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Abstract 

This thesis is concerned with robustness of decision making in financial economics. Feedback control 
models developed in engineering are applied to three separate though linked problems in order to examine 
the role and impact of robustness in the creation and application of decision rules. Three problems are 
examined using robust optimal control techniques to evaluate the impact of robustness and stability in 
financial economic models. The first problem examines the use of linear models of robust optimal control 
in the pricing of castastrophe based derivatives and finds its relative performance to be superior to the 

popular jump diffusion and stochastic volatility models in the pricing of these emerging instruments. 
The novelty of the approach arises from the examination of the impact of robustness and stability of the 

pricing solution. The second problem involves robustness and stability of hedging. An alternative method 
of creating hedging rules is developed. The method is based on robust control Lyapunov functions that 

are simple, robust and stable in operation, yet in practice are not so conservative that they eliminate all 
trading gains. The third problem involves the development of robust control policies for managing risk, 

using non-linear robust optimal control techniques to provide clear evidence of superior performance of 

robust models when compared with existing VAR and EVT approaches to risk management. The novelty 
in the approach arises from the development of a simple and powerful risk management metric. 
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Chapter 1 

Introduction and literature review 

1.1 Motivation 

The objective of this thesis is to investigate the impact and role of robustness on decision making in 

the presence of uncertainty. This objective immediately begs the obvious question of how to define the 

fundamental concepts of robustness, decision making and uncertainty. The following four quotes sum up 

the ideas that originally stimulated the curiosity of this author to research the area of decision making 

under uncertainty 

I'd rather be vaguely right than precisely wrong. 

Attributed to J. M. Keynes in Forbes magazine 25 January 1999 issue. 

Far better an approximate answer to the right question, which is often vague, 

than an exact answer to the wrong question, which can always be made precise. 

J. Tukey, 1968. 

How well do we need to know the answer in order to make a decision ? 

G. J. Macrae and G. Wang, MIT, 2003. 

The most fundamental of the three concepts mentioned above is decision making, yet it is difficult 

to arrive at an acceptably clear definition of decision making without first defining the concepts of risk 

and uncertainty. The very notion of uncertainty is in and of itself, fraught with disagreement, despite 

which, there exists a substantial body of research and opinion behind the notion that it is vital to make 

such a fine distinction between the concepts of risk and uncertainty. Many economists, psychologists 

and behavioural scientists remain unconvinced of the validity of such a fine distinction. However, having 
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introduced such a distinction, it is important to explore its validity and form a view of how it does or 

does not impact upon the work in this thesis. 

Distinguishing between the concepts of risk and uncertainty can be fairly directly ascribed to Knight's 

treatise on Risk, Uncertainty and Profit first published in 1921. It was Knight's research that for the 

first time made a clear case for the economic importance of and distinction between, risk and uncertainty. 

Knight explicitly linked profits, entrepreneurship and free enterprise to what he claimed were the separable 

concepts of risk and uncertainty. Subsequent contributions by authors such as Hicks in 1931, Keynes in 

1936 and 1937, followed by Kalecki in 1937, Stigler in 1939, Tintner in 1941, Hart in 1942 and Lange 

in 1944 also marked key points in the search within economic theory to ascribe a pivotal role to risk or 

uncertainty in the explanation of how the behaviour of central quantities such profits, investment and the 

demand for liquid assets (to name but a few), are influenced by uncertainty and risk. A critical barrier 

to this understanding was making precise the distinction between risk and uncertainty. 

In chapter 7 of his 1921 work, Knight interprets risk as referring to situations where the decision 

maker can assign mathematical probabilities to the randomness he faces. Whereas Knight refers to uncer- 

tainty as being those situations when randomness cannot be expressed in terms of specific mathematical 

probabilities. Keynes wrote about Knight's distinction on several occasions (e. g. page 148 of the General 

Theory), but the following extract from Keynes's writings probably gets as close as is possible to an 

unambiguous distinction between the two ideas 

By uncertain knowledge, let me explain, I do not merely mean to distinguish what is known 

for certain from what is only probable. The game of roulette is not subject, in this sense, to 

uncertainty... The sense in which I am using the term is that in which the prospect of a European 

war is uncertain, or the price of copper and the rate of interest twenty years hence 
... 

About these 

matters there is no scientific basis on which to form any calculable probability whatever. We 

simply do not know. 

J. M. Keynes, Economic Journal, 1937. 

However, for many economists, the distinction between risk and uncertainty remains artificial. Those 

against the distinction, for example, argue that in Knightian uncertainty the problem is that the decision 

maker simply does not assign probabilities, not that the decision maker actually cannot assign proba- 

bilities. In other words, the problem is one of knowledge of probabilities rather than the existence of 

probabilities in the first place, i. e. the problem is epistemology versus ontology. Yet other economists 

argue that there are actually no probabilities to be known anyway, because probabilities are only beliefs in 

the first place. In other words, one could easily and defensibly view probabilities as just subjectively, as- 
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signed expressions of belief which would imply that they have no necessary connection to the randomness 

of the real world, which may or may not be random in and of itself. 

Despite these objections, many economists view as crucial the distinction between risk and uncertainty. 

Shackle (1949,1955,1961 and 1979) and Davidson (1982 and 1991/1995) argue that Knightian uncertainty 

is the only relevant form of randomness in economics, especially when considered in conjunction with the 

fact that information is not and can not ever be always and everywhere known instantly, completely 

and accurately. Looked at from the Knightian perspective, risk is only possible in extremely contrived 

situations where circumstances are measurable and repeatable such as in casinos. The key point is that 

in the real world, decision making situations are frequently unique, with only a small set of the possible 

alternatives either known or measurable. In such situations, it is clearly impossible to make mathematical 

probability assignments, so that decision rules should be considered differently from the conventional 

approach of expected utility. 

It is interesting to note at this point that the greater part of research concerning uncertainty has 

arguably been too narrowly focused on uncertainty with regard to information. Yet when viewed from a 

rational expectations perspective, research should also encompass the uncertainty surrounding the choice 

of model by agents. Is the model always relevant and correct, or is it merely one of a family of similar 

models ? Or yet again, is a model only the relevant model over a particular range of outcomes ? In short, 

model uncertainty exists and needs to be analysed and integrated into any explanation of decision making 

under uncertainty. 

What is clear, is that the Knightian definitions are useful in making a distinction between those 

theories of decision making which do make assignments of probabilities to alternatives and those that 

do not. In the former group are obviously the expected utility theories that use von Neumann and 

Morgenstern type objective probabilities, whilst in the latter group are the state preference approach of 

Arrow and Debreu (1954). Both of these approaches to uncertainty will be examined in extensive detail 

in the literature review that forms the main body of this introductory chapter. 

As this thesis seeks to bring together ideas which may not be totally familiar to many economists, 

a clear statement of concepts, approach, tools and structure is useful in order to better understand the 

research that has been undertaken. This initial chapter therefore provides four things 

" Clear definitions of the fundamental concepts relevant to this thesis. 

9A review of the existing research and literature on decision making under uncertainty. 

"A review of the existing research and literature on approaches to modelling robustness. 

" An explanation of the theory behind the tools and approaches used to carry out the research reported 



in chapters 2,3 and 4. 

1.2 Definitions of key concepts 

1.2.1 Utility based decision making under uncertainty 

Economists define utility as the real or desired ability of a good or service to satisfy a human want, so 

that marginal utility is the change in utility due to a one unit change in the quantity of a good or service 

consumed. In decision theory, utility is a measure of the desirability of consequences of courses of action 

that applies to decision making in the presence of risk or uncertainty. The concept of utility applies to 

both single and multi-attribute consequences. The fundamental assumption is that the decision maker 

always chooses the alternative for which the expected value of the utility is maximised. If this assumption 

holds, then utility theory can be used to predict or prescribe the choice that the decision maker will or 

should make, among the available alternatives. Utility therefore has to be assigned to each of the possible 

(and mutually exclusive) consequences of every alternative. 

A utility function is thus the rule by which this assignment is achieved and depends on the preferences 

of the individual decision maker. In utility theory, utility measures u of the consequences are assumed to 

reflect a decision maker's preferences in the following sense 

1. The numerical order of utilities for consequences preserves the decision maker's preference order 

among the consequences. 

2. The numerical order of expected utilities of alternatives (referred to, in utility theory, as gambles 

or lotteries) preserves the decision maker's preference order among these alternatives (lotteries). 

Utility theory provides a basis for the assignment of utilities to consequences by formulating necessary 

and sufficient conditions to satisfy 1 and 2. A utility function is defined mathematically as a function 

that maps from the set of consequences into the real numbers that provides for satisfaction of 1 and 

2. Whilst there exist various methods for constructing utility functions, the best-known is based on the 

indifference judgments of the decision maker about specially constructed alternatives(lotteries). One of 

the key features of utility theory is that it provides the ability distinguish between differing attitudes to 

risk, making it possible to delineate risk loving, risk neutrality and risk aversion. By convention, we use 

the term Bernoulli Utility Function to refer to a decision-maker's utility over wealth - since of course it 

was Bernoulli who originally proposed the idea that people's internal, subjective value for an amount of 

money was not necessarily equal to the physical value of that money. The term von Neumann-Morgenstern 

Utility Function is used to refer to a decision-makel' utility over lotteries, or gambles. 



But what is a decision ?A decision is an irrevocable allocation of resources. Abstracting from both 

psychology and economics and viewing decision making at the most basic level, all individuals are faced 

with an inescapable need to make choices which are usually based on some rule or measure. For example, 

the choice of whether to have work or leisure, is usually based on a series of rules along the lines of 

needing a certain amount of income to pay bills, yet still have enjoyment. This deceptively simple choice 

is perhaps the most fundamental that consumers make, namely, what is the point beyond which further 

increases in income do not compensate for lost leisure opportunities. The need to choose arises for no 

other reason than the fact that wants almost always exceed available resources, making choice inevitable. 

Decisions are therefore necessary as a way of selecting particular outcomes, independent of whether 

the choices are couched in terms of courses of action, or options, or moves, or even payoffs. As Gilboa and 

Schmeidler (2001) point out, there are two pre-eminent paradigms for the formal encapsulation of human 

reasoning that have also been applied to decision making. Namely, probabilistic reasoning based on the 

Bayesian approach, which when coupled with the ubiquitous concept of utility maximisation, represents 

the dominant paradigm for formal models of decision making under uncertainty. The second is based 

around the idea of rule-based systems'. The rule-based approach forms the underpinning of dynamic 

programming which was developed by Bellman (1957) to deal with multi-stage problems involving the 

need to produce the best possible final outcome when faced with sequences of decisions over time and to 

which considerable analysis will be devoted later in this chapter. 

Making decisions in the presence of either risk or uncertainty demands the construction of a framework, 

usually in functional form, which allows the comparison of preferences such that it is possible to evaluate 

the level of satisfaction enjoyed by the decision maker bearing the risk or uncertainty. Once a functional 

metric has been derived, the classical theory of choice tells us that decisions can be made based on the 

simple criteria of maximisation of the level of satisfaction, or utility, U (X), of the decision maker based 

on the range of outcomes X. Although Bernoulli first introduced the concept of expected utility as far 

back as 1738, with the possible slight exception of Ramsey's work in 1926, the formal incorporation of the 

concepts of risk and uncertainty into economic theory for the purposes of explaining choice and decision 

making was only really achieved in 1944 with the publication of von Neumann and Morgenstern's seminal 

book "Theory of Games and Economic Behaviour". 

In 1951, Arrow provided the first real survey of the then contemporaneous thinking on decision making 

under risk and uncertainty. The survey highlighted the point that the principal difficulty facing researchers 

was the task of deriving a precise definition of what it means for uncertainty or risk to affect economic 

'In fact, though not of interest here, Gilboa and Schmeidler offer a third and additional alternative in the form of 

case-based decision making, where decisions are made based on reasoning by analogy. 
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decision making. Much energy was devoted to the task of defining the exact process by which decision 

making agents evaluate alternatives whose payoffs are random, with particular emphasis on the way in 

which increasing or decreasing uncertainty consequently leads to changes in behaviour. However, much 

of this early work remained unsystematic and unfocused in its approach with heuristics rather than clear 

rules emerging from the research. 

In retrospect, it is easy to see that the element required to complete the argument was the formali- 

sation, in an axiomatic fashion, of choice in the context of risk or uncertainty. Hicks (1931) and Tintner 

(1941) had already hinted at the idea that agents form preferences over distributions of possible outcomes, 

but had not arrived at the issue of the separability of attitude to risk and uncertainty from pure prefer- 

ences over outcomes, which was the core of the problem. Several approaches to deriving the form of the 

utility function have been suggested and an analysis of the most important alternative types and forms of 

utility function and the associated loss functions in the decision making process, forms a central element 

in the literature review that forms the bulk of this chapter. 

1.2.2 Robustness in decision making 

Having made a preliminary attempt at defining uncertainty and decision making, the third key concept 

of robustness can be tackled. The concept central to an understanding of robustness is that economic 

agents making a decision do so based on some (possibly) approximating model. Uncertainty inevitably 

leads a decision maker to doubt the model, because the current model is viewed as an approximation in 

the sense that the model belongs to an imprecisely specified set of models that are in the neighbourhood 

of the approximating model. The concern of the decision maker about model, parameter and data 

misspecification and hence about uncertainty, leads to a preference for decision rules that work well over 

the set of nearby models. The issues surrounding model uncertainty and model risk are dealt with in 

detail in the literature review later in this chapter, but for now it is sufficient to state that if a decision 

rule works well in a neighbourhood of potential models then it can generally be said to be robust. 

The application of the concept of robustness in economics is not new. In the world of rational 

expectations, decision makers are assumed to act as if they know the relevant economic model, which 

they are assumed to perceive in the form of a transition law or transfer function that links state variables, 

controls and a description of the stochastic shocks. Rational expectations associates a distinct decision 

rule with each specification of a shock process. It is easy to see the tightness of the implied linkage, when 

it is recalled that under rational expectations decision rules are a function of the serial correlations of 

shocks. This, in effect, is the world of optimal control theory, where it is assumed that decision makers 

know the form of the transition law (or transfer function) such that a distinct decision rule is associated 
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with each specification of the shock process. When robustness enters the picture, it effectively loosens the 

temporal linkage between shocks and decision rules. 

Robust control theory treats models as approximations. Robust optimal control seeks to find one 

optimal rule that performs the best for an entire set of models. The alternative models can be imprecisely 

stated in terms of shocks, but feedback from the shocks is assumed to occur and thereby affect states, 

so representing mis-specified dynamics. To be robust, a decision maker prefers rules that are optimal 

across the widest possible range of specifications. Notice that the concept of feedback has suddenly 

appeared. This raises two questions, what is feedback and why is it important for robust decision making 

? Feedback is related directly to control theory to the point that it the latter could be regarded as the 

theory of feedback systems. Modelling feedback explicitly is required because of the disturbances and 

uncertainty surrounding the model upon which decisions are based. 

Perhaps more fundamentally than the above, however, is the question of why study robustness in the 

first place. What extra insights can robustness add to the study of decision making under uncertainty 

? There are three main answers to this question. First, as already mentioned above, doubts about the 

decision model. If agents doubt their hedging model so will policy makers trying to develop decision rules. 

This is the essence of the idea that gave rise to the chapter on robust hedging rules. Second, rational 

expectations models - in common with many other models - give rise to prices that imply too high a price 

for risk. This manifests itself in such issues as the so called "equity premium puzzle". The third reason is 

model misspecification and, more recently, specific work on model risk attempting to quantify the costs 

of using the wrong model. 

The final issue relating to robustness is measurement. How should robustness be measured so that 

the relative and absolute performance of decision rules can be compared, given that the existence of 

uncertainty implies that models are likely to be incorrect and consequently any measures are also likely 

to be suspect ? Sargent (2001) suggests two frequency-domain preference specifications that will produce 

robust decision rules, namely, the familiar one of entropy from classical statistics and the less familiar one 

of Hoo which derives from robust optimal control theory in the world of engineering. Used in the context 

of decision theory, the entropy objective function summarises doubts about model specification in a single 

parameter. In contrast, by using a broader norm based measure, the Hoo specification is designed to 

measure the degree of robustness to varying levels of uncertainty. The Hoo norm can be used to shape 

the frequency response function for the decision maker in order to meet certain robustness objectives. 
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1.3 Thesis outline 

Much of the remainder of this chapter is therefore occupied by a two-part literature review which seeks 

to provide first a review and critique, followed by a synthesis that explores the breadth and depth of 

existing research on robustness and decision making in the presence of uncertainty and thereby serves to 

demonstrate the broad scope for new and original work. The final part of the chapter uses the literature 

survey as the basis for identifying the much narrower area of research interest and explaining the tools and 

techniques that form the basis for the core of the research work contained in this thesis. The three specific 

problems of robust decision making in the face of uncertainty that are considered in turn in chapters 2, 

3 and 4. Chapter 2 develops a robust optimal control based model for pricing catastrophic derivatives, 

whilst chapter 3 investigates using the same approach for hedging both vanilla and catastrophic derivatives. 

Chapter 4 widens the scope of chapter 3 to address the wider issue of robustness in various aspects risk 

management. 

1.4 Literature review 

Armed with some broad ideas about the key concepts surrounding uncertainty, decision making and 

robustness, underpinned by the integrating notion of feedback, the aim of this section is to review and 

synthesize the existing literature on robustness of decision making under uncertainty, so that the final 

section of this chapter can lead to an identification of and justification for, the area of research that forms 

this thesis. 

As research into decision making under uncertainty has tended to follow one of two broad lines of 

enquiry, namely, choice based utility type models and state-space type general equilibrium models, this 

broad distinction will therefore be used as a method to classify and analyse existing approaches. This 

literature review is therefore structured as follows: 

" Utility based decision models under risk and uncertainty: expected utility, subjective expected utility, 

state preferences, characterisation of risk aversion. 

9 Robust statistical based decision models under uncertainty: robust estimation, confidence interval 

problems, classical optimisation. 

9 Robust optimisation based decision making in the presence of uncertainty: robustness, stability and 

optimal control, linear-quadratic-Gaussian models, state-space based robust optimal control. 

The principal message to emerge from this review is that the decision rules produced by conventional 

utility based decision making models are frequentlf7neither robust nor stable. In contrast, the robust 



optimal control approach can be used to compute robust decision rules that provide robustness and 

stability both in theory and practice. 

1.4.1 Utility based decisions models under risk and uncertainty 

Expected utility 

The expected utility hypothesis that underpins much of classical micro-economics derives from the solution 

by the Swiss mathematician Daniel Bernoulli in 1738 of the St. Petersburg Paradox which had been posed 

in 1713 by his cousin Nicholas Bernoulli2. The apparent Paradox challenges the idea that individuals value 

random outcomes based on a comparison of returns expected from each outcome. The Paradox posed a 

question based on the flipping of a fair coin until a head appears. If the first head appears on the n-th 

toss, then the payoff is n units. How much should be paid by a player to play such a game ? The paradox 

arises because whilst the expected return, expressed in terms of wealth w, is infinite 

00 
E(w)=> 2"(i)"=2f 

21+22(4)+23(1)=1+1+1... 
=00 (1.1) 

it is simultaneously obvious that no rational player would pay an infinite amount to play such a game. 

Bernoulli's solution to this paradox was based on two fundamental ideas. First, that utility derived 

from wealth increases at a decreasing rate - the principle of diminishing marginal utility, as captured by 

u '(w) >0 and u" (w) < 0. Second, that the valuation of an outcome is not its expected return, but its 

expected utility, such that the value of the above game to a player possessing zero initial wealth is 

00 
E(w)=>u2"(2)n=u(2)(2)+u(22) 

( )+U(23) ý8 
I+... <oo (1.2) 

i=1 

which Bernoulli argued to be finite due to diminishing marginal utility. Using a logarithmic utility function 

of the form u (x) =a log x, Bernoulli demonstrated that a player would only be willing to pay a finite 

amount of money to play, despite the expected return being infinite. His logic lead to the adoption of the 

following expression as the standard way of valuing a risky venture 

E(ulp, X) = P(x)u(x) 
vex 

(1.3) 

21t is also common to note that Gabriel Cramer, another Swiss mathematician, also provided effectively the same solution 
ten years before Bernoulli. 
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where X is the set of possible outcomes, p (x) is the probability of a particular outcome xEX and 

u: X -º R is a utility function over the set of outcomes3. 

Despite being of central importance during the Marginalist Revolution of 1871-74 and being key to 

the works of Jevons (1871) and Walras, diminishing marginal utility was not given centre stage as an 

explanation of decision making until von Neumann and Morgenstern's work in 1944 axiomatised the 

concept and expressed it in terms of preferences over alternative random outcomes (which they termed 

lotteries). Their work assumes that probabilities are objective or exogenous and incapable of influence 

by players. But, the problem was for the player to decide or choose between lotteries to find the best. 

von Neumann and Morgenstern's major contribution was to show that if a player has preferences defined 

over lotteries then there must exist a utility function U: A (X) -º R which assigns a utility to every 

lottery pE0 (X) that represents those given preferences. Their insight was thus to confine themselves to 

preferences over distributions and then to deduce the implied preferences over the underlying outcomes. 

It is not necessary to reproduce von Neumann and Morgenstern's proof of their utility function. It 

is, however, necessary and worthwhile to state their axioms of preference over simple lotteries as a basis 

for understanding the construction of their utility function. Thus, if >his a binary relation over 0 (X), 

such that >hC 0 (X) x0 (X), then it is possible to write (p, q) E>_h, or p >h q to show that lottery p is 

preferred to lottery q and that p Nh q means p is equivalent to q, whilst if p is not preferred or equivalent 

to q, then this is expressed as q being strictly preferred to p, so that von Neumann and Morgenstern's 

axioms for these preferences can be stated as 

Axiom 1 >his complete, i. e. either p >h q, or q >h P for all p, qE0 (X). 

Axiom 2 >his transitive, i. e. if p >h q and q >h r, then p >h r for all p, qEA (X). 

Axiom 3 if p, q, rEA (X) 
, such that p >h q >h r, then there is an a, ßE (0,1) such that ap + 

(1-a)r>hq and q>hf3p+(1-ß)r4. 

Axiom 4 for all p, q, rEA (X) and any aE [0,1] 
, 

then p >h q if and only if ap + (1 - a) r >h 

aq+(1-a)r5. 

3Technically speaking, utility must also be bounded in order for the concept of diminishing marginal utility to provide an 

answer to the St. Petersburg paradox. If there is no bound then it is possible to find a series of payoffs xi, T29 x3... capable of 

yielding infinite expected value. Karl Menger only pointed out this issue in 1934 almost 200 years after Bernoulli's original 

work ! 
4 This is often referred to as the Archimedean axiom as it functions akin to a continuity axiom over preferences. 
s This is the so called independence axiom and asserts that the preference between p and q is unaffected if they are both 

combined in the some way with a third lottery r. To achieve this requires recourse to a two stage lottery type of argument, 

which is slightly artificial, but is useful to illustrate that preferences between two stage lotteries ought to depend solely on 

preferences between the alternative lotteries. 
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von Neumann and Morgenstern's utility function, U: A (X) -º R therefore represents preferences over 

lotteries, such that the preference between p and q is unaffected if they are combined in some arbitrary 

way with a third lottery, r. They show that the U has a representation 

P(x)u(x) 
xESupp(p) 

(1.4) 

where u: X --º R is an elementary utility function over the underlying outcomes X. Given that A (X) is 

a convex set of probability distributions on X, then if pEA (X), p must have a finite support (shown as 

Supp (p) C X6. This provides sufficient background to be able to state von Neumann and Morgenstern's 

expected utility theorem 

If A (X) is the set of all simple probability distributions on X and >his a binary relation on 0 (X), 

then >hsatisfies the axioms 1-4 above, if and only if there is a function u: X -º R such that for every 

p, gEi (X) 

p >h q if and only if >p (x) u (x) >Eq (x) u (x) (1.6) 

xESupp(p) xESupp(q) 

Such conventional, non-stochastic utility functions are usually assumed to be ordinal in that they preserve 

the order of the indexes of preferences. From the above formulation, it is easy to fall into the trap of 

thinking that utility is cardinal and can be used as a measure of preferences. However, the key point 

is that even though the elementary utility function of equation 1.3 above is cardinal in outcomes, the 

function is not cardinal over lotteries. This is simply because the utility function is based on lotteries and 

not on outcomes. 

This line of reasoning suggests that the Independence Axiom is the foundation of von Neumann and 

Morgenstern's work. This is only partially true and was demonstrated by Allais in 1953 in his famous 

paradox over two pairs of lotteries. The apparent paradox is best understood by means of the following 

simple example. Imagine a quartet of distributions (p1, p2, q1, q2). These points are outcomes over the 

following lotteries: x1 = 0, x2 = 100 and x3 = 500, such that the first pair of lotteries pl and p2 have the 

following payouts: 

pl: pays $100 with certainty. 

p2: pays $0 with 1% chance, $100 with 89% chance, $500 with 10% chance. 

When confronted with this choice, decision makers usually opt for pi, so that pi >_h p2, which if 

6 Convexity also implies that for any p, qE0 (X) 
, ap + (1 - a) qE0 (X) for any aE (0,1) and that if p and q are no 

more than simple probability distributions, then 

(ap ý(1-a)q)(x)=ap(x)+(1-a)q(x) (1.5) 

for any xEX. 
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depicted using indifference curves would imply that there existed an indifference curve U, such that pl 

were above and p2 below. Imagine now a second pair of lotteries that have the following payouts: 

ql: pays $0 with 89% chance and $100 with 11% chance. 

q2: pays $0 with 90% chance and $500 with 10% chance. 

Now, standard expected utility theory would predict that given that indifference curves are parallel 

to each other, then ql should be preferred to 42i which would imply the existence of an indifference curve 

U. with ql above and q2 below, i. e. ql >h q2. This much is guaranteed by the independence axiom, which 

would imply pl >h p2 = ql >h q2. However, Allais (1953) showed that when presented with these two 

pairs of lotteries, decision makers first opt for pi over p2 in the first lottery, but then choose q2 over ql in 

the second lottery, thereby contradicting the prediction of the independence axiom. 

Allais's own answer to this apparent paradox was that indifference curves are parallel, but not linear, 

so that they are capable of "fanning out". Hagen (1972 and 1979) further exploits the fanning out 

idea and shows that it is indeed the case, thereby proving that the decomposition predicted by the 

expected utility hypothesis is incorrect. This is because the utility of a particular lottery p, is not 

U (p) =E (u; p) =Ep (x) u (x) 
, 

but is instead U (p) =f [E (u; p) , var (u; p)) . 
In other words, the utility 

xEX 
of the lottery is a function of both its expected utility as well as the variance of the utility. Interestingly, 

the fanning out idea encompasses Kahneman and Tversky's (1979) "common consequence" concept. In 

order to understand the common consequence effect, it is necessary to appeal to the independence axiom, 

which claims that if p >h q, then for any ,8E 
[0,1] and rEA (X), then ßp+(1 - ß) r >h 6q+(1- ß) r. In 

other words, the possibility of an extra alternative lottery r should not have any impact on the preferences 

between the original lotteries p and q. 

Kahneman and Tversky's common consequence argument is that the addition of r affects preferences 

between p and q, such that p and q now become second best alternatives if r fails to occur. In effect, 

they are claiming that if the prize in r is substantial, then a greater degree of risk-aversion is likely, 

which modifies preferences between p and q, so that less risky choices are made. The idea is that if r is a 

substantial prize and fails to occur, then disappointment occurs instead in direct proportion to the size of 

r. Intuitively, Kahneman and Tversky's common consequence argument is that getting a $50 consolation 

prize in a multi-million dollar lottery is considerably less exciting than merely finding $50 on the street. 

Consequently, in order to compensate for the potential disappointment, there is less willingness to take 

on risks as an alternative - as doing so would only worsen the burden. In contrast, if r is not that good, 

then one might be more willing to take on risks. 

The response to this line of argument against expected utility came from Marschak (1951) and Sav- 

age (1954) in the form of an argument claiming that expected utility is only meant to be normative, 

21 



as it tries to describe what rational behaviour should occur in the face of uncertainty, not what behav- 

iour actually occurs. Allais (19539) and Hagen (1972) worked directly with different combinations of 

the elementary utility functions on outcomes, rather than modifying the underlying axioms of the von 

Neumann-Morgenstern utility function on lotteries and as a result, they did not make it clear that their 

"fanning out" hypothesis was a result of normal rational behavior. In the late 1970's and early 1980's 

new axioms were introduced that lead to the production of the Allais hypothesis as a result. Although 

the literature on alternative expected utility expanded enormously in the 1980s and 1990s, much of the 

flavour and most of the key points can be encapsulated by providing a mainly heuristic review of two 

alternative concepts: Weighted Expected Utility as suggested by Chew-MacCrimmon (1979) and Non- 

Linear Expected Utility put forward by Machina (1982). John Quiggin's (1982,1993) Rank-Dependent 

Expected Utility is also interesting, but adds relatively little to the tenor or direction of the debate. 

One of the first axiomatic treatments of the theory of choice under uncertainty which incorporates 

the fanning out hypothesis of Allais was the "weighted expected utility" introduced by Chew and Mac- 

Crimmon (1979) and further developed by Chew (1983) and Fishburn (1983). The final result of Chew- 

MacCrimmon analysis is the representation of preferences over lotteries 

U(p) _ u(xi)pi/ v(xi)pi (i. 7) 

where, u and v are two different elementary utility functions. Still other functional forms of weighted 

expected utility have been suggested by Kamarkar (1978), Kahneman and Tversky (1979). For a simple 

three-outcome case, this becomes 

U(p) _ 
[Plu(x1) + (1 - PI - P3)u(x2) +P3u(x3)] (1.8) 
[PIV(xl) + (1 - Pl - P3)V(X2) +P3v(x3)] 

so, for any indifference curve, setting U(p) = U* it is easy to see that 

u(22)- U*v(x2) = Pi[U*(v(Xl) - v(x2)) - 
(u(xl) 

- u(x2))]+ 
ý1.9) 

P3[U*(V(x3) - v(x2)) - 
(u(x3) 

- u(x2))] 
(1.10 

The first thing to note is that the indifference curves remain linear as no probability terms enter the 

expression for the slope . 
The second point is that all the indifference curves intersect at the same dpi 

point prior to the origin in the lower left quadrant (at theoretically negative probabilities) because they 

do not depend on levels of U. 

Contemporaneous work by Machina (1982) on non-linear expected utility was a further important 
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development of the concept of fanning out of indifference curves. Machina maintained the preference 

ordering axioms and the independence axiom, but did not appeal to the independence axiom and succeeded 

in demonstrating that fanning out was possible with the added benefit of non-linearity of the underlying 

indifference curves. The upward sloping property of the underlying indifference curves is achieved by 

using the idea of stochastic dominance. Continuing with the simple example above, remember that if 

outcomes are ranked x3 >h x2 >h X1, then using any probability distribution, p, it is easy to see that a 

change in probability distribution either upwards or to the right implies an increase in the probabilities by 

which outcomes are weighted, as is shown clearly in figure ??, which provides an example of indifference 

curves implied by the Machina approach. As can be seen from the figure, his illustrates the principle of 

stochastic dominance, whereby distributions such as q or r stochastically dominate p, with the result that 

it is possible to produce a non-linear, but upward sloping indifference curve U, passing through point p7. 

p3=1 

p2=1 pº=1 

Figurel. l: Non-linear expected utility and fanning out 

To obtain fanning out, Machinn utilised the concept of "local expected utility" under which, at any 

given distribution p, there exists a utility function Ut,, that possesses all of the von Neumann and Mor- 

genstern properties of an actual utility function around p. The important point to note is that Up is 

not a utility function over all distributions, but is specific or "local" to p, enabling it to be treated as a 

"local utility index". Machina therefore claimed that the behaviour around p of a decision maker acting 

with a general utility function UP can be encapsulated by a local utility index Up (p). These local utility 

TStochastic dominance has two orders. First order occurs when there exist two random variables with cumulative distrib- 

utions of sayF and G, such that if F>G=F (x) <G (x) for all xE [a, b]. Whilst second order stochastic dominance helps 

rank distributions relative to riskiness in terms of the spread of the probability mass of the cumulative density functions and 

is expressed in analogous fashion as F >2 G, if T (x) =I [G (t) -F (t)] dt >0 for all xE [a, b] 
. 
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indexes are then used to prove two points. First, that every local utility function is increasing in x, which 

guarantees small stochastically-dominant shifts in the region of p (from p to q in figure ?? ) which is known 

to imply by linear expected utility that Up(p) < UP(q), which also implies that U(p) < U(q), so that the 

original indifference curves (which are non-linear) must rise from bottom right to top left. 

The second point relates to fanning out and can obtained from Machina's second hypothesis. It is 

that local utility functions are concave in x for each distribution p, which means that movement to- 

wards stochastically-dominant distributions, causes the degree of local risk-aversion to increase, such that 

-{ T"(:? 
] 

<- 
["? J 

where r stochastically-dominates p- which is shown in figure ??. Remembering 

that "risk-aversion" implies that the indifference curve is steeper than any arbitrary contour value line 

(such as the dashed line E in figure ?? ). The local utility index around r, U,. (r) is steeper than the local 

utility index around p, Up(p), making r more "risk-averse" than p. Machina therefore concludes that the 

Allais Paradox and all common consequence and common ratio problems can be explained by his simple 

set of axioms. However, one important point needs to be born in mind about work such as Machina's, 

namely, that it was designed to test for violations of the von Neumann and Morgenstern axioms, rather 

than to explicitly test the expected utility hypothesis. 

The common consequence and common ratio effects as described in the Allais Paradoxes are seen as 

violations of the independence axiom, but a further common empirical finding is so called "preference 

reversal", which is a violation of the transitivity axiom. Evidence for such reversals was first uncovered in 

1971 in the field of psychology, by Sarah Lichtenstein and Paul Slavic. The preference reversal phenomena 

is captured in the famous "P-bet, $-bet" problem, which is framed as follows. Imagine two lotteries which 

can be described as follows: 

P-bet: yielding outcomes (X, x) with probabilities (p, (1 - p)). 

$-bet: yielding outcomes (Y, y) with probabilities (q, (1 - q)). 

X and Y are assumed to be large money amounts, whilst x and y are assumed to be very small, 

possibly negative, money amounts. The key point is that p>q (so that the P-bet has higher probability 

of a large outcome) and that Y>X (so that the $-bet has the highest large outcome). The labeling of 

the bets therefore reflects the fact that those faced with the P-bet face a relatively higher probability of 

a relatively low gain, while in the $-bet, a relatively smaller probability of a relatively high gain exists. 

For example: 

P-bet: $30 with 90% probability, and zero otherwise. 

$-bet: $100 with 30% probability and zero otherwise. 

The expected gain of the $-bet is higher than that of P-bet and Lichtenstein and Slovic (1971,1973 

and others such as. Grether and Plott, 1983) have produced evidence that there is a tendency to choose 
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the P-bet over the $-bet, yet there is also a willingness to sell the right to a P-bet for less than the right 

to engage in a $-bet. In terms of risk-aversion, this means that when directly asked, the P-bet would be 

chosen, but that there was a willingness to accept a lower certainty-equivalent amount of money for a 

P-bet than for a $-bet. In terms of the above example, this means that minimum selling prices would be 

$25 for the P-bet and approximately $27 for the $-bet. 

There have been numerous claims that this is tantamount to a violation of the transitivity axiom. 

Such claims are based on the argument that one is indifferent between the certainty-equivalent amount 

(which can be regarded as the "minimum selling price") of the bet or taking the bet. So, in utility terms 

U(P-bet) = U($25)and U($-bet) = U($27). Using the simple principle of monotonicity, it can then be 

argued that more riskless money is better than less riskless money, so U($27) > U($25), so forcing the 

conclusion that U($-bet) > U(P-bet). However, direct questioning usually reveals a preference for P-bet 

over $-bet, which implies U(P-bet) > U($-bet), thereby demonstrating the intransitivity, which of itself is 

not necessarily a desirable result. Out of all the preference axioms it is generally agreed that transitivity 

represents the core of rationality, but it is interesting to note that modern general equilibrium theorists 

have apparently been able to eliminate it without creating difficulties in proving the existence of Walrasian 

equilibrium. (see Mas-Colell, 1974 for example). So the appropriate question would appear to be whether 

preference reversals observed in an experimental context do in fact reveal "intransitivity"? 

The clearest doubt about this is contained in the work by Karni and Safra (1986,1987) and Holt 

(1986), where it is indicated that experiment design may be affecting results, forcing the conclusion 

that it may not be intransitivity that is being observed, but an inability to identify certainty-equivalent 

amounts. The explanation being that decision makers often overstate minimum selling prices for lotteries 

for which there is less interest. The argument being that it is the independence and not transitivity that 

is being violated. 

However, an alternative strand of thinking has tried to formulate an alternative reasoning for the 

existence of preference reversals in the form of non-transitive expected utility theory. The idea being to 

provide a rational underpinning for the apparently irrational aspect of preference results. The foremost 

among these explanations is regret theory suggested by Graham Loomes and Robert Sugden (1982,1985), 

David Bell (1982) and Peter Fishburn (1982). The core of their argument is that choosing a bet not initially 

owned is a fundamentally different proposition to selling a bet that was not initially possessed. In terms 

of the above example, selling the $-bet only to find that the buyer then wins the high-yield outcome, will 

engender more disappointment for having sold a subsequent winning bet than not having chosen the bet 

in the first place. 

Based on this idea, Loomes and Sugden suggested a regret/rejoice function for pairwise lotteries that 
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have both the outcomes of the chosen and the foregone lottery. For example, suppose p and q are two 

lotteries, such that if p is chosen and q foregone and the outcome of p turns out to be x and the outcome 

of q is y, then the difference in the (elementary) utilities between the two outcomes can be taken as a 

measure of rejoice or regret 

r(x, y) = u(x) - u(y) (1.11) 

which is negative in the case of regret and positive in the case of rejoice. The basic idea is therefore that 

faced with alternative lotteries the decision maker will not try to maximize expected utility, but instead 

to minimize expected regret (or maximize expected rejoicing). A simple example helps to illustrate the 

point. Imagine the following two lotteries with the following properties over the same set of outcomes 

Lottery p Lottery q 

Probabilities (pl, 
.., pn) (q� 

.., qn) 

Finite set of outcomes U(p) => piu (x2) 
i 

U(q) = Eq, u (xj) 
3 

The expected rejoice/regret function is therefore expressed as follows 

(1.12) 

E(r(p, q)) = 
>Piu(xi)-EQju(xj) (1.13) 

ij 

_ 
EEPigj[u(xi)-u(xj)J (1.14) 

ij 

_ 
EPigjr(xi, 

xj) 
(1.15) 

ij 

The obvious advantage of the regret/rejoice model is that the indifference curves over lotteries derived 

from it can be intransitive in so far as they yield up preference reversals. It is also intuitively appealing that 

minimizing expected regret is a valid criteria for rational choice. Importantly for this thesis, regret theory 

seems to be able to replicate fanning out while alternative expected utility theory cannot account for 

preference reversals, so it has been argued (see Sugden, 1986 for example) that regret theory is inherently 

more robust as a basis for decision making, but the Karni-Safra critique implies that such claims are far 

from conclusive. 

Subjective expected utility 

According to von Neumann-Morgenstern, probabilities were objective and in that they were simply as- 

sumed to exist. Three versions of this basic objectivist position exist. The classical view stated by de 

26 



Laplace (1795) argues that the probability of an event in a random trial is the number of equally likely 

outcomes that lead to that event divided by the total number of equally likely outcomes. This is based 

on two ideas, namely, the principle of cogent reason whereby physical symmetry is taken to imply equal 

probability and the principle of insufficient reason whereby equal probability should be assigned if it is 

impossible to know which outcome is more likely. The main problem with this approach is the meaning of 

symmetry and the possibly non-additive and the frequently non-intuitive results arising from applying the 

principle of insufficient reason. Subjective expected probability has therefore been challenged by many 

ideas, the most prominent being the relative frequentist concept put forward by von Mises in 1928 and 

applied by Reichenbach in 1949. The relative frequentist approach suggests that the probability of any 

given event in a particular trial is expressed in the relative frequency of occurrence of that event in an 

infinite sequence of similar trials and can be seen as an extension of Bernoulli's law of large numbers 

which claims that occurrence of a particular event a set number of times (k) in n identical and indepen- 

dent trials, then if the number of trials is arbitrarily large, such that k/n should be arbitrarily close to 

the objective probability of that event. The relative frequentists therefore claimed the high ground by 

defining probability as the limiting outcome of an experiment, independent of the existence of the notion 

of an objective probability. The idea of infinite repetition is clearly an idealization, but the idea caused 

problems for the objectivists. For how can it be possible to discuss the probability of the winners of events 

such as elections when they are deemed to be intrinsically unique ? As a result of this conundrum, some 

relative frequentists have opted to accept the inherent limitations of probabilistic reasoning to controllable 

situations, thereby conveniently confining unique random events to be not applicable. Yet others were 

unhappy with such a compromise on the scope of the applicability of probability reasoning. In attempt 

to reconcile these issues alternative directions have led to the work of Karl Popper (1959), resorting the 

propensity concept of objective probabilities as the way of explaining the tendency of Nature to yield a 

particular event on a single trial, independent of it being associated with any long-run frequency measure. 

These propensities are assumed to objectively exist, even if only in conceptually. 

Statisticians and philosophers object to this view of probability, on the grounds that randomness is not 

an objectively measurable entity but rather a knowledge issue, making probabilities epistemological rather 

than ontological as an issue. Adherents of such a view, see a coin toss as not necessarily characterized 

by randomness, on the grounds that if factors such as shape and weight of the coin, the strength of the 

tosser, the atmospheric conditions of the room in which the coin is tossed, the distance of the coin-tosser's 

hand from the ground, etc., were all known in advance, then it would be possible to predict with certainty 

whether a head or tail will result from the toss. Such information is usually missing, so it is convenient to 

assume it to be a random event and assign probabilities to heads or tails. This implies that probabilities 
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are a measure of a lack of knowledge about conditions which might affect coin tossing, so that they 

represent prior beliefs about the coin tossing experiment. Knight expressed it neatly as follows 

"... if the real probability reasoning is followed out to its conclusion, it seems that 

there is `really' no probability at all, but certainty, if knowledge is complete". 

Knight (1921, p. 219) 

The knowledge based view of probability originates in the work of Bayes (1763) and de Laplace (1795) 

and can be divided into two broad groups, namely, the logical relationists and the subjectivists. The 

position of the former group was best set out in Keynes's Treatise on Probability (1921) and, later on, 

Rudolf Carnap (1950). Keynes (1921) argued that there is less subjectivity in epistemic probabilities than 

is commonly assumed as there is a sort of "objective" (although not necessarily measurable) relationship 

between knowledge and the probabilities that are deduced from such knowledge. For Keynes and logical 

relationists, knowledge is disembodied and not personal: 

"In the sense important to logic, probability is not subjective. A proposition is not 

probable because we think it so. When once the facts are given which determine 

our knowledge, what is probable or improbable in those circumstances has been 

fixed objectively, and is independent of our opinion. " 

Keynes, 1921, p. 4. 

Ramsey (1926) fundamentally disagreed with Keynes, arguing instead that probability is related to 

the knowledge possessed by a particular individual alone. According to Ramsey, personal belief governs 

probabilities and not disembodied knowledge, thereby making probability subjective. Subjectivism in this 

form had been around since economists such as Irving Fisher (1906 and 1930) had first given it expression. 

But the main difficulty with the subjectivism is that it appeared impossible to derive precise mathematical 

expressions for probabilities from purely personal beliefs. If it is accepted that assigned probabilities are 

subjective, which implies that randomness itself is a subjective phenomenon, how can it then be possible to 

construct a consistent and predictive theory of choice under uncertainty? von Neumann and Morgenstern 

(1944) succeeded in this with objective probabilities, so the task was at least made manageable. But 

using subjective probability, that was far closer in meaning to Knightian uncertainty, made the task seem 

impossible. 

Ramsey's seminal contribution in his 1926 paper (which was not published until after his death in 

1931) was to put forward a method of driving out a consistent theory of choice under uncertainty that 

was capable of isolating beliefs from preferences, yet still maintaining subjective probabilities. Ramsey's 
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was the first attempt at an axiomatization of choice under uncertainty - more than a decade before 

von Neumann-Morgenstern's work. It is also worth noting that Bruno de Finetti (1931,1937) had also 

(independently) suggested a very similar derivation of the subjective probability concept. To understand 

how subjective probability works, it is only necessary to consider problems like horse racing, where most 

wagering bets face more or less the same lack of knowledge about the horses, the track and the jockeys. 

Yet, while sharing the same knowledge (or lack of knowledge), there is a variety of different bets on the 

winning horse. The basic insight of the Ramsey-de Finetti work is that through observing bets, it is 

possible to infer the underlying personal beliefs about the outcome of the race. Ramsey and de Finetti 

therefore argued that subjective probabilities can be inferred from observation of people's actions as a 

sort of revealed preference or revealed belief theory of decision making. 

Ramsay and de Finetti faced stiff competition from two other subjective probability theorists, Koop- 

man (1940) and Good (1950,1962), who both believed the Ramsey-de Finetti approach too constricting, 

because taken to the limit, the approach implies that a belief only qualifies as a belief if it is expressed 

through actual choice behavior. According to Koopman (1940) in contrast, the intuitive approach argues 

for probabilities having been derived directly from intuition and existing prior to objective experience. 

Subjective probabilities do not always necessarily have to be revealed through choice and even if they 

do, they usually occur in the form of intervals of upper and lower probabilities rather than precise point 

values, so that they are only partially ordered - an idea dating back to Keynes (1921,1937), but most 

prominent in Shackle's work (1949,1955,1961). 8 

But probably more importantly, the intuitionists assert that not all choices reveal probabilities. That 

this may be so, can be seen from the fact that if the Ramsey-de Finetti analysis is taken to its logical 

extreme, choice behavior may reveal probability assignments that the owner had no idea about possessing 

! Common examples of this abound, such as betting on horses in a race simply because the name of the 

horse appeals and not always because of a belief of winning - sentimentality can play a part. Adopting a 

Ramsey-de Finetti approach would imply that such a choice behavior would reveal a subjective probability 

assignment, even though the agent had actually made no such assignment or had no idea that he made 

one. It is therefore possible to assert that the implicit assumption underlying the Ramsey-de Finetti view 

is the existence of state-independent utility, which is dealt with later in this review (but see for example, 

Karni, 1996). 

One final point to note is that one aspect of Keynes's (1921) work has resurfaced via the so-called 

Harsanyi Doctrine, or the common prior assumption (e. g. Harsanyi, 1968). This states that decision mak- 

ers possessing the same knowledge, ought to have the same subjective probability assignments. Though 

It can be argued, that the Arrow-Debreu state-preference principle is an intuitionist view. 
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interesting, this notion is not stated either explicitly or implicitly in the subjective probability theory of 

either the Ramsey-de Finetti or intuitionists. Harsanyi grew mostly out of information theory and un- 

derpins parts of rational expectations theory - both of which enjoy tenuous links with uncertainty theory. 

Clearly, information theory cannot be joined to subjective probability too closely, because its rational 

is, to define an objective and deterministic linkage between information or knowledge and the choices 

made by decision makers, which makes it critical to filter out the idiosyncrasies permitted in subjective 

probability theory. 

The axiomatisation and development into the full theory of subjective expected utility of the Ramsey- 

de Finetti view was achieved by Savage in 1954. Anscombe and Aumann's (1963) simpler axiomatization, 

however, has the advantage that it synthesised both objective and subjective probabilities into a single 

unified theory. The downside, however, is that the synthesised theory lost some of its generality during 

the synthesis process, such that their version of Savage's axiomatization of subjective expected utility 

theory is generally seen as an intermediate theory because it requires lotteries with objective probabilities. 

Anscombe and Aumann assume that an action f is no longer just a mapping from states S to outcomes 

X, but rather f: S -º A(X), where 0(X) is the set of simple probability distributions on the set X, 

so that a consequence is no longer a particular value of x, but a distribution pE 0(X), so that the set 

of consequences 0(X) are lotteries with objective probabilities, such that a result the components of the 

Anscombe and Aumann (1963) theory are the following: 

S is the set of states 

L(X) is the set of consequences (assumed to be objective lotteries on outcomes) 

f: S -º 0(X) is an action (e. g. a horse in a race, or a lottery combination) 

F= if If: S -' L(X)} is the set of actions 

_hC 
FxF are preferences on actions 

such that >hare a binary relation on actions F that fulfill the von Neumann and Morgenstern axioms 

already described, where F is a mixture set such that for any f, g EF and for any aE [0,1], another 

element af+ (1- a)g EF can be associated, defined pointwise as (a f+ (1- a)g) (s) = of (s) + (1- a)g(s) 

Vs E S. This is effectively a combination of subjective and objective probabilities (which behaves like a 

compound lottery but where the probabilities are unknown), with the payoff from the first lottery being 

a ticket for the second lottery. This means that the expected utility function is state dependent because 

the second lottery can only be played after the state sES has occurred: U. :A (X) - R, so that U. (f,, ) 

is of the following form 

U3 (fa) 
= fa (xi) U. (xi) 

xEX 

(1.16) 

This can be thought of as the expected utility of state sES given that a particular action f: S -º O (x) 
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has been chosen, so that assuming S is finite, gives 

U (f) _EU, (fa) (1.17) 
sES 

The important point to note is that the term on the right is not being multiplied by the probability 

that state s actually happens. This is because the probabilities are unknown. The Anscombe-Aumann 

approach is therefore a state-dependent expected utility representation of the utility of individual act, f. 

Two key questions immediately follow from state-dependent utility. First, is the approach generalisable 

to preferences over actions; and second, is it possible to demonstrate state-independence ? Answering 

these questions requires the addition of three further axioms: 

Axiom 5 (Null-states) a states ES is a null state if (fl, ..., 
f, 

_1, p, f8+1, 
... 

fn) Nh (fl, ..., 
f, 

_1,4ý 
fd+i+ 

"""fn) 
for all p, gEA(X). 

Axiom 6 (Non-degeneracy) these exists an f, gEF such that f >h g, so that >his non-empty. 

Axiom 7 (State Independence) let sES be a non-null state and p, qEA (X) 
. 

Therefore: 

(fl, 
""", 

fa-1, P, f8+1, 
... 

fn) >h (fl1 
... ' 

fe-1, q, fa+1, 
... 

fn), so that for every non-null state tES, the follow- 

ing can be stated: (f l ,..., 
ft-,, p, ft+1, 

... 
fn) >h (fi, 

..., 
ft-1, q, ft+l7 

... 
fn) 

Taken together, these three axioms make it possible to state that if p >h q at non-null state sES, then 

p >h q at any non-null state tES, thereby guaranteeing that the preference ranking between lotteries p 

and q is state independent. These axioms are also sufficient to be able to state Anscombe and Aumann's 

(1963) state independent expected utility representation: 

Axiom 8 (Anscombe-Aumann) suppose S= [sl,... sn] and that A (X) is a set of simple probability 

distributions, with >hbeing a preference relation over the set F= If If: S -º A (X)}. Then >hsatisies 

the axioms above if and only if there is a unique probability measure it on S and a non-constant function 

u: X -º R such that for every f, gEH, it can be stated that 

f ?h9 if and only if (s) > fa (x) u (x) ?> (s) > 
9a (x) u (x) (1.18) 

sESa ZEX SESn XEX 

The Anscombe-Aumann state-independent utility function is important because it allows the expres- 

sion of preferences over actions via expected utility decomposition based on the utility of one action being 

greater than another. It is also important, because from it developed the work on state preferences and 

state contingent markets, to which we now turn. 
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State preferences 

The state-preference approach to decision making in the presence of uncertainty was introduced by Arrow 

(1953) and further expanded by Debreu (1959), but was popularised by the work of Hirshleifer (1965,1966) 

on the theory of investment and by Radner (1968,1972) and others in finance and general equilibrium. 

The core of the idea is that it is possible to reduce choices under uncertainty to a more conventional 

indifference curve choice under certainty problem by an appropriate change in the commodity structure. 

It is this single feature that distinguishes the state-preference approach from the more microeconomic 

work on choice under uncertainty of von Neumann and Morgenstern (1944), because preferences are not 

directly formed over either simple or compound lotteries. Preferences are instead expressed with respect to 

state-contingent commodity bundles. In its reliance on states and choices of actions which are effectively 

functions from states to outcomes, it is therefore much closer in spirit to Savage (1954), but differs from 

Savage as it does not rely on the assignment of subjective probabilities (but such a derivation can be 

supported). 

The fundamental premise of the state-preference approach to uncertainty is that commodities are 

differentiated by both their physical properties, location in space and time, but also by their state. To 

see that state is important, consider the simple example of an airline seat, whereby a seat on a flight from 

London to Paris on a Wednesday morning is a very different price from a seat on a London to Paris flight 

on a Friday evening. So, to use an abstract algebraic representation, if S is the set of mutually-exclusive 

states, then every commodity can be indexed by the state of nature in which it is consumed, enabling 

the construction of a set of state-contingent markets. Assume also that the number of states is n, giving 

nS commodities and thus nS prices, such that the commodity space X is a subset of R"S. If x is the 

amount of commodity i delivered in particular state s and p is the price of commodity i in state s, then 

table 1 shows how state contingent markets for every good can be expressed in terms of a simple matrix 

of possibilities. 
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Table 1: State-contingent markets 

i- Goods -+ 

I 
States 

1 

xi: S -º RII XI I X2 I ... Ix{ I ... 1 xn 11 
The strengthf this approach is that it is no longer necessary to rely solely on money outcomes. 

Choices can now be couched in terms of bundles of goods in any given state. For example, reading down 

a column gives the amounts of a good in alternative states, whilst reading across a row gives the amounts 

of each good in each state. In order to calculate the monetary value of bundles a set of state-contingent 

prices pi, that will populate a matrix in analogous fashion to table 1. Decisions makers are therefore 

assumed to maximise their utility functions given a range of bundles of goods, which cost psix8i, available 

in alternative states which span the good space, XC R"5. If preferences possess regular Arrow-Debreu 

properties over outcomes, X, then it is possible to define a quasi-concave utility function U: X -º R 

representing preferences. Such preferences are not over lotteries in the sense of von Neumann-Morgenstern, 

but rather using state-contingent preferences, so that the idea of randomness is conveniently side-stepped, 

which interestingly, given that U is quasi-concave, means that the Arrow-Pratt concept of risk-aversion 

does not sit comfortably in this model. 

State-preference theory can also be linked into Savage's (1954) subjective expected utility and the 

theories of risk-aversion, by simply assuming the existence of a state-independent utility function u: C -º 

R, that is. a real-valued mapping from the good space CC R'1, so that preferences over state-contingent 

goods can be summarized by the expected utility function 

U(x) _ 
Zirsu(X$) 

_ 
Z7rau(xal9xa2r... 

7x8n) 
(1.19) 

$ES sES 

such that the utility of a bundle of goods, x, is the sum-product of elementary (state-independent) utilities 

derived from state-contingent bundles of goods, u(x, ), using subjective probabilities, pi, .., Ps as weights. 

Similarly to the Savage framework, a given p, is the subjective likelihood of the emergence a particular 

OR is assumed that references work row first column second. So that X12 means the amount of good 2 available in state 1. 

1 2 
... 

i 
... n 

1 X11 X12 ... 2{1 ... 2n1 4- X1 

2 X21 X22 ... X2i ... X2n a- X2 

... ... ... ... ... ... ... 

3 Xsl Xs2 ... xs{ 
... X8n 4-- Xs 

... ... ... ... ... ... ... ... 

S XS1 XS2 ... Xgl ... X S, n r- Xs 

X1 X2 ... Xi ... Xn 
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state sES, so that a vector of subjective probabilities, ir = [7r1, 
... r5] where > 7re = 1, summarise beliefs 

sES 

about the likelihood of occurrence of alternative sates. In analogous fashion, it is possible to see the link 

with the concept of risk-aversion by seeing that the relative quasi-concavity of the utility function U in 

state contingent goods represents the degree of risk-aversion. 

Notwithstanding U: X -º R captures beliefs about states and attitudes towards risk, it is not a 

necessary part of state-preference construction and the entire approach could proceed without using this 

assumption. It is also neither necessary nor desirable that preferences in this scenario be reconciled with 

the Savage (1954) axioms. To see that this is the case, consider the example that state-dependent utility 

may be required as a way of capturing the idea of random preferences. Then even if it were possible to 

extract subjective probabilities irl, .., irS, it could only be achieved through a decomposition along the 

lines of U(x) _E irau, (x3) where the important subscript s on the elementary utility function implies 

eES 
that utilities are themselves state dependent. In this case, the same good in a particular state is simply 

valued more by the consumer than the same good in another state independently of the probabilities of 

the states occurring. 

However, assume for a moment that U: X -º R has an expected utility construction with state- 

independent utility, then the individual optimum is defined by the following optimisation problem 

max U=Z 7r, u (x8) (1.20) 

sES 

s. t. (1.21) 

ýPex3 <_ EPaes (1.22) 

sES $ES 

where e, = [el� 
..., e,,, ] is a vector summarising outcomes in each state, which, using A to represent the 

Lagrange multiplier, yields the Lagrangian 

L=Zirsu(x�)+A EP9ee-EP8x8 (1.23) 

$ES sES 8ES 

Differentiation with respect to every state-contingent good (assuming an interior solution) yields the 

following set of first order conditions 

dL 
_ ir, u (xi, ) - ? pt,, `di = 1, 

..., n and sES (1.24) 
dais 

The budget constraint is fulfilled, so that F, p, e, _E pax,, so that as there is a single multiplier across 
sES 8ES 

the first order conditions, it implies that at the individual optimum, for any particular good i is given by 
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the condition that its expected marginal utility will be equated across states 

In 
t (xil) 

= 
lnlü (xi1) 

_ 
lrsu (xis) 

(1.25) 
Pil Pil pis 

Arrow (1953) called this condition the fundamental theorem of risk-bearing. It is easy to see that if there 

was no expected utility decomposition, then the numerator of each equation would simply be -, which 

is the partial derivative of the original utility function with respect to state-contingent good x2310 

Figure 1.2 shows the individual optimum for a single commodity (which could be either money or 

consumption) and two states, S= (1,2). Thus, a commodity bundle, in this case, is a pair of state- 

contingent goods, x= (xl, X2) where xl is the amount of the good delivered in state 1 and X2 the amount 

of the same commodity delivered in state 2. Assume that there exists a utility function U: X -º R 

representing preferences over X and that U assumes the expected utility decomposition, such that U(x) = 

7rlu(xl) +7r2u(x2), where ir1 and 712 are the subjective probabilities of state 1 and 2 occurring (such that 

71i + 72 = 1). Given that U is quasi-concave in X, then the upper contour set in Figure 1.2 is a series of 

convex indifference curves, with slope given by 

dX2 (2) "1- 
['u 

(X2) 
(1.26) 

where the right hand side is the negative of the marginal rate of substitution of consumption in the two 

alternative states. So, when xi = X2 (as at point c in Figure 1.2), u (xi) =u (x2), so that the slope of 

the indifference curve is reduced to -(lr1/72), such that along the 45° (or certainty) line, the slope of each 

and every indifference curve is equal to -(7rl/ir2). The important point to note is that unless the decision 

maker assigns equal subjective probability assessments to both states, lnl/7r2 will generally not be equal 

to 1. This of course only holds true if it is possible to assume that decision makers have an underlying 

state-independent utility function. If this were not so and utility were state-dependent instead, then the 

slope of the indifference curve would be dx2/dxllu = -7nlul'(x1)/7r2u2'(x2), such that the reason that 

the slope of the indifference curve on the 45° might be different from 
,1 could still be due to different 

beliefs about the probability of states occurring. But this may also be that true that decision makers 

have different assessments about the utility value of the same consumption in different states. In terms 

of the earlier airline seat example, it may simply be that a seat on a Friday is simply more valuable to 

the consumer than a seat on a Wednesday. Therefore, it may be that both beliefs and state-dependent 

preferences can together explain why the slope of the indifference curve is not equal to 1 on the 45° line. 

lo Alternatively, if subjective probabilities could be extracted, then it would be possible to retain state-dependent utility 

functions and so express the fundamental theorem of risk bearing througn p is''ý 
_ w2 

p ß='2l, 
etc. 

35 



But, by assuming that preferences are state-independent, as was required in order to obtain expected 

utility decomposition, then the only explanation that can rationally remain is differing beliefs. 

x2 

C, 

X 

e, 

Figure 1.2: Optimum for individual decision maker 

Given that the decision maker is assumed to possess a bundle of state-contingent goods, as shown by 

point e= (el, e2), shown in Figure 1.2 as point e. As el > e2, the endowment of the decision maker gives 

more of the bundle in state 1 than in state 2, such that if the decision maker consumes their endowment, 

utility level U(e) will be achieved. If state-contingent markets exist, such that the decision maker can 

trade state-contingent goods, then let pi be the price of the good in state 1 and p2 the price of the good 

in state 2 (which are assumed to be both known and given). The endowment and prices taken together 

define a budget constraint that passes through point e, as shown by the dotted line in Figure 1.2 with 

slope -lr1/7r2. The decision maker therefore faces the following optimization problem 

maxU = 7r1u(xl) + 7r2u(x2) 
(1.27) 

s. t. 

Plxl -+2x2 < 7rlxl + 1r2x2 

(1.28) 

(1.29) 
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which yields the familiar Lagrangian and first order conditions for an interior solution 

dL 
= irlu'(xl) + Apt =0 (1.30) 

d 

dxl 
dL 
dx2 = 7r2u'x2) + XP2 =0 (1.31) 

Pl X1 +P2x2 = irlxl +7r2x2. (1.32) 

where A is the Lagrangian multiplier. When the first two partial differentials are combined it can be seen 

that 
7r1 U, (XI) pi 

72 
W(x2) 

P2 
(1.33) 

so that the decision maker selects the optimal bundle of state-contingent goods where the highest in- 

difference curve is at a tangent to the budget constraint. The bundle of goods x* = (xi, x2) yielding 

utility U(x*) in Figure 1.2 is the individual optimum in this simple two-state example. The fundamental 

theorem of risk-bearing holds because the first order conditions imply that rlu'(xl)/ir1 = 7r2Ui(x2)/1r2 

which means expected marginal utility per monetary unit is the same for all states. As x* does not fall 

on the certainty line -xi > x2, different amounts will be received in different states. The decision maker 

could have bought a bundle of goods containing no risk, e. g. d on the certainty line, but an indifference 

curve passing through d would produce utility lower than u(x*). 

Figure 1.2 shows that this happens because the relative prices of the state-contingent goods do not 

match up with the subjective assessment by the decision maker of the likelihood of occurrence of both 

states, which can be seen from the fact that 7r1/7r2 > pl/p2. This implies that market prices of goods in 

different states are not fair, which can be easily confirmed by supposing that probability assessments are 

7r1 = 0.75 and ire = 0.25 while the market prices are pl = 0.5 and p2 = 0.5, so that 7r1/1r2 =3>1= p1/p2" 

The decision maker therefore believes the probability of state 1 is much greater than that of state 2, yet the 

market generates the same prices for goods in both states. This in turn occurs because the decision maker 

is endowed mostly with state 1 good, so that a lower price results from selling it than if the market shared 

his probability assessments. Consequently, the decision maker will not sell most of good 1 and will move 

to a position, x', where he still has a random outcome. If prices coincided with the probability beliefs of 

the decision maker, such that the budget constraint had slope -ir1/ir2i then the budget constraint would 

be the dotted line passing through endowment e in Figure 1.2. In such a case, the consumer optimum 

is easily seen to be c= (cl, c2) and the decision maker would move onto the 45° certainty line, thereby 

achieving a much higher level of utility U(c) than previously. 

The above analysis does not however mean that a decision maker would always prefer probabilistically 

fair prices and there will generally be both gainers and losers in most market situations, as can be seen from 
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the following simple example. Imagine that the decision maker had an endowment at point f in Figure 

1.2, facing unfair prices (pl, p2) but keeping the same beliefs (7 1, in2). In such a situation the decision 

maker would shift to the optimum x' = (xi, x2), resulting in a lot of state 2 good to sell. However, the 

market values state 2 good more than the decision maker thinks it likely that state 2 will occur, so that 

the decision maker is getting a good buy at the "unfair" prices. If prices were "fair" in this situation, then 

the budget constraint would be a line passing through f with slope -7r1/7r2 in Figure 1.2. In such a case, 

the decision maker would move to the certainty allocation at point d, so that it is possible to see that the 

utility achieved in this case will be lower than U(x*). Therefore, a decision maker with an endowment at 

f would lose if the market prices were made fair; because there would be a preference that the prices be 

kept at their "unfair" rate of -(pi/p2). 

Although a simple example, Figure 1.2 can be used to make two further points. The first, is that if a 

decision maker starts from a position of certainty (i. e. on the 45° line) and is offered fair prices, he will 

remain on the 45° line. This can be clearly seen by considering the decision maker starting at allocation 

c, with fair prices at -7r1/7r2 so that the budget constraint is the dashed line. U(c) is therefore the highest 

utility the decision maker can achieve. This implies that starting from a position of certainty, a decision 

maker will not accept or seek "fair bets", but will undertake unfair bets if the odds are perceived to be 

advantageous (as in the case of an agent starting at d in Figure 1.2 and then being offered unfair prices 

which took him through to, say, x*). The second point is that if a decision maker begins in an uncertain 

situation (such as e or f in Figure 1.2), then movement to a position of certainty occurs if the price 

is fair and a risky asset is purchased as a means of making the move! Note that the purchase of the 

risky asset is only undertaken to offset (or hedge from a trading perspective) the riskiness of the original 

endowment in order to provide certainty. One caveat is that the decision maker may not necessarily move 

to certainty position if the odds are unfair, but might optimally choose a risky situation, usually where 

the probabilities are perceived as favorable, such as a move from e or f to x'. 

Characterisation of risk aversion 

It is clear that the shape of an indifference curve can reflect the subjective assessments of the probabilities 

of different states, but an equally interesting question is how an indifference curve can reflect "risk- 

aversion". Arrow (1965) and Pratt (1964) characterize risk-aversion by the concavity of the utility function 

over nominal income. The indifference curves in the simple two-state case of Figure 1.2 are a contour 

mapping of a quasi-concave utility function over a single commodity with two possible payoffs, which does 

not provide a clear way of seeing risk-aversion. However, if concavity is imposed on the utility function, 

thus forcing risk-aversion, such an assumption would also translate into the convex indifference curves in 
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the space of state-contingent goods as shown in Figure 1.2. 

