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ABSTRACT 

This thesis presents two types of alternating current (ac) generators that are becoming 

popular for use in small-scale distributed generation and in autonomous (or stand- 

alone) power systems. For the induction generator (IG), two modes of operation are 

identified, namely operation on the power grid and operation in the isolated mode. 

Single-phase operation is emphasized due to its applicability in remote rural regions 

where electrification is both costly and difficult to carry out. In the case of grid- 

connected operation, a number of practical phase-balancing schemes for a three-phase 

IG are proposed and analyzed. The method of symmetrical components is found to be a 

versatile tool for analyzing all the circuit configurations to be studied, including the 

Smith connection. Microcontroller-based multi-mode operation of an IG with the Smith 

connection is also investigated. 

When operated in the stand-alone mode, the IG is more commonly known as the self- 

excited induction generator (SEIG). In this thesis, a unified approach that combines the 

method of symmetrical components and the pattern search method of Hooke and Jeeves 

is used to analyze a three-phase SEIG which supplies asymmetrical or single-phase 

loads. Its applicability is tested on various SEIG schemes, including the Steinmetz 

connection, modified Steinmetz connection (MSC), the simplified Steinmetz 

connection (SSC), the self-regulated self-excited induction generator (SRSEIG), and 

SEIG with the Smith connection (SMSEIG). For certain studies, the above approach is 

used in association with an iterative procedure in order to obtain the solution. 

A coupled circuit and field approach based on a two-dimensional finite element method 

(2-D FEM) is proposed for analyzing a grid-connected IG with the Steinmetz 

connection. The technique of coupling the single-phase circuit equations to the field 

xxii 



domain equations is set forth and a rotor circuit model that accounts for the non- 

uniform current distribution in the rotor winding is also presented. 

A voltage and frequency control scheme that employs an SEIG with slip-ring rotor, 

namely the SESRIG, is also proposed and investigated. The feasibility of using an 

external rotor resistance as a control parameter is demonstrated theoretically and 

experimentally. 

The study on the permanent-magnet synchronous generator (PMSG) is focused on 

autonomous power system applications. A PMSG with inset rotor, which possesses an 

inverse saliency characteristic, is found to give satisfactory performance when 

supplying isolated loads. Zero voltage regulation and other extremum conditions are 

deduced based on the two-axis model. A saturated two-axis model that gives a more 

accurate prediction of the load characteristic is developed. For a more rigorous analysis, 

a coupled circuit and field, time-stepping 2-D FEM is also proposed. 
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Chapter 1 

INTRODUCTION 

1.1 Background of Research 

Conservation of energy resources, environmental protection and sustainable 

development are the three major challenges that the world faces in the new millennium 

[11. One important issue is to satisfy the energy needs of people without causing rapid 

depletion of the natural energy resources and degradation of the environment. A general 

consensus among countries of the world is that greater emphasis should be placed on 

the use of renewable energy resources for electric power generation. Many developing 

countries, e. g., China, Nepal, Mexico, and others, have abundant renewable energy 

resources, but these resources are invariably located in remote regions, thereby creating 

a number of obstacles for their deployment. The problem can readily be solved if the 

region is already served by a three-phase grid. Local power systems that employ three- 

phase generators may be developed. The generators could be conventional wound-field 

synchronous generators, but over the past few decades increasing use is made of 

squirrel-cage type induction generators (IGs), particularly in wind energy systems and 

micro-hydro power systems. In the latter case, the grid provides frequency and voltage 

regulation, as well as the reactive power required by the IG. Due to the distributed 

nature of the energy resources, these power systems are usually small-scale in terms of 

rating. They may not be as efficient as central bulk power systems, but this 

disadvantage is offset by the reduction or even elimination of the transmission losses 

over long distances. The global trend of privatization and deregulation is a further 
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impetus to the development of small scale distributed or (embedded) generation systems 

[2], [3]. 

Even in developed countries, energy conservation and environmental protection can be 

achieved by extensive renewable energy programs and more widespread use of waste 

heat utilization and cogeneration [4]. For such applications, the low cost and flexibility 

of using induction generators result in their increasing popularity. 

In remote regions of some developing countries, rural electrification is often based on 

single-phase generation and transmission/distribution systems [5]. This approach has 

the advantage that, for a given amount of capital investment, a wider area can be 

provided with electricity. There is thus a great need for the development of single-phase 

IGs. Although single-phase induction motors may be adapted for generator operation, it 

is often more economical, for ratings above 3 kW, to use standard three-phase induction 

machines [6]. With a suitable phase-balancing scheme, the three-phase IG can operate 

satisfactorily on a single-phase grid. A practical phase-balancing scheme invariably 

employs passive circuit elements, such as capacitance, inductance, or resistance. 

In countries and regions where a grid connection is difficult and expensive to provide, a 

more cost effective solution is to develop stand-alone, or autonomous power systems 

[7], [8] which may consist of one or more induction generators and a small number of 

loads to be served, comprising typically lighting, heating, and water pumping. The 

absence of the grid implies that the reactive power has to be furnished locally by 

capacitors, and an induction machine operating in this mode is often referred to as the 

self-excited induction generator (SEIG). Both the output voltage and frequency depend 

upon the connected load and will vary greatly when the load or the speed of the prime- 

mover is changed. Frequency control and voltage control are two important operational 
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aspects for autonomous power systems. Both three-phase systems and single-phase 

systems may be developed. Besides, the choice of appropriate values of excitation 

capacitances to secure successful voltage build-up and to sustain the voltage when the 

generator is supplying load, is of paramount importance. 

Single-phase operation of a three-phase IG, with or without a phase balancer, renders 

the machine operating with phase imbalance. For the grid connected IG, the voltage and 

frequency are constant, hence the analysis can be carried out by using the method of 

symmetrical components [9]. With the SEIG, however, the performance analysis is 

complicated by the variation of frequency as well as the magnetizing reactance, both 

being dependent on the speed and loading conditions. 

The method of symmetrical components is basically a linear analysis and the principle 

of superposition applies. In an induction generator, the air gap voltage is higher for a 

given terminal voltage, meaning that the machine operates at a higher magnetic 

saturation level compared with that when the machine is run as a motor. To account for 

the effects of magnetic nonlinearity, an electromagnetic field analysis, such as the finite 

element method [10], may be more appropriate. Although the field approach may not 

guarantee superior results, it nevertheless involves less simplifying assumptions in the 

modeling and hence is theoretically more rigorous. 

Phase-balancing methods have formerly been applied successfully to three-phase 

induction machines with symmetrical, star- or delta-connected stator windings. 

Recently, however, a new class of high-efficiency induction motors based on 

asymmetrically-connected stator windings has been proposed. The connection, which is 

commonly known as SEMIHEX connection or the Smith connection [11]-[13], has 

found applications in pump motor drives in rural areas where only a single-phase 
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supply is available. The peculiar feature of the Smith connection is the use of three 

capacitors in association with the asymmetrical stator winding. Under favorable 

conditions the phase voltages and currents of the induction machine may be perfectly 

balanced. This interesting winding connection may be applied for generator 

applications as well. 

Great advances in permanent-magnet (PM) technology [ 14] have taken place in the past 

two decades. Powerful rare-earth PM materials, such as neodymium-iron-boron 

(NdFeB), have emerged and the price is becoming more affordable. A direct impact on 

the electric motor industry is the rapid development of high-performance drives, such as 

the brushless PM dc motor drive and PM synchronous motor drive. At the same time, 

the PM synchronous generator (PMSG) has been considered as a contender with the 

induction generator, mainly in autonomous power system applications. Compared with 

the IG, the PMSG also has such advantageous features as brushless rotor construction, 

no need for dc excitation, and less maintenance. Furthermore, the absence of rotor loss 

implies that very high efficiencies could be realized. These advantages, however, are at 

the expense of lack of field control, and voltage regulation is a major issue to be 

resolved. 

It should be pointed out that other electric machines may also be employed for ac power 

generation. The variable reluctance machine, for example, has been rigorously 

researched as a contender with the SEIG [15]-[19]. However, the inherent low power 

factor of the reluctance machine is a major disadvantage, and special rotor designs, such 

as the axially-laminated anisotropic (ALA) rotor [18], need to be used in order to secure 

a large power-to-weight ratio. 
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The switched reluctance motor (SRM) has received great attention in the past two 

decades, mainly for use in traction and high-speed drive [20]. It can readily be adapted 

for power generation [21], [22], but two factors render the machine a less viable option. 

First, the machine requires a dedicated electronic drive and control circuit. Second, the 

power output is inherently dc and a dc/ac converter is required for supplying an ac load 

or interfacing with the grid, which increases the system cost and may produce 

additional harmonics. 

1.2 Literature Survey 

1.2.1 Three-Phase IGs and SEIGs 

The principle and operation of grid-connected three-phase IGs are well understood and 

are discussed in detail in many textbooks [23]. Performance analysis is based on the 

induction motor equivalent circuit, negative values of slip being used since the rotor 

speed is higher than the synchronous speed. The SEIG, on the other hand, involves 

more complicated analysis and has received considerable attention. Pioneering work of 

the SEIG dated back to the twenties and thirties of the last century [24], [25] when it 

was discovered that an induction machine with capacitance connected to the stator 

terminals might stay excited after being disconnected from the grid. The significance of 

such a phenomenon for generator application was apparent, but since then very little 

has been written on the subject and the synchronous generator dominates the role for 

large-scale power generation. 

Towards the late seventies and early eighties of the last century, however, interest on 

SEIGs revived as witnessed by the numerous research publications. Murthy et al. [26] 

and Malik and Hague [27] analyzed the SEIG using the loop impedance method, based 

on the per-phase equivalent circuit model. The Newton-Raphson method was employed 
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for simultaneously determining the per-unit frequency and magnetizing reactance. 

Ouazene and McPherson [28], on the other hand, proposed the nodal admittance 

method, also based on the equivalent circuit. This approach resulted in a high-order 

polynomial in the per-unit frequency which could be solved to yield the generator 

performance. The generalized induction machine model has been used by Elder et al. 

[29], Grantham et al. [30] and Wang [31] for analysis of voltage build-up and transient 

operation of the SEIG. 

The capacitor sizing problem for a three-phase SEIG was studied by Malik and Mazi 

[32], Jabri and Alolah [33], and Chan [34], while performance of an SEIG driven by 

regulated and unregulated turbines was investigated by Bonert and Hoops [35], Chan 

[36] and Alghuwainem [37]. Wind turbine driven SEIGs were studied by 

Ammassaigounden et al. [38], Watson et al. [39] and Raina and Malik [40]. 

Voltage compensation using the long-shunt connection was first investigated by Bim et 

al. [41 ] with a view to improving the voltage regulation characteristic of the SEIG. This 

method, together with the short-shunt configuration, was subsequently analyzed by 

Chan [42] and Wang and Su [43]. Application of the compensated SEIG for supplying 

an induction motor load has recently been reported [44]. 

Voltage and frequency control of the three-phase SEIG has also been studied recently 

[45]-[50]. Voltage control invariably involves the regulation of effective capacitance 

across the stator terminals, and a variety of control methods, such as the fixed-capacitor 

thyrister-controlled reactor (FC-TCR) [27], might be employed. Frequency control for 

SEIG, on the other hand, is more difficult and involves expensive and sophisticated 

equipment, such as an ac/dc/ac converter [45], [50]. 
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1.2.2 Single-phase IGs and SEIGs 

Analysis and performance of a grid-connected single-phase IG with main and auxiliary 

windings were reported by Boardman et al. [51]. It was found that the generator 

efficiency was higher if the rotor was driven to give reverse rotation (i. e., the rotor 

rotates against the air gap traveling field). This principle was also applicable to a three- 

phase IG connected to a single-phase power grid [52]. When a three-phase IG operates 

on a single-phase power system, the currents are generally unbalanced and the rated three- 

phase power output cannot be developed. Other adverse effects include thermal overload, 

mechanical vibration, noise, poor efficiency and low power factor. Various phase- 

balancing schemes for a three-phase IG have been investigated [6], [53]-[54]. In the 

method proposed by Durham and Ramakumar [6], an artificial third line is created, using 

a capacitance and an inductance of equal reactances, for supplying the IG whose power 

factor has been corrected to unity. The disadvantage of such a scheme is that, in the event 

that the supply is removed, severe overvoltages will be produced as a result of series 

resonance between the capacitance and inductance. In the phase-balancing schemes 

proposed by Smith [53], capacitors were used exclusively and there was no danger of 

resonance effect. The analysis, however, was confined to the case when the induction 

machine was exactly balanced. Most of the circuits introduced require a ground-wire in 

the supply system, which may not be feasible in some regions. More recently, Chan [54] 

investigated phase balancing for an IG using the Steinmetz connection, and it was 

demonstrated that perfect phase balance could be achieved over a wider range of 

generator impedance angle by the use of dual phase converters. 

Anther important contribution of Smith is the introduction of the Smith (or SEMIHEX) 

connection [11]-[13], devised primarily to enable a three-phase motor to be operated on 
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a single-phase supply. Capacitances were employed exclusively for achieving phase 

balance. The principle of the circuit was explained in considerable detail by Smith [I I], 

but no formal analysis was carried out. 

The study on single-phase SEIGs was conducted by Murthy [55], Murthy et al. [56], 

Rahim [57], Chan [58] and Singh and Shilpkar [59]. Two-phase symmetrical 

component method was applied to an SEIG with main and auxiliary windings in 

quadrature. Ojo [60] presented a transient analysis of single-phase SEIGs using the d-q 

equivalent circuit model. Application of single-phase SEIG for heating and lighting 

loads in remote regions was proposed by Singh et al. [61] and microprocessor control 

of single-phase SEIG was reported by Watson and Watson [62]. Ojo et al. also 

investigated the operation of a single-phase SEIG using a pulse-width modulated 

inverter with a battery supply [63]. 

Analysis of a three-phase SEIG supplying single-phase loads was reported by Al- 

Bahrani and Malik [64] and Rahim [65]. Fukami et al. [66] developed a self-regulated 

single-phase SEIG by introducing series capacitance compensation. The machine 

configurations analyzed in [64]-[66], however, were essentially the single-phasing 

mode of operation. Since only two phases are involved in the energy conversion process, 

the winding utilization is poor and the phase imbalance is severe. 

With a view to minimizing the phase imbalance, Chan [67] investigated the 

performance of a three-phase SEIG with the Steinmetz connection, i. e., one in which 

the load impedance and the excitation capacitance are connected across different stator 

phases. It was found, however, that perfect phase balance could not be achieved with 

unity-power-factor loads. 
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1.2.3 Permanent-Magnet Synchronous Generators 

Research work on the PMSG has been reported in the past few decades [68]-[79]. Early 

PMSGs employed low-cost ceramic magnets [68], [69], but recently high-energy 

materials such as neodymium-iron-boron (NdFeB) [76], [77] have become more 

popular. Binns et al. [69] reported the analysis and applications of a PMSG with multi- 

stacked, imbricated rotor. Modeling and analysis of the PMSG has been discussed by 

Chalmers [71] and Rahman et al. [73]. There has also been rigorous research interest in 

the axial-flux PM generator for wind-turbine applications [70], [72], [77], [78]. Due to 

the larger diameter to axial-length ratio, axial-flux machines are more suitable for 

multi-pole, low-speed, direct-drive applications than radial-flux machines. 

It is well known that the excitation of a PMSG cannot be varied, and hence the terminal 

voltage varies with the load current. Attempts have been made for improving the 

voltage regulation of the PM generator. One method to control the terminal voltage is to 

use shunt capacitance compensation [69], [73], [74], but the capacitors will occupy 

additional space and extra capital costs are incurred. A more attractive solution is to 

employ a special generator design that imparts an inherent voltage compensation 

characteristic to the machine. Chalmers [71] has shown that a generator with an 

interior-magnet rotor exhibits interesting load characteristics when supplying an 

isolated load. In this type of generator, the direct-axis (d-axis) synchronous reactance Xd 

is less than the quadrature-axis (q-axis) synchronous reactance Xq, i. e., the generator 

possesses an inverse saliency feature. The voltage regulation may be reduced if the 

generator has the proper value of inverse saliency ratio r (= Xq/Xd). It has also been 

proved that, if the armature resistance is neglected, a voltage rise will result when the 

load current is increased from zero, provided that r is larger than 2. 
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For practical applications, it is desirable that the generator voltage regulation be as 

small as possible. This requires a careful machine design in order to give the 

appropriate combination of generator parameters, such as the no-load generated e. m. f., 

armature resistance and the synchronous reactances. 

A synchronous machine with the inset PM rotor construction [14] also exhibits inverse 

saliency and hence an improved load characteristic might be obtained for generator 

operation. The inset rotor construction involves less complicated rotor stampings and 

hence is easier to fabricate than the interior-type rotor. 

The synchronous reactances used in the two-axis model can be computed from FEM 

analysis [76]. FEM is also useful for analysis of PMSGs with unconventional rotor 

configurations [72], [78]. The application of a coupled circuit and field method to 

PMSG was recently reported by Zhou et al. [79]. 

1.3 Research Objectives 

This thesis aims to achieve the follow research objectives: 

1) An investigation on various phase-balancing schemes for a three-phase IG 

operating on a single-phase power grid, including the Smith connection that 

involves asymmetrical phase windings and phase converters. 

2) A detailed 2-D FEM analysis on a grid-connected IG with the Steinmetz 

connection. 

3) An investigation on various three-phase SEIG circuit configurations suitable for 

supplying unbalanced / single-phase loads. 

4) Implementation of a frequency and voltage controller for a slip-ring SEIG. 

5) A detailed analysis of a PMSG with inset rotor for autonomous power system 

applications, using both the two-axis model and a time-stepping FEM. 
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1.4 Organization of the Thesis 

The previous sections in this chapter have provided the justification for the proposed 

research and the main research objectives have been set forth. This thesis may broadly be 

divided into three parts. Chapters 2 and 3 investigate the performance of a three phase IG 

when operating on a single-phase power system. Chapters 4 and 5 are devoted to SEIGs 

with cage and slip-ring rotors. Chapter 6 discusses exclusively the PMSG with inset rotor 

for autonomous power system applications. Chapter 7 gives a summary of the major 

accomplishments and discusses further work that might be pursued. 

1.5 Statement of Originality 

The original contributions and important developments of this thesis are given in the 

following statements: 

" Various phase-balancing schemes for a three-phase IG connected to a single-phase 

power system, including the novel Smith connection, are analyzed by using the 

method of symmetrical components. 

" Various SEIG schemes are analyzed by using a search method in association with 

the method of symmetrical components. The SRSEIG and SMSEIG schemes are 

proposed and analyzed for the first time. 

" Analysis of a grid-connected IG with the Steinmetz connection using a coupled 

circuit 2-D finite element method is proposed. 

" Microcontroller-based operation of a three-phase IG with the Smith connection is 

proposed and implemented. 

"A voltage and frequency control scheme for an IG with slip-ring rotor is investigated. 

"A PMSG with inset rotor for achieving a reduced voltage regulation when supplying 

an autonomous power system is proposed and its performance is analyzed by using 
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the two-axis model. A saturated two-axis model is also developed based on the 

results of an FEM analysis. 

"A coupled circuit, time-stepping finite element method is proposed for the analysis 

of the PMSG with an inset rotor. 

" Experimental work on various IG and SEIG schemes as well as the PMSG with inset 

rotor is undertaken. 
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Chapter 2 

THREE-PHASE IG OPERATING ON A SINGLE-PHASE POWER 
SYSTEM 

2.1 Introduction 

In this chapter, the general principle of phase balancing for a three-phase IG operating on 

a single-phase power system is investigated and several practical phase-balancing 

schemes are proposed, including those that involve dissipative elements and current 

injection transformers. It is demonstrated that the IG-converter system can be analyzed 

by using the method of symmetrical components. A phasor diagram approach enables the 

conditions of perfect phase balance to be deduced. Performance analysis of a three-phase 

IG with the Smith connection is also possible using the same approach. The feasibility of 

the phase-balancing schemes is verified by laboratory experiments on a small induction 

machine. A microcontroller-based control scheme for an IG with the Smith connection is 

also proposed to give efficient control at low cost. 

2.2 Phase-Balancing Using Passive Circuit Elements 

2.2.1 Analysis of IG with Phase Converters 

Plain single-phase operation of a three-phase machine is an extreme case of unbalanced 

operation. This stems from the fact that the line current flowing into the `free' terminal of 

the stator winding is forced to be zero. To reduce the phase imbalance, an effective 

remedy is to inject a line current artificially into the `free' terminal by using phase 

converters which comprise passive circuit elements. Fig. 2.1 illustrates the principle of 

phase balancing for an induction machine operating on a single-phase power system [5], 

[54], [80]. The rotor is assumed to be rotating in such a direction that it traverses the 

stator winding in the sequence A-B-C. For generator operation, the rotor speed must be 
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slightly higher than the positive-sequence rotating field. Although special reference is 

made to a delta-connected machine in the following discussion, the principle is also 

applicable to a star-connected machine. Phase A of the IG is connected to the single- 

phase power system of voltage V, while the phase converters Yl and Y2 are respectively 

connected across phase C and phase B. The current IL2 that results from the currents I, 

and 12 through the phase converters constitutes the line current into the `free' terminal of 

the generator. Apparently the phase balance is improved and indeed, by appropriate 

choice of the values of YI and Y2, perfect phase balance may be achieved. 

I 

V 

Induction Machine 
.................................... 

Fig. 2.1 Single-phase operation of three-phase IG with phase converters. 
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Referring to Fig. 2.1 and adopting the motor convention for the induction machine, the 

following `inspection equations' [9] may be written: 
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VA+VB+VC-0 (2.2) 

Ii=VcY1 (2.3) 

12 VB Y2 (2.4) 

I, =IB-IC+I2 (2.5) 

The above equations can be solved by using the method of symmetrical components. The 

derivation is outlined in Appendix A. 3, from which the positive-sequence voltage Vp and 

negative-sequence voltage V, are determined: 

e; w'6 
e; 
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Y2 Yn + 77 Y, + V3 
Vp=-hV . 

(2.6) 
Y, +Y2+Yp+Yn 

Yp+ 

jýd6 

Y, + 
-j, -V6 

Yz ýý 

Vn-VV " Y, + Yz + Yp + Yn 
(2.7) 

where Yp and Y, are, respectively, the positive-sequence and negative-sequence 

admittances of the IG as shown in Fig. A. 1 and Fig. A. 2. 

For perfect phase balance, the negative-sequence voltage component V, given by (2.7) 

should be equal to zero, hence 

ejßo'6 e jw'6 

Yp+ Yý+ Y2=O. 
vf 3-- V-3 

(2.8) 

By selecting values of Yl and Y2 that satisfy (2.8), balanced operation of the IG may be 

achieved. 

2.2.2 Phase-Balancing Schemes 

Based on the theory outlined in Section 2.2.1, four practical phase-balancing schemes for 

a three-phase IG operating on a single-phase power system have been developed and 
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investigated. Figs. 2.2(a)-(d) show the details of the circuit connections. For convenience 

of discussion, each phase-balancing scheme is designated by the phase converter 

elements used, suffix 1 denoting a phase-C converter element while suffix 2 denoting a 

phase-B converter element. For example, a RI-C2 scheme will have a resistance 

connected across phase C and a capacitance connected across phase B. 

(a) 
Z. d 

1 or 

J1 

\" 

--------------------------------------------- 

i 
i 

i 
i 

ý- 
------------------ ----- 

R2 

R1 

(c) (d) 

Fig. 2.2 Phase-balancing schemes for three-phase IG: 
(a) C 1(L1)-C2 scheme; (b) R2-C2 scheme; 
(c) R1-C2 scheme; (d) R1-C 1 scheme. 

The Cl(L1)-C2 scheme shown in Fig. 2.2(a) employs only energy storage elements, while 

the remaining schemes employ dissipative (or lossy) elements in addition to energy 

storage elements. For IG applications, the phase converter resistances can take the form 

of storage heating elements, auxiliary loads, or battery chargers. From the IG system's 

point of view, the power dissipated in these loads may be regarded as useful output as far 

as efficiency evaluation is concerned. 

Using (2.8), it is possible to determine the values of the phase converters that result in 

perfect phase balance. As an illustration, consider the C1(L1)-C2 scheme shown in Fig. 
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2.2(a). Assuming that YI and Y2 to be pure capacitances (i. e. Yj =0+ jBl; Y2 =0+ jB2), 

(2.8) may be written as: 

pejo, 
+ 

1 
B1ejzý. 3+ 

I 
Bae'ý3 0 

33 33 
(2.9) 

where Yp is the positive-sequence admittance of the generator and Op is the positive- 

sequence impedance angle. Both Yp and Op are functions of the rotor speed. 

Equating real and imaginary parts respectively to zero in (2.9), the values of the phase 

converter susceptances BI and B2 are given by: 

B, =-13 Gp + Bp =2 yp sin(2z/3 - op) (2.10) 

B2 V3 G, +Bp=2ypsin(op-ßr/3). (2.11) 

At the rotor speed such that Op = 27t/3 rad, B1= 0 and B2 ='3Yp, Fig. 2.2(a) is reduced to 

the well-known Steinmetz connection [81]. 

Table 2.1 summarizes the values of phase converter elements to give perfect phase 

balance for various phase-balancing schemes. It is observed that the values of the phase 

converter elements are functions of the conductances and susceptances (or alternatively, 

the admittance and impedance angle) of the positive-sequence IG equivalent circuit. 

To check the feasibility of the above phase-balancing schemes, experiments were 

performed on a 2.2-kW, 220-V, 50-Hz, 4-pole, delta-connected induction machine IG1 

whose parameters are given in Appendix D. 1. It was found that exact phase balance 

could in general be obtained with appropriate choice of values of phase converters, 

subject to the limitations inherent in each phase-balancing scheme. Figs. 2.3 to 2.6 show 

the variation of the phase converter conductances/susceptances that result in perfect 

phase balance when the IG is operating on a 220-V single-phase power system. Very 
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good agreement between the computed and experimental results is observed, thus 

verifying the theory developed in Section 2.2.1. 

TABLE 2.1 
CONDUCTANCES AND SUSCEPTANCES OF PHASE CONVERTERS FOR 

PERFECT PHASE BALANCE OF THREE-PHASE IG 

Scheme Conductance Susceptance# 
(S) (S) 

Cl(L1)-C2 Gl = 0 B1 = 2Yp. sin(2ir/3-c, ) 
G2 = 0 B2 = 2Yp. sin(q-ir/3) 

R2-C2 G1 = 0 B, = 0 
G2 = '�3Yp. sin( -2id3) B2 = 1%3Yp. cos( -27r/3) 

Rl 
-C2 GI =2 

V3Yp. 
sin( -2ir/3) 

Bl = 0 

G2 =0 B2 =2 -�3Yp. sin(Sir/6-O) 

RI-C1 G1 = V3Yp. cos(Sir/6-0) Bl = -�3Yp. sin(S7d6-Op) 
G2 =0 B2 =0 

#Capacitive susceptances defined to be positive; inductive susceptances defined to be negative 

2.2.3 Discussion of Results 

The performance, limitation and application of each phase-balancing scheme are 

discussed as follows. 

C1(LI)-C2 scheme 

As shown in Fig. 2.3, perfect phase balance can be achieved over the practical operating 

speed range of the IG (1500 r/min to 1570 r/min). The susceptance B2 increases 

approximately linearly with speed and remains capacitive over the whole speed range. 

On the other hand, Bl decreases with speed. At speeds below 1539 r/min, B1 is capacitive 

and above this speed BI is inductive. At 1539 r/min, phase balance can be achieved with 

a single capacitance across phase B. 
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R2-C2 scheme 

Using this scheme, perfect phase balance is possible at rotor speeds for which the 

positive-sequence impedance angle exceeds 2213 rad (which results in positive values 

of the phase converter conductance G2). Both G2 and B2 increase with increase in rotor 

speed. This scheme is useful when a large percentage of the input power need to be 

delivered to the power system. 

R1-C2 scheme 

As in the previous scheme, perfect phase balance is possible at rotor speeds for which 4 

exceeds 270 rad. The conductance Gl increases with speed, but the susceptance B2 

remains substantially constant (Fig. 2.5). 

R1-CI scheme 

As shown in Fig. 2.6, perfect phase balance over the normal generator speed range is 

possible with this scheme. Since GI has a much larger value compared with conductances 

in the previous two schemes, a larger amount of power is dissipated in the phase 

converter. This scheme is useful when a large percentage of the prime mover power is to 

be consumed by the local loads. 
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Fig. 2.3 Values of B1 and B2 to give phase balance at different speeds in C1(L1)-C2 

scheme. 
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Fig. 2.4 Values of G2 and B2 to give phase balance at different speeds in R2-C2 scheme. 
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Fig. 2.5 Values of GI and B2 to give phase balance at different speeds for R1-C2 scheme. 
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Fig. 2.6 Values of G1 and Bl to give phase balance at different speeds for R1-C1 scheme. 

2.2.4 System Power Factor 

The output power factor of the IG system can in general be computed using the equations 

presented in Section 2.2.1. For perfect phase balance, however, a closed form expression 

for the system power factor can be deduced from the voltage-current relationship in the 

phasor diagram. As an illustration, Fig. 2.7(a) shows the phasor diagram for the C 1(Ll )- 

C2 scheme, assuming that the phase voltages and currents are balanced and O is less than 

21r/3 rad, while Fig. 2.7(b) shows the relationship between the system input current I and 

132(S) 
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0 

-0.02 

0.01 
0 

21 



the generator line current ILI. From the phasor diagrams, the following angular 

relationships can easily be deduced: 

01 = 2ir13 - o; 02 = 27ri3; 
03 = iri6; 04 =o+ iri6; 05 21r/3 - op 

VC 
T 

-I 1 

I L3 

(a) 

VA 
VA 

L2 

I L3 

(b) 

Fig. 2.7 Phasor diagrams for C1(Ll)-C2 scheme under perfect phase balance: 
(a) Phasor diagram under perfect phase balance; 
(b) Phasor diagram showing detailed angular relationships. 

It can be shown that the angle yin Fig. 2.7(b) is given by 

where 

sin 
2 sine a (2.12) Y- V3 

a=2Tr/3-op. (2.13) 

The derivation of (2.12) is given in Appendix A. 4. 

Hence the power factor angle 0 is 

=84-Y=0p+z16-Y. (2.14) 

The power factor under balanced condition thus depends only on the positive-sequence 

impedance angle of the IG. The system power factors of the phase-balancing schemes are 

summarized in Table 2.2. 
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TABLE 2.2 
SYSTEM POWER FACTORS OF PHASE-BALANCING SCHEMES UNDER 

PERFECT PHASE BALANCE 

Scheme System power factor (p. u. ) 

Ci(Ll)-C2 cos(, + 7r/6 -1d 
where 7= sin-1 {2sin2cx/(3+4sin2a-2 i/3sin2a)}. 
(For W<27r/3, a=2ir/3-4; for 4>2w0, a=4-27r/3) 

R2-C2 cos(O + r/6) 

R1-C2 cos(3ir/2 -, ) 

R1-C1 cos( - r/6) 

Fig. 2.8 shows the variation of system power factor with speed for various phase- 

balancing schemes. It is observed that above 1539 r/min, the C1(L1)-C2 and R2-C2 

schemes have practically the same power factor, which is well over 0.9. The power factor 

of the RI-C2 scheme is slightly lower but is quite acceptable. The power factor of the Rl- 

C1 scheme, however, is very low and becomes zero at a rotor speed of 1543 r/min. 

Below this speed, power is drawn from the power system in order to furnish the power to 

the phase converter resistance. A line-side power factor correction capacitor may thus be 

necessary for this phase-balancing scheme. 

Power factor (o. u. ) 
I 

0.8 

0.6 

0.4 

0.2 

0 

1600 

- C1(Lt)-C2(CaI) 0 C1(L1)-C2(Exp) R2-C2 (Cato. ) o R2-C2 (Expt'I) 

R1-C2 (Calc. ) x RI-C2 (Expt'I) ----- RI-Cl (Cato. ) R1-Cl (Expt'I) 

Fig. 2.8 System power factor under perfect phase balance. 
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2.2.5 Power and Efficiency 

With perfect phase balance achieved by the use of phase converters, the IG operates as if 

it were operating under a balanced three-phase voltage supply. If the power dissipated in 

the phase converter resistance is regarded as useful power output, the system efficiency 

under single-phase operation is identical to the generator efficiency under balanced three- 

phase operation. For the experimental machine, a full-load efficiency of 0.82 was 

obtained with various phase balancing schemes. 

Table 2.3 shows the experimental values of output power to grid, power dissipated in the 

phase converters, and developed electrical power for different phase-balancing schemes 

at a rotor speed of 1552 r/min and a stator current of 5.0 A. In all cases the developed 

power approaches the rated power of the induction machine. In the RI-C, scheme, 

however, 86% of the net output electrical power is dissipated in the phase converter 

resistance, which is consistent with the observation made in Section 2.2.4. 

TABLE 2.3 
POWER TO GRID, POWER DISSIPATED IN PHASE CONVERTER AND 

NET ELECTRICAL OUTPUT 

Scheme Power to grid (W) Power dissipated in 

phase converter (W) 
Net electrical power 
output (W) 

C 1(L1)-C2 1910 0 1910 

R2-C2 1740 233 1973 

R1-C2 1564 420 1984 

R1-C1 270 1606 1876 

2.2.6 Operation with Fixed Phase Converters 

Both the conductance and susceptance of the IG are functions of the rotor speed. In order 

to achieve phase balance at different speeds, the values of the phase converters need to be 

varied accordingly. This can be accomplished using switched capacitors, thyristor- 
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controlled reactors, and chopper-controlled resistors. The increased circuit complexity 

and extra cost incurred may make the phase-balancing scheme unattractive. If, however, 

the load variation is limited to a narrow range using some form of turbine speed control, 

satisfactory machine performance may be achieved with fixed values of phase converters. 

Fig. 2.9 to Fig. 2.11 show the performance of the R2-C2 scheme in which the phase 

converters are fixed at the experimental values that give perfect phase balance at full load 

current. From Fig. 2.9, it is observed that the phase-B voltage increases when the speed is 

decreased from the rated value while the phase-C voltage decreases. The percentage 

over-voltage, however, is relatively small. At a speed of 1520 r/min, the experimental 

phase-B voltage is only 7% above the rated value. 

Fig. 2.10 shows the variation of phase and line currents with speed. Again a slight 

overcurrent occurs in phase B as the speed is decreased from the rated value. 

Nevertheless, the increase in copper loss in phase B is more than offset by the reduction 

in copper losses in the other two phases, implying that the thermal performance of the 

generator is satisfactory. 

Fig. 2.11 shows the variation in power factor and efficiency with speed. As the rotor 

speed is decreased from the rated value, the IG becomes over-compensated, causing a 

rise in the system power factor. But as the speed further decreases, the power delivered to 

the power system is smaller and the power factor drops rapidly. An efficiency close to 0.8 

is obtained at speeds above 1550 r/min. 

2.2.7 Summary 

The feasibility of phase-balancing for a three-phase IG operating on a single-phase power 

system has been investigated. A general analysis for the IG generator with phase 

converters is presented, and expressions for determination of the phase converter 
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elements are given. Effects of phase-balancing on the output power, system power factor, 

and efficiency are discussed. It is also demonstrated that satisfactory generator 

performance is obtained with fixed phase converter elements if the speed variation is 

limited by turbine control. The theoretical analysis is verified by experiments on a small 

induction machine. 
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Fig. 2.9 Phase voltages for R2-C2 scheme with fixed values of phase converters. 

Phase and line currents (A) 

VA 220V 

C2   136 uF 

R2   150 Ohms 

12-- 

10- 

8- 

6- 

4- 

2- 

0-- 
1500 

VA   220 V 

C2 - 136 uF; R2 - 150 Ohms 

A 

1510 1620 1630 1540 1650 1660 1570 

Rotor speed (r/min) 

- IA (Calc. ) -IB (Calc. ) IC (Cato. ) -- I (Calc. ) 

o IA (Expt'I) ° 1B (Expt'I) XIC (Expt'I) I (Expt'I) 

Fig. 2.10 Phase and line currents for R2-C2 scheme with fixed values of phase converters. 
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Fig. 2.11 Efficiency and power factor for R2-C2 scheme with fixed values of phase 
converters. 

2.3 Phase Balancing Using the Smith Connection 

2.3.1 Three-Phase IG with the Smith Connection (SMIG) 

Published work on the Smith connection to date has been mainly concerned with the 

motoring mode of operation and the operational aspects such as selection of capacitances 

for perfect balance and motor starting. Chan and Lai [82], [83] have recently proposed a 

method of analysis on these modes of operation. 

The objective of this section is to investigate the performance of a three-phase IG with 

the Smith connection when operating on a single-phase power grid. A systematic analysis 

of the IG with Smith connection (SMIG) will be presented, and the conditions for perfect 

phase balance will be deduced. It will be shown that, for medium and heavy loads, 

perfect phase balance in the induction machine is possible by using only capacitive phase 

converters. A method to give satisfactory operation over the normal speed range is 

proposed. Experimental results will be used to validate the theoretical analysis. 

