 2) (Ce + 12 

= [kik2- ki - 
k2l 

which are valid for k, =ý 1, k2 
--yýl and jal <1. 

The regions in the (kj, k2)where demand amplification and demand attenuations 

occurs, we must set again Equation 3.4.29 to 1 and solve the resulting equation to 

obtain a function of the form k2 =f (ki, a). It can be verified numerically that 

there exists one real root k2 which lies in the interval 0< k2 :52. Figure 3.4.5 

depicts the plot of the function k2 = f(ki, oz) for three different values of a 

(a = 0.21 a= 0-5) a= 0-8). It can be inferred from Figure 3.4.5 that higher values of 

a increase slightly the demand attenuation region while for small values the boundary 

between demand amplification and demand attenuation is the same obtained without 

the (AR) filter. As expected, smoothing customer demand profiles can lead to a 

slightly increment of k, and k2without the danger of demand amplification due to 

bullwhip effect. Another observation derived from the use of the (AR) filter involves 

the special case: a=0 in which the input signal is unbiased from the (AR) filter. 

109 



2 

1.8 

1.6 

1.4 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

CE =0 

cc = 0.2 
. ................ 

a=0.5 
0.8 

.......... ............. - ...... ........ 

C- 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

k, 

Figure 3.12: Boundary between demand amplification and attenuation regions with 
the (AR) filter 

3.4.6 Customer service level 

The models described so far have assumed that no back-orders (or backlogs) are 

allowed and that all demand must be set. Although this assumption has been 

considered mainly for the difficulties appearing in analysing the supply chain model, 

it is also a reasonable view when shortages - due to back-ordering - are very expensive. 

There are, however circumstances where planned backlogs are beneficial. An example 

comes when the cost of keeping an item in stock is higher than the profit of selling it, 

especially when a company holds stocks of the complete product range. On the other 

hand this has a weighty impact on the. relationship between customer and retailer. 

Customers who experience shortages are likely to divert at least some future retailers 

to more reliable ones. 

The dissatisfaction level of customer service is proportional to the time (order 

cycle time [Ba104]) needed for the ordered products to reach customer site. In other 

words, the more customers wait, the more look dissatisfied about the service. It is 

worth remarking that customers are willing to wait, and retailers are committed to 

110 



meet their demands. Retailers frequently set and claim to meet a customer service 

level often expressed as a percentage of given size delivered within a time frame. In 

this section we measure the size of the back-orders according to order cycle time when 

retailers face shortages. Our analysis is based on the series supply chain depicted in 

Figure 3.3. We remove the assumption that there is always enough stock at Retailer 

to meet the demand, so that Y1,0(t) =ýý 0*1(t). 

Simulation model 

In order to determine the service level we use the MATLAB/SIMULINK tool. The 

structure of the Retailer node is given again in Figure 3.4. We consider the following 

example that measures the order cycle times and the total logistic costs for Retailer 

under different simulation parameters. Customer service level is defined as the 

percentage of goods demanded that are met from Retailer's stock. Logistic costs are 

associated with the Holding Cost (HC), Ordering Costs (OC) and Shortage Costs 

(SC). Holding costs is the cost of holding one good in stock for one period of time, 

Ordering Cost (OR) is the cost of placing a routine order for the good and might 

include telephone costs, receiving, use of equipment, expediting and quality checks 

and Shortage cost which is the cost of having a shortage and not being able to meet 

demand from stock. 

Example: We consider a three-node series supply chain (i. e., Retailer, 

Distributor and Manufacturer). Customer demand is assumed as a normally 

distributed signal with mean IL = 20 and variance o- = 3. Initial inventories (1o) 

of both Retailer and Distributor are set to 15,20, and 30. We proceed to three 

different values of Retailer's inventory replenishment gain factor kj: 0.8,1 and 1.2, 

while the corresponding Distributor's gain is set at a fixed value of 1. 

The Holding cost each period time is calculated as C. 2 per good while the cost 

for ordering purposes is C. 05 per good per order. Costs due to backorders are not 

calculated numerically for the reason that they are often intangible (e. g., additional 

clerical costs or loss of future sales). Thus, we calculate instead the number of 

ill 



Table 3-1: Simulation results of the supply chain model with backorders 

kj k2 Ret- 

ailer 

Distri- 
butor 

HC 
1st Year 

0C SC HC 
2ad Year 

0C SC HC 
3rd Year 

0C SC Total 
Cost 

Service 
Level 

0.8 1 15 15 675 169 Low 674 168 None 674 168 None 2528 45% 0.8 1 20 20 900 225 Low 898 225 None 898 225 None 3371 60% 0.8 1 30 30 1352 337 Low 1348 337 None 1348 337 None 5059 90% 1 1 15 15 732 183 High 729 182 High 729 183 High 2738 50% 1 1 20 20 976 244 High 972 243 High 972 244 High 3651 67% 1 1 30 30 1477 364 None 1461 365 None 1460 365 None 5492 100% 1.2 1 15 15 732 220 High 729 219 High 729 220 High 2849 50% 1.2 1 20 20 976 293 High 972 292 High 972 293 High 3798 67% 1.2 1 30 30 1708 367 None 1480 433 None 1460 438 None 5886 97(Yn 

backorders occurred annually. In those cases where the stock is insufficient for more 

than 80% of period time we refer the Shortage cost as High while for backorders less 

than 20% the Shortage cost is considered as Low. 

Simulation results 

Table 4.1 summarises the simulation results for a total simulation period time of 3 

years. The Total cost is the sum of Holding and Ordering costs at the end of the 

simulation process. Table 4.1 shows also the corresponding Service Level for each 

scenario. The results have been rounded to the nearest integer. 

The results indicate that the Service Level is better when k, is either 1 or 1.2 (both 

values settings have given similar results). More specifically the Service Level has 

been improved about 11% when both initial inventories of Retailer and Distributor 

10 
are set to 15. 

Regarding the Total costs for different replenishment policies we recall that for all 

the initial inventory settings when the gain factor was first set to k, = 1, simulation 

results have shown that Total costs have been reduced by 7.67% and 7.88% for Io = 20 

and 10 = 30, respectively when k, was changed to 0.8. In cases when Retailer follows 

a replenishment policy with k, = 1.2, Total costs have been increased approximately 

by 4% and 7.1% for 10 = 20 and lo = 30, respectively. 

Another useful observation has been derived for the differences in Total costs 

when both Retailer and Distributor use different initial inventory points by keeping 

the gain factor invariable. For initial inventory levels of 15 goods Total costs have 

112 



been increased by 33% and 100% when those levels have been augmented to initial 

values of 20 and 30, respectively. These differences may be considerable indeed when 

k, =I or k, = 1.2 and when initial inventory position is not set to 30, due to High 

Shortage costs. 

It is also clear that aggressive ordering policies described by setting the gain factor 

k, = 1.2, do not guarantee necessarily better Service Level. On the contrast costs 

have been increased significantly. This remarkable outcome has been also marked in 

previous section where is noted that the selection of ki = 1.2 and k2= 1 leads to 

bullwhip effect Figure 3.6 which has tremendous impact on increment of costs. 

Figure 3.13 and figure 3.14 depict the number of delay days between orders placed 

by customers and corresponding delivered goods. Both initial inventory values for 

Retailer and Distributor are set to 10 = 30. As it can be shown for k, = 1.2 some 

orders "wait" even more than 30 days to be fulfilled while the majority of orders 

delivered in the first 5 days. In case of k, =I the maximum period of waiting is 7 

days while the main volume of goods are delivered in 4th and 5th day. These figures 

corroborate the above remark that higher gain factor does not lead necessarily to 

better Service Level. 

9000 

8000 

7000 

6000 

Co 10 5000 
0 

0 4000 
Z 

3000 

2000 

1000 

c 

kl=l 

23456 
Days 

Figure 3.13: Number of delay days between orders and deliveries when k, =I 

113 



kl=1.2 

2500 

2000- 

1500 

0 0 0 
16 
0 
z 

1000- 

500 - 

0 
05 10 15 20 25 30 35 

Days 

Figure 3.14: Number of delay days between orders and deliveries when k, 1.2 

114 



Chapter 4 

Analysis of optimal policies, 
informat ion- sharing and estimation 
methods in series supply chain 

4.1 Introduction 

In previous chapter we have seen that bullwhip effect is a critical issue in the area 

of supply chain management. Aggressive replenishment policies of the downstream 

participants lead to demand amplification in the procurement volumes of upstream 

nodes. As a result, upstream participants affected by demand fluctuations have 

seen excessive inventories, poor product forecasts, insufficient or excessive capacities, 

poor customer service due to unavailable products or long backlogs, and uncertain 

production planning. Various techniques and methods have been proposed by 

researchers and practitioners in order to cope with changing demands and dampen 

fluctuations. In this chapter we focus on information-sharing techniques between 

neighbouring participants and estimation schemes followed by upstream members in 

a series supply chain. 

The three-node model adopted from previous chapter is subsequently analysed in 

detail under information-sharing and the optimal policy is derived, which minimises 

inventory fluctuations (and inventory mean) under a probabilistic constraint related 

to downstream demand. It is shown that this policy can never lead to demand 

amplification in the chain, as long as the gain parameter ki of the downstream node 

115 



i lies in the stability region. 

In cases where information-sharing is infeasible the only available information to 

a particular node arises only from its interaction with neighbouring nodes. In this 

section local estimation schemes are investigated under which the parameters of the 

adjacent node can be estimated from (local) historical data. The main results and 

conclusions are illustrated via numerous examples and simulations. 

4.2 Analysis of informat ion- sharing and optimal 

policies 

In this chapter we specialise our system to a three node model. We assume linear 

dynamics (i. e., that all inventories are sufficiently high to meet downstream demand 

with no back-orders). The manufacturer (node 3) is still modelled as a unit delay, 

i. e., he delivers the requested products with a delay of one time period. Assume 

further that customer demand is normally distributed as e(t) = Oo, l (t) - N(y, o- 2). 

Provided that the system is stable (0 < ki <2 and 0< k2 < 2) all signals in the 

limit are stationary. The expected values of the state variables can be found using 

the state space model, which is of the form: 

x(t + 1) = Ax(t) + Be(t) + F(SP) 

where SP is the (deterministic) vector of set-points SP = (SPI SP2)' (assumed 

constant), Thus under stationary conditions, 

x(t) = (I - A)-'Be(t) + (I - A)-'F(SP) 

and hence 

E[x(t)] = [L(I - A)-'B + (I - A)-'F(SP) 

Note that the indicated matrix inverse exists as the spectral radius of A is less than 

one as long as 0< ki <2 and 0< k2 < 2. Thus, the five state variables are 

116 



distributed as: 

IP1 N SP, -4u2 
ki 

kl'2 - kl) 

Yl, o(t) - N(, u, or2) 

IP2 (t) -N 
SP2 

- 
or 

2 ki(k, k2 - ki - 
k2 + 2) 

k2' k2 (2 --ki) (2 - 
k2) (ki + k2 

- ki k2) 

Y2,1 (t) -N, 
0,2 ki ( 

2-ki) 

02,3 N bi, 
cr2 ki k2 (ki k2 - ki - k2 + 2) 

(2 - ki) (2 - k2) (ki + k2 - ki ý_2) 

Further on noting that 

we obtain 

IP2 - 01,2 
= k, IPI - k, Yl, o + IP2+ klY2,1 

Var(IP2 
- 

01,2) 
-: -:: 

Cp5CI7 C: ` 
( 

ki -ki 1 ki 0) 

and hence, 

IP2-01,2 
-, N SP2 - 

A(k2 + 

k2 k2 (2 - 
k2) (k, + k2 

- 
k2 ki) (2 - kl) 

Note that the mean of IPj (i = 1,2) does not track the set-point SPj exactly, 

but with a steady-state error 1LIki characteristic of type zero feedback systems. As 

expected, the information pattern is asymmetric, i. e., node 2 (Distributor) is affected 

by the inventory policy of node 1 (Retailer) but not vice versa. Suppose now that 

the Retailer makes his policy gain-factor k, known. In this case the Distributor can 

make use of this information to minimise his own costs, typically related to excessive 

inventory levels. Although this objective is situation-specific (e. g., due to possible 

existence of capacity constraints, depreciation effects, etc) it is reasonable to assume 

that the objective of the Distributor is to minimise both his average inventory and his 

inventory fluctuations. Note that in our model the Distributor is always capable of 

controlling his average inventory-level through his choice of SP2, which can be used 

223322 2)ý o' kl(2 - 5k2ki + k2ki - k2 + k2ki - ki + 3k2 + 4k2k, - 2kqk, 

117 



to shift E(IP2) to any required level. In fact, a more general cost function could be 

formulated, involving the integral of an appropriate inventory cost-function, weighted 

by the distribution of IP2. 

An additional requirement is that the Distributor should have enough inventory 

to meet (fluctuating) downstream demand, at least for most orders placed on him. 

This is in order to ensure the smooth operation of the chain, to which he has an 

interest as a participant. One way of modelling this requirement is to include 

explicit penalty-terms in the Distributor's 'objective function', reflecting real or 

virtual costs (e. g., penalty terms for not fulfilling a contract, loss of sales due to 

Customer dissatisfaction, etc). Here we impose a probabilistic constraint for fulfilling 

orders, i. e., we require that Prob[IP2 01,21 ! ý, J for some (small) parameter J. 

Let (D(z) denote the probability density function of the normal distribution 

N(O, 1), i. e.: 
1 

e-E2/2 de 

Then, using the distribution Of IP2 - 01,2 above, the 'order-fulfilling' constraint takes 

the form: 

[t(k2 + 1) kl(2 - 5k2k, + k2 ki -0+ k3k, - ki + 3k2 + 4k2k2 - 2k 2 k2) 
SP2 - 

+a 1)-' (6) 222121>o 
k2 k2 (2 - 

k2) (ki + k2 
- 

k2 ki) (2 - ki) 

(4.2.1) 

Thus, the optimisation problem faced by the Distributor is to choose his inventory 

replenishment policy parameters, k2 and IP2, to minimise his inventory costs subject 

to the constraint of equation 4.2-1. (Note that parameter k, is not under the 

control of the Distributor and has been assumed to be fixed and known). Rather 

than attempting to solve this constrained optimisation for a general inventory cost 

function, we have chosen the following (more revealing) procedure: For any given k, 

in the interval 0< ki <2 we seek the optimal choice of k2, k* = f*(ki) say, which 2 

minimises the variance of IP2; subsequently we minimise the mean of 
IP2 

subject to 

constraint 4.2.1. Note that once the optimal policy k* f* (kl) has been determined, 2 

118 



we need to set: 

p(k* + 2 S P2* 

k* 2 

where: 

- 

kl(2 - 5k*kl + (k*)2k, - (k*)3 + (k*)3k, - ki + 3k* + 4k*k 2- 2(k*)2k 2) 222222121 

k2*(2 - k*)(ki + k* - k*kl)(2 - ki) 222 

resulting in the constrained minimum E[IP2] = SP2* - -L. It has been assumed that k* 2 

the Customer demand parameters p and o- are known or can be estimated accurately 

from the data. 

Due to the high complexity of the expressions involved, we rely (in part) on 

Matlab's symbolic toolbox [oTC] to obtain an analytic expression for the optimal 

policy k* = f*(kl). The following procedure was followed: First, the variance of 
IP2 

2 

was differentiated with respect to k2 and the resulting expression was set to zero. 

This was then solved to express k, as a function of k2, resulting in three (apparently 

complex) solutions: 

3/-7 

-v + 16/AY-l + 6k, -8 k2 =6 
ki -i 

k2 =-1 
ý/-l + 161, Yl- 

- l2k, + 16 - iv/-3-(ý/-l - 16/-01) 

12 ki -1 

1 ý/-l + 16/ý/I- - l2k, + 16 + iv/'3-(ýrl - 161-, Yl-) 
k2 

12 ki -I 

where 

108k 2- 216k, + 64 + 12 
ý3kj (ki - 2) (27k 2- 54k, + 32) 

11 

We investigate each of the following three solutions in turn. Consider first the 

term m(ki) = 27k 2- 54k, + 32 appearing inside the square root defining 1. It is easy I 

to see that this term is always positive for every value of k, (attaining its minimum 

119 



value rn(l) = 5). Thus, the term inside the square root defining I is always negative 

in the interval 0<k, < 2. Hence 1 is complex and can be written in terms of its real 

and imaginary parts as: 

108k 2 
-216k, +64+12i 3k, (2-ki)(27k 2- 54k, + 32) 1v1 

Thus parameter 1 can be written in polar form as I=r exp(io) where 

r (108k 2- 216k, + 64)2 + 432k, (2 - ki) (27k 2- 54k, + 32) 11 

and 
:2 2 3k2 kE,, ) (27k, :- 54k, + 32) 

NýSE: 2 tan-I 
27k, - 54k, + 16 

64 

(4.2.2) 

To avoid any confusion arising from the fact that tan-' (. ) is a multi-function, we 

stress that 0 is assumed to take values in the interval 0<0< 7r (since the imaginary 

part of 1 is positive on the interval 0< ki < 2, while the real part of 1 takes positive, 

zero and negative values in this interval). On noting that: 

1'1' = f4exp(io/3), 4exp(i(0+27r)/3), 4exp(i(o- 27r)/3)1 

and substituting into the three expressions for k2, it can be easily seen after some 

algebra, that each expression reduces to the same set of solutions, given by the three 

(real-valued) functions: 

4cos(0/3)+3k, -4 4cos(0/3-27r/3) + 3k, -44 cos(0/3 + 27r/3) + 3k, -4 k2 =3 (ki - 1) 1 3(ki - 1) 1 3(ki - 1) 

1 

It may now be easily verified that the minimizing solution corresponds to the 

second function, so that 

1* t*f1 - 

2J VU1 - 

4 cos(0/3 - 27r/3) + 3ki -4 
3 (ki - 1) 

where 0= 0(kj) is defined in equation 4.2.2. Again f*(I) is not formally 

defined by this equation, so we set f*(I) =1 to make the function continuous and 

differentiable at ki = 1. A plot of k* = f*(ki) (along with the boundary between 2 

120 



.. ....... ..... 

.. ....... . ..... ..... 

ar 

6pdmal 
Policy curve Im A 

Bullwhip 

=b-oada 

......................... ......... ...... 

.......... .... ....... 

.......... ...... ....... ....... . 

................... .......... . .... ..... 

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
ki 

Figure 4.1: Optimal policy k* = f*(kl) and boundary between amplification and 2 

attenuation regions 

the attenuation and amplification regions) is shown in Figure 4.1. An important 

observation is that the optimal curve lies entirely in the attenuation region. Thus, 

under information-sharing (disclosure of policy parameter k, to the Distributor), a 

'selfish' policy by the Distributor (resulting from his attempt to minimise his own 

inventory costs) can not give rise to the bullwhip effect. Of course this conclusion 

should be qualified by the assumptions of the model (e. g., linearity, white-noise 

customer demand profile, no demand forecasting, etc). 

The minimum variance Var*(IP2) can be obtained by substituting the optimal 

policy k* = f*(kl) into the (3,3) element of P5. A plot of Var*(IP2) versus k, 2 

reveals that Var*(IP2) is a monotonically increasing function of kj. The optimal 

curve k* = f*(ki) (which is a monotonically decreasing function) starts at point 2 

(2,0) (where Var*(IP2) = 0), passes through the point (1, k*(1) 1) (where 2 

Var* (-TP2) =U 2) and approaches zero as ki --ý 2 (where Var* (IP2) oo as this 

corresponds to the edge of the stability region). 

Exam le: The results of the optimal policy k* = f*(ki) for three values of P2 

k, = 0.5,1,1.5 are summarised in Table 4.1. The parameters for the demand 

distribution were chosen as y= 10 and a=1, while parameter J was set to 

j 
== 0.05. The distributions of 

IP2 
and 

IP2 
- 

01,2 for the three values of k, are 

121 



Table 4.1: Summary of optimal policy results 

ki k2* 1 
. 
E[IP 2] ar[IP2] E [IP2-01,21 I Var [. TP2 =1,2] 

0.50 1.43 11.41 ý-. 26 1.41 0.73 
1.00 1.00 12-33 1.00 2.33 2.00 
1.50 0.57 14.23 2.38 4.23 6.61 

0.8- 

0.7- 

0.6- 

0.5- 

r4 12- 

0.4- 
LL 
Cl 
a- 

0.3 - 

0.2- 

0.1 - 

0- 
8 10 12 14 16 18 20 22 

Figure 4.2: Probability density function of -TP2 

shown in Figure 4.2 and Figure 4.3, respectively. Note that all three distributions 

Of IP2 
- 

01,2 
suggest that inventory IP2 is insufficient to meet downstream demand 

01,2with probability 0.05, as set by parameter 6. 

4.3 Analysis of estimation schemes 

We continue our analysis of the three node model by removing the assumption 

that policy parameter k, (corresponding to the Retailer's proportional replenishment 

policy) is communicated to the Distributor. A natural question arising in this case 

is whether k, can be estimated by the Distributor (node 2). Naturally, the data on 

122 



0.5 

0.45 

0.4 

0.35 

"1 0.3 
Cý- 
0 

C, 4 

CL 0.25 
Z 
0 
U- 
13 
CL 0.2 

0.15 

0.1 

0.05 

0 L- 

-10 -5 0 5 10 15 

Figure 4.3: Probability density function Of IP2 
- 

01,2 

which the estimation should be based are restricted only to the input/output and 

state variables local to node 2. 

4.3.1 Estimation method 1: Use of partial information 

derived by covariance 

Since E(Y2,1) = p, the mean customer demand (p) can be estimated from Y2,1 (t), 

which is an output signal of node 2 (e. g., an unbiased estimate A of p can be obtained 

asymptotically) - 
Consider next the part of the covariance matrix P, 5 corresponding 

to the state variables of node 2; this is the diagonal block of P5 corresponding to the 

third and fourth rows and columns, i. e.: 

COV(. 
LTP2 , 

Y2,1) 07 
2 

ki (2-ki -k2+klk2) ki(kl-l) 
k2 (2-ki) (2-k2) (ki +k2 -ki k2) (2-ki)(kl+k2-kik2) 

ki(ki-1) 
(2-ki)(kl+k2-kik2) 

One way of estimating ki and u is to define: 

ki 
2-ki 

Pll P12 

P12 P22 

P12 ki -1k, I+ ak2 
P22 k, +k2- k1k2 1+ ak2 -a 

123 



and note that: 

a2 = 

P22(2 
- ki) 

ki 

Now, using the data f IP2(t), Y2,1(t)l and noting that parameter k2 is known, we 

can obtain estimates for P11 
-":::: Var(IP2), P22 - Var(Y2,1) and P12 E[(IP2 - 

E(IP2)) (Y21 - E(Y2,1)], say P11, fD2 
2 andP1 2 respectively, and use them to estimate 

k, and a via equations: 

P12 
ki 

1 +&k2 &2 
_ 

P22(2 
- ki) 

P22 1+ &(k2 - 1) 
ki 

This estimation scheme will produce asymptotically unbiased estimates for k, and 

0- 2 and can implemented efficiently via the recursions (in n): 

P22 (n 
P22 (n) =1+ (Y2,1(n)- V2,1(n))2 P22(n 

&(n) = &(n -1) + P22(n)(Y2,1(n)- Fl, 
2(n)) [(IP2(n) - 

IP2(n)) 

(Y2,, (n)- V2,1(n))&(n 

(n) 
I+ &(n)k2 

I+ &(n)(k2 - 
1) 

(n) 
1522(n) (2 - 

ki (n)) 

k, (n) 

where IP2 (n) andy2,1(n) denote running estimates of the means Of IP2 and 

Y2,1 respectively. The recursion can be initialised from arbitrary initial conditions 

P22(0) >0 and &(0). 

4.3.2 Estimation method 2: Structured covariance approxi- 

mation 

A limitation of the first method is that it does not take full advantage of the available 

information structure (e. g., the information contained in Var(IP2) is ignored). A 

superior approach is to formulate the estimation problem as a structured-covariance 

approximation, e. g., 

124 



Table 4.2: Estimated and true parameters (method 1) 

E[IPjj I E[IP21 LE[YI, O] I E[Y2,1] I E[Y3,2] I Var[Y3,21 I a 1 
0,2 J ki- 

Estimated 
True 

13-35 
13-33 

13-35 
13-33 T 0.00 11 

"( 9-99-1 
10.00 1 

9.98 
10.00 

15-94 
15.00 

0.63 
0.66 

1.09 
1.00 

- 1.48 
1.50 

min 
klC(0,2), u>G 

ki(2-ki-k2+k1k2) 
. 

ki(k1-1) 
2 

k2 (2-ki) (2-k-2Y(ki +k2-ki k2) (2-kl)(kl+k2-kik2) 

0 
iD 

_ or2 

ki (ki - 1) ki 
T2--kl)(kl+k2-kik2) 2-ki F 

in which P denotes the estimated covariance matrix (constructed from the 

data). The choice of Frobenious-norm makes the problem easily transformable 

into a scalar sum-of-squares type non-linear optimisation, while W is a weighting 

matrix which can be used to emphasise/de-emphasise different matrix elements in 

the approximation (here V denotes the Hadamard product, i. e., element by element 

product, of two matrices [HJ95]). For example, choosing W11 = W22 =1 and 

W12 = W21 =1 results in the objective function: 
2 

0- 
2 kl(2 - ki - 

k2 + kik2) )2+ a2 ki(ki - 1) )2 
D 

0,2 ki )2 

k2 (2 - kl) (2 - 
k2) (ki + k2 

- ki k2) 

(1612 

(2 - ki) (ki + k2 
- ki k2) 

+ 
(f 

22 -2- 
ki 

which can be easily minimised (over ki (E (0,2) and a2> 0) via gridding or local 

search methods. 

Example: We illustrate the estimation scheme by means of a simulation 

example. Assume that 01,2 -N (p, u 2) with p= 10 and U2 1. We simulate 

the 3-node chain with parameters k, = k2 = 1-51 SP, = SP2 20 and IP, (0) = 

IP2(0) = 20 for n= 1000 time-steps. Parameter ki is assumed unknown to node 2 

(Distributor) and is estimated using the first method described earlier. The results 

of the estimation are summarised in Table 4.2. 

125 



Applying the second estimation method described in this section (structured 

covariance approximation) produced a (slightly) more accurate estimate k, = 1.51. 

The minimisation was carried over ki using the estimated variance of the end- 

customer demand signal &' = 1.09. The graph of the cost function which is minimised 

is shown in Figure 4.4. The minimum was found to be insensitive to the choice of 

norm (Frobenious or maximum singular value) and weighting function W. 

25 

20 

15 

C 

10 

5 

0 

........... 

........... 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 
k, 

Figure 4.4: Cost function in covariance structured approximation (method 2) 

The main advantage of using the (computationally more demanding) covariance 

structured approximation method (method 2) for estimating k, is illustrated in 

Figure 4.5. This shows how the estimates of k, for the two schemes vary with 

the length of the data records (note that only method I is truly recursive). It can be 

seen from Figure 4.5 that the estimates based on method 2 converge much faster to 

the true parameter value k, = 1.5. This was consistently observed in all simulations 

and is not surprising as the full structure of the covariance matrix is used. 

Once an accurate estimate of k, has been obtained, node 2 can switch to the 

optimal policy k* and IP2*, thus minimising its average inventory level and its 2 

inventory fluctuations. To assess the 'value of information' when policy parameter 

k, is disclosed to the Distributor, it is necessary to carry out a statistical analysis of 

126 



2 

1.8 

1.6 

1.4 

1.2 

Co a 
Co 

0.8 

0.6 

0.4 

0.2 

0 

.......... 

................. 
I 

.......... .............. ................ 

.......... 
ir ýI. ýII..:.. I-1 11 .11-. I. ý: -.: 

...... .... ........... ....... . ....... ... - 

0 
Iteration number 

Figure 4.5: Estimates of k, using method 1 and 2 as functions of data length 

the estimation schemes presented above in order to determine the properties of the 

estimate (e. g., variance, confidence intervals, rate of convergence etc) and how these 

depend on data lengths. This analysis is not undertaken here and will be addressed 

in future work. 

Estimation method 3: Use of covariance matrix 

structure and its properties 

Another interesting approach towards better estimation schemes involves the use 

of covariance matrix structure and its properties. The following study is focused 

on the computation of inverse covariance matrix and the estimation of the inverse 

gain factor k, 
= --L. By considering as P'5 the part of the covariance matrix P, 5 ki 

corresponding to the state variable of node 2, we have: 

ki (2-ki -k2+klk2) ki(ki-1) 
k2 (2-ki) (2-k2) (ki +k2 -ki k2) (2-ki)(kl+k2-kik2) 

P5 
ki (ki -1) ki 

(2-ki)(kl+k2-kik2) 2-ki 

P533 P534 

P543 P544 

127 



The inverse covariance matrix P5 is given by: 

k2 (2-k2) (kik2 -ki -k2 
)2 

k12 

P5 

(kj-1)(kjk2-kl-k2)k2(2-k2) 
k2 

1 

(ki -1)(kik2-ki -k2)k2(2-k2) 
k l' 

(2+klk2-kj-k2)(kjk2-kj-k2) 
k2 

PC -1 Pý - 
3 3 34 

- Pý 
43 

p 

e 

Pý-3' can be rewritten as: 3 

11 
-1 =k (2 - 

k2) kik2- ki -k2 
2 

Pý3 
321 

ki 

I 

k2(2 - k2) k2 
- 

k2 2 1 

ki] 

k2(2 - 
k2) (k 

2 
1)2 

- 2(k2 
k2 

+ 
k22 

ki k2 

111 

By replacing can be written: k, 
PC33 

p -1 
2(2 _ 

1)2 
- 2(k2 -1) 

k2ý1+ k2 
ý2 ý33 

=k- 
k2) [(k2 

2 1] 

k2(2 - 
k2)(k2 

_ 
1)2 

- 2k 2 (2 -k3 2 2)(k2 -1)ý, + k2(2 - 
k2 

It can be inferred from above expression that Pý-3' is a quadratic polynomial in 3 

-2k2(2 - k, with quadratic coefficient a533 k'(2 -k linear coefficient 
3533 

2 2 2)1 

k2)(k2 
-1) and constant coefficient 7533= k2(2 - 

k2)(k2 
_ 

1)2 
. 

Thus, the resulting 

2 
quadratic equation can be expressed as: Pý33 ý 0533 k, + 3533 ki + 7533 

Similarly, Pý3-1 and Pý4-1 are given by: 43 

128 



ý431 Pý-34 :: -- p 
(ki - 1)(kik2- ki - k2)k2(2 - 

k2) 

k2 1 

k, -I )( 
kik2- ki - 

k2 

)k2(2 - 
k2) 

ki ki 

1) 
(k2- I k2 

1 

)k2(2 - 
k2) 

ki ki 

(k2 -1 
k2 C)k2(2 

- 
k2) 

2 k2(2 - 
k2) [k2- 1- 2k2 

kl+ 
+ k2 ýj 

k2(2 - 
k2) [(k2 

-1) + (1 - 
2k2) C+ k2 

k2(2 - k2)(k2- 1) + k2(2 - 
k2)(1- 2k2) kl+ k2 (2 - 

k2 ) ý12 
2 

Again, Pý3-1 and PC41 are quadratic polynomials in ýj with coefficients CQ34 43 

OZ543 :: -- k22(2 - 
k2) 

1 
0534 ý 0543 

= k2(2 - 
k2)(1 

- 2k2) and 'Y534 = NO = 

k2(2 - k2)(k2- 1). Therefore, the resulting quadratic equations can be expressed as: 
e-2+-2 

R-1 +7543- 
534 -- a534ki )3534k, 

+7534 andp 1 
+/3543k, ý43 : --: ý a543k 

Finally, P; 4-1 can be derived as: 4 

11 
-1 

(2 + kik2- kik2)(ki k2- ki - 
k2) 

Pý4- 
4k2 

1 

2+ kik2 
2 

ki - k2)(_klk2- k, - 
k2) 

k, ki 

(2k, + k2- I- k2ki) k2+ 1+ k2ki) 

[k2- 1+ ý1(2 
- 

k2)] (k2- 1) + k2 ýl 

1)2 +2 
-(k2 - [-(2 - k2)(k2- 1) + k2(k2 -1)] 

k, + k2(2 - 
k2) ýj 

1)2 +2 
-(k2 - (k2- 1) (2k2- 2)ýj + k2(2 - 

k2) ýj 

129 



e 

Pý4-1 can also be written in the following quadratic form: 4 

Pý44 ý-- 0544k, +ý3544ý1 + 'Y544 

where0544= k2(2 - 
k2)) 0544 

= (k2- 1)(2 - k2) and -ý544= -(k2 _ 
1)2. 

The above results can be summarised in the following Proposition 4.3.1. 

Proposition 4.3.1. The inverse of partial covariance matrZx P5, denoted as P5 

is quadratic in ýj 
- 

In particular, P'5-1 = Aý12 + Bkj +r where: 

a533 a534 k3 (2 - k2) k2 (2 - 
k2) 

A=22 
a543 a544 k2 (2 - k2) k2(2 - 

k2) 
LiL2 

and 

0533 3534 
-2k 

2 (2 - 
k2)(k2 

-1) k2(2 - 
k2)(1- 2k2) 

B=-2 

L 

0543 0544 

JL 
k2(2 - 

k2)(1- 2k2) (k2 -1)(2 - 
k2) 

7533 7534 

7543 7544 

1 
where ý, 

k2(2 - 
k2)(k2 1)2 

k2(2 - 
k2)(k2 1) 

k2(2 - 
k2)(k2 

- 

- (k2 - 1)2 

The result of Proposition 4.3.1 is that we can formulate the estimation problem 

as a structured inverse covariance approximation which can be expressed by the 

minimisation. of Frobenious norm of the inverse covariance matrices. As it is 

mentioned previously the main goal of the participant in node 2 is to estimate the 

inverse factor of downstream node, Ilk,. Since k2 is a known parameter we can 

consider the constant matrix F as a known quantity. In addition to this we can 

define as D, a new constant matrix given by: D where 15 1 is Pý- the 

" -1 ý -1 -2 
estimation of the inverse matrix P5 

. 
Since P5 = Ak, + Bkj + r, we have: 

Pjl - 
P5 

= 
Aý12 + Bý, + (1- 15, pi- 

2 
PC'- P5 A +Bkl+D 

130 



This observation leads to the following Lemma 4.3.2: 

Lemma 4.3.2. Define the following optirnisation proble7n: 

70 min 
2 IIF 

[! L, 00) 

Ilp P5 

2 

The optimal solution is given by the followmg expression: 

7o min fao+alk-, + Ce2k, 2+ 
a3k, 

3+ 
Oe4k, 

4 

E 1-21 
100) 

where 

ao = trace(DD'), 

ce, = -trace (DB' + BD') 
I 

C12 = trace(BB'- DA- AD), 

ce3 = trace(BA'+ AB') 

014 = trace(AA') 

Proof. See Appendix A. El 

131 



Let us now consider each of this coefficient. 

ceo [(DjLl 
- k2(2 - 

k2)(k2 
_ 

1)2]2 +2[qPI2- k2(2 - 
k2)(k2 

_ 
1)]2 + [(D22 

-ý- (k2 _ 
1)212 

cei 4[4)11 - k2(2 - 
k2)(k2 

_ 
1)2 Ik 2 (2 - 

k2)(k2 
- 

1) + 2 

12- 1)2] 
_ 

1)2 
4[ (1ý 12- k2(2 - 

k2)(k2 
-1)]k2(2 - k2)(2k2 - 1)-4[( )22+ (k (k2 

a2 4k 2 )2 (k _ 
1)2 2 )2 

2(2 - 
k2 

2+ 2k2(2 - 
k2 (2k2-1)2 

2[d)]Ll - k2(2 - 
k2)(k2 

_ 
1)2 ]k 3 (2 - ki) - 

4[4bl2- k2(2 - 
k2)(k2 2 -1)]k 

2 (2 - 
k2) 

2 

4(k2 _ 
1)4 

-2[ýý22- (k2 _ 
1)2 ]k2(2 - 

k2) 

34k52-k2 3(2 
- k2)2(2k2- 1) + 4k2(2 - 

k2)(k2 
_ 

1)2 2 2) (k2- 1) - 4k2 

a4 k6 (2 - 
k2 )2 

- 2k 4 (2 - 
k2 )2 +k2 (2 - 

k2 )2 
222 

Next we consider the polynomial p(ý, ) = aO + alýl + a2 ýj 2+ 
Ce3 ýj 3+ 

C14 14. The 

minimisation problem now involves simply the computation of the first derivative 

p'(ki which must be set equal to 0. Hence, 

p'(ý, ) - a, + 2041+3CV3 ýj 2 
+4Ce4 13= (4.3.1) 

The solution of the above equation gives 3 roots from which we must choose the real 

root in the interval 1< 
-L < oo, since 0<k, < 2. 2- ki 

Example: We demonstrate the structured inverse covariance, estimation method 

with the aid of a simulation example. We consider the three node supply chain with 

the same parameters we used in previous examples for estimation. Thus, we set 

k, = k2 = 1.5, SP, = SP2 = 20, IP, (0) = IP2(0) = 10. We run the simulation 

for n= 1000 time-steps. As in previous approximation techniques k, is assumed as 

unknown parameter to node 2 (Distributor). 

The solution of the cubic equation has given as expected 3 roots; 2 complex 

r, == 0.2855 + 0.3884i andr2 == 0.2855 - 0-3884i and 1 real root r3= 0.6657 which 

corresponds to the minimum value k, of the cubic equation 4.3.1. -1- gives ki r3 

the estimated parameter k, and it is equal to 1.5021 a value which is very close to 

132 



7 

C 

co 

6 

5 

............................ ............................................................ 

........................ .......... ............... 

2 

I 

0 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 

l/k, 

Figure 4.6: Cost function in inverse covariance structured estimation 

the real simulation parameter k, = 1.5. Figure 4.6 illustrates the minimised cost 

function in inverse covariance structured estimation based on data of the previous 

example where ý, = 1.5021. 

133 



Chapter 5 

Modelling supply chains using 
Coloured Petri nets 

Most of simulation tools are designed as interactive tools to be used by a human 

planner not as real time decision-making tools, which are directly linked to control 

system to dispatch tasks. Simulation tools aid human planner to make a right 

decision by providing information. However, human planner should be able to 

interpret and modify the plan in order to achieve better supply chain performances. 

A different aspect of analysis based on the same type of supply chain studied 

in previous chapters can be also achieved by using timed Hierarchical Coloured 

Petri Nets (HCPN). This approach considers supply chain as an event-driven 

system and captures the process of flow of goods and information within the series 

supply chain. A HCPN model has been constructed to study the bullwhip effect 

in supply chains where individual parts using different inventory policies, while 

metrics have been defined for analysis of inventory balance and flow process. The 

proposed HCPN model allows to study the bullwhip effect even in cases when 

intermediate participants do not have sufficient inventories to fulfill downstream 

orders. In contrast to linear model developed in previous chapter HCPN provide 

useful framework to study the impact of backlogged orders in overall supply 

chain performance in non-continuous inventory replenishment policies and known 

forecasting methods followed by supply chain participants. 

The dynamics of a supply chain system are modelled by firing rules, which define 

the flow of the tokens. In this chapter CPN-Tools [fCPN] are used for the design of 

134 



decision-making processes and simulation results axe presented to highlight the main 

issues arising in real systems and to provide insights for future work on modelling 

and simulation of supply chains. 

5.1 Description of the supply chain model 

We consider again a series five-node supply chain depicted in Figure 5.1 consists of 

a Manufacturer, Distributor, Supplier, Retailer, and an end Customer site. We also 

assume that there is a single participant in each node. The main characteristics 

and dynamics of the series supply chain is based on the model presented in the 

chapter 3. Note that since the customer site is the actual output and input of 

the supply chain system the HCPN model consists of four individual stages. The 

direction of the flow of information (orders) and products in supply chain is shown 

in Figure 5.1. We assume that each intermediate participant makes decisions locally 

and place the amount of orders to the upstream level following an inventory control 

policy. Meanwhile, dispatch of products to downstream levels performed by upstream 

stages depends also on several rules and conditions (i. e., availability). We assume 

at the beginning of process that participants follow the same inventory control 

and dispatching policy although the model permits the use of different rules on 

the different stages. We assume also that there is no delay for the information 

transmission and processing between participants, in contrast with the delivery of 

finished products, where a lead-time delay is associated in each dispatching process. 

Information flow 
Products flow 

Figure 5.1: A series five-node supply chain 

135 



The attainment of all these processes can be implemented if we simply perceive 

that each action such as placing an order, delivery of product, or even inventory 

decision making is a discrete event with dynamic properties. Since the number of 

reachable states in supply chain is typically very large we need to describe clearly 

all the activities associated with events. This description helps also the user to 

understand better the structure, rules and functions used in Petri network. 

Every time an order placed in node participant, inventory manager checks 

whether the amount of products held in stock is sufficient to fulfill the order 

requirements. We assume that there is an initial stock in all four stages of the supply 

chain. Incoming orders are served always directly from the stock which contains 

the current stock plus the amount of products that might have been received from 

the upstream level. If the inventory stores enough products, the same amount of 

ordering is sent to the upstream level, since manager tries to maintain the inventory 

to a target level. If the stock level is below the amount of products have been ordered 

then the completion of the total amount of order is not possible. In this case the 

managers can follow different inventory control policies. In our model we assume 

initially that manager orders the amount of products have not been delivered to the 

downstream level plus the amount of products that will be sufficient to fulfil the next 

order (backlogged orders). 

A manager also decides the amount of products will be delivered to the 

downstream level. When a participant receives an order, manager checks if the 

inventory stores the needed products. If the stock has sufficient amount of products, 

manager dispatches the total amount has been instructed to deliver. Otherwise, if 

the stock is not sufficient, manager can either wait for needed product to be received 

and then send as a whole, or dispatch the incomplete order, and later the overdue 

additional quantity. In current work we consider that all the stages deliver even 

incomplete orders. This situation is more realistic in supply chains with delivery of 

strongly standardised products. Later we will see that this effect is seized in the 

model by cost functions discussed in chapter 2, in which both stock and flow of 

136 



products and information are accumulated. 

The demand behaviour of the final customer shows fluctuations and has a normal 

distribution process with a given variance and mean. Thus, adjustment effects 

can be observed and examined with permanent changes of demand. On the other 

hand adjustment-conditioned deviations from the normal distribution process can be 

implemented very easily and are recognised immediately. This helps the modeler to 

see the effect of demand variance in all the individual stages of supply chain, and to 

monitor better the inventory levels after a single event has been occurred. In addition, 

the model permits other arbitrary demand processes (i. e. seasonal fluctuations) by 

modification of input data. The determination of the order quantities which affect 

decision making in all four stages of the supply chain leading to bullwhip effect, is 

easy and we can use metrics and graphical representation of backlogged orders to 

illustrate this phenomenon. 

5.2 Description of the Hierarchical Coloured Petri 

Net 

5.2.1 Prime page Supply chain 

Figure 5.2 shows the HCPN model of the four-level supply chain. This abstract single 

prime page called Supply chain illustrates the highest network level and provides an 

overview of the supply chain network. (Note that the name of each page is displayed 

on the top left side). Figure 5.2 also shows how HCPN has been hierarchically 

constructed into four modules (subnets): The manufacturer (M), the Distributor 

(Sl), the (intermediate) supplier (S2), and the Retailer (S3). The subnets of the 

model are also referred to as "pages", while each submodel node represents a page of 

the HCPN model. Supply chain page has four transitions which all axe substitution 

transitions. The Customer site is represented in the prime page by two different 

socket places: Cg which is associated with the goods received by customers and 

137 



Cd which represents customer demand. Cj and Cd are the model output and 

input, respectively. There are also four socket places surrounding all substitution 

transitions. For instance, page Supplier has the following socket places as it can been 

inferred by Figure 5.2: 23g (goods dispatched to Retailer), 12g (goods delivered 

by Distributor), 32d (demand order received from Retailer), and 21d (demand 

order placed to Distributor). The hierarchical CP-net model is common for all 

three different ordering policies (aggresive ordering (AO), moving average (NIA) and 

exponential smoothing (ES) forecasting techniques) considered in this chapter. 

ychaI 

NT 

SI, S2, S3: Suppli rs 
M: Manufacturer 

Figure 5.2: HCPN describes an overview of supply chain with four different nodes 

The three modules Retailer, Supplier and Distributor, are structurally identical 

for each case - and their description is based on the description of Supplier module 

given later on, while Manufacturer has a different structure and it is described 

severally. Tokens in HCPN model are of type integers and are associated with the 

amount of orders and products flow within the supply chain. We can use more 

data types or more token colours such as names of products, staff or transportation 

means (could be represented by strings), or even prices and barcodes. However, for 

the purposes of analysing the impact of bullwhip effect and different replenishment 

138 

w INT INT INT - INT 



policies and forecasting techniques, are sufficient parameters for this analysis. 

Figures 5.3 - 5.6 depict the four subnets: Retailer, Supplier, Distn'butor, 

Manufacturer. 

@+Itr 
I 

Figure 5.3: The subnet Retailer 

Using HCPN definition, Figures 5.2 - 5.6 are represented in 5.7. 

5.2.2 Sub-pages Retailer and Manufacturer 

Aggressive ordering (AO) 

Figure 5.3 shows the subnet of the module Retailer containing socket places Cj, 

Cd, 32d) 239, places Inventory and Memory status, and three transitions Dispatch 

of goods, Arrival of goods and Placing order. Transition Placing order examines 

whether the existing stock is sufficient for the complete satisfaction of the quantity 

requested by the customer. If this is the case, the appropriate order quantity is 

placed as order to the upstream node (Supplier) and a copy of the quantity is stored 

in place Memory status which plays the role of a buffer. If the existing stock held by 

the Retailer for a complete supply of goods is not sufficient, then the Retailer orders 

the amount which is accumulated between current stock and the last order plus 

139 



@+Its 

4T 

Figure 5.4: The subnet Supplier 

the amount of the last order. This type of ordering policy is based on the retailer's 

estimate that the next order placed by Customer will follow the last demand pattern. 

In transition Dispatch of goods the ordered products are dispatched to the 

downstream node (Customer), after being controlled by places Memory status and 

Inventory. In the case where the stock is sufficient to fulfil the last order, the 

Retailer dispatches the full stock. Transition Armal of goods is associated with 

goods reception which are later stored on the inventory (warehouse). It is assumed 

that there is no delay in this process (i. e., goods received by the upstream node 

are delivered immediately to the warehouse). We also assume also that there is 

no delay on control sequences taking place before the dispatch of goods to the 

downstream node and on decisions related to the amount of products to be ordered. 

This assumption is based on the fact that decision-making and dispatch of goods 

at every node is performed much faster than all the other running activities in the 

supply chain. In contrast, we indicate by Itr the lead time between dispatch and 

delivery of products from Retailer to Customer. 