The theory of risk aversion using the state-preference approach was introduced by Yaari (1969). Figure 

1.3 provides an example Yaari's approach, for a simple case of two agents, U and V, with two types of 

indifference maps. Given that the indifference curves U are more "convex" than the indifference curves 

V, does the extra convexity imply that U is more risk averse than V? There are two answers to this 

and the first uses the risk-premium framework similar to Arrow-Pratt, whereas the second involves a new 

definition of risk-aversion. Using Figure 1.3, let E_ 7rlx1+7r2x2 denote a particular level of (subjectively) 

expected return, so that the line labelled E with slope -irl/ire represents all the combinations of good in 

state 1 and good in state 2 that yield identical expected return E. Analogously, let F= lrlxl' +7r2x2' be 

another level of expected return, such that the line F also has slope -lr1/7r2 represents all the combinations 

of goods in both states that yield the same expected return F. Given that the line E is always below the 

line F, then every allocation of goods on E provides a lower expected return than any allocation of goods 

on F. 

iT 

Pý 

C,, s 

C., 

X2 

Figure 1.3: Risk Aversion in the Yaari model 

Now examine the initial risky allocation x= (xl, x2) in Figure 1.3, at which, there are utility levels 

U(x) and V(x) for the two decision makers. As the objective is to obtain risk premia, certainty-equivalent 

allocations can easily be found by moving along the indifference curves to the 45° certainty line. Allocation 

cu = (cl 
, 
4) on the 45° line gives the same utility U(x), as allocation x, so that cu measures the decision 

maker U's "certainty-equivalent" allocation. c" = (ci, c2) similarly gives the same utility to the second 

decision maker V (x), as was obtained at x, so that c° is V's "certainty-equivalent" allocation. Calculation 

of the risk premia requires calculation of the amount of each commodity each decision maker would be 

willing to forgo to move from allocation x to the certainty-equivalent allocations c" and c". Both decision 

makers give up a lot of good 1, but may demand only a small and variable amounts of good 2 by way of 

c', e', C, x, x 



compensation. It is clear that as allocations e and x lie on the same curve E, they share the same expected 

return, so one possibility would be to traverse the E line from x to e and then calculate the risk-premium 

as the amounts of goods required to move from e to c" and c" respectively. The "risk-premium" decision 

makers U and V would each have to pay would therefore be bundles of goods given by 

7r "= (iri, i2) = (ei - di, e2 - 42) (1.34) 

and (1.35) 

i" = (iri, 72) = (ei - ei, e2 - 42) (1.36) 

Arrow-Pratt would argue that if any of the components in the risk-premia 7r" or 7r" are positive (or at 

least none are negative), then the decision maker is risk-averse. It is easy to see that both U and V 

are risk-averse as both rr" and r" are positive in their elements. Similarly, a risk-neutral decision maker 

would exhibit a zero risk-premium in both elements, in which case, there would have to exist a linear 

indifference curve that passes through both points e and x, so that e would be the certainty-equivalent 

allocation (the converse argument holds for the risk-loving decision maker). This can also be used as a 

measure as it is easy to see that the more risk-averse decision maker U pays a higher premium (in both 

elements) than V, making U more risk-averse than V. Yaari's (1969) criteria for risk-aversion is therefore 

defined as follows 

U is more risk-averse than V if, beginning from the same allocation, the set of risky allocations 

acceptable to U is a subset of the set of risky allocations acceptable to V. 

Figure 1.3 illustrates the implications of this via points f and g on the F line, because as E<F, then 

f and g give a higher expected return than e. Both U and V would reach a higher indifference curve (and 

therefore higher expected utility), than if given f, so that both U and V would accept the risky allocation 

f instead of e. But the more interesting point is g. At g, decision maker V would clearly obtain a higher 

level of utility at point g than e, so allocation g would be accepted. It is obvious that U would have lower 

expected utility at g than at e, so that U would not accept the risky allocation of g. Therefore, starting 

from point e, there must be at least one risky allocation that V would accept but U would not. From 

which, it can immediately be seen from the Figure 1.3 that the set of risky allocations acceptable to U 

forms a strict subset of the set of risky allocations acceptable to V- thereby establishing via the Yaari 

definition of risk-aversion, that U is more risk-averse than V. 

It is therefore clear that given the existence of a state-independent utility function, the three ideas 

can be linked together in the following loose fashion. Namely, that U is more risk-averse than V if 

1. The indifference curves of U are "more convejo than V. 



2. That the risk-premium bundle paid by U is greater than that paid by V. 

3. That V will accept risky allocations that U will not accept. 

More interesting than this trivial characterisation of Yaari's (1969) work, is the characterisation of the 

degree of risk aversion with respect to changes in wealth, which can be traced out as a wealth-expansion 

path as shown in Figure 1.4 by the curve OE. Recalling that wealth is represented by initial endowment, 

then assuming prices are actuarially fair, such that market prices and subjective beliefs coincide, then 

at any particular level of endowment e= (el, e2), we can define total wealth as W= lrlel + 7r2e2 which 

serves as our budget constraint. This is shown in Figure 1.4 by line W with slope -lr1/72. 
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Figure 1.4: Wealth Dynamics and Risk Aversion 

If initial wealth increases to e' = (el,, e2'), with prices remaining constant, then wealth will rise to 

W' = 7rlel'+7r2e2', so giving a higher budget line W' with slope -7rl/7r2. In familiar fashion, the optimum 

for the decision maker occurs at the point of tangency between the highest indifference curve and budget 

constraint, so that when wealth is W, then E= (xi, x2) is the optimum utility level U(w). The line OE 

traces the wealth expansion path. OE is constructed by tracing the individual decision maker optima 

at varying levels of wealth. The concept of decreasing/increasing rates of risk-aversion with respect to 

wealth can be seen in this framework, by considering what happens to wealth after point E. 

There are clearly many possible paths for wealth beyond E, as shown be points A, B and C. Figure 1.4 

shows points A and B as possible specific individual optima for a wealth level W', which yield indifference 

curves UA(w') and UB(w') respectively. An important point to observe is that the middle path EC is 

parallel to the 45° line, implying that the path EA is moving away from the 45° certainty line (increasingly 

risky) and the path EB is moving towards the 45° certainty line (increasing certainty). It is therefore 

tempting to say that if the wealth expansion path follows the EA track, it is decreasing absolute risk- 

aversion whereas if wealth follows EB, then increasing absolute risk-aversion is indicated, whilst if wealth 

follows EC track constant absolute risk aversion is pplied. 

o 
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This is easy to see, because as W is parallel to W, then simple geometry implies that the slopes of 

the indifference curves at the optimum when wealth is W are the same as at E, so that if A is the new 

optimum at W', then the slope of UA(w') at A must be the same as U(w) at E. Whereas if B were to 

be the new optimum on W', then the slope of UB (w) at B is the same as U(w) at E. Recalling that the 

marginal rate of substitution (given by the inverse of the slope of the indifference curve) at point E is 

given by 7rlu'(xi)/7r2u'(x2), then differentiating with respect to the logs of this term, gives the following 

expression 

dln(MRS) =I 
ul(xi)J 

dx1 - 
[ul'(xi), 

dx2 (1.37) 

which, given that the EC line is parallel to the 45° line, means that dxl = dx2 as we move along EC. 

This implies that along EC 

dln(MRS) =f 
lý(xi) UI(22)1 

dx (1.38) 

Now assume that there is an increase in wealth that moves the decision maker along EA to point A, then 

Figure 1.4 shows that if UA(w') is the optimum indifference curve, then the lower, dashed-line indifference 

curve UA(C) shows the indifference curve at point C if the line EA marks the true wealth expansion path. 

As the marginal rate of substitution at point A is clearly the same as that at E, then what is the implied 

rate at C? Logically, it must be less due to declining marginal rates of substitution 

dlri(MRS) =I UI(xi) u''(x2)1 
dx <0 (1.39) 

so that the marginal rate of substitution must have declined in the move from E to C, which implies that 

(1.40) 
u'(xi) UI(x2) 

Given that x2 > xi, then if consumption of state 2 good exceeds consumption of state 1 good, the 

Arrow-Pratt measure of absolute risk aversion of state 2 good is less than the absolute risk-aversion in 

state 2. However, remember that state 2 good is the same money good as state 1 good, so x2 > xi 

implies that shifting between xl to x2 implies increasing wealth. Therefore, the result given by equation 

1.40 implies that as wealth increases, the rate of absolute risk-aversion decreases. The dynamics of the 

wealth-expansion path EA therefore imply that there is decreasing absolute risk aversion (DARA) in the 

sense of Arrow-Pratt. It is also easy to see that if EB and not EA was the true description of wealth- 

expansion then the decision maker would be exhibiting increasing absolute risk-aversion (IARA). Finally, 

if EC was the true wealth expansion path, then the decision maker would be exhibiting constant absolute 

risk-aversion (CARA). 
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The more interesting question is how this notion of risk-aversion can be connected with the older one 

of increasing convexity indifference curves? The simple answer can be seen by supposing that the decision 

maker is at a point on the certainty line, such as point F with utility U(F) in Figure 4, which would 

imply a marginal rate of substitution of 

MRSF = 
7rlu `x* 

- 

7r1 

7r2Up (x2) 7T2 (1.41) 

To map out the dynamics, keep xl constant and let x2 rise, so that dx2 >0 and dxj = 0. This gives a 

vertical shift from F to G in Figure 1.4 and the convexity of the indifference curve implies that the MRS 

must rise, so that MRSS must be greater than MRSF, which in turn gives 

dln(MRS) =- [FU 

if (2j*) 

-u (-2) 

] 
dx2 >0 (1.42) 

so that the rise in dx2 generates an increase in the marginal rate of substitution. For dx2 >0 to be 

correct, it must be that -u"(x2)/u'(x2) > 0, giving positive risk-aversion. If, however, the marginal rate 

of substitution did not change with the increase in x2 (as would be the case if the indifference curves were 

linear) then 

dln(MRS) 1 u'(x2) 

]' 
2=0 

(1.43) 

such that as dx2 > 0, then -u"(x2)/u'(x2) = 0, giving risk-neutrality. The final point to note is that if 

there is a decision maker v whose marginal rate of substitution rises even more from the same change in 

dx2, then it is possible to see that 

Lv'(x2) J 
dx2 > 

Lu, 

ßx2) 

] 
dx2 >0 (1.44) 

Which clearly means that v displays a greater degree of risk-aversion. 

A state preference example of why robustness is important 

This chapter has so far analysed in detail the standard approaches to the way in which decisions are made 

in the presence of uncertainty. The clear question that arises from the foregoing analysis is how well does 

the utility maximisation paradigm explain decision making in the presence of uncertainty in the real world? 

To try to answer this question, recourse can conveniently be made to insurance, as an obvious application 

of the state-preference approach. Insurance is an explicit state-contingent contract paying an indemnity 

to the insured, if and only if, a particular event is deemed to have occurred -a situation analogous to 

conventional expected utility analysis. The state-preference approach to the problem of optimal insurance 
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was originally developed by Arrow (1963,1965), Eisner and Strotz (1963), Borch (1968). The simplest 

formulation is posed as a two-state model with a fixed premium per monetary unit of insurance coverage, 

-y with the set of states being defined as S= {A, N}, where A is an event state whilst in N no event occurs. 

If income is w= {wA, wir}, then wA represents wealth if an event occurs, whilst wN measures wealth in 

the case of no event occurring. Given that wA < WN, then the loss incurred if a trigger event occurs will 

be wN - WA > 0, with the consequence, as shown in Figure 1.5, that state-dependent wealth, w, lies below 

the 45° certainty line. Assuming the existence of a state-independent utility function that is defined over 

payoffs, gives the following representation of the utility of the decision maker at the endowment point 

U(w) - 7rau(tA) + (1 - 7rs)u(wN) (1.45) 

which is shown in Figure 1.5 as U(w), where 7r, is the subjective probability that an insured event will 

happen, so that (1 - ir, ) is the probability that the insured event will not occur. 

W. 

W. +A 

W. 4ir 

W. 

Figure 1.5: State preference and optimal insurance 

An insurance contract can be summarised by the payoff function: c=(, B, a) where a is the premium 

payment if no insured event occurs and 0 is the net indemnity if an insured event occurs, which means 

that if a decision maker purchases insurance expected utility is 

U(w, c) = lrsu(wA + 0) + (1 
- 7r8)u(wN - a) 

(1.46) 

Neither a nor ß are constant, but depend on C, the total amount of insurance cover chosen by the 

decision maker. Letting the total premium paid be proportional to the insurance cover, gives a= ryC 

where 7E (0,1] is the premium per unit of insurance cover. The net amount paid (usually referred 

to as the net indemnity) if an insured event occurs is 0=C- -1C, so that it is easy to see that the 

expected profits of the insurance company (assuming there is only one customer, or type of customer) are 
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(1-7r8)«-7r, f3. 
To adapt the insurance concept into the subjective probability approach, begin with the simple as- 

sumption of zero profits, which gives (1- 7r, )a - -7r, ß = 0, which when rearranged gives 1-. _', so the 

ratio of premium paid by the decision maker to his net indemnity is equal to the subjective probability of 

occurrence of an insured event. Replacing ß= (1 - ry)C and a= ryC, implies that -", 1. = 1_, ý , which 

in turn implies 7r, = ry, or simply put, the premium per monetary unit of insurance cover is equal to the 

subjective probability of an insured event. This "fair insurance" line, F, passing through w in Figure 1.5 

therefore represents the series of insurance contracts where 1y = 1ýý7 
for different degrees of cover 

and acts as the budget constraint for the decision maker. 

In terms of making an optimal decision, the decision maker's objective is to find the optimal amount of 

insurance cover C, given some unit monetary amount of cover ry, which implies the following optimization 

problem 

maxU(w, c) = 7r, u(wA +C- ryC) + (1 - 7r, )u(wN - ryC) (1.47) 

which upon application of the appropriate Lagrangian gives the first order condition 

OU(w, c) 
_ 7reu'(wq +C- 70 (1 - ry) + (1 - lr9)ü (wN - 7C)(-Y) =0 (1.48) 

ac 

which after some simple algebra gives 

u'(WN -'YC) 7re f(1-'Y) 
(1.49) 

u'(wA+C-yC) (1-ý, ) L7 

Then if insurance is "fair" such that ry = ir3, the above equation reduces to 

-1 
u'(wq+C-'7C) 

(1.50) 

which means that the marginal utility of an event state is equal to that of a non-event state. With 

state-independent utility, this implies that WA +C- 1C = WN - 'yC, which of course implies that 

C= wN - wA, such that the decision maker takes full insurance cover so that his entire income loss from 

an insured event is recovered. The optimal insurance cover is illustrated in Figure 1.5 by the endowment 

c= (wN - a, wA + ß), where the highest indifference curve U(c) is tangent to the fair insurance line F on 

the 45° certainty line. 

The full insurance cover result depends crucially on the assumption that -y = ir, (so called "fair 

insurance"). However, if the insurer were to decide to make super-normal profits, such that (1 - 7r8)a - 

7r�ß > 0, then this would imply that ry > r,, so that the premium per unit of insurance cover exceeds the 
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probability of an insured event. From the perspective of the decision maker, this is "unfair" insurance 

and is captured by the unfair insurance line G with slope 
y, in Figure 1.5. Therefore, in the unfair 

insurance case , the first order condition for the decision maker implies that 

tAwN -70 
- 

[_ir3 1< 
(1.51) 

U'(wA+C-yC) (1-ir, )J IL 
7J 

such that the marginal utility of a non-event state is less than the marginal utility of an event state. Given 

the assumption of quasi-concave utility, this implies that the utility of the decision maker in a non-event 

state exceeds utility in an event state, which implies that the decision maker must still be incurring some 

degree of loss in the case of an event such he cannot possibly be taking full insurance cover. In the case 

of a single decision maker, the optimum under "unfair" insurance is shown in Figure 1.5 at point c', the 

tangency of the unfair insurance line G with the highest indifference curve U(c'). Clearly, the decision 

maker does not have full insurance cover as he is off the 45° certainty line, so that the loss is not fully 

covered with wA + fi' < WN - a'. 

To understand the implications of uncertainty in the case of unfair insurance, it is interesting to 

ask whether more risk-averse decision makers take more insurance rather than less risk-averse decision 

makers? Let u and v be two decision makers, where u is more risk averse than v, but both have the same 

subjective probabilities of an insured event and the same loss. Figure 1.6 shows the greater risk-aversion 

of u by the greater convexity of u's indifference curve relative to v's. With fair-insurance, such that 7r3 =y 

the decision maker u is on the F line, so that both u and v will have full coverage at c with u(c) and v(c). 

With unfair insurance, the decision makers are on the G line, so neither u or v takes full insurance. Figure 

1.6 shows u's optimal contract will be at cu and v's at c" (giving utilities u(c") and u(c")). Figure 1.6 

also shows that wN - a° > wir - au, which implies that u's insurance cover is greater than v's, thereby 

illustrating risk-averse decision makers take greater insurance cover. 

Figure 1.6: Optimal insurance with varyingd6egrees of risk aversion 



But how robust is this result? If u is more risk-averse than v, then by Arrow-Pratt u= T(v), where 

T is a concave function. At v's optimum, the negative of the slope of v's indifference curve is equal to the 

premium ratio 

-dwA 
_ 

(1 - 7r, )v'(wN - yC°) 
_ 

(1- ý) 
(1.52) 

dwNI� lr, v'(wA + (1 - ry)Cv) 'y' 

where C" is v's optimal coverage. Suppose instead u holds v's insurance cover, then the slope of the 

indifference curve of u at endowment c" is 

-dwA 
_ 

(1 - 7r, )u'(WN - ryC") (1.53) 
dwNju 7r, u'(wA + (1 - ry)C") 

or given that u= T(v), so that u' = T'(v)v' 

-dwA (1 - 7r, )T'(V(wN - YCV))v'(WN - yC°) (1.54) 
dwNIu lr, T'(v(wA + (1 - ry)C"))v'(wq + (1- ry)C") 

which upon substitution gives 

-dwA 
_ 

T'(V(WN -. C")) -dwA (1.55) 
dwNlu T'(v(wA+ (1- ry)Cv))J 

LdWNIVJ 

so that the slope of u's indifference curve at c° is a function of the slope of v's indifference curve at c". 

Clearly, as v(WN - ryC") > v(wA + (1 - ry)C") at the allocation c°(as c" lies below the 45° line), then as 

T is concave, it is known that 

T'(v(WN - ryC")) < T'(v(WA + (1 - 7)C'")) (1.56) 

So that the ratio I T'(v 
wÄ+ 

1_ C� 
]<1, 

therefore the above formula implies that at c" 

-dwg -dwA 
dwN1 

u 
dwNIv 

(1.57) 

the marginal rate of substitution of u at c° is less than the marginal rate of substitution of v at c°, 

so that u's indifference curve is flatter than v's indifference curve. Figure 1.6 shows this by comparing 

the (dashed) indifference curve u(c") and indifference curve v(c"), which plainly shows that u's optimal 

insurance contract must lie further up the G curve, nearer to the 45° line, at point cu. Therefore, a" > a", 

which implies that C' > C", so that the more risk-averse decision maker takes on greater insurance cover 

than the less risk-averse - as predicted. 

The above analysis all seems to work quite predictably and cleanly. But how robust and stable is the 

analysis ? For example, what happens if instead of a well behaved Gaussian description of the probabilities 
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facing the two decision makers, their alternatives are governed by a distribution with heavier tails, so that 

extreme events are now much more likely to occur ? Do the same results on fair and unfair insurance 

still carry through ? What would happen for example if there were no market for the type of risk being 

insured in our simple example ? The insurance company would then presumably attempt to estimate 

unobservable parameters and calibrate some sort of model that gave reasonable prices for the insurance 

risk concerned. But what happens if their results are wrong ? These are the joint problems of model risk 

and model error. 

Further, from the perspective of the decision maker, just how robust would the optimality results be 

to changes in the form of the utility function ? What would be the impact of changing the optimisation 

to optimise not with respect to a single model, but with respect to a family of similar models ? It is well 

known that the classical utility approach contains no formal account of how the actions of the decision 

makers are influenced by the occurrence of subsequent insured events - in other words, no account is 

taken of feedback either in terms of information or in terms of the structure of the model itself. For 

example, how would contagion type effects such as natural disasters or terrorism impact the analysis ? Is 

utility maximisation still the appropriate model ? How might habit persistence affect the robustness of 

the utility function ? Is the standard model robust to any financing costs that may occur if a claim takes 

a long time to settle ? Are decision makers sensitive to the early resolution of claim uncertainty ? 

The above questions indicate two clear issues surrounding the classical utility approach. First, little 

or no account is taken of feedback in the standard utility maximisation model - actions or events in one 

period are not allowed to affect those in the next. The classical utility model is a static model that does 

not incorporate the dynamics of the underlying relationships. Second, uncertainty, where it is modelled, 

is generally only allowed to affect the parameters of the model - usually via the influence of probabilities. 

However, what if there is a possibility that the model itself may be incorrect in one or more significant 

respects ? Researchers such as Derman (1996) and Jacquier and Jarrow (1996/2000) were among the 

first to explicitly recognise model risk and model error. Their analysis identified three principal sources of 

model risk. First, is model identification and estimation errors. In the context of the insurance example, 

what if the premium calculation model is wrong, or what if the utility maximisation model is wrong ? 

Either way, even if the model is selected after meticulous analysis, both parties have no way of knowing 

ex-ante whether their model is correct or whether their parameter estimations are accurate. The second 

source of model risk is market imperfections. Problems for the insurance model might be that markets 

are not complete, that claims arrive discontinuously and that transactions costs exist. The final source 

of model risk is of course the improper use of a model. In terms of the insurance example, it may be 

that using a single number for premium may be incorrect as there may (for example) be size and market 
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segmentation effects to consider. 

There are therefore two questions. First, just how robust are results from the classical utility maximisa- 

tion model in such circumstances ? Second, what are the alternatives to the classical utility maximisation 

approach ? The aim of the next section is review the approaches to dealing with robustness from both a 

statistical as well as a mathematical perspective. To do this the section begins with a short discussion of 

the alternative approaches to robust optimal control, before proceeding to analyse the research applying 

these methods to decision making in the presence of uncertainty. 

1.4.2 Optimisation based decision making in the presence of uncertainty 

The previous section reviewed the research on the utility maximisation approach to decision making 

in the presence of uncertainty. The utility based approaches assume varying forms of optimal (usually 

maximising) behaviour on the part of the decision maker. However, beyond the use of simple probabilities, 

the utility maximisation approach pays little attention to how well the decision rules stand up to the 

existence and impact of uncertainty beyond the simple parametric uncertainty incorporated through the 

use of probabilities. The objective of this section, therefore, is to review alternatives to the utility based 

approaches to decision making in order to see how the development of rules in other disciplines copes 

with the wider impact of uncertainty. In other words, the question is "do other approaches to developing 

decision rules offer greater degrees of robustness in their modelling of the decision making process ?" 

Statisticians and engineers have been the main interested research parties in the area of robustness. 

Both groups have taken an optimising approach, but their paths have diverged significantly in many 

respects. On the one hand, statisticians have mainly focused on ways to make the parameter estimates and 

testing methods more robust using optimisation rules such as the least squares minimisation rule. Whilst 

on the other hand, engineers have been predominantly concerned with modeling multi-stage decision 

making processes to produce more reliable engineering solutions to such problems as space shuttle re- 

entry or cruise control, by explicitly incorporating the effects of feedback as a way of helping to minimise 

the effects of uncertainty on the operation of their physical systems. Engineers initially tried to achieve 

this aim by developing approaches to decision making that began by concentrating on optimality, but 

subsequently moved on to focus on the broader and more complex issues of robustness and stability of 

their models. 

This section therefore reviews each approach, beginning first with classical optimisation, followed by 

how robustness has been dealt with in statistics, then moving on to the different ways in which robustness 

has been approached in physical models via the far more explicit use of feedback loops. To achieve this 

objective, the following approach is followed. First, clear definitions are provided of the key concepts 
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necessary to understand and analyse the ideas of stability and robustness. There follows a detailed review 

and analysis of robust statistical methods. This is in turn followed by an introduction to and review of the 

literature and research on robust optimal control theory. The section introduces optimal control theory, 

the role of robustness and stability and uses a simple example to illustrate the critical principles in the 

context of models and decisions. There then follows a review of how robust optimality has hitherto been 

applied to dynamic models of multi-stage decision making problems in finance. In the final section of this 

chapter, the potential breadth and depth of opportunities for research in the area are examined and the 

theoretical basis and framework for the thesis is established. 

1.4.3 Robust statistical methods - robust estimation 

Initial interest in the robustness of decision making arose in engineering, where there was considerable 

focus on the problem of developing control systems that were both stable and robust in operation. The 

starting point for much of this work was classical regression which was used to estimate parameters of 

models that needed to continue to perform acceptably, even under extreme conditions. Robust operation 

was set up as an optimisation problem through seeking to find parameter estimates that were the best 

unbiased estimators with the minimum variance. Regression-based decision rules, often in the form of 

hypothesis tests, have often also been applied as part or the whole of a control system. This approach 

therefore lead engineers to concentrate on two main lines of research in regression analysis in an attempt to 

achieve their objective of finding control rules that were stable and robust in operation, namely, estimation 

and hypothesis testing. 

With regard to estimation, one of the most widely used techniques in this area of optimization is 

ordinary least squares regression (OLS), which at its simplest uses a linear programming approach baed 

on a quadratic norm and consists of obtaining a functional model that relates the value of a "target" 

dependent variable, Y, with the values of the independent variables X1, X2,..., X,,. Traditional approaches 

to the problem assume a particular form of the parametric function and use all data to obtain the values 

of the functional parameters that are optimal according to the least squares fitting criterion. This global 

parametric approach has been and continues to be used widely, giving reliable results when the assumed 

model is a close fit to the underlying data. Many financial series which are used for decision analysis are 

time series and regression analysis has an enormous plethora of techniques available to deal with a wide 

variety of problems encountered when modelling, controlling and predicting economic systems. In the 

study of both univariate and multivariate processes (such as are frequently encountered in utility theory), 

regression techniques provide a framework for describing not only the properties of the individual series, 

but also the possible cross-relationships among the series. As in many areas, the econometrician seeks 
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to model series jointly in order to understand the dynamic relationships among series over time and to 

improve the accuracy of forecasts. 

The standard OLS approach involves computing the Q parameter estimates from all of the data in a 

single pass. In some cases it can be more convenient, or even vital to perform the estimation recursively 

by taking observations one at a time, recalculating the Q's and the associated covariance matrix each 

time. This approach has been used with some success in decision making problems such as enabling a 

time-varying model to track behaviour which is too complicated to be described adequately by a constant 

parameter model; or in the situation where a time-varying linear model can be used to track a highly non- 

linear system (see for example the work on adaptive filtering by Bolzern, Colaneri and Nicolao, 1999, which 

is discussed later). Arguably one of the most common problems with the standard univariate regression 

model is the assumption of normality of the residuals. In practice, residuals are rarely normally distributed 

due to the almost inevitable presence of outliers. Non-normality of residuals presents two problems in the 

context of the analysis of decision making problems, namely, in the derivation of estimators and hypothesis 

testing. With respect to the former, non-normality in and of itself may not necessarily be a problem, 

since least squares estimators remain unbiased and consistent, and asymptotically X2 and hypothesis 

tests are still available. However, least squares estimators are no longer asymptotically efficient, such that 

hypothesis tests critically lack robustness as the finite sample distribution can be altered dramatically by 

relatively small changes in the distribution of the errors and because a single observation can cause Q to 

take on any value -a situation all too familiar in time series data analysis. 

The classical regression approach begins with a simple linear model of the form 

Y=X, B +u (1.58) 

and finds the ,B that minimises a simple quadratic norm of the sum of the squared errors 

- (X'X) -1 X'u (1.59) 

If, at the limit, the error variance tends to oo, then the least squares estimators are no longer minimum 

variance and conventional hypothesis tests become meaningless, making the analysis of decision rules 

extremely difficult. It was the combination of non-normality and possibly infinite variance in residuals 

that led to the development of robust estimators, which place less weight on outliers relative to classical 

least squares. The majority of the research in the univariate sphere has been concerned with the problem 

of deriving either estimates or test statistics that are insensitive to outliers and the distributions generally 

considered as alternatives to the normal have almost always been symmetrical with heavier tails than the 

51 



normal (e. g. Huber, 1964,1973,1977 and 1981). 

A variety of univariate robust estimators have been suggested, of which the three major ones will be 

analysed here. The simplest and most popular is quantile regression, where the estimator is based on 

minimizing a criteria function of the form: 

Ewe (ut) (1.60) 

where, for 0<0<1, either we (ut) =0 (u=ff 
, 

if ut > 0, or, we (ut) = (1 - 0) jut I, if ut < 0. Clearly, 

as we (ut) is the weighted sum of the absolute values of the residuals, outliers receive less weight than 

under ordinary least squares. When 0=0.5, the least absolute error estimator is produced. The second 

approach extends the basic quantile regression idea, such that in the case of large positive or negative 

outliers, extreme values of 0 can be used to heavily penalize abnormally varying observations. Using values 

of 0 between 0 and 1 yields regression quantile estimators ß (0) 
. 

The effects of the abnormal outliers will 

inevitably be most concentrated in the extreme values of 0, which has led to the polynomial combination 

of quantile estimators to produce estimators such as the trimean quantile estimator: 

ß=,;,, 
ýQn = 0.25,6 (0.25) + 0.50 (0.5) + 0.25,6 (0.75) (1.61) 

and the trimmed regression quantile estimator: 

1-ý 

trimmed I-- ý1 

12o) f(O)dO, 
(1.62) 

where 0<¢<0.5. The trimmed quantile estimator is calculated by first deriving ,B 
(0) and 

ý (1 - 0), 

excluding all observations lying on or below the Oth quantile and all those above the (1- ¢)th quantile, 

then applying ordinary least squares to the remaining observations. ßtrimmed has the attractive robustness 

property that its breakdown point is approximately 0.5. The breakdown point of a regression estimator is 

the largest fraction of data which may be replaced by arbitrarily large values without making the Euclidean 

norm 
11011(defined 

as 
I0112 

= 
z_1 #2, where p is the number of smallest squared residuals) of the 

resulting estimate tend to oo. Notwithstanding the fact that the resulting estimator is an asymptotically 

normal estimator of 0 and has a high breakdown point, the fundamental weakness of the approach is that 

the choice of the quantiles is arbitrary, so that robustness and stability are only achieved asymptotically 

and can only gained for arbitrarily selected sub-sets of a data-set. 

Robust estimation in the multivariate situation remains relatively underdeveloped, due principally to 

the problem that the variety of outliers (both in type and impact) in multivariate data can be enormous. 
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In a univariate situation it is frequently easy to detect atypical observations by casual inspection. In 

the multivariate setting, in contrast, observations can often only be considered atypical when the value 

of each variable is considered in relation to all other variables. Krzanowski (1996) points out the even 

more problematic issue of the simultaneous nature of outlier effects on the location, scale and orientation 

of multivariate data, frequently making it impossible to adjust for the marginal impacts of outliers in 

isolation without using an iterative procedure such as Huber (1964 and 1973) or Campbell (1980 and 

1982). 

Huber (1964) introduced the class of M-estimators which are based on the simple idea that instead of 

using the standard estimates of location and dispersion, iteratively calculated weights are used to penalise 

outliers or atypical observations. In order to take account of the joint problems of differential variances 

and correlations between variates, the Mahalanobis distance measure is used to provide a measure against 

which to judge the atypicality of the distance of an observation from the sample mean. The key problems 

with the Huber method are twofold. First, is the inconvenience of solving two non-linear equations 

for which there is no guarantee of the existence, uniqueness, or stability/robustness of the solution. 

Second, the robustness properties of the resulting estimates are not satisfactory, with the inaccuracies 

of variance estimates being as much as 3% (asymptotic bias) according to Campbell (1980 and 1982), 

thereby rendering them effectively useless for the analysis of many areas of economic decision making. 

Krasker and Welsch (1982) generalize the M estimator concept by penalizing observations with ab- 

normal residuals. Assuming that breakdown point (defined as the smallest proportion of arbitrary obser- 

vations that an estimator can resist without becoming unbounded) is a reasonable measure of robustness; 

then the generalized M-estimators have a positive breakdown point. However, this decreases to zero as 

the number of predictors rises, which in turn means the estimators exhibit poor robustness and stability. 

In an attempt to deal with this problem, Rousseeuw and Yohai (1984) introduced S-estimators which 

are consistent and asymptotically normal when the distribution of errors is symmetric around zero. The 

idea is to define T,,, as the set of parameters ß that produce residuals with the smallest dispersion. By 

way of illustration, suppose that (y;, x; ), i=1, 
..., n satisfy the model: 

yi = Xi8 + UEi, (1.63) 

where i=1, 
..., n and ri (0) = yi - xi#. Then the M-scale, sn (/3) 

, of the residuals (rl (ß) 
, ..., rri 

(f3)) is 

defined as the solution to the equation: 

n 

nýP(s 
ý) 

=Ec(P(E)) (1.64) 
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The corresponding S-estimator is defined by the property of minimizing s,, (ß): 

Tn = arg minsn (/j) (1.65) 
ßE RP 

S-estimators are consistent for the true parameter 6 and asymptotically normal when the distribution of 

the errors is symmetric around zero. Their drawback is that they are unable to simultaneously achieve 

high efficiency and high breakdown, resulting in a trade-off between efficiency and robustness. In 1987 

Yohai suggested MM-estimators for regression in order to simultaneously achieve high efficiency and 

robustness. MM-estimators have a high breakdown point, are consistent and asymptotically normal, but 

rely on strong regularity conditions to achieve a high degree of efficiency - including a symmetric error 

distribution. Yohai and Zamar (1988) introduced the class of r estimates, which assuming a linear model 

of the form: yj = xi9 + QE; as described above, using two functions pl, p2 :R -º R, such that for each 

QE RP define the r estimate of the scale of the residuals (ri (Q) 
, ..., r,, 

(ß)) by: 

n 

Tn (ß) = sn nE P2 
Sn Q) 

i=1 
(-n" (1.66) 

where s,, (, B) is the M-scale of the residuals calculated using the function pl. The r-estimates for the 

regression are then defined as: 0= arg minß ra (ß) 
. 
In particular, T,, (Q) is an efficient and robust estimator 

of a. However, as in the case of the MM-estimator, strong regularity conditions (which once again include 

symmetry of the residuals) are required in order to achieve strong consistency and asymptotic normality. 

Clearly, there are significant problems with robust estimation techniques in the univariate world. 

Unsurprisingly, the problems are, as already alluded to above, exacerbated in the multi-variate world. As 

far as stability is concerned, whilst it is true that ridge regression techniques can deal with the instabilities 

associated with high within-group correlations in a multivariate setting, Campbell (1980) finds it more 

revealing to apply these techniques to canonical variate estimation and achieves good stability. Krzanowski 

(1996) explores the use of canonical variate coefficient estimation in the presence of non-ideal data with 

the aim of addressing the issue of robustness. He examines the issues that arise when there is instability in 

the coefficients. The first problem arises, as in the univariate case, when there exist a number of atypical 

observations or outliers. The second arises when the within-groups covariance matrix, W, has a small 

eigenvalue and the between-groups sum-of-squares in the direction of the corresponding eigenvector is 

also small. Campbell (1982) uses robust M-estimation techniques to down-weight the outliers to improve 

robustness and his iterative procedure involves the simultaneous estimation of both the weights and the 

robust estimators. 

A further and more recent direction in robust estimation techniques is the work on adaptive filtering by 
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authors such as Sayed and Kailath (1994) and Bolzern, Colaneri and Nicolao (1999), BCN for short. This 

work considers from the point of view of control theory, the general problem of adaptive filtering of a scalar 

signal variable which has been corrupted by noise. BCN model the signal as a linear regression depending 

on a drifting parameter and consider the mean square and worst case performances of the normalised least 

mean-squares, Kalman and central Hoo filters. These three criteria are evaluated in terms of mean-square 

or H2 performance, namely by filtering the error variance assuming white noise disturbances, but BCN 

note that knowledge of the spectral characterization of the disturbances required for such a technique 

is rarely if ever available. They use this lack of knowledge as a motivation for considering worst-case 

performance of adaptive filters in the face of arbitrary disturbances. BCN particularly consider the Hoo 

approach which takes as a robustness index the maximum attenuation level from disturbances to the 

estimation error with respect to the set of admissible disturbances. Their approach is to regard the 

adaptive filtering problem as a special case state-space estimation problem and use Hoo techniques to 

design robust algorithms. For a fixed regressor sequence, necessary and sufficient conditions exist to verify 

whether a given filter achieves a required attenuation level. However, for higher frequency processes where 

regressors are not known in advance the problem reduces to finding a method of ensuring the achievement 

of a required attenuation level across all possible regressor sequences. 

BCN examine three alternative adaptive filtering approaches to dealing with both problems of process 

and measurement disturbances, namely, normalized least mean squares (NLMS), Kalman and central Hoo 

filters. In the context of what is to follow in the section on pure Hoo optimal control it is worthwhile to 

analyse briefly (without digressing into the technicalities of the vector algebra) the robustness properties 

of each of these filters. In the case of NLMS, when the parameter vector is constant, it can be shown (see 

for example Hassibi, Sayed and Kailath, 1996) that NLMS is Hoo optimal in that it coincides with the 

central Hoo filter that guarantees the minimum attenuation level. Unfortunately, this happens to occur at 

the point of the worst H2 performance, whereas the central Hoo filter is risk sensitive optimal and is also 

maximum entropy. However, the key objection to NLMS is that it cannot guarantee a finite attenuation 

level for all possible regressor sequences. 

As far as the Kalman filter is concerned BCN show that, assuming unit variance for the measurement 

noise and slow parameter drift), then its performance can be arbitrarily close to zero (i. e. it is H2 optimal). 

In addition, its Hoo performance is also better than NLMS, but still not as good as a full Hoo filter. But 

as BCN point out, a natural way to achieve robustness is to use the Hoo filter which guarantees any 

desired attenuation level. Unfortunately, such an approach by itself results in poor H2 performance. BCN 

show that the best way forward is to use a synthesis of H2 and Hoo methods, such that the target is 

to minimize H2 performance subject to an Hoo constraint. Interestingly, whilst this filter approach still 

55 



fails to produce an acceptable solution in the time-varying case (due to feed-forward effects on the Hoo 

constraint), it appears to offer a promising direction of investigation when using an Hoo optimal control 

approach to evaluate the behaviour of optimal decision rules. This is because Hoo optimal control enables 

both the desired attenuation level and speed of adjustment to be varied either solely or jointly and so 

provides the ability to estimate the costs of a mixed H2/Hoo strategy in a very flexible fashion. Hoo 

effectively provides the estimator for the worst case distribution. 

1.4.4 Robust statistical methods - confidence interval problems 

Approaches to the problem of obtaining robust and stable inference in linear regression models have 

proceeded in much the same direction as those of estimation. This is not entirely unsurprising given the 

fact that the issues of outliers and heavy tails obviously affect both estimators as well as the construction 

of robust confidence intervals. The research in robust hypothesis testing can be split into two main areas, 

namely, estimation of the asymptotic variance of the residuals and deriving a robust confidence interval. 

Estimating the asymptotic variance of the residuals is a fundamental requirement for the development 

of any robust inference procedure. It is non-trivial to derive a formula for the asymptotic variance in the 

presence of asymmetry, as it is difficult to disentangle the simultaneities in the estimation of the scale 

parameter from the variance, because the distribution of the scale parameter depends on the estimate of 

the auxiliary position estimator. Whilst S-estimators can be used to break this recursive loop, significant 

finite sample problems remain for sample sizes less than 30, due to the fact that large locational values in 

the denominators of several of the estimators result in extremely large values for the asymptotic variance. 

Work by Gross (1976) examined the robustness of confidence intervals for heavy-tailed symmetric 

distributions using jackknifed estimates and produced disappointing results which agreed with an ear- 

lier Monte Carlo study by Andrews et al (1972). Carol (1979) examined several robust estimates and 

techniques to estimate their variances under asymmetric distributions and found that the empirical ap- 

proximation to the asymptotic variance to provide a severe under-estimate. Rocke and Downs's (1981) 

comparison of the empirical asymptotic variance, the jackknife and the bootstrap under a variety of dif- 

ferent distributions both symmetric and asymmetric, found relatively poor robustness performance of the 

bootstrap variance estimator even under symmetric distributions with only slightly fat tails. Gosh et al 

(1984) examined the fat tail problem under a variety of symmetric and non-symmetric distributions and 

Aalse found that the bootstrap variance estimator performed poorly. 

Shao (1990 and 1992) changed tack somewhat and studied the estimation of the variance of Frechet- 

differentiable statistical functionals when the generating distribution has fat tails. His proposal was for 

a modified bootstrap variance estimator which truncates the values of the re-sampled estimates to down- 
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weight the tails. Despite the fact that the estimator is asymptotically consistent, the truncation limits 

remain arbitrary and are not linked to the data in any rigorous mathematical way, which is critical in the 

case of a finite sample application. 

Leaving aside the critical issue of estimating the asymptotic variance, it is possible to define a robust 

confidence interval for testing hypotheses as follows: for a fixed significance level, a, and a robust estimate 

T, find the percentile q� such that: 

1-a=P(ITn-Aol <9'n) (1.67) 

where µo is the parameter of interest. Next, assume that the sequence T,, converges almost surely to a 

limit Ta,. Then the problem is that T,,. need not necessarily be equal to µo due to an asymptotic bias in 

T,, and that whilst it is possible to estimate the asymptotic variance, there is no estimator available for 

the asymptotic bias, though it is possible to bound it reasonably for most practical purposes such that 

relatively good robustness properties can be obtained within the bounded region. 

How then is it best to sum-up the robustness and stability problems associated with regression based 

approaches to modelling decision making problems ? The first point to make is that, as Huber (1981) 

notes, robustness in econometric terms is all about doing well near a parametric model. Most commonly, 

robustness in econometric terms is defined as simultaneously controlling bias due to outliers and achiev- 

ing high efficiency in the event that the underlying data is normally distributed. Second, whilst many 

econometric techniques exhibit highly satisfactory stability characteristics, most if not all, fail to simul- 

taneously achieve both stability and robustness under anything other than highly restrictive conditions. 

Thirdly, all of the above estimators are either obliged to perform an exhaustive search or assume a known 

value for the amount of noise present in the data set (frequently referred to as the contamination rate), 

or equivalently an estimated scale value or inlier bound. When faced with more noise than assumed, all 

of the above estimators lack robustness and when the amount of noise is less than the assumed level, they 

lack efficiency, such that the parameter estimates suffer in terms of accuracy because not all the good 

data points are taken into consideration. Finally, all of the methods are also constrained to estimating 

a single component in a data set and are therefore not able to explicitly incorporate the dynamics of a 

decision making process into a meaningful model. 

1.4.5 Classical optimisation 

During the review of utility based decision making little was said about the nature of the objective 

function when actually making decisions, apart from the argument that the decision maker is assumed to 

pick the alternative that maximises utility. So it is arguable whether the concept of "best" or "optimal" 
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decisions naturally emerges as the fundamental approach for formulating decision problems. However, 

notwithstanding this, when the principle of optimality is applied, a single quantity that summarises the 

performance or value of a decision (such as the associated expected utility) is isolated and optimised 

(either minimised or maximised as appropriate) by a proper process of selection from among valid and 

available alternatives. The resulting decision is taken as being the optimal solution to the decision making 

problem. This approach has the virtues of being simple, elegant, precise and tractable. 

At a purely mathematical level, the simplest form of this approach is easily and most often described 

in terms of the example of a single period production problem that is encountered when deciding how to 

use raw materials. Assume that it is decided to produce xj units of a product, j=1,2, 
.., n, where the 

selling price of one unit of product j is vj. Assume also that the cost of producing one unit of product j 
m 

is piaij, where p; is the unit value of the raw material and aij is the amount of raw material i required 

to produce a single unit of product j. Per unit net revenue is therefore given by 

m 

c3 = Qj -> piaij (1.68) 

i=1 

so that the net revenue corresponding to the production of xj units of product j is simply cjx3, giving 

total net revenue of 
n 

Z 
cjxj 

j=l 
(1.69) 

The decision maker wishes to maximise this quantity. However, there are constraints on the production 

levels that can be selected. The two main types of constraint being that production quantity xj must be 

non-negative (x, > 0, j=1,2, .., n) and that it is not possible to produce more than can be supported by 

existing stocks of raw materials, implying the following constraint 

n 

Eaiixj < b; 
i=1 

(1.70) 

where bi is the stock of raw material i. In a classical linear programming approach to maximising net 

revenue, the objective would be to find the optimal amount of each of the production quantities x1 to be 

produced that together maximise net revenue by solving the following maximisation problem 

n 

maximise: 
1cjxj (1.71) 

j=1 

n 

subject to: E aij xj < b; and xj >0 (1.72) 
j=1 

where i=1,2, 
..., n and j=1,2,..., rn (1.73) 
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Depending on the precise form, this type of problem is usually solved by using one of a number of 

algorithms to find the values of the optimal cg's. If the process can be completely, accurately and reliably 

described in terms of such a simple model, then all will be well and decisions made will indeed be optimal 

over any range of feasible sets of raw materials and products. This simple linear approach underpins much 

of classical mathematical economics and econometrics. 

1.4.6 Robustness, stability and optimal control 

A moment of reflection on the simple linear model soon reveals that the model pays no attention to 

modelling the dynamics of the underlying system. The first and obvious extension to the simple linear 

model is therefore to explicitly incorporate into the model one or more aspects of the dynamics of the 

underlying system. Introducing time leads to the state-space approach whereby different states represent 

the behaviour of a model over time and in different states of nature, the transition between states then 

being most often driven by difference (in the case of discrete time models) or differential (in the case of 

continuous time models) equations to capture and explain how the model evolves, or transitions, between 

states. 

The problems begin to arise with classical optimisation as typified by the simple linear programming 

approach, however, once uncertainty is introduced into the picture. What happens for instance in the 

simple production model if there is an alternative model of the production process that when optimised 

produces a radically different set of optimal c1's ? Which set of cg's is the correct set and are there any 

unmodelled quantities that will affect the calculation of the optimal set ? Furthermore, how does the 

producer know when to stop ? What are the stopping rules ? For how long is the optimum valid ? What 

happens to the optimum if some of the raw materials run out or degrade over time, how can such extreme 

behaviour be modelled into the system ? Finally, how will the model respond to unforeseen events such 

as a fire at the factory or reject batches of raw materials ? Such a simple model cannot hope to handle 

uncertainties surrounding parameter values as well as the actual model itself. 

In the early 1900's, classical statistics was based on a probabilistic approach that was frequently 

underpinned by a Gaussian distribution. The obvious advantage of such an approach was in only having to 

deal with means and variances and not having to confront the real distribution - frequently an unpleasant 

task. However, there were difficulties with Gaussian method, most notably a lack of robustness. As already 

seen, the ideas behind risk aversion and utility maximisation are based either implicitly or explicitly on 

the classical Gaussian probability approach. Gauss derived his famous distribution by appealing to what 

is now commonly known as the maximum likelihood principle. This is a classical example of a fallacy of 

composition and principally came about due to the omission of any explicit attempt to model feedback. 
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It was only in the early 1960's that Tukey used a simple example of adding numbers from two Gaussian 

distributions with unequal means and variances, to illustrate that the Gaussian distribution and related 

procedures were totally non-robust, thereby illustrating the need to model feedback in order to ensure 

robustness in the statistical method. 

Writing in 1953, G. E. P. Box was the first to first to use the term "robust" in a quantitative sense. 

In its simplest statistical sense, robustness is generally taken to mean "insensitive to small departures 

from the idealised assumptions for which an estimator is optimised". As Huber (1981) points out, the 

word "small" can have two alternative but equally important interpretations, on the one hand it can 

refer to fractionally small departures for all data points, or else fractionally large departures for a small 

number of data points. The latter interpretation lead to the concept of outlier points generally more 

relevant for statistical procedures, whereas the former interpretation lead to the development of models 

of physical systems that produced more reliable predictions of behaviour in the neighbourhood of some 

base or idealised model. 

As already discussed, the issue of robustness has been studied and applied by two broadly different 

groups, namely, statisticians and engineers. The approach taken by the statisticians was described in 

the previous section. In contrast, this section deals with the ways in which engineers have concentrated 

on adapting and refining optimisation techniques by the explicit incorporation of feedback loops into 

decision making as a means of capturing and reducing the effects of uncertainty on models of physical 

processes. By developing mathematical approaches and algorithms that explicitly incorporate feedback 

control, engineers have devised approaches that deal with the effects of uncertainty in such way that, within 

a broad range of circumstances, they are able to deal explicitly with the joint problems of robustness and 

stability. 

Fundamental to understanding how such models work, is a clear appreciation of the critical role 

and overriding importance of incorporating feedback into the modelling of a process. That feedback 

is important is underlined by the existence and importance of examples of feedback in virtually every 

discipline from biology to economics, through to engineering and psychology. At its simplest, a feedback 

system is one where there is a process (the cause and effect relation) whose operation depends on one 

or more variables (the inputs) that cause changes in some other variables. If an input variable can be 

manipulated then it is referred to as a control input, otherwise it is considered to be a disturbance (or 

noise) input. The process variables that are monitored are referred to as the system outputs. The role 

of the modeler is to develop a process called the feedback controller whose role is to gather information 

about process behaviour by observing the outputs and then generating new control inputs in order to 

make the system behave in the desired fashion. Decisions taken by the controller process are therefore 
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critical. If they are incorrect they can lead to instability and catastrophe instead of improvement and 

stability. This is the fundamental reason that feedback controller design, which is the determining of the 

rules for automatic decisions taken by the feedback controller, is the critical issue for modelling a decision 

making process. Explicit modelling of feedback is the means that is used to reduce the uncertainty in a 

model of a system. 

In a physical model, a feedback control system generally consists of four sub-systems: 

"a process to be controlled 

" sensors 

" actuators 

" controller 

These sub-systems can be thought of as being connected as shown in the idealised system view in 

figure 1.7. The process is the actual physical model that cannot be modified. 

disturbances disturbances 

r------------- ---------------------------1-----------------i 

desired 

output controller actuators process 

I 

I 

sensors 

measured output 

measurement noise 

Figure 1.7: Simple feedback control system 

In a physical system, actuators and sensors are chosen by engineers based on both physical and 

economic constraints such as the range of signals to be measured and/or generated, as well as the accuracy 

versus cost of the measurement devices. The controller must then be designed for the given system to 

achieve the required objectives. In engineering systems the controller is frequently a computer, whereas 

in economic systems the controller is usually the decision making agent. Designing an efficient and robust 

controller demands a good understanding of the cause effect relationship between the input and output 

variables. Engineering systems are frequently well described by physical laws of motion or nature, so 

that accurate mathematical models contain relatively low levels of uncertainty compared with economic 

models where input-output relationships can often drpend on far more qualitative relationships. 



The modelling of physical processes usually begins with the development of a mathematical model 

which describes the dynamic behaviour of the underlying process. This procedure should take account of 

modelling uncertainties, including parametric and intrinsic model uncertainties. The first step in the pro- 

cedure is to derive a simple, elegant and accurate mathematical model of the underlying process. Once 

this is completed and performance objectives specified, then a feedback controller can be synthesised. 

This process generally involves simulation testing to establish how well the controller performs compared 

with the stated objectives. If performance is unsatisfactory, then the process model and controller must 

be evaluated and modified and the cycle of testing re-run. This iterative process continues until satisfac- 

tory results are obtained. Once complete, the result should be a nominal model of the process and an 

uncertainty description that represents the required confidence level for the system under consideration. 

It is generally the case that the uncertainty magnitude can only be decreased and the confidence level 

consequently increased, by making the model more complex. This is usually achieved by increasing the 

number of variables and/or equations, as well as the linearity or non-linearity of the equations being 

used. Increasing complexity to achieve a better description of reality usually leads to complicated models 

which may be difficult to solve, or at the limit may fail to produce meaningful results within a usable 

timeframe. This is the basic trade-off in modelling of realism versus tractability, namely, that a useful 

nominal model should be simple enough so that controller design is feasible, whilst at the same time the 

associated uncertainty level should be reduced low enough, by the use of a feedback loop, to allow the 

performance analysis (using simulation) to yield acceptable results. 

1.4.7 Linear-Quadratic Gaussian optimal control 

The derivation and construction of almost any control system usually involves the transformation of 

specifications into a performance criterion, based upon which control laws are then found which will 

minimise the criterion. At its simplest, optimal control begins with an initial state xo of the system and 

a control history u (t) ,tE 
[0, T] of the process, so that the evolution of the system can be described by 

the state equation (frequently assumed to be a first-order differential equation) of the form 

x(t)=f(x(t), u(t), t), x(0)=xo (1.74) 

where the vector of state variables is x (t) E E", the vector of control variables is u (t) E El and 

f: E" x E"I x El -º E", where the function f is assumed to be continuously differentiable. The path 

x (t) ,tE 
[0, TJ is called the state trajectory, while u (t) ,tE 

[0, Tj is called a control trajectory. Constraints 

are imposed on the control variables and an admissible control is defined (in a continuous time model) as 
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a control trajectory that is piecewise continuous and possesses the additional property 

u (t) E f2 (t) C E', tE [0, T] (1.75) 

with the set SI (t) being determined by physical or economic constraints on the values of the control 

variables at time t. The objective function is frequently a quantitative measure of the time based perfor- 

mance of the system, so that an optimal control is defined to be an admissible control that maximises the 

objective function. In economics, a typical objective function might be a cost function of the form 

J= JF(x(t)u(t)t)dt+S[x(T), T] 

0 

(1.76) 

where the functions F: E' x E' x El -º Ei and S: E" x El -º El are assumed to be continuously 

differentiable. In economic terms, F (x, u, T) could be the instantaneous rate of profit and S [x, T] could 

be the depreciated value of a company's assets, with x representing the system state and T the terminal 

time. The optimal control problem in this simple example would therefore be to find an admissible control 

u' that maximises profit less the depreciated value of the assets contained in the objective function subject 

to the constraints 

IT 

I uým 
x J=of F(x(t), u(t), t)dt+S[x(T), T] 

subject to: 
(1.77) 

th=f(x, u, t), x(O)=xo 

The controller u' is an optimal controller and x' (determined using the state equation with u= u'), is 

known as an optimal trajectory. Being able to achieve optimality requires a clear definition of the concept. 

Bellman (1957) was the first to provide a formal statement of the principle of optimality: 

"An optimal policy has the property that, whatever the initial state and initial decision are, 

the remaining decision must constitute an optimal policy with regard to the outcome resulting 

from the first decision". 

Richard Bellman, "Dynamic Programming", Princeton Press, 1957. 

To see how this important principle translates into practice, suppose that there is a value function 

V (x, t) : E" x El -º El that exits for all x and t in the relevant ranges, whose value is the maximum 
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value of the objective function for the control problem stated above, started at time t in state x 

T 

V (x, t) = max f F(x(t), u(t), t)dt+S [x(T), T] 
u(t)Efl(t) p 

where for s>t 
(1.78) 

=f 
(X (s) 

1u 
(s) 

's) ,x 
(t) 

=X 

Using Bellman's principal of optimality, figure ?? provides a schematic representation of the optimal 

path x' (t) in state-time space using two nearby points: (x, t) and (x + bx, t+ bt) 
, where bt is a small 

change in time and x+bx = t+bt. Using the principal of optimality, the change in the objective function 

is comprised of two parts. First, the incremental change in J from t to t+ St, which is given by the 

integral of F (x, u, t) from t to t+R. Second, the value function V (x + Sx, t+ bt) 
. 

The controller u (T) 

should therefore be chosen so as to lie in fl (r) 
,TE 

[t, t+ 5t] and also to maximise the sum of these two 

terms. 

z 

r+6x 

K 

0 /+bl 

Figure 1.8: Optimal path in state-time space 

Mathematically this gives rise to 

t+at 

V (x, t) = 
u(m 

ý 
t) 

JF 
[x (r) 

,u 
(r) 

, -r) 
dr +V [x (t + bt) 

,t+ 
bt] (1.79) 

r¬[t, t+atJ t 

If V is assumed to be continuously differentiable, then employing a Taylor series expansion of V around 

bt and introducing an adjoint row vector A (t) E E" (where A (t) can be interpreted as the per unit change 

in the objective function for a small change in x' (t) at time t), then allows the stating of the Hamiltonian 

function 

H(x, U) A, t) =F (x, u, t) + Af (x, u, t) (1.80) 
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which finally leads to the well known Hamilton-Jacobi-Bellman (or HJB) equation 

0= max [H (x, u, V, t) + Vt] (1.81) 
uEf (t) 

which is the condition that must be solved to guarantee that the maximum required is satisfied. Without 

derivation, it is therefore possible to state the conditions for u' to be the optimal controller as 

x-f (x*, u*, t) 
, x* (0) = x0 

ýº 
_ -H1 [x*, u*, A, t]' A (T) = S. [x* (T), T] (1.82) 

H [x` (t), u* (t), . 1(t), t] >H [x* (t), u, A(t), t] 

for all uE f2 (t) 
,tE 

[0, T] and where u' (t) must provide a global maximum of the Hamiltonian. 

The key point to note with this standard statement of the HJB equation and the accompanying 

solution conditions, is that the maximum is calculated with respect to the 2-norm of the adjoint, namely 

with a norm of the form 

11Z112: _ IxýI2 (1.83) 

It is the use of this particular norm measure that almost single-handedly prevents simple optimal control 

from attaining robustness. This is because the 2-norm does not result in the optimisation being carried out 

with respect to the worst possible extremities that could be encountered - the search is over a restricted 

sub-space. To rectify this limitation involves computing the optimal controller with respect to the infinity 

norm 

(Izll.: = max Ixii (1.84) 

such that optimality would then be guaranteed even in the face of the worst possible extremities of 

disturbance to the model because the search for the optimum had be carried out with respect to the 

entire space of possible values, in other words the optimisation is with respect to the extremum. It the 

idea of computing the controller with respect to the oo-norm that is at the heart of robust optimal 

control and will therefore be examined in detail in the next section. 

1.4.8 Robust optimal control 

Having reviewed the optimal control problem, what are the principal similarities and differences between 

non-robust optimal control and robust optimal control ? Optimal control is a branch of mathematics that 

was originally developed to find optimal ways to control a dynamic system. Optimality will guarantee that 

for a given model, a certain objective function has been achieved subject to any stipulated constraints. 
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Optimality does not, however, guarantee either robustness. This because whilst a control solution may 

be optimal with respect to a given model, there is no guarantee that this is true for other models, even 

for those alternative models in close proximity to the initial model. To achieve guaranteed robustness, a 

control solution must satisfy the imposed constraints for an entire family of models in the neighbourhood 

of the initial model and the controller must be robust to disturbances. If a controller can be designed 

such that the system to be controlled remains stable when its parameters vary within certain expected 

limits, then the system is said to be robustly stable. If in addition, the controller can satisfy performance 

specifications such as steady state tracking of the target variables, disturbance rejection and required 

speed of response, then the controller is said to possess robust performance. The problem of designing 

controllers that satisfy both robust stability and robust performance requirements is called robust control. 

Both robust and non-robust optimal control are focused on the design of control systems to achieve 

a target performance metric such as minimising a quadratic cost function. In the case of non-robust 

optimal control, the nominal model is assumed to be known with certainty, whereas in the case of robust 

optimal control the objective is specifically aimed at deriving a controller that is capable of guaranteeing 

performance and stability by the use of a dynamic feedback loop to reduce the level of uncertainty around 

the nominal model. This is illustrated schematically in figure 1.8. 

Figure 1.9: Model uncertainty 

Nominal stability is achieved when the derived controller provides stable performance around the 

nominal model, whereas robust stability is only achieved when the controller provides stability for every 

model in the neighbourbood of the nominal model. Analogously, if the required performance objectives 

are satisfied for the nominal model, then the controller is said to possess nominal performance. Whilst if 

the performance objectives are satisfied for every model in the defined neighbourhood, the controller is 

said to possess robust performance. 
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1.4.9 Model uncertainty, robust control and feedback 

The use of feedback mechanisms to control systems began during the 1920's. The then fledgling telephone 

industry had encountered an early problem with automatic control (in both theory and practice) when 

trying to construct feedback amplifiers whose properties remained constant despite component and supply 

variations. The problem was finally solved by Black in 1934 by an invention which had a tremendous 

impact and inspired much theoretical work. A novel approach to system stability was developed by Nyquist 

in 1932, the fundamental limitations of which were explored by Bode in 1940 (who also developed methods 

for designing feedback amplifiers, see Bode 1945). A systematic approach to designing controllers that 

are robust to feedback-gain variations was also developed by Bode, who described systems using transfer 

functions or frequency response functions, making it natural and consistent to state uncertainty in terms 

of deviations of the frequency responses. A number of measures such as amplitude and phase margins 

and maximum sensitivities were also introduced to describe robustness. 

In contrast, the state-space theory that appeared during the 1960s was a fundamental paradigm shift, 

because it marked the beginning of systems being described using differential equations. Control design 

problems were formulated as optimization problems following work by Bellman in 1957 and 1958. Control 

of linear systems with Gaussian disturbances and quadratic criteria, the so called LQG problem, appeared 

particularly attractive because it admitted analytical solutions, such as those suggested by Bellman (1957) 

and Kalman (1960). Design computations were also improved because of the ability to build on advances 

in numerical linear algebra and efficient computer algorithms. The controller obtained from LQG theory 

also had a very interesting structure, because it was a combination of a Kalman filter and a state feedback. 

State-space theory became the predominant approach. Safonov and Athans (1977) showed that the 

amplitude margin is infinite for an LQG problem where all state variables are measured. Unfortunately, 

Doyle (1978) showed that this does not hold for output feedback. There were numerous attempts to 

recover the robustness of state feedback using special design techniques called loop transfer recovery. 

The fundamental issue, however, is that it is not straightforward to capture model uncertainty in a state 

variable setting. Work by Horowitz and Shaked (1975) provided a focus for criticism of state-space theory 

which came to bear in the paper by Zames in 1981 which represented a paradigm shift that finally brought 

robustness to the forefront of the debate leading to the development of Hooll theory. The idea behind 

Hoo theory was to develop systematic design methods that were guaranteed to give stable closed loop 

11 Basar and Bernhard (1991) provide the following succinct defintion of Hoo : 

The notation Hoo stands for the Hardy space of all complex valued functions of a complex variable, which are 
analytic and bounded in the open right-half complex plane. 
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systems for systems with model uncertainty. Zames's original work was based on frequency responses 

and interpolation theory which led to compensators of high order. The seminal paper by Doyle, Glover 

and Khargonekar (1989) demonstrated how the problem could be solved using state-space methods. In 

an interesting and fertile departure, Basar and Bernard (1991) used game theory as an approach to Hoo 

by formulating the problem as a game in which the objective is to find a controller in the presence of an 

adversary that changes the process. 

Major advances in robust design were made by MacFarlane and Glover (1992) where they set the 

Hoo control problem as a loop shaping problem, which provided effective design methods and it also 

reestablished the links with classical control. This line of research has been continued by Vinnicombe 

(1999) who obtained definite results relating modeling errors and robust control. To do this he also had 

to invent a novel metric for systems called the v-gap and his work brings Hoo even closer to previously 

known classical results. This section presents the essence of the state-space method in the simple setting 

of single-input single-output system, before extending the approach to non-linearities. 

At this point it is worthwhile noting that model uncertainty was perhaps the key motivation for 

introducing feedback, because classical control theory already had very effective ways of dealing with 

uncertainty both qualitatively and quantitatively. Process uncertainty was described very easily as a 

variation in the process transfer function with the qualification that disturbances do not change the number 

of right half plane poles or roots of the system. The theory gave important concepts and tools such as 

the transfer function, Nyquist's stability theory, the Nyquist curve, Bode diagrams, Bode's integrals and 

Bode's ideal loop transfer function. Robustness measures such as amplitude and phase margins and the 

maximum sensitivities were also introduced. Bode's ideal loop transfer function is probably the first design 

method that addressed robustness explicitly. Horowitz quantitative feedback theory is a continuation of 

this idea. 

Before moving on to consider how feedback works in detail, it is necessary to pause to consider a 

number of definitions that are central to understanding model uncertainty. The first point to note is that 

there are four main sources of uncertainty 

1. Incomplete knowledge of a process: This might arise due to the inability to accurately capture the 

parameters of the underlying process. 

2. Model simplification: Most models involve a greater or lesser degree of simplification which is usually 

imposed in order to achieve tractability, so that even though a system might be known in detail, 

the model may have needed to have been simplified to facilitate a solution. 

3. Incomplete model structure: Many models are linearised in the interests of tractability, which often 
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involves ignoring known non-linearities. 

4. Time variation in parameters: Many systems can have different lists of parameters at different 

points in time. 

One further distinction is also worthy of discussion, namely, that between disturbances and devia- 

tions. The former are usually external signals that are independent of the system inputs. The effect of 

disturbances can be aggregated as exogenous input d, at the output point of the process and added to 

the model input. In contrast, deviations are input (u) generated differences between the dynamics of the 

system and its model that lead to discrepancies. Model uncertainties can therefore be represented by an 

error with input z and output w. 

1.4.10 Feedback amplification and robustness 

One of the main reasons for using feedback is to reduce the effects of uncertainty which can appear in 

various alternative forms as either disturbances or other inadequacies in models of systems, be they of 

physical or financial processes. As the name implies, feedback works by repeatedly modifying a process 

in a predictable way, thereby reducing the scope and effect of uncertainty. For the effects of feedback to 

be maximised, the object is to find a feedback rule that produces the desired affect on the target system 

as quickly as possible. This means that feedback rules are chosen so as to modify the behaviour of the 

target system such that their impact or gain is maximised. However, using a feedback rule that has an 

amplified effect has the potential to also cause unstable behaviour in the underlying system for which the 

control rule is being developed. 

Using feedback to control systems is central to the entire concept of developing processes to control 

other processes -a discipline known as control theory. A simple example of using a controller process to 

achieve a required objective is therefore useful and relevant . 
Figure 1.10 shows a schematic overview for 

a simple feedback amplifier. 
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VI 
V2 

Figure 1.10: Schematic view of a feedback amplifier process 

If the raw gain of the amplifier in Figure 1.10 is A, then the input-output relation of the feedback loop 

is given by 
V2 R2 1 

Vi Ri1+Ä(1+R) 
(1.85) 

where the gain as expressed by V is given by the ratio R 
. 
The crucial point is that if the raw amplifier 

gain A, is large, then the gain is almost independent of the value of A. For example, if R= 100 and 

that A= 10,000, then a 10% change in A gives only a 0.1% variation in gain. Feedback therefore has 

the highly desirable property of being able to massively reduce the effects of uncertainty. However, not 

unsurprisingly, there is also potentially the huge risk of instability associated with this property. The 

trick is to use feedback to design an amplifier that is robust to variations in the gain of the process. Black 

(1934) achieved this objective in his work whilst at the same time producing a closed loop system that 

was highly linear. 

1.4.11 Generalisation and the use of transfer functions 

Using feedback to control behaviour is applicable to a wide range of systems. Figure 1.11 shows a basic 

feedback loop that consists of a process and a controller. The purpose of the system is to make the process 

variable x follow the set point r in spite the disturbances d and n acting on the system. The aim is that 

the properties of the closed loop system should also be insensitive to variations in the process. Two types 

of disturbances are important, namely, the load disturbance d which drives the system away from its 

desired state and the measurement noise n which corrupts the information about the system obtained 

from the system sensors. Figure 1.11 has three inputs r, d and n, in addition to four interesting signals 

x, y, e and u. 
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Figure 1.11: Using feedback in a simple linear system 

This gives 12 relationships of interest. Assuming that the process and the controller are linear time- 

invariant systems that are characterized by their transfer functions P and C respectively, then the relations 

between the signals are given by the transfer functions 

Gxr _ Pc 
- 1+PC G xl 

P =1P = 
Gxn 

- -G xr 

Gyr = Gxr Gyl = Gxl Gyn= 
PC 

(1.86) 
Ger =1- Gxr = Gyn Gel = -Gxl Gen = -Gyn 

Gur = 1+PC 
Gul = -Gxr Gun = -Gur 

where GZj denotes the transfer function from signal j to signal i. Clearly, there are only four independent 

transfer functions 

G_ PC 
=T ýr - 1+PC - 

Gxl= P 
1+PC 

(1.87) 
i Gyn 

= 1+P 
1C 

=s 

Gur =C 1+PC 

where S is known as the sensitivity function and T is known as the complementary sensitivity function. 

