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Chapter 1 

Introduction 

1.1 Aim and overview 

The aim of this thesis is to extend theory and to develop practical applications 

of copulae in finance. A copula is a dependence function that links variables - 

expressed through their marginal distributions - to their joint or multivariate 

distribution. In the second chapter, we consider the origin of the concept 

of copulae, the issue of dependence modelling between random variables and 

develop a general framework for the analysis of copulae. 

In the third chapter, we propose a methodology to provide risk measures for 

portfolios during extreme events. The approach is based on splitting the mul- 

tivariate extreme value distribution of the assets of the portfolio into two parts: 

the distributions of each asset and their dependence function - named copula 

The estimation problem is also investigated. A trivariate empirical applica- 

tion for market index portfolios (US, German and Japanese stock markets) is 

provided. Then, stress-testing values and Monte-Carlo based risk measures - 

Value-at-Risk and Expected Shortfall respectively - are computed. 

The fourth chapter investigates the problem of dynamic dependence us- 

ing copulae. A general methodology for time series modelling is developed 

which works down from distributional properties to implied structural models 

18 



CHAPTER 1. INTRODUCTION 

for quantile functions thereby including the standard regression relationship. 

This general to specific approach is important since it can avoid spurious as- 

sumptions such as linearity in the form of the dynamic relationship between 

variables. It is based on splitting the multivariate distribution of a time series 

into two parts: (i) the marginal unconditional distribution, (ii) the serial de- 

pendence encompassed in a general function, the copula. General properties of 

the class of copula functions that fulfill the necessary requirements for Markov 

chain construction are exposed. Special cases for the gaussian copula with 

AR(p) dependence structure and for Archimedean copulae are presented. We 

also develop copula based dynamic dependency measures - auto-concordance 

in place of autocorrelation. Dynamic dependence is more precisely studied for 

different probability levels by defining quantile regressions derived from the 

copula structure. Finally, we provide empirical applications using financial re- 

turns and transactions based forex data. Our model encompasses the AR(p) 

model and allows for non-linearity. 

In the fifth chapter, we introduce a general class of nonlinear regression 

quantile models that are again based on a top-down approach. We extend 

Koenker and Bassett's (1978) original problem of quantile regression by deriv- 

ing a distribution for the dependent variable Y conditionally on the regressor 

X. We then deduce a conditional copula based non linear quartile relationship. 

Some properties of our model are exhibited. Finally, a financial application to 

the foreign exchange markets is provided. 

The sixth chapter concludes. 

19 



CHAPTER 1. INTRODUCTION 

1.2 Contents and contributions 

Chapter 2 is innovative in that its second and third sections provide two new 

syntheses of copulae. The second section provides an historical perspective 

about the origin of the concept of copula during the first half of the 20th cen- 

tury. The third section is a short but concise review of the very recent financial 

literature that uses the copula tool. The definitions, properties and concepts 

developed in sections 4 to 7 provide the general but necessary background to 

understand copulae. Other introductions on the subject exist see for instance 

Joe (1997) and Nelsen (1998). However, the introduction presented here is the 

first that is dedicated to the use of copulae in the context of financial economet- 

rics. The chapter also provides a new approach that links the mathematical 

origin with the statistical and financial applications of copulae. 

Chapter 3 starts with and introduction (section 2) and some standard defin- 

itions of the extreme value theory in its third section. The univariate case is 

presented (Gumbel (1960)). The multivariate case that introduces the copu- 

lae that are eligible for modelling extrema is due to Deheuvels (1978). The 

author proposed a theorem that constitutes the theoretical starting point of 

the chapter. Then, three families of multivariate extreme value distributions 

are described: Gumbel (1960), Hüsler and Reiss (1989), Joe and Hu (1996). 

The Gumbel copula is the first extreme copula to be used in the financial lit- 

erature, but only in the bivariate case (Longin and Solnik (2001), Journal of 

Finance). To our knowledge, the explicit formulation of the Hüsler and Reiss 

copula is new. The chapter is the first application of the inference for margins 

method (Joe and Xu (1996)) to extreme value distributions. Section 4 contrib- 

utes to the literature in two ways: (i) it contains the first trivariate extreme 

20 



CHAPTER 1. INTRODUCTION 

value estimation applied to stock market indices, (ii) it offers a comparison 

of three non-nested extreme value models and concludes that the Husler and 

Reiss copula we introduced best fits the data (Cox test criterion). In section 

5, we present a new concept - the financial failure area - and apply it to stock 

market returns. Finally, we propose an innovative copula based methodology 

to compute standard risk measures such as value-at-risk or expected shortfall 

and we again provide original empirical applications. 

The chapter four explores and extends the general framework proposed by 

Joe (1994,1997) to model the dynamic dependence of time series whatever 

their marginal distributions. We provide a new approach to the analysis of 

the standard linear class of gaussian autoregressive (AR) models by extracting 

the copula from the model. This allows us to present a new class of models: 

the gaussian copula AR models that takes into account non-linearity. We then 

propose a new definition, the intrinsic copula to characterize the minimal rep- 

resentation copula that encompasses all the serial dependence. We provide a 

theoretical definition of the intrinsic copula. This intrinsic copula furnishes the 

starting point for model selection. In a non linear time series model the min- 

imal dimension is most naturally provided by identifying the intrinsic copula. 

Moreover, we show that there are relationships between copulae which order 

is greater than the order of the intrinsic copula. In section 6, we extend the 

estimation methods developed by Joe and Xu (1996) to our intrinsic copula 

defined earlier. We introduce the basis for copula based model selection and 

show how the copula function can provide a nonlinear autocorrelation func- 

tion. Section 7 is an empirical contribution to the study of stock market index 

returns. Four models that assume the same marginal distribution but with 

four different copulae are estimated and compared. The estimates are com- 
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CHAPTER 1. INTRODUCTION 

puted using two different methods: (i) a non parametric method that has been 

proposed by Genest and Rivest (1993) - this is its first financial application 

-, (ii) the maximum likelihood method described in the previous section. Fi- 

nally, auto-concordance measures are proposed to capture the non-linear serial 

dependence properties in a time series beyond serial correlation. 

Chapter 5 is certainly the more innovative from a theoretical point of view. 

Indeed, it proposes a generalization of both standard regression quantiles intro- 

duced by Koenker and Bassett (1978) and other non-linear regression quantiles 

(see Engle and Manganelli (2000) or Koenker and Hallock (2001)). The tra- 

ditional quantile models are reviewed in section 3. The fourth section intro- 

duces the definitions and properties that are necessary to understand the link 

between the functional form of a given copula and the shape of the dependence 

generated by this copula. Tail dependence measures are also presented in the 

Section 5. The sixth section is the core of the contribution of the chapter to the 

literature. We propose a new model: the copula quantile (or c-quantile) regres- 

sion model. We first define the concept of copula quantile curve. Its properties 

- positive or negative relationship, symmetry - are then derived. The c-quantile 

curves are more precisely studied for some copulae, with a particular focus on 

the archimedean class. We also show that the Koenker and Basset's regression 

quantiles are encompassed by our model since it corresponds, in our model, to 

the gaussian copula with gaussian marginal distributions. Finally, the seventh 

section is an empirical application of our model to foreign exchange rates. We 

find evidence of a much stronger form of efficiency than implied by standard 

martingale approach based on the conditional expectation. In some sense, our 

model also allows us to extend Fama's (1970) definition of efficiency. 
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Chapter 2 

Copulae: history and general 
framework 

2.1 Contents and contributions 

This chapter provide two new syntheses of copulae. The first section provides 

an historical perspective about the origin of the concept of copula during the 

first half of the 20th century. The second section is a short but concise review 

of the very recent financial literature that uses the copula tool. The defini- 

tions, properties and concepts developed in sections 3 to 6 provide the general 

but necessary background to understand copulae. Other introductions on the 

subject exist see for instance Joe (1997) and Nelsen (1998). However, the 

introduction presented here is the first that is dedicated to the use of copu- 

lae in the context of financial econometrics. The chapter also provides a new 

approach that links the mathematical origin with the statistical and financial 

applications of copulae. 

2.2 Some history about copulae 

The question of the distance between two random variables and their distribu- 

tion functions is the starting point of copula theory in the middle of the 20th 
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century. A copula function - this concept will be defined later - is a measure 

of this distance. In the Note B of the fundamental textbook Generalites sur les 

probabilites. Variables aleatoires - FRECHET, M. (1937) -, Paul Levy wrote: 

If one knows the probability distribution functions of two random 

variables X and Y, one is still not able to determine their distance 

Frechet wrote his famous paper' "Sur les tableaux de correlation dont les 

marges sont donnees" in 1951. The examples are mainly based on the existence 

of bounds discovered by Rechet himself in 1935. The 1951 paper is split into 

two parts. The first is dedicated to the discrete case. The author asks the 

following question: how many contingency tables are consistent with marginal 

distributions arbitrarily given ? Let us think about two variables X and Y 

that respectively take values {xj}i_1,..., 
q and 

Then, the contingency table is: 

X1 X2 ... Xi ... 

Yi nil n21 ... nil ... nql Ni 

Y2 n12 n22 ... nit ... nq2 N2 

Yj nlj n2j ... nij ... nqj Nj 

yr n1r n2r ... nir ... n NT 

N1 N2 ... Ni ... Nq N 

rqqr 

with Ni => nij, N' = nij and N= Ni = M. Frechet shows that for 
j=1 i=1 i=1 j=1 

some given margins, there exist at least two contingency tables and that the 

necessary and sufficient condition for the existence of only one is that either 
The fact that Frechet chose a regional journal such that the Annales de 1'Universita de 

Lyon provides us information about his personality as noted by Dall'Aglio in 1991: 

I must add that I listened to a conversation in Esperanto between him and 
Jimmy Savage (... ) 

24 



CHAPTER 2. COPULAE: HISTORY AND GENERAL FRAMEWORK 

X or Y is constant. The author explores the following distribution functions: 

Fx (xi) = F, Nk N 
k<i 

FY (yi) =NE Ni 
1<3 

and 

H (xi, yyi) =N> nki (2.1) 

k<i t<j 

and demonstrates that the joint distribution function is bounded: 

max [Fx (x2) + Fy (yy) - 1,01 <H (xi, y3) <_ min [Fx (xi), FY (yj)] (2.2) 

Let us consider a simple financial example with two rows and two colums. We 

postulate we have two groups of firms : the first group belongs to sector G and 

the second group to sector G'. We are interested in the number of firms that can 

default for each sector. The number of defaults that can occur is respectively 

{l1, x2} for the sector G and {yi, y2} for the sector G'. Let assume there are 

eight states of the World. We assume that the information available is only 

about the margins which are Nl = N2 = 4, Nj' =5 and N2 = 3. For example, 

Ni represents the number of states of the World with x1 defaults in sector G 

and N2 the number of states of the World with y2 defaults in sector G' 
. 

Then 

the problem can be summarized with the following contingency table: 

yi I nil n2l 15 
y2 fl12 fl22 3 

Si X2 

yi nil fl2i 5 
y2 fl12 fl22 3 

448 44 ý8 

However, as we have no information available about the joint distribution, we 

exploit the bounds introduced by 
. 
rechet: 

1= max (Nl - N2,0): 5 nll < min (Ni, Ni) =4 

Then, the number of cases simultaneously corresponding to x1 defaults in 

sector G and yl defaults in sector G' is bounded between one and four. It 
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means that there exist four contingency tables or dependence structures with 

the assumed margins: 

41 1423 F3772 

30211203 

The second part of the paper extends the discrete case by focusing on the 

continuous case. The question becomes: is it possible to find the joint prob- 

ability distribution H (x1, x2) = Pr {X1 < xl and X2 < x2} of Xl and X2 

if we only know their marginal distributions, F1 (x) = Pr {X1 < xl} and 

F2 (x2) = Pr {X2 < x2} ? To answer the question, Rechet shows that the 

bivariate distribution is bounded: 

C (F1(x1) 
, 
F2 (x2)) <H (x1, X2): 5 C' (F1(x1) 

, 
F2 (x2)) 

with 
C- (F1 (x1) 

, 
F2 (22)) 

= max (F1 (x1) + F2 (x2) 
- 

1,0) 

C+ (F1(x1) 
, 
F2 (x2)) = min (F1(x1) 

, 
F2 (x2)) 

Then H,, defines a class of the possible distribution functions: 

HA (x1) x2) = AC- (F1(x1) 
, 
F2 (x2)) + (1 - A) C+ (F1(xi) 

, 
F2 (x2)) 

with 0< A<1 

However, as noted by F rechet in 1958, HA does not allow us to characterize 

the independent case H (x1, x2) = F1(x1) F2 (x2). 

Under the initiative of Bass, Feron - who was Frechet's student - extended 

the problem of the existence of the bounds to the three-dimensional case in 

1956. He demonstrated that there exists an upper bound of the form, 

H (x1, x2, x3) min (F1(x1)' F2 (x2)' F3 (x3)) 
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but that max (Fi (x1) + F2 (x2) + F3 (x3) - 1,0) is not a distribution function. 

In contrast to common opinion, we argue that Feron was the inventor of 

copulae. Indeed, in order to prove the existence of the bounds, he makes the 

following remark: 

The search for maximal and minimal elements of the distribution 

functions H (x1, x2, x3) with given margins is completely equivalent 

to the search for the same maximal and minimal elements if the 

marginal variables are uniformly distributed on the segment (0,1) 

for each axis. Then, if we succeed in demonstrating that the func- 

tions G have one maximal element and several minimal elements, 

it will be necessarily the same for the functions H (x1, X2, x3) with 

given margins. 

with G (Uli u2) u3), the map of H (x1, x2, x3) on the unit cube is defined as 

follows: 
G (ul, oo, oo) = ul for O<_ ul <1 
G (oo, u2) oo) = u2 for 0< u2 <1 
G (oo, oo, u3) = u3 for 0< u3 <1 

where ul = Fl (x1) 
, u2 = F2 (x2) and u3 = F3 (x3). This map function is 

of course nothing else but the copula function. 

Another contribution by Feron concerns the formulation of Frechet's question 

in the discrete case as a linear programming problem: 

Max 

01 
k 

nk! =H (xi, yj) 
k<i l<j 

r 

LP(1) Ni => nij (2.3) 
j=1 

S. t. q 

NN=2_'nij 
i=1 

nij>0 

In 1958, Gumbel in the Compte Rendus de l'Academie des sciences de Paris 

went further than the existence of the joint distribution and provided an analyt- 
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ical solution to Frechet's problem that encompasses the case of independence. 

In order to do this he used a copula function introduced by Morgenstern in 

1956: 

C(U, V)=UV(1+a(1-U)(1-V)) with -1<a<1 

Gumbel provides an example using gaussian distributions for the margins. This 

leads us to define the following bivariate density: 

h (xi, x2) = 
02H (xi, x2) 

0x1ax2 
=1 (1 +a (M (x, ) - 1) (2e (x2) - 1)) exp -2 

(xi + x2) 

More generally, Gumbel proposed a multivariate distribution with the following 

structure: 

NN 

H (Ili X2, ... ' IN) =f Fj (xi) 1+a [J (1 - Fj (xi)) 

=i i=i 
However, as shown by the bivariate example with gaussian margins, the ability 

to describe dependence is highly restricted since the correlation coefficient must 

satisfy by construction IpI < . 
1, so there was a need to develop new families 

of copulae that allow for more general dependence. During the second part 

of the 20th century, many developments on copulae appeared in mathematics 

(especially in the field of probabilistic metric spaces - see the very important 

book by SCHWEIZER and SKLAR (1983)) and statistical research. We refer 

to the two main textbooks that summarize the "state of the art" on copulae: 

JoE (1997) and NELSEN (1998). 

2.3 Financial Applications of copulae 

The application of copulae to finance is quite recent. Certainly, the most influ- 

ential paper is "Correlation and dependency in risk management : properties 
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and pitfalls" by EMBRECHTS, MCNEIL and STRAUMANN (1999). Indeed, even 

if some previous papers introduced the advantages of introducing the concept 

of copula (for example FREES and VALDEZ (1998)) to financial problems, Em- 

brechts et al. were the first to identify the power of the approach. Many of 

the original influential authors are members of the Eidgenössische Technische 

Hochschule Zurich and we especially refer the reader to the Masters Thesis of 

LINDSKOG (2000) for an introduction to copulae. Another research group has 

been playing an important role in the growing interest of financial research- 

ers in copulae: the Groupe de Recherche Operationelle of Credit Lyonnais, a 

french bank's research department located in Paris. A much cited paper by 

BOUYE, DURRLEMAN, NICKEGHBALI, RIBOULET and RONCALLI (2000) was 

presented at the 2000 Bachelier Conference in Paris. The authors pointed out 

the various possible applications of copulae for finance. 

PATTON (2001a) explored the use of copulae in econometrics. The author 

studies the dependence between the Deutsche mark - U. S. dollar and Yen 

- U. S. dollar exchange rate returns. He finds that the dependence is time- 

varying and asymmetric. Moreover he shows that the introduction of the euro 

has implied a change in the dependence structure. In another paper PATTON 

(2001b) studies a copula based multi-stage maximum likelihood estimator. An 

application of the estimator to daily Japanese yen - U. S. dollar and euro - 

U. S. dollar exchange rates is provided. Again, the author finds evidence of 

asymmetric dependence. An application of this asymmetric dependence to 

asset allocation for a constant relative risk aversion (CRRA) is provided in 

PATTON (2001c). In her job market paper, HU (2001) constructs a mixed 

copula to model positive dependence and provides some possible applications 

of her model. In this paper, three shapes are defined: L-shape for joint crashes, 
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J-shape for joint booms and U-shape for symmetric comovements. In the 

same manner, JONDEAU and ROCKINGER (2001) apply bivariate copulae with 

GARCH-type margins to daily returns of stock-market indices. We note that 

the asymmetric dependence of financial returns was pointed out before by 

LONGIN and SOLNIK (2001) and ANG and CHEN (2001). 

An important financial area where copulae are very useful is the modelling 

of joint defaults. The default correlation concept is developed in Li (2000). 

The copulae have then be used in the two approaches that coexist in the credit 

litterature: the structural approach d la Merton and the intensity approach 

(GIESECKE (2001)). In the intensity litterature, the margins correspond to the 

distribution of the survival time of each obligor and the copula function per- 

mits to introduce dependence between them. SCHÖNBUCHER and SCHUBERT 

(2001), develop a copula based dynamic model of the joint defaults in a continu- 

ous time framework. They obtain closed formulae for a specific copula family 

(called Archimedean) and furnish a modus operandi to simulate the joint be- 

haviour of the default times. HAMILTON, JAMES and WEBBER (2001), discuss 

the calibration issue from historical default times. This litterature is of great 

interest, especially in the context of a growing credit derivatives market with 

two underlying issues: (i) the pricing of financial products (Collateralized Debt 

Obligation, Collateralized Fund Obligation, First to default, nth to default, 

etc) and (ii) their risk management as required by the banking regulations of 

Basle II. The copulae are also adopted for option pricing in CHERUBINI, U. 

and E. LUCIANO ((2002a), (2002b)). 
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2.4 Definitions and properties 

In this section, we review the main definitions and properties that are necessary 

to begin to work with a copula function. 

Definition 1 (Nelsen (1998), page 39) An N-dimensional copula is a func- 

tion C with the following properties: 

1. Dom C= [0,1]N; 

2. C is grounded and N-increasing. 

3. Ck (u) = u, VuE [0,1] 
, 
`d k=1, 

... ,N with Ck (u) =C (1, 
... 1 

1, u, 1, 
... 1 

1) 

the k-th margin of the copula 

The first condition indicates that each element of the copula might be a 

cumulative distribution function that corresponds to a probability level (and 

thus bounded between 0 and 1). In order to satisfy the same property as a 

multivariate distribution, the copula has to be grounded, N-increasing and we 

should know its margins either parametrically or nonparametrically. Indeed, 

a copula is nothing else but a multivariate distribution defined on uniform 

margins. 

Theorem 1 (Sklar's theorem) Let F be an N-dimensional distribution func- 

tion with continuous margins F1,. 
.., 

FN. Then F has a unique copula repres- 

entation: 

F (x�. 
.. 9 XN) =C (Fl (xi) 

, ... 1 
FN (xN)) (2.4) 

Let f be the N-dimensional density function of F defined as follows: 

f (x1, 
... , XN) = 

OF (x,.... 
, XN) (2.5) 

a21... 0XN 
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Then we have 

xN) _ 
aC(Fl (xi),... 