Manufacturer page shown in Figure 5.6, has exactly the same structure as the 

Retailer page related to the process of receiving order by an upstream node and 

140 



Cý 
C+Itd 

rT 

Figure 5.5: The subnet Distributor 

dispatching the goods to a downstream node. However, manufacturers in general 

have different policies of receiving and ordering raw materials, since they usually 

establish contracts monthly or even annually with raw materials suppliers. For the 

simplification of our model we assume that the manufacturer receives a settled bulk of 

raw materials if a current order received by the distributor exceeds the amount of this 

quantity. Otherwise, the manufacturer places exactly the same amount of order for 

the purposes of maintaining the inventory level. Place Md receives the order demand 

by the Distributor and forwards the amount of order to transition Entrance of goods 

which, in turn, checks if this exceeds the amount of bulk ordering. Place Mg models 

the raw material suppliers' activity and we assume that the time needed for raw 

materials to be transformed to finished products is Itrm. Hence, Manufacturing site 

can be considered as a push logistics system where manufacturing process takes place 

when it is triggered off by downstream demand. Next we discuss the declarations 

(inscriptions, functions and variables) used in all pages of HCPN. 

Declarations for the HCPN supply chain model 

As we have seen in Chapter 2 declarations in CPN are used for the quantitative 

141 



O+Itm 

rr 

@+Itrm 

Figure 5.6: The subnet Manufacturer 

and qualitative analysis of a model. To facilitate our analysis, we need to associate 

the flow of goods and orders by using assigned variables. Moreover, all activities 

performed at all stages of the supply chain (such as dispatching of goods, control 

sequences and order placing) must clearly defined via a set of rules. This set can be 

encapsulated in well-defined functions. CPN Tools for simulation and modelling of 

CPN use CPN ML, which is obtained by extending Standard ML. All functions and 

variables used in supply chain HCPN model are written in ML code which extracts 

all data from the CPN model. Declarations are shown in Figure 5.8. 

As can be inferred from the declaration box, in order to model the supply chain 

HCPN with CPN Tools we need to use a standard timed colour set (INT = Znt hmed). 

Variable p in all pages represents the amount of orders and goods transferred within 

the supply chain and is defined as an integer. Variable integer n is used to indicate 

the amount of stock held at each node. Variable m updates the memory status each 

time a new order is placed, while I is used in a similar way to update the inventory 

each time new products are received. 1n the Manufacturer node, variable pp is 

associated with the bulk of raw materials arriving from suppliers Mg each time such 

a command is issued by the manufacturer. Before carrying out a HCPN simulation, 

142 



S= {Supply chain, Manufacturer, Distributor, Supplier, Retailer) 

(i i) SN = ýM@Supply chain, Sl@Supply chain, S2@Supply chain, S3@Supply chain) 

Manufacturer 
Distributor SA(t) 
Supplier 
Retailer 

if t= M@Supply-chain 
if t= Sl@Supply-chain 
if t= S2@Supply-chain 

if t= S3@Supply_chain 

PN = (Mg@M, lMdOM, Md@M, Mlg@M, Mlg@Sl, 21d@Sl, lMd@Sl, 129@Sl, 
129@S2,32d@S2,23g@S2,21d@S2, Cd@S3,23g@S3, Cg@S3,32d@S3) 

in if fD fMg@M, lMd@M, Mlg@Sl, 21d@Sl, 12g@S2, 

(v) PT(p) 32d@S2, Cd@S3,23g@S3) 

outif g) {Md@M, Mlg@M, lMd@Sl, 12g@Sl, 23g@S2, 

I 

21d@S2, Cg@S3,32d@S3) 

(Md@Supply chain, Md@M), (Mg@Supplychain, Mg@M) , (Mlg@Supply chain, Mlg@M) , 
(lMd@Supply chain, lMd@m) 

PA (t) lMlg@Supply chain, Mlg@Sl), (lMd@Supply chain, lMd@Sl), 
(12g@Supply chain, 12g@Sl), (21d@Supply chain, 21d@Sl)) 

........... 

J(Vii) PP = l'Supply chain 

Figure 5.7: HCPN from Figures 5.2 - 5.6 represented as a many-tuple 

we assume that customer demand Cd follows a normal distribution with mean m and 

standard deviation s. Both mean and standard deviation are real numbers (100.0 

and 8.0, respectively). The normal distribution is implemented in CPN ML code 

with function normal(m, s). Since CPN Tools can not treat real numbers in the 

simulation process, we round each random value to an integer by using the function 

di str (m) s) =f1 oor (normal (m, s)). 

Function order(i, j) describes the inventory control policy and models the process 

of placing an order. Variables i and j are input assignments and represent a received 

order and the inventory, respectively. In case there is sufficient stock, an amount 

i is send as order to the upstream node. In cases where current inventory level j 

is below the received order j, then the accumulated value i-j (back-orders) plus 

the estimate of the next order i is placed as order to the upstream node. Function 

calc(ij) models the control sequence between memory status and current stock 

and is used to calculate the balance of inventory and memory status when a new 

immediate shipment is due to take place. The exact amount of products dispatched 

143 



val ltrm= 1; 
val ltm 4; 
val ltd 3; 
val lts 2; 
val ltr 1; 
val sigma = 8.0; 
val mean 100.0; 
colset INT = int timed; 
type REAL = real; 
var q, w, p, pp, m, n, 1: INT 
normal(mean, sigma) : real; 
run order (i, 1) = if (i<=j) then i else 2*1-j 
fun calc(i, j) = if (i>=j) then i-j else 0; 
fun disp (i, j) = if (i>=j) then j else i; 
fun funi (i, j) = if (i>=j) then i+j else i; 
fun distr (mean, sigma) = floor (normal (mean, sigma)); 

Figure 5.8: The declaration box of supply chain HCPN 

to the downstream node is modelled by function disp(i, 

In order to understand better how the functions disp(i, j) and calc(i, j, we 

consider as initial condition that the amount of inventory is n and the amount 

of order is p, (memory m on initial condition is cleared and hence m= 0). We 

consider the simple scenario when p <== n. When token p, arrives as orders from 

place Cd, transition Plaung o7-der removes this token from Cd and adds momentarily 

(no time inscription has been given to Plactng order) a token of the same value to 

place Memory status and place 32d. Then Memory status updates its tokens by now 

carrying m+p = O+p =p tokens and sends this token to transition Dispatch of goods. 

In the meantime, place Inventory also sends its token to the same transition. Then 

transition Dispatch of goods is being activated and retailer can dispatch the ordered 

products p to the customer. Since p <= n the output of the function disp(i, j) 

will be assigned to p. Function calc(ij) associated with place Memory status now 

updates again its token and its output is now set to 0. This means that currently 

no product delivery is pending. In a similar way function calc(ij) associated with 

place Inventory, updates its token to n-p and hence current stock contains n-p 

products. 

Function calc(p, n) should not be confused with calc(n, p). Although these two 

144 



functions operate in a similar way and have the same output assignments, their 

input assignments are different. We have also used variables Itr, Its, Itd, Itm as lead 

times for dispatch of goods by Retailer, Supplier, Distributor, and Manufacturer, 

respectively. Note that we need also to introduce guard functions in transition 

Dispatch of goods to avoid delivery of zero products. 

Moving average (MA) forecasting technique 

In the moving average technique, the demand forecast is calculated as the average 

of the last recorded observations and is given by: 

N 

Dt 
NE 

Dt-n+l 

n=l 

(5.2.1) 

where Dt is the next demand forecast while Dt, N indicate the amount and number 

of observations, respectively. Figure 5.9 shows the corresponding subnet Retailer 

which models the moving average procedure. Recall that system is "driven" by a 

stochastic end-customer demand profile applied at the end of the chain. 

It can be inferred from Figure 5.9 that we have introduced three new places 

Update, Counter and C and a new transition Aver. Place Update is a memory 

buffer that stores the sum of past observations (e. g., updates the past information) 

while Counter, C and Aver are used to calculate the sum (indicated by the variable 

b) and the number of past observations (variable z). The guard equality, y=z, 

on transition Aver ensures that data are treated in chronological order. Function 

aver(i, j) calculates the next demand forecast bt following equation 5.2.2. Note 

that Dt must be rounded to an integer since CPN-Tools can not treat real numbers. 

Hence, two new lines have been added to the declaration box: 

fun conv(i) Real. fromInt ((i)); 

fun aver(i, j) round (conv (i) /conv (j)); 

145 



cer 

Lp-n>O] 
0+4tr 

r 

T 

INT 

Figure 5.9: The subnet Retailer for (MA) techniques 

Exponential smoothing (ES) forecasting technique 

In cases where we wish to use previous demand forecasts and past observations we 

can benefit by using the exponential smoothing technique which is given by: 

Dt+l =: aDt + (I - a)Dt 0< oz < (5.2.2) 

where a is the smoothing coefficient. This coefficient controls the weight placed on 

to the most recent data. Figure 5.10 shows the corresponding subnet Retailer which 

models the exponential smoothing method. 

Places Ind and B are used as counter integers and guard equality z-g on 

transition estim, to guarantee, similarly to the moving average model in Figure 5.9, 

that new data do not overtake older. Place proest forwards the amount of last or- 

der observation (variable p) to be processed by transition estzm. Place A updates 

the last order (aDt indicated by variable f) and function expsmo(p, f) calculates 

the demand forecasts. Again, all demand forecasts must be rounded to integers. in 

order to model the smoothing forecast technique we have added the following lines 

146 



[p*n>0] 
o+Itr 

disp(p, n) 
Dis=h 

S of 9 

p lc(p, n) calc(n, p) 

n 
I+p 

1,200 

memory 
Status InventDry 

N INT 

m 

M+p n 

Placing 
Z+l 

Ind 

1 

ENT rcer z 
INT 

l'O V1 

B 
a) 

INT 

[NT 

p 

Arrival of 
goods 

(P, Z) f 

p roeA 
(P, Z) 

estlm 
expsmo(plf) 

INTxIW 
cz=gl 

Figure 5.10: The subnet Retailer for (ES) techniques 

to the declaration box: 

val alpha = 0.9; 

fun ReaInt(i) = Real. fromInt ((i)); 

fun expsmo(i, j) = round ((alpha* ReaInt (i) 

(I -alpha)* ReaInt (ffl); 

INT 

5.3 Simulation results and performance analysis 

The simulation results show for each ordering and forecasting technique the changes 

on inventories at each time-period, the corresponding backorders and a customers' 

satisfaction metric. For simplicity we assume constant lead times for the distribution 

of goods throughout the supply chain. The initial inventory in each node for the (AO) 

case is set to 100 and 200 for (MA) and (ES). To make our model more realistic, 

we let participants order in batches but we also consider simulation periods where 

no orders are placed. Note also that each participant may not dispatch the ordered 

147 



goods instantly due to administrative delays or laches in the dispatch section. The 

simulation period has been set to 60 time-steps. 

1500- 

1000- 

500- 

0- 
0 10 20 

1500- 

1000- 

500- 

0 
0 10 20 

1500- 

1000- 

500- 

0 
0 10 20 

1500- 

1000- 

500- 

0 Bau 
iiii 

0 10 20 

30 40 50 60 

30 40 50 60 

30 40 50 60 

30 40 50 60 
Time Horizon 

Figure 5.11: Inventory levels in AO policy 

Figure 5.11, Figure 5.12 and Figure 5.13 depict the inventory position of all 

supply chain participants for all three different cases. More specifically, Figure 5.11 

shows clearly the increase in inventory as we move upstream the supply chain. 

This observation has also been made in [MNPV04]. After a simulation time of 

sixty periods, the inventory has been heightened by 400%, 780%, 900% and 1100% 

for Retailer, Supplier, Distributor and Manufacturer, respectively. This inventory 

augmentation clearly illustrates demand amplification (bullwhip effect). 

It can be inferred from Figure 5.11 that shortages on each participant occurred 

only on the first 12 time steps. This is mainly caused by batch ordering or 

when there has been no sufficient inventory to fulfill the downstream demand 

before aggressive ordering. This can be more clearly seen by considering the 

Retailer site. The first 12 markings representing customer demand pattern are: 

1'98Ca-I + +1'91(92 + +1'10OA3 + +1'9804 + +VIOMD5 + +1'9007 + +1'10208 

+1'9808 + +P100010 + +P97011 + +1'105012 + +1'94CO)12 ++ At time t=5 

148 



300 

200- 

100 

0 
0 10 20 

300, 

200 

100 

0 
0 10 20 

300.1 

200- 

100 

0 
0 10 20 

300.1 

30 40 50 60 

30 40 50 60 

30 40 50 60 

200 

100 

0=1 

III I IN 

0 10 20 30 40 50 60 
Time Horizon 

Figure 5.12: Inventory levels in MA policy 

Customer orders 107 products while Retailer's inventory is below 100. Furthermore, 

at times t-8 and t= 12 customer places two different orders. Due to aggressive 

ordering (AO) adopted by Retailer at these times, inventory at the 13th time step 

increases significantly. 

The shortages on inventories depicted in Figures 5.12 and 5.13 demonstrate 

the impact of batch ordering in forecasting techniques. In the MA case, batch 

ordering followed by customer takes place at periods represented by markings: 

V10403 + +V107031 1'92012 + +V99012. Delays on dispatching the goods to 

Retailer by Supplier on consecutive simulation periods 31 and 32, and to Supplier 

by Distributor at periods 13,14,15,29 and 32 also cause shortages in inventories. 

Similarly, zero inventories appear in the Distributor's and Manufacturer's sites, 

caused by delays on dispatches and batch ordering. As shown in Figure 5.13 for 

the ES technique with a=0.9, there are more periods where participants encounter 

inventory shortages in comparison to MA technique. This means that batch ordering 

and delays on goods dispatches using the ES method tend to have more impact on 

inadequacy of supplies. Note also that ES produces slightly more fluctuations on 

149 



300 
J- 

200 - 
Retailer 

100 

0 
0 10 20 30 40 50 60 

300 

SuPplier 
200- 

100 JbI II mi I 

0 10 
300 

200 

100 

0 
0 

300 - 

200- 

100- 

0- 

20 30 40 50 60 

10 20 30 40 50 60 

Manufacturer 

10 20 30 40 50 60 
Time Horizon 

Figure 5.13: Inventory levels in ES policy 

inventories than the MA technique, although inventory levels on MA are very low 

for long periods (e. g., Distributor's inventory for the last 20 periods is below 15 and 

Retailer's inventory between the 26th and 40th period is below 20). 

Figure 5.14, Figure 5.15 and Figure 5.16 depict the backorders in supply chain 

participants for AO, MA and ES techniques, respectively. lt can be inferred that due 

to the more inventory shortages when participants follow ES forecasting techniques 

the number of backorders is also larger with this method. Note also that backorders 

for MA and AO appear mainly on the first half of the simulation period in contrast to 

ES where they appear on the second half. Figure 5.15 and Figure 5.16 illustrate that 

backorders in smoothing forecasts take place at the downstream part of the supply 

chain in contrast with AO (Figure 5.14), where inventory shortages arise upstream. 

As expected from the observed backorders levels, customer satisfaction with ES is 

lower compared to the other two techniques. 

We can add more suppliers between the Customer and Manufacturer nodes. Each 

of them can be modelled by any subpage SI, S2 or S3 based on retailer description 

given above. This could be possible if we assume that in modelled supply chain each 

150 



400- Ke 

200- 

0 
0 10 20 30 40 50 60 

400 - 

200- 

0- 
0 10 20 30 40 50 60 

400- 

200- 

0 
0 10 20 30 40 50 60 

400- 

200- 

0- 
0 10 20 30 40 50 60 

Time Horizon 

Figure 5.14: Backorders in AO policy 

100 

50 

n 

III 

Retaier 

i.. 
______ii 

I lF 

v0 10 20 30 40 50 60 

100 

50 

A 

Sup-pl-ier-T L 

.0 10 20 30 40 50 60 

100 

50 

A 

M Distrib 

0 10 20 30 40 50 60 

100 

50 

n 

L 
--- 

ManufacturerT 

0 10 20 30 40 50 6C 
Time Horizon 

Figure 5.15: Backorders in MA policy 

151 



300 

200 

100 

A 

Retail 

0 10 20 30 40 50 60 
Time Horizon 

Figure 5.16: Backorders in ES policy 

'Juu 

200 

100 

0 10 20 30 40 50 60 

. 3uu 

200 

100 

n 

0 10 20 30 40 50 60 

luu 

200 

100 

n 

0 10 20 30 40 50 60 

of the node makes decisions following the same inventory control policies. In cases 

where each node behaviour differs from other nodes, we have to implement a new 

subpage for each of them (or, at least, for those whose behaviour is different). The 

use of cost function can also help us to compare the results of different inventory 

control policies by using the analysis of inventory control models described in chapter 

2. 

152 



Chapter 6 

Modelling methods in aluminium 
rolling industry: 

6.1 Introduction 

A case study 

In previous chapters we have seen that the bullwhip effect happens in manufacturing 

when information about consumer demand becomes increasingly distorted as it moves 

upstream in the manufacturing process. This distortion leads to excessive inventory 

throughout the system, poor product forecasts, insufficient or excessive capacities, 

product unavailability, and higher costs generally. 

Production management problems in industry play an essential role in the supply 

chain management area, by which managers can determine the production loading 

plan in order to satisfy the end customer demand. Thus, production planning 

in manufacturing involves in most cases the synchronisation with the downstream 

demand and therefore has a strong impact in warehouses of both manufacturers 

and other participants of supply chains. A more detailed task in manufacturing 

is production scheduling where managers in the context of the optimal production 

planning must couple individual products with individual productive resources in 

the shortest times. This chapter presents the modelling and simulation of an 

aluminium coils production plant, by providing an efficient representation for such 

production processes. Four different scenarios are performed to capture the dynamics 

of production system and to show how the production managers can use simulation 

tools in order to cope with demand amplification or downstream demand fluctuations 

153 



which are studied and analysed in previous chapters. 

The main disadvantage of manufacturing processes is that they are often 

characterised by complexity and the presence of huge amount of data and parameters. 

To describe, analyse and evaluate these processes, the need for models and simulation 

tools have long been recognised to be necessary and have been studied extensively. By 

the manipulation of the model, it is hoped that knew knowledge about the production 

process can be obtained without the inconvenience or cost of manipulating the real 

process itself. Therefore, it becomes indispensable to understand production systems' 

behaviour and the parameters that affect the performance of production lines. 

The case study in this chapter is motivated by the problems faced by Bridgnorth 

Aluminium Ltd., a manufacturing site located in Bridgnorth, England. Bridgnorth 

Aluminium is the one of the world's leading producers of high quality rolled 

aluminium lithographic strips (coils) products. In recent years, Bridgnorth has 

become one of the major suppliers of litho products in today's global market. Current 

capacity is approximately 46,000 tonnes of finished coils which are used principally 

for printing purposes by known imaging and film companies like Fuji Photo Film 

and Agfa- 

Decision making in Bridgnorth involves the development of a weekly production 

loading plan according to a list of products assigned by customers by considering 

workforce level, manufacturing capacity, priority orders and other factors. This 

kind of finished products are implemented in make-to-order (MTO) industrial 

environments where a due date is agreed with the customer. End items are placed 

in the master weekly schedule, and production planning then specifies the necessary 

production [Mar97], [Ste89], [VBWJ051. While the main production schedule is based 

on orders in hand, it is possible under certain conditions (e. g., a known maintenance 

plan in machinery that might slow down the production in the near future or reduced 

orders) to develop a schedule of products with high demand. 

The main objectives of the Bridgnorth Aluminium case study is to create a 

simulation tool as accurate and flexible as possible for modelling the production 

154 



process. The work is focused mainly in the most complex part of production 

line where annealing, cold rolling, levelling-degreasing-stretching operations and 

temporary storage of limited capacity facilities are integrated with the aid of a 

moving crane. Sequencing all these operations gives rise to numerous problems 

and complexity, especially when customer requirements dictate a laxge variety of 

product characteristics. Simulation tool outputs include statistical data of each 

individual work machine station, measurement of throughput in a given simulation 

time and counting of crane movements and temporary storage capacity area. The full 

production process is also captured through graphical representation of the workload 

of each machine centre and temporary storage area. In effect, the user can assess the 

performance of various scheduling policies and identify bottlenecks and likely future 

capacity overloads. 

The model was implemented in MATLAB but the code can be "translated", 

after minor modifications, to any other high-level programming language, if 

required. MATLAB is a powerful tool for mathematical programming, modelling 

and simulation. Preliminary trials indicated that MATLAB is perfectly adequate 

for running the code fast and efficiently for the anticipated complexity of the final 

simulations. The software tool also provides a friendly user interface through which 

the user interacts with the simulation tool without programming or recompiling. 

The software programme is written with the aid of functions which model each 

single process/subprocess (e. g., cold rolling process) and other issues that need to be 

modelled such as annealing times depending on the coil type entering the annealing 

machine. All functions are integrated in routines and subroutines and the result of 

this integration is about 7000 lines of code (which translates to over 20000 lines in 

typical high level programming language e. g., C, C++) and 41 different functions. 

Due to high complexity in some parts of the production plant, we were forced to 

make certain assumptions which are clearly described later. The main body of the 

tool was written having in mind a generalised model such that any changes in the 

parameters of the plant (e. g., number of annealing machines, cooling-times, etc. ) can 

155 



be made very easily. We have also put an effort to make the modelling assumptions 

as realistic as possible. 

In next section an effort is made to describe the production line for lithographic 

strip products. An extensive analysis based on this description can increase efficiency 

by allowing inventory only when it is needed, identifying bottlenecks, balancing 

capacity and generally coordinating the smooth flow of coils. Moreover, analysing 

the production line as a whole to find out where most of the time delays occur allows 

the production manager to focus attention on those "bottlenecks" in order to shorten 

throughput times. 

The structure of this chapter is as follows: First a description of each stage of the 

production line is given, with all the assumptions clearly stated. Some important 

issues of Bridgnorth Aluminium production line are examined in terms of modelling 

and simulation. Next, the developed simulation system is introduced together with a 

description of the software tool and its main characteristics. Finally, various scenarios 

are presented addressing key factors. A quantitative analysis of the software tool is 

finally performed, involving some important indicators (e. g., throughput, effect of 

number of annealing machines, capacity of High-Bay, effect of cooling time, etc. ) in 

production process modelling. 

6.2 Description of production line for lithographic 

strip products 

The production line shown in Figure 6.1 can be divided into three main individual 

work-stages according to the nature of the manufacturing process, time and layout 

of the plant's machinery. The first stage includes slabs' delivery, scalping, hot-rolling 

and tandem mill process. The second integrates temporary storage (High-bay), 

annealing and cold rolling, while the third stage includes levelling, stretching and 

degreasing treatment (BWG), quality control and final storage. All parameters used 

(capacities, delay-times, material properties, etc. ) are set nominal values which can 

156 



be easily modified between simulations. 

6.2.1 Phase 1: Shop floor 

In the first production phase, slabs are delivered to the manufacturing plant by 

following a scheduled delivery date (generally delivery time takes approximately 2-3 

weeks) which is based on an annual order plan. Batch of slab units according to 

customer needs and production scheduling enter Bridgnorth plant once or twice a 

week. Although there are 31 different slab types, for simulation purposes we consider 

18 different coil products. Since certain types of slabs result in certain type of coils, 

a classification is made before entering in the shop floor. 

A weekly process plan according to the amount and type of customers' orders is 

proposed and forwarded to the scalping process. The upper and lower surfaces are 

milled (15mm. for top and 4mm for bottom surface) on a state-of-the-art scalping 

machine which takes 15-25 minutes depending of the size and quality of each slab. 

Sequence of scalping follows the weekly schedule. After that, the slabs leaving the 

scalping machine are covered by a protective cling film and are placed in a temporary 

storage area of a maximum capacity of 110 slabs (preferably up to 80). Breakdown 

and maintenance are taking place 2-3 times annually during the holiday period. 

For hot rolling, the rolling slabs are heated to the necessary rolling temperature 

in a furnace. Up to twenty four slabs each with a maximum weight of ten tons can 

be heated at the same time. The time taken for heating is 5-6 hours for the narrower 

slabs and 9 hours for the wider. The furnace sequencing follows First-In-First-Out 

order and preheat recipes are used according to slab width. In the case of breakdown, 

(about once every 2 weeks, occurring mainly because of fan damage), those slabs that 

had been entered the furnace must be re-scalped and re-heated. The furnace is never 

switched-off but on weekends the temperature is decreased slightly and slabs to be 

treated as non-litho finished products are inserted according to production schedule. 

After the furnaceý process the rolling slabs are taken directly from the furnace 

to the hot rolling mill using special cranes. Slabs are positioned first on a roller 

157 



'Slabs 
Inventory 

Scalping Furnace 
------- 

Hot-Rolling 
process process process 

Trade plates 

Tandem mill 
Litho plates 

I 

process 
Aý 

IHOT-LINE 
-F -------------------- 

-------------------------------- -- 

t 
------------------------------- It 

I 
I; T" bo Cq biD cn 
1; vqvv, r- t, ý :i Cold-Roffing A, ffý I 

process 

---------------------------------- 
IHIGH-BAY 

---- -------------------------- 
-------------------------- 

Inspection 
-. 0- i Degreasing Stretching Trimmering 

process process process process 

-DWG' L ---------------------- -- ýj 

Storage area of 
IN, Dispatch to customers 

Litho products 
0CI... (I 

0 

Figure 6.1: Production line of Bridgnorth Aluminium 

158 



table driven by electric motors. In the reversible mill a single slab is treated every 

time, while the time taken for the process is approximately 15 minutes. On the 

reversible mill, the slabs are rolled down to their hot rolling thickness in several 

phases. Finishing thickness of rolled plates is set to 15mm for Litho plates although 

the thickness for those plates intended for Litho products can vary between 14.5 and 

15.5mm. Breakdown occurs several times and the productivity of hot-rolling mill is 

about 65%. Maintenance takes place mainly on weekends. The resulting hot rolled 

plate is then sheared using a cropping shear with the aid of a camera. Sheared pieces 

of strips are destined for scrap. 

The last continuing hot rolling process involves the tandem mill which is used 

to achieve a desired thickness and surface quality. The output thickness is set to 

2.6mm while the time needed is approximately 12 minutes for narrower slabs and 20 

minutes for wider slabs rolled as plates. The tandem mill can also specify the width 

of the coil. During this process there are about 50-100mm width losses. Tandem mill 

realisation reaches 60% while breakdowns come about every 8-9 hours; consequently 

users of tandem mill usually stop the process for half an hour every 8 hours. As a 

result of tandem mill processing, plates are wound into roll-form (coils) after a series 

of flat rolls. Coils are then stored temporarily in the hot-line building before being 

dispatched to Litho Centre. Maximum capacity of storage area is currently 50 coils, 

which is one of the parameters under consideration for modelling. 

For modelling purposes the coils that exit the Hot-Line process are divided into 

18 different types according to the final gauge, width and whether are intended for 

special annealing furnace times. 

6.2.2 Phase 2: Litho centre 

In the next stage of production line coils are dispatched from the Hot-Line shop. - 

floor to a column location (High-Bay) which is located at the Litho centre. It is 

assumed that only one coil at specified period time can enter the Litho centre. This 

period time is called loading rate. In the High-Bay distribution warehouse of 440 

159 



racks capacity, coils are stored using special automated handling equipment. Apart 

from those coils delivered from the Hot-Line Shop-floor, High-Bay stores coils to be 

annealed and coils to be passed through the cold rolling mill. One out of four coils 

(after the cold rolling) passes an inspection control and returns back to the High-Bay. 

Due to spacing restriction and several other conditions special computer software is 

used to manage all these progressions. This software keeps a list of all stored coils and 

makes a decision of the next process using a sophisticated communication protocol. 

Thus, the nature of High-Bay design requires the manipulation of large amount of 

data and it is often an iterative process that forces the production manager to go 

through the different decision making phases several times before reaching the final 

decision. For modelling convenience, coils of the same characteristics are grouped 

together according to order types. However, if differentiation must take place, an 

external decision maker can adjust any priority list. 

The next step for a coil that has been transferred into the High-Bay is annealing. 

Coils are batch annealed in groups of four and in some cases in groups of three 

following the grouping decision made by the computer. Grouping is made according 

to width. There are three different ranges for coils' width. These are: (i) Slabs that 

have range less than 1150mm, (ii) those with width between 1150 and 1380mm, and 

(iii) Slabs with a range greater than 1380mm. Annealing time also varies according 

to coils' width and is 8,5 hours for narrower coils and 10,5 hours for wider. In some 

cases of special customer demand annealing cycle can be up to 12 hours long. After 

strip coils achieve the required mechanical properties during annealing they return to 

High-Bay and remain there for about 72 hours. There are three annealing furnaces 

installed on the plant operating in parallel. Two of these operate in the same way 

while the third is a newer annealing furnace and is used for higher cycle annealing 

processes. There is also an optional annealing area located in Strip Mill which is 

used for approximately 10 loads a week. Breakdown cases are not remarkable and 

maintenance of annealing furnaces takes place one week in August and one week in 

September. 

160 



The next process after the coil has been cooled inside the High-Bay following 

annealing is cold rolling. The cold rolling mill allows the production of plates with 

low gauges and special tempers. Cold rolling process reduces each time the thickness 

of the plate by roughly 50%. That means that after the first pass the thickness of 

the plate becomes 1.3mm, after the second 0.65mm, after the third 0-27-0.28mm or 

0.38mm according to coil sizes and characteristics and finally for special customer 

needs a fourth pass halves the thickness to 0.140mm (10% of entire production). 

The time needed for each rolling depends on the speed of rolls and can vary from 10 

minutes to 30 minutes. After each cold rolling pass the plate is led back to High- 

Bay (unless an off-line inspection takes place) where it remains for 24 hours to cool 

down to room temperature. After cold rolling differentiations end, the plate is finally 

assigned to a specific customer order. 

6.2.3 Phase 3: Levelling process and quality control 

The third stage is known as the BWG and quality control stage. On this stage 

coils leave the High-Bay storage area and enter the tension levelling process in order 

to achieve the highest flatness and strip surface quality. The levelling process is 

divided in three main stages; side trimming, stretching and degreasing. All these 

stages occur in a single process line. Each coil is trimmed to the manually set of 

width ordered by the customer, gap and overlap setup for tight width tolerances 

and minimum edge burr. This process lasts 15 minutes. Then the coil is flattened 

by the stretching machine which bends up and down over the interrupting arcs of 

upper and lower sets of processed long slender strip. Finally, each coil is degreased 

to remove residual rolling oils and lubricants. After tension levelling, each coil passes 

from surface inspection and quality control to ensure that its thickness gauge and 

width is accurate. BWG times vary from 35-70 minutes according to the final gauge 

given to coil in cold rolling process. 

Then coils are placed in the storage area (inventory). There is no set point for 

inventory level although there are restrictions according to the number of racks. 

161 



There are 455 racks and 85 floor locations so on the final storage area approximately 

540 coils can be stored. In case where a coil is rejected by the inspection area, 

it is stored temporarily for four days and rechecked for its dimensional accuracy. 

Inspection time is 5-7 minutes. If, after the second inspection there is still deviation, 

rejection is the irrevocable decision. In addition to this, certain specific coil products 

are taken to relaxation before the inspection control. What stresses the importance 

of push production is that the whole process never stops even if the storage area is 

full. 

6.3 Modelling issues for the Bridgnorth Aluminium 

production process 

6.3.1 Introduction to production process modelling 

Previous description of the manufacturing process suggests a repetitive flow process 

consisting of a series of machines separated by buffers of finite capacity. A slab flows 

from outside the plant to the first machine, then to the first buffer, then to the second 

machine, then to the second buffer and so forth, to the last machine, after which 

it exits - as a finished lithographic coil product - the production line. Processing 

a specific type of product on a given machine requires a fixed amount of time 

(processing time). In Bridgnorth Aluminium production environment, processing 

times on different machines are not equal and furthermore different end products 

being processed in the same machine need different processing times. The production 

layout is similar to asynchronous industrial processes where there is an unlimited 

amount of semi-finished products at the input of the process and an unlimited amount 

of spaces at the output [AS93], [Mar97]. 

Generally the design of a production model for a specific group of processes 

commences from assumptions regarding the operational relationships between the 

production variables. The inflexibility or constraints inherent in this model 

162 



determine the maximum delivery responsiveness which is strongly associated with 

the throughput and what can be achieved by any production model or control system. 

However, achieving this maximum delivery flexibility is generally unrealistic because 

information processing, machinery or buffer allocation and decision making itself 

takes time. The above limitations appear often in asynchronous production systems 

where operational relationships are always at the heart of the design process. 

Asynchronous manufacturing systems are characterised often by complexity and 

limitations in terms of modelling and simulation. Therefore, managers prefer to 

develop an appropriate synchronous model that can be used as an approximation of 

the behaviour of an asynchronous model. The synchronous model forces events 

(beginning and end of processing, transfer of parts from one buffer to the next 

one, breakdowns, maintenance etc. ) to occur only at times that are multiples of 

the common processing time step. On the other hand, the transformation of the 

asynchronous model into the discrete flow model is obtained by approximating 

the continuous flow of products by a discrete flow. As an immediate cause of 

this, synchronous modelling is then transferred to a task that focuses on capturing 

"snapshots" of the production process in each time step. These snapshots are 

assumed to be states of the system while the changes from one state to another 

can be found in literature as trans%tzons. 

Another common problem in manufacturing plants is the sequencing problem 

occurring whenever there is a choice as to the order in which a number of tasks that 

can be preformed. Sequencing problems in Bridgnorth Aluminium plant have great 

impact to the throughput. Thus, the structure of the simulation tool must encompass 

hierarchically all the activities that result to maximum throughput. Sequencing 

problems are also associated with job priorities. The concept of priority is inherent 

in many manufacturing plants. A priority is a numerical attribute of an activity 

or operation on which a unique selection is made so that two competing activities 

should never have precisely the same value of priority. 

Numerous theoretical foundations have been developed to model and control 

163 



dynamical systems whose evolution is determined by the occurrence of discrete 

events rather than the values of continuous variables [CL99], [DHP+93]. A common 

framework that allows formal modelling and verification of manufacturing systems is 

the theory of finite state machines (FSM), which is described in Chapter 2. FSM is 

a mathematical model which serves as an approximation to physical or abstract 

phenomena. The theory of FSM assumes that a system can be a finite set of 

conditions called states, the system behaviour within a given state is identical and 

it is described by states for significant periods of time. Another descriptive term 

of FSM theory is that a system may change states only through a finite number of 

transitions which are the response of the system to external or internal events and 

take (approximately) zero time. 

In this thesis we concentrate our work on the second phase of production 

plant system. As previous description suggests, Bridgnorth Aluminium production 

system is built up of many processes working in parallel and can be viewed as 

a finite set of resources, i. e., the machining equipment, shared between a set of 

products to be manufactured. The developed simulation model is based on the well- 

known MATLAB software [, oTC], which is selected as the underlying environment 

because of its various unique advantages: High programming efficiency, strong 

numerical algorithm support, friendly interface, elegant Graphical User Interface 

(GUI), and most of all, its open architecture making it possible to customise, 

expand and integrate complicated system models and control schemes to meet special 

requirements as those faced in the present model. 

6.3.2 Software tool description 

In order to resemble all the activities taking place in the second phase we need to 

associate each single task with an appropriate function defined in the MATLAB 

environment. These functions are very similar to states deemed in FSM theory and 

they have as input variables the current state while output variables represent the 

updated state. Apart from updating the state variables, functions must also conform 

164 



with the global clock. As it has been stated before, the main problem arising in 

simulation methods is how realistic is the simulation model in relation to the real 

life production attempted to be modelled. Accordingly, to achieve more realistic 

applications we must first reformulate the theoretical model to allow for time as an 

explicit variable. In fact, since we assume that the production system is operating 

synchronously, the global clock is updated in each simulation step (defined also as 

event). The default simulation step is chosen to be 5 minutes, which is sufficiently 

(two times) faster than the the fastest time constant among all processes. 

Semi-finished coil products being processed in the Litho centre have different 

characteristics and are associated with specific customer orders. For better modelling 

convenience, coils have been categorised in eighteen different types according to their 

width, final gauge (specified in cold rolling machine) and if they are targeted at the 

special orders (i. e., Fuji). There are three types of width (Wide, Medium, Narrow) 

and also three different types of final gauge (Thick (0,38mm), Standard (0,28mm), 

Thm (0,14mm)). These data are stored in MATLAB structures as an input file 

for maximum flexibility and to improve the readability of the code. Structures are 

MATLAB arrays with named "data containers" called fields. Like standard arrays, 

structures are inherently array oriented. Element types are defined using an object 

oriented design so that new elements can be added easily and without necessitating 

changes in the core analysis code. Table 6.1 shows the 18 different coil types. A 

structured array which corresponds to the first coil type is given below. 

slab-type-1 = 

truct( I type I, I type_O I I, 'width I, 'wide special-f lag', 0,1 gauge thic I, It imer 1, -1,1 flags', (0 

:0 01); 

There are six different fields containing all the information needed for the 

simulation purposes. The field type specifies the type of the coil (type 1, type 2, 

etc. ), width the width of the coil (Wide, Medium or Narrow), special flag is an integer 

(0 or 1) which determines if the coil is intended for special treatment according to 

customer orders (special flag=1) or not (special flag=O), gauge the final gauge of the 

coil (Thick, Standard or Thin), timer holds the time of last entry of coil in High-Bay 

165 



(timer=-1 if coil is outside High-Bay), and finallyflags is an IA array whose second 

element indicates how many times the coil has been annealed, and third element how 

many times the coil has been cold rolled. The first and fourth element can be used 

for future modelling issues (e. g., inspection, BWG, or processes taking place outside 

High-Bay area). Note that the strings in fields may contain exactly four characters 

and this is due to modelling convenience while MATLAB handles the data stored in 

structures. 

Table 6.1: The 18 different coil types 

Coil type Width Gauge Special Product 
1 Wide Thick No 
2 Medium Thick No 
3 Narrow Thick No 
4 Wide Standard No 
5 Medium Standard No 
6 Narrow Standard No 
7 Wide Thin No 
8 Medium Thin No 
9 Narrow Thin No 
10 Wide Thick Yes 
11 Medium Thick Yes 
22 Narrow Thick Yes 
13 Wide Standard Yes 
14 Medium Standard Yes 
15 Narrow Standard Yes 
16 Wide Thin Yes 
17 Medium Thin Yes 
18 Narrow Thin Yes 

The hierarchical structure of the simulation flow system is illustrated in 

Figure 6.2. As it can be inferred by Figure 6.2, the only interaction between user 

and tool is the choice of simulation parameters in GUI. 

Create excel input file with the coil types 

Start GUI from MATLAB command window 

Modify simulation parameters in GUI 

Start simulation by calling the control program 

Analysing simulation results 

Figure 6-2: Hierarchical structure of the simulation flow 

166 



The software tool benefits from MATLAB is the ability of reading data from 

Microsoft Excel spreadsheets. The user initially creates an input file in Microsoft 

excel worksheet (. xls). This file has as many rows as the simulation days while 

columns contain the coils entering the Litho centre. Then, by using the command 

x1sread, the software tool returns numeric data in array form, from the worksheet. 

A typical worksheet for simulation period of seven days is presented in the Table 6.2. 

The odd columns (Ist, 3rd, 
... 

) represent the type of coils while the even (2nd, 4th, 

) the number of coils of the left adjacent column elements. 

Table 6.2: Excel worksheet input file with coil types 

Type No Type No Type No Type No Type No Type No 
Dayl 6 8 9 6 19 4 6 4 6 24 9 10 
Day2 4 3 4 9 8 3 8 5 8 4 
Day3 2 4 5 4 5 22 

Day4 6 8 8 3 6 3 6 10 
Day5 5 8 6 14 1 20 

Day6 6 7 51 41 51 41 81 41 

Day7 6 4 91 61 1 1 1 1 

The need of handling data with the simulation going on causes the volume of 

stored data to steadily increase, which in turn decelerates the simulation process. 

Thus, the software tool must be able to handle the data attentively by providing at 

the same time simulation speed. To overcome this problem we have created several 

functions. These MATLAB functions take as inputs the variables defined by the 

user, compute the required results using user's input and then pass those result back 

to the user. The commands evaluated by these functions, as well as any intermediate 

variables created by those commands are hidden. These functions are stored as M- 

files and are very similar to script files with the only difference that these functions 

communicate with MATLAB workspace only through the variables passed to them 

and through the output variables they create. All the developed MATLAB code 

lines used in functions, are presented in the Appendix B. 

Software tool implements also buffers in order to manipulate more accurately 

the pre and post conditions of each process in the High-Bay. Buffer sizing and 

allocation is a major concern faced by Bridgnorth Aluminium production line since 

the distribution of the coils through the various tasks in High-Bay is carried out by 

167 



H I! 

I! II 
t Ii 

In-from-buff 

ln_from_out_cold_roll_buff 

ln_from_annoal-bLrff 

out_to_in-coid_roll_buff 

out_to_buffl_n (first buffer) 

out_to_buffl_n (second buffer) 

out_to_in_13WG-buff 

flow of Information 

flow of coils 

IITiF 
L, ----------- --- I- 

High-Bay 

storage 
--------------- area 

Group of 20 coill 
I . 

_. 

Al 

Figure 6.3: Buffer allocation in Litho centre 

the crane. While the crane can perform a certain amount of movements in a given 

time, the software tool must be able to capture all the potential movements and 

update the input and output buffers in each simulation step according to certain 

criteria (e. g., size of buffers, priorities and engaged machines). 

In this simulation tool it is assumed that there are seven buffers outside the 

High-Bay storage area, One buffer is between the Hot-Line and the High-Bay (In. 1), 

three buffers between High-Bay annealing machines (In-3, Out. 2 and Out-3), two 

buffers between High-Bay and cold rolling machine (In. 2 and Out. 1) and one buffer 

before BWG (Out. 4). The buffer allocation in Litho centre is depicted in Figure 6.3. 

The names of buffers in the top-right legend are referred to the High-Bay storage 

area and are associated with the function that updates the state of the High-Bay 

update-highbay-new. For modelling convenience, the simulation tool implements 

also several virtual buffers which are clearly described in section 6.3.4. 

During the simulation flow the user can benefit by monitoring the simulation 

process with the aid of two windows. The first window shows dynamically the state 

of the High-Bay and the condition of both cold rolling and annealing machines. 

The second one depicts the changes taking place in input and output buffers of the 

168 



High-Bay. The user may decide if any window will appear during the simulation 

process or not in GUL The simulation also provides some useful statistics at the end 

of the simulation period. These statistics include the average crane movements per 

hour, the percentage of annealing furnace occupancy, the percentage of cold rolling 

machine occupancy, the percentage of BWG occupancy and finally the percentage of 

High-Bay occupancy in terms of capacity changes. Simulation windows and statistics 

are described in case study which is performed in section 6.4. 

6.3.3 Graphical User Interface (GUI) 

The GUI provides a user-friendly access for using the developed simulation system. 

The main window is displayed in Figure 6.4. Initiated from MATLAB command 

window, the GUI handles the whole process of simulation, from creating a new 

simulation model, starting the simulation and changing the simulation parameters, 

priorities and simulation options which are depicted in three different fields 

(rectangles). 

More specifically, in the first field (Parameters) the user can (pre)set the number 

of annealing machines, cooling time after annealing while coils remain in High-Bay, 

the time which specifies the rate coils entering the High-Bay and finally the maximum 

movements of crane hourly. In the second field (Priorities) the user can determine 

the priorities of four different processes (annealing, cold-rolling (TSM), BWG, and 

the coil entry to Litho centre) which determine the potentially movements of crane. 

Finally, the GUI provides the convenience to the user of selecting an input file, setting 

initial conditions, the choice of plot types during simulation and definition of number 

of simulation days. Thus, it is possible to set the simulation system to any desirable 

initial state and start a new simulation task representing the real scheduling process 

or even assume maintenance or inactivity periods. MATLAB graphical display gives 

also to the user the flexibility of adding different simulation parameters or changing 

default parameters such as cold rolling or annealing process times. 

169 



Figure 6.4: Graphical User Interface for the simulation tool 

6.3.4 Implementation of software tool 

Due to high complexity of the Bridgnorth Aluminium production process, more than 

7000 lines of MATLAB code have been written (equivalent to more than 20000 lines 

in any high or low level programming language e. g., C, C++). Additionally, 41 

different functions have been developed to capture all individual tasks in detail. In 

order to avoid any wearisomeness in presenting all the functions used in the software 

tool a selective choice has been made to those functions which are considered as more 

useful and illustrate the main idea of the simulation tool. All these functions are 

called in the main program routine run-process. m to be initiated from GUI after 

the user click on Run button, which executes the whole process of simulation. In 

this file some default process parameters are defined together with input and initial 

conditions, states updating, plotting attributes and statistics table updating. 

In order to avoid having the input excel spreadsheet files with all the coils enter 

the plant in the same directory with the main programme, a separate directory data 

170 



is created. This directory saves all the data history of the input coils created by the 

user and can be modified easily at the beginning of the file run-process. m. Apart 

from those parameters shown in the GUI the user can also change other parameters 

which are defined in function def ault-parameters. These parameters include the 

simulation step (in minutes), the simulation time (in hours), High-Bay capacity, the 

capacity of all the buffers shown in Figure 6.3, the cooling time after cold rolling and 

the choice of presenting or not the statistics at the end of the simulation process. 

In case where the user runs the software tool without initial conditions all states 

and buffers are set initially to zero. Otherwise, the state and buffer conditions 

contain the coils of the previous simulation process which were saved at the end of 

the simulation. The main idea of the simulation tool as stated before is to manipulate 

a list created by those coils entered by the user. This list of coils after having entered 

the High-Bay storage area, represents the High-Bay condition and it is updated in 

each simulation step. This list is similar to a stack array (new coils insert the stack 

to the bottom while the oldest are on the top). This means that every time the 

software must choose which coils should leave the High-Bay either for annealing or 

cold rolling treatment or to BWG, the list is read commencing from the top. 

The m-file run-process. m comprises the flow of coils and all the procedures in 

Litho centre as they have been described in section 6.2.2. The coils enter the High- 

Bay from Hot-Line with a pre-specified loading rate via the buffer in-f rom-buf f. 

The coils which are intended to enter the High-Bay area are subject to crane 

availability and to the High-Bay current capacity. Next the software updates the 

High-Bay state and outputs, by checking the number of coils inside the High-Bay 

storage area at the beginning of the current time interval and on whether a list of 

coils for cold-rolling has been identified in an earlier step. The main idea of updating 

the High-bay is to "load out" first the chosen coils to output buffers and then to "load 

in" those coils located in input buffers and can be entered into the High-Bay area. 

Hence, the following rule sequence occurs. It is determined which of the cold-rolled 

coils have cooled so they can be moved to out-to-in-M-buf f, which coils need 

171 



Table 6.3: BWG times in minutes for the 18 different coil types 

Gauge 
Thick Standard Thin 

35 40 70 

to be loaded to annealing machine through the buffer out-to-buf f 1-n, and also 

which of the coils that they have been annealed have cooled so they can move to 

out -to- 
in-cold-roll-buf f. Then, the software defines which coils can be entered 

from annealing furnaces via buffer in-f rom-anneal-buf f, which coils have finished 

cold rolling and are situated in buffer in-from-out-cold-roll-buff, and finally 

which coils can be entered from Hot-Line via the buffer in-f rom-buf f. Next the 

computer programme simulates the activity of BWG. First it updates the state and 

output of the buffer update-in-M-buf f which is located between High-Bay and 

BWG, and then the state and output of BWG process. All the finished coils are 

collected in an output buffer in a list form which constitutes the output of the 

manufacturing system. BWG times are shown in Table 6.3. 

