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Abstract 

Evolutionary computation, including genetic algorithms and genetic programming 
have taken the ideas of evolution in biology and applied some of the characteristics 
to problem solving. The survival of the fittest paradigm allows a population of 
candidate solutions to be modified by sexual and asexual reproduction and mutation 
to come closer to solving the problem in question without the necessity of having 

prior knowledge of what a good solution looks like. 
. 

The increasing importance of Nuclear Magnetic Resonance Spectroscopy in 

medicine has created a demand for automated data analysis for tissue classification 
and feature selection. The use of artificial intelligence techniques such as 
evolutionary computing can be used for such data analysis. 

This thesis applies the techniques of evolutionary computation to aid the collection 
and classification of Nuclear Magnetic Resonance spectroscopy data. The first 

section (chapters one and two) introduces Nuclear Magnetic Resonance spectroscopy 
and evolutionary computation and also contains a review of relevant literature. The 

second section focuses on classification. In the third chapter classification into two 

classes of brain tumours is undertaken. The fourth chapter expands this to classify 
tumours and tissues into more than two classes. Genetic Programming provided 
good solutions with relatively simple biochemical interpretation and was able to 

classify data into more than two classes at one time. The third section of the thesis 

concentrates on using evolutionary computation techniques to optimise data 

acquisition parameters directly from the Nuclear Magnetic Resonance hardware. 
Chapter five shows that Genetic Algorithms in particular are successful at 
suppressing signals from solvent while chapter six applies these techniques to find a 
way of enhancing the signals from metabolites important to the classification of 
brain tumours as found in chapter three. The final chapter draws conclusions as to 
the efficacy of evolutionary computation techniques applied to Nuclear Magnetic 
Resonance Spectroscopy. 
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Chapter 1 

Introduction to Nuclear Magnetic Resonance 

1.1 Introduction 

Nuclear Magnetic Resonance (NMR) is a technique used both in chemistry and 

medical diagnosis as a non-invasive, non-toxic method of examining the structure 

and features of a sample. It is based on the idea of using magnetism to align nuclei 

of atoms into a direction which will give rise to a magnetic force which can be 

measured. The collection of data can concentrate on spatial features which will 

allow an image to be constructed, or on the chemical composition of the sample 

which will give rise to a spectrum. The latter technique is used in chemistry, as well 

as in medical situations and the terms NMR and Magnetic Resonance Spectroscopy 

(MRS) would be used to describe the techniques. Imaging is the technique more 

used in clinical situations and here the word nuclear is often dropped from the 

description because of negative connotations with radioactivity (which is not 

required for NMR) leaving the titles Magnetic Resonance (MR) and Magnetic 

Resonance Imaging (MRI) as those most commonly used. The terms MR and NMR 

are interchangeable and the use of one or the other usually depends only on context. 

There are many books available explaining MR (Schild 1990; Westbrook and Kaut 

1993,1998; Gadian 1995; Hornak 1997-1999) 

MRI in a clinical setting can be used as a diagnostic tool, in examining patients for 

the presence and size of tumours or in other soft tissue investigations. In imaging, 

the examination is typically of a slice, or series of slices, through a subject. The 

results are displayed in a two-dimensional grid, with different tissues distinguished 

by different intensities on a grey-scale. It has advantages over both X-rays and 

Positron Emission Tomography (PET) as imaging techniques partly because of the 

lack of toxicity i. e. exposure to ionising radiation. However, X-rays offer better 
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results in looking at bone mass and PET has advantages in tracer studies (e. g. for 

radiolabelled drugs binding to specific molecular receptors). The lack of toxicity 

and invasiveness also allows the possibility of repeat investigations which may have 

advantages in evaluating treatment outcomes. 

MRS in chemistry is used on samples in vitro and examples of its use are in 

identifying the chemical structure of a newly synthesised compound or a potential 

drug extracted from a plant. (Gadian 1995; Assion et al. 1998; Alam and Alam 2005) 

NMR has a role to play in medical research where the information collected by both 

imaging and spectroscopy can be utilised to provide a fuller picture. NMR 

techniques are used in the fields of cancer research, neuroscience and cardiology 

amongst others. 

1.2 Obtaining Signals from Nuclei via NMR 

1.2.1 Atoms 

An atom has a central nucleus and surrounding electrons. The nucleus consists of 

nucleons which can be subdivided into protons and neutrons. Both protons and 

electrons are electrically charged whereas neutrons have no charge. Electrons are 

negatively charged whereas protons are positively charged. 

All elements have one or more isotopes which are atoms with the same number of 

protons, but with differing numbers of neutrons. All isotopes of an element will 

have the same atomic number as that is calculated from the number of protons it has, 

but will have different mass numbers as that is calculated from the total number of 

protons and neutrons in the nucleus. 

Hydrogen atoms contain one proton and one electron. Three isotopes of hydrogen 

occur, with zero, one and two neutrons respectively. The most common hydrogen 

isotope is 1H, containing no neutrons and is known as protium, or more frequently as 

proton (although this really refers to the nucleus only). 2H, containing one neutron is 

called deuterium (water in which 1H is replaced by 2H is known as heavy water) and 
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the isotope containing two neutrons, 3H, is called tritium. This is a radioactive atom. 

A proton isotope of hydrogen (henceforth referred to as a proton or 'H) has an 

atomic number of 1 and a mass number of 1. When the mass number is odd the 

nucleus acquires a magnetic moment. The magnetic moment has vector properties 

of size and direction. 

A property of nuclei, which is utilised in NMR, is spin. This is based on the number 

of unpaired protons and neutrons in the nucleus. The unmatched nucleons are what 

produce the observable spin. Protons have a spin of 1/2 and nuclei from nitrogen 

(14N) have a spin of 1. Only those nuclei that have observable spin can produce 

NMR spectra so that carbon (12C) and oxygen (160) cannot be used. 

A nucleus of spin I has 21 +1 possible orientations, 'H therefore has two. Because 

of this the 1H nucleus can be thought of as a bar magnet with two states. When an 

'MR-active' nucleus, such as hydrogen, is placed in an external magnetic field it will 

align its axis of rotation to that of the external magnetic field. The nuclei will align 

either parallel or anti-parallel to the external field. Alignment in parallel requires 

lower energy than alignment anti-parallel and so in any sample there will be a small 

difference in the number of nuclei in each direction with the greater number aligned 

in parallel. The energy difference is proportional to the size of the applied magnetic 

field. In order to acquire a signal from the nuclei, they need to be perturbed from 

this initial state. A nucleus can switch states from lower to higher by absorbing a 

photon which has energy equal to that between the two states. Nuclei with spin 

values greater than 1/2 have more complex magnetic properties (e. g. affecting 

relaxation). 

Quantum mechanics describes restrictions to magnetic nuclei which means that they 

do not align precisely parallel or anti-parallel to the external magnetic field but at an 

angle. The presence of the external magnetic field also causes the nuclei to precess 

around the direction of the external magnetic field. The speed of precession and size 

of the precessional path are dependent on the type of nucleus and strength of the 

external magnetic field. Figure 1.1 shows the protons aligned with the magnetic 

field Bo 
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The forces of nuclei aligned parallel and anti-parallel to the external magnetic field 

cancel each other out. The non-cancelled ones will be in the lower-energy, parallel 

state. All the forces from these nuclei can be added together to produce a field 

longitudinal to the external field. This can be displayed as a net magnetic vector. 

The value of the precessional frequency is calculated by the Larmor equation 

wo= Bo*y 

where y is the gyromagnetic ratio i. e. the relationship between spin and Lan-nor 

frequency of each MR active nucleus and Bo is the external magnetic field. The 

gyromagnetic ratio of hydrogen is 42.57MHz/T. A nucleus with a large 

gyromagnetic ratio has a stronger magnetic vector than one with a small 

gyromagnetic ratio. Hydrogen has almost the strongest magnetic vector. 

BD 

----r, t, 

Figure 1.1 Protons aligned with the magnetic field Bo. 

1.2.2 Resonance 

A nucleus gains energy and resonates if external energy is applied at its precessional 

(Larmor) frequency. Other MR active nuclei will not resonate as their Larmor 

frequency is different. The application of a Radio-Frequency (RF) pulse which 

causes resonance is known as excitation. The absorption of energy from the RF 

pulse will lead to more nuclei absorbing energy and switching from the low energy 
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parallel orientation to the high energy anti-parallel orientation. The energy 

difference between the two populations corresponds to the energy required to 

produce resonance by excitation. 

The net magnetic vector (NMV) will move out of alignment with B° as the nuclei 

change their precessional path. The angle to which they do that is known as the flip 

angle and is often adjusted to be 90° or 1800. The RF pulses which cause these flip 

angles are referred to as 900 or 180° pulses. The nuclei gain enough energy from a 

90° pulse that the NMV moves to the transverse plane. The nuclei will still precess 

at the Lan-nor frequency and they will also all be in phase, that is, they will all lie at 

the same point in the precessional path. 

Once the RF pulse is switched off, relaxation begins, i. e. the nuclei return to the state 

prior to the application of the RF pulse. The NMV returns to alignment with B°. If 

another 90° pulse is then applied the NMV will tilt to the transverse plan again. If a 

second 90° pulse is applied before the relaxation is complete, the NMV will move 

beyond 90° and the resulting signal will be different i. e. smaller. 

1.2.3 Magnetic Resonance Signal 

A coil is placed in the transverse plane and a signal is produced when the in-phase 

magnetisation cuts across the coil. The component of the NMV in the transverse 

plane induces a current in the coil. The current in the coil constitutes the signal. The 

frequency of the signal is the Larmor frequency and the magnitude of the signal 

depends on the amount of magnetisation in the transverse plane. 

1.2.4 Free Induction Decay 

When the RF pulse is switched off relaxation occurs. The NMV is again influenced 

by Bo, moving to align with it. The amount of magnetisation in the transverse plane 

decreases leading to a decrease in the current induced in the coil. This is known as 

the Free Induction Decay (FID) and is shown in Figure 1.2 
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magnetisation 

ne 

Figure 1.2 Free Induction Decay. The amount of magnetisation in the transverse 

plane decreases over time 

1.2.5 Relaxation 

Relaxation consists of two separate and independent processes, spin-lattice or T1 and 

spin-spin or T2. TI is longer than or equal to T2. 

T1 is the recovery of longitudinal magnetisation through the nuclei giving up energy 

to the surrounding environment or lattice. The rate of recovery is exponential. T1 is 

the time taken for 63% of longitudinal magnetisation to recover in the tissue. T1 is 

longer in stronger magnetic fields. TI also varies according to the chemical and 

physical environment of the nuclei concerned. The characteristic differences in Tl 

(and T2) times of water in, for example, grey matter, white matter and cerebrospinal 

fluid in the brain can be exploited when imaging to distinguish between different 

tissues or to diagnose abnormalities. 

T2 occurs because the magnetic fields of nuclei interact with each other and 

exchange energy; T2 is also referred to as spin-spin relaxation. This causes the decay 

of transverse magnetisation. The rate of decay is exponential. T2 is the time taken 

for 63% of the transverse magnetisation to be lost. Essentially, the efficiency of T2 

relaxation is affected by how quickly the vector joining two interacting spins rotates. 
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T2 of pure water is longer than that of water in tissues because of restricted 

molecular motion. 

1.2.6 Chemical Shift 

Nuclei are surrounded by electrons which spin on their own axis and also orbit the 

nucleus. Electrons are negatively charged which mean the lowest energy electrons 

align against an external magnetic field, unlike nuclei where the lowest energy 

protons align with the external magnetic field. 

If the nucleus is surrounded by electrons the effect will be to shield the nucleus from 

the effects of the external magnetic field and so the effective field at the nucleus will 

be smaller than the external field, Bo by some fraction s. Where there is no 

shielding, s will be zero. 

Bff=Bo(l 
- S) 

The electron density round each nucleus varies because of the type of nucleus and 

the bonds in the molecule. Therefore, the shielding and the effective field will also 

vary. As the strength of the external magnetic field affects the energy separation of 

the two states of a proton, the shielding of that field by electron activity will change 

the energy separation and therefore will change the frequency of the RF pulse 

required to induce a spin transition. It could therefore be difficult to compare spectra 

taken from MR machines at different field strengths. . 

The chemical shift of a nucleus is the difference between the resonance frequency of 

a nucleus and a standard appropriate to that nucleus. The standard for 'H and 13C is 

usually tetramethylsilane (TMS) which is not naturally present in the body and 

provides a single signal at a chemical shift different to most other proton resonances, 

at the right edge of the spectrum because the protons in TMS are maximally 

shielded. 

Chemical shift frequency changes are in the range of hundreds of Hz. Proton 

transition frequencies are nominally 60MHz for a typical clinical MR imaging 
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system with Bo = 1.5 Tesla. The chemical shift changes are proportional to Bo and 

are referred to as a fraction of the nominal frequency in parts per million or ppm. 

Figures 1.3 and 1.4 show the chemical shift of alanine and glutamine in TH 

spectroscopy along with their chemical structure. 

9876543210 

HSP-49-S15 ppm 

(A) (B) 

NH2 

HOOC CH-CH 

(A) (B) 

Figure 1.3 'H spectrum of alanine showing the chemical shift, plus the chemical 

structure (taken from (Sdbsweb)) 
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S876543210 

HSP-49-S29 ppm 
(A) (C) (B) 

H2 II H000 0-CH2-CH2-C NH2 

[B) (C) 

(AA] 

Figure 1.4 'H spectrum of glutamine showing the chemical shift, plus the chemical 

structure. 

(taken from (Sdbsweb) 

1.2.7 Fourier Transform 

Radiofrequency energy can be applied at each of the frequencies that will induce 

resonance in protons in different chemical environments in turn - the continuous 

wave method. This would allow a build up of a spectrum incrementally. However, 

it would take a long time and spectra are not usually collected in this way. The other 

method is to apply an RF pulse with a wide enough range of frequencies to induce 

resonance in all protons whatever their chemical shift. The resulting FID therefore 

contains the sine waves corresponding to the resonance frequencies of all the protons 

(or, more precisely, the difference between the resonance frequency and the nominal 

(carrier) frequency). This is extremely difficult to interpret as it stands. The Fourier 
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transform takes the FID, which is the signal in the time domain and transforms the 

data so it is displayed in the frequency domain. In effect, it separates all the 

constituent sine waves into their frequencies and displays them in a spectrum in their 

chemical shift positions. Figure 1.5 shows data acquired from the NMR system in 

both the time and frequency domain. 

(a) 

Time 

Figure 1.5 Data from an NMR system in (a) time domain (b) frequency domain 

1.2.8 Signal to Noise Ratio 

The signals collected from metabolites with NMR are weak and repeated data 

acquisition is usually applied to improve the signal to noise ratio (SNR). With n 

acquisitions, the improvement in SNR increases by fin. The signal increases by a 

factor of n while the noise, being random, increases by 1n. The signal is collected at 

regular intervals after a pulse is applied and the data summed until an acceptable 

SNR is achieved. 

1.2.9 NMR Pulse Sequences 

In order to detect MR signals an MR magnet is used with the set up as in Figure 1.6. 
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Gradient coils 

Magnet 

Figure 1.6 A block diagram of an MR spectroscopy or imaging system 

A pulse sequence describes the series of pulse activations, waits and signal 

collections which are repeated one or more times in order to enhance the signals 

from the objects of interest and to minimise the signals from those not required or to 

enhance the contrast between different objects of interest 

The simplest pulse sequence is a single activation pulse followed by a single data 

acquisition phase. More usually, a series of pulses and acquisitions are carried out. 

Standard pulse sequences are named and one used typically in spectroscopy is the 

spin-echo sequence where a 90° pulse is applied followed at a set time by a 180° 

pulse which has the effect of rephasing the protons. This pulse does not strengthen 

the signal, it acts as an echo, rebounding the protons to bring them back into phase. 

The pulse file that generates a 90° or 180° pulse can also be tailored for specific 

purposes. Square, binomial and BURP pulse shapes can all be used to generate such 

pulses to select particular frequencies. 

Other pulse sequences such as gradient echo or for blood flow detection are more 

commonly used for imaging purposes rather than spectroscopy. 
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1.3 Factor Analysis 

One of the reasons for using factor analysis is to reduce the dimensionality of 

multivariate data by finding underlying relationships between the data and 

expressing the data in one or more factors. (Reyment and Jöreskog 1993) These 

factors are hypothetical variables which are constructed to describe the 

interrelationships between the original variables and thus to simplify the data. The 

full set of constructed factors will contain all the information held in the original 

variables with the maximum number of factors being equal to the number of original 

variables. Factor analysis usually describes a method where finding the maximum 

intercorrelations between the original variables is the goal. A variation of this is 

Principal Component Analysis (PCA). In this method the factors are created to 

account for the maximum variance between the original variables. In order to use 

PCA the original variables need to be measured in the same units of measure and the 

measurements need to be of the same order of magnitude. If the original data is not 

of this form it needs to be standardised. PCA factors are orthogonal. The first factor 

is created to hold the maximum amount of variance possible. The second and 

subsequent factors are created to be orthogonal to existing factors whilst describing 

the maximum amount of remaining variance. The result of this is the first few PCA 

factors will contain most of the variance in the original data without holding 

redundant information by replicating the variance in more than one factor. 

The PCA factors are designed to hold maximum variance and may therefore contain 

significant values from all original variables. It may be more useful to simplify the 

structure of the factors. Varimax (Kaiser 1958; Reyment and Jöreskog 1993) is a 

rotational procedure which rotates the factors in an orthogonal manner. The aim is 

to find a set of factors, each of which is loaded heavily on a few of the original 

variables and where each original variable is loaded heavily on one or a small 

number of factors. This creates factors which are specifically related to small groups 

of variables rather than being general. In the case of NMR spectra the effect of 

varimax rotation can be to make vectors closer to spectra of individual metabolites. 
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It is possible to further rotate the PCA factors using promax -a rotational technique 

which removes the obligation to maintain orthogonality. This allows the vectors to 

become simpler and more easily interpretable. However, it is the case that even after 

varimax and promax rotation the vectors do not always correspond to spectra from 

individual metabolites. 
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Chapter 2 

Evolutionary Techniques and their Use in the Medical 

Domain and Techniques for Interpreting NMR Spectra 

2.1 Introduction 

There are two fields that come together in this thesis, firstly the use of Evolutionary 

Computation (EC) techniques to interpret medical data, particularly spectroscopy 

data. One of the main reasons for acquisition and interpretation of such data is to 

classify the signals into healthy or diseased or high-grade and low-grade disease. 