IFN 
(XN)) 

19X1... aXN 

With the notation u, a = F,, (xn) for n=1, ... , 
N, we obtain 

N 

f (xi, 
... , XN) - 

Il fn ýxný 
Ö2L1".. Ö1LN 

n=1 

with f, a the density corresponding to F. The term ac("'*""') is called the 8 ui... O UN 

copula density of C and is noted c (ui, 
... 7 UN). Obviously, 

C(F1(xl),..., FN(XN)) =f(,..., 
Xrj)" (2.6) 

N 
11 fn(xn) 

n=1 

To illustrate the copula family, two famous copulae, Gaussian and Gumbel3 

are plotted for different values of their parameter corresponding to different 

degrees of dependence (Figures 2.1 and 2.2). Figure 2.3 (respectively Figure 

2The bivariate Gaussian copula distribution is 

ý! (ul, u2; P) _ op (P-1 (u1) 
1 

-1 (u2)) 

with (PP the bivariate gaussian cdf with correlation parameter p, and ''(. ) the inverse 
gaussian cdf. The bivariate Gaussian copula density 

exp 2 (x2 + y2) x2 + y2 - 2pxy 
e(uiiu2; P)- 

1-p2 

1_ 

2(1-P2) 

I 
exp 

with x=4)'1(ui) andy=ß'1(u2). 

3The distribution function of the Gumbel copula is 

C(u, v; b) = exp 
{-((- log u)5 +(-log v)5)1/6 

} (2.7) 

with 6E [1, oo) and its density function is 

b- c(u, v; )- C(u, v; b)(uv) 
(-logu) + (gl gV)6)2-1/8 

[((- log U)' log V)6)1/6 

(2.8) 
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2.4) plots three different bivariate distributions based on the same Gaussian 

(respectively Gumbel) copula with different margins. 

Figure 2.1: Contours of the bivariate Gaussian copula density for different 

values of the correlation parameter. The two first plots corresponds to negative 
dependence. The other plots exhibit positive dependence. 

Definition 2 Let (C, D) E C2 with C the set of copulae. One says that C is 

greater than D, rioted C-D, if 

Vu E [0,1]'"' 
,C 

(u) >D (u) 

Theorem 2 (Frechet Bounds) Let CEC. Then, 

C- <C -ýC 

where C-- and Cl are such that 

C (ui,..., uN)=max 

(1: 
u, -N+1,0 

n=1 

C+(u1,..., 'UN) =min(ui,..., UN) 
(2.9) 
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Figure 2.2: Contours of the bivariate Guinbel copula density for different values 

of the dependence parameter. This copula only characterizes positive depend- 

ence. 

The concept of order is of interest for copulae since it allows us to quantify 

the dependence between random variables. Another important copula is the 

product copula C--- that corresponds to independence - such that 

Cý 26N) 

rr=1 

The Frechet bounds and the product copulae are plotted in Figure 2.5. 

Theorem 3 Copula invariance 

If a rector of randoirr variables (Xi, X2, 
... , 

Xv) has a copula C, them tire 

vector 

(Ti (Xi ), T2(X. )), ... , 
T., v(X, v)) - with Ti, T2, 

.... 
TN increasing conti. nuozis 

functions 
- has the same copula C. 
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Figure 2.3: Three different bivariate distributions based on the same Gaus- 

sian copula with correlation parameter p=0.3 but with different margins. 
The margins are respectively: (i) gaussians, (ii) a-stable and Student, (iii) 

lognormals. 

2.5 General types of dependency 

In this section, we review several different types of (lej)endeiicv. Moreover. we 

indicate how the measures can he linked to the copulae functions. 

2.5.1 Concordance and dependence measures 

Definition 3 (Nelsen (1998), page 136) A numeric measure i of associ- 

ation between two continuous random variables Xi and X2 whose copula is C 

is a measure of concordance if it satifies the following properties: 

1. n is defined for every pair X1, X2 of continuous random cariables; 

2. -1 = Kx -x 
< KC < Kx x=1; 

3. KYI 
, x2 _ kx2, xl; 
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Figure 2.4: Three different bivariate distributions based on the same Gumbel 

copula with dependence parameter b=3 but with different margins. The mar- 
gins are respectively: (i) gaussians, (ii) a-stables, (iii) a-stable and Student. 

4. if Xl and X2 are independent, then' x1, x2 = n; c- = 0; 

5.6_x,,. 
2 = kxI, -x2 = -kxI, x2 

6. if Ci -< C2, then i c1 < 'c2; 

7. if {(Xl, 
71, 

X2, 
n)} 

is a sequence of continuous random variables with cop- 

ulae C, and if {C,,, } converges pointunse to C. then limn-oc 'c� = KC. 

Three famous concordance measures are the Kendall's tau T, the Spearman's 

rho o and the Gini index ry. SCHWEITZER and WOLFF (1981) show that 

r=4JJC (ui, u2) dC (ui, u2) -1 (2.10) 

= 12 
Jf 

u, u2 dC (ul 
, u2) -3 (2.11) 

[0,112 

y=21/ (1u1 + u2 - 11 - jul - u2j) dC (ul, u2) (2.12) 
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CV C1(u. v) C'(u, v) 

V. V. 

Figure 2.5: C, C1 and C' in the bivariate case 

Definition 4 (Nelsen (1998), page 170) A numeric measure S of associ- 

ation between two continuous random variables Xl and X2 whose copula is C 

is a measure of dependence if it satifies the following properties: 

1.6 is defined for every pair Xj, X2 of continuous random variables; 

2.0 =bc_ <bc <bc+ = 1; 

3. bx,, x2 = bx2, x,; 

4.5x,, 2= bCl =0 if and only if Xi and X2 are independent; 

5.6x,, x2 = bc+ =1 if and only if each of Xi and X2 is almost surely a 

strictly monotone function of the other; 

6. if hl and h2 are almost surely strictly monotone functions on Im Xl and 
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Im X2 respectively, then 

Shi(Xi), 
h2(X2) -'X1, X2 

7. if {(X1,,,, X2,,, )} is a sequence of continuous random variables with cop- 

ulae C, and if {C} converges pointuise to C, then 5c� = Sc. 

Two famous dependence measures are the Schweitzer or Wolf's a and Hoeff- 

ding V: 

Q= 12110. 
il2 

IC (Uri U2) - Cl (Uri U2)1 du, due (2.13) 
( 

12 

IC (Uli u2) - 
Cl (Uli u2) 

12 du, dug (2.14) (DZ = 90 
11j0, 

] 

2.5.2 Other dependence concepts 

There are many other dependence concepts, that are useful for financial ap- 

plications. For example, Xl and X2 are said to be positive quadrant dependent 

(PQD) if 

Pr IX, > x1, X2 > X2} > Pr {Xi > x, } Pr {X2 > x2} (2.15) 

Suppose that Xi and X2 are random variables standing for two financial losses. 

The probability of simultaneous large losses is greater for dependent variables 

than for independent ones. In terms of copulae, relation (2.15) is equivalent to 

Cý-Cl (2.16) 

The notion of tail dependence is also interesting since it allows to focus 

on the joint extremal behaviour of random variables. JOE (1997) gives the 

following definition: 
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Definition 5 If a bivariate copula C is such that4 

lim 
C (u' u) 

=A (2.20) 
u_, 1 1-u 

exists, then C has upper tail dependence for AE (0,1] and no upper tail de- 

pendence for A=0. 

The measure A is extensively used in extreme value theory. It is the probability 

that one variable is extreme given that the other is extreme. Let A (u) = 

Pr {U1 > uI U2 > u} _°u, .A 
(u) can be viewed as a "quantile-dependent 

measure of dependence" (COLES, CURRIE and TAWN (1999)). In Figure 2.6, 

the tail dependence estimates between the daily log-returns of MSCI UK and 

MSCI France from january 1987 to january 2002 are plotted. It appears that 

the dependence between negative returns is not well fitted by the Gaussian 

copula. 

2.6 Nonparametric modelling 

DEHEUVELS (1979) introduced the empirical copula functions. For a sample 

{Xt}t-1�_T, the empirical copula distribution is 

4C is the joint survival function, that is 

(2.21) 

C (ul, u2) = 1- ul - u2 +C (ul, u2) (2.17) 

Note that it is related to the survival copula CS 

Cs(Ui, u2)=ul+U2-1+C(1-u1,1-u2) (2.18) 

in the following way 

, 7, =T1 [Xt (t1) t (tn) t (tN) 
tl t� tN 1 

E=1 I- I n- n v- N- N 

C (ul, u2) = CS (1- ui, 1- u2) (2.19) 
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Figure 2.6: Tail dependence estimates between the daily log-returns of MSCI 
UK and MSCI France from (01/1987-01/2002). The absciss axis correspond 
to different quantiles. The triangles correspond to tail dependence for simu- 
lated bivariate returns under the assumption of a gaussian copula. The circles 
represent the empirical tail dependence directly extracted from data. The 4 

windows correspond to the 4 cases: (i) +/+ a short position in MSCI France 

and a short position in MSCI UK (ii) +/- a short position in MSCI France 

and a long position in MSCI UK (iii) -/+ a long position in MSCI France 

and a short position in MSCI UK (iv)-/- a long position in MSCI France 

and a long position in MSCI UK 
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where x. are the order statistics and 1< ti, 
... , tN < T. The empirical copula 

frequency corresponds to c(T, 
... ,T7... , Ti =T if (X(tl), 

l... , 
xN )) belongs 

to X or 0 otherwise. The relationships between empirical copula distribution 

and frequency are 

\ 
ti tN 

/ C (Li,..., T,..., TI=z... 
cIT,..., T,..., 

T) 
(2.22) 

il=1 ihr=1 

and 

22 

.. 
(_1)ii+... +iN C 

ti to tN 
_T T'' T 

1: 
L 
il=1 ihr=1 

Xtl-il+1 
tN-2N+1 

T '' '' T 

(2.23) 

The empirical copula density function for the daily log-returns of MSCI UK 

and MSCI France is provided in Figure 2.7. Empirical copulae could be used 

to estimate dependence measures. For example, estimation of Spearman's e is 

given by 
TT 

Lo - 
12 (4ý tl t? 

- 
tlt2 

(2.24) 
T' T TZ T2- 1 

=1 t2=1 tl 
SCAILLET (2001) derives the asymptotic properties of kernel estimators of 

copulae for multivariate stationary process. The author also develops inde- 

pendence tests and furnish an empirical application to European and US stock 

returns. 

2.7 Copulae, Likelihood and Estimation 

The maximum likelihood estimation (MLE) method is certainly the most 

widely used estimation method in the statistical litterature. For copulae, three 
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Empirical Copula Frequency (Surface) 
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Figure 2.7: Empirical copula density estimation between the daily log-returns 

of MSCI UK and MSCI France from (01/1987-01/2002). 

methods are available (see JOE and Xu (1996)): 

1. The full MLE method: the parameters of the copula and margins are 

estimated simultaneously. 

2. The Inference Function for Margins (IFM) method: it is a two-step pro- 

cedure. First, the parameters of the margins are estimated. Second, 

MLE is applied to the copula. 

3. The empirical MLE method: only the parameters of the copula are es- 

timated. The cdfs are obtained by empirically mapping variables to 

uniforms. 

42 



CHAPTER 2. COPULAE: HISTORY AND GENERAL FRAMEWORK 

Let us develop these methods. Let X be a d-dimensional random variable 

with the following distribution function 

F(x; y1...... yd, 6) =C (Fi(xi; 11)1..., Fd(xd; 'Yd)1 a) 

where yj (j = 1, 
... , 

d) the parameters of the margins and 6 the parameters 

of the copula function. Then, X has for density 
d 

f (x; -il, ... , '7d' ö) =c (F, (x1; ßi1), ... 7 
Fd(xd; yid), 5) Il fj (xj+ -tj) (2.25) 

j=1 

2.7.1 The full MLE method 

The log-likelihood of the joint distribution function for a sample of size T is 
T 

L(x; -yl,... , 'Yd, S) _ log f (xi; 7i..... Ya, (2.26) 

The MLE estimates (i' 
... , 

=ya, S) maximize L, they are obtained from 

solving: 

8L 8L 8L 
_0 

Cý, 

1,... f8"id'8Ö 

(2.27) 

2.7.2 The Inference Function for Margins (IFM) :a 2- 

step method 

First, the d log-likelihood functions for the univariate margins are considered: 

Lj(-Y1) _ logfi(Xt. i; 'Yj) 
i=i 

for j=1,..., d (2.28) 

and the estimates 7i, 
... ,'' maximize respectively L1, 

... , 
Ld. Second, the 

log-likelihood of the joint distribution function L(=y1, 
.-., 

%yd, S) is maximized 

over 3 to obtain S. Finally, the IFM estimates (7i, 
... , 

yd, S) are obtained 

from solving: 

(1 2- =U 

(2.29) 

43 



CHAPTER 2. COPULAE: HISTORY AND GENERAL FRAMEWORK 

2.7.3 The empirical MLE method : no parametric as- 

sumption for marginals 

First, the d variables are mapped to uniforms: 

XERdº---; uE(0,1)d 

Then, the parameters of the copula 6 are obtained by maximizing the log- 

likelihood of the copula cdf: 

LA(S) _ log c(ui; S). (2.30) 

i=i 

The estimate 3 is obtained by solving: 

8b - 
(). 

(2.31) 

2.7.4 Comparison of the three methods 

The empirical and IFM methods have the advantage to make inference for mul- 

tivariate models computationally feasible. Anyway, these methods are useful 

to fix the starting values for the full MLE method. As noted in Joe and Xu 

(1996), IFM and full MLE are equivalent for the multivariate normal distri- 

bution. The authors also provide the general types of conditions that must 

hold for the IFM estimator to be asymptotically normally distributed. How- 

ever it is difficult to provide a general framework for the comparison of the 

IFM and full MLE estimators (problems of tractability). The properties of 

the empirical MLE estimator are investigated in Genest, Ghoudi and Rivest 

(1995). They show that this estimator is consistent, asymptotically normal 

and fully efficient at independence. There also exists a consistent estimator of 

its asymptotic variance. The three approaches generally may not lead to equi- 

valent estimators and Monte Carlo simulations have often to be used. As an 
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example, the three methods are compared in Figure 2.8 for a Gaussian copula 

with correlation 0.5. The larger the sample size, the closer the estimates of 

the three MLE methods. For multidimensional finite sample (typically finan- 

cial data), there is a trade-off between (i) the efficiency of the estimation and 

(ii) the tractability of the estimation. Indeed, the full MLE method is more 

efficient but less tractable than the two others methods. 
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Figure 2.8: Comparison of the estimates for the three MLE methods. A Gaus- 

sian copula with p=0.5 is simulated and the estimations are performed for 
different sample sizes. 
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Chapter 3 

Portfolio Risk Management : an 
Application of Multivariate 
Extremes 

3.1 Contents and contributions 

The chapter starts with some standard definitions of the extreme value the- 

ory in its second section. The univariate case is presented (Gumbel (1960)). 

The multivariate case that introduces the copulae that are eligible for model- 

ling extrema is due to Deheuvels (1978). Deheuvels proposed a theorem that 

constitutes the theoretical starting point of the chapter. Then, three famil- 

ies of multivariate extreme value distributions are described: Gumbel (1960), 

Hiisler and Reiss (1989), Joe and Hu (1996). The Gumbel copula is the first 

extreme copula to be used in the financial literature, but only in the bivariate 

case (Longin and Solnik (2001), Journal of Finance). To our knowledge, the 

explicit formulation of the Hüsler and Reiss copula is new. The chapter is 

the first application of the inference for margins method (Joe and Xu (1996)) 

to extreme value distributions. Section 4 contributes to the literature in two 

ways: (i) it contains the first trivariate extreme value estimation applied to 

stock market indices: we provide location, scale and tail parameters estim- 
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ates of the univariate extreme value distributions for the MSCI US, MSCI 

Germany and MSCI Japan indices. Moreover, the parameters estimates for 

three extreme value copulae are computed. This provides a new link between 

the three markets described above ; (ii) it offers a comparison of three non- 

nested extreme value models and concludes that the Hüsler and Reiss copula 

we introduced best fits the data (Cox test criterion). In section 5, we present 

a new concept - the financial failure area - and apply it to stock market re- 

turns. We furnish a new modus operandi for risk management with formulae 

and examples. Finally, we propose an innovative copula based methodology 

to compute standard risk measures such as value-at-risk or expected shortfall 

and we again provide original empirical applications. 

3.2 Introduction 

The behaviour of portfolios during financial crises is an important element of 

risk management (Basle Committees I and II). The goal of this chapter is to 

construct a methodology to calculate risk measures - such as value at risk 

and expected shortfall - which directly come from the extremal dependence 

structure between portfolio components. This is achieved by considering their 

multivariate extreme value (MEV) probability distributions. 

Extreme value theory (EVT) is now a well developed tool used to model 

maxima and minima of financial returns. A seminal paper is Embrechts and 

Schmidli (1994) in an insurance context. Longin (1996) provides a study of 

stock market extreme returns. An influential book that provides a "state of the 

art" of the subject is Modelling Extremal Events for Insurance and Finance 

by Embrechts, Klüppelberg and Mikosch (1997). However, the extension to 

multivariate modelling is not obvious, as pointed out by Embrechts, de Haan 
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and Huang (2000). However, some examples of MEV theory can be found 

in the non-financial literature (for example Coles and Tawn (1991), Coles and 

Tawn (1994), de Hann and de Ronde (1998)). For an overview of the theoretical 

aspects of the subject, we refer to Resnick (1987). 

In the financial literature, some measures for extremal dependence between 

returns can be found in Straetmans (1999) and Stäricä (1999) and Longin 

(2000) who proposed an approach based on EVT for computing value at risk 

compatible with extreme events. Longin provides an ad hoc aggregation for- 

mula to approximate the value at risk. 

As noted above MEV distributions often become analytically intractable. 

An interesting way to avoid these difficulties is to use a copula function that 

allows us to split the univariate extremes from their dependence structure. 

Concerning the application of copulae to joint extreme events, a bivariate case 

with two assets is presented in Longin and Solnik (2001) who use a Gumbel 

copula to study the conditional correlation structure of international equity 

returns. However, as we will show in this chapter, there are many possible cop- 

ulae to model joint extremal dependence. These copulae may exhibit different 

dependence structures. For example, the Gumbel copula induces a particular 

(called compounded) dependence structure if the dimension is higher than two 

as we will further see in more details. 

In the second section, we introduce univariate EVT and review the link 

between copulae and MEV distributions. Then, we present three copulae that 

can be used in an extreme value context. In the third section, we describe our 

estimation methodology and provide an application to the joint dependence 

of German, Japanese and US market indices during extreme events. In the 

fourth section, we use the estimated parameters of the MEV distribution to 
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compute risk measures for multi-indices portfolios. Specifically, the risk of the 

portfolios is studied from two directions: (i) multivariate stress testing and (ii) 

Monte-Carlo based risk measures. The fifth section concludes. 

3.3 Multivariate Extreme Value Theory 

In this section, we first briefly introduce univariate EVT. We then state a 

theorem that tells us that a MEV distribution can be built from univariate 

extreme value distributions and a specific family of copulae. We present the 

three copulae that will be used through this chapter. The results for maxima 

are developed, although equivalent results exist straight forwardly for minima. 

3.3.1 Preliminaries 

The general context of univariate extreme value theory is easily explained. A 

very useful result is the Fisher-Tippett theorem which tells us that normalised 

maxima - under particular conditions - follow one of only three (extreme value) 

distributions. For i. i. d. random variables (X,, ), if there are constants a, > 0, 

bn ER and a non degenerate function G with an 1(X+ 
- bn) -dºG where 

X+ = max(X1,..., Xn), then G corresponds to: 

Type I (Gumbel) G(x) = exp(-e-x) xE 11 

Type II (Frechet) G(s) =0 
exp(-x'°) 

x<0a>0 
x>0 

Type III (Weibull) G(x) = 
exp(-(-x)", ) x<0a>0 
1 x>0 
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In practice the Von-Mises representation encompases this result and provides 

a unique distribution for all extremes: 

-b 
1/r 

G('Y; X+) = exp -1- TX 
a 

(3.1) 

with 
(1- 

T)>0 and -y = (T, a, b). We recover the three cases as T= 

0 (Gumbel), r= -a-1 <0 (Rechet) and T= a-1 >0 (Weibull). This 

distribution is called the Generalised Extreme Value (GEV) distribution. 

