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ABSTRACT

This thesis presents two types of alternating current (ac) generators that are becoming
popular for use in small-scale distributed generation and in autonomous (or stand-
alone) power systems. For the induction generator (IG), two modes of operation are
identified, namely operation on the power grid and operation in the isolated mode.
Single-phase operation 1s emphasized due to its applicability in remote rural regions
where electrification 1s both costly and difficult to carry out. In the case of gnd-
connected operation, a number of practical phase-balancing schemes for a three-phase
IG are proposed and analyzed. The method of symmetrical components is found to be a
versatile tool for analyzing all the circuit configurations to be studied, including the

Smith connection. Microcontroller-based multi-mode operation of an IG with the Smith

connection 1s also investigated.

When operated in the stand-alone mode, the IG 1s more commonly known as the selt-
excited induction generator (SEIG). In this thesis, a unified approach that combines the
method of symmetrical components and the pattern search method of Hooke and Jeeves
1s used to analyze a three-phase SEIG which supplies asymmetrical or single-phase
loads. Its applicability 1s tested on various SEIG schemes, including the Steinmetz
connection, modified Steinmetz connection (MSC), the simplified Steinmetz
connection (SSC), the self-regulated self-excited induction generator (SRSEIG), and
SEIG with the Smith connection (SMSEIG). For certain studies, the above approach 1s
used in association with an iterative procedure in order to obtain the solution.

A coupled circuit and field approach based on a two-dimensional finite element method

(2-D FEM) 1is proposed for analyzing a grid-connected IG with the Steinmetz

connection. The technique of coupling the single-phase circuit equations to the field

XX11



domain equations i1s set forth and a rotor circuit model that accounts for the non-
uniform current distribution in the rotor winding 1s also presented.

A voltage and frequency control scheme that employs an SEIG with slip-ring rotor,
namely the SESRIG, i1s also proposed and investigated. The feasibility of using an
external rotor resistance as a control parameter 1s demonstrated theoretically and
experimentally.

The study on the permanent-magnet synchronous generator (PMSG) 1s focused on
autonomous power system applications. A PMSG with inset rotor, which possesses an
inverse saliency characteristic, 1s found to give satisfactory performance when
supplying isolated loads. Zero voltage regulation and other extremum conditions are
deduced based on the two-axis model. A saturated two-axis model that gives a more
accurate prediction of the load characteristic i1s developed. For a more rigorous analysis,

a coupled circuit and field, time-stepping 2-D FEM 1s also proposed.
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Chapter 1

INTRODUCTION

1.1 Background of Research

Conservation of energy resources, environmental protection and sustainable
development are the three major challenges that the world faces in the new millennium
1]. One important 1ssue 1s to satisfy the energy needs of people without causing rapid
depletion of the natural energy resources and degradation of the environment. A general
consensus among countries of the world 1s that greater emphasis should be placed on
the use of renewable energy resources for electric power generation. Many developing
countries, e.g., China, Nepal, Mexico, and others, have abundant renewable energy
resources, but these resources are invariably located in remote regions, thereby creating
a number of obstacles for their deployment. The problem can readily be solved if the
region 1s already served by a three-phase grid. Local power systems that employ three-
phase generators may be developed. The generators could be conventional wound-field
synchronous generators, but over the past few decades increasing use 1s made of
squirrel-cage type induction generators (IGs), particularly in wind energy systems and
micro-hydro power systems. In the latter case, the grid provides frequency and voltage
regulation, as well as the reactive power required by the IG. Due fo the distnibuted
nature of the energy resources, these power systems are usually small-scale 1n terms of
rating. They may not be as efficient as central bulk power systems, but this
disadvantage 1s offset by the reduction or even elimination of the transmission losses

over long distances. The global trend of privatization and deregulation is a further



impetus to the development of small scale distnibuted or (embedded) generation systems
2], [3].

Even 1n developed countries, energy conservation and environmental protection can be
achieved by extensive renewable energy programs and more widespread use of waste
heat utilization and cogeneration [4]. For such applications, the low cost and flexibility
of using induction generators result in their increasing popularity.