After updating the BWG process the software updates the state of the buffer 

update-buf f 1-n which is located between High-Bay and annealing machines. In 

case where one or more annealing furnaces are empty, the software tool reads the list 

of coils in High-Bay which are intended for annealing treatment and checks if there 

are four coils of the same characteristics and if there are it creates a group (quartet 

of coils). This quartet must have four coils that have not been annealed, have the 

same width and they are intended (or not) for special products. This information 

can be easily obtained from the MATLAB structures and more specifically from the 

field width, the field special-flag and the second number of the array in the field 

flag. Then the state of all the annealing machines is being updated and those 

coils that have completed the annealing process are first placed into the buffer 

in-f rom-anneal-buf f and then are led back with the aid of the crane to the High- 

Bay storage area for cooling. Table 6.4 shows the annealing times for all the eighteen 

different coil types. 

172 



Table 6.4: Annealing times in hours for the 18 different coil types 

Width Standard Products Special Products 
Wide 10,75 12,75 

Medium 9775 12,25 
Narrow 8,75 11,25 

Table 6.5: Cold rolling times in minutes for the 18 coil types (4 groups) 

Pass 1 Pass 2 Pass 3 Pass I Pass 2 Pass 3 1 Pass 1 Pass 2 Pass 3 Pass 4 

Wide 10 15 2U- 10 15 F--Fu- 15 20 25 

Medium 10 15 20 NA 15 -20 NA 15 20 2 5- 

Narrow 10 15 20 NA 15 20 NA 15 20 2 

1 

Finally, the computer programme simulates the cold rolling process, by updating 

first the buffer out -to- 
in-cold-ro 11-buff. This buffer loads a coil that needs to 

pass cold rolling process. The software tool creates a list of twenty or forty grouped 

coils according to their width and final gauge. This information is provided by the 

fields w2dth and gauge in MATLAB structures. Every time the cold rolling process 

has been completed the coil is loaded to buffer in-f rom-out-cold-roll-buf f and 

then is led back to the High-Bay storage area for cooling. There are overall four 

different groups with different rolling times in minutes as Table 6.5 indicates. The 

first group consists of twenty coils whose final gauge is Thick and those coils whose 

final gauge is Standard and their width is Wide. The second group can have forty 

coils of Standard final gauge and Medium or Narrow width. The third group may 

have twenty coils with final gauge Thin and width Wide. Finally, the fourth group 

is made of twenty coils of Thin final gauge and Medium or Narrow width. Note that 

times in cold rolling machine are irrelevant to special products. 

All above activities can be fulfilled provided that buffers' capacity are not ex- 

ceeded and that there are sufficient crane movements in each simulation step. Note 

that all the assignment decisions are made in the same order that they would be 

implemented in the actual process. This order is specified in GUI by selecting the 

Priorities sequences. All the code written in MATLAB is given in Appendix C. 

173 



6.4 Modelling cases and simulation performance 

In this section four main scenarios are conducted to test the effectiveness of the 

developed simulation tool and at the same time to bring out the most important 

results. Simulation provides the means of testing the behaviour of the system, using 

specific metrics and by implementing a number of different scenarios. Since this 

is, essentially, a discrete event simulation it tracks the sequence of events in the 

Bridgnorth production system in discrete time steps. Several MATLAB functions 

were used in order to gather and manipulate specific model data while final reports 

and figures generated after each simulation present quantitative information about 

important aspects of model (machine occupancy, number of cranes moves etc. ) 

together with statistical data based on certain metrics which can be used to evaluate 

the model's performance. 

The proposed simulation model allows also the investigation of the dynamic 

behaviour of the production system under study and it provides a significant insight 

of the system's characteristics. Since the overall model has been implemented in 

MATLAB code, the model can be easily modified as required in order to meet 

alternative design specifications. Apart from being flexible, the graphical interface 

of MATLAB with the aid of plotting schemes during simulation provides excellent 

visual representation of the state evolution of the production system. 

Figure 6.5 depicts a current state - 300th iteration (I day and 1 hour) - of all the 

activities taking place in the production system. The first horizontal bar represents 

those coils located in the Hot-Line and are due to enter the High-Bay storage area. 

The second bar shows coils entering the High-Bay at a specified loading rate, initially 

set to 20 minutes, while the third bar represents coils currently stored inside the High- 

Bay storage area. These coils are grouped according to the several stages of treatment 

they have undergone (annealing, cold-rolling etc. ). The fourth, fifth, sixth, seventh 

174 



Iteration no = 300 [1 days; 1 hours; 0 min] 

14 

13 

12 

tt 
L) 10 

6 

CO 
e-ý 
I 
03 
C') 

Ou IUU 1 .5U 200 250 300 350 400 
Number of coils 

Figure 6.5: A snapshot of all High-Bay activities during a simulation run 

and eighth bar charts represent the annealing stage. More specifically the fourth 

and eighth bar depict the input and output annealing buffer, respectively, while the 

fifth, sixth and seventh depict the current state of the three annealing machines. In 

a similar way the ninth, tenth and eleventh bars illustrate the cold-rolling activity, 

while the twelfth and thirteenth bars the corresponding BWG activity. Finally, the 

fourteenth bar represents the finished products that have undergone BWG treatment 

and have exited the Litho centre. 

Simulation runs allow the visualisation of the coils' flow, grouping, and variations 

in intermediate buffer and queue sizes. Moreover, the interrelations between machine 

centres and related tasks are depicted efficiently as well as machine utilisation at 

each simulation step. The performance of the system was assessed using a number 

of defined metrics such as: 

9 Throughput rate, defined as the number of coils that have been completely, 

treated in a specified time period. 

Machine Usage, defined as the percentage of machine centres and High-Bay 

175 



storage area busy over time. 

Crane moves, defines as the number of crane movements in each machine centre 

location and coils' entry. 

The model was validated on actual system data, provided by the Bridgnorth 

aluminium company, with respect to buffer sizes, throughput rates, crane moves and 

inventories. The proposed model was deadlock-free, as it was found after extensive 

simulations. This can be ensured in the programme by limiting the total number of 

coils circulating in the High-Bay area and its feedback loop. 

In order to gain further insight of the production system, the following four 

different scenarios were investigated via extensive simulation runs. These scenarios 

include: 

1. Scenario 1: Simulation based on current production plant settings and layout. 

2. Scenario 2: Installing of an additional similar annealing machine operating in 

parallel with other three. 

3. Scenario 3: Reducing pre-set times the coils remain in the High-Bay during 

cooling and after annealing. 

4. Scenario 4: The effect of order fluctuations based on current setup of the 

production plant. 

V_ 
For better evaluation and comparison of all above scenarios, it is assumed 

throughout the simulations that initially the High-Bay storage area is empty and 

that no machine process is initiated before the start of the simulation. It is also 

assumed that the loading rate of coils entering the High-Bay storage area is one 

every 20 minutes, while the maximum crane movements are limited to 60 per hour. 

The priorities of crane service to different locations are set as follows. First priority 

is given to the annealing process, second to cold-rolling, third to BWG and finally 

coil entry to the High-Bay activity is served last. Crane movements are executed in 

176 



this order until either no additional move is possible during each step or maximum 

number of crane moves per step is reached. Simulations of the first three scenarios 

were performed for 180 coils entering the High-Bay area over a period of one week. 

These coils (read from a Microsoft excel worksheet) are depicted in Table 6.6. 

Table 6.6: The Excel input file of 168 coils used in simulation runs 

Type No Type No Type No Type No 
Dayl 6 8 9 6 6 9 1 4 
Day2 6 10 2 4 5 5 3 4 
Day3 9 3 6 4 11 _ 4 4 8 
Day4 9 12 1 4 13 _ 8 2 4 
Day5 6 12 3 4 7 - 4 10 4 
Day6 5 8 6 12 8 4 17 4 
Day7 9 3 12 4 15 8 14 4 

6.4.1 Scenario 1: Simulation based on current production 

plant settings and layout 

This scenario incorporates the current production plant machinery, settings and 

layout based on the description given in section 6.2.2. The report for the simulation 

period of 35 days is given in Appendix C. Simulation results showed that the overall 

throughput rate was 98 coils in 35 days. Figure 6.6 depicts the changes in throughput 

rate during the full simulation. Note that despite the fact that 168 coils entered the 

High-Bay in seven days, only 98 of them converted to finished products while 70 coils 

(168-98) remained inside the High-Bay storage area due to annealing and cold-rolling 

grouping restrictions as Table 6.4 and Table 6.5 indicates. 

It is clear that the first coil exited the Litho centre in the 19th day, while the 

throughput rate was increased dramatically between the 19th and 25th day. That 

happened mostly due to several other activities (coils' grouping, annealing, cold- 

rolling, cooling procedures etc) that needed to be performed prior to BWG treatment. 

Figure 6.7 demonstrates the percentage of annealing furnaces' occupancy over 

time. These percentage values were more than 99% for the first 29 days highlighting 

177 



100 

70 

,a 60 
ID 

50 

ý-: 40 :3 
z 

Throughput per day 

.......... ............... .... ................... . 

........... .. 
90 

80 

........... : .......... 

r.. I.. ý. I.: .............. ....................... / .......... ý: ---: ........... :- 

30 

20 

10 

01 
0 

zu 25 30 35 40 45 
No days 

Figure 6.6: Throughput rate for Scenario I 

the fact that at least one annealing furnace each day is fully occupied. According 

to cold-rolling centre data, Figure 6.8 shows a high usage percentage during the 

15th and 24th day. The starting day of cold-rolling ý15th) brings out the grouping 

procedure followed by annealing. Figure 6.8 also attests that the last cold-rolling 

activity took place on 33rd day which is reasonable since the last annealing cycle 

was completed on 29th day. 

Figure 6.9 illustrates the fact that coils enter the BWG machine centre in batches. 

More specifically the BWG area is busy only five days during the entire simulation 

in which all coils Passed through the BWG stage, while the last BWG activity took 

place on the 34th day, as one full day of cooling time is necessary after the last 

cold-rolling process. 

Another useful observation concerning the activities taking place in the Litho 

centre is reflected by crane movements and the areas served during the coils' 

transfer, Figure 6.10 illustrates the number of crane movements in total (all services). 

Simulation runs indicated that the maximum number of crane movements was 14, 

although the maximum number of potential crane movements per hour was set before 

the simulation start to 60. Table 6.7 provides information on the total number of 

178 



Percentage ANNEAUNG furnace occupancy 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 

........... : .................... -I. -.. -1 -1 -: ý -1 

r .. --:. 1.1 :.. ý:................................ - -. ý--I.. -.: :.. ý, -j 

.......................... ...... ................... . ...... . 

........... : ........... ............. 

.......... ............. .......................... 
........... 

................. ........... . .................. 

0 100 200 300 400 500 600 700 800 
No hours 

Figure 6-7: Annealing furnaces occupancy for Scenario 1 

crane movements in terms of their location throughout the entire simulation. Note 

that the crane spends its most time to serve the annealing activity while the BWG 

is the centre where the crane has the minimum number of routes. 

Table 6.7: Total crane movements of each location for Scenario I 

Coil 
Entry 

Annealing 

machines 

Cold-rolling 
input 

Cold-rolling 

output 

BWG 

machine 
Crane movements 168 328 300 300 98 

A good indicator of a smooth flow of semi-finished coils through the production 

system, is the capacity changes in the High-Bay storage area. As stated before, the 

High-Bay storage area's behaviour is similar to an intermediate buffer where all coils 

are stored before they are transferred for annealing, cold-rolling or BWG treatment. 

Figure 6.11 presents the High-Bay storage area occupancy per hour. It is clear 

that in the first eight days, the capacity increases as coils enter the storage area from 

the Hot-Line. Then between the 8th and 16th day the High-Bay varies in capacity 

(34% of maximum capacity) while after the 19th day the High-Bay storage area 

capacity starts to decrease until the 26th day as a result of the first coils leaving the 

High-Bay area for BWG treatment. Between the 27th and 33rd day the number of 

179 



90 

80 

70 

60 

50 

40 

30 

20 

10 

0 

Percentage COLD-ROLUNG machine occupancy 

.II: 11 

-- -I 

0 100 200 300 400 500 600 700 800 900 
No hours 

Figure 6.8: Cold-rolling machine usage for Scenario 1 

coils stored in the High-Bay storage area increase again since no BWG process is 

taking place. 

Table 6.8: Percentage of each location's average use for Scenario I 

Annealing Cold-rolling BWG High-Bay storage area 
Usage 80.19 7.06 7.68 23.45 

Finally, Table 6.8 gives the average use of the following locations: Annealing 

machine centres, Cold-rolling activity, High-Bay storage area capacity and BWG 

work centre. 

6.4.2 Scenario 2: Installing of an additional annealing 

machine operating in parallel with the other three 

The second scenario examines the case of installing an additional annealing machine 

in the plant. The report for the simulation period of 29 days is given in Appendix 

C. Simulation results showed that the total throughput rate is now 109 coils over 29 

days. As expected, the throughput rate has increased in comparison with Scenario 

1, where the total throughput was found to be 90 coils in 29 days, as depicted 

180 



100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 

Percentage BWG Occupancy 

.............................. 

0 100 200 300 400 500 600 700 800 900 
No hours 

Figure 6.9: BWG occupancy for Scenario I 

in Figure 6.6. Thus installing a fourth annealing furnace increases throughput 

by 21.11%. Figure 6.12 illustrates the changes in throughput rate for the second 

scenario. Note again that despite the fact that 168 coils entered the High-Bay over 

a period of seven days, only 109 of them have left the Litho centre, while 59 coils 

(168-109) remained as semi-finished products at the end of the simulation due to 

annealing and cold-rolling grouping restrictions as shown in Table 6.4 and Table 6.5. 

The first coil exited the Litho centre on the 15th day, instead of the 19th as in 

the first scenario while the throughput rate was increased dramatically between the 

15th and 28th day. This indicates that the second scenario provided not only faster 

throughput rates but also a smoother flow of coils through the production line. 

Figure 6.13 shows the percentage of annealing furnaces' occupancy over time. 

These percentage values exceed 99% for the first 21 days highlighting again the fact 

that at least one annealing furnace each day is fully occupied. Figure 6.14 depicts the 

cold-rolling machine centre usage, where the main occupancy time occurred between 

the 12th and 20th day. The last day of cold-rolling activity was performed on the 

27th day which is again very reasonable since the last annealing cycle was completed 

on the 23rd day. 

181 



Crane moves per hour and average 

14 

12- 

.............. 

8- 

6 

4 

2 

0 
0 100 200 300 400 500 600 700 800 900 

No hours 

Figure 6.10: Crane movements in total for Scenario I 

Figure 6.15 demonstrates again the fact that coils enter the BWG machine centre 

in batches. This time BWG is busy for only eight days during the whole simulation 

run during which all coils pass through the BWG stage, while the last BWG activity 

took place on the 28th day (one day again after the last cold-rolling process is 

completed) . 

Figure 6.16 shows the total number of crane movements at all four locations. 

Simulation runs indicate that the maximum number of crane movements per hour is 

19 in contrast to the first scenario where the maximum number of movements was 

only 14. This observation reveals the fact that when a fourth annealing machine 

is installed the crane can serve all the annealing furnaces in the interspace of one 

hour, provided that the maximum number of potential crane movements per hour is 

set to 60. Table 6.9 gives information for the total number of crane movements at 

each location. Note again that the crane spends most time in serving the annealing 

activity while the BWG is the location which is served for least amount of time than 

the other three. 

Capacity changes per hour in the High-Bay storage area can be viewed in 

Figure 6.17. Similarly to the first scenario in the first eight days the capacity increases 

182 



35 

30 

25 

20 

15 

10 

5 

Percentage HIGHBAY occupancy 

........... 

Ol IIIII 
0 100 200 300 400 500 600 700 800 900 1000 

No hours 

Figure 6.11: High-Bay storage area occupancy for Scenario 1 

Table 6.9: Total crane movements in each location for Scenario 2 

Coil 
Entry 

Annealing 

machines 

Cold-rolling 
input 

Cold-rolling 

output 

BWG 

machine 
Crane movements 168 328 320 320 109 

while coils enter the storage area from the Hot-Line. Then between the 8th and 

14th day the High-Bay occupancy remains constant (34% of maximum capacity) 

while between the 14th and 21st day the High-Bay storage area occupancy starts 

to decrease as a result of the number of coils returning to the High-Bay storage 

area after annealing or cold-rolling exceeds the number of coils entering the BWG 

machine centre. 

Table 6.10 surnmarises the results for the second scenario associated with the 

average usage of the following locations: Annealing machine centres, Cold-rolling 

activity, High-Bay storage area capacity and BWG work centre. 

Table 6.10: Percentage of each location's usage average for Scenario 2 

Annealing Cold-rolling BWG High-Bay storage 
Usage r, 9 72.56 9.025 10.09 22.28 

183 



Throughput per day 

8 

60 

. 92 

40 

100 

80 

........... ............... 

I 1.. 1.1 1... .. ''.. IýI.................. III............. 

20 

0 
0 10 15 20 25 30 35 

No days 

Figure 6.12: Throughput rate for Scenario 2 

By comparing Tables 6.8 and 6.10 it can be inferred that by installing a fourth 

annealing machine the usage of cold-rolling machine increases by 21.77% and the 

corresponding BWG usage increases by 23.88%. In contrast, the High-Bay storage 

area occupancy decreases by 4.99% since now less number of coils remain in the High- 

Bay storage area on average during the simulation run of the production system. The 

annealing furnaces' usage also decrease by 9.51% also as expected, since the total 

number of annealina cycles for the second scenario increase due to the addition of 

fourth annealing furnace. 

6.4.3 Scenario 3: Reducing pre-set times the coils remain in 

High-Bay during cooling and after annealing 

In this scenario the number of annealing machines is reset to three, but now the 

cooling time after all annealing procedures are reduced by 50%. Thus the cooling 

time in the High-Bay storage area is set to 36 hours instead of 72 in Scenario 1. The 

report for the simulation period of 33 days is also included in Appendix C. Simulation 

results show that the throughput rate is now 102 coils over 33 days. It is clear that 

184 



100 

90 

60 

50 

40 

30 

Percentage ANNEALING furnace occupancy 

80 

70 

................ --t............... 

20 

10 

C 
0 JuU zUU 3OU 400 500 600 700 

No hours 

Figure 6.13: Annealing furnaces occupancy for Scenario 2 

the throughput rate has increased compared to the corresponding throughput of 90 

coils in the first scenario. This significant increment of 11-76% can be also viewed 

in Figure 6.18, which shows the changes in throughput rate for the third scenario. 

Note again that although 168 coils have entered the Litho centre in seven days, only 

102 of them leave the Litho centre while 66 coils (168-109 this time) remained in the 

High-Bay storage area at the end of the simulation. 

The first coil leave the Litho centre in the 17th day, instead of the 19th as in the 

first scenario, while the throughput rate increases constantly between the 18th and 

24th day. This indicates that the third scenario provides faster coils' exits. 

Figure 6.19 depicts the percentage of the three annealing furnaces occupancy over 

time. These values were in excess of 99% for the first 27 days, highlighting again the 

fact that at least one annealing furnace each day is fully occupied. Figure 6.19 shows 

also that the last annealing cycle occurs at the 30th day. More specifically, the usage 

of the annealing machine this day is 2% and only four coils have been annealed. The 

cold-rolling machine centre usage for the third scenario can be viewed in Figure 6.20, 

where the main occupancy time takes place between the 15th and 23rd day. The last 

185 



90 

80 

70 

60 

50 

40 

30 

20 

10 

0 

Percentage COLD-ROLLING machine occupancy 

0 100 200 300 400 500 600 700 800 

No hours 

Figure 6.14: Cold-rolling machine usage for Scenario 2 

day of cold-rolling activity is the 31st day which is again reasonable since the last 

annealing cycle occurred during the 30th day. Note that cooling time after annealing 

for this scenario is set to 36 hours (1.5 day). 

Figure 6.21 illustrates that in a similar way with the other two scenarios, coils 

enter the BWG machine centre in batches. This time the BWG is busy for only eight 

days during the whole simulation period for which all coils passed the BWG stage, 

while the last BWG activity takes place on the 32th day (again one day after the 

last cold-rolling process has been completed). 

Figure 6.22 shows the total number of crane movements at all four locations. 

Simulation runs indicate that the maximum number of crane movements per hour 

are 16, in contrast with the first scenario where the maximum number of movements 

was 14. Table 6.11 provides useful information for crane movements at each location 

throughout the simulation run. Note again that the crane spends the most time to 

serve the annealing process while the BWG is the location where the crane spends 

the least time. 

Occupancy changes per hour in the High-Bay storage area are depicted in 

186 



100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

c 

Percentage BWG Occupancy 

0 100 200 300 400 500 600 700 800 

No hours 

Figure 6.15: BWG occupancy for Scenario 2 

Table 6.11: Total crane movements in each location for Scenario 3 

Coil 
Entry 

Annealing 

machines 

Cold-rolling 
input 

Cold-rolling 

output 

BWG 

machine 
Crane movements 168 328 320 320 102 

Figure 6.23. Similarly to the first scenario during the first eight days occupancy 

increases while coils enter the storage area from Hot-Line. This represents the 

"transient" response of the system, as initially the High-Bay was assumed to be 

empty. Then, between the 8th and 15th day the High-Bay capacity remains constant 

(34% of maximum capacity) while between the 16th day and 26th day the High-Bay 

storage area capacity starts to decrease as some coils which have been cooled after 

being cold-rolled leave the High-Bay area for BWG machine centre. Note that in the 

interim period between the 26th and 29th day High-Bay occupancy exhibits again 

some small fluctuations depending on the differences between the rates at which coils 

enter or re-enter the High-Bay (after annealing or cold-rolling) and the rate at which 

coils enter the BWG machine centre. 

Table 6.12 summarises the corresponding data for the third scenario, related to 

the average usage of the annealing machine centres, cold-rolling activity, High-Bay 

187 



20 

18 

16 

14 

12 

10 

8 

6 

4 

2 

0 

Crane moves per hour and average 

0 100 200 300 400 500 600 700 800 

No hours 

Figure 6.16: Crane movements in total for Scenario 2 

storage area capacity and BWG work centre. 

Table 6.12: Percentage of each location's usage average for Scenario 3. 

Annealing Cold-rolling BWG High-Bay storage area 
Usage 85.04 7.86 8.40 22.98 

Comparing the results of Table 6.8 and Table 6.12, it can be concluded that 

by reducing by 50% the cooling time after the annealing process, the usage of 

the annealing furnaces has been increased by 5.7%, the corresponding cold-rolling 

machine usage by 10.23% and the BWG usage by 8.57%. In contrast to the other 

three locations, the High-Bay storage area occupancy fell on average by 2%, which 

is expected since coils spend less time inside the High-Bay for cooling purposes. 

6.4.4 Scenario 4: The effect of order fluctuations based on 

current production plant 

Previous scenarios studied the impact of changing two of the main plant's parameters 

that characterise the production system. This scenario has a different purpose since 

188 



35 

20 

5 

Percentage HIGHBAY occupancy 

30 

25 

........... ------------ .... ....... .. 

15 

10 

I .......... ............. ý.. .-. I.. I ý: .II-I 

Ol II. --I -- 
iI 

0 100 200 300 400 500 600 700 800 900 

No hours 

Figure 6.17: High-Bay storage area occupancy for Scenario 2 

it examines the effect of demand fluctuations on the efficiency of the production 

process. The type of demand fluctuations considered are presented in Table 6.13, 

where it is assumed that coils enter the Litho centre from Hot-Line every two days 

(i. e., Ist, 3rd, 5th and 7th day). This scenario uses exactly the same average input 

rate as in the previous three scenarios. 

Table 6.13: The Excel input file of 168 coils used in Scenario 4 

Type No Type No Type No Type No Type No Type No Type No Type No 
Dayl 6 8 9 6 6 9 1 4 
Day2 

Day3 6 8 2 4 5 4 3 4 9 3 6 4 11 4 4 8 
Day4 
Day5 9 12 1 4 13 8 2 4 6 12 3 4 7 4 10 4 
Day6 

Day7 5 8 6 12 8 4 17 4 9 3 12 4 15 81 14 - 4 
ýý 

The report for a simulation period of 35 days is included in Appendix C. 

Simulation results show that the throughput rate is now 98 coils in 35 days, which is 

equal to the corresponding throughput rate derived in the first scenario. Figure 6.24 

depicts the changes in throughput for the complete simulation, which appears to 

have similar pattern with the Figure 6.7. 

There are also many similarities with the annealing furnaces and cold-rolling 

machines centres' usages plots - depicted in Figure 6.25 and Figure 6.26, respectively 

189 



Throughput per day 

100 

90 

80 

70 

m 60 

-6 50 

E 
:3 40 
Z 

30 

20 

10 

0 

...................... ............. .... 

.......... 

............ ............. ............ 

I ........... I ............. f ................. ........... 

............ ..................... ...... ...... 

................ .......... I ................. 

.. I............................. I., -i................... I ........................... I------ -4 

05 10 15 20 25 30 35 40 

No days 

Figure 6.18: Throughput rate for Scenario 3 

- with the corresponding Figures presented in Scenario 1. 

Demand fluctuations have only significant impact to the first cold-rolling 

processes (and hence to the first BWG machine centre activities depicted in 

Figure 6.27). 

Actual crane movements per hour for the fourth scenario shown in Figure 6.28 

exhibit more fluctuations in comparison to the crane movements corresponding in 

Scenario 1, especially for the first ten days. This crane performance can be explained 

by the fact that in two consecutive days (e. g., 3rd and 4th day), it performs different 

tasks. Thus, during the first day, in addition from movements related to annealing 

and cold-rolling the crane also loads into the High-Bay storage area coils arriving 

from the Hot-Line, while on the second day the crane only serves the annealing and 

cold-rolling machine centres. 

Finally, the High-Bay area in the fourth scenario has been found to contain all 

the 168 coils with a delay of one day (9th day). Figure 6.29 depicts the changes in the 

High-Bay storage area, where demand fluctuations result in more rapid occupancy 

increases from day to day. A similar observation has also been made in chapter 3, 

190 



100 

90 

so 

70 

60 

50 

40 

30 

20 

10 

Percentage ANNEALING furnace occupancy 

...........:.... I....: ...................... ........... 

..................... I........... 1: :.... -4 

............ ................. I ....................... 
11 ................. 

............. ....... : ........... 
.................................. 

0 
0 100 200 300 400 500 600 700 800 

No hours 

Figure 6.19: Annealing furnaces occupancy for Scenario 3 

where it has been shown that demand variability in series supply chains leads to 

demand amplification in downstream nodes (bullwhip effect) and thus downstream 

participants experience rapid fluctuations in their inventories. 

Simulation results also suggest that the average usages at all four locations have 

similar values to those derived in Scenario 1 (see Table 6.8. 

6.4.5 Performance and simulation results analysis 

The overall conclusion that can be drawn from the simulation results for both scenario 

2 and scenario 3 together with comparisons with the main findings of Scenario 1, is 

that significant improvements in the production system performance can be obtained. 

More specifically, it was found that installing an additional annealing machine or 

introduction of new annealing technology results in a considerable increase in the 

overall throughput rate and also in increased machine utilisation in the cold-rolling 

and BWG processes. Moreover, crane movements per unit time are greater than 

those derived in Scenario 1, which suggests an increase in Work-In-Process inventory. 

Thus, simulations of this type may be used (together with economic considerations 

191 



90 

80 

70 

60 

50 

40 

30 

20 

10 

0 

Percentage COLD-ROLLING machine occupancy 

illitill I1 11 11 11 11 11 --: ý 

100 200 300 400 500 600 700 800 900 

No hours 

Figure 6.20: Cold-rolling machine usage for Scenario 3 

such as expected future demand levels, costs, depreciation factors, etc. ) to make 

rational decisions about future investments. 

Increased throughput rates were also achieved in the case when the pre-set times 

the coils remain in High-Bay storage area during cooling after annealing, are reduced. 

In this scenario the average usage of all locations has also increased, while the crane 

moves on average are also increased compared with Scenario 1. 

Finally, demand fluctuations in scenario 4 exhibit increased variability levels in 

High-Bay storage area occupancy. An additional effect of demand fluctuations is that 

the number of crane routes made in two consecutive hours may differ considerably, 

However, in order to examine better the impact of demand fluctuations in production 

systems, the metrics must be analysed and assessed after the system has reached its 

steady state. However, this study is beyond the scope of this research work and 

requires extensive simulation studies involving a huge amount of real data. 

It is clear that the assessment of all alternative scenarios provided by extensive 

simulations based on the proposed model can aid significantly decision-making 

management procedures, especially related to cost over benefit investment decisions. 

192 



Percentage BWG Occupancy 

Ivu IIII 
-- ,- 

80- ...... 

70 

60- 

50- 

40 - 

30- ....... 

20 - ............... 

10- 

0ý 

------------- 

III 
100 200 300 400 500 600 700 800 900 

No houm 

Figure 6.21: BWG occupancy for Scenario 3 

Crane moves per hour and average 

16 - 

14- ...... .......... 

p 

12 ............. 

10 ......... ......... 

. ......... 8- 

6 

q 
4 

2 

01L 
0 100 200 300 400 500 600 700 800 goo 

No hours 

Figure 6.22: Crane movements in total for Scenario 3 

193 



Percentage HIGHBAY occupancy 

m 

30 
............... 

25 
................. ....... 

20 

q 

15- 

10-.... .......... ........... ... ... 

5 ....... .... ... 

0 
0 100 200 300 400 500 600 700 800 900 

No hours 

Figure 6.23: High-Bay storage area occupancy for Scenario 3 

Throughput per day 

05 10 15 20 25 30 35 40 45 

No days 

Figure 6.24: Throughput rate for Scenario 4 

100 

90 

80 

70 

-0 60 

,0 
a 

Ir- 

16 50 

40 

30 

20 

10 

n 

194 



luu 

90 

80 

70 

60 

50 

40 

30 

20 

io 

a 

Parcentage ANNEALING fumace occupancy 

0 100 200 300 400 500 600 700 800 900 

No hours 

Figure 6.25: Annealing furnaces occupancy for Scenario 4 

Percentage COLD-ROLLING machine occupancy 
90 

so 

70 

60 

50 

40 

30 

20 

10 

0 100 200 300 400 500 600 700 800 900 

No hours 

Figure 6.26: Cold-rolling machine usage for Scenario 4 

195 



Percentage BWG Occupancy 

luu 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 
0 100 200 300 400 500 600 700 800 900 

No hours 

Figure 6.27: BWG occupancy for Scenario 4 

Crane moves per hour and average 

16 

14 

12 

10 

8 

6 

4 

2 

n 

I "I I 

0 100 200 300 400 500 600 700 800 900 

No hours 

Figure 6.28: Crane movements in total for Scenario 4 

196 



35 

30 

25 

20 

15 

10 

5 

01 
0 100 200 300 400 500 600 700 800 900 

No hours 

Figure 6.29: High-Bay storage area occupancy for Scenario 4 

Percentage HIGHBAY occupancy 

197 



Chapter 7 

Conclusions and further work 

In this section we summarise the main conclusions of the work. 

A novel state-space model has been presented for analysing the effect of 

proportional policies in series multi-node supply chains. An augmented state space 

model of the complete series supply chain has been obtained using as state variables 

the inventory position and the amount of goods delivered by each node. The state 

space model depends parametrically on the inventory set-points and replenishment 

gain factors, It has been shown that the structure of the model also allows for a simple 

recursive updating scheme for calculating the covariance matrix in parametric form, 

for models with an arbitrary number of nodes. 

A detailed model stability analysis has defined explicit ranges of the parameters 

for which the model is stationary. In addition, the modelling approach has resulted 

in a full characterisation and prediction of the bullwhip, effect via the covariance 

analysis, leading to an explicit algebraic equation depending on the proportional 

inventory replenishment gain factors. This has allowed for the partitioning of the 

stability gain space in two areas corresponding to the attenuation and amplification 

regions. The analysis was extended to the case when the customer demand profile 

is correlated via filtering a white noise sequence through a first order autoregressive 

(AR) model. In this case it was shown that the attenuation region expands at the 

expense of the amplification region to a degree depending on the value of the model's 

correlation parameter. 

Under the assumption of full co-operation between adjacent nodes an optimisa- 

198 



tion problem was formulated involving the hierarchical minimisation of fluctuations 

in inventory and of the mean inventory level, subject to a probabilistic constraint 

on the ability of the node to meet downstream demand which is associated with the 

chain's service levels. lt has been shown that such a "selfish" policy does not lead 

to demand amplification. 

Finally, three separate local estimation schemes have been proposed and analysed 

in the absence of information sharing. This potentially allows the application of the 

optimal policies obtained under full information to be extended to the more realistic 

case where nodes do not exchange information. 

The analysis based on the dynamic model of the series supply chain developed 

in chapter 3 and chapter 4, is limited by a linearity assumption which states 

that each node has sufficient inventory at all times to meet downstream demand. 

Hierarchical Coloured Petri Nets are implemented in chapter 5 to examine different 

inventory policies which cannot be applied within the dynamic model framework 

developed in the two previous chapters. The proposed simulation model compares 

various scenarios including deterministic end-customer demand profiles in batches 

and stochastic profiles which are normally distributed. Three different ordering 

policies widely used in supply chain management were analysed. Simulation results 

suggest that MA continuous policies offer advantages for most of the scenarios 

analysed. Using this method the bullwhip effect can be reduced, thus avoiding high 

back-order levels, while customer satisfaction is increased. 

A detailed case study was undertaken in chapter 6, for the production line 

of the "Bridngorth Aluminium Ltd" company which produces high quality rolled 

aluminium lithographic strips. Discrete Event Systems (DES) background theory 

was used to model the production process by using the general methodology 

developed in the earlier part of this work, resulting in a versatile simulation tool 

coded in MATLAB programming language. The effect of highly volatile demand 

profiles were investigated in terms of decreased throughput rates, reduced levels of 

average machine centres utilisation and other factors which imply increased costs for 

199 



the manufacturing process. 

The model was successfully validated using actual production data and it was 
found that the simulation tool is suitable for modelling, analysis and performance- 

evaluation of the complex production process. With the aid of the model, various 

scenarios were investigated via extensive simulation runs, such as the effects of 

installing additional machine centres and reducing the pre-set times the products 

spend in intermediate storage areas. Results show that production managers can 

strongly benefit from the proposed model in understanding the dynamics of the 

process and in improved decision-making. 

We conclude the chapter by outlining a number of interesting topics related to 

the results of the thesis which can be addressed in future work. 

Supply chains are complex dynamic systems with intricate interrelations and 

cumbersome functions. Therefore, additional modelling work is required to capture 

the main characteristics of real supply chains. 

The use of additional information provided by the structure of the covariance 

matrix may be used to estimate unknown parameters of the system (e. g., future 

demand profiles) hopefully leading to an effective decentralised control scheme. 

A second step towards the alleviation of the bullwhip effect phenomenon is the 

implementation of more sophisticated forecasting and control schemes, e. g., based 

on Model Predictive Control and optimisation techniques. Alternative estimation 

schemes (e. g., based on likelihood theory) can also be studied and compared with 

those developed in this work. 

Naturally any model is an idealisation of the real system and as such its utility can 

be extended only up to a certain point. It may be useful to test the limits of validity 

of the developed model by scrutinising its main assumptions. One limitation of the 

model is the assumption that all participants follow the same type of (proportional) 

inventory replenishment policy, which of course cannot be guaranteed in practice. 

Assuming multiple vendors placing orders to their upstream node by pursuing a 

mixture of individual policies, it may be interesting to investigate to what extend 

200 



their aggregate demand resembles at least approximately an equivalent proportional 

policy. 

Hierarchical Coloured Petri nets and simulation tools can be used to identify 

improved inventory policies and to analyse the impact of the main bullwhip effect 

causes discussed in Chapter 3. An important modelling issue is the formulation of 

realistic inventory cost functions for each stage of the supply chain, which can be 

subsequently used to estimate the optimal inventory levels for minimum cost, under 

the constraint of meeting order demand from the downstream stages. 

Due to the bullwhip effect, a poor plan can easily propagate to the whole supply 

chain areas. The impact of a poor plan on the overall business may be huge. It 

can cause cycles of excessive inventory and severe backlogs, poor product forecasts, 

unbalanced capacities, poor customer service, uncertain production plans, and high 

backlog costs, or sometimes even lost sales. Ultimately the suppression of the 

bullwhip effect can only be achieved if the various nodes of the supply chain co- 

operate to some extend with each other. Therefore, it may important to investigate 

whether such co-operative attitudes can be engineered into the system, either via 

a form of contractual obligations between supply chain participants, or incentives 

following from the collective benefits which arise from smooth chain flows and 

increased levels of customer satisfaction. 

201 



Bibliography 

[AA03] K. Albertson and J. Aylen, Forecasting the behaviour of manufacturing 

inventory, International Journal of Forecasting 19 (2003), 299-311. 

[AMOO] J. Andersson and J. Marklund, Decentralized inventory control in a two- 

level distribution system, European Journal of Operational Research 

127 (2000), 483-506. 

[AM02] E. G. Anderson and D. J. Morrice, Capacity and management in 

queuing-based supply chains, Proceedings of the 2002 Winter Simulation 

Conference (San Diego, USA), 2002. 

[AS931 R. G. Askin and C. R. Standridge, Modehnq and analy-, -Zs of manufac- 

turing systems, John Wiley & Sons, Inc., New York, NY, 1993. 

[Axs93] S. Axsdter, Exact snd approximate evaluation of batch-ordering policies 

for two-level inventory systems, Operations Research 41 (1993), no. 4, 

777-785. 

[Axs98] 
, 

Evaluation of installation stock based (R, Q)-policies for two- 

level inventory systems with poisson demand, Operations Research 46 

(1998), no. 3, S135-S145. 

[B02] C. Böhnlein, Modellierung und simulation des bullwhip-effekts mit petri- 

netzen, Würzburg, 2002. 

[Bal04] R. H. Ballou, Business logistics/supply chain management, 5th ed., 

Pearson Prentice Hall, Upper Saddle River, NJ, 2004. 

202 



[BBP06] D. Bauso, F. Blanchini, and R. Pesenti, Robust control strategies for 

multUnventory systems with average flow constraints, automatica 42 

(2006), 1255-1266. 

[BC98] M. P. Baganha and M. A. Cohell, The stabilizing effect of inventory in 

supply chains, Operations Research 46 (1998), no. 3, S72-S83. 

[BDS03] D. N. Burt, D. Dobler, and S. L. Starling, World class supply 

management : The key to supply chain management, 7th ed., McGraw- 

Hill/Irwin, New York, NY, 2003. 

[BHT+96] M. C. Bonney, M. A. Head, C. C. Tien, N. Huang, and R. J. 

Barson, Inventory and enterprise integration, International Journal of 

Production Economics 45 (1996), 91-99. 

[BK04] S. Benjaafar and J. S. Kim, On the effect of product variety in 

produchoninventory systems, Annals of Operations Research 126 

(2004), 71-101. 

[Bli86] Blinder, Can the yroduction smoothing model of Mventory behavZor be 

saved?, Quarterly journal of economics 101 (1986), 431-454. 

[Bos0l] S. K. Bose, An introduction to queueing systems, Kluwer Academic 

Publishers, Massachusetts, 2001. 

[BRF+03] M. W. Braun, D. E. Rivera, M. E. Flores, W. M. Carlyle, and K. G. 

Kempf, A model predwtive control framework for robust management 

of multi-product, multi-echelon demand networks, Annual Reviews in 

Control 27 (2003), 229-245. 

[CA98] A C. Caramanis and 0. A Anh, Manufacturing supply chain co- 

ordination through synergistic decentralized decision making, Proceed- 

203 



ings of Rensselaer's International Conference on Agile, Intelligent, and 

Computer-Integrated Manufacturing (Týoy, NY), 1998. 

[Cap85] A. S. Caplin, The variability of aggregate demand with (Ss) inventory 

policies, Econometrica 53 (1985), no. 6,1395-1409. 

[CDRSLOO] F. Chen, Z. Drezner, J. K. Ryan, and D. Simchi-Levi, QuantifyZng the 

bullwhip effect in a simple supply chain the Zmpact of forecasting lead 

himes and information, Management Science 46 (2000), no. 3,436-443. 

[CG04] C. Chandra and J. Grabis, Application of multi-steps forecasting for re- 

straining the bullwhip effect and improving inventory performance un- 

der autoregressive demand, European Journal of Operational Research 

166 (2004), 337-350. 

[Che981 F. Chen, Echelon reorder potnts, 2nstallation reorder points, and the 

value of centralized demand information, Management Science 44 

(1998), no. 12, S221-S234. 

[CL99] C. G. Cassandras and S. Lafortune, Introduction to discrete event 

systems, Kluwer Academic Publishers, Massachusetts, 1999. 

[Cou03] Supply Chain Council, Supply-chazn operations reference model. SCOR 

version 6.0, SCC, 2003. 

[CPA99] M. C. Caramanis, I. C. Paschalidis, and 0. M. Anli, A framework for 

the decentralized control of manufacturing enterprises, Proceedings of 

DARPA-JFACC Symposium on Advances in Enterprise Control (San 

Diego), 1999, pp. 99-109. 

[CRSLOO] F. Chen, J. K. Ryan, and D. Simchi-Levi, The impact of exponential 

smoothing forecasts on the bullwhip effect, Naval Research Logistics 47 

(2000), 269-286. 

204 



[CS60] A. J. Clark and H. Scarf, Optimal policies for a multi-echelon inventory 

problem, Management Science 6 (1960), 475-490. 

[Dag031 C. F. Daganzo, A theory of supply chains, Springer Verlag, Berlin, 2003. 

[Dag04] 
, 

On the stability of supply chains, Operations Research 52 

(2004), 909-921. 

[DDLT02] J. Dejonckheere, S. M. Disney, M. R. Lambrecht, and D. R. Towill, 

Transfer function analysus of forecasting induced bullwhip m supply 

chains, International Journal of production economics 78 (2002), 133- 

144. 

[DDLT03] Production manufacturing and logistics measuring and avoid- 

mg the bullwhip effect: A control theoretic approach, European Journal 

of Operational Research 147 (2003), 567-590. 

[DDLT04] 
-, 

The impact of information enrichment on the bullwhip effect 

in supply chains: A control -engineering perspective, European Journal 

of Operational Research 153 (2004), 797-811. 

[DDVK001 G. Doumeingts, Y. Ducq, B. Vallespir, and S. Kleinhans, Production 

management and enterprise modelling, Computers in Industry 42 

(2000), 245-263. 

[DHP+93] F. Dicesare, G. Harhalakis, J. M. Proth, M. Silva, and F. B. Vernadat, 

Practice of petri nets in manufacturing, Chapman and Hall, London, 

1993. 

[dKG03] A. G. d. Kok and S. C. Graves, Supply chain management : Design, 

coordination and operation, Elsevier, Amsterdam, 2003. 

[dKJvD+051 T. d. Kok, F. Janssen, J. v. Doremalen, E. v. Wachem, M. Clerkx, and 

W. Peeters, Philips electronics synchronizes its supply chain to end the 

b-ullwhip effect, Interfaces 35 (2005), no. 1,37-48. 

205 



[DT03] S. M. Disney and D. R. Towill, On the bullwhip and inventory variance 

produced by an ordering policy, Omega 31 (2003), 157-167. 

[DV85] M. H. A Davies and R. B. Vinter, Stochastic modeling and control, 

Chapman and Hall, London, England, 1985. 

[EGE021 I. Elmahi, 0. Grunder, and A. Elmoundni, A petri net approach for the 

evaluation and command of a supply chain using the max plus algebra, 

Proceedings of the 2nd IEEE International Conference on Systems, Man 

and Cybernetics (Hammamet, Tunisia), vol. 4,2002. 

[Eng78] D. W. Engels, Alexander the Great and the loytstics of the Macedonian 

amy, University of California Press, Los Angeles, 1978. 

[EP971 E. Esposito and R. Passaro, Materzal requVement plannZng and the 

supply chain at Alenia aircraft, European Journal of Purchasing and 

Supply Management 3 (1997), no. 1,43-51. 

[fCPN] Computer Tool for Coloured Petri Nets, 

http: //wiki. daimi. au. dk/cpntools/cpntools. wiki. 

[Fia05] P. Fiala, InformatiOn sharing in supply chains, Omega 33 (2005), 419- 

423. 

[FM84] P. Falster and R. B. Mazumder, Modelling production management 

systems, North-Holland, Amsterdam, 1984. 

[For6l] J. Forrester, Industrial dynamics, MIT Press, Cambridge, MA, 1961. 

[Fre0l] F. Frederix, An extended ERP methodology for the discrete manufac- 

turing industry, European Journal of Operational Research 129 (2001), 

317-325. 

[FZ84] A. Federgruen and P. ZiPkin, Computational issues in an infinite hori- 

zon, multi-echelon inventory model, Management Science 32 (1984), 

no. 4,818-836. 

206 



[Gaa06] G. Gaalamn, Bullwhip reduction for arma demand: The proportional 

order-up-to polzcy versus the full-state-feedback policy, automatica 42 

(2006), 1283-1290. 

[GBS01] R. Ganeshan, T. Boone, and A. J. Stenger, The impact of inventory and 

flow planning parameters on supply chain performance an exploratory 

study, International Journal of Production Economics 71 (2001), 111- 

118. 

[GH98] D. Gross and C. M. Harris, Fundamentals of queueing theory, John 

Wiley & Sons, Inc., New York, NY, 1998. 

[Gil05] K. Gilbert, An wrima supply chain model, Management Science 51 

(2005), no. 2,305-310. 

[GKZ] S. C. Graves, A. H. G. Rinnooy Kan, and P. H. Zipkin (eds. ). 

[GP04] 1. Giannoccaro and P. Pontrandolfo, Supply chain coordination by rev- 

enue sharing contracts, International Journal of Production Economics 

89 (2004), 131-139. 

[HD04] T. Hosoda and S. M. Disney, An analysis of a three echelon supply chain 

model with minimum mean squared error forecasting, Proceedings of the 

Second World Conference on POM and 15th Annual POM Conference 

(Cancun, Mexico), 2004. 

[HECOO] A M. Helms, L. P. Etkin, and S. Chapman, Supply chain forecasting: 

Collaborative forecasting supports supply chain management, Business 

Process Management 6 (2000), no. 5,392-407. 

[Hei02] J. Heikkild, From supply to demand chain management: efficiency and 

customer satisfaction, Journal of Operations Management 20 (2002), 

747-767. 

207 



[Hen06] J. Hennet, A bimodal scheme for multi-stage production and inventory 

control, automatica 42 (2006), 793-805. 

[HJ90] R. A. Horn and C. R. Johnson, Matrix analysZs, Cambridge University 

Press, England, 1990. 

[HJ95] 
-, 

Topics in matrix analysts, Cambridge University Press, 

England, 1995. 

[HW63] C. Hadley and T. Whitin, Analysis of invento7-y systems, Prentice Hall, 

New Jersey, 1963. 

[Jar9l] J. Jarrett, Business forecasting methods, Basil Blackwell Ltd, Oxford, 

1991. 

[Jen97] K. Jensen, Coloured Petrz Nets. BasZc concepts, analysts methods and 

practical use. Volume 1,2,3, Springer-Verlag, Berlin, 1997. 

[JK04] Z. JemaI and F. Karaesmen, Decentralized inventory control Zn a two- 

stage capacZtated supply chain, Laboratoire MGSI (Modelisation et 

Genie des Systemes Industriels), IUT de Montreuil, France, and Koý 

University, Istanbul, Turkey, 2004. 

[Kah87] J. Kahn, Inventories and the volatility of production, The American 

economic review 77 (1987), no. 4,667-679. 