Both S and T depend only on the loop transfer function L= PC and the sensitivity functions are related 

by 

S+T=1 (1.88) 

According to Nyquist's stability criterion, the closed loop system is stable if 

I0 
argr (1 +L (s)) _ -Prhp (L) (1.89) 

where 0 arg is the argument variation when s traverses a contour IF that encloses the right half plane and 

PThp (L) is the number of poles (or roots) of L in the right half plane. 
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1.4.12 State-space theory 

State-space theory represented a paradigm shift which led to many useful system concepts and new 

methods for analysis and design. The introduction of the state-space approach lead to systems being 

represented by differential equations instead of transfer functions. For linear systems the state-space 

representation of the standard model is 

dx 
= Ax + Bu +v (1.90) 

ät 
y= Cx+e (1.91) 

where u is the input, y the output and x is the state. Uncertainty is represented by the disturbances 

v and e and by variations in the elements of the matrices A, B and C. The disturbances e and v are 

typically described as stochastic processes, so that the control problem can be formulated as to minimize 

the criterion 
Tr 

J=E lim 
1 

TJ 
(xTQlx + uTQ2u) dt (1.92) 

T-. oo 
0 

Since the equations are linear with stochastic disturbances and the criterion is quadratic, the problem 

became known as the linear quadratic Gaussian control problem (LQG). The solution to the control 

problem is given by 

u= L(x�, -. t)+uff (1.93) 

= Ax + Bu +K (y - Cx) (1.94) 
ät 

This control law has the highly intuitive interpretation as being feedback from the error x�a - x, which 

also just happens to be the difference between the ideal states x,,, and the estimated states x, with the 

estimated states being provided by the Kalman filter. Controllability and observability are key conditions 

for solving this formulation of the problem. There are many other design methods based on the state- 

space formulation which give controllers with the above structure, such as pole placement. However, they 

differ from the LQG method in the sense that other techniques are used to obtain the matrices K and L. 
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Figure 1.12: System state feeback 

Figure 1.12 is known in the control systems literature as a "block diagram" and illustrates the controller 

obtained from LQG theory. The example system has two degrees of freedom, which is a very attractive 

structure. The observer or the Kalman filter delivers an estimate of the state based on a model of the 

system and the input and output signals of the system. It is worth pointing out that the state may also 

have components that represent the disturbances. There is a feedback from the deviations of the estimated 

state from its desired value x,,,,. In this simple model it is convenient to describe model uncertainties as 

variations in the elements of the matrices A, B and C. To do so, however, means using a very restricted 

class of perturbations which in turn means possibly neglected dynamics or small time delays. Such 

uncertainties are easier to describe in the frequency domain. LQG theory was also criticised heavily by 

classic control theorists because it failed to take robustness into account. However, very strong robustness 

properties can be established when all states are measured - which of course may present problems in the 

case of real physical or economic systems. 

Unfortunately, the desirable robustness properties of systems with state feedback do not hold for 

systems with output feedback. For systems with output feedback attempts were made to recover the 

robustness of full state feedback by making very fast observers. This approach led to a design technique 

called loop transfer recovery. The only formal requirements on the system to be controlled in state-space 

theory is that the system is observable and controllable. There is no consideration of right half-plane 

poles and zeros or time delays. Because of this it becomes necessary to investigate the robustness of 

the design and to make appropriate modifications to achieve good robustness. This shows that it is 

not sufficient to check controllability and observability. Trying to design controllers which violate these 

limitations by making a closed-loop system that adjusts too fast results in a closed-loop system that 

has very poor stability margins even if the closed-loop poles are quite well damped. Feedback is not 

effective for disturbances having high frequencies, because disturbances will be amplified by the feedback, 

underlying the fact that it is important to be aware of the limitations when designing control systems. 
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1.4.13 Hoc loop shaping 

A central consequence of the introduction of state-space theory was that interest shifted from robustness 

to optimization. New developments that started with the development of Hoo control by Zames in the 

1980's provided a focus for a strong revival of interest in robustness, which in turn lead to developments 

that yielded new insights and new design methods. To keep the exposition simple, focus is limited to 

only systems having one input and one output, but techniques as well as results can be generalized to 

systems with many inputs and many outputs. If a system structure with two degrees of freedom is used, 

the problems of setpoint response can be dealt with separately and it is therefore possible to focus on 

robustness and attenuation of disturbances. Figure 13 shows a simplified representation of the system as 

having a system or plant model, P, a controller, C, two inputs, the measurement noise n and the load 

disturbance d. 

Figure 1.13: Hoc loop shaping in a simple feedback system 

The problem is therefore to design a controller with the following two properties 

" Insensitivity to changes in the properties of the process. 

" Ability to reduce the effects of the load disturbance d. Does not inject too much measurement noise 

into the system. 

Stability is a fundamental robustness requirement, but because stability is based solely on the loop 

transfer function, cancellations of poles and zeros may occur in either or both the process and the con- 

troller. This will not be problematic if the cancelled factors are stable, but results will be totally misleading 

if the canceled factors are unstable because internal signals in the system will diverge, rendering decision 
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analysis useless. To see how this may occur, consider the simple system shown in figure 13, based on 

C (s) =ss1 (1.95) 

P (s) =s11 (1.96) 

so that the loop transfer function is given by L=ä, which makes the system appear stable. However, 

the transfer function from the disturbance, d, to output y is 

Cyd 
(8+1) (S-1) 

(1.97) 

which, upon further examination of the dynamics of the system shows that an input disturbance makes 

the system unstable. One way of dealing with this problem is to point out that if the closed loop system 

is completely described by it's transfer functions, then if the transfer functions are stable, then the system 

will also be stable - this is known as internal stability. The transfer function matrix shown in equation 

1.86 can be conveniently summarised as 

1c 
G(s)= 1+PC _1+P 

P PC 
1+P _1+P 

(1.98) 

This representation shows the signal transmission from the disturbances d and n to the system signals v 

and x. If the transfer functions of the process and controller are shown as 

C (s) = 
Äc (1.99) 

P (s) =P (1.100) 
P 

then 1.98 can be represented as 

AAA BcA 

G (s) = p+`Bp _ p °Bp (1.101) 
AcB BcBp 

-ý- ý --ý. 
fdA +B e PcBp AeAp+BcBp 

with the stability criterion 

Cpa = A, AP + BBp (1.102) 

which will have all of its roots in the left half plane, thereby guaranteeing internal stability. 

Having considered stability, one of the remaining key problems for robustness analysis is how to 

compare and decide between systems when both behave similarly under a given feedback rule. For 
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example, it is entirely possible for two systems to exhibit similar behaviour under open loop, but different 

behaviour under closed loop feedback. It is also possible two systems to have different open loop behaviour, 

but similar closed loop behaviour. If either of these scenarios occurs, then it is clearly not possible to 

compare two systems by simply analysing their respective responses to input signals. 

One approach to identification is to compare outputs when inputs are restricted to the class of inputs 

that give bounded outputs. This approach was first suggested by Zames and Sakkary (1980) and Sakkary 

(1985) who introduced a measure called the gap metric. However, an alternative approach called the 

graph metric was suggested by Vidyasagar (1985). To see how the graph metric works, assume that the 

process under consideration can be described by a rational transfer function 

P (s) _B 
(s) 

A (s) 
(1.103) 

where A (s) and B (s) are polynomials. Now introduce the stable polynomial C (s), with a different degree 

to A (s) and B (s), such that the transfer function can be re-written 

__ 
B (s) /C (s) D (s) P (s) 
A (s) /C (s) 7-(S) 

(1.104) 

then Vidyasagar's approach compares two systems by comparing the rational transfer functions D and 

N. The problem with the graph metric is that it can be difficult to compute in practice. 

A convenient way to deal with this problem is to notice that C (s) can be computed in a variety ways, 

one of which is known as coprime factorisation, which works as follows. The two rational functions D and 

N are called coprime if two conditions are met. First, that there exists rational functions X and Y such 

that 

XD +YN =1 (1.105) 

and secondly that D (s) and N (s) do not have any common factors. Taken together, these conditions 

make it possible to select D (s) and N (s) such that 

DD* + NN* =1 (1.106) 

where D* (s) =D (-s). Factorising equation 1.104 such that P, N and D satisfy equation 1.106, is known 

as a normalised comprime factorisation of P. Vinnicombe (1999) used the notion of coprime factorisation 

to develop a metric suitable for comparing two closely performing feedback systems. The metric works 
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as follows. Assume that there are two alternative systems with the following coprime factorisations 

Pl = 
Ni 

(1.107) 

P2 = 
D2 

(1.108) 
N2 

then using Nyquist's closed loop stability criterion of equation 1.89 to compare the two systems, it must 

be required that 
IA 

argr (N1N2 + D1D2) =0 (1.109) 

(where F is the Nyquist contour), so that Vinnicombe's v-gap metric is computed as 

d 
IPi - P21 

(1.110) 
(1+1P112) (1+1P212) 

which is effectively a Euclidean shortest distance between two points. 

Normalised coprime factorisation can also be used to describe perturbations in a more flexible fashion 

than simply adopting additivity, which is essential to deal with feedback systems. Consider a system 

summarised by 

P+AP= 
N+ON 

=ND-1 D+OD (1.111) 

where N and D are normalised coprime factorisations of P and the perturbations ON and AD are stable 

proper transfer functions. The interesting question is how large the perturbations can be before violating 

the stability condition. To see the answer to this question, figure 14 below, 

Figure 1.14: Simplied block diagram illustrating impact of perturbations 

77 



shows an extended version of the simple model of figure 13, which implies 

D1 1 

z=1+ PCW 1- PC , w2 = D-1 
(1 

+ PC 1+ PC 

wl 
(1.112) 

W2 

wl DD 
and =z (1.113) 

W2 AN 

so that, invoking the small gain theorem12 enables the conclusion that the perturbed system will be stable 

if the loop gain is less than 1, so that 

OD )MD(1+C 1+PC)IIý 
1 (1.114) 

00 

which can be simplified by remembering that N and D are normalised coprime factorisations, to give 

IID_' GTPC 1c= 
(D )1 

1+ C)IIý N 
D-1 

(1+PC 

1+PC) 
(1.115) 

00 
I1C= 

"G (PIC) IIoo (1.116) 
p 

(1+PC 

1+PC 
00 

where 0 (P, C) is the system matrix 

and introducing 

G (P, C) =i c 
I+PC 

'Y(P, C)=supIIG(P(i 
w 

C 
-1+P (1.117) 

PC 
_1+P 

w), C(iw))11. (1.118) 

it is straight forward to show that the closed loop system is stable for all normalised coprime perturbations 

AD and ON such that 
ON 

C1 (1.119) 
OD 7 

00 

The quantity y defined in equation 1.118 is a very important element in robustness. It is known as the 

H,,,, norm13 and is used to evaluate the performance of the controller process in the feedback loop. The 

12The small gain theorem states that a system is internally stable if the oo-norm of the loop transfer function is less than 
1. 

1311.11 is a norm if. 

78 



H. norm has a role of central importance in this thesis, so a full consideration of it is warranted. But 

before considering its use, it is important to be clear on its definition. The familiar H2 norm of a vector 

space used in simple optimal control is calculated as 

n 

11X112 =_ lxs 12 (1.120) 

which is simply the square root of the sum of the absolute values of the members of the vector space, or, 

looked at from another perspective: 

00 

11x112 := 

(Lv2dt) 
(1.121) 

In contrast, the Hoo norm taken as the maximum value over the entire vector space 

sup Iv (t) 1 (1.122) 
t 

which is the maximum (best or worst) value occurring over the vector space. The oo-norm is useful 

when checking the boundedness of a signal from a model14. This means that using the H,, ý norm as a 

measure of performance will provide solutions that are insensitive to the worst possible variations in either 

disturbances or in the underlying system. It is this property that provides the key to ensuring robustness. 

Zames (1981) was the first to suggest using the H. norm as opposed to the more familiar and simple 

H2 norm to evaluate performance. Doyle and Stein (1981) showed that model uncertainties can be 

described as norm bounded deviations, which, when taken together with the H.. norm, provide an ideal 

means of defining and controlling the robustness of a controller process. The objective of the H,, approach 

is therefore to design control systems that are insensitive to model uncertainty. This aim is achieved by 

deriving a controller C that gives a stable closed-loop system, whilst simultaneously minimising the H00 

norm of the transfer function (G (P, C)). The obvious corollary is that the H, approach also allows the 

largest deviation of the normalised coprime deviations. 

1. II=II>_0 
2. IIx1I=0 if and only ifx=0 

3. Ilaxll = lal (Ixil for any scalar a 

4. IIx+UII: Ilzll+hull 

'For both norms it is possible to define the linear space of signals v (t) that has a bounded value for either norm. These 
function spaces are called £2 and G� or Lebesgue spaces. 
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As already indicated, the link between stability and robustness is critical, so it is also worth noting 

that the H.. norm can also be used to as the basis of a generalised stability condition, namely, that 

if (P, C) is stable 
b(P 

, 
C) =j 

0 otherwise 
(1.123) 

which produces values in the range 0 to 1, with a value of 0 indicating system instability, whilst a value 

close to 1 implies a good margin of stability. Reasonable values that indicate stability would normally be 

expected to lie in the range 0.25 - 0.33. It is also clearly the case that the controller that maximises the 

stability margin is 

b= sup b (P, C) (1.124) 
C 

1.4.14 Solving the Hoo state-space robust optimal control problem 

In order to distinguish between the transfer function based approach and the state-space based approach 

to solving the Hoo optimal control problem, it is convenient and helpful to employ a modified set of 

names for the model variables. As already explained, the performance measure to be minimised is the 

Hoo norm of the closed loop transfer function 

Ju(x) = IMF(G, K)1100 (1.125) 

where G is the model or system under consideration, K is the compensator or controller and F (G, K) is 

the transfer function of the closed loop system: z=F (G, K) v 

Before proceeding, it is important to recall the distinction between disturbances and deviations, which 

is clearly illustrated in figure 15, where r is the reference output (for measurement purposes), m is actual 

output, e is an error signal, d is an exogenous input disturbance, y is the final output (actual plus 

disturbance), u is the input, model uncertainties can be represented by an error model with input z and 

output w, . 
It is arguably the case that the robust optimal control problem can be most convenient solved 

in the time domain by using the state-space approach. To illustrate the solution approach, assume that 

the underlying model, G, has the following state-space representation 

i(t) = Ax(t)+Blv(t)+B2u(t), x(o)=0 (1.126) 

z (t) = Clx (t) + D12u (t) (1.127) 

y (t) = Ces (t) + D21v (t) (1.128) 

Clearly, the only relevant inputs are v and u, assulWg a zero initial state. Based on the following series 



of assumptions concerning the parameter matrices 

1. The pair (A, B2) is stabilisable. 

2. D12D12 is invertible. 

3. D12C1 =0 

4. The pair (Cl, A) has no unobservable modes on the imaginary axis. 

5. (C2, A) is detectable. 

6. D12D12 is invertible. 

7. D12B, =0 

8. The pair (A, B1) has no uncontrollable modes on the imaginary axis. 

The direct minimisation of the cost J. (K) is a very hard problem to solve directly. The way to 

approach a solution is therefore, to adopt the easier route of constructing conditions which define whether 

there exists a stabilising controller that achieves the Hoo norm bound 

JA(K) <ry 

for a given 'y > 0. 
d(s) 

Unknown 
------------------------- 

Known 

r(5) 
10 riv 12 G(s) m(s) ýý v(s) 

a) Closed loop system exposed to disturbances 

-(H A(S) "'(ý) 

Unknown 

------------------------ 
Know n 

K(s) us G(s) 

b)Closed loop with model uncertainty 

(1.129) 

Figure 1.15: Disturbances and model uncertginty in a closed loop system 



The conditions also provide a specific controller that achieves the bound of equation 1.129, which can 

then be used for various values of ry to iteratively determine the minimum of J,,. (K) to any required degree 

of accuracy. The construction of such controllers that satisfy the bound of equation 1.129 is generally 

referred to as the Hoo optimal control problem. As already indicated, it is a hard computational problem, 

so in order to derive conditions for checking whether there exists a controller that achieves the bound it 

is useful to take advantage of the fact that the Hoo performance measure can be characterised in terms 

of the worst case gain in therms of the £2 norm 

2 JA(K)=sup{ 
lIZ112 

. v#0} (1.130) 

which is equivalent to 

or 

lIz112 
<7, all y#0 (1.131) 

IIv412 

L (u, v) = IIzI12 
22- rye IIvI12 < 0, all v, 0 (1.132) 

As the Hoo optimal controller will be derived in the time domain, it is helpful to give an explicit time- 

domain expression of this latter inequality using Parseval's theorem's 

00 

L (u, v) =1 
[z (t)T z (t) - ry2v (t)T v (t)] dt < 0, all v0 (1.134) 

The problem of finding a controller u= Ky that satisfies the inequality in equation 1.134 can be stated 

in terms of a minimax problem 

max 
l 

min L (u, v) 
}<0 

v&0 u=Ky 
(1.135) 

Basar and Bernhard (1991) noticed the similarity between the above exposition and the theory of dynamic 

games by noting that if v is regarded as the first player, then he seeks to make the cost L (u, v) as large 

as possible, while the second player attempts to ensure that L (u, v) <0 irrespective of the actions of v. 

The solution of the Hoo optimal control problem posed in this way has two stages, namely, a first stage 

that consists of an Hoo optimal state-feedback problem and an associated variable transformation, and 

15Parseval's theorem is a theorem of Fourier analysis stating that Bessl's inequality holds as an equality for a square 
integrable function. The term is also applied to extensions of this to any complete orthonormal sequence in a Hilbert space. 
It can be stated as follows: an orthonormal sequence {e; } 

1 is complete in a Hilbert space H if and if for each x, y in H 

w 
1.133) (zt y) _ (xIe+) (eil y) 

i=i 
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a second stage that is an Hoo optimal estimation problem. It is necessary to examine each step in turn. 

The solution of the Hoo optimal state-feedback problem gives the optimal state-feedback law u (s) = 

K,,. (s) x (s) that satisfies the Hoo norm bound of equation 1.129, provided such a controller exists. 

Assuming that the controller has access to both present and historical state information, then there exists 

a state-feedback controller that satisfies equation 1.129, if and only if there exists a positive semi-definite 

solution to the algebraic R. iccati equation 

ATX+XA-XB2(Di'D12)-1B2X+XB1BjX +CTC1=0 (1.136) 
^t 2 

such that the matrix 
T 

A- B2 (D? D12)-1 B2 X+X 
B1B1 X (1.137) 

^f 2 

is stable (i. e. all negative eigenvalues have real parts). When the above conditions are satisfied, a controller 

that achieves the Hoo norm bound of equation 1.129 is given by the static state-feedback controller 

u (t) = Kýx (t) (1.138) 

where 

K, =- (D12D12) -1 BTX (1.139) 

Assuming that the algebraic Riccati equation 1.136 has a positive semi-definite solution X such that the 

matrix in equation 1.137 is stable, then the right-hand side of equation 1.134 can be expanded as follows 

00 00 

1Iz (t)T z (t) - 72v (t)T v (t)] dt =JI [Clx (t) + D12U (t)JT ICix (t) + D12u (t)] 
- Y2v (t)T v (flt}M) 

. 
foL 

of 

where 

r 
[u (t) 

_ u'° (t)] 
T D12D12 [u (t) - u° (t)] 

_ -J dt (1.141) 

0 -'r2 
[V (t) 

-v 
(t)]T [v (t) 

- V° (t) 
1 

u° (t) _- (Di D12) Bý Xx (t) (1.142) 

= K,,. x (t) (1.143) 

vo (t) = 
Bl 72 (t) 

(1.144) 

Equation 1.141 can be used to transform the Hoo optimal output feedback problem into a Hoo optimal 
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estimation problem by defining the following signals 

z (t) _ (D12D12) 2 [u (t) - uO (t)] (1.145) 

= (D12D12)1 u (t) + (D12D12) ' B2 Xx (t) (1.146) 

V (t) =v (t) - v° (t) (1.147) 

=V (t) - 
Bl 

, X2 

(t) 
(1.148) 

which gives 

00 00 

L (u, v) =f 
[z(t) Tz (t) - 72v (t)T v (t), dt =f[, i (t)T z (t) -y2v (t)T v (t), dt (1.149) 

00 

or 

L (u, v) = p112 22_ 72 jjv112 < 0, all v 34 0 (1.150) 

which implies the transformed system 

st 
(A+ B1B1 Xl 

xt+ Bt + Bu t () =1 
, r2 J 

() 
1v 

() 
2 (), 

z (t) _ (\D12D12) Br Xx (t) + (D12D12) 2 IU(t) 

y (t) = 

(c2+ D2 B1 X) 
x (t) +D210 (t) 

X (O) =0 (1.151) 

(1.152) 

(1.153) 

The point is that in the output-feedback case, the base that can be achieved is to base the controller 

on an estimate of x (t) or of the output z (t), which naturally leads to the second stage, namely, the Hoo 

optimal estimation problem, which can most easily be understood and a solution methodology derived by 

slightly simplifying the initial system of equations 1.126,1.127 and 1.128 as follows 

i (t) = Ax (t) + Biv (t) 
,x 

(0) =0 (1.154) 

z (t) = Clx (t) (1.155) 

y (t) = C2x (t) + D21v (t) (1.156) 

If F represents the stable causal estimators of the output z based on the measured output y such that 

z (s) =F (s) y (s), then in the Hoo optimal estimation problem, define the Hoo norm of the transfer 

function from the disturbance v to the estimation error e=z-z, as 

Je, ý 
(F) = sup 

14 
(1.157) 11v112112 :v 96 01 



Analogously with the state-feedback problem, consider the conditions for the existence of an estimator 

that achieves the Hoo bound 

Je, ý 
(F) < ry (1.158) 

which can also be equivalently stated as 

Le (v, zý = ýýz - zýý2 - Ilvil2 < 0, all v0 (1.159 

The solution to which, though far too lengthy and complex to derive here, can be characterised in much 

the same way as for the optimal state-feedback problem by stating that there exists a stable estimator 

F that achieves the Hoo norm bound of equation 1.158, if and only if there exists a symmetric positive 

definite or positive semi-definite solution Y to the algebraic Riccati equation 

AY +YAT - YCZ (D12D12)-1 C2Y + 
YCl 

2 

C, y 

+ BiB, -0 
(1.160) 

such that the matrix 

A- YC2 (D12D12)-1 C2 + 
Yý2TC1 (1.161) 

7 

is stable, so that all its eigenvalues have negative real parts. When these conditions are satisfied, an 

estimator that achieves the bound Je, oo 
(F) < 'y, is given by 

x 
(t) = Ai (t) + L.. [y (t) - C2x (t)] 

, (0) =o 
(1.162) 

Clx (t) 

where 

Lý = YC2 (D21 D21 

(1.163) 

(1.164) 

The final stage is therefore to bring together the state-feedback result and the estimator result to 

provide a solution to Hoo optimal controller problem for the system shown in figure ??. To begin with, 

recall that the Hoo norm bound J. (K) < ry holds if and only if the inequality L (u, v) = IIz112_1,2 ýýv112 <0 

holds for the associated system. Therefore, if assumptions 1-8 hold, then there exists a controller u= Ky 

which achieves the Hoo norm bound J,,. (K) <y and it is possible to characterise this Hoo optimal 

controller for the system described in equations 1.126,1.127 and 1.128 if and only if the following conditions 

are satisfied 

Theorem 9 There exists a symmetric positive definite or semi-definite solution to X to the Riccati 

equation 1.136, such that the matrix in equation 1. jg7 is stable. 



Theorem 10 There exists a symmetric positive definite or semi-definite solution Z to the algebraic Ric- 

cati equation associated with the given system' and the estimation performance bound 

ÄZ+ZÄT-ZO (n21i3)-1C2Z+ Z 21Z+B1Bi 
=0 (1.165) 

7 

such that all of the eigenvalues of the matrix 

TT1 
Zß'7 ON, 

1.166 Ä- Z02 
(D21D21) 02 +2() 

have negative real parts. When these conditions are satisfied, a controller that achieves the J. (K) <' 

performance bound is given by 

(t) = 
A1(t) + Btu (t) + LZ [y(t) 

- 
C2± (t)] (1.167) 

u (t) = Kýý (t) (1.168) 

where 

Koo _- 
(b21ny'Brx (1.169) 

and (1.170) 

(1.171) LZ = ZC2 (n21n)1 

The Hoo optimal controller therefore consists of a Hoo optimal estimator and a Hoo optimal state- 

feedback on the state of the optimal estimator. As has been seen already, the estimator depends on the 

optimal state-feedback controller via the transformed system, such that the separation principle valid 

in the H2 optimal control problem no longer holds. Notwithstanding this, it turns out that it is not 

necessary to solve the estimator R. iccati equation associated with the transformed system (i. e. equation ), 

but instead it is sufficient to solve the Riccati equation associated with the untransformed system due to 

the following relationship between the solutions X, Y and Z of equations 1.136,1.160 and 1.165. If the 

the Riccati equation 1.136 has a symmetric positive semi-definite solution X, then the Riccati equation 

1.165 has a symmetric positive semi-definite solution Z if and only if 

a) there exists a symmetric positive semi-definite solution Y to equation 1.160; and 

b) p (XY) < rye, where the term p (XY) is the maximum eigenvalue of XY. 

lai. e. the system described by the equations 1.126,1.127 and 1.128. 
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When these two conditions hold, then the solution to Z of equation 1.165 is given by 

Z=Y 
(I 

- 
ý2 ) -1 

(1.172) 

The above analysis and construction only achieves a controller that attains the Hoo bound for a required 

performance level y>0. To make the closed loop Hoo norm as small as possible, it is necessary to iterate 

on ry until the required degree of accuracy has been attained. This minimum achievable Hoo norm is 

usually referred to as yir, f (infimum) as it is the greatest lower bound of all possible y 

ry; nf = inf 111F (G, K) II 
,: u= Ky, K stabilising} (1.173) 

The final step to consider is the need to derive a controller that achieves a closed loop Hoo norm which 

exceeds the minimum achievable norm by some required tolerance level b>0, such that JIF (G, K)II. <_ 

ryi,, f + J. This can be accomplished easily using a simple bisection strategy to iterate to the required level 

of accuracy, this iterative process is known as y-iteration. 

1.4.15 Robust optimal control and decision making 

The second half of the literature review introduced and reviewed the concepts and theory associated with 

stability, robustness and optimal control. The next step is therefore to review how robustness has been 

applied to the problem of decision making in the presence of uncertainty. At first sight, there has been 

relatively little direct research involving the use of robustness in decision making. However, the area is 

not totally devoid of research findings. Research on robustness and decision making divides fairly neatly 

into two broad lines of enquiry. One direction has been the work on robust macro-economic policy rules 

aimed at deriving decision rules for macro-economic policy actions, most notably in the area of robust 

monetary policy decisions. The other direction has concentrated on applying the game theoretic route to 

solving the Hoo robust optimal control problem to price options. 

Robust, optimal macro-economic policy rules 

The macro-economic research has mainly focused around work originally carried out by William Brainard 

in (1967) which was based on the notion of treating policy selection and therefore decision making, in 

an uncertain world as an optimal portfolio choice problem. Brainard's ideas arose after discussions with 

Arthur Okun in 1962, but only appeared in his seminal 1967 article, where Brainard was the first to deal 

with uncertainty in the construction of policy rules in a systematic fashion, by identifying the model, data 

and parameter uncertainties faced by those formulating and carrying out policy. His work on uncertainty 
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and the effectiveness of policy provided the first formal statement of the idea that uncertainty may reduce 

policy responsiveness because decision-makers back away from mechanistically applying optimal policy 

rules when faced with incomplete information. 

Over the past 30 years, this simple notion has been used as a powerful heuristic, continuing to underpin 

the basic monetary policy process at many of the world's central banks. So much so in fact, that a paper 

by Martin and Salmon (1999) takes the notion even further, grading the degree of responsiveness from 

conservatism, to gradualism, through to caution. Brainard's original idea was that optimum monetary 

policy computed in a deterministic fashion (using a Tinbergen-Theil style approach) should, because of 

the combined effects of model and parameter uncertainties, be applied cautiously to attain chosen policy 

targets. This is so, Brainard argued, even if such action may result in an overall worse outcome. In 

short, the idea is that blind application of a deterministic optimal rule could in certain circumstances, 

actually exacerbate uncertainty over the outcome for the economy as a whole. As Blinder (1999) puts it, 

monetary policy makers should, "compute the direction and magnitude of their optimal policy move in 

the way prescribed by Tinbergen-Theil and then do less -a little stodginess at the central bank is entirely 

appropriate". 

Brainard commences his exposition with a single-target/single-instrument approach using the following 

simple model: 

y=aP+u (1.174) 

where y is the target variable, P is a policy instrument, u is a vector of exogenous variables and a 

determines the response of y to policy actions. In Brainard's world, the policy maker faces two principal 

kinds of uncertainty. First, uncertainty about the impact of u on y- which reflects the inability to perfectly 

forecast the value of exogenous variables, or the response to changes in their values. Second, uncertainty 

of the response of y to a policy change. Both types of uncertainty mean that the policy maker will be 

unable to move y to its target value y`, but they have significantly different implications for policy action. 

Clearly, the first type is endogenous and is beyond the control of the policy maker. However, the second 

is the very reason for the principle of certainty equivalence, namely that the policy maker should act on 

the basis of expected values as if he were certain that they will actually occur. 

The essential element of the Brainard style approach is one of a traditional optimisation (usually 

minimising) of some (generally quadratic) target loss function subject to a series of constraints. Typically, 

the loss function usually turns out to be some measure of excess inflation, with interest rates being the 

target variable. Brainard states his optimisation target cost function as follows: 

U= (y - y`)2 (1.175) 
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Brainard accepts the obvious practical objection to the above formulation. Namely, the symmetrical 

treatment of positive and negative deviations from target, as both are assumed to be equally important. 

To illustrate the linkage between policy action and the volatility of y, Brainard uses the simple assumption 

that a is a random variable dependent on some unobserved variables. a is also assumed to be correlated 

with u. Then, given the well known expression for the variance of a sum of two random variables and the 

assumption that a and u are independent, Brainard's model can be restated in terms of how much of the 

expected policy gap should be filled by policy action: 

P* 
(1 + V2) 

(1.176) 

where 

g= 
(y* a ý) (1.177) 

and V= as/ä . 
Only if the policy maker is certain (i. e. V= 0) will policy be aimed at closing the 

gap between u and y'. 

Brainard's work to estimate optimal control rules is based on simple non-stochastic minimisation of a 

linear-quadratic cost function subject to linear constraints, the so called linear-quadratic or LQ approach. 

Brainard assumes that the decision maker knows the model and associates a distinct optimal decision 

rule with each model specification. As such, the LQ approach makes three distinct assumptions. First, 

it takes no account of model misspecification or any uncertainties regarding parameter misspecification 

within the model. Second, it takes no account of disturbances or perturbations to the model and third it 

assumes that all required information is fully available at the time of decision making. Having used the 

LQ approach to generate an optimal control rule, there is no method for testing how well a control rule 

produced from one model performs in other similar but distinctly different models. In other words, there 

is no unambiguous method for establishing the robustness of the performance of the optimal control rule. 

In a distinctly rational expectations vein, Sargent (2001) has written a substantial monograph about 

decision makers who doubt their model, drawing the distinction between these decision makers and those 

in a rational expectations world, where the model is assumed to be known with certainty. Sargent's focus 

is on the issue of the decision maker being concerned about the performance of his model in comparison 

to other nearby models and the extension of rational expectations models to include a fear of model 

misspecification. Sargent cites three reasons for extending rational expectations models to include a fear 

of misspecification. First, on purely behavioural grounds both observers and decision makers should be 

allowed to have uncertainty about models enter their analysis. Second, studying robustness of decisions 

may help to shed further light on the inability of current models to explain current market phenomena 
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such as the equity risk premium and the costs of business cycles17. Third, that a body research reaching 

back to Friedman (1953) and Brainard (1967) advocates framing policy rules in the light of doubts about 

model misspecification. 

Sargent also points to a powerful feature of rational expectations models, namely, 

"that they incorporate a mapping from probabilistic laws of motion for shocks to 

decision rules" 

(Sargent, 2001, p. 2) 

He goes on to state that the mapping is implied by the assumption that decision makers use ordinary 

LQG control theory. LQG assumes that decision makers know the model in the form of a transition law 

linking state variables and controls, including a stochastic description of the shocks. LQG associates a 

distinct decision rule with each specification of the shock processes. Sargent also points to the fact that 

many rational expectations models flow from this association. He provides the specific example that the 

centre-piece of the Lucas Critique (1976) is the finding that under rational expectations, decision rules 

are functions of the serial correlation of shocks. Further, he also points to work by Salmon (1997) on how 

the econometric encapsulation of rational expectations achieves parameter identification by exploiting the 

structure of the function mapping shock serial correlation properties to decision rules. 

Sargent (2001) applies robust control theory to illustrate the loosening of the mapping from shock 

temporal properties to decision rules, by showing how the former treats models as approximations, thereby 

trying to identify a single decision rule that works well over an entire set of models. Alternative models 

are loosely specified in terms of (possibly) serially correlated shifts in the means of the shock processes. 

Sargent argues that the shifts to the shocks can feedback arbitrarily on the history of the states, thereby 

representing mis-specified dynamics. As robust decision making implies a preference for rules that work 

across a range of model specifications, Sargent argues that the Lucas critique is therefore suspended for 

situations that are shifts within a set of models surrounding the approximating model. 

Using the LQG approach, Sargent argues that the robustness specification provides an alternative 

means of sweeping a decision maker's doubts about the model unto an altered objective function. He uses 

invariant subspace methods for solving LQG problems to compute robust decision rules as solutions to 

zero sum two player games. Sargent uses two methods of altering the objective function for an ordinary 

LQG control problem to produce robust decision rules. The first is to use the known relationship between 

"The equity risk premium acts as an indicator of portfolio return expectations and as such influences asset allocation 

policy. Sargent's premise is that a possible explanation for the persistent under measurement of the premium is that decision 

makers doubt their economic model and so may act rationally by not investing as much in equities as would be predicted by 

the standard captial asset pricing model, resulting in lower demand and price, therefore reinforcing the effect. The result is 

a lower equity risk premium. 90 



the LQG problem and the two-player zero sum game where nature selects from a set of models in such as 

way as to induce the decision maker to opt for robust decision rules; whilst the second involves modifying 

the value function or indirect utility function in a zero-sum two player game based explicitly on the use 

of the Hoo criteria. 

Game theoretic analysis of options 

At its simplest, game theory is the study of multi-person decision problems. The key development came 

in 1928 with the proof of the minimax theorem by von Neumann. Until the linkage between game theory 

and the LQG approach was noticed and exploited, game theory faced severe methodological limitations 

in handling uncertainty and timing decisions in dynamic models. Once the linkage with the state-space 

Hoo solution to the robust optimal control problem was noticed and developed in the 1960's, interest 

increased, but the essential reference and wider distribution of the ideas is mainly attributable to the book 

by Basar and Olsder written in 1982. After the connection between the Hoo problem and dynamic game 

theory was realised and more fully exploited, it became clear by a sort of ironic feedback loop, that some 

of the key results required to solve the state-space version of the Hoo robust optimal control problem 

were already available in the game-theory literature. Most notably, the optimal state-feedback result of 

equation 1.136 had already been fully developed in classical LQ game theory. 

The main work in the area is that of Ziegler (1999) who develops a game-theoretic approach to pricing 

options by framing the option pricing problem as a two person game between the option buyer and the 

option seller. The essence of Ziegler's approach is to separate the problem of the strategic interactions from 

the problem of valuing payoffs. Ziegler deals with the former using the problem of backward induction 

so that each sub-game can be replaced with its equilibrium payoff - an idea generally known as subgame 

perfection. Limiting attention for the moment to finite-horizon option valuation problems, it is then 

possible to say that in a finite game of perfect information, backward induction and subgame perfection 

are equivalent (see Fudenberg and Tirole, 1991). 

For valuing the option payoff, consider a simple contingent claim whose underlying is some asset S, 

whose behaviour follows a standard geometric Brownian motion 

dS =1 Sdt + aSdZ (1.178) 

where p is the drift and a is the instantaneous standard deviation of the process and dZ is the increment 

of a standard Wiener process18. Then by the usual Black-Scholes style analysis, let S be the current value 

"In two papers (1985 and 1987) Huang derives sufficient conditions under which equilibrium prices can be shown to follow 

a standard Wiener process. 
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of the underlying at time t, r the risk free rate of return, a the payoff to the holders of S per unit of 

time (i. e. a dividend) and let b be the payoff to holders of the contingent claim per unit of time. Then 

using subscripts to denote partial derivatives, Merton (1977) tells us that if F (S, t) is the value of the 

contingent claim, it must satisfy the following differential equation 

2a2S2FSS+(rS-a)Fs+Ft-rF+b=0 
(1.179) 

It is easy to see that Merton's equation contains parameters and is subject to certain definable boundary 

conditions. Ziegler's game-theoretic analysis of options is a three step procedure. In step 1 the game 

between the players is defined in terms of the action sets, the choice sequences and the resulting payoffs. 

Step 2 involves using standard arbitrage theory to value the future underlying payoffs of the players. The 

third step is to solve the optimal strategies of the players using backward induction or subgame perfection, 

working backwards from the final period. 

The game theoretic approach thus in effect replaces the maximisation of expected utility that is usually 

encountered in classical game theory, with the maximisation of the value of an option. This provides the 

arbitrage-free value of the payoff of the option to the player, which acts as a proxy for expected utility. 

This has the advantage that the time value of money and the market price of risk are automatically taken 

into account in the analysis. However, as Ziegler points out, the greatest strength of the game-theoretic 

approach is in its ability to separate the valuation problem from the strategic interaction between the 

two theoretical players, which clearly makes the approach most useful in the valuation of non-European 

exercise options such as the problem of valuing the perpetual put option. The usefulness of this feature 

is that it makes it possible to solve complex decision making problems under uncertainty by applying 

no more than classical optimisation techniques to the value of an option. This capability is useful in 

turn because it can frequently be reduced to finding the first order conditions for either a maximum or 

minimum. 

To understand how the method actually works, it is useful to consider the following example. Consider 

a two-person game between players I and II with the following structure. First, player I selects strategy 

A, followed by player II selecting strategy B. Taken together, the two strategies and the future value of 

S combine to determine the payoffs to I and II. If C (A, B, S) and H (A, B, S) are the current payoffs 

to players I and II respectively, then these values can be derived by solving a differential equation of a 

form similar to equation 1.179, subject to appropriate boundary conditions. The strategy for each player 

involves the selection of one of the parameters of equation 1.179, so as to maximise the value of their 

respective payoffs. In the final stage of the game, player 11 selects a strategy B so as to maximise the 
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value of his expected payoff H (A, B, S) such that 

äH (A, B, S) 
0 

OB (1.180) 

given that B is not a boundary condition. Clearly, this simple first order condition can be solved to 

produce an optimal strategy B=B (A, S) 
, which is highly likely to depend on the choice of strategy 

made by player I (i. e. A). The key point is that at the time player I makes his decision, he must attempt 

to anticipate player II's subsequent choice, which involves setting 

OG (A, B, S) 
_ 

UG (A, B, s) 
+ 

ac (A, B, S) dB 0 (1.181) aA OA OB dA 

which yields the optimal strategy A=A (S) 
, with the second term oc äB 'S reflecting the indirect 

effect of player I's strategy choice on his expected payoff that results from the influence of his choice 

on player II's optimal strategy B. As Ziegler points out, it is this important incorporation of feedback 

that captures the essence of backward induction, as it explicitly incorporates the fact that player I must 

anticipate player II's action when making his choice. 

There are three principal limitations to applying Ziegler's game-theoretic approach. First and most 

obviously, the resulting mathematical complexity is highly likely to preclude closed form solutions -a 

situation that would weigh heavily against its use in practical situations where time and tractability 

are frequently preferred to elegance and completeness. The second problem is that the game-theoretic 

approach will not work if the optimal strategies are stochastic, that is they depend on the value taken by S. 

The third problem arises in the case of convex payoff functions. When the payoff function is non-concave 

it may be difficult to state strategies unambiguously. 

1.4.16 Modelling software and implementation 

Though clearly not part of the literature review, this section describes the essential features of the software 

design approach to programming the analytical models which were developed to test the ideas contained 

in this thesis. As the body of software expanded it was decided to give the main components names to 

aid identification. The overall product name given to the components written for the option pricing, risk 

management and monetary policy software is Robusta. 

It was decided not to use the popular Matlab toolboxes as the computational engine for the calculations 

required in this thesis. This is because although Matlab is an excellent tool it has a number of widely 

known and well documented limitations 

1. The we of the dense complex matrix as the Main data structure for linear algebra computations: 



The need to utilise complex computations to solve computational systems design problems leads 

to very inefficient implementations of functions to solve problems such as Algebraic Riccati and 

Lyapunov equations which are central to many areas in robust optimal control and widely used in 

this thesis. 

2. The trade-off required to balance the Matlab matrix handling power with the ability to exploit intrinsic 

structural aspects of certain types of problem: Attempting to exploit the structural features of 

computational problems frequently results in an offsetting increase in execution time due to the 

interpreted nature of the Matlab package. Using a language such as C or C++ means that the 

functions can be compiled, use more efficient data structures, make more efficient use of memory 

and execute faster. 

3. Lack of numerical robustness in Matlab: when faced with problems which exhibit a significant de- 

gree of scaling in their structure or parameters, Matlab frequently produces spectacular failures such 

as general protection faults (resulting in the hapless user inadvertently addressing video RAM ! ). 

However, more seriously, the more dangerous situation arose on a number of occasions that Matlab 

produced seemingly correct results which when cross checked with appropriate boundary conditions 

or other packages such as Mathematica proved to be completely incorrect. 

Given the generally non-portable nature of Matlab based applications, it was decided to utilise an 

alternative source of robust optimal control functionality. Accordingly, the Slicot free-source subroutine 

library was settled upon as providing the required functionality to an acceptably high standard of precision 

and rigorous methodology. Six separate C/C++ dynamic link libraries (DLLs for short, see Appendix 

1 for full details) containing the functions required to carry out the computations required to test the 

robust optimal control approach developed in this thesis (see below for full details)19. These DLLs were 

then linked to a front-end graphical user interface written in Visual Basic and a back end Access database 

for storing source data and results data. The entire package together was christened Robusta. 

One initial obstacle that had to be overcome was the fact the Slicot library is written in Fortran, 

whereas the computational libraries for Robusta are written in C++. There were therefore two options: 

9 Write mixed language C++/Fortran code to call the required Slicot library functions in their native 

Fortran form. 

"For the more technically minded, the underlying algorithms were written in straight ANSI standard C for speed and 
then wrapped in a series of C++ classes for the purposes of providing a dual interface to both Excel and Visual Basic via 

a single compilation. The result is a single DLL that can used in either Excel or Visual Basic without the need for either 
XLLs or complex API calls in Visual Basic. 
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" Re-code the required Fortran functions from the Slicot library into C++. 

Given the inherent difficulties associated with mixed language programming in Windows environments 

and the desire to use a single language for the computational libraries in Robusta, it was therefore decided 

to port the required parts of Slicot into C++. Unsurprisingly, this proved to be a non-trivial task, requiring 

several months of patient coding and testing. In order to achieve the recoding efficiently, the initial idea 

was to implement a two stage process. First, to run the required parts of the Slicot library through the 

shareware programme known as f2c which automatically takes Fortran code and performs the appropriate 

translations into straight C. However, initial efforts proved patchy due to a number of technical problems 

with the f2c parsing algorithms (e. g. the literality of translating Fortran GOTO statements results in 

poorly structured C code which then has to be restructured . 
It was therefore decided to re-write the 

C-code for the f2c parser, simultaneously improving on the command line interface of the original product 

by adding a more user-friendly front-end graphical user interface in the process. Once again, this proved 

to be a non-trivial task ! 

Once complete, the resulting C code then had to be wrapped into C++ - which proved to be another 

time consuming task ! However, once complete the resulting library proved to be both as fast as its 

Fortran predecessor in execution and almost as small in memory footprint. Crucially, results are just as 

accurate and execution does not cause general protection faults in Windows ! Appendix 1 provides a 

complete listing of the Slicot library functions that were re-coded into C++. 

1.5 Scope for research - thesis organisation 

The ideas presented and the research reviewed in this first chapter are a clear indication of the significant 

potential of applying robust optimal control to problems where robustness and stability of the optimal 

choice is required even in the presence of uncertainty. Apart from the work by Sargent, Ziegler and an 

unpublished paper by Bernhard, relatively little research has so far been carried out on the application 

of robust optimal control and the Hoo approach in particular, to decision theoretic problems where 

meaningful insights could be gained from investigating the separation of intertemporal substitution and 

relative risk aversion. The question therefore arises of precisely which areas of research this thesis is 

attempting to contribute to in order to add to the existing body of knowledge in the area. As outlined 

at the beginning of this chapter, there are three main areas of contribution, namely, derivative pricing, 

dynamic hedging and portfolio risk management. 

Chapter 2 moves beyond the work by Ziegler, to more recent work based on game theory by Bernhard 

(2000) that applies robust control techniques to option pricing. Bernhard's work is of particular interest 
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as it offers the possibility of being able to price options without recourse to any particular underlying 

probability distribution, thereby directly addressing a key weakness of the traditional Black-Scholes (1973) 

approach. Bernhard (2000) achieves this by using trajectory sets and bounded variation to derive a robust 

control theoretic framework for the option pricing problem of finding the price of a European exercise 

option paying: 

max(Spot - Strike, 0) (1.182) 

in the case of a call, or 

max(Strike - Spot, 0) (1.183) 

in the case of a put. This is an intriguing use of robust control theory and is potentially extremely 

valuable as it is distributionally independent. However, its greatest value as an approach may lie in the 

area of valuing options on extreme values or events, often referred to as catastrophe options. These are 

options on discrete or highly non-predictable events -a situation where the traditional probability driven 

Black Scholes approach is known to be extremely unreliable because of its reliance on a parameterized 

distribution and a known, fixed volatility (this is so, even in the more recent flavours which use approaches 

such as jump diffusion and stochastic volatility in an attempt to capture the inherently uncertain nature 

of the underlying process). At a practical level the Chicago Board of Trade offers cash-based index options 

on a number of instruments. The Property Claims Service (PCS) indices reflect estimated insured industry 

losses for catastrophes that occur over a specific loss period. The current market valuation practice is to 

use some form of GARCH model to estimate volatility and then use this within a Black-Scholes type of 

model. Such an approach may lead to a fundamental mispricing of options since the two most common 

distributional assumptions of either nomality or log-normality of the underlying price process are both 

known to be highly inaccurate in the case of extreme outcomes. The contribution of this thesis is in 

applying robust optimal control theory to provide an approach that will permit the calculation of robust 

and stable options prices in the case of options on extreme underlyings. 

Two aspects of risk management appear to offer considerable profitable scope for the application of 

Hoo optimal control techniques. The first is the more micro-economic aspect of hedging of individual 

options, whilst the second aspect is more macro-economic and is concerned with the control of overall 

risk across a financial institution. Chapter 3 examines the micro risk issues first. 

Traditional option theory is constructed around the notion of risk neutrality, the idea being that for 

an option to be correctly priced arbitrage must be impossible and that full hedging is only optimal when 
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the current forward price is equal to the expected future spot price. This view is very much predicated 

on the notion of a quantifiable stochastic disturbances. However, Lien (2000) introduces the idea of 

Knightian uncertainty into the futures hedging problem, examining the situation where an agent has 

imprecise information about the underlying probability density function of futures prices. This imprecision 

generates ambiguity, to which Lien argues, agents are averse, resulting in hedging inertia with regard to 

the decision over full or partial hedging. He finds that when carrying out forward hedging using futures, a 

full one-to-one hedge ratio is more likely to occur under Knightian uncertainty in a region of prices around 

the current forward price. The size of the region is positively related to the degree of ambiguity over the 

probability density function. This kind of optimal hedging problem is exactly where the application of 

Hoo optimal control techniques could be extremely useful. For example, little or no work has been carried 

out on the combined stability and robustness properties of dynamic hedging strategies. 

Chapter 4 examines risk management at the macro-risk level. The VAR or "value at risk" approach 

is one of the most widely used methods of measuring and controlling risk among financial institutions. 

VAR summarises the expected maximum loss over a target horizon within a given confidence interval. 

Institutions using VAR typically look at a 95% confidence interval over periods ranging from one to ninety 

days. One obvious problem with VAR is the reliance on the first two moments of the selected distribution - 

namely the mean and standard deviation - in order to calculate the confidence interval for a situation where 

it is acknowledged the tails of the distribution are unlikely to be an accurate guide to the likely frequency 

and magnitude of large market movements (which is one of the key reasons for using VAR). The frequent 

and implicit use (due mostly to familiarity, though not necessity) of a quadratic loss function through the 

desire to pursue a minimax loss strategy is also likely to produce misleading conclusions if the underlying 

utility function is non-quadratic (especially in the presence of large discontinuous changes), which once 

again leads back to the variational utility concept where the separability of intertemporal substitution 

and risk aversion is critical to an understanding of how the risk decision is made. An organization cannot 

be indifferent to risks at different time horizons - bankruptcy tomorrow renders irrelevant any concept 

of discounting or future decisions. Both institutions using VAR and regulators assessing the risk profile 

of a firm usually do so with the intention of using VAR results to provide feedback into improving the 

future risk management of an institution. Applying robust optimal control techniques provides control 

rules that are both more robust and stable in operation than a wide range of the more popular hedging 

rules. 

Chapter 5 draws together the main findings and conclusions in the thesis and offers ideas on directions 

for future research in the area of decision making in the presence of uncertainty. 

97 



Chapter 2 

Robust optimal control and the pricing 

of catastrophe derivatives 

It is better to understand a little than to misunderstand at lot. 

Anatole France, nom de plume of Jaques Thibault, French novelist and critic, 1844 - 1924 

2.1 Introduction and motivation for research 

According to the 2003 report by the International Institute for Applied Systems Analysis, more than 700 

major "natural" catastrophes occur every year. Since the 1950's alone, economic losses from disasters of 

either natural or man-made causes have increased 14-fold. Although the developed world generally suffers 

the greatest absolute economic losses, seen as a percentage of GNP, the losses in the developed world are 

150 times greater in terms of human victims and 20 times greater in terms of economic losses. The major 

factors behind these escalating costs are economic and population growth with accompanying land-use 

changes and capital movements of capital to vulnerable regions. In other words, the main cause is global 

change in its broadest sense. At the same time as such profound and sustained global change is occurring, 

it is expected that long-term worsening of weather extremes due to climate change will also accelerate if 

human action is not taken. 

Specific events such as the stock market crash of 1987, hurricane Andrew in 1992, the Northridge 

earthquake in 1994, or even the bombing of the World Trade Centre in 2001, have all served to underline 

the increasingly stretched capacity of global insurance markets. This has in turn sparked an increasingly 

active debate among actuaries, economists and politicians over whether financial markets with their 

vastly greater risk bearing capacity could, or indeed 
$ 

should, be used to hedge risk that has previously 



been covered using other channels. A symptom of the debate and of the increasing linkage and possible 

convergence between the insurance and financial markets has been the steadily increasing stream of 

financial instruments that contain some form insurance product and vice versa. The lines between the 

industries have become increasingly blurred and this has stimulated the tailoring of products to the risk 

preferences, capacities and demands of both buyers and sellers of risk based products. Securitisation of 

risks in both areas has generated a concommitant development in the pricing of products containing both 

insurance and financial elements, the result of which has been a seaxch for an appropriate class of processes 

to solve the problem of price determination for extreme risks. Arguably one of the most important aspects 

in this process is the way in which risk and uncertainty are handled in each discipline. Given that there is 

broad consensus between the two areas over the treatment of risk as a utility maximisation problem, the 

most interesting issue is therefore how to deal with uncertainty in the pricing of derivative instruments 

and in particulax, derivative instruments whose underlying is some form of extreme or catastrophic event. 

Hedging of catastrophic risks originated in the insurance industry, which makes it logical to begin the 

analysis of the problem from an insurance perspective. Catastrophe insurance is essentially a put option 

that locks in the value of some underlying asset. The purchaser pays a premium to the insurance company 

to buy a policy (which specifies the extent and limitations of cover). If and when some pre-determined 

event occurs that reduces the value of the protected asset, then the insurance company replaces the asset 

according to the details of the policy. According to the US Insurance Services Office, for example, a 

catastrophe is an event which causes at least $25 million in damage and must affect multiple parties. 

Unlike standard insurance policies for risks such as motor cars or whole life cover, catastrophes usually 

strike an entire area or group, frequently inflict massive damage and occur uncertainly, making prediction 

impossible. These factors have been the main reason why insurance companies were unwilling to assume 

catastrophe risk until relatively recently. Another factor has been the presence of high adverse selection, 

meaning that only those planning to use such policies buy them in the first place. 

From an actuarial perspective, an insurance company writing catastrophe insurance can be analysed 

as if it were a portfolio of put options, each on an individual catastrophe, where the overall portfolio return 

takes on a Poisson distribution depending on the frequency and magnitude of the sum of the catastrophic 

eventsl - zero payout or 100% payout - with correlations very close to unity. Such risk can and will only 

be assumed if adequate reinsurance cover is available, which gave rise to the development of reinsurance, 

which allows primary insurers to hedge away all or paxt of their risk by selling it to another company. 

Reinsurance also allowed primary insurers to write catastrophe risk policies with premiums low enough 

'In the sense that the Poisson distribution is used to model the number of events occurring within a given time interval. 

So, either an event or events do or do not occur, thereby affecting the payout. The arrival of individual catastrophes would 
be most appropriately described by a Bernoulli distribution due to the binary nature of catastrophic events. 
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to encourage sales, yet high enough to fund hedging via risk transfer. Reinsurance companies are willing 

to assume catastrophic risks because they are responsible for only a small part of the exposure (typically 

that beyond some limit as in the case of excess of loss reinsurance) with the least likelihood of occurrence 

as it is in the tail(s) of the perceived distribution. To complete the risk transfer process, the reinsurer 

sells back to the original insurer another put on the same underlying catastrophic risk, but with a lower 

strike price. The net of this process is to produce a risk profile that to an options modeler would be 

immediately recognisable as the payoff for a range forward. The important point is that the reinsurer is 

willing to engage in the process because the catastrophe risk is likely to have a very low correlation with 

the other risks in their portfolio, thereby allowing diversification whilst simultaneously earning premium 

income. 

The emergence of reinsurance effectively made possible catastrophe insurance, but the process still 

has some problems. First and most obviously, is that the reinsurance market is not efficient as there 

are few competing firms who are able to vary their premia at will. Second, due to the relatively low 

levels of capitalisation of the competing firms, credit risk is a potentially serious problem. Third, due to 

the diversity of exposures, pricing is inconsistent and tradability of risks is poor due to lack of liquidity. 

It is not surprising therefore, that insurance companies have turned to the transparency, efficiency and 

capitalisation of the capital markets for solutions. For example, according to the 2002 Sigma survey, the 

entire primary and secondary (or reinsurance) industry had access to capital of $240 billion at the end of 

2002. A catastrophe of say, $75 billion would therefore bankrupt approximately one third of all insurers. 

In contrast, the global capital markets have an annual turnover of approximately $26 trillion, with an 

average daily volatility of approximately 70 basis points, or $133 billion and so would be far more capable 

of providing a deeper and more liquid means of consistently pricing, hedging and transferring catastrophe 

risk. 

2.1.1 Instruments and markets for catastrophe risk 

1998 was a significant year for the catastrophe risk market, for three reasons. First, measurable, reliable 

indexes of catastrophe losses emerged which could act as reference points for reliable and accurate pricing 

of catastrophe linked products. Second, new products began trading on recognised financial exchanges, 

providing the beginning of transparency and liquidity required for an efficient catastrophe risk market. 

Finally, the over-the-counter market in the underlying catastrophic risk and associated derivative products 

began with the issuance of the first bonds whose payouts were linked directly to indexes of catastrophic 

events. The subject of catastrophe based derivatives is returned to in considerable detail in the subsequent 

section on the pricing of catastrophe derivatives using robust optimal control techniques. 
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Continuing the theme of robust decision making that underpins this thesis, this chapter seeks to address 

the relatively sparsely researched area of robustness in pricing certain types of catastrophe derivative 

instrument. The problem considered is the relatively narrow one of the robustness of the pricing of 

options on extreme and catastrophic events, such as natural disasters, credit default options or stock 

market crashes. Hitherto, the broadly predominant approach has been via expected utility theory, under 

which the price of an option is found to be the discounted value of the expectation of the underlying price 

process under some chosen risk-neutral measure. Research in this area has been carried out in two broad 

areas. 

On the one hand, has been the work carried out in mathematical finance which has mainly concen- 

trated on finding ways of extending the bench-mark (generally lognormal) Black-Scholes (1973) option 

pricing paradigm, which relies on the standard diffusion type processes and arbitrage-free arguments to 

price options under a risk-neutral measure. Within mathematical finance the standard BS approach has 

been extended to encompass the effects of well known shortcomings such as non-constant or non-smooth 

volatility, alternative measures (as well as their associated transforms and pricing processes) and dis- 

tributional irregularities such as jumps and fat tails. This is hardly surprising when it is remembered 

that a substantial part of current option pricing theory continues to be based around the Black-Scholes 

(1973) and Merton (1974) (BSM) option pricing approach. The principal reason for this focus is practi- 

cal, namely, that many practitioners like the computational simplicity and speed, as well as the strong 

intuitions underlying the BSM approach. 

On the other hand, has been the work carried out in the area of actuarial mathematics where issues 

of pricing insurance contracts which cover eventualities where jumps or discontinuities are frequently 

encountered, such as ships sinking, or car accidents, life related events, or in extremis, catastrophes such 

as hurricanes or earthquakes. Actuarial mathematics has tended to focus on the use of risk processes of 

the compound Poisson type, where markets axe by definition and practicality, rarely if ever complete. As 

a result, risk can rarely if ever, be hedged away and in many cases there will be an infinite number of 

equivalent martingale measures, so that pricing becomes directly linked to risk preferences. This has been 

a central reason for the use of techniques such as the Esscher transform, where the linkage between the 

financial and actuarial mathematics can be made via the theory of semi-martingales. 

2.2 Motivation for research 

What then is the motivation for research into the robustness of pricing catastrophic derivatives and 

other extreme events in options theory ? The motivation for the research in this chapter has three main 

sources. The first is the increasing number, frequency and intensity of catastrophic losses in both the 
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capital markets and insurance worlds that have occurred in the past 30 years and have brought to the 

attention of many reseaxchers the importance of studying the impact and pricing of such events. Over the 

last 20 years in the financial markets, adverse events such as the stock market collapse of 1987 and the 

collapse of Long Term Capital Management (LTCM), have precipitated massive losses for institutions and 

private individuals alike. Over a similar period in the insurance markets there have been events such as 

hurricane Andrew and the Northridge earthquake. Whilst substantial research effort has been applied to 

these types of problems from the insurance area, little work has been carried out from the mathematical 

finance field. It is therefore especially interesting that the robustness or otherwise of the prices and values 

produced by current option modelling approaches have hitherto not been a major source of interest to 

researchers. 

Second, is decision making under uncertainty, which is the underlying theme of this thesis. Problems 

in option pricing have witnessed some of the most interesting work in decision theory in the period since 

the publication of the seminal option pricing work by Fisher Black and Myron Scholes in 1973. Though 

still ubiquitous in its use, the Black-Scholes model suffers from a number of well known and increasingly 

well researched shortcomings, a small number of which are the central focus of this chapter. For example, 

from a theoretical perspective, uncertainty enters the decision making problem via the notion of utility and 

the concept of risk aversion, whilst possible alternatives would be equilibrium theory, or the state/belief 

dependent utility approach of Veronesi (2001). But either way, a multitude of possible martingale pricing 

measures can arise. The difficulty to be addressed is, that if the objective is to remain within the risk- 

neutral, arbitrage free approach, it is not possible to be certain which of the possible pricing measures 

should be selected. 

The third motivation for this chapter is the apparent lack of robustness in much of option pricing 

theory. The substantial losses suffered by delta hedgers in the wake of the 1987 crash and the almost 

total failure of delta hedging in the case of LTCM, suggests that the underlying Black-Scholes model is 

not robust to shifts in one or more of the underlying parameters in the model of the price process, the 

volatility process or the arbitrage free nature of the underlying pricing theory. For example, work by 

Berkowitz (2001) tests the robustness of the pricing process to model selection. In particular, Berkowitz 

examines the impact of arbitrarily frequently recalibrating an implied volatility grid and using it to price 

standard Black-Scholes options. He finds that as the frequency of the recalibration increases arbitrarily, 

the prices of the options in turn become asymptotically more accurate. In other words, it would appear to 

be possible to get the "correct" option prices from the "wrong" model, just by continuously re-calibrating 

and re-hedging ! 

The final motivation for this chapter is the possibility of using feedback control modelling techniques 
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to form a bridge into option pricing theory by using control theory as a common thread between actuarial 

mathematics and mathematical finance. Robust optimal control is an area of mathematical control theory 

that has been in wide use in engineering for many years, but its use in finance is relatively spaxse, with 

the substantial body of work by Sargent et al (e. g. 1999 and 2000) still proving the exception rather 

than the rule. At its simplest, robust optimal control involves finding a controller process which will 

make the results of the dynamic model of the system under consideration robust to uncertainties in data, 

parameters, model selection, model specification and types of perturbation. One of its key attractions is 

the facility to design models which do not require the specification of a particular probability distribution 

in order to generate a unique and robust solution to the problem of pricing an option in the presence of 

uncertainty. The particular attraction in the case of catastrophic derivatives is the impact of applying 

optimal control techniques to develop a class of pricing model that provides greater robustness in the 

presence of fundamental model and data uncertainty. 

The work presented in this chapter therefore represents new ideas and methods of applying existing 

techniques in both linear and non-linear robust optimal control and state-space techniques to the emerging 

area of catastrophe based derivatives in order to produce a pricing paradigm more suited to the extreme 

nature of the underlying catastrophic events . 
The application and extension of existing work therefore 

arises in three main ways: 

1. Treatment of catastrophe based derivatives as a problem in robust optimal control within the context 

of decision making. 

2. Application of robust optimal control techniques to the pricing of catastrophe based derivatives. 

3. Devlopment of valuation approaches to price a range of catastrophe based derivatives - most notably 

catastrophe options and catastrophe linked bonds. 

The chapter therefore proceeds as follows: section 3.2 provides a review and critique of existing 

literature and approaches to the pricing of options on extreme events. The chapter continues with section 

3.3 which provides derives a new approach to pricing catastrophe based derivatives using robust optimal 

control techniques. Section 3.4 provides a description and analysis of the data and modelling approach 

and preliminary results. The chapter concludes with section 3.4, which offers preliminary conclusions and 

suggestions for further work. 
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2.3 Review of the literature 

Chaxacterising extremes by example, Hurricane Hugo in 1989, Hurricane Andrew in 1992 and the North- 

ridge earthquake in 1994 constitute the three most costly catastrophes in US history and highlight the vast 

exposure to catastrophic losses faced by the US insurance industry. Studies such as ISO 1996, indicate 

that the US insurance industry could face losses in the region $75 - $100 billion from a serious earthquake 

or hurricane. According to Sigma 2002, such losses would potentially find one third of all US insurers 

insolvent and leave losses of up to $50 billion to be covered by remaining insurers and policy holders. 

The problem has two dimensions. First, the sheer scale of the losses which could be occasioned by the 

type of catastrophic events quoted above. For example, in 1992 hurricanes Andrew and Iniki struck the 

US and a record 63 property and casualty insurers became insolvent, whilst in the 10 yeaxs to the end of 

1998, US property/casualty insurers suffered catastrophe losses of $98 billion. This compaxes with only 

$49 billion in similar losses in the 39 years to the end of 1988. A 1995 ISO study also showed that the 

worst hurricanes now have the potential to cause insured property losses in excess of $75 billion, whilst 

earthquakes of around 8.5 on the Richter scale in an area such as New Madrid in the USA could cause 

insured property losses in excess of $115 billion. The second dimension is that the population in those 

parts of the USA now exposed to hurricanes and/or earthquakes rose by 25% in the 20 years to the end 

of 1990. By way of comparison, the bombing of the World Trade Centre on 11 September 2001 resulted 

in losses of $49 billion in a single highly contained event. 

In order to be able to quantify such losses, actuaxial and financial mathematics have generally started 

at different points. Actuarial driven reseaxch has generally focused on the issues surrounding the pricing of 

reinsurance contracts that will provide cover for primary insurers. Mathematical finance in contrast, when 

faced with problems such as the 1987 stock maxket crash, or the failure of Long Term Capital Management 

has traditionally looked to option pricing techniques in general and Black-Scholes in particular. This has 

lead the two groups in two broadly different directions. One the one hand, the use of jump diffusion type 

approaches have proved to be the mainstay of the actuaxies, whilst continuous time stochastic volatility 

models have constituted one of the key areas of attention in the modelling of catastrophic events in 

mathematical finance. 

Rom a practical perspective, numerical examples such as those above axe useful. However, a rigorous 

mathematical framework is a fundamental prerequisite for a tractable theoretical and practical study of 

extreme events. So, how should such events be characterised ? In classical statistics, extreme events are 

usually regarded as outlier events - those that occur with extreme rarity, but can still be subjected to 

formal analysis within a precise mathematical framework. At a theoretical level, such events are generally 

characterised as having low expectation of occurrence and therefore of being in the extreme tails of a 
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distribution. They are difficult to predict, but will have a substantial and sustained impact on a given 

part of the financial sector of the economy, e. g. the insurance market or the capital/financial markets. 

At the level of a formal model of such types of events, there are several important questions to consider 

when analysing candidate models for dealing with catastrophic events: 

1. What features characterise extreme or catastrophic events and what are the features required of a 

model to capture such features realistically, usefully and tractably ? 

2. How to deal with incomplete markets in hedging arguments. 

3. What is the most appropriate model - what are the criteria for deciding ? 

4. Is the model robust with respect to distributions, parameter and model uncertainty ? 

5. Is data available for the chosen model parameters ? 

6. Computational considerations - models must work reasonably quickly to be useful to practitioners. 

These axe the key issues to keep in mind throughout the review of the models presented in this section. 

However, the first point is that extreme or rare events are currently defined with respect to some form of 

discontinuity in the process for the underlying. At this point, it is important to differentiate discontinuity 

from volatility and this is where the broad approaches of the insurance and capital markets diverge, which 

makes an ideal point to commence a review and critique of the literature. 

Characterising the differences in methodology in the pricing of catastrophe based products between 

the insurance and financial/capital markets can be approached in a number of ways, all of which yield 

varying insights. The approach adopted in this chapter can therefore be regarded as somewhat subjective 

in its perspective, but has the virtue that it provides a simple starting point to tackle an area that is 

among the most complex in the area of pricing derivative instruments. Given the possibility of viewing 

a catastrophe derivative as a put option (or even as a range forward) and given the ubiquitous nature 

of the Black-Scholes (BS) approach, it makes sense to begin by using the Black-Scholes framework as a 

starting point for a review and critique. 

At its simplest, the BS option pricing formula is summarised by the familiar linear partial differential 

equation linking the price of a derivative to the price of an underlying instrument: 
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where S is the price of the underlying, f is the price of a derivative instrument, contingent upon the price 

of S; t is time, r is the risk free rate used for disf61nting and a2 is the variance of S. In its original 



form, both Q2 and r are assumed to be constant. The BS equation describes a single dimensional diffusion 

equation with well known boundary conditions, which when varied provide the solution space for a variety 

of alternative derivative instruments. 