In remote regions of some developing countries, rural electrification i1s often based on
single-phase generation and transmission/distribution systems [5]. This approach has
the advantage that, for a given amount of capital investment, a wider area can be
provided with electricity. There 1s thus a great need for the development of single-phase
IGs. Although single-phase induction motors may be adapted for generator operation, it
1s often more economical, for ratings above 3 kW, to use standard three-phase induction
machines [6]. With a suitable phase-balancing scheme, the three-phase IG can operate
satisfactorily on a single-phase grid. A practical phase-balancing scheme invarnably
employs passive circuit elements, such as capacitance, inductance, or resistance.

In countries and regions where a grid connection 1s difficult and expensive to provide, a
more cost etfective solution 1s to develop stand-alone, or autonomous power systems
[7], [8] which may consist of one or more induction generators and a small number of
loads to be served, comprising typically lighting, heating, and water pumping. The
absence of the grid implies that the reactive power has to be furmished locally by
capacitors, and an induction machine operating in this mode 1s often referred to as the
self-excited induction generator (SEIG). Both the output voltage and frequency depend
upon the connected load and will vary greatly when the load or the speed of the prime-

mover 1s changed. Frequency control and voltage control are two important operational



aspects for autonomous power systems. Both three-phase systems and single-phase
systems may be developed. Besides, the choice of appropriate values of excitation
capacitances to secure successful voltage build-up and to sustain the voltage when the
generator 1s supplying load, is of paramount importance.

Single-phase operation of a three-phase IG, with or without a phase balancer, renders
the machine operating with phase imbalance. For the grid connected IG, the voltage and
frequency are constant, hence the analysis can be carried out by using the method of
symmetrical components [9]. With the SEIG, however, the performance analysis 1s
complicated by the varation of frequency as well as the magnetizing reactance, both
being dependent on the speed and loading conditions.

The method of symmetrical components 1s basically a linear analysis and the principle
of superposition applies. In an induction generator, the air gap voltage i1s higher for a

given terminal voltage, meaning that the machine operates at a higher magnetic

saturation level compared with that when the machine 1s run as a motor. To account for
the effects of magnetic nonlinearity, an electromagnetic field analysis, such as the finite
element method [10], may be more approprniate. Although the field approach may not
guarantee superior results, i1t nevertheless involves less simplifying assumptions in the
modeling and hence 1s theoretically more rigorous.

Phase-balancing methods have formerly been applied successfully to three-phase

induction machines with symmetrical, star- or delta-connected stator windings.

Recently, however, a new class of high-efficiency induction motors based on

asymmetrically-connected stator windings has been proposed. The connection, which 1s

commonly known as SEMIHEX connection or the Smith connection [11]-[13], has

found applications in pump motor drives in rural areas where only a single-phase



supply 1s available. The peculiar feature of the Smith connection is the use of three
capacitors 1n association with the asymmetrical stator winding. Under favorable
conditions the phase voltages and currents of the induction machine may be perfectly
balanced. This interesting winding connection may be applied for generator
applications as well.

Great advances 1n permanent-magnet (PM) technology [14] have taken place in the past
two decades. Powerful rare-earth PM materials, such as neodymium-iron-boron
(NdFeB), have emerged and the price 1s becoming more affordable. A direct impact on
the electric motor industry 1s the rapid development of high-performance drives, such as
the brushless PM dc motor drive and PM synchronous motor drive. At the same time,
the PM synchronous generator (PMSG) has been considered as a contender with the
induction generator, mainly in autonomous power system applications. Compared with
the IG, the PMSG also has such advantageous features as brushless rotor construction,
no need for dc excitation, and less maintenance. Furthermore, the absence of rotor loss
implies that very high efficiencies could be realized. These advantages, however, are at
the expense of lack of field control, and voltage regulation is a major issue to be
resolved.