[KCHH06] J. G. Kim, D. Chatfield, T. P. Harrison, and J. C. Hayya, QuantifYing 

the bullwhip effect in a supply chain with stochastic lead time, European 

Journal of Operational Research 173 (2006), 617-636. 

[KCJ98] L. M. Kristensen, S. Christensen, and K. Jensen, The practitioner's 

guide to coloured petri nets, 1nternational Journal of Software tools for 

technology transfer 2 (1998), 98-132. 

208 



[KH03] S. Kima and D. Ha, A JIT lot-splitting model for supply chazn 

management: Enhancing buyersuppher linkage, International Journal 

of Production Economics 86 (2003), 1-10. 

[Kij02] M. Kijima, Stochastic processes with applications to finance, Chapman 

& Hall/CRC, Florida, 2002. 

[KimOO] B. Kim, Coordinating an innovation in sUPPly chain management, 

European Journal of Operational Research 123 (2000), 568-584. 

[KK02] K. H. Kim and J. Kim Determining load patterns for the delivery 

of assembly components under JIT systems, International Journal of 

Production Economics 77 (2002), 25-38. 

[KMPS05] E. Krauth, H. Moonen, V. Popova, and M. Schut, Performance 

indicators in logistics service provZsZon and warehouse management 

A hterature remew and framework, Distributed Engine for Advanced 

Logistics, working paper, 2005. 

[LB93] H. L. Lee and C. Billington, Material management Zn decentralized 

supply chains, Operations Research 41 (1993), no. 5,835-847. 

[Lee96] H. L. Lee, Effective inventory and service management through product 

and process redestgn, Operations Research 44 (1996), no. 1,151-159. 

[LKL02] Z. Li, A. Kumar, and Y. G. Lim, Supply chain modelling -a co- 

ordination approach, Integrated Manufacturing Systems 13 (2002), 

551-561. 

[LKvdA04] E. R. Liu, A. Kumar, and W. v. d. Aalst, A formal modeling approach 

for supply chain event management, Proceedings of the 14th Workshop 

on Information Technologies and Systems (Washington, DC) (A. Dutta 

and P. Goes, eds. ), 2004, pp. 110-115. 

209 



[LLBCOO] H. Li, P. L. Lee, P. Bahri, and 1. T. Cameron, Decentralized control 

destgn for nonlinear plants: a v-metric approach, Computers and 

Chemical Engineering 24 (2000), 273-278. 

[LPW97a] H. L Lee, V. Padmanabhan, and S. Whang, The bullwhip effect in 

supply chains, Sloan Management Review 38 (1997), no. 3,93-102. 

[LPW97b] 
, 

Information distortion in a supply chain. the bullwhip effect, 

Management Science 43 (1997), 546-558. 

[LSS03] R. A. Lancioni, M. F. Smith, and H. J. Schau, Strategic internet 

application trends in supply chain management, 1ndustrial Marketing 

Management 32 (2003), 211-217. 

[LSTOO] H. L. Lee, K. C. So, and C. S. Tang, The value of Mformation sharing 

in a two-level supply chain, Management Science 46 (2000), 626-643. 

[LWJ+04] P. Lin, D. S. Wong, S. Jang, S. Shieh, and J. Chu, Controller destgn and 

reduction of bullwhip for a model supply chain system using z-transform 

analysis, Journal of Process Control 14 (2004), 487-499. 

[Mar97] J. S. Martinich, Production and operations management : an applied 

modern approach, John Wiley & Sons, Inc., New York, NY, 1997. 

[MB04] J. A. D. Machuca and R. P. Barajas, The Zmpact of electromc data 

interchange on reducing bullwhip effect and supply chain inventory 

costs, Transportation Research Part E: Logistics and Transportation 

Review 3 (2004), 209-228. 

[Men99] J. T. Mentzer (ed. ), Supply chain management, Berrett-Koehler 

Publishers, Inc., San Francisco, CA, 1999. 

[Mer0l] J. R. Meredith, Hopes for the future of operations management, Journal 

of Operations Management 19 (2001), 397-402. 

210 



[Met97] R. Metters, Quantifying the bullwhip effect in supply chains, Journal of 

Operations Management 15 (1997), 89-100. 

[MHM03] R. McIvor, P. Humphreys, and L. McCurry, Electronic commerce: 

supporting collaboration in the supply chain?, Journal of Materials 

Processing Technology 139 (2003), 147-152. 

[Mir06] C. Miragliotta, Layers and mechanisms: A new taxonomy for the 

bullwhip effect, International Journal of production economics 104 

(2006), 365-381. 

[ML88] M. C. Morris and H. L. Lee, Strategic analysis of integrated production- 

distribution systems: Models and methods, Operations research 36 

(1988), no. 2,216-228. 

[MNPV04] D. MakajiC'-NikoliC', B. Panic, and Mirko Vujos'evic, Bullwhip effect and 

supply chain modelling and analysis using cpn-tools, Proceedings of the 

5th Workshop and Tutorial on Practical Use of Coloured Petri Nets and 

the CPN-Tools (Aarhus, Denmark) (K. Jensen, ed. ), 2004, pp. 219-234. 

[MP95] H. P. Marvel and J. Peck, Demand uncertainty and returns policies, 

International economic review 36 (1995), no. 3,691-714. 

[MPvLV02] Y. A. Merkuryev, J. J. Petuhova, R. v. Landeghem, and 

S. Vansteenkiste, Simulation- based analysis of the bullwhip effect under 

different information sharing strategies, Proceedings of the 14th Eu- 

ropean Simulation Symposium (Dresden, Germany) (A. Verbraeck and 

W. Krug, eds. ), 2002. 

[MT80] J. A. Muckstadt and L. J. Thomas, Are multi-echelon inventory 

methods worth implementing in systems with low-demand-rate items?, 

Management Science 26 (1980), no. 5,483-494. 

211 



[MVJE05] D. J. Morrice, R. A. Valdez, P. Chida-(Jr. ) J, and M. Eido, DMcrete 

event simulation in supply chain planning and znventory control 

at Freescale semiconductor inc., Proceedings of the 2005 Winter 

Simulation Conference (M. E. Kuhl, N. M. Steiger, F. B. Armstrong, 

and Joines J. A, eds. ), 2005, pp. 1718-1724. 

[MWH98] S. Makridakis, S. C. Wheelwright, and R. J. Hyndman, Forecasting : 

methods and apphcations, John Wiley & Sons, Inc., New York, NY, 

1998. 

[oTC] MATLAB: The Language of Technical Computing, 

http: //www. mathworks. com/products/matlab. 

[Pet62] C. A. Petri, Kommunikation md automaten, Ph. D. thesis, University of 

Darmstadt, Germany, 1962. 

[PGYTOO] E. Perea, 1. Grossmann, E. Ydstie, and T. Tahmassebi, Dynamic 

modeling and classical control theory for supply chain management, 

Computers & Chemical Engineering 24 (2000), 1143-1149. 

[PLGYTOI] E. Perea-Lopez, I. E. Grossmann, B. E. Ydstie, and T. Tahmassebi, 

DynamZc modeling and decentralized control of supply chains, Industrial 

& Engineering Chemical Research 40 (2001), 3369-3383. 

[PLYG03] E. Perea-Lopez, B. E. Ydstie, and 1. E. Grossmann, A model predictive 

control strategy for supply chain optimization, Computers & Chemical 

Engineering 27 (2003), 1201-1218. 

[POi99] C. C. Poirieri Advanced supply chain management : how to build a 

sustained competitive advantage, Berrett-Koehler Publishers, Inc., San 

T-. "L- 

Francisco, CA, 1999. 

212 



tRB011 C. E. Riddalls and S. Bennett, The optimal control of batched 

production and its effect on demand amplification, International Journal 

of Production Economics 72 (2001), 159-168. 

[RB06] L. Rodrigues and E. Boukas, Piecewise-linear H,,,, controller synthests 

with applications to inventory control of switched production systems, 

automatica 42 (2006), 1245-1254. 

[Ros89] K. Rosling, Optimal inventory policZes for assembly systems under 

random demands, Operations Research 37 (1989), no. 4,565-579. 

[RV99a] N. R. S. Raghavan and N. Viswanadham, Lead time models for analysis 

of supply chains, Proceedings of the Second AEGEAN International 

Conference on Analysis and Modeling of Manufacturing Systems (Tinos 

Island, Greece), 1999. 

[RV99b] 
-, 

Performance analysis of supply chains using queueing models, 

Proceedings of POMS'99: International conference on Operations 

Management for the Global Economy (Delhi, India), 1999. 

[Sch03] P. Sch6nsleben, Integral logistics management : planning and control 

of comprehensive supply chains, 2nd ed., St. Lucie Press, Boca Raton, 

FL) 2003. 

[Sei03] D. Seifert, Collaborative planning, forecasting and replenishment : how 

to create a supply chain advantage, Amacom, New York, NY, 2003. 

[She04] J. B. Sheu, A multi-layer demand-responsive logistics control methodol- 

ogy for allemating the bullwhip effect of supply chains, European Jour- 

nal of Operational Research 161 (2004), 797-811. 

[SLKSL03] D. Simchi-Levi, P. Kaminsky, and E. Simchi-Levi, Designing and 

managing the supply chain, 2nd ed., McGraw-Hill/Irwin, New York, 

NY, 2003. 

213 



ISR05] H. X. Sun and Y. T. Ren, The impact of forecasting methods 

on bullwhip effect in supply chain management, Proceedings of the 

IEEE International Engineering Management Conference (St. John's, 

Newfoundland, Canada), vol. 1, September 2005, pp. 215-219. 

[SRP+04] L. Sabato, P. Renna, G. Perrone, M. Bruccoleri, and U. La Commare, 

Evaluating the impact of demand and inventory management policies 

on bullwhip effect in production networks, Proceedings of the ISOMA 

2004 9th International Symposium on manufacturing and applications 

(Seville, Spain), June 2004. 

[SSOI] D. Schechter and G. Sander, Delivering the goods : the art of managing 

your supply chain, John Wiley 8z Sons, Inc., Hoboken, NJ, 2001. 

[Ste89] J. D. Sterman, Modeling managerial behaviour: Misperceptions of 

feedback in a dynamic decision making experiment, Management 

Science 35 (1989), no. 3,321-339. 

[SWR06] J. D. Schwartz, W. Wang, and D. E. Rivera, Simulahon- based 

optimization of process control policies for inventory management in 

supply chains, automatica 42 (2006), 1311-1320. 

[Tah03] H. A. Taha, Operations research. An introduction, 7th ed., Prentice 

Hall, New Jersey, 2003. 

[TC04] S. Terzi and S. Cavalieri, Simulation in the supply chain context: a 

survey, Computers in Industry 53 (2004), 3-16. 

[VBWJ05] T. E. Vollmann, W. L. Berry, D. C. Whybark, and F. R. Jacobs, Man- 

ufacturing planning & control systems for supply chain management, 

McGraw-Hill, New York, NY, 2005. 

214 



[vdVHH04] P. v. d. Vlist, J. J. E. M. Hoppenbrouwers, and H. M. H. Hegge, Ex- 

tending the enterprise through multi-level supply control, International 

Journal of Production Economics 53 (2004)7 209-228. 

[vHSWY03] G. v. Houtum, A. Scheller-Wold, and J. Yi, Optimal control of se- 

rial, multi-echelon inventory/production systems with perZodic batch- 

ing (working paper), Laboratoire MGSI (Modelisation et Genie des 

Systemes Industriels), IUT de Montreuil, France, and Kog University, 

Istanbul, 'Dirkey, 2003. 

[vLB02] R. v. Landeghem and C. A Bobeanu, Formalmodeffing of supply chain: 

An incremental approach usZng Petri nets, Proceedings of the 14th 

European Simulation Symposium (Dresden, Germany) (A. Verbraeck 

and W. Krug, eds. ), 2002. 

[vMP04] M. v. Mevius and R. Pibernik, Process management M supply chains 

- (a) new Petri-net based approach, Proceedings of the 37th Hawaii 

International Conference on System Sciences (Hawaii), vol. 3,2004. 

[VRZOO] M. Vroblefski, R. Ramesh, and S. Zionts, Efficient lot-stzing under 

a differential transportation cost structure for serially distributed 

warehouses, European Journal of Operational Research 127 (2000), 

574-593. 

[WW03] W. Walsh and M. P. Wellman, Decentrahzed supply chain formation: 

A market protocol and competffive equilibrium analysts, Journal of 

Artificial 1ntelligence Research 19 (2003), 513-567. 

[WZ05] N. Watson and Y. Zheng, Decentralized serial supply chains subject 

to order delays and information distortion: Exploiting real-time sales 

data, Manufacturing & Service Operations Management 7 (2005), no. 2, 

152-168. 

215 



[XDE01] K. Xu, Y. Dong, and P. T. Evers, Towards better coordination of 

the supply chain, Transportation Research Part E: Logistics and 

Transportation Review 37 (2001), 35-54. 

[Zha04a] X. Zhang, Evolution of arma demand in supply chains, Manufacturing 

& Service Operations Management 6 (2004), no. 2,195-198. 

[Zha04b] 
I 

The impact of forecasting methods on the bullwhip effect, 

International Journal of Production Economics 88 (2004), 15-27. 

[zipool P. Zipkin, Foundations of inventory management, McGraw-Hill/Irwin, 

New York, NY, 2000. 

[ZT04] K. Zhu and U. W. Thonemann, Modeling the benefits of sharing future 

demand information, Operations Research 52 (2004), no. 6,136-147. 

[ZXL021 X. Zhao, J. Xie, and J. Leung, The impact of forecasting model selection 

on the value of information sharing in a supply chain, European Journal 

of Operational Research 142 (2002), 321-344. 

216 



Appendix A 

Proofs of Lemmas and Remarks 

A. 1 Proof of Lemma 2.2.1 

The model deals with n items (n > 1), whose individual inventory fluctuations do 

not allow shortages. Define for item i, i= 17 2, 
---, n (see [Tah03j) 

, 

Di : Demand rate (units per unit time) 

Ki : Setup cost 

hi : Unit holding cost per unit time 

yj : Order quantity (number of units) 

ai : Storage area requirement per inventory unit 

A: Maximum available storage area for all n items 

Under the assumption of no shortages, the mathematical model representing the 

inventory situation is given as: 

n (KiDi 
+ 

hiyi) 
Minimise TCU(yl, y2,... 7 Yn) 

yi Yi 2 

subj ect to: 
n 

ajyj <A 

yj > 0, i=1,2, 
..., n 

The steps for the solution of the model are: 

217 



* Step 1. Compute the unconstrained optimal values of the order quantities as: 

I-2-KiDi 
yi* =V -) i=1,2) 

... in hi 

Step 2. Check if the unconstrained optimal values yý satisfy the storage 

constraint. If this is the case, the solution yi*, Z = 1,2,..., n is optimal. 

Otherwise, go to step 3. 

* Step 3. The storage constraint must be satisfied in equation form. Use the 

Lagrange multipliers method to determine the constrained optimal values of 

the order quantities. 

In step 3, the Lagrangean. function is formulated as: 

n 

L(A, Yli Y27 ... i 
Yn) = TCU(y,, Y2; ... 7 Yn)-A I: aiyi-A 

n 

=n 
(KiDi 

+ 
hjyj 

A ajyj -A 
E-- 

i=l Yi 2 

where A<0 is the Lagrange multiplier. 

Since the Lagrangean function is convex, the optimal values of yj and A are 

determined from the following necessary condition: 

aL KiDi hi 
+- - Aaj =0 

(9yi Y? 2 
aL n 

aA 
Eaiyi +A =0 
i=l 

The second equation shows that the storage constraint must be satisfied in equation 

form at the optimum. 

Rom the first equation: 

Yi hi - 2/\*ai 

The formula provides that yi* is dependent on the value of A*. For A*- =- 0, yi* 

gives the unconstrained solution. Note that the application of the above method 

is correct in this case because TCU(yl, Y21 ---i Yn) is convex and the problem has a 

218 



single linear constraint and hence a convex solution space. However, this method 

may not be correct under other conditions or when the problem has more than one 

constraint. 

A. 2 Proof of Lemma 3.4.1 

Consider the (i + 1) - th node state-space model (j > 1) with corresponding A- 

matrix given by A2j+,. The proof is by induction on j. For j=1, the eigenvalues 

of A3may be easily calculated as f1- ki, 0,01 
- 

Thus A3 is asymptotically stable 

if and only if -1<I- ki <I or equivalently if and only if 0<k, < 2. Next 

assume that the eigenvalues of A2j-, are givenby fl-ki, 
.... 

1- kj-110,..., 01 

(with j zero eigenvalues) for j ý! 2, so that A2j-j is asymptotically stable if and only 

if (kl,..., kj-, ) C- (0,2)j-'. Introduce the permutation matrix Qj, resulting from 

the interchange of the (2j - 1)-th and 2j-th rows and columns of the unit matrix 

12j+,. Then, 

QjA2j+lQj 

A2j-1 00 

a' 21 

a' -kj -kj 31 

where a', and a', are irrelevant for our present purposes. Thus, since the 23 

transformation by Qj leaves the eigenvalues invariant, the spectrum Of A2j+1 is given 

as: 

A (A2j+l) 
=:: A (A2j-1) UfI 

-kj7 01 

=z 11 - ki.... 
31- 

kj, 01 
... 101 

in which the zero eigenvalue has algebraic multiplicity j+1, and hence A2j+1 

is asymptotically stable if and only if (kl,..., kj) E (0, 2)ý. This completes 

the inductive argument. In general, 
A2rn+l has m real eigenvalues at I- kj 

I 

1,2, ..., m, and another m+I eigenvalues at the origin. 

219 



A-3 Proof of Lemma 3.4.2 

It follows from standard results on eigenvalues of Kronecker products [HJ90] that 

A0A has eigenvalues f Ai (A) Aj (A) : i, jEf1,2,. 
- ., nj I. Thus from Lemma 3.4.1, 

the eigenvalues of A0A are the m2 products f (I - ki) (I - kj) : i, j Cz ý 1,21 
.... 

MIJ 

and zero (with Multiplicity n2 _ M2). Hence the eigenvalues Of In2- A0A are the 

M2 real numbers 1- (1 - ki) (I - kj) = ki + kj - kikj as i and j vary over the set 

f 1,27 
.... ml, and one (with multiplicity n2_ M2) 

. 
Thus In2- A0A is singular if 

and only if (1 - ki) (I - kj) 1 for some pair (i, j) such that 1<i, 3' < m. Note that 

this matrix is singular if ki 0 or ki =2 for some i, and certainly non-singular if all 

ki lie in the interval (0,2). 

A. 4 Proof of Lemma 3.4.3 

Follows immediately sincel, 2- A (& A is non-singular for all kc/, C,, while V and 

W have full row rank and column rank, respectively. 

A. 5 Proof of Remark 3.4.1 

The decomposition of QjA2j+lQj and the fact that All =: A2j_j follows directly from 

Lemma 3.4.1. Further note that 

A21 
02j-2 

and 
A22 

02j-2 k2 

)( 

-kj -kj 

so that both A2, 
and A22have rank one. The fact that QjB2j+l= B2j+l also follows 

immediately since the only non-zero element of 
B2j+1 is the second. 

Since A is asymptotically stable for (kj, k2 
i-.., 

kj) E (0 
1 
2)j, the discrete-time 

Lyapunov equation P-APA'-BB' =0 has a unique symmetric positive-semidefinite 

solution [DV85]. Using the indicated partitioning, this may be written as: 

All 0 Pll P12 A'll A'21 

A 21 
A22 0 A' P11 

2 
P2 2) 22 

Pll P12 B2j-lB2'j-l 0 

+ 
Pll 

2 
P2 2 00 

220 



which is equivalent to the three matrix equations: 

Pil - A,, Pl, A'll = 
B2j-, B2'j-1 

P12 
- AlIP12A' = AI, P,, A' 22 21 

and 

P22 
- 

A22P22A22 
== A21P,, A' 1 A', + A 21 + A22P12 

21P12A' 2 22 

Note that the first of these is a discrete Lyapunov equation; since All is 

asymptotically stable the solution of this equation is unique, and hence P11 = P2j-j 
- 

Moreover, since All and A22 are both asymptotically stable, the solutions of the 

second and third equations are also unique [DV85] and P22 is positive semidefinite. 

To show that P12 and P22 have both rank at most one, note that the second and 

third equations may be written as: 

A' 
P12,,::::::: All 

( 
Pll P12 

21 

A122 

and 

P22 A2, A22 p 
A2 

1 
( 

A'22 

Now, 

A2, A22 

02j-2 
-1 

11 

02j-2 kj -kj -kj 

has rank one, and hence P12 and P22 have rank at most one. Finally, note that 

if (kj, k2) 
---, kj) E (0,2)j, A2j+1 is asymptotically stable and hence the Lyapunov 

equation: 

P2j+l - A2j+lP2j+, A'+, - B2j+, B'+, =0 2j 2j 

has a unique solution. The recursive updating formula 

P2j+l ý-- Qj 
P2j-1 P12 

Qj 

( 

12 
P2 

2 PI 

now follows on noting that under the state-space transformation A2j+1 
--+ QjA2j+lQjl 

B2j+1 
--ý Qj B2j+l= B2j+1 the solution of the Lyapunov equation corresponding to 

(A2j+,, B2j+l) transforms as P2j+l --* QjP2j+lQj- 

221 



A. 6 Proof of Lemma 4.3.2 

112 The Frobenious Norm llp*' -P5' Fcan be defined as: 

2 
tracef (Rý-' P5 IIF A P5 

= tracef (D - Býj - Aý12) (D' - B'ý, - A'01)l 

= tracefDD-(DB'+BD')ýj+ 

(-DA'- AD'+ BB')k 2+ (BA'+ AB') k3+ AA'k 41 
111 

2 trace (DD') - trace (DB' + BD') ý, + trace (BB' - DA' - AD') k, 

trace(BA'+ AB)Q+ trace (AA') ý14 

ao + cejý, + a2 
ýj 2+ 

a3 13+ OZ4 
ýj 4. 

222 



Appendix B 

State space model computations 

B. 1 State space model for a three-stage series 
supply chain 

Consider a supply chain consisting of three stages (e. g., Manufacturer, Distributor 

and Retailer) we can easily obtain the overall state space model by aggregating the 

models of all nodes. Following the notation given in chapter 3 this corresponds to 

setting n=2. Recall that: 

xi(t + 1) = Aixi(t) + Bj,, wj, j(t) + Bi, 
rWi, r(t) 

and that wi, l = zi-,,,, wi,, = zi+,,, then: 

x, (t + 1) :=A, x, (t) + Bl, lwl, l (t) + Bi, 
r Z2,1 (t) 

= Aixi(t) + Bl, twl, l(t) + Bl, 
r 

C2,1 X2 (t) 

223 



and 

X2(t + 1)=A2X2(t)+B2,1 W2,1 (t)+B2, 
rW2, r 

(t) 

== 
A2X2(t)+ B2, 

lZl, r(t) + B2, 
rW2, r 

(t) 

- 
A2X2(t)+ B2,1(Cl, 

rXI(t)+ Dl,, rwl,, 
(t)) + B2, 

rW2, r 
(t) 

- 
A2X2(t)+ B2, 

lCl, rXI(t)+ B2, lD,,,, wl, r(t) + B2, 
rW2, r(t) 

- 
A2X2(t)+ B2,1 Cl, 

r X1 (t)+ B2,, Dl, rrWl, r(t) + B2, 
rW2, r 

(t) 

- 
A2X2 (t)+ B2,1 Cl, 

r X1 (t)+ B2,, Dl, 
rr Z2,1 (t)+ B2, 

rW2, r 
(t) 

=A2X2(t)+B2, lCl, rXl(t)+B2, ID,, rrC2, lX2(t)+B2, rW2, r(t) 

=A2X2(t)+B2,1 Cl,, 
r XI (t)+B2, 

lD,, rrC2, IX2(t)+B2, rW2, r 
(t) 

= B2, 
lCl,, Xl(t)+ (A2+ B2,, Dl, 

rrC2, I)X2(t)+ B2, 
rW2, r 

(t) 

SinceW2,, (t)= 
x, 5(t) and x, 5(t + 1)= Z2r(t) == C2, 

r-T2(t)+ 
D2, 

rr-XO(t) 

Hence the state space form for three-stage supply chain is given: 

XI(t + 1) A, Bl,, C2,1 0 X, (t) B1,1 

X2 (t + 1) B2, lC,,, 
A2 + B2,, Dl, 

rrC2,1 
B2, 

r X2 (t) +0 U)II 

X0 (t + 1) 0 C2, 
r 

D2, 
rr X0 W0 

and the output zl,,: 

X, (t) ý 

Zi, i cl, 00x, (t) 
xo(t) j 

and by substituting A, B, C and D matrices as have been calculated in equation 

3.4.13 and 3.4.14: 

x, (t + i) 

-T2(t 
+ 1) 

XO(t + 1) 

1 
-1 

0 1 

0 0 0 0 

0 0 1 
-1 

-ki ki 0 -ki 

0 0 -k2 
k2 

0 x, 
(t) ý 

1 X2 (t) 0 w111 

0 XO (t) 0 

-k2 
0 

224 



and the output zl,,: 

zi, i(t) 
= (o 

xi(t) 
X2 (t) +0) Wl, l 

(t) 

XO (t) 

B. 2 State space model for a four-stage series 
supply chain 

Intuitively, the four-nodes supply chain (e. g., Manufacturer, Distributor, intermedi- 

ate Supplier, and Retailer) can be described by the following state space: 
I(t+l) )= 

X2(t + 1) 

( ( Al Bi, 
rC2,1 

B2,1 Cl, 
r 

A2 + B2, ID,, rrC2,1 

00 

B2, 
rc3,1 0 

x ) B1,1 

X2 (1) 0 
1 

( t 

X3(t + 1) 

X (t + 1) 
0 B3,1 C2, 
0 

A3 + B3, ID2,, rCS, l B3 

) ) 

Wl'I 
x0 

( 

3 ( t ) 

O 0 C3, 
r D3, 

rv X, 6 (t) 0 

and the output zl,,: 

x, 

Z�, 
Cm 000 

X2 

X3 

XO 

and the overall model of the four-stage supply chain: 

1 -1 0 1 0 0 0 0 

111+1) 
0 

0 
0 

0 
0 

1 
0 

-1 
0 

0 
0 

1 
0 

0 
1 
0 X2(t + 1) 

X3 (t + 1) 

( 

-kl kl 0 -kl 0 0 0 
X2 (t) 

X3 M 0 wl i 

XO(t + 1) 
0 

0 

0 

0 

0 

-k2 

0 

k2 
1 

0 
-1 

-k2 

1 

0 X, 6 (t) 
' 0 

0 

0 0 0 0 -k3 k3 -k3 0 

and the output zl,,: 

x, (t) ý 

Zi, 1 0100000)+(0) W�(t) X3 (t) 

xo(t) 

Note that the model is driven by 00,1, which represents customer's demand. 

The general n-node model shown in Figure 3.3 can be aggregated as: 

(t + 1) = (D X (t) + rlWl� 
,X 

(t) 
= 

[X'l (t) X2 (t) X, 
', 

(t) x, ', +, 
(t)]' 

12 

225 



where, 

(1) 11 11)12 

'1)21 4D22 (1)23 

0 41)32 

00 

0 

0 

4Dnn (Pn 
n+l 

(I)n+l 
n 

(I)n+l 
n+l 

r, 
r12 

rn 

JUn+l 

More specifically, the elements of (D and r are defined as: 

Ai + Bi,, Di-,, 
rrCi, l for i=j; i= 172, n+1 

Bi, 
rCi+,, l fori-j-1; i=1,2,..., n 

Bi,, Ci-,,, 
r 

for i=i+1; i=2,3, 
.. . 'n +I 

0 for ji-jj >1. 

and 

Fi = Bi, l if i=1, ri =0 otherwise. 

Note that this state-space model has been derived under the simplifying 

assumption that Di, 11 =0 for all i=1,2, 
... ' n+1 and Dj, j, = Di,, l =0 for all 

i=1,2,..., n (we also define Do,,, = 0). These relations actually hold for the 

concrete supply chain model which is presented in this thesis. 

226 



Appendix C 

Simulation reports for chapter 6 

C-1 Simulation results for Scenario I 

C. 1.1 Statistical results for locations usage 

The following Table C-1 depicts the usage percentages of each location per day for 

the simulation period of 35 days. 

Table CA: Percentage usage (%) in each location for Scenario 1 

Annealing Cold-rolling BWG High-Bay 
Dayi: 89.9 0.0 0.0 1.1 
Day2: 99.7 0.0 0.0 5.3 
Day3: 100.0 0.0 0.0 9.7 
Day4-. 99.7 0.0 0.0 15.4 
Day5: 100.0 0.0 0.0 21.2 
Day6: 99.7 0.0 0.0 27.2 
Day7: 100.0 0.0 0.0 32.2 
Day8: 99.7 0.0 0.0 33.6 
Dayg- 100.0 0ý0 0.0 33.6 

DaylO: 99.8 0.0 0.0 33.6 
Dayll: 99.9 0.0 0.0 33.6 
Day12: 99.8 0.0 0.0 33.6 
Day13: 99.9 0.0 0.0 33.6 
Day14: 99.8 0.0 0.0 33.6 
Day15: 99.9 6.9 0.0 33.6 
Day16: 100.0 12.5 0.0 33.6 
Day17: 99.7 18.1 0.0 33.5 
Day18; 99.9 34.4 0.0 33.5 
Day19: 99.8 3.8 25.0 31.3 
Day20: 99.9 42.0 0.0 30.7 
Day2l: 99.8 13.9 92.0 28.2 
Day22: 99.9 27.8 17.0 24.5 
Day23: 99.8 43.8 0.0 23.9 
Day24: 99.9 13.2 47.6 22.7 
Day25: 99.8 0.0 67.7 15.5 
Day26: 100.0 0.0 0.0 13.2 
Day27- 99.8 0.0 010 14.4 
Day28: 69.1 0.0 0.0 15.8 
Day29: 51.2 0.0 0.0 16.3 
Day30: 0.2 0.0 0.0 17.7 
Day3l: 0.0 0.0 0.0 17.7 
Day32; 0.0 0.0 0.0 17.7 
Day33: 0.0 30.6 0.0 17.6 
Day34: 0.0 0.0 19.4 16.2 
Day35: 0.0 0.0 0.0 15.9 

--- j 

227 



C. 1.2 Statistical results for crane moves at each location 

Table C. 2 shows the number of crane movements at each location per day for the 

simulation period of 35 days. 

Table C. 2: Crane moves at each location for Scenario 1 

-- 
Coil entry Annealing Cold-rolling input Cold-rolling output BWG 

D. yI 26 20 0 0 0 
Day2; 20 24 0 0 0 
Day3: 19 0 0 0 0 
Day4: 28 24 0 0 0 
Day5: 24 0 0 0 0 
Day6: 28 24 0 0 0 
Day7: 19 0 0 0 0 
Day8: 4 24 0 0 0 
Dayg: 0 0 0 0 0 

DaylO: 0 16 0 0 0 
Dayll- 0 8 0 0 0 
Day12: 0 16 0 0 0 
Day13: 0 8 0 0 0 
Day14: 0 16 0 0 0 
Day15: 0 8 20 20 0 
Day16: 0 0 20 20 0 
Day17: 0 24 27 25 0 
Day18: 0 8 33 35 0 
Day1g: 0 16 4 2 12 
Day2O: 0 8 36 38 0 
Day2l: 0 16 20 20 24 
Day22: 0 8 40 40 6 
Day23: 0 16 48 46 0 
Day24: 0 8 12 14 21 
Day25-. 0 16 0 0 27 
DayM 0 0 0 0 0 
Day27; 0 8 0 0 0 
Day28: 0 4 0 0 0 
Day29: 0 4 0 0 0 
Day3O: 0 4 0 0 0 
D ay3 1: 0 0 0 0 0 
Day32: 0 0 0 0 0 
Day33: 0 0 40 40 0 
Day34; 0 0 0 0 8 
Day35: 0 0 0 0 0 

Total: 168 328 300 300 98 

C. 2 Simulation results for Scenario 2 

C. 2.1 Statistical results for locations usage 

Table C. 3 depicts the usage percentages of each location per day for the simulation 

period of 29 days. 

C. 2.2 Statistical results for crane moves at each location 

Table CA shows the number of crane movements at each location per day for the 

simulation period of 29 days. 

228 



Table C. 3: Percentage usage (%) in each location for Scenario 2 

Annealing Cold-rolling BWG High-Bay 
-Ua-y -1- 87.2 0.0 0.0 0.5 
Day2: 99.7 010 0.0 4.4 
Day3: 99.9 0.0 0.0 8.8 
Day4: 99.7 0.0 0.0 14.5 
Day5: 99.9 0.0 0.0 20.3 
Day6: 99.7 0.0 0.0 26.3 
Day7: 100.0 0.0 0.0 31.3 
Day8; 99.8 0.0 0.0 32.7 
Day9: 99.8 0.0 0.0 32.7 

DaylO: 99.8 010 0.0 32.7 
Dayll: 99.8 0.0 0.0 32.7 
Day12: 99.9 6.9 0.0 32.7 
Day13: 99.7 12.5 0.0 32.7 
Day14: 99.9 31.9 0.0 32.6 
Day15: 99.7 20.5 14.6 32.4 
Day16: 9919 48.6 10.4 29.8 
Day17: 99.7 0.0 62.8 28.0 
Day18: 99.8 37.5 46.2 23.4 
Day19: 99.8 43.4 0.0 23.2 
Day20: 100.0 12.5 44.4 22.8 
Day2l: 75.8 0.0 53ý8 17.8 
Day22: 27.1 0.0 0.0 18.3 
Day23: IT6 M 0.0 18.7 
Day24: 0.0 15.3 0.0 19.2 
Day25: 0.0 0ý0 26.4 17.9 
Day26: 0.0 20.1 0.0 16.5 
Day27-. 0.0 12.5 1TO 16.3 
Day28: 0.0 0.0 17.0 13.5 

, 
Day29; 

, 
0.0 

1 0.0 1 .0 1 13A 1 

C-3 

C. 3.1 

Simulation results for Scenario 3 

Statistical results for locations usage 

Table C-5 depicts the usage percentages of each location per day for the simulation 

period of 33 days. 

C. 3.2 Statistical results for crane moves at each location 

Table C. 6 shows the number of crane movements at each location per day for the 

simulation period of 33 days. 

CA Simulation results for Scenario 4 

C. 4.1 Statistical results for locations usage 

Table C. 7 depicts the usage percentages of each location per day for the simulation 

period of 35 days. 

229 



Table CA: Crane moves at each location for Scenario 2 

Coil entry Annealing Cold-rolling input Cold-rolling output BWG 
DayL 26 24 0 0 0 
Day2: 20 24 0 0 0 
Day3: 19 8 0 0 0 
Day4: 28 24 0 0 0 
DayS: 24 8 0 0 0 
Day6: 28 32 0 0 0 
Day7: 19 0 0 0 0 
Day8: 4 16 0 0 0 
Day9: 0 16 0 0 0 

DayIO: 0 16 0 0 0 
Dayll; 0 16 0 0 0 
Day12: 0 8 20 20 0 
Day13: 0 24 20 20 0 
Day14: 0 8 40 40 0 
Day15: 0 24 20 20 8 
DayIG: 0 8 40 40 4 
Day17: 0 24 0 0 21 
Day18: 0 16 60 60 9 
Day19: 0 12 47 45 0 
Day20: 0 0 13 15 20 
Day2l: 0 12 0 0 21 
Day22: 0 4 0 0 0 
Day23: 0 4 0 0 0 
Day24: 0 0 20 20 0 
Day25: 0 0 0 0 12 
Day26: 0 0 26 24 0 
Day27: 0 0 14 16 7 
Day28; 0 0 0 0 7 
Day29: 0 0 0 0 0 

Total: 168 328 320 320 log 

C. 4.2 Statistical results for crane moves at each location 

Table C-8 shows the number of crane movements at each location per day for the 

simulation period of 35 days. 

230 



Table C-5: Percentage usage (%) in each location for Scenario 3 

Annealing 
-- 

Cold-rolling BWG High-Bay 
Dayl: T9 

.9 0.0 0.0 1.1 
Day2: 99.7 010 0.0 5.3 
Day3: 100.0 0.0 0.0 9.7 
Day4: 99.7 0.0 0.0 15.4 
Day5: 100.0 0.0 0.0 21.2 
Day6: 99.7 0.0 0.0 27.2 
Day7: 100.0 0.0 0.0 32.2 
Day8: 99.7 0.0 0.0 33.6 
Day9-, 100.0 0.0 0.0 33.6 

Day1O: 99.8 0.0 0.0 33.6 
Dayll: 99.9 0.0 0.0 33.6 
Day12; 99.8 0.0 0.0 33.6 
Dayl3: 99.9 0.0 0.0 33.6 
Day14: 99.8 6.9 0.0 33.6 
Day15: 99.9 13.2 0.0 33.6 
Day16: 100.0 31.3 0.0 33.5 
Dayl7: 99.7 20.5 25.0 32.6 
Dayl8: 99.9 43.4 0.0 30.7 
Day19: 99.8 5.2 46.2 30.2 
Day20: 99.9 27.8 62.8 25.5 
Day2l: 99.8 6.9 0.0 24.1 
Day22: 99.9 43.1 3.8 23.8 
Day23: 99.8 15.3 83.7 19.3 
Day24: 99.9 0.0 18.1 15.5 
Day25: 99.8 0.0 0.0 14.1 
Day26- 100.0 0.0 0.0 14.1 
Day27: 99.8 0.0 0.0 15.3 
Day28: 69.1 2.8 0.0 16.7 
Day29: 51.2 12.5 0.0 17.2 
Day30: 0.2 0.0 18.1 17.1 
Day3l: 0.0 30.6 0.0 16.6 
Day32: 0.0 0.0 19.4 16.2 
Day33: 010 0.0 0.0 15.0 

Table C. 6: Crane moves at each location for Scenario 3 

Coil entry Annealing Cold-rolling input Cold-rolling output BWG 

Dayl: 26 20 0 0 0 
Day2: 20 24 0 0 0 
Day3: 19 0 0 0 0 
Day4: 28 24 0 0 0 
Day5: 24 0 0 0 0 
Day6: 28 24 0 0 0 
Day7: 19 0 0 0 0 
Day8: 4 24 0 0 0 

Day9: 0 0 0 0 0 

DaylO: 0 16 0 0 0 

Dayll: 0 8 0 0 0 

Day12: 0 16 0 0 0 

Day13: 0 8 0 0 0 

Day14, 0 16 20 20 0 

DayI5: 0 8 22 20 0 

Day16: 0 0 38 40 0 

Day17: 0 24 20 20 12 

Day18- 0 8 33 32 0 

Day19: 0 16 7 8 12 

Day20: 0 8 40 40 18 

Day2l. 0 16 9 7 0 

Day22: 0 8 51 53 3 

Day23: 0 16 20 20 33 

Day24: 0 8 0 0 8 

Day25: 0 16 0 0 0 

Day26: 0 0 0 0 0 

Day27: 0 8 0 0 0 

Day28: 0 4 5 3 0 

Day29. 0 4 15 17 0 

Day30: 0 4 0 0 8 

Day3l: 0 0 40 40 0 

Day32: 0 0 0 0 8 

Day33: 0 01 0 0 0 

Total: 168 328 1 320 320 10ý 

231 



Table C. 7: Percentage usage (%) in each location for Scenario 4 

-- 
Annealing 

- 
Cold-rolling BWG High-B-ay 

Dayl 89 9 0.0 0.0 11 
Day2: 99.7 0.0 0.0 1.5 
Day3: 100.0 0.0 0.0 8.0 
Day4: 99.8 0.0 0.0 10.2 
Day5: 99.9 0.0 0.0 17.9 
Day6: 99.8 0.0 0.0 22.1 
Day7: W9 0.0 0.0 29.3 
Day8: 99.7 0.0 0.0 32.7 
Day9: 100.0 0.0 0.0 33.6 

DayIO: 99.8 0.0 0.0 33.6 
Dayll: 99.9 0.0 010 33.6 
Day12: 99.8 0.0 0.0 33.6 
Day13: 99.9 0.0 0.0 33.6 
Day14: 99.8 0.0 0.0 33.6 
DayI5: 99.9 6.9 0.0 33.6 
Day16: 100.0 12.5 0.0 33.6 
Day17: 99.7 22.2 0.0 33.5 
Day18: 99.8 30,2 2A 33.5 
Day19: 99.9 8.3 22.9 31.1 
Day20: 99.9 37.5 4.9 30.7 
Day2l: 99.8 16.0 92.0 27.9 
Day22: 99.9 25.7 12.2 24.4 
Day23: 99.8 47.6 0.0 23.8 
Day24: 99.9 9.4 52.4 22.4 
Day25: 99.8 010 62.8 15.2 
Day26: 100.0 0.0 0.0 13.2 
Day27: 99.8 0.0 0.0 14.5 
Day28: 72.8 0.0 0.0 15.7 
Day29: 47.7 0.0 0.0 16.4 
Day30: 0.0 0.0 0.0 17.7 
Day3l: 0.0 0.0 0.0 17.7 
Day32: 0.0 3,1 0.0 17ý7 
Day33: 0.0 27.4 0.0 17.6 
Day34: 0.0 0.0 19.4 16.1 
Day35ý 0.0 0.0 0.0 15.9 

Table C. 8: Crane moves at each location for Scenario 4 

Coil entry Annealing Cold-rolling input Cold-rolling output BWG 

Dayl: 26 20 0 0 0 
Day2i 0 16 0 0 0 
Day3: 39 8 0 0 0 
Day4: 0 16 0 0 0 
Day5: 52 8 0 0 
Day6: 0 16 0 0 0 

Day7: 47 8 0 0 0 
Day8: 0 24 0 0 0 
Day9: 4 0 0 0 0 

DayIO: 0 16 0 0 0 

Dayll: 0 8 0 0 0 

Day12: 0 16 0 0 0 

Day13: 0 8 0 0 0 

Day14: 0 16 0 0 0 

Da, y15: 0 8 20 20 0 

Day16- 0 0 20 20 0 

Day17: 0 24 32 30 0 

DayI8: 0 16 28 30 2 

Day19; 0 8 7 5 10 

Day20: 0 8 33 35 2 

Day2l: 0 16 24 22 24 

Day22: 0 8 36 38 4 

Day23: 0 16 52 50 0 

Day24: 0 8 8 10 23 

Day25: 0 16 0 0 25 

Day26: 0 0 0 0 0 

Day27: 0 8 0 0 0 

Day28; 0 4 0 0 0 

Day29: 0 8 0 0 0 

Day30,. 0 0 0 0 0 

Day3l: 0 0 0 0 0 

Day32: 0 0 5 3 0 

Day33: 0 0 35 37 0 

Day34: 0 0 0 0 8 

Day35: 01 0 01 0 0 

Total: 168 1 328 300 1 300 98 

232 



Appendix D 

MATLAB programme code for 

chapter 6 

This Appendix provides all the code lines developed in MATLAB environment for 

the modelling and simulation of Bridgnorth Aluminium production process studied 

in chapter 6. 

input 
-from-hotli ne = deliver-pro cess (run-ind ex-I ocal, no-coils-loaded, st ate-buff , param, input Jile); 

input-from-hotline = check-empty(input-from-hotline); 
no-coils-temp=size(input-from-hotline, l); 

no-coils-loaded=no-coils-loaded+no-coils-temp; 
state-buff=update-buff(state-buff, input-from-hotline, output-to-highbay); 

[state-highbay, out-to-buffl-n, out-to-in-cold-roll-buff, out-to-in-BWG-buff, in-from-buff, in-from-anneal-buff,... 

in-from-out-cold-roll-bufF, state-out-anneal-buff, state-out-colcl-roll-buff, index-list-coils-cr.... 

real-crane-moves)=... 
update-highbay-new(state-highbay, run-index, state-buffl-n, state-in-cold-roll-buff, state-in BWG_buff.... 

state-out-anneal-buff, state-out-cold-roll-buff, index-list-coils-cr, param); 
tot-real-crane-moves=sum(real-crane-moves)i 

I[state-in-BWG-buff, output-to-BWGJ=update-in-BWG-buff(state-in-BWG-buff, out-to-in-BWG-buff, BWG-Rag-empty)i 

' [state-BWG, tirne-BWG, out-to-out -buff) =up date-bwg(state-BWG, time-BWG, output-to-BWG); 

st ate-out-buff=update-output-buff(state-out-buff, out -to-out-buff); 

[state-buffl. 
-n, output-to-anneal) =update-buffl _n 

(state-buffl-n, out-to-buffl-n, anneal -fl ag-empty); 
'fstate-anneal, index-state-anneal, time-anneal, output-from-anneal]= ... 
update-anneall-n(state-anneal, index-state-anneal, time-anneal, output-to-anneal, state-out-anneal-buff, param); 

st ate-ou t-anneal -buff= up dat e-out-anneal -buff(st ate-ou t-an neal-b uff, outp ut-fro m-an neal, out put -to-h 
igh bay); 

[state-in-cold-roll-buff, output-to-cold-roll]= ... 
update-in-cold-roll-buff(state-in-cold-roll-buff, out-to-in-cold-roll-buff, cold-roIlAag-empty); 
I [state-cold-roll, time-cold-roll, output-from-cold-roll]= ... 
up date-co I d-rol I (state-col d-roll, t ime-cold-rol 1, out put -to-cold-rol 

1, st ate-ou t-co I d-roll-buff, param); 

state-ou t-col d-rol I 
-buff= up date-ou t-col d-rol Lbuff(st ate-ou t-col d-rol I 

-buff, out put-from-col d-rol 1, out pu t-to-h i ghbay); 

Next a brief description of each of these functions is given together with their 

inputs and outputs. 

Function deliver-process: Defines the coils which have completed the Hot- 

Line process and can be entered into the High-Bay by the crane. These coils 

initially update the input buffer and await to be allocated to the High-Bay 

storage area. The function deliver-process according to the state of buffer 

(state-buf f), loading rate of coils in the entry of High-Bay and the capacity 

of input buffer - specified in parameters param - checks initially if the buffer 

233 



capacity has been reached. If this is not the case, the function reads the excel 

input file input-f ile and takes the first coil on the list that is to be entered. 

Due to scheduling restrictions of the number of coils dispatched to the High- 

Bay entry each day, deliver-process checks with the aid of no-coils-loaded 

whether the number of coils loaded in a specific day has reached the predefined 

number set by the user in the spreadsheet file (. xls). Table D. 1 gives a brief 

description of inputs and outputs for deliver-process. 