The amount of data generated by medical tests is high and does not always easily 

lend itself to clear interpretation by human experts. The second area is the use of EC 

techniques to generate data by automated or semi-automated means. A tremendous 

advantage of MR imaging and spectroscopy is that there is great flexibility in the 

choice of data acquisition parameters. This means that a wide variety of types of 

information can be obtained but the optimum set or sets of data acquisition 

conditions are not always obvious. The larger research area, in terms of published 

papers, is that of extracting meaning from data acquired in medical tests. This 

chapter will look at some of the work published from both the EC side where 

theories have been developed that can be used in various application areas and the 

NMR side where the large quantity of data that can be collected requires some 

automated processing to gain full value from it. 

There is a large and wide-ranging body of published work dealing with the analysis 

and interpretation of medical data by computer methods. The use of medical 

diagnostic tests such as MR, Positron Emission Tomography (PET) and 

Computerised Tomography (CT) which produce digital data stored on a computer 

have allowed the collection and analysis of far larger quantities of data than 
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previously. The collection of such data introduces the need for computer-based 

analysis, both traditional statistical methods and also Bayesian and Artificial 

Intelligence (AI) methods. The analysis of large volumes of data to extract meaning 

(either explicitly defined at the outset or not) is a topic that can be described as 

feature extraction, classification, search or data mining. 

The fields of Al, classification, analysis of computer-collected data and medical 

diagnosis have large bodies of work published of both theoretical background and 

practical applications of techniques. It is not possible to fully explore all these areas 

and therefore, emphasis will be placed on practical applications of techniques within 

the medical domain with particular consideration of feature extraction or 

classification. 

There have been many different techniques applied to the analysis of data from 

medical diagnostic tests such as MRI or PET. In the main, this chapter will focus on 

situations where Al or other methods have been applied to MR spectroscopy data. 

The analysis of image data allows for Al (for instance Neural Networks (NN) and 

Self Organising Maps (SOM)) and other methods to aid in edge detection and 

segmentation. 

Pena-Reyes and Sipper published a review (Pena-Reyes and Sipper 2000) in which 

some of the techniques of evolutionary computing are explained and their use in a 

medical domain is presented both as a table and an extensive bibliography. Hagberg 

reviewed the use of pattern recognition methods for classification of tumours from 

MR spectroscopy (Hagberg 1998). 

The first section of this chapter is a short introduction to Al with particular reference 

to GA and GP. This is followed by a discussion of work relating to the PROBENI 

datasets. There will be a section on non-PROBENI cancer and then other non 

cancer related work. 

The NMR section will look at the differing points in NMR collection and analysis 

where computer techniques have been found to be useful. These include acquisition, 

analysis and application areas. 
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2.2 Computing Techniques 

2.2.1 Evolutionary Computing 

Al is a term covering different methods of organising a computer to solve a problem 

without enumerating the steps required to do so. The term can be used to describe 

search techniques, natural language processing, expert systems, neural networks and 

evolutionary computation amongst other things. Although not specifically focussed 

on Al (Berthold and Hand 1999) has chapters on neural networks, fuzzy logic and 

stochastic methods (covering EC as well as simulated annealing) and Bayesian 

methods. 

Evolutionary techniques use analogies from biology such as survival of the fittest, 

sexual reproduction and mutation. They describe a set of techniques that find 

solutions to problems by encoding single or populations of possible solutions and 

then trying to find more successful (fitter) ones by allowing the fitter solutions to 

survive and to take part in a swapping of part of the solution with another relatively 

fit solution. In order that the process can find its way out of a situation where a 

solution may need to get worse before it can get better, the solutions can also be 

randomly mutated. Evolutionary techniques have developed along three main lines 

with the terms genetic algorithms (GA), evolution strategies (ES) and evolutionary 

programming (EP) being used to describe them (Genetic programming (GP) is most 

similar to the GA line). The differences between them stem from which facet of 

evolution is emphasised (Fogel 1994). Figure 2.1 shows the life cycle of a 

population-based evolutionary technique. 
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Figure 2.1 The life cycle of a population-based evolutionary algorithm 

2.2.2 Genetic Algorithms 

Genetic Algorithms have been described in works by Holland (Holland 1975), 

Goldberg (Goldberg 1989) and Mitchell (Mitchell 1998). At first GA used a binary- 

coded vector to describe a candidate solution to a given problem, where each bit of 

the vector could take one of only two values. The vector was referred to as a 

chromosome and often needed to be decoded to produce the solution. 

In GA a population of chromosomes is created. Each of these chromosomes is tested 

against a set of examples of the problem to be solved. How well a chromosome 

performs against this training set of examples is known as its fitness. The fitter 

solutions are more likely (through one or more of a set of possible selection 

procedures) to be selected to be involved in the next generation of chromosomes. 

The standard operations available are replication, mutation and crossover. In 

replication, a chromosome is copied across to the next generation unchanged. 
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Mutation involves the flipping of a single bit of the chromosome to the other 

possible value. Crossover (initially single point) selects the same point in two 

chromosomes and swaps the contents of the part after the crossover point with each 

other. The chromosomes in this next generation are then assessed for fitness. The 

process continues until a fit enough solution is found or a set number of generations 

have happened. Binary-coded GA is still used but real-valued GA is more 

widespread as it increases the range of problems that can be encoded. The encoding 

of a single real number in binary coded GA could take 32 elements (bits) of a 

chromosome or one element with real-value coding. The shortening of a 

chromosome will have effects on the time taken for fitness values to be calculated 

and for genetic operators such as crossover and mutation to be performed. Mutation 

and crossover will have different effects depending on the coding method selected. 

2.2.3 Genetic Programming 

Genetic Programming was first described by Cramer (Cramer 1985) and popularised 

by Koza (Koza 1992) There are good introductory and more complex texts on GP in 

(Koza 1994; Banzaf 1998; Koza et al. 1998; Baeck et al. 2000; Koza et al. 2003). 

GP follows on from GA with the use of populations of candidate solutions. The 

basic data structure used by GP is a tree and in Koza's terminology is referred to as 

an individual. The tree contains function and terminal nodes (variables or constants). 

The alphabet of the terminal nodes and functions are selected as being sufficient to 

describe a solution to the problem. The individual has its variables instantiated with 

test data and the result of the function application over all test data will determine its 

fitness. 

The data structure used allows for different size and shapes of individuals to be 

constructed. In Koza's description there is a description of closure by which all 

functions accept arguments and return results of the same type and all terminals are 

of that type. This means that all mutation and crossover operations will result in a 

syntactically correct individual. Most GP still works on typeless individuals but 

there has been much reference to the strongly typed GP of Montana (Montana 1993). 

With typed GP the representations of solutions may be closer to the real-world 

nature of a solution but the need to type all functions leads to more complexity in 

setting up the GP process. 
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GP emphasises crossover as the main genetic operator, unlike GA which has tended 

to use a greater proportion of mutation. 

2.3 The Use of Evolutionary Computing Techniques for Cancer and 

Other Disease Diagnosis 

The UCI repository of real world databases (Blake and Merz 1998) contains both 

medical (breast cancer, thyroid disease) and non-medical (classifying glass types, 

approval or not for a credit-card) data. These real world datasets have been donated 

by researchers in order to allow benchmarking of machine learning techniques 

Schiffmann (Schiffmann et al. 1992) describes a technique where GA is used to 

optimise the topology of a NN. The NN is then used to classify the examples. The 

dataset is not referenced but it has the same number of examples and type of input 

features as that described in the UCI repository. The results, which show that GA 

can optimise NN topology, may not be directly comparable with others using the 

dataset. 

Prechelt (Prechelt 1994) has taken some of the UCI datasets and encoded them 

specifically as NN benchmarking datasets described as PROBENI. He has dealt 

specifically with null values and incomplete data. He has separated data into 

training, validation and test sets so that results reported would be directly 

comparable. Where the datasets are small, such as with glass, different partitioning 

may lead to differing results, and so he has created three different partitionings of the 

data which differ only on the order of the examples. This means that results can be 

reported for each separate partitioning. The paper also describes how the datasets 

should be used so as to allow real comparison between techniques. It also gives 

some baseline results for the datasets including breast cancer. 

Some features of the classification datasets in PROBENI are shown in Table 2.1 
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Name No. features No. examples No. outputs 

Cancer 9 699 2 

Card 51 690 2 

Diabetes 8 768 2 

Gene 120 3175 3 

Glass 9 214 6 

Heart 35 920 2 

Horse 58 364 3 

Mushroom 125 8124 2 

Soybean 35 683 19 

Thyroid 21 7200 3 

Table 2.1 Features of the PROBEN datasets 

The PROBEN 1 datasets are suitable for supervised NN learning as each example has 

an output value, and so are also suitable for evolutionary techniques. 

Brameier and Banzhaf (Brameier and Banzhaf 2001) use Linear GP applied to some 

of the PROBEN1 datasets. Linear GP uses a sequence of instructions from an 

imperative language as its data structure. The linear structure is represented by a 

variable length string containing simple C instructions. Each instruction involves an 

assignment to a variable and thus multiple program outputs are simpler than with 

tree-based GP where explicit coding of variable assignment is required. An 

advantage of Linear GP reported in the paper is that `introns', another analogy from 

biology here referring to non-useful pieces of code, can be removed prior to 

execution, thus speeding up execution time. 

The experimental set up involved the division of the population into `demes', a type 

of island model in which individuals can migrate to one other specified deme only. 

The results reported show that Linear GP can reach a similar generalisation 

performance as NN using a backpropagation learning algorithm. They also report 
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that runs using demes perform as well as those without but that effective training 

time is reduced. 

Oltean and Grosan (Oltean and Grosan) use infix form GP on the same datasets. 

This technique has individuals as strings encoding complex mathematical 

expressions in infix form. They report results that are similar to those from Linear 

GP but with a smaller population size and vector length. The results are reported for 

the cancer dataset as well as those of diabetes, heart disease and horse colic. 

The production of comprehensive rules for classifying data is the focus of (De Falco 

et al. 2002). They use a series of one class versus the rest to distinguish between 

classes. They use a function set containing logical (AND, OR, NOT) and relational 

(<, <=, = , >, >=) operators which lead to trees that can be interpreted as if 

<condition> then <class>. The fitness function has a parsimony element to 

encourage more compact solutions. The reported results are slightly worse than 

those reported by Banzhaf and Brameier but the authors claim that the simplicity and 

compactness of the rules evolved make their technique preferable. The inclusion of 

arithmetic functions alongside logical ones does improve performance but at the 

expense of comprehensibility. 

Feature selection and fuzzy modelling are used with the PROBEN I datasets in 

several papers. Emmanouilides' paper (Emmanouilidis et al. 1999) uses multiple- 

criteria GA and tests it on the cancer dataset although there is no real discussion of 

the results. Yang and Honavar (Yang and Honavar 1997) use a GA to select feature 

subsets in the automated design of NN pattern classifiers. They report success of 

this method on the PROBEN I datasets (they do not use the cancer dataset). 

Pena-Reyes (Pena-Reyes and Sipper 2001) describes a method of using co- 

evolutionary algorithms with fuzzy systems and test it on the cancer dataset. Co- 

evolution refers to the simultaneous evolution of two or more populations of 

individuals where the fitness of the populations is coupled. A cooperative rather 

than competitive fitness strategy is used to coevolve two species which fulfil the 

criteria for two interconnected search processes required for fuzzy modelling - that 

for the membership functions (operational parameters) and that for the rules 
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(connective parameters). The search is undertaken through an evolutionary 

approach. They report that their system is more successful than previous work on 

the dataset using both genetic fuzzy and other approaches. 

A hybrid of GA and kNN (k Nearest Neighbour, where k is a number) methods to 

classify is described in (Raymer et al. 1997). The authors aim to reduce the number 

of features required for classification by identifying those that are useful and 

eliminating those that are not as they state that even those features that may contain 

some useful information can reduce the accuracy of the classifier when the number 

of training cases is low, as with many medical applications. Their method involves 

the GA chromosome being divided into two sections. The first is a selection vector 

which has a set of bits per feature, set to 0 or 1. If a majority of the bits are 1, the 

feature will be included, and not otherwise. The use of a set rather than a single bit 

per feature reduces the effect a single mutation has. The second half of the 

chromosome is a weight vector with a single value per feature. The feature values of 

each sample in the test set are multiplied by both the selection and weight vectors 

and the resulting values passed to a kNN classier. The fitness of the GA is measured 

by the accuracy of the kNN classifier and the number of features used in the 

classifier, with fitness increasing as the number of features used decreases. The 

method was applied to environments of water molecules bound to protein surfaces 

and to clinical test results for patients with suspected thyroid dysfunction. The results 

show that classification performance was good in both cases, with the use of the 

selection vector, allowing similar classification accuracy using fewer features than 

that of the GA without the selection vector. 

Other papers that have reported work on different techniques and diseases include 

Sierra and Larranaga (Sierra and Larranaga 1998) who use a GA to induce Bayesian 

Networks based on different methods and then comparing it with a Naive-Bayes 

network. They apply it to predicting survival from malignant skin melanoma after 

one, three and five years. The GA induced networks had a maximum accuracy of 

94% for prediction of survival after one year. Survival after five years is more 

difficult to predict with the networks having an accuracy of 69% - 78%. 
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Dracopoulos and Kent use GP rather than GA to classify patients into those at risk 

from oral cancer and those not at risk, based on age, smoking and drinking habits 

and regularity of dental visits (Dracopoulos and Kent 1997). They have a large 

dataset of 991 training samples and 132 test samples. The samples are heavily 

weighted in favour of negative examples with 95% samples in both sets being 

negative examples. They report results on a par with those found from a NN but 

poor compared to those from an experienced manual screener. Langdon also uses 

GP in combination with NN for drug discovery (Langdon et al. 2004) and for data 

mining DNA chip data from cancer patients (Langdon and Buxton 2004). The use of 

GP with a classification tree is described in (Marmelstein and Lamont 1998) where 

their results show hat this approach is faster than standard GP, the solutions are less 

prone to bloat and are easier to understand (although simplicity of solutions is not 

necessarily a feature of either GP or classification trees). The disadvantage of this 

approach is the computational time taken to find solutions. 

Inza (Inza et al. 2001) uses GA for feature subset selection in the survival of 

cirrhotic patients and Aliferis (Aliferis et al. 2002) classify non-small cell lung 

cancers. A study looking to classify cervical cancer by identifying sub-visual 

changes to cells taken from cervical smears (Hallinen 2001) used a GA to select 

input features and a weight vector which were then used by a NN to identify the 

presence of one of three types of abnormal cells or the absence of any. The study 

was unusual in medical data analysis by having a large set of data; 300 samples in 

each of the training and test sets and a balance of normal to abnormal data (an 

approximate ratio of 2: 1 abnormal to normal). The authors compare their technique 

with standard linear discriminant analysis (SLDA) and show that the Al method 

finds more true positives but also finds more false positives than SLDA. The Al 

technique is also more generalisable than SLDA, though no significantly so. Their 

conclusion is that while such feature selection is valuable, the computational 

overhead required is too high to make it a feasible alternative to the statistical 

approach. 

Wang (Wang et al. 1995) used data from CT scans as input to a self-adaptive expert 

system to diagnose brain tumours. 
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2.4 NMR Spectroscopy and Pattern Recognition 

Much of the early NMR work has focused on the image output with image 

segmentation (Bezdek et al. 1993; Özkan et al. 1993; Worth and Kennedy 1994; 

Poli) the largest area of research. The acquisition and analysis of spectroscopy data 

has been described in both medical and chemistry fields. The use of NMR in 

chemistry will not be discussed here but a review of multivariate analysis of NMR in 

chemistry as well as food science and materials can be found in (Alam and Alam 

2005) 

The application of Al techniques to the field of NMR, and particularly to Magnetic 

resonance spectroscopy (MRS), can be divided into the following areas (Figure 2.2). 

In data acquisition GA has been applied to pulse design (Freeman and Wu 1987; 

Geen and Freeman 1991). Data analysis and quantification of the resulting spectra 

can involve (peak) fitting (Ala-Korpela et al. 1995; Pearlman 1996; Stoyanova and 

Brown 2002). An application of NMR in the biochemical field involves searching 

for the structure or conformation of proteins or similar. Much work has been done in 

this area with GA (Unger and Moult 1993; Wehrens et al. 1993; Bayley et al. 1998; 

Piccolboni and Mauri 1998; Krasnogor et al. 1999) 
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Figure 2.2 Application of Al to MRS 

Another application is classification of data based on spectra and includes work on 

pre-processing of data as well as feature selection. Both GA/GP and NN have been 

used for classification along with statistical and other methods (Rutter et al. 1995; 

Usenius et al. 1996; Bakken, I et al. 2001; Mountford 2001). Much of the literature 

in this field uses the term feature extraction to describe the same sort of work as 

would be described as classification or data mining in the EC literature. EI-Deredy 

describes different pattern recognition approaches in his review which covers both 

dimension reduction of data (including by PCA) and techniques (including NN and 

GP) which classify data. 
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A paper was published in 1989 (Thomsen and Meyer 1989) in which the authors 

suggest that theirs is the first example of a NN being applied to classification of 

NMR spectra. Since then there have been many papers published on the use of 

pattern recognition methods for classification of spectra. Many of these have dealt 

with NN (see Table 2.2) but others have used a range of techniques. 

A special edition of NMR in Biomedicine on Pattern Recognition was published in 

1998. One of the articles was a review of methods used for tumour classification 

with NMR spectroscopy (Hagberg 1998). In this article the author examines 

techniques for pre-processing of data (digitisation into chemical shift ranges, wavelet 

transform), feature extraction (PCA, Linear Discriminant Analysis (LDA)) and 

classification algorithms (cluster analysis, NN). A table is shown of MRS 

classification of tumours, showing the methodology used and results obtained. 