It should be pointed out that other electric machines may also be employed for ac power
generation. The vanable reluctance machine, for example, has been rigorously
researched as a contender with the SEIG [15]-[19]. However, the inherent low power
factor of the reluctance machine i1s a major disadvantage, and special rotor designs, such
as the axially-laminated anisotropic (ALA) rotor [18], need to be used in order to secure

a large power-to-weight ratio.



The switched reluctance motor (SRM) has received great attention in the past two
decades, mainly for use in traction and high-speed drive [20]. It can readily be adapted
for power generation [21], [22], but two factors render the machine a less viable option.
First, the machine requires a dedicated electronic drive and control circuit. Second, the

power output 1s inherently dc and a dc/ac converter is required for supplying an ac load

or Interfacing with the grid, which increases the system cost and may produce

additional harmonics.

1.2  Literature Survey

1.2.1 Three-Phase IGs and SEIGs

The principle and operation of grid-connected three-phase 1Gs are well understood and
are discussed in detail 1n many textbooks [23]. Performance analysis 1s based on the
induction motor equivalent circuit, negative values of slip being used since the rotor
speed 1s higher than the synchronous speed. The SEIG, on the other hand, involves
more complicated analysis and has received considerable attention. Pioneering work of
the SEIG dated back to the twenties and thirties of the last century [24], [25] when 1t
was discovered that an induction machine with capacitance connected to the stator
terminals might stay excited after being disconnected from the grid. The significance of
such a phenomenon for generator application was apparent, but since then very little
has been written on the subject and the synchronous generator dominates the role for
large-scale power generation.

Towards the late seventies and early eighties of the last century, however, interest on
SEIGs revived as witnessed by the numerous research publications. Murthy et al. [26]
and Malik and Hague [27] analyzed the SEIG using the loop impedance method, based

on the per-phase equivalent circuit model. The Newton-Raphson method was employed



for simultaneously determining the per-unit frequency and magnetizing reactance.
Ouazene and McPherson [28], on the other hand, proposed the nodal admittance
method, also based on the equivalent circuit. This approach resulted in a high-order
polynomial 1n the per-unit frequency which could be solved to yield the generator
performance. The generalized induction machine model has been used by Elder et al.
[29], Grantham ef al. [30] and Wang [31] for analysis of voltage build-up and transient
operation of the SEIG.

The capacitor sizing problem for a three-phase SEIG was studied by Malik and Mazi
[32], Jabr1 and Alolah [33], and Chan [34], while performance of an SEIG driven by
regulated and unregulated turbines was investigated by Bonert and Hoops [35], Chan
[36] and Alghuwainem [37]. Wind turbine dnven SEIGs were studied by
Ammassaigounden et al. [38], Watson ef al. [39] and Raina and Malik [40].

Voltage compensation using the long-shunt connection was first investigated by Bim et
al. [41] with a view to improving the voltage regulation characteristic of the SEIG. This
method, together with the short-shunt configuration, was subsequently analyzed by
Chan [42] and Wang and Su [43]. Application of the compensated SEIG for supplying
an induction motor load has recently been reported [44].

Voltage and frequency control of the three-phase SEIG has also been studied recently
[45]-[50]. Voltage control invariably involves the regulation of effective capacitance
across the stator terminals, and a vanety of control methods, such as the fixed-capacitor
thyrister-controlled reactor (FC-TCR) [27], might be employed. Frequency control for

SEIG, on the other hand, 1s more difficult and involves expensive and sophisticated

equipment, such as an ac/dc/ac converter [45], [50].