The theory of multivariate extremes was introduced by Gumbel (1960) and 

an overview can be found in Resnick (1987). The main reference given our 

current objective is Deheuvels (1978) which contains a theorem that allows us 

to split the problem of characterising multivariate extreme value distributions 

into two distinct problems: 

1. the characterisation of the univariate extreme value distributions 

2. the existence of a limiting dependence function (or copula) that links 

univariate extreme value distributions in order to obtain the multivariate 

extreme value distribution. 

This idea is summarized in the following theorem: 

Theorem 4 (Deheuvels (1978)) Let x be such that 

nn 

Xn - 
(Xl, 

n) """e Xd 
n) 

=v X1, 
k, ". 

V Xd, 
k 

(3.2) 

k=1 k=1 

with (X1, 
n, ... , 

Xd, 
n) an i. i. d. sequence of random vectors with distribution 

function F, marginal distributions F1,..., Fd and copula C. Then, 

lim Pr < Id =G o0(x1e".. x 
lim 

1,... , d) 
al, n ad, n 

V (x1,..., xd) E RN (3.3) 
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with aa, n > 0, j=1, ... , 
d, n>1 iff 

1. dj=1, 
... , 

d, there exist some constants aj, n and bj, 
n and a non-degenerate 

limit distribution G3 such that 

lim Pr Xi"-bj'" <xj=G, (xj) VxER (3.4) 
n-'oo a7, n 

-j 
l 

2. there exists a copula C,,. such that 

Coo (u1, 
... , Ud) = HM Cn (ui/n, 

... , u1/n) . 
(3.5) 

n-4oo 

If the conditions of the previous theorem are fulfilled, we have 

Goo (21i 
... , 2d) = C,. (G1 (x1) 

, ... , 
Gd (xd)) (3.6) 

The first condition is not specific to the multivariate case and is already present 

in univariate EVT. It corresponds to an existence condition. The second condi- 

tion directly informs us about the dependence structure that allows us to obtain 

MEV distributions with given margins. The link between the one dimensional 

extremes is obtained by applying the copula function C. The concept of 

maximum domain of attraction (MDA) is sometimes alternatively used. In 

the theorem above, each real-valued random variable X,, for j=1, 
... ,d 

has 

its own univariate distribution function Fj. And each maximum xj (respect- 

ively corresponding to XX) follows an extreme value distribution G3 (amongst 

the three already presented: Gumbel, Frechet and Weibull). We say that F3 

belongs to the maximum domain of attraction of G3 
. 

This concept can be 

extended to the multivariate distribution F that belongs to the MDA of the 

MEV distribution C. By introducing copula - see Galambos (1978) for more 

details - the theorem can be restated as follows: 
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Theorem 5FE MDA (G... ) if 

1. F, EMDA(G1)Vj=1,..., d; 

2. CE MDA (C. ). 

The copula C models the dependence of the original real-valued random 

variables and C,,. links their maxima. We will call C,,. an extreme value copula. 

3.3.2 Some families of MEV copulae 

There are many candidates for extreme value copula. As indicated by De- 

heuvel's theorem, an extreme value copula C should satisfy' : 

C (t4, 
... , 

tN) 
_ Ct (u11 

... 7 UN) Vt>0 (3.8) 

A corollary of this condition is that extreme value copulae only model positive 

dependence and this will influence our modelling strategy as we will see below 

for the empirical estimation of the copulae parameters. For an overview of 

extreme value copulae, we refer to Joe (1997). However, many of them are 

not tractable in high dimensions. For our study, we focus on three copulae: 

Gumbel, Hüsler and Reiss, and Joe and Hu. Our choice is motivated by the 

fact that these copulae can be expressed in a recursive form. This property 

is of particular interest from a numerical point of view as it means that the 

copula of dimension d can be directly deduced from the copula of dimension 

1 We note that the multivariate gaussian distribution - that is often an assumption in 
financial theory - is not a good candidate for our current objective. More precisely, to 

postulate that a vector follows a multivariate gaussian d. f. is equivalent to assume that: (i) 

each vector component follows an univariate gaussian distribution, (ii) the link between the 

components is provided by the gaussian copula. The problem arises from the fact that the 
gaussian copula belongs to the MDA of the product copula Cl such that 

Cl (ul, 
... ) un )= U1 x ... x u� (3.7) 

In short, this would lead to assume independence for the extremes. 
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(d - 1). In the following subsections, we will provide the functional forms 

of the chosen copulae, the formulae that allow us to extend them to higher 

dimensions and we will discuss the dependence structure they exhibit. Let us 

denote by Ud = (ui, 
... , Ud) = (Gl (x1) 

, ... , 
Gd (xd)) the d-margins vector and 

Sd the extreme dependence parameters vector whose dimension depends on the 

copula. 

3.3.2.1 Gumbel 

The bivariate Gumbel copula 

C (ui, U2; S) = exp I- (ü + 2ü2)ä) (3.9) 

with 6E (1, oo). This copula can be extended to a higher dimension by the 

compound method as follows: 

C (ud; ad-1) =C (C (Ud-1i Sd-2)' Ud) 
6d-3 

fd- 

= exp - 
[(... (... [(ui_i 

++ , uöd1 

67-1 d-n 6g 
+ 

... 
+ 2iýd-nt1) 

6d-ntl + 
... 

+ iLaý 
1s 'ý 1Lýd1 

(3.10) 

and the dependence structure is given by 6d_1 = (ö', 
... 

A-1) as follows: 

8d-1 - (Xl X2) 

Sn 
(x, 1 

x. ) 
""" (X29 X3) 

Sl (Xl)Xd) 
" .. 

(Xn7 Xd) ... 
(Xd-1, Xd) 

(3.11) 
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with oo > 6d_1 > 
... > S3 > 62 > Sl > 1. The parameter 6d_1 charac- 

terizes the dependence of one pair and the parameter 61 of (d - 1) pairs. The 

Gumbel copula employs a few parameters and then induces clustering. 

3.3.2.2 Hüsler and Reiss 

The bivariate Hüsler-Reiss copula is given (Hüsler and Reiss (1989)) by: 

C (ul, u2; S) = exp 
{ 

-üiý 
(s_' 

+2 
16 

In 
(ii? )) 

- U2ý 
(S-1 

+2b In 
(iiii 

i, ) 
(3.12) 

where 6>0 and üi = -In ui = -In G1 (x1). Although the Gumbel copula 

is characterised by (d - 1) parameters, the multivariate HUsler-Reiss copula 

contains d -1 parameters S" 1<i<j<d and bi j= 6v). It can be 

derived recursively2: 

nud f -I 
C (ud; ad) =C (ud-1i ad-1) x exp - d-1 

(kd-1 (Ud-1, Q); Pd-1) d(3.16) 

2 The expression of this copula directly comes from the link between Multivariate Extreme 
Value (MEV) Distributions and Min-Stable Multivariate Exponential (MSMVE). Indeed, 
with C an MEV copula, if one can write: 

C(ul,..., un) =D(ül,..., ü�) (3.13) 

with üi =- In ui then D is an MSMVE distribution. Let use the definition of the dependence 
with A=- In D, as in JOE [1997] (p. 184), the Hüsler-Reiss is defined recursively: 

iln 

fo A (Yni 6,, ) =A (Yn-1i an-1) + 'Pn-1 (icn-1 (exP (-un-1)' 
Q); Pn-1) d9 (3.14) 

and equation (3.16) follows. In the trivariate case, we have: 

C (u3; 63) =C (u2; 62) x exp - 
Inu9 

'P2 (K2 (u2, q); P) d4 (3.15) 
0 

where 
61.362.3 (6-2 a-a b_2ý P= P3,1,2 =21,3 2,3 - l, y 
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with 
1 

Pd, 1,2 

Pd-1= Pd, 1,3 

Pd, 1, d-1 

1 
Pd, 2,3 

Pd, 2, d-1 ''' Pd, d-2, d-1 
1 

- 
bi, d-161, d-1 -2 -2 2 

where pd-i, ij -2 
ýSi, 

d-i + b3, d-1 - b. ) and 

ud = 
(U1, 

... , Ud) 

ad = 
(bij, 1<i<j< d) 

1td-1 (Ud-1, q) = (icl, 
d 

(u1, q) "" "' td-1, d 
(ud-1, q)) 

With ICi, d 
(ui, q) = bi 

d+ 2si, d 
In I 3-J 

In u; 

for i=1,..., d -1 

and 1k (.; p) corresponds to the multivariate gaussian cumulative function with 

correlation p. 

3.3.2.3 Joe and Hu 

Another interesting copula has been defined by Joe and Hu (1996): 

i 
dd1dI 

B. 3C (ua; 5d) = exp - 
[pju)ö15 

+ (Pipi)d s+ vtPiüi 
i=1 j=t+1 t=1 

(3.17) 

with p; = (v; +d -1)-1 and where Sd has the following elements: Sij the 

pairwise coefficients, vi the bivariate and multivariate asymmetry coefficients 

and 0a common parameter. To extend this copula to higher dimensions, one 

only has to extend the sum components of the formula. The bivariate margins 

are given by: 

11 

Cti (ui, uj) = exp - 
[(Piii1q), i, j + (Pjiijt, ), i. j], ri-, j + (3.18) 

[(ui+d_2)piu+(vj+d_2)pju 
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3.4 Empirical estimation of copulae paramet- 

ers 

Estimation is a two-step procedure. First, the parameters of the marginal 

distributions are estimated, then the original variables are mapped to uniforms 

using these estimated parameters and the dependence parameters are then 

estimated. A detailed description of this procedure can be found in Joe and 

Xu (1996). In practice, for each margin, a sample of size nT can be divided 

into T blocks of n observations. Then, T maxima are available: X, +, (t) _ 

max(Xn(t_l)+1,..., Xnt) with t=1... T. The likelihood function is: 

T 

L(-y; X+) =H g(-y; Xn(t»1J1-T 
>o} 

(3.19) 

t=1 la 
1-1 11'r 

with g(ry; X+) =ä 
(] 

- rr 
) 

exp - 
C1- 

T The log-likelihood 

estimator for each margin is then: 

=y = arg max 1n L (yy; Xn (l)> 
... 1 Xn (T) 

IE9 

-T ln(a) + (r -1) Et 
11n 

(i 
- , r_ b 

= arg meax 
T +(Xn ý) b 

1/T 

- 
ýt_i ý1 

-Ta/ 

(3.20) 

where Xn (t) is the maxima of the tth block. The score vector s (-y) is as usual: 

s(-y) =ö 
log g(-f; x) (3.21) 

a-Y 
where the derivatives are developed in the Appendix. Finally, to compute the 

standard errors, an estimator (Q(ry))-1 of the asymptotic covariance matrix is 

used : 
T 

ýQ(7)) = T-1 E s(-Y)s('Y)T 
e=i 
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We apply this approach to daily returns for MSCI US (MSUS), MSCI Ger- 

many (MSGE) and MSCI Japan (MSJP) indices. The dataset starts from 

1/1/1981 to 1/1/2001. Estimation by blocks, as described above, has been 

applied and different block sizes have been tested to insure the consistency of 

the results. The results are presented for a block size of 21 that corresponds 

to one trading month. 

-x MSGE MSUS MSJP 
Location parameter b 0.0263 0.0194 0.0255 

(0.0014) (0.0013) (0.0018) 
Scale parameter a 0.0094 0.0084 0.0109 

(0.0012) (0.0011) (0.0015) 
Tail index -0.2824 -0.3259 -0.3617 

(0.1023) (0.0981) (0.1422) 

Table 3.1: MLE for the parameters of the univariate GEV for the minima 
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Figure 3.1: Estimated GEV distributions for minima 
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X+ MSGE MSUS MSJP 

Location parameter b 0.0281 0.0203 0.0315 
(0.0014) (0.0013) (0.0018) 

Scale parameter ä 0.0103 0.0065 0.0118 
(0.0012) (0.0011) (0.0015) 

Tail index -0.0957 -0.2064 -0.2502 
(0.1023) (0.0981) (0.1422) 

Table 3.2: MLE for the parameters of the univariate GEV for the maxima 
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Figure 3.2: Estimated GEV distributions for maxima 

From tables 3.1 and 3.2, it appears that extreme returns follow a Rechet 

distribution (the tail indices are negative for all market indices). The degree of 

fatness is given by the absolute level of the tail index. The higher the absolute 

value of the tail index, the higher the fatness. As confirmed by the figures 3.1 

and 3.2 (the left plot is the extreme value density functions, the right plot is 

a zoom in the tails with log-scale), MSGE has the lowest degree of fatness for 

both minima and maxima, and MSJP has the greatest degree of fatness for 

both minima and maxima. The second step of estimation consists of estimating 

the parameters for different dependence structures. The log-likelihood 2 of the 
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_ 
multivariate extreme distribution is: 

4X12... 
IXd; 7e6) = Ing(Xd,... 

7Xd; ', a) 

T 

= In c(G(Xit); 'Yi),... G(Xdt); id); a) 3.22) 

c=i 

where Xi = 
(Xýl) 

""", X(T)) for i=1,. 
.., 

d, g the asymptotic MEV density 

and c the associated copula density3. A criticism of this estimation method- 

ology might arise from the fact that extrema may not occur simultaneously 

(same day) in one month. However, we believe that this method is asymptotic- 

ally valid since the asymptotic MEV distribution is usually found by assuming 

componentwise extrema. An alternative estimation method called threshold 

estimation method could be used. It would lead us to use a multivariate 

generalised pareto distribution that is directly linked to a MEV distribution. 

We refer to Longin and Solnik (2001) for an application of this technique to 

financial series. Moreover, the goal of the chapter is to focus on risk manage- 

ment implications rather than estimation methods. The ML estimator of the 

dependence parameters is: 

S= arg max In g(Xl,... , Xd; y, 6) (3.24) 
JE0 

with 0 the set of dependence parameters. As seen above, extreme value copu- 

lae can only model positive dependence. Consequently, if one wants to model 
3Let g be the N-dimensional density function of G defined as follows: 

9(xi)... 1 xN) = 
OG(xl,..., XN) (3.23) 

ax1... 0XN 

With the notation u,, = G,, (xn) for n=1, ... , 
N, we have 

19 C(u19 
..., UN) 

with c the copula density of C. 
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the minima and maxima simultaneously, one needs to split the estimation prob- 

lem. For example, if we are interested in estimating the bivariate dependence 

parameters for the extrema of three variables, we will have to estimate twelve 

dependence structures - four for each pair -, as summarized in the following 

diagram: 

( Xl + X2) (x 
s . i2) (X2 

I 
x3) (x 

+x 

(XI 
+ X2 (x xi) (X2 , X3) (X2' 

I X3 

Extending this methodology, it will be necessary to estimate eight different 

copulae for the trivariate case. The results for the three market indices are 

reported below. The subscripts 1,2 and 3 are respectively used for MSGE, 

MSUS and MSGE. 

Let us comment the results of Table 3.3. The abbreviation ldv means 

"less dependent variable" and corresponds to the number of the variable that 

exhibits the lowest dependence with the two others extremes. This is motivated 

by the fact that only two parameters are estimated for the Gumbel copula. One 

parameter measures the dependence for one pair, the other one - corresponding 

to a lower dependence - is common for the two remaining pairs. In most cases, 

the dependence is higher between the extrema of MSGE and MSJP, except for 
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the minima of MSUS and MSJP. The highest extremal dependences appear 

for: (i) a long position in the MSJP and a short position in the MSGE, and 

(ii) a short position in the MSUS and a short position in the MSJP. We note 

that these dependence measures are conditional to the dependence with the 

extremes (maxima or minima) of the remaining index. Not surprisingly, the 

dependence hierarchy is the same for all three copulae. Since the Hüsler-Reiss 

copula is asymmetric, three parametric dependences are possible. Indeed, the 

choice of the Hüsler-Reiss MEV distribution depends on the two market indices 

that are firstly selected. The dependence pattern with the higher likelihood 

has been selected and reported in the table. Some numerical difficulties arose 

in finding the maximum likelihood parameters for the Hu-Joe copula. This led 

us to constrain the common dependence parameter 0 to 1. 

The three copulae are non-nested models. Cox statistics are then computed 

to test between the alternative specifications (see Cox (1961)). We consider the 

maximum log-likelihood function evaluated under the two non-nested hypo- 

theses (corresponding to the two specifications of the copula function). Then, 

The Cox procedure is applied: (i) we compute the likelihood ratio (LR) test 

statistic, (ii) a consistent estimate of the limit of the LR statistic under the 

first hypothesis - divided by the sample size - is numerically computed, (iii) 

this consistent estimate is subtracted from the LR statistic to obtain the ad- 

justed Cox statistic. Other criteria may be used like the extended Wald test or 

the extended score test. For all trivariate estimations, the HUsler-Reiss copula 

hypothesis can not be rejected against both the Gumbel copula hypothesis and 

the Hu-Joe copula hypothesis (at 5% level). 
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3.5 Application to risk management 

The results above can be applied to risk management in two ways. First, it is 

possible to compute stress test values that would correspond to the evolution 

of the portfolio under extremal scenarios. Secondly, the parametric estimates 

of the MEV distributions can be used to simulate the joint extrema of the 

portfolio components. 

3.5.1 Stress testing scenarios design 

Draisma, de Haan and Peng (1997) define a failure area as the set of extrema 

with a given probability that at least one of them is exceeded. We will adopt a 

different definition by considering the set that corresponds to a simultaneous 

exceedence. Formally, this set Ap is: 

ds1.... n {(x1, 
... ' 

X, ) E R3' x 
... 

x R3 
' 

Pr x11 > 21, ... 
Xn > xn) = pI 

(3.25) 

with for i=1, 
... , n, s; =+ for maxima or - for minima. In the bivariate case, 

four sets need to be defined: Ap + AP -, A; +, AP -. In the trivariate case, eight 

sets are necessary: Ap ++, A+-, Ap-++, A-+- Ap -+, Ap -- A--+ A--- 
P 

More generally, for an n-dimensional problem, the number of sets equals 2". 

The probability involved for the characterisation of the failure area is nothing 

else but the survival distribution function that can be expressed with copulae 

(Joe (1997)) as: 

Pr (Xi' > xl, ... , Xn > x�) =1+ (-1)T Mt CM (G (xi; Yj) E M; SM) 

MEM 
(3.26) 

62 



CHAPTER 3. PORTFOLIO RISK MANAGEMENT : AN APPLICATION 
OF MULTIVARIATE EXTREMES 

where IMI denotes the cardinality of M the set of marginal distributions of C. 

For n=3, we have4: 

Pr (Xi' > xi, X; 2 > X2 Xä > x3) = (3.28) 

318Z 92 
1- C12 (G (xi; 'Yi81) ,G 

(x2; '72 ); p12 

-C13 
(G (x1; '11' G (x3; 733) i 01383) (3.29) 

9S 83 . 6,92 93 
-C23 

(G (x2; 12 
ý' G ýx3; 

ý3ý S23 

1, 
G 

2, 
G3 +C 

(G (21i 
/'1) 

(22; 
l'') 

(23; 
(83) ; 8318233) 

(3.30) 

with Csj the marginal copulae. 

From this definition, a natural question arises: which probability level 

should be chosen ? An elegant answer - often used in the statistical liter- 

ature and introduced by Gumbel (1958) for extreme value distributions - is 

to associate a waiting period t to the probability level p such that t=P. The 

univariate daily stress test scenarios for different waiting periods are reported 

in table 3.4. 

To illustrate the concept of failure area with two variables, we provide an 

example for the maxima of two abstract indices with the same univariate stress 
4 This formula comes directly as 

Pr (Xil > x1, Xs' > x2) X833 > X3) = 1- Pr (Xil < x1) Xz' < X2) 

- Pr(Xil < x1, X833< x3) 

- Pr (X22 < x2, X33 5 x3) 

+ Pr 
(X" < x1) X22 < X2, Xg, < X3) (3.27) 
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testing scenarios (+9%) but with different degrees of dependence (Figure 3.3). 