The BS model is underpinned by a range of assumptions, but one of the most fundamental is that S 

follows a specific type of Wiener process generally referred to as a geometric Brownian motion of the form 

dS = µSdt +QSdW, where dW = e( dt) and e-N (0,1) (2.2) 

with constant mean (it) and variance U2. N is assumed to be normally distributed with zero expected value 

and unit variance. Here is the heart of the critique of the BS approach, namely, that the assumption 

of constant variance does not reflect reality and that S moves in a smooth and continuous fashion. 

Broadly speaking, pure option theorists in financial mathematics have concentrated on developing models 

that attempt to expand the way in which volatility is treated within an option model, whilst actuaries 

have concentrated on developing models that modify or remove the assumption of the continuity of S, 

usually through the introduction of some form of jump feature in the behaviour of the underlying. But 

most fundamentally, neither group has shown much if any interest in the robustness or otherwise of 

the pricing and hedging results of their models. The following sections therefore analyse the problems 

with the relevant BS extensions, mainly from the perspective of catastrophic derivatives, concentrating 

substantially on those key areas which particularly illustrate the need for an alternative approach to 

the pricing problem. The analysis begins with the volatility type approaches favoured by mathematical 

finance and is then followed by the jump based approaches pursued with such single-minded vigour by 

the actuarial community. 

Constant volatility models 

In the 30 years since its introduction, the basic BS approach has been expanded in a number of ways in 

an attempt to adjust for the drawbacks that accompany an assumption of constant volatility. The adjust- 

ments can be grouped into three main types. First, models that treat volatility as purely deterministic. 

Second, are models that make volatility an independent stochastic vaxiable. Third, are those models which 

do not attempt to correct volatility but instead opt to predict it over the remaining life of the option. 

Prediction is carried out using some form of autoregressive conditional heteroskedastic (ARCH) process, 

which restricts volatility to be constant over the remaining life of an option, while allowing conditional 

volatility (conditional on historic data) to vary as a function of previous prediction errors. 

As far as deterministic volatility models are concerned, there have been three main strands of research. 

The first was the constant elasticity of variance (CEi)fimodel, which treats the underlying and its volatility 



are negatively correlated. This assumption is based on the idea that in the case of a leveraged firm, a fall 

in the stock price raises gearing and therefore riskiness, whilst for a non-leveraged firm, falling operating 

income lowers stock price performance and therefore also raises riskiness. Cox and Ross (1976) modelled 

this apparent inverse relationship between the underlying and its volatility using the assumption that 

changes in the underlying can be predicted by following relationship 

dS = pSdt + aSa/2dW, where dW = e( dt) and e -N(0,1) (2.3) 

where it, a and a (0 <a< 2) are constants, with the latter measuring elasticity. At the point that 

a=2, the model becomes the regular BS model, whilst a=0 produces the absolute diffusion model 

and a=1 produces the so called square root model. Replacing the usual geometric Brownian motion 

under this approach results in a very similar result to the BS model, but with the unfortunate addition 

of an infinite sum in the solution to the differential equation. Approximations to avoid this problem exist 

for both the absolute diffusion (Cox and Ross (1976) and square root models (Cox (1975)), but neither 

model is widely used. This is probably due to two factors. First, the evidence that volatility is is fact 

negatively correlated with the underlying. Second, the lack of stability over time of the optimal choice of 

elasticity coefficient (Emmanual and MacBeth (1982)) and the apparent volatility of elasticity measures 

for particular stocks over some periods (Ang and Peterson (1984)). Interestingly, attempts to model time 

series of elasticity coefficients as either AR(1) or AR(2) processes indicate that they are uncorrelated with 

past values, which raises the question of whether assuming fixed elasticity provides any real improvement 

over the standard BS approach. 

The second approach to varying the volatility assumption is the compound option model (COM), 

which like the CEV model, is based on the assumption that volatility is negatively correlated with the 

underlying. Based on the idea that the firm is leveraged with total value, V, but with constant debt, 

D, (comprised totally of zero coupon bonds), then the firm's value at expiration of its debt will be 

max (0, V- D) which implies that the value of the option on the underlying is an option on an option, 

or a compound option. Geske (1977) produced the first model for compound options, but his model is 

based on the assumption that the volatility of the value of the firm, cr,, is constant and expresses the 

underlying as a solution to the BS equation with V replacing S and D replacing strike in the boundary 

condition for a call. His solution makes volatility a function of both V and t, such that the COM has a 

solution which is linear combinations of bivariate cumulative normals. The COM represents only a slight 

advance from the standard BS model given its assumption of constancy of a, which is not much better 

that the constant volatility assumption of the standard BS model. 

The third approach is the displaced diffusion model (DDM) which again prices equity options based on 
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assumptions about the structure of the underlying company (Rubenstein (1983)). The critical difference is 

that the DDM model produces positive correlation between the underlying and its volatility. Rubenstein 

assumes that a company is the sum of risky assets (exhibiting constant volatility) and riskless assets (used 

to pay off the debts of the company). Using Rubenstein's own notation, V is the value of the company, 

with a being the proportion accounted for by risky assets, where aV behaves according to a geometric 

Brownian motion, whilst the riskless assets compound at the risk-free rate, r. After some time period, t, 

the value of the company will have grown to 

[aeb + (1 - a) (1 + r)t] V, where yN N(0, a/) (2.4) 

If 8 is the company's gearing ratio, then the value of the company, S, at time t in the future is given by 

St = [ae' + (1 - a) (1 + r)t] (1 +, ß) S- Sß (1 + r)t, where a=a+ aA (2.5) 

If a<1 then 0< (1 - a) /a making debt riskless, so that the above equation becomes 

St= a(1-I-, ß)Se'+(1-a-a, ß)S(1+r)t (2.6) 

where the first term is the risky component of the company's value and the second is the risk free part. 

If a>1, the COM model results, leading once again to negative correlation between the underlying and 

its volatility. The other main drawback of the DDM is that it is difficult to use in practice as it requires 

more variables than the COM and their estimation is every bit as fraught with practical difficulties. The 

final problem is that very few companies are actually capable of being decomposed into risky and riskless 

components in such a idealistic fashion. 

Stochastic volatility models 

The past 10 years have witnessed the production of a wide range and large number of models that treat 

volatility as a stochastic variable in its own right. Introducing a second source of stochastic variation 

produces two new problems - correlation and risk-neutrality. Numerous models assume correlation be- 

tween the two stochastic variables to be zero - which considerably simplifies the solution of the resulting 

paxtial differential equation. There is currently no completely closed form solution in the case of non-zero 

correlation. However, there axe a number of numerical approaches to deal with non-zero correlation. 

The issue of risk-neutrality raises a trickier problem. The standard BS approach generates a solution 

hinged on the assumption that is it possible to form an instantaneously risk-free portfolio comprised of the 
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derivative and the underlying. This assumption is no longer valid in the presence of a second stochastic 

input because volatility is not in and of itself a tradable asset. The extra source of randomness can be 

eliminated by algebraic manipulation, but the problem of non-tradability of volatility remains a difficulty. 

One way around this problem has been to pose a model in terms of a volatility risk premium, A*. Setting 

A* =0 results in a model where stochastic volatility is not priced such that the risk is non-systematic. 

Clearly, if there is no need to compensate for volatility then a risk-free portfolio can be constructed in 

the familiar way. 

The stochastic volatility model of Hull and White (1987) produces a simple analytic expression for 

the price of an option under stochastic volatility (though their paper is actually about the stochastic 

process of the variance) using a property of diffusion state processes first introduced by Garman (1976). 

Garman's paper showed that the following must hold for any underlying, f, that depends on the state 

variable, Oj 
Of 2 

öt 
+2I Psj't'j öB ä9 ,-rf= 

ei 
äB 

[3 (µ` - r) - µi] (2.7) 

where r is the riskfree rate, oj is the instantaneous standard deviation of Oj, pij is the instantaneous 

correlation between Oi and Oj, 14j is the drift rate of Oj, #j is the vector of regression betas for the 

be. 
regression of ! jz on the market portfolio and it* is the vector of instantaneous expected returns on the 

market portfolio. When combined with a two equation form for both the underlying and the volatility 

dS = gSdt +a (t) SdW 

dV = µVdt + ýVdZ 

where V (t) = [Q (t)]2, gives 

(2.8) 

(2.9) 

(2.10) Of +1 
[2s2 

+ 2psvC3+ 2V 2]- rf öt 2 OS 2 5V2 

(2.11) 
-rs 

of 
+ r) µJ 0,2 

Of 

aS ov 

Making the assumption that the term P, (p* - r) =0 is equivalent to A* = 0, which is a frequently used 

practical choice, but is less general than replacing p by It -& (p* - r). The final expression for the price 

of a European exercise option on an underlying that pays no cash flows is then the discounted value 

, 
t) = 6( *(T-t)) 

ff 
(ST, 

QT, T) P (ST I St, at) d. ST (2.12) f ýse, 0 

where t is current time and T is expiration time; and p (STISt, a2) is the distribution of ST conditioned t 
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upon the price and volatility of the underlying at time t. Assuming p,,, =0 reduces the above expression 

to 

where 

f (St, at') =JC (v) g (v) dv (2.13) 

T 

V=Ttr ovdv (2.14) 
�t 

measures the average variance over the life of the derivative instrument, C (v) is the value of the BS call 

f (S a2) as a function of volatility and g (v) is the risk-neutral density. Evaluating the integral tt using 

Hull and White's approach (which they argue converges rapidly for small values of ý2 (T - t)), requires 

the power series expansion about v=0 of C (v). Hull and White's approach is simple mainly because of 

its unrealistic assumption of zero correlation between the underlying and its volatility. 

Of all of the stochastic volatility models, Heston's 1993 paper has arguably received the most attention 

from practitioners in the finance market. This is probably because it does not use Carman's identity to 

derive the partial differential equation for the underlying. Heston focuses on the situation where A* is 

proportional to v (t) and assumes the underlying and its volatility have the following stochastic processes 

dS = ttSdt +(V (t))' SdZI 

d (v (t)) _ -ß (v (t)) 12 dt + bdZ2 (t) 

(2.15) 

(2.16) 

which when subjected to Ito's lemma enables Heston's so called "square root model" to provide the 

following expression for the stochastic process of the variance 

dv(t) = rc[8-v(t)]dt+o(v(t))12 dZ2(t) (2.17) 

This expression shows clearly that Heston is using an identical stochastic process to that used by Hull 

and White to describe the evolution of the underlying. Unfortunately, although Heston's solution is semi- 

closed form, it contains characteristic functions that give rise to integrals that can only be computed by 

numerical methods. Heston also considers the case where the interest rate is allowed to vary stochastically 

by following a standard Cox-Ingersoll-Ross type of process - but this extra step suffers from the drawback 

that the variance of the underlying and the variance of the interest rate are determined by the same 

stochastic process, v (t) - 

Wiggins (1987) offered an early attempt at building investor utility into a stochastic volatility model. 

He restricts his model to pricing options on indexes, thereby neatly justifying the assumption of A* = 0. 

Wiggins defines a risk-free portfolio that yields a ris'i Gt-re return of lip and a volatility of op, which produces 



a simple expression for expected loss as a per-unit function of risk: 0 (0) = 
ýýr 

. 
This then allows him 

Olp 
to show that the assumption that investors have log-utility functions leads to 0 (o) =- 0, thereby giving a 

partial differential equation capable of being solved for any given p,,, using simple numerical techniques. 

Stein and Stein (1991) adopt a similar line to Heston, such that their result is couched in terms of the use 

of characteristic functions that once again produce a numerical integration, but at least avoids the Hull 

and White power series problem. 

What is clear from the stochastic volatility models is that they all have two major drawbacks. First, 

market incompleteness arises due to the fact that the number of assets is insufficient to span the entire 

state space of contingencies. Or put another way, there is only one underlying asset, but two sources of 

Brownian motion. This makes impossible to perfectly replicate the aribtrage-free option price, rendering 

perfect hedging impossible. Hofmann (1992) was the first to suggest a way around the hedging problem, 

by suggesting that whilst there are no perfect hedges available in the stochastic volatility models, optimal 

portfolio type strategies could be used instead. For example, the target could be to minimise a hedging 

loss function (as suggested by Duffie and Richaradson) or search for dominating strategies (as suggested 

by Bensaid). 

Second, there consequently exists an infinite number of option prices consistent with arbitrage-free 

conditions. One way of circumventing this problem, employed by both Heston and Wiggins is to employ 

the concept of a representative agent that can typically trade in both the underlying and the option. 

This is a neat standard device, that has the undesirable side effect of making the option price preference- 

dependent. 

A further point on stochastic volatility models is that although suggesting that 0 may be too 

simplistic in most cases, it may not be entirely unreasonable in the case of options on a market index. 

Heston's claim that the value of volatility risk should be proportional to the volatility itself has intuitive 

appeal, but to date is unsupported by any body of empirical evidence. 

GARCH models 

In contrast to the stochastic volatility models, one line of research into adapting the standard BS model 

that has attracted considerable attention is the forecasting of future volatility with the intention of using 

it to price derivatives more effectively. The simplest approach is to assume that maikets are efficient so 

that implied volatility can then be assumed to form an accurate predictor of expected future volatility. 

This is the main idea behind the implied binomial/trinomial tree approach of both Rubenstein (1994) 

and Brown and Toft (1997). The main aim of both approaches to correct the standard BS model for 

non-constant interest rates and non-constant volatility. The second approach is to accept that markets 
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are not completely efficient and use historical volatility data to forecast future volatility. This was the 

approach that lead to the backward looking generalised autoregressive conditional heteroskedastic (ARCH) 

model of Engle (1982). ARCH is based on the basic autoregressive moving average (ARMA) model for 

data smoothing, which can only be used to model stationary processes due to their inability to describe 

the dynamics of the underlying price change process. Integrating a description of the dynamics of the 

underlying process, lead to the development of the autoregressive integrated moving average models 

(ARIMA). 

The ARCH approach involves the econometric fitting of variable-volatility models to the underlying 

data. ARCH models are based on the assumption that markets are not efficient, such that expected future 

volatility is dependent on implied volatility, so ARCH models can in a sense be regarded as a means of 

performing smoothing estimation of unobserved volatilities which can then be used in a Black-Scholes 

type model to price derivatives more effectively. A wide variety of versions of the basic ARCH approach 

have been tried, but the evidence remains mixed over whether implied or historical volatility is the better 

predictor of future volatility over time, which suggests that there is a distinct possibility that the optimal 

volatility forecasting technique is time-dependent. 

ARCH models extend the basic ARMA approach by making conditional variance a function of past 

errors over time. ARCH therefore implies constant vaxiance, but non-constant conditional variance. The 

ARCH approach is based on the assumption that the conditional variance is a function of past values of 

the underlying 
n 

V (xt Ixt-1, xt-2, ..., xt-n) = ao +> aj (xt-, j - 11)2 
(2.18) 

j=1 

where V (xt I*) is the conditional variance function and p is the average of the time series. ao must be 

strictly positive to guarantee stationarity, which also restricts the remaining a series to be >0 and sum 

to less than unity. This gives an unconditional variance 

V(xi) = (1 
ao 

- S) 
(2.19) 

which in most instances is generally augmented by changing notation using new variables such that 

et = xt-IL andqt = V(xtlo), resulting inctjxt-j, Xt-2,, -, - 
N(O, qt). Unfortunately, higher dimensionality 

causes problems in the standard ARCH approach as ci can become negative resulting in unrealistic negative 

conditional variances. Tackling this drawback resulted in the development of the generalised ARCH 

approach (GARCH) which extends standard ARCH in much the same fashion as ARIMA extends standard 
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ARMA. GARCH adds an extra summation term to the standard ARCH model 

nm 

qt = ao +E aj ei + ßj ht_j (2.20) 

where Oj >0 and the aj ARCH restrictions still apply. This GARCH(m, n) model provides a process 

for ct that remains stationary with unconditional variance V(xt) = 'ýS- and the a's and #'s sum to less TI 37 

than unity. 

Practical use of GARCH tends to favour a (1,1) process such as 

m 
2 ao 1-1 2) 

4t=ao+alit-1+Qlht-1=(1_i3)+alEý1 Et-j 2.21 
9=1 

where the process fore has constant unconditional variance 

ao 
(1- al - , 

Bi) 
(2.22) 

A further variant of GARCH is the GARCH mean or GARCH-M model (e. g. Choi and Wohar (1992)), 

which includes an extra equation containing either the conditional variance or its square root. 

At the abstract level, one of the main problems with ARCH type approaches is that their predicted 

volatility models the squares of the innovations instead of the actual innovations. A further problem with 

ARCH type models is that they are unable to incorporate the observed negative relationship between 

underlying returns and volatility in the equity maxkets because they restrict the modelling of volatility to 

changes in the magnitudes of the innovations. WUlst it is true that EGARCH models attempt to remedy 

this problem by modelling the logarithm of ht, the basic criticisms remain. 

Jump based models 

ARCH and stochastic volatility models are essentially designed to deal with issues such as volatility smiles 

which are frequently observed in the normal operation of the markets for options such as interest rate 

caps and floors and in equity options where the probability of occurrence can be assumed to be drawn 

from some stable, smooth, time related and non-extreme distribution. 

In contrast, what distinguishes rare or extreme events is the way their size and probability of occurrence 

varies (or does not change in the case of the standard BS model) with the size of the observation interval. 

The key assumption is that as the observation interval, h, becomes smaller and eventually approaches 0, 

the size of the normal event shrinks correspondingly, but the probability of occurrence remains non-zero. 

In contrast, a rare or extreme event is by definition supposed to occur less frequently, so that as h -+ 0 
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their probability of occurrence goes to zero but their size may not be reduced. Recalling from standard 

Black-Scholes analysis, the variance of the shock component a2AWt of asset prices is given by: 

E [ag Wt]2 = Q2h (2.23) 

during a small interval, with the size of the unpredictable changes being given by ctvfh-. The variance 

or standard deviation is the product of event size and probability of occurrence. A variance proportional 

to h can be derived either by probabilities that depend on h while their size is independent, or by 

probabilities that are independent of h while the size is dependent. The first case characterises rare or 

extreme events while the second corresponds to normal events. In the former case, if unusual jumps in 

an underlying occur, the usual continuous time Wiener process needs to be modified to cope with the 

effects of discontinuities. The most popular method of achieving this augmentation is to use the Poisson 

process, which is discontinuous. If Nt is the number of extreme shocks occurring in an asset market up 

to and including time t, then increments in Nt can have only one of two possible values. Namely, zero if 

no extreme event has occurred, or 1 if an event has occurred2. 

The result of this approach is that current modelling of extreme events involves characterising them as 

being comprised of two components, namely, one that is predictable given the available state of information 

and another that is unpredictable. Therefore, in small intervals of time of length, h, it is possible to posit 

the following 

Sk - Sk-i =a (Sk-1, k) h+v (Sk-1, k) AWk (2.24) 

where k=1,2,... n., so that as h --+ 0, the continuous time version becomes valid for very small intervals 

dSt =a (St, t) dt +a (St, t) dWt (2.25) 

such that the current approach simply adopts the standard stochastic differential equation method to 

account for rare events. The only difference between this and the standard Wiener process being the 

non-continuity of the sample paths. The current approach has a separate model for the random or 

unpredictable events, so that it is possible to deal with random jumps in the underlying that occur only 

rarely, but with time varying probability. Dividing the error term into two parts: those normal events 

represented by the standard Wiener process, dWk and those extreme events, dNk, where at any instant 

2Note that a variance proportional to h is common to Levy processes. The important distinction in the case under 
discussion is that between the smooth variation associated with a typical continuous Brownian motion process and the 
discrete, compound Poisson jump type processes. A discontinuous shift in the former will be extreme, whereas in the latter 

case it need not be so. 
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k-1, the following holds 

1 with probability .h 
Nk - Nk_1 ={ (2.26) 

0 with probability 1- Ah 

where A does not depend on the information available at time k-1, so that the jumps of size 1, ANk, 

occur with a constant rate A. 

Nk has most popularly been modelled using a Poisson. counting process, with two important modifi- 

cations. First, the rate of occurrence of jumps in the Poisson process is highly likely to vary with time, 

but the vanilla Poisson process has a constant rate of occurrence. Second, the increments of Nt have a 

non-zero mean, which is in direct contrast to the usual stochastic differential equation approach of zero 

mean processes. Taking these two modifications together, suppose there is a modified variable 

Jt=(Nt-At) (2.27) 

where the increments, AJt, have the dual properties of zero mean and unpredictability. Multiplication of 

Jt by a time dependent constant such as Or2 (Sk-I 
, 
k) 

, will then make the size of the jumps time dependent, 

making 0'2 (Sk-1, k) AJk an ideal variable to represent unexpected jumps in the underlying. Therefore, if 

the market for an underlying instrument is affected by rare events, an appropriate stochastic differential 

equation would be 

Sk-Sk-, =a(Sk-,, k)h+al(Sk-l, k)AWk+C2(Sk-l, k)AJk where k=1,2,..., n (2.28) 

which, as h -º 0, becomes 

dSt =a (St, t) dt + al (St, t) dWt + v2 (St, t) dJt (2.29) 

It is important to note that dWt and dJt must be statistically independent with zero correlation at every 

point in time. 

Many insurance companies have used reinsurance to provide a hedge against catastrophic loss. A good 

example of the problem is the excess of loss contract where the premium at time 0, given a constant 

interest rate, is 

Nt 

E 1: {Max (Zi - b, 0)} =E (Nt). E [Max (Zi - b, 0)] =E (Nt). E [(Zi - b)+] (2.30) 

i=l 

where Zi is the amount of the claim, Nt is the number of claims up to time t, which axe assumed to be 

independent and identically distributed with a distribution function H (z), (z > 0) and b is a retention 115 



limit. However, for catastrophic events, the assumption of a Poisson process is inadequate as claims for 

catastrophic events by their very nature occur discontinuously, so that an alternative point process needs 

to be used to capture the incidence of claims axrival. A popular choice is the doubly stochastic Poisson, 

or Cox, process popularised by authors such as Bremaud (1981) 

t2 t2 

exp A, ds) A,, ds) 

k 

Pr (Nt2 
- Ntl = klA,; tj < t2} 

- k! 
(2.31) 

A popular choice for measuring the impact of catastrophic events is the shot noise process of Cox and 

Isham (1980,1986) which can be used as a parameter of the doubly stochastic Poisson process as a means 

of measuring the number catastrophic claims 

At = Aoe-6t +E yie-6(t-si), where si <t< oo, g (y) = ae-"v and (2.32) 

all i, si-<t 

where . 5i is the time of occurrence of catastrophe i, AO is the initial value of A, yi is the jump size associated 

with catastrophe i, with a distribution function G (y) where y>0 and E (y) < oo, J is exponential decay 

(asymptotically converging towards zero, but never reaching zero). 

A populax method for bringing tractability to the Cox and shot noise processes is the piecewise 

deterministic Markov process theory developed by Davis (1984). This method is used to calculate the 

mean of the number of claims and the mean of the claim intensity - both of which are central to the pricing 

of catastrophe related derivatives. Given the non-observability of the claim intensity, state estimation 

techniques can then be employed to derive the distribution of the claim intensity. Examples of this type 

of approach to insurance derivatives are Jang (1998,2000), Dassios (1987) and Kluppelberg and Mikosch 

(1995). 

Aase (1999) similarly uses a compound Poisson process to deal with catastrophe futures and derivatives 

on catastrophe futures. As these instruments were tradeable - which unfortunately ceased in 1995 - 

arbitrage arguments were available and a unique price process derivable by specifying the utility function 

of the representative agents under uncertainty within the given partial equilibrium framework. Aase 

uses a gamma distribution for loss sizes, coupled with a negative exponential utility function to generate 

closed form pricing formulae. Cummins and Geman (1994) and Geman and Yor (1997) derive pricing 

formulae for insurance derivatives by modelling the underlying index as a jump diffusion, also allowing 

for randomness between the occurrences of the catastrophic events. The approach to ensuring market 

completeness is quite imaginative in that it is assumed that there exists a series of layers of reinsurance 
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that serves to ensure market completeness, thereby enabling the derivation of semi-analytical call option 

pricing formulae using an Asian options approadi. 

Murmann (2001) foresakes the usual Cox process approach and opts instead for classifying the possible 

price processes solely on the basis of excluding arbitrage strategies. Under every fixed martingale measure, 

Murmann's approach enables the derivation of an inverse Fourier transform of the price process (in closed 

form) for a general class of derivatives without imposing any assumptions concerning the distribution of 

the jump sizes. Following Aase (1999), Murmarm specifies the utility function of a representative agent, 

thereby allowing him to characterise the equivalent martingale measure and thus establish the unique price 

process for the catastrophic derivative. Murmarm proceeds to generalise his technique to Levy processes 

(which can be thought of as random walks in continuous time) deriving the same results. 

There are two fundamental problems with all of the jump type approaches. The first is that valuation 

based on arbitrage type arguments can only be justified when all underlying assets axe completely and 

explicitly defined. This is clearly not the case for catastrophe based derivatives where the instrument is 

based on an index which is intrinsically non-tradeable, notwithstanding its observability or measurability. 

Even the Geman type approach of assuming layers of reinsurance only provides at best a partial answer 

to the problem. The second and related problem is that the stochastic jump sizes of the underlying 

index result in an incomplete market. Both issues together point to the question of whether unique price 

processes can be argued to exist solely on the basis of precluding the possibility of arbitrage. 

Extreme volatility, explosions and the failure. of the Martingale approach 

The discussion so far has been couched in terms of the normal behaviour of option pricing models, but 

what happens in the presence of extreme behaviour in volatility ? There are two cases to consider: 

volatility explosions and volatility extremes. In most economically reasonable volatility models, actual 

volatility is modelled as a recurrent process. If the recurrent process is assumed to be stationaxy but 

unbounded, then the singular boundary at infinity becomes unreachable. However, in many volatility 

models, such as the GARCH diffusion model, the risk adjusted volatility process is different, because by 

assuming log-utility, the volatility process can explode, reaching infinity within a finite expected time. It 

is also the case that the volatility of the volatility (volofvol) process can easily explode with similax results. 

This latter occurrence can lead to the collapse of the martingale pricing assumption or the restricting of 

the pricing process to be only a local martingale. For example, Lewis examines a GARCH-diffusion model 

using the Feller boundary conditions with either risk neutrality or logarithmic utility. Lewis (2000) shows 

that it is possible for volatility to reach oo within a finite time (i. e. a volatility explosion according to the 

Feller criteria) depending on the type of boundary condition. 
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To deal with such failures, Lewis (2000) suggests the addition of an explosion correction term based 

on the work of Sin (1998). Lewis examines the impact on a GARCH-diffusion model, a CEV model and 

a square root type model, of adding an adjustment term (to either the volatility of the underlying, or 

to the volofvol) to take account of volatility explosion (which he interprets by taking volatility explosion 

probabilities as being stock price absorption probabilities). He finds in almost all of the cases that the 

addition of the explosion adjustment is sufficient to retrieve local martingale pricing, a finding that he 

confirms using Monte Caxlo simulation. 

The behaviour of option pricing models in the face of either the price of the underlying or its volatility 

tend to oo within a finite time. Assuming a zero interest rate and zero dividend growth, the BS model tells 

us that infinite spot price when combined with unit strike and normal levels of volatility simply gives unit 

option price, irrespective of the risk measure. But the extreme volatility behaviour is more interesting in 

the case of stochastic volatility models. If BS theory held (despite having stochastic volatility) then infinite 

volatility would return unit option price for many models such as GARCH-diffusion. However, Lewis 

supplies a counter example where the option price is less than unity in such circumstances, illustrating his 

arguments and approach with his three chosen models. In the case of the GARCH-diffusion and square- 

root type models he indeed shows that unit option price results from infinite volatility. In his modified 

square-root model Lewis finds that at large volatility values the drift term differs only by a half-integer 

power from his original model, despite the model being completely different, but, most importantly, the 

option value only reaches just under a third of the predicted BS value. Lewis checks his results by Monte 

Carlo simulation and finds that as the volatility is increased (with accompanying reduction in the time 

step) the observed errors fall as the volatility approaches infinity. He interprets this behaviour as the 

process becoming dominated by the deterministic limit as volatility approaches unity. 

2.4 Robust optimal control and catastrophe derivative pricing 

As can be readily appreciated from the previous section, all of the existing research into catastrophe 

derivative pricing takes as its starting point a model based on some type of distribution. In so doing the 

key question of whether the true probability law for the posited stochastic process selected is actually 

known is invariably overlooked. It is surprising that in the area of catastrophe derivatives pricing where 

it is particularly difficult if not impossible (by the very definition of the nature of catastrophes) to know 

their true probability law, that the issue of model misspecification in the face of uncertainty has not been 

considered. Research in decision making under uncertainty contains several strands of work to account 

for imprecise knowledge about the underlying probability law. A popular approach has been to model 

parameter uncertainty or estimation risk using a Bayesian prior which makes the strong assumption that 
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the prior belief can be modelled by a probability measure. However, this assumption is clearly incon- 

sistent with evidence from experimental economics and psychology such as the Elsberg (1961) paradox 

where uncertainty exists about the states of the world and about the model itself. The key issue is that 

whilst there is some agreement concerning whether states of the world can be described by an objective 

probability law, Elsberg directly challenges the notion that model uncertainty can be described by a sub- 

jective probability prior. This is particularly interesting in the context of catastrophe derivatives where 

catastrophes occur in a totally arbitrary manner, because forming rational priors in such circumstances 

is virtually impossible due to the clearly unknown type, size and incidence of catastrophes. For example, 

how is it possible to form a rational prior about the likely size and impact of terrorist activity ? It is 

highly questionable whether for instance any rational prior could have handled the likelihood of the attack 

on the World Trade Centre. 

In answer to such concerns two broad alternatives to the Bayesian approach have been developed. On 

the one hand the approach of Dow and Werlang (1992) examines the problem of portfolio choice under 

Knightian uncertainty using the axioms of expected utility theory. This is extended by the 1994 paper 

on discrete time by Epstein and Wang and by the 2000 paper on continuous time by Chen and Epstein 

to incorporate Knightian uncertainty via the use of multiple priors. Getting closer to the problem at 

hand, Epstein and Miao (2000) and Uppal and Wang (2002) extend the approach by examining both 

model uncertainty and varying level of ambiguity concerning the marginal probability laws that govern 

alternative states. Uppal and Wang offer a more appealing approach because they use a reference model 

as a means of differentiating between the alternative priors concerning the true model. The key point 

is that this feature leads to a problem formulation containing sufficient differentiability for deriving the 

HJB equation required to ensure robustness in the resulting pricing model. 

On the other hand has been the work of Hansen and Sargent et al (1999,2001) which introduces 

model misspecification and a preference for robustness into the Lucas rational expectations model. In 

the Hansen and Saxgent et al approach the possibility of model misspecification is taken account of in 

decision making through the use of a parameter reflecting the overall level of ambiguity. Uppal and Wang 

extend this idea by accounting for differences in the degree of ambiguity about the marginal probability 

laws for the alternative states. Their approach is particulaxly attractive since it is sufficiently general to 

take account of different levels of ambiguity over the joint distribution of the underlying and of multiple 

subgroups. 

Uppal and Wang's paper is primarily concerned with portfolio choice, so the detailed mechanics of their 

approach are not relevant to the problem of catastrophe derivatives. However, two points are relevant. 

First, the fundamental assumption underlying the intertemporal additive expected utility approach is 
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that the representative agent knows precisely the true probability law is clearly a difficult assumption to 

defend in the case of catastrophic events as already indicated. An alternative is of course to use recursive 

utility (as in Epstein and Zin, 1989). Unfortunately, Uppal and Wang show that once varying degrees 

of uncertainty ambiguity are allowed across assets, then representative agent preferences are no longer 

equivalent to recursive utility - so another approach is clearly required. 

2.4.1 Uncertainty and feedback 

As can be seen from the above analysis of the current approaches to the pricing of options on almost 

any type of underlying, concerns about the robustness or the stability of the pricing approaches and 

algorithms has not been a matter of significant concern to the overwhelming majority of researchers. 

This is particularly surprising in the face of both the increased number and magnitude of extreme or 

catastrophic events. This lack of concern may arguably be because such problems have so far presented 

much of financial and insurance mathematics with challenges that have been predominantly met by the 

use or abuse of a wide range of variations in martingale measure theory. 

However, options on extreme or catastrophic events present two distinct though inevitably related 

problems, which on closer inspection, are not well treated by classical approaches when the results of 

applying those approaches are subjected to tests for robustness and stability. First, is the problem of 

pricing options on extreme or catastrophic events and the second is developing a model for such underlyings 

that is robust and stable in the face of a wide variety of disturbances. The previous sections of this chapter 

have already dealt with the current range of techniques that have so far been applied to the problem of 

pricing options on extreme or catastrophic events. The weaknesses of the Black-Scholes approach have 

also been examined from the traditional perspective of martingale measure theory. However, remembering 

that the Black-Scholes approach is effectively a bounded quadratic variation case, it is worth pointing out 

a further weakness. Namely, that it is not sufficient to assume that the quadratic variation be bounded 

in order to be able to calculate a value, indeed, the exact volatility must also be known before valuation 

is possible. 

This section will instead concentrate on developing a robust and stable approach to pricing options on 

extreme and catastrophic events. Conceptually, the construction of the approach is as follows. First, the 

need for feedback and control is analysed. Second, basic state space approach inherent in the use of linear 

programming techniques is extended to robust optimal control. Third a robust optimal control pricing 

model is constructed for European options for non-catastrophic underlyings, which is then extended to 

catastrophic derivatives. 
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2.4.2 Robust optimal control 

The reader of this thesis is advised to be familiar with control theory in general and with robust optimal 

control in particular, as covered in chapter one of this thesis. Robust control theory originated from the 

need to deal with systems that contain modelling uncertainty which occurs due to uncertain parameters 

and unmodelled dynamics. In addition, model simplification (due causes such as linearization and model 

reduction) and inadequate model identification (resulting from incomplete or imprecise data from iden- 

tification experiments) can also cause problems in modelling the dynamics of a system. At its simplest, 

robust control theory is a method of dealing with the analysis and synthesis of control systems to satisfy 

various types and forms of stability and performance criteria given model uncertainty. 

At a relatively high level of abstraction, there are several mathematical techniques that have been 

developed for robust control systems. The techniques correspond broadly to the type of uncertainty 

encountered in the modelling process. At the simplest level, is the choice between linear and non-linear 

models, followed by the question of parametric or dynamic models and finally the issue of structured or 

unstructured uncertainty. Attempting to characterise the various types of approach, could proceed as 

follows. The stability analysis of linear systems with uncertain parameters can be regarded as the issue of 

determining whether a family of polynomials has roots only in the left half-plane. Moving on to uncertain 

dynamics, there are operator-theoretic methods such as the small-gain theorem available. Whilst at the 

most general level there is the structured singular value ([I) theory. 

Getting closer to the issue of option pricing, it will be recalled from the section on the use of linear 

programming, that option pricing can be regarded as an optimisation problem. The issue therefore centres 

around which technique to use and why. Thus, the performance of a control system can be extremely 

well characterised by suitably weighted signal norms such as keeping tracking errors with defined limits. 

Control design theories result from using different norms as signals. For example 

o Bounding the L2 norm of an output for a fixed exogenous input leads to H2 optimisation. 

* Bounding the C2 induced norm from input to output leads to Hoo optimisation. 

* Bounding the Loo induced norm leads to Cj optimisation. 

Of the three above approaches, it is Hoo that is the focus of interest in the next section, so a brief 

introduction is relevant. Hoo control has emerged as an effective control technique, as it brings together 

both performance and robustness requirements into an integrated index (the Hoo norm). An optimal 

balance between system performance and robustness is then obtained by minimisation of this index. The 

controller developed can either have 2 degrees of freedom, consisting of a feed-forward prefilter and a 
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backward controller, or it can be a single degree of freedom form, possessing only a feedback controller. 

The Hoo controller therefore handles system modelling errors as well as noise uncertainty, providing robust 

and stable controllers. It is sometimes referred to as the minimax controller as its objective is to minimise 

the maximum estimation error. Simon (2000) provides a highly intuitive and accessible introduction to 

the theory, construction and interpretation of Hoo controllers. 

2.4.3 Robust optimal control pricing of options 

Wystup (2000) deals with the H2 problem, by examining the treatment of the pricing of an option as 

a singular stochastic control problem, concentrating in particular on the pricing of exotic options such 

as barrier options. Whilst it is true that one of Wystup's central concerns is with the use of control 

theory in the pricing of barrier options which are indeed options on extreme values, such options are 

not the focus of this chapter, but as noted in the conclusions to this chapter, could form the focus for 

a possible direction for future research. Still within the H2 paradigm, Dempster (1999) treats American 

exercise options as a linear programming problem, whilst Martini (2000) develops the pricing of American 

options as a degenerate stochastic control problem and finds that the option price is a unique bounded 

and continuous viscosity solution of a fully non-linear parabolic equation of the form 

- 
au* 

(t, x) = (AU*)+ (t, x), t<T, x>0, u* (T, x) =V (x), (2.33) 
ät- 

where A is the infinitesimal generator of the Black-Scholes model. 

Following work by Rapaport (1998) and Bernhard, Crepey and Rapaport (2000) in contrast, suggest 

the use of a game theoretic approach to chaxacterise the optimal control problem. Bernhard (2000) 

proposes a non-linear Hoo robust control theoretic approach to the pricing of options. The particular 

attraction of Bernhard's (2000) approach is that it is based on describing the set of possible trajectories 

for the underlying's price process, but does not require any probabilistic rule for the price process - an 

issue which is returned to in the following section. 

Having already examined the theoretical and practical aspects of pricing options using a linear pro- 

gramming approach, the control theoretic approach can be seen as an extension of the concept of viewing 

the option value function as a dynamic system that is influenced by the two exogenous inputs the price 

of the underlying and the trading strategy of the holder. From a control theory perspective there is a 

natural analogue which suggests that the goal of replicating the option payoff with a riskless portfolio 

can also be viewed as one of attempting to control the value of the replicating portfolio in the presence 

of disturbances. Extending this concept a little further, leads to the concept of attempting to protect 

a desired result (i. e. matching the value of the replicating portfolio to the value of the option) against 
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all possible disturbances contained in some bounded set of disturbances. What follows closely follows 

Bernhard (2000), by providing both a discrete and continuous time version of the approach. The two 

extensions that are new are the application of Bernhard (2000) to the pricing of catastrophe options and 

the extension to using viscosity solutions to solve the resulting Hamilton-Jacobi-Bellman equations. 

Assume that there exists some underlying instrument, that possesses a time depenclant and unpre- 

dictable market price S (t) at time t. Further assume that there exists 0, which is the set of possible time 

functions S (. ) 
. 

The economy within which the problem is set contains a riskless bond, whose unit value 

at expiry equals unity, but at any time tE [0, T] is R (t) 
, given its rate p, such that it produces either of 

the following discount factors in the discretised. time interval where N=1: and k h 

R (t) = exp (-p (k - N) h) in continuous time, or (2.34) 

(1 + p)(k-N)h in discrete time (2.35) 

Assuming that the initial objective is to replicate a European option using a theoretical security whose 

value at time T is some convex function, M, of S (T), given the following payoff 

M (s) = max {s - K, 0} for a call option and (2.36) 

M (s) = max {K -. 9,0} for a put option (2.37) 

then the problem is therefore to deal with a value function consisting of x units of the underlying instru- 

ment and y units of the riskless bond, such that the value of this portfolio at time t is given by 

w (t) = x(t)S(t) +y(t)R(t) (2.38) 

is controlled by trading strategies of the form 

x (t) _ ýp (t, S (t)) (2.39) 

In discrete time this simply involves buying and selling at time t the required amounts of the underlying 

instrument, which is then held until the next trading event. In continuous time, the idea of instantaneous 

re-hedging using the underlying instrument is less clear, but by assuming that the functions S (-) are 

limited to the set 11 of continuous functions, the result is at least unambiguous. As far as the riskless 

bond is concerned, trading activity is bounded by the requirement that the replicating portfolio be self- 
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financing, such that in continuous time 

dx (t) +R (t) dy (t) = 0, or in discrete time 

S (t) (x (t) -x (t - 1)) +R (t) (y (t) -y (t - 1)) =0 

such that, given that dR (t) = pR (t) dt and that y (t) R (t) =w (t) -x (t) S (t) the model becomes 

dw (t) =x (t) dS (t) +p (w (t) -x (t) S (t) (dt)) 

in continuous time, or with a time shift in discrete time 

w (t + 1) =S (t + 1) x (t) +p (w (t) -x (t) S (t)) 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

Given the approach of the linear programming solution to the option pricing problem, it is easy to see 

that the equation describing the dynamics of w (t) defines a system which has inputs of S () and x (-) and 

output of w (t). The replicating portfolio must have a value at least as good as the option it is intended 

to hedge, which in this context translates to controllability in the face of all admissible disturbances. This 

constraint acts as an upper bound on the equilibrium price which leads to a value for the hedging portfolio 

greater than or equal to that of the option for all admissible disturbances S(. ), given the existence of a 

trading strategy where x (t) depends solely on past and present information. The problem is therefore 

to find the set of initial hedging portfolios capable of generating a set of admissible terminal states. To 

ensure that this set is capturable, it is usual to represent S (-) in continuous time as being the output of 

a first order controlled system of a form such as 

,ý (t) =S (t) (p av (t)) , where Iv (t) I<I (2.44) 

which, where v (. ) is a measurable noise, whose only purpose is to define the set of admissible disturbances 

S (-) not a Brownian motion. This in turn implies restricting S (-) to contain only absolutely continuous, 

bounded variation positive functions; or, equivalently, in discrete time 

S(t+l) = S(t)(l+p+uv(t)) (2.45) 

=S (t) (m + av (t)) , where Iv (t) (2.46) 

where v(. ) ranges over the continuous interval [-1, +11 and not over the finite set J-1, +1} (as in the 
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case of Cox Ross and Rubinstein's binomial lattice approach). Defining the following quantities 

m-a =a (2.47) 

m+or =b (2.48) 

1+1Z =m (2.49) 

p-p = m-r=A (2.50) 

Following both Zhou, Doyle and Glover (1996) and Bernhard (2000), the classical approach is then, given 

the two equations for a dynamic system as expressed by S and w, with v as the disturbance and x as the 

control and 

AT= 
I( )E 

(R+)2Iw>M(S) 

w 
(2.51) 

as the set of admissible terminal states. Ziegler (1999) develops the link between game theory and the 

pricing options and points out that option valuation can be viewed as a dynamic game, the solution to 

which involves optimal decision making behaviour, whilst Bernhard (2000) looks in the reverse direction 

by seeing the control problem from the perspective of game theory by noting the correspondence between 

the modelling of dynamic games and robust control, by pointing out that 

can also be written as 

VV 
S (T) 

E AT (2.52) 
w(T) 

) 

inf [w (t) -M (S (T))] >, 0 (2.53) 
VO 

and that the existence of an admissible strategy ýp that ensures that 2.53 is at least equivalent to 

max inf [w M (S (T))] >0 (2.54) 
w V(. ) 

if the maximum exists -a property that will be used shortly to propose a solution methodology. But 

for the purposes of option valuation, the problem to be solved is to find the initial states that can be 

controlled to the set AT in the dynamic system 

ý=s (A + av (0) 
, 

IV (t) I<1 (2.55) 

tb = Pw + Sx (t) (A + orv (t)) (2.56) 
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Figure 2-1: Figure 2.1: Schematic representation of feedback control process 

given x (t) as the control. Diagrammatically, this can be represented as follows 

From the theory of dynamic games, see for example Basar and Bernhard (1995), it is known that the 

solution to this type of game can be found via the backwards construction of a barrier from the boundary 

of the capture set. Bernhard (2000) shows that a barrier is in fact the 2D manifold parameterised by t 

and S as w= TV (t, S) where TV (-, -) is given by 

exp (p (t - 
(2.57) 

This is because at a point (t, S, w) on this manifold, it is possible to compute a normal of the form 

77t p 
[-RM (f) + M' (f) Sl RR 

77 (t, S, W) 77S @ (2.58) 
-M'(R 

l7w 1 

using R= exp (p (t - T)) 
, so that it is then possible to form 

H= 17t + 17S-ý + tlwlb (2.59) 

= (X + av) S (2.60) 
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which, given that A< or, means that v can be chosen such that inf,, H is non-positive. This in turn means 

that max, inf,, H occurs at x= M'(1) at a value of zero, such that the manifold w=W (t, S) definitely R 

constitutes a barrier, so that selecting a trading strategy x (t) =M, 
St from any state on the manifold : ýH (Rt ) 

prevents the system from exceeding the baxrier. Whilst the continuous time case indicates the core of the 

approach it does not provide a clear exposition of the solution methodology that can be applied to solving 

the optimal control problem arising from the application of such principles. To obtain such a clear view, 

it is essential to explore the discrete time case. 

Continuing with the concept of the equivalence of single-player games and optimal control, it is well 

known (e. g. Bernhard (1995,2000) and Ziegler (1995)) that the method of dynamic programming can 

be used to produce the optimal solution by solving a sequence of static optimisation problems stepping 

backwards through time. In two-player dynamic games the counterpaxt to this is a recursive equation 

that involves determining the saddle-point solutions of static games by stepping backwards through time. 

The equation is known as the Isaacs equation3 - 
The discrete version of the continuous time dynamic 

system can be stated as follows 

(t + (m + av (t)) s (t) (2.61) 

w rw (t) + (A + av W) S (t) xW (2.62) 

changing variables to discounted versions, gives 

U(t) =SW V(t) = 
W(t) (2.63) 

R (t) R (t) 

and changing control variables to 

,r (t) 
1 

(A + av) E 
[a, b 

(2.64) 
rr r] 

W=xWUW 

so that 

U (t + 1) =U (t) (2.65) 

V (t + 1) =V (t) + (r (t) - 1) V) W (2.66) 

31saacs equation was developed by Rufus Isaacs during the early 1950's - it is also known as the Hamilton-Jacobi- 

Isaacs equation and is a generalisation of the Hamilton-Jacobi-Bellman partial differential equation that provides a sufficient 

condition in optimal control. 
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where the set of admissible states remains 

AT: 
-- 

I()E 

(R+ )2 IV ý: M(U) (2.67) 
VI 

Therefore, let At be the set at time t, of sets capturable to AT at the terminal time such that (fl, V) E At 

iff there exists an admissible strategy 

0 (0 9 (i, u (f) ,v (i)) ,i> 
(2.68) 

such that the system described by equations 2.65 and 2.66 initialised at (fL, V) driven by that particular 

strategy is guaranteed to terminate in admissible state at time T for all admissible disturbances 7- (). 

Following Ziegler (1999) and Bernhard (2000), note that if a state (U, V) belongs to At, then so do all 

(ii, v) states for v> -P, so that if 

Vt (u) =min vj 

(uE 

Atj 

Iv 
(2.69) 

where the function Vt (-) completely describes the set At and its epigraph (i. e. the set of points (u, v) such 

that v>f (u)). The classical dynamic programming solution to this problem is to solve it by stepping 

backwards one state at a time and solving each arising static optimisation problem. The sequence of sets 

At and the associated hedging strategy ip (t) = ýp (t, S) are simultaneously defined by Isaacs' equation 

ITA, (u, v) = max inf IIAt+j (T(U, V) + (T (2.70) 
lp 'r 

where 

IIAt+i (u , V') 
i if V, vt+l (u 

(2.71) 
0 if V, vt+l (U 

and 
Vt (u) = min IVIIIA, (Up V) (2.72) 

This is a fairly simple computational procedure which provides the facility to calculate Vo (S) for every 

admissible S (0) = S, which therefore forms the underpinning of a method for option valuation. 

There are two further issues to consider before extending the robust optimal control approach to 

catastrophe options, namely, the convexity or otherwise of M and step size. Taking convexity of M () 

first, it is clear that if M (-) is convex, then the set AT Must also be convex and that for a given state 
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(u (t - 1) 
,v 

(t - 1)) and a fixed strategy ip (T - 1) 
, that the set of possible (u (T) 

,v 
(T)) is a line segment 

in (u, v) space. This fixed strategy can only be contained in the convex set AT if and only its end points 

lie within AT, so that it is necessary to determine those (u, v) combinations for which there is a fixed 

strategy 7P that satisfies the following conditions 

v+M (au) (2.73) 

v+m 
(&U) (2.74) 

Recalling that &<1<b, it is therefore clear that equation 2.73 and equation 2.74 are satisfied if 

6- 
1-v 

+m 
(&u)] 

-< 
,- 

iv -m (au)i (2.75) 
i a-i 

and that there must exist a strategy ? P, if and only if equation 2.75 is satisfied, which in turn provides a 

description of the set AT-1. Bernhard (2000) shows that due to the convexity of M, the value function 

VT-1 is convex, so that the identical calculation procedure can be used by stepping backwards in time by 

defining a sequence of functions Vt (. ), which after returning to the original untransformed variables and 

-TV T-tS), 
I setting W (t, S) =R (t) Vt rt t 

(r allows the above recursion to be re-written as 

W(t- 1, S) =1 
[b-r 

W (t, aS) + r-aW (t, bS) 
IW 

(TI S) =m (S) (2.76) 
r b-a T --a 

I 

As with equations 2.65 and 2.66 above, equation 2.76 provides the relationship to calculate a sequence of 

functions W (t, S) for a given M (S) and also yield an equilibrium price W (0, S (0)) for the underlying 

asset. It is readily apparent from the results presented in the next section that equation 2.76 gives a 

higher price than the vanilla Black-Scholes model. This arises for two reasons. First, and most obviously, 

as the optimal condition is being attained by being robust against all possible disturbances, then the 

hedging portfolio is bound to be of greater value as it is being used to replicate an option whose value is 

expected to be far more volatile and have a higher likelihood of attaining more extreme values. Second, 

as the trading of the replicating portfolio is being carried out less frequently than under the assumed 

continuous re-hedging associated with Black-Scholes, then the value will move only discontinuously, with 

the likelihood that larger divergences between the value of the hedging portfolio and the price of the 

option. 
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2.4.4 Robust optimal control and the pricing of catastrophe bonds and options 

It will be recalled from the previous section, that a key feature of the robust optimal control approach 

is the fact that no notion of a probability distribution is required to be able to unambiguously derive 

the price for a derivative security. This concept is now taken and applied to the pricing of derivatives 

on extreme events such as catastrophe options. The approach is particularly attractive as it does not 

rely on any paxticular distribution to produce a price, which in turn ensures that the option price is 

robust to variations in distribution. The argument will be developed as follows: the first step is to apply 

the Hamilton-Jacobi-Isaacs (HJI) equation to the pricing of catastrophe options; the second step, is to 

examine the computational issues of convexity and the impact of discretisation on the parameterisation 

of the state space; the final step is to develop a practical pricing algorithm and apply it to real data in the 

cases of both single event catastrophes and catastrophe indexes, in the cases of both options and bonds. 

Non-convexity of the payoff function 

The first point to note is that it is not uncommon for the HJI equations not to have a continuously 

differentiable solution, particularly in cases where the value function is not continuously differentiable. In 

such cases, a solution concept that replaces the classical robust optimal control approach is the viscosity 

solution, first introduced by Crandall and Lions (1983). The concept is that under quite general assump- 

tions on the structure of the first-order paxtial differential equation (without necessaxily bounding the 

conditions to any specific form or class of optimisation problem), Crandall and Lions (1983) show that 

the viscosity solution is unique and that in the context of optimal control problems, the value function is 

necessarily the viscosity solution of the associated HJI equation. The final link to the problem at hand is 

provided by Souganidis (1985) who showed that a counterpart of this result exists in zero-sum two-player 

differentiable games, with the value function being the unique viscosity solution of an associated HJI 

equation. This relationship between viscosity solutions and value functions was further studied in Lions 

and Souganidis (1985), which established, using viscosity sub-solutions and viscosity super-solutions, the 

equivalence between the concept of viscosity solutions and various definitions of value for differentiable 

games. Gomes (2001) extends the work further by explicitly linking viscosity solutions and optimal con- 

trol. The main reason for introducing these concepts is the need to deal with the issue of stability and 

robustness under small perturbations when establishing the notion of a robust and optimal control for 

options on extreme value derivatives. 

When pricing options on non-extreme or non-catastrophic events using robust optimal control, crucial 

to the approach was the assumption of convexity of the payoff function M (s) at terminal time T. However, 
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the payoff for a catastrophe option is 

M (s) = min fmax f 0, s- K}, L- K} (2.77) 

which is non-convex, which in turn means that the requirement that the end points of the segment 

described by equations 2.65 and 2.66 must be in At+,, is no longer sufficient to ensure that (ut+l, vt+l) 

be contained in At+j for all possible values of v (t). As such, no direction can be provided for a possible 

hedging strategy, which is of course a fundamental and non-acceptable weakness. 

This chapter explores two possible strategies for finding solutions to this problem, namely, numerical 

approximation and second the use of Lyapunov equations. 

Numerical implementation of the Isaacs equations 

First, is the most obvious one of using a numerical implementation of the Isaacs' equations (see equations 

2.70 and 2.71), such that for each time step t, the state space in u is traversed searching for admissible 

v values, which once found can be used to trigger a change in u. By following this procedure, both a 

valuation and hedging strategy can be defined simultaneously. As Bernhard (2000) points out (and as the 

results presented in this chapter confirm), this procedure produces more robust valuation and hedging 

results than the equivalent binary tree methodology - at least for the period and markets studied in this 

chapter. It is shown that the binary tree methodology under-prices the value of the replicating portfolio 

and provides no efficient computational route for option hedging parameters other than finite differencing 

of the binary tree input parameters. It is also demonstrated that the popular Cox or Poisson point 

processes that give rise to partial integro-differential equations suffer from similar limitations. 

Parameterisation of the state space therefore proceeds as follows. The first step is feasible and efficient 

parameterisation of the state space. One of the major weaknesses of the regular discretisation approach 

to the pricing of options is the fact that the price may not improve asymptotically with either the addition 

of extra time steps in the time dimension or with reducing step size in the price dimension. Beyond some 

point the option price simply oscillates around a value but does not converge. One of the reasons for 

this is that the dispersal of coverage of the state space is not being improved, even by reducing step size 

and increasing frequency of occurrence. In the context of this thesis, this problem will be addressed by 

using a method of discretisation of the state space which simultaneously incorporates variable step sizes 

in both the time and price dimensions. Aside from the obvious computational burden imposed by regular 

discretisation, uniform discretisation of state spaces suffers from impractical computational requirements 

when the size of the discretisation step is small. One method of addressing this problem in the context 

of optimal control is suggested by Munos and Moore (2000) who use a refining process which starts with 
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Figure 2-2: Figure 2.2: Discretisation using Markov decision process 

an initial coarse grid. which is successively refined by a splitting process until some required degree of 

accuracy is achieved. 

Munos and Moore (2000) utilise the structure of a kd tree to produce a variable resolution discretisation 

of the state space, with the root of the tree covering the whole hyper-rectangle of the state space. For 

each "leaf" of the kd tree they use a Kuhn triangulation to linearly interpolate inside the rectangle. This 

defines a class of functions called barycentric interpolators that are piecewise linear, continuous inside each 

rectangle, but may be discontinuous at the boundary between two rectangles. The discretisation process is 

based on finite element method of Kushner and Dupuis (1992), which approximates for any discretisation. 

of the state space, the continuous deterministic control process by a Markov Decision Process (MDP). It 

is important to note that the stochastic aspect of the MDP emanates from the discretisation process used 

and not from the continuous problem itself. Figure 2-2 provides a simplified schematic of the operation 

of the discretisation process. 

To construct the kd tree, view the state space as the set E" of comers of the tree, such that for 

every corner ý and control u, the corresponding trajectory x (t) is approximated by integrating the state 

dynamics from the initial state C for a constant control u, during some time period, t, until it enters inside 

a new grid at some point (e. g. 17 (ý, u) in figure 2-2). The value interpolated at 17 (ý, u) is just a linear 

combination of vertices with positive coefficients that sum to unity, such that performing the interpolation 

is mathematically equivalent to probabilistically jumping to a vertex. Munos and Moore (2000) study a 

number of possible schemes for performing the interpolation, but conclude that it is necessary to combine 

both local and global splitting criteria to produce an efficient state space propagation mechanism. They 

utilise the dual notions of influence and variance. The states of highest influence are those where there 

is a change in the optimal control. The concept of state variance is slightly more complex, as these are 

the states with the highest uncertainty on the quality of the approximation of the value function and 
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so represent those states where the approximation of the value function could improve the most for any 

increase in accuracy associated with splitting. The variance is a measure of the extent of uncertainty 

in the value function attributable to the discretisation process and therefore provides an estimate of the 

quality of the approximation of the value function for a given discretisation. It was therefore decided that 

for catastrophic derivatives, the state space discretisation would be performed using a variance-influence 

global splitting approach using the Munos and Moore (2000) methodology. 

Lyapunov equations 

Of the two methods for dealing with the non-convexity of the payoff function, the Lyapunov equation 

is arguably the more elegant and flexible as it can be generalised to deal with more realistic non-linear 

problems and can be cast in a state-space setting making it ideal for dealing with securities that have 

prices that depend on different states. As F&K demonstrate, the existence of a robust control Lyapunov 

function implies robust stabilisability. As explained in chapter 1, it is possible to compute the value of a 

pointwise min-norm control law at any point by solving a static minimisation problem that is convex on 

the control space and is completely determined by the available data. The following sections apply the 

F&K approach and develop robust catastrophe bond and catastrophe option valuation models, that are 

both flexible, stable and robust. 

Pricing catastrophe bonds using the traditional approach 

Catastrophe bonds, or CAT bonds for short, are a way for insurers to access the greater risk bearing 

capacity of capital markets which are approximately 75 times the size of the insurance markets. CAT 

bonds are generally issued through some form of special purpose vehicle which acts as a trust thereby 

removing almost entirely associated credit risk. Though the CAT bond market is still in its relative infancy, 

Penalva-Zuasti (1997) found CAT bonds to be significantly more expensive than comparable competitive 

reinsurance contracts. An interesting question for this research, in addition to the issue of robustness, is 

therefore the source of this valuation disparity. Is it merely a consequence of lack of investor familiarity 

with CAT bonds ? Bantwal and Kunreuther (1999), approaching the question from the perspective of 

explaining the uncertainties inherent in existing models, suggest that ambiguity aversion, loss aversion 

and uncertainty avoidance may account for the reluctance of investors to trade in CAT bonds. They 

attempt to illustrate the attractiveness of CAT bonds by simulating their behaviour under a variety of 

Monte Carlo generated scenarios. 

Before applying the Lyapunov approach to the valuation of catastrophe bonds, it is necessary to 

consider in some detail the construction and features of such bonds. Catastrophe bonds are a particular 
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version of a type of generic instrument most usually known as a threshold bond. Although there are 

numerous variations in the structure of threshold bonds, most conform to either one of two structures. 

The first broad type of structure is very similar to a defaultable bond, whereby issue occurs at some 

value, coupons may or may not then be paid at a stated coupon rate (with or without a spread) and at 

an agreed, pre-determined frequency. After issue and prior to maturity, premature termination can occur 

if either accumulated losses exceed an agreed threshold level, or if there is a single catastrophic event that 

can trigger premature termination, whereupon a certain or random recovery amount may or may not be 

payable. 

The second type of structure is more akin to an insurance policy where a bond is issued at some given 

value - say par - for an agreed period. At maturity, the investor receives an uncertain amount. During 

the life of the bond catastrophic losses may occur. If the accumulated losses exceed a threshold level, 

losses on the principal of the bond occur and the investor will receive some (random) recovery amount. 

The losses are usually linked proportionally to the original principal of the bond. If no losses occur prior 

to bond maturity, or if accumulated losses fail to breach the threshold level during that time, then at 

maturity the investor will receive his original principal plus interest and any agreed spread. The interest 

payments may or may not be guaranteed. 

Such potential variation can give rise to a plethora of subtly different structures. However, Baryshnikov 

et al show that the payment or not of either terminal or regular periodic coupons make no material 

difference to the valuation process such that in both broad cases the calculation of the no-arbitrage price 

can be reduced (under fairly simple and non-restrictive conditions) to the following simple threshold 

idealisation. Issue occurs at some level, say par, at time 0 and maturity at time T. There is an agreed 

accumulated loss process, L,, and a threshold loss level, D. At maturity, the bond either terminates after 

repaying a certain pre-determined amount Cr- referred to as catastrophic termination. Else if time r 

(when the threshold loss level is breached) exceeds T, termination occurs at T, nothing is paid - referred 

to as normal termination. The traditional approach to this pricing problem is to treat -T as the first 

instant of a Poisson point process, Nt, on the interval [0, T] independent of all other variables, but in 

such a way that the intensity \ of the process is progressive and predictable so that for any time interval 

[tl 
7 
t2l c [0,71 the process Nt - Nt, on [tl 

t 
t2l is measurable with respect to the a-algebra generated by 

f t2 
tj 

A, This assumption is usually justified on the grounds that the threshold time is usually contingent 
I 

upon specified natural event(s) which is/are independent of either or both economic activity and/or 

financial data. The additional assumption required is that there is a progressive process of discounting 
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rates r, such that the value of a single unit paid at time t>s is given by 

exp (-R (s, t)) = exp 
(- is 

r (ý) <) (2.78) 

so that the price of a threshold bond is given by 

V= (N, r, C) (2.79) 

where Vt should satisfy 

Vt =E (C, exp (-R (t, 7-)) lYt) (2.80) 

where Ft is an adapted filtration in the usual fashion and where T is the stopping time at which the bond 

terminateS4 

,r= inf It: Nt = 1} (2.81) 

which, given the assumptions about the structure of the point process and that A, is the stochastic 

intensity process, therefore gives 

Vt =E 
(it T 

exp (-R (t, s)) C. Adsi. Ft) (2.82) 

Looking first at the case of variable payment at maturity, define the process 

E (ZI. Ft) (2.83) 

where the required condition is that Z, is a predictable process. This can be validly and usefully interpreted 

as an assumption that the maturity payment is not linked directly to the occurrence or timing of the 

breaching of the threshold. So that the price of a bond paying Z at maturity Qr > T}) at time t< 'r 

can be represented (using NT - Nt = fiT dNS) by 

Vt =B 
(Z 

exp (-R (t, T» - 
it 

Zs exp (-R (t, s» dN� 1J7t) (2.84) 

Incorporating regular coupon payments, P,, prior to maturity is simple. Assuming that coupons cease at 

4 The question of whether the arbitrage and real measures governing the underlying process should coincide is dealt with 
by Baryshnikov et al which refers to work by Froot & O'Connell (1996). The latter demonstrate that the rise in reinsurance 
prices that followed the surge in the data on the frequencies and aggregate losses due to natural catastrophes were due to 

the exhaustion of industry reserves and not to a change in the fundamental probability measures. 
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time -r, then if r<T 

Vt =E 
(It T 

eXp (- R (t, s)) P. (1 - N, ) ds I. Ft (2.85) 

which, upon integration by parts gives 

Vt=E (1-NT)QT + dN, 
I 

exp (-R (t, s)) P,, dulFt (2.86) 
it 

t 

t 
where Q, = f, ' exp (-R (ý, s)) P,, du, which given that Q, is predictable collapses to the standard threshold 

case 

The final stage required to arrive at a useful specific pricing situation is to specify the type of events 

to underlying the CAT bond. At the most abstract level the bond is described by the accumulated loss 

process L,, and its threshold loss D (where the threshold event occurs at time -r when the accumulated 

losses exceed the threshold level: T= inf it : Lt > DI, so that Nt =1 jLt > D}. The usual approach is to 

assume that there exists a Poisson point process M. which describes the flow of potentially catastrophic 

events and that this process is assumed to be a predictable and bounded process m, The losses produced 

by each event in the flow are assumed to be III) random values JXjjj=j.... with a distribution function 

F, =P jXj < x), so that 

ti <t 

(2.87) 

So that, as Baryshnikov et al show, the non-arbitrage price of the CAT bond with threshold D, catastrophic 

flow M, and the distribution function F for losses of the form 

F(x) =1-1 (2.88) 
1 +xe 

is given by 

Vt = Et 
(ft T 

exp (-R (t, s)) C,, (i -F (D - L, )) 1L,, < Dm, ds I. Ft) (2.89) 

which, after reduction to an ordinary differential equation can ultimately be solved in quadrature as soon 

as m and C are known using well known solutions for partial differential equations with integral terms. 

One of the major problems with the developing a pricing model of the type above for catastrophe 

derivatives is that of hedging the risks created. Even in the case of zero coupon CAT bonds, risk is uncor- 

related with underlying financial market variables such as interest rate levels or aggregate consumption. 

The result is that cash-flows for a CAT bond can not be hedged by a portfolio of traditional (riskless) 

bonds because it is impossible to replicate the payoff profile of the CAT bond using the usual portfolio 

approach. The pricing framework is therefore set within an incomplete markets approach, with Cox and 
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Pedersen (2000) providing arguably the seminal paper using this methodology, by valuing CAT bonds 

using equilibrium pricing based on a state-space type model. They use a two step procedure which in- 

volves first estimating the interest rate dynamics under varying degrees of risk for states of the world that 

do not involve a catastrophe, which from a state-space perspective is equivalent to estimating local state 

prices for states that are independent of a catastrophe. This is achieved by constructing a term structure 

of interest rates model. The second step is to estimate the probability distribution for varying degrees of 

severity of the catastrophic risk, so that valuation can be completed by discounting the cashflows. 

Pricing catastrophe bonds using a robust optimal control approach 

Many historical studies of CAT bond pricing (see for example Penalva and Zuasti, 1997) identify his- 

torically high spreads in the CAT bond market with respect to domestic bonds and attempt to explain 

the existence of an apparent CAT bond premium. However, Froot et al (1995) show that CAT bonds 

out-performed domestic bonds on a rate of return basis and are less volatile than either stocks or bonds. 

The question therefore arises of whether CAT bond spreads are too high to be explained by standard 

financial theory. Bantwal and Kunreuther (1999) attempt to use a number of ideas from behavioural 

finance to isolate and explain the persistence of the so-called "CAT bond premium". One of their key 

points is that models typically depend on the frequency and severity of CAT events - both of which are 

sources of uncertainty with respect to the surrounding measurability. 

Lee and Yu (2002) extend the CAT bond pricing debate by incorporating default risk, stochastic 

interest rates and a more generic loss process, which taken together, produce lower CAT bond prices. 

Their approach is to use Monte Carlo simulation to demonstrate the robustness of the results provided by 

CAT bond pricing models to a variety of realistic disaster scenarios. In particular, Lee and Yu (2002) show 

that both moral hazard and basis risk drive down CAT bond prices substantially. As already discussed 

in chapter 1, a Monte Carlo approach that is based on some form of probability distribution, will have a 

significant possibility of generating conclusions which are likely to be neither robust nor stable. Which 

is where robust control Lyapunov analysis comes into its own in three main ways. First, through the 

ability to introduce closed-loop feedback into the modelling process allowing more complete, systematic 

and realistic capturing of the effects of uncertainty. Second, through the ability to capture non-linearities, 

such as convexity of the payoff function, as well as extreme behaviour inherent in the CAT bond process. 

Third and perhaps most importantly, by not placing any reliance on a particular form of probability 

distribution. 