There is only one evolutionary computation technique in this table, a GA used as 

part of a consensus diagnosis (Somorjai et al. 1995). 

Other papers in the same edition of the journal show different methodologies and 

some of these papers will be described below. 

Anthony (Anthony et al. 1994) describes the use of both PCA and non-linear 

mapping (NLM) to reduce the dimensionality of NMR spectra data. Measurements 

are taken from 16 metabolites and the distances between the objects are formed by 

using least-squares minimisation for the NLM. Alternatively PCA is applied to the 

metabolite values from the spectra. NLM refers to the reduction of dimensionality of 

data so that it can be visualised in two or three dimensions. The relative distances 

between objects are preserved. The use of NLM by Anthony uses the same 

measurement of error (least squares minimisation) as with Sammon Mapping 

(Sammon 1969) but it is unclear from Anthony's paper whether other features of the 

NLM are the same as those described in Sammon's paper. Sammon Mapping is a 

widely form of NLM utilised in this field. 

Lisboa (Lisboa, P et al. 1998) uses PCA and also partial least squares to reduce 

dimensionality of NMR spectroscopy data with the resulting variables passed to 

statistical techniques. The use of statistical techniques is compared with NN for 
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tissue classification. The statistical methods are linear discriminant analysis (also 

reported by Tate (Tate et al. 1998)) and ls` nearest neighbour (kNN, where k=1). 

LDA seeks to provide linear combinations of variables so that the separation of the 

class means is maximised relative to the variance within each class. kNN with k=1 

allocates each sample to the class of its nearest neighbour. These techniques are 

compared with the use of a multi-layered perceptron. The results are reported as 

comparable for both statistical and NN techniques. 

Holmes (Holmes et al. 1998; Holmes et al. 2000) uses a multi-class form of PCA, 

called SIMCA, where each class is described by a separate PCA model. She 

suggests that the technique performs poorly where there are a large number of 

classes or subsets. She also draws attention to the fact that using a large number of 

principal components may lead to over-fitting. She suggests using pre-screening to 

remove outliers from the data set. 

Although many approaches have been used to classify disease, including cancer, 

from MR data there appears to be a benchmark of success at approximately 80%. It 

is difficult to assess completely the success of one method against another because of 

the differing sizes of samples, number of classes and use or otherwise of validation 

and test sets as well as the differing techniques but there is a commonality of feature 

analysis. Table 2.2 summarises some of the work in this field and highlights the 

reported results. The table is not an exhaustive list of all the work in the field but 

shows some of the methods that have been used. 

The focus of most papers is that of research where a small number of samples are 

used to determine whether a technique can produce meaningful information from 

spectra. The uptake of such techniques in a clinical setting has not followed the 

reportedly good results possible in many fields. The use of magnetic resonance 

spectroscopic imaging (MRSI), where spectra are taken at the same time as MR 

imaging, is described in (Gruber et al. 2005). In this paper the standard technique of 

brain lesion classification, biopsy, has risks but has a diagnostic accuracy of up to 

more than 90% depending on -tumour. 
There is less accuracy with grading of 

tumours and with differentiation between tumour and non-malignant abscesses. The 

use of MRSI at this stage can help with treatment strategies. The authors give 
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examples of individual patients where MRSI aided diagnosis and treatment of brain 

tumours. They predict that the continuing development of such techniques will lead 

to an improvement in patient survival rates. However, the costs involved as well as 

technical difficulties of collecting good data, mean that such systems will probably 

only be used for brain tumours, at least for the next few years. The analysis of 

spectra described in this paper use both spectrum fitting programs and pattern 

recognition techniques. 

An alternative approach to examining a single voxel as in standard spectroscopy is to 

use multivoxel MRSI where a grid of voxels is examined. This allows segmentation 

into different tissue types based on spatial as well as metabolic information. In (De 

Vos et al. 2007), (Laudadio et al. 2007) successful nosological classification of 

tumours is carried out by a technique based on Canonical Correlation Analysis. The 

technique results in coloured segmentation images showing areas of different tissue 

types including tumour, necrosis, normal tissue and mixed tissue. 

The use of MRSI may help with the problem of small data sets but it appears that the 

use of Al techniques to aid in medical applications has not yet passed from a 

research to a clinical setting in the way that authors of early papers had predicted. 
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Reference Subject Sample Purpose Computing Classes Sample Results 

area and area technique size reported 

studied 

(Anthony Nephro- Urine classification PCA, NLM Various 54 PCA better than 

et al. toxocity NLM at 

1994) discriminating 

between sites of 

action of 

treatments 

(Somorjai Cancer Biopsies Classification LDA, NN, 
_ 

2 107 

et al. of thyroid GP 

1995) neoplasms 

(Ala- Lipo- Plasma Lipoprotein NN, 55 

Korpela et protein quantification Kohonen 

al. 1996) abnorm- -0.019- net 

alities 0.019ppm 

(101 data 

points) 

(Usenius Cancer in-vivo classification NN 4 33 82% success 

et al. brain 0.3 - 3.4ppm patient, 

1996) (206 data 28 

points) control 

(Maxwell Cancer Perchloric classification PCA, NN 2 118 85% correct 

et al. acid (meningiomas 

1998) extracts of / non- 47 62% correct 

meningiomas) 

4 (grades of 

glial 

tumour) 

(Bakken, l Epilepsy classification NN 2 (Healthy, 15 

J et al. diseased) patient, 

1999) 13 

control 

(Gribbesta Cancer Perchloric Metabolite PCA 16 

d et at acid tissue composition Probabilistic patient 

1999) extracts and concen- NN 

tration 

2.8 - 3.5ppm 

(1000 points 

/ 17 PCs) 
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Reference Subject Sample Purpose Computing Classes Sample Results 

area and area technique size reported 

studied 

(Poptani Cancer and in-vivo classification NN 5 (2 grades 98 73% (low-grade 

et al. non- brain 0.6 - 3.4ppm of glioma, patient, gliomas versus 
1999) tumour (75 data tuber- 40 rest) 

cerebral points) culomas, control 98% (high- 

disorders abscesses, grade gliomas 

healthy) versus rest) 
(Bathen et Cancer, Blood Quantification PCA, PLS 

, 
Up to 14 52 PLS and NN 

al. 2000) CHDt Plasma of lipids and i both good 
apolipo- 

proteins 

0.4 -1.4ppm 
(1900 

points) 

(Gerstle et Cancer NN and 2 (SCCA, 16 

a1.2000) LDA' muscle) patient, 

12 

control 

(Axelson Parkinson' In vivo classification Feature 2 (disease or 31 2 class 

et al. s Disease basal 1.5-4.0 selection by no disease) patient, excellent 
2002) (PD) ganglia ppm GA, NN 4 (no dis- 14 results, 

(274 data ease, probable control 4 class 88% 

points) , possible, correct. 

atypical PD 

(Pulkkine Cancer MRSI Chemical SOM prior Unsupervised 71 94% test set 

n et a!. spectra of shift to LF and but SOM patients, correct 
2002) in vivo correction NN gave 5 14 

tumour (241 data clusters controls 
(glioma) points) 

(Lee et al. Cancer MRS classification Pre-filtering 6 classes of 98 56% to 96% 

2000) spectra of 0.5 - 4.2ppm or ICA- tissue using discrimination 

cysts and (194 data followed by painvise between pairs 
brain points) LDA discrimin- of classes 

tumours ation 

(Huang et Cancer MRS classification ICA or 2 (Astro- 41 62%-90% 

al. 2003) spectra of MBVS° cytomas and depending on 
brain glio- method 

tumours blastomas 

Coronary Heart Disease * Linear Discriminant Analysis 

Partial Least Squares Independent Component Analysis 

Self-Organising Maps ° Multivariate Bayesian Variable Selection 

Table 2.2 Techniques used to extract meaning from MR data 
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Chapter 3 

The Use of Genetic Methods to Classify Brain 

Tumours from NMR Spectra 

3.1 Introduction 

A tumour is a growth of tissue made up of abnormal cells. There are nearly 100 

types of brain tumour. Tumours that occur in the brain can be primary (the site of 

the first occurrence of this cancer) or secondary (where cancer cells travel from the 

originating site elsewhere in the body to the brain via blood circulation). These are 

also referred to as metastatic tumours, or metastasis. Primary brain tumours are 

often named after the type of cell they developed from. The main cell type in the 

brain is the neurone which rarely produces cancer cells. Meninges is the name given 

to the membranes that cover the brain. Meningiomas are benign tumours, meaning 

that they are slow growing and the cells do not spread to other tissues. However, the 

growth of any tissue in the brain can cause problems due to the rigidity of the skull. 

Glial tissue supports the neurones and nerve fibres and types of glial cell include 

astrocytes and oligodendrites. Most malignant brain tumours occur in glial cells and 

include gliomas, astrocytomas and oligodendrogliomas. Malignant tumours are 

graded 1-4, high grades (3 - 4) describe a more aggressive tumour, low grades (1 - 

2) a more slow growing one. Glioblastoma multiforme is a high grade astrocytoma 

(grade 4) and is the most common type of primary malignant brain tumour in adults. 

Medulloblastomas occur in the cerebellum and are high grade malignant tumours 

which are one of the most common brain tumours in children. 

Malignant tumours are not homogeneous; in addition to areas of tumour cells there 

can be areas of necrosis (dead tissue) and oedema (swelling due to extra-cellular 
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fluid). It may also be difficult to distinguish the edge of a tumour so there can be a 

mixture of cell types. Benign tumours tend to be more homogeneous. 

Classification into two classes is common in all areas. including medical applications. 

A distinction between presence and absence of disease is the most crucial step in 

diagnosis. Further division into types or grades of disease can then be undertaken. 

As classification tasks can be generally be posed as a series of one or more one- 

versus-the-rest binary classifications it is important to show that a computing 

technique can produce good results on a binary classification task. It can also be 

useful to show that data from a technique such as NMR can be used to distinguish 

between categories. 

The application discussed in this chapter is to classify tumours from 1H NMR spectra 

(which give information about biochemical compounds in a tissue). These spectra 

can be obtained in vivo, but more detailed information is available if they are 

obtained from chemically extracted biopsy samples. It would be advantageous if 

analysis of spectra data such as these could be used for diagnosis of cancer type or 

prediction of treatment response. If this is possible it would be useful to know what 

information in the spectra is being used to distinguish between different types of 

tumour. The specific data used was a database of 'H NMR spectra of human brain 

tumour biopsies. This database was collected as part of a European Community 

Concerted Action (Biomed-I PL920432). 

Two types of evolutionary computation (GP and GA) were used with this data. GP 

and GA both use a population-based strategy whilst differing in the representation of 

candidate solutions present in the population. As NN have been used on the same 

data set with success a comparison of NN with GA and GP was made. 

3.2 Methods 

The first stage of starting the classification was to collect and organise the data into a 

form that could be input into the classification software. The original data were 

collected in the following way; 75 brain tumour biopsies were taken during routine ' 
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surgery, frozen in liquid nitrogen and extracted with 0.5M perchloric acid, as 

described in (Remy et al. 1994). Histology (carried out by the pathology services of 

the collaborating hospitals) showed that 28 were meningiomas and the remainder 

(non-meningiomas) included a variety of different tumour types: (astrocytoma (14 

samples), glioblastoma multiforme (9), medulloblastoma (5), metastasis (5), 

oligodendroglioma (3), haemangiopericytoma (3), haemanioblastoma (1), lymphoma 

(1), schwannoma (1), chordoma (1), radiation necrosis (1), pineal teratoma (1), 

histiocytosis (1), angiofibroma (1) ). This database is a sub-set of that described by 

Maxwell et al., (Maxwell et al. 1998) consisting of the first 75 samples collected in 

that study. 

'H NMR spectra were obtained at 360 or 400 MHz in 2H20 at pH* 7.0 (pH* = pH 

meter reading uncorrected for the deuterium isotope effect) and 25°C. The 

spectroscopy parameters were: 90° pulse, pulse repetition time 10 s, spectral width 

4803 Hz, 16000 data points, water presaturation and 64-1024 averages depending on 

initial tumour weight. (Griffiths 1996) 

The spectra were digitised at intervals of 0.010 ppm over the range 4.5-0.5 ppm, 

giving 400 variables. Variables arising from lactate (1.26-1.40 ppm, corresponding 

to the variables 311-325; and 4.09-4.18 ppm, corresponding to the variables 33- 42), 

mannitol (3.63-3.88 ppm, corresponding to the variables 63-87) and a signal at 1.64 

ppm (variables 283-292) were all set to zero because they were considered to be 

unreliable. Lactate is expected to increase during the interval between tumour 

excision and freezing, and it was difficult to control this period during routine 

surgical procedures. Mannitol is given to patients, in varying amounts, to reduce 

brain oedema. The 1.64 ppm signal was considered to be an artefact of the extraction 

procedure. This is attributed to acetone which is used for cleaning tubes and 

possibly used in the extraction process. Finally, the digitised spectra were 

normalised to the sum of all (remaining) variables. Figure 3.1 shows the mean 

spectra from the two main tumour classes; meningiomas and non-meningiomas. 
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Figure 3.1. The mean spectra from the two main tumour classes, redigitised in 

O. Olppm windows. Regions corresponding to lactate, mannitol and around 1.64ppm 

have been zeroed and spectra normalised to the sum of the remaining variables as 

described in the text. (a) Non-Meningiomas; (b) Meningiomas 

Principal Component analysis showed that the first 20 PCs accounted for 99% of the 

variance. The PC factors were simplified by varimax rotation. Figure 3.2 shows the 

cumulative variance of PC factors and those resulting from varimax rotation. 
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Figure 3.2. The cumulative variance from PC and varimax factors 
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Several of the varimax factors were very similar to 'H NMR spectra from individual 

metabolites (e. g. glutamine, alanine, creatine, glutamate, taurine). Figure 3.3 shows 

such a comparison for alanine and glutamine. 
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Figure 3.3 Comparison of varimax factors with 'H NMR spectra (re-digitised in 

0.01 ppm windows) from pure compounds. (a) Vector `R'; (b) Alanine spectrum; (c) 

Vector `B'; (d) Glutamine spectrum. These spectra are shown before the zeroing of 

the signal at 1.64 ppm. 
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Scores were calculated by a dot product of the varimax vectors and spectrum inputs 

for each sample. This gave 20 scores (varimax scores) for each sample which were 

used as inputs for the GP and GA classification. The class labels were used as 

outputs with two possible classes (meningioma = -1; non-meningioma =+ 1). 

The GP program used was in written in the computer language Lisp, following Koza, 

(Koza 1992). The terminal set consisted of the 20 varimax scores, labelled 

alphabetically A-S and U (T being a reserved word in Lisp). The functions used were 

taken from those shown in Table 3.1. 

Function No. 

Arguments 

Comments 

+ 2 

- 2 

* 2 

% 2 Protected division, if divisor is 0, returns 1.0 

IFLTZ 3 Returns 2° argument if 1S` argument < 0, 

otherwise returns 3`d argument 

tan 1 Standard trigonometric function 

myand 2 if both arguments >= 0 return +1 otherwise 

return -1 

myor 2 if one or both arguments >= 0 return +1 

otherwise return -1 

mynot 1 if argument is negative returns +1 otherwise 

returns -1 

Table 3.1. Functions used in GP 

Although, in general, the function set used in GP is problem-dependent, in this case a 

variety of function types were included (arithmetic, trigonometric, logical and 

conditional). The arithmetic functions used were standard except for division: a 

protected division was employed such that division by zero yielded a real number 

(1.0). This allows for the `closure' of the function set whereby the output of any 
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function can be used as the input to another. This is in contrast to strongly typed GP 

(Montana 1993) where each function and variable has a type and can only be used in 

places where that type is appropriate. Typed functions can be more powerful but 

remove some simplicity and elegance of closed GP. Logical functions (myand, myor 

and mynot, Table 3.1) were included but these were written to accept real valued 

inputs (and return a real valued result) instead of truth values. Inclusion of a 

conditional function ('if less than zero', IFLTZ) allowed further variability in the 

function structure. The minimum function set required to produce good solutions to 

this problem was not known in advance and so a larger function set than possibly 

required was made available to the system. 

The selection method used was fitness-proportionate whereby fitter individuals are 

selected more often in proportion to their fitness. The generation method was 

'ramped half and half which creates individuals of different size and depth in the 

initial random population. 

The standardised fitness was taken to be equal to the number of samples minus the 

number of hits, therefore a low standardised fitness score was better with zero being 

perfect fitness. 

SF =N- no. hits (1) 

A hit was scored when the function applied to a sample produced a value with the 

same sign as the class label. Runs were tried using least mean square as the fitness 

function. On its own it did not increase population fitness during a run, and used in 

conjunction with hits it drove the run to premature convergence (i. e. the majority of 

individuals within the population converged to a sub-optimum solution) and so its 

use was abandoned. The only parameters, apart from function set, that were changed 

from run to run were random seed, number of generations and size of population. 

The GA used was GAOT (the Genetic Algorithm Optimsation Toolbox) written for 

Matlab. Each chromosome was of length 21 with 20 input values and one class 

value as above. Each input gene in the chromosome was initialised with a real value 

between -1 and +1. These were then each used as a multiplier to the equivalently 

placed value in the training set example. The values returned were then summed to 
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give a single result. A hit was scored in the same way as with GP, if the sum had a 

sign the same as the class label for that example. 

The GA used a population of 200 over 200 generations with 20 crossovers and 20 

mutations per generation. Selection was by a tournament of size 5. Tournament 

selection involves randomly picking n chromosomes (where n= size of tournament) 

and comparing the fitness of each. The fittest is the winner of the tournament. 

Three sets of experiments were run on this data. The first set of experiments 

involved using all 75 samples to train with no testing set. This was done using both 

GP and GA. 