Fig. 2.12 shows the Smith connection for a three-phase IG operating on a single-phase 

power system. The `starts' of the stator phases A, B and C are denoted by 1,2, and 3 
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while the `finishes' are denoted by 4,5, and 6. Terminals 4 and 6 are common and form 

the `pseudo-neutral' point N. Terminals 1 and 2 are both connected to one line of the 

single-phase grid, while terminal 3 is connected to the second line. Terminal 5 (the `free' 

terminal) is connected to the neutral point N via capacitance Cl, and to terminal 3 via 

capacitance C2. It should be noted that the generator performance is sensitive to the phase 

connection for a given direction of rotor rotation. A comparison of Fig. 2.12 with the 

Smith connection for the motoring mode [82] reveals that phases B and C have been 

interchanged, a condition necessary for proper phase balancing as will be explained in the 

following section. 

3 

V 

C311 13 

64 
vcN VA 

IC 

V2 2 I2 

I 

I1 
2 IB 

TVB 
5 

Fig. 2.12 Smith connection for three-phase IG operating on a single-phase grid. 

The Smith connection is essentially an asymmetrical winding connection. But, with an 

appropriate choice of the terminal capacitances, it is possible for the IG to operate with 

balanced phase currents and phase voltages. As shown in Fig. 2.12, the phase-B current is 

the sum of the capacitor currents II and '2. Consider the phasor diagram in Fig. 2.13(a), 

drawn for the special case for perfect phase balance. The current II leads Vl (or VAB) by 

Cl ý 

V1 
I 
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n/2 rad and hence lags VB by 2n/3 rad. The voltage V2 (which is equal to VAB - Vc), is 

equal to 2 VA. The capacitor current I2 leads V2 by t/2 rad and hence it lags VB by 5it/6 rad. 

For generator impedance angles between 27c/3 rad and 5it/6 rad, the phase current IB can 

be synthesized with the required magnitude and phase angle to give phase balance, by 

using suitable values of C1 and C2. 

Under perfect phase balance conditions, the phase currents of the IG must sum to zero. 

This requires that the currents I2 and 13 to be equal, implying that C3 must be equal to 

twice of C2. 

I 

-IC 

IB 

B 

I1 
E. 

I :a 

-IC 

V2 

(a) (b) 
Fig. 2.13 SMIG under perfect phase balance: 

(a) Phasor diagram; 
(b) Phasor diagram showing angular relationship between currents. 

V1 

V 

With balanced currents flowing in the stator phases, a perfect rotating magnetic field is 

produced. The air gap voltages per phase, and hence the phase voltages, will also be 

balanced. The generator operates as if it were supplying a balanced three-phase load, 

hence the efficiency is the same as that obtaining when the generator operates on a 

balanced three-phase grid. 

Balanced conditions are valid for a given set of capacitance values as long as the rotor 

speed remains constant. When the rotor speed changes, the circuit conditions are 

disturbed and a new set of capacitance values is required to balance the generator again. 
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2.3.2 Performance Analysis 

Performance analysis of the three-phase SMIG for the general off-balance operation can 

be carried out using the method of symmetrical components, the circuit being considered 

as a special case of winding asymmetry. Referring to Fig. 2.12 and adopting the motor 

convention for the induction machine, the following inspection equations may be 

established: 

V =VA-Vc (2.15) 

IB=I, + I2 (2.16) 

IA+IC+I, +I3=0 (2.17) 

Il =V1. YI =(VA-VB)"Y, (2.18) 

12=V2. Y2=(VA-VB-Vc)"Y2 (2.19) 

I3-VA"13 
(2.20) 

I =I2-IC (2.21) 

Y3 = 2. Y2 (2.22) 

where Y1= jB1= j wCl, Y2 =jB2 =j coC2, and Y3 =jB3 =j Cl)C3. 

The symmetrical component equations given in Appendix A. 1 are written for a star- 

connected system as follows: 

VA 1 
11 

Vs V3 
1 Vc 

IA 1 
11 

IB 
NF3 

Ic 1 

11 Vo 

h2 h VP 

h h2 V� 

11 Io 

h2 h Ip 

h h' I� 

where h is the complex operator exp(j2ic/3). 

(2.23) 

(2.24) 
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From (2.16) and (2.17), 

IA +IB+IC -Iz+I3=4 (2.25) 

Using (2.19), (2.23) and (2.24), (2.25) can be rewritten as: 

310 
-(VA-VB-VC)"Y2+VA-Y3=o (2.26) V 

From (2.22), (2.23) and (2.26), the following equation is obtained: 

D+3V°"Y2=0 (2.27) 
3I 
V-3 V3 

Since Io = Vo. Yo, where Yo is the zero-sequence admittance of the motor, (2.27) may be 

written as: 

V0"(Y0+Y2)=0 (2.28) 

The sum of admitttances Yo and Y2 is non-zero, hence the zero-sequence voltage Vo must 

vanish according to (2.28). 

Hence, if the condition prescribed by (2.22) is satisfied, zero-sequence voltage and 

current are absent in the SMIG. There are thus no zero-sequence losses, and the phase 

imbalance is contributed solely from negative-sequence quantities. 

Eqns. (2.15) to (2.22) can now be solved in association with (2.23) and (2.24) to yield the 

positive-sequence and negative-sequence voltage components: 

= 
ý-3V hyn-2y2-(1-h)yl 

Vpp 
h(1-h) yp+yn+3y, +2y2 

ýV (1-h2)Y1+2Y2-h2Yp 
(2.30) Vn- 

h(1-h) " Yp+Yn+3Y1+2Y2 

where Y. and Y, are the positive- and negative-sequence admittances of the three-phase 

IG. 
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For a given single-phase grid voltage V and speed (or per-unit slip), Yp and Y, are known 

and both Vp and V, can be computed. The currents Ip and I, can then be calculated from 

the positive- and negative-sequence equivalent circuits. The generator performance, such 

as phase voltages, phase currents, electromagnetic torque, power factor and efficiency, 

can subsequently be obtained. 

2.3.3 Balanced Operation 

A) Susceptances for perfect phase balance 

It is of interest to investigate the values of susceptances that will result in balanced 

operation in the three-phase induction machine. Since negative-sequence voltage is 

absent when the generator is balanced, one obtains, from (2.30), 

(1-h2)y1+2y2-h2yp=O 
. 

(2.31) 

Assuming that Yj and Y2 to be pure capacitive admittances, i. e. Yj = jBl and Y2 = jB2, 

(2.31) may be rewritten as two simultaneous algebraic equations: 

1 
Bi+ B2 =- 

YP 
cos q (2.32) 

2ýp 

3 
2B, +B2=ypsin0, (2.33) 

where c is the positive-sequence impedance angle of the IG. 

The capacitive susceptances that result in perfect phase balance are obtained by solving 

(2.32) and (2.33): 

B1= 
2 

Yp sin 
51r 

- OP (2.34) 
V6 

- 
2ý 

2.35 Bz = y, sin p3) 
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_ B3-2Ypsin q$ - 
27r 

3 
(2.36) 

The values of phase-converter susceptances required thus depend on Yp and O which are 

both functions of the rotor speed. Depending upon the generator impedance angle, one or 

more of the susceptances may assume negative values, implying that inductances may 

have to be used for perfect phase balance. Table 2.4 summarizes the nature of the phase 

converter susceptances for different values of O. When Op lies between 2it/3 rad and 57c/6 

rad, B1, B2, and B3 all have positive values, implying that perfect phase balance can be 

achieved by using capacitances only. When O is less than 2it/3 rad, BI is positive but B2 

and B3 are negative, hence one capacitance and two inductances are required for perfect 

phase balance. 

TABLE 2.4 
SUSCEPTANCES FOR PERFECT PHASE BALANCE IN THREE-PHASE IG 

Range of O B1 B2 B3 

O< 2m/3 Capacitive Inductive Inductive 

O= 270 Capacitive Zero Zero 

2ir/3<O, <57r/6 Capacitive Capacitive Capacitive 

O= 57t/6 Zero Capacitive Capacitive 

q >5n/6 Inductive Capacitive Capacitive 

It is interesting to note that, when = 2it/3 rad, B2 and B3 are both equal to zero, hence 

the capacitances C2 and C3 are not required. Under this condition, the Smith connection is 

equivalent to the Steinmetz connection for a star-connected IG. When = 57c/6 rad, 

however, BI is equal to zero and only capacitances C2 and C3 need to be used for 

achieving perfect phase balance. 

33 



B) Line current and power factor 

Referring to the phasor diagram of the SMIG shown in Fig. 2.13(b), the following 

angular relationships may be deduced: 

a= 57t/6 - o,; ß=o, - 27t/3; E= 5ir/6; 
8_+ Tc/6; ý=o, - 57c/6. 

From the current phasor triangles, it can be shown that the line current I and the generator 

phase current Iph are related by 

I=I 
ph 

1+8 sine Op -3 
2ý 

. 
(2.37) 

The angle ybetween I and Ic in Fig. 2.13(b) is given by 

sin 2(o 
p- 

2ir/3) 
=sin (2.38) 

1+8 sine (o' -27c13) 

If the input power factor angle 0 is defined to be positive when the line current I lags the 

supply voltage V, then 

0=(5+7=0, + ,7 +y. (2.39) 

Eqns. (2.38) and (2.39) indicate that the input power factor angle of the SMIG under 

perfect phase balance is a function of the generator impedance angle only. Fig. 2.14 

shows the variation of the line power factor angle 0 with the positive-sequence 

impedance angle O. It is observed that the line power factor angle is 180 °e (i. e., line 

power factor is equal to unity) when is equal to 130.89°e. At higher values of O,, the 

SMIG delivers power at lagging power factor to the single-phase grid. 
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Fig. 2.14 Variation of line power factor angle with generator impedance angle. 

2.3.4 Results and Discussion 

To verify the above analysis, a phase-balancing experiment was performed with the 

machine IG1 (reconnected as the SMIG) whose parameters are given in Appendix D. 1. 

With the single-phase grid voltage maintained constant at 380 V, the rotor speed of the 

SMIG was controlled by a separately-excited dc motor and the capacitances were varied 

until the phase voltages and currents were balanced. Fig. 2.15 shows the computed and 

experimental values of susceptances Bl and B2 that give perfect balanced operation in the 

three-phase machine. For speeds above 1539 r/min, both Bl and B2 are positive (i. e., 

capacitive). As the rotor speed increases, BI decreases slightly while B2 increases almost 

linearly, meaning that more and more reactive power is being furnished by the 

capacitances C2 and C3. Good correlation between the experimental and computed 

performance characteristics is observed. The results confirm that perfect phase balance in 

the three-phase IG can be achieved at different speeds using the Smith connection. 

A load test was next conducted on the experimental machine with the following values of 

capacitances: C1= 27 µF, C2 = 16 µF, and C3 = 32 µF. These capacitances enabled the 
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IG to be balanced at a rotor speed of 1568 r/min and at a phase current of 5.25 A (0.97 of 

rated value). For convenience, this speed will be denoted by Nb in the subsequent 

discussion. Due to additional power losses produced by the negative-sequence rotating 

field, the `cut-in' speed N, 
ur_;,, 

(i. e., the speed at which the SMIG starts to deliver power to 

the grid) was 1515 r/min, which is considerably higher than the synchronous speed. Fig. 

2.16 to Fig. 2.20 show the experimental and computed performance characteristics of the 

SMIG. Fig. 2.16 shows that, with fixed values of capacitances, the phase-A voltage 

increases as the speed decreases from Nb, while both the phase-B and phase-C voltages 

decrease. At speeds above Nb, overvoltage occurs in phase C. The voltage stress in phase 

A and phase C thus imposes a limit on the speed range over which the given set of 

capacitances could be left in the circuit. If the phase voltage is not to exceed 110 per cent 

of the rated value, then satisfactory generator operation from Nr_in up to 1600 r/min is 

possible. 
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Fig. 2.15 Susceptances of phase converters to give perfect phase balance in experimental 
SMIG (B3 =2B2). 

36 



Phase voltages (V) 
250- 

200---- 

150- 

100- 

50- 

04- 

1500 

0 

1620 1540 1560 1580 
Rotor speed (r/min) 

VA (Cale. ) VB (Cale. ) -""- VC (Cale. ) 

VA(Expt'I) A VB(Expt'I) X VC(Expt'I) 

Fig. 2.16 Phase voltage variations of SMIG. 

1600 

Fig. 2.17 shows the variation of phase and line currents of the SMIG with speed. Both IA 

and IC exhibit a concave-upward characteristic, but IA is much higher at low speeds. At 

synchronous speed, IA is equal to 7.1 A, or 131 % of the rated value. Starting from 1520 

r/min, Ic increases very rapidly, eventually exceeding both IA and IB for speeds above Nb. 

On the contrary, the phase-B current is relatively insensitive to changes in rotor speed. At 

speeds below 1540 r/min, IB is almost constant at 6A (110% of rated value). 

Fig. 2.18 shows the efficiency and power factor characteristics of the SMIG while Fig. 

2.19 shows the output power and driving torque characteristics. At Nb, the efficiency is 

very close to the maximum value of 0.78 p. u. and the SMIG delivers a power of 2320 W 

to the single-phase grid at approximately unity power factor. High efficiency and power 

factor are observed for speeds above 1540 r/min. 
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Fig. 2.17 Phase and line current variations of SMIG. 
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Fig. 2.18 Efficiency and power factor characteristics of SMIG. 
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Fig. 2.19 Output power and driving torque characteristics of SMIG. 
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Fig. 2.20 shows the variation of voltages across capacitances C1 and C2. Both Vi and V2 

increase with reduction in rotor speed. At synchronous speed, Vl reaches 135% of rated 

value while V2 is equal to 109% of rated value. The voltage ratings of the capacitances 

should thus be properly chosen in order to withstand the overvoltages at light load. 

Good agreement between the experimental and theoretical results is observed in Fig. 2.16 

to Fig. 2.20, showing that the steady-state performance of the single-phase SMIG can be 

accurately determined using the method of symmetrical components. 
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Fig. 2.20 Capacitor voltage variations of SMIG. 

Despite the overcurrent in phase A and phase B (at low speeds), the total losses in the 

SMIG are less than those corresponding to Nb, even at speeds down to Nc11_1,,. The rotor 

copper loss may exceed the rated value at low speeds, due to the more predominant 

negative-sequence voltage. To avoid excessive temperature rise in the rotor, the SMIG 

should not be left in the `idling' mode for a prolonged period of time. 

2.3.5 Effect of Phase-Balancing Capacitances 

The effects of the phase-balancing capacitances on generator performance will be 

discussed in the following sections with reference to the experimental machine. Referring 
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to Table 2.5, Mode L, Mode M and Mode H denote operation with capacitances that 

result in perfect phase balance at light load, medium load and heavy load, respectively. 

For comparison, single-phasing operation (Mode 0) and operation with perfect phase 

balance (Mode V) are also investigated. 

TABLE 2.5 
OPERATING MODES OF SMIG AND THE CORRESPONDING PHASE-BALANCING 

CAPACITANCES 

Mode Capacitances Speed at perfect Power output at 
(pF) phase balance perfect balance 

r/min) (W) 
C, =0 

0 C2 =0 n. a. n. a. 
C3=0 

C, = 32.0 
L C2 =0 1539 1235 

C3=0 
C, =29.1 

M C2 = 7.7 1553 1750 
C3= 15.4 

C, =27.0 
H C2 = 17.5 1571 2430 

C3 = 35.0 

V Variable Variable Variable 

A) Output power 

Fig. 2.21 shows the computed output power characteristics of the SMIG. The speed Nct, r-; n 

at which the generator begins to deliver power varies slightly depending on the phase- 

balancing capacitances being used. At 1568 r/min, the power outputs of the SMIG for 

various modes are approximately equal, except for Mode 0 (single-phasing mode). The 

diagram also shows that, with the phase-balancing capacitances, the IG can deliver 40% 

more power than the single-phasing mode of operation at rated speed. 

B) Power factor and efficiency 

Fig. 2.22 shows the power factor characteristics of the single-phase SMIG. With single- 
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phasing mode, the power factor is very low, reaching only 0.5 (leading) at a speed of 

1570 r/min. With Mode L capacitances, the power factor is much higher, exceeding 0.8 

(leading) at speeds above 1525 r/min. It is interesting to find that with Mode H 

capacitances, the power factor reaches unity at 1575 r/min. Below this speed, the power 

factor is lagging, implying that lagging reactive power is supplied to the grid. A similar 

trend is observed for Mode M, but unity power factor now occurs at a lower speed. For 

Mode V, the line power factor angle is constrained by the positive-sequence impedance 

angle of the IG (Fig. 2.14), and power is delivered at a leading power factor when the 

rotor speed is below 1565 r/min. 

The phase-balancing capacitances are effective in suppressing the negative-sequence 

losses, with a consequent improvement in generator efficiency over the single-phasing 

mode of operation. As illustrated in Fig. 2.23, the efficiencies for Modes L, M and H are 

maximum when the generator is balanced, i. e., when the corresponding characteristic 

touches the Mode V curve. With the generator balanced at a large power output, however, 

the efficiency at low speeds is reduced due to a more severe phase imbalance. 
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Fig. 2.21 Effect of capacitances on output power. 
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Fig. 2.22 Effect of capacitances on line power factor. 

C) Voltage unbalance factor 

The degree of phase imbalance can conveniently be described in terms of the voltage 

unbalance factor (VUF), which is the ratio of the negative-sequence voltage V, to the 

positive-sequence voltage Vp [9], [54]. As shown in Fig. 2.24, the VUF for single-phasing 

mode increases monotonically with speed, whereas the VUF characteristics for Modes L, 

M and H are V-shaped curves, each with a minimum value of zero at the respective 

balance points. It is observed that Mode M and Mode H capacitances produce a larger 

VUF than the single-phasing mode at low speeds. 

D) Electromagnetic torque 

Fig. 2.25 shows the variations of electromagnetic torque of the single-phase SMIG with 

per-unit slip (absolute value). With Mode L, M and H, the torque-slip characteristics are 

very close to that for Mode V over the normal slip range (i. e. from 0 to 0.06). At higher 

values of per-unit slip, the positive-sequence voltage component decreases significantly, 

resulting in a smaller pull-out torque and a narrower stable operating region. It is 

observed that the pull-out torques for Mode L, M and H occur at values of per-unit slip 

from 0.12 to 0.14, as compared with 0.25 for Mode V. The pull-out torque for Mode H is 

42 



38N. m, which is 1.9 times the rated torque. The pull-out torque for Mode V is much 

higher, but large values of capacitance CI and inductances L2 and L3 are required for 

achieving perfect phase balance at the pull-out slip. The pull-out torque for Mode L is 

larger than that for Mode M and Mode H, despite the fact that the values of capacitances 

used are smaller. 
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Fig. 2.23 Effect of capacitances on efficiency. 
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Fig. 2.24 Effect of capacitances on voltage unbalance factor. 
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Fig. 2.25 Effect of capacitances on electromagnetic torque. 

2.3.6 Dual-Mode Control Scheme 

A compromise has to be made between the permissible voltage imbalance and the cost in 

providing the additional phase-balancing capacitances and the associated switches. From 

economic considerations, a simple dual-mode control scheme that employs only two sets 

of capacitances, e. g., Mode L and Mode H, may be implemented. Referring to Fig. 2.24, 

the VUF characteristics of the experimental machine with Mode L and Mode H 

capacitances intersect at a speed NS,, equal to 1556 r/min. This speed demarcates the 

Mode L and Mode H operating regions for the proposed dual-mode control scheme. For 

speeds below NSw, Mode L capacitances are used since they yield a smaller VUF. For 

speeds above N,, Mode H capacitances should be used. Fig. 2.26 shows the voltage 

variations of the experimental single-phase SMIG with dual-mode control. From NS,,,, to 

1590 r/min and with Mode H capacitances in the circuit, the maximum voltage occurs in 

phase C and is equal to 13 V (5.9% of rated value). At speeds below N, the maximum 

overvoltage occurs in phase A and is equal to 15 V (6.8% of rated value). Also shown in 

Fig. 2.26 is the variation in the VUF, which is now a W-shaped curve. Perfect phase 

balance is obtained at 1539 r/min at which the SMIG is delivering half load and again at 
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1571 r/min at which the SMIG is delivering full load power output. At the switching 

speed NS, 
1,, the VUF is equal to 0.056 and the maximum overvoltage is less than 11 V 

(5% of rated value). 

Fig. 2.27 shows the phase and line current characteristics of the SMIG with dual-mode 

control. From synchronous speed up to 1553 r/min and with Mode L capacitances in the 

circuit, all the phase currents are less than rated value. Above this speed, a slight 

overcurrent occurs in phase C, reaching 6% of rated value at the switching speed N,. 

After changeover to Mode H capacitances, a small overcurrent occurs in phase B, but 

both phase-A and phase-C currents are now less than the rated value. 

The experimental results shown in Fig. 2.26 and Fig. 2.27 suggest that satisfactory 

operation of the single-phase SMIG over a wide range of power output can be achieved 

by using a simple dual-mode control scheme. 
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Fig. 2.26 Phase voltages and VLJF of SMIG with dual-mode control. 

45 



10 

8 

6 

4 

2 

Phase and line currents (A) 

x 

x 

x 

o+- 
1500 1520 1540 1560 1680 1600 

Rotor speed (r/min) 

- IA (Cato. ) - IB (Cato. ) ---- IC (Cato. ) ----' I (Calc. ) 

o IA (Expt'I) 1B (Expt'1) x Ic (Expt'I) I (Expt'I) 

Fig. 2.27 Phase and line currents of SMIG with dual-mode control. 

2.3.7 Summary 

The feasibility of a grid-connected single-phase IG system based on the Smith connection 

has been demonstrated in this section. A systematic analysis using the method of 

symmetrical components has been presented for evaluation of the generator performance 

at different rotor speeds. The interesting case of balanced operation in the three-phase 

induction machine has been investigated in detail, and the conditions necessary for 

perfect phase balance are deduced. It is shown that, when the generator impedance angle 

is between 2it/3 rad and 57c/6 rad, phase balancing can be achieved by using capacitances 

only. The effect of capacitances on the generator performance has also been investigated. 

From a consideration of the voltage unbalance factor, a simple dual-mode control 

strategy that gives satisfactory generator performance over a wide range of power output 

is proposed. The theoretical analysis is validated by experiments performed on a small 

induction machine. 
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2.4 Microcontroller-Based Multi-Mode Control of SMIG 

2.4.1 Phase Voltage Consideration 

The theoretical analysis and experimental results presented in Section 2.3 reveal the 

following facts about the SMIG: 

1) For a given set of capacitances, the phase voltages and phase currents will change 

when the rotor speed changes. The phase-A voltage VA decreases with increase in 

rotor speed, whereas phase-B voltage VB and phase-C voltage Vc both increase. 

2) The greater the deviation of rotor speed from that corresponding to perfect 

balance, the greater the deviation of the phase voltages from the value 

corresponding to perfect phase balance. 

3) VV is more sensitive to rotor speed change than VB. 

4) VV varies almost linearly with the rotor speed. 

The above observations suggest that, instead of the rotor speed signal, the phase-C 

voltage Vc may be exploited for controlling the switching of capacitances for multi-mode 

operation of the IG. An advantage of this approach is that an expensive speed sensor need 

not be used. 

2.4.2 Control System 

For practical design, a compromise has to be made between the phase imbalance 

permissible and the cost of the controller system. Previous studies have indicated that a 

dual-mode or three-mode controller will suffice to yield satisfactory machine 

performance. In this section, the implementation of a three-mode controller will be 

described. For easy reference, the three modes are referred to as L-mode (low load), M- 

mode (medium load) and H-mode (heavy load), respectively. 
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To reduce the circuit complexity and to improve the system reliability, a digital approach 

based on the microcontroller technology has been adopted. A microcontroller may be 

viewed as a compact computer manufactured on a single chip. The built-in input/output 

(110) and memory systems enable the chip to be interfaced with the hardware system to 

be controlled. At present, microcontrollers of the 8051 family [84] are widely used for 

implementing stand-alone, embedded control systems. 

Fig. 2.28 shows the schematic diagram of the proposed controller. The phase-C voltage 

Vc is input to a signal conditioning circuit which consists of a two-winding step-down 

transformer, a diode rectifier and a sample-and-hold circuit. The sampled dc signal is 

next input to an analog-to-digital converter (ADC). The digital control signal is input to 

an 8052 microcontroller (an enhanced member of the 8051 family) which functions as a 

voltage comparator and a mode selector. The control functions are executed by an 

Assembly language program that has previously been developed, compiled and linked 

using an Assembler, and ̀ burned in' the read only memory (ROM) of the microcontroller 

chip [85]. The output from the microcontroller is then used to drive a relay/contactor 

circuit that effects capacitor switching. The system cost is low because of the well- 

established microcontroller technology and the small component count. 

It should be noted that the 8052 chip cannot be programmed by the user. In other words, 

the control program has to be supplied to the manufacturer for producing the 

microcontroller. This approach is not economical for prototyping, so in practice an 

enhanced version of the chip with erasable and programmable read only memory 

(EPROM) will be used. Program development and debugging can now be undertaken 

under the personal computer (PC) environment and the final program can be written into 

the EPROM. 
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The proposed control strategy can be explained by referring to Fig. 2.29 which shows the 

variation of Vc with rotor speed for the three sets of capacitances. For this example, the 

balance points are LB, MB and HB, at which Vc is equal to the rated value of 130 V. The 

threshold value AV has been assigned to be ±5 V as indicated by the two dashed 

horizontal lines at 125 V and 135 V. The IG is allowed to operate in its present mode 

provided that the change in Vc does not exceed the specified voltage threshold. A mode 

change or an alarm will be initiated, however, when the change in VV reaches or exceeds 

the threshold value. The latter provision is necessary as the phase imbalance will be too 

large. 
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Fig. 2.28 Schematic diagram of proposed microcontroller based mode selection system. 

Assume that the induction generator is initially operating at perfect phase balance with L- 

mode capacitances in the circuit. As the rotor speed increases, Vc will vary according to 

the L-mode characteristic (thin solid curve in Fig. 2.29) from point LB towards LU. At 

point LU the threshold voltage is reached and a mode change is initiated. M-mode 

capacitances are switched into the circuit and Vc will then vary according to the M-mode 

characteristic (thick solid curve in Fig. 2.29). Further increase in rotor speed will cause 

Vc to reach point MU at which the H-mode capacitances are switched in. If the rotor 

speed continues to increase, the point HU on the H-mode characteristic (dotted curve in 
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Fig. 2.29) will finally be reached and further mode change is not possible. An alarm 

signal will be issued to caution the operator for appropriate action. 
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Fig. 2.29 Variation of phase-C voltage with speed for L-mode, M-mode and H-mode 

capacitances. 

Change of mode in the reverse sequence takes place in a similar manner when the rotor 

speed decreases. The transition from H-mode to M-mode occurs at point HL while the 

transition from M-mode to L-mode occurs at point ML. For proper mode change 

operation, the voltage threshold should be chosen such that, in Fig. 2.29, HL is on the left 

of MU along the speed axis, and ML is on the left of LU. 

Fig. 2.30 shows the flowchart of the voltage comparison routine of the Assembly 

program in the microcontroller. The function of this routine is to keep track of the present 

operating mode of the IG and to determine whether a mode change is necessary. The 

program reads the Vc signal from the ADC continuously and compares it against the 

following voltages: 

Vb = voltage of VV at perfect balance; 

VL = minimum value of Vc permissible; 

Vu = maximum value of Vc permissible. 

LU MU HU 
... **"LB 

MB 
LL ML HL : -"'' 

000 
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As long as the condition VL < Vc < Vu prevails, no action is taken and the controller 

continues to read the sampled Vc signal. When Vc > VV or Vc <VL, however, a mode 

change will be initiated. To avoid rapid mode changes back and forth due to transient 

disturbances, the sampled signal is read twice before initiating a mode change and a time 

delay is introduced after each mode change. 

Start 

Read data from ADC 

Read ýCfrom NV Yý Readdata 
Cfrom b 

Mode v <V y>V? 
Yes Mode 

Change CLVCU Change 

No No 

Delay Go to Start Go to Start Delay 

Fig. 2.30 Flowchart of the voltage comparison routine of the control program. 
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Fig. 2.31 Flowchart of mode selection routine of the control program. 

Fig. 2.31 shows the flowchart of the mode selection routine. When the `Mode change' 

command is issued from the voltage comparison routine, the present operating mode is 
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recalled and the appropriate mode is selected accordingly. An alarm signal will be 

flagged when no further mode change is possible. 

2.4.3 Practical Implementation 

Tests performed on a 50-Hz, four-pole, 130 V (phase), 5.2 A (phase) experimental 

machine gave the sets of capacitances for perfect phase balance as shown in Table 2.6. 

Based on these results, the capacitor switching arrangement shown in Fig. 2.32 was 

designed and the Assembly language control program was developed. Table 2.7 shows 

how the six switches S1 to S6 should be controlled in order to give the capacitance values 

in Table 2.6. The system would be initialized to L-mode immediately after the controller 

was energized. Thereafter the appropriate mode would be selected based on the measured 

Vc signal. 

The 89C52 microcontroller from ATMEL [86], which is one of the enhanced members of 

the 8052 family, was selected for hardware implementation. This chip is a high- 

performance CMOS 8-bit microcontroller with 8 kbytes of EPROM and 256 kbytes of 

random access memory (RAM), and is compatible with the 8051/8052 instruction set. 

There are four parallel UO ports. In the prototype system, port P1 was used for digital 

signal input from the ADC. Port PO was used for control of the relay/contactor circuit, 

while port P2 was used for control of the mode and alarm indication circuit. 

Calibration of the sampled dc signal against the phase-C voltage Vc was necessary for 

software program development. Fig. 2.33 shows the calibration curve obtained on the 

experimental system. Due to the voltage drop in the diode rectifier of the signal 

conditioning circuit, nonlinearities occur when Vc is small. Over the practical operating 

range (from 120 V to 140 V), however, the sampled dc signal is approximately 

proportional to Vc. 
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Heavy-current relays were used for switches Si to S6 in the prototype system. Voltage 

amplification of the digital output from the microcontroller was required for energizing 

the relays. For larger machines, the use of zero-crossing solid-state relays [11] is 

preferred in order to minimize the transient switching currents. 
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Sl 2.5µF S215 µF S3 30µF 
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S4 5 µF S5 15 µF S6 3 ýLF 

C1 C2 C3 

Fig. 2.32 Capacitor switching arrangement of single-phase induction generator with the 
Smith connection. 
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Fig. 2.33 Variation of the sampled dc signal against Vc. 
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TABLE 2.6 
CAPACITANCES FOR PERFECT PHASE BALANCE IN EXPERIMENTAL MACHINE 

Mode Cl 

(µF) 

C2 

(pF) 

C3 

(µF) 

Rotor speed at balance 

(r/min) 

L 20 10 20 1533 

M 15 25 50 1552 

H 12.5 40 80 1574 
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TABLE 2.7 
SWITCH CONTROL FOR PHASE BALANCING CAPACITANCES 

Mode CI C2 C3 

L Si closed S2 open S3 open 
S4 closed S5 open S6 open 

M S1 closed S2 closed S3 closed 
S4 open S5 open S6 open 

H Si open S2 closed S3 closed 
S4 open S5 closed S6 closed 

2.4.4 Experimental Results and Discussion 

Fig. 2.34 shows the phase voltage variations obtained from a load test on the 

experimental SMIG system with the multi-mode controller, the rotor speed being 

increased monotonously from synchronous value (1500 r/min). It is observed that the 

phase voltages vary within close limits about the rated value (130 V) throughout the 

normal speed range. Switching over from L-mode to M-mode occurs at a rotor speed of 

1541 r/min, and switching from M-mode to H-mode occurs at a rotor speed of 1563 

r/min. Fig. 2.34 has further confirmed that Vc is an appropriate control signal for mode 

selection. 

Fig. 2.35 shows the corresponding variations of the phase and line currents of the IG. For 

rotor speeds close to the balance points, the phase current imbalance is quite small. At 

very light loads, however, the imbalance becomes more severe. The phase currents under 

this condition, however, are much lower than the rated value (due to the use of L-mode 

capacitances) and hence the motor losses are acceptable. Within each mode, the phase-B 

current IB decreases only slightly with increase in rotor speed, but its magnitude is larger 

when the next higher mode is selected. IA and Ic, on the other hand, vary considerably 
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within the same mode, but the two currents are approximately equal for operation in the 

H-mode. 

Fig. 2.36 shows the efficiency and power factor characteristics of the SMIG. Despite the 

mode changes, the efficiency characteristic is quite smooth and the efficiency is 

acceptable at rotor speeds above 1530 r/min. The power factor characteristic, on the other 

hand, exhibits marked discontinuities due to the mode changes. Over the practical speed 

range, however, the output line power factor exceeds 0.8 (leading) while at speeds 

corresponding to perfect phase balance, the line power factor is above 0.9 (leading). 

Similar performance characteristics were obtained when the rotor speed was reduced 

from that corresponding to heavy load. Switching from H-mode to M-mode was found to 

occur at a rotor speed of 1567 r/min and switching from M-mode to L-mode at a rotor 

speed of 1542 r/min. 

The response of the micro-controller to transient speed changes was also studied. For a 

moderate increase or decrease in rotor speed, switching between modes was 

accomplished in about 1.5 s. 
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Fig. 2.34 Phase voltage variations of SMIG under multi-mode operation. 
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Fig. 2.35 Phase and line current variations of SMIG under multi-mode operation. 

Experimental waveforms of the SMIG were also recorded when the rotor speed was 1533 

r/min and L-mode capacitances were in the circuit. Fig. 2.37 to Fig. 2.39 show the 

oscillograms of the experimental waveforms obtained by using a voltage scale of 200 V 

per division, a current scale of 2A per division, and a time scale of 5 ms per division. 

The waveform of the supply voltage V (the upper trace) in each oscillogram provides a 

convenient reference for studying the phase relationship between various voltages and 

currents. 
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Fig. 2.36 Efficiency and power factor variations of SMIG under multi-mode operation. 
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The oscillograms in Fig. 2.37 to Fig. 2.39 show that the IG was operating under 

approximately balanced conditions. An examination of the phase angles (using the 

vertical cursors in the oscillograms) confirms the validity of the phasor diagram shown 

in Fig. 2.13. The voltages and currents are approximately sinusoidal, but both the 

phase-C voltage Vc and the line current I are flat-topped. These waveform distortions 

are caused by the local loops in the Smith connection which provide closed paths for 

the flow of current harmonics. For example, the harmonic components in V will 

circulate the corresponding harmonic currents through capacitances C1 and C2 in loop 

3453 of Fig. 2.12. Similarly, harmonic currents will flow in capacitance C3 due to 

harmonics in the phase-A voltage VA. This phenomenon is confirmed by the waveforms 

of capacitor currents shown in Fig. 2.39. Third harmonic distortion, for example, can be 

observed from the waveform of Ir in Fig. 2.39(a). 

---------- --------- I- 

(b) V (upper) & VB (lower) 

Fig. 2.37 Phase voltage waveforms of SMIG: balanced operation with L-mode 

capacitances. 
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(a) V (upper) & VA (lower) 

(c) V (upper) &V (lower) 



(a) V (upper) & IA (lower) 

Fig. 2.38 Phase and line currents waveforms of SMIG: balanced operation with L- 

mode capacitances. 
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(a) V (upper) &I, (lower) 

Fig. 2.39 Capacitor current waveforms of SMIG: balanced operation with L-mode 

capacitances. 
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(b) V (upper) & IB (lower) 
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2.4.5 Summary 

Microcontroller based multi-mode operation of a grid-connected single-phase induction 

generator with the Smith connection has been presented in this section. The control 

system and mode switching strategy have been described. The prototype controller 

system implemented has confirmed the feasibility of the proposed design. Satisfactory 

generator performance has been obtained on a small laboratory induction machine. The 

experimental waveforms have verified the relationships between voltages and currents in 

the SMIG. This section has also demonstrated that a low-cost, reliable practical single- 

phase IG system could be realized using the microcontroller approach. 

2.5 Phase-Balancing Using a Line-Current Injection Method 

2.5.1 Circuit Connection and Operating Principle 

Among the phase-balancing schemes for IGs introduced by Smith [53], a novel line 

current injection method (viz. the Mode C circuit as shown in Fig. 2.40) deserves special 

attention. Whereas all the other circuits require a three-wire, two-level single-phase 

voltage supply for providing the injected current, the Mode C circuit requires only a two- 

wire single-phase supply (which is more often used universally) and employs a 

transformer for furnishing one of the injected line current components. Perfect phase 

balance could be achieved when the generator power factor angle is between 2ic/3 rad 

and 5it/6 rad. In [53], the current injection transformer is assumed to have a unity 

primary/secondary turns ratio. 

In this section, a systematic analysis on the above Mode C circuit for single-phase 

operation of a three-phase IG will be presented. The effect of non-unity transformer 

turns ratio on machine performance and the conditions of phase balance will also be 

investigated. 
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Fig. 2.40 shows the Mode C circuit for single-phase operation of a three-phase delta- 

connected IG. Phase A (the reference phase) is connected across the single-phase grid of 

voltage V while a capacitance C2 is connected across phase B (the lagging phase). The 

primary winding of the current-injection transformer is connected across phase A. The 

secondary winding voltage VA', together with the phase-B voltage VB, causes a current 15 

to flow through the capacitance C5. The capacitor currents '2 and 15 thus constitute the 

line current IL2 that flows into terminal 2 of the IG. 