1.2.2 Single-phase 1Gs and SEIGs
Analysis and performance of a grid-connected single-phase IG with main and auxiliary
windings were reported by Boardman et al. [51]. It was found that the generator
efficiency was higher 1f the rotor was driven to give reverse rotation (i.e., the rotor
rotates against the air gap traveling field). This principle was also applicable to a three-
phase IG connected to a single-phase power grid [52]. When a three-phase IG operates
on a single-phase power system, the currents are generally unbalanced and the rated three-
phase power output cannot be developed. Other adverse effects include thermal overload,
mechanical vibration, noise, poor efficiency and low power factor. Various phase-
balancing schemes for a three-phase IG have been investigated [6], [53]-[54]. In the
method proposed by Durham and Ramakumar [6], an artificial third line is created, using

a capacitance and an inductance of equal reactances, for supplying the IG whose power

factor has been corrected to unity. The disadvantage of such a scheme 1s that, in the event
that the supply 1s removed, severe overvoltages will be produced as a result of series
resonance between the capacitance and inductance. In the phase-balancing schemes
proposed by Smith [53], capacitors were used exclusively and there was no danger of
resonance effect. The analysis, however, was confined to the case when the induction
machine was exactly balanced. Most of the circuits introduced require a ground-wire in
the supply system, which may not be feasible in some regions. More recently, Chan [54]
investigated phase balancing for an IG using the Steinmetz connection, and 1t was

demonstrated that perfect phase balance could be achieved over a wider range of

generator impedance angle by the use of dual phase converters.

Anther important contribution of Smith 1s the introduction of the Smith (or SEMIHEX)

connection [11]-[13], devised primarily to enable a three-phase motor to be operated on



a single-phase supply. Capacitances were employed exclusively for achieving phase
balance. The principle of the circuit was explained in considerable detail by Smith [11],
but no formal analysis was carried out.

The study on single-phase SEIGs was conducted by Murthy [55], Murthy et al. [56],
Rahim [57], Chan [58] and Singh and Shilpkar [59]. Two-phase symmetrical
component method was applied to an SEIG with main and auxiliary windings in
quadrature. Ojo [60] presented a transient analysis of single-phase SEIGs using the d-q
equivalent circuit model. Application of single-phase SEIG for heating and lighting
loads 1n remote regions was proposed by Singh et al. [61] and microprocessor control
of single-phase SEIG was reported by Watson and Watson [62]. Ojo et al. also
investigated the operation of a single-phase SEIG using a pulse-width modulated
inverter with a battery supply [63].

Analysis of a three-phase SEIG supplying single-phase loads was reported by Al-
Bahrani and Malik [64] and Rahim [65]. Fukami et al. [66] developed a self-regulated
single-phase SEIG by introducing series capacitance compensation. The machine
configurations analyzed in [64]-[66], however, were essentially the single-phasing
mode of operation. Since only two phases are involved 1n the energy conversion process,
the winding utilization is poor and the phase imbalance is severe.

With a view to minimizing the phase imbalance, Chan [67] investigated the
performance of a three-phase SEIG with the Steinmetz connection, 1.e., one 1n which
the load impedance and the excitation capacitance are connected across different stator

phases. It was tound, however, that perfect phase balance could not be achieved with

unity-power-factor loads.



1.2.3 Permanent-Magnet Synchronous Generators
Research work on the PMSG has been reported in the past few decades [68]-[79]. Early

PMSGs employed low-cost ceramic magnets [68], [69], but recently high-energy
materials such as neodymium-iron-boron (NdFeB) [76], [77] have become more
popular. Binns et al. [69] reported the analysis and applications of a PMSG with multi-
stacked, 1mbricated rotor. Modeling and analysis of the PMSG has been discussed by
Chalmers [71] and Rahman et al. [73]. There has also been rigorous research interest in
the axial-flux PM generator for wind-turbine applications [70], [72], [77], [78]. Due to
the larger diameter to axial-length ratio, axial-flux machines are more suitable for
multi-pole, low-speed, direct-drive applications than radial-flux machines.

It 1s well known that the excitation of a PMSG cannot be varied, and hence the terminal
voltage varies with the load current. Attempts have been made for improving the
voltage regulation of the PM generator. One method to control the terminal voltage 1s to
use shunt capacitance compensation [69], [73], [74], but the capacitors will occupy
additional space and extra capital costs are incurred. A more attractive solution 1s to
employ a special generator design that imparts an inherent voltage compensation
characteristic to the machine. Chalmers [71] has shown that a generator with an
interior-magnet rotor exhibits interesting load characteristics when supplying an
1solated load. In this type of generator, the direct-axis (d-axis) synchronous reactance X
1s less than the quadrature-axis (q-axis) synchronous reactance X, 1.e., the generator
possesses an inverse saliency feature. The voltage regulation may be reduced if the
generator has the proper value of inverse saliency ratio r (= X;/Xy). It has also been

proved that, 1f the armature resistance 1s neglected, a voltage rise will result when the

load current 1s increased from zero, provided that 7 is larger than 2.