The model that is now developed in this section follows the spirit of Cox & Pedersen (2000) in so far 

as it combines primary financial market variables with catastrophic risk variables to produce a valuation 
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model first for CAT bonds and then for CAT options. However, the critical and defining difference and 

therefore the net new idea and work, is to extend the Cox & Pedersen approach by tackling the sources 

of uncertainty remaining within their model by incorporating stability and robustness into the valuation 

process in a coherent, elegant and efficient fashion. This is achieved by recasting their approach to the 

hedging problem using the concept of an interest rate model to span the otherwise incomplete market 

space as a state-space driven robust optimal control problem. This allows the valuation problem to be 

cast as a robust control Lyapunov problem that can be solved using F&K approach. 
What alterations are required to translate the Cox & Pedersen approach to deal with CAT derivative 

pricing in a robust fashion ? Beginning with the simplest possible form of their model, assume that 

the CAT bond with a notional value of $1 pays regular coupons of amount c and a final repayment of 

$1 +c at maturity time T, providing that a catastrophe does not occur. If a catastrophe occurs during 

a coupon period the bond makes a fractional payment of f (1 + c) then terminates. Under arbitrage 

conditions, financial economics asserts that in an arbitrage-free market there exists a probability measure, 

Q, known as the risk-neutral measure such that the value at time 0 of an uncertain cash flow stream 

{c (k) Ik=1,2, 
..., 

T} is given by the usual discounted expected value of the stream under the given 

probability measure 

EQ c (k) (2.90) 
1 

[1 +r (0)] [1 +r (1)] 
... 

[1 +r (k - 1)] 

1 

where the process r (k) is some single period interest rate process. If no catastrophic event occurs, then 

the above formula requires no further modification. However, if a catastrophic event occurs c (k) can take 

on one of two possible values 

Clf'r>kl +f (1 + C) lfr=k) 

c(k) 
k=1,2,... T 1 

(2.91) 
(C + 1) lfr>Tl +f (1 + C) lli-=T) 

k=T 

This formula will of course be simplified if only the Coupons are at risk. Cox and Pedersen continue 

by assuming that a CAT bond can be traded in an arbitrage free market under a risk-neutral valuation 

measure Q with the timing of the occurrence of a catastrophe being independent of the interest rate 

environment under Q. So, relating equations 2.90 and 2.91 together, gives the value at time 0 of the CAT 
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bond cash flow stream 

T 

cEP(k)Q(T > k) +P(T)Q(T > T) (2.92) 
k=l 

T 

+f (1 +c)I: P(k)Q(T = k) (2.93) 
k=l 

Note that the term Q (, r > k) is the probability (under the risk-neutral measure) that the catastrophe does 

not occur in the first k periods. The cash flow, X, received by the bond holder given the occurrence of a 

catastrophe could be random, therefore requiring an adjustment to the model. If Y (x) is the conditional 

severity distribution of the cash flow to the bond holder given a catastrophe, then using results from 

Tilley (1995 and 1997) then equation 2.92 becomes 

T 

cE P (k) Q (, r > k) +P (T) Q (7- > T) (2.94) 
k=I 

T 00 
+ EP (k) Q (r = k) xdY (x) (2.95) 

k=l 

10 

Note that generally the conditional severity distribution is embedded as part of the risk-neutral measure, 

Q. Following Tilley, suppose that the catastrophe risk structure 00 represents the conditional probability 

under the risk neutral measure of no catastrophe occurring for a period. However, should a catastrophe 

occur, then there is assumed to be a single severity level that generates a payment of f (1 + c) at the end 

of the period in which the catastrophe occurs. If 01 =1- Oo, then Cox and Pedersen simplifies to 

T 

cEP(k) (1 -01)k +P(T)(1 _ oj (2.96) 

k=I 

+f (1 + c) ZP (k) 01 (1 _ 01)k-1 
T 

k=l 

There are several important points here with respect to the treatment of uncertainty and robustness. 

First, in order to be able to apply Tilley's formula as in Cox and Pedersen it is necessary to know the 

conditional risk-neutral probability, 00, but 01 has not been linked to the probability of a catastrophe 

occurring, so that equation 2.96 is not closed. In order to close their model it is necessary to link equation 

2.96 with observable quantities that can be used to estimate the parameters needed to apply the valuation 

model. Interpreting 01 as the empirical conditional probability of a catastrophe occurring, effectively 

means assuming away the uncertainty surrounding its measurement, such that assumptions can be made 

about the form of its conditional distribution and about the parameterisation of that distribution. 
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Second, as the model is incomplete, there does not exist a single value for the CAT bond. The best that 

can be achieved is to place upper and lower bounds on value. By embedding the catastrophe probabilities 

directly into the model by using them to span the state-space, a unique price can be generated. For 

example, if potential bond holders agree that q represents the probability of a catastrophe occurring and 

the the CAT bond price should be discounted using this risk adjusted expectation, then the discounted 

average (over both the catastrophe and non-catastrophe) cash flows (using an assumed fractional payment 

of f) is 

(1 + c) (fq + 1.0 (1 - q)) 71 + 
(2.97) 

Given that the probability distribution for the catastrophe and the assumption that values are discounted 

expected values over both risks, then unique prices result. The key problem with this approach is the 

necessity of either knowing or assuming the form and parameterisation of the conditional distribution 

of the catastrophes. Faced with the inherent uncertainty of the catastrophe modelling process, making 

such an assumption cannot be regarded as the ideal solution with respect to the likely robustness and/or 

stability of the final valuation result. 

How then does this basic idea translate into to a robust optimal control Lyapunov approach ? To begin 

with, consider a simple representation of a system of catastrophic and financial variables, (complete with 

a number of simplifying assumptions, most of which will be successively relaxed) and assume there is some 

interest rate generating process, F (x) 
, where x is a vector of state variables describing the interest rate. 

Assume also that there exists a hedging strategy, G (x) u that uses a non-catastrophe related zero coupon 

bond (whose value is determined by x) to hedge the CAT bond. The final element is a disturbance input, 

H (x) w, capable of capturing catastrophic shifts. It is assumed that u, the control or hedging strategy, is 

used to balance the hedging portfolio. These elements axe linked together to form the following system 

i= F(x) +0 (x) u+H (x) w (2.98) 

F, G and H are all assumed to be continuous functions. It is also assumed that the system is stabilisable 

and that the state is available for feedback - not an unreasonable assumption given that G is the hedging 

policy which will be dynamic and feedback into the model. The key assumption, however, is that a control 

Lyapunov function is known for this system. In other words, assume that a C' (i. e. continuous in the 

first derivative), positive definite function of the form 

V: X --ý R+ (2.99) 
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is known, such that 

inf VV (x) - [F (x) +G (x) u] < -av (x) (2.100) 
UEU 

for all x : 7ý 0 and for some function av. The critical concept is to use the control Lyapunov function 

V as a robust control Lyapunov function for the uncertain system of equation 2.98. As F&K point out, 

this robust control Lyapunov function can be chosen independently of the uncertainty so that there is 

no knowledge of the structure of the disturbances, H. This means that for the CAT bond, it is possible 

to derive a robust control Lyapunov function without any knowledge of the structure of the catastrophic 

disturbance. This is a very strong feature of the model compared with the Cox and Pedersen approach 

where the assumption is made that there is a probability distribution for the catastrophic events and is 

one that ensures its robustness in the presence of uncertainty surrounding the likely arrival of catastrophic 

events. 

Rom control theory it is known that to be a robust control Lyapunov function V must satisfy 

inf sup VV (x) - [F (x) +G (x) u+H (x) w] < -av (x) 
UEU wEB 

for all x 34 0. 

Having provided an overview of the model, how do these optimal control theory concepts map into 

the Cox and Pedersen approach ? In order to be able to answer this question, it is first necessary to 

provide a precise definition of the variables in the model. As far as the financial market variables are 

concerned, Cox and Pedersen assume these to be modelled on the filtered probability space QM, p(l), P1, 

where 110) is taken to be finite such that it represents all paths that the financial variable can take over 

the time k=0, T. However, the point of the robust approach is to move away from using a specific 

form of probability distribution to characterise the state space for the variables in the model. As Cox and 

Pedersen point out, their results also hold for infinite sample spaces, so the extension to a more general 

notion of a state-space seems intuitively acceptable. The key concept in making this transition for the 

purposes of robustness is the need to deal with the initial information state. It is known (e. g. Helton and 

James 1999) that careful choice of the initial state makes an enormous difference in the implementability 

of the controller or hedging process G(x) and strongly affects the dynamic behaviour of the system. 

Therefore, within the robust control Lyapunov approach, we will consider four finite dimensional 

Euclidean spaces: the state space (interest rate or financial variable such as the price of a discount 

bond) X, the control or hedging space U, the disturbance or catastrophe generating space W and the 

measurement space Y. Given a continuous function f :XxUxWxR --+ X, a differential equation can be 
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formed 

±= (X, U, W, t) (2.102) 

where xEX is the state variable, u EU is the control or hedging input, wEW is the catastrophic 

disturbance input and tER is the time vaxiable. Associated with the differential equation 2.102 are 

admissible measurements, admissible disturbances and admissible controls - with each being characterised 

by a set-valued constraint. 

Taking the admissible measurements first, a measurement for equation 2.102 is a function y: XxR such 

that y (., t) is continuous for each fixed tER and y (x, -) is locally L,,,, for each fixed XEX (i. e. bounded 

on a neighbourhood of every point). Assuming a measurement constraint of the form Y: XxR-Y, then 

a measurement y (x, t) is deemed admissible when y (x, t) EY (x, t) for all (x, t) EXxR. The importance 

of this definition is that it allows for measurement uncertainty due to imperfections in the measurement 

process, perhaps because there may be several different measurement trajectories associated with a single 

state trajectory. 

In equation 2.102, a disturbance is a function w: XxUxR --+ W, such that w t) is continuous for 

each fixed tER and w (x, u, -) is locally L. for each fixed (x, u) EXxU. Therefore, given a disturbance 

constraint W: XxUxR-W, it is possible to state that a disturbance w (x, u, t) is admissible when 

W (X, U, t) E W(X, U, t) for all (X, U, t) EXxUxR. This is central to the modelling of the catastrophe 

space because admissible disturbances can include both exogenous disturbances such as catastrophes and 

feedback disturbances, such that they encompass a large class of memoryless model and input uncertainties 

and form part of the basis of the approach in yielding guaranteed stability framework for robust non-linear 

control. 

In equation 2.102, a control is a function u: YxR --+ U such that u (., t) exhibits continuity for each 

fixed tER and u (y, -) is locally L,,. for each fixed VEY. Following the same approach, given a control 

constraint U: YxR-U, it is possible to say that a control is admissible when u (y, t) EU (y, t) for 

(y, t) EYxR and that u (y, t) is jointly continuous in (y, t) . 
As F&K point out, it might be expected 

that a constant control constraint U (y, t) 22 Uo should be enough but for the purposes of our model there 

are valid and desirable reasons for allowing the constraint to depend on the measurement y. The most 

glaringly obvious example is that it might be desired not to hedge the the CAT bond using some possibly 

expensive strategy when the value of the CAT bond remains within an acceptably "normal" region. 

The function f, taken with the set valued constraints U, W and Y, comprises a system 

Z= 
(X, u (y (X, (2.103) 
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and a solution, x (t), to this system solves the initial value problem 

±= (X, u (y(x, t), t), W(X, u(y(x, t), t), t), t) x (to) = XO (2.104) 

given a measurement y(x, t), a disturbance w (x, u, t), a control u (y, t) and an initial condition (xo, to) E 

XxR. Classical existence theorems from control theory guarantee that the right hand side of equation 

2.104 is continuous in x and locally L. in t, which means that solutions to E always exist (locally in t) but 

need not necessarily be unique. It is also important to note that the above formulation can also include 

fixed order dynamics by re-defining the system E. For example, fixed order dynamics can be imposed 

by adding auxiliary variables to the state, control and measurement variables but the essential point that 

emerges from this problem statement is that solutions to E are robustly, globally and asymptotically 

stable. 

In order to derive a catastrophe derivative valuation framework based on this approach, it is necessary 

to take into account three particular issues. First, it must be remembered that for non-linear systems the 

feedback gain between inputs and outputs at each state depends on initial conditions. Second, the non- 

linearities inherent in the model, such as convexity of the payoff function, must be modelled as part of the 

initial conditions. Third, there must be an existing methodology for calculating the required quantities. 

Fortunately, robust control Lyapunov analysis satisfies all three demands and is the approach upon which 

the following analysis is constructed. 

At its simplest, a control Lyapunov function for a system of the form 
-+ =f (x, u) is a C' positive 

definite, radially bounded function V (x) such that 

34 

inf VV (x) -f (X, u) <0 
UEU 

(2.105) 

(2.106) 

where U is a convex set of admissible values of the control variable, such that the derivative of the function 

can be made negative pointwise by the choice of control values. A function VEV (X) is a robust control 

Lyapunov for a system E when there exist C, E R+ and ci,, EP (X) such that 

inf sup sup [Lf V (x, u, w, t) + a, (x, t)] <0 
UEU(Y, t) XEQ(Y, C, t) wGW(U, t) 

(2.107) 

for all yGY, all tER and all c>c.; and where Lf V is a Lyapunov derivative This formulation of 

the robust control Lyapunov function is important as it is generalisable in a number of directions such 

that it provides a significant degree of flexibility. Note that both control and disturbance inputs enter 
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the equation and that the definition copes with both measurement feedback and state feedback. This 

capability to deal with feedback is particularly valuable when devising valuation models as it means that 

more realistic hedging strategies can be represented. Notice also that the term cv enables the modeler to 

cope with the three issues in stabilisability (in addition to asymptotic stabilisability) identified above. 

Finding a function V that is a solution to E and is also robustly globally uniformly and asymptotically 

stable and which also converges to a residual and compact set fl EX necessitates finding admissible 

controls known as pointwise min-norm control laws, which are so called because at each point x, their 

value is the unique element of U of a minimum norm that satisfies the control constraint U(x) whilst 

also making the worst-case Lyapunov derivative at least as negative as -a,, (x). The good news from a 

computational perspective is that it is possible to compute the value of a pointwise min-norm control 

law at any point x by solving a convex, static minimisation programming problem that is completely 

determined by the data E, V and a,,. The further good news is that this static problem has a simple 

explicit solution in a wide variety of circumstances, a number of which are directly applicable to the CAT 

bond valuation problem. The only restriction is that the system must be jointly affine in u and w. 

To see how this works in practice, take an example of a system -; - =f (x, u, w) for continuous functions 

fo, f, and f2 

'ý ` f0 (X) + fl (X) U+ f2 (X) W (2.108) 

and suppose that V is a robust control Lyapunov function for this system such that D: XxU --+ R, then 

D(x, u): = max [LfV(x, u, w)+a, (x)] (2.109) 
WEW(X) , 

which, upon substituting, gives 

(x, u) VV (x) - fo (x) + VV (x) - fl (x) u (2.110) 

+ VV (X) * f2 (X) 11 +Civ (X) (2.111) 

Using the simplifications 

IPO (X) : ý-- VV (X) * f0 (X) + 11 VV (X) 
* f2 (X) 11 +av (X) (2.112) 

Ipl(X) = [VV(X). fl (XJ (2.113) 

and defining K: X-U, gives 

U: lp 0 
(X) + IPT (x) u< 01 K(x) = {u E1 (2.114) 
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which finally gives the simplified expression for the pointwise min-norm control law 

(X)Pi(Z) 

In (x) ={ 
when ? Po (x) >0 

when 00 (x) <0 
(2.115) 

for all xE V- I (c, oo) . 
This then is the expression that will enable the calculation of the robust control 

law that will provide both a hedging strategy in the face of both a catastrophe and disturbances to 

the underlying interest rate environment. The initial rigidity of joint affineness of the control and the 

disturbance can be relaxed through an integral back stepping procedure described by F&K, but it was 

found that such relaxation added relatively little to the robustness or stability of the results described in 

the next section. 

2.5 Empirical analysis of pricing methodologies 

This section provides a comparison and analysis of robust with non-robust derivatives pricing models. The 

"underlying" for the comparison is an index of catastrophic events. The relative performance of the robust 

and non-robust valuation models using this underlying is presented in terms of accuracy, stability and 

robustness of performance. The results were achieved by using four models to value both a catastrophe 

bond and a catastrophe option using the catastrophic loss index published by the Property Claims Service 

(PCS). In the case of both robust and non-robust models, the results were calibrated and satisfactorily 

cross-checked for reasonableness using a Monte Carlo simulation, for which the results are not reported. 

2.5.1 Models and data sources 

This section therefore takes the robust pricing framework developed in the preceeding sections of this 

chapter and applies it to the practical problem of producing robust valuations for both CAT bonds and 

CAT options where the underlying is an index of catastrophic events. The section presents and analyses 

two sets of empirical comparisons of a traditional non-robust model with three variants of the robust 

derivative pricing framework developed in the previous sections of this chapter. Section 2.5.2 analyses 

the comparative results of pricing CAT bonds using the standard Cox partial integro-differential equation 

approach (referred to as Cox-PIDE and which is standard in much of the insurance industry), with three 

versions of robust methods, namely, numerical HJI, linear robust control Lyapunov and non-linear robust 

control Lyapunov. Section 2.5.3 analyses the results of pricing CAT options using the standard translated 

gamma approximation and Monte Carlo simulation (to provide a cross check on the accuracy of the gamma 

model), with three versions of robust methods namely, numerical HJI, linear Lyapunov and non-linear 
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Lyapunov. 

Calibrating the robust catastrophe bond and option models was carried out with respect to interest 

rate and catastrophe index data for the US market. The exact data used for all results reported in 

this chapter is detailed in Appendix 2. The following models were used in the comparative CAT bond 

computations: 

1. Cox partial-integro differential equation (Cox-PIDE) 

2. Numerical Hoo robust optimal control (i. e. numerical HJI) 

3. Linear Lyapunov robust optimal control 

4. Non-Linear Lyapunov robust optimal control 

The following models were used in the comparative CAT option computations: 

1. Cox-Compound Poisson using a translated gamma approximation (Cox-TGA). 

2. Numerical Hoo robust optimal control (i. e. numerical HJI) 

3. Linear Lyapunov robust optimal control 

4. Non-Linear Lyapunov robust optimal control 

The underlying data for both the CAT bond and the CAT option results was the catastrophe loss 

index produced by the PCS. After assigning a unique identifier to each catastrophe, the PCS provides 

daily data on the number and sizes of claims for each catastrophe for as long as the data continues to 

change. According to the PCS, the term "catastrophe" denotes a natural disaster that affects many 

insurers and where claims reach a certain threshold. Initially, the threshold was set at $1 million, but was 

subsequently increased first to $5 million and then to $25 million in 1997. 

Although PCS catastrophe claim data is available from 1949 onwards, the data used in this thesis stops 

at end 2003. However, for the CAT bond research, only the daily data from January 1990 to December 

2003 was used for the calculations reported in this thesis. The CAT option results are based on the daily 

data for the period that the PCS options were quoted on the COBT, namely, September 1995 to August 

1999. This means that the PCS options data covers just over 5005 exchange traded CAT options and as 

5 CBOT provide PCS CAT option data data on 474 call spread option contracts, 20 pure put option contracts and 36 

pure call option contracts. During the period that PCS CAT options were traded on CBOT, the PCS index was updated 
in the following way. When a catastrophe has been identified, the PCS published a first estimate within 48-72 hours. The 

PCS then continued to refine the estimate of the losses. The PCS index is the accumulated loss estimates for all identified 

catastrophes within the defined reion for the duration of the occurrence period. 
146 



it focuses on US based claims with respect to US catastrophes, the data is denominated in US dollars. A 

more detailed description of the practical operation of the PCS index and the contract definition details 

required for the calculation of PCS option values is provided in Appendix 2. 

Prior to using the CAT bond and CAT option models, the following two stage calibration process was 

carried out: 

1. Fitting a loss distribution to the raw PCS claims data supplied. The heavy tailed Burr distribution 

was chosen for reasons explained in Appendix 2, where the details and results of the calibration 

process axe also described. 

2. Testing the above four models using Monte Carlo simulation (using 10,000 trials in each case for 

consistency) to ensure consistent valuation under boundary conditions. 

2.5.2 CAT bond valuation results 

CAT bondS6 made their appearance in the mid-1990's, when a market in catastrophe insurance risk 

emerged in order to facilitate the direct transfer of reinsurance risk associated with natural catastrophes 

from corporations, insurers and re-insurers to capital market investors. The primary instrument developed 

to satisfy this need was the CAT bond. The distinguishing feature of CAT bonds is that the ultimate 

repayment of principal depends on the outcome of an insured, naturally occurring catastrophic event, 

such as earthquakes and hurricanes, both of which are beginning to have a dominating impact on the 

insurance industry. 

This impact is partially due to the rapidly changing and heterogeneous distribution of high-value 

property in many vulnerable areas of the USA. A consequence of this has been an increased need for a 

primary and secondary market in catastrophe related insurance derivatives. The creation of CAT bonds, 

along with allied financial products such as catastrophe insurance options, was motivated in part by the 

need to cover the massive property insurance industry payouts of the early and mid-1990's. They also 

represent a "new asset class" in that they provide a mechanism for hedging against natural disasters -a risk 

which has been shown to be substantially uncorrelated with the capital market indices (Doherty, 1997). 

Subsequent to the development of the CAT bond, the class of disaster referenced has grown considerably. 

As yet, there is almost no secondary market for CAT bonds which hampers using arbitrage-free pricing 

'Catastrophe (CAT) bonds are an example of a class of securities known as risk-linked securities. The class includes 

securities such as share quota transactions, life insurance securities, catastrophe options and other insurance-reIated financial 
instruments. The results reported in this section focus on just CAT bonds, which are privately placed securities that are sold 
to qualified institutional investors as defined under the Security and Exchange Commission Rule 144A. Generally speaking, 
a qualified institutional investor, as defined under Rule 144A, owns and invests on a discretionary basis at least $100 million 
in securities that are not affiliated with the investor. 
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models for the derivative and has also lead to the emergence and persistence of models that are frequently 

neither robust nor stable. 

The basic CAT bond structure can be summarized as follows: 

The sponsor of the CAT bond establishes a special purpose vehicle (SPV) as an issuer of bonds and 

as a source of reinsurance protection. 

9 The issuer sells bonds to investors. 

9 The proceeds from the sale of the CAT bonds are invested in a collateral account. 

The sponsor pays a premium to the issuer; this and the investment of bond proceeds are a source 

of interest paid to investors. 

o CAT bonds are usually zero coupon and therefore generate no cashflows prior to maturity. 

If the specified catastrophic risk is deemed to have been triggered, the funds are withdrawn from 

the collateral account and paid to the sponsor; at maturity, the remaining principal - or if there is no 

event, 100% of principal - is paid to investors. There are three types of triggers: indemnity, index and 

parametric. An indemnity trigger involves the actual losses of the bond-issuing insurer. For example, the 

event may be the insurer's losses from an earthquake in a certain area of a given country over the period 

of the bond. An index trigger involves, in the US for example, an index created from property claim 

service (PCS) loss estimates. A parametric trigger is based on, for example, the Richter scale readings 

of the magnitude of an earthquake at specified data stations, or the Saffir/Simpson classification scale in 

the case of hurricanes. The results reported in this section of the current chapter only address the issue 

of pricing CAT bonds that feature index triggers. 

Property insurance claims of approximately USD 60 billion between 1990 and 1996 (Canter, Cole, 

and Sandor; 1996) caused great concern to the insurance industry and resulted in the insolvency of a 

number of firms. These bankruptcies were brought on in the wake of hurricanes Andrew (Florida and 

Louisiana affected, 1992), Opal (Florida and Alabama, 1995) and Fran (North Carolina, 1996), which 

caused combined damage totalling USD 19.7 billion (Canter, Cole, and Sandor; 1996). These, along 

with the Northridge earthquake (1994) and similar disasters, led to an interest in alternative means for 

underwriting insurance. In 1995, when the CAT bond market was born, the primary and secondary (or 

reinsurance) industries had access to approximately USD 240 billion in capital (Canter, Cole, and Sandor; 

7Note that all CAT bonds have been set up as zero coupon. A zero coupon structure was used for two reasons. First, 

to provide comparability with other research results. Second, to simplify the modelling and make it easier to identify the 

impact of catastrophic events on dimunition in redemption value. 
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1996; Cummins and Danzon; 1997). Given the capital level constraints necessary for the reinsuring of 

property losses and the potential for single-event losses in excess of USD 100 billion, this was clearly 

insufficient. 

The international capital markets provided a potential source of risk appetite for the reinsurance 

market. An estimated capitalisation of the international financial markets, at that time, of about USD 

19 trillion underwent an average daily fluctuation of approximately 70 basis points or USD 133 billion 

(Sigma; 1996). The under-capitalisation of the reinsurance industry (and the consequent potential default 

risk) meant that there was a tendency for CAT reinsurance prices to be highly volatile. This was reflected 

in the traditional insurance market, with rates on line being significantly higher in the years following 

catastrophes and dropping off in the intervening years (Sigma; 1997; Froot and O'Connell; 1997). This 

heterogeneity in pricing has had a very strong damping effect, forcing many re-insurers to leave the market, 

which in turn has adverse consequences for the primary insurers. A number of reasons for this volatility 

have been advanced (Cummins and Danzon; 1997; Winter; 1994). 

Some of the traditional assumptions of derivative security pricing are not correct when applied to 

these instruments due to the properties of the underlying contingent stochastic processes. There is 

evidence that certain catastrophic natural events have (partial) power-law distributions associated with 

their loss statistics (Barton and Nishenko; 1994), which if true, would overturns the traditional log-normal 

assumption of derivative pricing models. There are also well-known statistical difficulties associated with 

the moments of power-law distributionS8 
, thus rendering it impossible to employ traditional pooling 

methods and consequently the central limit theorem. Given that heavy-tailed or large deviation results 

assume, in general, that at least the first moment of the distribution exists, there will be difficulties 

with applying extreme value theory to this problem (Embrechts, Resnick, and Samorodnitsky; 1999). It 

would seem that these characteristics may render traditional actuarial or derivatives pricing approaches 

ineffective. 

There are additional features to modelling the CAT bond price which are not to be found in models 

of ordinary corporate or government issue (although there is some similarity with pricing defaultable 

bonds). In particular, the trigger event underlying CAT bond pricing is dependent on both the frequency 

and severity of natural disasters. In the model described here, we attempt to reduce to a minimum 

any assumptions about the underlying distribution functions. This is in the interests of generality of 

application. The numerical examples will have to make some distributional assumptions and will reference 

some real data. Given the daily availability of PCS loss data, it is also appears to be reasonable to 

"This has become a significant research topic in its own right - see for example, "Multifractal Power Law Distributions: 

Negative and Critical Dimensions and Other "Anomalies, Explained by a Simple Example", by Benoit B. Mandelbrot, in 

the Journal of Statistical Physics, Vol. 110, Nos. 3-6, March 2003. 
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assume that loss levels are instantaneously measurable and updatable. It is straightforward to adjust the 

underlying process to accommodate a development period. 

There is a natural similarity between the pricing of catastrophe bonds and the pricing of defaultable 

bonds. Defaultable bonds, by definition, must contain within their pricing model a mechanism that 

accounts for the potential (partial or complete) loss of their principal value. Defaultable bonds yield 

higher returns, in part, because of this potential defaultability. Similarly, CAT bonds are offered at 

high yields because of the unpredictable nature of the catastrophe process. With this characteristic in 

mind, a number of pricing models for defaultable bonds have been advanced (e. g. Jarrow and Turnbull, 

1995, Duffle and Singleton, 1999, Zhou and 1997). The trigger event for the default process has similar 

statistical characteristics to that of the equivalent catastrophic event pertaining to CAT bonds. 9 

With this in mind, the Cox model has been used as the benchmark for non-robust models of catastrophic 

processes. The underlying assumption is that there is a Poisson point process (of some intensity, in general 

varying over time) of potentially catastrophic events. However, these events may or may not result in eco- 

nomic losses. It is assumed that the economic losses associated with each of the potentially catastrophic 

events is independent and has a certain common probability distribution. This is justifiable for the Prop- 

erty Claim Loss indices used as the triggers for the CAT bonds. Within this model, the threshold time can 

be seen as a point of a Poisson point process with a stochastic intensity depending on the instantaneous 

index position. 

Having defined the data and the models used in the previous section, this section now presents and 

analyses the results of the computations. The basic zero coupon CAT bond analysed in this section has 

the following structure. It is assumed to pay an amount, Z, at maturity, T, contingent upon a threshold 

time T>T. The no axbitrage, present value (discounted at a continuously compounded rate of R) of the 

zero coupon CAT bond associated with a threshold loss level, D, catastrophic flow, M, an aggregate loss 

process, L and a distribution of incurred losses, F, that pays Z at maturity, is given by 

V. i =E [Z exp f -R (t, T)} (1 - Nt) J. Ft] t 

where -r = inf (t : Lt > D) and Nt = I(Lt > D)10- It is assumed that the threshold event is the time 

at which the accumulated losses exceed the threshold level, D, i. e. T= inf (t : Lt > D) - 
To simplify the 

91n an allied application to mortgage insurance, the similarity between catastrophe and default in the log-normal context 
has been commented on (Kau and Keenan; 1996). 

'OBaryishnikov et al (1998) also show that this is a doubly stochastic Poisson process with intensity 

F (D - L. )1 I (L. 
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computations, the zero coupon CAT bond valuations reported are assumed to redeem at par of $100 at 

maturity if aggregate losses do not exceed the threshold level, D. However, unlike Burnecki, Kukla and 

Taylor (2001) it is assumed that if accumulated losses exceed the threshold, then the bond holder receives 

a recovery amount, Bt, calculated as 

B=Z-Nt 

where Nt is stated as percentage of Z. The following results are therefore reported for varying levels of 

accumulated catastrophic losses incurred prior to maturity, expressed as a percentage. To achieve this 

scaling, the PCS loss data was simply re-based to 100 at the beginning of the calculation period. 

Figure 2.3 therefore illustrates the behaviour of the price of a series of such zero coupon CAT bonds 

(assumed to have been issued at a discount with accretion to par and with price expressed as a percentage 

of par) for given combinations of time to maturity and percentage loss. The valuations were produced 

using the Cox-PIDE model. The CAT bond valuations are at increasing monthly maturities from 1 month 

out to 12 months (e. g. 1m maturity, 2m maturity, 3m maturity etc), all with identical issue date of 01 

August 1992. The results in figure 2.3 are for CAT bonds based on PCS loss data for the 12 months 

beginning 01 August 1992 for the National index, which was chosen specifically because it contained 

the largest (at that time) and most costly world insurance loss in the form of hurricane Andrew which 

occurred on 23 August 1992 and produced total insured losses of $15.5bn in 1992 dollar terms (or $20-8bn 

in 2004 dollar terms). 

Figure 2.3 presents a number of interesting features. First, it is clear that increasing the threshold 

loss level increases the value of the CAT bond. This behaviour makes intuitive sense, since raising the 

threshold loss level means less likelihood of losses consuming the entire value of the bond. For comparative 

and sanity check purposes, it is encouraging to note that the profile shown in figure 2.3 is consistent with 

results produced by both Burnecki, Kukla and Taylor (2003) and Baryshnikov, Mayo and Taylor (2001) 

from similar studies of CAT bond pricing using PCS data. 
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the same period PCS loss index data for the same overall set of maturities and loss levels, but using instead 

the robust numerical HJI model to value the CAT bond. The results of these robust model computations 

are shown in figure 2.4. What is immediately, though not unsurprisingly apparent, is that the robust 

numerical HJI model results in much higher prices for the CAT bond across almost all maturities and 

levels of threshold loss. There are a number of possible explanations for this result. First and trivially, 

could be that the Cox-PIDE model fundamentally undervalues the value of catastrophic events, that by 

their very definition are much less likely to occur and would therefore be in the tail of a distribution. This 

is clearly one possible explanation. However, following Burnecki, Kukla and Taylor (2003), the results 

reported in figure 2.3 were in fact generated using the heavy-tailed Burr distribution to fit the PCS loss 

distribution, so this explanation is only partially acceptable". Therefore, it would appear that despite 

using a heavy tailed loss distribution, the Cox-PIDE model appears to undervalue the CAT bond; the 

undervaluation is dramatically higher at lower loss levels and shorter times to maturity and then declines 

with both loss level and maturity to around 30% for the 12 month and 100% loss level combination. 

What is also interesting is the pattern of differences between the two approaches. Figure 2.5 shows 

the percentage undervaluation between Cox-PIDE and numerical HJI. The pattern of differences are 

worthy of note. First, it should be born in mind that the results in figures 2.3 and 2.4 are limited to 

bonds with maturities ranging from 1 month to 1 year. The undervaluation appears much greater for the 

shorter maturities and lower loss levels (rising to a peak for the 2 month and 30% threshold loss level), 

before tailing-off to an over-valuation of around 30% for the longer maturities and higher loss levels 12 
- 

An immediately obvious question is why does the pattern of differences change so significantly? One 

possible explanation is that the Cox-PIDE fundamentally undervalues the impact of smaller, individual 

catastrophes that occur more frequently, but that the undervaluation effect is eroded with the effects of 

time and as loss levels rise. 

A second possible explanation is that the pattern of undervaluation could also be a function of the 

volatility of claims estimates due to the way in which the catastrophes are reported and the index adjusted. 

This would appear to fit with the fact that there is a distinct pattern to the way in which catastrophes 

are reported. Typically, an initial estimate of the number of claims and their total value gets published 

and then refined during the development period. The initial uncertainty around the losses associated with 

a catastrophe therefore declines as estimates become firmer. Detailed examination of data for individual 

catastrophes appears to bear this out, as catastrophes exhibit a higher level of volatility in initial claims 

estimates (due to the initial lack of haxd facts as losses take time to assess and claims then take further 

"See Appendix 2 for details of the fitting procedure and some of the results of the calibration. 
12Note that all of the results used to plot the figures contained in this chapter are provided in numerical form in Appendix 
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time to complete and submit), which then declines as facts emerge, loss estimates crystalise and claim 

numbers and values stabilise. 

A third possible explanation is that the mis-valuation could be attributable to seasonal effects. There 

is a well known and heavily documented13 pattern of hurricane and tropical storm occurrence in the 

southern USA during the late summer and autumn. This weather pattern accounts for a significant 

proportion of the insured losses that form the PCS index. Even though the heavy-tailed Burr distribution 

was used to fit the PCS data, it may be the case the Burr distribution is simply not capable of adequately 

capturing the effects of the well known pattern to the occurrence of hurricanes and storms in the south 

eastern USA during this period. The spike in catastrophes is clearly evident in the steep slope in both 

figures 2.3 and 2.4, which both clearly show the dramatic impact of hurricane Andrew in August and 

September 1992. Figure 2.5 shows that the Cox-PIDE model significantly undervalues the impact on the 

CAT bond price of this catastrophe for short dated maturities when the number and size of claims is still 

at its most volatile, indicating a lack of robustness with respect to the occurrence of large catastrophic 

events. 
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Figure 2.5: Short-term CAT bond Model valuation: Numerical HJI - Cox-PIDE 

13 See for example the Insurance Information Institute 
Website at: www2. iii. org/facts. 
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An immediately interesting question is whether or not the cost of robustness varies according to the 

robust model approach employed. Therefore, to investigate whether the pattern exhibited in the results 

of the numerical HJI model was mainly a function of a particular facet of the HJI model, a linear robust 

control Lyapunov model was used to value CAT bonds using the same range of maturities, the same 

underlying PCS loss data and the same range of loss levels as used for the Cox-PIDE and numerical 

HJI models. Figure 2.6 provides the results of these CAT bond valuations for the linear robust control 

Lyapunov valuation model developed earlier in this chapter. What is immediately clear is that all three 

models display relatively smooth monotonic valuation profiles throughout the ranges of loss levels and time 

to maturity. This is to some extent to be expected as all three models contain significant linearisations. 

The numerical HJI model used in this analysis is, in particular, an explicitly linear model - which, as 

already explained earlier in this chapter means that significant control effort (and therefore associated 

higher control cost, which is in turn reflected in a higher valuation) can be wasted attempting to combat 

inherent non-linearities. The final logical step is therefore to extend the analysis by including the non- 

linear version of the robust control Lyapunov model in its piece-wise min-norm form. Once again, the 

same maturities, loss levels and PCS data were used to produce comparable CAT bond valuations, the 

results of which axe reported in figure 2.8. Examination of figure 2.8 immediately shows the benefit of 

explicitly incorporating the non-linea-rities, as the behaviour of CAT bond value around low loss levels 

and short time to maturity is now much smoother than in the simple linear Lyapunov case shown in figure 

2.6. 

Worthy of note is the interesting behaviour arises when the relative performance of the non-linear 

Lyapunov model is compared with the non-robust Cox-PIDE model - as shown in figure 2.9. Two features 

are worthy of comment. First, is that there is now a much lower range of variability in valuation axound 

the Cox-PIDE model, suggesting that robustness appears to have been achieved at a much lower cost by 

explicitly incorporating non-linearities into the robust control Lyapunov model. The second interesting 

feature is the pronounced double peakiness in valuation differences. This is most pronounced around the 

50% and 80% loss levels. For the very short dated CAT bonds this would appear to coincide with the 

re-estimation volatility associated with the uncertainty surrounding the losses from hurricane Andrew. 

The fact that this behaviour is far less pronounced in the case of the longer dated CAT bonds seems to 

lend support to such conjecture. 

The contrast in performance between the three robust models is cleaxly seen when comparing the 

results in figure 2.5 (numerical HJI v Cox-PIDE), figure 2.7 (linear Lyapunov v Cox-PIDE) and figure 2.9 

(non-linear Lyapunov v Cox-PIDE). The first point to note is that the numerical HJI model exhibits a 
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much smoother difference profile with respect to the Cox-PIDE model compared with the linear Lyapunov 

model, but at a higher cost than the non-linear Lyapunov model. Figure 2.7 shows an interesting pattern 

of differences which is most marked axound the lower loss levels and shorter times to maturity. The 

numerical HJI model imposes a much greater cost penalty to robustness than the linear Lyapunov model, 

which is reflected in much higher valuations. This pattern is particularly pronounced in the short-term 

and low loss cases which in the context of the current analysis are precisely those CAT bonds most subject 

to the impact of hurricane Andrew. The pattern of differences then falls away, becoming far less significant 

in the case of increased time to maturity and higher loss levels. 

The final step in this CAT bond research was to analyse the importance of time to maturity in 

determining the cost of robustness. Focus has so far been limited to short dated CAT bonds, but the 

critical question is whether examining bonds with a maximum maturity of only 12 months is likely to 

exacerbate or hide any valuation patterns that may be associated with achieving robustness. On the 

one hand, identifying the cost of robustness may be argued to be a simpler task by concentrating on 

short-dated CAT bonds. Unfortunately, on the other hand, little can be inferred about the dynamics 

of robustness over time if attention is restricted to such a short space of time. The next logical step is 

therefore to extend the maturity of the CAT bonds for all four models. Accordingly, all four CAT bond 

models were therefore re-run using the same loss levels, but using instead 10 years worth of PCS data 

beginning 01 January 1990 and ending 31 December 1999. The time to maturity of the longest CAT 

bond was extended to 10 yeaxs at 6 monthly intervals, i. e. 6m, 12, m, 18m,..., 108m, 114m, 120m. In 

other words, CAT bonds with 20 different maturities ranging from 6 months to 10 years (but all with an 

identical staxt date of 01 January 1990) were valued using each of the four models. The results of each set 

of valuations is reported in figures 2.10 (Cox-PIDE), 2.11 (numerical HJI), 2.12 (linear Lyapunov) and 

2.13 (non-linear Lyapunov), with comparisons to Cox-PIDE being presented in figures 2.14 (numerical 

HJI v Cox-PIDE), 2.15 (linear Lyapunov v Cox-PIDE) and 2.16 (non-linear Lyapunov V Cox-PIDE). 

The results for these longer maturity CAT bonds provide a number of further insights into the ro- 

bustness and stability of the three robust valuation models. The first and most obvious feature to emerge 

from the long-dated CAT bond valuations is the fundamentally different shapes of the valuation surfaces 

when compared with those generated for the short dated CAT bonds. The most interesting set of results 

is for the numerical HJI valued bonds shown in figure 2.11, which exhibit an extremely high implied cost 

of robustness as can be vividly seen in figure 2.14. Detailed examination of the results revealed that 

the principal reason for this behaviour was that for the longer dated bonds severe cost penalties were 

being incurred by the numerical HJI algorithm in order to ensure stable solutions. These cost penalties 

translated directly into higher valuations as the HJI model consumed increasing numbers of processing 
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cycles searching for a stable solution to satisfy the robustness and stability constraints. 

The second feature of interest is the presence of a much cleaxer valuation differential between the 

numerical HJI model on the one hand and the two robust control Lyapunov models on the other hand. 

The numerical HJI algorithm used in the computations follows the standard power series approach of 

14 Al'brecht (1961) for solving infinite time optimal control problems . 
Why does this differential occur 

and how should it be interpreted? To answer these questions, consider that in contrast to the numerical 

HI algorithm, the two Lyapunov based models both use the Freeman and Kokotovic approach of finding a 

meaningful cost function such that the given robust control Lyapunov function is the corresponding value 

function. This implicitly provides a solution to the equivalent linear HJI equation, thereby enabling the 

direct computation of the robust optimal control law. Therefore, providing that the cost function belongs 

to a meaningful class of cost functions, the resulting control law is robust and guaranteed to inherit all 

the required optimality properties. The robust control Lyapunov approach uses an inverse optimal robust 

stabilisation problem of finding a meaningful cost function, such that a given robust control Lyapunov 

function is the corresponding value function. This results in a solution to the equivalent linear HJI 

problem that is both stable and robust. In the case of the non-linear robust optimal control Lyapunov 

model, this further translates into solutions that take advantage of the non-linearities in the valuation 

problem that exist explicitly because the catastrophic events are driven by highly complex non-linear 

relationships. The outcome in the case of the non-linear robust control Lyapunov model is smoother and 

less expensive robustness - in other words, the cost of robustness is lower in the non-linear case as the 

solution takes advantage of the non-linearities rather than fighting against them, which translates directly 

into lower robustness costs. 

The final issue to consider is whether the relative performance of the three robust models presented so 

far provide sufficient information to draw definitive conclusions about the cost of robust valuation in the 

face of massive catastrophic events such as hurricane Andrew? Looking first at the short-term valuation 

results, all three robust models can be seen to exhibit substantial differences compared to the Cox-PIDE 

model for the 1-6 month securities and up to around the 50% loss level. The pattern of differences then 

appears to be less pronounced for the 6-12 month securities and higher loss levels. This may at least in 

paxt be due to the volatility of the claims estimates referred to above being handled differently in the cost 

function within the models. the liner and non-linear Lyapunov approaches 

As far as the long-term valuation results are concerned, the impact and tail effects of hurricane Andrew 

14 Al'brecht's (slightly modified) method solves the HJI partial differential equation in the neighbourhood of the origin using 
a power series method. This ultimately reduces the quadratic terms of the HJI pde to an easily solvable Riccati equation 

and a linear optimal feedback rule. This is then solved using function SB02PD ported from the Slicot library as explained 
in Appendix 1. This function solves the continuous algebraic Riccati equations using the matrix sign function method with 
condition and forward error bound estimates. 
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can be seen quite clearly between the four models. Once again, the numerical HJI model exhibits extreme 

cost penalties right across the loss level spectrum for the shorter maturities and in the middle of the loss 

threshold range, but these penalties fall off very rapidly as the initial impact effect of Andrew decays. 

The cost of robustness for the numerical HJI is therefore far higher even for the very longest bonds at all 

but the very lowest loss levels. Detailed examination of the diagnostics for the numerical HJI once again 

reveals the same explanation as in the shorter dated case. What is also worthy of note is that the pattern 

of extreme cost penalties appears to have quite a lengthy tail to its decay structure. The tail has three 

discernible phases, which can best be observed by looking at the longest dated bonds. The first phase 

covers the initial impact of Andrew and appears to last out to around 3 years. During this phase the cost 

penalties begin extremely high, but fall off very rapidly. The second phase is from around 3 to 5 years, 

during which time the cost penalties continue to fall but at a much slower pace. The final phase, from 5 

to 10 years sees the cost penalties flattening out, but still remaining high. 

In contrast, the two Lyapunov models no longer continue to attract extremely high cost penalties 

compaxed with the Cox-PIDE model as can be clearly seen when comparing figures 2.14,2.15 and 2.16. 

What is even more interesting is that the two Lyapunov models actually exhibit valuations below the 

Cox-PIDE for some combinations of shorter maturities and higher loss levels. Closer examination of 

the diagnostics for the linear Lyapunov model revealed that incorporation and consequent influence of 

feedback yielded smoother solutions so that the cost penalties associated with achieving robustness were 

substantially reduced. In the case of the non-linear Lyapunov model the extra influence of the lower cost 

penalties associated with incorporating the non-linear dynamics further reduced the costs of robustness. 

This finding for the non-linear robust control Lyapunov function is a significant finding as it underlines 

that the costs of robustness to uncertainty may not be so high as to make robust strategies unaffordable. 

The point is that in times when catastrophic events do not occur - which by their very definition tends 

to be most of the time - the costs of robustness make it totally uneconomic as a valuation methodology. 

However, when catastrophic events are brought into the picture, the costs of robustness become far more 

acceptable compared the possible levels of loss, which may include bankruptcy or ruin at the limit. 

Notwithstanding the above possible explanations for the valuation differences between the Cox-PIDE 

and the numerical HJI models, arguably the more interesting question is whether the robust model actually 

overvalues the benefits of robustness. One way of answering this question is by resorting to a comparison 

of the CAT bond valuations with the out-turn in the PCS index15. The answer to this question can be only 

partially inferred from the results presented in figures 2.3,2.4 and 2.5. Hurricane Andrew occurred on 

"An equally valuable cross-check would be to compare the results of the CAT bond models with the traded prices of puts 

and calls in the CBOT options prices. However, the option contracts did not trade for the entire period of interest of the 

short-dated CAT bonds. See Appendix 2 for details of the periods covered by the PCS options data available from CBOT. 
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23rd August 1992, so the first month in which estimates of likely loss were fully available was September 

1992. The relative differences in value before and after the impact of hurricane Andrew can be seen in 

figure 2.5. 
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Figure 2.6: Short-term CAT bond valuation using Linear Lyapunov 
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Figure 2.7: Short-term CAT bond model valuation: Linear Lyapunov - Cox-PIDE 
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Figure 2.9: Short-term CAT bond model valuation: Non-Linear Lyapunov v Cox-PIDE 
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Figure 2.10: Long-term CAT bond valuation: Cox-PIDE 
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Figure 2.11: Long-term CAT bond valuation: Numerical HJI 
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Figure 2.12: Long-term CAT bond valuation: Linear Lyapunov 
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Figure 2.13: Long-term CAT bond valuation: Non-Linear Lyapunov 
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Figure 2.14: Long-term CAT bond valuation: Numerical HJI v Cox-PIDE 
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Figure 2.15: Long-term CAT bond valuation: Linear Lyapunov v Cox-PIDE 

164 



Robust v non-robust 

CAT Bond pricing: 

Non-Linear Lyapunov 

Cox PIDE 

9(r/. Lo ss 

60*/oLoss 

30%LA)ss 

09/6 Lo ss 

(Non-bneurLYUPunov minus Cox-PIDr) Cox-PIDE 

Figure 2.16: Long-term CAT bond valuation: Non-Linear Lyapunov v Cox-PIDE 

Having analysed the theoretical costs of robustness, it is relevant to consider how such valuation 

techniques would actually have fared in practice. There are two points here. First, actual property 

insurance claims of approximately USD 60 billion were made between 1990 and 1996 (Canter, Cole, 

and Sandor; 1996) resulting in the insolvency of a number of insurance firms. These bankruptcies were 

brought on in the wake of hurricanes Andrew (Florida and Louisiana affected, 1992), Opal (Florida and 

Alabama, 1995) and Fran (North Carolina, 1996), which caused combined damage totalling USD 19.7 

billion (Canter, Cole, and Sandor; 1996). These, along with the Northridge earthquake (1994) and similar 

disasters, led to an interest in alternative means for underwriting insurance. In 1995, when the CAT bond 

market was born, the primary and secondary (or reinsurance) industries had access to approximately USD 

240 billion in capital (Canter, Cole, and Sandor; 1996; Cummins and Danzon; 1997). Given the capital 

level constraints necessary for the reinsuring of property losses and the potential for single-event losses in 

excess of USD 100 billion, this was clearly insufficient. A loss of $100 billion would consume approximately 

30 - 40% of the equity capital of the US insurance industry but would be less than 0.5% of the value of 

the US stock and bond markets. Whether such problems could have been avoided by insurers attempting 

more soPhisticated risk management through the issuance of CAT bonds that had been valued using 

robust valuation methods is difficult to assess directly. However, what can be concluded is that in terms 
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of total revenue, the prevailing Cox-PIDE model produced fundamental mis-valuations that would have 

resulted in a significant lack of risk mitigation and cashflow - particularly if the CAT bonds had been 

short-term securities. 

Could CAT bonds have been issued in amounts that would have been sufficient to enable the required 

risk mitigation? It is undoubtedly the case that the international capital markets provided a potential 

source of risk appetite for the reinsurance market. An estimated capitalisation of the international financial 

markets around the time of hurricane Andrew, of about USD 19 trillion underwent an average daily 

fluctuation of approximately 70 basis points or USD 133 billion (Sigma; 1996). So, clearly the capacity 

to bear such large amounts of catastrophic risk was (and remains) much greater in the capital markets. 

However, the under-capitahsation of the reinsurance industry (and the consequent potential default risk) 

meant that there was a tendency for CAT reinsurance prices to be highly volatile which discouraged many 

potential issuers from using CAT bonds. This was reflected in the traditional insurance market, with rates 

on line being significantly higher in the years following catastrophes and dropping off in the intervening 

years (Sigma; 1997; Froot and O'Connell; 1997). This heterogeneity in pricing had a very strong damping 

effect, forcing many re-insurers to leave the market, which in turn has adverse consequences for the 

primary insurers. A number of reasons for this volatility have been advanced (see for example Cummins 

and Danzon; 1997 and Winter; 1994). 

Some of the traditional assumptions of derivative security pricing are not correct when applied to 

these instruments due to the properties of the underlying contingent stochastic processes. There is 

evidence that certain catastrophic natural events have (partial) power-law distributions associated with 

their loss statistics (Barton and Nishenko; 1994), which if true, would overturns the traditional log-normal 

assumption of derivative pricing models and makes robustness hard if not impossible to achieve without 

using non-linear models. There are also well-known statistical difficulties associated with the moments 

of power-law distributions 16 
, thus rendering it impossible to employ traditional pooling methods and 

consequently the central limit theorem. Given that heavy-tailed or large deviation results assume, in 

general, that at least the first moment of the distribution exists, there will be difficulties with applying 

extreme value theory to this problem (Embrechts, Resnick, and Samorodnitsky; 1999). It would seem 

that these characteristics may render traditional actuarial or derivatives pricing approaches ineffective. 

Although there is some similarity with the valuation of defaultable bonds, there are additional features 

to modelling the CAT bond price which are not to be found in models of ordinary corporate or government 

securities. The main feature is that the trigger event that underlies CAT bond pricing is dependent on 

"This has become a significant research topic in its own right - see for example, "Multifractal Power Law Distributions: 
Negative and Critical Dimensions and Other "Anomalies, Explained by a Simple Example", by Benoit B. Mandelbrot, in 
the Journal of Statistical Physics, Vol. 110, Nos. 3-6, March 2003. 
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both the frequency and severity of natural disasters. The Cox-PIE model in this section is used to reduce 

to a minimum any assumptions about the underlying distribution functions in the interests of generality 

of application. However, given the daily availability of PCS loss data, it is also appears to be reasonable 

to assume that loss levels are instantaneously measurable and updatable, which makes it straightforwaxd 

to adjust the underlying process to accommodate a development period and it is this feature that is 

explicitly included in the next section where results of CAT option valuation are reported that once again 

use PCS loss data. 

There is a natural similarity between the pricing of catastrophe bonds and the pricing of defaultable 

bonds. Defaultable bonds, by definition, must contain within their pricing model a mechanism that 

accounts for the potential (partial or complete) loss of their principal value. Defaultable bonds yield 

higher returns, in part, because of this potential defaultability. Similarly, CAT bonds are offered at 

high yields because of the unpredictable nature of the catastrophe process. With this characteristic in 

mind, a number of pricing models for defaultable bonds have been advanced (e. g. jarrow and Turnbull, 

1995, Duffie and Singleton, 1999, Zhou and 1997). The trigger event for the default process has similar 

statistical characteristics to that of the equivalent catastrophic event pertaining to CAT bonds-17 

2.5.3 CAT option valuation results 

Before proceeding to present and analyse the results of the valuation of the CAT options based on PCS 

index underlyings, it is necessary to explain a number of points on the PCS data, option contracts and 

the models to be compared, beyond those already made earlier in this chapter. To begin with, the first 

publicly available, exchange-tradeable product explicitly designed to transfer catastrophe risk from the 

insurance markets to the financial markets was the catastrophe (CAT) future, which was first introduced 

to the Chicago Board of Trade in 1992. However, due to technicalities around its construction, the CAT 

future never became popular amongst potential users and in 1995 it was replaced by the PCS-index based 

CAT option. In all, CAT derivatives based on one or more PCS indices were traded on CBOT from 

11 December 1992 through to 03 November 199718. However, the results reported in this section are 

concerned solely with PCS CAT options, which only traded for the more limited subset of dates indicated 

in table 2.1 below. 

Although CAT options were available as both puts and calls, they were most frequently traded as 

spreads on one of the PCS indices. This was because trading a spread had the effect of creating the 

I'In an allied application to mortgage insurance, the similarity between catastrophe and default in the log-normal context 
has been commented on (Kau and Keenan; 1996). 

"Appendix 2 contains full product specifications for all of the option contracts traded, together with details of the 

underlying indices. See Appendix Table 2.1 for a summary listing of the CBOT contract codes and periodic coverage. 
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same overall hedging profile as an excess of loss catastrophe reinsurance contract which would be the 

usual means of providing cover for a given slice of the catastrophe liability structure. From a practical 

perspective, CAT options were available in 3 month and 12 month loss occurrence periods, with the choice 

of either a6 month or 12 month development period after the loss occurrence period which provided the 

time to get a cleaxer picture of the cost of catastrophes that may have happened late in the occurrence 

period. During the period that the PCS CAT options traded, the PCS indices were published daily by 

ISO. However, in practice, the time and cost of re-estimating the claims levels, meant that the PCS 

issued claims updates daily, but re-calculated the actual financial loss indices only once or twice a month 

- depending on the level of claim activity and the severity of the catastrophes in hand19. There were four 

quarterly contracts, namely: March/June/September/December: 

e March contracts cover losses occurring in the first quarter. 

9 June contracts cover losses in the second quarter. 

e September contracts cover losses in the third quarter. 

9 December contracts covers losses in the fourth quarter. 

There was also a single annual contract covering losses for the whole calendar year. Contracts also 

traded with either a 6m or 12m development period. Rom a practical perspective, liquidity was concen- 

trated in those option contracts with a 3m loss period coupled with a 6m development period; so, on the 

grounds of liquidity" and representative valuation, this thesis looked solely at just these contracts. Table 

2.1 surnmarises the option contracts and the periods over which they traded. In line with liquidity and 

market convention at the time, the valuations reported in this section were calculated based on using the 

puts and calls to create 0.5 basis point spreads (25 basis points either side of the strike) around the main 

Ince ; nrlpv imlilp qt. rikp levels indicated in ADnpndix '2- 
PROPERTY CLAIM SERVICES (PCS) INSURAN CE OPTIONS 

Area Covered Ticker Period Covered 

NATL INS. LARGE CAP-6 MONTH CALL DNC 09/29/1995-11/03/1997 

NATL INS. LARGE CAP-6 MONTH PUT DNP 09/29/1995-11/03/1997 

NATL INS. SMALL CAP-6 MONTH CALL QNC 09/29/1995-11/03/1997 

NATL INS. SMALL CAP-6 MONTH PUT QNP 09/2911995-11/0 

Table 2.1: CBOT PCS CAT option contracts 

"During the period which the PCS CAT options traded, the indices were updated daily based on the total number of 
claims, but multiplied by the average cost per claim. This estimation exercise was far less costly than a full calculation of 
the actual financial loss data and took only a fraction of the time. Full calculation occurred only once or twice per month - 
with the actual frequency depending on the volume of new claims and the size of any catastrophes that had occurred. 

20 Open interest in the quarterly contract was always substantially greater than that of the annual contract according to 
CBOT statistics. 
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Having reviewed the practicalities of the PCS CAT option contract, it is now necessary to fill-in a 

number of the contract specific details required to value a PCS option contract. The first point to note is 

that the strike prices of PCS CAT options were defined with respect to particular cumulative loss levels. 

Small cap contract strikes covered losses in the range from 0.1 ($10 million) to 200 points ($20 billion), 

whilst the large cap contracts covered losses ranging from 250 ($25 billion) to 500 points ($50 billion). 

Therefore, let Tj and T2 be the start and final maturity times of the option contract period respectively, 

such that 0< Tj < T2. If the loss occurrence period is (0, TI] and the development period is (Ti, T2], 

with catastrophes occurring at times 0< -ri < -r2 < .... then if each catastrophe is modelled using an 

individual index {L'I and the number of catastrophes in (0, Tj] is denoted by Nt so that at time t, the t 

PCS index is therefore given by 
NtATI 

Lt L't 

So, if L (0, Tj; Ti, T2; t) is the estimated industry wide dollar denominated loss amount at time t, then 

the corresponding PCS index value for the 500 point contract measured in tenths of an index point (where 

each one tenth of an index point is equivalent to a loss level of $10m) is given by 

(0, Ti; Ti, T2; t) =L 
(0, Ti; Ti, T2; t) 

+0,5 
1 1 

10,000,000 

1 

10 

where each on tenth of an index point is worth $20. Note that the exercise price of a single option 

contract at strike ki is also measured in index points, as well as the option premium C(s) at the the time 

of purchase s, then NV'(t) is the US dollar value of the PCS long call position at time t. To see how 

this worked in practice, consider the particular case of a large cap contract with a strike of k, points, so 

that the gross value of a long PCS call with loss period (0, T11 and final maturity T2 is given by 

C(0, T,; TI, T2) = 200. min{max10, L*(0, T,; T�T2; t)-kl}; 500-kil 

= 200. min max 0; 
[L (0, Tj; TI, T2) 

+051- kl 
1; 

500 - ki f 
10,000, oc 1 i-o 

1 

So that if C(s) is the option premium paid at the time, s, of purchasing the option, NV(t) gives the 

net value of a long position in the option at time t. As already mentioned, most trading of PCS CAT 

options took place in the form of call option spreads. So, if k, and k2 axe the lower and upper strike 

prices, respectively, then intuitively they can be thought of as representing the lower and upper limits of a 

traditional excess-of-loss catastrophe reinsurance contract. Selling a call-spread contract kilk2(kl < k2) 

is equivalent to selling a call option with strike price ki and automatically buying a call option with a 
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strike price k2. By selling a call spread option contract, losses are capped by k2 - kj, with risk being 

reduced relative to a simple call. If L (T) is the aggregate PCS index value, then the final payoff at the 

maturitY of the option will be 

max (min (L (T) - ki, k2 - ki), 0) 

Figure 2.17 illustrates the payoff profile of the PCS call option spread. 
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Figure 2.17: PCS call option spread value 

Those details of the PCS option contracts required in order to interpret the computations have now 

been described. The next stage was therefore to use the same overall robust control valuation framework 

that was developed for pricing the CAT bonds, to derive values for a range of CAT options based on the 

PCS index using the following four (one non-robust and three robust) models: 

1. Cox-Compound Poisson using a translated gamma approximation (Cox-TGA) - following Chris- 

tensen (2000) and Schmidli (2003) 

2. Numerical Hoo robust optimal control (i. e. numerical HJI) 

3. Linear Lyapunov robust optimal control 

4. Non-Linear Lyapunov robust optimal control 

Figures 2.18 to 2.20 show the valuation differences between the Cox-TGA model and each of the 

robust models for the varying strike levels for PCS call spreadS21 . The strikes used were the main PCS 

21 All of the results presented in figures 2.18 - 2.20 are presented in numerical form in tables 1-4 in Appendix 4. 
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index points, with the call strike spread being set at 25 basis points of index value either side of the 

given PCS index strike. So, for example, in the case of the 200 point strike, the call option spread was 

199.75 - 200.25. The spread options were all valued at point of first issue and the valuation results are 

undiscounted. actual dollar amounts, having been multiplied by 200 (as an index point was worth $200). 

All of the theoretical price results reported below were calculated at the beginning of the loss period. 

The primary reason for this was that in the case of contracts traded prior to the commencement of the 

loss period, there are neither time decay nor event effects to consider, (i. e. no catastrophes have occurred 

that can affect the option price as the loss period has not started), which, all things being equal, should 

make the option valuations more stable and therefore easier to compare between models. The secondary 

reason is that as the volumes and open interest on the contracts were always very small, the traded prices 

tended to be unrepresentatively volatile and frequently substantially greater than the theoretical prices 

(even from the numerical HJI model) during the loss and development periods. Using values calculated 

prior to the commencement of the loss period, helps to minimise what otherwise might be a misleading 

effect (see Sun (2002) for confirmation of this behaviour). 
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Figure 2.18: PCS CAT option valuation: Cox-TGA v numerical HJI 
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Figure 2.19: PCS CAT option valuation: Cox-TGA v linear Lyapunov 
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Figure 2.20: PCS CAT option valuation: Cox-TGA v non-linear Lyapunov 
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There are two preliminary points to make about figures 2.18-2.20. The first and most obvious point 

to notice is that the results for all four models broadly pick up the known seasonality patterns in the PCS 

index data. This is hardly surprising as the seasonality is quite pronounced because almost the entire 

index was and still is, dominated by seasonal weather patterns whereby September is hurricane month 

and December is the main winter storm month. Interestingly, all four models conform to the usual prior 

that deeper out of the money strikes are cheaper relative to the at the money strikes. However, what is 

slightly more interesting is that the differences between the Cox-TGA model and the three robust models 

decline substantially as the strikes get progressively further from being at the money with respect to the 

index level. This pattern is followed throughout the period for which results are reported - during which 

the level of catastrophes reported actually fell and no majoT catastrophes occurred, so that the period 

was effectively a period of very low loss volatility (as can clearly be seen from figure 2.21). What is 

significant about such a pattern, is that according to Froot (2001) the general practice in insurance is 

that cover is rarely (if ever) taken for low probability but high cost events. This may help to explain why 

the differences between the Cox-TGA model and the robust models are proportionately much less in the 

case of the deep out of the money strikes. 

The second point to make is that the same pattern of valuation differences can be observed between the 

non-robust Cox-TGA model and the three robust models as was observed in the case of the CAT bonds. 

Namely, that the numerical HJI again provides robustness at a very high price - especially at the lower 

strikes. Again, similax to the CAT bond case, the linear Lyapunov is less costly than the numerical HJI, 

but it was the non-linear Lyapunov model that appears to offer the best trade-off of robustness against 

increased premium across the widest range of contracts examined. Notwithstanding the apparently high 

price of robustness, it must be born in mind that no abormally large catastrophes actually occurred during 

the period that the PCS CAT options actually traded. Identifying the costs of robustness is made still 

further more difficult to assess with any degree of certainty, due to the fact that during the period that 

the PCS CAT option contracts traded most actively the level and change in the PCS catastrophe index 

was relatively small and the level of trading in the contracts (as indicated by the extremely low level of 

open interest in all PCS CAT option contracts) remained very low (less than 600 trades occurred across 

all 53 possible contracts over a3 year period). 

Arguably a more interesting question is how, given that robustness comes at a high price compared 

with the traditional Cox-TGA type model, do the theoretical prices from the four models compare with 

the actual traded prices of the quoted contracts? Froot (2001) and Sun (2002) have both examined this 

issue and found that the theoretical prices from the traditional models have managed to account for no 

more than 60% of the observed exchange-traded market prices, irrespective of whether the comparison is 
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made before (when price was at its least volatile and the ratio of theoretical to observed was around 43%), 

during (when price was often extremely volatile) or after the loss period (i. e. even in the development 

period). Froot's work was also of considerable interest as it also compared the price of PCS CAT option 

cover with actual contemporaneous reinsurance costs. Unfortunately, the same data was not available for 

this research (in particular the Guy Carpenter data set containing costs and levels of reinsurance activity 

was not available), so that detailed comparison between Froot's results and the results in this thesis is not 

possible. However, this research did have access to the CBOT data so was able to make the comparison 

between theoretical and actual quoted option prices. 

Figure 2.22 shows the comparative results for actual CBOT traded prices versus theoretical, model 

based valuations for the 50pt strike call-spread 22 
. 

The results were calculated for as near as possible to 

the beginning of the pre-loss period. What is immediately clear is that the Cox-TGA model does indeed 

undervalue the PCS CAT option most of the time. It is interesting to note that the Cox-TGA does in fact 

produce overvaluations in a number of instances. This is in direct disagreement with Froot's and Sun's 

work. The most obvious explanation for this result is that their results were for comparisons made of prices 

for the worst point during the loss period when differences between market and theoretical valuations may 

have been at their greatest, but also most volatile. Performing the comparison for the pre-loss period, as 

explained above, provides a less distorted view of the comparative real-world performance of the models. 
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Figure 2.22: Unit price comparison - pre-loss period 

22 This comparison was selected as the 50pt strike was the most actively traded during the period under consideration. 
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However, what is also highly significant is that the robust models, without exception, produce unit 

prices greater than 1, implying over-valuation with respect to traded market prices. Once again, the 

numerical-HJI is the most expensive robust model, whilst the non-linear Lyapunov model valuations 

exhibit the least expensive robust alternative to the Cox-TGA model. Root (2001) argued that supply 

and demand factors were the fundamental explanation for the inability of theoretical pricing to match 

open-market traded prices. Sun also investigated the use of alternative distributions in an attempt to 

address the issue of robustness, but as already explained earlier in this chapter, such an approach misses 

the key point that robustness requires more than simple insensitivity to distributional variations. In the 

light of the performance of the robust models, Froot's conclusions would therefore appear to be incomplete 

and the real explanation for underpricing would appear to be the non-robustness of the classical Cox-TGA 

type of approach. The results in this section therefore lend support to those of Sun (2002), by showing that, 

in line with the traditional reinsurance market, the actual observed market prices at which catastrophic- 

linked options traded were significantly higher than the theoretical prices and that the over-pricing pattern 

in the catastrophic-linked option market is strikingly similax to that found in the traditional reinsurance 

market. In addition, the results in this section go substantially beyond the work of Sun by indicating the 

extent to which even the higher market prices were substantially below robust prices. 

It is worth bearing in mind that the cost of robustness appears excessive in all cases - the numerical- 

HJI in particular. However, it should also be remembered that the cost of ensuring robustness against 

all possible shocks is bound to be extremely high in the absence of a major catastrophic event (as the 

performance of the four models clearly shows during a period when there were no significant catastrophes), 

but could possibly be far more acceptable, if there is a sustained upward trend in catastrophic events 

such as hurricanes and earthquakes. How acts of terrorism such as the World Trade centre bombing 

in 2001 affect the valuation of catastrophe options is a much more interesting question. Valuing such 

binary events is far more complex than simply valuing the impact of physical phenomena. According 

to Hanson (2005), issues such as combinatorics, manipulation, moral hazard, hiding prices, and decision 

selection bias would all need to be factored into a model. Hanson does not consider any of these issues 

insurmountable and views terrorism futures as practical though morally questionable23. Notwithstanding 

this, given that such diverse factors have not formed part of the frame of reference of this research, it was 

concluded that the valuation of such binary acts fall beyond the scope of this research. 