VI 

I L3 

Current 
injection transformer 

Fig. 2.40 Mode C circuit for single-phase operation of a delta-connected three-phase IG. 
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(a) (b) 

rA 

Fig. 2.41 Phasor diagrams for the Mode C circuit: 
(a) Phasor diagram showing components of IL2; 
(b) Phasor diagram showing components of grid current I, the transformer no-load 

current having been neglected. 
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Consider the phasor diagram in Fig. 2.41(a), drawn for the special case of perfect phase 

balance. The line current IL2 lags the phase-C voltage Vc by (+ 7r/6) rad, while the 

current I2 lags Vc by 5ic/6 rad. Provided O is greater than 21r/3 rad, IL2 can always be 

formed from appropriate values of 12 and 15 and perfect phase balance can be obtained. 

The maximum value of generator impedance angle Op,,,,,,, below which perfect phase 

balance is possible depends on the angle A which varies as the turns-ratio of the current 

injection transformer. 

Fig. 2.41(b) shows the components of the supply line current I, the transformer no-load 

current having been neglected. It is noticed that both active power and reactive power are 

delivered to the line voltage V via the current injection transformer (by virtue of the 

voltage VA and the current component -n. I5). The IG delivers balanced three phase power 

from the stator winding terminals 1,2 and 3 as shown in Fig. 2.40. Most of this power is 

transmitted conductively to the single-phase line via terminals 1 and 3 (by virtue of the 

voltage VA and the line current IL3). The remaining power output is delivered to the line 

inductively through the transformer coupling mechanism. Fig. 2.41(b) also suggests that 

the line power factor of the IG system is high and the transmission losses associated 

with the reactive power supply are reduced. 

2.5.2 Performance Analysis 

Performance analysis of the phase-balancing scheme shown in Fig. 2.40 can also be 

carried out using the method of symmetrical components [9]. Adopting the motor 

convention for the induction machine and neglecting the leakage impedance drop of the 

current injection transformer, the following inspection equations may be established: 
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V =VA (2.40) 

VA+VB+VC O (2.41) 

12=VB"Y2 (2.42) 

Is=WB-VA')-Ys (2.43) 

IL3=IA-IC (2.44) 

IL2=I1+I5 (2.45) 

IL2-IC -IB (2.46) 

I =IL3+Is1 (2.47) 

where Y2 =j co C2, Y5 =j co C5 and co is the angular frequency of the supply voltage. 

The primary and secondary quantities of the current injection transformer are related by 

Ist=Ito - n. Is (2.48) 

VA'=n"VA (2.49) 

where n is the secondary-to-primary turns-ratio N2/NI and Ito is the no-load current of the 

transformer. 

Solution of the above equations using the method of symmetrical components gives the 

positive-sequence voltage Vp and the negative-sequence voltage V,: 

Vp=ýV 
Yn+(Y2+Y5)/(1-h)-n. y5/(h-h2) (2.50) 

Yp+Yn+Y2+Y5 

Vn=NF3V 
Yp-h. (YZ-Ys)/(1-h)+n. Y51(h-h2) 

(2.51) 
Yp+Yn+Y2+Y5 

where Yp and Y, are the positive-sequence and negative-sequence admittances of the 

three-phase IG and h is the unit complex operator exp(j27/3). 

For a given single-phase grid voltage V and speed (or per-unit slip), Yp and Y, are known 

and both Vp and V,, can be computed. The currents Ip and I, can then be calculated from 
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the positive-sequence and negative-sequence equivalent circuits. The generator 

performance, such as phase voltages, phase currents, electromagnetic torque, power 

factor and efficiency, can subsequently be obtained. 

2.5.3 Balanced Operation 

A) Conditions for Balanced Operation 

Since negative-sequence voltage must be absent when the generator is balanced, one 

obtains, from (2.51), 

Yp-h"(Y2-Y5)/(1-h)+n. Y51(h-h2 )=0. (2.52) 

Eqn. (2.52) may be solved to give the capacitive admittances that result in perfect phase 

balance. Alternatively, the phasor diagram under balanced conditions can be used. 

Referring to Fig. 2.41(a), the voltage V5 across C5 is given by: 

V5=/(. n"Vph 
(2.53) 

where 

k�= 
VI (2.54) 

and Vph is the phase voltage. 

The angle A in phasor triangle Oqp is given by: 

sin0= (2.55) 
2. kn 

Applying Sine Rule to the phasor triangle Omn yields: 

ýIph. 
sin(ýz-0-op) 

Iý - (2.56) 
sin(2z/3+0) 

$hIph. 
sin(cp-21r/3) 

Is= (2.57) 
sin(27r/3+0) 

where I, h is the phase current and 4 is the positive-sequence impedance angle of the IG. 
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The admittances Y2 and Y5 that result in perfect phase balance are thus given by 

sin(ic-0-0P) l Yý -3 YP ý sin(2z/3 + 0) 
(2.58 J 

yP sin( op - 21r/3) 
!l Ys - 

kn ' sin(27r/3 + A) 
(2.59) 

Eqn. (2.58) implies that admittance Y2 is positive when 4 is less than it - A. It is obvious 

that both Y2 and Y5 (and hence C2 and C5) depend on Yp and , as well as the transformer 

turns-ratio n. 

Fig. 2.42 shows the variations of Y2 and Y5 for balanced operation of the experimental IG 

whose technical data are given in Section 2.5.4. For a given value of Or, an increase in n 

results in an increase of Y2 but a decrease of Y5. This feature may be exploited for design 

of a practical system. Use of values of n exceeding 2, however, is not recommended as 

the effect on Y2 and Y5 is less pronounced. 

B) Line Current and Power Factor 

If the no-load current of the current injection transformer is neglected, the line current I 

and the angle ycan be computed from the phasor triangle Ost in Fig. 2.41(b), as follows: 

I= J(n. i5 )2 +I L32 -2 (n. Is) I L3 cos(c p- 7r/3 + A) (2.60) 

sing = 
ný 

.. 
sin(c p- Tr/3 + A). (2.61) 

I 

If the input power factor angle 0 is defined to be positive when the line current I lags the 

grid terminal voltage V, then 

O=qp+6+y. (2.62) 

Fig. 2.43 shows the variation of the line power factor angle 0 as n is varied from unity to 
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2. For a given value of c, 0 increases almost linearly with n. When O, = 125°e, 0 is less 

than 180°e and the output line power factor of the system is leading. The line power 

factor therefore becomes higher as n increases. When O= 130°e, the line power factor is 

very close to unity, but a transition from leading to lagging power factor occurs when n= 

1.2. At larger values of O, the system exports reactive power to the grid. 

From (2.59), it is observed that when the turns-ratio n is equal to unity and = 27t/3 rad, 

Y5 is equal to zero, hence the capacitance C5 is not required and the circuit is reduced to 

the Steinmetz connection for a delta-connected IG. When c= 57t/6 rad, however, Y2 is 

equal to zero in accordance with (2.58). This is the maximum value of the generator 

positive-sequence impedance angle for which perfect phase balance can be achieved. 

1.5 

1 

0.6 

0 

Aiirnlf#e% o%. & IHr. 
i . ii V1 

rwýýnaroýwv \a1ýýIVV VI 1J 

Y6 2 

1 1.2 1.4 1.8 1.8 2 
Sec. /Pri. turns ratio n 

- 
Op 

=126 dog - Op 
= 130 dog --- O, 

=196 dog 
-- 195 dig - O, = 180 dop -- 

Op 
= 185 dop 

Fig. 2.42 Effect of transformer turns ratio n on the values of Y2 and Y5 for balanced 

operation of IG. 
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Fig. 2.43 Effect of transformer turns ratio n on the line power factor angle q5 
. 

By choosing a value of n greater than unity and using the correct values of capacitances, 

balanced operation can be achieved for values of exceeding 5ic/6 rad. When n is 

increased to 1.2, for example, Y2 is equal to zero when = 0.85it rad. This corresponds 

to a generator power factor of 0.89, achievable probably for a very large IG. In most 

cases, a current injection transformer with n close to unity would suffice for achieving 

balanced operation. 

2.5.4 Results and Discussion 

A) Computation of Performance 

To verify the above analysis, performance computations and experiments were 

performed on a 2.0-kW, 200-V, 9.4-A, 50-Hz, four-pole, delta-connected induction 

machine. Fig. 2.44 shows the variations of Yp and with rotor speed, determined 

experimentally by operating the induction generator on a balanced three-phase supply at 

a constant voltage Vp*. Fig. 2.45 shows the corresponding variations of positive-sequence 

electromagnetic torque Tp*. For a specific rotor speed, the positive-sequence torque was 

computed from the following equation: 

Tp= Tp' x 

(Vp 
/V* (2.63) 
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where Vp is the computed positive-sequence voltage, while Vp* and Tp* are the 

corresponding values as given by Fig. 2.44 and Fig. 2.45. 

The negative-sequence quantities were determined in a similar manner. For the 

experimental machine, the negative-sequence admittance Y, was determined as 0.1 Z-59° 

S and could be regarded as constant over the normal speed range. The negative-sequence 

electromagnetic torque Tn was also insensitive to the rotor speed but depended on the 

applied voltage. For a given rotor speed, Tn was computed as: 

Tn =T x(Yn/Yn*) (2.64) 

where Tn* is the negative-sequence torque determined with an applied negative-sequence 

voltage of V, *. For the experimental machine, Tn* = 1.9 N. m when Vn* = 54 V. 

The driving torque Td of the IG was computed as: 

Td = Tp + Tn + Tfi, (2.65) 

where Tf,, is the torque for overcoming the friction and windage losses. 

The current injection transformer used was rated at 50-Hz, 200/210.5 V and 1-kVA. It 

had a no-load current of (0.107 -jO. 259) A and an equivalent leakage impedance of (1.4 

+j2.89) 0, both referred to the primary side. The leakage impedance drop was neglected 

in the performance computations, but the copper losses were included when evaluating 

the system efficiency. 

B) Computed and Experimental Results 

A phase-balancing experiment was next performed at different rotor speeds. The grid 

voltage was maintained at rated value and the capacitances were varied until balanced 

generator operation was obtained. Fig. 2.46 shows the computed and experimental values 

of capacitances C2 and C5 that result in balanced operation of the three-phase IG. It is 
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observed that perfect phase balance is possible for speeds above 1533 r/min. As the rotor 

speed increases, C5 increases approximately linearly while C2 remains substantially 

constant over most of the rotor speed range. 
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-Y. - op 

Fig. 2.44 Experimental variations of positive-sequence admittance Yp and positive- 
sequence impedance angle O with rotor speed, determined at Vp* = 200 V. 
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Fig. 2.45 Experimental variation of positive-sequence electromagnetic torque of IG 

with rotor speed, determined at VP* = 200 V. 

Fig. 2.47 shows the variations of phase current, line current and output power when the 

IG operates under perfect phase balance. At a speed of 1562.5 r/min (which corresponds 

to operation with approximately rated phase current), the generator delivers a power of 

2.09 kW to the single-phase grid. Due to the injected current component 15, the ratio of 

input current to the phase current at full load is 1.92. This is higher than the ratio of J3 in 
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the case of a single-phase IG with the Steinmetz connection, and may be attributed to the 

primary current 15J of the current injection transformer. 

120 

100 

60 

60 

40 

20 

Capacitance (uF) 

0-- 

1630 1640 1560 1560 1670 1580 
Rotor speed (r/min) 
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Fig. 2.46 Capacitances to give perfect phase balance at different speeds. 

Fig. 2.48 shows the efficiency and power factor characteristics of the IG under perfect 

phase balance. As the rotor speed varies from 1533 r/min to 1570 r/min, the efficiency 

decreases almost linearly from 0.74 p. u. to 0.70 p. u. The output power factor, on the 

other hand, increases from 0.85 leading to unity over the same speed range. Above 1570 

r/min, the power factor decreases slightly and becomes lagging. This novel phase- 

balancing method therefore enables the experimental machine to operate with excellent 

line power factors. 

The close agreement between the computed and experimental results in Fig. 2.46 through 

Fig. 2.48 confirms the principle of phase balancing as explained in Section 2.5.1. 
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Fig. 2.47 Phase current, line current and output power at perfect phase balance. 

1 

0.8 

0.8 

0.4 

0.2 

Output power (W) 

Efficiency and P. F. 

A 

0 

1630 1540 1550 1680 

Rotor speed (r/min) 

- Eff'y (Cato. ) - P. F. (Calc. ) A Eff'y (Expt'l) 

1570 1580 

0 P. F. (Expt'I) 

Fig. 2.48 Efficiency and output power of IG at perfect phase balance. 

A load test was conducted on the experimental machine with C2 = 102 µF and C5 = 30 

µF. It was found that the IG was balanced at a rotor speed of 1566 r/min and at a phase 

current of 5.5 A. Fig. 2.49 through Fig. 2.52 show the computed and experimental 

performance characteristics obtained. As shown in Fig. 2.49, the phase-B voltage VB 

increases as the rotor speed decreases from that corresponding to the balance point, 

whereas the phase-C voltage Vc decreases. Fig. 2.50 shows that overcurrent occurs in 

phase B at rotor speeds below 1550 r/min. IA and Ic, on the other hand, are less than the 

rated value and hence offset the effect of the overcurrent in phase B. At a rotor speed of 
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1510 r/min, which corresponds to a `floating' condition, the total stator copper losses are 

still within the permissible limits. 

Fig. 2.51 and Fig. 2.52 show that, when the capacitances are constant, the efficiency, the 

power factor, and the output power are in general lower than when the capacitances are 

varied to give balanced operation. A comparison between Fig. 2.47 and Fig. 2.52 also 

shows that the output power is lower when the IG operates with constant capacitances. 

This is due to the negative-sequence losses under unbalanced operation. 

Very good agreement between the computed and experimental results is observed in Fig. 

2.49 through Fig. 2.52, thereby confirming the validity of the method of analysis. 

Fig. 2.53 shows the computed variations of the positive-sequence voltage Vp and 

negative-sequence voltage V, when C2 = 102 µF and C5 = 30 µF. Vp exhibits a slightly 

convex downward characteristic: the maximum value occurs at a rotor speed of 1545 

r/min, but over the normal speed range the variation in Vp is less than 5%. The variation 

of V, on the other hand, is in the form of a V-shaped curve, with zero value occurring at 

a rotor speed of 1562.5 r/min. The variation of the voltage unbalance factor VUF (which 

is the ratio of magnitudes of Vp and Va), is thus also a V-shaped curve. 
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Fig. 2.49 Variations of voltages VB, Vc and V5 when the IG operates with constant 

capacitances. 

71 



Phase & output currents (A) 
14 

12 

10 

S 

6 

4 

2 

0 
1500 1520 1640 1580 1680 

Rotor speed (r/min) 

- IA (Cato. ) - 1B (Cato. ) IC(Calo. ) "--- I (Cato. ) 

o IA (Expt'I) o IB (Expt'I) x Ic (Expt'I) I (Expt'1) 

Fig. 2.50 Variations of phase and output currents when the IG operates with constant 

capacitances. 
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Fig. 2.51 Variations of efficiency and power factor when the IG operates with 

constant capacitances. 
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Fig. 2.52 Variations of output power and driving torque when the IG operates with 

constant capacitances. 
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Fig. 2.53 Variations of Vp, V� and voltage unbalance factor (VUF) when the IG 

operates with constant capacitances. 

C) Waveforms and Harmonics 

Fig. 2.54 through Fig. 2.56 show the waveforms of the experimental IG system when 

operating under perfect phase balance with a phase current of 5.0 A, measured using a 

dual-channel digital storage oscilloscope. In each oscillogram, the phase-A voltage 

(upper trace) was measured together with the waveform of the quantity of interest 

(lower trace). The phase angle between the upper and lower waveforms is given by the 

separation of the vertical cursors Xl and X2 which were set to the zero crossings of the 

two waveforms. 

The waveforms in Fig. 2.54(a) and (b) show that the phase voltages of the IG are quite 

sinusoidal. A close examination of the phase angles of the waveforms confirmed that 

the phase voltages were balanced. The third-harmonic induced e. m. f. s, however, cause 

a circulating current to flow in the delta-connected stator winding. This can be observed 

from the phase current waveforms shown in Fig. 2.55(a) to (c). Except for the third- 

harmonic distortion, the phase currents are balanced and they have approximately the 

same wave shape. From Fig. 2.55(d), it is observed that the line current I and VA are 

almost in anti-phase, which implies that the output power factor is very close to unity. 

VUF (p. u. ) 
o. 5 

------------ 0.4 

0.3 

0.2 

0.1 
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Fig. 2.56(a) and (b) show the waveforms of the capacitor currents '2 and 15 while Fig. 

2.56(c) shows the waveform of 15J. Harmonic distortion is more prominent in these 

waveforms since a capacitance presents lower impedance to higher order current 

harmonics. 

The principal voltage and current harmonics of the IG were measured using a harmonic 

analyzer. It was found that in all the system waveforms, harmonics of the 9th order and 

above were negligible. Tables 2.8 and 2.9 show the magnitudes of the principal 

harmonics in the voltages and currents. The results in Table 2.8 confirm the sinusoidal 

waveforms obtained in Fig. 2.54. It is seen that third harmonic distortion in the phase 

voltages is quite small, but the 7th harmonic is more prominent. The results in Table 2.9, 

on the other hand, show that the harmonic distortion in the phase currents is mainly due 

to the third harmonic, which is consistent with the observed waveforms in Fig. 2.55. The 

capacitor currents '2 and 15 are rich in 7th harmonic. In the case of 15, the higher 7th 

harmonic content may be due to the smaller effective capacitive reactance since C5 is in 

series with the transformer equivalent leakage reactance. The phase currents of the IG, on 

the other hand, contain very little 7th harmonic. The primary current 151 of the current 

injection transformer has the most severe harmonic distortion due to the 7th harmonic 

reflected from the secondary winding and the third harmonic component in the no-load 

current. In the experimental IG system, however, the magnitude of 15] is small compared 

with the line current. The line current waveform is therefore quite sinusoidal, with a total 

harmonic distortion (THD) of 7.5% approximately. 
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Fig. 2.54 Voltage waveforms of experimental IG at full load: (a) VA and VB; (b) VA and 
Vc; (c) VA and V5 (Scale for VA, VB, and Vc: 200 V/div; scale for V5: 500 V/div; time scale: 
5 ms/div). 
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Fig. 2.55 Phase and line current waveforms of experimental IG at full load: (a) VA and 
IA; (b) VA and IB; (c) VA and Ic; (d) VA and I (Scale for phase currents: 5 A/div; scale for 

line current: 10 A/div; time scale: 5 ms/div). 

75 

(a) (b) 



(a) (b) 

i 
i 
t 

i 
__ 

i 

i 

(c) 
Fig. 2.56 Waveforms of capacitor currents and transformer primary current: (a) VA and 
I2; (b) VA and 15; (c) VA and 151 (Scale for 12: 10 A/div; scale for I5 and 15J: 5 A/div; time 
scale: 5 ms/div). 

TABLE 2.8 
PRINCIPAL VOLTAGE HARMONICS IN EXPERIMENTAL IG 

WHEN BALANCED AT A PHASE CURRENT OF 5A 

(EXPRESSED AS PERCENTAGE OF THE FUNDAMENTAL) 

Harmonic Order VA VB V V5 

3 0.29 1.0 0.84 1.03 

5 1.17 0.55 1.51 0.73 

7 2.03 1.98 3.72 3.76 

TABLE 2.9 
PRINCIPAL CURRENT HARMONICS IN EXPERIMENTAL IG 

WHEN BALANCED AT A PHASE CURRENT OF 5A 

(EXPRESSED AS PERCENTAGE OF THE FUNDAMENTAL) 

Harmonic Order IA IB Ic 1 Iz 15 151 

3 8.63 10.84 9.7 4.42 3.34 2.2 7.1 

5 1.77 1.33 2.8 2.79 2.68 3.07 1.9 

7 1.55 1.77 0.0 5.35 12.9 25.4 29.0 
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2.5.5 Summary 

This section has presented the principle and performance analysis of Smith's Mode C 

circuit that enables a three-phase IG to be operated satisfactorily on a single-phase grid. 

The circuit employs a transformer and two capacitances for phase balancing. A phasor 

diagram approach enables analytic expressions for the values of capacitances to be 

deduced. A general performance analysis is developed by applying the method of 

symmetrical components. Experimental results obtained on a small induction machine 

have confirmed the accuracy of analysis and feasibility of the circuit configuration. The 

advantageous features of this phase-balancing scheme include simplicity of the circuit 

configuration, low cost, high efficiency and excellent system power factor. 
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Chapter 3 

FINITE ELEMENT ANALYSIS OF GRID-CONNECTED IG WITH 
THE STEINMETZ CONNECTION 

3.1 Introduction 

Among the various phase-balancing schemes in use, the Steinmetz connection [81] is 

particularly suitable for adapting a three-phase induction machine for single-phase 

operation due to the extremely simple circuit configuration. The method is applicable to 

an induction machine with a star-connected winding or a delta-connected stator 

winding. It can be shown that, for a given value of phase-balancing capacitance, there 

exists a speed or load at which the voltage unbalance factor is a minimum [54]. 

Furthermore, if the value of the capacitance and speed are properly chosen, a perfect 

phase balance condition can be achieved. With the aid of the Steinmetz connection, 

three-phase induction machines could conveniently be used as non-utility generators in 

distributed single-phase generation systems in remote or rural regions. 

In Chapter 2, the performance analysis of an induction generator with asymmetrical 

winding connection or unbalanced phase voltages is carried out using the method of 

symmetrical components. Since the method is based on the principle of superposition, 

the assumption of circuit linearity has to be made. When the induction machine 

operates in the generator mode, the higher air gap voltage leads to more severe 

magnetic saturation, consequently the assumption of a linear magnetic circuit is less 

valid. The accuracy of the symmetrical component method is also affected by the 

variation in the values of the equivalent circuit parameters, in particular the rotor 

resistance which depends on the rotor slip and thermal conditions. In order to account 

for the complex magnetic field distribution in the IG and the dependence of rotor 
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parameters on speed, detailed modeling and solution of the machine variables in the 

magnetic field domain will be more appropriate. 

Electromagnetic field analysis of three-phase induction motor drives using the finite 

element method (FEM) has been a subject of rigorous research in the past two decades 

[87]-[92]. The major advantage of the FEM is the accurate modeling of the machine's 

magnetic circuit. Magnetic nonlinearity, material non-homogeneity and the effect of 

discrete winding layouts can easily be accounted for. Another advantage of the FEM is 

that it permits direct modeling in phase quantities, hence the analysis implicitly 

includes the effects of space and time harmonics. The third advantage of the FEM is its 

ability to deal with both steady-state and transient machine operations, without 

requiring simplifying assumptions as those made in classical machine theory, e. g., the 

d-q machine model as used in the Electromagnetic Transients Program (EMTP) [93], 

[94]. The machine performance can be obtained directly from the field solution, 

without the need to use the equivalent circuit parameters. A feature of the FEM, 

however, is the relatively long computing time and the large memory requirement. 

Most of the publications on FEM have been devoted to three-phase induction motor 

drives under balanced operating conditions [87], [89], [90]. To the best knowledge of 

the author, FEM analysis of a three-phase IG with the Steinmetz connection has not 

been reported before. 

In this chapter, the performance analysis of a single-phase grid-connected IG with the 

Steinmetz connection will be conducted using a coupled circuit and field approach, 

based on a two-dimensional (2-D) FEM. Emphasis will be placed on the phase- 

balancing capability of the IG circuit configuration under steady-state conditions. The 

generator performance computed by the proposed method will be compared with that 
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computed by the method of symmetrical components and that obtained from 

experiments on a 2.2-kW induction machine. 

3.2 Steinmetz Connection and Symmetrical Component Analysis 

Analysis of the Steinmetz connection shown in Fig. 3.1 is quite straightforward and 

involves the following steps: 

1) Establish the `inspection equations' based on Kirchhoff's Laws. 

2) Solve the `inspection equations' in association with the symmetrical component 

equations to obtain the positive-sequence voltage Vp and negative sequence 

voltage V. 

3) Compute the positive-sequence current Ip and negative sequence current I, from 

the equivalent circuits of the IG. 

4) Compute the performance of the IG. 

It is well known that the output power factor of an IG is leading, which implies that the 

air gap voltage is considerably higher than the corresponding value when the machine 

operates as a motor. Magnetic saturation is more severe and hence it is very difficult to 

choose the proper value of magnetizing reactance that truly reflects the magnetic 

saturation conditions in the machine. The magnetic field distribution is further 

complicated by the presence of the negative-sequence rotating field, which in turn 

depends upon the rotor speed or output power. Skin effect in the rotor conductors also 

causes a discrepancy between the effective value of rotor resistance and that determined 

from standard locked-rotor and dc resistance tests. Due to the above uncertainties, 

computations based on the method of symmetrical components are subject to errors. In 

order to account for the complex magnetic conditions in the machine, a field approach 

will be attempted as detailed in the following sections. 
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Fig. 3.1 Single-phase operation of three-phase, delta-connected induction generator 
with Steinmetz connection. 

3.3 Machine Model 

A coupled circuit and field approach is adopted for performance analysis of a three- 

phase IG with the Steinmetz connection. Fig. 3.2 shows the cross-sectional view of the 

experimental machine chosen for the investigation. Pertinent technical data of the 

induction machine are given in Appendix D. 2. To reduce the complexity of the problem 

and solution time, the following assumptions and solution techniques will be used: 

1) Two-dimensional (2-D) finite element method (FEM) is used for the magnetic 

field computation, with the complex magnetic vector potentials as the variables. 

Rectangular (x y) coordinates are used in the FEM model, hence each magnetic 

vector potential A has only an axial or z-component [88]. 

2) First-order triangular elements and linear interpolation functions are used. 

3) Stator end-winding leakage reactance is ignored. 

4) The rotor speed is constant. 

5) The nominal magnetization curve is used for both stator and rotor iron core, i. e., 

hysteresis effect is neglected. 
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Ti 

Fig. 3.2 Cross-section of experimental induction generator. 

3.4 Finite Element Analysis 

Since the stator winding connection is asymmetrical, the electromagnetic quantities 

such as voltage, current and flux density, are all time varying but may not be 

sinusoidal. Accordingly, it is not possible to use the complex form of the field equation. 

A time-stepping finite element field formulation coupled with external circuit equations 

is therefore adopted in the solver. Besides, the solution region has to be extended to the 

entire cross-section of the induction machine. 

3.4.1 Basic Field Equations 

Using the assumptions made in Section 3.3 and with reference to Fig. 3.2, the basic 

field equation and boundary conditions are formulated as follows [10], [95] : 

L9 I aA ", aA 
(3.1) 

CIX p ax O,, y p dy 

AI 
Tj=AI T2=O (3.2) 

where 
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A= magnetic vector potential; 

J= externally impressed current density; 

,u= magnetic permeability; 

Ti = outer periphery of the stator iron core; 

12 = inner periphery of the rotor iron core. 

The energy functional is 

E(A)= jJl JB. dB-A. JJcIY. dy (33) 
nýoý 

where S2 denotes the field solution region and B is the flux density. 

After discretization and functional minimization, the following matrix equation is 

obtained: 

[K]. [A] _ [R] 

where 

[K] = coefficient matrix; 

[A] = column vector of nodal magnetic vector potentials; 

[R] = right-hand-side column vector containing known terms. 

(3.4) 

The derivation of (3.4) is given in Appendix C. This matrix equation is subsequently 

modified due to the application of boundary conditions and the coupled circuit and field 

approach adopted in the solution. Details of the circuit formulation will be given in the 

following sections. 

3.4.2 Stator Circuit Equations 

Fig. 3.3 shows the stator circuit model for single-phase operation of the IG with the 

Steinmetz connection. EA, EB and Ec are the internal e. m. f. s induced in stator phases A, 
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B and C, respectively. The generator convention will be adopted in the formulation of 

the circuit equations. 

Neglecting the stator end-winding leakage reactance, the following equation may be 

written for phase A: 

VA=EA-IAR, " 
(3.5) 

To facilitate easy coupling with the FEM field domain, (3.5) is rewritten as 

IA-EA=VA- - 
(3.6) 

R, R, R, 

Since the impressed voltages across phase B and phase C are not explicitly known, they 

have to be expressed in terms of other circuit parameters, available after the computation 

for the previous time-step. For phase-B, 

VB=EB-IBR, (3.7) 

IL 
IC 

VA EA Rl VC 
V- 

Rl EC 
IA 

+-R1+ EB 

12 C2 IB 

11-1 

VB 

Fig. 3.3 Stator circuit model for delta-connected IG with Steinmetz connection. 

The phase-B and phase-C currents are related by 

IC+I2 IB (3.8) 

The capacitor current I2 can be written as: 
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I2=C2 

dVB 

-C2. 

VB-VB' 

dt At 

where 

VB' = value of phase-B voltage in the previous time step; 

At = incremental time step. 

(3.9) 

Substituting (3.8) and (3.9) into (3.7) and simplifying, the following equation may be 

written: 

1+ 
At 

IB - 
At 

Ic 
EB 

- 
VB' 

. 
(3.10) 

R1C2 R1C2 R1 R1 

For phase C, 

Vc - Ec - IcRj" (3.11) 

Sum of the phase voltages must be equal to zero for a delta circuit, hence 

VA+VB+Vc=0. (3.12) 

Eliminating Vc from (3.11) and (3.12), 

-VA-VB=Ec-IcRJ. (3.13) 

Eliminating VB from (3.9) and (3.13), 

VA+ 
At 

I2+VB '+Ec-IcR1=0. (3.14) 
C2 

Finally, eliminating Iz from (3.8) and (3.14), 

At 
IB+ 1+ 

At 
jC_ 

EC 
= 

VA+VB' (3.15) 
R1C2 RiCz Ri R1 

It should be noted that (3.6), (3.10) and (3.15) have been expressed in a form suitable 

for coupling with the matrix equation (3.4). All the additional circuit variables are 

grouped on the left-hand side of each equation, while the known terms are placed on 

the right-hand side. 
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3.4.3 Stator E. m. f. s 

From the FEM solution, the average value of magnetic vector potential in an element e is 

3 

Ae= 
Iff, 

A. dx. dy 
1f JNI. A;. dx. dy= 

1 I° 
"Ai (3.16) 

SSS i_, 3 

where Ni = shape function, S= cross-sectional area of coil side, and Ae = area of 

triangular element. 

The stator internal e. m. f. Eph (ph = A, B, and C) can next be computed by applying 

Faraday's Law, using the fact that flux density is the time derivative of the magnetic 

vector potential A: 

E ph 
a 

Ae 
Nc nph A Ae 

"l 
Nc 

ke ph =-- at I fe " 

nph 

2 
nph 

e" 

ke 
At fe" 2 e=1 =1 

(3.17) 
N c" te keA' = 
ZO 

keAeý e 
e=1 e=1 

where Ae' = average value of vector potential of element computed in the previous time 

step, NN = turns per coil, lfe = axial length of iron core, nph = number of elements in the 

conductor regions of stator phase ph, and ke = ±1, depending on the position of the coil 

side (i. e., whether it is at the starting end or finishing end of the coil). 

3.4.4 Rotor Circuit Model 

Under normal operating conditions, the frequency of the positive-sequence rotor e. m. f. 

and current is very low, typically 2 to 3 Hz. This implies that the effective rotor resistance 

is much smaller than that deduced from a standard locked-rotor test conducted at rated 

frequency. On the contrary, the negative-sequence rotor current is approximately equal to 

twice the rated frequency, hence the effective negative-sequence rotor resistance is higher 

than the locked-rotor value. Due to the uncertainties in the value of rotor resistance, 

solution using the method of symmetrical components is subject to appreciable error. 
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Rotor end-winding leakage reactance is neglected in some FEM programs for balanced 

operation of a symmetrical three-phase induction machine. Such an assumption, 

however, cannot be used for the present problem as this would lead to very large 

pulsation in the computed rotor current and non-convergence. 

A rotor circuit model is therefore introduced to overcome the above difficulties. Fig. 3.4 

shows the sectional view of the rotor conductor bar and end ring of the experimental 

machine. To account for the frequency effect, each rotor bar is partitioned into 6 layers, 

each with two triangular elements. The current density in each layer is assumed to be 

constant during the field solution. Each end ring is likewise partitioned into 6 layers. For 

each layer, the resistance of the rotor conductor R21, the cross-sectional area of rotor 

conductor Aj, the resistance of the end-ring R22, and the leakage inductance of the end 

ring L2, can be computed. Fig. 3.5 shows the equivalent circuit for each layer of the rotor 

cage winding, where J2, J3, J4, J5,..., etc., denote successive rotor slots and end-ring 

sections of a particular layer. 

Fig. 3.4 Shape of rotor conductor and end ring: each rotor conductor is partitioned into 

12 elements in six layers for field computation. 
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Fig. 3.5 Circuit model for each layer of rotor cage winding. 

Consider the mesh MNOP in a typical rotor conductor layer as shown in Fig. 3.5., i. e., 

the one with generated e. m. f. s E2(J3) and E2(J4). Three new circuit variables are 

introduced, namely the current density in the layer 5(J3), end-winding current 122(J3), and 

conductor e. m. f. E2(J3). 

Applying Kirchhoff's Current Law to node M, 

122(J2)+I21(J3)=I22(J3) " 
(3.18) 

The rotor bar layer current I21(J3) can be expressed as: 

121=8(J3). ARL A. (3.19) 

Applying Kirchhoff's Voltage Law to mesh MNOP in Fig. 3.5, 

E2 (J3)-E2 (J4) =121(J3)" R2, + 2122 (J3). R22 
(3.20) 

+ 2L2. 
d 

122(J3) 121(J4). R2 . 

Re-writing (3.20) as a difference equation, 

E2(J3)-E2(J4)-b(J3). APL . R21-2I22(J3). R22 
(3.21) 

-2L2 
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In (3.21), 122' (J3) is the value of 122(J3) in the previous time step and becomes a known 

quantity for the current FEM computation. 

The rotor e. m. f. E2(J3) is taken to be the average value of the induced e. m. f in the two 

elements (say e and e+1) in a rotor conductor layer, i. e. 

E2(J3)= 
E(e)+E(e+1) 

2 
(3.22) 

For element e, the e. m. f. E(e) is the sum of transformer e. m. f. and motional e. m. f., i. e. 

E(e)=_ c9A 
- 

at . 
lfe+vxB. lf, (3.23) 

where v and B are the rotor velocity and flux density vectors at element e. 

To evaluate the first term in (3.23), the derivative may be approximated by 

Öfl 

- 
Ae - Ae 

(3.24) 
at At 

where 

Ae = average value of magnetic vector potential of element e at time t; 

Ae' = average value of magnetic vector potential of element e at time t- At. 

Fig. 3.6 shows an arbitrary conductor element at radius R from the axis of rotation. If the 

rotor rotates at a speed n r/s, the linear velocity of the element is 

v= 21rR. n . 
(3.25) 

The components of flux density at the rotor element is 

_ 
aA 

_ 
CL(1). A+ CL(2). Ai + CL(3). Ak (3.26) BX- 

2Ae cly 

aA BL(1). A; - BL(2). Ai - BL(3). Ak (3.27) By= - ax - 2A 
e 
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where CL(x) and BL(K) (K = 1,2,3), are constants pertaining to the element being 

considered and Ae = area of element. 

Component of flux density normal to the linear velocity of the element is 

Bn = Bx. cos8+By. sin0 =Y,. Ai +Yj-A3 +Yk. Ak 

Y 

n rev/s 
BY Bn 

BX 

Rotor conductor 
element 

0 
R 

(3.28) 

Fig. 3.6 Computation of flux density and generated e. m. f. in rotor conductor element. 

where 

yi = CL(1). cos B- BL(1). sin 8; 

11=CL(2). cos9-BL(2). sin6; (3.29) 

rk = CL(3). cos 0- BL(3). sin 0. 

3.4.5 Comments on the Proposed Method 

A time-stepping FEM coupled with external circuit equations for performance analysis of 

an IG with the Steinmetz connection has been developed. The capacitance in the stator 

circuit and end-winding leakage reactance in the rotor circuit both involve differential 

equations, and hence a time-varying transient circuit model is adopted. In this respect, the 

proposed approach is not fundamentally different from the time-stepping coupled finite 

element-state space (TSCFE-SS) algorithm [87], [91], [92] used by other researchers. In 

the TSCFE-SS method, inductance profiles have to be generated for each time step in 

order to determine the excitation currents for the subsequent time step. The proposed 
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method, however, aims to compute the machine performance directly from the field 

solution. Another salient feature of the proposed method is the use of a refined rotor 

circuit model that enables the complex current distribution in the rotor circuit to be 

considered. 

In the present IG configuration, the grid voltage V (= VA) is known and is assumed to 

be a time-varying sinusoidal quantity. For the other phase voltages and currents, the 

magnitudes and the waveforms are obtained from the FEM solver and hence the effects 

of time and space harmonics on the generator performance are automatically accounted 

for. 

The present FEM solver could be adapted for dynamic performance studies, such as 

turbine speed changes and switching operations. This requires the coupling of the 

electromechanical equation [90] with the matrix equations developed earlier in this 

paper and the rotor speed will then be one of the machine variables. 

As far as possible the proposed method avoids the use of induction machine equivalent 

circuit parameters, defined conventionally under sinusoidal current and voltage 

conditions. The only assumption made is the omission of the stator end-winding 

leakage reactance, which simplifies the stator circuit equations with only a slight loss in 

accuracy. 