A second set of experiments was run to compare the performance of NN, GA and 

GP. Ten samples were randomly removed from the original data set for use as a test 

set. All processing stages were then performed on the 65 remaining samples and the 

learnt NN or GA or the best GP functions applied to the test set. The NN used back 

propagation with an architecture of 20 input units and two hidden layers using the C- 

program described by (Pao 1989). Although two hidden layers were used here, it is 

now considered common practice to use a single hidden layer (Pinkus 1999; Bishop 

2005) 

The third GP experiment compared learning performance using varimax scores and 

PC scores. It was performed using a C- language implementation of GP; lilgp 

(Zongker and Punch). Ten independent GP runs (with different random seeds) were 

carried out with a population of 700 and with 50 generations for each set of inputs. 

Sensitivity plots for each class were obtained from NN learning as described by 

(Lisboa, PJG et al. 1993). This involves learning, using a NN without a hidden 

layer, and then examining the weights which have been learned. For NN this was 

performed using both the 400 'raw' variables and the 20 varimax variables. In the 

latter case, it was necessary to multiply the sensitivity plot of varimax variables by 

the corresponding weights [e. g. as in Figure 3.3(a) and (c)] so as to show the 

sensitivity plot in terms of the 'H NMR spectrum. In an analogous way, sensitivity 

plots were obtained from GP learning by multiplying the GP function by the relevant 
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varimax weights (GP was not performed using 'raw' variables). Spectrum 

sensitivities are shown in Figure 3.4 as the absolute difference between the 

sensitivity plots for the two main tumour classes, meningiomas and non- 

meningiomas. NN sensitivity plots show the absolute differences between `within 

class' and `out of class' spectra 
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Figure 3.4. Spectrum sensitivity plots for NN and GP learning. (a) NN learning from 

400 `raw' variables; (b) NN learning from 20 varimax variables; (c) GP-learned 

function J- 3B +2R +2K 

The feature-extraction capabilities of NN and GP were tested as follows. The best 

four varimax variables were selected from the NN sensitivity plot and from the GP 

classification and used as inputs for NN classification in 'leave-one-out' mode using 

two hidden layers, each of eight nodes. 
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3.3 Results 

On the first GP experiment the best individual classified 73/75 (97%) samples 

correctly. This was obtained using a function set containing all of the functions 

shown in Table 3.1. The parameters were random seed of 1.0, number of generations 

41 and size of population 700. However, one of the most striking features of the 

analysis was that good classification (80-85% correct) could be obtained using very 

simple individuals with few function applications (Table 3.2). 

Function 

(LISP representation) 

Standard 

representation 

Biochemical representation Percentage 

correct 

(-J B) J-B (-Glu)a - Gln 80 

(-(+RN)B) R+N-B (-Ala)' +(-acetate)a-Gina 84 

(- R B) R-B (-Ala) a- Gln b 85 

(+(-(+(-(+(+( 

JB)R)K)B)R) 

J-3B+2R+ 

2K 

(-Glu)a-(3* Gln)b + (2* 

(-Ala)a +(2*K)° 

90 

' Varimax vectors, J, N and R are inverted (along the y-axis) compared with the 

spectra of Glutamine (Glu), acetate and Alanine (Ala), respectively. 

b Varimax vector B is similar to the spectrum from Gln 

C Varimax vector K is complex, and has not been assigned to a particular compound 

Table 3.2. Some of the most successful functions obtained by GP 

Examination of the varimax vectors (Figure 3.3) corresponding to these functions 

showed that it was actually possible to classify most of the samples based on a very 

simple combination of metabolites. Vector B corresponds to glutamine (positive 

weighting) and vector R to alanine (negative weighting): therefore, the function R-B 

is minus one, times the sum of glutamine plus alanine. Other successful functions 

also included the glutamine and alanine vectors together with functions 

corresponding to glutamate (J) and acetate (N). The biochemical assignment of the 

most useful varimax vectors is summarised in Table 3.3. This information is 

incorporated into Table 3.2 to give biochemical interpretations of GP functions. 
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The GA produced solutions that correctly classified 72/75 (96%) of the training 

cases. The best individual from each of 10 runs which had 72 hits were compared 

and their mean and standard deviation are shown in Figure 3.5. For comparison, t- 

tests were performed to determine whether there were significant differences 

between the varimax scores for each class, as summarised in Table 3.4. The GA 

solutions show a close resemblance to each other; possibly the minimum which these 

solutions have found is a large shallow dip rather than a small steep one. Once in 

this sub-optimum minimum it is hard to get out of. There is no advantage to be 

gained from moving around in it. 

Vector Assignment 

A Creatine (CH3 and CH2) + N-acetylaspartate 

B Glutamine (Gln) 

F Creatine (CH2) 

J Glutamate (Glu) 

K Complex 

N Acetate 

R Alanine (Ala) 

S Complex 

Table 3.3. Biochemical assignment of selected varimax vectors 

The t-tests show that 80% of the variables are significant to the problem, i. e. where 

h=1, there is a very significant difference (logioP < -2) between class means of the 

varimax scores. These contain those variables which GP finds significant plus 

others. The number of features that can be shown to have no effect on the 

classification is small and of little practical use given the number remaining which 

may have influence over the classification. 

GP finds fewer significant features than GA perhaps because some of the initial 

population of GP individuals are forced to be small (because of the use of ramped 

half and half) and then can grow. GA individuals are all the same size and all contain 
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all variables. It is by having the multiplier close to or equal to zero that the feature 

or variable becomes insignificant. GP can be thought of as starting with a minimum 

set of features and growing to cover all examples whilst GA (and NN) start with a 

maximum set and possibly shrink whilst still covering all examples. It is interesting 

to note that in all the successful GA individuals shown here, it is the same three 

examples that cannot be classified. 

Variable Variable No. (as in Fig. 3.5) h LogioP 

A 1 1 -7 
B 2 1 -7 
C 3 0 0 

D 4 1 -6 
E 5 1 -5 

F 6 1 -7 

G 7 1 -5 
H 8 1 -6 

I 9 1 -3 

J 10 1 -7 

K 11 1 -7 

L 12 1 -3 

M 13 1 -5 

N 14 0 -1 

0 15 0 -1 

P 16 1 -3 

Q 17 1 -7 

R 18 1 -7 

S 19 0 -1 

U 20 1 -3 

Table 3.4. t-tests on difference between class means for each varimax score 

On the second experiment, which divides the data into training and testing sets, the 

best GP individual classified 90% correctly on the training set and also 90% on the 
. 
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testing set. The results were comparable with those from NN (80% correct, 10% 

uncertain, 10% wrong). (The NN gave two outputs with a target [1 0] for class one 

and [0 1] for class two. A correct result was defined as [>0.75 <0.25] for class one 

and [<0.25 >0.75] for class two, a wrong result being the reverse of these and an 

uncertain result being any other combination. ) In this case, the winning GP 

individual again included varimax variables corresponding to glutamine and alanine. 

The individual with the best performance on the test set was found on the first run of 

the program, with a population size of 200 running for 20 generations. All functions 

except tan were included in the function set. It is interesting that the best function, 

(-(-(-(-(mynot B) (+E B)) R) (+E B)) R) 

used only three of the 20 inputs and only three of the available functions. 

Other runs produced individuals on the training set which gave a 98% successful 

classification, but which performed less well (70%) on the test set. The individual 

that produced this result contained 39 operations on 12 of the inputs, as opposed to 

the seven operations on three inputs of the best function. In such cases the GP 

system had become over-trained on the training set, fitting relatively complex 

functions, leading to a loss of generalization ability. 

GA was also used on the data divided into the training and test sets. The individual 

which performed the best on the test set classified all 10 correctly. However, on the 

training set four were misclassified. Four other individuals from separate runs 

classified 62/65 on the training set and 9/10 on the test set. The mean and standard 

deviation of these 5 individuals are shown in Figure 3.5. Those variables where the 

mean is near to zero (3 (C), 15 (0) and 19 (S)) in Figure 3.5 are variables which have 

been shown to be not significant in the t-test of table 3.4. This reinforces the result 

of the first experiment where GA was shown to have as good a classification ability 

on this data as NN without having a good feature selection capability. 
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Figure 3.5 Mean and standard deviation of the best GA chromosomes 

There was no significant difference in the ability of GP to learn the classification 

when using PC scores rather than varimax scores (Table 3.5). However, the results 

suggested that the complexity of the solutions found were greater when principal 

component scores were used, than with varimax scores (i. e. the tree depth and 

number of nodes (elements) in each GP program were both larger). 
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Inputs Complexity for 

85% correct 

Complexity for 

90% correct 

Complexity for 

95% correct 

% correct in 

50 generations 

Nodesa Depth Nodesa Depth Nodesa Depth (Mean +/- s. d. ) 

Varimax 12 3 25 6 98 11.5 98.1 +/-1.3 

PC 21 5 44 7.5 128 14.5 97.5+/-1.2 

a Number of nodes (elements) in first GP solution giving specified percentage correct 

during training (median of 10 runs with different random seeds). 
b Tree depth of first GP solution giving specified percentage correct (median of 10 

runs). 

Table 3.5. Complexity of GP learning using varimax and PC scores. 

Sensitivity plots obtained from NN are shown in Figure 3.4(a) and (b). The 

sensitivity plot from the 400 'raw' variables was dominated by signals at around 3 

and 3.9 ppm, due to creatine. The sensitivity plot obtained using varimax variables 

was quite different, with significant contributions in the 'choline' region (around 3.2 

ppm), the glutamine/glutamate region (2.1-2.5 ppm), from N-acetylaspartate (2.0 

ppm) and acetate (1.9 ppm). Figure 3.3(c) shows a sensitivity plot obtained from the 

moderately complicated GP function, J- 3B + 2R + 2K, which gives 90% correct 

classification on the training set. This is dominated by signals from glutamine, 

glutamate and alanine. 

Feature selection from NN sensitivity plots gave varimax variables A (corresponding 

to total creatine and N-acetylaspartate signals), B, F (probably from the creatine CH2 

signal) and S (a complex mixture of signals) as the most important. GP classification 

selected varimax variables B, J, N and R as the most useful. Only one variable (B, 

corresponding to glutamine) was present in both sets. When these two sets of 

variables were used as inputs for NN classification in leave-one-out mode, the GP- 

selected variables gave 73% correct and 17% wrong, while the NN-selected 

variables gave 72% correct and 21% wrong. 
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3.4 Discussion 

The use of the factor analysis techniques of PCA and varimax rotation for reducing 

the dimensionality of the data greatly facilitated the implementation of GP. Since 

each variable must be assigned a name and is then randomly allocated to the initial 

set of programs, the inclusion of many more variables would make it increasingly 

cumbersome to set up a GP run and to interpret the results. It is also likely that any 

successful programs would be considerably more complicated. The main risk with 

using factor analysis is that information contained in the unused factors (e. g. 

principal components or varimax vectors) is lost. However, this is unlikely to be the 

case so long as enough factors are used (i. e. accounting for a large proportion of the 

variance in the data set). Indeed, optimal choice of the number of factors might 

reduce the noise in the data, without significant loss of information. (Malinowski 

1987). In the present study, 20 varimax vectors, accounting for more than 99% of 

the variance, are used. In general, the use of varimax rotation does not guarantee that 

the spectra of individual metabolites will be separated in a pure form but quite 'clean' 

results are often obtained from datasets of this kind for about 6-10 metabolites. 

Further improvements have been achieved using an additional, non-orthogonal, 

rotation method (promax): this subject is discussed in more detail elsewhere 

(Maxwell et al. 1998). 

Varimax rotation gave an advantage (over PCA alone) because the rotated vectors 

could be more easily associated with individual metabolites, thus enabling 

interpretation of the GP results in biochemical terms. Although the use of varimax 

scores rather than PC scores gave no significant advantage in terms of GP learning 

(on the training set), the tendency for the solutions to be less complex (with varimax, 

Table 3.4) would be expected to lead to better generalization performance and to 

further simplify the interpretation. It also implies that the arrangement of information 

into simplified vectors (often corresponding to individual metabolites) was more 

natural for classification purposes than the original PC vectors, which are arranged 

according to the amount of variance that they account for. 
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The use of sensitivity plots (Lisboa, PJG et al. 1993) [Figure 3.4(a) and (b)] showed 

that it was possible to identify which features were of most importance in a given 

NN classification, at least for a NN without hidden layers. (Although it is also 

possible to obtain sensitivity plots for NN with hidden layers, this has not been 

implemented in the current study. ) A substantial difference was noted depending on 

whether 400 'raw' variables or 20 varimax variables were used as inputs. It is a 

straightforward task to reconstruct a sensitivity plot from a GP function [e. g. Fig. 

4(c)]. The GP sensitivity plots were consistently different from NN sensitivity plots 

obtained using the same inputs (i. e. 20 varimax variables). This is consistent with the 

different ways in which GP and NN solutions are obtained and also with the different 

errors in classification reported by Somorjai (Somorjai et al. 1995). Some care 

should be taken in interpreting these differences given the comparison between NN 

sensitivity plots obtained from 'raw' variables and from varimax scores; i. e. they also 

show big differences even though it is expected that the information content is 

approximately the same in both cases 

The differences between NN and GP methods can be summarised as follows: 

(1) For this two-class problem, satisfactory learning of how to classify the training 

set was achieved with both methods. It is difficult to compare the computational 

effort since the two methods were written in different languages and run on different 

computers. However, the GP implementation appeared to be more demanding. 

(2) It was very important to reduce the dimensionality of the data for the GP (LISP) 

implementation. It was convenient, but not essential, to do this for the NN approach. 

(3) Classification results on the small test set were at least as good for GP as for NN. 

(4) In the present study, GP gave relatively simple functions which made feature 

selection an easy task. 

(5) Features selected by GP gave at least as good classification as those selected 

from NN sensitivity plots, when they were used as inputs to a NN classifier running 

in leave-one-out mode. 

The experiments using GA also used the varimax scores as inputs. This allowed the 

information about metabolites to be utilised but was not so crucial a decision as GA 

has a fixed-length chromosome. The disadvantage of this fixed length proved to be 
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that more features were considered significant; the simplest solutions were not found 

in this implementation.. 

3.5 Conclusion 

Good classification of human brain tumours, based on 1H NMR spectra of biopsy 

extracts, could be obtained using a GP approach. In addition, the most significant 

aspect of the analysis was that very simple functions gave classification results that 

were almost as good as the 'best-ever' functions. The use of principal component 

analysis followed by varimax rotation meant that many of the inputs to GP 

corresponded to 'H NMR spectra of individual metabolites. Combinations of 

metabolites, such as glutamine plus glutamate or glutamine plus alanine, were found 

to give approximately 85% correct classification (for the training set) between 

meningiomas and non-meningiomas. 

It should also be noted that even a single GP run can provide a large number of good 

solutions (of varying complexity) and hence there will be a variety of possible GP 

sensitivity plots. In future applications, it may be advantageous to consider a whole 

population of GP solutions rather than just one or a few of the best ones. 

The information contained in in vivo 'H NMR data is dependent on the specific 

acquisition conditions employed (e. g. pulse sequence and echo time). The 

importance of glutamine in this classification suggests that if in vivo 'H NMR data 

are to be used to distinguish between these tumour types, then short echo time (30 

ms or less) acquisitions (sensitive to glutamine and glutamate signals) will provide 

better discrimination than long echo-time data, either at 1.5 T or at lower field 

(0.5T)(Prost et al. 1997). In addition, it should be possible to use GP to give feature 

selection for other classification tasks: e. g. to determine brain tumour grade from in 

vitro or in vivo 'H NMR spectra. Unfortunately, the size and composition of the 

present data set are not adequate to permit this. 
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Chapter 4 

The use of Genetic Methods to Classify into Multiple 

Classes 

4.1 Introduction 

The use of evolutionary methods to classify MRS data into two classes has been 

proved to be useful as shown in the previous chapter. In order, however, for GP to 

become a technique of choice for classification in this and other spheres it needs the 

ability to divide data into the required number of groups, whether this is two or a 

larger number. NN techniques have this ability (an example is shown below). The 

advantage of GP over NN in classifying into multiple categories is the same as for 

the two-class problem - as a non-black box solution, those variables used in the 

classification are easily identified. This may help in focusing data collection so that 

signals from important features can be enhanced. 

Classification of data from MRS has been carried out using NN (Branston et al. 

1993; Lisboa, PJG et al. 1993; Usenius et al. 1996; Ala-Korpela et al. 1997; El- 

Deredy et al. 1997; Bakken, IJ et al. 1999; Gribbestad et al. 1999; Poptani et al. 

1999; Bakken, I et al. 2001; Axelson et al. 2002; Hiltunen et al. 2002). NN appears 

to be able to cope with multi-class classification with ease. The number of output 

nodes on a NN can be freely set with the usual case that each output is used to 

classify one class. There would need to be processes that can handle the case that 

more than one output node is activated or than none are. On the data set used here a 

NN with one hidden layer of 40 nodes classified 47/49 samples correctly, with one 

of the remaining 'probably correct' and the final 'uncertain'. 
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Early work in GP classification focused on dividing the data into two categories. If 

greater numbers of categories were required, repeated 'one versus the rest' was 

applied. This is also the case with other classification methods (Tate et al. 1998). 

More recent work has examined ways of dividing data into multiple classes. 

Kishore's work set the scene for a new interest in more complex classification tasks 

(Kishore et al. 2000; 2001). More recent work has explored the use of classification 

with images (Zhang et al. 2003; Zhang and Smart 2004; Smart and Zhang 2005) and 

using GP with a grammar to produce rules that can be applied to data in order to 

classify it (Dounias et al. 2002). 

Once there are more than two target classes the relationship between those classes is 

necessarily more complex than with two classes. With binary classification the 

boundary between the classes is usually clear-cut. In the previous chapter the 

boundary between the two classes was set to be zero, a common convention. The 

classes were separated by the result of a function application to data returning a 

positive or negative result. 

With multiple classes the relationship between classes may be of several forms. 

Some classes may be sub-sets of others, a class may have a closer relationship with 

one other than with a third, or there may be no relationship at all depending on the 

data, the variables used to describe the data and the representation of the class. The 

relationship between these classes may be known. It is possible to use techniques 

such as cluster analysis (Tate et al. 1998) or Sammon mapping (Sammon 1969) to 

indicate relationships. 