The higher the dependence, the lower the distance between the failure area 

and univariate stress testing scenarios. We then build the trivariate failure 

areas under the hypothesis of a MEV distribution obtained from the Hüsler 

and Reiss copula. The associated probability level corresponds to a 50 years 

waiting period. The failure areas have been obtained by numerically solving 

equation (3.25). The three dimensional space - each axis corresponds to one 

index - is split into two parts: a short position in the MSUS (Figure 3.4) 

and a long position in the MSUS (Figure 3.5). For both figures, each point 

of the discretized surface is a three dimensional stress testing scenario that 

corresponds to values of the triplet (MSGE, MSUS, MSJP). The univariate stress 

testing scenarios (Table 3.4) are also represented. By definition, the trivariate 

failure areas are included in the parallelepiped arising from these univariate 

scenarios. 

3.5.2 Monte-Carlo based risk measures 

Stress testing becomes intractable in higher dimensions because the number of 

points in the failure areas increases very quickly. Moreover, the failure areas 

have to be re-built if one wants portfolio values for different probability levels. 

An alternative is to simulate the variables that follow a MEV distribution. To 

illustrate this Monte-Carlo approach, we consider the following portfolios: 

Portfolio positions I MSGE MSUS MSJP 
P1 0 1 1 
P2 1 0 1 
P3 1 1 1 
P4 1 0 -1 
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Figure 3.3: Bivariate failure area .. 
4i7 with different parameter values for the 

Gumbel copula 

The following algorithm, based on the conditional distributions, can be 

used to simulate extrema with a given n-variate copula C: 

1. Generate n independent uniform variates (t1,.. 
., tn); 

2. The n uniform variates are given recursively for j=n, 
... ,1 

by: 

ui = C-1 (t3 I ui,... , u1-1) (3.31) 

where 

C dui I ui, ... , uj-i) = Pr {UU < uj l (Ui, 
... , 

U1-i) = (ui, 
... , uj-i)} 

a&-ic (ui,..., u;, 1,..., i) /aul... au; -1 = ai-lc(u1,.... uj-1,1,..., 1) /auf... au 
_i 

(3.32) 

3. The extrema are obtained by inverting the estimated GEV distribution: 

Xj = G; 1 (uj; -yj) for j=1, ... , n. 
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Filtre 3.4: Týrivariate failure areas Ap -+, AP A; --for MSGE (x ), 

MSUS (k2) and MSJP (X3) with a 50 years waiting period (surface). Univariate 

stress test scenarios are also represented (dotted line) 

Fortunately. this algorithm can be simplified for specific copula families. 

A detailed description for archimedean copulae can be found in Lindskog 

(2000). Frone the simulated data, two risk measures are computed: value 

at risk (VaR) and expected shortfall (ES). Following Artzner, Delbaen, Eber 

and Heath (1999), these measures are defined as follows: 

Definition 6 For a given probability space (Orn, 
. 
F, P), the value-at-risk VaA, 

of the net worth X with distribution P is such that 

VaRp(X)=-inf(xE11B1 P(X<x»p) (3.33) 

with pc (0,1) 
. 

Definition 7 The expected shortfall ESQ is directly defined from VaRP as fol- 

lows: 

Esc = -TE (X 1X< -VaRy (x)) (3.34) 
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Figure 3.5: Trivariate failure areas APP" 'AP +- ++ AP +- for MSGE (X1), 

MSUS (V2) and MSJP (x3) with a 50 years waiting period (surface). Univariate 

stress test scenarios are also represented (dotted line) 

ES is a coherent risk measure - see the definition of a coherent measure of risk 

in Artzner. Delbaen. Eber and Heath (1999) -, but VaR is generally not. The 

empirical estimation of these quantities is carried out as follows. Let {Xj}j_i.., 

be a vector of n realizations of the random variable X. The order statistics are 

such that X1;, 
ß < X2: 

n, < 
... 

< Xn: 
n,. 

Then the empirical estimators of these 

measures are given by: 

VaR, ()`» (X) = X[, 
lp]: n 

ES(n) (X) = -ý- 

L=1 Xim 

Lnp] 

With [lip] = max IjIj< np, jE NJ. 

Estimated values of VaR, and ES are reported in the Tables 3.5 (50000 sim- 

ulations) and 3.6 (100000 simulations). Two probability levels are considered, 

respectively corresponding to 10 and 50 year waiting periods. 
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Rom the tables above, it appears that the three models provide similar 

conclusions both for VaR and ES. In other words, the clustering induced by 

the Gumbel copula does not seem to affect the risk measures dramatically. 

Moreover, convergence looks quite acceptable given 50000 simulations. The 

values are consistent with the univariate stress testing scenarios. Indeed, the 

multivariate VaRs are lower than the sum of the univariate values for all port- 

folios. 

3.6 Conclusion 

In this chapter a methodology for multivariate risk management based on 

MEV parametric distributions has been investigated following two approaches: 

stress scenario design and Monte-Carlo based risk measures. It appears that 

the results are similar for the three copulae examined: the Gumbel, the Hüsler 

and Reiss, and the Joe and Hu. Analytical formula might be developed by 

providing bounds for the risk measures. This has been done in a non-extremal 

context in Durrleman, Nikeghbali and Roncalli (2000) and Embrechts, Hoeing 

and Juri (2001). 

3.7 Appendix 

SCORE VECTOR FOR GEV DISTRIBUTION 

The score vector described in equation (3.21) is detailed: 
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xa 
+ (b 

- x((a+x_b) Ü log g (; x) aJ 
8a a(a + T(x - b)) 

0 log g (-y; x) 
7-1+ a+r x-b 

Ob (a + T(x - b)) 

T(b - x) 
(a+ra-6 

+T-1 +(a+7-b)) 
ö log g('Y; x) \) 

ÖT T2(a+7-(x-b)) 

x log a+ T(x - b) ((a+rx_b))_i) 
(3.35) 

aa 

TRIVARIATE DENSITIES 

The density for the trivariate Gumbel copula is developed. The copula 

function can be obtained by compound method: 

C (ui, u2, u3; Ste 62) _C (u3, C (u1, u2; s2) ; a1) 

1i 61 

= exp - ü31 + (u 2+ ü2') 62 (3.36) 

By computing the three iterative derivatives, it follows that: 

C (u1, u2, U3; s1,62) 
=C 

(ui, u2; 62) XC u3, C (u1, u2; 62) ; 61) 

+ (191C) (u1, U2; S2) X (a2C) (u1, u2; 62) 

x (a221C) (u3, C (u1, u2; 62) ; 61) (3.37) 
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where 
6-1 

_ ýi(2Ll, u2i b)(u1u2)-1 
1nu11nu2 

c (ul 
, u2; b) 9(u1, u2; 6)2-1 

[i9 (u1, u2; 6)116 +6- 1] 

(51C) (u1, u2; 6) = ul 
1C(u1, 

u2; 6) I1+ (ü )bJ 

( 12C) (u1, u2; b) 
_ 

(191C) (u2, u1; 6) 

1, u2; s) X ý1 1+6,19 (Uli u2; b) -3+ u2 
2+6 ( 

21C) 
(u1, U2; b) = ul 

1u2-2C(U 

1 
(_i 

++ (ul, u2; b) 
) 

'0 (u1, 'u2; b) ln(u2) 

-(u+5219(ui, u2; s) - f1619 (Uli u2; S) I 

+6 
[_2i4 

+'4119 (Uli U2; 6)f 

+ü2-2i9(1.61, u2; s)ii4 

J 
+ 219 (u1, u2; b) ü2 

- 19 (Uli u2; b) 3 ü2/ 
J 

with 19 (u1, u2; 6) _ (ui + u2) 

We develop the HUsler-Reiss copula density for the trivariate case. 

UC (u3; 453) 
-3C 

(U2i a2) X 41)2 (K2 (U21 U3); 

Inu3 

x exP - 'D2 (K2 (u2, q) ; P) d4 

0 

Then, 

(3.38) 

(3.39) 

192C 
(u3i 63) 

_1 (a (u3; S3) +ß (U3; a3) +1 (u3; 53)) (3.40) 
1 OU219u3 U3 

where 

a (u3; 53) 
_ 1020 

(u1, tz2; 612 X 42 (t 
2 

(u2, u3); P)X e (u3; 53) 

823 u2, u3 
(K1 

3(t11, u3)-PK23(u2, u3) Q ýu3; 53ý =C 
ý'u1, U2; 812) x 

8U2 
x 

1_pz 
X0 (u3; 53) 

U2 

(u3; 63) =C (u1, u2; 612) X (102 (r l, 2 
(u2, u3) i p) X c21 (u3; 63) 

with 

_ 
8C(ui, u b/ý 

JC 
(ui, 

r-i, 

) 
=C 

(26s, u3; S) x 26-1 x1 Ü-1 + 2Ü 
In 

(. )) 

u1; 5) 
\ 

for (i, j) = (1,2), (2,1) 
8Ki3 ui, u3 

for i=1,2 Oui 2u11n ui 

e (us; as) = exp fý u"`3 
'1)2 (rý2 (u2,4) ; p) dq'J 

ci = ex 
ßu3 8Ki3 ui, . T) r31 ('ui, 9)Pri3(ui, 9) d. 

1 
(U3; 

453) p- 
, 

r0 
this Y' 

pi 
q 
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Note that this comes partly from e (x, y; p) = (I y_C). The copula 

density can be deduced: 

C (u3; a3) 
äC (u3; a3) 

= 0U1D 12003 

1 U(X (u3; (53) 
+aß 

(u3; a3) 
+DY 

(u3; 63)1 
(3.41) 

U3 

( 

au, au, au, J 

where 

e° u3; 53 =c (u1vu2iS12) x2 (K2(u2tu3ý )" p) x9 (u3i83) 
8u1 

8K13 u1, u3 +192C (ul, u2i 112) x 8u1 

X 
K23 u2, u3 -PK19 ul, u3 Xe u3i s 

1-p2 

( 
3) 

+b2C (u1, u2; 612) X '1)2 (K2 (u2, u3) ; p) x c12 (u3; S3) 

ßk23 u2, u3 

=a1C(u1, u2i612) x 8U2 
90U3; 63 

8u1 
X 

K13u1, u9 -PK29 u2, u9 X0 u3i 453) 

-p2 

( 

O23(u23) 8K19 'ül, u3 
+C (ulý u2i 512) X OU2 

x 8u1 

x1x 
K13 ul, u3 - K23 U2,113 

1-p2 1-p2 

X0 (U3; 63) 

+C (u1, U2; 612) x 
8Ic232, U3) 

8u2 

X19 ul, u3 -PK23 u2, U3 
xx 512 (u3i 

453 
1-p2 

u3i453 = 191C l/u1, U2; 612) X2 (K2 (u2e u3ý ); p) x S21 (u3i 83) 8u1 

8 13 x _____ 
K23('u2, u3)-Pra +C (211 u2i S12) X 8u1 1- p2 

x S21 (U3; 
3) 

-C 
(u1I u2i 612) X 42 (K2 (u2, u3) i p) 

In u3 8K23 u2,8K13 u1, s13(u1,9)-PK23(u2,4) ua x f0 
8u2 8u1 1-py 

dq x c21 ( 
3i 3) 

with the bivariate copula density such that: 

C (u1, ý2 s) 
(s-i 

+2S In (b)) 

C(nip U2; S) _ 
UlU2 x q\ S-1 + 2S 

In (b)) C 

S (s' 
,. ý, _ 

161n ui 
21n u2 2 ü2 

The likelihood can then be numerically computed. 

For the trivariate Joe-Hu copula, the analytical expression is simpler. For 

indication, the bivariate copula density is 
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C (U2; 52) ü2 iulu2 iS (u2; a2) -1+B C (u2; a2) : -- 

1+1 

X 
(((1üY5 

+ (Piüz)b) (P242) 6 
P2g2u 

with ý (uz; as) = 
(((1u 

+ (P2üo2) b)1 + Pigiui + P2g2ü il, Pi = (v: +n- 1)-i 
l 

andgi=(v, +n-2). 
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G HR 
S1 S2 ldv 612 s13 623 

Xl + X2 , X3 1.50 1.88 2 1.76 2.66 2.13 
(0.14) (0.23) (0.31) (0.93) (0.39) 

(Xi 
, X2 + -X3 I 1.32 1.42 2 1.72 1.84 1.67 

(0.14) (0.19) (0.30) (0.41) (0.29) 
(Xi, 

-X2 + Xä) 1.49 1.91 2 1.69 2.84 2.45 
(0.15) (0.24) (0.33) (1.15) (0.61) 

+ Xl + -X2 , -X3 1.52 2.03 1 1.62 1.66 2.88 
(0.15) (0.25) (0.30) (0.35) (0.65) 

(-Xl, 
-X2, -X3) 1.51 1.77 2 1.69 2.53 1.34 

(0.15) (0.22) (0.45) (0.81) (0.24) 
(-Xi 

, -X2 , X3) 1.53 2.00 2 2.70 3.28 1.39 
(0.15) (0.24) (1.29) (0.93) (0.22) 

(-Xi, X2+, -X3 
) 1.26 1.81 2 1.60 2.79 1.51 

(0.14) (0.23) (0.33) (0.91) (0.30) 
(-Xl 

, X2 + Xs) 1.45 2.05 2 1.53 3.40 2.13 
(0.14) (0.25) (0.28) (0.91) (0.44) 

HJ 
612 613 623 0 

ýX1 +X2 +X3 ) 

(Xl 
' X2 ' -X3 

(Xll-X2, 
X3) 

(Xl, 
-X2, -X3) 

-Xl -X2, -X3) 

-Xl, -X2, X3) 

-Xl, X2, -X3) 

(-X1, X2, X3) 

Table 3.3: MLE for the parameter 
Hüsler-Reiss, HJ: Hu-Joe) 

1.40 1.95 1.52 1 
(0.29) (0.52) (0.31) 1 
1.25 1.71 1.20 1 

(0.25) (0.39) (0.24) 1 

1.23 2.25 1.72 1 
(0.24) (0.86) (0.40) 1 
1.35 1.39 2.45 1 

(0.27) (0.28) (0.95) 1 
1.45 2.06 1.29 1 

(0.31) (0.72) (0.26) 1 
2.12 2.19 1.10 1 

(0.80) (0.84) (0.18) 1 
1.22 2.31 1.12 1 

(0.21) (0.89) (0.19) 1 
1.28 2.59 1.64 1 

(0.26) (1.04) (0.39) 1 

)f the trivariate copulae (G: Gumbel, HR: 
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Minima Maxima 
Waiting period MSGE MSUS MSJP MSGE MSUS MSJP 
5 years -6.1% -5.2% -7.0% 5.8% 4.2% 7.3% 
10 years -7.6% -6.8% -9.3% 6.7% 5.0% 9.0% 
50 years -12.4% -11.9% -17.0% 9.2% 7.5% 14.3% 

Table 3.4: Univariate daily stress testing scenarii 

Copula G HR 
V&R ES VaR ES 

Portfolio toy S0y toy 50y toy 50y 10y 50y 

Pi -13.4% -26.3% -17.1% -29.6% -13.4% -26.4% -1T. 3% -30.1% 

P2 -15.4% -25.1% -18.4% -31.5% -14.9% -25.0% -18.7% -30.7% 

P3 -20.6% -36.0% -25.1% -40.7% -20.4% -36.4% -25.5% -40.5% 

P4 -15.1% -23.0% -17.9% -27.2% -15.5% -23.0% -17.6% -27.1% 

HJ 
V. R ES 

toy 50y by 50y 

-13.0% -26.7% -17.2% -29.4% 

-15.2% -17.9% -18.4% -30.6% 

-20.8% -36.2% -25.4% -41.0% 

-15.4% -23.5% -18.4% -26.9% 

Table 3.5 : VaR and ES with 50000 Monte-Carlo simulations 

Copula G HR 
V&R ES VsR ES 

Portfolio 
to y Soy 10y Soy by 50y bOy 50y 

Pl -15.2% -27.3% -18.3% -33.8% -15.3% -27.2% -18.1% -33.3% 
P2 

-15.9% -28.5% -19.2% -33.9% -15.8% -28.2% -19.0% -33.6% 
P3 

-22.1% -38.0% -26.4% -46.1% -22.2% -38.2% -26.6% "46.5% 

P4 -15.8% -25.4% -18.4% -29.4% -15.9% . 25.9% -18.6% -29.5% 

HJ 
VsR ES 

bOy 50y boy 50y 

-15.3% -27.5% -18.2% -33.6% 

-15.5% -28.1% -19.0% -33.8% 

-22.0% -37.6% -26.3% -45.5% 

-15.5% -25.4% -18.2% -29.1% 

Table 3.6: VaR and ES with 100000 Monte-Carlo simulations 
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Chapter 4 

Investigating Dynamic 
Dependence using copulae 

4.1 Contents and contributions 

This chapter explores and extends the general framework proposed by Joe 

(1994,1997) to model the dynamic dependence of time series whatever their 

marginal distributions. We provide a new approach to the analysis of the 

standard linear class of gaussian autoregressive (AR) models by extracting 

the copula from the model. This allows us to present a new class of models: 

the gaussian copula AR models that takes into account non-linearity. Two 

new formulations are then obtained for (i) the regression model, (ii) the auto- 

regression function, that directly comes from the functional form of the depend- 

ence. We then propose a new definition, the intrinsic copula to characterize the 

minimal representation copula that encompasses all the serial dependence. We 

provide a theoretical definition of the intrinsic copula. This intrinsic copula fur- 

nishes the starting point for model selection. Two properties are exhibited and 

proved in the section. In a non linear time series model the minimal dimension 

is most naturally provided by identifying the intrinsic copula. Moreover, we 

show that there are relationships between copulae which order is greater than 

75 



CHAPTER 4. INVESTIGATING DYNAMIC DEPENDENCE USING 
COPULAE 

the order of the intrinsic copula. In section 6, we extend the estimation meth- 

ods developed by Joe and Xu (1996) to our intrinsic copula defined earlier. We 

introduce the basis for copula based model selection and show how the copula 

function can provide a nonlinear autocorrelation function. Section 7 is an em- 

pirical contribution to the study of stock market index returns. Four models 

that assume the same marginal distribution but with four different copulae 

are estimated and compared. The estimates are computed using two different 

methods: (i) a non parametric method that has been proposed by Genest and 

Rivest (1993) - this is its first financial application -, (ii) the maximum likeli- 

hood method described in the previous section. The parameters estimates are 

given for four different copulae (Gaussian, Gumbel, Joe and Frank) under the 

assumption that the daily log-returns are first order Markov processes for the 

five following stock indices: Cazenove Small Companies, Barings, S&P 500, 

Nasdaq 100, MSCI Singapore. Finally, auto-concordance measures are pro- 

posed to capture the non-linear serial dependence properties in a time series 

beyond serial correlation. 

4.2 Introduction 

The problem of assessing the temporal dependence of financial returns has 

been an important issue in empirical finance for at least the last three decades, 

see for instance Campbell and Shiller(1988), Fama and French(1989) and Ang 

and Bekaert(2001). Much of this work has concentrated on linear predictability 

through linear autocorrelation analysis although much more general dynamic 

dependency patterns could exist. Copulae provide a general approach to mod- 

elling dependence between random variables since they link univariate margins 

to their full distribution function and in this chapter we seek to develop this 
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approach to examining general dynamic dependence and make applications to 

examine the question of financial return predictability. 

A time series can be viewed as a single drawing from a multivariate distribu- 

tion. The goal of this chapter is to split this distribution into two components: 

the margins and the dependence structure given by the Copula. This frame- 

work allows to specify any univariate distribution for the margins and enables 

us to consider general non-linear relationships for the time series. The question 

of the departure from linearity is an important issue quite generally; see Ter- 

äsvirta, Tj(stheim and Granger (1994), and copulae provide a powerful tool 

to explore this question. Patton (2001) has also recently explored the use of 

copulae in time series by studying the dependence between the Deutsche mark 

- U. S. dollar and Yen - U. S. dollar exchange rate returns. He finds that the 

dependence pattern is time-varying and asymmetric; a structure that would 

be difficult to isolate using linear techniques. 

In the next section, the concept of a copula is briefly introduced and we 

show how a stationary time series - and more generally a stationary Markov 

chain - can be constructed from a copula function. The multivariate case is 

briefly discussed and the expression for the transition density function is given. 