3.5 Computational Aspects 

A FORTRAN computer program was developed for the performance analysis of the 

three-phase IG with the Steinmetz connection. The computations referred to the 

experimental machine IG2 whose technical data are given in Appendix D. 2. Program 

runs were conducted on a Pentium 586 computer with a clock speed of 333 MHz, 128 

MB of RAM and 8 GB hard disk. In view of the constraints on the computing facilities, a 
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compromise had to be made among the computational accuracy, run time, and the 

memory requirements. Fig. 3.7 shows the finite element mesh used for the field analysis, 

the number of nodes and elements being equal to 2120 and 4068, respectively. Since 172 

nodes fall on the boundaries with constant values of magnetic vector potential, the 

number of nodal magnetic vector potentials to be evaluated is 1948. Table 4.1 shows the 

number of variables used in the FEM solver. 

TABLE 3.1 
DISTRIBUTION OF VARIABLES IN FEM PROGRAM 

Circuit/Field Variables Number 
Nodal magnetic vector potentials A 1948 

Stator phase e. m. f. s 3 
Stator phase currents 3 

Rotor circuit variables 576 

Total 2530 

Fig. 3.7 Finite element mesh for experimental machine. 

92 



The time for solution of the matrix equation was approximately 45 seconds. For the 

electromagnetic quantities to settle to a steady state, the computation had to be extended 

to ten complete electrical cycles and the number of time steps (each corresponding to one 

electrical degree) required was over 1500. The total time for computing an operating 

point therefore amounted to 7 to 8 hours. 

3.6 Results and Discussion 

3.6.1 Computed and Experimental Results 

Laboratory tests were conducted on the delta-connected experimental machine referred to 

in the previous section. The IG was operated on a 220-V, 50 Hz single-phase supply. A 

phase-converter capacitance of 93.6 µF was used to give approximately balanced 

operation at a speed of 1540 r/min and a phase current of 4.0 A. Instruments were 

arranged to measure the speed, phase currents, phase voltages, line current and output 

power. To compare the performance of the IG obtained by the method of symmetrical 

components, standard no-load test, locked-rotor test and dc resistance test were separately 

conducted, from which the following parameters were determined (assuming that the 

stator and referred rotor leakage reactances are equal): 

Stator leakage impedance 

Rotor leakage impedance referred to the stator 

Magnetizing reactance 

Core loss resistance 

Friction and windage loss 

_ (3.08 +j5.68) S2 

_ (2.85 +j5.68) Q 

= 80.852 

= 1463 Q 

= 27W 

Fig. 3.8 through Fig. 3.14 show the computed and experimental results obtained on the 

IG with the Steinmetz connection. From Fig. 3.8 and Fig. 3.9, it is observed that the 

method of symmetrical components gives an accurate prediction of the variation of VB 
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and Vc. In comparison, the FEM gives good prediction of Vc but rather poor prediction of 

VB, especially at low speeds. 

From Fig. 3.10 to Fig. 3.12, it is found that both the FEM and method of symmetrical 

components give correct prediction of the trend of the phase currents. At high speeds, the 

FEM gives a more accurate prediction of IA and Ic, whereas the method of symmetrical 

components gives a better prediction of IB. 

Fig. 3.13 and Fig. 3.14 show the variation of line current and output power of the IG with 

rotor speed. Over the entire operating speed range, the FEM gives more accurate results 

compared with the method of symmetrical components. 
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Fig. 3.8 Variation of phase-B voltage with rotor speed. 
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Fig. 3.9 Variation of phase-C voltage with rotor speed. 
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Fig. 3.10 Variation of phase-A current with rotor speed. 
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Fig. 3.11 Variation of phase-B current with rotor speed. 
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Fig. 3.12 Variation of phase-C current with rotor speed. 
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Fig. 3.13 Variation of line current with rotor speed. 
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Fig. 3.14 Variation of output power with rotor speed. 
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Table 3.2 summarizes the deviations in generator performance computed by the method 

of symmetrical components and the FEM. For easy comparison, the deviation for each 

machine variable has been normalized to the respective experimental value. It is 

observed that both methods yield large deviations at low speed (1511 r/min). At high 

speed (1547 r/min), the FEM gives more accurate results in all the variables except the 

phase-B current. The ability of the FEM to account for magnetic saturation and change 

in effective rotor resistance due to loading and circuit imbalance is thus confirmed. 
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TABLE 3.2 
DEVIATIONS IN INDUCTION GENERATOR PERFORMANCE COMPUTED BY 

THE METHOD OF SYMMETRICAL COMPONENTS (SYM) AND 

THE FINITE ELEMENT METHOD (FEM) 

(NORMALIZED TO RESPECTIVE EXPERIMENTAL VALUES 

Variables n= 1511 r/min n= 1536 r/miin n= 1547 r/min 
SYM FEM SYM FEM SYM FEM 

VB 0.011 0.077 0.013 0.038 0.027 0.005 
Vc 0.02 0.007 0.016 0.01 0.043 0.039 
IA 0.29 0.62 0.23 0.32 0.45 0.11 
IB 0.11 0.11 0.06 0.19 0.02 0.15 
Ic 0.20 0.15 0.14 0.01 0.21 0.032 
IL 0.54 0.51 0.25 0.09 0.38 0.15 

Pout 0.74 0.56 0.26 0.03 0.34 0.14 

3.6.2 Discussion 

The above results indicate that discrepancies exist between the computed and 

experimental performance of the IG with the Steinmetz connection. In the case of the 

method of symmetrical components, the deviations mainly exist in the currents and the 

output power, which is due to the limitations in the circuit model. In the case of the 

FEM, large deviations occur in phase-B voltage, phase-A current and phase-B current. 

These discrepancies may be attributed to the following factors: 

1) Numerical solution of the circuit differential equations requires their 

transformation to the corresponding difference equations which involves the 

time step dt. A smaller At reduces the discretization error. At the same time 

more air gap nodes must be used, which is beneficial in reducing the error 

caused by distortion of the air gap elements as a result of the rotor rotation (time 

stepping). 

2) Numerical solution of a high-order matrix equation incurs considerable 

cumulative errors. This problem may be resolved by using double precision in 

the FEM solver, but the memory requirement will be increased significantly. 

97 



3) Thermal effects on the machine parameters, particularly on the rotor resistance, 

are difficult to account for. In the FEM computations, the rotor resistance was 

corrected to that corresponding to the average operating temperature under 

experimental conditions, but there might be hot spots where the temperatures 

deviate from the average value and hence causing the generator performance to 

change. For a more accurate analysis, an appropriate thermal model has to be 

incorporated with the FEM field analysis model [88]. 

4) Use of a three-dimensional (3-D) FEM will yield a better modelling of the 

skewed rotor cage and hence will improve the computational accuracy, 

particularly when stray losses and efficiency are to be considered [96]. 

5) In the present rotor circuit model, each rotor cage bar and end ring is partitioned 

into six layers in order to account for the rotor current distribution. The 

accuracy will be improved if more layers are used, but more circuit variables 

will be introduced, thereby increasing the computer memory required. 

3.7 Summary 

A new approach for analyzing the performance of a grid-connected single-phase IG with 

the Steinmetz connection has been presented in this chapter. A coupled circuit and field 

approach based on two-dimensional finite element method is adopted in order to account 

for the asymmetrical stator winding connection as well as the complex magnetic field in 

the machine and the distribution of current in the rotor winding. Detailed derivation of 

the stator and rotor circuit equations suitable for coupling with the FEM field equations is 

given. Experimental results obtained on a small induction machine have also been 

presented to check the accuracy of both FEM and symmetrical component analysis. To 

improve the computational accuracy, a larger number of nodes and elements have to be 
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used for the FEM mesh, in particular for the air gap region. Since the proposed method is 

based on rigorous machine modelling and is very general, it can be applied to other 

asymmetrical IG configurations, with appropriate modification in accordance with 

specific circuit constraints. With the increasing availability of powerful computers at 

modest cost, the proposed method should be a better alternative for the analysis of single- 

phase IGs. 
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Chapter 4 

SEIGS FOR AUTONOMOUS POWER SYSTEMS 

4.1 Introduction 

This chapter discusses the various circuit configurations for self-excited induction 

generators (SEIGs) used in autonomous (also known as stand-alone or isolated) power 

systems. The Steinmetz connection as shown in Fig. 4.1 is first considered in order to 

set forth the basic method of analysis that can be readily extended to more complicated 

circuit configurations, in particular the general case of asymmetrically-connected 

excitation capacitances and load impedances. 

Since the SEIG supplies isolated loads, the frequency of the output voltage is variable 

even when the rotor speed is maintained constant. To simplify the analysis, all the circuit 

parameters have been referred to the base (rated) frequency fbe by introducing the per- 

unit frequency a and the per-unit speed b, as explained in Appendix A. 2. Thus, the per- 

unit slip of the SEIG is (a - b)/a and each voltage shown in Fig. 4.1 has to be multiplied 

by a in order to give the actual value. The motor convention will be adopted for the 

direction of currents in the equivalent circuits. 

To illustrate the feasibility of the proposed analysis method and solution technique, a 

number of case studies were carried out on a 2.2-kW, delta-connected induction machine 

whose technical data are given in Appendix D. 1. All the equivalent circuit parameters are 

assumed to be constant except the magnetizing reactance X,,,, which varies with the 

positive-sequence air gap voltage El. The variation of X, n with Ej is piecewise linearized 

using the describing function given by (D. 1). 
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4.2 Three-Phase SEIG with the Steinmetz Connection 

4.2.1 Circuit Connection and Analysis 

Fig. 4.1 shows the Steinmetz connection for a delta-connected three-phase induction 

generator self-excited with a single capacitance and supplying a single-phase load, the 

capacitance being connected across the lagging phase [67]. The single-phase load is 

connected across phase A (the reference phase), while the excitation capacitance C is 

connected across phase B (the lagging phase). Besides providing the reactive power for 

initiating and sustaining self-excitation, C (or the corresponding complex admittance Zc 

) also acts as a phase balancer by injecting a line current I2 into the `free' terminal of 

the stator winding. Voltage build-up in the single-phase SEIG is easily initiated by first 

switching off the load and using a sufficiently large value of C. The stator phase 

voltages and currents are unbalanced due to the asymmetrical winding configuration, 

but the phase balance is improved as the load is increased. In case the generator voltage 

fails to build up due to a previous de-magnetization operation, the residual flux should 

first be re-established by circulating a direct current momentarily through the stator 

winding. The self-excitation performance is also improved by operating the generator 

initially at a higher speed or by using a larger value of excitation capacitance. 

With reference to Fig. 4.1, the `inspection equations' may be written as follows: 

V= VA (4.1) 

VA + VB + VC =0 (4.2) 

I2 =VBlZc =IC -IB (4.3) 

I=IA -IC=-VIZL (4.4) 
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Induction Machine 

43 
I A 

VA VC 
VZ L 

IC: 
I 

5 B2 
T 

12 VB 

7Z6 
C 

Fig. 4.1 Steinmetz connection for a three-phase SEIG supplying a single-phase load. 

where 

ZL = 
RL 

+ jXL. 
Q 

(4.5) 

The inspection equations may be solved using the method of symmetrical components to 

give the positive- and negative-sequence voltages: 

ej/a'6 
Zp ZC +er Zn 

V=V. (4.6) 
ZpZn+ZpZC+ZnZc 

e 
jm'6 

Zn ZC + 
r' 

Zp 

Vn= VV. (4.7) 
ZpZn + 

ýl ,ý 
ZpZc + Z�Zc 

where Zp and Z, z are respectively the positive- and negative-sequence impedances of the 

generator and Zc = 1/(j2ifbeC. a2) is the complex impedance of the excitation 

capacitance at the base frequency. Details of Zp and Z, T are given in Fig. A. 3 and Fig. A. 4 

of Appendix A. 2. 
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From (4.6) and (4.7) and referring to Fig. 4.1, the input impedance of the induction 

generator across terminals 1 and 3 is given by 

Zin=Rin+. JXin-_ZpZn+ZpZC+ZnZC (4.8) 

3Zc+Zp+Zn 

The derivation of (4.6), (4.7) and (4.8) is given in Appendix A. 5. 

From (4.8), the SEIG system of Fig. 4.1 may be reduced to the simple circuit shown in 

Fig. 4.2. 

Applying Kirchhoff s voltage law to the latter circuit, 

I. (ZL + Z; n) = 0- (4.9) 

For successful voltage build-up, 1# 0, hence 

Zin+ZL-0 (4.10) 

i. e., the impedances in loop 1345 in Fig. 4.2 must sum to zero. 

4 

v 

5 1 

Fig. 4.2 Simplified circuit of three-phase SEIG with Steinmetz connection. 

The complex equation (4.10) must be solved in order to give the excitation frequency a 

and the magnetizing reactance X, n. After a and X, n 
have been determined, the positive- 

sequence air gap voltage is found from the magnetization curve. The generator 

performance can then be computed using (4.1) to (4.7) together with the symmetrical 

component equations. 
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4.2.2 Solution Technique 

For a given per-unit speed b and a given excitation capacitance, Zi, 
t 
is a highly nonlinear 

function of a and Xm, implying that (4.10) is a complex equation in these two variables 

and hence is extremely difficult to solve using conventional techniques such as the 

Newton-Raphson method [26] or the polynomial method [28]. To avoid the lengthy 

mathematical manipulations involved, the solution of (4.10) is formulated as the 

following optimization problem: 

Minimize Z(a, Xm)= (Rin+RL )2+(Xin+XL)2 (4.11) 
a 

subject to the constraints: 

0<a<b 

and 0<Xm<Xmu 

where Xmu is the unsaturated value of the magnetizing reactance. This approach is based 

on the fact that, for given values of a and Xm, the input impedance Zt� can be computed 

readily. 

It is easy to show that (4.10) is satisfied when the scalar impedance function Z(a, X, n) 

given by (4.11) assumes a minimum value of zero. For function minimization, a classical 

search algorithm such as the Hooke and Jeeves method [97] or a commercial 

optimization package [98] may be employed. 

In this and subsequent sections, the pattern search method of Hooke and Jeeves will be 

used for function minimization for the following reasons: 

1) It is a well-proven and robust method that suits a wide range of mathematical 

functions. 
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2) This method does not involve derivatives of functions and as such is suitable for 

problems in which the derivatives of functions do not exist or are difficult to 

evaluate. 

3) The method is relatively simple to program. 

This method employs two search strategies, namely exploratory moves and pattern 

moves, in order to arrive at the optimum point. A function evaluation is required each 

time an exploratory move or pattern move is to be made. Details of the method are given 

in Appendix B. For normal operation of an SEIG, a is slightly less than the per-unit speed 

b while X, n 
is less than the unsaturated value Xmu, hence b and X, nu could in general be 

chosen as initial estimates for a and X, n 
for starting the search procedure. After a and X, n 

have been determined, the steady-state performance can be calculated using the circuit 

equations and the magnetization curve of the IG. 

4.2.3 Capacitance Requirement 

This section addresses the capacitor sizing problem of the three-phase SEIG with the 

Steinmetz connection. A solution method is developed for computing the generator 

performance and capacitance requirement, taking into account the effect of load 

impedance, power factor and the rotor speed. The solution technique is further extended 

to the computation of capacitance required to maintain the terminal voltage at a preset 

value when the generator is on load. The theoretical results are validated by experiments 

on machine IG1 whose data are given in Appendix D. 1. 

For a given rotor speed, load impedance and power factor, the value of excitation 

capacitance must lie within certain limits for an induction generator to self-excite and to 

secure a stable operating point. The limiting conditions are obtained when the 

magnetizing reactance X, n 
is equal to the unsaturated value X, nu 

[33], [34]. For the 
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Steinmetz connection shown in Fig. 4.1, a simple method to determine the capacitance 

for initiating self-excitation is to consider the impedances in mesh 1267. Using the 

symmetrical components analysis presented in Section 4.2.1, the input impedance of the 

generator Z In when viewed across terminals 1 and 2 is determined as follows: 

Z+n _Rn +jX, 
n 

= 

ZpZn+ZpZL+ZnZL 
(4.12) 

3ZL+Zp+Zn 

where ZL is given by (4.5). For a given speed and load, both R In and X 11 are functions of 

the per-unit frequency a only. 

Successful voltage build-up requires the sum of impedances in mesh 1267 to be equal to 

zero, i. e., 

Zin +ZC =0. (4.13) 

The complex equation (4.13) can be split into two algebraic equations by equating the 

sum of real and imaginary terms respectively to zero: 

R,. 'n (a) =0 (4.14) 

Xn(a)_Xc=0 (4.15) 
a 

where Xc = 1/(j2ýfbaseC). 

Eqn. (4.14) may be solved to yield the per-unit frequency a. The corresponding value of 

excitation capacitance can then be determined from (4.15). 

Eqn. (4.14) is a high-order polynomial in a. Although the coefficients of the polynomial 

could be evaluated by systematic algebraic manipulations, the effort required is 

tremendous. To overcome this difficulty, the Secant method [99] is employed in the 

solution procedure. This method involves the evaluation of function values only and 

hence is easy to implement. The Secant formula as applied to the present problem is: 
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tan -a, 
-, 

)Rin 
`an / 

an+l - an - 
Rin 

`an -Rn `an-1 

(4.16) 

where aii_,, a,, and a,, +, are the values of the per-unit frequency at the end of the (n -1)th, 

nth and (n+l)th iteration respectively. The convergence criterion is that the value of per- 

unit frequency in successive iterations is less than a specified value, say 1.0e-6. 

Two initial estimates of a are required for starting the Secant method. To ascertain the 

appropriate initial values, the function R ýn is computed and plotted in Fig. 4.3 for the 

experimental machine. It is assumed that the generator is driven at rated speed and is 

supplying a single-phase load at a power factor (p. f. ) of unity. For a given load 

impedance, there are in general two roots to (4.14). Both roots are less than the per-unit 

speed b. The lower root amt� lies between 0.75b to 0.83b, while the upper root a,, lies 

between 0.83b and b. To compute a, ni,, the initial estimates of a can conveniently be 

chosen as 0.65b and 0.7b. To compute a,,,,,, the initial estimates can be chosen as b and 

0.99b. 

When the load impedance is very small (e. g., ZL = 0.01 p. u. ), the input resistance R jn is 

always positive and no solution to (4.14) exists. There is thus a critical value of load 

impedance below which self-excitation is impossible, irrespective of the value of the 

excitation capacitance. 

Fig. 4.4 shows the corresponding variations of X jn with a. A comparison between Fig. 

4.3 and Fig. 4.4 shows that, for a given load impedance and speed, X jn is in general a 

monotonously increasing function over the interval [amin, amp] (if it exists). Thus, amin 

corresponds to Cm while amp corresponds to Cmin" Cmin is the minimum capacitance 

required for self-excitation, while C, n 
is the capacitance above which self-excitation is 

not possible. 
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Per-unit frequency, a 
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... ZL " 0.05 p. u. --- ZL " 0.01 p. a 

Fig. 4.3 Variation of R to with per-unit frequency. 
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0.0 

0. e 
Ep, f, 

0.4 

0.2 

0.2 0.4 0. ö 
Per-unit frequency, a 

- ZL a 200 ZL " 0.6 p. u. 

"". ZL   0.0$ ZL   0.01 p. u, 

Fig. 4.4 Variation of X In with per-unit frequency. 

4.2.4 Computed and Experimental Results 

0.8 1 

I 

A computer program was developed for computing the capacitance requirement of the 

experimental machine IG1 with Steinmetz connection. Typical computed results are 

listed in Table 4.1. 

TABLE 4.1 
COMPUTED RESULTS USING THE SECANT METHOD 

b=1.0; p. f. =1.0; a0=1.0; a1=0.99 

ZL (p. u. ) amp C'm; 
n 

(µF) Number of 
iterations 

Function 
Minimum 

200 0.994886 85.27 4 -3.678e-6 
20 0.993951 85.57 4 -2.225e-6 
5 0.990879 86.81 3 -1.196e-6 
2 0.984949 90.35 5 1.184e-8 
1 0.975696 98.98 7 -3.631 e-6 

108 



The Secant method is very efficient: convergence can in general be obtained in 3 to 7 

iterations over a wide range of load impedance and the function minima are very close to 

zero. It should be pointed out, however, that the number of iterations and convergence 

depend on the circuit conditions. For low speeds or small load impedances, the initial 

values may need to be adjusted in order to speed up the convergence process. 

Fig. 4.5 shows the computed variation of per-unit frequency and excitation capacitance 

with load impedance at rated speed. As explained in Section 4.2.3, there are two 

frequencies am and a, nin 
for a given load impedance ZL and speed, provided that ZL is 

greater than some critical value ZL, 
crir. 

When the load impedance is equal to ZL, 
C, it, there is 

only one solution to (4.9) and a,, = a, ni,. For the experimental machine, ZL, crlt 
is equal to 

0.0415 p. u. This implies that an SEIG with Steinmetz connection is capable of self- 

excitation even with a very small load impedance. The variation of ama, and amen, and 

hence Cmin and Cmax, is small when the load impedance exceeds 1.0 p. u. But for smaller 

load impedances, Cmin increases while Cm decreases rapidly with decrease in ZL. 

The experimental results for Cmin are also given in Fig. 4.5. In all cases, the experimental 

values are slightly higher than the theoretical values but correlation is good. 

1000 

Soo 

800 

400 

200 

0 

Cmin & Cmax NO 

Cmax 

amax 

amin 

p. f. " 1.0 

min b 1.0 

ZL crit 
p24d 

Load impedance (p. u. ) 

amin & amax (p. u. ) 1.4 

1.2 

1 

0.8 

0.0 

0.4 

0.2 

0 

a (Ctlo. ) -C (Cale. ) A Cmin (Expt'I) 

Fig. 4.5 Variation of per-unit frequency and excitation capacitance with load 

impedance. 
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Fig. 4.6 and Fig. 4.7 show the computed variation p. u. frequency and excitation 

capacitance with the per-unit speed for given load impedances. The following 

observations can be made: 

1) For a given load impedance, there exists a critical speed bait below which self- 

excitation is impossible. The value of bait increases with decrease in load 

impedance. When ZL is varied from 200 p. u. to 0.1 p. u., bC1zr increases from 0.2 

p. u. (point b, l in Fig. 4.5) to 0.25 p. u. (point bc2). 

2) C, 
ni, 

in general increases with decrease in the per-unit speed b. 

3) At higher speeds, C,,,,, also increases with decrease in b, but below a certain 

speed (e. g. point P on the computed curve for ZL = 200 p. u. in Fig. 4.7), C, 
n 

decreases with decrease in b. 

4) The self-excitation region bounded by Cmin and Cm,, 
_, 

decreases with decrease in 

load impedance. 

5) The effect of load impedance on Cmin is much more pronounced than that on Cm. 

The experimental values of Cm jn as a function of per-unit speed are also shown in Fig. 

4.7. The close agreement between the computed and experimental results in Fig. 4.5 and 

Fig. 4.7 confirms the accuracy of the theoretical analysis and solution method. 

amin, amax (p. u. ) 
i 

0.8 

0. E 

0.4 

0.2 

0 

amax ;; - 

afnin 

b p. i.   1.0 
c bc2 

0 0.2 0.4 0.6 0.8 1 

Per-unit speed, b 

ZLß00p. u. - ZL*O. sp. r. ZL-O. YP, u. --- ZL'O. 1p. u. 

Fig. 4.6 Variation of amen and a,, with speed for given load impedances. 
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Fig. 4.7 Variation of Cmin and Cmax with speed for given load impedances. 

Fig. 4.8 and Fig. 4.9 show the computed variation of per-unit frequency and excitation 

capacitance with load power factor. Critical values of power factor, below which the 

SEIG fails to self-excite, are found to exist. When the load impedance is small, a high 

load power factor is beneficial in securing voltage build-up. 

Amin, max (p. u. ) 

I 

0.9 

as 

0.7 
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Fig. 4.8 Variation of a.. j, and a,, with power factor. 
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Fig. 4.9 Variation of Cmin and Cmax with power factor. 

4.2.5 Capacitance Requirement on Load 

The capacitances computed in the previous sections are those that mark the onset of self- 

excitation. When the SEIG is loaded, the load current produces a demagnetizing effect on 

the air gap field and the terminal voltage drops. To maintain the terminal voltage 

constant, the excitation capacitance has to be increased as the load current increases. On 

the basis of the analysis presented in the previous sections, it is possible to compute the 

capacitance requirement of the SEIG under loaded conditions using an iterative 

procedure which is summarized as follows: 

1) For a specified terminal voltage V, power factor and per-unit speed b, assume the 

following initial values of per-unit frequency and positive-sequence air gap 

voltage: 

ao = b; E1= VI ao 

2) Obtain the corresponding value of magnetizing reactance using the X,,, -E, curve 

which can be derived from the magnetization characteristic determined in a 

synchronous speed test. 
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3) Using the above values, determine the generator impedance Z 'j =R 'n + jX jn 

across terminals 4 and 5 in the circuit shown in Fig. 4.1. 

4) Determine the values of per-unit frequency a and capacitive reactance X, that 

satisfy the self-excitation conditions using the Secant method. 

5) Compute the positive-sequence component of voltage Vp using (4.6). 

6) Compute the new value of air gap voltage EI from the positive-sequence 

equivalent circuit. 

7) Repeat steps 1) to 6) until the difference in Vp in successive iterations is 

sufficiently small. 

8) Compute the excitation capacitance and the generator performance using the final 

values of a and Xc. 

Since only a,,,,, _, 
needs to be computed, initial values of a required to start the Secant 

method can be chosen as 0.99b and 0.98b. In general, the number of iterations increases 

with decrease in load impedance. For the experimental machine IG1 and with a tolerance 

of 1. Oe-4 as the convergence criterion (step 7)), the number of iterations varies from 7 to 

15, showing that the above iterative procedure converges quite rapidly. 

Fig. 4.10 shows the excitation capacitance required to maintain a specified terminal 

voltage when the SEIG is supplying a unity power factor load at rated speed. There is 

good agreement between the computed and experimental results when the terminal 

voltage is 0.8 p. u. For a terminal voltage of 1.0 p. u., however, the discrepancy between 

computed and experimental results increases with the load current. This could be 

attributed to the more pronounced saturation and hence more complicated magnetic 

conditions within the machine. 
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Fig. 4.11 shows the computed capacitance required to maintain the terminal voltage at 

1.0 p. u. at different load power factors. The capacitance required increases rapidly when 

the power factor is lower than 0.8 lagging. 

Fig. 4.10 and Fig. 4.11 suggest that a controller for varying the excitation capacitance 

should be incorporated in the SEIG system for stabilization of the load voltage. 
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zou 
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60 

0 

p. f.   1.0 
b 1.0 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 
Load current (p. u. ) 

- V. 1.0 p. u. (Cal o. ) - VO0.8 p. u. (Cab 
.) 

V 1.0 p. u. (Expt'I) 0 V"0.8 p. u. (Expt'I) 

Fig. 4.10 Excitation capacitance required to maintain the terminal voltage at preset 
values. 
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p. 1. " 1.0 - p. 1.   0.9 p. f.   0.8 ------ p. f. " 0.5 

Fig. 4.11 Effect of power factor on the capacitance required to maintain the terminal 

voltage at rated value. 

4.2.6 Summary 

This section has presented the analysis of a three-phase SEIG with the Steinmetz 

connection. The method of symmetrical components is used in association with a 
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function optimization method in order to account for the circuit asymmetry and the 

variation of machine parameters. Based on this approach, a simple method for capacitor 

sizing has been developed. The method involves the derivation of the generator input 

impedance and the formulation of two nonlinear equations from a consideration of the 

self-excitation conditions. Solving one of the equations using the Secant method, the per- 

unit frequency is determined and the excitation capacitance can subsequently be 

computed using the second equation. Effects of load impedance, speed and power factor 

on the capacitance requirement have been studied. Critical values of load impedance, 

speed and power factor, below which the SEIG fails to self-excite, are found to exist. 

Compared with the single-phasing mode of operation, however, the SEIG with Steinmetz 

connection can self-excite even with very small load impedance. An iterative procedure 

is developed for computing the capacitance required to maintain a preset terminal voltage 

when the SEIG is on load. Where possible, the theoretical analysis has been verified by 

experiments on a small induction machine. 

4.3 SEIG with Asymmetrically Connected Impedances and Excitation 
Capacitances 

When the power rating of a three-phase SEIG becomes smaller, it is increasingly difficult 

to ensure an even distribution of the loads among the phases, which means that in general 

the SEIG has to operate with a certain degree of phase imbalance. Unbalanced operation 

may also result due to manufacturing tolerances of the excitation capacitances, failure of 

some excitation capacitance modules or the disconnection of loads by the consumers. 

Autonomous power systems often employ single-phase distribution schemes for reasons 

of low cost, ease of maintenance and simplicity in protection [7]. When a three-phase 

SEIG is used to supply single-phase loads, the inherent phase imbalance in the machine 

115 



will result in poor generator performance, such as overcurrent, overvoltage, poor 

efficiency, excessive temperature rise and machine vibration. These undesirable effects 

can be alleviated to a large extent by the use of the Steinmetz connection as discussed in 

Section 4.2. For isolated operation, however, perfect phase balance cannot be achieved 

for a pure resistive load [67] or a series R-L load [100]. 

The objectives of this section are to develop a general method for analyzing the steady- 

state performance of a three-phase SEIG under various unbalanced operating conditions 

and to investigate a novel phase-balancing scheme for the SEIG when supplying single- 

phase loads. Theoretical and experimental results will be compared in order to validate 

the analysis and the principle of phase-balancing. 

4.3.1 Circuit Model 

Fig. 4.12 shows the circuit connection of a symmetrical, delta-connected IG with 

asymmetrically connected terminal impedances. At least one of the terminal impedances 

Z1, Z2, and Z3 must contain a capacitive element in order to furnish the reactive power 

necessary for initiating self-excitation. 

Induction Machine 

4 I3 3 I1 

IA 
VC YýB 

V Z3 

5 
IC 

VB 

Z1 

12 Z2 
Fig. 4.12 Three-phase SEIG with asymmetrically connected terminal impedances. 
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The circuit model shown in Fig. 4.12 can be used to study practically all modes of 

unbalanced operation of the SEIG in which zero-sequence quantities are absent. By 

assigning appropriate values to the terminal impedances, a specific unbalanced operating 

condition can be simulated. 

A star-connected SEIG with symmetrical stator windings can also be analyzed by first 

transforming the generator to an equivalent delta-connected machine whose per-phase 

impedance is three-times the actual star-connected value. In the case of star-connected 

load impedances and excitation capacitances with isolated neutral points, star-delta 

transformation can likewise be applied to yield the equivalent delta-connected impedance 

values. After these transformation procedures, the circuit will be reduced to the generic 

form as shown in Fig. 4.12. 

For loads to be supplied by a four-wire system, a delta-star connected transformer can be 

placed between the generator and the loads so that zero-sequence currents are excluded 

from the SEIG. With appropriate impedance transformations, the system is again reduced 

to that as shown in Fig. 4.12. 

4.3.2 Performance Analysis 

The method of symmetrical components is employed in order to account for the 

unbalanced circuit conditions. All the equivalent circuit parameters are assumed to be 

constant except the magnetizing reactance which is a function of the positive-sequence 

air gap voltage. To facilitate performance analysis, the SEIG system may be regarded as 

a passive circuit when viewed across any two stator terminals. For convenience, phase A 

is chosen as the reference and the input impedance of the IG across terminals 1 and 3 in 

Fig. 4.12 will be considered. If the impedance Z3 is replaced by the voltage V, the system 
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is identical to that shown in Fig. 2.1 and hence can be analyzed in the same manner as in 

Section 2.2. 

From the analysis, the voltage across terminals 1 and 3 in Fig. 4.12 is determined as 

follows: 

V= 
Vp(h-h2) YI+Y2+Yp+Yn 

(4.17) 
hY2+(h-h2)Yn-h2Y, 

where h is the complex operator exp(j2it/3). 

The input current I3 is given by 

= 
Vp 

( 2(Yr+Y2)(Yp+Y)+3YPYn+Y, Y2 
13 73 h-h) (4.18) 

hYz+(h -h2)Yn -h2Y1 

From (4.17) and (4.18), the input impedance Zt, 
j of the IG when viewed across terminals 

1 and 3 is given by 

_V 
YI+Y2+Yp+Yn 

13 (Y, +Y2)(Yp+Y, )+3Ypyn+Y1Y2 
(4.19) 

Both Yp and Y, are functions of the per-unit frequency a and the magnetizing reactance 

Xm, hence the input impedance of the IG may be written as: 

Zin = Rin(a, Xm)+. I Xin(a) Xm) (4.20) 

From (4.20), the SEIG system of Fig. 4.12 may also be reduced to the simple circuit 

shown in Fig. 4.2, with ZL replaced by Z3. For successful voltage build-up, 

Z3+Zin-0" (4.21) 

The complex equation (4.21) may be solved using the solution technique described in 

Section 4.2.2. The scalar impedance function to be minimized is: 

Z(a, Xm) V(R3+Rin)2+l x3+Xiný2 (4.22) 
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where R3 and X3 are respectively the equivalent series resistance and reactance of the 

terminal impedance Z3. After a and X, 
n 

have been determined, the positive-sequence air 

gap voltage is found from the magnetization curve. The generator performance can then 

be computed using the circuit equations together with the symmetrical component 

equations. 

4.3.3 Computed and Experimental Results 

A number of case studies were carried out on the experimental machine IG1 whose data 

are given in Appendix D. 1. Appropriate numerical values are assigned to the terminal 

impedances in order to simulate a particular unbalanced operating condition. For 

example, a zero capacitance value implies the absence of an excitation capacitance while 

a very large resistance value, say 1.0e5 p. u., is equivalent to the absence of a connected 

load resistance. Operation at rated speed is assumed in each case investigated. 

To simplify the calculations and for easy comparison, all the parameters are expressed in 

per-unit values, using the rated phase voltage, rated phase current, and rated power per 

phase of the induction machine as bases. Over a wide range of load and for various 

unbalanced cases, convergence can be obtained in 350 to 450 function evaluations for the 

experimental machine. Table 4.2 summarizes the cases studied and shows the typical 

circuit parameters used. As shown in Table 4.3, very good agreement between the 

computed and experimental results is obtained for most of the unbalanced cases, hence 

the accuracy of the analysis and solution procedure is verified. Larger discrepancies exist, 

however, for case 5. The severe phase imbalance for plain single-phasing operation 

results in nonlinearity in the magnetic circuit of the SEIG. The principle of superposition, 

which is the basis of symmetrical component analysis, is therefore less valid. 

119 



TABLE 4.2 
CASE STUDIES OF THREE-PHASE SEIG WITH ASYMMETRICALLY CONNECTED 

TERMINAL IMPEDANCES 

Case ZI = RLI /I C, Z2 = RL2 /1 C2 Z3 = RL3 II C3 Remarks 
RLI (p. u. ) CI F RL2 (P. u. ) C7 F RD (P-11-) C3 (ý&) 

1 2.10 60 1.10 60 5.0 60 Balanced capacitances; 
unbalanced load resistance 

2 2.15 30 2.15 60 2.15 60 Unbalanced capacitance; 
balanced load resistance 

3 2.95 60 3.30 62 2.15 72 Unbalanced capacitance; 
unbalanced load resistance 

4 00 60 00 60 0.97 60 Balanced capacitance; 
single-phase load resistance 

5 00 0 00 0 1.65 125 Plain single-phasing 
operation 

6 00 0 00 125 0.90 0 Steinmetz connection 

TABLE 4.3 
PERFORMANCE OF SEIG FOR THE CIRCUIT CONFIGURATIONS LISTED IN TABLE 4.2 

(NORMAL: EXPERIMENTAL VALUES; BRACKETED: COMPUTED VALUES) 

Case Phase voltages u. Phase currents u. * \TTJF *p"., Efficiency 
VA VB VV IA ID IC (p. u. ) (P. u. ) 

1 1.0091 0.9545 0.9545 0.9574 1.046 0.713 0.0486 1.47 0.7998 
(1.0507) (0.9808) (0.9686) 0.9736 (1.0648) (0.7141) (0.0518) (1.545) (0.7747) 

2 0.9045 0.8818 0.8727 0.7204 0.7796 0.6167 0.0288 1.0968 0.8174 
(0.9197) (0.8875) (0.8733) (0.7103) (0.7933) (0.5926) (0.0309) (1.115) (0.7905) 

3 1.0818 1.075 1.0909 1.0278 0.9074 1.011 0.0095 1.299 0.7616 
(1.0902) (1.0781) 1.1046 (1.0154) (0.9032) (0.9709) (0.0141) (1.3197) (0.7447) 

4 0.9909 1.0364 1.1182 1.0057 0.4852 1.1667 0.0878 1.0093 0.7133 
(1.0057) (1.0438) (1.1618) (1.0192) (0.4739) (1.1716) (0.0896) (1.0396) (0.6934) 

5 0.824 0.6727 0.8368 0.9444 0.4407 0.4407 0.1321 0.4209 0.6241 
(0.9261) (0.7337) (0.9272) 1.0352) (0.5176) (0.5176) (0.145) (0.5204) (0.6096) 

6 0.8291 0.9045 0.8355 0.3296 0.6741 0.7778 0.0573 0.7357 0.7675 
(0.8633) (0.9547) (0.867) (0.3521) (0.7443) (0.7812) (0.0681) (0.8256) 0.7521 

* VUF = Voltage unbalance factor; Pß, 1= Total electrical power output 

4.3.4 Modified Steinmetz Connection (MSC) 

Many autonomous electric power systems employ single-phase generation and 

distribution for reasons of simplicity and reduced cost. An examination of cases 4 and 5 

in Tables 4.2 and 4.3, however, reveals that poor generator performance, such as phase 

imbalance and poor efficiency, will result when single-phase loads are supplied by a 

three-phase SEIG. These disadvantages are overcome to a large extent by the use of the 

Steinmetz connection which has been investigated in considerable detail in Section 4.2. 