Table DJ: Inputs and outputs of function deliver-process 

input-from-hotline-deliver-process(run-index-local, no_coils_loaded, state-buff. pa-ram, input-file) 
Inputs: 

ran-index-local: Specifies current run index 

no-coils-loaded: The number of coils loaded at the beginning of time step 

state-buff: The number of coils in buffer before entering the High-Bay 

param: The structure of parameters 
input-file: The name of the spreadsheet input file 

Outputs: 

input-from-hotline: The coils loaded to the input buffer before High-Bay 

Function update-buf f: This function updates the state of the buffer which is 

located between the Hot-Line and the High-Bay in Litho centre and can be 

called either with input-f rom-hotline=n or output _t o-highbay- U or even 

from both 0. The function update-buf f does not define its output, which is 

"pulled in" by the High-Bay. It is the responsibility of the High-Bay (through 

function update-highbay defined later) to check that requested row-size of 

output-to-highbay does not exceed buffer's state-dimension. Similarly, it is 

the responsibility of the Hot-Line (via function update-buf f) to ensure it does 

not load the buffer when the later is at full capacity. Table D. 2 summarises 

the properties of the function update-buf f- 

Table D. 2: Inputs and outputs of function update-buff 

state_ýbuff-update-buff(state-buff, input-from-hotline, outpul: 
ý 

Inputs: 

state-buff: List of coils at the beginning of current time-step 

input-from-hotline: Empty matrix when there is no coils from HotLine or list of coils 

output -to -highbay 
or 0: Empty matrix (no input requested from High-Bay) or list of coils 

Outputs: 

stat77b-uff: List of coils at the end of current time-step 

9 Function update-highbay-new updates the High-Bay state and outputs. This 

is the most complex function of the software tool since it updates the state of 

234 



the High-Bay according to its complex interrelations with the other processes. 

The function operates as follows. Firstly, it checks the number of coils inside 

the High-Bay storage area at the beginning of each time interval and secondly, 

whether a list of coils for cold-rolling (initially 20 or 40) has been identified in 

an earlier step. Next, it is determined which of the cold-rolled coils have cooled 

(so they can be moved to out-to-in-BWG-buf f and then proceed to BWG) 

and also, which of the coils that they have been annealed have been also cooled 

(so they can move to out -to-in-cold-roll-buff), and which coils need to 

be loaded to annealing machine through out-to-buf f 1-n. 

Note that till this stage the function specifies the coil which could potentially 

be moved to the input cold rolling buffer, and its index. Also, in case 

when an empty matched list is identified, new list of matched coils for cold 

rolling is created (possibly empty) indexed with respect to input argument 

state-highbay. If there is a non-empty matched list, then the output list 

either stays the same (if no coil is moved to input cold rolling buffer) or its 

first row is deleted. 

Finally, the function determines whether there are coils to be moved to/from 

input and/or output buffers of the annealing machine. The function checks 

capacities of input buffer of High-bay. lf at least one quartet of coils can be 

moved, they are loaded in the buffer (after clearing their time stamp) and 

the state of output buffer of annealing machine is updated by constructing 

a new state and a new-list. Else the function performs in/out loading 

operations in sequence according of to priorities list specified by user in 

GUI (subject to capacity constraints), until all permissible crane movements 

have been exhausted or all tasks have been performed. The syntax of 

update-highbay-new function together with its inputs and outputs is given 

in Table D-3. 

Function update-in-M-buf f updates the state and output of the buffer 

235 



Table D. 3: Inputs and outputs of function update-highbay-new 
(state-highbay, out -to_buffj_13. ý out _to-i-n-cold-roll-buff, out-to-in3WG-buff, in-from-buff, in-from_Anneal 

_buff .... in-from-out-cold-roll-buff, state-out-anneal-buff, state-out-cold-roll-buff, index_list_coils_cr, ... 
real 

-crane-moves] -. .. update-highbay 
-now 

(st at e-highbay, run-index, st at a _buff 
I-n, st at 9- in-cold-roll 

-buff, state _iu_BWG_bu: 
f f,.. 

stato-out-anneal-buff, state-out-cold_roll_buff, index_list_coils-cr, param) 
fnputs, 

* 
state-highbay: List of coils being stored in High-Bay or empty matrix. These coils are listed vertically 
run-index; Current iteration index (integer) 

state-buffl-n: List of coils intended for annealing at the beginning of time step 
state-in-cold-roll-buff; List of coils intended for cold rolling at the beginning of time step 
state-in-UG-buff: List of coils intended for BWG at the beginning of time step 
state_out_annea. 1-buff; List of coils that have finished annealing and waiting to return into the High-Bay 

at the beginning of time step. Note that this state is updated internally 

st at e-out-c old_roll -buff: 
List of coils that have finished cold rolling and waiting to return into the High-Day 

at the beginning of time step. Note that this state is updated internally 
index-list-coils-cr: Index of coils in identified matched list in state-highbay 
param: The structure of parameters 
Outputs: 

state-highbay; List of coils being stored inside High-Bay at the end of time-interval li ted vertically) 
out-to-buffl-n- List of matching coil quartets loaded to buffl-IL (input side of anneal-il) 
out_to-in-cold-roll-buff: List of coils loaded to input cold rolling buffer 

out-to-in-BWG-buff: List of coils loaded to input BWG buffer 

in_from-buff: List of coils loaded into High-Bay from the buffer after Hotline 

in-from-Anneal-buff: List of coils loaded from annealing buffer (outside of annealing machine) 
in-from-out-cold-roll-buff: List of coils loaded to High-Bay from cold rolling output buffer 

state-out-anneal-buff: List of coils that have finished annealing and waiting to return into the High-Bay 

at the end of time step. Note that this state is updated internally 

state-out-cold-roll-buff: List of coils that have finished cold rolling and waiting to return into the High-Bay 

at the end of time step. Note that this state is updated internally 

index-list-coils-cr: Index of coils in identified matched list in state-highbay 

real -crane-moves: 
Real number of crane movements 

which is located between High-Bay and BWG. This function checks first if 

there is any coil currently processed to BWG. If there is no such coil then 

function checks whether any coil is currently waiting to be loaded to BWG 

(coils that have finished cold-rolling process and they have waited enough for 

cooling purposes). In case that many coils are found in High-Bay that can be 

transferred to BWG, the function selects the coil which is is on top of the list. 

Table DA summarises the properties of the function update-in-M-buf f. 

Table DA: Inputs and outputs of function update-in-B WG-buff 

Istate-in-BWG-buff, output-to-BWGI -update-in-M -buff 
(state 

-in-BWG -buff, 
out-to-in-BWG_buff, BWG-flag-empt-Y) 

Inputs: 

state-in-BWC-buff: List of coils in buffer at current time step 

out-to-in-M-buff; Empty matrix if there is no output from High-Bay or list of coils 

BWG-flag-empty: Flag indicates whether BWG is bUsy or not. (L BWG machine empty, 0: 13WG machine busy 

Outputs: 

state-in-BWG_buff: list of coils after transition (end of current time step) 

output-to-BWG: Empty matrix if there is no transfer from BWG, or else a coil to be transferred to BWG. 

* Function update-bwg updates the state and output of BWG process. If 

BWG is empty the function loads a coil from its input buffer output-to-M 

else it updates its state internally for the BWG work cycle (30 minutes). 

When the coil completes the BWG process it is loaded to the output buffer 

out-to-out-buff. Table D. 5 summarises the properties of the function 

update-bwg. 

236 



Table D. 5: Inputs and outputs of function update-bwg 
[state-BWG, time-BWG, out -t o-out _buff] -update-bvg (state-BWG, time-BWG, output -to-BWG) I Put-. . 

. tate-BWG: Coil being processed in BWG or an empty matrix at the beginning of time step. 
time-BWG: Empty matrix if BWG empty; If BWG is busy, it gives the time-step since the be ýinning 

of 
ýBWGýý 

output-to-BWG: List of coils in the buffer located between High-Bay and -13-WVV-(3, 
Outputs: 

state-BWG: Coil inside BWG machine at the end of ti me-interval. 
tiiiLe-BWG: Updates the BWG cycle time. If BWG is loaded from empty the time is reset to 1. If BWG is busy then the time clock increases by one. In case where BWG process is just finished, time-BWG becomes an empty matrix. 
out-to-out-buffi Output 9-u-7ft-fer-7-itis 

empty if BWG process still in progress, or BWG not busy, 
else it loads a coil that has passed the BWG process. 

e Function update-output-buf f updates the output buffer after the BWG 

process. Note that this buffer collects all coils (arranged in a list) that have 

completed the whole process and thus it can be deemed as the output buffer of 

the simulation model. Table D. 6 shows the inputs and output of the function 

update-output-buff. 

Table D-6: Inputs and outputs of function update- o utput- buff 

state-out-buff=update-output-buff(state-out_buff, out-to-out-buff) 
Inputs: 

state-out-buff: List of coils in output buffer at the beginning of current time step. 
Out-to-out 

-buff: 
Coil that has just finished BWG process. 

Outputs: 

state-out-buff: List of coils in output buffer at the end of current time-interval. 

e Function update-buf f 1-n upýdates the state of the buffer which is located 

between High-Bay and annealing machines. This function checks first with 

the aid of input out-to-buf f 1-n if there are coils than can be loaded into 

one or more annealing machines. The input anneal-f lag-empty indicates 

whether there are one or more empty annealing machines to load the coils from 

out-to-buf f 1-n. The summary of the function update-buf f 1-n is given in 

Table D. 7. 

Table D. 7: Inputs and outputs of function update-buffl-n 

[st ate_buff 1 
_n, output _t o_a=eal] -update -buff 

1-n (s tate_buff I 
-n, out-to -buff 

1 
-n, anne al-f lag- empty) 

state-buffl-n: List of coils in buffer at current time step. 

out-to-buffi-n: Empty matrix if there is no output from High-Bay or list of coils. 

anneal-flag-empty: A n-dimension row vector where n is the number of annealing machines. If anneal-flag-empty(i)=1, 
it means that the i-th annealing machine is empty and if anneal-flag-empty(i)=O the i-th annealing machine is busy. 

Outputs: 

state_buffl-n: List of coils after transition (end of current time step). 

output-to-annea-1: Empty matrix if there is no transfer to annealing machine, else a list of coils to be transferred. 

* Function update-anneall-n updates the state of annealing machines. The 

number of annealling machines is specified by the user in GUI, and it is passed 

237 



to the function through the input param. The function update-anneall-n 

operates as follows. It checks if there is any annealing machine free and loads 

a quartet of coils from input output -to -anneal 
into it. It also updates the 

state of the annealing machines state-anneal and loads the coils that have 

completed the annealing process to the output output-f rom-anneal according 

to the state of the output annealing buffer state-out-anneal-buf f. Table D. 8 

summarises the inputs and outputs of the function update-anneall-n. 

Table D. 8: Inputs and outputs of function update- ann eall -n 
(state--nneal, index-state-anneal, time-Anneal, output-from_anneal]-... 
-apdate-anneall-n(state-aiLneal, index 

-state -anneal. 
time-anneal, output_to _anneal, state_out _&nneal -buff param) 

Inputs: 

state-anneal: List of coils being annealed or empty matrix. Coils are listed vertically and the state dimension 

of the 1-th annealing machine is specified by the input index-state 
-anneal 

(i). 

index-state-anneal: Number of coils in i-th annealing machine for input state-anneal. 
time-anneal: A n-vector (where n is the number of parallel annealing machines) whose i-th entry specifies the time step since 
beginning of annealing in i-th machine in case i-th machine is busy. If i-th machine is empty then time-anneal(i)=-l. 

output -to -anneal: 
List of coils from the buffer located between High-Bay and annealing machines. 

state-out-anneal-buff: Current state of the output buffer Zýf_ annealing machines. Used to calculate the output so that 

no overflow occurs. param: Parameters structure 
Outputs: 

state-anneal: List of coils inside annealing machines at the end of time interval; Coils are listed vertically and the state 
dimension of the i-th annealing machine is specified by the output index-state-anneal(i). 

index- state -anneal: 
Number of coils in i-th annealing machine for output state-anneal. 

time-anneal: A n-dimensional vector. If the i-th machine is busy then time-anneal(i)=time-anneal(i)+l. If the annealing process 
has finished and there is no loaded output (for not causing overflow to at at e-out -anneal -buff), 

time-anneal(i)=time-anneal(i) 
(time is frozen). When a quartet of coils is loaded to the i-th, then time-anneal(i) reset to 1, 

If the i-th annealing machine is empty at the end of interval then time-anneal(i)=-l. 

output _f rom-anne al: List of coils contribution from the i-th annealing machine is an empty matrix if annealing is still in progress 

or annealing in i-th machine has finished but output will cause overflow to state-out-an-neal-buff, Else output is stacked to the 

output _f rom-anneal array in machine order. 

* Function updat e-out -anneal -buff updates the state of the buffer which is 

located between annealing machines and High-Bay. Rinction should be called 

either with Output -f rom- anneal= 0 or output -t o-highbay= U (or both U)- 

Note that this buffer does not define its output, which is "pulled in" by the 

High-Bay. It is the responsibility of the High-Bay (through the function 

update-highbay) to check that requested row-size of output -to -highbay 

does not exceed buffer's state dimension. Similarly, it is the responsibility 

of the annealing machine (via update-anneal-n) to ensure that row-size of 

output-f rom-anneal pushed into the buffer will not cause overflow (i. e., 

buffer's state dimension + output-f rom-anneal <- buffer's capacity). The 

inputs and output of the function update-out-anneal-buf f are given in 

Table D 
. 
9. 

e Function update-in-cold-roll-buf f updates the state and output in the 

238 



Table D. 9: Inputs and outputs of function update- out-anneaLbuff 

Stat e _out -aimeal _buff ýupdate -out -anneal-buff 
(state-out-annea-l-ýbuff, output -from-anneal, output-to-bLighbay) 

-T. - pU -t- . 
stat e-out -anneal _buff: 

List of coils at current time step. 
output 

-from- anne al: Empty matrix if there is no output from annealing machines or list of coils. 
output -to-highbay: 

Empty matrix if there is no input requested from High-Bay or list of coils. 
output... 

. tat e-out -anneal _buff: 
List of coils in buffer after transition (end of current time step). 

buffer which is located between High-Bay and cold-rolling machine. This 

function checks first if there is any coil from High-Bay waiting to be loaded into 

the cold rolling machine via input out-to-in-cold-roll-buf f. The input 

cold-roll-f lag-empty indicates whether cold rolling machine is empty or 

not. The summary of the function update- in-cold-ro 1 1-buf f is given in 

Table D. 10 

Table D-10: Inputs and outputs of function update-M-co ld-rolL buff 

[state-in-cold-roll-buff, output_to_cold-rolll- _ 
update - 

in-cold-rol 1-buf f (state_in_co1d_ro11_buff, out-to-in-cold-roll -buff, c old-roll _f 
lag- empty) 

Inputs: 

state- in-cold-roll_buf f: List of coils in buffer at current time step. 
out-to-in-cold-roll-buff: Empty matrix if there is no output from High-Bay or list of coils, 

cold-roll-flag-empty: An integer indicates if cold rolling machine is busy or not (1: Cold rolling machine empty; 
0: old-ro ing mac ine busy) 

Outputs: 

state-in-cold-roll-buff: List of coils after transition (end of current time step). 

output _to -cold-ro 
11: Empty matrix if there is no transfer to cold rolling machine, else a list of coils to be transferred. 

e Function update-cold-roll updates the state of cold rolling machine. This 

function operates as follows. It checks if the cold rolling machine is free and 

loads a coil from input output -to -cold-ro 
11 into it. It also updates the state 

of the cold rolling state-cold-roll and loads the coil that has completed the 

cold rolling process to the output output-f rom-cold-roll according to the 

state of the output cold rolling buffer state-out-cold-roll-buf f. Table D. 11 

surnmarises the inputs and outputs of the function update-cold-roll. 

9 Function update-out-cold-roll-buf f updates the state of the buffer which 

is located between cold rolling machine and High-Bay. This function should 

be called either with output -f rom-cold-roll= U or output -to-highbay= 
ý 

or both []. Note that this buffer does not define its output, which is "pulled 

in" by the High-Bay. It is the responsibility of the High-Bay (through function 

update-highbay) to check that requested row-size of output _t o-highbay does 

239 



Table D. 11: Inputs and outputs of function update- cold-roll 
(state 

-cold-roll, time 
-cold-roll, output _f rem-cold-ro 11T- 

update-cold-roll (state- cold-roll , time-cold-roll, output-to-cold-roll, state-out-cold-roll-buff, param) Tnputs' 

state-cold-roll: List of coils being cold-rolled or empty matrix. 
time-cold-roll: Specifies time since the last start of cold-rolling process. 
output-to-cold-roll: Coil from the buffer located between High-Bay and cold rolling machine oE einptý matrix. 
state-out-cold-roll-buff: Current state of the output buffer of the cold rolling machine. It is ud to calculate 
the output so that no overflow occurs. 
param: Parameters structure. 

_TU__tPut-- 

. tate-cold-roll: Returns Zhe current coil which is being cOld-rolled at the end of time interval or empty matrix. 
time-cold-roll: Time since last cold rolling begun at the end of current time step. if machine is busy 
then time_cold-roll=time-cold-roll+l. If cold rolling process is completed and there is no loaded output, 
time-cold-roll=time-cold-roll (time is frozen). When a coil is loaded, then time-cold-roll reset to 1. 
If the machine is empty at the end of interval then time_cold-roll=-I. 
output 

_f rom-co ld-roll: Cold-rolled coil Toaded to output buffer state-out-cold-roll-buff or empty matrix. 

not exceed buffer's state-dimension. Similarly, it is the responsibility of the 

cold-rolling machine (via update-cold-roll function) to ensure that row-size 

of output-f rom-cold-roll pushed into the buffer will not cause overflow 

(i. e., that buffer's state-dimension + output-f rom-cold-roll <= buffer's 

capacity) - 

The inputs and output of the function update-out-cold-roll-buf f are given 

in Table D-12. 

Table D. 12: Inputs and outputs of function update- out- co Id-ro IL buff 

state- out _c old-roll-buff-update- out -c ol d-rol I 
-buff 

(st ate _out_c old-roll -buff, outputjrom-cold-roll, output 
-t o-highbay) 

Inputs: 

state_out_co1d-ro11_buff: List of coils at start of current time step. 

output -from-c old-roll: Empty matrix if there is no output from cold rolling machine or list of coils. 
output -to-highbay: 

Empty matrix if there is no input requested from High-Bay or list of coils. 
Outputs: 

state-out-cold-roll-buff: List of coils in buffer after transition (end of current time step). 

The following code lines are consist of M-files and functions which are presented 

in alphabetical order. 

No. Function anneal-stamp: 
function slabs=anneal-stamp(slabs) 

% function slabs-anneal-stamp(slabs) 
Update anneal stamp on input array of slabs 

no-slabs-size(slabs, l); % no slabs 
if no-slabs -- 01 size(slabs, 2) -- 0 

slabs-0; 
return 

end 

for i-1: no-slabs 
current-slab-slabs(i); % get current slab 
flag-current_slab-current-slab. flags; % get flags field 

fl ag-current _slab 
(2) -flag_current_s lab (2) + 1; % increment by one each time slab is annealed 

current-slab - setfield(current-slab, lflagsl, flag_current_slab); 

slabs(i)-current-slab; % substitute back 

end 

% --------------- end of anneal-stamp. m 

oo. Function check-empty: 

240 



functiOU out-list-check-empty(in_list) 
function out-list-chLeck-empty(in_list) 

% checks it input list is empty 

if ((size Un-list. 1)--0) 1 (size (in-list, 2)-, O)) 
out-list- Lj 

else 
out-list-in-list; 

end 

end of check-empty. m 

No. M-file check-out-variables: 
% check-out-variables 
% called from update-highbay-new. m 

if exist('Out-to-in-cold-roll_b-aff') 
out 

-to-in-c old-roll-buf f- 0 
end 

if exist(lin-from_out-cold-roll_buff') 
in-from-out-cold-roll-buff-(]; 

end 

if exist(lout-to-in-BWG-buff') -- 1 
out_to_in_BWG_buff-13; 

end 

if exist(lin-from-buff') 
in-from-buff-C]; 

end 

% --------- end of check-out-variables. m 

Po. Function cold-roll-stamp: 
function out-slabs-cold-roll_stamp(in-slabs) 

% function out-slabs-cold-rall-stamp(in-slabs) 
% Update cold-rolling stamp on input array of slabs 

in-slabs-chock-empty(in-slabs); 
if isempty(in-slabs) 

out_slabs-[]; 
return 

end 

no-slabs-size(in-slabs, l) 
, 

out-slabs=in-slabs; 
for i-1: no-slabs 

current-slab-in-slabs(i,: ); % get current slab 
flag-current-slab=current_slab. flags; % get flags field 
flag-current-slab(3)-flag-current-slab(3)+I; % increment flag after cold-roll process 
current-slab - setfield(current_slab, 'flags, flag-current-slab): 

out_slabs(i,: )-current-siab; % substitute back 
end 

% ------------------------------ end of cold-roll-stamp. m ------------------------------------ 

Function def ault-parameters: 
function param-default-parameters 
% function param-default-parameters 
% Specifies parameters for the process - can be called from anywhere in the code 

% ------------------------------------------------------------------------------- 
% SIMULATION PARAMETERS: 

simulation-step-5; % minutes 
simulation-time-168; % hours 
% ------------------------------------------------------------------------------- 
% NO MACHINES PARAMETERS: 

no-anneal-machines-3; % no of parallel annealing machines 
% ------------------------------------------------------------------------------- 
% CAPACITIES: 

high-bay-capacity-440; %440, % no of racks 
buff-capacity-20; % between hot-line and high-bay 
buffl-n-ca. pacity-8; %2 racks of 4 quartet-slabs each 
ixL-BWG-buff-capacity-1; % capacity of BWG input buffer 

capacity-BWG-buff-1; % capacity of BWG buffer 

out- anneal-buff- capac ity-4; % out-side of Anneal machines 
in-cold-roll_buff-capacity-1; % any two slabs 

out-cold-roll-buff-capacity-1; % any two slabs 
% ----------------- - ------------------------------------------------------------- 
% COOLING TIME PARAMETERS (in HighBay)- 

cool-time-after-anneal-12; %72*12; - 72 hours, no of 5-minute periods 

cool-time-after-coldroll-288; % 24*12; - 24 hours, no of 5-minute periods 
% -------------------------------------------------------------------------------- 

crane-moves-4; % max no of'crane moves allowable during simulation step 

priorities- (1 2 31 ;% 11 2 31 priorities order- cold rolling (in-out) 
, out to BWG, 

input_file-Ischedulell; % input data file 
in to HB from hotline 

241 



load-rate-2; % coila loaded to input buffer every load-rate time steps 
Plot-flag-O; % O-NO plots, 1-Complete process, 2-Highbay 
Btats-plot-flag-1; % O-No plots, I-Plots 
pause-time-0.1; % Pause-time for plots 
out-file-flag-1; % I-Save output stats file, O-No output file 
out-file-na, me-Iresults'; % output file name 
ilLitial-conditions-flag-0; % 1-Uns Initial Data, O-No Initial Conditions 
initial-conditiorLs-filenlitLitiaLl-datal; % initial conditions file (mat file) 

% ASSEMBLE OVERALL param STRUCTURE 

param- struct(Isimulation-timel, simulation-time.., - Isimulation_stepl, simi, lation-step, 
... Ino-mnneal-machinesl, no--nneal-machines, 

'high-bay-capacityl, high-bay-capacity.... 
'buff-capacityl, buff-capacity, 

... 'buffi-n-capacityl, buffl-n-capacity,.,. 
lin-BWG-buff-capacityl, in-BWG_buff-capacity,... 
Icapacity-BWG-buffl, capacity-BWG-buff,... 
I out-anyle al-buff 

-capacity 
I, out-anneal_buff 

_capacity, lin-cold_roll_buff_capacityl, in-cold-roll_buff-capacity 
.... lout-cold-roll-buff-capacityl, out-cold_roll_buff_capacity, 

I cool-t ime-af ter-ann a al I. cool-t ime- aft er-anneal .... 'cool-time_after-coldroll', cool_time_after-coldroll, 
'crane_movesl, crane_moves .... 
'prioritiesl, priorities,... 
'input-filel, input-file, 
Iload_ratel, load-rate, 
'plot-flagl, plot-flag, 
'pause-timel, pause_time, 
Istats-plot-flagl, stats-plot-flag, 
'out-file-flag', out-file-flag, 
lout_file_namel, out-file-name, 
linitial-conditions-flagl, initial-conditions-flag, 
linitial-conditions-file', initial-conditiorLs-file); 

end of default-paraLmeters. m -------------------------------------- 

Oo. Fýinction deliver-process: 

function out-from-dp - del iver-proces a (run-index, no_co ils 
-loaded, st ate-buff, param, input 

_f 
il e) 

% function out-from-dp - del iver-process (run-index, no -coil s-I oaded, state-buff , param, input-f ile) 

% Defines coils entering input buffer (before High-Bay) 

% INPUTS 
% run-index: current run index 
% no-coils-loaded: no coils loaded at beginning of time step 
% state-buff: number of coils in buffer (before HighBay) 
% param: parameter structure 

% OUPUTS 
% out-from-dp: coils loaded to baffer before High-Bay 

% ----------------------------------------------------------------------------------------- 
% Get parameters 

simulation-time-param. simulation-time; 
simulation-step-param. simulation-step; 
buff-capacity-param. buff-capacity; 
%input-file-param. input-file; 
load-rate-param. load_rate; % load loaded to input every load-rate steps 
% ----------------------------------------------------------------------------------------- 
if load-rate -- I 

indexl-l; 

else 
indexI -rem (run_ index, lo ad_rat e) % is 1 when run- index- 1,1 oad-rat e+1 , 

2*load-rate+ I, etc 
end 

state-buff-check-empty(state_buff); index2-size(state_buff, l); 

current-day-floor((run_index*simulation_step)/(24*60))+I; % current day 
[slabs-list, day-index]-read-from-xls-aLll(input-file); 

slabs-list-check-empty(slabs-list); 

if (size(slabs_list, l) >- no_coils_loaded+l) 
out_from_dp-slabs_list(no_coils_loaded+l,: ); 

else 
out-from-dp-[]; 
return 

end 

if ((indexl -- 1) 1 (index2 >- buff_capacity) 
(day-index(no-coils-loaded+l) > current-day)) 

out-from-dp-C]; 
end 

% ------------------------------- end of deliver-process ---------------------------------- 

Function determine-cold-roll-time: 

function totaLl-time-for-rolling-determine-cold-roll-time (coil) 

% function total-time-for-rolling-determine-cold-roll-time (coil) 

Function determines cold-rolling time according to coil type 

c oil-check-empty(coil); if isempty(coil) 

total_time-for-rolling-C]; 

242 



return 
end 

cOil-COi. 1(1.: ); top-slab-gauge-coil. gauge; 
top-slaLb-width-coil. width; no-passes-coil, flags (3); 

if all (tOP-Blab-gaugeý'thic') I( all(top-slab-gauge--latan') 
all (top-slab-vidtbL- I wide')) 

if no-passes--o 
total-time-for-rolling-2; %(10 minutes) 

elseif no-passes--l 
total-time-for-rolling-3; %(15 minutes) 

elssif no-passes-2 
total_time-for_rolling-4; %(20 minutes) 

else 
total-time-for-rolling- Ynot-possible 

end 

elseif all (top_slab_gauge_., stan, ) & (all (top-slab-width--Imedi 
all(top-slab-width--Inarrl)) 

if, no-passes-0 
tot al-t ime-f or-rolling-3; %(14.5 minutes) 

elseif no-passes-I 
total-time-for-rolling-4; %(17.6 minutes) 

else 
total-time-for-rolling-[]; %not-possible 

end 

elseif all(top-slab-gauge-Ithin') & sIl(tOP_slab_width--'wide') 
if no-passes. -O 

total-time-for-rolling-2; M10 minutes) 
elseif no-passes-1 

total-time-for-rolling-3; MIS minutes) 
elseif no-passes--2 

total-time-for-rolling-4; M20 minutes) 
elseif no-passes--3 

total-time-for-rolling-6; %(27.5 minutes we consider 30 minutes) 
else 

total-time-for-rolling-C]; %not-possible 
end 

elseif all (top-slab-gauge-- I thin)) & (all (top-slab-width-Imedi 1) 
&ll(top_slab_width-narr, )) 

if no-passes-0 
total-time-for-rolling-3; %(14.5 minutes) 

elseif no-passes-I 
total-time-for-rolling-4; %(17.5 minutes) 

elssif no-passes-2 
total-time-for-rolling-6; %(27.5 minutes we consider 30 minutes) 

else 
total-time_for_rolling- %not-possible 

end 
else 

total-time-for-rolling-[]; %not-possible 
disp('Error in determine-cold-roll-time. m 

end 

% ----------------------- end of determine-cold-roll-time. m ------------------ 

0. Function determine-coil-status: 
function 
[flagl, flag-ready] -determine-coil-status (coil, time-in-highbay, param) 
% function (flagl, flag-readyl-determine-coil-status(coil, time-in_highbay, param) 
% Function determines whether coil that has been annealed has to be cold-rolled and if it has been 
% cooled: 
% flagl-1 if next stage is cold-rolling, flagl-O, next stage is BWG 
% flag_ready=l, coil can exit HighBay, flag-ready-0. coil needs extra time to cool 

coil-check-empty(coil); if isempty(coil) 
flagl-[]; 
flag-ready-0; 

return 
end 

cool -time -aft er- anneal=param. cool-time-after_arkneal; 

cool _t 
ime-aft er-coldrol 1-param, cool-time-after-coldroll; 

coil=coil(l,: ); top-slab-gauge-coil. gauge; 
top_slab_width-coil. width; no-passes-coil. flags (3); 

if all(top-slab-gauge-Ithic') all(top-slab-gauge--Istan') 

all(top_slab_width--'widel)) 

if no_passes-0 % mnnnealed, no cold-roll passes 

fI aLgl- I; 

if time-in-highbay < cool-t ime 
-after- anneal; 

flag-ready-0; 

else 
flag-ready-1; 

end 

elseif no-passes -- II no-passes -2 

flagl-1; 

if (time-in-highbay < cool-time-after-coldroll) 
flag-ready-0; 

243 



else 
flag-ready-1; 

end 

elseif uo-pasaes -- 3 

flagl-O; % no more cold-rolling 
if (time-in-highbay < cool-time-after-coldroll) 

flag-ready-0; 

else 
flag-ready-1; 

end 

else 
disp('Error in determine-cold-status. m 
flagl-Cl; flag-rea, dy-[]; 

return 
end 

elseif (all (top-slab-gauge- I stan 1) & (all(top_slab_width--Imedil) 

all(top-slab-width--Inarrl))) 

if no_passesýO % Annnealedv no cold-roll passes 

flagl-1; 
if time-in-highbay < cool _t 

ime-aLfter- Ann eal; 
flag-ready-0; 

else 
flag-ready-1; 

nd 

elseif no-PaLsses -- 1 

flagl-1; 
if (time-in-highbay < cool-time-after-coldroll) 

flag-ready-0; 

else 
flag-ready-1; 

end 

elseif no-passes -- 2 

flagi-0; % no more cold-rolling 
if (time-in-highbay < cool-time-after-coldroll) 

flag-ready=O; 

else 
flag-ready-1; 

end 

else 
disp('Error in determine-cold-status. m 
f1ag1-0; flag-ready-Q; 

return 
end 

7 

elseif (all (top-slab-gauge- 'thin') & all (top-slab-vidth-- I wide')) 

if no-passes-0 % annnealed, no cold-roll passes 

flagl-1; 
if time-in-highbay < cool-time-after-anneal; 

flag-ready-0; 

else 
flag-ready-1; 

end 

elseif (no-passes no-passes -- 21 no_passes--3) 

flag; I-1; 
if (time-in-highbay < cool-time-after-coldroll) 

flag-ready-0; 

else 
flag-ready-1; 

end 

elseif no-passes -- 4 

flagi=O; % no more cold-rolling 
if (time-in-highbay < cool-time-after-coldroll) 

flag-ready-0; 

else 
flag-ready-1; 

end 

else 
disp('Error in datermine_cold-status. m ... 1); 

flag1-[I; flag_ready-[3; 

return 
end 

elseif (all (top- slab-gauge- I thin I) & (all (top-slab-width--Imedi 

I all(top_slab_width--'narr'))) 

if no-passes-0 % annnealed, no cold-roll passes 
flagi-1; 

if (time-in-highbay < cool-time-after-anneal) 
flag_ready-0; 

244 



else 
flag-ready-1; 

end 

elseif no-passea -- 11 no-passes -- 2 

flagl-1; 
it (time-in-highbay < cool-time-after-coldroll) 

flag-ready-0; 

else 
flag_readyýl; 

and 

elseif no-passes -- 3 

flagl-O; % no more cold-rolling 
if (time-in-highbay < cool-time-aLfter-coldroll) 

flag_ready-0; 

else 
flag_ready-1; 

and 
else 

disp('Error in determine-cold-status. m 
flagl-Cl. flag-ready-[); 

return 
end 

else 
disp('Error in determine-cold-status. m 
flagl=(]; 
flag_ready-[3; 

return 
and 

- end of determine-cold-status. m 

Oo- Function det ermine- s labs-annealed: 

function 

slabs-det ermine- slabs -annealed 
(sl6b-I ist, index- sl ab-liEt , 

index-machine) 
% function slabs -determine-slabs _annealed 

(s lab_l i st, index_slab_list, index_machine) 
% Given n annealing machines in parallel loaded with slab-list, indexed by 
% index-slab-list, function determines slabs at the (index-machine)-th 
% machine. 

no-slabs-size(slab-list, I); 
if no-slabs--O I size(slab-list, 2)--O 

no_slabs-0; 
slabs-[3; 
return 

end 

., 
if no-slabs -- sum (index_ slab_li st) I index_machine -- round (index_machins) I index-machine <=O 

slabs-0; 
disp(, Error in determine_slabs_AnneaLled. m ... 
return 

end 

if index-slab-list(index-machine) -- 0 

if index-machine -I 

slabs-slab-list(l: index-slab-list(l)); 

else 

slabs-slab-list(sum(index-slab-list(1: index-machine-1))+1: sum (index-elab-list(1: index-machiiie-1))+index_slab_list(index-macbLine) 

end 

else 
slabs- 

and 

if size(slabs, l)-O 

slabs-0, 
and 

% -------------------- 

size(slabs, 2)-O 

- end of determine-slabs-annealed. m 

No. Function det ermine- slabs-c olour: 
function groups-determine-slabs-colour(slabs-in) 
% function groups=determine-slabs-colour(slabs-in) 
% Function produces a list of 6 (distinct) colour codes corresponding to 

% slabs_in 
% Group 1: No slabs not annealed 
% Group 2: No slabs annneal CR passes -0 
% Group 3: CR passes -I 
% Group 4: CR passes -2 
% Group 5: CR passes -3 
% Group 6: CR passes -4 

slabs-in-chock-empty(slabs-in); if isempty(slabs-in) 

groups-zeros(1,6); 
return 

end 

no-slabs_in-size (slabs- in, 1) groups-zeros(I. 6); for i-l: no_slabs_in 

current -slab-slabs-in 
U, ; 

anneal-flag-current-slab. flags(2); 

cr-flag-current-slab. flags(3); 

245 



if anneal-flag .. 0 
grOuPa(l)-groups(l)+I; 

elseif anneal-flag 
if cr-flag -o 

groups(2)-groups(2)+I; 
elseif cr-flag -- 1 

groups(3)-groups(3)+l; 
elseif cr-flag -- 2 

groups(4)-groups(4)+l; 
elssif cr_flag -- 3 

groups(B)-groups(5)+I; 
elssif cr_flag -- 4 

groups(6)-groups(6)+j; 
end 

end 
end 

% ----------------------- end determine-slabs-colour 

Po- Function determine-slabs-colourl: 
function 

array-out-determine-slabs-colourI (slabs-list, run-index, param) 
function array 

-out-determine -slabs colourl (sl abs-1 i st, run-index, param) 

Function groups HighBay slabs-list in following 11 categories: 

% 1. Not yet annealed 
% 2. Annealed and Hot 
% 3. Annealed and Cold 
% 4. Cold-rolled once and Hot 
% 5. Cold-rolled once and Cold 
% 6. Cold-rolled twice and Hot 
% 7. Cold-rolled twice and Cold 
% 8. Cold-rolled 3 times and Hot 
% 9, Cold-rolled 3 times and Cold 
% 10. Cold-rolled 4 times and Hot 
% 11. Cold-rolled 4 times and Cold 

% The total numbers of each category are recorded in the corresponding 
% entry of array_out. 

% Decode parameters 
cool-time-after--nneal-param. cool-time-after-anneal; 
cool-time-after-coldroll-param. cool-time-after-coldroll; 
% ----------------- 
slabs-list=check-empty(slabs-list); no-slabs-size(slabs-list, l); 
array-out-zeros(6,2); 

for i-1: no-slabs 

current-slab-slabs-list(i,: ); 

time-of-entry=current-slab. timer; 
current-slab-flags-current_slab. flags; 

current-slab-anneal-flag=current-slab-flags(2); 
current-slab-cold-roll-flag-current-slab-flags(3); 
current-slab-gauge=current-slab. gauge; 
current-slab-width-current-slab. width; 

if (current-slab-Anneal-flag -- 0) % check if coil has not been annealed 
array_out(l, l)-a, rray_out(1,1)+l; 

alseif (current 
_slab_anne al _flag - 1) & (current 

_s 
I ab_cold-rol 1-f lag 0A slab has been annealed but not CRId 

time-in-highbay-run-index-time-of-entry; 
if time-in-highbay < cool-time-after-anneal 

array-out(2,1)-array_out(2,1)+l; 
else 

array_out(2,2)-array_out(2,2)+l; 
end 

elseif (current-slab-cold-roll-flag - 1) 

time-in-highbay-run-index-time-of-entry; 
[flagl, flag-readyl-determine-cold-status(current-slab, time-in-highbay, param); 
if (flag-ready-0) % Coil Hot 

array-out(3,1)=array-out(3,1)+I; 
elseif (flag-ready-1) % Coil Cold 

array-out(3,2)-array-out(3,2)+I; 
end 

elBeif (current_slab-cold-roll-flag - 2) 

time-in-highbay-run-index-time-of-entry; 
(flagl, fla, g-readyl-determine-cold-status(current-slab, time-in-highbay, param); 
if (flag-ready--O) % Coil Hot 

array-out(4,1)-array-out(4,1)+l; 
elseif (flag_ready-1) % Coil Cold 

array-out(4,2)-array-out(4,2)+l; 
end 

elseif (current_slab-cold-roll-flag -- 3) 

time-in-highbay-run-index-time-of-entry; 
(flagl, flag-readyl-determine-cold-status(current-slab, time-in_highbay, param); 
if (flag-ready-0) % Coil Hot 

array-out(5,1)-array_out(5,1)+I; 

246 



elseif (flag-ready-1) 7. Coil Cold 

array-out(6,2)-a, rray-out(6,2)+I; 
end 

elasif (current-slab-cold-roll-flag - 4) 

time-in-highbay-run-index-time-of-entry; 
[flagl, flag_readyl-determine-cold-statuB(Cux, rent-slab, time-in-highbay, Wam); 
if (flag-ready--O) % Coil Hot 

array-out(6,1)-array-out(6,1)+I; 
elseif (flag-ready-1) % Coil Cold 

array-out(6,2)-array-out(6,2)+I; 
end 

end 
7. 

and % for 

end of determine-slabs-colourl. m ------------ 

No. Function determine-slabs-f or-anneal: 
function (out-s labs, index_out] -determine -slabs _for_ anneal (in_sl abs) ; 
% function [out 

- slabs, index- out) -determine -s 
I abs -for-a nneal (in-slabs) 

% select 4 slabs of compatible thickness for annealing machine starting 
% from top. If no 4 compatible types exist out-slabs=[]; 

no-in_slabs-size(in_slabs, l); % 

if no-in-slabs-0 
out-slabs-[]; 
index-out-(]; 

return 
end 

index_out-l: no_in_slabs; 

while -is empty (in- slabs) 

no-slabs-size(in-slabs, l); 

top-slab-in-slabs(l,: ); % get top slab 
top-slab-width-top-slab. width; 
top-special-flag=top-slab. special-flag; 

index-arrayl-C]; 
index_arra, y2-E]; 

end 

end 

for i-I-no-slabs 
if in-slabs (i). width - top-slab-width & in-slabs(i). special-flag -- top-special-flag 

index, arrayl=Cindex-aLrrayl , il; 

else 
index-arrayl - index-arrayl; 

and 

index-array2-index-arrayll; 

if size (index_array2,2) <4% no 4 special flags exist 
in_s labs (index-array2, 

.)- 
Cl; % eliminate from list 

index- out (index-array2) and from index set 

else 
out-slabs-in-slabs(index-axray2(1: 4),: ); 

index-out-index-out(index-array2(1: 4)); 

return 
end 

out-slabs=(]; 
index-out-0; 

I/ 
------------------------- end of determine-slabs-for-Anneal. m 

Function determine-slabs-f or-rollingl: 

function 
[out_slabs, index_out) =determirie-slabs-for-rollingl (in-slabs); 

% function Cout-slabs, index-out]-determine-slabs-for-rollingl(in-slabs); 

% select up to 40 or up to 20 grouped coils for rolling machine starting 

% from top. If no 40 or 20 coils compatible types exist, out-slabs-[]; 

% in-slabs: list of slabs that have been annealed and stored to High-Bay for 

cooling 

out-slabs: selected list of matching slabs from in-slabs list (empty if 

no match found) 

index-out: indexes of matching slabs in in-slabs list (empty if no match 

% found) 

in-slabs-chack-emptY(in-slabs); 
if isempty(in-slabs) 

out_slabs-E]; 
index-out-0; 

return 
end 

no_in_slabs-size(in_sl2Lbs. 
1); 

247 



groupl-0; % yellow 
ind-groupl-C]; 

group2-[]; % light green 
ind-group2- 

group3-C]; % orange 
ind-group3-C]; 

group4- % dark green 
ind_group4-C]; 

for i-l: no-in-slabs 

slab-in-slabs(i,: ); 

if all(slab, gauge--Ithic') (all(slab. gauge-Istan') & all(slab. vidth--Iwidel)) 
groupl-[groupl ; slab]; 
ind-groupl-[ind-groupl il; 

elseif all(slab. gauge--Istan') 
group2-[group2 -, slab]; 
ind-group2-Cind-group2 i); 

elseif all(slab. gauge--Ithin') 
group3-Cgroup3 ; slab]; 
ind_group3-[ind_group3 il; 

elseif all(slab. gauge-Ithin') 
group4=Cgroup4 ; slab]; 
ind_group4-[ind_group4 13-, 

else 
out-slabs-[], 
index-out=[]; 

return 
end 

end 

if size(ind-group2,2) >- 40 

out-slabs-group2(1: 40,: ); 

index-out-ind-group2(1: 40); 

elseif size(ind-groupl, 2) >= 20 

out-slabs-groupl(1: 20,: ); 
index-out-ind-groupl(1: 20); 

elseif size(ind-group3,2) >- 20 

out-slabs-group3(1: 20,: ); 

index-out-ind-group3(1: 20); 

elseif size(ind-group4,2) >- 20 

out-slabs-group4(1: 20,: ); 

index-out-ind-group4(1: 20); 

else 
out-slabs-0; 
index-out-0 

end 

% ------------------------------ 

& (all(slab. width--Imedil) I all(slab. width-Inarrl)) 

all(slab. width-'widel) 

& (all (slab. width-medi 1) 1 all (slab. width- I narr 1)) 

-- end of determine-slabs-for_rollingl. m --------------------------------- 

lo- Function determine-stock_codes: 

function stock-codes-determine-stock-codes(slabs_in) 
% function stock-codes-determine-stock-codes(slabs-in) 
% Function produces a list of (distinct) stock codes corresponding to 
% slabs-in 

no-slabs-in-size(slabs-in, l); if no-slabs-in == 0 

size(slabs-in, 2)-O 

stock-codes-[]; 
retarn. 

end 

stock-codes-C); for i-l: no-slabs-in 
current-slab-slabs_in(i); 
current-stock-code-current-slab. stock-code; 
if -any(stock-codes -- current-stock-code); 

stock-codes-Estock-codes current-stock-code3; 

end 
end 

- end determine-stock-codes ----------- 

0- Function diplay-list: 

function display 
-list 

(slabs) 

function display-list(slabs) 

slabs-check-empty(slabs); no-slabs-size(slabs, l); 

for J-I: no_slabs 

slab-slabs(i,: ); 

type=slab. type; 

vidth=slab. width; 

gauge=slab. gauge; 

fleg2-slab. flags(2); 

flag3-slab. flags(3); 

disp (PType" tYPe, ' Width-', width, ' Gauge-', gauge. ' Flag2=', int2str(flag2), l Flag3-1, int2str(flag3)1); 

end 

------------------------------ 
end display-list. m 

po. Function min2hoursdays: 

248 



function outstr-min2hoursdays(no-mins) 
function out atr-min2hoursday s (no 

-mine) 

no-minutes-mod(no-ains, 60); no-bLours-floor(no-mins/60); if no-hours 
>- 24 

no-days-floor(no-hours/24); 
no-houra-mod(no-hours, 24); 

else 
no_days-O; 

and outstx-[, [I, num2str(no-days, 2), I days; I, num2str(no_hours, 2), I 
hours; I, num2str(no-m: Lautes, 2), I min,, 'P), 

end of min2hoursdays. m ----------------- 

I, - Function obtain-anneal-time: 
function anneal_time-obtain_anneal_time(slab-type) 

% function anneal-time-obtELin-anneal_time(slab-type) 
% function defines annealing time in minutes according to slab-type 
% special-domamd-flag-1 for special slab types 

slab-vidth-slab-type. width; 
special-flag-slab-type. special_flag; 
if (all(slab-width -- 'wide') & special-flag -- 0) 

Anneal 
_t 

ime-645; %129; % IO. TS hours or 645=5*129 minutes 
elseif (all(slab-width -- Imedil) k special_flag - o) 

anneal-time-585; %117; % 9.75 hours or 585-6*117 minutes 
elseif (all(slab_width -- Inarr') & special_flag - 0) 

Anneal-time-525; %105; % 8.75 hours or 525-5*105 minutes 
elseif (all(slab_width -- 'wide') & special-flag - 1) 

anueal-time-765; %163; % 12.75 hours or 765-5*153 minutes 
elseif (all(slab-width -- Imedil) & special-flag -- 1) 

-nneal-time-735; %147; % 12.25 hours or 735=6*147 minutes 
elseif (all(slab_width - Inarr') k special-flag - 1) 

anneal-time-675; %135; % 11.25 hours or 675-5*135 minutes 
else 

disp(, Error in obtaiu_anrLeal _time. m 
anneal-time= 0 

return 
and 

% ------------------------- end of obtairi-Anneal-time. m ----------- 

Ow- Function obtain-bwg-time: 
function bwg-time-obtain-bwg-time(slab-type) 

% function bwg-time-obtain-bwg-time(slab-type) 
% function defines bwg time in minutes according to slab-type 

slab-gauge-slab-type. gauge; 

if all(slab-gauge - Ithic') 
bwg-time-7; % 35 minutes (actual 35) 

elssif all(slab-gauge -- Istan') 
bwg-time-8; % 40 minutes (actual 41) 

elseif all(slab-gauge -- 'thin') 
bwg_time-14; % 70 minutes (actual 69) 

else 
disp('Error in obtain-bwg-time. m ... 
bwg_time-C]; 

return 
end 

% ------------------------- end of obtain-bwg-time. m ------------------ 

Mo. Function pad-blanks: 
function out-str-pad-blaaks(in-str, n) 

% function out-str-pad-blanks(in-str, n) 
% Pad in-str whith leading blanks up to length n 

nc-size(in-str, 2); if nc >-n 

out_str-in_str; 
else 

out_str-Cblanks(n-nc) ia-strl; 

end 

% ------------------ end of pad-blanks. m ------------- 

o. M-file prioritiesl23: 
% priorities123 
% script file called from inside update-highbay-new 