The fourth section provides a theoretical framework to the concept of copula 

based regression which we will call c-regression. We then demonstrate that 

the dependence structure of a p'th-order Markov processes can be captured in 

a copula called intrinsic copula of dimension (p + 1). The dimension of this 

intrinsic copula provides the minimal representation. So while higher order 

copulae will capture the same structure non-parsimoniously the intrinsic cop- 

ula has the lowest dimension required to fully capture the time dependence. 

Empirically it is frequently difficult to identify the correct dynamic order of 
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a multivariate dynamic system even in the linear case. However in the lin- 

ear case that order of the intrinsic copula will be the McMillan Degree of 

the System or the size of the minimal state space representation. The exten- 

sion to the nonlinear case that we could potentially consider through the use 

of non-gaussian copulae is as far as we know a completely undeveloped area 

of research except through the use of determining the correlation dimension 

in chaos theory. In the fifth section, we focus on autoregressive (AR) models 

based on the multivariate gaussian copula to construct stationary Markov pro- 

cesses of p'th-order. An alternative class of copulae - Archimedean - is then 

used to construct markov models and some of its properties are given. In the 

sixth section, we consider the maximum likelihood estimation of time series 

with a given copula based serial dependence assumption and some discussion 

of model mispecification is provided. In the sixth section, we apply our model 

to financial examples and consider auto-concordance measures suggested in 

Joe (1997) based on Kendall's Tau and Spearman's rho. Finally we offer some 

conclusions. 

4.3 Copulae and serial dependence 

There are two issues when modelling a one-dimension time series: (i) the 

choice of the univariate margin and (ii) the structure of the time dependence. 

Joe (1996) proposes a very general way of obtaining stationary time series 

models with margins in the convolution-closed infinitely divisible class. He 

introduces an operator A(.; a) such that for X ti F0, A(X) - FGB with Fo 

such that V(01,02) E R* 
+ Fe1 * F02 = FBl+e, with * the convolution product. 

He then constructs a time series as follows: Xt = At(Xt_1) + et with et - 

IIDF(1_. )o where the autocorrelation aE (0,1). Our interest will focus on 
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simpler structures such as 

Xt = 1i(Xt-1l ... I 
Xt-Pl ft) 

which are implied by the copula that describes the joint density of the data. 

Models for the conditional higher order moments of the random variables , 

corresponding to ARCH processes will also be implied by the assumed copula 

and we take up that question in the next chapters. 

Let us start by providing some useful properties. Our aim initially is simply 

to construct a model for the conditional expectation of the time series where 

the serial dependence is implied by the associated copula. However, not all 

copulae are eligible and some structure must be put on the joint density and 

hence copula to ensure stationarity. Let us assume that {Xt}t-1... 
P+1 

is a 

stationary time series generated by a p-order Markov process i. e. 

Xt = 19(Xt-1l ... I 
Xt-pl ft) 

for some real-valued function 19 and et the innovation which is independent 

of {Xt_1, 
... , 

Xt-p}. Let F= C(F,... 
, 
F) be a (p + 1)-variate cumulative 

density function (cdf) with F absolutely continuous. The copula C has to 

satisfy certain conditions in order to construct a stationary Markov chain and 

these have been summarised by Joe in the following proposition. 

Proposition 6 (Joe (1997), page 245) A stationary Markov chain of or- 

der p can be constructed from a (p + 1) -dimensional copula C that satisfies the 

following conditions: 

1. the bivariate margins Ci, j(u� uj) are such that Cq, i+l(u ,u +l) = Cl, 
l+l(ul, u1+1) 

forl=1, 
, p-1 andi=2, , p+1-l 

'For additional results on the dependence for stationary Markov chains, we refer the 
reader to FANG, Hu and JoE [19941, Hu and JOE [1995] 
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2. the higher dimensional margins Ci,,..., i� (ul, 

... , un) are such that C11,..., t� _ 

C, 
Si2-; l+19..., s�-; l+i 

for 1< ii < ... < i, < <K and 3<n <_ p 

3. C is differentiable in its first p arguments 

The two first conditions' ensure stability in the dependence structure. In- 

deed, for a sample {Xt}t-1... T the serial dependence has to be the same, for 

example, between (Xt, Xt+l, Xt+5) fort=1, 
... ,T-5. 

The third condition is 

essentially a technical condition that allows us to compute the density of the 

process. In short, we see that a time series model with p lags can be deduced 

from a (p + 1)-dimensional copula. 

4.4 Copula based regression and model selec- 
tion 

This section introduces two standard concepts with a new angle for econo- 

metrics. Indeed, the role played by the copula function in standard regression 

and auto-regression is exhibited. This general approach permits to define (i) a 

new class of model: the copula regression model and (ii) a general methodology 

to measure serial dependence which encompasses the traditional autoregressive 

models. For simplicity and clarity, the results in this section are presented only 

in the bivariate case. The extension to the multivariate case is straightforward. 

2For a 5-dimensional copula, conditions 1 and 2 become 

C12=x! 
23=C34=C45 

4 C13=C24=C35 

C14 = C25 

and 
x! 123=x%234=0345 
C124 = C235 

C134 = C245 

C1234 = C2345 
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4.4.1 Copula based regression 

The copula based regression model is presented in the bivariate case: we pro- 

pose to go back to the regression definition to exhibit the relationship in mean 

between two random variables X and Y with support SX and Sy. The func- 

tions F and G (respectively f and g) are the distribution functions (respect- 

ively the density functions) of X and Y. Let us note r (x) the regression 

function defined as follows: 

r (x) =E [Y IX= x] 

=h 
(x, y) isy 

yxf (X) 
dy 

with h (x, y) the joint distribution function. From the copula definition, h (x, y) = 

f (x) xg (y) xc (F (x) 
,G 

(y)), the regression function is such that: 

yx g(y) x c(F(x), G(y))dy (4.1) r(x) = fsy 
Under the assumption of uniform marginals3, we have: 

1 
r (x) =Jyxc (x, y) dy (4.2) 

4.4.2 Autoregression 

By applying the copula based regression to time series, we obtain the relation- 

ship between the auto-regression function and the copula that measures the 
'An alternative useful formula exists. We have 

r (x) = 
(y 

x 
DC (x, y)11 

- 
[1 8C (x, y) dy. 

ex Jo 
0 8x 

From the copula definition e (Z 1 
=1, then the regression function is 

r(x) =1- 
1 aC(x, y)dy fo 

ax 
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serial dependence. Let us note d9 (Xt_1) the autoregression function defined as 

follows: 

19 (Xt-i) =E [Xt I Xt-i = xt-i] 

ýXth (xt-1' xt) dxt 
Jsx 

tf (xt-i) 

with h the joint distribution function. Rom the copula definition and assuming 

stationarity, h (xt, xt_1) =f (xt) xf (xt_1) xc (F (xt_1) 
,F 

(xt)), the regression 

function is such that: 

i9 (Xe-i) = 
fsx 

Xt xf (Xt) xc (F (Xt-i)' F (Xt)) dxt (4.3) 

For example, the standard linear auto-regressive models are encompassed by 

this representation. This will be shown later for some AR models. An im- 

portant point is that, as pointed out by the auto-regression equation, all the 

dynamic properties can be deduced from the distributional properties of our 

model. An important issue is the model selection. Two questions have to be 

answered: (i) Which copula family is the right one ? Different testing strategies 

will be used, depending on the fact that alternative models are nested or not; 

(ii) what is the dimension of the copula ? If the copula dimension is p+1, it 

means that we model a p-order Markov process. 

For the first question, we will provide later an example in the financial 

application section by using the Akaike Information Criterion (AIC). To answer 

to the second question, the concept of intrinsic copula is presented in the next 

section. It permits to characterize the maximum lag in the serial dependence 

of the time series. 
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4.4.3 Model selection: the intrinsic copula 

The aim of this section is to introduce a new concept: the intrinsic copula 

that is the starting point for model selection. Indeed, this intrinsic copula is 

defined as the copula that encompasses all the information about the serial 

dependence. 

Definition 8 For a sample {Xt}t=1... T with copula C(ul,... 
9 UT) drawn from a 

p'th-order stationary Markov process , the intrinsic copula is the minimal rep- 

resentation copula with dimension (p+ 1) that encompasses all the dependence 

structure. 

While this minimal order is unique the representation of the model ex- 

plaining the conditional expectation or any other moment may not be unique 

as is well known from linear time series analysis where, for instance a given 

VARMA model may be expressed alternatively in a state space form and 

there are a range of exchangable models, see Li and Tsay (1998) and Tiao 

and Tsay(1989). It is clear that in the linear context there is a direct rela- 

tionship between the McMillan degree of the dynamic system and the order 

of the intrinsic copula. In practice however, since higher order models will 

non-parsimoniously capture the same dynamic information it is an empirical 

issue of how to determine the minimal order. While this may be relatively 

easily achieved in the linear case it is not in the nonlinear dynamic case and 

the only corresponding work on identifying minimal dynamic orders in non- 

linear or chaotic systems we know of is through the correlation dimension of 

Grassberger and Procaccia (1983). In fact it may be that the copula approach 

to this issue is the simplest route to follow in the general case. From Bayes' 
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theorem, the conditional density is a function of the copula density 

f (xel-Tt-i, 
... , xt-P) =f (xt) c(F(xt-p), ... , 

F(xt)) 
(4.4) 

c(F(Tt_p),... , 
F(xe-i)) 

The two following properties show that Bayes' theorem provides an elegant 

way to obtain the copula with the lowest dimension which then captures the 

general structure of serial dependence within the time series. 

Property 1 For a first-order stationary Markov process , the following rela- 

Lions hold : 
T 

11 / C(u1) 
... I UT) ° Cs (ut-1v ut) 

t=2 

and 
T-k 
7=1 

T-1 
c(ul,... , UT) _ 

fl 
c(utk-t+i, u(t+i)k-t) for k>2 and EN 

t-o 
(4.5) 

where c* is the intrinsic copula density 

Proof 
T 

Note that f (X1, 
... , XT) =f (x1)11 f (xt I Xt_1) and use equation (4.4). 

t=2 
For the second property, write c(Utk-t+1, U(t+1)k-t) in terms of the intrinsic 

copula c* : 

k-1 

C(Utk-t+1, U(t+1)k-t) _H C*(Ut(k-1)+i, Ut(k-1)+iß-1) 

i=1 

Property 2 For a p-order Markov process, the following relations hold : 

C(U1) 
..., UT) _ 

with c* the intrinsic copula density 

T 

C (ut_p,..., Ut) 
t=p+1 

T 
fl Cut-p,..., 2Gt-1) 

t=pß-2 

(4.6) 
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Proof 

T 

Note that f (xi, 
... , XT) =f (XI)... 

, xp) jj f (xt I xt_i,... , xt_p) and use 
t=p+i 

equation (4.4). 

Notice that in the case of a pth order Markov processes there will still be 

relationships between copulae with order greater than the order of the intrinsic 

copula. Given the intractable form of a general formula, we prefer to give three 

examples for p=2 which indicate the main intuition. The following shortcut 

notation is adopted: c(ul, u2, ... 7 Uk) = C12... k. 

Example 1 Too much information about serial dependence. We know about 

copulae with dimension strictly greater than three such as c12345 . 
Then as 

C12345 = 
C123C234C345 

C23 X34 

and C1234 = C12C2" and C2345 -C 4C 45 the following mlationship arises : C23 C34 

C1234C2345 
0234 = 

C12345 

The dependence structure does not have a minimal representation with a four 

dimensional copula. However, all the information about serial dependence is 

available and the three dimensional intrinsic copula can be found. 

Example 2 Partial information about serial dependence. We have a know- 

ledge about copulae with dimension strictly lower than three. We have 

C1234 
C123C234 

= 
C23 

and extensions of this forrnul for future periods. All the information about 

serial dependence is not available and the minimal three dimensional intrinsic 

copula can not be deduced. 
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Example 3 Full and minimal information about serial dependence. We have 

a knowledge about copula with dimension three. This is the intrinsic copula 

and all the information about serial dependence is available. 

4.5 Two examples: the Gaussian and archimedean 
copulae 

In this section, we provide the intuition behind copula functions for linear 

autoregressive models. We present what is the role of the Gaussian copula in 

linear auto-regression. All these models are encompassed by the copula based 

representation of the auto-regression described above. 

4.5.1 Gaussian Copula and autoregressive models 

The gaussian AR(1) and AR(p) models are explored and their dependence 

structure is characterized using copulae. Notice that any continuous univariate 

distribution (not necessarily gaussian) will be a candidate to construct a 

nonlinear time series model based on the gaussian copula. 

4.5.1.1 The Gaussian copula regression 

Let us consider the regression function assuming a gaussian copula with given 

margins. The gaussian copula is given by: 

12 ýx)+SY(y))] 
CP(F(X), G(y)) = 

exp[ ( 

1-p2 

sx (X) + s2 (X) - 2Pcx (x)sý' (y) 
x exp -2 (1 - p2) 

where cx (x) _ 4)-' (F (x)) and cy (y) = -' (G (y)) with -1 the inverse of 

the gaussian distribution function. We have g (y) = sY (y) W (4; y (y)) with cp 
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the gaussian density function. Then, 

r. (x) =Iyxg (y) x cv (F (x), G (y)) dy 

=Iyx sY (y) x ýP (Sr (y)) x cp (F (x)' G (y)) dy 
SY 

=fyx SY (y) x 
2ý 

exp SX (x) 

SY 

exp L2 (cX (x) + sY (y»] 

1- p2 

ex p 
-2Pcx(x)cY(y) xd P 2(1_p2) y 

a 

_yx 
SY (y) 

x1 exp 
1 sY (y) - Psx (x) 

Jdy. 
IS 

1- p2 vP2 YVP 

Applying the change of variable Z= `''(Y)i ýýý, 
we obtain 

rp (x) =f ; yl 
(Z/i 

- p2 + pcx (x)) x1 exp 
{_Z2}dZ 2 

Z27r 

rp (x) =E 
[c' (zV'l 

- p2 + pcx (x)) ] (4.7) 

The regression function described above underlies the standard gaussian AR 

models. We explain this point in the next subsection. 

4.5.1.2 AR(1) model 

Consider the simple AR(1) model: 

xt =c+ Oxt-i + et (4.8) 

t et , II DN(0, Q2 ) 

The conditional and unconditional pdfs are well known to be : 

Xtlxt_i " N(c5xt-i, o2) (4.9) 
Xt N 

N(icý, 
Q2/(1 - 

02)) 

A time series sample {x }t=1... 
T can be viewed as single draw from x NN(p, E) 

with density 

f (x; µ' E) = (21r)-T, JE-11' exp -2 (x - µ)'E-1(x - µ) (4.10) 
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where 

µ= E(x) =1c (4.11) 

z 
E= E(x - {. c)(x - li)T =a 2V =P (4.12) 

1-02 

with 
1 0 02 

... 
OT -1 

0 1 0 ... OT-2 
V_ 

1 02 0 ... 
OT-3 (4.13) 

1 ý2 

OT-1 (ýT-2 OT-3 1 

Proposition 7 The copula density function corresponding to time series {Ti}t-1.,. 
T 

from an AR(1) process is 

c (ul, 
... , ut) ... I UT; P) 

2 
exp -2 ST (P-1 

-1) s (4.14) 

with st =, D'1(ut). 

This copula density function is plotted for the AR(1) process (i) in the 

bivariate case for different correlation levels (Figure 4.1) (ii) in the trivariate 

case by fixing the value of one margin (Figures 4.2 to 4.4). 

Proof 
T 

We have II ft (Xc) _ (2ir)- Q-T(1_cb2) z eXp {_zcTc} with ,; t = -' (Ut). 

From (4.10), the copula density is obtained. As V-1 = LTL with La lower 

triangular matrix with diagonal product , 
IV-1) =1- 02. Then note 

that (1 - 02)p-1 = V'1. 
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Figure 4.1: Contour plot of the bivariate gaussian copula with different values 
for the serial dependence parameter p 

., ýo 01 u3ýC) 50 

ý III 
ý3ý070 u3=0.90 

Figure 4.2: Contour slices of the 3-dimensional gaussian copula with an AR(1) 

correlation structure with p=0.1 
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Figure 4.3: Contour slices of the 3-dimensional gaussian copula with an AR(1) 

correlation structure with p=0.5 
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Figure 4.4: Contour slices of the 3-dimensional gaussian copula with an Aß(1) 

correlation structure with p=0.9 
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4.5.1.3 AR(p) model 

The previous results can be extended to the linear AR(p) case: 

xt =C+ OiXt-1 + 52Xt-z + ... 
+ c52t-P + Et 

(4.15) 
et IIDN(0, a2) 

A time series sample {xt}t-1... 
T can be viewed as single draw from xN 

N(µ, E) with 

1 Pi P2 PT 

2 Pi 1 Pi ... PT-i 
E=1a P2 Pi 1 ... PT-2 (4.16) 

- ý3=1 Pj'Pi 

PT PT-1 PT-2 1 

with pj the autocorrelations4 that fulfill the Yule-Walker equations: 

Po =1 (4.17) 

1Pj_ O1Pj_1 + 02Pj_2 + ... + OpPj_p for j=1,2, 
... 

Property 3 The AR(p) gaussian intrinsic copula density function is given by 

ei ('ut-p,... 
, ut; P*) =11 exp 

(_! 
cT (p'-l 

- ý) s (4.18) 

IP 
1 P1 P2 """ Pp 
P1 1 Pi ... Pp-1 

with p= P2 Pl 1 ... Pp-2 

PP pp-1 Pp-2 1 

4 The autocorrelations (po, 
... , pp-1) are obtai 

column of the matrix (K 2 -C C)-1 where 

01 02 

10... 

C=01 """ 

00 "". 

ied by taking the first p elements of the first 

op-1 op 

00 

00 

10 
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4.5.2 An alternative dependence model: the archimedean 
class 

Another famous class of copula functions, the Archimedean class, provides an 

alternative to the gaussian copula. This class is very useful since each member 

of this class can be characterised by a simple generator function. However, its 

extension from the bivariate to the multivariate case often becomes intract- 

able. Indeed, since each correlation parameter of a gaussian copula provides 

information about the dependence between each pair of random variables so 

for N variables, there are N(N - 1)/2 parameters. For Archimedean copulae, 

the dependence is characterised by only (N - 1) parameters. We shall focus 

on the bivariate case i. e. on first-order Markov processes. Genest and MacKay 

(1996) provided a definition of this family: 

C(261i... 
IUN) -l0-1(cp u1)+... +co(UN)) (4.19) 

with cp (u) a C2 function with V (1) = 0, cp' (u) <0 and cc" (u) >0 for all 

0<u<1. One technique by which to construct multivariate archimedean 

copulae is the compound method where 

C (Uli u2) _ (P-1 ((P (u1) +c (t2)) 
C (ul, u2, u3) =C (C (u1i262), u3) 

(4.20) 

C (Uli 
... ' UN) _C (C (U11 

... ' UN-1)' UN) 

The function cp (u) is called the generator of the copula and essentially 

identifies the copula function. Genest and Rivest (1993) proposed a method 

to identify an Archimedean copula by comparing the true value of a function 

A(u) to its nonparametric estimate, where 

A(u) = u-Pr{C(U1,..., UN) <u} 

n-1 
(U) 

_ (-1) wn_1(u) (4.21) 
n=1 
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Copula C 

C1 U1U2 

Gumbel expC- 
((-1n 

u1)b + (-1n u2)6) J 

(1-u1)6+(1-u2)6 
Joe 1- 

-(1- u1)6(1 - u2)6 
Frank 1n 

(1 
+ 

je_a 
-1)(e -6u2 -1) 

Copula cp (u) 6E dependence 

C1 -Inu 
Gumbel (- In U)6 (1,00) + 

Joe - in (1- (1 - u)6) (1,00) + 

Frank -In 7s R* + and - 

Table 4.1: Three famous bivariate archimedean copulae C (ul, u2) with the 

generator function cp (u) and properties 

with 
Wo (u) = (V, (u)) 

wn (u) 
= 

(W' (u))-1 
r8ä 

üu) 

We refer to Barbe, Genest, Ghoudi and Remillard (1996) for the proof. A non 

parametric estimate of A(u) is given by 

T 

A(u)=u- 1Iv: <ul (4.22) 

t=1 

with 
1T 

t=1 

4.6 Maximum likelihood estimation and model 
selection 

4.6.1 MLE methods 

First, the three maximum likelihood methods already described are presented 

in the context of time series model estimation. Then, it is shown how the 
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likelihood function for a sample of size T can be described as a function of the 

intrinsic copula. The case of the gaussian copula is specifically studied. 