By connecting the excitation capacitance and load across different phases, better phase 
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balance and higher efficiency could be obtained and the minimum voltage unbalance 

factor was about 5% for a pure resistive load. 

Subsequent research on the Steinmetz connection for SEIGs reveals that additional 

circuit elements are required in order to achieve perfect phase balance. Based on this 

result, a modified Steinmetz connection (MSC) for a three-phase SEIG is proposed in this 

section. Fig. 4.13 shows the circuit connection of the MSC, where all circuit parameters 

have been referred to the base frequency. The impedance Z3 across phase A (the 

reference phase) consists of the main load resistance RL3 and the auxiliary excitation 

capacitance in parallel. The impedance Z2 across phase B (the lagging phase) consists of 

the main excitation capacitance C2 and auxiliary load resistance RL2 in parallel. 

Compared with the original Steinmetz connection in Fig. 4.1, it is seen that the auxiliary 

resistance RL2 and the auxiliary excitation capacitance C3 have been introduced. For a 

practical SEIG system, RL2 could be local loads such as lighting, storage heating, or 

battery charging. Alternatively, RL2 could be a portion of the remote loads. 

Induction Machine 
ZI3 

[1L3 3 

I R3 I C3 
AI 

7\ 

VA RU 
L 

C3 
VA VC 

TI 
L1 1 

IB IC 
2 I1 

5- I I C2 C2 VB L2 

Z2{ R2, 
vlkv 

L2 
a 

Fig. 4.13 Modified Steinmetz connection (MSC) for three-phase SEIG. 
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The three-phase SEIG with MSC can also be analyzed using the general method 

described in Sections 4.3.2 and 4.3.3. In this case, Yj is equal to zero while Y2 and Y3 are 

the resultant admittances connected across phase B and phase A respectively. 

A) Conditions for Perfect Phase Balance 

Fig. 4.14 shows the phasor diagram of the three-phase SEIG with MSC under balanced 

conditions, it being assumed that the positive-sequence impedance angle O is greater 

than 2ic/3 rad. The line current IL2 flowing into terminal 2 consists of the current IC2 

through the main excitation capacitance C2 and the current IR2 through the auxiliary 

resistance RL2. Meanwhile, the line current IL3 flowing into terminal 3 is contributed by 

-IR3 (where IR3 is the main load current) as well as -IC3 (where IC3 is the current through 

the auxiliary capacitance C3). The current components Ip and IC3 enable balanced line 

currents of the SEIG to be synthesized. 

VC 

mý-IR3 

-IC3 
nI L3 I 

VB 

I L1 

IB 

0 (Pp VA 

'ý IC 

P 
C2 

I L2 
qI 

R2 

Fig. 4.14 Phasor diagram for SEIG with MSC under perfect phase balance. 
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A careful study of the relationship between the voltage and current phasors in Fig. 4.14 

shows that, under perfect phase balance, the angle ybetween IC2 and IL2 is equal to (4 - 

2it/3) rad while the angle 5 between -IR3 and IL3 is equal to (57c/6 - q) rad. Since each 

current in the phasor triangles Opq and Omn may be expressed in terms of the phase 

voltage and the associated admittance, conductance or susceptance, the following 

relationships can be derived: 

G2=-ý3-I ypI sin(op-2ir/3) 

B2 V-ý lYpIcos(cp-2 '3) 

iii 
V3 I Y, I cos (5T16 

-o p) 

B343 IYpIsin (5m"6-cp) 

where G2 = a/RL2, 
B2 = a2.2l fbase"C2, G3 = a/RL3, and B3 = a2.27 fbase"C3" 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

When is greater than 271/3 rad (which corresponds to a heavy load condition), G2 is 

positive and perfect balance can be obtained with all four circuit elements in Fig. 4.13 

present. When 4 is equal to 2ir/3 rad, G2 vanishes showing that phase balance can be 

achieved with the auxiliary load resistance removed. Under this condition, B2 = 43Yp, B3 

= ''J3 Yp/2 and G3 =3 Y1, /2. When O, is less than 2, t/3 rad, however, G2 is negative and 

perfect phase balance cannot be obtained with passive circuit elements. 

Eqn. (4.26) shows that B3 vanishes when q= 5ir/6 rad, which implies that the auxiliary 

capacitance C3 can be dispensed with. When O exceeds 5it/6 rad, B3 becomes negative, 

implying that perfect balance can be achieved with an auxiliary inductance across phase 

A. In practice, however, the full-load power factor angle of an SEIG ranges from 2m/3 

rad to 47c/5 rad, hence it is very unlikely that an inductive element need to be used. 
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To investigate the phase-balancing capability of the modified Steinmetz connection, 

experiments were performed on the 2.2 kW induction machine. The rotor speed is 

maintained at rated value throughout the tests. The values of RL2, C2, RL3, and C3 were 

carefully adjusted to give perfect phase balance in the SEIG for specific values of phase 

current. Typical results are summarized in Table 4.4. The good agreement between the 

computed and experimental values of the circuit parameters verifies the principle of 

phase balancing for a three-phase SEIG using the MSC. 

TABLE 4.4 
CIRCUIT CONDITIONS TO GIVE BALANCED OPERATION OF THREE-PHASE SEIG 

WITH MODIFIED STEINMETZ CONNECTION 

(NORMAL: EXPERIMENTAL VALUES; BRACKETED: COMPUTED VALUES 

Vph Iph Yp Op Z2 = RL2 II C2 Z3 = RL3 /I C3 

(p. u. ) (p. u. ) (p. u. ) (deg. ) RL2 (p. u. ) C2 (F) RL3 (p. u. ) C3 (µF) 
0.805 0.954 1.214 134.7 1.775 168 0.5069 49 

(1.873) (167) (0.493) (46) 
0.899 0.878 0.975 130.8 2.88 133 0.641 45 

(3.1) (132) (0.614) (44) 
0.999 1.006 1.007 125.6 4.91 141 0.644 58 

(5.7) (139) (0.615) (57) 
0.985 0.768 0.779 120 co 104 0.872 56 

(cc) (107) (0.843) (54) 

1.064 1.019 0.957 120 00 134 0.675 67 
(cc) (134) (0.722) (67) 

Figs. 4.15 - 4.17 show the performance characteristics of the SEIG in which C2 = 146 

µF, C3 = 47 µF and RL2 = 94 S2 (2.3 p. u. ). These values of phase converter elements result 

in perfect phase balance at an experimental load current of 1.52 p. u. and a phase current 

of 0.93 p. u. When the load is reduced, IB increases rapidly while Ic decreases. On the 

other hand, IA remains substantially constant for load currents down to 0.8 p. u. Provided 

that the load does not vary too widely from that corresponding to perfect phase balance, 

satisfactory performance of the SEIG can still be obtained. Under no-load conditions, 
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however, there will be severe overcurrent and overvoltage in phase A and phase B, hence 

the excitation capacitances need to be reduced. Fig. 4.17 shows that, under perfect phase 

balance, the SEIG delivers a power of 1.31 p. u. and 0.323 p. u. (experimental values) to 

the main load and auxiliary load respectively. In other words, about 80% of the electrical 

power output is delivered to the main load. The total load is 1.63 p. u. (1940 W), which is 

88% of the rated power of the induction machine. An experimental efficiency of 80% is 

obtainable at and close to the load corresponding to perfect phase balance. Very good 

agreement between the computed and experimental characteristics has been obtained. 
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Fig. 4.15 Phase voltages of SEIG with MSC. 
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Fig. 4.16 Phase currents of SEIG with MSC. 
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Fig. 4.17 Output power and efficiency of SEIG with MSC. (P2: Output power to 

auxiliary load RL2; P3: Output power to main load RL3) 

B) Selection of Phase Converter Elements for a Given Load 

A practical design problem is, for a given speed and main load resistance RL3, to 

determine the values of the phase converter elements in order to give perfect phase 

balance in the three-phase SEIG. From (4.23)-(4.26), it is observed that G2, B2, G3, and 

B3 are all functions of the variables Yp and which depend on the terminal impedances. 

An iterative procedure is therefore required to determine the values of the phase 

converter elements that give perfect phase balance. For convenience, Op can first be 

specified while Yp is to be determined during the iterations. The iterative procedure may 

be summarized as follows: 

1) Input the per-unit speed b and specified value of O. 

2) Assume an initial value of the per-unit frequency a. 

3) For a given value of main load resistance RL3, compute 
I Yp I from (4.25) using the 

current value of a. 

4) Compute B2, G2, and B3 using (4.23), (4.24), and (4.26). 
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5) Compute Y2 and Y3 (hence R3 and X3) in Fig. 4.13, using the values of circuit 

elements obtained in steps 3) and 4). 

6) Determine a and X. using the Hooke and Jeeves method outlined in Appendix B. 

7) Repeat steps 3) to 6) until the values of a in successive iterations is less than a 

specified value. 

8) Compute the values of phase converter elements and performance of the SEIG 

using the final values of a and X, n. 

The above procedure has been tested with reference to the experimental machine IG1. 

Convergence can usually be obtained in three to five iterations. Fig. 4.18 and Fig. 4.19 

show the computed values of C2, C3, and RL2 to give perfect phase balance in the SEIG 

for given values of main load conductance GL3. From Fig. 4.20, it is observed that both 

the phase voltage and phase current increase with decrease in O until the limiting value 

of 120 electrical degrees is reached. The SEIG is thus more likely to experience 

overvoltage and overcurrent at small values of O,. 

Fig. 4.21 shows the total output power and efficiency of the SEIG with MSC under 

balanced conditions. At = 120 electrical degrees, rated current occurs when GL3 = 1.4 

p. u., and the total output power is 1.6 p. u. At 4= 135 electrical degrees, rated current 

occurs when GL3 = 1.88 p. u. and the total output power is 1.86 p. u. From voltage, current, 

output power and efficiency considerations, it is desirable to operate the SEIG at higher 

values of Ofl. 
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Fig. 4.18 Main and auxiliary excitation capacitances for perfect phase balance in SEIG 

with MSC. 
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Fig. 4.19 Auxiliary load resistance for perfect phase balance in SEIG with MSC. 
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Fig. 4.21 Output power and efficiency of SEIG with MSC under perfect phase balance. 

4.3.5 Simplified Steinmetz Connection (SSC) 

In circumstances where it is not practicable to provide auxiliary loads, or when auxiliary 

loads need not be supplied, the simplified Steinmetz connection (SSC) shown in Fig. 4.22 

may be employed. In this case, all the electrical power output of the SEIG is delivered to 

the single-phase load RL3. The phasor diagram for MSC (Fig. 4.13) and the corresponding 

equations (4.23)-(4.26) may be used to identify the conditions for perfect phase balance 

Fffiniencv (n_u_) 
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for the SSC. Since the auxiliary load resistance RL2 is absent, the value of G2 in (4.23) is 

forced to assume a zero value. Accordingly the positive-sequence impedance angle O of 

the SEIG must be equal to 2ic/3 rad for (4.23) to be satisfied. From (4.24), (4.25) and 

(4.26), the values of the load conductance and phase-converter susceptances that result in 

balanced operation of the SEIG are: B2 = ý3Yp, G3 = 3Yp12, and B3 ='3Yp/2. 

VT 

Z3 

, -ýý4 

Z2 
C2 

Fig. 4.22 Simplified Steinmetz connection for three-phase SEIG. 

I L2 

The auxiliary excitation capacitance C3 is thus one half of the main excitation capacitance 

C2. By selecting proper values of C2 and C3, perfect phase balance can be achieved for a 

specific value of stator current. 

Analysis of the SEIG with SSC is similar to that for the SEIG with MSC, except that the 

admittance Y2 is now equal to (0 + jB2). 

Figs. 4.23 to 4.25 show the computed and experimental performance of the SEIG with 

SSC at rated speed. With main and auxiliary excitation capacitances fixed at 110 µF and 

55 µF respectively, the SEIG is balanced at a load current (experimental value) of 1.13 

p. u, which corresponds to a phase voltage of 0.985 p. u. and a phase current of 0.77 p. u. 

Under this condition, a power of 1.11 p. u. (1320 W) is delivered to the load and the 

Induction Machine 
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efficiency of the SEIG is 79.6%. Again very good agreement between the computed and 

experimental results is observed. 
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Fig. 4.23 Phase voltages of three-phase SEIG with SSC. 
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Fig. 4.24 Phase currents of three-phase SEIG with SSC. 
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Fig. 4.25 Output power and efficiency of three-phase SEIG with SSC. 

4.3.6 Summary 
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A general analysis for a three-phase SEIG with asymmetrically connected load and 

excitation capacitances has been presented. The equivalent circuit variables, namely the 

excitation frequency and magnetizing reactance, are determined by the function 

minimization method presented in Section 4.2. The close agreement between computed 

and experimental results obtained verifies the theory and solution method for an SEIG 

with asymmetrically connected terminal impedances. A phase-balancing scheme for a 

three-phase SEIG supplying a single-phase load, namely the modified Steinmetz 

connection (MSC), has also been investigated. From the voltage/current relationship in 

the phasor diagram, the conditions for balanced operation are deduced and an iterative 

method to determine the corresponding values of the phase converter elements for a 

given load has been developed. When there is no auxiliary load resistance, perfect phase 

balance can still be achieved provided that the auxiliary excitation capacitance is half of 

the main excitation capacitance. Since the MSC or the SSC scheme involves only passive 

circuit elements, it is an economical and effective method for achieving perfect phase 

balance in a three-phase SEIG that supplies single-phase loads. 
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4.4 Self-Regulated SEIG (SRSEIG) for Single-Phase Loads 

4.4.1 Circuit Connection and Analysis 

In this section, series capacitance compensation will be applied to a three-phase SEIG 

with the Steinmetz connection to give a single-phase self-regulated self-excited 

induction generator (SRSEIG) with reduced voltage regulation, better phase balance 

and increased power output. Besides, it will be shown that a condition of perfect phase 

balance in the three-phase machine could be achieved over a wide range of load with 

this new excitation scheme. 

Fig. 4.26 shows the circuit connection of the single-phase SRSEIG for a delta- 

connected induction machine. The shunt excitation capacitance Csh is selected to give 

the desired no-load voltage, while the series compensation capacitance CSe provides 

additional reactive power when the load current increases, resulting in a reduced 

voltage drop. 

4 

VL 

5 

Vse Induction Machine 

Csh 

Fig. 4.26 Circuit connection of single-phase SRSEIG using a three-phase delta- 

connected induction machine. 
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A general analysis of the single-phase SRSEIG can be carried out using the method 

presented in Section 4.2. For the SRSEIG system, the input impedance Zi� as viewed 

across terminals 1 and 3 is given by: 

Ztn 
-ZPZ. 

+ZP Zsh + Zn Zsh 

('-F^ 
"27) 3 ZSh +Zp+ Zn 

where 

Zsh ---, %" (4.28) 
J2ýf 

1 

base"Csh"LZ 
2 

Xsh 

The complex impedance of the series capacitance Cse is 

Zse= 
1=-jXse 

(4.29) 
J2ý f1 

base' 
Cse 

"Q 

The following scalar impedance function should thus be minimized for solution of the 

SRSEIG circuit: 

z 
Z(a, Xm/ 

r(Ri,, 

+RL +(Xin+XL-Xse)2. (4.30) 

To simplify the calculations and for easy comparison, all the machine parameters are 

expressed in per-unit values using the rated phase voltage and rated phase current as 

bases. Table 4.5 shows the computed results for machine IG1 (technical details of 

which are given in Appendix D. 1), with an excitation capacitance of 125 µF and a 

series compensation capacitance of 350 µF. The per-unit speed and the load power 

factor are both equal to unity. It is observed that, over a wide range of load impedance, 

the number of function evaluations N required for a solution varies from 330 to 550. 

The results here indicate that the Hooke and Jeeves method is computationally efficient 

and is suitable for solving the single-phase SRSEIG performance analysis problem. The 

accuracy is very good as observed from the function minima obtained in Table 4.5. 
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TABLE 4.5 
COMPUTED RESULTS FOR SINGLE-PHASE SRSEIG USING 

THE HOOKE AND JEEVES METHOD 

Csh = 125 µF; CSe = 350 µF; b=1.0, P. F. = 1.0 

ao = 0.97b; X, no = X, nu = 2.48 p. u. 

RL 

. u. ) 
a Xm 

(p. u. ) 
Number of function 

evaluations N 
Z(a, Xm) 

. u. ) 
50 0.9916 1.6226 381 9.06e-4 
10 0.9900 1.6329 332 1.32e-4 
5 0.9880 1.6443 390 6.24e-5 
2 0.9823 1.6686 396 1.32e-5 
1 0.9737 1.6771 356 6.43e-7 

0.5 0.9593 1.5982 417 8.53e-7 
0.3 0.9455 1.4056 509 2.92e-7 
0.1 0.9240 0.8335 386 4.0 e-7 

4.4.2 Effect of Series Compensation Capacitance 

It is of interest to investigate the effect of Csh and CSe on the performance of the single- 

phase SRSEIG. In practice, CA is chosen so as to secure self-excitation and a stable 

operating point without causing excessive phase voltages and currents at no load. 

Depending on the voltage regulation and phase balance requirements, different values 

of CSe could be chosen. To facilitate the subsequent discussion, a parameter called the 

compensation factor K is defined as follows: 

K'=- 
Csh (4.31) 

Xsh 
lese 

where Xsh and XSe have been defined in (4.28) and (4.29), respectively. 

For the purpose of comparison, it is assumed in this section that the single-phase 

SRSEIG is operating at rated speed and is supplying a unity-power-factor load. 

A) Voltage regulation 

When choosing the value of the series compensation capacitance CS,, one should 

consider the voltage drop across CSe as well as the amount of compensating reactive 

power available. A large value of CSe results in a smaller voltage drop, but the reactive 
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power (IL2XSe) generated is also small. On the other hand, a small value of CSe results in 

a larger voltage drop but provides more reactive power for voltage compensation. 

Fig. 4.27 shows the computed variation of magnetizing reactance X, n of the 

experimental SRSEIG (for which Xmu = 2.48 p. u. ) with the load admittance YL for 

different values of K when a shunt excitation capacitance of 125 µF is used. Without 

series compensation (K = 0), X, 
n 

increases rapidly with load conductance and reaches 

the unsaturated value of 2.48 p. u. when YL is equal to 2.05 p. u. At larger values of K, 

the range of YL over which Xm is less than the unsaturated value is extended. This 

implies that the SRSEIG is capable of maintaining a high terminal voltage over a wider 

range of load. At K=0.357, X, 
n remains substantially constant over the practical range 

of YL, i. e. the saturation level of the machine is only slightly affected by the load. 

Xm 
2.5- 

2- 

1.5- 

1 

0.5 

0 
0 0.5 1 1.5 2 2.5 

Load admittance (p. u. ) 

- K 0 K 0.2 °"-°- K 0.3 ---° K"0.367 

-ý K"0.6 - K"0.626 6 K"0.862 

Fig. 4.27 Variation of magnetizing reactance with load admittance. 

Fig. 4.28 shows the computed variation of load voltage with YL under the above 

operating conditions. Best voltage regulation characteristics are obtained when K is 

between 0.3 and 0.5. When K is less than 0.25 or greater than 0.8, the load voltage 

decreases significantly. 

Csh   125 uF 
P. F. -1.0, b-1.0 
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Load voltage (p. u. ) 
1.2 

1 

0.8 

0.6 
Csh 125 uF 

P. F.  1.0, b 1.0 

0.4 L 
0 0.5 1 1.5 2 2.5 

Load admittance (p. u. ) 

-K"0-K"0.2 K-0.3 '--- K"0.367 

-~- K"0.5 -a- K"0.625 6- K"0.862 

Fig. 4.28 Variation of load voltage with load admittance. 

B) Phase balancing capability 

One novel feature of the single-phase SRSEIG is that it can operate with balanced 

phase voltages and currents in the three-phase machine. This occurs when the negative- 

sequence voltage V, vanishes. From (4.7) and with Zc replaced by Zsh, the following 

condition is deduced: 

-j z16 

Zsh+ . Zp=O. 
NF3 

(4.32) 

Since the shunt excitation capacitance may be considered to be lossless, from (4.32) 

one obtains, 

I Zp 1- I Zsh = 
ý3 Xsh (4.33) 

and 

27r 
cb =3 (4.34) 

where O is the positive-sequence impedance angle of the three-phase induction 

machine. 
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13 

L 

Fig. 4.29 Phasor diagram of single-phase SRSEIG when the three-phase machine is 
balanced at a unity-power-factor load. 

Fig. 4.29 shows the phasor diagram of the SRSEIG under perfect phase balance 

conditions. From the diagram, the following relationships can be deduced: 

ý7 X 
se 

r4 35l Gsel Ase 
2 

/ý' 

RL=ý-3Xse-(zpl (4.36) 
a2 

and 

VL - 
-. 

VA " 
(4.37) 

2 

From (4.33) and (4.35), 

Xsh-2Xse (4.38) 

or 

Cse =2 Csh 1 
(4.39) 

Eqns. (4.36), (4.38) and (4.39) imply that perfect phase balance in the three-phase 

induction machine can be achieved when a compensation factor of 0.5 is used and the 
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load resistance (referred to the base frequency) is numerically equal to one-half of the 

positive-sequence impedance. Under these conditions, the load voltage is 0.866 times 

the terminal voltage of the three-phase machine, while the generator impedance angle is 

equal to 2 TO electrical radians. 

C) Capacitances for perfect phase balance 

A practical design problem is the selection of Csh and CSe to give perfect phase balance 

for a given load resistance RL. When the speed of the IG is regulated to give a constant 

frequency in the output voltage, Csh and CSe can be determined directly from (4.33) and 

(4.35). For constant-speed operation, however, the per-unit frequency is a function of 

the load and the excitation capacitances, which are not known until the SRSEIG circuit 

is completely solved. To overcome this difficulty, the following iterative solution 

procedure is proposed: 

1) Input the values of per-unit speed and load resistance RL. 

2) Assume an initial value of the per-unit frequency a. 

3) Compute Xsh and XSe from eqns. (4.3 3) and (4.3 5). 

4) Solve the SRSEIG circuit for a, X, n, and Zp using the above values of XSe and 

Xsh 

5) Repeat steps 3) and 4) until the per-unit frequency a in successive iterations 

differ by a sufficiently small value (say 1. Oe-6). 

6) Determine Csh and CSe using the final values of a and X, n. 

7) Compute the generator performance. 

Fig. 4.30 shows the computed and experimental values of the shunt and series 

capacitances to give balanced operation for the experimental machine. The values of 

Csh and CSe required increase approximately linearly with the load admittance. At light 
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loads, the combination of RL, Csh and CSe may force the magnetizing reactance of the IG 

to exceed the unsaturated value, implying that the operating point does not exist. 

The results in Fig. 4.30 show that, by a proper selection of the excitation capacitance, 

compensation capacitance and load resistance, it is possible to obtain perfect balance in 

the three-phase machine over a wide range of load. 

Capacitance (uF) 

300 

00 

200 

100 

0 
0 

0- 
0.8 1 1.2 1.4 1.6 1.8 2 2.2 

Load admittance (p. u. ) 

- C8h(Caic. ) - C8e(Calo. ) Ceh(Expt'I) 0 C8e(Expt'I) 

Fig. 4.30 Computed and experimental values of capacitances to give balanced 

operation in the three-phase machine at unity-power-factor loads. 

D) Voltage unbalance factor 

Balanced operation can only be achieved for a given combination of RL, Csh and Cse. 

When the load or the compensation factor changes, the three-phase machine will again 

be unbalanced. The degree of unbalance is conveniently described in terms of voltage 

unbalance factor (VUF) which is defined as the ratio of the negative-sequence voltage 

VJZ to the positive-sequence voltage Vp. Fig. 4.31 shows the effect of compensation 

factor K on the VUF when the shunt excitation capacitance is constant at 125 µF. It is 

interesting to note that for each value of K, the variation of VUF with load admittance 

is a V-shaped curve. Besides, the VLTF becomes smaller as the value of K is closer to 
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0.5. When K is equal to 0.5, the minimum phase imbalance in the three-phase machine 

is obtained, with zero VUF occurring at a load admittance of 1.82 p. u. 

Voltage unbalance factor (p. u. ) 
0.14 

0.12 

0.1 

0.08 

0.06 

0.04 

0.02 

Csh   125 uF 
P. F.  1.0, b 1.0 

0ý 
0 0.6 1 1.6 

Load admittance (p. u. ) 

-K-0-K 0.2 K 0.3 

K 0.5 K"0.626 -ý K"0.862 

2 

-- K-0.357 

Fig. 4.31 Variation of voltage unbalance factor with load admittance. 

E) Output power and efficiency 

2.5 

For a given value of shunt excitation capacitance, the output power from the single- 

phase SRSEIG depends on the series compensation capacitance used. Fig. 4.32 shows 

the computed variation of output power of the experimental machine with load 

admittance when Csh is equal to 125 µF. With no compensation (i. e. K= 0), a power 

limit occurs at a load admittance of about 1.3 p. u and loss of excitation occurs when the 

load admittance is equal to 2.05 p. u. When K exceeds 0.2, a marked increase in the 

output power is obtained and stable operation of the single-phase SRSEIG is possible 

even with very large values of load admittance. The output power from the machine is 

large when K is between 0.3 and 0.5, the best power output being obtained when K is 

equal to 0.357. This observation suggests that the use of very large values of 

compensation capacitance is unnecessary and should be avoided. 
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Output power (p. u. ) 

1. 

Csh   125 uF 
6 P. F.  1.0, b 1.0 

11 

o. 

0 0.5 1 1.5 2 2.6 

Load admittance (p. u. ) 

-K"0-K 0.2 -°- K 0.3 ---- K 0.367 

K"0.6 K"0.625 -ý- K"0.862 

Fig. 4.32 Variation of output power with load admittance. 

Fig. 4.33 shows the computed variation of efficiency of the single-phase SRSEIG with 

load admittance for various values of K. The efficiency is highest when K is equal to 

0.2 and it decreases monotonously as K increases. Efficiency of the uncompensated 

machine is comparable with that of the SRSEIG when K is between 0.2 and 0.357, up 

to a load admittance of 2.0 p. u. at which it drops abruptly due to the rapid decrease in 

the output voltage. 

0.75- 

0.7- 

0.65- 

0.6- 

0.65 
0 0.5 1 1.5 2 2.5 

Load admittance (p. u. ) 

- K 0 K"0.2 K"0.3 "-" K"0.367 

-ý K"0.6 K"0.626 6 K"0.862 

Fig. 4.33 Variation of efficiency with load admittance. 

Csh 125 uF 
P. F.  1.0, b 1.0 

Efficiency (p. u. ) 
0.8 
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4.4.3 Experimental Results and Discussion 

In order to validate the performance analysis of the single-phase SRSEIG, load tests 

were performed on the experimental machine IG1. Attention was focused on the 

constant-speed mode of operation and resistive loads. Fig. 4.34 shows the computed 

and experimental load characteristics of the single-phase SRSEIG for various values of 

K, with Ch constant at 125 F. Without series compensation, the load characteristic of 

the single-phase SEIG has the familiar `bend' and the maximum current that can be 

supplied is 1.14 p. u., at which the voltage drop is approximately 40%. With K equal to 

0.5, the load characteristic of the single-phase SRSEIG is practically linear up to a load 

current of 2.0 p. u. at which the voltage drop is 22%. 

Load voltage (p. u. ) 1.2 

46 

0\ 

p/. 

Csh- 125 uF 
P. F. -1.0, b-1.0 

1 

0.8- 

0.6- 

0.4- 

0.2- 

0 
0 0.5 1 1.5 2 2.5 

Load current (p. u. ) 

- K"0 (Cale. ) - K O. 6 (Cale. ) ° ý- K-0.626 (Cale. ) ---- K"0.862 (Cale. ) 

A K"0 (Expt'I) 0 K"O. 5(Expt'I) X K O. 625(Expt'I) K"O. 882(Expt'1) 

Fig. 4.34 Computed and experimental load characteristics of single-phase SRSEIG 
(Csh = 125 µF). 

Fig. 4.35 shows the load characteristics of the single-phase SRSEIG for various values 

of K, with CSe at 250 µF. The results indicate that, by varying the shunt excitation 

capacitance, the load voltage can be regulated. By selecting proper values of Ch, it is 

possible to obtain different degrees of compounding in the load characteristic. When K 

is equal to 0.3 8, for example, a nearly level-compounded characteristic is obtained, 
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with zero voltage regulation occurring at a load current of 1.3 p. u. A reduction of K (or 

Csh) results in a lower output voltage as well as a reduction in VUF, but perfect phase 

balance cannot be achieved when K deviates from 0.5. 

Load voltage (p. u. ) 
1.2 

Ap 

CSe- 250 uF 

P. F. -1.0, b 1.0 

1 

0.8 

0.6- 

0.4- 

0.2- 

0- 
0 0.5 1 1.5 

Load current (p. u. ) 

K"0.38 (Cato. ) -K"0.44 (Cato. ) 

K 0.38 (Expt'I) 0K 0.44 (Expt'I) 

2 

- -- K"0.5 (Cabo. ) 
xK"0.6 (Expt'I) 

2.5 

Fig. 4.35 Computed and experimental load characteristics of single-phase SRSEIG. 

Figs. 4.36 to 4.38 show the computed and experimental characteristics of the single- 

phase SRSEIG when Csh is constant at 125 µF and K is equal to 0.5. From Figs. 4.36 

and 4.37, it is observed that the three-phase machine is balanced at a load current of 1.6 

p. u., at which the phase voltage and current are 1.05 p. u. and 0.94 p. u., respectively. 

The phase-A voltage varies only slightly with load current, exhibiting a concave- 

upward characteristic. On the other hand, the phase-B voltage decreases and the phase- 

C voltage increases monotonously with load current. Fig. 4.37 also shows that, under 

light load conditions, overcurrent occurs in phase B. When the load current exceeds 

that corresponding to perfect phase balance, overcurrent will first occur in phase A and 

phase C. At very large load currents, all three phases of the induction generator will be 

overloaded. Provided that the load current varies between 1.0 p. u. to 2.0 p. u., the phase 

imbalance in the three-phase machine should be acceptable. When prolonged operation 

at light load is required, however, it is recommended that smaller values of Csh and Cse 
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be used in order to balance the machine at a lower load current, thereby reducing the 

VUF at light load. 

Fig. 4.36 
SRSEIG. 

Fig. 4.37 
SRSEIG. 
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Computed and experimental phase current characteristics of single-phase 

Fig. 4.38 shows the output power, efficiency and frequency characteristics of the 

single-phase SRSEIG. Due to the self regulation in the load voltage, the power output 

increases almost linearly as the load current increases. A high efficiency is obtained 

when the load current exceeds 0.8 p. u. Under perfect phase balance condition, the 

machine delivers an output power of 1.48 p. u. (1760 W) at an efficiency of 0.77 p. u. 
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The per-unit frequency a drops slightly with increase in load current: at perfect phase 

balance, the p. u. frequency is equal to 0.964. 

The above results confirm that very satisfactory machine operation at unity load power 

factor is obtained when K=0.5. 

Good correlation between the computed and experimental characteristics is observed 

from Fig. 4.30 and from Figs. 4.34 to 4.38. The validity of the theoretical analysis and 

the feasibility of the proposed single-phase SRSEIG are thus verified. 

Output power (p. u. ) 

1. 

0. 

Pout (Calc. ) - Efi'y (Calc. ) a (Calc. ) 

Pout (Expt'I) 0 Eff'y (Expt'I) xa (Expt'l) 

0.8 

0.8 

0.4 

0.2 

0 

Fig. 4.38 Computed and experimental output power, efficiency and frequency 

characteristics of single-phase SRSEIG. 

4.4.4 Effect of Load Power Factor 

Autonomous power systems supply typically lighting and storage heating loads with 

power factors equal to or close to unity. For these applications, the analysis and results 

presented in Sections 4.4.2 and 4.4.3 are generally applicable. Special consideration 

should be given, however, to the case when the load power factor differs from unity. 

Fig. 4.39 shows the phasor diagram of the single-phase SRSEIG (Fig. 4.26) under 

perfect phase balance and the load power factor angle is 0 lagging. From the diagram, 

the following relationships can readily be deduced: 

Eff'y and a (p. u. ) 
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Fig. 4.39 Phasor diagram of single-phase SRSEIG when the three-phase machine is 
balanced at a lagging-power-factor load. 

RL 
Zp l. 

cos (4.40) 
V6 

XL -I 
Zp I 

. cos7r. tan0 (4.41) 
V6 

__ 
I Zp sin(o + 7r16) (4.42) Xse 

Cis 

The compensation factor K that results in perfect phase balance in the three-phase IG is 

K=Xse=sin(o+z16) 

Xsh Cos 0 
(4.43) 

The load voltage VL and the voltage drop VSe across the series compensation 

capacitance CSe are given by: 

1Z 
VL=Vph"cos 

6 . 
sec0 

Vse-Y ph 
sin( + ? r/6) 

cos 0 

(4.44) 

(4.45) 
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From Fig. 4.39 and (4.43), it is observed that XSe is larger when the load power factor 

angle is increased, implying that a higher value of K is required. At a power factor 

angle of n/6 rad lagging, K must be equal to unity for perfect phase balance. Under this 

condition, both VL and VSe are equal to the phase voltage of the IG. 

A smooth variation of K is required for achieving perfect balance at different load 

power factor angles, but this would significantly increase the complexity and capital 

cost of the generator system. In practice, provision of discrete values of CSe and K 

suffices to give satisfactory generator performance. Fig. 4.40 shows the load 

characteristics of the single-phase SRSEIG at different power factors when Csh = 125 

µF and K=1.0. It is observed that the load voltage exhibits an interesting double-peak 

characteristic when the load power factor is lagging. The undulation in the load voltage 

characteristics is larger as the load power factor decreases, but the load voltage remains 

substantially constant at light and medium loads. 

Load voltage (p. u. ) 
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"xxx ------------------ ........... -" ---------= ----------- 

Csh - 125 uF 
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0 0.5 1 1.5 2 2.5 

Load current (p. u. ) 

- u. p. f. (C) - 0.9 lag. (C) ° 0.868 lag. (C) 0.8 lag. (C) 

° u. p. f. (E) 0 0.9 lag. (E) x 0.866 lag. (E) 0.8 lag. (E) 

Fig. 4.40 Computed and experimental load voltage characteristics of single-phase 
SRSEIG at different load power factors. 
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At a power factor of 0.8 lagging, zero voltage regulation occurs at three different values 

of load current, but the computed results indicate that for load currents not exceeding 

1.5 p. u., the voltage regulation is smallest when the load power factor is 0.866 lagging. 

With unity-power-factor loads, however, the voltage regulation is much larger 

compared with that obtaining when a compensation factor of 0.5 is used, as shown in 

Fig. 4.34. 

Fig. 4.41 shows the computed and experimental VUF characteristics of the single-phase 

SRSEIG at different power factors when K=1.0. At a load power factor of 0.866 

lagging, perfect phase balance is obtained at a load current of 1.65 p. u., which is very 

close to the rated value. At a load power factor of 0.8 lagging and 0.9 lagging, the 

minimum values of VUF are 0.018 and 0.01, respectively. At unity load power factor, 

the VUF for heavy loads is considerably higher. 

0.2 
Voltage unbalance factor (p. u. ) 

0.16 

0.1 

0.05 

0` 
0 

- u. p. f. (C) 

° u. p. f. (E) 

0.5 1 1.5 2 2.5 

Load current (p. u. ) 

- 0.9 lag. (C) --- 0.886 lag. (C) ----- 0.8 lag. (C) 

0 0.9 lag. (E) x 0.886 lag. (E) 1 0.8 lag. (E) 

Fig. 4.41 Computed and experimental variations of voltage unbalance factor of single- 

phase SRSEIG at different load power factors. 

For practical applications, the value of K may be changed by a simple switching 

operation on CSe which comprises two identical units, each equal to Csh. For load power 

factors close to unity, the two capacitor units are connected in parallel to yield a 

Csh" 125 uF 
K 1.0; b-1.0 
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compensation factor of 0.5. As the load power factor becomes more lagging, one of the 

capacitor units may be switched out to yield a compensation factor of unity. 