For practical applications, it 1s desirable that the generator voltage regulation be as
small as possible. This requires a careful machine design in order to give the
appropriate combination of generator parameters, such as the no-load generated e.m.f,

armature resistance and the synchronous reactances.

A synchronous machine with the inset PM rotor construction [14] also exhibits inverse
saliency and hence an improved load characteristic might be obtained for generator
operation. The inset rotor construction involves less complicated rotor stampings and
hence 1s easier to fabricate than the interior-type rotor.

The synchronous reactances used in the two-axis model can be computed from FEM
analysis [76]. FEM 1s also useful for analysis of PMSGs with unconventional rotor

configurations [72], [78]. The application of a coupled circuit and field method to

PMSG was recently reported by Zhou et al. [79].

1.3  Research Objectives

This thesis aims to achieve the follow research objectives:

1) An investigation on various phase-balancing schemes for a three-phase IG
operating on a single-phase power grid, including the Smith connection that
involves asymmetrical phase windings and phase converters.

2) A detailed 2-D FEM analysis on a grid-connected IG with the Steinmetz
connection.

3) An investigation on various three-phase SEIG circuit configurations suitable for
supplying unbalanced / single-phase loads.

4) Implementation of a frequency and voltage controller for a slip-nng SEIG.

5) A detailed analysis of a PMSG with inset rotor for autonomous power system

applications, using both the two-axis model and a time-stepping FEM.
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1.4

Organization of the Thesis

The previous sections in this chapter have provided the justification for the proposed
research and the main research objectives have been set forth. This thesis may broadly be
divided 1nto three parts. Chapters 2 and 3 investigate the performance of a three phase IG
when operating on a single-phase power system. Chapters 4 and 5 are devoted to SEIGs
with cage and slip-ring rotors. Chapter 6 discusses exclusively the PMSG with inset rotor
for autonomous power system applications. Chapter 7 gives a summary of the major

accomplishments and discusses further work that might be pursued.

1.5  Statement of Originality

The original contributions and important developments of this thesis are given in the

following statements:

® Various phase-balancing schemes for a three-phase IG connected to a single-phase
power system, including the novel Smith connection, are analyzed by using the
method of symmetrical components.

® Various SEIG schemes are analyzed by using a search method in association with
the method of symmetrical components. The SRSEIG and SMSEIG schemes are
proposed and analyzed for the first time.

® Analysis of a grid-connected IG with the Steinmetz connection using a coupled

circuit 2-D finite element method 1s proposed.

Microcontroller-based operation of a three-phase IG with the Smith connection 1s

proposed and implemented.

A voltage and frequency control scheme for an IG with slip-ring rotor 1s investigated.

A PMSG with inset rotor for achieving a reduced voltage regulation when supplying

an autonomous power system 1s proposed and its performance is analyzed by using

11



the two-axis model. A saturated two-axis model is also developed based on the

results of an FEM analysis.

A coupled circuit, time-stepping finite element method 1s proposed for the analysis

of the PMSG with an inset rotor.

Experimental work on various IG and SEIG schemes as well as the PMSG with 1nset

rotor 1s undertaken.
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Chapter 2

THREE-PHASE IG OPERATING ON A SINGLE-PHASE POWER
SYSTEM

2.1 Introduction

In this chapter, the general principle of phase balancing for a three-phase IG operating on
a single-phase power system 1s investigated and several practical phase-balancing
schemes are proposed, including those that involve dissipative elements and current
Injection transtormers. It 1s demonstrated that the IG-converter system can be analyzed

by using the method of symmetrical components. A phasor diagram approach enables the
conditions of pertect phase balance to be deduced. Performance analysis of a three-phase
IG with the Smith connection 1s also possible using the same approach. The feasibility of
the phase-balancing schemes 1s verified by laboratory experiments on a small induction
machine. A microcontroller-based control scheme for an IG with the Smith connection i1s

also proposed to give efficient control at low cost.