% first priority (a): Load input buffer of cold-rolling machine 
if -isempty(slab-cr) 

out-to_in-cold. roll-biLff-slab-cr; 

out_to_in-cold_roll-buff-remove-time-stamp(out-to-in-cold-roll-buff); 
new-s-tate (slab-cr-index)- []; 

new-state-check-empty(new-state); 
% update list of matched coils destined for cold-rolling treatment 
%index-list-coils-er 

if size(index-list-coils-cr, 2)-l Ysize(index_coils_cr, 2)--l 

index-list-coils-cr-E]; % only coil in list is removed 

249 



else 
index-list-coils-crW-C]; 

zLo-coils-in-list-size(index-list-coils-cr, 2); 
% move up remaining coils in list by one place 
index_list-coils-cr-index-list-coils-cr-ones(l, no-coila_in_list); 

end 
available-places-available-places+l; 
crane-moves-crane-moves-1; 
real_crane_moves(3)-real_crane-moves(3)+l; 

else 
out-to-in_cold-roll-buff-[]; 

end 

first priority (b): Bring in coils from out-cold-roll-buffer 
no-slabs-out-cold-roll-buff-size(state-out-cold-roll-buff, l); 
indexl-min([no-slabs-out-cold-roll-buff available-places 
crane-moves]); 
%real-crane 

-move s-real - crane-movos+indexl; % max (size (slab-cr, 1) 
, no-slabs_out_cold-roll-buff) % some trips are free! 

if indexl >0% some coils have moved in from out-cold-roll-buffer 

in-from-out-cold-roll_buff-state-out-cold-roll_buff(l: indexl,: ); 
in-from-out 

-c old-roll-buff-s et -time -stamp 
(in-from-out 

-C old_roll -buff, 
time 

_step); 
new-state-[new-state ; in-from-out-cold-roll-buffl; 

state-out-cold-roll-buff-update-out-cold-roll_buff(state-out-cold_roll_buff, in-from-out-cold-roll-buff); 
available-places-available-places-indexl; 
crane-moves-crane-moves-indexi; 
real-crane-moves(4)-real-crane_moves(4)+indexl; 
if crane-moves -- 0 

out-to-in-BWG-buff-[]; 
in-from-buff-(]; 

check-out-variables; 
return 

end 

elseif indexl -- 0% no coils moved in from out-cold-roll-buffer 

in-from-out-cold-roll-ýbuff=[I; 

if crane-moves-0 
out-to-in-BWG-buff-C); 
: Ln-from-buff-(]; 
in-from-out-cold-roll-buff-[]; 

check-out-variables; 
return 

end 
end 
% ------------------------------------------------------------- 
7. second priority: Load out to BWG input buffer 
index2-min(no-out-to-in-BWG_buff, crane_moves); 
if index2 >0% some slabs can be moved out to in-BWG-buffer 

out-to-in-BWG-buff-out-to-in-BWG-buff(l: index2,: ); 

index-slabs-to-in_BWG_buff-index_slabs_to_in_BWG_buff(l: index2,: ); 

out-to-in-BWG-buff-remove-time-stamp(out-to-in-BWG-buff); 
new_state(index_slabs-to-in-BWG-buff,: )-[]; 

index-list- c oils -cr-updat e-1 ist (index-I ist 
-coil s-cr, index_ slabs -t o- in- BWG-buff) 

available-places-available-places+index2; 
crane-moves=crane_moves-index2; 
real_crane_moves(5)-real_crane-moves(6)+index2; 
if crane-moves -- 0 

in-from-buff-0; 

check-out-variables; 
return 

end 

elseif index2 -0% no coils loaded out to BWG input buffer 

out-to-in-BWG-buff=O; 

if crane-moves--O 
in_from-buff=[]; 

check_out_variables; 
return 

end 
end 
% ------------------------------------------------ 
'/. 3rd priority. Load in coils from input buffer 

state-buff-check-empty(state-buff); 
no-slabs-in-buff-size(state-buff. 1); 

available-places-virtual-max(O, available-places-max-no-circulating-coils); 
index3-min([no-slabs_in_buff available-places-virtual crane-moves]); 

if index3 >0% some coils can be moved into HighBay from input buffer 

in-from-buff-state_buff(l: index3,: ); 

state-buff-update-buff(state-ýbuff, [I, in-from_buff); 

in-from-buff=set-time-stamp(irk-from-buff, time_step); 

new_state-fnew-state ; in-from-buffl; 

available-places-available-places-index3; 
crane-moves-crane-moves-index3; 
real-crane-moves(l)-real_crane_moves(l)+index3; 

elseif index3 -0% No coils loaded into HB from input buffer 

in-from-buff-0; 

and 

check-out-variables; 
% -------------------------------- priorities! 23. m ------------------------ 

250 



No- M-file prioritiesl32: 
% priorities132 
% script file called from inside update-bLighbay-new 
% CEL, Entry, BWG 

% first priority (a): Load input buffer of cold-rolling machine 
if -isempty(slab-cr) 

Out-to-in-cold-roll-buff-slab_cr; 
Out-to 

_iU_cOld_rolI_ýbuf 
f -remov, e_time_st amp (out_to 

_in-cold-roll -buff) new-state(slab-cr-index)-[); 
new_state-check-empty(new_staLts); 
% update list of matched coils destined for cold-rolling treatment 
%index-list-coils-cr 

if size (index-list-coile-cr, 2)-l %size (index_coils_cr, 2)--1 
index-list-coils-cr-C]; % only coil in list is removed 

else 
index-list-coils-cr(l)-O 

no-coils-in-list-size(index-list-coils_cr, 2); 
Y. move up remaining coils in list by one place 
index-I ist- coils 

-cr=index-I 
ist 

-coils -cr-ones 
(1 

, no-c oil s-in-li st) 
end 
available-places-available-places+l; 
crane-moves-crane-moves-1; 
real-crana-moves(3)-real-crane-moves(3)+l; 

else 
out-to-in-cold-roll_buff-C], 

end 
% out-to-in-cold-roll-buff defined 

% first priority (b): Bring in coils from out-cold-roll-buffer 
no-slabs-out-cold-roll-buff-size(state-out-cold-roll_buff, l); 
indexl-atin(Eno-slabs-out-cold-roll-buff available-places 
crane-moves]); 
7. real_crane_moves-max (size (slab_cr, 1), no-slabs-out_cold_roll_buff); % some trips are free! 

if indexi >0% some coils have moved in from out-cold-roll-buffer 

in-from-out-cold-roll-buff-state-out-cold-roll-buff(l: indexl,: ); 

in-from-out 
-c old_roll-buff-s et -time -stamp 

(in-f rom-out-c old_roll _buff, 
t ime-step) 

new-state-Cnew-state ; in_from-out-cold-roll-buffl; 

state-out-cold-roll-buff-update_out_cold_roll_buff(state_out_cold-roll-buff, [I in-from-out-cold-roll-buff); 

available-places-available-places-indexl; 
crane-moves-crane-moves-indexl; 
real-crane-moves(4)-real-crana-moves(4)+indexl; 
if crane-moves =- 0 

out-to-in-M-buff-E]; 
in-from-buff-0; 

check-out-variables; 
return 

end 

elseif indexi -0% no coils moved in from out-cold-roll-buffer 

in-from-out-cold-roll-buff-C]; 

if crane-moves-0 
out-to-in-BWG-buff-11', 
in-from-buff-C); 
%in_from-out-cold-roll-buff-[]. 

check-out_variables; 
return 

end 
end 
% in-from-out-cold-roll-buff defined 

% ----------------------------------------------- 
% 2nd priority: Load in coils from input buffer 

state-buff-check-empty(state-buff); 
no-slabs-in-buff-size(state-buff, l); 

available-places-virtual-max (0, available-places-max-no-circul at ing-coils) 

index3-min([no-s labs_ in-buff available-places-virtual crane-moves]); 

if index3 >0% some coils can be moved into HighBay from input buffer 

in-from-buff-state_buff(l: index3,: ); 

state-buff-update-buff(state-buff, [I, in_from-buff); 

in-from-buff-set-time-stamp(in_from-buff, time-step); 

new-state-Cliew-state ; in-from_buffl; 

available-places-available-places-index3; 
crane-moves-crane-moves-index3; 
real-crana-moves(l)-real_crane_moves(l)+index3; 
if crane-moves -- 0 

out-to -irL-BWG -buff 
check-out-variables; 
return 

end 

elseif index3 -0% No coils loaded into HB from input buffer 

in-from-buff-0; 
if crane-moves -0 

out_to_in_BWG_buff-[); 
check-out_variables; 
return 

end 

end 
% in-from-buff defined 

% --------------------------------------------- 
*/. third priority: Load out to BWG input buffer 

251 



index2-min(no-out-to-in-BWG-buff, crane-moves); 
if iadex2 >0% some slabs can be moved out to in-BWG-buffer 

out-to-in-BWG-buff-out-to-in-BWG-buff(l: index2,: ); 
index-slabs-to-in-BWG-buff-indox-elabs-to-in-BWG-buff(l: index2. -. )-, 
out-to-in-BWG_buff-remove-time_otamp(out-to-in-BWG-buff); 
now-state(index-slabs-to-in-BWG-buff,: )-[]; 
index- I ist-co ils 

_cr-apdat e-list (index 
-11 at -coils-cr, 

index_slabs_to_in_BWG_buff); 
aveLilable-places=available-places+index2; 
crane-moves-crane-moves-index2; 
real-crane-moves(B)-real-crane-moves(S)+index2; 
if crane-moves -0 

%in-from-buff-C]; 

check-out-variables; 
return 

end 

elseif index2 -- 0% no coils loaded out to BWG input buffer 

out-to-in-BWG-buff-[]; 

if crane-moves-0 
%in-from-buff-C]; 

check-out-variables; 
return 

end 
end check-out-variables; 

% ---------------------------------- end of priorities132. m ------------------- 

Oo- M-file priorities213: 
% priorities213 
% script file called from inside update-highbay-new 
% BWG. CR, Entry 

% first priority: Load out to BWG input buffer 
index2-min(no-out-to-ia-BWG-buff, crane_moves); 
if index2 >0% some slabs can be moved out to in-BWG-buffer 

out-to-in-BWG-buff=out-to-in-BWG-btiff(l: index2,: ); 
index-sl abs -t o-in-BWG -buf 

f-index-s labs 
_to -in_BWG_buf 

f (1-. index2,: ); 
out-to-in-BWG-buff=remove-time-stamp(out-to-in-BWG-buff); 
new-state(index-slabs-to-in-BWG-buff,: )-[]; 
index-list-coils-cr-update-list (index-list-coils-cr, index-slabs_to_in-BWG_buff) 
available-places-available-places+index2; 
crane-moves-crane-moves-index2; 
real-crane-moves(B)-real-crane-moves(S)+indem2; 
if crane-moves -- 0 

in_from_buff-C]; 

out-to-in-cold-roll_buff-C]; 
iii-from-out-cold_roll_buff-C]; 

check-out-variables; 
return 

end 

elseif inde%2 -- 0% no coils loaded out to BWG input buffer 

out-to-in-BWG-buff=[]; 

if crane-moves-0 
in_from_buff-C]; 

out_to-in_cold_roll-buff-(]; 
in-from-out-cold-roll-buff-C]; 

check-out-variables; 
return 

end 
end 
% out-to-in-BWG-buff defined 
% ------------------------------------------------------------------------ 
I second priority (a) : Load input buffer of cold-rolling machine 
if -isempty(slab-cr) 

out-to-in-cold-roll-buff-slab-cr; 
out -to- 

in-c old-roll-buff-remove_t ime_ stamp (out_to_in_cold_roll_buf f) 

new-state(slab-cr-index)-[]; 
now-state-check-empty(new-state); 
% update list of matched coils destined for cold-rolling treatment 
Y. index-list-coils-cr 
it size(index-list-coils-cr, 2)-l %size(index_coils_cr, 2)-I 

index-list_coils-cr-C]; % only coil in list is removed 

else 
index-list_coils-cr(l)-[]; 

no-coils-in-list-size(index_list-coils-cr, 2); 
% move up remaining coils in list by one place 
index-list-coils-cr=index-list-coils-cr-ones(l, no-coils-in-list); 

end 
available_places-available_places+l; 
crane-moves-crane_moves-1; 
real-crane-moves(3)-real-crana-moves(3)+I; 

else 
out_to_in-cold-roll-buff-(]; 

end 
%out_to-in-cold-roll-buff defined 

% second priority (b) : Bring in coils from out -cold-roll -buffer 

no_slabs-out-cold-roll-buff'size(state-out-cold_roll-buff, 
i); 

indexI -min( (no-sl abs- out- cold-ro 11-buff available-places 

crane-moves]); 
'/xeal_crane-moves-max (size (slab-cr, 1) no-slabs-out-cold-roll-buff); % some trips are free! 

252 



"'dOXI ý' 0% some coils have moved in from out-cold-roll-buffer 

in-from-out-cold-roll-buff'sta't8-out-cold-roll-buff (1: indexl, 
in-f rOm-out 

-cold-roll-buf 
f-set 

_t 
ime_st amp( in-from-out-cold-roll_buff, t ime_step) 

x'"w-Otate-[new-state ; in-from_*ut_cold-roll 
-buff] ; 

st at a -out _c ol d-rol 1-buf f -updat e-out 
_cold-rol 

1-buf f (state-out-cold-roll-buff, [], in-from-out-cold-roll_buff); 
aLvailable-places-available-places-indexl; 
crane-inoves-crane-moves-indexi; 
real-crane-moves(4)-real-crane-moves(4)+indexl; 
if crane-moves -- 0 

% out-to-in-BWG-buff-C]; 
in-from-buff-[); 

check_out_variables; 
return 

end 

elseif indexl -0% no coils moved in from out-cold-roll-buffer 

in_from_out_cold_rolI_buff-(j 

if crane-moves-0 
% out-to-in-BWG-buff-13; 
in-from-buff-C]; 

check-out-variables; 
return 

end 
end 
% in_from_out_cold_roIl_ýbuff defined 
% -------------------------------------------------------------------------- 

3rd priority: Load in coils from input buffer 

state-buff-check-empty(state-buff); 
no_slabs_in_ýbuff-size(state-buff, l)-, 

available -places -virtual-max 
(0, available-places-max-no-circulating-coils); 

index3-min ( [no-s labs- in-buff available-places-virtual crane_moves]); 

if index3 >0% some coils can be moved into HighBay from input buffer 

in-from-buff=state_buff(l-. index3,: ); 

state-buff-update-buff(state-buff, [3, in-from. 
-buff); 

in_from_ýbuff-set_time_stamp(in_from-buff, time-step); 

new-state-[new-state ; in-from-buff]; 

available _placesýavailable -places-index3; 
crane-moves-crane-moves-indox3; 
real_crane-moves(l)-real-crane-moves(l)+index3; 

elseif index3 -- 0% No coils loaded into HB from input buffer 

in-from-buff-C]; 

end cbLeck-out-variables; 
7 
---------------------------- ---- priorities213. m ------------------------- 

o. M-file priorities231: 
% priorities231 
% script file called from inside update-highbay-new 
% BWG, Entry, CR 

% first priority: Load out to BWG input buffer 

index2-min(no-out-to-in-BWG-buff, crane-moves); 
if index2 >0% some slabs can be moved out to in-BWG-buffer 

out-to-in-BWG-buff-out-to-in-BWG-buff(l: index2,: ); 

index-slabs-to-in-BWG-buff-index-slabs-to-in-BWG-buff(l: index2, 

out-to-in_BWG-buff-remove-time-stamp(out-to-in_BWG-buff); 
new-state(index-slabs-to-in_BWG-buff,, )-[]; 

index_list_coils-cr-update-list(index-list-coils-cr, index-slabs-to-in_BWG_buff); 

available-places-available-places+index2; 
crane-moves-crane-moves-index2; 
real-crane-moves(5)-real-crane-moves(S)+indox2; 
if crane-moves -- 0 

in-from-buff-0; 

out-to-in-cold-roll-buff-C]; 
in-from-out-cold-roll-buff-C]; 

check-out-variables; 
return 

end 

elseif index2 -0% no coils loaded out to BWG input buffer 

out-to-in-BWG-buff=[]; 

if crane-moves-0 
in-from-buff-C]; 

out-to-in-cold-roll-buff-C]; 
in-from-out-cold-roll-buff-[]; 

check-out-variables; 
return 

end 
end 

% -------------------------------------------------------------------------- 
% 2nd priority: Load in coils from input buffer 

state-buff=clieck-empty(state-buff); 
no-slabs-in-buff-size(state-buff, l); 

available-places_virtual-max(O, available-places-max-no-circulating-coils) 

index3-min Uno 
-s 

labs- in-buff available-places-virtual crane-moves]); 

if index3 >07 some coils can be moved into HighBay from input buffer 

253 



in-from-buff-steLte-bu. ff(i: inde%3,. ) ; 
state-buff-update-buff(state_buff, (I, in-from_buff); 
in-from-bu. ff-set-tinLe_stamp(in_from_buff, time_step); 
new-state-tnew-state ; in-from-buffl; 

available-places-available-places-index3; 
crane-moves-crane-moves-index3; 
real-crana-moves(l)-real_crane. moves(l)+index3; 

if crane-moves -- 0 
in-from-out-cold-roll-buff-C]; 

out-to-in-cold-roll_buff-[]; 
check-out-variables; 
return 

end 

elseif index3 -- 0% No coils loaded into HB from input buffer 
in-from_buff-C); 

if crane-moves -- 0 
in-from-out-cold-roll-buff-[]; 

out-to-in-cold-roll-buff- 0; 

check-out-variables; 
return 

end 

end 
% in-from-buff is defined! 

% third priority (a): Load input buffer of cold-rolling machine 
if -isempty(slab-cr) 

out-to-in-cold-roll-buff-slab-cr; 
out -to - 

in-col d-roll 
-buff-remove-t 

ime- stamp (out 
-to-in-cold-roll-buff) 

new-state(slab-cr-index)-[]-, 
new-state-check-empty(new-state); 
7 update list of matched coils destined for cold-rolling treatment 
%index-list-coils-cr 

if size(index_list-coils_cr, 2)--l %size(index_coils_cr, 2)-I 
index-list-coils-cr-[]; % only coil in list is removed 

else 
index-list-coils-cr(l)-[]; 

no-coils-in-list-size(index-list-coils-cr, 2); 
% move up remaining coils in list by one place 
index-list-co ils 

-cr-index-li at -coil s-cr-ones (1, no-c oils- in-I ist) 
end 
ava. ilable-places-available-places+l; 

crane-moves-crane-moves-1; 
real-crana-moves(3)-real-crane-moves(3)+I; 

else 
out-to-in-cold-roll-buff-C]; 

end 

% second priority (b): Bring in coils from out-cold-roll-buffer 
no-slabs_out_cold-roll-buff=size(state-out-cold_roll-buff, i); 
indexi-min([no-slabs_out-cold_roll-buff available-places 
crane-moves]); 
% real_ crane_moves-max (size (slab_ cr, 1) 

, no_sl abs_out_cold_roll _buff); 
% some trips are free! 

if indexI >0% some coils have moved in from out-cold-roll-buffer 

in_from_out_cold_roll_buff-state-out_cold_roll_buff(l: indexl,: ); 

in-from-out-cold-roll-buff-set-time-stamp(in-from_out_cold_roll_buff, time-step); 

new_state-fnew-state ; in-from-out-cold-roll-btiffl; 

st ate- out -c 
old-rol I 

-buf 
f-update-out 

-c old-roll-buf f(state-out-cold-roll-buff, in_from_out_ cold_rol 1 
-buff); 

available-places=available-places-indexl; 
crane-moves-craiLe-moves-indexl; 
real-crane-moves(4)-real-crane_moves(4)+indexl; 
if crane-moves -- 0 

check-out-variables; 
return 

end 

elseif indexl -- 0% no coils moved in from out-cold-roll-buffer 

in_from_out-cold-roll-buff-[]; 

if crane-moves-0 
check-out-variables; 
return 

end 
end check-out-variables; 
% -------------------------------- priorities231. m ------------------------- 

o. M-file priorities312: 
% priorities312 
% script file called from inside update-highbay-new 
% Entry, CR, BWG 

irst priority: Load in coils from input buffer 

state-buff-check-empty(state-buff); 
no_slabs-in-buff-size(state-buff, l); 

available-places-virtuaLlýmax(O, available-places-max-no-circulating-coils) 
indox3-min(Cno-slabs-in-buff available-places-virtual crane-moves]); 

if index3 >07. some coils can be moved into HighBay from input buffer 

in-from-buff-state-buff(l: index3,: ); 

254 



state-buff-update_buff(state_buff, [I, in_from-buff); 
in-from-buff-set_time_stamp(in_from_buff, time-step); 
new-state-Enew-state ; in-from-buffl; 
available-places-ava, ilable-places-index3; 
crane-moves-crane-moves-inde%3; 
real-crane-moves(l)-real-cra. ue-moves(l)+index3; 

if crane-moves -- 0 
in_from_out_cold_roll-buff-[]; 

out-to-in-cold-roll-buff-[); 
out-to-in-BWG-buff-E]; 
check-out-variables; 
return 

end 

elseif index3 -0% No coils loaded into HB from input buffer 
in-from_buff-[]; 

if crane-moves -- 0 
in-from-out-cold-roll_buff-[]; 

out-to-in-cold-roll-buff-[); 
out_to_in-BWG_buff-C],, 
check_out _variables 
return 

and 

end 
% in_from_buff is definedl 
% ------------------------------------------------------------------------ 
% second priority (a): Load input buffer of cold-rolling machine 
if -isompty(slab-cr) 

out_to_in_cold_roll_buff-slab_cr; 
out_to_in-cold-roll-buff-remove-time-st amp (out-to-in-cold-roll-buff) 

new_state(sl&b_cr_index)-[1; 
new-state-check-empty(new-state); 
% update list of matched coils destined for cold-rolling treatment 
%index_list_coils_cr 

if size(index_list-coils_cr, 2)--l %size(index_coils_cr, 2)-=l 
index-list-coils-cr-C]; % only coil in list is removed 

else 
index_lAst_coils_crW=[3; 

no-coils-in-list=size(index-list-coils-cr, 2); 
% move up remaining coils in list by one place 
index-list-coils-cr-index-list-coils-cr-ones(l, no-coils-in-list); 

end 
available-places-available-places+l; 
crane-moves-crane-moves-1; 
real-crane-moves(3)=real-crane-moves(3)+l; 

else 
out_to_in_cold_roIl_ýbuff-G', 

end 

% second priority (b): Bring in coils from out-cold-roll-buffer 

no-slabs_out-cold-roll-buff=size(state-out-cold-roll-buff, l); 

indexi-min(tno-slabs-out-cold-roll-buff available-places 

crane-moves]); 
% real- crane-moves -max (size (slab_cr, 1) , no- slabs -out -cold-roll-buff) 

% some trips are free! 

if indexi >07. some coils have moved in from out-cold-roll-buffer 

in-from-out-cold-roll-ýbuff-state-out-cold-roll-buff(l: indexl,: ); 

in_f ram-out _c old-roll -buf 
f-s at _t 

ime-st amp (in_from-out 
_c old-roll -buff, 

time 
-step); 

new-state-Cnew-state ; in-from-out-cold-roll-buffl; 

state-out-cold-roll-buff-update-out-cold-roll-buff 
(state 

_out-co 
ld-roll 

-buff, 
[I in-from-out-cold-roll 

-buff); 
available-places-available_places-indexl; 
crane-moves-crane-moves-indexl; 
real-crane-moves(4)-real_crane-moves(4)+indexl; 
if crane-moves -- 0 

out-to-in-BWG-buff-11; 
check-out_va. riables; 

return 
end 

elseif indell -0% no coils moved in from out-cold-roll-buffer 

in-from-out-cold-roll-buff-C], 

if crane-moves--O 
out-to-in-BWG-buff-C]; 
check-out-variables; 
return 

end 

end 

7 third priority: Load out to BWG input buffer 

index2=min(no_out_to_in-BWG_buff, crane_moves); 

it index2 >0% some slabs can be moved out to in-BWG-buffer 

out-to-ixL-BWG-buff-out-to-in-BWG-buff(l: 
index2,: ); 

index-slabs-to-in-BWG_buff-index_slabs_to_in_BWG_buff(i: index2,: ); 

out-to-in-BWG-buff-ramove-time-stamp(out_to-in_BWG_buff); 
now-state(index-slabs-to-in-BWG-buff,: 

)-[]; 

index- list 
- coils -cr-updat 

e-li st(index-list_coils-cr, index_slabs_to_in-BWG_buff); 

available-places-available-places+index2; 
crane-moves-crane-moves-indox2; 
rea, l-craue-moves(5)-real_crane_moves(S)+index2; 
if crane-moves -- 0 

check-out-variables; 

255 



return 
slid 

elseif index2 -0% no coils loaded out to BWG input buffer 

out-to-in-BWG-buff-C]; 

if crane-moves--o 
check-out-variables; 
return 

end 
end check-out-variables; 
% -------------------------------- priorities312. m ------------------------- 

M-file priorities321: 
% priorities321 
7. script file called from inside update-highbay-new 
% Entry, BWG, CR 

% f1rst priority: Load in coils from input buffer 
state-buff-check-empty(state-buff); 
no-slabs-in-buff-size(state_buff, t); 
available-places-virtual-ma. x(O, available-places-max-rio_circulating-coils); 
index3-min(Cno-slabs-in-buff available-places-virtual crane_moves])-, 

if index3 >0% some coils can be moved into HighBay from input buffer 
in_from_buff-state_buff(l: index3, -); 
state-buff-update-buff(state-buff, [), in-from-buff); 
in-from-buff-set-time-stamp(in-from-buff, time-step); 
new-state-Enew-state ; in-from-buff); 
ava, ilable-places-available-places-index3; 

crane-moves-crane-moves-index3; 
real-crane-moves(l)-real-crane-moves(l)+index3; 

it crane_moves -- 0 
in-from-out-cold-roll-buff-C]; 

out-to-in-cold-roll-buff-C]; 
out-to-in-BWG-buff-11; 
check-out-variables; 
return 

end 

elseif index3 -- 0% No coils loaded into HB from input buffer 
in-from-buff-11; 

if crane_moves -- 0 
in-from-out-cold-roll-buff-C]; 

out-to-in-cold-roll-buff-C); 
out-to-in-BWG-buff-C]; 
check-out-variables; 
return 

and 
end 
% in-from-buff is definedl 
% ------------------------------------------------------------------------ 
% second priority: Load out to BWG input buffer 
index2-min(no-out-to-in-BWG-buff, crane-moves); 
if index2 >0% some slabs can be moved out to in-BWG-buffer 

out-to-in-BWG-buff-out-to-in-BWG_buff(l: index2,: ); 

irLdex-slabs-to-in-BWG-buff-index-slabs-to-in-BWG-buff(l: index2,: ); 

out-to-in-BWG-buff-remove-time-stamp(out-to-in_BWG_buff); 
nev_state(index_slabs_to_in_BWG_buff,: )-[]; 

irLdex-list-coils-cr-update-list (index-list-coils-cr, index_ slabs _t o-in-BWG-buff); 
available-places-available-places+index2; 
crane-moves-crane_moves-index2; 
real-crane-moves(5)-real_crane-moves(S)+index2; 
if crane-moves -- 0 

out-to-in-cold-roll-buff=[]; 
in-from-out-cold-roll-buff-C]; 

check-out-variables; 
return 

end 

elseif index2 -- 0% no coils loaded out to BWG input buffer 

out_to-in-BWG-buff-(]; 

if crane-moves--O 
out-to-in-cold-roll-buff=[]; 
in-from-out-cold-roll-buff-[]; 

check-out-variables; 
return 

end 
end 

% -------------------------------------------------------------------------- 
% third priority (a): Load input buffer of cold-rolling machine 
if -isempty(slab-cr) 

out-to-in-cold-roll_buff-slab_cr; 
out-to-in-cold-roll-buff-remove-time-stamp(out-to-in-cold-roll-buff); 
new-state(slab-cr_index)-(]; 
new-state-check-empty(new-state); 
% update list of matched coils destined for cold-rolling treatment 
%index-list-coils-cr 

if size(index-list-coils-cr, 2)--l %size(index_coils_cr, 2)--I 

index-list-coils-cr-[]; % only coil in list ýs removed 

else 

256 



index-list-coils-cr(l)-[]; 

nO-cOils-in-list"size(index-list-coils-cr. 2); 
% move up remaining coils in list by one place 
index-I ist-co ils 

-cr-index-li at -coil s-cr-ones (I, no-c oils- in-list); 
end 
availELble-places-available-places+l; 
crane-moves-crana-moves-1; 
real-crane-moves(3)wreal-craLne-moves(3)+l: 

else 
out-to-in-cold-roll-buff-[]; 

end 

second priority (b): Bring in coils from out-cold-roll-buffer 

no-slabs-out-cold-roll-buff-size(state_out-cold-roll-buff, l); 

indexl-min([rio_slabs_out_cold_roll-buff available-places 

crane_moves]); 
% real- crane-moves -max (size (&I ab-cr, 1) 

, no-slabs 
_out _c 

old-roll 
-buff); 

% some trips are free! 

if indexi >0% some coils have moved in from out-cold-roll-buffer 

in-f rom-out 
-c 

old-roll-buff-stat e 
-out- 

cold-ro 11-buff (1: inde xI, 
in-f rom-out 

-c 
old_roll 

_buf 
f-s et 

_time _stamp 
(in_from_out 

-cold-ro 
11-buf f, t ime-step) 

new-state-[new-state ; in-from-out-cold-roll-buff); 

st at e-out 
-c 

ol d-roll-buf f-updat e 
-out -c 

old_roll_buf f (state-out_cold_roll-buff, in-from-out-cold-roll-buff) 

available-places-available-places-indexl; 

crane-moves-crane-moves-indexl; 

real-crane-moves(4)ýreal-craLne-moves(4)+indexl; 
if crane-moves -0 

check-out-variables; 

return 

end 

elseif indexl -- 0% no coils moved in from out-cold-roll-buffer 

in-from-out-cold-roll-buff-[]; 

if crane-moves--O 

check-out-variables; 

return 

end 

end check-out-variables. 
% -------------------------------- priorities321. m ------------------------- 

0- Function read-f rom-xls: 
function slabs-list-read-from-xls(filaname, day-no) 

% function slabs -list-reaLd_from_xls 
(f ilename, day-no) 

% Function reads data from xls file (row day-no) and converts it into 

% list structure 

a=xlsread(filename); nr-size(a, l); 

if round(nc/2) -- nc/2 
disp('Error in read-from-xls. m 

slabs-list-0; 
return 

end 

if day-no > nr 

slabs-list-0; 
return 

end 

nc-size(a, 2); 

%SLAB-TYPES 

slab-type-1 
struct( I type,, I type-01 width wide I 'special-flag', 0, I gauge thic' , timer 1, -1, 'flags', [0 

00 01); slab-type-2 = 

struct( I type, I type-021 'width I, Imedi I, 'special_flag 1,0,1 gauge,, I thic, It imer, -1, 'flags', [0 

00 0)); slab-type-3 - 

struct( I type I, I type-031, I width I, I narr I, I special-flag', 0, I gauge I, I thic I, It imer 1, -1,1 flags', CO 

00 03); slab-type-4 , 

struct (I type I, I type-041, 'width P, 'wide I, I special-flagP, 0, I gauge I, I stan' It imer I, -I, I flags 1, [0 

oo 03); 

slab-type-5 
struct( I type I, I type-051, 'Width I, I medi I, I special_flag', O, I gauge stan', It imer 1, -1, If lags', [0 

00 01); slab-type-6 - 

struct( I type I, I type-061, 'width I, I narr I, I special-flag', O, I gauge I, I stan' It imer 1, -1,1 flags', [0 

00 01); 

slab-type-7 
struct( I type I, I type_071 'width I, 'wide I. I special_f lag', 0,1 gauge thin', It imer 1, -1,1 flags', CO 

00 01); 

slab-type-8 - 
Igaugel. IthilLI"timerl, -I, 'flagsI 

, t, -Uct(, typep,, type_081, lwidthl, lmedil. 'special-flag', O, Jo 

00 01); slab-type-9 

struct( I type I, I type-O; P 
,I width I, I narr I, I special-flag', O, I gauge I, I thin', It imer 1, -1,1 flags', [0 

00 01); 

slab-type-10 - 

structCtypO' 'tYP8-101 ,I width I, 'wide I. 'special-flag I, I, I gauge, 'thic' 'timer', -1, 'f lags', 10 

00 0]); slab_type-11 , 

struct( I type II type-111 'width I, 'medi I, I special_flag I, I, I gauge I, I thic I, It imer 1, -1,1 flags', [0 

oo 03); slab_type-12 , 

struct (, type', Itype-121 'width', 'narr', Ispecial-flag', 1, gauge' I 
'thic I, 'timer', -I, 'flags, [0 

00 01); slab-type-13 - 

257 



Otruct Ctype', 'type-131 'width I 'wide I, I special -flag 
1,1,1 gauge I, I stan, 'timer 1, -1,1 flags, 

, 
[o 

00 01), 

slab-type-14 - 
atruct(Itypel . 'type-141 'width, 

, Imedi'. special-flagl, l, 'gauge' 'stan' 'timer', -I, flags, 
, 

Co 
00 01); slab-type_16 - 
struct('typel 'type-15', 'width' . 'narr', 'special-flag', l, 'gauge' 1stan' 'timerl, -1, 'flags, jo 
00 0]).. 

slab_type_16 " 
struct( I type I 'type-161, 'width I 'wide I, I special -flag' 

1, 'gauge'. $thin' 'timer', -1, ' flags I, CO 
00 03); 

slab-type-17 - 
struct Ctype I , type-171 'width I, I medi I, I specia. 1-flag I, I, I gauge thin', 'timer 1, -1, If lags', [0 
00 01); slab-type-18 - 
struct( I type I 'type-181 'width I, I narr I, I special-flagl, l, I gauge I, I thin', It imer 1, -1,1 flags,, [0 
00 0]); 
% -------------------------------------------------------------------------- 
n-round(ac/2); no_slabs_array-C]; slab_typesl-[]; for i-l: n 

type_no-a(day_no, (i-1)*2+1); 

no_slabs-a(day_no, (i-l)*2+2); 

if ((-isnan(type-no)) & (-isnan(no-slabs)) & (type-no > 0) & (type-no <- 18) & (no_slabs - round (no-slabs)) & (no-slabs > 0)) 
string-temp-Clslab-type-', int2str(type-no)]; 

slab-eval(string-temp); 
slab-typesl-Eslab-typeal ; slab3; 
no-slabs-array-Eno-slabs-array no-slabs]; 

end 

end 

if isempty(no-slabs-array) I isempty(slab-typesl) 

slabs-list-0; 
else 

slabs-list-specify-slabs(no_slabs-arrayl, slab-typesl); 
end 

------------------------------------ end of read-from-xls. m ----------- 

lo. Function read-f rom-xls-all: 
function [slabs-list, day-indox]-read-from-xls-all(filename) 

% function [slabs-list, day-index] -read_from_x1s _all 
(filename) 

% Punction reads data from xls file all data and converts it into 
%a consecutive list structure. Day index is corresponding day-index 
% array (row-vector) 

a-xlsread(filename); nr-size(a, l); nc-size(a, 2); 

if round(nc/2) -- nc/2 
disp('Error in read-from-xls. m ... 
slabs_list- 0 

day-index-0; 

return 
end 

s labs-list- 0; day-index- 0; 

for i-l: nr % no of days 

slabs-list-day-i-read-from-xls(filename, i); 

slabs-list-day-i=chock-empty(slabs_list_day_i); 
no-slabs-day-i-size(slabs_list_day_i, l); % no slabs 
if no-slabs-day-i -- 0 

slabs-list-[slabs-list ; slabs-list_day_i); Y. append 
day-index=[day-index i*ones(1, no_slabs_day_i)); 

end 
end 

% ------------------------------------ end of read-from-xls-all. m ----------- 

Oo- Function remove-time-stamp: 
function slabs-ramove-time-stamp(slabs) 

% function slabs-ramove-time-stamp(slabs) 
% Remove time-stamp from slabs leaving HighBay 

no-slabs-size(slabs, l); % no slabs 
if no-slabs 01 size(slabs, 2) -- 0 

slabs- 
return 

end 

for J-I: no_slabs 
current-slab-slabs(i); % get current slab 

timer-current-slab-current-slab. timer; % get flags field 

timer-current-slab--l; % set to -1 after exiting HB 

current-slab = setfield(current_slab, I timer I, timer-current_slab); 

slabs(i)-current-slab; % substitute back 

end 

% -------------------------------------- end of remove-time_stamp, m ---- 

o. M-file run-process-ic: 

258 



run-process-ic 

cur-dir-pwd; 
data-dir-Ccur-dir, '\datall; % data directory 
% ------------------------------------------- 
% DEFINE PROCESS PARAMETERS 

%p-am-default-paranisters; 

simulation-step-pa, ram. simulation-step; % minutes 
max-iter-ceil((Pa. ram-simulation-time)*60/simulation-stap); % maximum number of iterations 
simulation-step-param. simulation-step; 
no-ann eal -machines-par am. no- anne aLl-machine a; 7. number of annealing machines in parallel 
high-bay-capacity-param. high-bay-caLpacity; 
buff-capacity-param. buff-capacity; 

capacity-buff 1-n-param. buff 1-n-capac ity, % capacity of ANNEAL buffer (in-side) 
out-anneal_buff-capacity-pa. ram. out- anne al-buff-capacity; 
in-cold_roll-buff 

- capac: it y-p &ram. in-c old-roll-buff -capacity; 
out-cold-roll-buff-capaLcity-param. out _c old_roll 

_buff_c apacity; 
plot-flag-param. plot-flag; % O-No plots, 1-Complete process, 2-Highbay 
pause-time-param. pause-time; % Pause-time for plots 
% ------ 
input-file-param. input-file; 
input_file-Cdata-dir. '\I. input-filel; 
% ------ 
stats-plot-flag-param. stats-plot-flag; % O=No plots, 1-Plots 
out-file-flag-pa. ram. out-file-flag; % I-Save output stats file, O-No output file 

out-file-name-param. out-file-name; % output file name 
out-file-name-[data_dir, '\I, out-file-name); 
% ------ 
init ial-condit ions 

_f 
lag-param. init i al _c onditions-f lag; % 1-Use Initial Data, O-No Initial Conditions 

% ------ 
in it i al 

- conditions _f 
i le=param. initial 

-condit 
ions-f ile; % initial conditions file (mat file) 

initial-conditions-file-[data-dir, 1\1 iaitial_conditions-filel 

% load_rate-param. load_rate, % not used 
% cool-time-after-anneal % not used at the moment 
% cool_time-after-coldroll % not used 
% crane-moves % not used 
% priorities % not used 
% --------------------------------------------------------------------------------------- 
% DEFINE INPUT AND INITIAL CONDITIONS 
if initial-conditions-f lag -- I% use initial data (import from file) 

if exist([initial-conditions-file, '. mat'l)--2 
eval([Iload l, initial-conditions-file, '. mat; ']); 
% check for compatibility with parameters 
state-out-buff-C); % reset to empty 

else 
disp(, Specified file containing initial conditions does not exist 
return 

end 

else % zero initial conditions 

run-indexmO; % iteration index 

state-buff-0; % slab-types; % load slab-types->buff 
%groups-buf f-det ermine-slabs-c ol our (state-buff) % determine stock-codes 

state_buffl-n-0 
state_anneal-[); % state of Annealing machine empty 

state-out-Anneal-buff-C]; 

state-cold-roll-11, 
state-in-cold-roll-buff=[]; 
state-out-cold-roll-buff-C]; 

. tate_in_BWG-buff-0; 

state-BWG-0 ; 
state_out-buff-[); % output buffer initially empty 

state-highbay-C]; 
% ------------------------- 
index_state-anneal-zeros(l, no-Anneal-machines); % all annealing machines initially empty 

time-anneal-- ones (I, no- anneal -machines); 
% all machines empty walting to be loaded 

% set anneal-flag-empty 
annea, l_: flag_empty=zeros(l, no_knneal-machines)*, 
for i. l: no-anneal-machines 

if index-state_anneal(i)--O 

anneal_flaLg_empty(i)=1; 
else 

anneal-flag-empty(i)-O; 
end 

end 

cold-roll-flag-empty-1; 
time_cold_roll--l; 

BWG-flag-empty-1; 

time-BWG--l; 
index-list-coils-cr-11; 

end 
% ---------------------------------------------------------------------------------------------------------------- 
% ITERATE 

run-index-local-0; '/. iteration index 

no_coils_loaded-0; 

259 



iterations 
-pe r-hour-round (60/ 9 imul at i on-step) ;% No steps per hour 

no-hours-ceil(ma. x-iter*simulation-step/60); % No of hours 
current-hour-1; total 

-crane-moves -per-hour-zero s U, no-hours) 
array-crane-moves-per-hour-zeros(5, rLo-hours); 
anneal-machine-occupaLncy-zeros(l, no-hours); 
bwg-occupancy-zeros(i. no-hours); 
cold-roll-machine-occupancy-zeroa(l. no-hours); 
highbay_occupancy-7, eros(l, no-liours); 

while 1 

run-index-run-index+l; 
run-irLdex_local-run-in(iex-local+1 
disp(['Cu. rrent time step: I, int2str(run-index-local)]); 

% ---------------------------- 
input 

-f rom-hotl ine - deliver-proc ass (run-index-l ocal, no-coi la-I oaded, state -buff, param. input 
-file); input-from-hotline - check-empty(input-from-býotline),, 

no-coils-temp-size(input-from-hotline, l); 

no-coils-loaded-no-coils-loaded+no-coils-t amp; % update 
stat e-buff-updat e-buff (state 

-buff, 
input-from-hotl ine, [1); 

% ---------------------------- 
(state 

-highbay, out -to-buf 
f1 

-rL, out-to-in-cold_roll-ýbuff , out_to_in_BWG_buff , injrom-buff, in-from-anne al -ýbuff in-from-out-cold_roll-buff, state-out-Anneal-buff, state-out_cold-roll-buff, state-buff, index_list_coils_cr, 
real-crane-moveal- ... 
update-highbay-new (at at e-highbay, ran_ index, at at e_buf f1 

_n, stat a- in_ c old_roll -buff, a tat a- in-BWG-buf f, 
state_out_anneal_buff, state_out_cold_roll_buff, state_buff, indax_list-coils-cr, paLram) 
tot 

-real -crane -moves=sum 
(real-crane 

_moves) ; 

[state-in-M-buff, output-to-BWGI -update-in-BWG-buff (state-in_BWG_buff, out-to_in-BWG-buff, BWG-fl ag- empty); 
[state_BWG, time-BWG, out-to-out-buff) -update-bwg(state-BWG, time-BWG, output-to_BWG); 
state-out-buff-update-output-buff (state_ out_buf f, out_to_out_buff); 
% ------------------------------ 
(state, buffl-n, output -t o-ann sell wupdate-buff i-n (state-buff 1-n, out -to-buff 

1-n, anneal_f lag- empty); 
[state, anneal, index_state_anneal, time-anneal output-from-anneall = ... 
update_Anne all _n 

(stat e- anneal, index-state-Anneal, time-anneal, output -to-anne al , state-out_nnneal. buff, param) 
state-out-anneal -buff-update-out-anneal-buff 

(state-out-anneal 
-buff, output-from-ann eal, [1); 

% ---------------------------- 
[state-in-cold-roll-bu: ff, output-to-cold-rolll- 
update -in-c old-rol 1-buf f (state 

-in_c old_roll _buff, out-t o_ in-c old-roll -buff, cold-roll -fl ag-empty) 
[state 

-cold-roll, 
t ime-c old-roll, output-f rom- cold-roll) -... 

update-co ld-roll (at at e- co ld_ro 11, t ime_cold_roll, output _t o_cold_rol 1, at ate -out_cold_roll _buff, param) 
st at e-out -cold-rol 

1-but f-updat e-out -c old-roll-buf f (state 
-out -cold-ro 

11 
-buff, output _f rom_c old_roll, 

% ----------------------------- 
% Update empty flags 

for i-l: no-anneal-machinea 
if time-anneal(i)-l % i-th Anneal machine is empty 

anneal-flag-empty(i)-l; 
else % i-th annealing machine busy 

anneal-flag-empty(i)-O; 
end 

end 

if time_cold_roll -- -1 % cold-roll machine is empty 

cold-roll-flag-empty-1; 
else 

cold-roll-flag-empty-0; 
end 

if isempty(time-BWG) % BWG is empty 
BWG-flag-empty-1; 

else 
BWG-flag-empty-0; 

end 
% ------------------------------ 
% UPDATE STATISTICS 
% ------------------------------ 

array-crane-moves-per-hour(:, current-hour)-array-crane-moves-per-hour(:, current-hour)+real-crane-moves'; 

total. 
-crane-moves-per_hour 

(current 
_hour) -total_crane-moves-per-hour (current 

_hour) 
+tot_real_crane _moves; 

anneal_machine_occupancy(current-hour) -anneal -machine- occupancy (current-hour) +size (state-anneal, 1); 

bwg-occupancy (current 
-hour) 

-bwg- occupancy (current_hour) +size (at at e_BWG, 1); 

cold-roll -machine- 
occupancy (current 

-hour) -cold-roll-machine-oc cupancy (current 
-hour)+ 

size (state 
-cold_roll, 

1) 

highbay-oc cup ancy (current-hour) -highbay-o c cupancy (current-hour) +size (state-highbay, 1) 

if rem(run_index-local, iterations-per-liour)-=O % 

current-hour-current-hour+l; 
end 
% ----------------------------- 
% Stoping condition I 

if run-index-local >- max-iter % maximum iteration index exceeded 

break; break; 

end 
% ----------------------------- 

Plots 

----------------------------- 
if plot-flag -- I% plots for complete process 

% Input buffer to HB 

no _slabs-in_buff 
-size (state_buff, 1) % no slubs in input HB buffer 

array-slabs -in-buf 
f 

-a c-datermine _slabs-col 
our (state 

-buff); 
% ------------------- 
% High-Bay 

no-slabs-highbay-size(state_highbay, l); % no slabs in HB 

array-slabs -highbay-s 
c-determine-slabs-colour (state 

-highbay) 
% -------------------- 
7. Annealing 

260 



no-slabo-buffi-n-size(state-buffl-n, l); % no slabs in input buff to anneal machine 
array_slabs 

_buff 
1_n_o c-de t ermine_sl &be 

_ 
col our (state-buf f 1_n) 

array-slabs-anneELled-sc-C) 
for i-l: no--nneal-machines 

sl &be- i wdet ermine 
-slabs -anne 

al ed (st ate_ anneal, index-stat e 
-Anneal, 

J) 

array-slabs 
-a 

nn e al ed- i- sc-det ermine 
-a 

labs 
-colour 

(slabs J) ; 
array-s labs 

-a 
nn e al ed_sc- Carr ay_ slabs-annealed_s c; array_slabs-annealed-i-sc] 

and 

no-slabo-buffl-n-size(state-bu: ffl-n, l); % no slabs being annealed 
array- sI abs 

-buff 
I-n-s c-determine 

-sl 
abs- col our (state 

-but 
f I-n) 

no-slabs-out-anneaLl-buffýsize(state-out-anneal-buff, i); % no slabs in out-nneal buff 

aLrray-slabs 
-out-Anneal-buff -ac-determine -a 

labs 
-colour 

(staLte-out-anne al 
-buff); 