4.4.5 Summary 

In this section, the steady-state performance of a single-phase self-regulated SEIG 

using a three-phase machine has been analyzed. The effect of compensation factor on 

the generator performance has been investigated in detail with reference to a small 

experimental machine. Very good phase balance is obtained over a wide range of load 

by virtue of the Steinmetz connection and the phase-shifting effect of the series 

compensation capacitance on the load current. Other advantages of the single-phase 

SRSEIG include good winding utilization, large power output, high efficiency, and a 

small voltage regulation. The conditions for achieving perfect phase balance in the 

three-phase machine, which supplies single-phase loads, have also been deduced from 

the symmetrical component analysis and the phasor diagram. An iterative method for 

computing the values of shunt capacitance and series compensation capacitance for 

phase balancing has been developed. Performance of the single-phase SRSEIG when 

supplying lagging power factor loads is also investigated. Laboratory tests on the 

experimental machine have confirmed the accuracy of the theoretical analysis. Further 

work is in progress to study the transient performance of the generator, for example 

sudden load change and switching of motor loads. Since the circuit configuration of the 

proposed single-phase SRSEIG is extremely simple and only static capacitors are 

required, the generator can be conveniently implemented for use in low-cost single- 

phase autonomous power generation schemes. 
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4.5 SEIG with the Smith Connection (SMSEIG) 

Application of the Smith connection to a three-phase IG connected to a single-phase 

grid has been studied in Section 2.3. In this section, it will be shown that this 

connection can be used in a novel excitation scheme for a three-phase SEIG that 

supplies isolated single-phase loads. Good phase balance in the generator can be 

achieved, resulting in a high efficiency and a large power output. 

4.5.1 Circuit Connection and Operating Principle 

Fig. 4.42 shows the proposed excitation scheme. When viewed into terminals 1 and 3 

across which the single-phase load ZL is connected, the stator phases and the excitation 

capacitances are in the form of the Smith connection discussed in Section 2.3. For easy 

reference in the subsequent discussion, this new excitation scheme will be abbreviated 

as the SMSEIG. In order to suppress the zero-sequence current, the capacitance C3 

must be equal to twice of the capacitance C2. 

Self-excitation in the SMSEIG takes place in a similar manner as a three-phase SEIG 

with symmetrical winding connection and balanced capacitances. Residual flux must be 

present in the rotor, and the capacitances must be sufficiently large for the terminal 

voltage to build up [26]. As in other SEIG schemes, the frequency and magnetizing 

reactance of the SMSEIG are not constant but vary with the rotor speed and the load 

impedance. 

The phasor diagrams for the SMSEIG is the same as that for the SMIG, as illustrated in 

Fig. 2.13(a) and Fig. 2.13(b). Provided that the generator impedance angle lies 

between 27t/3 rad and 57c/6 rad, IB can be synthesized with the proper magnitude and 

phase angle as to yield perfect phase balance in the SMSEIG. Under this condition the 

IG operates with balanced phase currents and phase voltages and its performance is 
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similar to a three-phase SEIG with balanced excitation capacitances and balanced load 

impedances. The currents Il, I2 and 13 can be adjusted easily by varying the 

capacitances C1, C2 and C3. Fig. 2.13 also suggests that the SMSEIG is best suited for 

supplying high power factor (e. g., resistive) loads. 

8 

-I 

2 

TVB 
5 

Fig. 4.42 Circuit connection of proposed excitation scheme for three-phase induction 

generator supplying an isolated single-phase load. 
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4.5.2 Performance Analysis 

To determine the steady-state performance of the SMSEIG, the analysis presented in 

Section 2.3 for the grid-connected SMIG is used in association with the solution method 

for a single-phase SEIG, presented in Section 4.2. 

For the SMSEIG, it can be shown that the input impedance Z1 across terminals 1 and 3 is 

given by: 

Yp+Yn+3Y'+2Y2 
(4.46) Zen=Rin +>Xin- 

2 Y, Y2+(Yp+Yn)(Y, +2Y2)+YpYn 

where Y1= ja2.2irfbaseCl, Y2 =ja 2.27rfbaseC2, and Y3=ja 2.27rfbaseC'3" 

For a given per-unit speed b and a given set of excitation capacitances, the values of a 

and X, n may be determined by minimizing the following scalar impedance function: 

z 
Z(Q, Xm)-_ 

F(aL 

Rin +(XL+Xin)2 (4.47) 

After a and X, n 
have been determined, the steady-state performance of the SMSEIG can 

be obtained from the appropriate circuit equations. 

4.5.3 Balanced Operation 

A) Conditions for phase balance 

As in the SMIG, the capacitive admittances for perfect phase balance are given by: 

Y, 1= 
2 

IYpIsin 
51r 

-op (4.48) 73 
(6 

27 r (4.49) 1 Y2 I-I Yp I sin cbp _3 3 

IY31=21 I sin op_ 
27r 

(4.50) 
3 

while the load admittance YL, referred to the base frequency, is given by 
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IYLI-III -l 
Ypl. I1+8s2p_J. 21 

(4.51) 
IVI V3 

Eqns. (4.48) to (4.50) may be simplified when the load is purely resistive. Since the load 

power factor angle is now n rad, it can be shown that the generator impedance angle O is 

Op = tan"' 
2- 

= 2.2845 rad. TT) (4.52) 

The IG thus operates with an output power factor of 0.655 leading when perfectly 

balanced and supplying a pure resistive load. 

Substitution of (4.52) into (4.48) to (4.50) yields 

1Y, ß=I y 2l 2l -ýYjý= 
1I 

YP1. (4.53) 

The capacitances Cl and C3 are thus equal, while the currents are related by 

I I=JII, I=3II2I=3II3I= 3 
Iph. (4.54) 

B) Capacitances for perfect phase balance 

It is of interest to determine, for a given load impedance and per-unit speed, the values of 

excitation capacitances that give perfect phase balance in the SMSEIG. Since Yp and 

are functions of a and Xm, both being unknown to start with, an iterative procedure has to 

be used. The steps are outlined as follows: 

1) 

2) 

3) 

4) 

Assume appropriate initial values of a and X, 
n. 

For the given value of load impedance, compute the load admittance 
I YL I and the 

operating load power factor angle t. 

Determine the corresponding generator impedance angle 4 using 

method. 

Compute I Yp I from (4.51), using the current values of 
I Yi I and O. 

an iterative 
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5) Compute the capacitive admittances 
I Yl 1,1 Y21, and 

I Y31 from (4.48) to (4.50). 

6) Determine the new values of a and Xm, using the solution technique outlined in 

Section 4.2.2. 

7) Update the values of 0 and 
I Yi I using the new values of a and X, n. 

8) Repeat steps 3) to 7) until the values of a in successive iterations is less than the 

prescribed tolerance, say 1.0e-6. 

9) Compute the excitation capacitances CI, C2, and C3 using the final values of a and 

Xm, hence obtain the performance of the SMSEIG under balanced conditions. 

4.5.4 Results and Discussion 

A) Computed Results: Constant-Speed Operation 

Computed results were obtained for experimental machine IG1 whose data are given in 

Appendix D. 1, the emphasis being placed on the performance when the SMSEIG is 

operated at constant speed and is supplying unity-power-factor loads. 

Fig. 4.43 shows the computed variations of a and Xm with load admittance YL when the 

SMSEIG operates with perfect phase balance. Reduction in YL causes X, n to increase, 

implying that the induction machine becomes less saturated. When YL = 0.403 p. u., X, n 

is equal to the unsaturated value Xmu (= 2.48 p. u. ). There is thus a value of load 

admittance below which perfect phase balance cannot be achieved for the SMSEIG. 

Fig. 4.44 shows the variation of CI with YL to give perfect phase balance and the 

corresponding phase voltage of the induction generator. The capacitance required for 

giving perfect phase balance decreases as YL is reduced, hence the decrease in Xm. 
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Fig. 4.43 Computed variation of per-unit frequency and magnetizing reactance under 
perfect phase balance. 
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Fig. 4.44 Computed variation of capacitance Cl and phase voltage under perfect phase 
balance. 

B) Experimental Results: Constant-Speed Operation 

To verify the phase-balancing capability of the SMSEIG, laboratory tests were 

performed on the experimental machine. The speed of the SMSEIG was maintained at 

rated value (i. e. b=1.0 p. u. ) and the capacitances were increased until self-excitation 

occurred. The load resistance was then switched in and the capacitances were adjusted 

until the phase voltages and currents were balanced. Since the load was resistive, the 

balance point could be obtained quite easily by varying the capacitances simultaneously 
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in the proportion as prescribed by (4.53). Both machine noise and vibration levels were 

low when the SMSEIG was operating under perfect phase balance. The performance 

characteristics are given in Figs. 4.45 to 4.47. 

Fig. 4.45 shows the values of Cl and C2 that result in perfect phase balance. The good 

correlation between the computed and experimental results confirms the feasibility of 

the proposed excitation scheme. It is observed that larger values of capacitances need to 

be used for achieving perfect phase balance at heavier loads. 
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Fig. 4.45 Excitation capacitances to give perfect phase balance in SMSEIG. 

400 

300 
G 

200 

100 

Voltage (V) 

0" 

0 

Phase current (A) 
8 

G 

b-1.0p. u. 
p. f.   1.0 p. u. 

246 

Load current (A) 

6 

4 

2 

10 
8 

- Vph (Cabo. ) - VL (Cabo. ) I 
ph(Calo. 

) 

0 Vph (Expt'I) o VL (Expt'I) x Iph(Expt'I) 

Fig. 4.46 Variation of load voltage, phase voltage and phase current of SMSEIG under 
perfect balance. 
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Fig. 4.46 shows the corresponding variations of load voltage, generator phase voltage, 

and generator phase current with load current. Due to the increased reactive power from 

the capacitances, the generator is driven into heavier saturation and the output voltage 

increases. When delivering a rated load current of 6.2 A, the phase voltage is 213 V 

(0.97 p. u. ). This shows that the generator rating has been fully utilized. 

Fig. 4.47 shows the output power and efficiency characteristics of the SMSEIG under 

balanced conditions. At rated load current, the generator delivers a power of 2250 W to 

the single-phase load, which is approximately equal to the rated output when the 

machine is run as a three-phase motor. The generator efficiency is high since only 

positive-sequence losses are incurred. For load currents from 1.7 A to rated value, the 

efficiency exceeds 0.75 p. u. and remains substantially constant. The maximum 

efficiency is 0.79 and occurs at a load current of 3.5 A. 
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Fig. 4.47 Output power and efficiency characteristics of SMSEIG under perfect phase 
balance. 

Figs. 4.48 to 4.50 show the performance characteristics of the SMSEIG when Cl = 32 

µF, C2 = 16 µF, and C3 = 32 µF. The rotor speed is maintained at rated value and a unity- 

power-factor load is supplied. With these excitation capacitances, the three-phase 

468 

Load current (A) 
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machine is balanced experimentally at a load current of 5.8 A, the corresponding phase 

voltage and phase current being 203 V and 5.2 A, respectively. Since the excitation 

capacitances remain unchanged, they will generate excessive magnetizing reactive power 

when the load current decreases, causing the phase voltages to increase (Fig. 4.48). At no 

load, VA, VB and Vc are equal to 324 V, 243 V and 256 V, respectively. 
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Fig. 4.48 Phase voltage and load voltage characteristics of SMSEIG with constant 
excitation capacitances. 
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Phase current characteristics of SMSEIG with constant excitation 

Fig. 4.49 shows the phase current characteristics of the SMSEIG. When the load current 

decreases from the value corresponding to perfect phase balance, both phase-A and 
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phase-B currents increase, whereas phase-C current decreases. At light load, all the phase 

currents increase with reduction in load current. At no load, IA and IB are equal to 11.2 A 

and 8.1 A. respectively. 

Fig. 4.50 shows the variation of per-unit frequency, efficiency and VUF of the SMSEIG 

with load current. For operation at rated speed, the output frequency is 0.95 p. u. at rated 

current. The efficiency drops significantly with reduction of load current due to the 

increase in the negative-sequence voltage and current components, as well as the increase 

in iron loss due to heavier magnetic saturation. Variation in the VUF is approximately 

linear from no load to the balance point. 

The validity of the analysis and solution method is verified by the close agreement 

between the computed and experimental results in Figs. 4.45 to 4.50. 
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Fig. 4.50 Efficiency, frequency and V[JF characteristics of SMSEIG with constant 
excitation capacitances. 

C) Computed Results: Variable-Speed Operation 

Pertinent characteristics of the SMSEIG were also computed for variable-speed 

operation. Fig. 4.51 shows the computed values of Cl required for balanced operation of 

the SMSEIG at different operating speeds and the corresponding values of the phase 

voltage. For a given load impedance, CI (and also C2 and C3) decreases with increase in 
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the per-unit speed b. There is also a minimum value of b below which stable operation is 

not possible while maintaining perfect balance. The phase voltage (and hence the load 

voltage) increases with b, thereby imposing an upper limit to the permissible operating 

speed. 

Fig. 4.52 shows the computed performance of the SMSEIG as a function of speed when 

C1 = 32 µF, C2 = 16 µF and C3 = 32 µF, and a constant load impedance of 1.48 p. u. at 

unity power factor is being supplied. This combination of excitation capacitances and 

load impedance results in perfect phase balance at rated speed. The VUF characteristic is 

a nearly flat V-shaped curve, implying that the phase imbalance is very slight despite a 

large change in the rotor speed. Over a wide speed range, the efficiency of the SMSEIG 

remains practically constant at 0.78 p. u., while the per-unit frequency a varies almost 

linearly with speed. The load voltage VL decreases with reduction in rotor speed and it 

collapses at b=0.83 p. u. The above results indicate that, once the SMSEIG has been 

balanced for a given load impedance at rated speed, its performance at other speeds will 

also be satisfactory. 
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Fig. 4.51 Computed variations of CI and phase voltage of SMSEIG with rotor speed 

under perfect phase balance. 
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Fig. 4.52 Computed variations of VUF, per-unit frequency, efficiency and load 

voltage of SMSEIG with rotor speed. 

4.5.5 Summary 

Section 4.5 has presented the principle and analysis of a novel excitation scheme for a 

stand-alone three-phase IG that supplies single-phase loads, viz. the SMSEIG. Adopting 

the Smith connection with appropriate values of excitation capacitances, balanced 

operation of the three-phase machine can be achieved. The steady-state performance of 

the SMSEIG is analyzed using the method of symmetrical components in association 

with an optimization procedure. A method to determine the capacitances to give perfect 

phase balance is also presented. Experimental investigations have confirmed the 

feasibility of the proposed excitation scheme. Although only results of the resistive load 

case have been reported, the analysis set forth can readily be applied to different load 

power factor conditions. The SMSEIG has the advantages of low cost, high efficiency 

and large power output, and as such is an economical choice when developing 

autonomous single-phase power systems in remote regions. 
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Chapter 5 

VOLTAGE AND FREQUENCY CONTROL OF SEIG WITH 
SLIP-RING ROTOR (SESRIG) 

5.1 Introduction 

A major disadvantage of an SEIG is that the output voltage and frequency are speed and 

load dependent. An increase in the rotor speed, for example, will result in a proportionate 

increase in frequency, often accompanied by severe overvoltage and excessive current. 

Recently, there has been rigorous research on the voltage and frequency control of 

squirrel-cage type SEIGs [45]-[50], but relatively little research efforts have been devoted 

to the use of the slip-ring induction machine for generator applications. Although the slip- 

ring machine is more expensive and requires more maintenance, it permits rotor slip- 

power control when driven by a variable-speed turbine. The slip-ring machine may be 

operated as a double-output induction generator (DOIG) using the slip-energy recovery 

technique [101], [102]. In the case of a self-excited slip-ring induction generator 

(SESRIG), the system cost can be further reduced by the use of a simple rotor resistance 

controller [103], [104]. Since only a capacitor bank need to be connected to the stator 

terminals, the SESRIG provides a good quality ac source with little harmonic distortion to 

the stator load. Another advantageous feature of the SESRIG is that independent control 

of the voltage and frequency can be achieved easily. Even with a wide variation in speed, 

the generator frequency can be maintained reasonably constant by rotor resistance control, 

while the voltage can be controlled by varying the excitation capacitance. The rating of 

the rotor resistance controller is small compared with the generator rating, hence the cost 

saving is quite significant. 
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In this chapter, the voltage and frequency control of a three-phase SESRIG by variation 

of external rotor resistance will be investigated. Based on a normalized equivalent 

circuit model, the frequency and voltage control characteristics are deduced and 

experimental results are presented to verify the feasibility of the control method. 

Practical implementation of a closed-loop scheme that uses chopper-controlled rotor 

resistance will also be described. 

5.2 Performance Analysis of SESRIG 

Fig. 5.1 shows the circuit arrangement of a three-phase SESRIG which is supplying a 

balanced stator load. The excitation capacitance C is required for initiating voltage build- 

up and maintaining the output voltage. It is noticed that the electrical output power is 

dissipated in both the stator impedance ZL as well as the external rotor resistance RX, 

hence the machine may also be regarded as a DOIG if the power in RX is effectively 

utilized. 

Fig. 5.2 shows the per-phase equivalent circuit of the SESRIG, where the rotor resistance 

R2 is the sum of the rotor winding resistance and the external rotor resistance, both 

referred to the stator side. 

Slip-ring ZL induction machine Rx 

Fig. 5.1 Self-excited slip-ring induction generator (SESRIG). 
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V1 

a 

a al JX1 

Yt 

Fig. 5.2 Per-phase equivalent circuit of SESRIG. 

R2 

a-b 

jX2 

Ym Y2 

Various methods have been developed for solution of the SEIG equivalent circuit. 

Adopting the nodal admittance method [28], the following relationship may be 

established for successful voltage build-up: 

Yt+Ym+Y2 =0 (5.1) 

where 

Yt =1=I= Gt +jB, (5.2) 
Zt Zac + Zab 

a_1 
Ym 

Rý 
JX= Gm - JBm (5.3) 

m 

Y2- 
R2 

1 
-G2- jB2. (5.4) 

+jX1 
a-b 

Equating the real and imaginary parts in (5.1) to zero respectively, the following equations 

in real numbers are obtained: 

G, +Gm+G2=0 

Br-B. -B2 =O. 

(5.5) 

(5.6) 
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For a given rotor speed, load impedance and excitation capacitance, (5.5) is a nonlinear 

equation in the variable a only. Numerical solution of (5.5) using an iterative method 

[42] enables a to be determined, and (5.6) can subsequently be used to calculate X, n. 

With the aid of the magnetization curve (plot of E1 versus Xm), EI can be determined 

and the equivalent circuit is completely solved to yield the steady-state performance. 

Performance analysis and experiments for variable-speed operation were conducted on a 

3-phase, 4-pole, 50-Hz, 380-V, 4.5-A, 1.8-kW, star/star connected slip-ring induction 

machine whose per-unit equivalent circuit constants are: R1 = 0.0597, Xl = 0.118, R2 = 

0.0982, X2 = 0.118. The magnetization curve was represented by the following set of 

describing equations: 

I 1.4613 - 0.3327X, 
� , Xm < 1.7728 

1.5294 - 0.3 711 Xm, 

Ei= 3.0455 -1.1125X, � , 
185.1-83.37Xm, 

0, 

1.7728 
_< Xm < 2.045 

2.045: 5 Xm<2.213- 

2.213: 5 Xm<2.22 

2.22: 9 Xm 

(5.7) 

Fig. 5.3, Fig. 5.4 and Fig. 5.5 show, respectively, the stator voltage, stator current and 

frequency characteristics of the SESRIG for different values of external rotor resistance 

R. For convenience, all the machine parameters, except the excitation capacitance, are 

expressed in per unit. It is observed that increasing Rx has the effect of shifting the 

performance characteristics to the right-hand side of the speed axis. At a rotor speed of 

1.05 p. u. or above, the generator voltage or frequency can be maintained at rated value 

(i. e. 1.0 p. u. ) by varying R. This feature will be employed for voltage and frequency 

control of the SESRIG, to be discussed in the next section. 

To achieve higher system efficiency, it is important that the power dissipated in RX be 

fully utilized. If Rx takes the form of resistive heater elements, the slip power could 
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conveniently be used for storage heating which is a common load in an autonomous 

power system. The total power output of the SESRIG is then the sum of the stator load 

power and the power consumed by R. 
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Fig. 5.3 Stator voltage variation of SESRIG with rotor speed at different values of 

external rotor resistance. 
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Fig. 5.4 Stator current variation of SESRIG with rotor speed at different values of 

external rotor resistance. 
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Fig. 5.5 Frequency variation of SESRIG with rotor speed at different values of external 

rotor resistance. 

The operating speed range of the SESRIG depends upon the maximum value of RX 

available, the rated voltage of the rotor winding, as well as the mechanical constraints of 

the turbine-generator system. 

5.3 Frequency and Voltage Control 

In this section, the voltage and frequency control characteristics of the SESRIG will be 

deduced. It is assumed that both the excitation capacitance and stator load resistance 

remain constant, while Rx is varied with b in order to maintain a constant output 

frequency. For convenience, the conductance Ge = Gt + Gm and the slip parameter y=a- 

b are introduced. From (5.4) and (5.5), the following equation may be written: 

Ge + yRz 
R22 + YZ X22 = 0. (5.8) 

It should be noted that, for a specified value of a, Ge is a constant when the excitation 

capacitance and load resistance are both constant. 

Solving (5.8) for y, one obtains: 
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Rz_ R2 -1± 1-4Ge2X22 

Y a-b 2Ge 
(5.9) 

For practical induction generators, the term R2/(a - b) usually assumes a large negative 

value, hence the negative sign in the numerator of (5.9) should be chosen. Therefore, 

R2 
_ 

-1- 1-4Ge2X22 

Cl-b 2Ge (5.10) 

Eqn. (5.10) shows that the total rotor circuit resistance should be varied linearly with the 

per-unit speed b in order to control the frequency at a given value. 

Substituting (5.10) into (5.6), 

1- 
Bt- 

2Ge2X2 

Xm 1+ 1-4Ge2X22 
(5.11) 

Eqn. (5.11) implies that, for a given per-unit frequency a, excitation capacitance and load 

resistance, the magnetizing reactance X, n of the SESRIG, and hence the air gap voltage El, 

is independent of the rotor speed. It follows therefore that both the stator current and 

terminal voltage are constant. 

Fig. 5.6 shows the variation of external rotor resistance and the resultant output voltage 

when the per-unit frequency of the SESRIG is maintained at 1.0 p. u. and the stator load 

resistance is 2.36 p. u. Over a wide range of speed, the stator voltage remains constant at 

1.06 p. u. when C= 47 µF and 0.86 p. u. when C= 37 µF. 

The close agreement between the computed and experimental results in Fig. 5.3 to Fig. 

5.6 confirms the accuracy of the circuit model and solution method. Fig. 5.6, in addition, 

demonstrates the feasibility of voltage and frequency control of the SESRIG by varying 

the external rotor resistance. Either the frequency or the terminal voltage may be chosen 

as the feedback variable for voltage and frequency control. 
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Fig. 5.6 External rotor resistance RX for the SESRIG to operate at rated frequency and 
the corresponding variation of stator phase voltage. 

5.4 Control with Variable Stator Load 

When the stator load impedance is changed, it is also possible to maintain the output 

frequency constant by varying R, but the stator terminal voltage will differ from the 

nominal value. In order to control the stator terminal voltage at the desired value, it is 

necessary to control the excitation capacitance C simultaneously as Rx is varied. The 

analysis can now be formulated as the following problem: 

For a given value of load impedance ZL and per-unit speed b, determine the values of C 

and Rx that result in operation of the SESRIG at the specified voltage V* and per-unit 

frequency a. 

The above problem can be solved by using the following simple search algorithm, with C 

as the variable: 

1) Using the current value of search variable C, compute R2 using (5.10). 

2) Obtain the corresponding value of magnetizing reactance X, n 
from (5.11), and, 

hence, the air gap voltage EI from the magnetization curve. 

3) Compute the stator terminal voltage Vl. 
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4) Evaluate the voltage difference AV= I VI - Vl 
. 

5) Repeat the search until AV is less than a specified tolerance E, say 1. Oe-6. 

6) Compute the corresponding value of R2 and, hence, R. 

Any search algorithm based on function evaluations is suitable for the present problem, 

e. g., the classical Golden-Section search method [105]. 

Fig. 5.7 shows the computed values of C and Rx for the experimental SESRIG to 

operate at rated frequency and rated voltage, while supplying a unity-power-factor 

stator load. At a specific rotor speed, C has to be increased when the output power 

increases, while RX has to be reduced. There is thus a value of output power at which RX 

is reduced to zero, which corresponds to operation with the slip-rings short-circuited. 

At b=1.1 p. u., for example, this condition prevails when the machine is delivering an 

output power of 0.84 p. u. When the output power exceeds this value, it is not possible 

to maintain the frequency and voltage simultaneously at the specified values. It is also 

observed from Fig. 5.7 that a smaller excitation capacitance and a larger external rotor 

resistance are required for maintaining constant voltage and frequency at a higher rotor 

speed. 

Fig. 5.8 shows the computed variations of stator current and efficiency with output 

power when both the voltage and frequency of the SESRIG are maintained at rated 

values. At a higher rotor speed, more output power can be delivered without the rated 

stator current being exceeded. Because of the simultaneous control of C and R, the 

maximum efficiency of the SESRIG now occurs at a stator current of 0.91 p. u., 

irrespective of the rotor speed. The maximum efficiency is 0.79 p. u. when b=1.1 p. u. 

and it increases to 0.83 p. u. when b=1.4 p. u. The efficiency is good when the output 

power exceeds 0.4 p. u. 
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rated voltage and rated frequency. 

5.5 Practical Implementation 

5.5.1 Chopper-Controlled Rotor External Resistance 

It is desirable to have automatic control of the voltage and frequency when either the 

stator load impedance or the rotor speed changes. Instead of a variable three-phase rotor 

resistance, a chopper-controlled external resistance may be employed, as illustrated in Fig. 

5.9. Assuming that the diodes in the rotor bridge rectifier are ideal and the choke is 

... LI II I IIU U%#7 

Efficiency 

172 



lossless, the effective external resistance per phase RX in the rotor circuit, referred to the 

stator winding, is given by [ 106] : 

Rx=0.5a, 2 (1-a)Rd, 

where 

Rd, = dc resistance across the chopper; 

a= duty cycle of the chopper; 

a, = stator / rotor turns ratio. 

(5.12) 

A reduction in the duty cycle a of the chopper results in an increase in the effective rotor 

resistance of the SESRIG. A variable external resistance is thus presented to the rotor 

circuit. 

5.5.2 Closed-Loop Control 

Fig. 5.10 shows the block diagram for closed-loop control of voltage and frequency of the 

SESRIG. The stator terminal voltage is conveniently chosen as the feedback variable 

since any change in speed and stator load impedance will result in a corresponding change 

in the terminal voltage. Referring to Fig. 5.10, the stator terminal voltage signal vt, derived 

from the step-down isolation transformer and signal conditioning circuit, is compared 

with the reference signal vref that corresponds to the set-point voltage. The error signal ve 

is fed to a proportional-plus-integral (PI) controller that outputs a signal vo for controlling 

the duty cycle a of the chopper via pulse-width modulation (PWM), opto-isolation and 

gate drive circuits. 

In the prototype controller implemented, the chopper main switch was a power MOSFET 

controlled by an LM3524 PWM circuit and an IR2132 driver circuit. The total cost of the 

components was approximately US$50, or one-tenth that of the SESRIG system. 
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Fig. 5.9 SESRIG with chopper-controlled rotor external resistance. 
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Fig. 5.10 Feedback circuit for voltage control of SESRIG. 

5.5.3 Tuning of PI Controller 

Duty cycle 
control and « 

driver Chopper 
circuit gate 

circuit 

Proper tuning of the PI controller is required in order to give a satisfactory dynamic 

performance. For this purpose, the SESRIG may be approximated as a first-order system 

with the following transfer function: 

K. et' G(s) _ 
sz+1 

where 

K= system gain; 

T= time constant of the system; 

to = time delay of the system. 

(5.13) 
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The parameters of the transfer function may be determined using the open-loop step 

response method [107]. With the transfer function identified, the gain of the proportional 

controller Kp and the gain of the integral controller Kl can be determined using the 

Ziegler-Nichols open-loop tuning method [107]. For the prototype experimental system, 

the controller parameters were determined as follows: 

K= 1.15; r=0.8 s; to = 0.341 s; 

Kp =1.87; K1 = 1.13 

5.5.4 Dynamic Response 

To study the dynamic response of the SESRIG with closed-loop control, the machine was 

driven by a separately-excited dc motor that emulated an unregulated, variable-speed 

turbine while a resistive load was being supplied. It was found that, with an excitation 

capacitance of 45 µF per phase, the terminal voltage could be maintained at the rated 

value over a wide speed range, the maximum rotor speed attained being limited primarily 

by the rated current of the dc motor. Under these conditions, the frequency of the stator 

voltage was found to be 48.1 Hz. Using the above value of excitation capacitance, 

dynamic load tests were performed on the generator system, with the reference voltage 

signal set to give rated stator terminal voltage. For easy comparison, the stator voltage 

signal from the signal conditioning circuit and the PWM control signal were monitored 

using a digital storage oscilloscope during the dynamic tests. 

Fig. 5.11 and Fig. 5.12 show the dynamic response of the SESRIG subsequent to a speed 

change, the stator load resistance being kept constant at 4.29 p. u. The PI controller took 

effect as soon as the speed started to change, outputting a corresponding PWM control 

signal. The stator voltage was restored to the set-point value in approximately 2.7 s when 

the speed was increased from 1561 r/min to 1623 r/min (Fig. 5.11), and 3.2 s when the 
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speed was decreased from 1761 r/min to 1618 r/min (Fig. 5.12). The dynamic response 

characteristics displayed very little overshoot, showing that the controller had been 

properly designed, with minimal overshoot and small steady-state error. It should be noted 

that the inherent dynamic speed-torque characteristic of the motor drive contributed partly 

to the delay in the voltage restoration. 

Fig. 5.13 shows the dynamic response of the SESRIG system after the stator load 

resistance was switched from 4.29 p. u. to 3.73 p. u. The load change was accompanied by 

a speed drop from 1645 r/min to 1590 r/min as the speed of the simulated turbine was not 

regulated. Again the voltage was restored in about 2.7 s. 

The experimental dynamic responses of the SESRIG shown in Fig. 5.11 to Fig. 5.13 are 

comparable with other cage-type SEIG voltage and frequency control schemes that 

employ PI controllers [46], [47]. 

i 500 2 200'v f-0.005 1.005 fi STOP 

;... ..... ..... ..... J.. ..... ..... ..... 
Stator voltage signal 

..... _ .... 
Control signal 

Freq(t) not found Vac (I) not found 

Fig. 5.11 Dynamic response of SESRIG following a speed change from 1561 r/min to 
1623 r/min, RL = 4.29 p. u. (Time scale: 1s /div). 
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Fig. 5.12 Dynamic response of SESRIG following a speed change from 1761 r/min to 
1618 r/min, RL = 4.29 p. u. (Time scale: 1 s/div). 
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Fig. 5.13 Dynamic response of SESRIG following a change of stator load resistance 
from 4.29 p. u. to 3.73 p. u., accompanied by a speed change from 1645 r/min to 1590 

r/min. (Time scale: 1 s/div). 

Table 5.1 shows the steady-state frequency error when the SESRIG with the feedback 

controller was subjected to a rotor speed change. It is observed that, despite the change in 

rotor speed being considered, the maximum frequency deviation after the transient period 

is only 0.1 Hz for different stator load resistances. 

The above observations confirm that both the voltage and frequency can be controlled 

using the proposed method. 
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TABLE 5.1 
STEADY-STATE FREQUENCY ERROR OF SESRIG 

FOLLOWING A ROTOR SPEED CHANGE 

Stator load resistance 
RL 

. u. 

Rotor speed change 
(r/min 

Frequency error 

4.93 1530-1809 0.1 

4.29 1561-1623 0 

3.73 1588 -1680 0.1 

5.6 Summary 

This chapter has presented the voltage and frequency control for a self-excited slip-ring 

induction generator by varying the external rotor resistance. Steady-state performance and 

the control characteristics of the SESRIG have been obtained from an equivalent circuit 

analysis. It is shown that, with constant load impedance and excitation capacitance, both 

the frequency and the output voltage of the SESRIG can be maintained constant by rotor 

resistance control over a wide range of speed without exceeding the stator current limit. 

The analysis and feasibility of the control method have been verified by experiments on a 

1.8-kW slip-ring machine. Practical implementation of a low-cost, closed-loop rotor 

resistance controller for the SESRIG has also been described. A properly tuned PI 

controller enables good steady-state accuracy and satisfactory dynamic response to be 

obtained on the generator system. The control method can also be implemented for single- 

phase SEIG schemes, such as the MSC, SSC, and the SMSEIG discussed in Chapter 4. 

The proposed scheme may be used in a low-cost variable-speed wind energy system for 

providing good-quality electric power to remote regions. 
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Chapter 6 

PERMANENT-MAGNET SYNCHRONOUS GENERATORS FOR 
AUTONOMOUS POWER SYSTEMS 

6.1 Introduction 

As mentioned in Chapter 1, the permanent-magnet synchronous generator (PMSG) is 

also suitable for small-scale, isolated power system applications. Compared with the 

SEIG, the PMSG is more efficient and has no risk of loss of excitation, but it has the 

disadvantage that the output voltage cannot be regulated. A PMSG that possesses an 

inherent voltage compensation capability is desirable for maintaining a constant load 

voltage. In this chapter, it is demonstrated that the inverse saliency feature of a 

synchronous generator with an inset PM rotor can be exploited for improving the voltage 

regulation. Performance of the generator is computed based on the two-axis theory, and 

the conditions for achieving zero voltage regulation are deduced for the case of unity- 

power-factor loads as well as lagging-power-factor loads. The open-circuit voltage, 

direct-axis synchronous reactance and quadrature-axis synchronous reactance required in 

the analysis are accurately determined from the finite element method. A coupled circuit 

and field method will also be used for computing the generator load characteristic 

directly. Computed and experimental performance of a small prototype PMSG will be 

presented to validate the theoretical analysis. 

6.2 Principle and Construction of PMSG with Inset Rotor 

In an ac generator with a surface-magnet rotor, the direct-axis (d-axis) synchronous 

reactance Xd and the quadrature-axis (q-axis) synchronous reactance Xq are 

approximately equal. Fig. 6.1(a) shows the phasor diagram for unity-power-factor 

operation of a synchronous generator with a surface-magnet rotor, where E is the open- 
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circuit voltage, V is the terminal voltage, I is the armature current, R is the armature 

resistance and XS (= Xd = Xq) is the synchronous reactance. It is obvious that V is less than 

E when the generator is on load. Fig. 6.1(b) shows the phasor diagram of a synchronous 

generator that exhibits inverse saliency, i. e., a machine in which Xq is larger than Xd. It 

should be noted that the d-axis current Id and q-axis current Iq, and hence the d-axis 

synchronous reactance drop IdXd and q-axis synchronous reactance drop IgXq, depend 

upon the load impedance. In general, a larger IqXq drop causes the terminal voltage 

phasor V to fall further behind the open-circuit voltage phasor E. Under certain 

favourable conditions, the magnitude of V may be equal to, or even greater than, the 

magnitude of E. With a suitable ratio of Xq to Xd, it is possible to achieve zero voltage 

regulation at a particular load. 

Fig. 6.2 shows the cross-sectional view of a prototype PMSG with an inset rotor, the 

technical details of which being given in Appendix D. 3. Each permanent magnet is arch- 

shaped and is surface-mounted on the rotor yoke using a suitable bonding material, while 

soft-iron pole pieces occupy the interpolar regions. The edges of each rotor magnet are 

tapered in such a way that its inner pole arc is wider than the outer pole arc. This design 

results in a better air gap flux density distribution and hence a more sinusoidal output 

voltage waveform. The gap between each magnet and the adjacent soft-iron pole piece is 

filled with epoxy for better mechanical strength. The rotor magnets are made of 

neodymium-iron-boron (NdFeB), a high-energy PM material whose recoil permeability 

is very close to that of air. This property results in a suppression of the d-axis flux linkage 

and hence Xq is larger than Xd, i. e., the generator exhibits inverse saliency. The desired 

Xq/Xd ratio can be obtained by an appropriate choice of the interpolar air gap length, the 

pole arcs of the permanent magnets and the widths of the interpolar soft-iron pole pieces. 
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Fig. 6.1 Phasor diagram of PMSG when supplying a unity-power-factor load: (a) 

surface-magnet rotor type; (b) generator with inverse saliency. 
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Fig. 6.2 Construction of a four-pole prototype PMSG with inset rotor, a quarter cross- 

section being shown. 
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6.3 Analysis for Unity-Power-Factor Loads 

6.3.1 Analysis Using the Two-Axis Model 

Heating and lighting loads usually predominate in autonomous power systems. In this 

section, this mode of operation is analyzed for the prototype PMSG based on the two- 

axis model [71], [73]. Besides the prediction of the load characteristics, it is of interest 

to investigate the conditions at which the generator terminal voltage on load is equal to 

the open-circuit voltage, i. e., the generator operates with zero voltage regulation. Two 

cases will be considered: analysis with armature resistance neglected and analysis with 

armature resistance taken into consideration. 

A) Armature resistance neglected 

The armature resistance may be neglected when the machine rating is large. Referring to 

Fig. 6.1(b), the following equations can be written: 

Vcosö=E - I, Xd (6.1) 

V sin ,5= Iq XQ (6.2) 

Id =I sing (6.3) 

Iq =I cos 15 (6.4) 

I=v (6.5) 
RL 

I- 
VId2+Iq 

(6.6) 

where RL is the load resistance and 8 is the load angle (i. e. the angle between E and V). 

Solving (6.1) to (6.6), the terminal voltage V is given by 

V=E. 
RL 

2 
RL` + Xq2 (6.7) 

RL 
+XdXq 

The load characteristic can be computed from (6.5) and (6.7). 
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From (6.7), the load resistance RL at which zero voltage regulation occurs (i. e. V= K) is, 

_ RL 
Xq 

r(r-2) 

where r= inverse saliency ratio = Xq /Xd. 