If the data is thought of as linear, with the planes dividing the classes parallel to each 

other, then a restriction of values for the classes that have fixed boundaries on both 

sides will contrast with classes that have only one fixed boundary. It is possible to 

visualise a division of the solution space into three classes with each having the same 

relationship to both other classes in a two dimensional space, but an increase to four 

classes involves a different relationship between some classes than between others - 

(see Figure 4.1). A two dimensional model with four classes fits neatly into a 

Cartesian co-ordinate grid where the classes are divided by two perpendicular planes. 

The values can be thought of as (x, y) co-ordinates and is shown in Figure 4.1b. 
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a 1 

2 

3 

4 

b 1 2 

3 4 

Figure 4.1. Relationships between classes. a shows a situation where classes have 

different relationships with each other, b shows the same number of classes with 

each class having a boundary with each of the others. 

It is possible to have categorical data in which the classes have no relationship to 

each other and non-membership of one class does not help in classifying it into 

another. If the classes were hats, coats, gloves and shoes, non-'hatness' would not 

help in assigning class gloves, coats or shoes (depending on the variables chosen to 

describe the data). On the other hand with classes of apples, pears, oranges and 

lemons non-'orangeness' may help in deciding between other classes (again 

dependent on data variables used). The division of fruit into two classes (citrus and 

non-citrus) each divided into further classes is possible. Decision trees exploit this 

by dividing and subdividing the data into classes. 

Many data sets assign categorical data as variables, others have range data. It is 

possible to move range data into categorical data - age can be given in a range or in 

categories such as 0-17,18-25 with a yes/no value to each category. This will lose 

some information contained in the range but could be more useful in some 

circumstances. 

In the tissue/tumour samples used in this chapter the values of variables are in a 

range and it is the meaning of various parts of that range, combined with ranges of 

values from other variables that drive the classification. 
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If there is no relationship between classes, and even where there is, one method of 

multi-class classification is through a set of 'one versus the rest' binary classifications 

either in parallel or in series. NN do this where the number of output nodes is equal 

to the number of classes. The weights on the connections are a combination of 

weights that allow a series of 'one versus the rest' classifications to occur. However, 

examining the weights and connections and disentangling the relative importance of 

the different classes to that weight is not a trivial task. 

A general multi-class classification system would be able to cope with all types of 

relationship. In order to find a general classification tool with GA/GP it is necessary 

to examine various methods. The data used here is a set of MRS measurements 

taken from the liver, kidney and two types of hepatoma (a liver tumour) of rats. 

4.2 Data and Experimental Setup 

The tumour samples were acquired from biopsies of tumours implanted 

subcutaneously in the flanks of rats. The tissue samples were acquired from the 

same rats. Details of extraction and spectroscopy performed can be found in 

[Howells 1992]. 

The pre-processing involved PCA followed by varimax. 20 PCs were used, 

accounting for the majority of the variance. The PCs were labelled A-V (omitting 

G and T as these were used elsewhere in the program). Figure 4.2 shows the 

varimax vectors with biochemical interpretations where possible. Some of the 

vectors show a complex spectrum containing signals from more than one metabolite. 

It was felt that these vectors could still contain useful information that could aid the 

classification and were not deemed inappropriate solely because they could not be 

readily interpreted. 
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Figure 4.2 Varimax spectra for the tumour and tissue data 
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The data set involved 49 samples divided as in table 4.1. Each sample consisted of 

20 input values, corresponding to the varimax vector scores, plus a value or set of 

values giving the class of the sample. Figure 4.3 shows the mean spectra for each 

class. 

Class No. Samples Comments 

Liver tissue 13 

Kidney 

tissue 

13 

Hepatoma 

7777 

12 Liver tumour, rapidly growing, poorly 

differentiated 

Hepatoma 

9618A 

11 Liver tumour, slow growing, well differentiated 

Table 4.1. Number of samples in each class 
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4.3b Kidney 
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4.3d Hepatoma 9618A 
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Figure 4.3 Mean spectra for each class in the tumour and tissue data 

The GP program used was lilgp which was developed at the Michigan State 

University Genetic Algorithms Research and Applications Group (MSU GARAGe). 

Lilgp is written in C; the switch from Lisp to C was made as the lilgp system 

allowed more flexibility. In each of the following methods the input file was read 

into a two-dimensional matrix in lilgp with the input values then read into variables 

labelled A-U (excluding G and T for implementation reasons). Output values were 

read into the variable result (a numerical value) or result[ ab... ] (an array of 

numerical values). 

The function set used in all runs is shown in table 4.2. One of the aims of the GP 

classification is to obtain a clear description of the features that drive the 

classification and a simple function set should facilitate that. As this function set 

was sufficient for the binary classification in the previous chapter it is also used here. 
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A reduction in functions from this set to plus and minus only proved 

disadvantageous. 

Name of 

operator 

Comments 

% Protected division 

Table 4.2. Function set used for GP multiclass runs 

In all the methods described below, the complete set of 49 samples was used as a 

training set, with no testing set. Therefore, the methods are compared in terms of 

their ability to learn classification rules rather than in terms of generalisation. There 

is a danger of over fitting the data to the actual samples, so the resulting 

classification merely produces a function which divides this sample. This is a 

problem with small data sets where taking out a test set may lead to too few samples 

to learn from. If there are too few examples of each class the generalization ability 

of the classifier is also impaired. The termination conditions were either the number 

of hits equal to the number of samples (which would also lead to a standardised 

fitness of zero) or the number of generations run equal to a user-set maximum. 

Different methods involving GP were used to try to classify the data set into four 

classes. Three methods of using GP on the multi-class classification were used; a 

one-tree method, a four-tree method, and a two-tree method with the class depending 

on the result from both trees. Each will be described. 

As a control the data was divided into a series of binary classifications which were 

run as in the previous chapter. This was used to ensure classification could occur 

with this data and GP. This initial classification is detailed first. 
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4.3 Methods 

4.3.1 Initial Binary Method 

To ensure that GP could cope with the data an initial binary classification was 

carried out. Each class was involved in a one versus the rest classification. Other 

divisions, involving tumour/tissue, liver/kidney and Hepatoma 7777 /Hepatoma 

9618A were also carried out. 

4.3.2 One Tree Method 

Each individual in the GP run consisted of a single tree returning a single numerical 

result. This result was then constrained into a value in the range -1 to +1 using the 

cos function. Four equal divisions were made in this range (-1 to -0.5, -0.5 to 0,0 to 

+0.5, +0.5 to +1) and the four classes required (liver tissue, kidney tissue, Hepatoma 

7777 and Hepatoma 9618A) were allocated to the divisions. The order in which the 

classes were allocated to divisions appeared to have no significant effect on the 

results obtained. The class marker from the evaluation of the tree was then 

compared to the result value from the input file. 

A hit was scored when the two compared results were the same. Any other value 

was ignored - there was no linear relationship between the classes, meaning a sample 

from class 1 was equally misclassified whether it was misclassified as class 2,3 or 4. 

Raw fitness was calculated as the number of hits. Standardised fitness was 

calculated in the following manner 

SF =1- (RFi IN) (1) 

Where SF = standardised fitness 

RFi = raw fitness 

N= number of samples 

4.3.3 Four Tree Method 

A straightforward way of approaching the classification is to set the number of trees 

in an individual equal to the number of classes in the data. Hinchcliffe (Hinchliffe 
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et al. 1996) calls this the multi-gene approach. In effect, this classified one class 

against the rest with all four classes being classified concurrently. Each tree was 

evaluated in turn and the result constrained to the value 1 or 0 using the following 

step function 

Constrained result =1 if result >= 0 (2) 

0 otherwise 

The result values in the input file were given as a set of four values (each 1 or 0) so 

the output from a sample in class four would be given as [0,0,0,1]. The first of the 

set was compared with the constrained result from the first tree, the second with the 

constrained result from the second tree and so on. A part-hit was recorded if one of 

the trees of an individual produced a result the same as that given in the input file. A 

hit was recorded if all four trees of an individual scored part-hits. Raw fitness was 

calculated as follows 

RFi=N*TZ 

Where RFi = raw fitness 

T= number of correct trees per individual 

(3) 

The quadratic method was employed give a stronger drive towards fit individuals as 

it rewards more highly those individuals with a greater number of part-hits. 

Standardised fitness was calculated as follows 

SF = 1-(QRF/N * C2) 
. 

(4) 

Where SF = standardised fitness 

QRF = quadratic raw fitness 

N= number of cases 

C= number of classes 

4.3.4 Two Tree Method 

If a binary classification occurs with a boundary on a line, then using two 

dimensions each with a fixed point on a line as a boundary and the lines 

perpendicular to each other could allow classification into four classes. These can be 

represented on an x-y grid with each quadrant representing a class. In order to 

maintain the notion of an individual as a function which can be applied to various 
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inputs, two trees per individual were required to produce the two parts of the result. 

The training set was amended to give the classification system shown in table 4.3. 

For each training sample, each tree returned a result which was constrained as in 

equation 2 and then compared to the result in the training set. A part hit was 

recorded when one tree returned the correct result; a hit was recorded when both did. 

Raw and standardised fitnesses were calculated using formulae 3 and 4. 

Class Result values 

Liver +1 -1 

Kidney +1 +1 

Hepatoma 7777 -1 -1 

Hepatoma 9618A -1 +1 

Table 4.3. Classification values for two-tree method 

4.4 Results 

4.4.1 Initial Binary Method 

This coped with ease, classifying into two groups in each case. The parameters for 

each run are shown in Table 4.4. 

No. Runs 20 

Max. No. Generations 150 

Population size 500 

Random number seed 1-67 

Selection method Tournament (size = 7) 

Crossover 0.8 

Mutation 0.1 

Reproduction 0.1 

Max. Depth 7 

Table 4.4 Parameters for Initial Binary method 
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The results of the series of runs classifying one class against the other three are 

shown in Table 4.5. 

Classification task Successful 

runs ie max. 

possible hits 

Range of 

depth 

Range of 

nodes 

Range of 

generation 

found 

Liver vs rest 20/20 3-7 11-47 4-12 

Kidney vs rest 19/20 2-7 7-31 3-57 

Hepatoma 7777 vs rest 20/20 2-7 7-45 4-59 

Hepatoma 9618A vs rest 20/20 2-7 7-71 3-9 

'the remaining run achieved 48/49 correct classification 
2the run with 48 hits had depth 1 

32the run with 48 hits had 3 nodes 

Table 4.5 Results of binary classification, one class against all the others 

In all runs the classification succeeded with relatively small parameters. There was 

no parsimony measure in the fitness function as it was not the intention to discover a 

`best' solution but to see whether the data could be separated in this way. However, 

as solutions were found relatively early on in the run, there were some results which 

are relatively easy to interpret. 

The results of an experiment classifying the two types of hepatomas are shown in 

Table 4.6. 

Best result 23/23 (all runs produced this) 

Generation at which found Range 0-3 

Number of nodes in tree Range 3- 19 

Sample functions H-L (found twice), K+V 

Table 4.6 Binary Classification of Hepatomas 
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Results from the experiment to distinguish kidney tissue from liver tissue are shown 

in Table 4.7. The best result was the single node M which on its own distinguished 

between the two classes. Of the 20 runs this result was found nine times. Six of the 

remaining runs produced a result of M plus or minus a single other variable, two 

included M in a more complex function and none produced a solution not utilising 

M. 

Best result 26/26 (all runs produced this) 

Generation at which found 0 (all runs found a solution in the initial 

population) 

Number of nodes in tree Range 1-5 

Sample function M( found on 9 runs) 

Table 4.7 Binary classification of Tissue 

The experiment to distinguish tissue from tumour produced the results shown in 

Table 4.8. The best result was the single node D which on its own distinguished 

between the two classes. Of the 20 runs this result was found two times. Eleven of 

the remaining runs produced a result of D plus or minus a single other variable, four 

included D in a more complex function and only two produced results ((P - A) and 

(V -A-L- N) not using the variable D. 

Best result 49/49 (all runs produced this) 

Generation at which found 0 (all runs found a solution in the initial 

population) 

Number of nodes in tree Range 1-7 

Sample successful function D (found on 2 runs) 

Table 4.8 Binary Classification of Tumour versus Tissue 
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4.4.2 One Tree Method 

The results using this method are poor. A series of experiments with two different 

parameter sets were carried out to balance finding a solution with a reasonable 

execution time. 

Table 4.9 shows the results for 20 runs within each series. The small parameters 

were a population size of 500 over a maximum of 150 generations, the large 

parameters were a population of 3000 over 250 generations 

The fitness function did not have an element to encourage smaller solutions. 

Although experiments were run incorporating a parsimony measure these did not 

show any improvement; the solutions were smaller (but still large) and no extra hits 

were achieved. The addition of a parsimony measure is probably only useful in 

situations where solutions can be found. The large and successful functions could 

be simplified but this task takes away the automation required to use GP successfully 

to classify this data set. Changes to the use of the cos function to split the results 

into four classes were not examined. 

Creating a function that would store results into memory during execution of a tree 

would allow multiple results to be returned from a single tree (Teller and Veloso 

1995) but the complexities of extracting features from such a tree and the loss of 

pure function application meant that this route was not explored. 
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Series Parameter Successful Range Range Range Range of hits 

No. Size runs (49 depth nodes gen. (max = 49) 

hits) found 

1 Pop. 500 0/20 4-7 13 - 123 6- 129 28-40 

Gen. 150 (mean = 33.4) 

Max. depth 7 

2 Pop. 500, 0/20 2-14 7- 437 1- 139 26-41 

Gen. 150 (mean = 35.3) 

Max depth 14 

3 Pop. 3000 0/20 10 - 14 73 - 389 37 - 237 32 - 46 

Gen. 250 (mean = 41.2) 

Max. depth 14 

4 Pop. 3000 0/20 18 - 20 163 - 513 26 - 246 39 - 46 

Gen. 250 (mean = 42.3) 

Max depth 20 

5 Pop. 500, 0/20 2-25 7- 655 1- 147 26 - 44 

Gen. 150 (mean = 36.1) 

Max. depth 25 

Table 4.9 Classification Results for the One Tree Method 

4.4.3 Four Tree Method 

Five sets of runs were performed with this method as with the one-tree method 

described previously. The results are summarised in Table 4.10. This method 

worked, producing successful solutions with few nodes. It would appear that, 

although successful solutions were found with all parameters, size of population is 

more important than maximum allowable depth in this case. This is advantageous as 

extra depth could mean extra complexity whereas a larger population involves a 

greater part of the search space can be utilised. 
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Series Parameter Successful Range Range Range Range of hits 

No. Size runs (49 depth nodes gen. (max = 49) 

hits) found 

1 Pop. 500 5/20 4-7 22 - 126 37 - 149 40 - 49 

Gen. 150 (mean = 45.3) 

Max. depth 7 

2 Pop. 500 6/20 4-14 32 - 242 40 - 150 26 - 41 

Gen. 150 (mean = 35.3) 

Max. depth 14 

3 Pop. 3000 20/20 5-14 44 - 380 30 - 212 49 

Gen. 250 (mean = 49) 

Max. depth 14 

4 Pop. 3000 20/20 5-20 48 - 356 33 - 146 49 

Gen. 250 (mean = 49) 

Max. depth 20 

5 Pop. 500 7/20 5-24 30 - 278 34 - 148 43 - 49 

Gen. 150 (mean = 46.3) 

Max. depth 25 

Table 4.10 Classification Results for the Four Tree Method 

Having found successful solutions, a parsimony measure was added to see whether 

smaller solutions could be found, similar to those found in the binary classification 

of this data. The fitness function was amended to have three elements 

RFi = no hits + class bonus + parsimony_bonus (5) 

The run was also amended so that the GP run continued for the maximum number of 

generations rather than stopping once the maximum number of hits was achieved, to 

see whether smaller successful solutions could be found. A single set of twenty runs 

was carried out, with a small maximum depth and large population. The results are 

shown in Table 4.11 
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Set Max. Population Max. Mean Fewest Greatest 

No. Depth Size Generations No. of No. No. Nodes 

Hits Nodes 

1 7 5000 250 48.8 30 48 

Table 4.11 Results of the Four Tree Method with a Parsimony Term 

The trees that distinguished liver from the rest were successful but showed a range of 

features. However, those for the other three classes showed some common 

solutions, shown in Table 4.12 

Class Example 1 Example 2 

Liver M- ((S - M) *D+ I) J -1.0 -I- (U * N)a 

Kidney S-M-1.0 S-M-H-1.0a 

Hepatoma 7777 H -1.0 H -1.0a 

Hepatoma 9618A S+I+ 2L° (H - 1.0) * Da 

The value 1.0 was obtained by simplifying J/J 

b The value 1.0 was obtained by simplifying R/R 

The value 2L was obtained by simplifying L+L 

Table 4.12 Common Solutions to the Four Tree Method with Parsimony Term 

The features D and M, used in the binary classification of this data, also feature here. 

In the second example the classification used by Hepatoma 7777 is the same as that 

used by Hepatoma 9618A with one feature missing -a situation that has occurred 

many times. 

4.4.4 Two Tree Method 

The runs using this method were successful at finding solutions with relatively 

simple functions. The first set of experiments is detailed in Table 4.13 and produced 

such good solutions that no further sets were carried out. 
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Series Parameter Successful Range Range Range Range of hits 

No. Size runs (49 depth nodes gen. found (max = 49) 

hits) 

1 Pop. 500 17/20 1-7 4-70 9-125 44-49 

Gen. 150 (mean = 48.6) 

Max. depth 7 

2 Pop. 500 16/20 2-14 4- 152 9- 125 44 - 49 

Gen. 150 (mean = 48.6) 

Max. depth 14 

Table 4.13 Results of the two tree method 

Of the 20 runs in series 2,18 identified the feature D in the first tree as that required 

to distinguish tissue from tumour, corresponding to earlier results. However the use 

of D on its own happens more often in this series than in the binary classification 

where D on its own is found twice, and with one other variable a further 11 times. 