One final speculative theoretical point concerns Epstein and Wang's (1994) work on intertemporal asset 

pricing under Knightian uncertainty referred to in chapter 1. In their paper, Epstein and Wang show 

23 Without descending into the moral issues of the debate, the interested reader should pause for thought and read Stiglitz's 
(2003) Los Angeles Times article where he expresses his moral outrage and intellectual horror at the poor grasp of basic 

economics on the part of those suggeting that such a market could or should be developed. 
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that the model with uncertainty may lead to indeterminate equilibria with associated extreme volatility 

levels as the agents search in vain for a unique price to clear the market. When considered in conjunction 

with the relative scarcity of catastrophe data which means that those trading PCS CAT options might 

not have unique priors on the loss distributions or loss severity, this point may help to explain the highly 

volatile option values for the very low strikes. Such an effect would be most pronounced during the loss 

period, when uncertainty about the possible occurrence of catastrophes would be at its most influential, 

remaining high (though likely to be lower than during the loss period) in the development period as 

uncertainty continues to be resolved as claims on any catastrophes that have occurred during the loss 

period come to fruition. 

Finally, given that the non-linear Lyapunov approach is robust and stable in operation, would it be 

practical to use in a real world trading environment? Table 2.2 provides representative timing information 

for the case of a 10 year CAT bond. Based on daily gridding of the state space, the model generated 

3,653 steps, which yielded a valuation result in just under 2 seconds, which indicates that as far as speed 

of execution is concerned, the use of the pointwise min-norm control laws is certainly comparable with 

other widely used option valuation approaches using techniques such as trinomial trees24. 

Valuation 
Execution Time 
Per Valuation 

Time 
Steps 

88.792168659 24.87687600 100,000 
88.792168659 _ 12.45350000 50,000 
88.792168659 7.62625000 10,000 
88.792168659 3.18196000 5,000 
88.792168534 1.89474600 3,653 
88.827452698 0.78785000 1,000 
88.874878529 0.38767000 500 
88.912989688 0.07876500 too 
89.018273854 0.04746400 50 
89.687757877 0.00123457 10 

Table 2.2: Time Steps v Execution Time v Accuracy (non-linear Lyapunov) 

2.6 Conclusions 

Consistent with uncertainty as the central theme of this thesis, the work in this chapter has investigated 

the concept of dealing with uncertainty in the valuation of derivatives whose underlying are catastrophic 

events. The work has added a number of new ideas and some preliminary results to the subject of valuing 

catastrophe derivatives, focusing in particular on CAT bonds and CAT options. The key ideas developed 

are the application of robust control Lyapunov functions to deal with the difficulties associated with 

24 All timings were based on calculations performed on a 2Mhz Pentium-4 personal computer with 512Mb of RAM, running 

the Microsoft Windows XP operating system, code written ijh++ and compiled using version 5 of Microsoft Visual Studio. 



valuing assets with convex payoff functions whose underlying variables are discontinuous, with particular 

reference to the non-linearities associated with the behaviour of the underlying variables. The central 

focus was the harnessing of the desirable properties of the non-linear robust control Lyapunov model, 

which was compared with a number of the existing models using both simple comparisons and actual 

catastrophe data. 

The new approach synthesizes three main ideas. The first is the Dempster and Hutton (1999) treatment 

of valuing an option using mathematical programming techniques. The second is the work by Cox and 

Pedersen (2002) who develop equilibrium pricing theory to deal with the problem of creating a unique 

arbitrage free valuation technique and deal in particular with the need to be able to generate a hedging 

portfolio. The final and novel feature of the theoretical work is to synthesise these elements together to 

produce a tractable and flexible state-space valuation framework that is arbitrage free, produces robust 

and stable results and is efficient in execution. Preliminary empirical results indicate that the non-linear 

robust optimal control Lyapunov model produces more stable results in the face of uncertainty through 

the explicit modelling of feedback and incorporation of non-linearities, which enables it to exhibit greater 

robustness to discontinuous behaviour than the current popular double Cox -PIDE model. 

Two factors are specifically excluded from the work on CAT bonds. Namely, moral hazard and basis 

risk. In other words, no consideration has been given to the default riskiness or moral hazard on the 

grounds of scope. These factors, together with other issues such as stochastic interest rates, constitute 

potentially fertile and interesting areas for future research. They could be incorporated relatively eas- 

ily by relatively simple modifications to the basic state space approach and via the type, timing and 

impact of perturbations applied within the non-linear Lyapunov model. As far as the Lyapunov model 

is concerned, possible extensions include removing the matching uncertainty restriction, introducing ro- 

bust back-stepping and investigating more fully the problems associated with measurement disturbances. 

Other potentially fertile areas include investigating the impact of removing the assumption of arbitrarily 

fast time variation where uncertain non-linearity may not depend explicitly on time and the consequent 

use of robust integral action. 

The results on the PCS CAT options were mainly concerned with the fairly narrow issue of the 

relative performance of the robust models and non-robust model. As the PCS CAT option contract only 

traded on CBOT for a short space of time, any analysis of the pricing information has to be treated with 

great care. However, when valuations from both the non-robust and the robust models were compared 

with the market prices of traded catastrophe options from CBOT, it was found the robust models were 

substantially better at capturing the behaviour of observed option prices. It was argued that this is due to 

the Cox-TGA model being ill-suited to valuing options on low probability, high-loss catastrophic events, 
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even when using a heavy tailed distribution such as the Burr distribution. 
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Chapter 3 

Robust control and optimal hedging 

It were not best that we should all think alike; it is difference of opinion that 

makes horse races 

Pudd'nhead Wilson, by Mark Twain, 1894 

3.1 Introduction and motivation for research 

The previous chapter examined the problem of robustness in the pricing of options on a particular type 

of underlying, but viewed robustness in a somewhat disconnected fashion as the pricing problem was 

considered in isolation from the real world setting where any typical trading or strategic position in 

an underlying or derivative instrument is generally accompanied by some form of control rule that is 

intended to at least maintain the value of the position in the underlying instrument, or to protect some 

target terminal value. Indeed, a number of factors have been suggested as possible explanations for the 

application of such control rulesi, which are collectively most often referred to as a hedge. 

In the options world, the concept of delta hedging is extremely familiar, referring to a strategy that 

consists of establishing an options position whose value varies in accordance with changes in the price 

of the underlying, so that a profit or loss on the underlying position is offset by a loss or profit on the 

option position. According to classical Black-Scholes theory, an option will only be fully delta hedged 

when the hedge is constantly adjusted. However, as this is not practical (due mainly to the practical issue 

of trading costs), discrete hedging is generally the norm, so that hedging error inevitably results. For 

'See for example Stulz (1984), Smith and Stulz (1985), Stulz (1990), Breeden and Viswanathan (1990), Lessard (1990), 
DeMarzo and Duffle (1992), Froot, Scharfstein and Stein (1993), etc 
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example, Bossaerts and Hillion (1994) find that the so called "volatility smile" observed in equity markets, 

could be attributable to the impossibility of hedging in continuous time instead of model misspecification. 

In a more general sense, the idea behind the act of hedging is that it affords the hedger the opportunity 

to reduce the uncertainties associated with any or all of price, quantity or timing. In the case of a simple 

static futures-based hedge, for example, the hedge at any point in time is a function of the current futures 

price and the parameters of the forecast quantity and price equations. So, if the current futures price is 

an unbiased estimator of the cash price at maturity and the interest rate is zero, then the optimal hedge 

is myopic - that is the same solution will hold for both static and dynamic hedging strategies. However, 

this result no longer holds when the expectation at time t of the cash price at maturity, T, differs from the 

futures price at time t (where t< T). In addition, an expected increase or decrease in the amount hedged 

is consistent with the current futures price being either an upwardly or downwardly biased estimator of 

the cash price at maturity, with the sign of the expected change in the hedge depending on the magnitude 

of bias relative to the degree of risk aversion. 

Construction of a hedging policy generally requires some formalisation of the hedging objectives. 

Hedging is carried out by both companies and individuals alike, but the reasons are often extremely 

diverse, ranging from a desire to hedge the adverse impact of exchange rate fluctuations, through to 

making financial planning easier by reducing the uncertainty surrounding future cash-flows. For example, 

at the naive end of the spectrum is the strategy of simply taking an equal and opposite position in a 

hedging instrument to that held in the underlying instrument. The most obvious problem with such 

a strategy is the uncertainty around the correlation between the two instruments. Hedging policies are 

therefore often more in terms of optimisation of some target, with a common target being the construction 

of the optimal hedge ratio. 

This leads to the second stage of the hedging process, namely, developing a metric to measure or 

assess the effectiveness of the hedging policy. Such metrics are obviously linked to the nature of the 

hedging policy. For example, in the case of using exchange traded futures to hedge foreign currency cash 

flows, the appropriate metric might be the tracking error of the hedge expressed in zero-deviation form. 

A great deal of research has been devoted to examining hedge effectiveness - mainly in the area of static 

hedging strategies 2, but such static hedging may significantly under-perform a more dynamic or evolving 

hedging strategy. Dynamic hedging is distinguished from the static or passive variety by the fact that it 

requires the initial position to be adjusted periodically in the light of newly available information. The 

frequency of the re-adjustment process often depending on mundane but vital factors such as transaction 

costs and desired activity levels. Hitherto, research on dynamic hedging has tended to concentrate on 

2 For example, see work by Benninga (1997), and Derman, Deniz and Kani (1994) and the references contained therein. 
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myopic decision rules which would be optimal in a relatively restricted set of circumstances. 

Static hedging is open loop: decision makers form a plan at the beginning of the decision period and 

do not then respond to subsequent observations/information . This is a static decision problem as all the 

decisions for the entire period are calculated simultaneously at the beginning of the period and then all 

further information is ignored. A modification to this open loop strategy is one that recalculates a new 

open loop plan for the remainder of the period once each new observation arrives. In this way decision 

makers would carry out only the first period's decision of each open loop sequence. This strategy is known 

as open loop feedback and uses the available observations but ignores subsequent feedback because at 

each stage, the plan formulated by the decision maker is open loop and assumes that no further feedback 

is possible. In contrast, closed loop uses current information to calculate the current decision but also 

recognises that the environment will be observed in the future. 

The objective of the research presented in this chapter is therefore two-fold. First, to develop robust 

optimal hedging rules using robust optimal control techniques based on closed loop feedback concepts ex- 

plained in chapter 1, but extending the robust optimal techniques to incorporate suspected non-linearities. 

Second, to examine the use and impact of such robust optimal hedging rules. The advantages of robust 

dynamic hedging rules stem from the already analysed ability to reduce uncertainty by incorporating 

current information through feedback. Robust optimal hedging rules are compaxed with a range of other 

simple static and dynamic but non-robust optimal hedging rules for benchmarking purposes. This chapter 

therefore proceeds as follows. The next section provides a review of the existing literature. The following 

section examines and develops various robust optimal hedging rules and also investigates the relevance 

of a number of hedge efficiency evaluation metrics. This is followed by the results of empirical research 

carried out for this thesis that applies the robust optimal rules developed in the previous section and uses 

various metrics; to assess their impact in alternative hedging scenarios. The final section offers conclusions 

and suggestions for further research. 

3.2 Review of the literature 

In financial markets, hedging errors arise from three sources. The first arises from hedging at discrete 

points in time. This source of error occurs when the underlying model is based on the assumption of 

continuously rebalancing a hedge, whereas hedging can only be practically carried out at discrete points 

in time. The second source of hedging error arises due to a lack of precise knowledge of volatility - 

misestimation; whilst the third source of hedging error is attributable to selling an instrument at the 

wrong premium. 

In an attempt to estimate the size and impact of hedging errors, much of the work on hedging 
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strategies has been carried out on products traded on the exchange traded derivatives markets, where 

product specification and valuation is far more homogeneous than is the case in the over-the-counter 

markets. This is mainly because exchange traded instruments such as futures are standardised contracts 

and are commonly used as hedging instruments due to their liquidity, narrow bid-offer spreads and almost 

total absence of credit risk. 

Rom a high-level perspective, there have been two broad approaches to robustness in hedging. The 

first has involved generating relatively wide range of hedging strategies based on first and second moments 

of the underlying price distribution, such as calculating optimal hedge ratios using mean-variance analysis 

through to delta hedging suggested by options theory, of the price of the underlying instrument and then 

applying statistical techniques of increasing sophistication to examine the efficiency of the hedge ratio of 

interest. Interestingly, little or no interest has been shown in the stability or robustness properties of the 

hedging strategies. In contrast, the second approach - which has so far seen relatively little in the way of 

research - involves the use of optimisation techniques for calculating optimal control rules which are then 

used as hedging strategies. The control rule based strategies have then been compared with a range of 

simpler hedging strategies in order to assess efficiency. Virtually no research interest has been shown in 

the robustness and stability of the hedging rules. The major contributions of each broad approach will 

the examined in turn. 

3.2.1 Statistically based hedging approaches 

Using Markowitz mean-variance portfolio theory, Ederington (1979) provided one of the first studies that 

formally defined hedge effectiveness as the reduction in the variance of the value of a position hedged 

with futures. He defined the stated objective of a hedge as being to minimise the risk of a given position, 

which is measured in terms of the variance of the returns. Ederington's hedge efficiency measure is 

2 
sp ýT2 -a2 

af 

22 
where a. and af represent the subjective variances and covariances of the possible price change between 

the spot and forward prices. p2 is therefore the population coefficient of determination between the 

change in the spot price and change in the futures price. In contrast, Howard and D'Antonio (1984) 

define hedging effectiveness as the ratio of the excess return per unit of risk of the optimal portfolio of the 

spot commodity and the futures instrument to the excess return per unit of risk of the portfolio containing 

the spot position alone 

HE 
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where 0 is the excess return per unit of risk, r, is the expected one-period return for the spot position, i 

is the risk-free return and a, is the standard deviation of the one-period return for the spot position. 

Smith and Stulz (1985) examined the hedging problem more widely and developed a positive theory of 

the hedging behaviour for value-maximising companies, treating hedging as simply one paxt of a company's 

financing decisions. Smith and Stulz examine taxes, contracting costs and the impact of the company's 

hedging policy on investment decisions as explanatory vaxiables in their attempt to answer three key 

questions: 

9 Why some firms hedge and some do not; 

9 Why firms hedge some risks and not others; and 

* Why some firms hedge their accounting risk exposure whilst others hedge their economic value. 

Both financial and non-financial firms routinely implement hedging policies to mitigate their exposure 

to changes in asset prices. However, while these policies may perform satisfactorily in the limited sense 

of hedging the exposure under consideration, they might also increase the overall likelihood of financial 

distress due to the liquidity risks that they create. 

Duffie and Richardson (1991) examine the problem arising when a hedger is faced with a commitment 

in one asset and the opportunity to continuously trade futures contracts on another asset whose returns 

are correlated with those of the committed asset. Optimal futures trading strategies axe presented in 

closed form for several mean-variance and quadratic objectives. In contrast, Jorion (1991) analyses the 

performance of a minimum variance hedge that is rebalanced periodically based on the arrival of new 

information and finds that the Sharpe ratio of a dynamic hedging strategy is significantly better than 

that of a static hedge. However, his minimum variance criterion ignores the influence of expectations 

about future changes in the value of the underlying instrument. 

Grossman and Vila (1992) solve for the optimal dynamic trading strategy of an investor who faces a 

leverage constraint in the form of a limitation on the ability to borrow for the purposes of investing in 

a risky asset. They assume constant relative risk aversion and that the risky asset follows a geometric 

Brownian motion. In the absence of the leverage constraint, they find that the optimal strategy involves 

investing a fixed proportion of wealth in the risky asset. They show that in the presence of a leverage 

constraint, the optimal investment also involves a strategy of investing a fixed proportion of wealth in 

the risky asset when the leverage constraint is not binding. However, the two proportions are different, 

which Grossman and Vila claim reflects the extent to which the investor alters strategy even when the 

leverage constraint is not binding because of the possibility that the leverage constraint may become 

binding in the future. In contrast to Grossman aniVila, Steil (1992) applies an expected utility analysis V 



to derive contingent claims for hedging foreign exchange transaction exposures over the complete range 

of probabilities, as well as the optimal forward and option hedge alternatives. 

Ghose and Kroner (1994) apply the common persistence in GARCH models based on the work by 

Bollerslev, Engle and Nelson (1994) for example, to the performance of hedging strategies in financial 

markets. Dynamic hedging, which they define as continual rebalancing of the hedging portfolio based on 

time varying volatility of spot and futures returns, is compared with what they term "constant hedging" 

where changing volatility is not incorporated. While one would expect dynamic hedging to improve upon 

constant hedging in reducing the risk associated with a portfolio, Ghose and Kroner in fact find that 

the gain can sometimes be quite small and that the relative performance of dynamic hedging strategies 

tends to vary across markets. They conjecture that a potential reason for the difference in performance 

of these two hedging strategies across assets could be as follows. Namely, that dynamic and constant 

hedging will be approximately equivalent in the long-run if. 1. there is common persistence in conditional 

variances of spot and futures returns and 2. certain paxameter restrictions in the generating processes of 

spot and futures returns hold. Ghose and Kroner derive conditions under which dynamic hedging will 

perform significantly better, which is important because dynamic hedging can have a significantly higher 

cost compared to that of constant hedging. 

Lence and Hayes (1994) and Lence (1995) examine the minimum variance hedging problem, considering 

explicitly the importance of estimation risk in setting a hedge strategy. Estimation risk is defined as arising 

when the population moments of the joint probability density function used in a decision problem are 

unknown. As the hedger does not know the population parameters of the densities for the spot and 

futures prices, it is therefore necessary to use the "noisy" sample estimates in forming a hedging strategy. 

The conventional approach in this situation is to use the sample estimates as if they were population 

parameters. But it is relatively easy to think of occasions where such sample estimates are likely to be 

very imprecise. A simple example would be a hedger with a very noisy estimate of a hedge ratio who 

considers aggressive shorting of the related futures contract as a hedging strategy. The obvious question is 

whether such hedgers are merely exchanging commodity price risk for estimation uncertainty ? Lence and 

Hayes (1994) utilise Bayesian approaches to provide explicit methods for managing the overall risk to the 

hedger that includes price and estimation exposures, finding that incorporating the estimation risk leads 

to significant changes in the minimum variance hedge. They highlight the importance of using Bayesian 

techniques to properly incorporate sample and prior information in reducing risk to the hedger. Although 

Lence and Hayes (1994) and Lence (1995) both point out the use of numerical Bayesian procedures for 

calculating optimal hedges, they instead specify some aspects of the problem on an a priori basis in order 

to be able to concentrate on some of the issues surrounding how prior information might impact upon 
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hedging. 

de Jong, de Roon and Veld (1995) note that existing research on the hedging effectiveness of currency 

futures assumes that futures positions axe continuously adjusted which is clearly unrealistic in practice. 

They examine the effectiveness for futures positions which are not adjusted during the hedge period 

based on an out-of-sample approach using three models to determine hedge effectiveness: Ederington 

(1979) minimum variance model, Fishburn (1977) a-t model (a model in which the disutility of loss 

is minimised) and the Howard and DAntonio (1984,1987) model based on the Sharpe ratio. They 

find that the Ederington and Fishburn measures yield a higher effectiveness than the unadjusted model, 

whereas for the Sharpe ratio model they find that both naively and model based hedge positions lead to 

a lower hedging effectiveness than unhedged positions. Using a slightly different version of the variance- 

minimisation problem to that developed by Lence (1995), Foster and Whiteman (1997) provide a technique 

for estimating the hedge ratio that more fully considers estimation risk and their approach enables them 

to handle a vaxiety of specifications for the time series model relating spot and futures prices. 

Permings and Meulenberg (1997) examine the hedging efficiency of futures contracts, concentrating on 

the extent to which hedgers axe able to reduce cash price risk by using futures contracts. They concentrate 

on hedge effectiveness, which they define in terms of portfolio return. Their work is unusual, if not unique, 

in so far as it focuses on the hedging problem from the perspective of the futures exchange. A hedging 

efficiency measure is produced that measures the distance between the actual and the perfect hedge. 

The measure divides the distance into a systematic part (which can be managed) and a random part 

(which cannot be managed). Similarly to the coefficient of variation, Pennings and Meulenberg define 

their futures trading risk measure (FRTM) as the squaxe root of the futures trading risk relative to the 

net price for the hedger if an ideal futures contract is used 

FRTM VFE(. FTRt+l? 

PFtl -C 
(3.3) 
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where FTR3 is futures trading risk and 

E (FTR) = Bt+l + DCt+l (3.8) 

such that Bt+j is the basis of the futures contract and DCt+l is the market depth cost when initiating 

the futures position, PFtl is the price of the futures contract at the moment of hedge initialisation, C is 

the trading cost per futures contract, Bt+j is the basis of the futures contract and DCt+l is the market 

depth cost when entering the futures position. An exactly analogous measure for cash price risk, CPRM 

is defined as 
2 

CPRM = 
acp 

= 
VFE (CPt P 

(3-9) 
Et (CP) CP 

where CP is the cash price and CP is the mean of the cash price. Combining FRTM and CPRM gives 

the Pennings and Meulenberg hedge efficiency measure 

E= 
FRTM 

(3.10) 
CPRM 

where E >, 0. Upon substitution and simplification, this gives 

2 -Cp 2] UP ýE -(FTRt+l 
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The intuition being that if E is less than unity, hedgers will reduce their risks because they exchange a 

laxger cash price risk for a smaller futures trading risk. If futures trading risk rises compared to the cash 

price risk, then hedging efficiency falls. Similarly, if commission costs rise, hedging efficiency falls. 

In his 1997 article on dynamic hedging in currency crisis, KrUger examines the hedging problem at a 

macro country level and presents results indicating that interest rate changes apparently have little effect 

on dynamic hedgers when volatility is high. This finding is in direct contrast to Garber and Spencer 

(1995,1996) who argue that dynamic hedging may lead to perverse results when central banks try to 

'The actual price realised upon settlement of a futures trade, ARPt+j is given by 

ARPt+i = PFtl - Bt+i - DCt+l -C 
(3.4) 

where ARPt+j is assumed to be a stochastic variable and so is comprised of an expected (or systematic) term and a random 
(or variance) term: 

JUA = E(ARPt+, )=PFtl-C-E(Bt+, +DCt+l) (3-5) 

U2A =E (ARP, +l _. UA)2 (3.6) 

so that 
(FýU2) 

= C2 +. U2 EAA (3.7) 
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defend parities with higher interest rates. However, KrUger cites two reasons that this effect is likely to be 

small. First, in a period of currency crisis bid-ask spreads are likely to be widening, which would increase 

the cost of a dynamic hedging strategy, possibly making such an approach unusable for many market 

participants. Second, during a currency crisis, volatility (measured as conditional variance), is generally 

found to rise shaxply. Krilger claims that this mitigates the effects of interest rate changes on the hedge 

ratio. He also argues that the option market functions as a kind of buffer in the following way. If a 

speculator or an 'ordinary' hedger sells, say, one million francs in the spot market or the forward market, 

he creates an excess supply of one million francs. 3 But if he buys options with a notional value of one 

million francs and if the seller of the option uses a dynamic hedging strategy, less excess supply will be 

created - only delta times one million francs. Thus, the market makers in the option market actually keep 

away some of the pressure on central bank reserves. Therefore, on the whole, the notion that dynamic 

hedging impairs the use of the traditional 'interest rate weapon' does not seem warranted. 

Rey and Stremme (1997) analyze the manner in which the demand generated by dynamic hedging 

strategies affects the equilibrium price of the underlying asset and derive an explicit expression for the 

transformation of market volatility under the impact of such strategies. They find that volatility increases 

and becomes time and price dependent, but the strength of these effects is found to depend both on 

the share of total demand that is due to hedging as well as (significantly) on the heterogeneity of the 

distribution of hedged payoffs. Wojakowski (1998) examines the problem of constructing an optimal hedge 

of the intertemporal long-term exchange rate using stochastic optimal control within a framework where 

the exchange rate follows a parity-reverting Gaussian process. The main finding is that firms should hedge 

more if the level of the exchange rate is above parity and less if it is below. 

Dudenhausen and Schlogl (1999) examine the effect of model and parameter misspecification on the 

effectiveness of Gaussian hedging strategies for derivative financial instruments and show that Gaussian 

hedges in the "natural" hedging instruments are particularly robust. This is true for all models that 

imply Black/Scholes type formulas for option prices and hedging strategies. In this paper we focus on 

the hedging of fixed income derivatives and show how to apply these results both within the framework 

of Gaussian term structure models as well as the increasingly popular market models where the prices 

for caplets and swaptions are given by the corresponding Black formulas. By explicitly considering the 

behaviour of the hedging strategy under misspecification we also derive the El Karoui, Jeanblanc-Picque 

and Shreve (1995,1998) and Avellaneda, Levy and Paras (1995) result that a superhedge is obtained 

in the Black/Scholes model if the mis-specified volatility dominates the true volatility. Furthermore, we 

show that the robustness and superhedging result do not hold if the natural hedging instruments are 

unavailable. In this case, we study criteria for the optimal choice from the instruments that are available. 
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Laurant and Pharn (1999) consider the mean-variance hedging problem when asset prices follow Ito 

processes in an incomplete market framework. The hedging numeraire and the variance-optinial martingale 

measure appear to be a key tool for characterising the optimal hedging strategy. Their paper examines 

the hedging numeraire & and the variance-optimal martingale measure P using dynamic programming 

techniques and obtain explicit ch arac terisat ions of & and 
P in terms of the value function of a stochastic 

control problem. When applied to a stochastic volatility problem, they derive an explicit form of the 

value function and then of the hedging numeraire and the variance optimal martingale measure, which 

provides explicit computational methods for calculating the optimal hedging strategies for the mean- 

variance hedging problem within a stochastic volatility model. 

Dacorogna (2001) et al use high frequency data to study the problem of the hedge ratio and the neutral 

point in the case of currency hedging4. They pose the hedging problem as one of needing to compute the 

efficient frontier by optimising the return given the risk or optimising the risk given the return as shown 

in figure ??. 

Hedging Speculation 
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---------- --------------- 
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Figure 3-1: Mean-variance hedging 
Rustein and llo, ýNýe 

(2002) examine the problem of how minimax can provide a robust hedging strategy 

for written call options by formulating a minimax strategy that minimises the effect of a pre-defined worst 

case scenario, mainly in terms of bounds on the underlying source of uncertainty - Le. the future price of 

the asset that underlies the option. They define robustness in two parts - first, as producing performance 

that is better than delta hedging for the set of options for which their model is designed and second that 

it does not perform worse than delta hedging. Their results suggest that minimax is particularly useful 

'Currency hedging means the following: in the case of an investor that has purchased a foreign currency denoininated 

asset, such as a dollar equity, holding a short position of size -Sh in the foreign currency in order to minimise the volatility 

of the value of the total position due to foreign exchange rate fluctuations. 

189 



in the case of hedging the risk of writing an option when the price of the underlying stock is both highly 

volatile and crosses over the exercise price several times. 

Agliaxdi and Andergassen (2002) study the destabilising effect of dynamic hedging strategies on the 

price of the underlying in the presence of sunk costs of transaction. Once sunk costs of transaction are 

taken into account, continuous portfolio rehedging is no longer an optimal strategy. Using a non-optimising 

(local in time) strategy for portfolio rebalancing, explicit dynamics for the price of the underlying are 

derived, focusing in particular on the excess volatility and feedback effects of these portfolio insurance 

strategies. Further, we show how these latter depend on the heterogeneity of the insured payoffs. Finally, 

conditions are derived under which it may still be reasonable, from a practical viewpoint, to implement 

Black - Scholes strategies. 

Deep (2002) examines the case of hedging price risk using derivative contracts that are marked to 

market (such as futures contracts) and hence subject to margin calls. Deep shows that liquidity risk 

arising from margin calls on futures positions, can be a significant source of risk, possibly leading to 

financial distress and ruin, despite the fact that a firm remains "hedged". Deep argues that this type of 

risk should therefore be taken into account in the formulation of an optimal hedging policy. His paper 

derives a possible dynamic hedging strategy for a firm using futures contracts to hedge a spot market 

exposure. The risk emanating from the margin requirement on futures contracts is incorporated into 

the hedging decision by restricting the borrowing capacity of the firm. It is shown that this leads to a 

substantial reduction in the firm's optimal hedge, especially if the hedging horizon is long. The results 

provide some support for the low level of hedging observed empirically. 

Deep's 2002 article on optimal dynamic hedging using futures under a borrowing constraint examines 

both financial and non-financial firms routinely implement hedging policies to mitigate their exposure to 

changes in asset prices. However, while these policies may perform satisfactorily in the limited sense of 

hedging the exposure under consideration, they might increase the overall likelihood of financial distress 

due to the liquidity risks that they create. This paper examines the case of hedging price risk using 

derivative contracts that are marked to market (such as futures contracts) and hence subject to margin 

calls. It is shown that liquidity risk, stemming from the need to meet margin calls on the futures position, 

can be a significant source of risk and can even lead to financial distress even though the firm remains 

"hedged". Such risks should therefore be taken into account in the formulation of an optimal hedging 

policy. This paper derives the dynamic hedging strategy of a firm that uses futures contracts to hedge a 

spot market exposure. The risk emanating from the margin requirement on futures contracts is incorpo- 

rated into the hedging decision by restricting the borrowing capacity of the firm. It is shown that this 

leads to a substantial reduction in the firm's optimal hedge, especially if the hedging horizon is long. The 
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results provide theoretical support for the low level of hedging observed empirically. 

De Losso and Bueno (2003) study the dynamic hedging problem using three different utility speci- 

fications: stochastic differential utility, terminal wealth utility and a new utility transformation which 

includes features from the two previous approaches. In all three cases, we assume Markovian prices. 

While stochastic differential utility (SDU) has an ambiguous effect on the pure hedging demand, it does 

decrease the pure speculative demand, because risk aversion increases. We also show that in this case 

the consumption decision is, in some sense, independent of the hedging decision. In the case of terminal 

wealth utility (TWU), we derive a general and compact hedging formula which nests as special cases 

all of the models studied in Duffle and Jackson (1990). In the case of the new utility transformation 

we find a compact formula for hedging which encompasses the terminal wealth utility framework as a 

special case; we then show that this specification does not affect the pure hedging demand. In addition, 

with CRRA- and CARA-type utilities the risk aversion increases and consequently the pure speculative 

demand decreases. If futures prices axe martingales, then the transformation plays no role in determin- 

ing the hedging allocation. Our results hold for a number of different price distributions. We also use 

semigroup techniques to derive the relevant Bellman equation for each case. 

Moosa (2003) investigates the effect of the choice of the model used to estimate the hedge ratio on 

the effectiveness of futures and cross-currency hedging using data from the stock and foreign exchange 

markets. Four different models axe used for this purpose to estimate the hedge ratio. The results show that 

model specification has little effect on the hedging effectiveness. It seems that what matters most is the 

correlation between the prices of the unhedged position and the hedging instrument. Results obtained by 

Moosa (2002) show that for an effective hedge, the correlation coefficient between the underlying and the 

hedge must be at least 0.50 to produce variance reduction of about 25 per cent. Lien (1996) argues that 

the estimation of the hedge ratio and the hedging effectiveness may change sharply when the possibility 

of cointegration between prices is ignored. In Lien and Luo (1994) it is shown that although GARCH may 

characterise the price behaviour, the cointegration relationship is the only truly indispensable component 

when comparing the ex post performance of various hedging strategies. Ghosh (1993) concluded that a 

smaller than optimal futures position is undertaken when the cointegration relationship is unduly ignored. 

Chosh attributed the under-hedge results to model misspecification. Lien (1996) provides a theoretical 

analysis of this conjecture by assuming a cointegrating relationship of the form ft = pA, t - put, which is 

a simplified error correction model, implying that prices adjust in response to disequilibrium. 

Valiani (2004) examines the portfolio decision problem for global investors as a joint choice problem 

over the financial assets and the relevant currencies. His paper investigates the currency risk hedging 

when volatilities and correlations of forward currency contracts and underlying asset returns are all time 
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dependent. Valiani uses a multivariate GARCH model with time-varying correlations to fit the dynamic 

structure of the conditional volatilities and correlations. The dynamic conditional risk-minimizing model 

is estimated for different hedge strategies and considers different international portfolios for the time 

period of January 1985 till December 2002. His empirical results show that the optimal dynamic hedge 

strategy using multivariate GARCH method can reasonably capture the currency fluctuations and signifi- 

cantly reduce the currency exposure risks and enhance the risk-adjusted performance of the international 

portfolios. 

Ilhan and Sircar (2004) study optimal hedging of barrier options using a combination of a static position 

in vanilla options and dynamic trading of the underlying asset. The problem reduces to computing the 

Fenchel-Legendre transform of the utility-indifference price as a function of the number of vanilla options 

used to hedge. Using the well-known duality between exponential utility and relative entropy, we provide a 

new characterization of the indifference price in terms of the minimal entropy measure, and give conditions 

guaranteeing differentiability and strict convexity in the hedging quantity, and hence a unique solution to 

the hedging problem. We discuss computational approaches within the context of Markovian stochastic 

volatility models. 

3.2.2 Optimal control based hedging approaches 

In contrast to the statistical based approaches, Rustern and Howe (2002) use the minimax approach 

to examine optimal hedge construction in the presence of uncertainty when specifically faced with the 

worst case scenario. Worst-case risk optimality seeks to find the best possible outcome in the face of 

the worst possible outcomes. The objective function is usually expressed in terms of some form of cost 

or penalty function, so that stated more formally, worst-case hedging seeks to simultaneously determine 

the minimum of the cost function under the maximum or worst case scenario - hence the term minimax. 

Optimality is therefore expressed over all possible values of uncertainty. This is an important point as 

it distinguishes the minimax approach from the highly paxametric, statistical approaches described in 

the previous section that are based on the assumption of some underlying distribution and which are 

only concerned with performance against some arbitrarily selected limit. In contrast, minimax weights 

all outcomes because of its enforced linearity, which means that it is forced to try to capture non-linear 

behaviour by over-compensating in the control rules it produces. 

At a generic level, the maximum inner function is often couched in terms of a disutility or error 

function, such that the outer minimisation involves searching over the outcomes associated with the 

worst-case disutility scenario in order to find the best possible alternative. In mathematical terms, the 
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worst-case problem can be stated as 

min max f (x, y) 
XERý YEY 

(3.12) 

where x is a vector of decision variables (represented by real numbers in n-dimensional Euclidean space, 

Rn) and y is a vector of uncertain variables defined over the feasible set Y, with the solution being either 

discrete or continuous depending on whether Y is a discrete or continuous set. An equivalent, slightly 

more convenient representation is 

min -1) (x) (3.13) 
XERn 

where 

(D (x) = Max f (X, y) (3.14) 
YEY 

So that for the solution x* 

-, D(x*)=maxf(x*, y)>, f(x*, y), VyEY (3.15) 
VEY 

which states that the performance of the solution x* is guaranteed to be non-inferior for any y. This is the 

specific feature that provides robustness from the minimax solution and ensures that performance will be 

better if the worst-case scenario is not realised. 

Rom a financial risk management perspective, minimax has been employed in two main ways, namely, 

in discrete form as a robust strategy for discrete rival scenarios and in continuous form in problems such as 

option hedging. Analysing the former application first offers a slight advantage as it provides a framework 

for dealing with a discrete set of possible scenarios. Minimax thus arises from the ability to reduce the 

set of alternatives to single possibility, such that optimality is not determined by a single scenario, but 

simultaneously over all scenarios. Work by Rustem (1987,1994) on policy optimisation examined the 

pooling of objective functions from rival models to generate an optimal policy based solely on a single 

model and then evaluates its impact if the second model proves to be the correct representation of the 

underlying system. 

Larry Karp has authored three main papers which go beyond the minimax approach by applying 

control theory to the problem of optimal hedging. In the first paper, Karp (1985) examines a generalisation 

of the linear quadratic Gaussian control problem that provides a family of control rules which result in 

different combinations of moments of the quadratic payoff. He provides a recursive formula for calculating 

the second moment, using a dynamic optimal tariff to illustrate the method. Karp (1987) further develops 

his earlier work by formulating and solving a dynamic hedging problem with stochastic production. The 

optimal feedback rules that his model produces recognise that future hedges will be chosen optimally 
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based on the most current information. Karp (1988) examines a generalisation of the linear quadratic 

Gaussian problem using additive noise and the constant absolute risk aversion utility function, providing 

an explicit solution by using a limiting form of the discrete time linear exponential Gaussian control 

problem. 

Karp studies the hedging problem facing a farmer that is assumed to exhibit constant absolute risk 

aversion wishing to create an optimal hedging strategy that will maximise the utility of future terminal 

wealth. Karp's (1988) work is a generalisation of a static problem used by Bray (1981), in which the 

discrete time dynamic problems is posed as a variation on the linear exponential Gaussian control problem 

first solved by Jacobson (1973). Karp's work differs from that of Bray in that it is the profit function which 

is exponentiated (linearly in the control - which is the hedge). The continuous time stochastic control 

model that arises from Karp's formulation of the optimal hedging problem produces a non-standard 

control problem, but as the discrete version remains standard and solvable, Karp therefore studies the 

limiting case where the interval between hedging opportunities goes to zero. Karp uses an expansion of 

the discrete time dynamic programming equation that assumes that the value function and its derivatives 

are continuous as c (the time interval between hedging opportunities) approaches zero. 

Karp's model works as follows. Suppose that the decision maker is a farmer growing a crop for which 

futures axe available. The farmer's total production is therefore uncertain being subject to the usual forces 

of nature. There are assumed to be n+1 trading dates occurring as regular intervals of c. Further assume 

that futures are first traded at time 0, then at ne =T the futures position is closed and the underlying 

asset is sold on the spot market. At each trading date the farmer decides the number of futures contracts 

to hold based on his current information about prices and the future harvest, where the time of harvest 

is assumed to not coincide with the maturity of the futures contract being used as the hedge. Karp 

models this imperfect time hedge by allowing the cash-futures basis to be a random variable. Given an 

instantaneous interest rate, r, then the discount factor for any period is e-16. So that if p is the futures 

price, b the cash-futures basis and f the sales of futures contracts5, hT the harvest then the discounted 

stream of future revenue is given by 

i 
7rt =L 18 

i+l [Pt+ie 
- Pt+(i+l)cj ft+ie + Oj+l (pT - bT) hT (3.16) 

i=O 

with j=n-1- it. If hi, is the farmer's forecast at time ic of harvest at time T, then if h, p and b obey 

5 On page 624 of his 1988 International Econimic Review article, Karp defines f as sales of futures contracts, such that 

>0 implies that the farmer takes a short position. So in a sense f is actually the "stock" or net position as sales can take 
both positive and negative values in Karp's model. 
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the following stochastic difference equations 

C(C)Pic+Ai, ic (3.17) 

hie + A2, ic (3.18) 

bic + A3, ic (3.19) 

where Ai, ý-- (AI, iEsA2, ie9A3, ie) i. i. d N(O, Ec) and c(c) = e". The drift parameter a and the variance 

matrix E are time independent. Equation 3.17 allows the current futures price to be a biased estimator of 

the next period futures price, whereas equation 3.19 is an unbiased estimator of basis in the next period. 

Solving the Karp model yields the following expression for the optimal hedge 

ft = Gtyt (3.20) 

and (3.21) 

yt = (pt, ht, bt)' (3.22) 

where 
Gt 

---: 
(91, t 7 92, t) 

(3.23) 

where 

9l't = 
a' 

-k (U2 _ ý2) - e-" 
e- + pe-" (1 - 2aT-) -a 

(3.24) 
[ rr 

92, t = e-r' (3.25) 

6 

The key criticism of the Karp approach, as in the case of chapter 2 on option pricing, is that the 

calculation of the optimal hedge is based on the implicit use of the H2 norm. As already explained, this 

norm behaves stably and reliably, though not necessarily robustly, even in the presence of non-extreme 

market moves. However, as has already been indicated in chapter 2, use of the H2 norm is neither 

necessary nor sufficient to guarantee robustness of the optimal hedge rules. 

Neuberger and Hodges (2002) do not follow the control theory approach, but instead explore hedging 

strategies based on no-arbitrage bounds, that are model independent. In particular, they determine the 

bounds on the price of a general barrier option given the price of a set of European call options and 

6 Where the variables have the following meanings: 'r =t-T, a is a drift parameter, k is the coefficient of constant risk 

aversion, p is a covariance term from F, =1P2 (P 0' ) 195 



identify the hedging strategy that enforces the bounds. The strategy puts a floor on the maximum loss 

that can be incurred by the writer of the barrier option. They show how the strategy can be made 

dynamic and the floor raised over time. The distribution of hedge errors under the strategy is compared 

with that under alternative strategies. The risk management of complex derivatives poses a particular 

challenge, because while there are often many closely related instruments that are liquid enough to be 

used for hedging, standard models are not correctly designed to provide either efficient or effective hedge 

strategies. Neuberger and Hodges show how to exploit the properties of rational bounds in order to design 

strategies that make use of the range of instruments available and are robust to model specification and 

model estimation error. The robust hedging strategy based on rational bounds puts a firm floor under 

possible losses. This is particularly attractive in the context of capital adequacy regulations that focus 

on the most unfavorable events. Traditional hedging strategies by contrast are less well equipped for the 

purpose since they are heavily model dependent and can generate heavy losses when model assumptions 

are violated. 

According to Neuberger and Hodges, robust hedging strategies have another interesting feature, 

namely, that after the hedge is established, they require no trading in the derivatives market. This 

is attractive since in many derivative markets transaction costs are significant and liquidity is not as- 

sured. Traditional hedging strategies need to be rebalanced. They require most rebalancing after major 

market moves; this may be precisely the time model and market prices diverge most widely. By contrast, 

the robust hedger can choose to rebalance at such times if there is an opportunity to trade one bounding 

portfolio for a cheaper one, but has no need to do so. The cheapest super-replicating portfolio varies over 

time. By revising the portfolio periodically, the hedge performance can be greatly improved while still 

retaining a firm floor on the maximum size of loss. The choice of hedging strategy will necessarily depend 

on a multitude of factors: the instrument to be hedged, the available hedge instruments, the costs of trans- 

acting, the predictability of asset price dynamics, the preferences of the agent. Neuberger and Hodges 

present evidence to show that their robust hedge compares well with more conventional alternatives such 

as delta hedging and the Carr, Ellis and Gupta (1998) static option hedge7. 

It is interesting to note that Neuberger and Hodges' view robustness in the sense that downside risk 

is bounded whatever the path of prices. This view contrasts with previous work, such as Alm, Muni and 

Swindle (1997) which adopted a weaker measure that aimed to maximise expected utility in the worst 

'An interesting aside is contained in the paper by Hipp and Vogt (2003), who approach the hedging problem from 

the perspective of insurance, considering a risk process modelled as a compound Poisson process. They derive the optimal 
dynamic unlimited excess of loss reinsurance strategy that minimises the infinite time ruin probability and show the existence 

of a smooth solution of the corresponding Hamilton-jacobi-Bellman equation. However, the focus of their work is aimed more 

squarely at the more macro-level risk management issues, so it will be discussed in chapter 4 on robust risk management. 
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case outcome from a restricted set of volatility scenarios. Neuberger and Hodges measure is stronger 

in so far as it can be viewed as a limiting case where a decision maker wishes to minimise loss in the 

face of the worst possible outcome without artificially restricting the range of outcomes as in the case of 

Avellanda, Levy and Paras (1995) who allow uncertain volatility but restrict it between fixed upper and 

lower bounds. 

The Neuberger and Hodges approach still suffers from one of the classical robustness weaknesses, 

namely, that their procedure depends critically upon the choice of the price process and only guarantees 

the least upper bound on the price of the barrier option given a particular set of price processes that are 

consistent with the absence of arbitrage. If too small a set of price processes is selected, the upper bound 

on the price of the barrier option cannot be guaranteed to be an upper bound and the hedging strategy 

will not dominate the barrier option on all possible paths. If on the other hand too large a set of price 

processes is selected, the search is practically hard to implement. 

3.3 Robust hedging with non-linear optimal control 

This section has two objectives. First, to develop a hedging rule in the presence of uncertainty that is 

both robust and stable. Second, to provide a simple example to illustrate how such a rule works - as a 

precursor for the following section which contains a detailed empirical study to establish how robust rules 

perform in comparison with the type of rule discussed in the literature review. 

The previous review of the literature dealt in detail with the issues surrounding the non-robustness of 

optimal hedging rules. This section develops a methodology for calculating robust optimal hedges based 

on robust optimal control theory. What are the required state variables in a model designed to provide 

robust and stable hedging decisions in the presence of uncertainty ? When pricing a standard option in a 

BS world of "well-behaved" underlying assets, it is relatively easy to see what variables should be included 

as state, and controller variables, as both Dempster, Rustem and Howe (2002), as well as Neuberger and 

Hodges (2002) have shown. In the more complex cases of options on extreme values such as catastrophes 

or defaults, there is the extra dimension of having to deal with outliers and their effects on pricing and 

hedging decisions, as well as the need for robustness in the face of worst-case scenarios - which will be 

different in each type of case (i. e. different worst-cases for "normal" options compared to catastrophe 

options). 

3.3.1 The non-linear robust optimal control approach 

At its simplest, robustness guarantees that the essential functions of a model are maintained under condi- 

tions so adverse that the model no longer reflects the behaviour encountered. However, when attempting 197 



to guarantee robustness it is also critical that the resulting hedge rule produces a stable net position. 

Unstable behaviour could for example be produced in a volatile environment when a robust hedging rule 

might imply large and frequent readjustment of a hedge. Such behaviour may result in a lack of stabil- 

ity in the portfolio and cause a large loss of income due to excessive re-hedging costs. The objective of 

robustness must therefore be simultaneously stated with respect to stability - namely robust stabilisability. 

As already explained in chapter one, a typical version of the robust optimal control approach involves 

the interconnection of a model G, a controller K and a source of disturbance or perturbation A to represent 

uncertainty. Once the underlying model has been devised, the robust control problem is to construct K 

such that closed-loop stability and performance are simultaneously guaranteed in the presence of every 

A belonging to a defined family 
. 
17A of admissible controllers. This is the optimal control equivalent of 

the HRS model in that it is worst-case because the occurrence of all uncertainties in F, & are deemed to 

be equally likely. 

Much of robust control is linear in so far as it gives rise to results that have been calculated under 

the assumption that G is linear. Finite dimensionality and time invariance are also frequent assumptions. 

A diverse range of admissible controllers have been subjected to testing in this way, ranging from struc- 

tured to unstructured uncertainties, lineax and non-linear uncertainties, time invariant and time variant 

uncertainties, to name but a few. These different measures of the size of the uncertainty have produced 

different metrics of robust control such as H. and CI with all being based around some bound on a 

norm. But the important point is that when a model exhibits behaviour which indicates the existence 

of non-linearities, the classical linear approach responds by making the set rA large enough to deal with 

the suspected non-linearities because G is restricted to be linear. The key disadvantage of this course of 

action is that it disregards information about the non-linearities that may be available, with the result 

that the controllers that are generated are likely to be too restrictive -a result likely to be exacerbated 

the more significant are the non-linearities. The obvious way to get around this problem is to allow G to 

be non-linear and therefore search for robust non-linear controllers. One of the more tractable approaches 

to this problem is to use state-space Lyapunov stability which makes use of input-to-stability techniques 

to produce a robust non-linear optimal controller . 
The idea involves the construction of a robust control 

Lyapunov function which deals with both control and uncertainty inputs, as well as providing a generali- 

sation of the output control Lyapunov function. The existence of a robust control Lyapunov function is 

both necessary and sufficient to ensure the solvability of the robust control problem. 

Given the desire to avoid the impact of the worst case scenario, how should such a scenario be 

conceived of and should the objective be to minimise hedging error in the event that such a scenario 

occurs, as in HRS, or some other objective ? For example, if a hedging strategy fails, is ruin assumed 
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to occur instantaneously, or over a finite period of time ? If the latter, what should be the length of the 

"ruin period" ? Should ruin be deemed to have taken place based on the occurrence of one or more events 

? How can this be captured within a model ? The simple and most common form of a dynamic system 

and linear objective function for robust optimal control is 

x=f (x, U, w) (3.26) 
00 

J= 
IL(x, 

u)dt (3.27) 

0 

where J is the total cost, x is the state variable, u the controller and w the disturbance variable. This 

gives rise to the steady-state lIamilton-Jacobi-Isaacs partial differential equation 

0= min max [L (x, u) + VV (x) -f (x, u, w)] (3.28) 

where the value function V (x) is the unknown value function. Solving such an equation in a non- 

linear form is only possible for the simplest of non-linear systems. However, for a careful choice of L in 

equation 3.28, it is possible to derive a positive definite solution V (x) that will lead to a continuous state 

feedback control u (x), that is optimal, stable and robust with respect to the disturbance w. Freeman and 

Kokotovic (1996) show that a known robust control Lyapunov function can be used to explicitly derive an 

optimal control law without needing to solve equation 3.28 by solving instead an inverse optimal robust 

stabilisation problem. In order for this to be possible, the objective or cost function must impose penalties 

(which are known to be non-restrictive in the particular case of a hedging problem) on both state and 

control functions. Optimality can therefore be viewed as a means of choosing a stabilising control law 

from among the universe of possible control laws containing the required properties. Using a recursive 

back-stepping method, Reeman and Kokotovic (FK) provide an extremely efficient procedure, so that 

if a meaningful cost function can be found such that a given robust control Lyapunov function is the 

corresponding value function, then the corresponding HJI equation will have been implicitly solved and 

the robust hedging rule can be calculated directly using a relatively simple formula. Their approach is 

thus to invert the usual robust control approach and instead use a back-stepping procedure to find a 

meaningful cost function such that a given robust control Lyapunov function is the corresponding value 

function. In the classic problem of minimising the hedging errors, this translates into a realistic and 

relatively simple objective function that has meaning and tractability across a wide range of hedging 

situations. 

The key feature of FK's work is that if a robust control Lyapunov function is known, then it is 
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possible to construct a feedback law that is optimal with respect to a meaningful cost function, without 

having to solve the associated non-linear Hamilton-Jacobi-Isaacs cost equation. In fact as they point 

out, it is not even necessary to construct the cost function as the optimal feedback control law can be 

calculated directly from the robust control Lyapunov function without recourse to the Hamilton-Jacobi- 

Isaacs equation. FK provide a formula to generate a class of optimal control laws which involves only the 

robust control Lyapunov function, the system equations and required design parameters. They refer to 

their class of admissible laws as pointwise min-norm control laws. The next section provides a detailed 

derivation of such pointwise min-norm control rules for use as hedging strategies. The following section 

provides a simple example that compares the HJI robust control rule and a pointwise min-norm (PWMN) 

control rule. This is followed by detailed empirical work applying the robust PWMN control rule to a 

series of hedging scenarios and comparing its performance with that of a number of the more widely used 

hedging rules. 

3.3.2 A pointwise min-norm control hedging rule 

FK (1996) show that the existence of a robust control Lyapunov function is equivalent to robust stabil- 

isability. Using the FK approach therefore means first constructing a robust control Lyapunov function, 

followed by deriving a robustly stabilising feedback controller to make the derivative of the Lyapunov 

function negative. Each of these two steps will now be considered in detail. This will finally lead in the 

following section to a formal statement of both elements for a robust hedging function. 

Constructing a robust control Lyapunov function 

The technique described in this section is that developed by FK (1996) which involves the construction of 

families of robust control Lyapunov functions and therefore the implicit derivation of stabilising control 

rules. The technique is known as robust backstepping and is based on the idea of using a known control 

Lyapunov function for a version of the system without uncertainties (known as the nominal system) as 

the robust control Lyapunov function for the uncertain system. The technique leads to the construction 

of a robust control Lyapunov function which is non-quadratic and has three desirable properties. Namely, 

high gain, softer control laws (resulting in less violent and frequent re-hedging) and faster computa- 

tion. The non-quadratic robust control Lyapunov function in turn reduces the amount of effort required 

to subsequently make the Lyapunov derivative negative and thereby construct the stabilising feedback 

controller. 

200 



v 

Begin by defining the following class of uncertain nth_order, non-linear systems 

x =F(x, w)+G(x, w)+u (3.29) 

where F and G are continuous functions. Make the following assumptions, based on which, a robust 

control Lyapunov function will be constructed 

o There is state feedback (Y (x) = jx}) 
. 

* There is a single unconstrained control input (U (x) =- U= R) 

o There is a disturbance constraint W (x) that is independent of the control u. 

*W is continuous with nonempty compact convex values. 

9 (x) =- B, where B is constant. 

*F is of the structural form 

'011 (xe w) '012 (Xi W) 0 

021 (Xi W) '022 (Xi W) 023 (X% W) 

(X, w) 

On-1,1(XtW) On-1,2(XtW) 
'On-1,3(X9W) 

[ 
Oni (Xi W) 0n2 (X) W) '0n3 

(X, W) 

for continuous scalar functions Oij8. 

eG is of the structural form 

0(X, W) 

- 
0.,. +, (x, w) 1 

for continuous scalar functions Oij. 

* Each function Oij depends only on w and the state components xl to xi 

, Oii (x, w) =, oii (x� ..., xi, w) 

for 1 <i, <nand 1 4i <, i+l. 

0 

(x, w) 
(--, w) 

xF (0, w) (3.30) 

(3.31) 

(3.32) 

gThe decomposition of F is not required to be unique. 201 



0 A.. 
rtj 

(xi, 
..., xi, w) 0 0, for all xi, ..., xi ER for all wEB and for all 1<i<n (this ensures that the 

above system is controllable for each fixed wEB. 

FK describe a system that satisfies the above conditions as being strict feedback form (also known as 

lower triangular form). This is important, because any system that can be transformed into strict feedback 

form will have a robust control Lyapunov function. A further advantage of this form is that growth 

restrictions are not required on the non-linearities. The construction of the robust control Lyapunov 

function now proceeds as follows. 

The first step is to construct a diffeomorphism9 on the state space X using smooth scalar functions 

S1 W9 
-52 

(Ml 
v X2) 7 .... Sn-I (xi, 

---, XnA using the method described below, such that each function si 

will depend only on the state components xj to xi. When these functions have been selected, it is then 

possible to define a transformed state vector z 

ZI X1 (3.33) 

Z2 X2 - ZIS1 (Xl) (3.34) 

23 X3 - Z2S2 (Xls X2) (3.35) 

(3.36) 

Zn Xn - Zn-ISn-1 (X12 
... 1 Xn-1) (3.37) 

'A diffeomorphism is a differentiable mapping that has a differentiable inverse. 
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When expressed in matrix form, the diffeomorphism and its associated inverse are 

=S(X)X= 

s-, (x) Z=ý 

0 0 0 ... 0 

-SI 1 0 0 0 

S152 -32 1 0 0 
x 

-SIS2S3 S2S3 -S3 0 

±81-Sn-l : FS2""Sn-I ±S3 Sn-I -Sn-I 

100 0 ... 0 

si 10 0 ... 0 

0 S2 1 00 

z 
00 S3 1 ... 0 

000 Sn-l 

(3.38) 

(3.39) 

where the signs in the last row of equation 3.38 depend on whether the dimension of the state space 

vector is even or odd. The functions si are constructed so that V (x) := ZTZ is a robust control Lyapunov 

function for the system. The procedure also facilitates the subsequent construction of a robustly stabilising 

state feedback control law. 

The first task is to calculate z from equations 3.38 and 3.39 by taking the derivative of z=S (X) x 

es es es 
(3.40) Z xlý+S(X)x 

[UX1 
Xj72 X 

Xn 

=T(X)x 

where T (x) can be easily calculated from equation 3.38. Letting (A- represent any function depending 

only on the states xj to xi and the functions si to si and their partial derivatives, gives 

1 0 0 0 0 

G)l 1 0 0 0 

z =T(x)x 
@2 @2 1 0 ... 0 

x 
@3 @3 @3 0 

L G)n-I On-1 @n-1 @n-1 0j 

(3.42) 
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The robustly stabilising state feedback control law is then of the form u (x) = Zý's', where 8,, (x) is a 

yet to be determined smooth function. So, given the choice for u, equation 3.39 can be used to re-write 

equation 3.29 as 

Oil 012 000 

021 022 023 00 

'On-l, l 
On-1,2 On-1,3 'On-l, n 

0 

Oni On2 On3 On, 
n 

On, 
n+l 

Substituting equation 3.43 for x in equation 3.42 gives 

0 00 ... 0 

1 00 0 

0 32 10 0 

0 0 
453 

1 
... 0 z+F (0, w) 

0 0 0 
... 

0 0 0- 0 Sn 

(3.43) 

011 + 012'91 '012 0 0 

*i *l + 023S2 023 0 

z+T (x) F (0, w) (3.44) 

*n-2 *n-2 ... On-1, 
n 

*n-1 *n-1 *n-1 *n-1 + On, 
n+I$n 

011 '012 0 0 0 

*i *1 023 0 0 

*2 *2 *2 034 0 

*n-2 *n-2 *n-2 ... *n-2 On-1, 
n 

L 
*n-1 *n-1 *n-1 *n-1 ... *n-1 

J 

10124 
0 0 0 

0 02382 0 0 

00 034S1 ***0 z+T (x) F (0, w) (3.46) 

0 0 On, 
n+I Sn 

where *j indicates any function depending solely on w, the states x, to xj+1 and the functions sl to si 

and their partial derivativeslo. Using the A (x, w) and D (x, w) to replace the first and second terms in 

10A function of the type @ is also of type *, but not neorrily vice versa. This is because a* function is allowed to 



equation ?? gives 

[A (x, w) +D (x, w)] z+T (x) F (0, w) 

The next step is to calculate the derivative of V := ZTz as follows 

ýf 
= ZT [A (x, w) + AT (X, W) + 2D (x, w)] z+ 2FT (0, w) TT (x) z 

Applying Young's inequalityl I to the final term of equation 3.48 gives 

ýr (0, W) 112 
, iz ZT[A (x, w) +AT (X, W) + 2D (x, w) +T (x) TT (x)]z + JIF 

and from equation 3.42 

0 01 (D2 (Dn-1 

(Di 81 (D2 (Dn-1 

TT (X) 
-«--: 

Inxn @2 (D2 92 *** @n-1 

@n-1 @n-1 (Dn-1 (Dn-1 

Therefore, combining equations 3.49 and 3.50 gives 

ZTZ + JIF (0, w) 112 + 2ZT D(x, w)z 

201, *1 *2 

*I *1 *2 

+Z T *2 *2 

L *n-I *n-I *n-1 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

So that for any value of the design parameter c>1, there will exist choices for the si which satisfy 

max V (C ZTz + max JIF (0, W) 112 (3.52) 
WEB WEB 

Using the definition of D (x, w) leads to 

(C ZTZ _ ZTM (X, W) Z+ JIF (0, W) 112 (3.53) 

depend on both w and xi+,. 
'I Young's inequality is: 2ab 4 a2 + 
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where the symmetric matrix M (x, w) is given by 

-c - 201, - 
2012SI *I 

*1 *1 - 
2023S2 

m *2 *2 

*n-1 *n-1 

*2 

*2 

*2 - 203483 

*n-1 

*n-1 

*n-1 

*n-1 

20n, 
n+lsn 

(3.54) 

The functions si can be selected so that the matrix M is positive definite for all xEX and all wEB. 

This leads to the functions si being constructed as follows 

M, (x� w) := -c - 2011 (xi, w) - 2012 (Xl 
9 W) Sl (X1) (3.55) 

Once s, has been found the functions *1 in M can be derived12 and the procedure continues progressively. 

Determining the si functions means that the feedback control u (x) = z,, s,, (x) is known and is a robust 

control Lyapunov function for the system. 

Constructing a stabilising feedback controller 

Having constructed a robust control Lyapunov function, FK (1996) provide a highly computationally 

tractable formula for the construction of robust stabilising feedback controllers, which produces what 

they term point-wise min-norm (PNVMN) control laws that are optimal and robustly stabilising with 

respect to the chosen cost functional-form. Using a simple example serves to illustrate FK's formula for 

generating PWMN control laws, given an underlying robust control Lyapunov function and avoids further 

lengthy exposition using turgid matrix algebra. Consider a simple function 

fO (-7: ) + fl (X) U+ f2 (X) W 
(3.57) 

12 The second leading determinant of M is given by 

M2 (XIi-T29W): 
ý 

MI (XI, W) *1 I 

*I *3. 
-2023(XIsX2vW)S2(XI, X2) 

(3.56) 
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where fo, fj and f2 are continuous functions and where U (x) MU and W (x) =- B. Then let V be a 

robust control Lyapunov function for this simple system, so that 

D(x, w) = VV(x)-fo(x)+VV(x)-fi(x)u+IIVV(x)-fo(x)ll+av(x) 

= Po (x) + IPT (x) u 

where 

IPOW : =VV(X)'fO(X)+IIVV(X)'f2(X)11+aV(X) 

=[VV(X). f (XJ 

which gives the PWMN control 

m (x) = 
when iPo (x) >0 

when iPo (x) <0 

(3.58) 

(3.59) 

(3.60) 

(3.61) 

(3.62) 

for xE V-1 (cv, 00) - 
One of the key points to arise from this approach is that once the robust control Lyapunov function 

and stabilising feedback controller have been constructed, the resulting hedging strategy provides a clear 

floor under possible losses. This floor is guaranteed as the rule is robust with respect to uncertainties on 

modelling, data and measurement. There is the additional beneficial side effect that the computations 

are simple and efficient in operation. 

3.3.3 An example of a simple non-linear robust hedging rule 

To help understand how FK's procedure works in practice and before applying it to complex hedging 

problems, it is instructive to consider a simple example of hedging a single 3-month option on a Euro- 

dollar interest rate deposit future. The model presented below provides an over-stylised and simplified 

view of the world, comprising a system equation and a cost function, J. The price of the underlying futures 

contractO, x, is assumed to follow a naively simple process where u is an unconstrained control input, 

such that robustness is required with respect to a disturbance known to take values in the interval [-1,1] 

*A simple dynamic system equation: X! = -X3 + U, + W. X 

cc 
eA quadratic cost equation: Jf [X2 + uj2] dt 

0 
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It is clear by simple inspection that a robust control Lyapunov function for this system is V(X) = X2. 

The derivative of this can be made negative with the simple control law 

ul = x3 - 2x 

This control law is the obvious one suggested by feedback linearisation and does indeed succeed in 

producing a robust and stable solution. However, two alternative control laws, U2 and U3 are examined 

to highlight the benefits of using a pointwise min-norm robust optimal control hedge 

oA robustly stabilising feedback hedging rule based on solving a Hamilton-Jacobi-Isaaes (HJI) equa- 

tion: U2 : -- X3 -X- -Z: ', 
fX4 

- 22 +2 

fo A pointwise min-norm hedging rule based on solving a robust control Lyapunov (point-wise min- 

norm - or PIVMN for short) equation: U3 
X3 - 2x when X2 <2 

0 when X2 >2 

Rom simple inspection it is easily seen that ul wastes a potentially useful source of non-linear damp- 

ening, U2 does not, neither does it ever generate positive feedback. However, the superior characteristics 

Of U2 result from having to solve a steady-state Hamilton-Jacobi-Isaacs equation, which as FK point out, 

is only possible for very simple classes of non-linear systems. FK's approach provides a simple formula 

for generating a class of optimal control laws that involve only the robust control Lyapunov function 
, 

the system equations and the required design parameters. They refer to their controllers as pointwise 

min-norm control laws. In the case of the above simple example, the FK pointwise min-norm control law 

U3 is 

U3 : -- 
x3- 2x when X2 <2 (3.63) 

when X2 >, 

which when compared against u, and U2 shows identical qualitative behaviour with the added benefit 

that they do not waste control effort by trying to cancel out the beneficial non-linearity in the system 

equation. The relative performance of the two control laws, using scaled data and expressed in distance 

in basis points from the at-the-money strike is compared in figure 3.2. It is clear by simple inspection 

that the two methods produce extremely similar control rules, though the computational effort required 

is markedly different. The PWMN rule is rapidly computable on a normal desktop personal computer 

using a standard package such as Microsoft Excel. In the case of more complex examples, a relatively 

trivial amount of programming in a language such as Visual Basic for Applications or C#, will serve to 

produce a crude but effective result whose output can be easily viewed in Excel. 
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Optimal Hedge Comparison 

92 

.Z 9m 

Time path ofadjustment 

Figure 3.2: Comparison of on-linear robust hedging strategies 
When either of the control laws above are applied to the hedging problem, it is clear from the following 

figure that the results are extremely similar in terms of the behaviour of the objective and system functions. 

The benefits of using the PWMN over the HJI are that the former is easier to formulate, easier to deal 

with computationally and quicker to solve, thereby making the approach more attractive from a practical 

perspective. 

Controlled System Output Comparison 

Mcontrolled 

PWMNcontolled, 

Time path ofadjustment 

m P PWN WMNr 

0.00 

)o -300 -2 00 -1,00 1.00 2.00 
-- 3-00, ý- -, 4'50 

Figure 3.3: Comparison of controlled output using non-linear robust hedging strategies 

3.4 Empirical comparison of optimal hedging rules 

The above simple example clearly does no more than illustrate the PWMN approach. Testing on a more 

realistic and useful problem required a two stage process. The first stage involved running Monte Carlo 

simulations to provide a realistic and accurately calibrated alternative for comparison with the PWMN 

model. The second stage involved applying the PWMN control rules to real-world data. Both stages also 

included a number of the hedging metrics discussed in the literature review for comparative purposes. 
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Both exercises were performed for simple European exercise options on interest rates, that were hedged 

using exchanged-traded interest rate futures contracts. Mindful of the difficulties in selecting a real-world 

hedging problem for which adequate high quality data is available, it was decided to consider instruments 

exhibiting accurate, plentiful and easily accessible market data. The first requirement inevitably meant 

concentrating on instruments traded on organised trading exchanges. The second requirement meant 

selecting contracts with heavy trading volume and substantial open interest. The final requirement meant 

using data directly from official exchange feeds. 

3.4.1 Setting up the problem 

The three month interest rate futures contract is one of the most widely traded instruments in the financial 

markets, so based on its liquidity and high levels of open interest, it was decided to use it as the hedging 

instrument. In order to simplify interpretation of the results, an underlying option instrument with 

exactly similar frequency, day-count and interest basis was selected, namely, a European exercise interest 

rate cap whose underlying is the three month interest rate future. The major virtue of using exchange 

traded instruments is the plentiful supply of high quality detailed daily data. For comparative purposes 

and in order to provide a wide range of results, two separate periods (a low and a high volatility period) 

were selected for study. 

As explained above, a range of hedging strategies was evaluated using actual historical data from the 

Chicago, London and Frankfurt exchanges for US dollars, Sterling and Euros respectively. The single 

period interest rate caps selected were 3-month call options on 3-month deposit futures, in USD, GBP 

and EUR. The hedging strategies examined all began with the same 100 contract long position where 

each strike was set at the at-the-money forward rate, though the underlying notional differed between 

contracts as specified in the contract specifications for the relevant exchange13. Net of idiosyncratic 

contract differences, therefore, all of the strategies began with an identical initial position and were then 

subjected to identical hedge rebalancing at uniform daily intervals. All gains or losses were assumed to 

be rewarded or penalised at the relevant futures margin-account interest rate. The interest rate costs, 

forward rates and discount factors were calculated using a standard yield curve bootstrap developed 

for this thesis. Volatilities required for valuation were a combination of those supplied by the relevant 

exchanges and those supplied by Credit Suisse First Boston. Hedging and funding flows were assumed 

to be calculated with respect to the bid or offer rates for the cash market for the relevant currency. 