(6.8) 

Eqn. (6.8) indicates that when the inverse saliency ratio r exceeds 2, there exists a value 

of RL that gives zero voltage regulation. 

It can also be shown that the load angle S at which zero voltage regulation occurs is 

given by 

tan 
ýýJ= 'Y2. 

B) Armature resistance considered 

(6.9) 

When the armature resistance cannot be neglected, a similar analysis can be carried out 

with reference to Fig. 6.1(b). It can be shown that the load angle is given by 

tan (5 =I 
Xg 

V+ IR 
(6.10) 

while the terminal voltage V and the open-circuit voltage E are related by the following 

equation: 

(V +IR)1+I2XdXg 
E (6.11) 

J('v +IR)2+IXq)2 

The load angle at which zero voltage regulation occurs is now given by 

tan 
S=R+ Xd tan 4 

(6.12) 
2 Xq-Rtan8 

Eqn. (6.12) may be solved numerically to give the load angle & This approach, however, 

requires suitable initial estimates of S to be selected in order to start the numerical 

procedure. 
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If the parameter k= tan((5/2) is introduced, (6.12) can be expanded to give the following 

cubic equation: 

Xgk3+Rk2+(2Xd-Xq). k+R=0. (6.13) 

Standard closed forms of solution for (6.13) are available, e. g. by using Cardan's method 

[108]. Only positive real values of k give feasible operating points. After k (and hence 8) 

is known, the load current at which zero voltage regulation occurs can be determined 

from (6.10). 

As an example, consider a PMSG with the following parameters at rated speed [71]: E= 

51.7 V, Xd = 14 0, X9 = 55 Q, and R=3.5 0. Solution of (6.12) with these numerical 

values substituted yields the following positive real roots: kf = 0.1374 and k2 = 0.5875. 

For root k1, the load angle and armature current are 15.6°e and 0.268 A, respectively. For 

root k2, the corresponding values are 60.9°e and 1.9 A, respectively. There are thus two 

different loads at which zero voltage regulation is obtained. In practice, however, 

operation with the larger load would give more output power and a higher efficiency. 

The solutions of (6.12) can also be determined graphically by the points of intersection 

between the functions fl and f2, where fl = tan((5/2) and f2 = (R + Xd tanS)/(Xq -R tan8), 

as illustrated in Fig. 6.3 for the PMSG in reference [71]. When R=3.5 SZ, fl and f2 

intersect at two points. It is apparent that the function f2 is displaced upward with an 

increase in R. causing the separation between the intersection points to decrease. When 

R=8Q, f2 is larger than fl for all values of & There is no point of intersection and 

hence zero voltage regulation cannot be achieved. At some critical value of R, the two 

roots are equal, implying that zero voltage regulation is obtained at only one value of 

load current. For the given machine, the critical value of R was found to be 6.34 Q 

using a simple search method. 
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Fig. 6.4 shows the load characteristics of the generator for different values of R. 
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Fig. 6.3 Graphical solution of (6.12) for determining the load angle 51 
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Fig. 6.4 Effect of armature resistance R on the load characteristics of PMSG with E_ 
51.7 V, Xd= 14 Q, Xq = 55 Q. 

6.3.2 Design Considerations 

For the electrical machine designer, it is of interest to determine, for a given speed, 

armature resistance R and d-axis synchronous reactance Xd, the value of q-axis 

synchronous reactance Xq (or r) such that zero voltage regulation occurs at a specific 

armature current. To simplify the derivation, (6.11) is re-written in per-unit form, the no- 
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load voltage E being taken as unity. Thus, with V=E=1.0 p. u., the following equation is 

obtained: 

a2+Ipu2Xd Xq 

a` +(IPuXq)Z 

where Ipu is the per-unit armature current and a=1+4,, R. 

From (6.14), the inverse saliency ratio r is given by 

a Y=- 
ß 

a. IpuXd+ Va2-/ß 

I 
pu 

Xd 

(6.14) 

(6.15) ' 

where ý8 =1- (Ipuxd)2. 

Fig. 6.5 shows the variation of r with speed to yield zero voltage regulation at rated 

current for a PMSG with R=0.295 S2 and Xd = 0.88 0 (at the nominal frequency of 50 

Hz). It is apparent that for low-speed operation, the generator has to be designed with a 

large inverse saliency ratio in order to achieve zero voltage regulation. 

For a PMSG with negligible armature resistance, (6.15) is reduced to the following: 

22 
Y=-= 

ý. 1- (I 
pu 

X 
d) 

(6.16) 

Since the per-unit value of Xd is independent of speed, the value of r to give zero voltage 

regulation is the same for all speeds. 

It is also of interest to study the effect of speed on the armature resistance to yield zero 

voltage regulation. Solving (6.14) for a, one obtains: 

2=1 
[(212 

Xd -1) ±1+ 4r2IP�Xd - 4rI pu X; 2 J. (6.17) 
2 Pu 

I 

The per-unit resistance is given by 

R=a-1. (6.18) 
Ipu 
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But 

R= 
Ractuai 

Zbwe. nb 
(6.19) 

where Radaal is the ohmic value of the armature resistance, Zb 
e.,, 

is the base impedance at 

nominal frequency and b is the ratio of actual speed to the base speed. 

The ohmic value of the armature resistance is thus 

Ractual a-1 
_" Zbase, 

n "b 

I pu 
(6.20) 

Eqn. (6.20) implies that, for zero voltage regulation at a specific current, a larger 

armature resistance can be tolerated when the generator operates at a higher speed. 
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Fig. 6.5 Inverse saliency ratio r to give zero voltage regulation in PMSG at different 

speeds. 

6.3.3 Computed Results 

For comparison purpose, the load current characteristics of the prototype PMSG with 

inset rotor and a surface-magnet PMSG with similar design were computed using the 

two-axis model. The machine parameters required were determined from FEM (Section 

6.5) and are listed in Table 6.1. For easy comparison, the voltages have been normalized 

to the corresponding no-load voltages. At the nominal speed of 1500 r/min, the full-load 
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voltage drops in the generators with inset PM rotor and surface-mounted PM rotor are 

4.4% and 8.4% respectively. At a speed of 6000 r/min, the generator with inset PM rotor 

exhibits a nearly level voltage characteristic, with zero voltage drop occurring at full 

load. The computed results have confirmed that the inset PM rotor construction is 

effective in improving the voltage regulation. 

Fig. 6.7 shows the computed voltage-current characteristics of the prototype generator 

when operating at different speeds. It is observed that the voltage compensation due to 

inverse saliency increases with speed, which is consistent with the derivation in Section 

6.3.2. Above 6000 r/min, the terminal voltage rises with increase of load, i. e. negative 

voltage regulation can be obtained. 
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- Inset (8000 rpm) Surface (6000 rpm) 

Fig. 6.6 Computed load characteristics of synchronous generators with inset and 

surface-mounted PM rotors. 
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Fig. 6.7 Computed load characteristics of prototype PMSG with inset rotor. 

6.3.4 Experimental Results 

Fig. 6.8 shows the experimental performance characteristics of the prototype PMSG 

when driven at the nominal speed (1500 r/min) and supplying a unity-power-factor load. 

The base voltage and current per phase are taken as 63.5 V and 13.3 A respectively. At 

rated current, the voltage drop of the generator is 5.9% and the power output is 1.0 p. u. 

(2.5 kW) at an efficiency of 86.2%. 

Fig. 6.9 shows the experimental and computed load characteristics of the PMSG when 

supplying a balanced unity-power-load and driven at different speeds. The characteristics 

are nearly level and parallel to each other, hence the machine is suitable for use as a 

constant-voltage generator. The close agreement between the computed and experimental 

results in Fig. 6.9 confirms the accuracy of the parameters obtained from the finite 

element method. 
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Fig. 6.8 Experimental performance characteristics of prototype PMSG at rated speed. 
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Fig. 6.9 Load characteristics of prototype PMSG at different speeds. 

6.3.5 Summary 

14 

The analysis and performance of a three-phase synchronous generator with inset 

permanent-magnet rotor have been presented in this section. Particular emphasis has been 

placed on the conditions for achieving zero voltage regulation when the generator is 

supplying an isolated resistive load. It is demonstrated that the voltage regulation is 

significantly improved as a result of the inverse saliency feature of the inset PM rotor 

construction. Experiments performed on a 2.5-kVA prototype generator have confirmed 

the accuracy of the theoretical analysis. 
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6.4 A Comprehensive Analysis 

In this section, a comprehensive analysis on the prototype PMSG with inset rotor will be 

presented. The analysis based on the two-axis model will be extended to include the 

general lagging-power-factor load case. The conditions for achieving zero voltage 

regulation, extremum points in the load characteristic, and maximum power output, will 

be deduced analytically and a saturated two-axis model will also be proposed. 

6.4.1 Basic Equations and Analysis 

Fig. 6.10 shows the phasor diagram of the PMSG when it is supplying a lagging- 

power-factor load. 

IaXQ 
E 

Iq 

IdXd 

R 

Fig. 6.10 Phasor diagram of PMSG when supplying a lagging-power-factor load. 

It is convenient to use the load impedance ZL as variable in the performance analysis 

for isolated operation. With reference to Fig. 6.10, the following equations may be 

written for generator operation with a lagging-power-factor load: 

V cosÖ=E-IdXd-IQR (6.21) 

V sin S= Iq Xq - Id R (6.22) 
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Id =I sin(S + ý) 

Iq I cos(S + o) 

V=I. ZL 

where ZL is the load impedance and 0 is the load power factor angle. 

Substituting (6.23), (6.24) and (6.25) into (6.22), 

ZLsin8=X, Cos((5 +0)-Rsin(8+ý) 

(6.23) 

(6.24) 

(6.25) 

(6.26) 

Expanding the right-hand-side of (6.26) and rearranging terms, the following equation 

may be deduced: 

tan gy = 
Xgcos0-Rsin0 

ZL+Xq sinn+R coso 
(6.27) 

For a given load impedance ZL and load impedance angle 0, the load angle 8 can be 

computed from (6.27). Substitution of the value of 5 into (6.21) gives the terminal voltage 

Vas follows: 

v= 
EZL 

(6.28) 
ZL cos8+R cos(S+0)+xd sin(8+0) 

The load current (or armature current) I is given by: 

i= 
E 

(6.29) 
ZL COSö+R COS(6+0) +Xd Sm(S+0) 

Eqns. (6.28) and (6.29) enable the load characteristics of the PMSG to be evaluated. 

It is also possible to express the terminal voltage V directly in terms of the load 

impedance ZL. Eliminating 6 from (6.27) and (6.28), the following equation is obtained: 

V=E. 
ZL ZL2+gl"ZL+92 

ZL2+g3'ZL+g4 
(6.30) 

192 



where 

g1 = 2(Xq sin0 +R cos 0), g2 = R2 + Xq2, g3 = 2Rcos + (Xd + Xq) sino, g4=R2 -ý XdXq. 

The load characteristic can therefore be computed using (6.25) and (6.30) without having 

to determine S first. 

Fig. 6.11 shows the computed load characteristics of the prototype PMSG at nominal 

speed (1500 r/min) and four times of nominal speed (6000 r/min). It is apparent that the 

voltage compensation effect of the PMSG is weaker when the load power factor is 

lagging. At the nominal speed (1500 r/min), the full-load voltage drop is 4.7% when the 

load power factor is unity and 15.7% when the load power factor is 0.8 lagging. At a 

speed of 6000 r/min, the generator exhibits a nearly level load characteristic when the 

load power factor is unity, with zero voltage drop occurring at full load. At 0.8 power 

factor lagging, the corresponding voltage drop is 11%. 

Fig. 6.12 shows the effect of inverse saliency ratio r on the load characteristics of the 

PMSG when supplying a unity-power-factor load. For this investigation, it is assumed 

that E, R and Xd of the generator are the same as the corresponding values of the 

prototype generator. It is observed that the optimum value of r is 4, at which a nearly 

level load characteristic is obtained. For values of r exceeding 4, the terminal voltage 

increases with load current over most of the practical current range. 

Fig. 6.13 shows the effect of armature resistance R on the load characteristics of the 

prototype PMSG when supplying a unity-power-factor load. A reduction in R results in a 

smaller voltage drop. A comparison between Fig. 6.12 and Fig. 6.13 shows that reducing 

R to a quarter of the original value has approximately the same effect as increasing r by 

four times. When R is smaller than one-quarter of the original value, negative voltage 

regulation can also be obtained. 
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Fig. 6.11 Computed load characteristics of PMSG with the following machine 
parameters at nominal speed: E= 66.44 V, R=0.295 S2, Xd = 0.88 Q, Xq = 2.23 Q. 
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Fig. 6.12 Effect of inverse saliency ratio r on the load characteristics of a PMSG 

operating at nominal speed and supplying a unity-power-factor load: E= 66.44 V, R= 
0.295 Q, Xd = 0.88 Q. 

194 

0 



68 
Phase voltage (V) 

60 

66 

64 

62 

02468 10 12 14 

Load current (A) 

-R"0.296 -R 0.1476 ....... R-0.0738 -R"0.0369 

Fig. 6.13 Effect of armature resistance R on the load characteristics of a PMSG 

operating at nominal speed and supplying a unity-power-factor load: E= 66.44 V, Xd = 
0.88 S2, Xq=2.23Q. 

6.4.2 Condition for Zero Voltage Regulation 

From Fig. 6.10, it can be shown that, for V=E, the load angle S is given by: 

R+Xd tan(8+q5) 
tan- = 

2 Xq -R tan(6 + o) 
(6.31) 

If we let k= tan(6/2), r= Xq/Xd, m1 = R/Xd, m2 = tan(q ), (6.31) can be expanded to give 

the following cubic equation in k: 

a3"k3+a2. k2+ai"k+ao=0 

where 

ao=m1+m2, a1=2-r-ml. m2, a2=mj+m2. (2r-1), anda3=r-m1. m2. 

(6.32) 

Eqn. (6.32) is similar in form to (6.13) and hence may also be solved using the Cardan's 

method [108]. Positive-real roots to (6.32), if they exist, indicate that zero voltage 

regulation may be achieved. The corresponding value of 45 and load current can 

subsequently be computed. 
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It is also possible to deduce the zero voltage regulation condition with the load impedance 

ZL as the variable. Putting V=E, (6.30) may be expanded to give the following cubic 

polynomial in ZL: 

b3"ZL3+b2"ZL2+b, "ZL+bo=4 

where 

bo = g42, b1 = 2g3"g4, b2 = g32 + 2g4-g2, 
and b3 =293-91- 

(6.33) 

As an illustration, (6.33) was solved for the prototype generator supplying a unity-power- 

factor load at 6000 r/min. Under this condition, E= 265.6 V, R=0.295 Q, Xd = 3.52 Q, 

Xq = 8.92 ü, coso = 1.0. Solution of (6.33) gave two positive roots, viz. 20.74 and 13.1. 

When ZL = 20.74 SZ, 8=22.98°e and I= 12.8 A; when ZL = 13.1 0,833.62°e and I= 

20.24 A. 

Fig. 6.14 shows the effect of rotor speed on the load angle that gives zero voltage 

regulation and the corresponding load current I when the prototype generator is supplying 

a unity-power-factor load. When the rotor speed is higher than the critical value of 5687 

r/min, there are two values of 8 (or 1) at which zero voltage regulation occurs. When the 

rotor speed is less than the critical value, no positive real roots to (6.32) or (6.33) exist and 

hence a zero voltage regulation condition does not exist. It should be noted that at the 

critical speed, (6.32) or (6.33) gives repeated positive roots. 

Fig. 6.15 shows the effect of inverse saliency ratio on the load angle that gives zero 

voltage regulation. At nominal speed (1500 r/min), zero voltage regulation is achieved 

when r exceeds 3.5. At four times nominal speed (6000 r/min), the critical value of r is 

reduced to 2.51. These results are consistent with the load characteristics shown in Fig. 

6.12. 
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Fig. 6.14 Effect of rotor speed on the load angle that gives zero voltage regulation when 
the prototype generator is supplying a unity-power-factor load and the corresponding 
load current. 
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Fig. 6.15 Effect of inverse saliency ratio r on the load angle that gives zero voltage 
regulation at nominal speed for a generator with R=0.29552, Xd = 0.885. 

6.4.3 Extremum Points in the Load Characteristic 

The results in Fig. 6.11 through Fig. 6.13 also suggest that extremum points might exist 

in the load characteristic of the PMSG. If ZL is used as a variable, this condition will 

occur when the derivative of V with respect of ZL is equal to zero, i. e.: 

dV 
=0" 

dZL 

Load current (A) 
50 

(6.34) 
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From (6.30) and (6.34), the following cubic equation in ZL may be deduced: 

C3 " 
ZL3 + C2 " 

ZL2 + C1 " 
ZL + Cp 

0 
(6.35) 

where 

CO = 2g2g4, cl = 3g1g4, C2 = g1g3 + 4g4 
- 

2g2, and C3 = 2g3 
- gl. 

Solution of (6.35) for the prototype generator operating at a speed of 6000 r/min and 

supplying a unity-power-factor load also gives two positive real roots, viz. 50.8 and 15.8. 

When ZL = 50.8 Q, 5=9.9°e, I= 5.2 A and V= 264.9 V; when ZL = 15.8 SZ, 5= 29.0°e, I 

= 16.9 A and V= 265.9 V. 

The results in Sections 6.4.2 and 6.4.3 suggest that the load characteristic of the prototype 

PMSG at 6000 r/min and supplying a unity-power-factor load comprises an initial 

concave-upward section and a subsequent concave-downward section. At light loads the 

armature resistance causes a drop in terminal voltage; but as the load current increases, the 

voltage compensation due to inverse saliency becomes dominant and it gradually offsets 

the armature resistance drop. This explains the presence of a `saddle' in the load 

characteristic. 

6.4.4 Power-Load Angle Relationship 

Since the terminal voltage V varies with load, the power-load angle characteristic of a 

PMSG under isolated operation is different from that under infinite busbar operation. For 

a three-phase generator supplying an isolated load, the total output power is given by: 

z 
P_ 

3V 
cos0. 

ZL 
(6.36) 

Substituting (6.26) and (6.28) into (6.36), the power-load angle equation for the PMSG 

can be deduced: 
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P=- 
3E 2 cos 0. [X9 cos (13 + 0) -R sin (S + c)] sin g 

6.37 
[X9cosS. cos(S+0)-Rsin0+Xdsin6. sin(15 +q5)]2 

) 

Fig. 6.16 shows the effect of inverse saliency ratio r on the power-load angle 

characteristics of a PMSG with E= 66.44 V, R=0.295 Q, Xd = 0.88 Q at nominal speed 

(1500 r/min) and supplying a unity-power-factor load. For a given value of r, a maximum 

power condition occurs at a load angle which is less than 90°e. The maximum power 

output from the generator increases with increase in r, but at light loads the value of 5 for 

a given output power is larger. 

The maximum power condition cannot be easily deduced from (6.37). To simplify the 

mathematical derivation, the power is first expressed in terms of ZL as follows: 

P=3E2cos0. 
ZL(ZL1+91"ZL+g1) 

(6.38) 

(ZL2 + g3' ZL + g4 )2 

For a given power factor angle 0, maximum power output occurs when 

dP 
=O. (6.39) 

dZL 

From (6.38) and (6.39), the following quartic polynomial equation is obtained: 

d4"ZL4+d3"ZL3+d2"ZL2+dl"ZL+do O (6.40) 

where do = -g2g4, 
d1= g2g3 - 

2g1g4, d2 = 3(g2- g4), 
d3 = 2g1 

- g3i and d4= I. 

Eqn. (6.40) may be solved in a straightforward manner using Ferrari's method [108]. 

Again only positive real roots yield feasible extremum points. 
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Fig. 6.16 Effect of inverse saliency ratio r on the power-load angle characteristics of a 
PMSG operating at nominal speed and supplying a unity-power-factor load: E= 66.44 V, 

R=0.295 Q, Xd = 0.88 Q. 

6.4.5 The Saturated Two-Axis Model 

A saturated two-axis model for the PMSG with inset rotor is now proposed based on 

the results obtained from a 2-D FEM (to be elaborated in Section 6.5). Fig. 6.24 shows 

the computed variations Xd and Xq as a function of the exciting currents Id and Iq. For 

representation in a computer program, the variations may be approximated by the 

following describing functions: 

_ 
0.86 + 0.003 Id 

, 
Id < 10 

_ 
641 X 

0.89, Id >_ 10 

X9=2.23, 
Iq<6 

(6.42) 
2.605 - 0.0625 Iq 

, 
Iq >_ 6 

200 



The analysis using the saturated two-axis model can be summarized as follows: 

1) Specify initial values of Xd and Xq. For convenience, the unsaturated values could 

be used. 

2) For a given load impedance ZL, load power factor angle 0 and rotor speed, 

evaluate the terminal voltage V using the method presented in Section 6.4.1. 

3) Compute the d-axis current Id and q-axis current I9, using (6.23) and (6.24). 

4) Compute the new values of Xd and Xq from (6.41) and (6.42), respectively. 

5) Repeat steps 2) to 4) until the difference between the values of V in successive 

iterations is less than a specified value, say 0.000001. 

6) Compute the load voltage and generator performance using the final value of 

terminal voltage and the corresponding load angle. 

Fig. 6.17 shows the computed and experimental load characteristics of the prototype 

PMSG when driven at the nominal speed (1500 r/min). At heavy loads, the voltage 

compensation effect due to inverse saliency is partly offset by saturation in the q-axis 

magnetic circuit. For unity-power-factor loads, saturation effect is noticeable for load 

currents exceeding 6 A. It is observed that the analysis based on the saturated two-axis 

model gives a more accurate prediction of the load characteristic compared with the two- 

axis model with fixed parameters, especially under heavy load conditions. For loads at 

0.8 power factor lagging, however, both methods give practically the same results. This is 

due to the fact that Iq is smaller and hence the effect of q-axis saturation is less 

pronounced. 

The good correlation between the computed and experimental results confirms the 

validity of the analysis based on the saturated two-axis model. 
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Fig. 6.17 Load characteristics of prototype PMSG at nominal speed (Calc. F- 

calculated using fixed values of Xd and Xq; Calc. S- calculated using saturated two- 

axis model). 

6.4.6 Sununary 

This section has presented a comprehensive analysis of a three-phase PMSG with inset 

rotor. Relevant equations for lagging-power-factor loads are developed based on the two- 

axis model. The conditions for achieving zero voltage regulation, extremum points on the 

load characteristic, and maximum power output, have been deduced analytically. It is 

shown that the saturated two-axis model gives a more accurate prediction of the load 

characteristic at heavy loads. 

6.5 Computation of Synchronous Reactances 

6.5.1 Analysis Based on FEM 

The synchronous reactances Xd and Xq may be computed from an analysis based on a 

two-dimensional finite element method (2D FEM). To compute the magnetic field 

distribution, eight-noded, quadrilateral elements [95] are used in the mesh formation and 

FEM computations in order to reduce the number of elements required while maintaining 

a reasonably high computational accuracy. Advantage is taken of the symmetry in the 
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machine configuration so that the solution region need only cover one-quarter of the 

cross-section of the prototype generator (Fig. 6.2). The FEM mesh used consists of 108 

elements and 429 nodes. 

The rotor permanent magnet is modelled by an equivalent current density JJ that also 

accounts for the curvature effects of the magnets. Magnetic vector potential A is taken as 

the variable in the FEM formulation. 

Magnetic hysteresis in the iron cores is neglected, i. e. the nominal magnetization curve is 

used for modelling magnetic saturation. Fig. 6.18 shows the magnetization curve for the 

ferromagnetic material of the prototype generator. 
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Fig. 6.18 Magnetization curve of prototype PMSG. 

With reference to Fig. 6.2, the basic field equation and boundary conditions of the PMSG 

may be written as follows [95]: 

äX, ý ax+ýý v=-� 
(6.43) 

1A1"_ 
Jc (6.44) 

p1 an /2 an 
L+ 

AIAD=A1, (6.45) 

ARAB= - AADC (6.46) 
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where 

ABCD = boundary surface defined in Fig. 6.2; 

J= externally impressed current density; 

Jc = equivalent surface current density of PM material; 

L= surface of permanent magnet along the direction of the magnetization; 

L= edge adjacent to L and outside the permanent magnet material; 

L- = edge adjacent to L and inside the permanent magnet material; 

,u= permeability; 

A= permeability of permanent-magnet material; 

, u2 = permeability of air. 

Depending upon the region being considered, (6.43) need to be slightly modified. In 

sourceless regions, as in the case of the stator core and the rotor yoke, J should be equated to 

zero. 

The energy functional is 

B 

E(A) =J 
JB 

. 
dB - A. J dy - 

JJ. A. dl' (6.47) 
S2 0L 

where B is the flux density and d1' is an infinitesimal segment along edge L. 

After discretization and functional minimization as discussed in Appendix C, the 

following matrix equation is obtained: 

[K]. [A] = [R] 

where 

[K] = nxn coefficient (stiffness) matrix; 

[A] = nx 1 column vector of nodal magnetic vector potentials; 

[R] = nx 1 right-hand side column vector containing known terms; 

(6.48) 
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and n= number of nodes. 

After solving (6.48) to give A, the flux density at any point (x, y) may be computed as 

follows: 

y 

B- Bx +2 

aN, 
... 

aN8 A, 
BxÖ %7 a77 

By a Ni ... 
)N8 

aý a A8 

where 

[J]-1 = inverse of Jacobian matrix; 

N1,... N8 = shape functions; 

ý, 77 = local coordinates. 

6.5.2 Computation of Xd and Xq 

(6.49) 

(6.50) 

For computing Xd or Xq, the usual definition of air gap magnetizing reactance is used, 

but the effect of rotor magnets on the flux produced by the exciting current in each axis 

has to be accounted for. 

To compute Xd, d-axis of the rotor is aligned with the resultant magnetomotive force 

(m. m. f. ) axis of the armature winding and a specified balanced three-phase current is 

allowed to flow. With the surface current density Jc set to that corresponding to the 

remanent flux density, the magnetic field distribution is computed and the values of 

permeability in the elements are determined. Using these values of magnetic 

permeability, the magnetic field distribution is re-calculated with J, set to zero and the 

resultant flux linkage is evaluated. Xd is then determined from the ratio of the induced 
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e. m. f. to the armature current, plus the leakage reactance of the end winding X. The 

value of Xd computed in this manner has thus included the effect of the rotor magnets. 

The flux linkage in the ith coil in the d-axis winding is 

Ti=w. 4r 

where 

(6.51) 

q5ß= f B. ds=fVxA. ds= fA. dl=(A; -A; '). lfe" (6.52) 

Si 

The induced e. m. f in the d-axis is 

P8 

Ed= 4.44 f (7 C. (6.53) 

Xd is then computed as the ratio of the induced e. m. f. in the winding to the corresponding 

current, i. e. 

_Ed 
+Xe 

Id 

where 

AZ, AI' = equivalent vector potential at the coil sides of the ith coil; 

c= number of parallel paths; 

B= flux density; 

Ed = induced e. m. f. in the d-axis winding; 

f= frequency of induced e. m. f.; 

g= number of slots per pole per phase; 

Id = d-axis armature current; 

1= boundary of plane S1; 

ife = effective length of the iron core; 

p= number of poles; 

(6.54) 
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Si = area formed by the coil sides of the ith coil; 

w= turns per coil; 

Xe = leakage reactance of the end winding; 

yi = flux linkage in the ith coil; 

= flux in the ith coil. 

Xq can be computed in a similar manner, but the q-axis of the rotor should be aligned 

with the resultant m. m. f. axis of the armature winding. 

6.5.3 Computed Results 

The above algorithms were implemented in a FORTRAN program with reference to the 

prototype generator shown in Fig. 6.2. Computations were also performed on an identical 

generator with a surface-magnet rotor (i. e. one without the interpolar soft-iron pole 

pieces). The per-phase machine parameters, computed for an exciting current of 6 A, are 

listed in Table 6.1. 

TABLE 6.1 
PER-PHASE PARAMETERS OF PROTOTYPE GENERATOR 

Xd and Xq COMPUTED AT A CURRENT OF 6A 

Rotor type Xd P) Xq (S2) E (V) 

Inset PM rotor 0.88 2.23 66.44 

Surface-magnet rotor 0.73 0.74 67.67 

Fig. 6.19 shows the flux plot of the prototype PMSG on no load. Since there is no 

armature current, all the flux is contributed by the rotor magnets. It is observed that the 

presence of soft-iron pole pieces in the interpolar axis results in an additional leakage 

rotor flux, hence the no-load voltage is slightly less than that of an equivalent generator 

with surface-magnet rotor. 
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Fig. 6.20 shows the flux density distribution due to the d-axis current alone. Most of the 

d-axis flux traverses a large effective air gap, either through the radial length of the 

magnet or through the stator slots, hence the d-axis flux linkage is naturally suppressed. 

On the other hand, the q-axis flux plot in Fig. 6.21 shows that a large portion of the q- 

axis flux traverses the low-reluctance path provided by the soft-iron pole pieces. The 

origin of inverse saliency in the inset rotor is thus clearly demonstrated. In Fig. 6.21, 

regions of high flux density can be identified, implying that local magnetic saturation is 

prominent in the q-axis. 

Fig. 6.22 and Fig. 6.23 show respectively the composite flux plot (i. e. flux plot with 

combined rotor and stator excitation) of the PMSG when excited with d-axis and q-axis 

current. It is observed that the q-axis current gives rise to a more irregular flux density 

distribution and the flux density distribution is no-longer symmetrical as in the case of d- 

axis excitation. 

By repeating the FEM computations presented in Section 6.5.2 over the practical range 

of stator exciting current, the variation of Xd with Id, as well as the variation of Xq with 

I,,, can be obtained. 

The computed values of Xd and Xq for the prototype generator are shown, respectively, by 

the triangular and circular symbols in Fig. 6.24. It is seen that the inset rotor construction 

results in a remarkable increase in Xq. The inverse saliency ratio r of the generator is 

approximately equal to 2.53 under unsaturated conditions. Due to magnetic saturation in 

the q-axis, Xq decreases as Iq increases. Xd, on the other hand, increases slightly with Id 

due to the demagnetizing effect of Id on the rotor magnet. The computed results indicate 

that the saturation characteristic of the PMSG with inset rotor is different from that of an 

interior-type PM generator [71]. 
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Fig. 6.19 Flux density distribution due to rotor permanent magnet alone. 

Fig. 6.20 Flux density distribution due to d-axis current alone. 
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Fig. 6.21 Flux density distribution due to q-axis current alone. 

Fig. 6.22 

current. 

Composite flux plot of prototype generator when excited by d-axis armature 
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Fig. 6.23 Composite flux plot of prototype generator when excited by q-axis current. 
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Fig. 6.24 Variations of Xd and Xq with stator exciting current computed from FEM, and 
the corresponding piecewise-linearized approximations. 
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6.5.4 Summary 

A method for computing the d-axis and q-axis synchronous reactances for the PMSG has 

been presented. Magnetic saturation, including the effect of rotor magnets, has been 

included in the analysis. The origin of inverse saliency is clearly demonstrated from the 

flux plots. The results are useful for performance evaluation of the PMSG, especially in 

the development of a saturated two-axis model. 

6.6 Analysis Using Time-Stepping 2-D FEM 

6.6.1 Machine Model and Assumptions 

In previous sections, the PMSG with inset rotor has been analyzed using the two-axis 

model, the values of Xd and Xq required being determined from a field analysis based on 

the FEM. This approach is computationally efficient since only one-quarter of the 

machine cross section (for the four-pole prototype generator) need to be modeled and 

the flux density distribution need only be computed for a single position of the rotor. It 

should be pointed out, however, that the two-axis model is essentially an approximate 

method and mixed magnetic saturation conditions that exist in the actual machine 

cannot be accounted for. 

In Chapter 3, a time-stepping, 2-D FEM has been applied for the analysis of a grid- 

connected IG with the Steinmetz connection. In this section, this approach will be 

pursued again for the performance analysis of a PMSG with an inset rotor. 

The solution region has to be extended to the complete cross-section of the PM generator 

since the axisymmetric boundary condition is no longer valid. As shown in Fig. 6.25, the 

field solution region Q is bounded by the outer periphery Ti of the stator core and the 

inner periphery 72 of the rotor yoke (which coincides with the outer surface of the rotor 

shaft). It is assumed that all the flux is confined within the region Q. 
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As in Chapter 3, first-order triangular elements and linear interpolation functions are used, 

but only balanced operation at constant speed will be considered. 
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Fig. 6.25 Cross-sectional view of prototype PMSG with inset rotor construction. 

6.6.2 Coupled Circuit and Field Analysis 

The field equations given in Section 6.5 are also applicable for the present analysis, except 

for the boundaries with zero magnetic potential. With reference to Fig. 6.25, the boundary 

condition is given by: 

AITI=AIT2-0. (6.55) 

The matrix equation (6.48) in the field domain has to be coupled to the external circuit. 

For a PMSG supplying an isolated load, the external circuit comprises the armature 

resistance R, the armature end-winding leakage inductance Lei the load resistance RL, 

and the load inductance LL. Fig. 6.26 shows the circuit connection of a star-connected 

PMSG which supplies a balanced, three-wire, star-connected load. Six circuit variables 

are introduced, namely the resultant generated e. m. f. s EA, EB, and Ec and the phase 

currents IA, IB and Ic 
. 

It should be noted that EA, EB, and Ec can each be expressed in 

213 

Soft-iron 

pole piece 



terms of the nodal magnetic potentials, hence it remains to establish the equations for 

the phase currents. 

Generator IA 

VA 
R, Le 

'\, EA 
EV 

B 
R, L 

VCý1 R, e 

C 

Load 

VLA 

RL, LL 

IB 

Fig. 6.26 PMSG supplying an isolated, balanced three-wire star-connected load. 

For the mesh containing phase A and phase B in Fig. 6.26, 

EA - EB = R(IA + Lt 
d'A 

- R1IB _ Lt 
dIB 

(6.56) 
dt dt 

where Rt =R+ RL, and Lt = Le + LL. 

Rewriting (6.56) in finite difference form: 

EA - EB = RJA +L, 
(I 

A-I, a) _ R(IB _ Lt 
(I 

B- 
IB) 

(6.57) 
At At 

where TA= value of phase-A current in the previous time step; 

FB= value of phase-B current in the previous time step. 

Eqn. (6.57) can further be expressed in the following form: 

m, IA - m, IB - EA + EB = m2IA - m2IB (6.58) 

where m1= Rt + Li/At; m2 = Ltl At. 

In a similar manner, for the mesh containing phase B and phase C. 

m, IB - m, Ic - EB + EC = m2IB - m2Iý.. (6.59) 

RL, LL 

VL 

Lam/ 
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For a three-wire system, the line currents must satisfy the following constraint: 

IA + IB + IC =0. (6.60) 

The phase-A voltage of the generator armature winding is 

VA = EA 
- 

RIA 
- M2 VA - IA) (6.61) 

and the phase-A load voltage is given by 

VLA =RLIA +m3(IA 
-II) 

(6.62 

where m3 = LL/At. 

From (6.48), (6.58)-(6.60) and the three equations for the generated e. m. f. s, the following 

matrix equation may be established: 

[K']. [A] = [Rý] 

where 

[K'] n'xn' modified stiffness matrix; 

[A'] n'x 1 column vector containing all the field and circuit variables; 

[R'] n'x 1 column vector containing known terms; 

andn'=n+6. 

(6.63) 

Solution of (6.63) enables the magnetic vector potentials A, flux density, stator e. m. f. s, 

stator currents, and the terminal voltage to be determined. It should be noted that the 

synchronous reactances need not be evaluated throughout the solution procedure. 

Fig. 6.27 shows the mesh formation for the proposed analysis using time-stepping 2-D 

FEM. There are 2816 nodes and 5384 elements. The number of nodes with zero magnetic 

vector potential (i. e. nodes that fall on boundaries Tl and 72) total 248, hence the total 

number of field variables are 2816 - 248 = 2568. Since there are six additional circuit 
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variables, the total number of variables in the coupled circuit and field formulation are 

2568 +6= 2574. 

Fig. 6.27 Mesh formation for 2-D FEM analysis of PMSG with inset rotor. 

6.6.3 Magnetic Saturation Consideration 

In order to account for the effect of saturation, a magnetic nonlinearity sub-program has 

been incorporated in the FEM solver. For this purpose, the magnetization curve shown in 

Fig. 6.18 is used. Fig. 6.28 shows the flowchart of the proposed time-stepping 2-D FEM 

coupled with the external circuit equations. With the magnetic permeability u of each 

element initialized to the appropriate value (for regions containing ferromagnetic material, 

the unsaturated value of 1u is used), the stiffness matrix [K] is formed and modified 

according to the boundary conditions and the external circuit configuration. For each time 

step, the modified system of equations is solved and the flux densities in all the elements 
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are ' evaluated from the nodal vector potentials. Using the magnetization curve of the 

magnetic material, the corresponding values of permeability u (and hence the reluctivity 

v) are updated. The computations are repeated until the iteration error 0ý2 or the 

reluctivity error 0 u2 is within the specified values, or the specified number of iterations 

has been reached. The iteration error 02 is defined as follows: 

n 
Q2= LL [Aº(k+l) 

_A: 
(k)12 

1 

l=1 

where 

(6.64) 

Al' (k+1) = value of ith variable of the modified column vector [A'] in the (k + 1)th iteration; 

A; ' (k) = value of ith variable of the modified column vector [A] in the kth iteration. 