As noted in Joe and Xu (1996) and Bouye, Durrleman, Nickeghbali, R. i- 

boulet and Roncalli (2000), three maximum likelihood methods are available. 

1. The Exact Maximum Likelihood (EML) method: Parameters of the cop- 

ula and marginals are estimated simultaneously. The time series sample, 

z= {x }t-1... 
T, has density 

T 

f (x; 'Y, S) =c (F(xi; 7), ... ' 
F(xT; 'Y), 6) ll f (xt; '() 

e=i 

The log-likelihood of the joint distribution function for a sample of size 

Tis 
T 

L(-y, ö) _ log f (xt; -y, S) (4.23) 

t=1 

The MLE estimates (j, S) maximize L, are obtained by solving 

OL OL T 
äý, äs = o. 

2. The Inference Function for Margins (IFM) method is a two-step proced- 

ure. First, parameters of the marginals are estimated. Second, MLE 

is applied to estimate the dependence parameters of the copula. The 

log-likelihood functions for the univariate margin L, 
n, 

is considered: 

T 

L,,, (-y) _E log f (xt; 'Y) (4.24) 

t-i 

The estimates 5 maximize L,,,. The log-likelihood of the joint distribu- 

tion function L(', 6) is maximized over 6 to obtain S. Finally, the IFM 

estimates (ry, S) are obtained by solving 

(ÖL� aL 

a. y ' äs - 
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3. The Canonical Maximum Likelihood (CML) method: Only the paramet- 

ers of the copula are estimated. The empirical cdfs are obtained by 

mapping variables to uniforms. The margins are mapped to uniforms: 

XERTI uE (0,1)T 

The parameters of the copula 6 are obtained by maximizing the log-likelihood 

of copula cdf 
T 

Lß(8) _E log c(ut; S) (4.25) 

e=1 
The estimate 3 is obtained from solving b="0. 

Let (-y, b) be the vector of parameters to be estimated and (I', a) the para. - 

meter spaces where -y characterizes the margins and 6 the dependence. For a 

sample of size T, the log-likelihood function it (-y, 6) can be constructed so that 

NL? aML) is the Maximum Likelihood (ML) estimator given by 

T 

('YMLi SML) = ArgMax E it (-y, 6) (4.26) 
(7, a)E(r, 0) 

t=1 

with asymptotic normality: 

(iMLv aML) 
-a 

T- ((-yo, b0), 2-1 (-yo, (Sp)) (4.27) 

with I (-yo, 6o) the Fisher information matrix. 

The likelihood for a sample {Xt}t-1... T of a p-order Markov process can be 

deduced from (4.4): 

L(Zl,..., 2T; y, S) = f(21,..., 2TV'Y, a) 

T 

T II c' (F(xt-P; 'Y), ... , F(xt, 'Y), a) 
-f 

(xt; -y) 
t=P+1 

T 

t=l fI c(F(xt-P, 'Y),... , F(xt-,, 'Y); a) t=p-F2 

(4.28) 
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and the log-likelihood estimator is then given by 

£(x1,..., xT; 'Y, a) = Inf(xl,... 
IxT; 71 S) 

TT 

_E In f (xt; 'y) +E In c* (F(xt-p; -y), ... , 
F(xt; 'y); a) 

t=1 t=p+1 

T 

-E In c(F(xt-p; 'Y), ... , 
F(xt-1; 'Y); S) (4.29) 

t=p+2 

In the case of the gaussian copula, we have 

£ (7' p*) _E In f (xt; -I) -T-P In 1p* - st (p*-1 
- I) qt 

t=1 
22 

t=p+l 

-T 
-p-1 In jpj (4.30) 

2 
T 

-2 
E 

4; t 
T (p-i 

- I) qt-i (4.31) 

t=p+2 

with 
Rank (p*) = p+ 1 
Rank (p) =p 
st = (, D-1(F(xt-p)) 

...... 
P-1(F(xt))) 

ct-i = (4)-1 (F(xt-p)),..., 4'-1(F(xt-1))) 

and the ML estimate of p is 

T 

AML =T st ct (4.32) 

t=i 

4.6.2 Model selection 

The main intuition of our model selection methodology is to compare the values 

of the maximum likelihood function under the different hypothesis for the 

copula model. This comparison is performed by using: (a) standard likelihood 

based tests (Wald test, Lagrange multiplier test or likelihood ratio test) if the 

models are nested, (b) or extended versions of these tests if the models are 

non-nested. 
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For example, for a sample {Xt}t-1... T and under the assumption that the 

serial dependence is characterized by the same copula (e. g. gaussian copula), 

one might be interested in testing two nested hypothesis: 

" Hp the dimension of the intrinsic copula is p with p<T 

" Hq the dimension of the intrinsic copula is q with q<p<T 

Then the maximum likelihood values of all the sample (of size T) are com- 

puted under Hp and Hq and a standard LR test, for example, can be applied 

as Hq is nested in Hp. This test can be used iteratively in order to find the 

dimension of the intrinsic copula. More precisely, the dimension is p if Hp can 

not be rejected against H.. 

Another test that can be performed for model selection 

" Hal the copula Ci characterizes the serial dependence of the sample 

" HH, the copula C2 characterizes the serial dependence of the sample 

In this case, the hypothesis will often be non-nested as it will not be tract- 

able to write C2 as a sub-family of C1. 

4.7 Financial applications 

The section provides an empirical financial application of the IFM method to 

the estimation of the copula regression parameters. First, we find the dis- 

tribution that best fits the univariate returns. We will see that the Burr3 

distribution is a good candidate. However, it is important to note that our 

methodology does not rest on the use of the Burr3 density. Second, we select 
the copula that provides the best goodness of fit. 
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4.7.1 Estimation of the margins 

The annualized daily log-returns are considered for five indices: Cazenove small 

companies (CAZSCOS), Barings (BARINGS), S&P 500 (SP500), Nasdaq 100 

(NASDAQ) and MSCI Singapore (MSSING), from January 1983 to March 

2000. The sample size is T= 4499. A number of condidate marginal distribu- 

tions were tested (Gaussian, Weibull, Student and Burr3), but the Burr3 was 
found to the each of the series best. This is shown by the Kolmogorov-Smirnov 

statistics (KS) in Appendix. The Burr3 has the following distribution : 

F(x; 7) = 1- 
1+ (1/T)a with xE 11 (4.33) 

with the parameters ry = (a, A, T). The probability density function (pdf) is 

f (x; 'Y) = (xa + Ta)a+i 
(4.34) 

The distribution can be split into two parts for positive and negative returns 

and the corresponding parameters are superscripted + or - depending on 

which side of the estimated distribution we are considering. The left tails 

(respectively right tails) are plotted in the Figure 4.13 (respectively Figure 

4.14) of the Appendix. The maximum likelihood estimates of the parameters 

and the Kolmogorov-Smirnov (KS) values5 for the selected distributions are 

reported in Table Al of the Appendix. 

4.7.2 Copula model selection 

The following procedure is applied for copula selection: 

1. Different dimensions are tested for the intrinsic copula. We first assume 
that the intrinsic copula is a gaussian copula with dimension T (the 

sample size) and LR tests are iteratively performed to reduce the order 

of the serial dependence. Finally, it appears that, for all indices, only 
the one order serial dependence (one lag) is not rejected against the 

independence hypothesis. 

s **, *** mean that the null hypothesis of the Kolmogorov-Smirnov test (the true dis- 
tribution equals the estimated one) is respectively rejected at 1115,5% and 10% level. 
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2. On the basis of the above results, the IFM estimation is performed by 

assuming one lag. Alternative models to the gaussian copula are also 

estimated. The CML estimates (known to be consistent and efficient as 

proved in Genest, Ghoudi and Rivest (1995)) are also computed and ap- 

pear to be very close to the IFM estimates that make us more confident 

about our results. The parameters using the IFM (respectively CML) 

method with a Gaussian AR(1) copula and three archimedean copulae 

are reported in Table 4.2 (respectively 4.3). The Gumbel copula clearly 

fits the dependence structure in the data best for illiquid markets such as 

CAZSCOS, BARINGS and MSSING. Not surprisingly, the SP500 is the 

more liquid market which is also best fit by the Gumbel6. Looking at 

the 95% confidence intervals, we can see that the hypothesis of serial in- 

dependence can only be rejected for CAZSCOS. A fully non-parametric 

estimation is also done and it confirms that the Gumbel copula best fits 

the one lag dependence. Figures 4.5 to 4.9 plot the non-parametric estim- 

ator A (u) with the fitted ML values of the independent and archimedean 

copulae for all markets. 

4.8 Auto-concordance 

One main advantage of using copulae is that all the dependence structure is 

captured by the copula function itself since it is obviously not held in the mar- 

ginal distributions. Measures of dependence based on the copula have the ad- 

vantage that they are also invariant to monotonic transformations of the data. 

Auto-correlation analysis as an approach to measuring dynamic dependence 

suffers from the same serious limitations that restrict the use of correlation 

as a measure of association. In particular the autocorrelogram is designed 

to detect only linear autoregressive processes. For example Ljung and Box 

(1979) or Dufour and Roy (1995) statistics are a good indicator of the serial 

dependence if it is linear with normal innovations. It is therefore natural to 

6Notice that a simple model selection can be based on the likelihood values themselves in 
this case since there is a single parameter in each of the separate families and so comparison 
by the likelihood value corresponds to selection by Akaike's Information Criterion (AIC). 
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Figure 4.5: Empirical and fitted functions of A(u) for CAZSCOS. The dashed 

lines are the 95% confidence interval for the empirical A(u). 
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Figure 4.6: Empirical and fitted functions of A(u) for BARINGS. The dashed 
lines are the 95% confidence interval for the empirical A(u). 
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Figure 4.7: Empirical and fitted functions of a(u) for SP500. The dashed lines 

are the 95% confidence interval for the empirical A(u). 
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Figure 4.8: Empirical and fitted functions of A(u) for NASDAQ. The dashed 
lines are the 95% confidence interval for the empirical a(rc). 
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Figure 4.9: Empirical and fitted functions of A(u) for MSSING. The dashed 

lines are the 95% confidence interval for the empirical A(u). 

CAZSCOS BARINGS SP500 NASDAQ MSSING 
GAUSSIAN 
6=p 0.383 0.206 0.034 0.089 0.188 

(0.012) (0.014) (0.015) (0.015) (0.014) 
LogLik -7041.3 -8983.6 -9739.8 -11541.7 -11016.7 
GUMBEL 
6 1.352 1.145 1.030 1.076 1.154 

(0.016) (0.012) (0.009) (0.011) (0.012) 
LogLik -6973.6 -8971.6 -9733.1 -11523.4 -10977.5 
JOE 
8 1.448 1.173 1.039 1.095 1.194 

(0.023) (0.017) (0.012) (0.015) (0.018) 
LogLik -7059.5 -8998.5 -9733.3 -11529.6 -10999.5 
FRANK 
6 2.662 1.266 0.154 0.687 1.206 

(0.099) (0.093) (0.093) (0.095) (0.095) 
LogLik -7022.1 -8987.1 -9740.8 -11532.0 -11015.6 
INDEP 
LogLik -7385.7 -9078.9 -9742.2 -11558.3 -11096.3 

Table 4.2: IFM estimates for various copulae under the assumption of a first 

order Markov process. 
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CAZSCOS BARINGS SP500 NASDAQ MSSING 
GAUSSIAN 
F=p 

LogLik 

0.379 
(0.012) 

346.2 

0.206 
(0.014) 

96.9 

0.031 
(0.015) 

2.2 

0.082 
(0.015) 

15.0 

0.192 
(0.014) 

83.5 

GUMIBEL 
b 1.345 1.143 1.027 1.070 1.153 

(0.015) (0.012) (0.008) (0.010) (0.012) 

LugLik 414.7 107.9 9.7 33.3 120.2 

, JOE 
r 1.411 1.169 1.034 1.084 1.191 

(0.023) (0.017) (0.011) (0.015) (0.017) 
LogLik 330.0 80.3 9.5 27.0 96.8 
FRANK 

2.604 1.259 0.142 0.654 1.211 
(0.097) (0.093) (0.09) (0.092) (0.094) 

LogLik 359.5 92.2 1.2 25.1 82.7 

Table 4.3: CIM estimates for various copulae under the assumption of a first 

order Nlarkov process. 
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Figure 4.10: Empirical autocorrelation function under alternative hypothesis 
about margins : Burr3 and Gaussian. 
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consider extending methods of detecting potentially nonlinear dynamic struc- 

ture to copula based measures of dependence that will be applicable outside 

the class of elliptic distributions such as the Gaussian. Figure 4.10 plots (i) 

the standard autocorrelation function (acf) - corresponding to the hypothesis 

of gaussian margins and gaussian copula - (ii) an extended version of the acf 

assuming Burr margins and gaussian copula. Several alternative measures of 

dependence immediately suggest themselves; in particular auto-concordance 

measures as opposed to autocorrelation. Two measures of concordance are 

given by Kendall's Tau and Spearman's rho which may be defined in general 

in terms of the parameters of the copula. The use of Kendall's tau to measure 

serial dependence has been introduced by Ferguson, Genest and Hallin (2000), 

Wang and Wells (2000), Genest, Quessy and Remillard (2002). To define the 

auto-concordance coefficients we treat the original variable and its lag as the 

two random variables in what follows. The two concordance measures we use 

lead to the Kendall p-order auto-concordance coefficient defined as 

Tc (p) =4 
ff 

C(ue, ut_p)dC(ut, ut-n) -1 (4.35) 
(0,1)2 

and the Spearman rank p-order auto-concordance coefficient is 

Pc (P) = 12 JJ 
(C(ut, ut-P) - uv) dutdut_p (4.36) 

(0,1)2 

Spearman's rank correlation coefficient is essentially the ordinary correlation 

of p(Fi(Xi), F2(X2)) for two random variables Xi , Fl(. ) and X2 - F2(. ). 

Notice the explicit comparison with the product copula, uv, representing inde- 

pendence. Essentially these two measures of concordance measure the degree 

of monotonic dependence as opposed to the Pearson Correlation which meas- 

ures the degree of linear dependence. Both achieve a value of unity for the 

bivariate Frechet upper bound where one variable is a strictly increasing trans- 
formation of the other and minus one for the Frechet lower bound (one variable 
is a strictly decreasing transform of the other). Ferguson, Genest and Hallin 

(2000) show that Kendall's statististic is more powerful than Spearman's auto- 

correlation for samples of moderate size. 
Essentially using these auto-concordance measures should enable us to de- 

tect monotonic and nonlinear dynamic dependence in non-gaussian assets and 
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Lag tau rho acf 
1 0.26 0.37 0.32 
2 0.15 0.22 0.17 
3 0.11 0.17 0.12 
4 0.11 0.16 0.19 
5 0.09 0.13 0.11 
6 0.08 0.11 0.09 
7 0.08 0.12 0.10 
8 0.08 0.12 0.05 
9 0.09 0.14 0.09 

10 0.09 0.13 0.11 
11 0.06 0.10 0.12 
12 0.06 0.09 0.04 
All entries significant 

Table 4.4: Auto-concordance / Autocorrelation CAZSCOS 

hence are potentially useful in financial applications. Further measures of cop- 

ula based dynamic dependence could be based on dynamic tail area dependency 

measures, we consider this in the next chapter. 

The following tables compare the auto-concordance and auto-correlation 

for the return series described above7. 

The general conclusion we can draw from these results is that within the 

same general pattern of dependence some potentially important differences 

emerge between the auto-concordance and auto-correlation coefficients. The 

same general dependence structure is indicated by both the auto-concordance 

measures. The distributions of these return series show the classic pattern of 

relatively small skewness but substantial excess kurtosis indicating the dangers 

of using autocorrelation analysis. The relative symmetry of these distributions 

may well explain the lack of any dramatic difference being indicated between 

the auto-concordance and the auto-correlation coefficients. In order to invest- 

igate this further we have applied the same procedures to two duration series 

drawn from a sample of all transactions from the DM2000-2 electronic order 
7Star's(*) indicate values significantly different from zero at a 5% level. 
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Lag tau rho acf 
1 0.13418* 0.196* 0.201* 
2 -0.00163 -0.003 -0.0286 
3 -0.0235* -0.035* -0.0223 
4 -0.0184* -0.027* 0.0109 
5 0.00138 0.0024 0.0157 
6 -0.0059 -0.009 -0.0019 
7 -0.0131 -0.019 -0.0013 
8 -0.008 -0.0127 -0.0084 
9 -0.0115 -0.017 -0.0138 
10 -0.0237* 0.035* 0.0340* 
11 -0.006 -0.009 0.0111 
12 -0.004 -0.006 0.0034 

Table 4.5: Auto-concordance / Autocorrelation BARINGS 

Lag tau rho acf 
1 0.071* 0.102* 0.0656* 
2 -0.008 -0.012 -0.0178 
3 -0.0019 -0.003 -0.0194 
4 -0.003 -0.004 0.0004 
5 0.009 0.014 0.0339* 
6 -0.005 -0.0082 -0.0213 
7 -0.022* -0.032* -0.0372* 
8 0.0087 0.0127 -0.0016 
9 0.0054 0.007 -0.0112 
10 0.007 0.01 0.0096 
11 -0.0018 -0.003 -0.0089 
12 0.018 0.027 0.0232 

Table 4.6: Auto-concordance / Autocorrelation NASDAQ 
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Lag tau rho acf 
1 0.0155 0.023 0.0229 
2 -0.012 -0.018 -0.0372* 
3 -0.043* -0.063* -0.0459* 
4 -0.0145 -0.021 -0.0295* 
5 -0.0082 -0.012 0.0378* 
6 -0.0173 -0.025 -0.0163 
7 -0.027* -0.040* -0.0273 
8 -0.0029 -0.004 -0.0162 
9 -0.011 -0.016 -0.0099 
10 0.0144 0.022 0.0141 
11 0.0003 0.005 -0.0063 
12 0.0179 0.026 0.0066 

Table 4.7: Auto-concordance / Autocorrelation SP500 

Lag tau rho acf 
1 0.1266* 0.182* 0.1721* 
2 0.0208* 0.030* -0.0237 
3 0.004 0.005 0.0217 
4 0.0032 0.005 0.0301* 
5 0.008 0.011 -0.0070 
6 0.003 0.005 -0.0123 
7 0.005 0.0082 0.0187 
8 -0.016 -0.022 -0.0096 
9 0.0077 0.011 -0.0162 
10 -0.0027 -0.004 -0.0032 
11 0.019* 0.028 0.0274 
12 0.031* 0.046* 0.0454* 

Table 4.8: Auto-concordance / Autocorrelation MSSING 
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Lag tau rho acf 
1 0.171 0.252 0.259 
2 0.137 0.203 0.206 
3 0.120 0.179 0.322 
4 0.11 0.165 0.294 
5 0.096 0.144 0.171 
6 0.102 0.152 0.212 
7 0.106 0.158 0.338 
8 0.084 0.126 0.185 
9 0.086 0.129 0.165 
10 0.108 0.162 0.259 
11 0.090 0.135 0.273 
12 0.094 0.139 0.179 

Table 4.9: Auto-concordance / Autocorrelation DM2000-2 Transactions 

book screen trading system for the Dollar DeutscheMark8. We consider the 

question of dynamic dependence within the duration between transactions and 

also the order flow duration onto the DM2000-2 system and since these must be 

non-negative their distributions must be asymmetric and lie entirely in the pos- 

itive quadrant. In fact they are relatively well represented by members of the 

Weibull distribution. The following two tables provide the auto-concordance 

and auto-correlation coefficients for these two series of 26578 observations (or- 

der entries) and 4404 (transactions). 