All calculations were carried out with respect to end of day maxk-to-market valuations of the relevant 

13 Detailed contract specifications for Chicago, Frankfurt and London are easily available via the internet through the portal 

sight www. numaweb. com. 
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variables. The final performance of a strategy was defined as the final cumulative value of the initial 

position, plus cash inflow, less cash outflow, normalised by the notional amount of the underlyings of 

the relevant currency. Table 3.1 below summarises the eleven strategies that were evaluated. Detailed 

explanations of each of the strategies along with a description of how the accompanying simulation data 

was generated, axe all contained in Appendix 5. The results of the Monte Carlo calibrating simulations, 

together with the results of the historical simulations are presented in tables 3.2 - 3.8. 

Table 3.1: HecloinLr strateizies evaluated 

Strategy Objective Function Conditions CoStS14 

Delta Delta neutrality n. a. Excluded 

Minimax-95 Potential hedge error 95% level Excluded 

Minimax-99 Potential hedge error 99% level Excluded 

Heuristic-w Potential hedge error Weighted Excluded 

Minimax-95c Potential hedge error 95% level Included 

Heuristic-95c Potential hedge error 95% level Included 

p2 Potential hedge error n. a. Included 

0/ - i) /a. Potential hedge error n. a. Included 

e-rce rho 8 Potential hedge error n. a. Included 

Linear Hoo Potential hedge error Uncertain Excluded 

Non-Linear Hoo Potential hedge error 
I 

Uncertain Excluded 

Note that all strategies were evaluated for Euro, Sterling and US dollax futures and options. for both 

high and low volatility periods in each case (see Appendix 5 for details). 

3.4.2 Simulation results - first pass 

The results of running the hedging strategies contained in table 3.1 show the time-path of each of the 

strategies evaluated. The results axe presented in tables 3.2 to 3.8 belowI5. The first set of results 

in table 3.2 are those generated by the Monte Carlo simulation using arbitrary flat volatility of 20% for 

benchmarking purposes. Although the results are not totally realistic is so far as they do not use historical 

volatilities, they are broadly representative of the flavour of the results in tables 3.3 - 3.8 inclusive. The 

first major point is that even very close to the at-the-money-forward strike (i. e. the 0.5% column in table 

14 Transaction costs can be modelled in a number of different ways. However, it was felt that adjusting the bid-ask spread 

was the most appropriate method in the interests of transparency and in line with most capital-market conventions. 
"Note that the only the results for positive distances from the ATMF strikes have been reported. This is because the 

negatives were very similar, so that reporting them would have not added anything to the overall results. In addition, all 
results have been converted back into EUR in order to aid comparison. 
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3.2), the costs of robustness are relatively high for the robust strategies. Figure 3.4 re-expresses the data 

contained in table 3.2 in terms of the percentage of average profit lost for each strategy compared with 

the simple delta hedging strategy. What is immediately obvious from figure 3.4 is that the non-robust 

strategies perform remarkably similarly. However, the robust strategies are all hugely and disastrously 

more expensive than any of the non-robust strategies, with the linear Hoo being the most expensive 

compared to the standard delta hedging strategy. 

Table 3.2: Monte Carlo simulation results for alternative hedging strategies 

(averaze vrofit in '000s of EURs) 
Distance 

from 
0.5% 1.0% I. S% 2.0% 2.5% 3.0% 3-5% 4.0% 4.5% S. 0% 

ATMF 

strike 

Delta 96.7098 920720 983192 848363 81.2909 781407 75.1868 718199 69,0689 66.0473 

Minimax 
95 95.3731 913861 866990 82.9219 

1 
79.5367 75.31331 71.8866 682621 65.03691 62.0451 

Minimax 1 1 

99 94.7941 886747 836654 78.5424 74.2267 694703 65.3871 616472 586867 54.5921 

Heuristic 1 1 

w 954511 90.3891 858027 816071 77.8251 73.5963 70.3632 665998 63.4110 599469 

Minimax 1 1 

95C 869303 75 OD96 65A623 563755 487659 422997 365961, 320085 281935 238390 

Heuristic 
95c 825940 692387 562045 4638791 392999 32.0765 26.8619 214773 178312 14.7606 

. 
Ederington 962116 926845 888073 85.1297 82.3519 78.9539 75.5142 728251 69.9574 67.0624 

Howard & 
D'Antonio 95.5990 90.6496 96.4468 820819 78.3820 745489 71.1139 67.3984 64.3321 61.5146 

Pennings 
_ 

&M 944877 89052 83.3809 78.4519 740389 69.8370. 65.5788 614651 57.79861 54.4239 

Linear 

H-inf 63.7829 406543 259627 1664551 11.2796 6.8010 46045 33926 1.7744 1.3305 

Non-Linear 1 

H-inf 74.1926 545206, 40.1854 30.1190 21.9686 16.2591 12.1230 88743 6.8716 5.3753 
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Figure 3.4: Comparison of robust and non-robust hedging strategies 

What is interesting is that the pattern is broadly maintained throughout the historical simulation 

results shown in tables 3.3 - 3.8. In fact the pattern is even more dramatic as the distance from strike 

increases for the robust methods. Once again the situation appears clear that the cost of hedging robustly 

in a benign environment are hugely expensive and arguably not warranted under any kind of "normal 

trading conditions". The question then clearly follows as to whether such behaviour continues in the 

historical simulation results. The short answer is that it does as can be clearly seen by even a casual 

perusal of the information contained in tables 3.3 - 3.8. However, what is also clear throughout all of the 

historical simulation results reported in tables 3.3 - 3.8 is that with the exception of the high volatility 

environment for GBP, the non-linear robust strategy proves to be less punishingly costly than the linear 

robust strategy. This is probably due to the non-linear strategy "swimming with the tide" and therefore 

having to fight less hard against the losses. There is also some intuitive appeal in the argument that 

robustness represents severe overpayment for insurance against an environment so extreme, that in line 

with the rest of the insurance and reinsurance industry, such cover would never be viable at such prices. 

Table 3.3: Historical simulation: EUR low volatility environment 

(average profit in ý000s of EURs) 
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Distance 
from 

O. S% 1.0% M% 2.0% 2. S% 3.0% 3.5% 4.0% 4.5% 5.0% 
ATMF 

strike 

Delta 97.1510 93.4856 99 69" 96.9288 930773 80.3523 774430 744893 71.9963 699881 
Minimax 

95 934362 86 " 16 
1 

80.5405 748523 69.7025 64.4436 59 W4 55.4613 51 8599 480936 
Minimax 

91.2657 929412 752989 696086 620997 56.5392 519260 47.1468 42.8802 39.2861 
Heuristic 

w 930112 854290 790449, 729883 674522 623420 57.9777 533659, 49.5395 45.5206 
Minimax 

95C 862313 
1 

733055 63.0377 539131, 460497 40.2441, 344793 NbM 24.7727 217760 
Heuristic 1 

95C 806860 651087 529667 42.5063 341929 279357 22.3469 180297 152618 11.7792 

Ederington 957777 90.5745 960669 81 9875 791042 74 1239 70.9932 67.0209. 64.4290 61.1383, 
Howard & 
D'Antonio 936722 975191 919082 767290 71.5602, 67.0195 62.7025 586298 55.1510 519492 
Pennings 

&M 9196171 945447 779040 71.7022 65.3677 601463 55.5762 51.0564 469567 42.7215 
Linear 
H-inf 602164 3639781 2193871 134408 92323 4.7533. 3.3965. 20391 1.9229 0.9293 

Non-Linear 1 1 1 
If-int 696094 486731 33.7632 23,2260. 16.1267, 11 3093 7.8058 560201 3.7785 2.84151 

Table 3.4: Historical simulation: EUR high volatility environment 

(average profit in '000s of EURs) 

Distance 
from 0-5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

ATMF 

strike 

Delta 93.9586 965294 91.0726 748013 696317 646913 60.3561 56.0750 52.0093 48.5947 

Minimal 
95 86 6MI 756110 653448 5643171 488568 42.7988 3692491 31.8810 27.8804 

1 
239362 

Minimal 
8349911 696409 594926 494537 409861 339226 283615 23.4195 19.5448 17.0828 

Heuristic 
W 878084 764921 669457 579798 50.8631 44.2095 386425 33.5602 29.3465 25.7495 

Minimal 
95c 762463 580911 44.2459 344364 259069 196355 15.1843 11.5203 9.7589 7.00471 

Heuristic 1 1 

95c 712361 499791 35.5592 252473 17.5998 124670 990551 6.2697 4.5698 3.3589 

Ederington 9960571 806470 713707 641470 569938 509033 50 454713 406608 366480 32.5593 

Howard & I 
D'Antonio 97.2648 765322 663111 579572 50.3309 43.9573 3 

J9573 

38.3109 33.3847 290193 256432 

pennings 1 

&M 949910 721029 604432 51 1369 433517 9 68395 3683 5 309307 261588 220093 190491 

Unear 
H-inf 334014 11 1064 462531 1.22791 09799 0.3713, 0.1050 00703 OJ. 1447 0.3576 

Non-LAncar 1 1 

H-inf 510790 2605251 133960 6.7315 3.57341 2.1 0.5383 867 0.2867 0.4097 
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Table 3.5: Historical simulation: GBP low volatility environment 

(average i)rofit in '000s of EURs) 
Distance 

from 
0.5% 1.0% IS% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

ATMF 

strike 

Delta 953578 914259 87.1594 82,4908 790374 75.8036 716437 68 0526 64.7550 61.7232 

Minimax 1 
95 924879 

1 
84.7776 790027 71.71841 66.4328 60.82801 560395 519334 47.5674 43.7796 

Minimax 
99 898127 

1 
81.0294 7292751 650343 584855 52.9881 47.5647 426329 380256 34.1343 

Heuristic 

w 91.4573 
1 

940703 765091 699540 645175 595033 536135 489346 451590 41.0984 

Minimax 
911C 943950 

1 
716435 602861 506821 428523 35.8982 30.3465 25.4954 21.7690 18 1198 

Heuristic 
95C 799622 

1 
626481 495542 39.2598 31.2323 24.79081 19.7333 16.0062 12.2091 9.6983 

Ederington 943483 
1 

890463 838136 78.7802 73.9431 70,1650 65.6378 61.9249 580434 54.6429 

Howard & I 
D'Antonio 92.7078 956920 79.2736 73.3240 67.9303 63.1937 58.52841 53.9378 49.7797 46.13801 

Pennings 
&M 91.2064 82.5626 75.3338 69.1511 625313 56.3348 51.3513 46.4931 42.3595 386102 

Linear 
H-inf 504710 262040 136043 7.0827 33377 16630 0.8312 0.4423 0.4287 01941 

Non-Linear 
H-inf 640591 4101071 266236, 17.5189, 109905 7.04591 5.1414 2.8315 19839 

1 
1.1520 

Table 3.6: Historical simulation: GBP high volatility environment 

(averm, e Drofit in '000s of EURS) 
Distance 

from 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 
ATMF 

strike - 
Delta 924930 841093 77.1662 70 9561 

_64.7685 
59.5038 544223. 497978 456926 41.8773. 

Minimal 
95 9495061 720887 61,1943 52.3001 441906 376918 32.3800 269708 23 0173 19.4347 

Minimal 1 

91.30461 663979 5359133 439916 357477 289739 233326 190805 157879 13.0546 

Heuristic 
w 85.88821 734535 6306922 

I 

54.1951 460857 39.5933 33.9813 298249 24,8104 21,5012 
Minimal 

95C 71.52241 51 1774 36 5959; 259288 192559 13.2400 9.4244 67322 5.3051 3.5488 

Heuristic 
95C 65.28341 426161 2791522 191572 124410 79794 5 1140 34119 22176 2.1688 

Edtrington 9643701 749299 64.7972 56.1911, 496510 42.0117 36.1795 31.4006 26.8149 23.1602 

Howard & 
D'Antonio 79.9947 

1 
639139 51 1291 41.3193 326374 260938 21.1902 172225 14.1232 11.12291 

pennings 
IAU 820253 67.3020 55.3858 

N 

454192 37.5865 30.4637 25.2949 20.9628 169199 13.9561 

linear 
H-Inf 296909 

1 
94639 7 4 1 23 06974 035021 0.75391 0.1938 06912 1 08576 0.4688 

Non-L, incar 1 1 1 

H-Inf 462nR7 2108651 4 0 5 104 104405 445731 26639 1.0378 0.5695 
. 

0.2175 0.30331 0.3008 
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Table 3.7: Historical simulation: USD low volatility environment 

(P, vprpttrt- nirofit in '000s of EURS) 
Distance 

from 
0.5% 1.0% 1.5% 2.0% 2-5% 3.0% 3.5% 4.0% 4.5% 5.0% 

ATMF 
strike 

Delta 994209 97.2903 955889 94.5478 929881 908469 89,4360 87.9993 86.5636 85.2050 

Minimaz 
95 95.71401 909585 969547 92.38861 786236 75.17881 71.7874 682304 64.67481 61.8245 

Minimax 1 

99 942123 
1 

883035 830611 795859 73.7193 68.8978 648242 61.1670 57.1256 53.7324 

Heuristic 1 

W 9337441 875632 81 1964 764290 70.7130 65.8772 61.7979 578421 53.4696 500365 

Minimax 1 

95C 8993791 784121 69.3203 609710 53.8195 47.6739 420314 38 D478 32.9431 290134 

Heuristic 1 

95C 959613 
1 

732389 62.4630 536616 456638 398574 
1 

33.3607 28.5091 244401 , 
21.4510 

Ederington 9649351 91.9593 876216 84.5133 
1 

801577 77.4937 74.1644 70.6388 67.4220 64.3254 

Howard & 
D'Antonio 9479411 895383 947659 802121 757908 72.3184 681325 646150 60.8768 57.5800 

Penning3 1 
&M 93.7206 87.9716 822787 76.5591 71.9013 66.9926 62.6432 586589 54.9358 51.8318 

Linear 
H-inf 704944 496369 348061 242138 17.0063 12.7301 84594 60460 4.1055 

1 
3,0783 

Non-Line2r 

1 1 

H-inf 796353 6390831 5041931 40.4654 31.9591 25.5851 20.6878 
1 

16.1020 12 10.2515] 

Table 3.8: Historical simulation: USD high volatility environment 

(. qvprap, p nrofit in '000s of EURs) 

Distance 

from O. S% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 
ATMF 
strike 

Delta 95.0316 903065 95.9111 91 9669 77.3799 73-4917 69.7469 662939 63.2475 59.9261 

Minimal 
95 9040371 914914 736560 666313 599530 54.3301 48.8608 44.7065 39.9499 36.0709 

Minimal 
99 97.27561 763038 66.9839 5792951 50.6160 446714 38.7809 33.5649 29.5670 254151 

Heuristic 

w 89.39311 799965 71.4085 640972 57.7771 50.9754 46.2559 408512 36.4452 32.6700 

Minimal 
9-91c 904672 650205 527129 42.2146 33.7707 27.2602 21.9104, 17.6295 1449951 11.5010 

Heuristic 
95C 77.3458 600994 46.5486 36.1963 27.6892 21.5287 167552 135550 10.1895 90030 

Ederington 916134 93 9066 769943 709733 
1 645389 59.1471 54.1017 49.5821 454842 41.7743 

_ 
Howard & 
D'Antoni 999905 90.7992 729333 65.3748 594719 53.0182 47.2843 42.4799 39.7286 34.33L6 

Pennings 
&M 96.71251 747835 64.5038 56.2642 49.2576 41.7680 35.9517 31,5440 27.0455 23.7505 

Unear 
H-inf 497554 242612 1 124914 1 5.7732 3.1925 1.9038 09509 0.5115 0.2274 0.303_3 

Non-Linev 
11-inf _21.5176 

15.7075 , 12.3135 90405 1 68484 j 1 jL913 
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3.4.3 Simulation results - second pass 

The initial results for the PWMN reported in tables 3.3 - 3.8 were based on a robust control Lyapunov 

function that is quadratic in the set of non-linearly transformed z-coordinates. As can be seen from 

the results tables, this form produces hedging rules that whilst robust, are less conservative than those 

produced by a linear Hoo approach. However, upon closer examination it became apparent that the 

control rules produced by this form of the Lyapunov function produced excessive responses to large shifts in 

the prices of the underlying options and consequently large changes in the hedge position and consequently 

much lower overall profitability. Upon investigation of the intermediate results of the simulations, this 

behaviour was found to be attributable to the fact that the PWMN hedge rule was exhibiting local gains 

that were growing extremely rapidly for options that were further out of the money and exhibited higher 

volatility. 

Several approaches have been suggested and evaluated in the literature (see Marino and Tomei, 1993 

for example), but FK suggest a method that involves modifying the robust control Lyapunov function to 

reduce the size of the local gains which has the effect of drastically reducing the control effort required 

to achieve robust stabilisation, with no reduction in computational performance. The method involves 

using a smooth, non-negative scalar function, Lo, to penalise the distance to the mgion around the con- 

trol manifold rather than the distance to the control manifold itself. This involved a relatively simple 

modification to the algorithm described above (with the additional trivial constraint that & (0) = 0), 

which is both necessary and sufficient to guarantee that the choice of V will possess the required first 

order differential continuity, as well as being positive definite (which helps, though does not guarantee 

stability). Experimentation with the most suitable functional form for Lo indicated, that as FK suggest, 

the following form works best 

coi 
(xi) = Ixi 1' (3.64) 

The value of r was investigated at some length in an attempt to determine an automated, algorithmic 

procedure for its generation. After some experimentation, it was found that higher order powers tended 

to increase the chattering effect when hedging deeper out of the money options. Higher hedge returns 

from the modified PWMN function worked best over all three currencies with r=2. The new algorithm 

was therefore re-calibrated using the Monte Carlo simulation and the revised results are shown in table 

3.9 below. 

Table 3.9: Simulation results for flattened PWMN hedging rule 

(average profit in 1000s of EURs) 
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Distance from 
ATMF 

Original 
Unear 
"-Inf 

Original 
Non-Lincar 

11-inf 

Flattened 
Non-Uncar 

"4nR2) 

0.500/0 63.7829 74.1826 88.9121 
1.00% 40.6543 54.5206 B. 0237 
1.50010 25.9627 40.1854 60.7866 
2.0 (M. 16.6455 30.1190 ". 6229 
2.50% 11.2796 21.9686 36.3107 
3.00% 6.8010 16.2591 30.1585 
3.50*/o 4.6045 12.1230 25.7826 
4.000/6 3.3926 8.8743 22.1450 
4.50% 1.7744 6.8716 20.0590 
5.00% 1.3305 5.3753 1 17.99971 

What is immediately clear from table 3.9 is that the results of using the flattened piecewise-min-norm, 

non-linear robust rule are far less punishing when compared with the unflattened non-linear Hoo hedging 

rule. However, when compared with the standard delta neutral approach, the results are still extremely 

expensive for what amounts to insurance that is not wanted and extremely unlikely ever to be exercised. 

And if that was the end of the matter, then the results would not be of great significance. However, that 

is not the end of the story for two reasons. First, although such hedging/insurance may appear to be 

expensive, when considered in conjunction with the observed rise in the number of natural catastrophes, 

the results may not prove to be quite so expensive. Although at the time of writing, natural catastrophes 

had not caused significant spill-over effects in the mainstream financial markets, it can only a matter of 

time given the increasing concentrations of population and assets in the United States for example, areas 

that are increasingly affected by natural catastrophes. 

3.5 Conclusions 

This chapter has categorised and reviewed alternative approaches to the problem of developing a dynamic 

hedging strategy that is robust and stable in a multi-period hedging problem. Robust optimal control 

techniques were applied and two forms of dynamic hedging strategy were developed - one linear, the 

other non-linear. The linear model used Hoo optimal control techniques and produced hedging rules 

that were found to be robust but too conservative to be useful in practice. Piecewise min-norm robust 

optimal control rules were developed based on robust optimal control Lyapunov techniques in an attempt 

to exploit the suspected non-linearities of the the hedging problem. The first version of the PWMN rule 

was found to be less conservative than the Hoo rule, but was observed to still be implying excessively 

punitive changes in hedging policy for options deep out of the money. The PWMN rule was modified 

by using a simple scalar function modification and found to produce encouraging modification to the 

previously conservative behaviour, whilst retaining desirable robustness and stability properties. 

Two possible ideas occurred for further research in the area of softening PWMN control laws. The 

first would involve using a non-smooth robust control Lyapunov function, thereby implicitly allowing 
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non-differentiability of the Lyapunov function, which is not in and of itself a requirement for stability and 

therefore poses no significant constraint in the context of the current problem. The second idea is to use 

directional derivatives to eliminate the "chattering" in the hedge rules that can appear at much greater 

distances from the at the money forward strike and which undoubtedly had a significant impact on the 

apparent cost of such options. 
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Chapter 4 

Robust optimal control and risk 

management 

All models are wrong, but some are useful. 

George Box 

4.1 Introduction and motivation for research 

This chapter continues the theme of robust decision making by examining the robustness of portfolio 

level risk management in the presence of uncertainty. The previous chapter examined the problem of 

developing and applying optimal, dynamic hedging strategies for individual exposures that are both 

robust and stable in operation. The objective of the current chapter is therefore to extend this framework 

to portfolios of instruments and investigate its performance relative to other established portfolio risk 

management approaches. 

The principal motivation for the research contained in this chapter is threefold. First, is the fact 

that despite the considerable and ever increasing levels of risk being carried both on and off the balance 

sheets of many financial institutions, there has been relatively little interest in either the theoretical or 

practical robustness and stability of current measurement methodologies. The bankruptcies of Enron 

and WorldCorn alone wiped out loans on bank balance sheets of some $34 billionl. Financial institutions 

continue to reduce collateralised low-return loans on their balance sheets in an ever accelerating search for 

higher return and inevitably riskier investments. Despite both the complexity and magnitude of the risks 

involved, the metrics for quantifying and controlling the risks remain relatively simple in their conception 

'Source: "Who's c&rrying the can ? ", The Economist 14th August 2003. 
220 



and operation. Second, current methods of measurement and management are based on the often implicit 

assumption that some arbitrary distribution can be acceptably parameterised to deal with the problem 

at hand. This is the fundamental premise behind such risk measures as value at risk and extreme value 

theory - both of which are examined in detail in the literature review in the following section In reality, 

such distributions have not proven to be robust with respect to the measurements of risk carried by 

financial institutions in particular. Third, current approaches take little or no account of the dynamics of 

the instruments or portfolios that are being managed, such that modelling is predominantly carried out 

using static optimisation techniques ignoring feedback. This chapter therefore attempts to deal with two 

of these distinct problems, namely, quantification of uncertainty at a portfolio level and managing the 

aggregate risk of a portfolio of individual derivative instruments in the presence of uncertainty. 

This chapter therefore contributes to the body of existing research into managing portfolio level risk 

through the development of a new methodology for measuring and controlling portfolio risk based on the 

application of non-linear robust optimal control techniques. The research applies existing techniques to an 

existing problem in a novel fashion to enable the creation, execution and measurement of the performance 

of portfolio level risk management strategies. It is important to note that the focus of this chapter is 

not the robustness of optimal portfolio construction techniques (as studied by authors such as Lutgens 

(2004)), but rather the robustness of the rules and metrics used to measure, monitor and control portfolio 

level risk. The chapter therefore proceeds as follows. The next section provides a review of the current 

literature and research. This is followed in the succeeding section by the development of an alternative 

robust optimal control approach. An empirical comparison and evaluation of the current approaches with 

the new approach follows and a final section concludes. 

4.2 Review of the literature 

Actuarial and financial mathematicians have approached the problems encountered in the managing of 

uncertainty in a variety of ways, some of which share common features, assumptions and models, whilst 

the differences in the approaches arise from the diverse nature of the constraints under which each industry 

operates. Insurance companies are predominantly long term in their focus (e. g. matching the payouts on 

insurance policies with long liability tails, such as asbestosis for example where claims could have a 30 or 

40 year tail), being overwhelmingly concerned with the probability of ruin - usually expressed as the total 

elimination of available capital. In contrast, the capital markets though still very much concerned with 

the probability of ruin, must contend with a very different maturity profile that is much shorter term (the 

average term in both the vanilla interest rate and credit default swap markets is around 5 yeaxs). The 

results have been the emergence of three main approaches to the problem of managing uncertainty, the 
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assumptions and predictions of which will be analysed in detail in this section. But before proceeding it 

is instructive to get a flavour for the nature of the constructs involved in each of the three methodologies. 

Beginning with the areas of commonality of approach, it is not therefore surprising that the current 

focus when managing such financial risks is primarily concerned with analysing behaviour of possible losses 

in the tail quantiles of distributions that do not have heavy or fat tails, such as, for example, the value of x 

such that P (X > x) = 0.05 for large values of x. This is very much the idea behind the ubiquitous Value 

at Risk (usually referred to as VAR) approach, where extreme quantiles and probabilities are of special 

interest due to the view that the capability to accurately assess such quantiles of regulax distributions 

provides the key to being able to manage the extremes associated with financial crises. 

As explained below, traditional parametric methods that are usually based upon the estimation of 

entire densities are not the most appropriate tools for assessing extreme quantiles or probabilities of rare 

events. This is because parametric methods attempt to provide a good fit in the tails of the distribution, 

where by definition, few observations are likely to be found. Silverman (1986) also shows that the same 

poor estimation performance is true for non-parametric methods of estimating density such as kernel 

smoothing. A further complication is that it is also frequently necessary to estimate quantiles and prob- 

abilities both near and in many cases beyond the boundary. Attempting to estimate densities in such 

circumstances would appear to be at best a hopeless exercise due at least in part to the almost total lack 

of useful and relevant data. 

Such is in fact not quite the case, according to the supporters of an approach known as extreme value 

theory (or EVT for short), which provides a methodology to estimate extreme quantiles and probabilities 

by fitting a model to the empirical survival function2 of a dataset using only the extreme event data for 

the tail of the distribution. The result is attractive to many practitioners for two main reasons. First, 

fitting to the tail and only the tail of the distribution means that it is possible to concentrate solely 

on the area of specific interest without biasing the results by the use of the centre of the distribution. 

Second, it is possible to adapt any reasonable functional form and use it as a representation of the tail of 

a distribution. 

The third approach considers the problem managing uncertainty as a minimax problem, on the grounds 

that decisions under uncertainty are incorrectly based on expected value optimisation which will never be 

robust as it ignores the possible impact on the system under consideration of realisation of the worst-case. 

Therefore, if the objective is to make decisions that are the best possible alternative and therefore robust 

in the face of the worst-case outcome. The appropriate course of action is then to adopt the minimax 

2A survival function is one minus the cumulative density function, i. e. I-F (x), remembering of course that because 

F(x) approaches unity as x grows, then the survival function approaches zero. 
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criteria as the decision metric. Looked at mathematically, the minimax criterion amounts to minimising 

a non-differentiable objective function that is defined by the maximum of an inner function -a procedure 

generally referred to as minimax. In the majority of applications this is stated in the form of a disutility 

or cost function. The problem of making decisions in the presence of uncertainty therefore reduces to 

finding the least worst outcome in the face of the worst-case event or scenario - behaviour that has been 

shown to satisfy certain robustness criteria, but not necessarily stability criteria. The remainder of this 

section is therefore devoted to a detailed analysis of each of the three methodologies in turn, beginning 

with VAR. 

4.2.1 Value at Risk 

According the Risk Metrics document by the US bank JP Morgan-Chase, Jorion (1997) and Deutsch 

(2001), VAR can be described as a method of assessing risk that uses standard statistical techniques to 

measure the worst expected loss over a given time interval, under normal market conditions for a given 

confidence level. In other words, how much is likely to be lost with a given probability over a given 

time-horizon. An alternative way of expressing this is that VAR is the lowest quantile of the potential 

losses that can accrue to a given portfolio within a pre-specified time-period. Expressed more succinctly 

and usably, the essence of the VAR approach can be stated as follows. The VAR of the value, V, of a 

financial instrument or portfolio is the upper bound for the loss which will not be exceeded with given 

confidence level over a stated time horizon 

c= CP6v (6V > VAR (4.1) 

where c is the confidence limit, V is the value of the financial instrument and CPjV is the cumulative 

probability function of the random variable 6V over some time horizon 6t. Or, more explicitly 

-VAR(c) 
CPbv (5V < -VAR (c» =1-1 pdfiv (x) dx (4.2) 

00 

where pdf6v (x) is the probability density function of the random variable JV over some time horizon 

6t. Note that VAR is defined by the probability distribution of JV and not by the distribution of the 

associated risk factors. Given the simple case of a single risk factor, S, described by a standard geometric 

Brownian motion 
d In S (t) = tidt + adW where dW ,N (0,1) (4.3) 
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the process for S can be described by the stochastic variable y := In S (t), such that y satisfies the standard 

geometric Brownian motion 

dy (t) = ltdt + adW (4.4) 

Then, choosing the function f (y, t) = ey and invoking Ita's lemma gives 

'of + 
Lf 

+ 0.50,2 
a2f f 

df (S, t) = dt + 
LordW 

(4.5) 
[A 

as at 
YS-2 

I 

as 

which, since f (y, t) =S (t) gives the following expression for the differential of S 

dS (t) =S (t) ýdt +S (t) adW (4.6) 

where A= p+0.5a2. The next step is therefore to derive the process for a risk factor for a finite time period, 

bt, by solving equation 4.6. This can be achieved by defining a further stochastic variable y=W (t) as 

the value of the Wiener process at time t, such that it satisfies dy (t) = dW (t), then forming a function 

S (y, t) := So exp (pt + ay), where So is any arbitrary initial value. Invoking Ita's lemma shows that the 

constructed process is a solution for equation 4.6, which upon making the substitution t --ý t+ Jt gives 

the required expression for a change in S over a finite time bt as 

S (t + bt) =S (t) exp (pdt + adW) where 6W -N (0, Jt) (4.7) 

where 6t is assumed to be arbitrarily long and is usually known as the liquidation period. 

If there is a portfolio consisting of a single position in N of the risk factor S, such that the factor N 

is the sensitivity of V with respect to S, then given that JV is a linear function of 6S, the value change 

. 5V over the period Jt is given directly from equation 4.7 as 

äV = NS (t + bt) - NS (t) 

= NS (t) [exp (iLdt + u5W) - 11 

(4.8) 

(4.9) 

which using the definition of VAR and recalling that the only stochastic variable is JW -N (0,6t), gives 

upon further manipulation and simplification 

In (1 
- 

VAR) 
lljt 

CPjv (JV < -VAR) = CP6V W< (4.10) 

= Cpbv (6W 
< aNf45t) (4.11) 
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where 
1 VAR 

NY to 

a OR 
(4.12) 

So that the probability that 51V is less than or equal to any given value depends solely on the distribution 

of 6W, such that CP6v can simply be replaced by CP6W = (X < a) which in turn becomes CPX =N (0,1) 

CP4v (X < a) = --L exp 
(0.5X2) dX 

%72ir 

1 

00 

(4.13) 

so that a therefore represents the (1 - c) th percentile of the standard normal distribution, Q N(0,1) such (I-C) 
that the solution for VAR of a long position in N risk factors is given by 

VAR(c) = NS (t) 1- exp pöt + 
(QN(O, 1» 

orVrö-t) 
1 

(1-c) 
1 (4.14) 

3 where the long and short positions will not be equal due to the presence of the drift It and the fact 

assumption that changes are assumed to be lognormally and therefore asyrnmetrically distributed. Prac- 

tical implementation of VAR is frequently based on the assumption of short liquidation periods with 10 

days being common among many institutions (Le. R= 10/365 = 0.0274 years), which in turn means that 

exp (x) z::; 1+x and that the drift can effectively be set to zero and ignored, which produces the following 

possible simplifications 

S(t)[exp(uJW)-1j -assuming Jt;:::: 0 

JS (t) S (t) [Abt + abwj a linear approximation for exp 
(4.16) 

S (t) UJIV /A =0 and linear approximation for exp 

which simplifies the expressions for the VAR of a long position in N risk factors S to 

NS (t) 1- exp 
(aVrj-tQN(0,1))] 

assuming 0 (I-C) 
[_Ot - VAR (C) NS (t) aý, F&QN(0,1)] a linear approximation for exp 

(4-17) 
(I-C) 

N(0,1) 
It =0 and linear approximation for exp, -NS (t) a%fb-tQ(I-c) 

Note that long and short VAR are only equal and offsetting in the third of the cases above and in the 

case where changes in the value of the underlying portfolio are approximately linear in the underlying 

3Note the the VAR of a short position in -N risk factors S is given by 

VAR(c) = -NS (t) 1- exp pft - 
1 
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risk factor (known as the Delta-Normal approximation). 

In practice, there is often far more than a single risk factor to be considered, which implies the use of 

a covariance matrix for the coupled stochastic differential equations 

d In Si (t) = pidt + dZi for i=1,2, 
..., n factors 

where the dZi are correlation zero-drift Brownian motions with covariance matrix 

cov [dZi, dZjl = dEij, E [dZi] =0 

with 
dEij = pijaivr6-tojvr6-t = pijaiujjt 

such that 
dzi 

dZ2 
dZ =, N (0, dE) 

As previously, the solution to the resulting stochastic differential equations are of the form 

Si (t + 8t) = Si (t) exp (pi - 8t + 8Zi) with JZ -N (0, bE) 

where the covariance matrix bE is given by 

JEll 6E12 JEln 

SE21 JF, 2n 

ýJEnl JEn2 bFjnn 

where (5Eij = pijaiajJt 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

VAR generally begins with a series of factors that have been identified as the principal contributors to risk. 

The problem is then to transform these initial (assumed to be) independently identically distributed values 

into correlated variables with covariance matrix JE. The usual approach to achieving this is to employ 

Cholesky decomposition, which proceeds as follows. Consider the matrix A which has the following 

property 

AAT = jr, (4.24) 
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(where AT is the transpose of A), so that A transforms the initial uncorrelated variables into correlated 

variables with covariance JE. The matrix A is then derived via Cholesky decomposition by solving for 

Ap for all j, beginning with i=1 and j=1 

o- 
i-I 

Aij bEii - F, A i2k 
k=l 

AikAjk) 

k=l 

forj<i ý 

for j=i where 6Eji 

for i>i) 

0,2 , 
jt for 

pijaiorjJt for j 54 i 
(4.25) 

The results of the decomposition then provide sufficient information to construct correctly correlated 

Monte Carlo paths that can be used to simulate the behaviour of the VAR for the chosen portfolio. One 

of the most popular methods of doing this is to use the method known as the delta-normal method, which 

proceeds as follows. First calculate the sensitivities of the portfolio with respect to all required risk factors 

Si, call these Ai. Next, multiply the covariance matrix 6E with the portfolio sensitivities Ai and the risk 

factor values Si, to derive the portfolio variance 

n 

var (JV) = Jt E AipijaiajAj 

ij=l 

(4.26) 

Now multiply the above portfolio variance with the liquidation period and the square of the percentile 

of the required confidence level for the standard normal distribution. Upon taking the square root, the 

VAR is given by 
n 

VARv(c)=Qj_, -v/J_t j: AjpjjajajAj-jtj: Ajtjj (4.27) 
ý 

ij=1 i 

where the final term is the drifts of the risk factors. 

In order to utilise VAR in practice, it is necessary to have a precise prediction of the probability of 

an extreme change in the value of a portfolio of instruments. Extreme movements are closely related 

to the tails of a distribution, using almost any reasonable definition of the tails of a generating process 

for a distribution. Indeed, beginning with the ground breaking work of Mandelbrot in 1963, almost all 

studies of financial data have indicated that such series exhibit fat tails. Defining a fat tail is not without 

problems, but a reasonable definition is what constitutes a thin tail is that a distribution can be said to 

have thin tails if the density reaches zero before a finite quantile4. 

'This should not be taken to imply that the normal is a fat-tailed distribution. on the contrary, it is simply that there is 

substantial evidence that many time series associated with financial and insurance claim data are fat-tailed, with a (much) 
higher probability of " outliers' compared with the normal distribution. However, standard tests, or variants of them, for 

the presence of unit roots assume a normal distribution for the innovations driving the series. Application of the former to 
the latter therefore involves an inconsistency. 
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Many studies of fat-tailed distributions have used distributions such as the log-normal, generalised. 

error and mixtures of normal distributions. Unfortunately, all of these are thin-tailed according to the 

simple definition provided in the preceding paragraph since the tails of these distributions decay expo- 

nentially, notwithstanding the fact that they exhibit kurtosis in excess of the normal distribution. In 

many practical cases the distributions just mentioned fit the empirical data quite well up to reasonable 

quantiles, but the fit deteriorates rapidly in the higher quantiles; or extremes. 

4.2.2 Extreme value theory 

Until relatively recently, VAR was considered to be the standard for those managing risk. In its simplest 

form, VAR is typically focused on the issue of the size of the maximum potential loss assuming either a 

normal or lognormal distribution. The key weakness is thus that VAR is based around an assumption 

of "business as usual" type losses - it is primarily concerned with the centre of the returns distribution. 

However, risk management tends to be concerned with low probability events in the tails of the returns 

distribution. The further into the tails of the distribution, the smaller is the probability of occurrence of an 

event, but the larger will be its consequences. Modelling the extremes of a standard normal or lognormal 

distribution is therefore relatively uninsightful, as there are few expected events in the extremes and the 

tails are small proportions of the whole distributions. 

In contrast, Extreme Value Theory (EVT), as the name suggests, is totally concerned with the tails 

of the distribution, as its main aim is to provide asymptotic models for the tails of a distribution. EVT 

has been around for some time in the insurance industry. Its origins can be traced to the seminal 

theoretical work on block maxima by Fischer and Tippett (1928) and work on extremes of distributions by 

Gumbel (1958). More recent research by Balkema and de Haan (1974) and Pickands (1975) has focused 

on threshold based extreme value. In contrast, work by McNeil and Frey (2000) make the interesting 

extension to VAR of using EVT to generate the data for a VAR-type analysis. 

Where VAR has proved the default method of choice for the finance industry, EVT has effectively 

occupied the same role in the insurance industry, but is increasingly being applied in the finance industry 

as the deficiencies of VAR become a major issue due to regulatory issues and the considerations of 

practical business management. The research on both theoretical aspects and practical applications of 

EVT is considerable, but the 1999 text by Embrechts et al probably remains the definitive reference. 

At its simplest, EVT has two significant results that must be outlined before any discussion of the 

approach can take place. The first is that the asymptotic distribution of a series of extrerna (under certain 

conditions) can be modelled such that the distribution of the standardised extrema of the series can be 

shown to converge to the Gumbel, Recet or Weibull distributions, where the generalised extreme value 
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(GEV) distribution represents the general form. The second is that the limiting distribution for excesses 

over a given threshold is the generalised Pareto distribution (GPD). It is worth noting that some EVT 

techniques can be used to solve for very high quantiles -a fact which can prove very useful for predicting 

extreme loss situations. 

The key principles of EVT can therefore be described as follows. Take a series of independent, 

identically distributed observations X= (Xj, X2,..., X,, ), with a distribution function, F, that maybe 

unknown, then M,, = max JXI, X2,... 
' 
X,, ) is the sample maxima. In insurance, sub-exponential or heavy- 

tailed distributions are the standard way of dealing with individual claim sizes, their defining property 

being 

lim 
P(Xl+X2+---+X, >X) 

P (max (XI 
i 
X2 

i .... iXn) > X) 

for every n ýt 2, so that the tails of the distribution of the sum and of the maximum of the first n claims 

are asymptotically of the same order, which implies that the largest claim has a significant effect on the 

total amount of all claims. The standard generalised extreme value distribution (GEV), is given 

by 

exp 
[- (1 + ýx-ll 

) -'/C] 

exp [- exp(- 

47 

Or 

where it, o, and ý are the location, scale and shape parameters respectively, with different values of ý 

corresponding to different distributions5. The GEV is used to estimate values of X outside of the range of 

the existing data using either extreme events or exceedences of a specific level. The tail of the population 

is usually assumed to follow some form of the GEV. 

Work by Pickands (1975) shows that the generalised Pareto distribution (GPD) is the limit distrib- 

ution of excesses Y := max IX - u, 0} over sufficiently high threshold limits u and offers an acceptable 

if ý: A 0,1 + ýEall >0 
(4.29) 

if C=0 

(4.28) 

approximation of the tail of F for some fixed C and P. Therefore, the distribution of Y is in effect the 

conditional distribution of X given X>u, with C as the shape parameter and, 6 as the scale parameter 

GPD(ýa(y) = ifýoo 
exp if ý=0 

(4.30) 

5The three individual distributions are: 
Gumbel: =0 
Frechet: I/a, I/cf >0 
Weibull: -1/a, I/a <0 
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where 
[0, oo] if e>0 

ýO, Al if Z<0 
It can then be shown that the mean excess function of the GPD is 

e(u) =E (X -ulX > u) =ß+ 
Zu 

(4.32) 
1-Z 

where 

0=a +VU - tO (4.33) 

such that the max,, Y,, follows a GEV distribution with parameters C, p and a. 

Having defined the key theoretical pillars of EVT, the next step involves the construction of the 

series of extreme values. Two common approaches have dominated thinking and practice. The first is 

the block-extrema method, which involves dividing the data into a series of non-overlapping blocks of 

identical length and selecting the extreme value from each block. This approach effectively validates the 

assumption that the extreme observations are independent and identically distributed. This situation is 

common in the finance industry where a period of high volatility is frequently followed by a period of low 

volatility -a phenomenon usually referred to as volatility clustering. Increasing the block size mitigates 

the problem, but risks losing the extreme values within the block, thereby making block size selection 

highly subjective and therefore problematic. 

The second approach is the so called peaks over threshold method and consists of selecting a threshold 

value over which extreme values are chosen. The problem is that choosing the threshold is obviously a 

case of trading variance for bias. To see this, consider the situation where, by increasing the number of 

obsevations for the series of extrema (which implies lowering the threshold value), it is inevitable that 

some observations from the centre of the distribution will be included, thereby increasing the precision 

of the tail estimate, but also simultaneously increasing estimation bias. Whilst if a high threshold is 

selected, bias falls but index volatility increases because of the fall in the number of observations. A 

further problem is that there may also be dependent observations, but Resnick and Staxica (1996) suggest 

that a way around such a problem is to standardise the observations in order to fit the various parameters. 

More recent work by Bystrom (2001) extends the EVT approach by making the further distinction 

6There are three cases of f to consider: 
1. C<0: tail of F belongs to a collection of heavy-tailed distributions such as Pareto, log-Gamma and Cauchy, and 

behaves like a decaying power function x-11C . 
2. ý=0: tail of F belongs to a collection of distributions with more or less "medium" tails such as normal and log-normal 

distributions. 
3. t>0: tails of F has a finite right end point, so that the distribution belongs to a collection of short tailed distributions 

such as the beta distribution. 230 



between conditional and unconditional distributions, arguing that the latter are more suited to longer 

term investment decisions and the examination of very rare stress events, whereas the former are more 

applicable when examining day-to-day risks and short term risk management issues. Bystrom extends 

the earlier work by McNeil and Frey (2000) by using conditional threshold based EVT models to forecast 

VAR measures by first filtering the raw data using an AR(l)-GARCH model. Both studies find there to 

be little difference between the threshold and block maxima approaches when employed in their respective 

frameworks. Bystrom provides the more interesting perspective as he performs his estimations for both 

tranquil and volatile market periods. 

4.2.3 Minimax risk management 

In contrast to both VAR and EVT, neither of which are founded on the basis of optimality, Rustem and 

Howe (2002) consider the problem of optimal choice in the presence of uncertainty when specifically faced 

with the worst case scenario. Worst-case risk management seeks to find the best possible outcome in the 

face of the worst possible situation. The objective is usually expressed in terms of some form of a cost 

or penalty function, so that stated more formally, worst-case risk management seeks to simultaneously 

determine the minimum of the cost function under the maximum or worst case scenario - hence the term 

minimax. Optimality is therefore expressed over all possible values of uncertainty. This is an important 

point as it distinguishes the minimax approach from both VAR and EVT, both of which are only concerned 

with performance against some arbitrary limit - being 95% certain that losses will not be greater than 

some desired level in the case of VAR, for example. 

At a generic level, the maximum inner function is often couched in terms of a disutility or error 

function, such that the outer minimisation involves searching over the outcomes associated with the 

worst-case disutility scenario in order to find the best possible alternative. Stated in mathematical terms, 

the worst-case problem can be stated as 

min max f (x, y) 
XGRII YGY 

(4.34) 

where x is a vector of decision variables (represented by real numbers in n-dimensional Euclidean space, 

R7') and y is a vector of uncertain variables defined over the feasible set Y, with the solution being either 

discrete or continuous depending on whether Y is a discrete or continuous set. An equivalent, slightly 

more convenient representation is 

min e (x) 
XER" 

(4.35) 
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where 

4P (x) = max f (x, y) 
YEY 

So that for the solution x* 

(4.36) 

'D(--*)=Maxf(x*, Y). >-f(x*, Y), VyEY (4.37) 
YEY 

which states that the performance of the solution x* is guaranteed to be non-inferior for any y. This is the 

specific feature that provides robustness from the minimax solution and ensures that performance will be 

better if the worst-case scenaxio is not realised. 

From a financial risk management perspective, minimax has been employed in two main ways, namely, 

in discrete form as a robust strategy for discrete rival scenarios and in continuous form in problems such as 

option hedging. Analysing the former application first offers a slight advantage as it provides a framework 

for dealing with a discrete set of possible scenarios. Minimax thus arises from the ability to reduce the 

set of alternatives to single possibility, such that optimality is not determined by a single scenario, but 

simultaneously over all scenarios. Work by Rustem (1987,1994) on policy optimisation examined the 

pooling of objective functions from rival models to generate an optimal policy based solely on a single 

model and then evaluates its impact if the second model proves to be the correct representation of the 

underlying system. 

Chow (1979) was the first to experiment with robustness and competing models. His work uses two 

models. The first model is used to generate an optimal policy, the performance of which is then analysed 

using the second model should the second model actually prove to be the correct representation of the 

system. Chow constructs a sort of payoff matrix for alternative strategies, so that the optimal strategy 

can be chosen based on the model that causes the least damage when used on the other model - the model 

is thus sequential. Rustern and Howe (2002) extend the approach of Chow by carrying out the calculation 

of the worst-case scenario simultaneously with the minimisation over x. The result is that policy choice 

is no longer constrained to be dependent on a single model as optimality can be based on more than a 

single model. 

Rustem and Howe introduce the discrete minimax strategy by considering the pooling of rival objective 

functions using a vector of fixed pooling weights V such that 

t9 E E'n*r* =E {t9 E1 19 >- 0, (1,19) =1} (4.38) 
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where 1E R"ce denotes the vector with every component equal to unity 7. Then proceed to formulate 

the optimal decision problem as a constrained optimisation of the pooled objective functions subject to 

non-linear constraints 

min {(t9, f (x» 1g (x) = 0, h (x) < 0} (4.39) 
x 

where all of the functions are twice differentiable in their relevant domainss. In equation 4.39 each element 

of f represents a separate objective function that corresponds to an alternative model or scenario, with 

the number of models or scenarios being less than the number of decision variables. In Rustem and 

Howe's model, robust pooling corresponds to the strategy that is supposed to be invariant to the scenario 

or model that actually turns out to represent the system and is given by the solution to the following 

minimax problem 

(4.40) min max {(f (x), 19) 1g (x) = 0, h (x) < 0,19 E Emace 

which in turn ensures that the worst-case scenario is calculated at the same time as the minimisation over 

x and ensures robustness9. It is then therefore the case that irrespective of the model that turns out to 

be the correct representation of the system, the minimax strategy ensures that the value produced by the 

objective function will never deteriorate, because it will always be at least as good as the minimax value. 

If the minimax strategy turns out to be too cautious and/or costly, then the selection of the optimal 

policy could be based on equation 4.39 so that V is selected in the near neighbourhood of the minimax 

value such that the policy is as robust as possible. The drawback of such a sub-optimal approach is that 

the selected policy has robustness that is limited to the alternative representations of the system. If a 

new alternative model arises then robustness can not be guaranteed. 

The second application of minimax that bears on the problem of robust risk management is the work 

by Howe, Rustem and Selby (HRS, 1994 and 1996) which applies continuous minimax to provide a robust 

7 Where the sce superscript denotes scenario. VE E7'ce, xE UZn, f: Rn __' Rm"', g: Rn 

and h are all twice differentiable functions. 
+ -4W, h-. R"-R' and f, g 

8 In the above equation, each element of f (fl represents a rival objective function corresponding to the jth rival model or 

scenario. In Rustem and Howe, the restriction g(x) =0 and h(x) <0 are the equality and inequality constraints imposed on 

the overall decision problem. Note that the number of scenarios or models is generally far fewer than the number of decision 

variables, i. e. n> m"'. 
9Rustern and Howe define robustness for minimax in terms of guaranteed performance, non-inferiority according to the 

following criteria in terms of equation 4.40: 

1. There exists a minimax solution (x*, t9*) with associated mulltipliers (p:, 77*) . 
2. f (x), g(x), h(x) E C' at x*. 

3. t9* =0 =t, A* >0 and t9* >0 ý' A* ý 0- 

4. Then for i, j, l : 

. f, (X*) = fj (--*) 
, 
Vi, j (i 96 j) iff t9ý, irj E (0,1) 3 

_ f, (X*) =fj(--*) > fe (x*), iff t9; =O and t9i*, i9* rz (0,1) 
3 

0 fi (X*) > fi (XI, vj (i 7,1 i) iff 19i* =1 
fi W) < fj (xl, Vi (i 96 i) iff t9i* =0 233 



hedging strategy as a replacement for standard delta hedging for the seller of call options. The objective 

of HRS's continuous minimax strategy is stated in terms of minimisation of the effects of a pre-defined 

worst-case hedging error and expressed in terms of bounds on the price of the underlying asset for a 

risk averse writer of call options. The minimax strategy is stated with respect to a given time horizon 

and rebalancing of the hedge is specifically incorporated. HRS use Leland's 1985 model to explicitly 

incorporate hedging costs via an adjustment to volatility as follows 

Fa2 [2 

7r 
(4.41) 

where K is the round-trip hedging transaction cost, expressed as a percentage of trading volume and 
defined as any complete transaction comprising a purchase followed by a sale (or vice versa). In the BS 

model, the call writer can construct a riskless portfolio by continuously rebalancing the hedge to remain 
delta neutraL Continuous rebalancing is supposed to keep the size of hedging errors very low, thereby 

keeping hedging cost very low. However, in practice only discrete rehedging is possible, so non-trivial 

hedging errors are likely to occur and it is minimisation of these errors which forms the basis of the 

minimax hedging strategy. HRS adopt the Merton (1973) no-arbitrage argument to construct the basic 

self-financing and non-stochastic (in terms of return) hedging portfolio, referred to as the "ideal portfolio", 

containing positions in the underlying and the riskless bond. The ideal portfolio is used as the benchmark 

in defining the objective function. HRS derive basic properties for the minimax hedging strategy on the 

basis of the ideal portfolio and conditional upon those results add the consequent costs. 

The hedging error, WE, over the period from t to t+1 for a portfolio comprised of a short position in 

a call option and a long position in the underlying (stock) is 

HS =N (Bt - Bt+l) + xt (ysl 
- ys) (4.42) 

t+ t 

where Bt is the Black-Scholes call price at time t. The minimax hedging strategy seeks to minimise the 

maximum potential hedging error over the hedge period, so that the objective function used is thus the 

potential hedging error. Following the spirit of Leland, HRS include the cost of funding the long position 

which may arise if the worst case does occur in the calculation of the maximum potential hedging error. If 

the worst case fails to materialise, the hedging error will be less than indicated by the minimax solution. 

HRS present their minimax hedging framework within the context of stock options so that the min- 

imising variable in which the hedge is expressed is the number of shares, x and the maximising variable 

is yS the stock price at time t 

min max f (x, yts+, ) (4.43) 
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(where yS is permitted to take any value within predefined bounds) subject to 

S, Lower <S 
-< 

SUpper 
(4.44) Yt+l - Yt+l , Yt+i 

and short sales are explicitly permitted. HRS examine two possible worst-case stock price scenarios. The 

first sets the upper and lower bounds as being plus or minus two standard deviations about the expected 

value of the stock price at t+1- assuming a 95% confidence limit. Whereas the second scenario is set in 

terms of 1 to 3 standard deviations axound the at the money forward stock price in order to capture the 

area of greatest elasticity in value of the option. 

The minimax objective function used by HRS is 

1 ýU 
_ Ud, Q (U 

_ Ud)) (xt, yt, +, 
) =ý (4.45) 

where Ud E Rk+I is the vector of potential hedging errors which is set to zero to be be consistent with 

delta hedging. The remaining variables are defined as follows 

s XI't Yi, t+i 
Xt and S (4.46) Yi+l 

s Xk, t Yi, t+i 

Ud ul (x 
t, y t'+ 1) 10 

u (xt, yt, + I) ... and Ud 
... 

10 (4.47) 

U2 (Xt) Ud 0 
2 

where 

kk 

s (4.48) Ul(xt, yt+l) = 
I: xi, t(yts+l-yts)+ENi(Bi, t-Bi, t+l(yts)) 
i=l i=l 

k 

+ E(- (xi't 
- xi, t-l) Yis 

,t+ 
Ci, t-l (1 + rAt))rAt (4.49) 

't 
i=l 

where U1 is the potential hedging error (including funding costs) between time t and t+1 and contains 

the potential shift in the underlying, the potential shift in the option position; and where 

Ci, t-l ý-- Ci, t-2(1 +rAt) - (Xi, t-I - Xi, t-2)Yjýt-j - -k 
I (Xi, t-I - Xi, t-2)YiS, t-11 

(4.50) 

VS 

"RWhere HRS define their variables as follows: UI : 3ýA' X RA' -+ OýIp U2 : Rk --+ RA, U: RA' X Rk --0 RA; +', Xt G Rk, 

t+1 E Rk+l and Q is a (k + 1) X (k + 1) positive-definite weighting matrix. 
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and 
UI, 2 (Xl, 

t) 

I 
where Ui, 2 (Xi, 

t) (Xi, 
t - Xi, t-1) Yiýt U2 (Xt) "' 

I 

Uk, 2 (1k, 
t) 

and where Ci, t_1 is the cumulative net cashflow at time t-1, which when multiplied by (1 + rAt) includes 

interest costs1l. Introducing transactions for the current period would mean non-differentiability in the 

objective function, so HRS use Ui, 2 as a proxy for transaction costs for option i at time t instead. Q is a 

diagonal (k + 1) x (k + 1) positive definite weighting matrix, with a high q, implying a strong preference 

for minimising potential hedging error between t and t+1, whilst a high qi (i = 2,..., k+ 1) showing a 

preference for minimising the penalty term. The optimisation then proceeds for each option i=k 

Bi, t+l 
(40 

using the modified volatility estimate of equation 4.41. The objective is to find the mix of the 

risk free asset and underlying that minimises the deviation of the return on the hedge portfolio (inclusive 

of costs) from the return on the ideal portfolio (which will be zero according to Merton's no arbitrage 

arguments). 

HRS implement the minimax approach in five different variants and compaxe the results with standard 

delta hedging using a structured simulation. The procedure generates paths that, in addition to the usual 

raw random values also include two other types of values. The first are termed cross over events which are 

selected from the simulated values such that the successive random values straddle the option strike; with 

the second type of event being called abrupt change events. HRS use the following expression to weight 

the number of units of the underlying recommended by the minimax strategy to reflect the estimation of 

the level of noise contained in the volatility and the expectation of the possibility of reversal of a cross-over 

event S-X s 
Yt4*8 

b-x 
ki = 

[Wllaý*Vd 
+W2LS 

(Wl + W2) 
(4.52) 

where setting W2 to a non-zero value happens when a cross-over event occurs during the period t-1 and 

t12. 

Of the minimax strategies compared, the most interesting is the version that applies the expression 

in equation 4.52 to weight the minimax hedge prescription by a factor between 0 and 1 in an attempt to 

represent the assessment of the information contained in the volatility of the underlying stock. The idea 

is to provide a simple mechanism to filter out noise, so that the hedger only responds to the pure signal 

1 'Note that when setting up a minimax problem, it is possible to adopt any desired convenient target value. HRS use zero 

on the grounds that when delta hedging, the expected value of the hedging error is zero. 
12The hedger can attach any weights to a and b to reflect the importance attached to sd (the standard deviation) of yt"' 

Note that Rustern and Howe require a non-2ero value be applied to w2 when a cross-over occurs from t-I to t, but there 

are no restrictions on the value of w2. 
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component of the volatility, with a higher level of volatility being assumed to be associated with greater 

noise. This clearly represents the beginnings of introducing feedback control and closed loop modelling of 

the relationship between volatility and hedge management, offering a degree of robustness for successive 

states. However, it does not take account of the dynamics involved in the state transition process and 

lacks precision in both theory and practice. This is not surprising, given the fact the HRS clearly state 

that their focus is static optimisation - in the case of American exercise bond options considered by 

HRS, the formulation is effectively a single-period minimax optimisation using values generated by the 

usual expectations type framework using a binomial or trinomial tree. On the basis of their empirical 

work, HRS conclude that the weighted minimax strategy produces robustly superior static performance 

compared with the standard delta hedging method, particularly in periods of high volatility and where 

the spot price exhibits frequent cross-over behaviour for at the money options. Whilst such a conclusion 

is certainly supportable based on their work, it is certainly not the whole story. 

The work of HRS is based firmly in the realm of static optimisation, to which some drawbacks have 

already been alluded and reviewed. However, it is instructive to summarise the principal issues as a 

precursor to reformulating the objective function for uncertainty management within the area of robust 

optimal control. The following are the essential weaknesses of the minimax approach 

The fundamental premise is the static behaviour of the underlying system. Clearly, the behaviour 

of the underlying, be it a single stock or bond, or a portfolio of such instruments, is not well 

described by a static approach because the dynamics of the relationships or of the impact of time 

on relationships is not correctly handled in a purely static environment - even in its multi-period 

form minimax is a static model that is just too simplistic for a complex risk environment. 

The application of static minimax optimisation results in considerable unmodelled dynamics; the 

problem is that minimax takes no account of system dynamics and feedback or controller design, 

loop-shaping, closed v open loop, robust design/implementation/operation. The principal reason 

to use feedback is to reduce the effects of uncertainty which arise from modelling error or from an 

unmodelled disturbance or noise. Yet it is precisely such phenomena the minimax ignores. 

e Does not deal with the occurrence or impact of alternative types of perturbation, so that the notion 

of robustness is therefore limited. 

e Even with HRS's heuristic weighting adjustment mechanism, there is a lack of modelling of the 

feedback process between risk policies, subsequent information and actions. 

There is no single variable that provides an unambiguous measure to express the degree of robustness 

of a risk measure. 237 



For ease of use, we shall refer to the Rustem and Howe approach as discrete-minimax (DM) or 

continuous minimax (CM). 

4.3 Robust optimal control and risk management 

Having examined the bases and weaknesses of VAR, EVT and DM/CM it is now appropriate to construct 

an alternative that attempts to address a number of the limitations of these approaches. Construction 

of such an alternative approach requires a fundamental consideration of the process by which decisions 

about managing exposures (both at the level of individual instruments and portfolios) are made in the 

presence of uncertainty. In order to be able to analyse this process and make the construction of a model 

more systematic, it is useful to distinguish three distinct classes of processes to which an alternative risk 

management methodology should conform. 

First, are the processes or rules by which search is conducted - the search rules. If the search process 

is to be conducted step-wise (either discretely or continuously), whereby a piece of information is acquired 

or an adjustment is made (either dynamically in closed-loop mode as part of transition between states, 

or statically within a given state), what are the necessary and sufficient search rules and how should they 

be constructed ? Given the inherent need to make assumptions about the quality and quantity of the 

information that is available in each state, then taking account of the weaknesses of the three approaches 

considered above clearly involves specifying how feedback should be incorporated and modelled. This 

is of particular significance when considering the form of both the objective function and the types of 

constraints - as is made clear below. 

Second, are the rules required to terminate the search for the most desirable choice among the possible 

alternatives - the stopping rules. If the rules axe simple, as in the case of VAR, then no notion of 

optimisation is either necessary in the formulation of the underlying axioms of the theory or required in 

the actual execution of the search. However, the limitations of VAR have already been demonstrated, 

making it clear that simple heuristics do not constitute an acceptable framework for making decisions 

that will have robust and stable results in the face of complex uncertainties. Whilst EVT demonstrates 

the fundamental need to focus on extremes in the decision making process and DM/CM underline the 

requirement for optimisation, it remains clear that robustness and stability in both theory and practice 

need to be incorporated into the decision making process. 

The third class of processes involved are those that govern the making of decisions once information 

has been acquired and a stopping rule has been applied - the decision rules. In the case of the static 

optimisation used in the minimax approach, the search is limited to the pre-defined universe of scenarios. 

Optimisation is carried out with respect to the given linear Objective function, subject to the stated 238 



constraints. The constraints and the objective function taken together determine the way in which the 

decision rules are constructed and applied. However, due to the absence of feeback in the minimax 

approach, the decisions produced by the optimisation need to be manually adjusted by a simple heuristic. 

This deprives the approach of its internal consistency and is likely to be non-optimal in practice. 

It is therefore clear that explicit mathematical formulation is required for all relationships in the 

model - objective function, feedback, state variables, control variables and perturbations, in order for an 

alternative framework to constitute a viable practical alternative to existing approaches. The key aspect 

underlying construction of any approach to dealing with such uncertainty is how to construct a model 

that deals realistically but tractably with model, data and parameter uncertainties. At the simplest end 

of the scale, VAR adopts the conventional, essentially single period static approach to making decisions 

under uncertainty by basing its premises and predictions on expected value optimisation. The unfortunate 

and inevitable problem with such a methodology is that it neglects the worst-case effect of uncertainty in 

favour of expected values. This may very well be acceptable in some circumstances, particularly where 

the prime objective is generally accepted to be the estimation of possible losses based on disruption 

to business-as-usual distributions. However, decisions based on expected value static optimisation may 

require justification in the context of the worst-case scenario -a situation particularly prevalent in the 

case of managing risks associated with such derivatives as those based on catastrophes or credit defaults, 

where omitting to hedge against the possibility of catastrophic events could result in ruin. 

Conversely, given a source of uncertainty, some worst-case realisations may be thought to be so im- 

probable that even considering them as possible eventualities may be both impractical and unacceptable 

for many institutions. Notwithstanding this view, it remains the case that for instruments where extreme 

behaviour of the underlying is the very rationale for the creation of the instrument, it is essential to 

consider worst-case scenario based optimisation in order to attempt to ensure some degree of robustness 

in risk management decisions, even if such optimisation acts only as a benchmark. As was illustrated 

by Rustem and Howe in the case of DM, the minimax optimisation approach is non-inferior for any sce- 

nario and better for all other cases apart from the worst-case as it ensures guaranteed optimality for the 

worst-case. In the case of CM, optimal performance is guaranteed due to the continuum of scenarios. 

The critical weakness of minimax, however, is that even with a continuum of scenarios it still remains the 

case that optimality is only guaranteed for any given series of scenarios and no account is taken of the 

dynamics driving the system between states. 

There are a number of possible ways of developing a new approach to the problem at hand. One 

possibility would be to simply state a new model, then justify it step by step, explaining the reasons 

for including each equation and their relationships. A second possibility would be to consider the key 
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requirements of an applicable model and build up a new model around those requirements. On balance, 

the latter seems a more justifiable and structured approach. So the questions are, given the subject matter 

of this thesis, what are the key features that are missing in the existing models and how can they be 

remedied by applying the robust optimal control approach ? 

The first and most obvious is of course uncertainty - in model selection, in parameters, in measurement 

and in data. The second key feature is the need for feedback. Risk management in the majority of 

institutions managing financial risk is inherently a process that involves considerable feedback - hedging 

decisions are generally taken at the level of individual trades but are not viewed as single period static 

decisions, but monitored constantly, thereby giving rise to risk management decisions and activity which 

is generally discrete. Given the prevalence in the use of BS style delta hedging, it is clear that there 

is an awareness of the need to incorporate feedback into the risk management process to ensure greater 

robustness in decision making. 

Two questions therefore remain to be answered. First, why apply robust optimal control to risk 

management ? Second, how should robust optimal control be applied to risk management in order to 

produce an understandable, practical and tractable model ? The answer to the first is relatively straight 

forward - the objective of optimal control theory is to find optimal ways to control a dynamic process. 

Managing financial risk - particularly on derivatives - certainly qualifies as a dynamic process, though in 

practice, management often tends to be static. One of the key attractions of optimal control is that it can 

be applied in both discrete and continuous forms. Optimal control is also more intuitively in tune with 

the risk management problem as it allows the explicit inclusion of control variables whose relationships 

to the state variables can be explicitly modelled to more accurately capture the nature of the feedback 

process. 

In order to proceed to the development of robust risk management, it is necessary to make a short 

diversion on the technical tools needed to solve the problems encountered. The approach adopted in this 

chapter is to use nonlinear Lyapunov equations employing an approach developed by Freeman (1993) and 

Freeman and Kokotovic (1996). The previous chapter constructed the basic framework on which the robust 

optimal control for risk management will be built in the next section. The following section therefore 

extends the framework developed in chapter 3 by incorporating two modifications for softening PWMN 

control laws. The first involves using a non-smooth robust control Lyapunov function, thereby implicitly 

allowing non-differentiability of the Lyapunov function, which is not in and of itself a requirement for 

stability and therefore poses no significant constraint in the context of the current problem. Permitting 

non-smoothness in the robust control Lyapunov function allows a richer possible set of non-linearities 

to be investigated which will be useful in examining portfolio level risk and producing a portfolio risk 
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measure. The second modification involves the use of directional derivatives to eliminate the "chatteringif 

in robust portfolio management rules that can appear at much greater distances for non-at-the-money 

instruments and therefore compromise the usefulness of a portfolio level risk measure. There then follows 

a more comprehensive portfolio level example of applying robust optimal control techniques. The final 

section of the chapter concludes. 

4.3.1 Stabilisation, robustness and control 

In chapter 3 it was shown that for non-linear systems, using the Freeman and Kokotovic (1996) non- 

linear robust optimal control approach involves a two stage process of first constructing a robust control 

Lyapunov function, then deriving a robustly stabilising feedback controller such that the derivative of 

the Lyapunov function is negative. Whilst the entire procedure will not be needlessly re-iterated in this 

chapter, some repetition is inevitable as the same framework is once again being brought to bear but in 

a rather different context and with the added development of a flattening the robust control Lyapunov 

function by the use of simple penalty conditions that penalise the distance to a region around the manifold 

rather that the distance to the manifold itself. 

A simple example demonstrates how the "flattening" actually works. Consider the following simple 

second order system where xi are the state variables, w is the disturbance and u the control variable 

ýýI -- --: -E 2+ IX, 11+rW 

12 ý-- 

(4.53) 

(4.54) 

where w is a scalar disturbance with values in the interval B= [-1,1] and r>0, a growth parameter 

that multiplies the effect of the disturbance. The following (quadratic) robust control Lyapunov function 

applies 

X1S (X, )]2 Xi +P [X2 (4.55) 

where p is a design parameter ands (xi) is known to be a smooth function. The robust control Lyapunov 

function is quadratic of type V (X) = ZTpZ, where 

Z1 := X1 

and (4.56) 

Z2 ý-- X2 - XISI (XI) (4.57) 
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The worst possible derivative of V is 

I 
max 2xl - 2pz2 S, + X, 81] 

1 
IX, ll+r (4.58) 

WEB 

II 

+ 
[2xl 

- 
2PZ2 

ISI 
+ XJS Ifl X2 + 2pz2u 

where s1denotes the derivative of sl (xj) with respect to xi. FK show that every smooth control law 

U (XI 
9 X2) which makes the robust control Lyapunov function non-positive also satisfies 

au 
>, 

e Ixi Pr 
iX2 4 (4.59) 

Which in simple terms means that the local gain of the control law in the -r2 
direction grows by Ix, 1 3' 

as 

Ix, I --+ oo. The point is that the exponential term 3r which measures the hardening of the control law is 

unaffected by choices of the the function s, or the parameter in p above. Unfortunately, this applies to 

every control law that makes the Lyapunov derivative negative. The good news is that the local gain is 

not actually necessary for robust stabilisation and, furthermore, it is just a by-product of the quadratic 

form of the robust control Lyapunov function. FK demonstrate a simple technique for constructing an 

alternative type of robust control Lyapunov function that produces much slower growth by flattening the 

penalty term IX, 13r. 