The reluctivity error A u2 is defined as: 

ne 

0V 2=L [vi, 
new - Ui k)12 (6.65) 

i=1 

where 

vi (k) = value of reluctivity of the ith element at the beginning of the kth iteration; 

Rnew(k) = value of reluctivity at the end of the kth iteration; 

ne = number of elements. 

A relaxation factor may be applied for updating the values of v for the next iteration: 

(k+l) (k) (k) (k)) (6.66) Ui = Ul ý- ý. ýUi. 
new - 

Ui 

where 

V, (k+l) value of reluctivity at the beginning of the (k +1)th iteration; 

W relaxation factor. 
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Start 

Read parameters and data set 

I Initialize values of p for elements 

Time-stepping FEM computations for 
different rotor positions 

Iterations for magnetic nonlinearity 

Form modified stiffness matrix [K'] and right- 
hand-side vector [R'] 

Solve simultaneous algebraic equations to 
determine values of A and circuit variables 

Compute flux density B of each element and I 

corresponding values of g and v (= 1fµ ) 

Compute interation errors A4` and Att I 

Iteration errors less than specified 
No 

1 values or no. of iterations reached? 

No 

Yes 

Compute currents, voltages, etc. 

Number of steps reached? 

Yes 

Print results 

Stop 

Fig. 6.28 Flowchart of time-stepping 2-D FEM for performance analysis of PMSG 

considering magnetic saturation. 
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6.6.4 Computed Results 

The above algorithms were implemented in a FORTRAN program that incorporates the 

FEM computations, pre-processing and post-processing routines. In the solver, each time 

step was equivalent to one mechanical degree. For each load impedance or operating 

point, the FEM computations were performed over 1440 steps (i. e. four complete 

revolutions of the rotor) to allow the system quantities to reach the steady-state. For the 

magnetic nonlinearity sub-program, the maximum number of iterations was specified to 

be five. This choice was a compromise between the desired computational accuracy and 

the computation time required for a complete solution. An acceleration factor of 0.2 was 

found to give satisfactory convergence. The solution procedure was time-consuming due 

to the large number of variables and also the large number of steps involved. On a 

Pentium 4 personal computer with a clock speed of 1.6 GHz, the computation time for one 

operating point was approximately 30 h. 

Fig. 6.29 shows the computed flux plot of the PMSG under no-load conditions. Since 

there is no armature current, all the flux is contributed by the rotor magnets. A small rotor 

leakage flux can be observed to flow across the soft-iron pole pieces, hence the no-load 

voltage is slightly less than that of an equivalent generator with surface-magnet rotor (i. e. 

one in which the interpolar pole pieces are removed. 

Fig. 6.30 shows the computed flux plot of the PMSG when it is supplying a pure resistive 

load of 4.71 S2 per phase. Due to the presence of soft-iron pole pieces, there is 

considerable magnetic flux in the q-axis and magnetic saturation can be significant in the 

q-axis region, e. g. the base of each soft-iron pole piece and the stator teeth adjacent to it. 

This condition cannot be easily analyzed by using the two-axis model and hence the 

proposed time-stepping 2-D FEM that includes effect of magnetic saturation is justified. 
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Fig. 6.29 Flux plot of PMSG with inset rotor under no-load condition. 

Fig. 6.30 Flux plot of PMSG with inset rotor when supplying a resistive load of 4.71 

S2 per phase. 
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Fig. 6.31 shows the variation of the radial component Bn of the no-load air gap flux 

density in the PMSG, computed at the mean radius of the air gap. Due to the stator slot 

openings, undulations are produced in the B, waveform. It is also observed that Bn is 

practically zero in the q-axis region, which agrees with the computed flux plot shown in 

Fig. 6.29. 

Fig. 6.32 and Fig. 6.33 show the variations in Bn when the PMSG is supplying a unity- 

power-factor load of 9.1 Q and 4.71 S2 per phase (which correspond to load currents of 7.1 

A and 13.2 A), respectively. It is observed that the q-axis flux density increases almost 

linearly with the load current, with a consequent increase in the effective flux per pole. 

Since the flux in the q-axis depends upon the armature current, the flux density 

compensation effect increases with the load current. For a well designed generator, it is 

possible for the voltage compensation to partially offset the voltage drop due to the 

armature leakage impedance and d-axis armature reaction reactance. A reduced voltage 

regulation, or even zero voltage regulation, can therefore be achieved. 

Fig. 6.34 shows the computed phase and line voltage waveforms of the PMSG on no load, 

while Fig. 6.35 shows the computed line voltage and line current when the PMSG is 

supplying full-load current at unity power factor. Since a resistive load is being supplied, 

the phase voltage VPH is in phase with the phase (line) current ICE and hence the line 

voltage VLJNE leads ILmE by 30°e. Despite the use of the inset rotor construction, very 

small harmonic distortion is observed from the waveforms. It is seen that the slot 

harmonics have been suppressed to a large extent as a result of the distribution of 

armature winding and the use of short-pitched coils. 
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Fig. 6.31 Computed variation of B, 
1 when the PMSG is on no load. 
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Fig. 6.32 Computed variation of Bn when the PMSG is supplying a load resistance of 
9.1 Q per phase. 
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Fig. 6.33 Computed variation of B, when the PMSG is supplying a load resistance of 
4.71 0 per phase. 
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Fig. 6.34 Computed line-voltage (VLJNE) and phase-voltage (VpH) of the PMSG at no 
load. 
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Fig. 6.35 Computed line-voltage (VLINE) and line current (ILINE) of the PMSG when 

supplying full-load current at unity power factor. 
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6.6.5 Experimental Verification 

A load test was performed on the prototype PMSG in order to validate the results 

computed using the coupled circuit time-stepping 2-D FEM. Fig. 6.36 shows the 

computed and experimental load characteristics obtained. The computed characteristic 

is nearly level when the PMSG is supplying a unity-power-factor load and the full load 

voltage drop is only 6.4%. When the load power factor is 0.8 lagging, the voltage drop 

at full load increases to 12.7%. The voltage compensation capability of the PMSG with 

inset rotor is therefore better for unity-power-factor loads. Very good agreement 

between the computed and experimental characteristics has been obtained, confirming 

the accuracy of the proposed coupled circuit and field method. 
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PF-1.0 (Expt'1) 

468 10 

Load current (A) 

PF-0.8 (FEM) 

0 PF-0.8 (Expt'I) 

12 14 

Fig. 6.36 Computed and experimental load characteristics of PMSG when supplying 

unity-power-factor and 0.8 lagging-power-factor loads at nominal speed. 

Fig. 6.37 shows the no-load line voltage (VLJNE) and phase voltage (VpH) waveforms of 

the prototype generator at rated speed. Fig. 6.38 shows the line voltage (VLJ, E) and line 

current (ICE) of the prototype generator at full load. The experimental waveforms are 

very similar to the computed waveforms shown in Fig. 6.34 and Fig. 6.35. It is 

interesting to note that there is less harmonic distortion in the experimental waveforms 
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at full load, and the load current is practically sinusoidal. A harmonic analysis on the 

waveforms in Fig. 6.38 revealed that the total harmonic distortion (THD) in the line 

voltage was 2.1 % only. The fifth and the seventh harmonics in the full-load line voltage 

waveform were dominant and were equal to 0.9% and 1.5%, respectively. The 

harmonic content of the PMSG is thus acceptable for practical applications. 
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Fig. 6.37 Waveforms of the phase voltage (VpH) and line voltage (VLINE) of the PMSG 

on no load. (Voltage scale: 50 V/div; time scale: 5 ms/div) 
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Fig. 6.38 Line voltage (VLINE) and line current (ILINE) waveforms of PMSG at full load. 

(Voltage scale: 50 V/div; current scale: 10 A /div; time scale: 5 ms/div) 
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6.6.6 Summary 

A coupled circuit and field approach has been attempted for the performance analysis 

of a three-phase PMSG with inset rotor and a two-dimensional finite element method is 

used for the field solution. The solver developed has also accounted for the effect of 

saturation on the air gap flux density and the load characteristics. The experimental 

voltage and current waveforms are similar to those computed from the 2-D FEM, while 

good agreement between the computed and experimental load characteristics has been 

obtained. These observations confirm the validity of the FEM model and the accuracy 

of the solution procedure. 
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Chapter 7 

CONCLUSIONS 

7.1 Accomplishments of the Thesis 

This thesis has explored the feasibility of using the induction generator and the 

permanent-magnet synchronous generator for distributed and autonomous power 

system applications. 

The study of the IG has focused on single-phase operation of a three-phase machine. 

For the grid-connected IG, a systematic analysis based on the method of symmetrical 

components enables the steady-state performance of various phase-balancing schemes 

to be investigated. The analysis is subsequently extended to a three-phase IG with the 

Smith connection (SMIG) and Smith's Mode C circuit. The feasibility of 

microcontroller-based multi-mode operation of the SMIG is also studied. 

A coupled circuit and field approach for analyzing a single-phase grid-connected IG 

with the Steinmetz connection is proposed. The thesis has presented the general 

methodology for coupling the asymmetrical stator circuit equations to the field 

equations based on a time-stepping 2-D FEM. A detailed rotor circuit model is also 

introduced in order to account for the non-uniform current distribution in the rotor 

winding. The results computed from the FEM and the symmetrical component method, 

are compared with the experimental data. 

Another major accomplishment of the thesis is the development and analysis of 

practical SEIG schemes for asymmetrically connected and single-phase loads. By using 

the method of symmetrical components and an effective search algorithm, the steady- 

state performance of various SEIG schemes that employ three-phase machines can be 
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analyzed. For the special case of single-phase loads, the modified Steinmetz connection 

(MSC) and simplified Steinmetz connection (SSC) have been proposed and 

investigated. For improving the voltage regulation, an SRSEIG scheme that possesses 

automatic voltage-regulating as well as good phase-balancing capability is developed. 

By an appropriate choice of the shunt and series capacitances, a nearly level load 

characteristic of the SRSEIG may be obtained. 

The capacitor sizing problem of an SEIG is also addressed with reference to the 

Steinmetz connection. The results throw light on the proper selection of excitation 

capacitance for securing self-excitation in other SEIG schemes. 

The SMSEIG, namely an SEIG with the Smith connection, is proposed and investigated 

quantitatively for the first time. This scheme is particularly suitable for supplying 

single-phase unity-power-factor loads. It is demonstrated that the voltage unbalance 

factor of the SMSEIG is not sensitive to change in rotor speed. This suggests that, once 

the SMSEIG has been balanced at a particular speed, its performance over a wide speed 

range will remain satisfactory. The same argument may be extended to other SEIG 

schemes. 

The use of a self-excited slip-ring induction generator (SESRIG) permits voltage and 

frequency control over a wide speed range and hence the excitation scheme is suitable 

for use with a variable-speed wind energy conversion system. The voltage and 

frequency control characteristics are deduced and practical implementation of a closed- 

loop control scheme using a rotor resistance chopper circuit is described. With a 

properly tuned PI controller, satisfactory dynamic response of the SESRIG to speed and 

load changes has been obtained. Balanced stator loads have been considered, but the 

analysis and control can be extended to other single-phase SEIG systems. 
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To address the recent developments in small-scale autonomous power systems, a 

prototype permanent-magnet synchronous generator with inset rotor is studied. Due to 

its inverse saliency characteristic, the generator is capable of automatic voltage 

compensation. The analysis is first developed for the resistive-load case but is 

subsequently extended to the general lagging-power-factor load case. Of particular 

interest is the deduction of the conditions for zero voltage regulation and the 

corresponding shape of the load characteristic. For the prototype generator, it is found 

that a nearly level load characteristic is obtained when it operates at around 6000 r/min, 

implying that the prototype generator is suitable for use in a direct-coupled, engine- 

driven power system. The parameters necessary for the two-axis model are obtained 

from a 2-D FEM and a saturated model is proposed in order to improve the 

computational accuracy. A coupled circuit and field approach that enables mixed d-axis 

and q-axis saturation conditions to be analyzed is also proposed. The computed flux 

density distribution shows clearly the effect of load on the interpolar flux density and 

hence the resulting load characteristic. 

Experimental work on the prototype PMSG has confirmed the accuracy of the two-axis 

model and the parameters computed from FEM. Furthermore, the waveforms of 

voltages and currents are practically sinusoidal, a fact that renders the prototype PMSG 

a suitable machine for supplying isolated loads. 

7.2 Future Work 

The IG and SEIG schemes presented in the thesis are by no means exhaustive. The 

methodologies presented in Chapters 2 and 4 may readily be applied to other feasible 

phase-balancing schemes. A phasor diagram analysis, for example, has revealed that 

perfect phase balance in the SMIG could be realized with purely resistive phase 
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converters. The resulting system could be useful in applications where a large amount 

of local load has to be supplied. Variable-speed operation of the SMSEIG may also be 

extended to other SEIG schemes, such as the SESRIG, with the turbine characteristic 

duly included in the analysis. The various phase-balancing schemes for the IG and 

SEIG could also be applied to the reluctance generator (RG). A more refined analysis, 

however, need to be developed, particularly the accurate modeling and determination of 

negative-sequence circuit parameters. 

The coupled circuit and field analysis for the IG has been studied with reference to a 

grid-connected machine with the Steinmetz connection. With appropriate modification 

of the circuit equations and the use of a proper magnetization curve, the analysis could 

be extended to other grid-connected IG schemes or SEIG schemes. The results of field 

analysis could also be processed to yield the transient performance, such as load 

changes, switching of phase converters, etc. 

The rotor resistance controller for the SESRIG scheme presented in Chapter 5 could be 

replaced by a slip-energy recovery circuit that returns the slip energy to the stator side. 

Alternatively, the doubly-fed induction generator (DFIG) [109], in which the rotor is 

fed by a PWM inverter, may be employed. Various vector control methods (both 

sensorless or with rotor position sensors), could be developed for voltage and frequency 

control. 

The coupled circuit and field analysis developed for the PMSG could be extended to 

certain operational problems, such as nonlinear loads, load switching, terminal short- 

circuits and unbalanced loads. New machine configurations for specific applications 

should also be studied, e. g., direct-coupled PMSGs for wind energy conversion 

systems. 
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With more and more renewable generation introduced into the existing power networks, 

system integration aspects need to be studied. These may include, for example, new 

converter topologies, power factor correction, reduction in harmonic distortion, system 

stability, generator-system dynamic interactions and plant economics. 
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Appendix A 

Analysis for IG and SEIG 

A. 1 Symmetrical Component Equations for IG 

The symmetrical component equations for phase voltages and phase currents are [9] : 

: 

1=[ 11 
h' h Vp 

LVcI ý1 h h21L Vn 

IA 111 Io 

IB =11 h2 h Ip 

LIcJ L1 h h2JLIn 

where h is the complex operator exp(j27/3). 

(A. 1) 

(A. 2) 

It is assumed in the thesis that induction machines with symmetrical three-phase stator 

windings are used. For these machines, Wagner and Evans [110] have established that 

currents of different sequences do not react upon each other. It follows that when voltages 

of a given sequence are applied to the induction machine, only currents of the same 

sequence are produced. The sequence voltages and currents are therefore decoupled, and 

the following relationships are valid: 

I0=Vo/Zo=VoYo (A. 3) 

I 
p= 

Vp IZ 
p= 

VpYp (A. 4) 

In 
= 

V. / z� 
= 

V,, Y'. 
. 

(A. 5) 

In (A. 3) to (A. 5), Zo, Zp and Z, are, respectively, the zero-, positive-, and negative- 

sequence impedance of the induction machine while Yo, Yp and Y,, are, respectively, the 

zero-, positive-, and negative-sequence admittance of the induction machine. 
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A. 2 Positive-Sequence and Negative-Sequence Circuits of IG 

Zero-sequence quantities are absent in the IG schemes investigated in this thesis, hence 

only the positive-sequence and negative-sequence circuits need to be considered. Fig. 

A. 1 and Fig. A. 2 show, respectively, the positive-sequence and negative-sequence 

equivalent circuits of the grid-connected IG. For convenience, the motor convention has 

been adopted for the direction of current, i. e., the reference direction of current Ip or I, 

is into the stator winding and the voltage Vp or V� is considered to be applied to the 

machine. The advantage of this approach is that the symmetrical component analysis 

developed for induction motors could be applied directly. This convention will be used 

in the thesis whenever the method of symmetrical components is used. 

In Fig. A. 1 and Fig. A. 2, sp and s, denote, respectively, the per-unit slip of the rotor 

with respect to the positive-sequence rotating field and the negative-sequence rotating 

field. It is obvious that sn =2 - sp . 

From Fig. A. 1, the positive-sequence impedance Zp and admittance Yp are given by 

Zp= (R1 + jX, ) + R, // jX, 
n 

// 
RP 

+ jX2 (A. 6) 

PI IZOP 
SP 

Yp . Z1p =IYpIL-op (A. 7) 

where I ZpI is the magnitude of Zp, I Ypl is the magnitude of Yp, and O is the positive- 

sequence impedance angle. Both I ZPI and 4, are functions of the per-unit slip sp. For 

normal operation as an induction generator, sp is a small negative number, hence O will in 

general vary between n/2 rad and 7t rad. Accordingly, the positive-sequence current Ip lags 

the positive-sequence voltage Vp by an angle greater than 7t/2 rad. The input power is 

therefore negative, implying that the machine is delivering power to the stator circuit. 
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The negative-sequence impedance Zn and admittance Y11 can likewise be computed from 

Fig. A. 2. 

VP 

R1 jX1 

R2 
sp 

' JX2 

Fig. A. 1 Positive-sequence equivalent circuit of grid-connected IG. 

In Rl jXl 

Vn 
ý 
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R2n 
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Fig. A. 2 Negative-sequence equivalent circuit of grid-connected IG. 

For isolated (or self-excited) operation, the frequency of generated e. m. f. of the IG may 

not be constant. To facilitate analysis, it is convenient to refer the circuit quantities to 

the base (rated) frequency fbase by introducing the following parameters [23]: 

1) Per-unit frequency a, defined by: 

a= (Actual frequency)/(Base frequency) =f / fbase 

2) Per-unit speed b, defined by: 

b= (Actual rotor speed) / (Synchronous speed corresponding to base frequency) 

lr/ nbase = nr / (fbase 1P) 

where p is the number of pole-pairs and nr is the rotor speed. 
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The positive-sequence and negative-sequence impedances of the IG for isolated 

operation are shown in Fig. A. 3 and Fig. A. 4. 
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Fig. A. 3 Positive-sequence equivalent circuit of IG for isolated operation. 
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Fig. A. 4 Negative-sequence equivalent circuit of IG for isolated operation. 
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A. 3 Vp and V� for IG with Dual Phase Converters 

From (2.2) and (A. 1), 

Vo =0 and I0 =0 (A. 8) 

i. e., zero sequence quantities are absent from the system. 

Substituting (A. 3) to (A. 5) into (A. 2), (2.3) and (2.4), 

IA =1 
ýI 

p+ 
In) =1 

(V, Y, + V. Y. (A. 9) V3 V3 

IB =1 
(h21 

p 
+hIn)= 

1 (h2VpYp 
+hVVYn) (A. 10) 

(hI 
p+ 

h2I )= 1 (hVpYp 
+h 2Vnyn ) (A. 11) Ic =1 V-3 V3- 

=-l 
(h Vp +h 2Vn ) (A. 12) 73 

I2 =1 7= 
(h2Vp 

+hVn)1 . 
(A. 13) 

332 

Substituting (A. 9) to (A. 13) into (2.5) and rearranging terms, one obtains: 

hY -h 
2y 

- (h2 - h)Y 
V-V'2p (A. 14) 

p 
-hZY1 +hY2 +(h-h2)Yn 

The terminal voltage V is given by 

V= VA =1 
(Vp 

+ V,, ). (A. 15) 

From (A. 14) and (A. 15), 

Yn- 
hy1 

,+ 
YZ 

VP =JV. 
1-h 1-h (A. 16) 

Y, +Y2+Yp+Yn 
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e-, 
jn/6 

ej; 
r/6 

Yn+ -V=3-- +V Y2 

or Vp = 
VV. 

Y, +Y2+Yp+Yn 

Substituting (A. 16) into (A. 14), 

Yp+ 
1 

Y, - 
h 

Y2 
yn =V-3- V 1-h 1-h 

Y, +Y2+Yp+Yn 

Y 
e. 

jir/6 
e-. 

j; r/6 

Y-73=-- 

or V�ýV. 
p 

Y. YZ 

Y, +Y2+Yp+Yn 

A. 4 Derivation of (2.12) 

Applying Sine Rule to the current phasor triangle in Fig. 2.7(a), 

Il IL2 

sin 8, sin 02 

or 

il 

_ 

'LINE 

sin(27r/3 -0p) sin(27r/3) 

where ILINE is the line current of the IG under perfect phase balance. 

. *. 
I, - 

21LI'S'E 
sin(21r/3-qp) 

Applying Sine Rule to the current phasor triangle in Fig. 2.7(b), 

I_ Il 

sin 05 sin g 

I Iý 
or = 

sin(2z /3- Op) sin y 

'. sin v=It sin(2ir /3- op ) 
r 

(2.6) 

(A. 17) 

(2.7) 

(A. 18) 

(A. 19) 
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Applying Cosine Rule to the current phasor triangle in Fig. 2.7(b), 

2I IL3 + Il 
- 

2IL3'1 COS 85 

= IJJNE+4IJwE. sine(2, r/3-gyp)-2I ,,, Esin(27r/3-op). cos(2ir/3-op) (A. 20) 
3 

='LINE 3+4sin2(2Tr/3-op)-2Jsin2(27r/3-gyp) 

Substituting (A. 18) and (A. 20) into (A. 19), 

sin y= 
2sin2(21r /3-q$ ) 

3+4sin2(21r/3-gyp)-2Jsin 2(27r/3-qp) 

If we let a= 2; d3 - q, then (A. 21) is simplified to: 

2 sine a 
sing= 

13+4 sin2a-2hsin2a 

A. 5 Input Impedance of SEIG with the Steinmetz Connection 

(A. 21) 

(2.12) 

From (4.2), it is obvious that (A. 8) is also valid for the three-phase SEIG with the 

Steinmetz connection as shown in Fig. 4.1. The phase currents are also given by (A. 9) 

and (A. 11), while the terminal voltage V is given by (A. 15). 

Substituting (A. 6) to (A. 11) into (4.3), one obtains 

or 

h2 
V' 

+h 
V" 

zc zc 

Zc + 

Vn =Vp. 

V 
_ (h _h 

2) 
-- zP 

+(h2 h) 
Vn 

l 
Zn 

(A. 22) 

+ Zc 

e-J'r/6 
Z 

'VJ 
P Zn 

eji /6 Z P Zn 

Substituting (A. 22) into (A. 15), 

Zp Zc + 
Zn 

Vp = 
ýV. 1- h 

(ZpZn +ZpZC +ZnZC 

(A. 23) 
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Zp Zc + 
ej'r 

/6 

Zn 

or Vpp 
(ZpZn +ZpZC +ZnZC) 

(4.6) 

Substituting (A. 23) into (A. 22), 

-; 'i6 
Zn Zc +e Zp 

Vn = 
ý3 V. (4.7) (ZpZn + ZpZC + ZnZC) 

From (4.6) and (4.7) 

ear/6 
ZC + Zn 

I 
p= 

Vp= 
V3 

V. 
(A. 24) Zp (ZpZn + ZpZC + ZnZC) 

-jir/6 

V 
Zc+e Zp 

In =n_V. (A. 25) 
Zn (ZZ + ZpGC +Z ZC) 

From (4.4) and (A. 2), the input current I is given by 

I= IA - IC =1 
[(1- h)I 

p+ 
(1- h2 )In ]. (A. 26) 

Substituting (A. 24) and (A. 25) into (A. 26) and simplifying, 

rý 
3ZC +Zp+Zn \ I=Y. 

Gpz, +Zpzc+ZnZC 
. 

A. 2/ý7) 

When viewed across terminals 1 and 3, the input impedance of the SEIG in Fig. 4.1 is 

given by 

V- ZpZn + ZpZc + ZnZC 

I 3Zc+Zp+Zn 
(4.8) 
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Appendix B 

The Method of Hooke and Jeeves 

The pattern search method of Hooke and Jeeves [97] consists of a sequence of 

exploratory moves about a base point which, if successful, are followed by pattern moves. 

The procedure is summarized as follows: 

Exploratory Moves 

The purpose of an exploratory move is to acquire information about the function f(x) in 

the neighborhood of the current base point bk. Each variable xi, in turn, is given an 

increment c (first in the positive direction and then, if necessary, in the negative direction) 

and a check is made of the new function value. If any move is a success (i. e. results in a 

reduced function value), the new value of that variable will be retained. After all the 

variables have been considered, a new base point bk+l will be reached. If bk+l = bk, no 

function reduction has been achieved. The step length E; is reduced (say to 1/10th of its 

current value) and the procedure is repeated. If bk+l # bk, a pattern move from bk is made. 

Pattern Moves 

A pattern move attempts to speed up the search by using the information already acquired 

about f(x) so as to identify the best search direction. By intuition, a move is made from 

bk+l in the direction bk+l - bk, since a move in this direction has led to a decrease in the 

function value. Thus, the function is evaluated at the next pattern point given by 

Pk = 
bk +2 (bk+l 

- 
bk ) (B. 1) 

The search continues with a new sequence of exploratory moves about Pk- If the lowest 

function value obtained is less than f(bk), then a new base point bk+2 has been reached. In 

this case a second pattern move is made (using (B. 1) with all suffixes increased by unity). 
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If not, the pattern move from bk+l is abandoned and we continue with a new sequence of 

exploratory moves about bk+l. 

The minimum is assumed to be obtained if the step length for each variable has been 

reduced to a specified small value. 

For the SEIG problem, the two variables are the per-unit frequency a and the magnetizing 

reactance X, 
n. 

After a successful voltage build-up, a must be less than the per-unit speed b 

and X, n must be less than the unsaturated magnetizing reactance Xmu. To start the Hooke 

and Jeeves' pattern search procedure, initial estimates of a and X, n can be chosen to be b 

and X, nu , respectively. For small load impedances, however, it was found that an initial 

value of 0.97b for a would give better convergence performance. 

In the computer programs, an initial step length of 0.01 was chosen for both variables and 

convergence was assumed to be obtained if the step length was reduced to less than 1. Oe- 

8. All the circuit parameters used were expressed in per-unit values. 
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Appendix C 

A Note on the Finite Element Method [10] 

C. 1 Energy Functional and Discretization 

The solution of field problems using the finite element method involves the 

minimization of an energy functional, since the total energy in any physical system 

should be a minimum under steady-state conditions. In this thesis, the two-dimensional 

field problem is formulated in terms of magnetic vector potential A and the coil currents 

(and hence the current densities J) are assumed to be known. The appropriate energy 

functional to be minimized is: 

E(A) =J 
JB dB - A. J dx. dy 

. 
no 

(3.3) 

It will be assumed that the permeability u at any point is constant at the value 

corresponding to the final flux density B. Eqn. (3.3) can then be written as: 

2 I(aA 12 
2 

EIA)= 
B 

-J. Aýdx. dy= fjZýjI 
ax 

I +ýa1'ý 
ý-J. 

A 
. 
dy. (C. 1) 

Consider the discretized solution region (Fig. 3.7) with ne elements and np nodes. Because 

the energy of the functional is a scalar quantity, the energy in the global field region is 

considered to be the sum of energies in individual elements. Therefore, we aim to find the 

nodal potentials A 1, A2i 
... 

AnP 
, such that the following condition is satisfied: 

E(A) = E(A,, AZ,..., Anp )= min. 

That is, 

aEýAý 
_O aAp 

(p=1,2,3,..., np) 

(C. 2) 

(C. 3) 
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or, 

aE, (A)+aE2(A) 
_0 aAp aAp 

where 

2 

i JraAl 
EI(A)= fj 

Zpax 

EZ(A)=- JjJ. Adx. dy. 
0 

C. 2 Shape Functions 

(p=1,2,3,..., np) 

+ýaA1Z11,, vdY 

(C. 4) 

(C. 5) 

(C. 6) 

Assume that the solution region has been divided into a number of triangular elements, or 

sub-regions, as shown in Fig. C. 1. For a typical element e, the vertices i, j and m are 

assigned in the counterclockwise sense. The magnetic vector potential at any point (x, y) 

within element e is approximated by the following linear interpolating function: 

A(x, Y) =ßi +ßzx+ß3Y (C. 7) 

where ßl, A, and A are the coefficients to be determined. 

y 

x 

Fig. C. 1 Discretization of field region by triangular elements. 
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If the coordinates of the vertices j, j and m are (x;, y), (xj, yj) and (xm, ym), while the 

magnetic vector potentials are Al, Aj, and A,, respectively, then from (C. 7), 

22 
A+ ß2'ii + /'3. yi 

A; =A +ß2x; +ß3. Yj 

A. =A+ /"2Xm 
+ 13. Ym 

The coefficients can be determined by solving (C. 8): 

, ,, _1 (a; A; +ajAj +a, Am) 
2 Ae 

I 
ß2 = 20 

(bi A. + bj Aj + b,,, A. ) 
e 

1) 
20(c; 

A; + cj Aj + cnA, n e 

where 

ai =XjYm -xmyj; aj =xmYi -xiym; am =xiyj -X )' 

b= = . v, - Ym; b; = ym - yi; bm = Yj - . v;; 
C1=Xm -x ;c =x -Xm; Cm =Xj-xj; 

and Ae denotes the area of the triangular element e, i. e., 

11 
xi y` 

11 De=21 xj yj =2(b; cj -bjc, )=2(a; +aj +am) 
1 X. ym 

Substituting (C. 9) into (C. 7) and rearranging terms, 

(C. 8) 

(C. 9) 

(C. 1O) 

(C. 11) 

A(x, y) =1 
[(al 

+ blx + c; y)A, + (a1 + box + c1 y)A1 + (am + b�, x + c.. y)A. 
] (C. 12) 

2Ae 

or 

A(x, y) = N,. A. +N1Aj +NmAm (C. 13) 
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where 

Ni =1 (al +b; x+cy) 20e 

Nj =1 (a 
j+ 

b1x + cjy) . 
(C. 14) 20e 

N. =1 (am + bmx + Cmy) 20e 

Ni, Nj and Nm are known as the shape functions and they all depend on the geometry of the 

triangular element e. 

Taking the partial derivative on (C. 12), 

aA_ 1 (bA+bAj 
+bmAm 5X Me ij) 

DA 
_1 

(C. 15) 

C'y 20 
(ci4 +c1Aj +cmAm) 

e 

Consider first the contribution Eel of a typical element e to the total energy functional El 

in (C. 5): 

2Z 
1 

Eel(A) =JZ, 
{l 

ax J+ ýv J} . 
dy 

. 
(C. 16) 

The terms in square brackets in (C. 16) can be expressed as: 

aA z aA 2 aA 
ax äy ax 

1r 
=2 

[Al A.. 
40e 

But 

JJdx. 
dy 

= De 

aA 
aA ax 
ay aA 

ay 
bi c 

b 
Am ] ; bj cj 

bm cm 
c` 

(C. 17) 

b. bm 
A` 

Aj 
ci cm 

Am 

(C. 18) 
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therefore (C. 16) may be written as: 

Eel (A) =1 "1[A, 4, ude 2 

2 
b; + cl 2 

Aj Am ] bj bi + cj ci 
bnb; +cmci 

Ke 
« 

=1 
[Ai A; Am ] K; 

r 2 
e Kmi 

I [A]T 

2e 

[Kle[Ale 

b; bb + c; c j 
blbm + c, cm 

bj2 + Cj2 bjbm + CjCm Aj 
bm bj + Cm Cj b. ' 

+ Cm 
2 [Am 

K; ; Ai 

K Kim Aj 
ee Kmj Kmm A. 

(C. 19) 

Al 

where [A]e 
= Aj 

A,,, 

and [AJe 
= the transpose of {AJe. 

The elements of matrix [K]e are given as follows: 

Ke =1 (b 
e 

bt +cSct ,) 
(s=i j, m, " t=i, j, m). Sl S 

C. 3 Functional Minimization and Global Assembly 

(C. 20) 

If the global magnetic potential vector is denoted by {A], then the local magnetic potential 

vector [A] 
e of element e, when expressed in the global system, is given by 

[Ale = [Cl 
e 
[A] (C. 21) 

where {C]e is known as the connection matrix. 

From (C. 19), the energy functional Eel (A) can be expressed as: 

Ee1 (A) =2 
[AfUC]e [Kle[Clel[Al 

=2 
J[A]T 

LK*le[A] (C. 22) 

where 
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[K'le =[C]e[K)e[Cle 
(C. 23) 

It should be noted that 
[K; ]e is an (ne x ne) matrix in which the elements are given by: 

1 
Ksý =4 (bsbr + c5c) (s = i, j, m; t=i, j, m) (C. 24a) 

e 

Kst =0 sei m" t#i (, J, 
,, 

J, m) (C. 24b) 

The total energy of the field region 0 can now be expressed as: 

EI (A) =2 [A]T I 2: [K' Ie J[AI 
=2 

[Af [K][A] (C. 25) 
e=I ý l 

where 

ne 

[K] 
= 

[K*}e 
(C. 26) 

e=1 

[K] is known as the coefficient matrix, or the stiffness matrix. 

From (C. 25), 

aFj 
1 
(A) 

- 
[K] [A] (C. 27) 

aA, 

Next consider the second derivative in (C. 4). For element e, 

Eel(A)_- JJJ. A dx. dy (C. 28) 
ne 

With J constant within the element, it can be shown that 

aEe2 (A) JJ. (ak + bkx + ckY)dx-dy (k = i, j, m). (C. 29) 
aA 3 k Ste 

Considering the contributions from all the nodes, 

aEe2 (A) 
_ _[R] (C. 30) 

aAp 
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where 
[R] is an (np x 1) column vector in which all the terms are known. 

From (C. 4), (C. 26) and (C. 29), the following matrix equation is obtained: 

[K}[A]= [R] 
The right-hand side vector [R] is also known as the forcing function. 

r-I 

(3.4) 
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Appendix D 

Technical Data of Experimental Machines 

D. 1 Machine IG1 

Three-phase, delta-connected, 2.2 kW, 220 V, 9.4 A, 4-pole, 50 Hz, cage type induction 

machine (Sections 2.2,2.3,4.2,4.3,4.4 and 4.5). 

The machine parameters are (per-unit values given in brackets): 

Stator resistance RI = 3.44 Q (0.0844); 
Stator leakage reactance XI = 4.56 SZ (0.112); 
Positive-sequence rotor resistance R2 = 2.530 (0.0621); 
Negative-sequence rotor resistance Ren = 4.0 Q (0.098 1); 
Rotor leakage reactance X2 = 4.07 Q (0.1); 
Core loss resistance R, = 896 Q (22.0); 
Magnetizing reactance at nominal voltage = 71 Q (1.74); 
Friction and windage loss Pf, = 47 W (0.013); 
Stray-load loss = 1.8% of rated power. 

Variation of positive-sequence air-gap voltage EI with magnetizing reactance X, 
n 

is 

modelled by the following describing equations expressed in per unit: 

1.345-0.203Xm, Xm <1.728 

1.901 - 0.525 Xm, 1.728<- Xm<2.259 

Ei= 3.156 -1.08 Xm, 2.259<- Xm<2.446. (D. 1) 

37.49 -15.12 Xm, 2.446 <- X, n 
< 2.48 

0,2.48<-Xm 

D. 2 Machine IG2 

Three-phase, delta-connected, 2.2 kW, 220 V, 9.4 A, 50 Hz, four-pole, cage type 

induction machine (Chapter 3). 

Stator: 

Outer diameter 
Inner diameter 
Axial length 
Number of slots 
Turns per coil 

= 155 mm; 
= 98 mm; 
= 101 mm; 
= 36; 

= 43; 
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Coil-span 
Number of parallel paths 

Rotor: 

Outer diameter 
Inner diameter 
Number of slots 
End-ring resistance 
End-ring leakage inductance 

=9 slots; 
= 1. 

= 97.4 mm; 
= 38 mm; 
= 32; 

= 0.1817e-4 ) (per layer); 

= 0.5784e-7 H (per layer). 

D. 3 Prototype PMSG with inset rotor 

This machine is used for the investigations in Chapter 6. The specifications of the 

generator are as follows: 

General: 

3-phase, 4-pole, 1500 r/min, star-connected, 110 V, 2.5 kVA 

Stator: 

Outer diameter = 155 mm; 
Inner diameter = 98 mm; 
Number of slots = 36; 
Coil span =7 slots; 
Axial core length = 100 mm; 
Turns per coil = 6; 
Cross-sectional area of conductors = 2.65 mm2; 
Armature resistance per phase = 0.295 Q. 

Rotor: 

Permanent magnet material = NdFeB; 
Outer diameter of soft-iron pole pieces = 97.3 mm; 
Outer diameter of magnets = 96.4 mm; 
Inner diameter of magnets = 87.4 mm; 
Inner diameter of rotor core = 38 mm; 
Average pole arc of magnets = 144°e; 
Average arc of interpolar soft-iron pole pieces = 12°e; 
Space between magnet and soft-iron pole piece = 6°e; 

Remanence of NdFeB magnets = 1.128 T; 

Coercive force of NdFeB magnet = 880 kA/m. 
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