Unfortunately we see little discrimination between the measures in these 

last two tables since all entries are significantly different from zero and show 

essentially the same pattern. We clearly need to find more subtle examples 

in order to demonstrate the value of the auto-concordance functions. How- 

ever this does not imply that other dynamic dependency patterns may be 

discovered using Copulae. The most obvious choice would seem to be looking 

at dependency and the dynamic evolution in the tails of the distribution of 

returns. 
8Further details of this data set and an analysis of its structure can be found in HILLMAN 

and SALMON [20001 
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Lag tau rho acf 
1 0.160 0.237 0.267 
2 0.157 0.223 0.277 
3 0.155 0.230 0.251 
4 0.148 0.220 0.234 
5 0.142 0.221 0.215 
6 0.137 0.203 0.205 
7 0.139 0.207 0.250 
8 0.137 0.203 0.234 
9 0.126 0.187 0.206 
10 0.133 0.198 0.212 
11 0.124 0.184 0.180 
12 0.127 0.190 0.188 

Table 4.10: Auto-concordance / Autocorrelation DM2000-2 Order flow entries 

4.9 Conclusion 

We have taken the first steps in this chapter to develop an empirical meth- 

odology to investigate dynamic dependence in non-gaussian time series and 

financial returns in particular using copula functions. Some properties of the 

class of copula functions that allow us to construct p-order markov processes 

have been presented and it is important to note that any density can be as- 

sumed for the margins. It is conceptually easy to move from considering the 

conditional expectation derived from the copula to consider the implied model 

of conditional volatility and its dynamic strucutre. An important innovation 

of this chapter consists in the concept of copula based regression function and 

its associated model selection procedure. A critical assumption of this chapter 

is that the density of the margins does not change through time. One further 

extension would be to look at possible regime changes both for the marginal 

density and the dependence structure itself. 
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4.10 Appendix 

4.10.1 ML Estimates for margins 
CAZSCOS BARINGS SP500 NASDAQ MSSING 

GAUSSIAN 
µ 0.088 0.093 0.142 0.219 0.068 

(0.011) (0.010) (0.010) (0.009) (0.009) 
Q 1.727 2.031 2.616 3.768 3.614 

(0.018) (0.021) (0.028) (0.041) (0.038) 
LogLik -8603.2 -9515.6 -10370.1 -11865.4 -12032.2 
KS-Test 0.118* 0.058* 0.078* 0.058* 0.096* 
`'VEIBULL 

a+ 1.042 1.104 1.070 1.134 0.985 
(0.014) (0.017) (0.016) (0.015) (0.014) 

x+ 0.992 1.488 1.795 2.797 2.237 
(0.019) (0.026) (0.036) (0.049) (0.047) 

a- 0.882 1.029 0.990 1.048 0.932 
(0.014) (0.016) (0.015) (0.018) (0.014) 

X- 1.047 1.416 1.726 2.806 2.200 
(0.028) (0.030) (0.038) (0.062) (0.047) 

p 0.577 0.527 0.539 0.548 0.518 
(0.008) (0.007) (0.007) (0.008) (0.008) 

LogLik -7475.6 -9107.8 -9770.4 -11569.1 -11159.5 KS-Test 0.021** 0.011 0.013 0.011 0.015 
STUDENT 
v 3.165 2.119 1.561 0.982 1.172 

(0.126) (0.068) (0.043) (0.022) (0.028) 
LogLik -7471.2 -9247.9 -10040.3 -12529.6 -11563.5 KS-Test 0.084* 0.076* 0.098* 0.161* 0.099* 
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CAZSCOS BARINGS SP500 NASDAQ MSSING 
BURß, 3 

a+ 2.535 3.082 3.050 2.946 2.600 
(0.096) (0.131) (0.139) (0.129) (0.112) 

a+ 0.404 0.303 0.291 0.340 0.343 
(0.024) (0.019) (0.020) (0.021) (0.022) 

T+ 1.267 2.263 2.845 3.945 3.275 
(0.050) (0.078) (0.104) (0.143) (0.134) 
2.173 2.944 2.469 2.784 2.473 

(0.094) (0.132) (0.112) (0.130) (0.103) 

A 0.415 0.306 0.390 0.336 0.354 
(0.029) (0.021) (0.028) (0.025) (0.022) 

Ir' 1.358 2.179 2.306 4.081 3.166 
(0.073) (0.084) (0.111) (0.171) (0.134) 

p 0.577 0.527 0.539 0.548 0.518 
(0.008) (0.007) (0.008) (0.007) (0.008) 

LogLik -7385.7 -9078.9 -9742.2 -11558.3 -11096.3 
KS-Test 0.006 0.007 0.013 0.010 0.006 

4.10.2 Inverse of the Burr3 distribution 

The Burr3 distribution : 

G(x, 7) = 1- 
11+ 

(x/T)a = uC with xE R' 

with the parameters ry = (a, A, r). Then it comes that its inverse GI-11 is 

1/a 
1 

G(-11 (uc; )=T 
1- u1/A 

-1 with UG E [0,1] (4.37) 

c 
A distribution F for positive and negative values is constructed: 

F -y-, -Y+) =1-p -11{x<o} (1 - p) G(IxI ; 'Y) + II{x>o}PG(x; 'Y+) = UF 

Then, the quasi-inverse is slightly modified, depending on the sign of x: 

x<0, UG= 1 
OF 

-1 

X >_ 0, uc=(1-UF)(1-p) 

4.10.3 Gaussian copula based simulations 

We may postulate other distributions for the margins with a dependence struc- 
ture summarized by a gaussian copula with AR(p) structure correlation matrix. 
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To illustrate this idea, we simulate two times series of size T= 200 with an 

; \I iý 1) intrinsic gaussian copula but with different univariate margins (stand- 

ard normal and Student) - see Figure 4.11. A simulation for an AR(2) intrinsic 

gaussian copula is also reported in Figure 4.12. 

iIýIII1 ' 
_ w eo w goo .. ýw ýw ýw : ao 

+I i III I 

0Aw . 00 i10 ýý0 100 

Figure -1.11: 
Simulation of two times series with the same intrinsic gaussian 

copula with an AR(1) matrix where = 0.3. The marginal distributions are 
different: the solid line corresponds to standard normal, the dashed line to 
Student with ii =3 degrees of freedom. 
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Figure 4.12: Simulation of two times series with the same intrinsic gaussian 
copula wvitlº an AR(2) matrix where (01,62) = (0.6, 

-0.5). The marginal 
distributions are different: the solid line corresponds to standard normal, the 
diislied line to Student with v=3 degrees of freedom. 

4.10.4 Additional figures 
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CAZSGOS BRINGS SP500 
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Figure 4.13: Left Tail of the CDF (in log-scale) for the annualized log-returns 

CAZSCOS BARINGS SP500 
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Figure 4.14: Right Tail of the survival CDF (in log-scale) for the annualized 
log-returns 
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Chapter 5 

Copula quantile curves and 
quartile regressions 

5.1 Contents and contributions 

This chapter is certainly the more innovative from a theoretical point of view. 

Indeed, it proposes a generalization of both standard regression quantiles intro- 

duced by Koenker and Bassett (1978) and other non-linear regression quartiles 

(see Engle and Manganelli (2000) or Koenker and Hallock (2001)). The third 

section introduces the definitions and properties that are necessary to under- 

stand the link between the functional form of a given copula and the shape 

of the dependence generated by this copula. The idea of positive quadrant 

dependence comes from Lehmann (1966). The left tail decreasing definition 

has been introduced by Esary and Proschan (1972) and its associated copula 

properties can be found in Nelsen (1998). Tail dependence measures are also 

presented in the Section 4. The fifth section is the core of the contribution of 

the chapter to the literature. We propose a new model: the copula quantile 

(or c-quantile) regression model. We first define the concept of copula quantile 

curve. Its properties - positive or negative relationship, symmetry - are then 

derived from the properties of the underlying copula (the implicit function 

theorem is used). The c-quantile curves are more precisely studied for some 

copulae, with a particular focus on the archimedean class. We also show that 

the Koenker and Basset's regression quantiles are encompassed by our model 

since it corresponds, in our model, to the gaussian copula with gaussian mar- 

ginal distributions. Finally, the sixth section is an empirical application of our 
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model to foreign exchange rates. We find evidence of a much stronger form of 

efficiency than implied by standard martingale approach based on the condi- 

tional expectation. In some sense, our model also allows us to extend Fama's 

(1970) definition of efficiency. 

5.2 Introduction 

The problem of characterising the dependence between random variables at 

a given quantile is an important issue, especially if the distributions of the 

variables involved are non-elliptic and fat tailed as it is standard with financial 

returns. Tail area dependency for instance may be quite different to that im- 

plied by correlation and may signal where extreme downside protection may 

be found if two assets do not show positive causal dependency in their extreme 

quantiles. One goal of this chapter is to introduce a general approach to non- 

linear quantile regression modelling where the form of the quantile regression 

is implied by the copula linking the assets involved. 

Our starting point is the joint distribution for the variables which will al- 

most certainly be non-gaussian. Working down, in a general to specific manner, 

this multivariate distribution can be split into two parts - the marginal densit- 

ies and the dependence function or copula that joins these marginals together 

to give the joint distribution function. Since the copula function holds all the 

information on the forms and structure of dependency between the assets we 

can see that the form of the conditional (non linear) quantile relationship is 

then implied by the copula function. We refer below to this relationship as 

a c-quantile regression to distinguish it from a quantile regression which may 

have been assumed, as is usual, to be linear or estimated non-parametrically. 

A second objective of this chapter is to apply the c-quantile idea to assess 

the form and degree of conditional dependence between foreign exchange rates. 

Correlation analysis is implicitly based on an assumption of multivariate gaus- 

sianity and may give very misleading results when the market is under stress; in 

particular multivariate gaussianity implies asymptotic tail area independence 

unless the correlation is unity. It is an important issue in practice to con- 

sider how exchange rates are inter-related when forex markets are under stress 
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and by using c-quantiles we can examine the entire conditional distribution 

at a range of quantile levels rather than just the degree of limiting depend- 

ence which is captured by standard tail area dependency measures. Patton 

(2001) and Hartmann, Straetmans and De Vries (2002) have considered the 

dependence between exchange rates using related but different techniques to 

those employed in this chapter. We also consider dynamic dependency both 

across and within forex markets and show how the c-quantile method provides 

a different approach to that considered by Engle and Manganelli (2000) who 

assumed the form of the Conditional Autoregressive Value at Risk or dynamic 

quantile functions which they proposed for risk management in their CAViaR 

model. The form of our dynamic c-quantiles follows immediately from the de- 

termination of the joint distribution and the copula rather than by assumption. 

In this way we are also able to examine the question of market efficiency at 

all quantiles including the tails of the distributions, instead of simply through 

a mean regression, by exploiting a natural test for independence that follows 

from the copula. 

In the next section, we briefly review regression quantiles as proposed and 

developed by Koenker and Bassett (1978) and then the concept of copula is 

defined and the implications for the assessing the forms of dependence between 

two assets are presented. We then introduce tail dependence measures. In the 

fifth section, we introduce the copula quantile curves, derive some properties of 

this c-quantiles curve and provide some examples for particular copulae. Then, 

the copula quantile regression model is formally defined and we briefly discuss 

the estimation issue. Then the application to analysing c-quantile regressions 

and tail area dependence in foreign exchange markets is presented in the sixth 

section. A final section offers some conclusions. 

5.3 Regression Quantiles 

Koenker and Bassett introduced linear quartile regression in Econometrics 

in 1978. We first review how they define quantile regression and the main 

properties of their model. Let (yi,... 
, yT) be a random sample on Y and 

(x1, 
... , XT)' a random k-vector sample on X. 
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Definition 9 The p-th quantile regression is any solution to the following 

problem: 

min 

(pvt_xßI+ 
E (1-p)Iyt_x I 

QED 
tETp tETi_p 

with Tp = {t : yt >- x=, 6} and Ti_p its complement. This can be alternatively 

expressed as 1: 
T 

min E (p 
- I{y<5,40}) (yt - Xä/3) (5.1) 

RERI, 
t=1 

Non-linearity in quantile regression was developed by Powell (1986) using a 

censored model. The consistency of non-linear quantile regression estimation 

has been investigated by White (1994), Engle and Manganelli (2000) and Kim 

and White (2002). For a recent overview of quantile regression see Yu, Lu, 

and Stander (2001) and Koenker and Hallock (2001). As noted by Buchinsky 

(1998), quantile regression models have a number of useful properties: (i) 

with non-gaussian error terms, quantile regression estimators may be more 

efficient than least-square estimators, (ii) the entire conditional distribution 

can be characterized, (iii) different relationships between the regressor and 

the dependent variable may arise at different quantiles. In this chapter, we 

attempt to resolve one difficulty with using quantile regression, the question of 

how to specify the form of the quantile regression function. We achieve this by 

deriving a conditional distribution for Y given X from the copula which then 

implies the structural form of the quantile regression. For simplicity, our model 
is developed for the one regressor case, corresponding to a bivariate copula but 

it may, in principle, be extended to multiple regressors. 

1Koenker and Bassett discuss properties of their estimator, especially through the follow- 
ing theorem: 

Theorem 8 Let ß* (p, y, X) E B* (p, y, X). Then, the following properties hold: 

X) no{ (p, y, X) for KE R+ 
1. p 

1Y)KillX = 

xß* (1- p, y, X) for rc ER 

2. ß* (p, y+Xb, X) = ß* (p, y, X) for bE lßk 

3. ß* (p, y, xr) = r-1ß* (p, y, x) ur th r non-singular (k x k) matrix 
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5.4 Copulae and dependence 

The goal of this preliminary section is to provide a definition of a copula func- 

tion and Sklar's theorem which ensures the uniqueness of the copula when the 

bivariate distribution for two random variables (corresponding in our model- 

ling framework to the dependent variable and a regressor) is given and the 

margins are continuous. Then, we introduce the concepts of positive quadrant 

dependence and the left tail decreasing property and show how these two con- 

cepts are related. These definitions are the starting point to demonstrating 

that the concavity (respectively convexity) of the copula in its first argument 

induces a positive (respectively negative) dependence at each quantile level. 

Definition 10 A bivariate copula is a function C: [0,1]2 -º [0,1] such that: 

1. V(u, v) E [0,112, 

c (u, 0) =C (0, v) =0 (5.2) 
C (u, 1) =u and C (1, v) =v 

2. V (ui, vi, us, vi) E [0,14 
1 ui < u2 and vi < v2, 

C (u21 v2) -C (ui, v2) -C (u2, vi) +C (ui, vi) ?0 (5.3) 

Theorem 9 (Sklar's Theorem) Let X and Y be two random variables with 

joint distribution F. Then, there exists a unique copula C satisfying 

F (x, y) =C (Fx (x), Fy (y)) (5.4) 

if Fx and Fy are continuous and represent the marginal distribution functions 

of X and Y respectively. 

Definition 11 (Order) Let (C, D) E C2 with C the set of copulae. One says 

that C is greater than D (C >- D or D -< C) if 

V (u, v) E [0,112 
,C 

(u, v) >D (u, v) 

Theorem 10 (Rechet Bounds) Let CEC. Then, 

C'-< C-< C+ 
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where C- and C+ are such that 

C- (u, v) = Max (u +v-1,0) 

C+ (u, v) = min (u, v) 

The concept of order for copulae is important as it allows us to rank the 

dependence between random variables. One interesting copula is the product 

copula Cl- that corresponds to independence - so that Cl (u, v) = acv. 

Definition 12 (Lehmann (1966)) The pair (X, Y) is positive quadrant de- 

pendent 

(PQD (X, Y)) if 

Pr {X 5 x, Y< y} > Pr {X < x} Pr {Y < y} (5.5) 

In terms of copulae, this definition can be restated Cl -< C. 

Definition 13 (Esary and Proschan (1972)) Y is left tail decreasing in 

X (LTD (Y I X)) if 

Vy, Pr {Y 5yIX5 x} is a nonincreasing function of x (5.6) 

This definition can be equivalently expressed using copulae as: 

Theorem 11 (Nelsen (1998)) 

C (u, v) 
LTD (Y 1 X) e==> is nonincreasing in u 

u 
ac (u, v) c (u, v) (5.7) 

au 
< 

u 

Theorem 12 Let CEC. The following holds 

If d (u, v) E [0,1]2 
02C (u, v) <0 then C1 -< C (5.8) 

au2 

I 
au2 If d (u, v) E [0,112, 

ä2C (u, v) >0 then C -< C1 (5.9) 

Proof. We refer to NELSEN (1998), p 151-160, for the proof. The first part 

is based on the fact that & '° <_ 0= LTD (Y I X) = PQD (X, Y).   

The previous theorem tells us that if the copula function is concave in the 

marginal distribution FX then the random variables X and Y are positively 
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related i. e. their copula value is greater than given by the independence copula 

Cl. Conversely, convexity implies a negative relationship i. e. the copula 

linking X and Y lies below the independence copula Cl. For simplicity, we 

still have not introduced the parameter(s) of the copula function which in effect 

measure the degree and different forms of dependence between the variables, 

let us denote these parameters by SEA. Then, through the family of copula 

functions, we can distinguish three classes: 

1. Copulae that only exhibit negative dependence: 

`db E A, `d (u, v) E [0,112, then C (u, v; 6) -< C1 (u, v) 

2. Copulae that only exhibit positive dependence: 

Vb E 0, `d (u, v) E [0,112 
, then C1 (u, v) -< C (u, v; 6) 

3. Copulae that exhibit both negative and positive dependence depending 

on the parameter values: 

Vb E 0-, `d (u, v) E [0,1]2 
, then C (u, v; b) Cl (u, v) 

Vb E A+, `d (u, v) E [0,1]2 
, then Cl (u, v) -< C (u, v; b) 

In the next section, tail dependence measures are presented and the concept 

of a quantile curve of Y conditional on X is defined and we derive several results 

that are directly deduced from the underlying copula properties outlined above. 

5.5 Tail Area Dependency 

5.5.1 Tail dependence measures 

Tail dependence measures, for both the upper tail, AU and lower tail AL have 

been developed and discussed for instance in Joe (1997), Mari and Kotz (2001) 

and Coles, Heffernan and Tawn (2000). Upper tail independence is normally 
thought to be shown by Au =0 and a value of Au E (0,1) indicates the degree of 

upper tail dependence with lower tail dependence AL E (0,1) similarly defined. 
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For two random variables, (X, Y) with marginal distributions FX and Fy, 

au and AL are linked to the asymptotic behaviour of the copula in the left and 

right tails. So for the lower tail index we have 

C(a, a) 
AL = lim 

«1o a 
(5.10) 

=l m(Pr{FX(X) < aIFy(Y) < a}) 
tk\O 

and 

Au =1m Pr{Y > FY1(a)jX > FX1(a)} (5.11) 
0/1 

_ 
Pr{Y > FY 1(a), X>F' (a)} 

/1 Pr{X >F '(a)} 

C(a, a) 
= lim 

a/i 1-a 
1 -2a+C(a, a) 

= lim 
a/i 1-a 

Given the survival copula of two random variables with copula C(", ") is given 

by 
C(u, v) =u+v- 1+C(1 -u, 1 -v) 

and the joint survival function for two uniform random variables with distri- 

bution function given by C(u, v) is given by 

C(u, v)= 1-u-v+C(u, v) =C(1-u, 1-v) 

hence it follows that 

lim 
C(a, a) 

= lim 
C(1- a, 1- a) 

= lim 
c(a, a) (5.12) 

0/1 1-a a/i (1 - a) a\O a 

which implies that the coefficient of upper tail dependence of C(., ") is the 

coefficient of lower tail dependence of C(", 
. ). 

A major difficulty with interpreting asymptotic tail area dependency how- 

ever is that independence in the sense of the factorisation of the bivariate 

distribution in the tails implies Au =0 but Au =0 does not imply factoriza- 

tion and hence independence. There may still be dependence in the tails even 

though there is asymptotic independence. An additional condition must be 
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used to ensure factorization, Ledford and Tawn (1998), for instance, show that 

we also need to satisfy ý=0 as a necessary condition, where 

ý_ 
2logPr{X > FX1(a)} 

11/i log Pr{X > FX1(a), Y > FY1(a)} -1 

ý: M 
2log(1- a) 

_1 aaaaa -- - 

a/i log(1- 2a + C(a, a)) 

lim 
2log(1 - a) 

-1 
a/i log C(a, a) 

-1 

If ý>0 large values occur simultaneously more frequently than if they were 

independent and if Y<0 simultaneous large movements occur less frequently 

than under independence.. =1 if and only if au >0 while it takes values in 

(-1,1) when A,, =0 which enables us to quantify the strength of dependence 

in the tail. Values of .1>0, 
ý=0, 

.1<0 loosely correspond to when the 

variables are positively associated in the extremes, exactly independent and 

negatively associated. 