--------------------- 
Cold-rolling 

no_slabs_irt_cold_roll-buff-size(state-in-cold-roll-buff, l); % no slabs in in-cold-roll buffer 

array- in-cold-roll-buff 
-a 

c-determirie-slabs-colour (state- in_cold-roll_buff) 

no-slabs-cold-roll-size(state-cold-roll, l); % no slabs being cold-rolled 

array-slabs -c old-r oll 
-a 

c-det ermine-sl abs 
-col our (at ate_cold_rol 1) 

no-s labs- out-cold-roll-buff-s ize (at at e-out 
-c old-roll-buff, 1) % no slabs in out cold-roll buffer 

array- slabs -out- 
co ld_roll_buff 

_a 
c-det ermine_ slabs_colour(state_out_cold_roll_buff) 

% ---------------------- 
% BWG 

no 
-a 

labs- in-BWG-buff-s i ze (at at e-in-BWG-buf f, 1) % no slabs in input BWG buffer 

array- slabs - 
in-BWG-buff 

-a 
c-det ermine- slabs 

-c ol our (at ate_ in_BWG_btxff 

no_slabs-BWG-size(state-BWG, 1); % no slabs in BWG 

array- slabs -BWG- 
a c-det ermine -a 

labs_ colour (state 
_BWG) 

no-slabs-out-buf f-s ize (state 
_out _buff, 

1) % no slabs in output buffer 

array- slabs -out -buff -a 
c-det ermine-s labs 

-colour 
(at at e-out-buff) 

% -------------------------- 
% ARRAYS FOR PLOTS 

array-plot-Carray-slabs-in_buff-ac; array-slabs-highbay-sc; array-slabs-buffl-n-sc array-slabs-annealed-sc; array, slabs-out-ýnneal-buff-scl; 

array-plot-[array-plot array-in-cold-roll-buff-sc array-s labs 
-co 

Id-ro 11 
-a 

c; array-s labs 
-out- 

cold_roll_buff 
_scj; 

array-plot-Carray-plot array-a labs- in-BWG-buf f 
_sc 

array-slabs-BWG-sc array-slabs-out-buff-scl 

(a labs_to_ent er, day-index) -read-from-xl a 
-all 

(input-f ile) % full schedule 

current-day-f loor ( (run- index-loc al *a imulat i on-step) (24* 60) +1; % current day 

no-coils-day-zeros(l, current-day); % initialize 

for i-i: current-day 

no-coils-day-i=(day-index--i); 

no-coils-day(i)-sum(no-coils-day-i); 

end 

total_no-coils-sum(no_coils_day); 

no-coils-to-enter=total-no-coils-no_coils-loaded; 

row1-O*ar-ray-plot(I,: ); 

rovl(1,1)-no-coils-to-enter-, 

array-plot-Crowl ; array-plot]; 

figure(l) 

barh(array-plot. 'stacked'), colormap(cool) 

ylab-C11: SCH I, ' 2: IB 1.1 3: HB 1,1 4- 1, int 2str (5+no-Ann eal -machines), 
I: ANNEAL 11; 

ylab=[ylab. int2str(6+no, anneal-machines), 1-1 int2str(8+no-Anneal-machines), I: CR I; 

yla, b-Cylab, int2str(9+no_anneal_machines), '-I, int2str(ll+no-anneal-machines), ': BWG'I; 

set(gca, IXGridI, 'on') 

x1a, bel(INumber of coils') 

ylabel(ylab) 

string_time-min2hoursday. s(run-index-local*simulation-step); 

title ([I iteration no - I, int2str(run-index-local), ' ', string-time]); 

axis(CO high_bay-capacity 0 12+no-anneal 
_machines]); 

pause (pause-t ime) 

elseif plot-flag -- 2% HighBaLy Plots 

[slabs 
-to -enter, 

day-index] =read-from-xls-all (input 
-f 

il e) ;% full schedule 

current-day-floor((ruzL_index_local*simulation-step)/(24*60))+l; 
% current day 

no-coils-day-zeros(i, current-day), % initialize 

for i-l: current-day 
no-coils-day-i-(day-irLdex--i),, 
no-coils-day(i)-sum(no-coils-day_i); 

end 
total_no-coils-sum(no-coils-day); 

no-coils-to-enter-total-no-coils-no_coils-loaded; 

array-plot-determine-slabs-colourl 
(state_highbay, run-index-local, param); 

rovl-Ellc>-coils-to-Guter 01; 

array-plot-[rowl ; array-plotl; 

figure (1) 

barh(array-plot, lstacked'), colomap(cool) 

ylab-E'l -Schedule 1,1 2. NA 1,1 3-. Ann 1,1 4- CR-1 1,1 5-CR-2 1,1 6-. CR-3 1,17: CR-411; 

set(gca, 1XGrid1,1on1) 

xlabel('Number of coils') 

ylabel(ylab) 
string-time=min2hoursdays(run-index-locaLl*simulation-step); 
title( PIteration no - 1, int2str(run_index_loca1), 1 ', string-time]); 

axis([O high-bay-capacity 0 81); 

261 



pause(pause-time) 
end 

and 

% STATISTICS 

max-no-crarLe-moves_per-houx-ma. x (tot al_crane-moves-per-hoUr) 
min-no-crane-moves-per-houx-min (tot al-crane-moves-per-bLour) 
average-no- crane -moves -per-hour-mean 

(total 
-crane-moves -per -hour); 

anneal 
-machine-o ccupancy- ( 100* ann eal-machine- oc cupancy) / (iterat i ons-per-hour*no 

- anne al -machine a *4) percentage occupancy 
max-anneal-machine 

-o ccupancy-max (an me al -machine -occupancy); min- anneal-machine-oc cupancy-min (Anneal 
-machine -occupancy) ; 

average--nneal-machine-occupancy-mean(anneal-machine_occupancy); 

bwg- oc cupancy- (100 *bwg-oc cupancy) /its rat ions-per-hour; % percentage occupancy 
max-bwg-occupancy-max(bwg-occupancy); 
min-bwg-occupancy-min(bwg-occupa. acy); 
average-bwg-occupancy-mean(bwg-occupancy); 

co ld_roll 
-machine- oc cupancy- 0 00 *cold-roll 

-machine-occup ancy) / it erat ions-per-hour; percentage occupancy 
max- cold-ro 11 

-machine-occupancy-max 
(c ol d-rol 1-machi ne-oc cupancy) 

min- cold-ro 11 
-machine-o c cupancy-min (c old-roll-machine-oc cupancy) 

average- cold-rol 1-machine 
- occupancy-mean (c old-roll-machine-oc cupancy) 

h ighbay-o c cupancy- (1 00*highbay-occupancy) / (high-bay 
-capacity* 

it erat i ons_per_hour) percentage occupancy 
max-highbay-occupaLncy-max(highbay-occupancy); 
min-highbay-occupancy-min(bighbay-occupancy); 
average-highbay-occupancy-mean(highbay-occupancy); 

% STATISTICS per day 
7 

no-days-ceil(no-. hours/24); hours_in-I ast -day-rem 
(no 

-hours, 
24) 

array-craLno-moves-per-day=zeros(5, no-days); 
anneal-machine-occupancy-per-day-zeros(l, no-days); 
bwg-occupancy-per-day-zeros(i, no-days); 
cold-roll-machine-occupancy-per-day-zeros(l, no-days); 
highbay-occupancy-per_day-zeros(l, no-days); 

for i-1: no-days 
if (i < no-days I hours-in-last-day -- 0) 

total-crane-moves-per-day (i) =sum (total-crane_moves-per-hour (24* U-1) +1: 24*i)) 

Anneal_machine-occupancy-per-day W -sum (anneal-machine-occupancy (24* (1-1) +1: 24*1)) /24; 
bwg-occupancy-per-day W -sum (bwg-occupancy (24* (1-1) +1: 24*1)) /24; 

cold-roll-machine-occupancy-per-day W =sum (cold-roll-machine-occupancy (24* U-1) +1: 24*1)) /24; 
highbay-occupancy-per-day W -sum (highbay-occupancy(24* U-1) +1: 24*1)) /24; 

array-crane -move s-per-day i) -(sum ((array-crane-moves-per-hour (: 
. 
24*(1-1)+1: 24*1)) 1)) 

else 
total-craLne-moves-per-day(no-days)-... 

sum (total 
-crane-moves -per-hour 

(24* (no-days - 1) +1: 24* (no-days-1) + I+hours 
-in-l ast -day)) 

anneal-machine-occupancy-per-day(no_days)- ... 
sum (anneal 

-machine -occupancy 
(20 (no 

_days - 
1) + 1: 24* (no_days- 1) + 1+hours 

-in-l ast-day) )/hours 
- 

in-last 
_day; 

bwg-occuparLcy-per-day(no_days)- ... 
sum (bwg-o ccupancy (24* (no-days - 1) + 1: 24* (no-days- 1) +1+hours- in-last 

-day)) 
/hours 

-in-l ast -day; 
cold-roll-machine-occupancy-per-day(no-days)- .. 
sum (cold-ro 11 

-machine -occupancy 
(24* (no- days- 1) + 1: 24* (no-days- 1) +1 +hours- in_l ast-day) Mours 

- 
in-l ast -day; 

highbay-occupancy-per-day(no-days)= ... 
sum (highbay 

-occupancy 
(24* (no-day s- 1) +1' 24* (no_days- 1) + 1+hours 

_injast-day) 
) /hours-in-last-day; 

indd=24*(no-days-l)+1: 24*(no-days-l)+I+hours-in_last_day; 

array-crane -move s-per-day (: 
, no-days) -(sum( (array- crane -moves -per-hour 

(: indd)) 

end 
end array-crane-moves-per-day-array-crane-moves-per-day'; 

% STATISTICS plots 

if stats-plot-flag 

figure(2) 

no-points-size(total-crane-moves-per-hour, 2); 

plot (I., uo-points, total-crane-moves_per-hour, 1-1 1: no_point s, average-no-crane-move a -per-hour 
*ones (1, no -points), 

title(, Crane moves per hour and average) 

xiabel('No hours'); 

grid 

figure(3) 

no-points-size(anneal_machine-occupancy, 2); 

plot (I. no-points, anneal-machine-occupancy, 1-1, I: no_points, average--nneal_machine-occupancy*ones(l, no-points), 

title('Percentage ANNEALING furnace occupancy, ) 

xlabel('No hours'); 

grid 

figure(4) 

no-points-size(bwg-occupancy, 2); 

plot (I: no-points, bwg-occupancy, 1-1 , 
1: no-points, average -bwg-occupancy*ones 

(I, no-point s) , 
title(, Percentage BWG Occupancy') 

xiabel('No hours'); 

grid 

figure(5) 

no_points-size(cold-roll-machine-occupancy, 
2); 

plot (I: no_points, cold_roll_ýmachine_occupancy tI -1,1: no-points, average-cold_roll_machine-occupancy*ones (1, no -points), 
title(Tercentage COLD-ROLLING machine occupancy') 

xiabel('No hours'); 

grid 

figure(6) 

no-points-size(highbay-occupancy, 
2); 

262 



plot (1: no -points, 
highbay-occupancy, 1-1,1no. Points, average 

-highbay_o c cupancy*orLes (I, no-points) 
title('PercentaLge HIGHBAY occupancyt) 
xlabel(, No hours, ); 

grid 

end 

thr_buft-size(state-out-buff, l); 

out-stringl-simul-aiimmaryl (no-days, paxam, anneal -machine- oc cupancy-per-day, bwg-occupancy-per-day.... 
cold_roll 

_machine- oc cupancy-per-day highbay-occupancy-per-d&y, array- c-rane-moves-per- day, thr-buff); 
disp(out-stringl); 

stat- data- [Max-no-cr ane -moves-per-hour min-no-crane-move B-per -hour average 
-no-crane -moves -per-hour; % max-anneaLl-machine-occupancy min-anneal-machine-occupancy average 

_anue al-machine- occupancy; % max-bwg-occupancy min-bwg-occupancy average-bwg-occupancy; 
% max-cold-roll-machine-occupancy min-cold-roll_machine-occupancy average-cold_roll_mach ine- occupancy; 

max-highbay-occupancy min-highbay-occupancy average-highbay-occupancy); 

% out_string-simul-sil-mary(param, stat-data); 
% disp(out-string); 
% -------------------------------------------------------------------------- 
% Save final state conditions 

var-strl-I run-index state-buff state-highbay state-buffl-n 
state-in-cold-roll_buff state-in-BWG-buff st ate -out -Anne al-buff 
var-str2-Istate-out-cold-roll-buff state-buff index-1 i st- coils- cr 
BWG-flag-empty state-BWG time-BWG state-out-buff 1; 
v&r_Btr3=Ianneal_flag. empty state_Rnneal index-state-anneal 
time-anneal state- out-a nn eal-buff cold-roll-flag- empty I; 
var_str4-Istate-cold-roll time-cold-roll'; var-str-[var-stri 
var-str2 var-str3 var-str4l; 

flag-log-input ('Save final states for future simulation? (y/n) 
if (flag-log -- Iyl I flag-log -- IY9 

while I 
file-save-input(lEnter file name: 
if exist( [data-dir, 1\1, file-save, I. mat'3)--2 

flag-overwrite-input( 'File exists - overwrite7 (y/n) ', Is, ); 
if (flag-overwrite III- ly, I flag-overwrite III- IYI) 

eval(Clsave ', data_dir, I\I, file_save, 1 l, var_str, '; ')); 

return; 
end 

else 
eval([Isave 1, data_dir, 1\1 file_saLve, I I, v&r_str, I; I3); 

return; 
end 

end 
and 

end run-process-ic. m 

lo, - Function set-time-stamp: 
function out-slabs-set-time-stamp(glabs, time-index) 

% function out-slabs-set-time-stamp(slabs, time-index) 
% Set current time-stamp for slabs entering HighBay 

, labs-check-empty(sla, bs); 

if isempty(slabs) 

out-slabs-[],, 
return 

end 

no-slabs-size(slabs, l); % no slabs 

time_index-round(time_index); 

out-slabs-[J; 
for J-1: no-slabs 

current-slab-slabs(i); % get current slab 
t imer- current -S1 abICUrrent-s lab. timer; % get flags field 

t imer- current -slab-t 
ime-index, I/, set to current time index when entering HB 

current-slab = setfield(current-slab, I timer I, timer-current-slab) 

out_slabs-Cout-slabs ; current-slab]; 

end 

------------------------------- and of set-time-stamp. m ------------------------ 

po- Function simul-summa y: 
function out_string-simul-siim-ary(param, stat-data); 
% function out-string-simul-silmmary(param, stat_data); 

Produces string summarizing simulation parameters and results 

now-DATESTR(clock, ldd-mmm-yyyy HH: MM: SSI); 

sfe-' ------------------------------------------------------------------------- 
si-CISIMULATION RUN at; ', now, I with following parameters: ']; s2-1 

1; s3-ElInput file: l, param. input-filel; if 

param, initial-conditiorLs-flag -- I 

s4-(Ilnitial conditions file :1, param. init ial_condit ions 
_f 

il ej; 

else 
s4-11; 

end s5-['Simulation time: l, int2str(param, simulation-time), 'hours']; 

s6-('Simulatiou step: ', int2str(param. simulation-step), I min']; 

s7m [I No of -nealing machines: I, Jnt2str (param. no -anneal -machines) 

263 



s8-['Load rate from hotline: 1 coil every 
', int2str((param. load-rate)*(param. simulation-step)), I min']; 
s9-('Maximum no of crane moves: 1, int2str(p&ram. crana_moves), 1 every 
l, int2str(param. simulation-step), I min']; 

%priorities-(l 2 31; % priorities order- cold rolling (in-out) in to HB, out to BWG 
flags-pr-param. priorities; pr_vec-[, Cold-Roll i/o I 

'Out to BWG I 
'In to HighBay 13; 

prl-flags_pr(l), pr2-flags-pr(2); pr3-flags_pr(3); 

a 10-PPriorities: 1-. 1, pr_vec(pr1,, ), 1 2.1, pr_vec(pr2. -. ),, 
3: 1, pr_vec(pr3,: )]; 

all-s2; s12-CIS11-mary of Statistical results']; 
s13<1 ------------------------------ 11; 

s14-PCrane moves per hour MAX: I, pad-blanks(num2str(stat_data(l, l), 1%4. lfl), 6), I 
s15-ClAnneal machine occupancy (%) MAX: I, pad-blanks(num2str(stat-data(2,1),, ý. 4. lfl), 6), I 
sl6-[IBWG occupancy M MAX,. ', pad-blanks(num2str(stat_data(3,1), "/. 4. lf'), 6), I 
sl7-['CR machine occupancy (%) MAX: 1, pad_blanks(num str(stat-data(4.1), 'Y, 4. lfl), 6), I 
slB-E'HighBay occupancy M MAX: I, pad-blanks(num2Btr(stat_data(5,1), 17.4. lf'), 6), I 

, ut-string-strvcat(sfe, sl, s2, s3, s4, sS, s6, s7, s8, s9, slO, sll, sl2, sl3, sl4, sl5, sl6, sl7, slB, sfe); 

% ------------------------------ end of simul-summary. m ---------------------------------- 

oo. Function simul-summa yl: 

MIN: I, pad-blanks(ni" str(stat-data(1,2), '%4. lf",, 6,, ' 
MIN: ', pad-blanks(num2str(stat-data(2,2), 1%4. lf'). 6), ' 

MIN: I pad_blanks(xku=2str(stat_data(3,2) , 
1.4. If') . 

6) 
,' 

MIN: I, pad-blajiks(num2str(stat-data(4,2), '%4. lfl), 6), ' 
MIN: I, pad-blanks(nii-2str(stat-data(5,2), 1%4. lf'), 6), ' 

function 

out-string-simul-slim-aryl (no-days, param, -nneal-machine-occupaLncy-per-day.... 
bwg-occupancy-per_day, cold_roll-machine-occupancy-per-day, highbay-occupancy-per-day, crane-moves_per_day, thr-buff) 

function out -str 
ing-s i mu I -summary 

I (no 
-days, param, anneal-machine -occupancy-per-day, ... 

% bwg-occupancy-per-day, cold-roll-machine-occupancy-per-day, highbay-occupancy-per-day, crane-moves-per-day, thr-buff) 

% Produces string summarizing simulation parameters and simulation 
% statistics 

% max-no-crane -moves -per-day-max 
(total 

-crane -move s-per -day) 
% min_no_crane -moves-per-day-min 

(total 
-crane-moves-per_day) 

% average_no_crane-moves-per-day-me an (total-craue-move a -per -day); 

% max-Anneal-machine-occupancy-per-day-max (anneal-machine-occupancy-per-day); 

% min-anneal-machine-occupancy-per-day-min (anneal-machine-occupancy-per-day); 

average-anneal-machine-occupancy-per-day-mean(-nneal-machine-occupancy-per-day); 

% max-bwg-occupancy-per-day-max(bwg-occupancy-per-day); 
% min_bwg-occiipancy-per-day=min(bwg-occupancy-per-day); 
average -bwg-o 

c cupancy-per-day-me an (bwg- oc cupancy-per-day) 

% max_c old-rol 1 
-machine -o c cupancy _per-day-max 

(c old-rol I-machine- oc cupancy-per_day) 

% min_ c ol d-rol 1-machine-0 c cupancy-per-day-mi n (c o ld-rol I-machine 
-oc cupancy-per-day) 

average -c old-roll -machine -o c cupancy -per-day-me an (c old_roll machine_o c cupancy -per-day) 

7. max-highbay-occupancy-per-day-max(highbay-occupancy-per-day); 
% min_highbay-occupancy-per-day-min(highbay-occupancy-per-day); 
average-highbay-occupancy-per-day-mean(highbay-occupancy-per-day); 

if no-days >I 
tcýtal-array-crane-moves-per-day-sum(crane-moves-per-day); 

else 
total. array-crarLe_moves-per-daLyýcrana-moves-per -day; 

end 

now-DATESTEL, (clock, 'dd-mmm-yyyy HH: MM: SSI)-, 

sfe-I ------------------------------------------------------------------------------------------- 
si-EISIMULATION RUN at: I now, I with the following parameters: 

s2-1 1; s3-['Input file: l, param. input-filel; if 

param. initial-conditions-flag =- 1 

s4-[IIaitial conditions file param. initial 
-conditions -file]; 

else 
s4-11; 

end s6-C'Simulation time: l, int2str(param. simulation-time), I 

hours']; s6-C'Simulation step: l, int2str(param. simulation_step), I 

min']; s7-C'No of annealing machines: 

I, int2str (Param. no-anneal -machines) 
I; sB-('Load rate from hotline: I 

coil every l, int2str((param. load-rate)*(param. simulation-step)). I 

min']; s9-C'Maximum no of crane moves: 

l, int2str(param. crana-moves). ' every 

l, int2str(param. simulation_step), I min']; 

7. priorities-El 2 31; % priorities order- cold rolling(in-out), in to HB, out to BWG 

flags-pr-param. priorities; xI-find(flags_pr-1); 

x2-find(flags_pr--2); x3-find(flags_pr--3); 

pr-vec-[, Cold-Roll i/o ' 

#out to BWG I 

'In to HighBay 'I; 

prj-pr_yec(xl,: ), pr2-pr-vec(x2,: ); pr3-pr-vec(x3,: ); 

slo-[, Priorities: 1:,, prl, l 2: 1, pr2,1 3: 1, pr3l; 

%slo-[)Priorities* 1: l, pr-vec(prl,: ), ' 2: 1, pr-vec(pr2, -. ), ' 3-. I, pr-vec(pr3,,. )]; 

11-s2; 

s12-psummary of Statistical results: USAGE M11; 

264 



913-P ----------------------------------------- 11; 

a- temp-1-1 ANNEAL TSM BWG HIGHBAYI; 
s-temp-2-1 ------ ------- 1. 

I 
a-temp-strvcat(s-tamp-l, s-ýtemp-2)-, 

for i-l: no-days a-temp-i-[ ... 
I Day I, pad-bleaLks (wlm2str (1.1%3. Of I ', pad-blanks(num2str(--neal_machina_occupancy_per_day(i), "/. 4, lf'), 6),, 
pad-blanks (num2str (cold-roll-machine-occupancy-per-day (I) 

, '%4. If 1) 
, 
6) 

, 
pad-blanks(ni, m2str(bug-occupancy-per-da, y(i), 1%4. lfl), 6), I 
pad-bl. anks (num2str (bighbay-occupancy-per-day (I) 

, 
"/4. If 1) , 6) 

s-temp-strvcat(s-temp, s-temp-i); end 
s-temp-1-PTOTAL. I, pad_blanks (num9str (average-anne&l-mac]2ine-occupancy-per-day, 1%4. if 1) 6), 1 
pad-bl anks (num2str (average_cold_roll-machine-occupancy-per-day, 1%4. If 1) 

, 
6) 

pad-bl. anks (num2str (average-bwg-occupancy-per-day, 1%4. If 1) 
, 
6), 1 

pad-bl anks (num2str (average-highbay-oc cupancy-per-day, 1%4. If 1) 
, 
6)] 

s-temp-usage-strvcat(s-temp, s-temp-1); 

a- blank-' 

s14-s2; sIS-L'Summary of Statistical results: CRANE MOVES AT EACH 
LOCATION']; 

s16-[1 ------------------------------------------------------------- 

s-temp-1-1 COIL-ENTRY ANNEALING TSM-IN 
TSM-OUT BWGI; S-temp-2-1 ---------- 
--------- ------ ------- --- I 

s-temp-strvcat(a-temp-l. s-temp-2),, 

for i-1: no-days s-temp-i-C... 
'Day l, pad-blanks(num2str(i, 1%3.0f'), S), I l, pad-blanks(rLum2str(crane-moves-per-day(i, l), 1%5.0f'), 6), I 
pad-blanks(nilm2str(crane-moves_per_day(i, 2), '%5.0f'), 9), ' 
pad-blanks(num2str(crane-moves-per-day(i, 3), '%S. Ofl), 9). I 
pad-blanks(num2str(crane-moves-per-day(i, 4), '%S. Ofl), 9), I 

pad-blanks(num2str(crane-moves-per-day(i, 5), 1%5. of'), g)]; 

s-temp-strvcat(s-temp, s-temp-i); end 

temp_l-['TOTAL l, pad_blanks(niim9str(total-array-crane-moves-per-day(l), '%5. Of'), 6), I 
pad-blanks(ni, -9sty(total-array-crane-moves-per-day(2), 1%5.0f'), 9) ""... 

pad-bl anks (num2str (total- array-crane-moves-per-day (3), 1%6. Of'), 9) 1" 

pad-blanks (num2s tr (total- array-crane-moves-per-day (4). 1%5.0f 1), 9) " "... 

pad-blanks (num2str (tot al-array -crane-moves -per-day 
(5) 

, 1%5, Of1), 9)1; 

s-temp-crane-strvcat(s-temp, s-temp-1); 

sthr-["niroughput: l, int2str(thr-buff), ' coils in 
1, int2str(no_days), 1 days'); 

out-string-strvcat (sf e. sl, s2, s3, s4, s5, s6, s7, sB, s9, s 10, a 11, a 12, s 13, s_temp-us age, s-blank, s_blank, s 14, sl 5, s 16, s-temp-crane, sf e, sthr) 

V 
------------------------------- end of simul-summary. m ---------------------------------- 

Function Simulation-gui: 
function varargout - Simulation-gui(varargin) 

gui-Singleton = 1; gui-State - struct(Igui_Name', mfilename, 

Igui-Singletoul, gui-singleton, 
Igui-OpeningFcnl, @Simulation-gui-OpenixLgFcn, 
Igui-OutputFcn', OSimulation-gui-OutputFcn, 
Igui-LayoutFcal, 
Igui-Callback', 

if nargin & isstr(vararginfil) 

gui-State. gui-Callback - str2func(varax-ginjil); 

end 

if nargout 
[varargout(l: nargoutll - gui-mainf cn (gui 

-State, varargin(: I); 

else 
gui-mainfcn(gui-State, vararginf: )); 

end 

7 --- Executes just before Simulation-gui is made visible. 
function Simulation-gui-OpeningFcn(hObject, eventdata, handles, 

varargin) 

handles. anneal-3; handles. cooling-72; handles. rate-20; 

handles. crane-60; 

handles. prior_annealýl; % This option is not currently in use 

handles. prior-entry-2; handles. prior-tsm-3; handles. prior-bwg--4; 

handles, input-' schedulel I; handles. initial-f ile- I initial 
-data 

I; 

handles. initial-flag-0; handles, popup-1; handles. plot-2; 

handles. simulation-30; %Initial simulation time 30 days (or 8640 iterations) 

% Choose default command line output for Simulation-gui 

handles. output - hObject; 

% Update handles structure 

guidata(hObject, handles); 

% UIWAIT makes Simulation-gui wait for user response (see UIRESUME) 

% uiwait(handies. figurel); 

()Utputs from this function are returned to the command line. 

265 



function varargout - Simulation-gui-OutputFcn(hObject, eventdata, 
handles) 

% Get default command line output from handles structure 
varargoutW - handles. output; 

% --- Executes during object creation, after setting all properties. 
function edit-anneal-CreateFcn(hDbject, eventdata, handles) 

% Hint: edit controls usually have a white background on Windows, 
% See ISPC and COMPUTER. 
if ispc 

set(hObject, 'BackgroundColorl, lwhitel); 
else 

set(h0bject, 'BackgroundColorl, get (0, IdefaultUicontrolBackgroundColorl)); 
and 

function edit-anneal_Callback(hObject, eventdata, handles) 

handles. anneal-str2double (get (hObject, I String')); guidata(hObject, 
handles); 

% --- Executes during object creation, after setting all properties. 
function edit- cool ing-Creat eFcn (hObj ect, eventdata, handles) 

if ispc 

set(hDbject, 'BackgroundColor', 'white'); 

else 
set(hObject, 'BackgroundColor' get(O, IdefaultUicontrolBackgroundColorl)); 

end 

function edit- cool ixig_Cal lback (hObj e ct , eventdata, handles) 

handles. cool ing-str2double (get (hObj ect, 'String')); guidata(hObject, 
handles); 

if ispc 

set(hDbject, 'BackgroundColorl, lwhitel); 

else 
set(hObject, 'BackgroundColor ', get (0, IdefaultUicontrolBackgroundColorl)); 

end 

function edit - entry-C al lback (hObJ ect, evelitdata, handles) 

handles. rat e=str2double (get (hObj ect, 'String')); guidata(hObject, 
handles); 

% --- Executes during object creation, after setting all properties. 
function edit- crane-Cre at eFcn (hObj ect , eventdata, handles) 

if ispc 

set(hDbject, 'BackgroundColorl, lwhitel); 

else 
set(hObject, I BackgroundColor '. get (0, IdefaultUicontrolBackgroundColorl)); 

end 

function edit-crane-Callback(hDbject, eventdata, handles) 

handles. crane-str2double (get (hObject, 'String')); guidata(hObject, 
handles); 

% --- Executes during object creation, after setting BL11 properties. 
function edit-prior-anneal-CreateFcn(hDbject, eventdata, handles) 

if ispc 

set(hObject, 'BaLckgroundColorl, 'white'); 

else 
set(hObject, 'BackgroundColorl, get (0, IdefaultUicontrolBackgroundColor')); 

end 

function edit-prior-anneal-Callback(hObject, eventdata, handles) 

% --- Executes during object creation, after setting all properties. 
function edit-prior-entry-CreateFcn(hObject, eventdata, handles) 

if ispc 

set(hObject, 'BackgroundColorl, 'white'); 

else 
set(hObject, 'BackgroundColor', get(O, IdefaultUicontrolBackgroundColorl)); 

end 

function edit-prior-entry-Callback(hObject, eventdata, handles) 

handles. prior-entry-str2double(get(hObject,, Stringl)); 

guidata(hObject, handles); 

% Hint: edit controls usually have a white background on Windows. 

% See ISPC and COMPUTER. 

if ispc 

set(hObject, 'BackgroundColor', IwbLitel); 

else 
set(hObject, I BackgroundColor ', get (0, IdefaultUicontrolBackgroundColorl)); 

end 

function edit-prior-tsm-Callback(hObject, eventdata, handles) 

handles. prior-tsm-str2double(get(hDbject, 'Strin. ý1)); 

266 



guidata(hDbject, handles); 

7 --- Executes during object creation, after setting all properties. 
function edit 

-prior-bwg-CreateFcn 
(hDbj act, eventdata, handles) 

if ispc 

set(hObject, 'BackgroundColorl, lwhitel); 
else 

se t (hQbj act BackgroundCo lor get (0,1 def aultUi c ontrolBackgroundColor 
end 

function edit-prior-bwg-Callback(hObject, eventdata, handles) 

ha, ndles. prior-bwg-str2double(get(hObject, 'Stringl)); 
guidata(hObject, handles); 

function edit -f 
ile-name 

-Cre at eFcn (hObj act, eventdata, handles) 

if ispc 

set(hObject, 'BackgroundColorl, lwhitel); 
else 

s et(hObject, 'BackgroundColorl get(O, IdefaultUicontrolBackgroundColorl)); 
end 

function edit-file-name-Callback(hObject, eventdata, handles) 

ha, ndles. input-get(hObject, 'String'); guidata(hObject, handles); 
[handles. input, path] = uigetfile('*. mat; *. xlsl, 'Choose your 
files'); guidata(hDbject, handles); 

function edit -plot -select 
ion-CreateFcn (hObj e ct, eventdata, handles) 

if ispc 

set(hDbject, 'BackgroundColorl, lwhitel); 
else 

set (hObj ect, I BackgroundColor I, get (0,1 defaultUicontrolBackgroundColor 

end 

function edit-plot-selection-Callback(hDbject, eventdata, handles) 

handles. plot-str2double (get (hObject, I String')); guidata(hObject, 
handles); 

function buttoncancel_Callback(hObject, eventdata, handles) 

delete(handles. figurel) 

% --- Executes on button press in button-run. 
function button-run-Callback(hDbject, eventdata, handles) 

param-default-parameters; 

%--UPDATE ANNEAL PARAMETERS ----------------------------------- 

param. no-anneal-machines=handles. anneal; 
% ------------------------------------------------------------- 

%--UPDATE COOLING PARAMETERS ---------------------------------- 

handles. cooling-floor(handles. cooling*12); 
param. cool-time-after-coldroll-handles. cooling; 
% ------------------------------------------------------------ 

%--UPDATE CRANE PARAMETERS ----------------------------------- 

ha. ndles. crane-max(l, floor(handles. crane/12)); 
pa, ram. crane_moves-handles. crane; 
% ------------------------------------------------------------ 

%--UPDATE ENTRY RATE PARAMETERS ------------------------------- 

handles. rate=max(l, floor(handles. rate/5)); 

param. load-rate-handles. rate; 
% ------------------------------------------------------------- 

%--UPDATE PRIORITIES PARAMETERS ------------------------------- 

ha. ndlos. prior-tsm-(handles. prior-tsm-1); 
handlos. prior-bwg-(handles. prior-bwg-1); 
handles. prior-entry-(handles. prior-entry-1); 

param, priorities(l)-handles. prior_tsm; 

param. priorities(2)-handles. prior-bwg; 

pa, ram, priorities(3)-handles. prior_entry; 
% ------------------------------------------------------------- 

%--UPDATE INPUT EXCEL FILE CHOICE ----------------------------- 

param. input-file-handles. input; 

% ------------------------------------------------------------- 

%--UPDATE INITIAL CONDITIONS PARAMETERS ----------------------- 

param, initial-conditions-file-handles. initial-file; 

param. initial-conditions-flag-handles. initial-. Ilag; 

267 



---------------------------------------------- 

%--UPDATE PLOTTING PARAMETERS ------------------ 

param. plot_flag-bimdles. plot; 
% ---------------------------------------------- 

'/--UPDATE SIMULATION PARAMETERS ----------------------- - ------ 

handles. simulation-handles. simulation*24; 
param. simulation-time-handles. simulation; 
% ------------------------------------------------------------- 
run-process-ic 

% --- Fxecutes during object creation, after setting all properties. 
function edit-initial_CreateFcn(hObject, eventdata, handles) 

if ispc 

set(hDbject, 'BackgroundColorl. lwhite'); 

else 

set(hObject, 'BackgroundColorl get(O, IdefaultUicontrolBackgroundColorl)); 
end 

function edit-initial-Callback(hObject, eventdata, handles) 

function adit-simiilation-days-CreateFcn(hObjoct, eventdata, handles) 

if ispc 

set(hDbject, 'BackgroundColorl, lwhitel); 

else 
set(hObject, 'BackgroundColor', got (0, IdefaultUicontrolBackgroundColorl)); 

end function edit- simulat ion-days-Callback (hObj ect, eventdata, 
handles) 

handles. simulation-str2double(get(hObject, 'Stringl)); 

gaidata(hObject, handles); 

function popupmenu-Callback(hDbject, eventdata, handles) 

handles. popup=get (hObj act, 'Value'); guidata(hObject, handles); 

if handles. popup-I 
handles. initial-file-handles. initial-file; 
handles. initial-flag-0; 

guidata(hObject. handles); 

elseif handles. popup=-2 
(handles. init ial-f ile, path] - uigetfile(, *. mat', 'Choose your file with initial conditions'); 
if handles. initial-file--O 

handles. initia: L-file-linitial-datal; 

guidata(hObject, handles); 

else 
handles. initial-file (size (handles. initial-file, 2) -3: size (handles. initial-file, 2)) 
handles. initial-flag-1; 

guidata(hObject, handles); 

end 
end 
7 --- Executes during object creation, after setting all properties. 
function popupmeriu-CreateFcn(hDbject, eventdata, handles) 

if ispc 

set(hDbject, 'BackgroundColorl, lwhitel); 

else 
set(hObJect, PBackgroundColorl, get(O, IdetaultUicontrolBackgroundColorl)); 

end 

function pushbutton-Callback(hObject, eventdata, handles) 

[handles. input, path) - uigetfile(I*. xlsI, 'Choose your input 

schedule file'); if handles. input-0 

handles. input-Ischedulell; 

guidata(hObject, handles); 

else 
handles. input (size (handles 

-input, 
2)-3: size (handles. input, 2))- 

guidata(hObject, handles); end 

function figurel_CreateFcn(hObject, eventdata, handles) 

% ------------------------------ end of Simulation-gui-m ---------------------------------- 

Po. Function specify-slabs: 
function s lab_type s_out-spec ify- sI abs (no- slabs_ array, s lab-type s) 

% function sl ab_types-out-spec ify 
-slabs 

(no- s labs- array, slab-types) 

% FUNCTION SPECIFY_SLABS 
% Creates structure of required slabs according to column-vector of integers 

% no-slabs_array and array of structures slab-types 

no-orders-size(no-slabs-array, 
l); 

if size(no_slabs-array, 2) -- I 

slab-types-out'll; 
return 

end 

for i-l: no_orders 
if no_slabs- array (i) -- round (no-slabs_array (i)) no-slabs-array(i) <- 0 

slab-types-out'll; 
return 

end 

268 



end 

slab-types_out. []; 
for i-1: no-orders 

for J-I: ao-slabs-array(i) 

end 
slab-types_out-Colab-types-out ; slab-types(i,: )]; 

end 

----------------------------- end of specify-slabs. m -------------------- 

No- Function split-stock-codes: 
function array 

-out -split 
- sto ck-c odes (a labs-in, sto ck_codes) 

function array 
-out-spl 

it-sto ck-code a (slabs_ in, sto ck_code a) 

Given an list of slabs-in and an array of 1xm stock-codes, function 
% produces array-out of size 1xm whose m-th element is the number of % slabs in slabs-in with stock-cods(i) 

no-stock-codes-size(stock-codes, 2); if no_stock-codes=-O; 
array-out-0; 
return 

and 

array- out-zeros (1, no_ at ock_c odes); no-slabs-size(slabs-in, l); 

if no-slabs -01 size(slabs-in, 2)--O 
no-slabs-0; 
return 

end 

for i-1: no-slabs 
current-slab-slabs-in(i); 
current-stock-code-current-slab. stock-cods; 
for J-1: no-stock-codes 

if current-stock-code--stock-codes(j) 
array-out(j)-array-out(j)+l; 

end 
end 

and 
% --------------------- end of split-stock-codes. m ---------------------- 

Po. Function update-anneall-n: 
function (nev_st ate, index-new- state, new-t ime, output -from-anne all 
update-anne al 1-n (old- state, index_old-st ate, old-time, input 1, state_out-anrieal_buff, param) 
function [new- state, index-nev- state, new-time, output-from-anne alJ - ... 
update_anneall-n(old-state, index_old_state, old-time, inputl, state-out-Anneal-buff, param) 

INPUTS: 

% old-state: list of slabs being Annealed or empty matrix; these aLre 
% listed vertically and the state-dimension of the i-th annealing machine 
% is specified by index-old-state(i) 
% index-old-state: no of slabs in i-th annealing machine for old-, Btate 
% old-tijue: n-vector (where n-no of parallel annealing machines) whose i-th entry 
% specifies time-step since beginning of annealing in i-th machine if i-th machine 
% is busy; if i-th machine is empty then old-time(i)--l 
% inputl: list of slabs from buffer buffl-n output (could be empty) 
% state-out-Anneal-buff current state of out-anneal-ýbuffer (list of slabs or empty matric). Used to 
% calculate output so that no overflow occurs. 

% OUTPUTS: 

% new-state: list of slabs inside Anneal-machine at end of time-interval; these are listed 
% vertically and the state-dimension of the i-th machine is specified by index-new-state(i) 
% index-new-state: no of slabs in ith Annealing machine for new-state 
% new-time: n-dimensional vector; For the i-th machine: 
% If busy->busy: new-time(i)-old-time(i)+l 
% If finished Annealing but not loaded output (for not causing overflow to out-Annea-l-buff) 
% new-time(i)-old-time(i) (time frozen) 
% If loaded from empty: new-time(i) reset to 1 
% If empty at end of interval: new-time(i)--i 
% output-from-anneal: list of slabs: contribution from i-th machine is empty matrix if annealing is still in progress or 
% annealing in i-th machine has finished but output will cause overflow to out-Anneal-buff; else 

output is stacked to output-from-Anneal array in machine order. 

% Get parameters 

out-anneal-buff-capacity-param. out-anneal-buff-capacity; 

n-max(size(index-old-state)); 

if size (old-state, 1) -- sum(indox-old-state) 
new-state- [I ; 
index-new-state-C]; 

new-time-[]; 
output-from-anneal-0; 
disp('Error in update-anneal-n. m ... 
return 

end 
7 

269 



st at e-out-anneal-buff-check-empty (state 
_out_ anneal 

-buff); no-slabs-out--nneal-buff-size(state-out-nnneal-buff, l); 
7 

new-state-[]; % initialize 
index-new-state-zeros(I, n); '/. initialize 
new-time-zeroa(l, n); % initialize 
output-from-annea. l-[]; % initialize 
current-input-list-inputi; % initialize 
out_slabs-count-0; % initialize 

it isempty(inputl); % no input from buffer 
for i-l: n % for each machine 

if index-old-state(i) -- 0% machine busy 

if i-I 

old-state-i-old-state(l: index-old-state(l)); 
else 

old-st ate-i-old-st ate (sum (index_old_state (1: 1-1) +1: sum(index-old-state (I: i-1) +index-old-stat e (i)) 
end % here old_state_i is known 
%old-state-i-datermine-slabs-annealed(old-state, index_old_state, i); 

top-slab-i-old-state-i(l,: ); 
total-time-for-anneal-i-obtain-anneal-time(top-slab_i); 

if old-time(i)+l < tot al_t ime-f or-anneal-i % annealing not finished at end of period 
new-state-[new-state ; old-state-il; 
new-time(i)-old-time(i)+I; % increment clock 
index-now-state(i)-index_old_state(i); 

else % process ends at end of time-interval 
if out-slabs-count + index-old-state(i) + no -slabs_out _ann eal _buff 

<- out-anneal-buff-capacity no overflow 
new-time(i)--I; 
index-new-state(i)-O; 

output -from-ann e al- (output-from-Anneal ; old-state-il; % stamp before returning 
out-slabs_count-out-slabs-count+index-old-state(i); % update count of out slabs 

else % ouput will cause overflow to out_anneal-buff 
new-state=(new-state ; old-state-il; 
index_riew_state(i)-index-old-state(i); 

new-time(i)-old-time(i); % freeze time - try to output next time round 
end 

end 
else % machine is empty 

new-time(i)--l; 
end % if 

end '/. f or 
else % some input waiting to be loaded 

for i=l: n % for each machine 
if index-old-state(i) -- 0% machine busy 

if i--1 

old-state-i=old-state(l: index-old-state(l)); 

else 
old-state-i-old-state (sum (index_ old_stat e (1: 1-1) +1: sum (index-old-st ate (1: 1-1)) +index-old-state (i)) 

end % here old-state-i is known 
%o I d_s t ate- i=det ermine-sl abs -anneal ad (old_ at ate , index-old- state, i) 

% No input-> state transition at end of interval, possible state->output transition 
top-slab-i-old-state-i(l,: ); 

tot al_t ime-f or-Ann eal-i-obtain-anne al-t ime(top-slab-i) 

if old-time(i)+l < total time 7 
-for-anneal , annealing not finished at end of period 

new-state-[new-state old-state-il; 
index-new-state(i)-index-old-state(i); 

new-time(i)-old-time(i)+l; % increment clock 
else % process ends at and of time-interval 

if out-slabs-count+index-old-state(i)+no-slabs-out-Anneal-buff <- out-anneal-buff-capacity no overflow 
new-time(i)--I; 
index-new-state(i), O; 

output-from-anneal-(output-from-AnneaI ; old-state-il; 7 stamp before returning 

out-slabs-count=out-slabs_count+index-old-state(i); % update count of out slabs 

else % ouput will cause overflow to out_Anneal-buff 
new-state-[new-state ; old-state-il; 
index-new-state(i)-index-old-state(i); 

new-time(i)-old-time(i); % freeze time - try to output Annealed slabs next time round 

end 
end 

else % i-th machine is empty 

if i-I 

old_state_i=old_state(l: index-old-state(l)); 

else 
um(index-old-state(l: i-1))+index-old-state(i)); old_state_i-old_state(sum(index-old-state(l: i-1))+I: s 

end % here old-state-i is known 
%old_stat a- i-det ermine-slabs_ann eal ad (old- state, index_old_state, i); 

% No state->output transition possible, check for input->state transition 

[in-slabs, indox-slabs-in]-determine-slabs-for--nneal(current-input-list); % check for compatibility 

current-input-list (index-slabs-in) =0; % eliminate imported slabs to J-th machine 

current- input 
_list -che ck-empty (current- input-I i st) ; 

new-state=Cnew-state ; in-slabs) ;7 update new global state 
index-new_state (i) -size (in-slabs, 1) % update with number of slabs 

if isempty(in-slabs) 

new-time(i)--I; % keep 'time at -1 

else 
new-time(i)'l; % start clock 

end 
end %if 

270 



end %for 

end %if 

% 
output 

-from_amneal-Anne al 
_stamp 

(output-from-anneal) % update anneal stamp 

% ------------------------------------------- end updata-annea1l-n. m ----------------------------------------- 

Function update-anneall-n: 
function (new 

-state, 
index-new-stat a, new-t ime, output -from-Anne all - ... update_anneall-n(old-state, index_old_state, old_time, inputI, state_out-anneal 

-buff, param); 7. function Criew-state, index_new-state, new-t ime, output_from-ann a all - ... % updat e-anneall-n (old_state, index_old_state, old_ time, input 1, state -out_anneal -buff, param) 

% INPUTS: 

old-state: list of slabs being annealed or empty matrix; these are 
listed vertically and the state -dimens ion of the i-th annealing machine 
is specified by index-old-state(i) 

index-old-state: no of slabs in i-th annealing machine for old-state 
old_time: n-vector (where n-no of parallel annealing machines) whose i-th entry 

specifies time-step since beginning of annealing in i-th machine if i-th machine 
is busy; it i-th machine is empty then old-time(i)--l 

input 1- list of slabs from buffer buffl-n output (could be empty) 
st at a _Out_Ann e al -buff current state of out-anneal-buffer (list of slabs or empty metric). Used to 

calculate output so that no overflow occurs. 

% OUTPUTS: 

% new-state: list of slabs inside anneal-machine at end of time-interval; these are listed 
% vertically and the state-dimension of the i-th machine is specified by index-new-state(i) 

index-new-state: no of slabs in ith annealing machine for new-state 
new-time: n-dimensional vector; For the i-th machine: 

% If busy->busy: new-time(i)-old-time(i)+l 
% If finished annealing but not loaded output (for not causing overflow to out-anneal-buff) 
% new_time(i)-old_time(i) (time frozen) 
% If loaded from empty: new-time(i) reset to 1 
% If empty at end of interval: now-time(i)--l 
% output-from-anneal: list of slabs: contribution from i-th machine is empty matrix if Annealing is still in progress or 
% annealing in i-th machine has finished but output will cause overflow to out-anneal_buff; else 
% output is stacked to output-from-anneal array in machine order. 