The procedure is simple. Recall from the current simple example that the second term of the robust 

control Lyapunov function penalises the distance to the manifold defined by X2 = xjsj. FK obtain an 

alternative, "flattened" penalty term by penalising the distance to a region around the manifold rather 

than the distance to the manifold itself 

[-T2 
- X1S1 (X, ) 

- Lo, 
(X, )]2 when Z2 :- 01 (X1) 

V (X) =x 
2 +P 0 when 1Z21 

-<, LO1 
(X1) (4.60) 

[X2 
- X1S1 (X, ) + Lo, 

(X, )]2 when z2 < -, o, (x, ) 

The results of running a Monte Carlo simulation of the above flattened version of the robust control 

Lyapunov function for a simple portfolio of a European exercise option and a hedging future can be seen 

in figure 4.1 which shows the comparative effects of applying the flattening in the above simple example. 

Figure 4.1: Relative robustness of PWMN control laws 

242 



100.0% 

90.0% 

80.0% 

70.0% 
10, 

60.0% PWMN 

50.0% 
Flattened 

40.0%-- PWMN 

30.0% 

20.0% 

10 
. 
0% 

0.0%ýK 02345678 
1 Sacrificed portfolio return 

This simple example illustrates serves two purposes. First, to demonstrate the essence of the approach 

that is adopted in the next section. Second, to illustrate the simple point that it is possible to solve 

meaningul robust optimal control problems very simply and elegantly without the use of the HJI equation 

and its associated complex requirements. 

4.3.2 A piecewise min-norm robust optimal control law for portfolio risk manage- 

ment 

At the heart of the general PWi%IN framework is a simple cost function of the familiar form 

00 
i= 

10 
[X 2+u2] dt (4.61) 

where x is the vector of state variables (equity prices for example) and u is the vector of control variables 

(the hedging instruments). The general risk management problem can be stated in terms of simply 

minimising J according to the required degree of robustness, then proceeding through the two part 

process of first constructing a robust control Lyapunov function for the system, then deriving a robustly 

stabilising feedback controller for the system such that the derivative of the Lyapunov function is negative. 

The solution approach then proceeds simply and elegantly given the target degree of robustness required 

from the control law. 

4.4 Empirical comparison of risk methodologies 

Mindful of the difficulties in selecting a real-world portfolio risk management problem for which adequate 

high quality data is available, it was decided to consider instruments exhibiting accurate, plentiful and 

easily accessible market data. The first requirement inevitably meant concentrating on instruments traded 

on organised trading exchanges. The second requýS'Tent meant selecting contracts with heavy trading 



volume and substantial open interest. The final requirement meant using data directly from official 

exchange feeds. Therefore, in order to provide a meaningful contrast with the more micro-economic 

concerns of the hedging research reported in chapter 3, the empirical testing of alternative portfolio risk 

measures was carried out on a portfolio consisting of Eurex traded European exercise call options on 

the Dow Jones euro Stoxx 50 equity index combined with outright positions in the underlying index 

componentS13. Setting up the calibrating test portfolio required a two stage process. The first stage 

involved running Monte Carlo simulations to provide realistic and accurately calibrated results for the 

alternative portfolio risk measures 14. The second stage involved applying the portfolio control rules and 

measures to the scenarios described in table 4.1. Both stages included all of the portfolio rules and metrics 

discussed in the previous section. 

4.4.1 Setting up the problem 

As explained above, a range of portfolio risk management strategies was evaluated using actual historical 

data from the Eurex exchange with results denominated in Euros. The hedging strategies examined all 

began with the same 100 contracts, though the underlying notional differed between contracts as specified 

in the contract specifications for the relevant exchange15. All strategies were subjected to identical hedge 

rebalancing at uniform daily intervals. All gains or losses were assumed to be rewarded or penalised at the 

relevant futures margin-account interest rate. The interest rate costs, forward rates and discount factors 

were calculated using a standard yield curve bootstrap developed for this thesis. Volatilities required for 

the portfolio risk evaluations were a combination of those supplied by Eurex, those supplied by Credit 

Suisse First Boston and those that needed to be calculated and substituted to ensure the consistency 

of the data. Hedging and funding flows were assumed to be calculated with respect to the bid or offer 

rates for the Euro cash market using the overnight index swap rate to fund all balances. All calculations 

were carried out with respect to end of day mark-to-market valuations of the relevant variables and the 

risk measures calculated after portfolio rebalancing. The final performance of a strategy was defined as 

the final cumulative value of the initial position, plus cash inflow, less cash outflow, normalised by the 

notional of the relevant currency, averaged over the 10,000 simulations performed for each scenario. Table 

4.1 below describes the risk management measures that were evaluated, whilst table 4.2 provides a list of 

the simulated volatility environments. 

'3 See the first part of Appendix 6 for full details of the data sources, time period covered and contract specifications. By 

way of comparison, the second part of Appendix 6 reports the results of the calibrating Monte Carlo simulation in tabular 
format. 

"The results for which are reported in table I in Appendix 6. 

"Detailed contract specifications for Eurex are easily available via the internet either through the portal web site: 

www. numaweb. com/ or via www. eurex. com. 
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Table 4.1: Portfolio risk management measures 
Simulation 

Description 
Scenario 

Delta 
Simple delta hedge 

Neutrality 

I Od Delta- I Od horizon VAR calculated 
Gamma using delta-gamma 

VAR-95% approximation - 95% 

10d Delta- I Od horizon VAR calculated 
Gamma using delta-gamma 

VAR-99% approximation - 99% 

Minimisation of potential Minimax 
hed, eing error 

EVT Peaks over threshold 
(GPD) model 

Rational 
Assumed rebalancing Bounds 

PWMN No flattening 

PWMN Flattened using distance to 
flattened 1 region around manifold 

Note: Transaction costs can be modelled in a number of different ways. However, it was felt that adjusting the bid-ask spread was 

the most appropriate method in the interests of transparency and in line with most capital-market conventions. 

Tahle 4.2: Simulated volatilitv environments 
Volatility 

Description 
Environment 

Non-constant, but low & time 
Low vol declining volatility 
Flat vol Constant volatility 

Non-constant, high but time 
High vol declining volatility 

Affine combination of normal 

Skew vol (25%) and lognormal (75%) 

volatilit es 
10% jump shift on high volatility 

Single Jump: 10% half way through life of option 
30%jump shift on high volatility 

Single Jump: 30% 
half way through life of option 
50%jump shift on high volatility 

Single Jump: 50% half way through life of option 
100% jump shift on high volatility 

Single Jump. 100% 
half way through life of option 
5oo% jump shift on high volatility 

Single Jump: 500% 
, hal f way through Ii fe of option 

16 Many large institutions currently using VAR use a 10-day holding period and a 99% confidence limit and employ historical 

simulation based on the well known Taylor Series expansion of the P&L to generate the VAR estimates from the time series of 

each underlying risk factor (Equity Index Spot Price, Interest Rate Zero Rate, etc). In this thesis it was decided to calculate 

a change in the underlying (either proportional or absolute move) using the Taylor Series expansion to calculate a change in 

the portfolio P&L: APL (t) . sm (t) + o. 5rM2 (t) 
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Each of the risk management strategies was simulated for the scenarios detailed in table 4.2. All 

simulations were run 10,000 times to ensure sufficient convergence upon a stable and accurate result. 

However, a computational barrier arose as it became evident that a single 3. OOGb Pentium IV PC with 

2Gb of RAM was insufficient for running the required number of simulations within a reasonable time. 

The author therefore adapted a share-ware job distribution algorithm to create a virtual compute grid 

out of 8 PC's of varying specifications, bringing the calculation time down to less than 5 minutes for a 

complete set of Monte Carlo runs for all risk management scenarios. 

Each of the portfolio risk management strategies was evaluated using a single option on an underlying 

3-month futures contract for the three currencies mentioned, over the entire trading life of the relevant 

contract. The interest rate costs, forward rates and discount factors were calculated using a standard 

yield curve bootstrap developed for this thesis. Volatilities required for valuation were a combination of 

those supplied by the relevant exchanges and those supplied by Credit Suisse First Boston. Hedging and 

funding flows were assumed to be calculated with respect to the bid or offer rates for the cash market 

for the relevant currency. All calculations were carried out with respect to end of day mark-to-market 

valuations of the relevant variables. 

4.4.2 Simulation results 

Two sets of results from the simulations are presented in figures 4.2 - 4.11. The first set of results, 

contained in figures 4.2 - 4.11, shows the results of the Monte Carlo simulations with one figure depicting 

the results of each volatility scenario. The final set of results contained in figure 4.11 presents the results 

of the historical simulation and compares all of the volatility environments in a single consolidated figure. 

Note that the numbers underlying figures 4.2 - 4.11 are also presented in tabular form in appendix 6. 

The first and most obvious point to be evident from the simulation results is their broadly two cohort 

nature. In the first cohort are the non-robust strategies: VAR, minimax, EVT and rational bounds 

strategies. These strategies generally involved the incurring of the greatest levels, ranges and volatility 

of risk exposures. This excessive range is most notable in the case of the EVT results for the 100% and 

500% jump volatility results. This is not entirely surprising as the simulation exercise uses the Generalised 

Pareto Distribution which is a heavyAailed distribution which is therefore more likely to emphasise tail 

effects than the standard VAR based on the lognormal distribution. 

In the second cohort were the Pl"IN and flattened PWMN risk management strategies. As antici- 

pated, these were the risk management strategies provided the most interesting results from the perspec- 

tive of robustness. The first point to notice is that this group of strategies do not perform that well in low 

volatility environments. This makes intuitive sense as robustness is likely to represent an overkill strategy 
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in a low volatility environment - an apparent case of paying for expensive insurance when faced with a 

low probability of occurrence event. Interestingly, in the flat volatility environment the picture reverses 

somewhat with the PWMN strategies becoming the most cost effective as they manage to produce the 

lowest level and range of risk of any of the measures. Not surprisingly, the PWMN strategies do best in 

the high volatility and large jump volatility environments when the guarantee of an absolute ceiling to 

risk makes robustness worth far more. This picture becomes even more pronounced in the highest junip 

shift environment, when the use of flattened control laws delivers lower levels and spreads of risk, making 

the trade-off of cost against robustness implied by the strategy attractive 17 
. 

Figure 4.2: Monte Carlo simulations of portfolio level risk - low volatility environment 

(risk expressed as a% of strike premium) 
Low volatility environment 
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Figure 4.3: Monte Carlo simulations of portfolio level risk - flat volatility environment 

(risk expressed as a% of strike prenimin) 
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Figure 4.4: Monte Carlo simulations of portfolio level risk - high volatility environment 

(risk expressed as a% of strike premill"') 

17jt is also worth noting thaf results not reported here for a wider range of robustness criteria make relativelY little 

difference to the overall picture. 
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Figure 4.5: MoWe Carlo simulations of portfolio level risk - skew volatility environment 
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Figure 4.6: Monte Carlo simulations of portfolio level risk - 10% jump in volatility 

(risk expiemed ews a "( of strike prenwini) 
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Figure 4.7: Monte Carlo simulations of portfolio level risk - 30% jump in volatility 

(risk expr -- I ; L- ii "ý' ýf t rike premium) 
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Figure 4.8: Monte Carlo simulations of portfolio level risk - 50% jump in volatility 
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Figure 4.9: Monte Carlo simulations of portfolio level risk - 100% jump in volatility 
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Figure 4.10: Monte Carlo simulations of portfolio level risk - 500% jump in volatility 

(risk expressed j- ý,;, of strike preinium) 
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The broad picture to emerge from the Monte Carlo simulation is broadly maintained when the exercise 

is repeated using the same shocks applied to real historical data. This provides a useful cross check 

and a significant degree of comfort on the consistency of both sets of results. Potentially the most 

interesting feature of the results presented in figure 4.11 is that the flattened PWMN control law performs 

very favourably across most of the most violent shift scenarios. It would appear that the most rational 

explanation for this performance is that the extremely high cost of robustness becomes more worthwhile in 

a very high volatility environment. One interesting question not explicitly considered in this research is the 

actual dynamics of the risk profile underlying each of the robust and non-robust risk measures. Portfolio 

risk management generally has an asymmetrical attitude to risk management - being relatively benign 

about unanticipated profits but being pathologically averse to significant losses. This would suggest that 

potentially one of the most significant uses of this type of robustness analysis would be as a replacement 

for existing stress-test type approaches where the usual methodology of assessing maximum downside risk 

is based on simply increasing the number of standard deviations away from the expected level of portfolio 

risk, but with no clear objective in mind. 

The Lyapunov approach is part icularly suited to this type of analysis, as it was originally devised to be 

a central element in an iterative controller design process. The robust control Lyapunov function can be 

used in either a feed-forward fashion or in a recursive back-stepping approach which would allow the risk 

manager to gain a far deeper understanding of how the dynamics of a portfolio evolved over time when 

subjected to any form of shock. A further benefit of using this approach is that robustness means being 

robust to measurement errors -a very common problem for real-life portfolio managers where accurate 

profit and loss and risk information for alternative scenarios can frequently be far too costly in both 

computational and human resource terms to be practically feasible. 
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Figure 4.11: Historical simulations of portfolio level risk 

4.5 Conclusions 

This chapter hýL,; revieNN-ed alternative non-robust risk management approaches. An alternative approach 

was developed using piecewise min-norm control laws based on non-linear robust control Lyapunov func- 

tions. The framework was compared empirically with a number of the more widely used portfolio risk 

measures. The research applies existing non-linear robust optimal control techniques developed in en- 

gineering to the problem of managing risk at a portfolio level to enable the creation, execution and 

measurement of the performance of portfolio level risk management strategies. The principal findings 

were that the PWMN control approach provides a framework for the risk manager to select the preferred 

trade-off between the required degree of robustness and the costs of portfolio management. An empirical 

comparison and evaluation of the current approaches based on the DJ euro Stoxx 50 index indicates 

that depending on the cost appetite and the volatility environment, ensuring robustness may not be as 

expensive as would at first be thought on an a priori basis. 

Given the substantial growth in the market for credit derivatives, an obvious extension to the work 

in this chapter is to apply the same techniques and approach to evaluate the potential trade-off for the 

credit risk of a financial instrument portfolio, especiýgr with respect to the magnitude and scope of default 

I 

o 
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risk on multi-credit products such collateralised. debt obligations (or CDOs). This work is currently in 

progress 
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Chapter 5 

Summary, Conclusions and Suggestions 

for Further Research 

Everybody sets out to do something and everybody does something, but no one 

does what he sets out to do. 

George Moore, Irish novelist, art critic and essayist, 1852 - 1933 

It is better to travel in hope than to arrive. 

Chinese Proverb 

The original idea that motivated this thesis was the robustness of decision making in the presence 

of uncertainty. Although this idea has not and did not change during the course of the research, the 

focus of its application did deviate in varying degrees (depending on the chapter and topic). However, 

the fundamental objective remained constant, namely, robustness of decision making in the presence of 

uncertainty, within financial economics. This is the final chapter and it provides a brief summary of the 

principal findings contained in the research, draws a number of conclusions based on the research and 

offers some tentative ideas for further research in the future. 

5.1 Summary of the thesis 

Chapter 1 provided the theoretic underpinnings of the framework which is the unifying theme underlying 

this thesis. The main themes of decision making under uncertainty were introduced and examined in 

detail. The chapter also introduced the concepts and mechanics associated with robust optimal control 
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theory. The central ideas behind the use of the Hoo norm were explained and discussed, setting up the 

framework for use in later chapters. 

Chapter 2 examined a number of aspects of robustness in the pricing of options where the underlying 

is an extreme event. Consistent with uncertainty as the central theme of this thesis, the work chapter 

2 investigated the concept of dealing with uncertainty in the pricing of derivatives whose underlying 

are catastrophic events. A number of new ideas and some preliminary results were presented based on 

valuing catastrophe derivatives using a robust optimal control approach. The work focused in particular 

on catastrophe bonds and catastrophe options. Preliminary empirical results indicate that the new model 

produces more stable results in the face of uncertainty through the explicit modelling of feedback and 

exhibits greater robustness to discontinuous behaviour than the current popular double Cox PIDE model. 

Chapter 3 categorised and reviewed alternative approaches to the problem of developing a dynamic 

hedging strategy that is robust and stable in a multi-period hedging problem. Robust optimal control 

techniques were applied and two forms of dynamic hedging strategy were developed - one based on linear 

Hoo robust optimal control techniques, the other non-linear robust control Lyapunov functions. The 

linear model produced hedging rules that were found to satisfy robustness criteria, but proved to be too 

conservative (and therefore costly) to be useful in practice. Piecewise min-norm robust optimal control 

rules were developed based on non-linear robust optimal control Lyapunov techniques in an attempt to 

exploit the suspected non-linearities of the the hedging problem. The first version of the PWMN rule was 

found to be less conservative than the Hoo rule, but was observed to still be implying excessively punitive 

changes in hedging policy for options deep out of the money. A simple scalar function modification to the 

PWMN rule was and found to produce encouraging improvement in the previously conservative behaviour, 

whilst retaining desirable robustness and stability properties. 

Chapter 4 reviewed alternative non-robust risk management approaches. The piecewise min-norm 

control law framework developed in chapter 3 was extended to include flattened non-linear robust control 

Lyapunov functions to capture the trade-off between robustness and cost for a portfolio of index options, 

futures and simple equities. The PNVMN approach was compared empirically with a number of the 

more widely used portfolio risk measures. The principal findings were that the PWMN control approarch 

provides a transparent and easily applied framework for the risk manager to select the preferred trade- 

off between the required degree of robustness and the costs of portfolio management. An empirical 

comparison and evaluation of the current approaches based on the DJ euro Stoxx 50 index indicates that 

depending on the cost appetite, ensuring the required degree of robustness may not be as high as would 

at first be thought on an a priori basis. 
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5.2 Conclusions from the thesis 

Chapters 2,3 and 4 all point to the conclusion that incorporating feedback into the modelling of decision 

making clearly helps to dramatically reduce the effects of unmodelled uncertainty on the robustness of 

decision rules. The research also supports the (not unsurprising) conclusion that the cost of ensuring that 

decision rules possess the required degree of robustness is higher in the case of the linear Hoo models 

than it is for the non-linear robust control Lyapunov models. This latter conclusion is highlighted most 

clearly by the results presented in table 3.9 in section 3.4, which illustrate the gains from adopting the 

non-linear, flattened robust control Lyapunov equation as the approach to produce robust decision rules. 

The explicit modelling of feedback can never totally eliminate uncertainties. One of the interesting 

issues investigated during this research was the exact nature of the uncertainty that was being modelled. 

Results obtained but not reported include specific examination of different forms of uncertainty, structured 

or unstructured, for example. The form in which the uncertainty is modelled appeared to have little or 

no quantitative or qualitative impact upon either the robustness or stability of the control rules derived 

in chapters 2,3 or 4. 

5.3 Limitations of the research 

During the course of the research it has become apparent that the finished thesis contains a number of 

limitations in its scope. In chapter 2 moral hazard and basis risk were specifically excluded from the 

work on CAT bonds, which means that no consideration has been given to the default riskiness or moral 

hazard. These factors, together with other issues such as stochastic interest rates, constitute potentially 

fertile and interesting areas for future research. They could be incorporated relatively easily by simple 

modifications to the basic state space approach and via the type, timing and impact of perturbations 

applied within the non-linear Lyapunov model. 

In a non-robust setting default riskiness is frequently tackled using some form of copula function to 

proxy default events, the output of which is then mapped into actual default times. The approach then 

generates actual values using some form of Monte Carlo simulation to value the underlying payoff function 

(see Li's 2000 paper for Risk Metrics for what has become the standard application of this methodology). 

Clearly, such approaches still suffer from a lack of robustness for all of the reasons already referred 

to in previous chapters. However, it is likely that such omissions could easily be incorporated into the 

non-linear Lyapunov model and preliminary work not reported in this thesis indicates that such changes 

do not affect the quantitative or qualitative nature of the results reported in chapters 2,3 or 4. 
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5.4 Suggestions for further research 

Extending the PNVIdN approach to credit derivatives would be a useful, interesting potentially fertile de- 

velopment. For example, applying PNVMN to managing the portfolio risk of collateralised debt obligations 

(CDO's and their compound derivatives CDO's on CDO's or CD02'S) would appeax to be a potentially 

fertile area for future research. Given the substantial growth in the market for credit derivatives, an 

obvious extension to the work in this chapter is to apply the same techniques and approach to evaluate 

the potential trade-off for the credit risk of a financial instrument portfolio, especially with respect to 

the magnitude and scope of default risk as referred to in the previous section. This work is currently in 

progress. 
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Chapter 7 

Appendices 

Appendix 1: Robusta analytics 
1. Ported Slicot Library Functions 

The following list contains the names of those functions ported from the Slicot Fortran library into 

the C++ Robusta. equivalent function names 

Synthesis Routines 

SBOIBD/[SSPolel: Pole assignment for a given matrix pair (A, B). 

SBOIDD/[SSEigenstructurel: Eigenstructure assignment for a controllable matrix pair (A, B) in 

orthogonal canonical form. 

SBOIMD/[SSFeedback]: State feedback matrix of a time-invariant single-input system. 

SB02MD/[SSARESchur]: Solution of algebraic Pdccati equations (Schur vectors method). 

SB02MT/ [SS Convert]: Conversion of problems with coupling terms to standard problems. 

SB02ND/[SSOptirnaIFeedback]: Optimal state feedback matrix for an optimal control problem. 

SB020D/[SSRiccatiSchur] Solution of algebraic Riccati equations (generalized Schur method) 

SB02PD/[SSRiccatiMatrix] Solution of continuous algebraic Riccati equations (matrix sign func- 

tion. method) with condition and forward error bound estimates 

SB02QD/[SSRiccatiError) Condition and forward error for continuous Riccati equation solution 

SB02RD/[SSRiccatiSchurV] Solution of algebraic Riccati equations (refined Schur vectors method) 

with condition and forwaxd error bound estimates. 

SB02SD/[SSRiccatiError] Condition and forward error for discrete Riccati equation solution 

Lyapunov Equations 

SB03MD/[LyapunovSep] Solution of Lyapunov equations and separation estimation 

SB030D/[LyapunovChol] Solution of stable Lyapunov equations (Cholesky factor) 
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SB03PD/[LyapunovDis] Solution of discrete Lyapunov equations and separation estimation 

SB03QD/[LyapunovError] Condition and forward error for continuous Lyapunov equations 

SB03RD/[LyapunovCont] Solution of continuous Lyapunov equations and separation estimation 

SB03SD/[LyapunovDisErr] Condition and forward error for discrete Lyapunov equations 

SB03TD/[LyapunovContErr] Solution of continuous Lyapunov equations, condition and forward 

error estimation. 

SB03UD/[LyapunovDis] Solution of discrete Lyapunov equations, condition and forward error 

estimation. adbeat control state feedback matrix 

7Vunsfer Matrix Factorization 

SB08CD/[TMFLeftCoprirnej Left coprime factorization with inner denominator 

SB08DD/[TMFRightCoprime] Right coprime factorization with inner denominator 

SB08ED/[TMFLeftCoprimeSDj Left coprime factorization with prescribed stability degree 

SB08FD/[TMFRightCoprirneSD] Right coprime factorization with prescribed stability degree 

SB08GD/[TMFLeftCoprimeSS] State-space representation of a left coprime factorization 

SB08HD/[TMFRightCoprirneSS] State-space representation of a right coprime factorization 

SB08MD/[TMFSpectralCont] Spectral factorization of polynomials (continuous-time case) 

SB08ND/[TMFSpectralDis] Spectral factorization of polynomials (discrete-time case) 

Realization Methods 

SB09MD/[RMSequence] Closeness of two multivariable sequences 

Optimal Regulator Problems 

SBIODD/[ORHinfinityDis] H-infinity (sub)optimal state controller for a discrete-time system 

SB10ED/[ORH2Dis] H2 optimal state controller for a discrete-time system 

SB10FD/[ORHinfinityCont] H-infinity (sub)optimal state controller for a continuous-time system 

SBIOHD/[ORH2Cont] H2 optimal state controller for a continuous-time system 

SB101D/[ORFBControllerCont] Positive feedback controller for a continuous-time system 

SB10KD/[ORFBControllerDis] Positive feedback controller for a discrete-time system 

Controller Reduction 

SB16AD/[CRControllerSP] Stability/performance enforcing frequency-weighted controller reduc- 

tion 

SB16BD Coprime factorization based state feedback controller reduction 

SB16CD Coprime factorization based frequency-weighted state feedbarck 

controller reduction 

Generulized State-Space Synthesis - Generulized Lyapunov Equations 
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SG03AD Solution of generalized Lyapunov equations and separation estimation 

SG03BD Solution of stable generalized Lyapunov equations (Cholesky factor) 

State-Space 71unsformation Routines 

TDO11D Balancing a system matrix for a given triplet 

TBOIKD Additive spectral decomposition of a state-space system 

TBO1LD Spectral separation of a state-space system 

TBOIMD Upper/lower controller Hessenberg form 

TB01ND Upper/lower observer Hessenberg form 

TB01PD Minimal, controllable or observable block Hessenberg realization 

TBO1TD Balancing state-space representation by permutations and scalings 

TBO1UD Controllable block Hessenberg realization for a state-space representation 

TB01WD Reduction of the state dynamics matrix to real Schur form 

TB01ZD Controllable realization for single-input systems 

State-Space to Polynomial Matrix Conversion 

TB03AD Left/right polynomial matrix representation of a state-space representation 

State-Space to Rational Matrix Conversion 

TB04AD Transfer matrix of a state-space representation 

State-Space to Frequency Response 

TB05AD Requency response matrix of a state-space representation 

TC - Polynomial Matrix 

Polynomial Matrix 71unsformations 

TCOIOD Dual of a left/right polynomial matrix representation 

Polynomial Matrix to State-Space Conversion 

TC04AD State-space representation for left/right polynomial matrix representation 

Polynomial Matrix to Frequency Response 

TC05AD Transfer matrix of a left/right polynomial matrix representation 

TD - Rational Matrix 

Rational Matrix to Polynomial Matrix Conversion 

TD03AD Left/right polynomial matrix representation for a proper transfer matrix 

Rational Matrix to State-Space Conversion 

TD04AD Minimal state-space representation for a proper transfer matrix 

Rational Matrix to Frequency Response 

TD05AD Evaluation of a transfer function for a specified frequency 
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TF - Time Response 

TF01MD Output response of a linear discrete-time system 

TFOIND Output response of a linear discrete-time system (Hessenberg matrix) 

TF010D Block Hankel expansion of a multivariable parameter sequence 

TF01PD Block Toeplitz expansion of a multivariable parameter sequence 

TF01QD Markov parameters of a system from transfer function matrix 

TFOIRD Markov parameters of a system from state-space representation 

TG - Generalized State-space 

Generalized State-space 21ransfim-mations 

TGOIAD Balancing the matrices of the system pencil corresponding to a 

descriptor triple 

TGOIBD Orthogonal reduction of a descriptor system to the generalized 

Hessenberg form 

TGOICD Orthogonal reduction of a descriptor system pair (A-sE, B) 

to the QR-coordinate form 

TG01DD Orthogonal reduction of a descriptor system pair (C, A-sE) 

to the RQ-coordinate form 

TG01ED Orthogonal reduction of a descriptor system to a SVD coordinate 

form 

TG01FD Orthogonal reduction of a descriptor system to a SVD-like 

coordinate form 

TG01HD Orthogonal reduction of a descriptor system to the controllability 

staircase form 

TG01ID Orthogonal reduction of a descriptor system to the observability 

staircase form 

TG01JD Irreducible descriptor representation 

TG01WD Reduction of the descriptor dynamics matrix pair to generalized 

real Schur form 

2. Robusta system overview 

Robusta is a three tier system. The front-end graphical user interface is written in Visual Basic version 

6. The middle tier analytics are written in C++ and implemented as dynamic link libraries available to 

other C++ and Visual Basic programs. The lower tier is an Access database that holds the market and 
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trade data required to run the simulations. Figure 1 shows the main menu screen the user sees upon 

logging in, whilst figure 2 shows the main pricing menu screen and figure 3 shows the 

Figure 1: Robusta entry screen 
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Figure 4: Robusta trade entry screen 
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This screen allo%%-, the user to create, modify, add and delete trades to portfolios in order to simulate 

hedginl- ; md riA , cviiarios. 
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This screeii all(m-s iisens to create single or multiple hedging trades, price them and then add them to 

new or existing portfolios for the purposes of simulation. 
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Appendix 2: PCS data for CAT bond and CAT option valuations 

This appendix describes the data used in the calculations performed and results reported in chapter 

2 of this thesis. The data comes from three sources: 

1. Catastrophic loss data as reported by the Property Claims Service. 

2. Catastrophic Loss Insurance options data as reported by the Chicago Board Of Tradel. 

3. Interest rate yield curve data as supplied by Credit Suisse First Boston. 

Each of these data sources will now be described in detail in the following sections: 

Property Claim Services (PCS) 

PCS is the insurance industry recognised authority on insured catastrophic events. PCS is a division 

of American Insurance Services Group Inc., a not-for-profit organisation serving the insurance industry. 

Since the inception of the Catastrophe Serial Number system in 1949, PCS has been responsible for 

estimating insured property da-mage resulting from catastrophes affecting the United States. According 

to PCS, the definition of a catastrophe is an event that causes losses in excess of $25 million of insured 

property damage and affects a significant number of policy holders and insurance companies. PCS assigns 

a serial number to each catastrophe for identification throughout the industry. 

PCS options data 

The following material draws extensively on the Appendix VCS Catastrophe Insurance Options - 

Salient Features" which forms part of the document "A User's Guide to PCS Options", published by 

the Chicago Board of Trade. Copies of the document can be obtained from the European Office of the 

Chicago Board of Trade at 52-54 Gracechurch Street, London, EC3V OEH. Further details are available 

via the following URL: www. cbot. com. 

Features of the PCS and CBOT datasets used in this research 

The loss claim data provided by the Property Claims Service of ISO cover the period from August 1949 

to the end of December 1999. The data includes the dates, states and types of each catastrophic event, as 

well as the estimated total loss claims in then current dollars for the whole property/casualty insurance 

industry. PCS assigns a unique serial number to every event where the losses exceed a predetermined 

threshold value and which has a simultaneous impact on a large number of both policyholders and insurers. 

From inception to 1983 the threshold value was $1 million, but was increased to $5 million after 1983 and 

$25 million with effect from the beginning of 1997. 

'The underlying for these options was the catastrophic loss index data as supplied by the Property Claims Service. 
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During the time that PCS options traded on CBOT, nine PCS indices were provided to the CBOT 

daily: a National index; five regional indices covering losses in Eastern, Northeastern, Southeastern, 

Midwestern, and Western exposures; and three state indices that covered losses in Florida, Texas, and 
California. Each PCS index value represents the then current PCS estimates for insured catastrophic 

losses, but divided by $100 million, then rounded to the nearest first decimal point. For instance, if 

estimated losses total $5,232,780,000, the index value would be 52.3. There is generally a three to five 

day lag between the initial PCS release of a first estimate of claims after a catastrophe. Re-estimates are 

released within 60 days if catastrophic losses exceed $250 million. PCS continues to update loss estimates 

until an accurate estimate is felt to have been achieved. The loss claim data was used directly as the 

underlying for the CAT bond research. 

The Chicago Board of Trade began trading of CAT futures and options on the futures in 1992. These 

CAT futures and CAT options based on ISO's loss ratio index failed to gain a material level of market 
interest and were replaced by PCS options in September 1995. Unfortunately, after just over 3 years of 

trading activity, the PCS options also stopped trading in the summer of 1999 due to inadequate open 

interest. During this period, CAT bonds were found to be more popular than exchange-based products. 

However, the lack of secondary market activity for CAT bonds means that there is little information 

about the pricing patterns of such catastrophe-linked securities. As far as PCS options traded on the 

CBOT are concerned, a total of less than 600 transactions were completed over the three-and-half-year 

period during which the contracts traded. Although this is a small volume, the results of the open out-cry 

transaction mechanism do at least provide what were at the time realistic bid/ask market prices. 

The following table shows the contracts that were actually used in the research reported in chapter 2: 

(W ChicagooBcoarcicofIrracla 
CATASTROPHE INSURANCE FU`lrURES/0PTIONS Code Period Coverage 

NArL CATASTROPHE LIN 12/11/1992-11/1511995 

NArL CATASTROPHE CALL UNC 12/11/1992-11/15/1995 

NAT'L CATASTROPHE PUT LTNP 12/11/1992-11/15/1995 

PROPERTY CILABI SERVICES (PCS) INSURANCE OPTIONS Code Period Coverage 

NAH ANNUAL INS LARGE CAP-6 MONTH CALL 

ý 

DHC 10/04/1996-11/03/1997 

NAT'L ANNUAL INS. LARGE CAP-6 MONTH PUT DHP 10/04/1996-11/03/1997 

NATL ANNUAL INS. SMALL CAP-6 MONTH CALL QHC 10/04/1996-11/03/1997 

NArL ANNUAL INS. SMALL CAP-6 MONTH PUT QHP 10/04/1996-11/0 . 3/1997 

NArL INS. LARGE CAP-6 MONTH CALL DNC 09129/1995-11/03/1997 

NArL INS LARGE CAP-6 MONTH PUT DNP 09129/1995-11/03/1997 

NArL INS. SMALL CAP-6 MONTH CALL QNC 09/29/1995-11/03/1997 

NAH INS. SMALL CAP-6 MONTH PUT QNP 09/29/1995-11/03/1997 

Appendix Table 2-1: PCS Derivative Codes and Operational Periods 
(All data supplied in electronic form by Chicago Board of Trade) 

PCS Methodology for Estimating Catastrophe Damage 

pCS compiles its estimated of insured propertyftmage using a combination of procedures, including 
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a general survey of insurers, its National Insurance Risk Profile and where appropriate its own on the 

ground survey. PCS estimates take into account both the expected dollar loss and the projected number 

of claims to be filed. A survey of companies, agents and adjusters is one part of the estimating process 

PCS also conducts confidential surveys of at least 70% of the market based on premium written market 

share. PCS then develops a composite of individual loss and claim estimates reported by these sources. 

Using both actual and projected claim figures, PCS then extrapolates to a total industry estimate by 

comparing this information to market share data. 

PCS also relies on its National Insurance Risk Profile in preparing an insured property damage es- 

timate. This PCS developed profile includes an inventory of buildings and insured vehicles in each of 

the over 3,100 counties of the USA and is based"on census, taxation and other demographic data. The 

inventory is decomposed into residential, multiple family and commercial buildings. The inventory also 

includes PCS estimates of the number of vehicles protected by comprehensive insurance. Using this in- 

formation, PCS can determine the approximate number of insurable risks within the specific geographic 

area affected by a catastrophe. This information is coupled with the results of insurer surveys to provide 

a specific outline of the scope of the damage. 

Index Valuation 

Each PCS loss index represents the sum of the then-current PCS estimates for insured catastrophic 

losses in the areas and the loss period covered divided by $100 million. each index is quoted in points 

and tenths of a point. So for example, if loss estimates for the PCS September Eastern index totalled $2 

billion, that index would be valued at 20.0 points ($2,000,000,000/$100,000,000), with each index point 

being worth $200 in cash value. Table shows 
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PCS Loss Index Value Index Loss Equivalent Value 

0.1 $10 million 

1.0 $100 million 

20.0 $2 billion 

50.0 $5 billion 

100.0 $10 billion 

200.0 $20 billion (small cap limit) 

250.0 $25 billion 

300.0 $30 billion 

350.0 $35 billion 

400.0 $40 billion 

450.0 $45 billion 

500.0 $50 billion (large cap limit) 

Small/Large Cap Option contract specifications 

Each PCS index will have both small cap and large cap option contracts listed for trading. Small cap 

contracts track aggregate estimated catastrophic losses from $0 to $20 billion, whilst large cap contracts 

track aggregate estimated catastrophic losses from $20 billion to $50 billion. 

The loss period is the time during which a catastrophic event must occur in order for resulting losses 

to be included in a particular index. PCS options can have either quarterly and annual loss periods. Each 

loss period is tracked by small and large cap quarterly or annual contracts as appropriate, as shown in 

table . 

Contract Loss Period Covered 

March First quarter 

June Second quarter 

September Third quarter 

December Fourth quarter 

Annual Calendar year 

The development period is the time after the loss period during which PCS estimates and re-estimates 

for catastrophes that occurred during the loss period Continue to affect the PCS indices. PCS option users 

can choose either a6 or 12 month development period. The PCS index value at the end of the chosen 

development period will be used for settlement purposes, even though PCS loss estimates may continue 
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to change. 

Strike value are listed in integral multiples of 5 points. For small cap contracts, strike values range 

from 5 to 195. For large cap contracts, strike values range from 200 to 495. Premia are quoted in points 

and tenths of a point (the market tick is a tenth of a point), with each point being worth $200 (clearly 

each tenth of point is therefore worth $20), so that a premium of 5.2 equates to a value of $1,040. Exercise 

style is European, with in-the-money options being automatically exercised by 6.00 p. m. on the day of 

expiration. All options expire at 6.00 p. m. on the same day in which the settlement value of the underlying 

index in made publicly available, either 6 months or 12 months after the loss period (on the last business 

day of the period), depending on the development period of the option. 

Small cap contracts settle in cash to the lesser of a) $200 x the settlement value of the index or, b) 

$40,000 (220 cap x $200). Large cap contracts settle in cash to the lesser of. a) $200 x the settlement value 

of the index or, b) $100,000 (500 cap x $200). Large cap contracts have a lower bound of 200, or $40,000 

Last day of trading will be the last business day of the 6th calendar month following the loss period for 

options with a6 month development period and the last business day of the 12th month following the 

loss period for options with a 12 month development period. 

PCS call spread options are standardized, exchange-based contracts that track the PCS catastrophe 

loss indices. The options are European style in that they can not be exercised prior to the expiration 

date. However, they can be closed by selling or buying exactly the same option contract. Each con- 

tract is characterized by four factors: regional coverage, lower and upper strike prices, loss period, and 

development period. Other regions covered correspond to the nine regional PCS indices, so that nine re- 

gional contracts are available: Eastern contracts, Midwestern contracts, National contracts, Northeastern 

contracts, Southeastern contracts, Western contracts, California contracts, Florida contracts, and Texas 

contracts. 

Strike prices are defined with respect to lower and upper strikes. So, if k, and k2 are the lower 

and upper strike prices, respectively, they represent to the retention level and upper limit of a traditional 

excess-of floss catastrophe reinsurance contract. Selling a call-spread contract k, /k2 (k, < k2) is equivalent 

to selling a call option with strike price kj and automatically buying a call option with a strike price k2- 

By selling a call spread option contract, losses are capped by k2 - ki 
, with risk being reduced relative to a 

simple call. If L (T) is the aggregate PCS index value, then the final payoff at the maturity of the option 

will be 

max (min (L (T) - kj, k2 - ki), 0) 

If [T, 01 is the loss period in months, then if T= 12, it is an annual contract, which covers the aggregate 

insured losses occurring within a whole calendar year; whereas if T=3, it is a quarterly contract. There 
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are four quarterly contracts, such as March/June/September/December: 

9 March contracts cover losses occurring in the first quarter. 

9 June contracts cover losses in the second quarter. 

9 September contracts cover losses in the third quarter. 

4p December contracts covers losses in the fourth quarter. 

Only annual contracts are available for the Western and California regions. Both annual and quarterly 

contracts are provided for the National index and there are two choices for development periods: six 

months or a year. During the development period, the PCS continues to update its nine regional index 

values for catastrophe events occurring during the loss period of each contract. The final payoff of a 

regional contract will be determined by the final, updated PCS index values on its expiration date. 

A further benefit of the PCS call spread option contracts is that they had similar payoff functions 

to those of traditional excess-of-loss catastrophe reinsurance contracts, making the two reasonably good 

comparisons. Froot and O'Connell (1999) explain that limited capacity is the main factor that drives 

the reinsurance cycle problem. Exchange-based PCS options traded at the CBOT have no credit risks, 

so limited capacity would not be an issue. If the pricing cycle is not identified with PCS options, it 

would be a side support of their theory; if the cycle persists, then other reasons need to be explored. The 

following subsection briefly introduces some background knowledge of PCS options and the PCS index, 

and provides a summary of basic statistics on those transactions. 

Interest rate data 

Data for the construction of zero coupon yield curves were kindly provided by Credit Suisse First 

Boston for the period January 1970 to December 2003. The data provided and used was rates/prices for 

mid-market closing for cash market and swap market rates. Although interest rate futures were available 

for the entire period, their incorporation into the construction of a yield curve via a bootstrap process 

only became market practice in the mid-1980's. So for the sake of comparison and simplicity it was to be 

acceptable to exclude futures from the construction of the zero coupon yield curve. The impact on the 

forward rates produced by the bootstrap of omitting futures is minimal in the context of the reported 

research. The yield curve tenors used for the construction of the zero coupon yield curve were therefore: 

Cash Curve: 

the following maturity instruments: 

OIN, 1W, 1NI, 3M, 6M, IY 

Swap Curve: 
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the following maturity instruments: 

2Y, 3Y, 4Y, 5Y, 6Y, 7Y, 8Y, 9Y, Joy, ily, 12Y, 13Y, 14Y, 15Y, 20Y, 25Y, 30Y 

The Burr distribution 

The cumulative density function for the Burr distribution, Burr (a, A, 6) with a>0, A>0,5 >0 is 

given by 

cdf : F(x) =1-")a 
(A 

+ X6 

and the probability density function is given by 

pdf :f (x) = aä, \3-1 (X 
+x 6) 
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Appendix 3: Catastrophe bond valuation results 

Table 1: CAT Bond Pricing: Poisson PIDE 
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(short dated: maturity 12 months) 
20%L- Jo% L- 40%L- 

-50%L-. -60%1- 
70%L- so%L- "%L-. -- "%L 100%L-t 

7d 0 (Kxx75 0613125 0552955 0325386 0357017 0376777 03%924 02]W»$ 0129831 r d3 1 0099461 64 94 CM 0000717 
im 45m71 20649ý* 23 819U5 24610681 26378369 27441686 2849S086 28072805 04 

- 
29133104 lý 23036032 23036032 18474267 

2- 76-5459 24584158 28 496231 30 106615 32100966 33290652 _ 34461937 34775164 999 36763999 

1 

1999 36 ' 

I 

32715636 32715636 29 71919; 

10 2739m -27 )(18432 31473698 33625236 35733505 36994486 38211290 39 019858 , 27 590127 9239663 

V 

39239663 3785308) 

4. )2597721 28994905 33m705 36239992 38417212 39704102 40962477 42 140201 04 047 45 121047 44 13()394 44 13M0394 44105660 

- i4 697949 )o 510191 35450925 38 3Z6570 40549529 418592914 43 137108 44605922 () 4 , olo 47896010 480()9272 8 ee 48009272 49098953 

6. 16 62233 1 - 31 79n982 3692434, 40C6M31 42319022 43643984 44934172 46641033 1786 50173786 17: 37 5 1198616 51 198616 53 196724 

7. 194024911 12976935 38 18 35 41 353722, A3M832 45 166064. 46464M 48370738. W35 52 Offl35 51888614 53888614 6. 

s. i . 
20 (nn77 11 R41654 39 29w, 64 42 85M99 4 12 1, 46 492M5 47794983. 49872390 53762685 56201190 

. 
59555006 

2 1 A147: u703924 40286271 44011969 4L-1 , 54 7665 7 9 97 1 52Z 11 97220 55222977 58219227 62 OW)400 
5 6923 35 48X871 41 176471 45 03494ý 47 6 

-2 
l L ý! 9 . 48717 49 f- ; ö24 ji 50 2 

- 
5 5 80952 56 521739 60001600 64285714 

lt. 1 24 45912ý 36196140 41 986771 ý(m392 L 48 3 [9 7 4r670774 97Z9651 53449506 57 6899W 61 591590 1 66230115 

12. 25 7e, 6974 36951739 42 7e325 46 M6056 49189 8473621 54422-186 58747213 63021910 1 67 958735ý 

Table 3: CAT Bond Pricing: Linear Lyapunov Solution 
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Table 4: CAT Bond Pricing: non-Linear Lyapunov Solution 
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Thble 5: CAT Bond Pricing: Poisson PIDE 

flong-dated. maturity 10 years) 
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Table 6: CAT Bond Pricing: Numerical HJI 
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Table 7: CAT Bond Pricing: Linear Lyapunov Solution 
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LI-., L,. 
M-fn 

P 
I 

- 
O%L- i n O%L 50%L- 60"1 70%L-. 90%L-. 90%L-. 

399440 
100%L. - 

- 

0327154 
8 4y 0 3(W 20 . 0371028 0384987 0394973 0403925 0411" 0409263 0 

- 
IMM12 1 

-11*)671 1 477933 1574803 1671583 1768173 1 864573 1912702 1931941 1951172 

1-4y ----i 1759si 2 527191 299435) 3 277642 3543S48 3830690 4 126367 4 430704 4630719 4767193 5402209 
0 - 

ly 3614248 
- 

4216591 5 111659 5697505 6213976 
7 

983 6792 

0 1 6 

7397890 
11431957 

8029154 
12482876 -- 

8488443 
---- 11288310 

9943475 
13947372 -- 

10 T 1 56 
17731003 

LSY : 3 653370 6405011 771w) 6 64IM4 94 6- 1 4 002 
--7 - 

3y -7145SO4 a ! 22M2 
- 

106556* 12 00"95 13 204336 14 583997 16038489 17561129 19763317 19 77WI 
- 

5 118 649 5119649 
7 90 

"Y 10 0"974 11 49(123$ r 13 873816 13 687691 17 264413 19 096690 
- 

21016301 23019016 24626658 
--- 

26003593 
- 

3407 2 

4, 'sw 12507 95 95 1432089 17 286972 19572141 21530101 
- 

23 L96385 26175912 29629056 30615045 
36 5 30D3 

32329732 42246311 
--- 49839143 

4-47 13091111 17 291592 )()921033 23 5WIR 1 23 U7809 28577783 1 31 354084 34201084 1 

4, 17764,181 2D 3"239 24 4 044 27593120 30241612 33 29K339 f 36422058 39 SWW3 42162516 44388010 ; -- 56647"U 

S. ST 20487979 23 4VA74 1452 280( 31579563 34514967 37 U1736 41 285506 44698243 47460746 4984 14 r 9 2 84 62605032 

&F 23234716 26531959 31 5-882 
- 

-33473992 38649733 42266396 45881834 49463884 52351214 1 2 20 620 54 83 2620 67 733232 

6. qy 25979660 29 599M83 i-5 (K"*g -39 2b48D 42605330 46412243 50 174778 53 858525 56912716 
- 

1 9265 59339265 72104481 
, 

7y 2R 701493 32615677 39. %2@W 2818933 46 3552M 50296731 54 148523 57%76022 60849705 7746 37774 

163 

6 75810733 

7 sy 31 392667 
. 35559548 41 5*97M 462632.10 49 RW 16 53 91OR55 57802181 61 525839 64478439 '689 97 6 66 9 896 7 6 78946645 

- 
34 (X)%W 

. 38 4164 U 675590 49499327 
- - 

97883 
- 

57255552 
- 

61 145106 64827266 
- 

67730250 
' 

, 11 17 3613 70 173613 81600509 

36569330 41 175WK 47 615W 52 543" 56266110 60338681 64 193183 67805098 70 636759 3()o 73 W77714 83 8503M 

9, 3905152 'g't' -SS3 1 9 ? 52 ILS M 1 IZ 2Z Q 2t2 669660361 70486521 1 ZI L3 1 Z! 7 1 25 

4 y 
- 41460267 Z3tl- 53 UZ9312 

7 2 54 ;IM 5 0 72465 1 69485028 1 72899421 , 75 54 N 
. 

75 

1ý 35311091 60551327 1 64224763 1 68 1546231 I 71 771886 
- 

75070408 1 77616842 1 
_7 

Table 8: CAT Bond Pricing: non-Linear Lyapunov Solution 

flong-dated. - maturity 10 years) 
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Appendix 4: Catastrophe option valuation results 

Table 1: PCS option valuation results using Cox-TGA 
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Table 2: PCS option valuation results using numerical HJI 
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Table 3: PCS option valuation results using linear Lyapunov 

/'? m lneenpTind rAntrart. 6m develonment -Deriod) 
Contract "t pts loot$ 2opts 

-; 
Opts loopts I 200pts I 250pts 300pts- 350pts 400vts 45ODtS Soopts 

Sep-95 46265258 57959636 65.260674 69.522682 93.585109 56.610196 41.393924 37.392915 29.346204 28.433185 26.428903 19.114815 

Dec-95 
Mar-96 
Ant-96 

56021955 
37 107306 
39973282 

63.73714 
53 15488 

31 232273 

72.372786 
59933843 
60.296383 

78787363 
64043447 
62.345903 

92.123568 
70.691383 
69.689602 

80.711297 
56.957811 
52.176712 

50.540137 
46.77511 

38.569765 

36.369698 
32.42811 

30.849863 

32.18932 
28.563818 
26.897201 

29.885323 
26.367426 
25.35128 

26.605219 
23091482 
22.003945 

23627548 
20.65376 

19.841711 

Sep-96 53025567 60.778423 67.461568 7). 737844 85.615233 52.909087 43.482169 31 645241 25.36732 23.623744 20.559724 1799929 

W96 
7 71 

2! ! 
578285 35.5 7477, 

58921771 
446108 , 

70633878. 
51.4421411 

74845979, 
62237851 

72.5624841 
67.8630771 

58.273571, 
59.4764521 

53.182441. 
44.8883911 

33.862103. 
290772811 

24.404242, 
27.2410031 

23.284989. 
268793481 

21.428625. 
236287651 

18.23 ! 74 

19.57 109 

Table 4: PCS option valuation results using non-linear Lyapunov 
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Appendix 5: Hedging simulation data 

Explanation of hedging strategies 

Table 1 (which is identical to table 3.1 in chapter 3) summarises the strategies that were evaluated 

as the basis of the empirical work reported in chapter 3 of this thesis. The object of this appendix is 

to provide precise meaning of each of the strategies - which for ease of exposition are referred to. by the 

reference number in the first column of table 1 below. 

Thble 1: Stratejzv summaries 
Number Strategy Objective Function Conditions Costs 2 

1 Delta Delta neutrality n. a. Excluded 

2 Miniinax-95 Potential hedge error 95% level Excluded 

3 Minimax-99 Potential hedge error 99% level Excluded 

4 Heuristic-w Potential hedge error Weighted Excluded 

5 Minimax-95c Potential hedge error 95% level Included 

6 Heuristic-95c Potential hedge error 95% level Included 

7 ý2 Potential hedge error n. a. Included 

8 0/ (r, - i) la,, Potential hedge error n. a. Included 

9 rZ - rce Potential hedge error n. a. Included 

10 Linear Hoo Potential hedge error Uncertain Excluded 

11 Non-Linear Hoo Potential hedge error Uncertain Excludedl 

btrategy jL: 

The objective of this strategy was to be precisely delta neutral. This was achieved by first calculating 

the delta of the position and then adding or subtracting exactly the right amount of futures contracts to 

produce an exactly zero delta position - both in total and by forward time tenor. This was repeated for 

each daily hedge re-balancing. Making this work proved to be an iterative procedure for which code had 

to be developed tested and then implemented. 

Strategy 2: 

This strategy follows very closely the Rustem, Howe and Selby work referred to in chapter 3. The 

objective of this strategy was to minimise the minimax hedging error. In this case a distinction is drawn 

between actual and potential hedging error. Actual error is defined to be inclusive of interest payments 

on borrowed money. It is calculated when actual Bt, ytS, Bt+j and ys t+1 are used in the equation for U1. 

Potential hedging error, including interest payments on borrowed money, is calculated when actual values 

2Transaction costs can be modelled in a number of different ways. However, it was felt that adjusting the bid-ask spread 
was the most appropriate method in the interests of transparency and in line with most capital-market conventions. 
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S of Bt and y, and potential values of Bt+I and yts+l are used in the equation for U1. Note that potential 

S y, +, 
is taken from a predefined range that maximises the objective function. Potential Bt+1 is the value 

of the call option based on the pricing model, given potential yS+I , 
i. e. potential Bt+I = Bt+, (yts+, ). The 

minimax hedging error at time t is defined as 

minimax hedging error = U, (xt", 
yts+-, 

) 

The minimax: hedging error is the worst-case potential hedging error, including interest payments on 

borrowed money, given the solution of xt* and ytsý,. The limit is set with respect to the 95% confidence 

level. 

Strategy 3: 

Identical to strategy 2, except that the limit is set at 99% confidence level. 

Strategy 4: 

The objective of this strategy was to minimise potential hedging error based on weighting the number 

of shares to hold by a weighting factor in the range 0 to 1. The weight represented the hedger's view of 

the information contained in the price changes in the underlying stock. The weights were algorithmically 

generated based on the standard deviation of the underlying, based on the changes in volatility. 

Strategy 5: 

Identical to strategy 2, but including transactions costs. 

Strategy 6: 

Identical to strategy 4 but incorporating a 95% confidence limit. 

Strategy 7: 

The objective of this strategy was to assess the performance of the Ederington hedge efficiency measure, 

calculated as follows 
2 USF 

or2 2 
saf 

2 where a. 2 and af are the subjective variances of the possible price changes of the spot and forward prices 

and a2 is the variance of the s ot-futures portfolio. SF p 

Strategy 8: 

The objective of this strategy was to assess the performance of the Howard and D'Antonio, hedge 

effectiveness ratio which is calculated as follows 

0 

I� 

291 



Strategy 9: 

The objective of this strategy was to assess the performance of the Permings and Meulenberg hedging 

efficiency measure 

E= 
t+1)2Cp 

2 VE(FTR [VLTA 
+-A-A]2 Cp 

Up-) 2 (PFtl 
- C) 

TE 
(C'Pt 

- CW (PFtl 
- C) 

ýE (CPt 
- 

-CPý 

where the terms are explained fully in text and footnotes in chapter 3. 

Strategy 10: 

The objective of this strategy was to assess the performance of the linear Hoo hedging rule, based on 

the following formulation 

f (x, U, w) (7.1) 

00 1 [X2 + U2] dt (7.2) 

where J is the (quadratic) total cost function, x is the state variable (the value of the portfolio), u the 

linear controller or hedge rule and w the disturbance vaxiable. 

Strategy 11: 

The objective of this strategy was to assess the performance of the non-linear Hoo hedging rule, based 

on the following formulation 

x=f (x, U, w) (7.3) 

00 1[X2+U2 
] dt (7.4) 

0 

where J is the (quadratic) total cost function, x is the state variable (the value of the portfolio), u the 

non-linear controller or hedge rule and w the disturbance variable. 

Volatility regimes 

Two volatility environments were used in the generation of the Monte Carlo simulation data set for 

the simulations reported in chapter three. In an attempt to make the results comparable with Howe 

Rustem and Selby, the low volatility environment was deemed to be a flat volatility of 20% whilst the 

high volatility environment was set at a flat rate of 60%. 
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Generating the simulation data 

The simulations were performed using the simulation engine inside Robusta, which uses a widely 

available and tested version of a C++ implementation of the Mersenne Twister random number generator. 
Mx K;: ZCL 

For each of the eleven strategies, 100,000 paths were calculated for each combination of low and high 

volatilities versus 11 alternative strike levels (0.5% - 5.0% away from the at-the-money strike in 0.5% 

increments), which meant a total of 22 (i. e. 11 strikes times 2 volatilities = 22) paths for each strategy. 

Each strategy was evaluated over each of the possible paths, with the final result for the strategy being 

the simple arithmetic average of the all the path evalutions. The standard normal distribution was used 

to simulate the paths on the grounds that it provided an easy to interpret benchmark against which to 

compare the results of the historical simulation. 

Historical simulation data 

For each of the eleven strategies, 100,000 paths were calculated for each combination of low and high 

volatilities versus 11 alternative strike levels (0.5% - 5.0% away from the at-the-money strike in 0.5% 

increments), which meant a total of 22 (i. e. 11 strikes times 2 volatilities = 22) paths for each strategy. 

Each strategy was evaluated over each of the possible paths, with the final result for the strategy being 

the simple arithmetic average of the all the path evalutions. The standard normal distribution was used 

to simulate the paths on the grounds that it provided an easy to interpret benchmark against which to 

compare the results of the historical simulation. 
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Appendix 6: Portfolio risk simulation data sources and results 

Data sources and market data calculations 

The period selected for the portfolio risk research reported in chapter 4 was the three month period 

covered by the second quarter of 2004 (i. e. from Monday 01 March 2004 to Friday 02 July 2004). Data 

for interest rate, equity price and volatility data were supplied by Credit Suisse First Boston and cross 

checked with the exchange where possible. Contract specifications were downloaded from the Eurex web 

site. Daily data on both spot index values, as well as call option prices was purchased from Eurex. 

Contextual data on market depth (e. g. open interest to ensure deep and liquid pricing) was downloaded 

from the Dow Jones EuroStoxx5O index web page (http: //www. eurexchange. com/data/). Where 

available, volatilities from Eurex were used. When thought to be unreliable, historical volatilities were 

calculated using the daily data using the following industry standard definition. Let a be a stochastic 

process, where its terms may represent prices, accumulated values, exchange rates, interest rates, etc. 

Then the volatility of the process at time t-1 is defined as the standard deviation of the time t return. 

Typically, log returns are used, so the definition becomes 

volatility = std 
(log U-1 

where log denotes a natural logaxithm. However, simple returns axe often used; which can often be 

true in the context of portfolio theory. Assuming that returns are conditionally homoskedastic, then the 

above definition is precise. However, if they are conditionally heteroskedastic, then the definition needs to 

be clarified. Does volatility at time t-1 represent the unconditional standard deviation of the time t log 

return? Or does it represent the standard deviation of the time t log return conditional on information 

available at time t-1? The answer is generally accepted to be the latter. To emphasize this, the definition 

is expressed as follows 

volatility = stdt-1 log 
Q, ( U-1)) 

where the superscript t-1 on the standard deviation operator indicates that the standard deviation 

is conditional on information available at time t-1. Another issue in defining volatility is that of the unit 

of time on which the calculation and therefore the result is based. The standard deviation of a stock's 

price return over a day might be 0.01 and over a year, it might be 0.16. Accordingly, the volatility that 

was used in the portfolio risk computations was appropriate to the period for which the option was being 

valued. 

Generating the simulation data for evaluating the risk measures 

The simulations were performed using the simulation engine inside Robusta, which uses a widely 294 



available and tested version of a C++ implementation of the Mersenne Twister random number generator. 

The method for generating the volatilities used in the valuations for each strategy, was therefore as follows: 

1. For each given volatility environment, 10,000 option price paths and 10,000 index value paths were 

generated. 

2. The simulations were run using: low, flat, skew, 10% jump, 30% jump, 50% jump, 100% jump, 

500% jump and high volatility (90% flat) environments. Results were generated for a number of 

alternative distributions (normal, lognormal, Frechet and a Generalised Pareto) but only those for 

the extreme value Generalised Pareto distribution are reported on the grounds that the remainder 

of the results added little or nothing of any interest or significance to the reported results. 

3. The risk strategies were then evaluated using the generated path information using the methodolo- 

Simulation 
Scenario Description 

Delta 
Neutrality 

Simple delta hedge 

10d Delta- I Od horizon VAR calculated 
Gamma using delta-gamma 

VAR-95% approximation - 95% 

1 Od Delta- I Od horizon VAR calculated 
Gamma using delta-gamma 

VAR-99% approximation - 99% 

Minimisation of potential 
Minimax hedging error 

EVT Peaks over threshold 

(GPD) model 
Rational 

Assumed rebalancing 
Bounds 

PWMN No flattening 

PWMN 
I 
Flattened using distance to 

flattened region around manifold 

The above risk management strategies involved the following: 

Delta Neutrality: 

This strategy uses the same definition as used in chapter 3. 

10d Delta-Gamma VAR-95%: 

This strategy uses the industry standard delta-gamma method based on a 10 day window at the 95% 

gies described in chapter 4, with the reported EVT measure being based on the Generalised Pareto 

distribution using a peaks over threshold method. 

Description of the risk management strategies 

confidence level (see for example Jorion, 1997). 
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10d Delta-Gamma VAR-99%: 

This strategy uses the industry standard delta-gamma method based on a 10 day window at the 95% 

confidence level (see for example Jorion, 1997). 

Minimax: 

This strategy uses the industry standard delta-gamma method based on a 10 day window at the 99% 

confidence level (see for example Jorion, 1997). This strategy follows very closely the Rustem, Howe and 

Selby work referred to in chapter 3. The objective of this strategy was to minimise the minimax hedging 

error. In this case a distinction is drawn between actual and potential hedging error. Actual error is 

defined to be inclusive of interest payments on borrowed money. It is calculated when actual Bt, yts, 

S Bt+1 and y, +, are used in the equation for U1. Potential hedging error, including interest payments on 

borrowed money, is calculated when actual values of Bt and yts and potential values of Bt+1 and S are Yi+1 

S used in the equation for U1. Note that potential yt+1 is taken from a predefined range that maximises 

the objective function. Potential Bt+1 is the value of the call option based on the pricing model, given 

S potential y, +, , 
i. e. potential Bt+1 = Bt+, ( S 

1). The minimax hedging error at time t is defined as Yi+ 

minimax hedging error = Ul (x, ', yts+*ý) 

The minimax hedging error is the worst-case potential hedging error, including interest payments on 

S* borrowed money, given the solution of x* and yt+,. The limit is set with respect to the 95% confidence t 
level. 

EVT using the Generalised Pareto distribution: 

This strategy uses the standard peaks-over-threshold methodology (see Embrechts, Kluppelberg and 

Mikosch (1999). 

Rational bounds: 

This strategy uses the a simple heuristic of keeping portfolio risk within 95% of the previous day's 

risk as measured by the simple delta of the portfolio. 

PWMN (piece wise tnin-norm): 

This strategy uses a piece wise min-norm control rule to control portfolio risk. To see how the 

algorithm actually functions, the interested reader is referred to Kokotovic (1996) and the Slicot library 

documentation. 

PWMN (piece wise min-norm) flattened: 

This strategy uses a piece wise min-norm control rule modified such that local gains on the controller 

grow much more slowly, thereby reducing the control effort required to robustly maintain portfolio risk 

within the guaranteed bounds. This is achieved by using a penalty term that penalises the distance to 
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a region around the manifold rather than the distance to the manifold itself. The interested reader is 

referred to Kokotovic (1996) for explicit details of the algorithm. 

Simulation results 

Ihble 1: Summary Monte Carlo simulations of portfolio level risk 

(expressed as a% based on ATMF strike premium) 

Volatility 
Environment 

10d Delta- 
Gamma 

VAR-95% Nfinimax 
EVT 

(GPD) 
Rational 
Bounds PNVMN 

PWMN 
flattened 

Low vol: Min risk 4.7831 5.7183 6.1529 7.6136 8.7682 8.6358 
Low vol: Max risk 12.9700 10.1373 17.7299 13.4837 14.0902 11.5733 
Flat vol: Min risk 14.8462 6.6902 21.8704 10.1256 9.7047 8.7471 
Flat vol: Max risk 36.5839 23.6490 41.5538 26.5349 19.4863 11.8452 
High vol: Min risk 22.3887 16.8171 20.1649 12.4383 20.2752 18.1792 
High vol: Max risk 51.9761 43.1728 79.1042 42.0361 31.9215 27.9094 
Skew vol: Min risk 20.1382 19.1410 56.5888 13.4471 15.6188 13.4471 
Skew vol: Max risk 34.0353 31.6734 72.8776 30.0539 20.9428 25.0403 
JumplO%: Min risk 24.0309 33.5126 45.7869 30.0160 20.3220 16.5214 
Jump 10%: Max risk 37.0203 42.5999 55.6970 34.2276 25.8716 22.4910 
Jump30%: Min risk 27.9093 26.3343 32.5102 24.2738 22.6814 22.0460 
Jump30%: Max risk 46.1536 40.1775 50.3042 39.5581 29.1972 25.3424 
Jump5O*/*: Min risk 35.2842 34.1334 51.2126 33.9755 24.8864 25.8352 
Ju-P50*/o: Max risk 55.5474 49-6453 67.6706 41.5597 29.2593 28.9724 
Jump 100%: Min risk 37.4579 31.4965 64.4147 37.4651 40.3429 28.9964 
Jump 100%: Max risk 79.2800 59.8575 98.9560 50.0443 46.7538 35.0948 

-Jump500%: 
Min risk 68.0541 

__ . 
L8.4148 101.4690 50.3362 49.4917 29.6558 

jump500%: Max risk 129.7709 _ 
-- 

98.6785 169.4591 73.2804 63.0695 38.9674 

Table 2: Historical simulations of portfolio level risk 
(expressed as a% bmed on ATAIF strike premiuln) 

Volatility Environment 

10d Dclts- 
Gamma 

VAR-95% Minimii, 
EVT 

Frechet 
Rational 
Bounds PWMN 

PWMN 
flattened 

t, ow vol: NI in risk 8.901337502 6.6i72754 9.5294096 8.8710034 13.816892 6.4846398 
Low vol: Nis% risk 13.89454381 9.2552413 19.394049 2.4368806 13.519934 6.2860554 
Flat vol: Min risk 38.420558981 26.770183 34.7765 3.8915639 9.798945 1 19.790382 
Flat vol: Nis% risk 14.565862671 25.240415 1.2087348 1.9827425 30.175494 1 30.846321 
iligh vol: Min risk 77.218693261 38.690593 37.273279, 49.077158 68.087109 13.282882 
Iligh vol: Nfax risk 
Skew vol: Min risk 

55.871741851 
10.65549708 

34.403723 
13.451618 

80.666508 
45.548332 

1.7514975 
38.436564 

38.715533 
-35.73-3705 

22.794197 
5-3.623808 

Skew vol: Max risk 40.34694127 
_57.242239 

3.1506352 44.15 1 T69 49.943209 62.067165 
JumplO%: Min risk 27.29342516 33.052179 61.309842 16.748973 21.541292 13.128707 
Jum IM Max risk 2.187893013 11.816301 44.666758 25.596927 18.674107, 8: 4501746 
Jump30%: Min risk 7.863849895 18.940541 24.3708431 3.2442942 13.195762 35.569141 
Jump3O%: Max risk 3.189848104 18.004995 11.497037 25.28611 9.9166706 2.5091388 
Jump5O%: Min risk 17.4403616 53.784907 63.516164 6.8961202 28.577785 15.939434 
Jump5O%: Nls3g risk 1.434945302 12-80808 15.102957 26.254793 34.555644 12.133913 
JumplOO%: Nlin risk 85.7575873 0.050889 69.529149 4.0773441 9.6265993 35.235633 
3umplOO%- Max risk 10.29368041 45.895736 ' 70.789234 19.460773, 20.064724 5.9070918 
Jump5OO%: fin risk 43.98615123 1 4.7296436 1 179.51098 1 60.895904 2.3132564 

1 
50.537462 

_ Jump5OO%: Nf ax risk 
_ 

122.7914597 1 16.319405 1 27.392902 1 34.822791 33.907512 38.918415 
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