The second tree, which has the effect of distinguishing between the groups (liver and 

hepatoma 9618A) and (kidney and hepatoma 7777) provided two small solutions 

N-Kand 

D* (R - L) 

Although the runs in series 1 produced similar results for the first tree, fewer of them 

produced small solutions for the second tree. 

Series 3-5 were not run for this set of experiments because of the good results with 

the smaller parameters. 

Evaluation of the varimax vectors involved in the results show that vector D is 

similar to the spectrum for lactate. Elevated lactate can be an artefact (i. e. during the 

time delay between cutting out the tissue and freezing it lactate may increase 

substantially) and is ambiguous from a biochemical point of view as there will be 

different levels of lactate in the original tissues and different levels of lactate based 

on excision times. This means that, although the classification is good in terms of 

the technique, it is less useful from a biochemical point of view (for excised tissues). 
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The original data was re-evaluated with the signals in the lactate region set to zero 

before principal component analysis. When the varimax spectra are compared with 

those of the dataset used in the previous experiment it was discovered that lactate 

was clearly present in only one vector, and others correspond very well to the vectors 

in the dataset with lactate. See for example vector J in the dataset with lactate, and K 

in that without lactate. The series of experiments were run again with the lactate- 

free dataset and the results summarised in Table 4.14. 

Series Parameter Successful Range Range Range Range of hits 

No. Size runs (49 depth nodes gen. found (max = 49) 

hits) 

1 Pop. 500 19/20 3-7 8-86 10 - 143 48 - 49 

Gen. 150 (mean = 48.9) 

Max. depth 7 

2 Pop. 500 20/20 2-14 8- 240 10-131 49 

Gen. 150 (mean = 49) 

Max. depth 14 

Table 4.14 Results of the Two Tree Method used on Lactate-Free Data 

In this set of experiments it appears to be slightly easier to find solutions. In both 

series, similar solutions are found. Table 4.15 shows solutions found on more than 

one run. 

Tree 1 tumour versus tissue N+H 

S-B 

S+H 

H-B 

Tree 2 (kidney + hepatoma 7777) J- 2L 

versus (liver and J- 2L +I 

hepatoma 9618A) 

Table 4.15 Solutions from the Two Tree method and Lactate-Free data 
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4.5 Discussion 

Both two-tree and four-tree GP methods have been able to classify the data into four 

classes. The results are not as satisfactory as those of the binary classification 

reported previously. The binary classification is a simpler task than that carried out 

here and it would be surprising if the binary classification performed worse than the 

multiclass classification. It would seem that in order to do such classification of the 

rat data more pre-processing of the data is required and more tuning of the GP 

process. The classification of this data set suffers from the problem (shared by many 

other medical data sets) of having very few examples to train on. It is hard to tell 

how robust the found solutions are and whether they are over fitted to the existing 

data. 

The four-tree approach to classifying the rat data produced better results than those 

obtained by running a series of one-versus-the-rest binary classifications. This may 

have been to do with the extra size of the population in the former rather than the 

latter but it also allowed for exchange of sub-trees between trees which appears to 

have the effect of improving the overall fitness of the individual. This is not always 

the case - Muni (Muni et al. 2004) forces crossover to take place only between 

equivalent trees (see below). 

Lisboa (Lisboa, PJG et al. 1993) used an eight class subset from the same database, 

to investigate methods for interpreting the features used by NNs for classification. 

The sensitivity parameters for two of the classes were presented and showed a 

relatively complex combination of the NMR variables. 

The issues raised by multiclass classification differ in kind from binary 

discrimination. In the latter case, a boundary between the classes can be set to be a 

single numeric point, zero by convention. The meeting point of the classes is the 

only interesting boundary, values can be allowed to be as large as the system allows 

without endangering the classification process. There need be no problems of 

examples being assigned to no class or both classes. Often the discrimination 

required is between a class and everything else. In the medical area this could be 
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malignant or non-malignant abscess, diabetes or non-diabetes. In imaging it could 

be the difference between object and background. The second class in such task is 

non-malignant, non-diabetes or background. 

Once a `don't know' option is included, or more than one specific class is required 

the task becomes harder. Examples are distinguishing between different grades of 

glioma or between obverse and reverse faces of different value coins. 

Some difficulties with multiclass classification with GP, as with other methods, are 

setting boundaries between classes, losing good partial solutions, conflict resolution 

where a sample is assigned to no class or to more than one class, the amount of pre- 

and post-processing involved, simplifying solutions to an understandable level and 

the computational cost involved. These will be discussed in turn. 

The boundaries are set statically in the work presented here. The output range is [-1, 

+1] and the boundaries are set at -0.5,0, +0.5. Any value output from a function 

application to a sample is applied to a standard cosine function to produce a result 

within range. As described in the results, the assignment of output range to class 

was random but fixed, different class orderings had little impact on results obtained. 

Zhang and Smart describe two methods of dynamically determining class boundaries 

(Zhang and Smart 2004) which can be used at intervals during a run to reset the class 

boundaries. The first is Centered Dynamic Class Boundary which involves 

examining the range of output values obtained for each class and finding the centre 

point. The boundaries are then set as the middle point of two adjacent centres. Their 

second method divides the expected output range into a large number (200) of slots. 

At the time the Slotted Dynamic Class Boundary is being calculated, each slot the is 

assigned to the class with the most results in that slot. Both these methods are used 

periodically with static boundaries at first used, then one of the dynamic boundary 

techniques used every five generations. The method is applied to an image 

classification problem and both improve the performance of GP over the standard 

method. However the computational overhead is increased. 
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The problem of losing partial good solutions is particularly evident in multi-tree 

approaches where one tree may be poor in a solution with a generally high fitness or 

may be good in a solution with generally low fitness. Experiments reported in this 

thesis involved adding terms to the fitness function to give weight to both successful 

partial solutions and successful complete solutions. However the crafting of a fitness 

function that managed this in such a way as to encourage improvements took a 

considerable amount of time and effort for small gains in performance and further 

work on this was halted. An interesting and successful technique has been reported 

in (Muni et al. 2004) using a multitree classifier where the number of trees equals the 

number of classes. They introduce the idea of `unfitnesss' as well as fitness to try to 

minimise the disruption to good trees (sub-solutions with high fitness) whilst 

maximising the opportunity for poor trees (sub-solutions with low fitness) to 

improve. The selection of individuals for the next generation is carried out in two 

parts. Firstly, the whole individual, containing all trees, is given a fitness value as 

usual by applying it to the test set and recording the results. Those individuals with 

higher fitness are then examined in order to give each of the constituent trees an 

unfitness value - how well each performed against their allotted task. The trees with 

high unfitness in individuals with high fitness are then more likely to be selected to 

take part in genetic operations of crossover and mutation. Crossover is adapted so 

the crossover point on each parent is chosen and the subtrees below that point are 

swapped, but so also are the remaining whole trees of the individual. The crossover 

of subtrees can only happen between trees classifying the same class. (In the 

experiments on the MRS data presented here there seemed to be little difference 

between restricting crossover to subtrees classifying the same class and allowing 

crossover to occur anywhere in the individual, in contrast to Muni's work. ) 

Mutation is likewise applied probabilistically more often to unfit rather than fit trees 

of an individual. 

This approach seems to show the way to solving the problem of variation between 

the fitness of trees of an individual. It allows a way of improving specific parts of an 

individual whilst shielding the successful parts from the destructive effect of 

mutation and crossover. Smart and Zhang (Smart and Zhang 2005) use a method of 

storing the best solution for each task as `experts' through the run to achieve the 

same effect of capturing good partial solutions as they appear during the course of 
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the run. Although they also use multiple trees to solve a multiple class problem, 

they, unlike Muni and the work described here, do not specify which task each tree 

should undertake. Rather, they allow each tree to find a solution to a two-class 

problem. Fitness calculations involve ranking each individual as to their 

performance on each binary classification task, and then applying their fitness based 

on their best ranking. This ranking rather than absolute fitness allows for solutions 

to be found for all sub-problems. 

In the work presented in this chapter no conflict resolution was required or used. 

The number of classes was known in advance and no samples could be from more 

than one class. Therefore, functions were counted as better when they correctly 

identified all samples into the correct class. Experiments were run using methods 

such as those described above from Smart and Zhang where more trees than classes 

were provided and trees competed with each other in an individual as well as 

between individuals to produce the best classification scheme. The results of these 

experiments were generally not as good as other methods and have not been reported 

here in detail. The use of the two tree method partitions the data in two ways with 

the final solution relying on the results of both trees. This example illustrates the 

fact that one partitioning makes sense - tumour versus tissue, whereas the other has 

no obvious logic -a tumour and a tissue, versus a different tumour and a different 

tissue. The results show that this method can produce results that are meaningful in 

a one-versus-the-rest way - kidney can be isolated for instance. 

The issues of conflict resolution and post-processing of data are two parts of the 

same problem. If there were no classification errors there would be little need to 

adjust the functions evolved. In some data sets and GP setups conflict resolution is 

important. Kishore (Kishore et al. 2001) uses both weight and heuristic rules to fit 

misclassified samples into classes. Muni makes use of the population of solutions by 

taking the most fit individual and using a logical OR function on the trees of that 

individual with each tree of every other individual to produce a better solution. This 

is interesting as it again gives the opportunity for good partial solutions to be found 

and utilised. 
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Preprocessing of data can involve reducing the size of input vectors as with PCA, or 

normalising data into a specific range for ease of processing or uniformity of sample 

ranges. Other pre-processing often involves a hand-crafted partial solution to the 

classification problem to make it easier to solve. This may be necessary with 

intractable problems but does remove the advantages of using an Al or machine 

learning technique to solve the problem. Kishore (Kishore et al. 2000; 2001) uses a 

technique called Feature Space Partitioning. He compares the effect of a series of 

binary classification tasks, which use the whole of the search space to find a solution 

with Feature Space Partitioning which simplifies the task of distinguishing between 

multiple classes by partitioning the space of all possible solutions into smaller spaces 

that contain examples from fewer classes. The advantage of this method is that the 

task is made simpler. The disadvantage of this is that it involves both preprocessing 

of the data into feature spaces and post-processing of the solution by applying 

conflict resolution tools to allow for the cases where a solution attaches more than 

one class label or no class label to a sample. It appears to be a sophisticated method 

of partially solving the problem before presenting it to a GP run. Smart and Young 

in the work discussed above use Communal Binary Composition to ensure multiple 

class classification can take place in one run. They allow the trees in an individual to 

perform on any of the binary classification sub-problems of the whole task. These 

binary tasks are not of the form one-versus-the-rest but a specific class versus 

another specific class. The fitness of an individual is based on their highest ranking 

in all possible binary tasks. The reported results show the technique is useful in an 

image data task. The preprocessing allows the data to be presented in a way to 

facilitate such binary tasks. 

Other work (Silva and Tseng 2005) decomposes a multiclass problem into a series of 

binary tasks and then aggregates the resulting functions in order to classifiy between 

several groups. 

Simpler solutions to classification and other tasks are not only easier to understand 

but tend to generalise better, as they reduce the chance of overfitting data to the 

training set. There are advantages to using the GP process to reward smaller 

individuals with the same fitness over larger ones. Parsimony measures are usually 

added to the fitness function to achieve this. In the work presented here, the 
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parsimony measure added to the complexity of fitness function and was difficult to 

scale effectively - too much weight on the parsimony term and GP tended to small 

but bad solutions; too little and the run was ineffective. There has been much work 

in the GP field on reducing `bloat' and removing `introns' - both descriptions of 

parts of a GP tree which add nothing to its functionality but contribute to its size. 

None of the recent papers dealing with multiclass classification have raised this as an 

effective technique for simplifying functions. None use Automatically Defined 

Functions (ADFs) either. 

The problem with multiclass tasks is the computation overhead they involve. It has 

been reported by (Zhang et al. 2003) that the computational effort required to do a 

single multiclass run is higher than that required to do the equivalent task as a series 

of binary classifications. (Mcintyre and Heywood 2005) use a co-evolutionary 

approach to reduce the computational overhead in situations with a large set of data. 

They evolve both a classifier and a trainer which is a subset of data which compete 

to maximise solution fitness. They also implement niche-enabling techniques often 

found in GA to aid the evolution of better solutions. 

It is interesting to note that much of the work on multiclass classification utilises a 

high proportion of mutation as well as crossover in order to drive towards a 

successful solution. This is in contrast to canonical GP which holds that crossover is 

the main genetic operator and mutation is to be used sparingly. It does allow for 

small adjustments to be made to a function without losing the main structure. 

Konstam, in his work on classifying Egyptian skulls (Konstam 1998), uses GP to 

find the structure of a solution and then uses GA to fine tune the solution by 

mutating the constants. 

4.6 Conclusion 

A conclusion could be drawn that the extra complexity in the results of multi-class 

classification means that although the technique can work it will not replace binary 

classification as a technique of choice. It would be feasible to use the multi-class 
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technique first, then to use a binary classification method to classify samples from 

those classes that have proved difficult. 

Once the results are complex it becomes difficult to see what part individual features 

are playing in the classification. Without the advantage of this feature extraction, the 

use of GP over NN is not proven. The ability of NN to classify is well-known; it is 

the fact that the features and weights given to those features are difficult to extract 

from NN solutions that leads to exploration of other methods. If the results of these 

are as difficult to interpret as those from NN then there is no advantage to using GP. 

The use of GP to classify multiple classes has not been proven here to become a 

method of choice. The results do show that there is scope for further work on this 

technique as the benefits would be so useful. Moreover, the inspection of the more 

successful solutions found in a series of runs can give information about which 

metabolites could be important in such a classification. For example, in the two tree 

experiment with the lactate-free dataset, vectors H, N and S feature regularly with a 

positive loading whereas on the frequent occasions where vector B is involved, it 

always take a negative form. The successful solutions have also exploited the 

arithmetic functions to provide solutions with the value 1.0, either by the function 

x/x or x/(y-y) where the protected division returns 1.0 when given a division by zero. 

Unlike the in vivo data, it is difficult to make a clear interpretation of these functions 

for feature extraction purposes. However, the combined effect of some solutions 

could highlight common metabolites. 
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Chapter 5 

Genetic Optimisation of NMR Pulse Shapes 

5.1 Introduction 

Nuclear Magnetic Resonance techniques have a wide range of applications from the 

identification of chemical compounds (with NMR spectroscopy) to the diagnosis of 

cancer (with MR imaging). Improvements in techniques to acquire NMR data can 

lead to simplifications in the analysis of that data. Apart from the choice of sample 

and details of hardware, the main feature determining the information obtained from 

the NMR measurement is the choice of pulse sequence. In general, an NMR pulse 

sequence comprises a series of radiofrequency pulses, applied magnetic field 

gradients, delays and data acquisition events. However, a simple case of NMR 

spectroscopy requires only a single RF pulse followed by a period of data 

acquisition. Considerable effort and expertise has been used in designing and 

implementing NMR pulse sequences for specific purposes. The present study 

investigates the possibility of using genetic techniques to evolve one or more NMR 

pulse sequence elements and, ultimately, entire pulse sequences. If this is possible, it 

will allow collection of data to be tailored to allow for more straightforward analysis. 

GP methods have previously been used with data from NMR systems including 

classification and feature selection of tumour data collected by NMR spectroscopy 

(Gray et al. 1998) and image enhancement (Poli and Cagnoni 1997). GA has been 

used in spectroscopic infrared imaging (Van Den Broek et al. 1997) and to generate 

pulses for NMR spectroscopy in a study which used a subjective fitness function, 

interactively judging fitness (Freeman and Wu 1987). In addition, evolutionary 

methods have shown to be useful in the shaping of laser pulses (Assion et al. 1998). 
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Evolutionary computation has been used with hardware, although much of the work 

has focussed on evolving hardware such as field programmable gate arrays (FPGA) 

(Thompson 1996) (De Vega et al. 2004) and logic circuits (Ali et al. 2004) or 

evolving sensors for use in robotics (Balakrishnan and Honavar 1996). The use of 

evolutionary computation methods rather than hand-crafted or methods using 

mathematical models to enhance or optimise signals have been explored in NMR in 

quantum computing (Rethinam et al. 2004), optimisation of NMR coils (Andris and 

Frollo 2002) and in radiotherapy treatment planning (Haas 1999). 

NMR spectroscopy involves one or more radiofrequency pulses to detect the 

presence and quantity of different substances in a sample or region of interest. The 

output is displayed as a spectrum with different substances giving rise to peaks at 

different frequencies. It is often the case that some peaks (such as water) may 

dominate the spectrum and it may be desirable to suppress these or enhance others. 

This is especially a problem for in vivo NMR spectroscopy where the water 

concentration (about 40 M) is substantially greater than that of all biochemical 

compounds of interest. Where there is a very large peak in a spectrum, it can be 

difficult to use the information in the rest of the spectrum as it is so relatively flat. 

Elevated lactic acid concentrations are a common feature of several diseases (such as 

in stroke and solid tumours) but even in such cases a concentration of 1-10 mM is 

typical, i. e. about 10000-fold lower than that of water. The selective suppression or 

excitation of NMR signals can be achieved using shaped pulses with frequency 

selective properties. The pulse shape is described by a sequence of values of phase, 

amplitude and duration. Figure 5.1 shows the effect of suppressing the water signal 

in a spectrum. 
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Figure 5.1 The effect of suppressing water on a spectrum 

The design of such pulse shapes can be done on a theoretical basis (Geen and 

Freeman 1991). However, for many purposes, only approximate solutions are 

obtained. In addition, hardware errors or deviations are not taken into account. It 

may be the case that new pulse shapes are variations on existing successful ones and 

that it may be difficult to find novel sequences. Evolutionary techniques, such as 

GP, offer a way of developing pulse shapes which explore a wider range of possible 

solutions. 

There are advantages to running candidate solutions directly on an NMR system 

rather than in simulation. Hardware features can be incorporated into the fitness 

measure without needing to be explicitly programmed. This means that novel 

solutions that overcome hardware limitations may be discovered. 