% -------------------------------------------------------------------------- 
% Got parameters 

out--nnea, l-buff-capacity-param. out-asmeal-buff -capacity; 
% -------------------------------------------------------------------------- 

n-max(size(index_old_state)); 

if size(old_state, l) sum(index-old-state) 
new_state=[]; 
index-new-state-0 
new_time-[3; 
output-from-anneal-(]; 
disp('Error in update-anneal_n. m ... 1) 
return 

and 

, tate-out-Anneal-buffmcheck-empty(state-out-anneal-buff) 
no-slabs-out-Anneal-buf f -size (state-out-anneal-buf f 1); 

new-state-0; % initialize 
index-new_state-zeros(l, n); % initialize 

new-time-zeros(l, a); initialize 

output-from-anneal-0 7 initialize 

current-input-list-inputl; % initialize 

out -slabs -c ount-0; % initialize 

it isempty(inputl); % no input from buffer 
for i=l: n % for each machine 

if index-old-state(i) -= 0% machine busy 

if 
old-state-i-old_state(l: index_old-state(l)); 

else 
old-staLte-i-old-state (sum (index-old-state (1: i-1)) +I: sum (index_old_state (1: 1-1)) +index-old_state (i)) 

end % here old_state_i is known 
%old_st ate_ i-det ermine-s labs 

-annealed 
(old_st ate, index_old_ st ate, i) 

top-slab-i-old-state-i(l,: ); 

total-time-f or-anneal-i-obtain-mmeal-tiine(top-slab-i); 

if old_ýtime(i)+I <t otal. _timejor-anneal-i 
% annealing not finished at end of period 

new-state-[new-state ; old-state-il; 

new-time W -old-time (1) +1; % increment clock 
index-new-state(i)-index_old_state(i); 

else % process ends at end of time-interval 

if out-slabs-count + index-old-state(i) + no-slabs_out-Anneal-buff <- out -anneal-buf 
f 

-capacity no overflow 

new-time(i)--I; 
index-new-state(i)-C, 

output _f rom-anne al. - Coutput-f rom- anneal ; old-state-il; % stamp before returning 

out -sl abs-c ount-out-s labs-count+index_old-st ate (i) % update count of out slabs 

else % ouput will cause overflow to out_anneal_buff 

new-state-[new-state ; old-state_i]; 
index-new_state(i)-indox-old-state(i); 

new-time(i)-old-time(i); % freeze time - try to output next time round 

end 

271 



and 
else 7 machine is empty 

new-time(j)--J; 
end % if 

end %for 

else 7. some input waiting to be loaded 
for i-l: n % for each machine 

if index-old-state(i) -- 0% machine busy 

if i-1 

old-at ate -i-old-state 
(1: index-old-state (1)) 

else 
old-at ate-i-old-st ate (sum (index_old-state (1: 1-1) +1: sum(index_old_st at a (1: 1- 1)) +index-old-stat a M) 

end % here old-state-i is known 
%old-state-i-determine-slabs 

-ann a al ad (old- at ate, index- old_stat e, i) 

% No input-> state transition at end of interval, possible State->output transition 
top-slab-i-old-state-i(l,: ); 
total-time-for-anneal-i-obtain-Anneal_time(top-slab-i); 

if old_time(i)+l < total-time-for-anneal-i % Annealing not finished at end of period 
new-state-Enew-state ; old-state-il; 
index-now-state(i)-index_old_state(i); 

new-time(i)-old_time(i)+I; % increment clock 
else % process ends at end of time-interval 

if out -al abs-c ount +index-old-st ate W +no- sl abs-out-ann eal _buff 
<= out_Anneal_buff-capacity no overflow 

new_time(i)-1; 
index-new-state(i)-O; 

output-from-Anneal=[output-from-anneaI ; old-state-il; % stamp before returning 
out 

- slabs 
-count-out-B 

labs 
-count+iiLdex-o 

Id-st ate (i) % update count of out slabs 
else % ouput will cause overflow to out-anneal-buff 

new-state-[new-state ; old-state-il; 
index-new_state(i)-index_old_state(i); 

new-time (i) -old-time (i) freeze time - try to output annealed slabs next time round 
end 

end 

else % i-th machine is empty 

if i-I 

old-st ate -i =old-st ate (I: index-old-stat a (1) 

else 
old_state-i-old-state (sum (index_old-state (1: 1-1)) +1: sum (index-old-st ate (I: i-1) +index-old-state W) 

and % here old-state-i is known 
%old_state_i=det ermine- slabs-anneal ad (o ld_st ate, index_old_stat a, i) 

% No state->output transition possible, check for input->state transition 

[in- slabs, index- slabs -in] -det ermine -sl abs-f or-ann eal (current- input-li at) % check for compatibility 
current-input-list(index-slabs-in)-(]; % eliminate imported slabs to i-th machine 
current -input -1 

i at -che ck-empty (current- input 
-list); 

new-state-Cnew-state ; in-slabs] ;7 update new global state 
index-new-state M -size (in-slabs, 1) % update with number of slabs 
if isempty(in-slabs) 

new-time(i)-I; % keep time at -1 
else 

new-time(i)-I; % start clock 
end 

end %if 

end %for 

end %if 

output -from-anneal-Anne al-st amp (output-from- ann eal) % update anneal stamp 

% ------------------------------------------- end update-Anneall-n. m ----------------------------------------- 

No- Function update-anneall-n: 
function (new- at ate, index-new- state, new-t ime output -from_anne all - ... 
update-ann e al I 

-n 
(old-st ate, index-old-st ate, old_t ime, input I, at ate_out _anneal -buff, param) 

% function [new- state, index_ne w-state , new_t ime, output _from-anne all - ... 
% updat e- anne all -n 

(old- state, index- old_st ate, old-time, input 1, at ate_out -anne 
al -buff, param) 

% INPUTS: 

old-state: list of slabs being annealed or empty matrix; these are 
listed vertically and the state-dimension of the i-th annealing machine 

% is specified by index-old-state(i) 
% index-old-state: no of slabs in i-th annealing machine for old-state 
% old-time: n-vector (where n-no of parallel annealing machines) whose i-th entry 
% specifies time-step since beginning of annealing in i-th machine if i-th machine 
% is busy; if i-th machine is empty then old-time(i)--l 
% inputl: list of slabs from buffer buffl-n output (could be empty) 
% state-out-anneal-buff current state of out-anneal-buffer (list of slabs or empty matric). Used to 

calculate output so that no overflow occurs. 

% OUTPUTS: 

% new_state: list of slabs inside anneal-machine at end of time-interval; these are listed 

% vertically and the state-dimension of the i-th machine is specified by index-new-state(i) 

% index-new-state: no of slabs in ith annealing machine for new-state 

new-time: n-dimensional vector; For the i-th machine: 
If busy->busy: new-time(i)-old-time(i)+l 
If finished Annealing but not loaded output (for not causing overflow to out-anneal-buff) 

new_time(i)-old_time(i) (time frozen) 
If loaded from empty: new-time(i) reset to I 
If empty at end of interval: new-time(i)--l 

output-from-anneal: list of slabs: contribution from i-th machine is empty matrix if Annealing is still in progress or 

272 



% 
annealing in i-th machine has finished but output will cause overflow to out-anneal 
output is stacked to output-, from_anneal array in machine order. 

-buff; else 

% --------------------------------------------------------------------- 
% Get parameters 

out-anneal-buff-capacity-param. out-anneal-buff-capacity; 

n=max(size(index-old-state)); 

if size (old-state, 1) -- sum(index-old-state) 
now-state-[] -, 
irLdex-new-state-C]; 

new-time-[]; 
output-from-anneal-[]; 
disp('Error in update 

-anneal-n. m ... 1) 
return 

end 

st at e-out -ann eal-buf f-che ck- empty (state-out 
-ann eal-buf f) 

rLo_slabs-out_arkneal_buff-size(state-out-anneal-b, aff, i); 

new-state-[]; % initialize 
index-new-state-zeros(l, n); % initialize 
new-time-zeros(l, a); % initialize 

output-from-anneaLl=[]; % initialize 

current-input-list-inputl; % initialize 
out_slabs-count-0; % initialize 

if isempty(inputl); % no input from buffer 
for i-l: n % for each machine 

if index-old-state(i) -- 0 '/ machine busy 

if i--i 

old-state_i-old_state(l: index-old-state(l)); 

else 
old-state-i-old_state (sum (index-old-state (1: 1-1)) +1: sum Undex-old-state (1: 1- 1)) +index_old_stat e (i)) 

end % here old-state-i is known 
%old-stat e- i=det ermine -slabs -annealed 

(old_st ate, index_ old-st ate, i) 

top-slab-i-old-state-i(l,: ); 

total 
-t 

ime-f or-Ann eal-i-obtain- anne al_t ime (top_ a1 ab_i) 

it old-time(i)+l < total-time-for-anneal_i % Annealing not finished at end of period 
new_state=Cnew_state ; old_state-i); 
new-time(i)-old-time(i)+I; % increment clock 
index-new-state(i)-index-old-state(i); 

else % process ends at end of time-interval 
if out-slabs_count + index-old-state(i) + no-slabs_out -anneal _buff 

<- out_anneal_buff-capacity no overflow 
new-time(i)--I; 
index-new-state(i)-O; 

output -f rom_anneal- Coutput-f rom- Anneal ; old-state_il, % stamp before returning 
out -slabs -c ount-out-s labs_ count+index-o ld-st at a (i) ;% update count of out slabs 

else % ouput will cause overflow to out_anneal-buff 
new-state-Enew-state ; old_state_i); 
index-new-state(i)-index_old_state(i); 

new-time(i)-old-time(i); % freeze time - try to output next time round 

end 
end 

else % machine is empty 
new_time(i)--I; 

end % if 

end %for 

else % some input waiting to be loaded 

for i-l: n % for each machine 
if index-old-state(i) -- 0% machine busy 

if i-1 

old-state-i-old-state(i: index_old-state(l)); 

else 
old-state-i=old-state(sum(index-old-state(l: i-1))+I: sum(index_old_state(l: i-1))+index_old_state(i)); 

end % here old-state-i is known 
%old-state-i-det ermine-sl abs -annealed 

(o ld_st ate, index-old-st ate, i) 

No input-> state transition at end of interval, possible state->output transition 

top-slab-i-old-state-i(l,: ); 

total-time-for-anneal-i-obtain-anneal_time(top_slab_i); 

if old-time(i)+1 < total-time-for-anneal_i % annealing not finished at end of period 

new-state-fnev-state ; old-state-il; 
index-new-state(i)-index-old-state(i); 

new-time(i)-old-time(i)+I; % increment clock 

else 7. process ends at end of time-interval 
if out-slabs-count+index-old-state(i)+no-slabs_out_anneal_buff <= out-anneal-buff-capacity no overflow 

new-time(i)-I; 
index-new_state(i)=O; 

output-from-anneal-[output-from-anneaI ; old-state-il; % stamp before returning 

out-slabs-count-out-slabs-count+index-old-state(i); 
% update count of out slabs 

else % ouput will cause overflow to out-anneal-buff 

new-state=[new-state ; old-state-i); 
index-new-state(i)-ijidex-old-state(i); 

new-time(i)-old-time(i); % freeze time - try to output annealed slabs next time round 

and 
end 

else % i-th machine is empty 

273 



if i-1 

old-state-i-old-state(l: iadex-old-state(l)); 
else 

old-st ate-i-old-st ate (sum (index-old-state (1: 1- M +I: sum (index_old_st ate (1: 1- 1)) + index-o ld- state W) end 7. here old-stato-i is known 
%old-state-i-det 

ermine-al abs- annealed (old-stat e, index-old_state, i); 

% No state->output transition possible, check for input->state transition 

Cia-sl abs, index- slabs -in) -det ermine-s labs-f or-Ann eal (current 
-input -11 st) % check for compatibility current-input_liat(index_slabs_in)-[3; % eliminate imported slabs to i-th machine current-input 

-11 st -check- empty (current- input 
-list); new-state-Cnew-state ; in-slabs]; % update new global state index-new-state U) -size (in-slabs, 1); % update with number of slabs if isempty(in-slabs) 

new-time(i)--l; % keep time at -1 
else 

new-time(i)-j; % start clock 
end 

end %if 

end Yfor 

end %if 

% 
Output 

-from-ann e &1-Ann e al - stamp (Output-f rom-anneal) ;% update anneal stamp 

-------------- end update-anneall-a. m -- 

No. Function update-buf f: 
function 

new-state-update-buff (old-state, input 
_f rom-hotl ine, output-to-highbay) 

% function new-state-update-buff (old_ at ate, input-from-hotl ine, output-t o-highbay) 

% update state of buff, located between Hotline and HighBay. 
% Function should be called EITHER with input-from-hotline-C] OR output-to-highbay-[] 
% (or both (1). NOTE: This buffer does not define its output, which is "pulled in" by 
% the HighBay, It is the responsibility of the HighBay (through function update-highbay) 
% to check that requested row-size of "output-to-highbay" does not exceed buffer's 
% state-dimension. Similarly, it is the responsibility of the hotline (via update-hotline) 
% to ensure it does not load buff when later is at full capacity. 

% INPUTS: 

% old-state: List of slabs at beginning of current time-step 
% input-from-hotline: Empty matrix (no output from anneal-n) or list of slabs 
% output-to-highbay: Empty matrix (no input requested flom HB) or list of slabs 

OUTPUTS: 

% new-state: List of slabs at end of current time-step 

input-from-hotline=check-empty(input-from-hotline); 

output-to-highbay-check-empty(output-to-highbay); 
old-state-check-empty(old-state); 

if -isempty(input-from_hotline) & -is empty (output-to-highb ay) 
new_state-C]; 
disp(lerror in update-buff ... 
return 

end 

if is empty Unput-from-hot I ins) & is empty (output 
-to-highbay) 

% no input HB or from hotline 

new-state-old-state; 
elseif isempty(output-to-highbay) % Load from Hotline 

new-state-Eold-state ; input-from_hotlitLe]; 

elseif is empty Unput-f rom-hot I ins) % called from inside HB 

new-state-old-state; 
no-slabs-requested-size(output-to-highbay, l); 

new-state(l,. no-slabs_requested,: )=[]; 

new-state-check-empty(new-state); 
end 

end update-buff. m 

Oo. Function update-buf f 1: 

function (new-st ate, output-t o- anneal] -update -buff 
I (old_st ate, input 1, input 2) 

% function [new-st ate, output-t o- anneal] -update-buff I (old-stat a, input 1, input 2) 

% OLD FILE NOT IN USEMM 
Buffl: located between HighBay and Annealing machine 

% INPUTS: 
% old-state: list of slab-types at current time-step 
% inPutI: Empty matrix (no output from HB) or list of slabs 
% input2: I-Anneal machine empty; 0 Anneal machine busy 

% OUTPUTS: 
% new-state: list of slabs after transition 
% output-to-anneal: empty if no transfer to anneal machine, else list of slabs to be transfered 

if isempty(inputl) % no output from HB 

new-state-old-state; 
else 

new-state-Cold-state , inputil; 

end 

if input2--O % anneal machine busy 

output_to-anneal-E); 

274 



return; 
else 

(output-t o-anneal, index-out) -det ermine -slabs -f Or- Ann al(n8w-state); % load 4 compatible slabs 
if size(index_out, 2) -- size(new-state, l) 

new_state(index-out)-[]; % if new_state-C], newstate(ED-0 gives 0; 

else 
new-state-0; 

end 
end 

% ------------------------ end of update-buffl. m --------------------------- 

0- Function update-buf f 1-n: 

function 
[new_state, output_to_anneal] -update_buffl_n(old-atate, inputi, input2) 
'/ function [new-state, output -to-a3nneall -update-buff 1-n (old-stat a, input 1, input 2) 
% Buffl: located between HighBay and Annealing machine 
% INPUTS: 
% old-staLts: list of slab-types at Current time-step 
% inputi: Empty matrix (no output from HB) or list of slabs 
% input2-. n-dim row vector where n-no of annealing machines; input2(i)-l means i-th -=neal machine empty; 
% input2(i)-O means i-th anneal machine busy 
7. OUTPUTS-. 
% now-state: list of slabs after transition 
% output-to-anneal: empty if no transfer to anneal machine, else list of slabs to be transfered 

n-size(input2,2); % no of parallel annealing machines 

if isompty(inputl) % no output from HB 

new-state-old-state; 
else 

new-state-[old_state ; input1l; 

end 

output-to-Anneal-11; 

for i-l: n 
if input2(i) -I% i-th anneal machine empty 

[output-t o-anneal- i, index-out- il -determine -a 
I abs-for- anneal (new_state) % load 4 compatible slabs 

if size (output 
_t o_anneal_i, 1) -- 0; % slabs match found 

new_state(index-out-i)-[]; 
output -to-a nn salm [output 

-to-anne al ; output. to-anneal-il -, 
end 

end 
end 

if size(new_state, l)--O I size(new-state, 2)--O 

new-state-0; 
end 

% ------------------------ end of update-buffi-n. m --------------------------- 

No. ]Function update-bwg: 
function 
[nev_state, new_time, output_from-bwg3 -update _bwg 

(old-st ate, old-time, inputl); 

function (new-st ate, new_t ime, output -from-bwgl -update-bwg (old-state old-time, input 1) 

% INPUTS- 
% old-state: coils being in bwg or empty matrix 
% old-time: empty matrix if bwg free; time-step since 
% beginning of bwg process if bwg is busy 

% inputl: list of coils from buffer output (could be empty) 

% OUTPUTS: 
% new-state: coil inside bwg at end of time-interval 

% new-time: If busy->busy: new-time-old-time+l 
% busy->Just finished new-time-0; 
% just loaded from empty: new-time reset I 

% output-from-bwg,. empty if bwg process still in progress, or 

% bwg not busy, else coil that passed bwg stage 

if isempty(old-state) X bwg not processing a coil 

if isempty(inputi); % no input from buffer 

new-state=[]; 
new-time-0; 
output-from-bwg-C]; 
return 

else 
new-state-inPutl; 
new-time=l; % initialize clock 

output-from-bwg-C]; 
end 

else % bwg in progress 

coil-old-state; 
bwg-time-obtain-bwg-time(coil); 

if old-time+1 < bwg-Xime, '/ bwg process not finished at end of period 

new-state-old-state; 
new-time-old-time+l; 

% increment clock 

output-from-bwg=[]; 
else % process ends at end of time-interval 

new-state-0; 
new-time-(]; 
output-from-bwg-old-state; 

275 



end 
end % if 

end update-bwg -------------------------------------- 

Function update-cold-roll: 
function 
[new 

-state. new -time, output-f rom-cold-roll3 -update -cold_roll 
(old-at at a, old-t ime, input 1, at ate -out- col d-roll-buf f, p ax am) % function [new- state, new_t ime output -from-c old-roll] -update-c old-roll (old-st ate, o ld_t ime, inputl, at ate- out -c ol d_rol I 

_buff, param); 

% INPUTS: 

% old_state: Coil being cold-rolled or empty matrix. 
% old-time: Specifies time since last start of cold-rolling 
% input I* Coil from buffer in-cold-roll-buff or empty matrix 
% state-out-cold-roll-buff Current state of out-cold-roll-buffer (list of slabs or empty matric). Used to 
% calculate output so that no overflow occurs. 

% OUTPUTS: 

new-state: Current coil being cold-rolled at end of time-interval or empty matrix. 
% new-time: Time since last rolling begun at end of current time-stop 
% If busy->busy: new-time-old-time+1 
% If cold-rolling completed but cold-rolled slab not loaded to out buffer (so that 
% no overflow occurs): new-time-old-time (time frozen) 
% If loaded from empty: new-time reset to I 
% If machine empty at end of time interval: new-time(i)--l 
% output-from-cold-roll Cold-rolled slab loaded to out-cold-roll-buffer or empty matrix. 

% -------------------------------------------------------------------------- 
% Decode param structure 
7 

out - cold-roll _ýbuf 
f 

-capac 
ity-param. out -cold-roll -buff -c apac ity; 

% ----------------------------------------------------------------------------------- 
inputl-check-empty(inputl); 

old-state-check-empty(old-state); 
if -isempty(old-state) 

old-state-old-state(l,: % only one coil treated in CR! H 

end 
st ate-out-cold-roll_buf f-check-empty (st ate-out- cold-roll _buff) 
no-slabs-out-cold-roll-buff-size (state-out-cold-roll-buff, 1); 

if isempty(inputl); % no input from buffer 

if -isempty(old-state)% machine busy 
%gauge-coil-old-state. gauge; 
to tal_time_f or_rolling-datermine-cold_roll _time 

(old_state) 

if old-time+l < total 
-t 

ime-f or-roll ing % cold-rolling not finished at end of period 

new-state-old-state; 
new-time-old-time+l; % increment clock 

output-from-cold-roll-fl; 
else % process ends at end of time-interval 

if no-slabs-out-cold-roll-buff+l <- out -cold-roll-buff -capacity 
% no overflow out-cold-roll-buff 

new-time--I; 
new-state-[]; 
output-from-cold-roll-old-state; 

else % ouput will cause overflow to out - cold_roll _buff 
new-state-old-staLte; 
output-from-cold-roll=[]; 
new-time=old-time; % freeze time try to output next time round 

end 

end 
else % machine is empty 

new-state-(]; 
output-from-cold-roll-C]; 
new_time--1; 

end % if 

else % some input waiting to be loaded 

if -isompty(old_state) % machine busy 

%gauge-coil-old-state. gauge; 

tot al-time-f or-rolling=determixLe-c old-roll -time 
(old-st ate) %???????? 

if old-time+1 < total-time-for-rolling % cold-rolling not finished at end of period 

naw_state-old-state; 
output-from-cold-roll-[]; 
new-time-old-time+l; % increment clock 

else % process ends at and of time-interval 

if no-s labs 
-out-cold-roll _buff 

+1 <- out- cold-roll _buff -capacity 
% no overflow out-cold-roll-buff 

new_time--l; 
new-state- 0; 

output-from-cold-roll-old-state; 
else % ouput will cause overflow to out-anneal-buff 

new_state-old-state; 
output-from-cold-roll-C]; 
new_time-old-time; % freeze time - try to output next time round 

end 
end 

else % cold-rollIng machine is empty 

inputl-inputl(l,: ); % get top slab 

new_state-inputi; % new-state 

output-from-cold-roll-E]; 
new-time-1; % start clock 

end %if 

276 



end % if 

output 
-f rom- cold-roll c old-rol 1. stamp (output 

-f rom-c old-roll) % stamp before exiting 

-------------------------------------------- end update_cold-roll. m ------------- - ---------- - ----------------- 

Op- Function update-highbay-new: 
function 
[new_state, out-to-buffl-n, out-to-in-COld-roll-buff, out-to_ia-BWG-buff, in-from_buff, in-from--neal-buff, 

in-f rom-out -c old-roll -buff, state -out- anneal-but f. at ate -out -c old_roll_buf f, stat e-buf f, index-1 i at 
_ coils -c r, real-crane-moveal- ... 

update-highbay-now (old- state, t ime-s tep, stat e_buff I-n, at ate-in-cold_roll-buff, at ate -in-B 
WG-buff 

, 
at ate-out -anneal -buff, at ate-out_cold-roll_buff, state-buff, index-l i at -coila-cr, param) 

function (as w- at ate, out -t o-buf f 1-n, out -to- 
in-cold-roll 

-buff. out-t o-in-BWG-buff , in-from-buf f, in_from_- nne al _buff,. % in-f ram-out 
-cold-roll-buff at ate- out -anneal -buff, state_ out-c old-roll-buf f, at at a-buf f. index-l ist 

-co 
i Is 

- cr.... 
% real-crane-movesl- ... 
% update 

-highbay -new 
(old-state, t ime-step, stat e-buf fI 

_%L, at ate_in_co ld_roll 
-buff, state-in_BWG_buf f, 

% state -out-ann e aLl-buf f at ate -out -cold_roll_buff, state_buf f index_ li at- co ils- cr, par am); 

% Function updates HighBay state and outputs. 

% INPUTS: 

% old-state list of coils being stored in HighBay or empty matrix; these aLre listed vertically 
'I time-step current iteration index (integer) 
7 state-buffl-n state of buffl-n (list of coils) at beginning of time step 
, /. state_in_cold_roll_buff state of in- cold-ro 11 

-buff 
(list of coils) at beginning of time step 

% state_in_BWG_buff 
% state-out_anneal-buff state of out-anneal-ýbuff (list of coils) at beginning of time step. Note: this state 
% is updated internally. 
% state-out-cold-roll-buff state of out_cold-roll-buff (list of coils) at beginning of time step. Note: this state 
% is updated internally. 
% state_buff state of buff (list of coils) at beginning of time step, Note: this state is updated 
% internally. 
'/. index_list_coils-cr index of coils in identified matched list in old-state 
% param parameter structure 

OUTPUTS- 

% new-state list of coils being stored inside HB at end of time-interval, listed vertically 
% out-to-buffi-n list of matching coil quartets loaded to buffl-n (input side of anneal-n) 
% out-to_in-cold-roll-buff list of coils loaded to input cold-roll buffer 

% out_to_in_BWG-buff list of coils loaded to input 8WG buffer 

% in-from-buff list of coils loaded into HigbBay from buffer (out-side of HotLine) 

% in-from_Anneal-buff list of coils loaded from Anneal buffer (out-side of annealing machine) 
% in-from-out-cold-roll-buff list of coils loaded to HB from cold-roll output buffer 

% state-out-Anneal-buff state of out_anneal-buff (list of coils) at end of time step. Note: this state 

% internally. 
% state-out_cold-roll-buff state of out-cold-roll_buff (list of coils) at endof time step. Note: this state 

% is updated internally. 
% state-buff state of buff (list of coils) at end of time step. Note: this state is updated 

% internally. 
% index-list_coils-cr index of coils in identified matched list in new-state 

% real-crane_moves real no of crame moves 

% RULES SEQUENCE, 

% (1) Load out all COOL coils to out-buff. 
% (2) Load out compatible quartets of COOL coils to buffl_n, provided total no of coils in buffi-n does not exceed 

% buffi-n's capacity, starting from cooler coil. 
(3) Load out COOL coils to in-cold-roll-buff, provided buffer's capacity not exceeded, starting from cooler coil. 

(4) Load in coils from out-anneal buffer, provided HB capacity is not exceeded 

% (5) Load in coils from out-cold-roll buffer, provided HB capacity is not exceeded 

% (6) Load in coils from buffer (out-HotLine side) provided HB capacity is not exceeded 

ADDITIONAL FEATURES: 

Each coil ENTERING HB is stabled with current clock-time (used to calculate cool-off time) 

Each coil LEAVING HB has clock-stamp cleared 
% Each coil ENTERING HB from ANNEAL output buffer has its Anneal flag set to I 

% Each coil ENTERING HB from COLD ROLL out buffer has its cold-roll flag incremented by I 

% ------------------------------------------------------------ 

% 
-------------------------------------- 

% Decode param structure 

a imulation-time-param-simulatiOn-time; 

simulation-stepmparam. simulatio]3L-SteP; 

no-anneal-machines-param. no-anneal-machines; 

high-bay-capacity-param, high-bay-capacity; 

buff-capacity-param. buff-capacitY*, 

buffl_n_capacity-param. buffi-n-capacity; 

in-BWG-buff-caPacitY'Param . 
in-M-buff-capacity, 

capacity-BWG-buff-param, capacity-BWG-buff; 

out_ Anne al_buff _capac 
ity=par am . out_anneal-buff-capacity; 

in_cold-roll-buff-capacitY'Param. in_cold_roll-buff-capacitY; 

out_ co ld-roll 
-buff _capac 

ity=param - out-cold-roll-buff-capacity; 

co ol_t ime 
-aft 

er-anneal-param. cool_time_after-Anneal; 

cool_time_after-coldroll-Param. cool-time-after_coldroll; 

crane-moves-Param-crano_moves; 
priorities-Param. priorities; 

input_file-param-input_file; 
% 

-4*rLo anneal _n_capacity+out-Anneal-buff-capacity+ max_rlo_circulating-coils - _machines+bufft 
in_cold_roll-buff-capacity+out_cold-roll-buff_capacity+l; 

param. struct(osimulation_timel, simulation-time 

277 



% 'B: Lmulation-stopl, sitaulation-step, .,. % 'no 
--ne &I -machines', no-anne al -machines, % ? high-bay-capacityl, high-bay-capacity 

.... % 'buff-capacityl, buff-capacity, 
... 

buff 1-n-capacity I buff I. n_capacity .... 
lin-BWG-buff-capacitylin-BWG-buff-capacity,... 
Icapacity-BWG-buffl, capacity-BWG-buff .... 
I out-anneal-buff 

-capacity 
I, out-anneal-buff -capacity, I in-cold-roll-buff 

-capacity 
I in-col d-roll-buf f 

-capacity.... 'out 
- cold-roll 

-buff -capac 
i ty I, out_cold-roll-buf f 

_c apac ity, 
'cool-time-after-anneall, cool-time-after-anneal, ... 'cool-time_after_coldrolll, cool-time-aLfter-coldroll, 
'crane-moveal, crane_moves .... 
'input-filel, input-file, 
'prioritiesl, priorities); 

------------------------------------------------------------------- --- 
% now-state-[]; 
% out-to-buffl-n-Cl-, 
% out-to-in-cold-roll-buff-[]; 
% out-to-in-BWG-buff-C]; 
% in-from-buff-[]; 
% in_from-nnneal-buff-C]; 
% in-from-out-cold-roll-buff-[]; 
% state-out-Anneal-buff-[]; 

state-out-cold-roll-buff-[); 
% real-crane-moves-C]; 

% --------------------------------------------------------------------------------------- 
old-state-check-empty(old-state); 
new-state-old_state; 
real-crans-moves-zeros(1, B); 

get no of coils stared in RB 

no-slabs-size(old-state, l); % no of coils inside RB at beginning of this time-interval 

% Determine it a list of coils (initially 20 or 40) has been identified in 
% an earlier stop 

index-list-coils-cr-c)ieck-empty(index-list-coils-cr); 
if isempty(index-list-coils-cr) 

flag-early-list-0; % no list for cold-rolling exists 

else 
flag-early-list-1; % list exists 

end 

% Determine which of the cold-rolled coils have cooled (so they can be moved to output-buff); 
% also, which of the coils which have been annealed have cooled (so they can move to in_cold_roll_buff) , 
% and which coils need to be loaded to anneal machine through buffl-n 

index_slabs_ýto-in-BWG-buff-[1; % initialize 

index-slabs-to-new-list-C); % initialize 

index-slabs-to-buffl-n-[]; % initialize 

for i-1: no-slabs 

currerit-slab-old_state(i,: ); 

time_of_entry-current-slab. timer; 

current-slab-flags=current-slab. flags; 

current_slab-anneal-flag-current-slab-flags(2); 
current-slab-cold-roll-flag-current -slab-f 

lags (3) 

currerLt-slab-gauge-current-slab. gauge; 

current_slab-width-current-slab. width; 

if (current-slab-anneal 
-flag -- 0) % check if coil has not been annealed 

index_slabs_to-buffl_n=Cindex_slabs_to-buffl_n i] ;% potentially sent for annealing 

elseif (current-slab-anneal-flag - 1) % slab has been Annealed 

time-in-highbay=time-step-time-of-entry; 
(flagl, flag-ready] -determine-cold-status (current-slab, time_in_ýhighbay, param); 

if (flagl--l & flag-ready-1) 

index-slabs-to-nev_list-[index_slabs_to_new_list Q 

elseif (flagl--O & flag-ready-1) 

index- slabs _t o_in_BWG_buf f- (index_slabs 
_to_in_BWG_buff 

i]; 

end 
end % if 

end % for 

% Restrict slabs 
% capacity 

that cam be moved to input-BWG buffer according to buffer 

state-in-BWG-buff=check-empty(state-in-BWG-buff); 
no-coils-in_BWG-buff-size(state-in-BWG-buff, 

l); 

avai lable-places 
-BWG-buff 

-capac ity-BWG-buf f-no-coil s-in-BWG_buf f; 

no-slabsl-size(index-slabs_to-in-BWG-buff); 

if available_places-BWG-buff <- no-slabsl 

index_slabs-to-in_BWG-buff-index-slabs-to-in-BWG-buff 
(1: avail able-places-BWG-buf f) 

end 

o-in-BWG-buff,: )); % slabs potentially movable 
out _t 

o-in_BWG-buff -check- empty (old-st ate (index_slabs_t to in-BWG-buff 

with indices index-slabs-to-in-BWG_buff referred to old state 

no -out -to -in-BWG-buf 
f -size (out 

_t 
o-in-BWG-buf f, 1) ;% and their number 

% Determine coil (if any) to be moved to cold-roll-buffer (in-side) 

% if time-step--51 
, /. keyboard 

278 



and 

st at e- in- cold-roll 
-buff -check- empty (state- in-cold-ro 11-buf f) 

nO-coils-in-cold-roll-buff-size(state-in-cold-roll-buff, 
l); if flag-early-list ýI& (ZLo-coils-in-cold-roll-buff < in-cold-roll-buff-capacity) 

slaLb-cr-index-index-list-coils-cr(l); % slab index potentially going for CR slab-cr-old-state(index-list-coils-cr(l),: ); % top coil elseif flag-early-list I& (no-coils-in-cold-roll-buff >- in-cold-roll-buff-capacity) 
slab_cr_index-C]; 
slab-cr-C); 

elseif flag-early-list 0% no list exists 
slab-cr-index-0; 
slab-cr- [I ; 
% try to make new matching list 
index_ slabs 

-to-new-l i st -c he ck- empty (index- slabs -t o-new-l ist) 
if -isempty(index-slabs-to-new-list) % some coils found that are ready for cold-rolling slabs-to-new-list-old-state(index-slabs-to_new-list, 

*); (slabs_to_new_list, index_out]-determine-slELbs-for-rollingi(slabs-to_new-list) 
al abs-t o-new-l ist-che ck- empty (slabs 

-t o-new-l ist) 
if isompty(slabs-to-new-list) % no match found 

slab-cr-index-C] % no slab to go for CR 
slab-cr- (3 ;% no slab to go for CR 
index-list-coils-cr-C]; % no matched list next time round 

else % matching list found 
slab_cr-index-[]; 7 no slab to go for CR 
slab-cr-(]; % no slab to go for CR 
index-list- coils -cr-index-s 

labs-to-new- 11 st (index-out) % refer indexes to old statel end 
else % no coil found ready for cold-rolling 

slab-cr-index-[]; 
slab-cr-C3; 
index-list-coils-cr-C]; 

end 
end 

% At this stage potential slab to be move to input-cold rolling buffer is slab-cr and its index in % old-state is slab_cr-index. Also, if flag-early-list-0 (empty matched list was inputed), new list % of matched coils for cold rolling is created (possibly empty) as array index-list-coils-cr, 
% indexed with respect to old-state. If flag-early-liSt-I (non-empty matched list was inputed) 
% output list either stays the same (if no coil is moved to input cold-roll buffer) or its first row % will be deleted. 

% Determine coils to be moved to buffl-n 
% 

if -is empty (index- slabs 
-t o-buf f 1-0 % some coils can be loaded 

out-to-buffi-n-new-state(index-slabs-to-buffl-n',: ); 
else 

out-to-buffl-n=[]; 
end 
index2-size(index-slabs-to-buffI n, 2); , coils that could potentially move to buffl-n 
state-buffl-n-check-empty(state-buffl-n); 
no-slabs-in-buff 1-n-size (state 

-ýbuff 
1-n, 1) no of coils in buffl-n 

available_places-in-buffl-n - buff I_n_capacity-no-slabs-in-buff 1-n; 
available-quartets-in-buffl-n = floor (available-places-in-buff I-n/4) % coils loaded in groups of 4 

if available-quartets_in-buffi-n -01 index2 <4 
temp-slab-array-11; 
temp-slab-index-array-C]; 
%out-to-buffi-n -11; 

else 
temp-slab-array-13; 
temp-slab-index-array-C]; 
for i-l: available-quartets_in-buffl-n 

(out 
_slabs, 

index-out] -det ermine- slabs -f or-anne al (out_t o_buff I 
-n) 

if isempty(index-out) 
break; break; 

else 
temp_slab-array-Ctemp-slab-array ; Out-SlabO 
temp-slab-index- array- [temp- slab-index- array index- slabs-t o-buf fI 

_n 
(index-out) 

out-to-buffi_n(index-out')-0; 
index-slabs-to-buffl-n(index-out)-[]; 

end 
end 

end 
out-to-buffi-n-temp-slab-arraY; 
out_to_buffl_n=check-empty(out_to-buffi-n); 
no_out_to-buffl-n-size(out-to-buffl-n, l); 

index-slabs_to_buffl_n-temp-slab_index-array; 
index- slabs -t o-buf f1 

_rl-check- empty (index-s labs_to-buf fI 
-n) 

% NOTE: Determine whether there are slabs to be moved to and/or from input 

% and output buffers of annealing machine. Check capacities of input 

% buffer/highbay. If at least one quartet of 'slabs can be moved, move it 

% (after clearing tims stamp), update state of output buffer of annealing machinep 
% construct new state, new-list and exit. Else perform in/out loading operations 
% in sequence of list of priorities (subject to capacity constraints), until all 
% permissible crane movements have been exhausted or all tasks have been performed. 

% Determine available places in HighBay 

available-places-high-bay_capacity-size(new_state, l); % available slots 
uffl n is loaded available _places -avai labl e_places+no_out_to-buff I 

-n, 
Y. vacated slots When b 

state_out_anneal-buff-check-empty(state-out-anneal-buff); 
% check for emptry matrix 

no-S labs_out_Anneal 
_buf 

f-size (state 
_out-anne al-buf f. 1) ;% no of coils waiting to be loaded in HB 

no-S labs- in-mn (no-sl abs- out -anneal -buff, availabl e-Pl aces) ;% no slabs entering HB 

re al -crane _moves 
(2) -no_out-t o-buf fI 

_n+no_ slabs- in; % no free tripsl 

% max (no- Sl abS _out-anne al -buff, no_slabs-in) % some crane trips are free! 

279 



> 
% coils can be loaded to in or from out annealing-machine buffer 

if (no-out-to-buffi-n > 0) % load out 

out_to_baffl_n-remove_ýtime_stamp(out-to-buffl-rL); % remove time-stamp from out-going coils 
now- state (index_ slabs-to-buff I-n) % remove out-going slabs from state-vector 

% Update matching-list of slabs (FUNCTION NOT IMPLEMENTED YET111) 
% Function updates first-argument index list by assuming that coils 
% listed in second index list are removed 

index-list-coils-cr-update-list(index-list-coils-cr, index-slabs_to-buffl_n); 

end 

irt-from-aLnneal_buff-C] 

it (no_slabs-in > 0) % load in 

in-f rom- amLneal 
_buf 

f-st ate -out -ann e al-buff(1: no-slabs_in, 
in-from-anneal-buf f-check-empty (in-from-anneal-butf) ; 
in-from-anneal-buff-set-time-stamp(in_from-anneal_buff, time-step) set time-stamp 
new-state-Cnew-state , in-from- anneal -buff]; 

% new-state update 
% call update-out-anneal-buff to update its state 
st at e-out -anneal -buff -update-out 

-azLne al -buff 
(at ate-out -anneal -buff, 

in- from-ann e al -buff) avail able-places-availabl a-pl ace s-no- slabs -in; 
% update available places 

and 

out-to-in-cold-roll-buff-C]; 

out-to-in-BWG-buff- 0; 

in_from_buff-[]; 

in-from-out-cold-roll_buff-[); 

return 

end 

% If this point is reached, no coils were moved from/to in and out anneal buffers 

, ut-to-buffi-n-C]; in_from-anneal-buff-C); 

real_crane-moves-zeros(l. 6); % reset to zero 

if priorities(l)-i & priorities (2) --2 & priorities(3)-3 

priorities123; 

elseif priorities (I)--l & priorities (2)--3 & priorities (3)--2 

priorities132; 

elseif priorities (1) --2 & priorities (2)--1 & priorities (3)--3 

priorities213; 

elseif priorities (1) --3 & priorities (2)--1 & priorities (3)==2 

priorities312; 

elseif priorities (1) --3 & priorities (2)--2 & priorities (3)--1 

priorities321; 

elseif priorities (1)--2 & priorities (2) --3 & priorities W-1 

priorities231; 

end %if 

'/ 
- --------------------------------- and of update-highbay-new. m -------------------------- 

lo. Function update- in-BWG-buf f: 
function 
[new-state, output-to-BWGI-update-in-BWG-buff (old_st ate, input I, input2) 

% function [new- at ate, output -t o-BWG3 -update -in-BWG-buf 
f (old-state, input 1, input2) 

% Update state and output of in-BWG-buff, located between HighBay and BWG machine 

% INPUTS.. 

% old-state: list of slab-types at current time-step 
% inputl: Empty matrix (no output from HB) or list of slabs 
% input2: i=BWG machine empty; 0 BWG machine busy 

% OUTPUTS 

% now-state: list of slabs after transition 
% oiitput-to-BWG: empty if no transfer BWG, else slab to be transfered, taken from 

% top of the slabs list. 

inputl-clieck-empty(inputl); 
old-state=check-empty(old-state); 

if isempty(inputi) % no output from RB 

nev_state-old-state; 
else 

new-state-Cold-state ; inPut1l; 

ead 

if input2 -- 0% BWG machine busy 

output-to-BWG-11; 
return; 

else 
it -iseinpty(new-state) 

output -to -BWG-new-st 
ate (1) % load top coil 

new-state(l)-C]; 
nev-sta. te-check-empty(new-state); 

else 

280 



output-to-BWG-0; 
end 

end 

% ------------------------------------ end of update-in-BWG-buff. m ------------------------------------- 

Function update-list: 
function index-out-update-list(indox-in, index_delete) 
% function index-out-update-list(index_in, index-delete) 
% Updates index list index_in when indexes in index-list are deleted from 
% main list. It is assumed that index-in and index_list have no entries in 
% common 

index_in-sort(index-in); % sort in ascending order 
index-delete-sort(index_delete); % sort in ascending order 
nl-size(index-in, 2); n2-size(index-delete, 2); 

for i-l: nl 
if any(index-in(i) -- index-delete) 

index-out-(3; 

return 
end 

end 

index-out-index-in; 

for i-l: n2 
index-temp=find(index-in > index-delete(i)); 
index-temp-check-empty(index-temp); 
if -isempty(index-temp) 

for J-I: size(index-temp, 2) 
index_out(index-temp(j))-index-out(index-temp(j))-I; 

end 
end 

end 

% ----------------------------- end of update-list. m ------------------------- 

lo. Function update-out-anneal-buf f: 
function 

new- state-update- out- Anneal -buff 
(old-state, input-from- ante al, output- to-highbay) 

% function new_state-update-out-anneal-buff(old_state, input-from-anneal, output-to-higbLbay) 

% update state of out-anneal -buff, 
located between anneal machine and HignBay. 

% Function should be called EITHER with input-f rom- anneal- 0 OR output -to -highbay- % (or both (1). NOTE: This buffer does not define its output, which is "pulled in" by 
% the HighBay. It is the responsibility of the HighBay (through function update-highbay) 
% to check that requested row-size of "output-to-highbay" does not exceed buffer's 
% state-dimension. Similarly, it is the responsibility of the anneal machine (via 

update-anneal-n) to ensure that row-size of "input-from-anneal" pushed into the buffer 

will not cause overflow (i. e. that buffer's state-dimension + input-f rom- anneal <- 
% buffer's capacity) 

INPUTS: 
% old-state: list of slab-types at current time-stop 
% input 

_f rom-anneal: Empty matrix (no output from anneal_n) or list of slabs 
% output-to-highbay: Empty matrix (no input requested flom HB) or list of slabs 

% OUTPUTS, 
% new_state: list of slabs after transition 

if size (input_from_Anneal, 1) 0 size (input_from_Anneal, 2) 0 

input-from-anneal-0 

end 

if s iz a (output 
_t o-highbay, 1) 0 size (output 

_t o-highbay, 2) 0 

output-to-highbay=[]; 
and 

if size (old_st ate, 1) -01 size (old-state, 2) -- 0 

old-state-(]; 
end 

if -isempty(input-from-anneal) & -isempty(output-to-highbay) 

new-state-0; 
disp(lerror in update-out-anneal-buff ... 

return 

end 

if isemp-ty(input-from-annea. 1) & isempty(output_to_highbay) % no input from anneal-a/HB 

new_state-old-state; 
elseif is empty (output 

_t 
o-highbay) % input from Anneal 

new_state-[old-state ; input_from_anneall; 

elseif isempty(input-from-Anneal) 

new_state-old-state; 
no -a 

1 abs-re quest ed-s i ze (output 
_to-bLighbay, 

1) 

new-state(l: no-slabs-requested)-[]; 
if size (new-state, 1) -- 01 size (new-state, 2) 0 

new-state-0; 
end 

end 

---------------------------------- 
and -apdate-out-Annea-l-buff. m ------------------------------------ 

281 



lo- Function update-out_cold-roll-buf f: 

function 

new-state-update_out_cold-roll-buff(old-state, input-from-cold-roll, output-to-highbay) 
% function neu-state-update-out-cold-roll-buff(old-state, input-from-cold-roll, output-to_highbay) 

% update state of out-cold_roll-buff, located between cold-rolling machine and HignBay, 
% Function should be called EITHER with input-from-cold-roll-[3 OR output _to_highbay. 

[3 
% (or both [1). NOTE: This buffer does not define its output, which is "pulled in" by 
% the HigbBay. it is the responsibility of the HighBay (through function update-highbay) 
% to check that requested row-size of "output-to-highbay" does not exceed buffer's 
% state-dimension. Similarly, it is the responsibility of the cold-rolling machine (via 
% update-cold-roll) to ensure that row-size of "input 

-from-co 
ld-roll " pushed into the buffer 

% will not cause overflow (i. e. that buffer's state-dimension + input-from_cold_roll <- 
% buffer's capacity) 

% INPUTS: 

% old_state: List of slab-types at start of current time-step 
% input-from-cold-roll: Empty matrix (no output from anneal-n) or list of slabs 
% output-to-highbay- Empty matrix (no input requested flom HB) or list of slabs 

OUTPU7St 

% new-state Z List of slabs at end of current time-step 
if size(input_from_cold_roll, l) -- 01 size(input-from-cold_roll, 2) 

0 
input-from-cold-roll-[]; 

end 

if size(output-to-highbay, l) -- 01 size(output-to-highbay, 2) -- 0 

output-to-highbay-[]; 
end 

if size(old-state, l) -01 size(old-state, 2) -- 0 

old-state=0 
end 

if -iseinpty(input-from-cold-roll) &-i sempty (output 
-to-highbay) 

nev-state-C3; 
disp(lerror in update-out-cold-roll-buff ... 
return 

end 

if is empty (input 
_f rom-c old-roll) & is empty (output-to 

-highbay) 
% no input from in-cold-roll-buff/HB 

new-state-old-state; 
elseif isempty(output-to-highbay) % input from anneal 

new_state=Cold-state ; input_from-cold-roll]; 

elseif isempty(input-from-cold-roll) 

new-state-old-state; 
no-slabs-requested-size(output-to-highbay, l); 

new_state(l: no-slabs-requested)-0; 
if size(new-state, l) -01 size(new-state, 2) -- 0 

new-state-0; 
end 

end 

and of update-out-cold-roll-buff, m ----------------------------- 

No- Function updat e- output -buff: 
function new-state-update -output -buff 

(old- state, input 1) 

% function new-st ate-update-output-buff (old-stat a, input 1) 

7 INPUTS, 

old-state: list of slab-types in buffer 

inputl: slab/slabs 
% OUTPUTS: 

new-state: list of slabs after transition 

if isempty(inputl) 

new-state-old-state, 
else 

new-state-[old-state ; inputI3 

and 

% ------------------------ end of update-output-buff. m ----------- 

282 