2.2  Phase-Balancing Using Passive Circuit Elements

2.2.1 Analysis of IG with Phase Converters

Plain single-phase operation of a three-phase machine i1s an extreme case of unbalanced
operation. This stems from the fact that the line current flowing into the ‘free’ terminal of
the stator winding 1s forced to be zero. To reduce the phase imbalance, an effective
remedy 1s to inject a line current artificially mto the ‘free’ terminal by using phase
converters which comprise passive circuit elements. Fig. 2.1 illustrates the principle of
phase balancing for an induction machine operating on a single-phase power system [5],
[54], [80]. The rotor 1s assumed to be rotating in such a direction that it traverses the

stator winding 1n the sequence A-B-C. For generator operation, the rotor speed must be
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slightly higher than the positive-sequence rotating field. Although special reference 1s
made to a delta-connected machine in the following discussion, the principle is also
applicable to a star-connected machine. Phase A of the IG 1s connected to the single-
phase power system of voltage V, while the phase converters Y; and Y, are respectively
connected across phase C and phase B. The current /;; that results from the currents /;
and /; through the phase converters constitutes the line current into the ‘free’ terminal of
the generator. Apparently the phase balance 1s improved and indeed, by appropnate

choice of the values of ¥; and Y, perfect phase balance may be achieved.

Fig. 2.1 Single-phase operation of three-phase IG with phase converters.

Referring to Fig. 2.1 and adopting the motor convention for the induction machine, the

following ‘inspection equations’ [9] may be written:
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V=V, (2.1)

VatVetTVc=0 (2.2)
[1I=VcY, (2.3)
[:=V3Y; (2.4)

[,=1s—Ict1; (2.5)

The above equations can be solved by using the method of symmetrical components. The
derivation 1s outlined in Appendix A.3, from which the positive-sequence voltage V), and

negative-sequence voltage V), are determined:

i 7

e’ e’
Yn+ Y1+ YZ
=3V .-—————-\/E V3 (2.6)
Y1+Y2+Yp+Yn

ejm’d e.jms
Y, T ==Y, t==Y
V,,=\/§V.—--——p V3T 3T (2.7)
Y1+Y2+Yp+Yn

where Y, and Y, are, respectively, the positive-sequence and negative-sequence

admittances of the IG as shown in Fig. A.1 and Fig. A.2.
For perfect phase balance, the negative-sequence voltage component V, given by (2.7)

should be equal to zero, hence

6 /6
e’ e

Yp+‘\/§Y1+\/§Y2:0' (28)

By selecting values of ¥; and Y, that satisfy (2.8), balanced operation of the IG may be

achieved.

2.2.2 Phase-Balancing Schemes

Based on the theory outlined in Section 2.2.1, four practical phase-balancing schemes for

a three-phase 1G operating on a single-phase power system have been developed and
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investigated. Figs. 2.2(a)-(d) show the details of the circuit connections. For convenience
of discussion, each phase-balancing scheme is designated by the phase converter
elements used, suffix 1 denoting a phase-C converter element while suffix 2 denoting a

phase-B converter element. For example, a R;-C; scheme will have a resistance

connected across phase C and a capacitance connected across phase B.

I-l---—----_-—-_-_-—‘-_‘-_-—-_ﬁ—.“——--—------_i

@ ]

I..——_-_.,_-q.—-._#—--_- e e s uisle B A W W S S B S A WS W WSS W EE e Cuer s el
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) Co

Fig. 2.2 Phase-balancing schemes for three-phase IG:
(a) Ci(L)-C; scheme; (b) R;-C; scheme;
(C) R1-C2 scheme; (d) RrCI scheme.

Th