The work detailed in this paper uses both GP and GA to generate pulse sequence 

elements and automatically evaluate them on an. NMR system without human 

intervention. GP was initially used where the generation of pulse files occurred as a 

side-effect of executing the function generated. The structure of a GA chromosome 

as a vector fitted more closely with the structure of pulse files required in this 

application and so the experiments were also run with GA. 
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5.2 Methods 

5.2.1 NMR Setup 

The NMR system involves a 4.7 Tesla magnet and a Varian NMR 

spectroscopy/imaging system running VNMR (version 6.1) software (Varian, Palo 

Alto, CA, USA). The sample used in the experiments is 255 mM trimethylsilyl- 

2,2,3,3-tetradeutero-propionate sodium (TSP) dissolved in a 1: 2 mixture of water 

and dimethylsulphoxide (DMSO). This was contained in a 3Oµl spherical bulb, 

t 
placed in the centre of a 13mm diameter two-turn coil tuned to the H NMR 

I 
resonance frequency (200 MHz). This sample gives three signals in the H NMR 

spectrum: the DMSO and TSP signals are 370 Hz and 900 Hz upfield, respectively, 

of the water signal. 

Matlab (The Mathworks, Natick, MA, USA) is used for receiving and copying the 

files and for displaying results. 

5.2.2 GP Parameters 

The GP system used is lil-gp (Zongker and Punch). The functions available to the 

program are addition, subtraction, multiplication, protected division (returning 1.0 to 

a division by zero) and writepf. This constrains its two arguments to the ranges - 

360.0 to +360.0 and 0 to 1023.0 and writes them to a text file as phase and amplitude 

values. The duration value is set to be 1.0 for each pulse sequence element in all 

experiments. writepf also returns the value of its first argument. The terminal set 

consists of random real numbers in the range -1.0 to +1.0. The fitness function is as 

follows; 

Standardised fitness = 1-((n r fit +(3* no-lines))/10000) (1) 

nmr_fit is the value returned by the NMR system and is a ratio between two of the 

peaks, one to be suppressed, the other detected. The value of 10000 is an arbitrary 

one (and thus standardised fitness is not used as a test of success). no-lines is the 

number of lines in the pulse file generated by the individual. This term is included to 

encourage the development of longer pulse files. The factor of three was included so . 
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that the term is relatively significant in early generations where raw fitness values 

are small and becomes relatively less significant as raw fitness values increase. 

At each generation of the GP run each individual is evaluated, producing a pulse 

shape in text format (referred to as a pulse file). The pulse file is made available to 

the NMR system which then activates the pulse-acquire sequence with a pulse width 

of 200-2000 is (fixed for any given GP run). The offset frequency of the pulse is set 

to be the same as the water resonance frequency. The resulting spectrum is received 

by the NMR system. Calculations of peak heights and ratios take place there and the 

resulting value (nmr_fit) is returned to the GP program to allow for fitness 

calculation. The evaluation of each new pulse occurs every five to eight seconds. A 

diagram of the system is shown in Figure 5.2. 

The aim of the first experiment was to maximise the ratio between DMSO and water. 

The second was to maximise the ratio of TSP to water. In both of these cases the task 

was therefore to suppress the signal (water) at the pulse carrier frequency compared 

to off-resonance signals (DMSO or TSP). The third experiment was to maximise the 

ratio of TSP to (DMSO + water). 

All experiments were run with a population of 50 over 50 generations. The 

replication and mutation rates were each set to 0.1 and the crossover to 0.8. Initial 

depth of trees was between two and six with a maximum depth of 20. Each 

experiment was run three times with different random number seeds. 
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Figure 5.2 The setup for the pulse experiments. 

Results of the second experiment were compared to several known pulse shapes and 

to sets of 2500 random pulse shapes (i. e. the same number of pulse shapes were 

tested in the random runs as in the GP runs). 
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5.2.3 GA Parameters 

The GA system used was the Genetic Algorithms Optimisation Toolbox for use with 

Matlab (Houck et al. 1995). A Matlab implementation was chosen because some 

aspects of the system for running pulse file generations with GP had already been 

written in that language, it allowed for real-valued chromosomes and also because 

the graphical reporting tools allow for easy comparison of results. 

Matlab is an interpreted language which means it could run slower than the compiled 

version of lil-gp (written in C). However, the matrix data types built in to Matlab 

allow the code to be simpler and shorter than with other languages and this could 

help with speed. Moreover, the major time component of the experiment is that 

required by the NMR system, with built-in pauses between evaluation to allow a 

return to equilibrium of the nuclear magnetism (spin states), so the extra overhead of 

interpretation is not a significant feature. Also, the GA chromosome produced is a 

(2xn, 1) vector which needs to be reshaped into a (n, 2) file whereas the GP 

individual produced is a function which has to be executed for the values to be 

placed into a file. The GA processing for this stage is therefore both simpler and 

faster than that of GP. 

The GAOT system was set up to provide a chromosome containing n by 2 elements 

of real values, n being the length of the file, the two values per n are for phase and 

amplitude. As with the GP experiments duration was assumed to be 1 for each 

element and this value was added to the file formed by the chromosome just before 

evaluation. The values of n were set to be 5,10 and 20. Most experiments took 

place with n= 10. 

The values allowed in the phase and amplitude elements were constrained to [-360, 

360], [0,1024]. Matlab has an inbuilt function bounds which allows for this. 

GAOT is supplied with a choice of mutation, crossover and selection functions. The 

standard experimental set up for this application used one mutation function and one 

crossover function. Si, npleMutation allows a single element of the chromosome to 

be replaced by a randomly generated value. SimpleCrossover is a single point 

crossover applied at the same point to both parents with the values after the cut point 
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swapped between the parents. 

The selection functions available included a normalised geometric selection, based 

on ranking individuals on their fitnesses and assigning probabilities of selection 

based on that fitness in relation to the fitness of the rest of the individuals in that 

generation. Tournament and roulette selection functions are also included. In most 

runs tournament selection with a tournament size of 5 was used. This followed the 

use of the selection functions in the GP experiments. The tournament size was tested 

with values between 3 and 9 and did not seem to be a significant factor in the success 

or otherwise of runs in this experiment. 

GAOT was set up to allow evaluation of all individuals in each generation in batch 

mode. This had several advantages. It minimised the delay in transferring files from 

the evolutionary system to the NMR controlling program and the transfer of fitness 

values back again. As the VNMR system can be configured to run a set number of 

pulses in sequence, there are fewer problems associated with repeatedly starting and 

stopping the VNMR program. The parameters of the GA experiments are 

summarised in Table 5.1 

The fitness function for the experiments was the same as with the GP experiments 

Fitness = (height of TSP peak / height of water peak + height of DMSO peak)) * 1000 (2) 

The GAOT program was initially configured with an elitism strategy (Michalewicz 

1996). This ensures that the best individual found so far cannot be lost from the 

population by always replacing the individual with the worst fitness with the one 

with the best fitness, once all evaluations had taken place. The elitist strategy could 

have the effect of reducing diversity in the population and in this application the 

small population size allied with a relatively large tournament size ensured the best 

solution has a reasonable chance of being selected, so the elitist strategy was not 

used. Each set of parameters was run five times with different seeds. 
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Individual size n*2 (where n=5,10 or 20) 

Population size 20 

No. of generations 50 

Mutation function simple mutation (one element change) 

Mutation rate 4-200 mutations per generation 

Crossover function simple (1 point) crossover 

Crossover rate 4-200 crossovers per generation 

Selection function Tournament or NormGeomSelect 

Size of tournament 

(or Selection pressure) 

3-9 

(0.08 -0.48) 

Fitness function (height TSP peak/(height of water peak + height of DMSO 

peak)) * 1000 

Table 5.1 GA parameters 

5.3 Results 

5.3.1 GP Results 

The results from the first set of experiments showed an increase in mean fitness of 

the population as well as an increase in the fitness of the best. The best individuals 

had fitness values more than 100-fold better than the mean fitness value seen in the 

initial (random) generation. Figure 5.3a shows the increase in mean fitness in one 

run. 

The spectra produced from experiments can be compared with that produced by a 

square pulse. The square pulse shape is produced by values [0.0,1023.0,1.0] 

describing phase, amplitude and relative duration, respectively. The resulting 

spectrum is shown in Figure 5.3b. 
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Running experiments on the NMR system directly has the effect that identical runs 

will not always produce identical results, although the differences are small. For this 

reason all the results in this paper are shown with the baseline fitness (i. e. the fitness 

score for a one-element square pulse shape) set to one. This calculation was 

performed at the end of GP runs and allows a more meaningful comparison between 

runs and between experiments. An individual in generation five produced the pulse 

file [179.94,100.0,1.0; 0.0,95.39,1.0]. The spectrum from this is shown in Figure 

5.3c. This is very close to simple 1-i pulses (i. e. pulses with two elements of equal 

0 
amplitude and 180 phase difference) which are well known for their solvent 

suppression properties. The 1-i pulse is the simplest of the family of binomial 

selective excitation pulses and pulses approximating another binomial pulse (1-3-3- 

1) have also been produced in GP runs. The 1-3-3-1 binomial pulse has four 

elements with the second and third elements having three times the amplitude of the 

first and fourth elements during the pulse duration. The first and third elements have 

0 
the same phase as each other, the second and fourth are 180 out of phase to that. 
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Other binomial pulses follow the same pattern. Binomial pulses with more elements 

have a smoother effect than simpler ones. 

Later generations contained individuals producing higher fitness. The best in one 

run, from generation 26, had a fitness of two orders of magnitude higher than the 

base line value. The spectrum produced from this individual is shown in Figure 3d. 

The second set of experiments (maximising the ratio of TSP to water) was also 

successful, again showing improvements in fitness in the region of two orders of 

magnitude. Table 5.2 compares the results from the GP runs to pulses obtained by 

other methods. The pulses used were a non-selective square pulse, three binomial 

pulses and a BURP pulse. The BURP pulse was calculated using `Pandora's Box' 

software included in the Varian NMR programme based on the method described in 

(Geen and Freeman 1991). The pulse was defined as having a bandwidth of 2250Hz 

(corresponding to 2000 ps pulse width) and the off-resonance excitation optimised 

(to -1900Hz) to give the maximum fitness value. Figure 5.4 shows the spectra from 

these pulses and Figure 5.5 shows the increase in maximum fitness of individuals 

through the generations. 

Pulse shape Fitness 

a) Square (24 µs) 1 

b) 1-i binomial (2000 µs) 3 

c) 1-3-3-1 binomial (2000 µs) 41 

d) 1-5-10-10-5-1 binomial (2000 µs) 335 

e) BURP (2000 µs) 19 

f) GP (2000 µs) 91 

Best random pulses (2000 µs) 5 

Table 5.2 Comparison of GP with other pulse shapes for suppressing the water peak 

in relation to TSP (a-f correspond to the NMR spectra in Figure 5.4) 

It can be seen that the best pulse obtained by GP performed better than the 1-i and 

1-3-3-1 binomial pulses and the BURP pulse. The 1-5-10-10-5-1 gave the best 
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performance although from Figure 2 it can be seen that water suppression is virtually 

as effective with the GP pulse (f) as with the 1-5-10-10-5-1 (d). The latter pulse is 

also very effective in suppressing the DMSO signal but this factor was not used for 

the fitness calculation in these experiments. The BURP pulse performed relatively 

poorly. The comparison is not entirely fair as one of its features (avoiding phase 

distortions) is not evaluated here because signal phase is not taken into account 

(magnitude spectra are used). The best pulses found by random search of the same 

number of pulses tested in the GP runs showed only a 5-fold improvement in fitness 

compared to non-selective pulses. A comparison of fitness between random and 

evolutionary search is shown in Figure 5.6. 
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Figure. 5.4 Improvements in ratio between TSP and water. a) square pulse, b) 1-i 

binomial, c) 1-3-3-1 binomial, d)1-5-10-10-5-1 binomial, e) BURP, f) GP 

The third experiment is the hardest and improvements over 50 generations are 

smaller. Improvements of fitness in the order of five times as high as baseline have 

been found. These pulses tend to be relatively good at suppressing the water peak 

and relatively poor at suppressing the DMSO peak. 
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5.3.2 GA Results 

Results from the use of GA were similar to those achieved by the use of GP. 

However, the running of the experiment proved to be much simpler. GA produced 

good solutions in nearly all runs. The program appears to be robust with respect to 

parameters used, with only extreme values (such as very high mutation or crossover 

rates) forcing the program to fail to produce a good result. 

The run which produced the individual with the highest fitness was run with the 

parameters shown in Table 5.3. The resulting pulse file is shown in Figure 5.7. 

Individual size 20 i. e. 10 rows of phase and amplitude values 

Population size 20 

No. of generations 50 

Mutation function simple mutation (one element change) 

Mutation rate 4 mutations per generation 

Crossover function simple (1 point) crossover - 
Crossover rate 10 crossovers per generation 

Selection function NormGeomSelect 

Selection pressure 0.18 

Fitness function (height TSP peak/(height of water peak + height of DMSO 

peak)) * 1000 

Fitness 1787.4 

Table 5.3 Parameters used in the GA run producing the individual with the highest 

fitness 

The average fitness of the first (random) generation of this run was 1.41 with a 

maximum of 2.8, so the improvement over the first generation was more than 600- 

fold. 
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Figure 5.7 Phase and Amplitude plots of the Fittest Individual from a GA for the 

Experiment to Maximise the Ratio of TSP to DMSO and Water 

5.4 Discussion 

The discovery by GP of 1-i pulses in the first experiment was interesting as, 

although not novel, they were discovered with little prior knowledge built into the 

system (The only assumptions made are in defining the GP fitness function and 

function set which are expected to be sufficient to find a solution). Later generations 

produced more complex pulse shapes with much higher fitness. The emergence of 

novel solutions argues the case for this type of method. 

An advantage of techniques such as GP that work on a population of candidate 

solutions is that multiple solutions can be found. Although analysis of successful 

pulse shapes and the GP trees that produce them has not been undertaken in this 

work, it may be, as with (Poli and Cagnoni 1997), that there are underlying features 
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to these that can be exploited by further experimentation or other optimisation 

methods. 

The advantage to running experiments on hardware is that the results are optimised 

for the hardware. Features and limitations of the hardware are taken into account, 

either explicitly, as when setting up limits to values in pulse files, or implicitly as 

e. g. effects of non-standard lineshapes and eddy-currents should be compensated for. 

The main disadvantage to running directly on hardware is time. A typical experiment 

with 2500 individuals takes between six and eight hours to run. Taking human 

intervention out of the experiment has meant that it has been possible to have larger 

populations and a greater number of generations than previous studies e. g. (Freeman 

and Wu 1987; Poli and Cagnoni 1997). However, it is still a heavy time burden. 

There are possible ways of speeding the process up, one of which is to operate the 

acquisition stage in batch mode, where all pulse shapes produced by a generation 

could be run in one step. 

The success of the method of evolving pulse shapes allows for the possibility of co- 

evolving more than one pulse sequence element with the final aim to evolve a 

complete pulse sequence. This could then be used to aid data analysis. 

5.5 Conclusion 

GP and GA have been used to automatically generate NMR pulses and evaluate 

them directly on an NMR spectroscopy/imaging system. The GP approach has 

automatically evolved solvent suppression pulses. Both simple and novel pulses have 

been obtained with virtually no prior knowledge (using only the restrictions 

described in the methods). 

Although it is not proposed that genetic methods are necessarily the best way of 

finding solvent suppression pulses, the approach does offer a number of advantages. 

The existence of a population of candidate solutions allows for the discovery of 

novel solutions and may prove to be useful in discovering common underlying 

features in the more successful pulses. 
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A second potential advantage of this approach is that RF pulses are evaluated on the 

NMR system itself such that hardware limitations or features are intrinsically taken 

into account. An additional advantage of the automatic evaluation of pulses without 

human intervention (compared to previous implementations of evolutionary 

computation (Freeman and Wu 1987; Poli and Cagnoni 1997) is that a much larger 

number of pulse shapes can be tested. 

Although both GP and GA produced good results, the advantage of using GA is the 

match between the GA representation of an individual as a vector and the structure 

of the pulse file required for the NMR system. GA crossover and mutation operate 

directly on data values in the vector whereas the same operations in GP work on 

function applications which will change the outcomes. It does seem that the match 

between GA and the required pulse files make it a preferable method. If the main 

difference between GA and GP is the representation of the solution, then choosing 

one method over another can be based on representation method. 

The experiments run in GA were set up so that they could be run in batch mode. In 

order for the VNMR system to do this it needed to be running the same number of 

pulses in each generation. This meant that individuals would be evaluated each 

generation, even if there was no change from the previous generation. Since the 

evaluation is a real NMR experiment, the fitness values for identical individuals are 

not necessarily the same. The amount of variability can be particularly high for 

successful pulses i. e. those where there is good suppression of water and DMSO as 

the denominator values in the fitness function can be very small. The improvement 

in fitness is genuine but the diversity of the population can appear greater than it 

really is. The convergence has not affected the success of the runs in these 

experiments. 
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Chapter 6 

Optimisation of the Collection of NMR Signals to Aid 

Brain Tumour Classification 

6.1 Introduction 

Ideally it is best to obtain maximum information from MR data. However, in reality 

this is not always possible, especially for in vivo data as optimum data acquisition 

conditions (especially RF pulse profiles and echo times) vary for different chemical 

compounds and their physical environments. It is possible to use the pulse sequence 

to enhance signals from one part of the spectrum and suppress those from others in 

order to maximise useful information from the resulting spectrum. 

It has been shown that both glutamine and alanine are important features in 

discriminating between spectra of meningiomas and non-meningiomas. It has also 

been shown that both GA and GP can evolve a water suppression pulse for an NMR 

system. It is then useful to examine whether evolutionary computation methods can 

develop a pulse sequence to enhance the signals from alanine and glutamine in as 

realistic a sample as possible. Following work described in the previous chapter GA 

was used for these experiments as the representation of individuals fits better with 

the output required by pulse and other files required in a pulse sequence. 

One approach to be tested is the optimisation of pulse shapes used in a spin-echo 

sequence. The most sensitive version of a spin-echo sequence has a precise 900 

pulse followed by a precise 1800 pulse acting on the frequency corresponding to the 

metabolites that are of interest. The standard 1-i pulses, for example, are good for 

optimising one part of the spectrum at the expense of another. The alanine and 

glutamine regions are not contiguous and are separated by NAA in the spectrum and. 
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therefore this problem is likely to be more complex than can easily be solved with a 

1-i pulse. In a spin-echo sequence, the second pulse in the middle of the echo 

period, TE, refocuses the phase of the spins. (In imaging, this could also be done 

using gradients rather than a second pulse. ) The resulting spectrum also depends on 

the effect of coupled spins (i. e. other protons separated by only a few chemical 

bonds) and whether or not they are affected by the pulses. 

An alternative approach is to optimise an entirely new pulse sequence, including the 

selection of pulse shape, pulse power and duration and inter-pulse delays. 

6.2 Methods 

6.2.1 Sample and Experimental Setup 

A sample was set up containing (approximately) 100mM of each of L-alanine (ala), 

L-glutamine (gln), N-acetyl-aspartate (NAA) and creatine (cr) in a deuterated water 

solution, the metabolites mimicking the conditions in a mixed brain tissue and 

tumour environment. Deuterated water, D20, has the hydrogen replaced by 

deuterium. Although the use of water would give a more realistic experiment, early 

experiments showed that the optimisation process was dominated by the water 

suppression element. 

Cells in vivo have a neutral pH and the chemical shift of the metabolites is based on 

this. The sample used here has not been controlled for pH so the chemical shift may 

be slightly altered from the normal values. The residual water peak has been set to 

be the reference position at 4.8ppm. A spectrum from this sample is shown in Figure 

6.1. 

In these experiments one region for each metabolite was used. The peaks on the 

right-hand side on this particular spectrum (1.0 - 3.5 ppm) tend to be larger than the 

peaks from the same metabolites in the rest of the spectrum (as they are often from 

CH2 or CH3 groups). The latter peaks tend also to be mixed with signals from other 

metabolites and are also relatively close to the signal from water. 
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Experiments were set up to maximise the ratio of alanine plus glutamine to NAA 

plus creatine in order to gain maximum information from the alanine and glutamine 

signals. 

Two sets of experiments were run with this sample, the first to evolve a spin-echo 

sequence, the second to evolve a sequence with elements selected from a predefined 

list of options. 

With both methods, an acquisition element was automatically added to the end of the 

sequence. This was to ensure that each candidate solution would produce a spectrum 

which can be evaluated by the fitness function. As it is a constant, it is unnecessary 

to force the GA to evolve it. This acquisition element, plus other parameters 

including waits between pulse evaluations, are placed inside a macro read by the 

VNMR system and are therefore separated from the evolutionary process. 

6.2.2 Spin-Echo Sequence 

This experiment used a spin-echo sequence consisting of two pulses with two equal 

delay periods of half the echo time (TE/2) followed by an acquisition phase as shown 

in Figure 6.2. TE in this experiment was set to be 20ms. Two pulses of 20 two- 

110 

Figure 6.1 Spectrum from the experimental sample. 



valued elements are to be evolved. The chromosome is set up to be a vector of size 

(40,2) (as length is fixed, it need not be placed in the chromosome, but added prior 

to applying the sequence to the sample). The first 20 elements will be used as the 

phase and amplitude values for the first pulse, the latter 20 for the second pulse. As 

all phases are constrained by one range of values and all amplitudes by another there 

is no advantage to separating the vector into two. Crossover can take place at any 

point within the chromosome, as can mutation. 

start first pulse (TE/2) second pulse (TE/2) acquisition 

fixed evolved fixed evolved fixed fixed 

Figure 6.2 The spin-echo sequence. 

The parameters for the first experiment are shown in Table 6.1 

Population Size 20 

Number of Generations 100 

Fitness function Formula 1 (see equation 1, p. 113) 

Pulse sequence type Spin echo 

Length of pulses 2 pulses each of 20 elements 

Delay between pulses 0.2seconds 

Crossover type and rate Simple 1 point 80% 

Mutation type and rate Single point 20% 

Chromosome size 40 x2 real valued elements 

Number of Runs 10 

Table 6.1 Parameters for the spin-echo experiments 

6.2.3 Flexible Pulse Sequence 

In this set of experiments the aim is to evolve a sequence without specifying that it is 

to be a spin-echo sequence. A set of existing pulses is made available to the system 

and the aim of the experiment is to create a sequence of pulses and delays that will 



produce the desired result. The shape of the sequence is shown in Figure 6.3. Each 

chromosome, of. length 13, consists of parameters for three pulses; initial delay, 

pulse type, length and power, plus a final delay. The element types are shown in 

Table 6.2 and the list of standard pulse shapes in Table 6.3. The inclusion of the 

'End' pulse shape allows a sequence to be evolved that has fewer than three pulses as 

once a pulse shape 'End' is encountered, any subsequent pulses in the chromosome 

are ignored. 

Repeated 1-3 times 

start 

fixed 

delay 

evolved 

pulse 

evolved 

final delay 

fixed 

acquisition 

fixed 

Figure 6.3 The flexible pulse sequence 

The different types of value in different parts of the chromosome mean that 

crossover is constrained to be allowed only between elements of the same type, 

whilst mutation has different maximum allowable parameters for each element type. 

The total time taken by each evaluation will be variable because of the differing 

length of total delays and number of pulses. The GA program waits for the results 

from all one generation's evaluations before applying the genetic operators to form 

the next generation. 

In this experiment there will be a maximum number of pulses that can be utilised, 

both because the increasing complexity of multiple pulses will add considerably to 

execution time and because a large number of existing pulse sequences do not utilise 

large numbers of pulse files. In the first instance the maximum number is set to 

three. In (Fullmer and Miikkulainen 1992) a system to allow a varying number of 

neurons in a chromosome is described. In this work, the contents of each place in 

the chromosome are decoded (using a MOD function) to START, STOP and data 

bits. With this, there can be a varying number of nodes within the 800 bit 
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chromosome. The chromosome will be used to generate a neural network with the 

topology and weights determined by the chromosome. In the same way as this a 

variable number of pulse files and delays could be encoded into one chromosome to 

allow maximum flexibility to the evolutionary algorithm. 

Element Number Meaning Type 

1 Pre-pulse delay 1 0.0 - 1000.0 (milliseconds) 

2 Pulse type 1 Integer 0- 12 

3 Pulse length 1 Integer 0- 8000 (microseconds) 

4 Power 1 0- 40 (0.5 dB units) 

5 Pre-pulse delay 2 0.0 - 1000.0 (milliseconds) 

6 Pulse type 2 Integer 0- 12 

7 Pulse length 2 Integer 0- 8000 (microseconds) 

8 Power 2 0-40 

9 Pre-pulse delay 3 0.0 - 1000.0 (milliseconds) 

10 Pulse type 3 Integer 0- 12 

11 Pulse length 3 Integer 0- 8000 (microseconds) 

12 Power 3 0-40 

13 Final Delay 0.0 - 1000.0 (milliseconds) 

Table 6.2 Chromosome layout for the flexible pulse sequence 
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Pulse Number Pulse Name Pulse Type 

0 Square simple rectangular pulse 

1 Sinc sin(x)/x 

2 Gauss this pulse is amplitude modulated and selectively 
excites a bandwidth (Hz) approximately equal to 
2e+6/pulse_length (µs). 

3 hrm90 Hermitian. This pulse is amplitude modulated and 
provides a selective pulse optimised for 90-degree 
flips. 

4 hrm180 Hermitian. This pulse is amplitude modulated and 
provides a selective pulse optimised for inversion and 
refocusing. 

5 sech90 this pulse is phase modulated and converts 
longitudinal magnetization into transverse 
magnetization for spins close to resonance by 

adiabatic fast passage. 
6 sech180 this pulse is phase modulated and provides a selective 

inversion pulse by adiabatic fast passage. 
7 eburpl selective excitation pulse reference: H. Geen and R. 

Freeman, JMR 93,93 (1991) for 90 degree excitation 
only with Z initial magnetization 

8 1-3-3-1 binomial 

9 1-1 binomial 

10 1-4-6 binomial 

11 1-5-10 binomial 

12 End end marker 

Table 6.3 Pulses available for use in the flexible pulse sequence experiments 

6.2.4 GA Setup 

GA using the GAOT within Matlab is used. This is because of the ease of linking 

the program to the VNMR program, which allows experiments to run directly on the 

hardware. The GA chromosome shape, a vector, suits the pulse shape required in 

earlier chapters, and although this advantage is less so with pulse sequences, where 

different parts of the chromosome will need to be interpreted as, for example, delays 

or pulses it is still easier to interpret than a GP tree-shaped individual would be. 
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The initial generation is randomly produced and all candidate solutions for that 

generation are presented to the MR system as a batch. A spectrum is produced for 

each and the height and integral of each peak is calculated. The height is used in the 

fitness function calculation 

Fitness = 

X* (height (alanine peak) + height (glutamine peak)) 

abs (height (NAA peak) + height (creatine peak)) (1) 

where abs return the absolute (positive) value of its argument and X, a scaling factor, 

is initially set to be 100. 

If the heights of the peaks are very small, using a division for the calculation can 

lead to very large fitnesses (even where the resulting spectrum is not good). In this 

case a modified fitness calculation is employed. It is useful to move from a ratio to 

an additive term which is much more stable. 

Fitness = (X*(height (alanine peak)+height (glutamine peak))) - 

(abs(height(NAA peak)+height(creatine peak))) (2) 

where X is again initially set to 100. 

6.3 Results 

6.3.1 Spin-Echo Sequence 

The results of the experiments are disappointing in comparison with those of the 

previous chapter. This experiment is much harder, with the aim to select alternate 

peaks from the spectrum. Improvements in fitness are of a much smaller magnitude 

with finesses improving between three to five times. Although the fitness 

improvements are low the resulting spectra do show the effects of the pulse files. 

The initial results of this experiment showed that both the best and the mean 

fitnesses did improve. Over the 10 runs the average improvement in fitness of the 

best chromosome was from 10 to 60 and the average improvement of the mean of 

the population was from 0 to 37. The mean and best in the population were still 
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improving at 100 generations, so a longer run may produce more fit solutions. 

Figure 6.4 shows the fitness of the mean of the population from a single run. 
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Figure 6.4 The average improvement of the best chromosome from the spin-echo 

sequence over 10 runs 

6.3.2 Flexible pulse sequence 

The results from this method also show a small improvement in the fitness of 

individuals. Figures 6.5 and 6.6 show two runs of the experiment. In each case the 

spectra produced by a pulse file at the beginning of a run and from a fitter individual 

at the end of the same run are shown. In both cases the fitness function subtracts the 

area of the NAA and creatine peaks from the area of the alanine and glutamine 

peaks. An example of a pulse sequence generated is shown in Figure 6.7. 
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a) 

b) 

Figure 6.5 First example of spectra produced from an evolved flexible pulse 

sequence. a) an individual from the first generation b) an individual from the 43`" 

generation. The water peak at 4.8 has been coincidently suppressed in comparison 

with a). The peaks at 2.0 and 3. Oppm (NAA and creatine) have been reduced whilst 

that at 1.2ppm (alanine) is still strong. Glutamine at 2.5ppm is not particularly well 

enhanced. 
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a) 

b) 

Figure 6.6 Second example of spectra produced from an evolved flexible pulse 

sequence. a) is from the first generation and b) from the 49`h. Again the water peak 

is diminished, along with creatine and NAA, but again the glutamine peak has not 

been enhanced, although the alanine has. 
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6.4 Conclusion 

The task is a complex one and GA in its most straightforward implementation 

struggles with it, given the nature of the problem where alternate peaks are to be 

minimised. However, GA does make some improvements. 

Both methods had difficulty with the task. The spin-echo sequence is probably too 

restrictive a format for this task. The flexible sequence allows for more variation in 

the style of result and this may prove to be more fruitful in further experiments. 

The advantage of running candidate solutions on hardware is that this is where 

successful pulses and pulse sequences would be run in a clinical setting. A more 

traditional approach would involve modelling of the system. Although the GA 

approach has had limited success on this occasion, the potential advantages of using 

it include the ability to capture non-linear and unpredictable pulses on real MR 

hardware and capturing novel solutions 

A disadvantage of running experiments on hardware is that experiments need to be 

scheduled around competing demands for an expensive resource (the MR system) 
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and when there are problems with the MR system (as there were during the course of 

these experiments) then experiments are forced to be rescheduled or abandoned. 
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Chapter 7 

Conclusions 

7.1 Conclusions 

The work presented here has focused on two ways that evolutionary computing can 

aid with medical uses of NMR; classifying data acquired from NMR spectroscopy to 

aid with cancer diagnosis and using evolutionary techniques to obtain pulse files and 

sequences. 

In the area of classification, GP has proved that it can cope with two classes, and that 

the advantage over neural networks is that the features that aid the classification can 

be extracted relatively easily, especially where the solutions are simple. In the brain 

tumour diagnosis, the features that proved to be central to the classification included 

glutamine and alanine. 

Principal component analysis was used to reduce the number of data points from the 

400 involved in a digitised spectrum to twenty vectors. These were then rotated 

using varimax. The resulting principal component factors proved, in several cases, 

to contain signals mainly from a single metabolite. This made the interpretation of 

results much clearer from a biochemical perspective. 

The use of medical data generally suffers from a problem of few samples on which 

to carry out classification. However, even with a dataset of 75 samples it was 

possible to divide it into separate training and test sets. Care needs to be taken with 

small data sets that the training my lead to over-fitting of the data to the samples 

given, which leads to poor generalisation ability. Although it is difficult to tell 
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whether the data has been over fitted, it is the case that those metabolites identified 

as having most discriminating capacity have been also identified by other research. 

Genetic methods, both GA and GP, have been shown to be capable of dividing data 

into more than two groups. The use of a series of one-versus-the-rest binary 

classification tasks can obviously give solutions to such a task, however, it seems 

neater to try and solve the problem in a more parallel way. The methods of using 

one output for all classes, versus one output per class (with GP this would be done 

using one tree, or one tree per class) both have their advantages and disadvantages. 

If there is one tree, with the result being interpreted based on a range of values per 

class, then there can be no assignment of a sample to no class or more than one class. 

This does not mean that the answer cannot be wrong, but an area of confusion can be 

eliminated. The disadvantage of this method is that, in order to solve the whole 

problem in one step, the solutions can become unnecessarily complex. 

The use of one tree per class, with a single point as a boundary, leads to simpler 

solutions. However, as each tree concentrates on a particular task, there is a 

possibility of samples being assigned to more than one class, or to none. A further 

step may need to be added to resolve such conflicts. 

The novel solution described in this thesis is to use n tree for a maximum of 2" 

classes. This allowed, for four classes, a two-way split in the data with two trees 

separately distinguishing between two different pairs of classes. In the tumour 

example, on division was entirely meaningful; tumour versus tissue, whilst the other 

was more contrived; a tissue and a tumour versus a different tissue and a different 

tumour. This method did prove successful though, with relatively simple solutions 

and relatively few conflicts to resolve. 

The use of genetic methods to optimise pulse sequence elements, such as pulse files 

was intended as a method of tailoring signals from certain metabolites that had 

proved to be important in the classification of tumours. The next step from 

producing pulse files was to evolve more elements of a pulse sequence such as 

delays and pulse files with their power and length. 
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The results of this section can be considered successful as they prove that it is 

possible to attach an evolutionary technique to the software that runs a piece of 

hardware and to improve the results of such a technique. In the present case, it has 

proved more useful to use GA as the evolutionary technique as the representation of 

the individual matches much more that required by the system. 

It is useful to be able to run experiments on the actual hardware as that can take into 

implicit consideration the nuances of the signal that would, with another method, 

need to be explicitly stated. Considerations of the hardware led to the use of a batch 

processing system to minimise the chances of an error in the running of an 

experiment. The batch processing also allowed for experiments to be run overnight 

or at weekends when the NMR system was not required by other users. 

One disadvantage of using real hardware rather than a computer simulation is that 

the NMR system can have a fault which stops all acquisition of data. 

For both the classification and pulse file generation, genetic methods have proved to 

be feasible but probably not the method of choice for the future. The use of GP over 

GA in both these situations is not shown here to be a better solution. It is indicative 

of the state of GP within the research community, that papers published within the 

last 12 months still describe what GP is, more than 10 years after the first conference 

on the subject. 

7.2 Future Work 

In the field of classification of MR data the introduction of multi-voxel MRSI signals 

is probably the most interesting development in respect of further work. Using both 

spatial and metabolic data from such data collection has been reported using 

statistical methods but as yet no application of EC to MRSI data has been reported. 

The use of binary classification, either with pre-processing of data or with a pairwise 

classification with post-processing to resolve conflicts and identify best solutions 

would be an interesting area. The aim of such classification is to produce clinically 

useful data and there is a need for a system to be robust and clear enough to allow it 
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to be used by clinicians. The identification of tissue type within a mixed tissue 

sample is information that would be very useful in a clinical setting and is there is 

need within MRSI data collection for this to be automated. 

The use of EC methods to develop pulses and pulse sequences directly on the 

hardware has more scope for future work. The use of a sample of known quantities 

of specific metabolites allows for repeated experiments. The availability of an MR 

system is the limiting factor in such experimentation. 

A specific area of interest is the use of gradients to affect the output of a pulse. 

Gradients were not used in the experiments reported here due to hardware problems 

but it would be interesting to include gradients as an extra parameter to the pulse or 

pulse sequence. 

Other areas that may prove useful are how best to suppress the water peak, (given 

that pulses exist that do this successfully) and also how to enhance multiple non- 

adjacent peaks within a spectrum whilst minimising the signal from metabolites 

between the peaks of interest i. e. to make the data acquisition more metabolite 

specific and/or to help validate the presence of particular metabolites. In a given 

study, measurement of MRS signals from a range of metabolites is likely to remain 

important. However, it may be critical to obtain additional confirmation to confirm 

the identity of one (or more) of these signals. 

Application of MRS for evaluation of potential drug targets and candidate drugs is of 

increasing importance (Workman et al. 2006). EC methods for optimising data 

acquisition (e. g. `pulse sequence discovery') could be valuable in accelerating this 

part of the drug development process. 
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