The two indices (An, ý) are then used to measure extreme upper tail de- 

pendence: 

1. (A > 0, ý= 1) indicates asymptotic dependence and AU measures the 

degree of upper tail dependence; or 

2. (A = 0, ý< 1) indicates asymptotic independence and .\ measures the 

strength of dependence in the tail. 

5.5.2 Parametric and Non-parametric Estimation of Tail 
Dependency 

An archimedean copula is defined as follows 

C(u, v) = 0-1 [0 (u) +0 (v)] (5.13) 

with 0a continuous and strictly decreasing function from [0,1] to [0, oo] such 

that ¢ (1) = 0.0 is often called the generator function. The standard lower 

and upper tail dependence measures for archimedean copulae are defined in 

general by 
AL = lim 1-2a+0'1(20(")) 

Q-1- 
1-a 

` 

Au = lim 0-1(2(k a 
(5.14) 

a-O+ a 
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and for the Clayton Joe Copula specifically are given by 

AL = 2-1/b 

Au =2- 21/8 
(5.15) 

hence MLE estimates of the parameters of the copula provide direct parametric 

estimates of the tail area dependency measures and we shall employ these 

formula below. 

Alternatively we can use an empirical or non-parametric copula C, 
ß(3 , n) = 

niI (Xi < X(; ), Y < Y; )) to estimate tail area dependency given the order 

statistics X(1) <_ X(2) < 
.., 

< X(n) and Y(1) < Y2) < 
... 

< Y. Since we have 

C (a, a) AL = 1im 
0\0 ck 

which implies 

C(a, a) = ALa + o(a) (5.16) 

for 0<a<1 where o(a)/a -º 0 as a -º 0. A natural estimator of )AL is given 

by the derivative which is approximated by the secant 

ýi (k )-l Cn (k, 
Lnnn 

Alternatively a least squares estimator can be applied to (5.16) to give a second 

estimator 
(ký)2) 1 

Al 
- (517) 

nnn 

A third estimator is given by recognising that the copula C(u, v) can be ap- 

proximated by the mixture of the comonotonicity and independence copulae, 

C+ and Cl, giving 

C(a, a) = ALa + (1 - AL)a2 

If we rewrite this as 
C(a, a) - a2 = )L(a - a2) 

and again apply least squares to this expression we get a third estimator 

jý k (O()(i)2)(1 (i l2 

_`=n-(1) 

) 

L-2 
Y: k 

1(n-\nl2) 
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As shown by Dobri6 and Schmidt (2002) each of these are consistent estimators 

for AL provided k, the number of observations in the lower tail, is chosen so 

that k.: -- Our limited experimentation with these estimators suggests that 

JAL is the most reliable, with äL giving values from time to time outside the 

feasible range (0,1). Dobrio and Schmidt provide some Monte Carlo evidence 

on the relative merits of each estimator which depends on the sample size and 

the true degree of dependence. We use äL below to calculate both lower and 

upper tail dependence using the relationship in (5.12). 

5.6 Copulae and Quantiles 

First, the copula p-th quantile curve of y conditionally on x or p'th c-quantile 

curve is defined. Second, its main properties are exhibited. Third, the case 

of radially symmetric variables is studied. Finally, the quantile curves are 

developed for three special cases: the Kimeldorf and Sampson, Gaussian and 

Frank copulae. 

5.6.1 Definitions 

We restrict the study to monotonic copula for simplicity. Define the probability 

distribution of y conditional on x by p (x, y; 6): 

p(ylx; b) = Pr{Y<y(X =x} 

=E (1I{Y<y} 1X= x) 

= 1imPr{Y<ylx<X<x+, -} 
fro 

_F 
(x+e, y; ö) - F(x, y; b) 

E-ö 
Fx (x + e) - Fx (x) 

= lim 
C [Fx (x + e), FY (y) ; 61- C [Fx (x), Fy (y) ; 6] 

E-. o Fx (x + e) - Fx (x) 

P (yl x; b) = Ci [F'x (x), Fy (y) ; 6] (5.18) 

with Ci (u, v; 6) = AC (u, v; 6). Since the distribution functions FX and Fy 

are nondecreasing, p (ylx; 6) is nondecreasing in y. Using the same argument, 

p (ylx; 6) is nondecreasing in x if C11 (u, v; 6) <0 and nonincreasing in x if 

Cil (u, v; 6) >0 where C11 (u, v; S) = 
a2c u, v; s 

- au 
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Definition 14 For a parametric copula C (., 

.; 
6), the p-th copula quantile 

curve of y conditional on x is defined by the following implicit equation 

p= C1[Fx(x), Fr(y); 5] (5.19) 

where 6E0 the set of parameters. 

Under some conditions2, equation (5.19) can be expressed as follows in 

order to capture the relationship between X and Y: 

y=q (x, p; S) (5.20) 

where q (x, p; 6) = FY 11 (D (Fx (x) 
, p; 6)) with D the partial inverse in the 

second argument of Cl and Fl 11 the pseudo-inverse of Fy. Note that the 

relationship (5.20) can alternatively be expressed using uniform margins as: 

v=r(u, p; 5). (5.21) 

with u=FX(x) and v=Fy(y). 

5.6.2 Properties 

Two properties are demonstrated. The first tells us that the quantile curve 

shifts up with the quantile level. The second indicates that the quantile curve 

has a positive (respectively negative) slope if the copula function is concave 

(respectively convex) in its first argument. 

Property 4 If 0< pl <_ p2 <1 then q (x, pl; 6) <q (X, p2; 6). 

Property 5 Let xl < z2. 

If C (u, v) is concave in u then q (xi, p; S) <q (x2, p; S) 

If C (u, v) is convex in u then q (x1, p; S) >q (x2, p; S) 

Proof. Given the implicit function theorem, y may be expressed as a 

function of x and p i. e. y=q (x, p; 6). Let us rewrite equation (5.19) as 

F(x, P, q(x, P; s)) = 0. Thus, 

W. - (Z, p, q (x, p; b)) + 2E (x, p, q (x, p; 6)) 8 (x, p; S) =o 

OF (x, p, q (2, p; S)) + (x, p, q (x, p; s)) e (x, P; b) =o 
2Note that C1 has to be partially invertible in its second argument. If it is not analytically 

invertible, a numerical root finding procedure can be used. 
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Then, 

(x, P, 4(x, P; 6)) 8S (x, pi S) 
__ 

OF 

8x 
e 

(xýP, 4(x, P; b)) 

(x, pi s) 
_- 

e4 
(x, P, q(x, P; b)) 

8P 
g= (x, P, 4(xýP; a)) 

Just note that F (x, p, y) = C1. [FX (x) 
, 
Fy (y) ; b] - p, it follows that 

8 fXýX)C2. (Fx(x), Fy(y); bj e P; b) _ -fy (y )CI 1 Fx(x), Fy(y); b (5.22) 
93 (x, pi b) 

- fy(E+)Cii[F'x(x), F'y(y); b 

As V (u, v) E [0,1]2, C11 [u, v; b] > 0, fx (x) >0 and fy (y) > 0, this completes 

the proof.   

5.6.3 Symmetric case 

An interesting case concerns the radial symmetry of X and Y. Indeed, in this 

case, a remarkable relationship exists between the p-th quantile curve and the 

(1 - p)-th quantile curve. First, the definition of radial symmetry is given. 

Then, a theorem is stated and a corollary that informs us about the slopes of 

the quantile curves is provided. 

Definition 15 Two random variables X and Y are radially symmetric about 

(a, b) if 

Pr {X <x-a, Y<y-b}=Pr{X >x+a, Y>y+b} (5.23) 

Theorem 13 (Nelsen (1998)) Let X and Y be respectively symmetric about 

a and b. They are radially symmetric about (a, b) if their copula C satisfies: 

C(u, v)=u+v-1+C(1-u, 1-v) (5.24) 

Corollary 14 If the copula C satisfies equation (5.19), then 

Cil. (u, 
V; 6) 

=1-C,. 
(1 

- u, 1-v; s) 

C2. (u, v; 6)= C2. (1-u, 1-v; 6) 
Ci1(u, v; 6) = Cii(1-u, 1-v; b) 

Theorem 15 (Radial symmetry and copula quantile curves) If two ran- 
dom variables X and Y are radially symmetric about (a, b) then 

q(a-x, p; b)+q(a+x, 1-p; S) =2b (5.25) 
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Proof. From equation (5.23), 

Pr{Y<- y-bI X: 5 x- a} =Pr{Y > y+bI X >X+a} 

In terms of copula, 

Cl. [FX(a-x), Fy(b-y); b] = 1-Ci. [FX(a+x), Fy(b+y); 6] 

p(a-x, b-y) = 1-p(a+x, b+y) 

Then, forp(a-x, b-y) =p, 

b- y= q(a-x, p; 6) 
b+y= q(a+x, 1-p; b) 

and the proof follows.   

Note that a direct implication of this theorem is q (a, 
Z; 

S) = b. 

Corollary 16 If two random variables X and Y are radially symmetric about 

(a, b) then 
q(a-z, 

p; S)=aq(a+x, 1-p; 6) (5.26) 

5.6.4 Examples 

We first describe a case where the copula quantiles can be derived analytic- 

ally, this is for the Kimeldorf and Sampson copula. We then describe how 

to develop c-quantiles for the general class of archimedean copulae and two 

specific archimedean copulae that we use in the empirical analysis below; the 

Joe-Clayton Copula (BB7 in Joe (1997)) which was used by Patton (2001) and 

BB3. We then study two copulae that allow both positive and negative slopes 

for the quantile curves, depending on the value of their dependence parameter. 

These are the Gaussian copula where the dependence pattern is measured by 

correlation but where the marginal distributions may be non-gaussian and the 

Frank copula. We then show that we have to be careful when selecting copula 

since some copulae, such as the Frank copula, may not allow us to adequately 

capture the full range of behaviour in the distribution of the dependent variable 

Y. 
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5.6.4.1 Kimeldorf and Sampson copula 

Consider the copula given by 

C(u, v) = (u-B + v-0 - 1)-i for 0>0 

we then have 

Cl(vlu) = 
OC(u, v) 

öu 

1))_ l+e 
_ (1 + ue(v-e - 

solving p= Ci(vl u) for v gives 

Ci 1(vlu) =v= (PI+i - 1)u-e + 1)-B 

which provides us with the c-quantiles relating v and u for different values of 

p. Using the empirical distribution functions for u= FX (x) and v= Fy (y) 

we can find explicit expressions for the conditional c-quantiles for the variable 

Y conditional on X. 

y=F' 
((p-1+w 

- 1)Fx (x)-° + 1) ) 

5.6.4.2 Archimedean Copulae 

5.6.4.2.1 General case From p= C(u, v), we obtain 

01 (u) 
(C(u, v)) 

061 (u) 
(5.27) P= 01(c-' 10 (u) +0 (v)]) 

and the quantile regression curve for archimedean copulae can in general be 

deduced as 

v=r (u, p; b) 

v_ -ý 01-1 
(! 

c/(u))) - (u) 

Introducing u= Fx (x) and v= Fy (y), the equation for the c-quantile above 

becomes 

y_ FYi 0-i 
(_i (! 

c5F(Fx fix)) - cb (Fx fix)) 

129 



CHAPTER 5. COPULA QUANTILE CURVES AND QUANTILE 

REGRESSIONS 

5.6.4.2.2 Joe-Clayton (BB7) For the copula defined by 

1 

-1 tl 1- 1- 11- 1-U 1 +ý1- V )I) 

(5.28) 

with 0>1 and 6>0, see Joe (1997), p 153). This two parameter copula 

is archimedean as 

C5, e(u, v) = 06, e [06, 
e 

(u) + ca, e Mv)] 

with 

06,0 (s) _ 
[1- (1- s)Bl 

-b 
-1 

e ' 

,B 
(s) =1- 

[1 
- (1 + s)-T 

¢6 01(s) _6 
[- (1 - s)e 

-i+9] 
It only allows positive dependence and we can see that 

slim 
C6,0 (u, V) = C+ (u, V) 

-400 

B(u, v) = C+(u, v) IimCd' 
0-00 

(5.29) 

An important property is that each parameter respectively measures lower 

(b) and upper (0) tail dependence as we show below. Moreover this copula 

encompasses two copulae sub-families as for 0=1 one obtains the Kimeldorf 

& Sampson (1975) copula: 

_1 C6 (u, v) = (u-a + v-b -1) 61 

and for 6 -+ 0 the Joe (1993) copula: 

CB(u, v) =1- ((1 
- u)e + (1 - v)° - (1 - U)0(1- v)°)'10. 

5.6.4.2.3 BB3 For the BB3 copula defined below (Joe (1997)), 

Ca, o (u, v) = exp 1- 6-1 In SuB+ exp 1) 5.30 ý (exp ý ý) (6,50) ý- $) ý) 
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with 0>1 and 6>0. This copula is archimedean as 

C6.0 (u, v) = ob-'e, 
6,9 

[06,8 (u) + 06,8 Ml 

with 

¢6, e (s) = exp 
(- [6-1 In (1 + s)] 

Again this copula allows us to model positive dependence and 

slim 
C6, e(u, v) = C+(u, v) 

-00 

e ýC6, e(u, v) = C+(u, v) 

The lower and upper tail area dependence measures are given by 

ýL= 
lif9>1 (5.32) _ 

{2-hI6ifo=' 

aU=2-21/8 

Again each parameter respectively measures lower (6) and upper (0) tail de- 

pendence. 

5.6.4.3 Gaussian copula 

The bivariate copula in this case is written: 

C (u, v; P) _ 44ý2 (v) ; P) (5.33) 

with 42 the bivariate gaussian distribution and c the univariate distribution. 

(u) 
P-ý 

1_p2 

or equivalently solving for v we find the p'th c-quantile curve to be, 

v=r (u, p; p) = 
(E_i] (u) +1- p24cbI-1] (p)) 

. 

The slope of the p-quartile curve is given by: 

Or (u, P, p) 
_0 

(pcr_i] (u) +1- p2 F-11(v)) 

au -p0(. [-11(u)) 
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A positive correlation is characterized by a positive slope and conversely for a 

negative correlation. Moreover, 

Or (u, p; P) 1- 
0 (_ii (u) +1- plc[-1] (P)) 

0 (. 111-1] (u)) 

that is always positive. Then, the higher p the higher the quantile curve. The 

relationship between y and x for the p-quantile is: 

y_ FY 11 [i (r_i (Fx (x)) + 1- Pz(D[-ll (P))] 
. 

(5.34) 

The gaussian copula density with its corresponding quantile curves are plotted 

in Figure 5.1 (under the assumption of Student margins). 

Let assume that X and Y are jointly bivariate gaussian with j=E [X], 

My =E [Y], a= Var [X], ay = Var [Y] and p= Corr [X, Y]. Then, given 

equation (5.34), the relationship becomes linear and we have 

y= q (xt, P; P) =a+ bx 

with slope and intercept values determined by the quantile level; 

a=my+uy 1-p21bf-11(p)-Pö µx 
b= pý o= 

5.6.4.4 Rank copula 

This copula is given by 

bu 
- 

)( by 
-) 

C (u, v; b) =-S In 
(i 

+ 
(e 

e-6 -11 
(5.35) 

By computing its first derivative with respect to u, one obtains the copula p-th 

quantile curve, p= C1. (u, v; 6) as 

p= -6u ((1- e-b) (1 - e-6) -1- (1 - e-6u))-1 

or equivalently, 

v=-1 In (1-(1-e b) [1+e-6"(p 1- 
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Figure 5.1: Gaussian copula densities, copula p1h quantile curves (for p= 

. 
1, 

. 
2...... 9) for (u, c) and (x, y) under the hypothesis of Student margins 

ii, 3ýt,, r 1) _ (1.1 supper plots) and p= -0.8 (lower plots) 

Fr()iii the dletiiºition of the uniform distribution, one obtains the non-linear 

relationship between r and y for the p-quantile as: 

y= Fi. + e-6FX(') (p-i 
_ 1)ý ') (5.36) 

We ca see t hat t he Frank copula might not always be a good choice as shown 

in Figure 5.2 the full reuige of potential values for the variables may not be 

ca pt IIn ( I. So for uE 10.1]. 

b 

ln(1-(1-t p) < r(u, p; <ln 
l+eI 

for6>0 

and 

_n 
-1ln(1-(1-e 

6)p) > r(u, p: )? -SIn 1 +e16 

ei fore <0. 
- 1)) 

The Frank copula density with its corresponding quantile curves are plotted 

in Figure 5.1 (under the assumption of Student margins). 
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Figure 5.2: Frank copula densities, copula 7th quartile curves (for p= 

. 
1.. 2...... 9) for (u, c) and (r, y) under the hypothesis of Student margins 

(1, = 3) for F=2.5 (upper plots) and h= -8 (lower plots) 

5.6.5 Copula Quantile Regression 

Given t lie development above the concept of a copula quantile regression can be 

seen to be just a special case of non-linear quantile regression. Let (yl..... Jr) 

be a random sample on I and (xi, 
... , x7, ) a random k-vector sample on X. 

Definition 16 The p-th copula quantile regression q (xt, p; 6) is a solution to 

the foliouriiiq problem: 

"h" 

(PYt 

- q(x. p: ý)ý+ (1-p)Iyt-q(xt, p; (5.37) 
rcTN tETi-V 

with TT, _ {t : yt >q (xt, p: b)} and T1. 
_p 

its complement. This can be expressed 

alternatively as: 

7' 

min (p 
- 

ý{yt<q(xt, 
p; o)}) (yt 

-q (xt, p: o)) (5.38) 

r=1 

This definition indicates that the estimate of the dependence parameter S is 

provided by an L' norm estimator. This general problem has been investigated 
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by Koenker and Park (1996) who proposed an algorithm for problems with re- 

sponse functions that are non-linear in parameters and we refer to their chapter 

for a detailed discussion of the development of an interior point algorithm to 

solve the estimation problem. The main idea is to solve the non-linear L' 

problem by splitting it into a succession of linear Ll problems. 

It might be surprising that the probability level p appears in equation 

(5.37) as an argument of the function q itself. This is simply because we have 

adopted a top-down strategy in our modelling by first specifying the joint 

distribution and then deriving the implied quantile function. By postulating 

given margins for X and Y and their copula, we implicitly assume a specific 

parametric functional for q (xt, p; 6). In fact, the probability level is implicit 

in the original quantile regression definition of Koenker and Bassett (1978). In 

the applications below we use nonparametric estimates of the empirical mar- 

ginal distribution functions but estimate the parameters of the copula quantile 

parameters, b, as described above. Conditions for the consistency of this semi- 

parametric approach to the estimation of copula based time series models has 

been discussed in Chen and Fan (2002). 

The c-quantile approach, developed above, enables us to examine the de- 

pendency between assets at any given quantile, including extreme quantiles 

and we can now compare this approach with the standard asymptotic tail area 

dependency measures. We may in fact not often be interested in dependency in 

the far extremes where highly infrequent but potentially disasterous joint loss 

may occur and we may be more interested in the more frequent dependency 

where large but not extreme loss can arise and in this latter case the c-quantile 

approach should provide a better measure of association between the assets. 

5.7 Application to FX markets 

As a demonstration of the methods discussed above we now turn to examine 
the dependency between exchange rates, both in the extremes and at a range of 

quantiles describing the conditional distributions. We start by considering the 

static relationship between the Dollar-Yen (USD/Y), Dollar-Sterling (USD/£) 

and Dollar-DM (USD/DM) rates using 522 weekly returns from August 1992 
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to August 2002; the rates themselves are shown in the Figure 5.3 below. The 

empirical bivariate return distributions are plotted from Figures 5.4 to 5.6 for 

the three pairs. We then turn to consider the dynamic dependence of condi- 

tional quantiles both within and between these rates. All three exchange rates 

fail univariate normality tests with excess kurtosis and a positive skew except 

for the USD/£ rate which shows a negative skew over the sample period. For 

comparison purposes we start by imposing a Gaussian copula to combine these 

non-gaussian marginals and then examine the sensitivity of our conclusions by 

using the Joe-Clayton (BB7) copula employed by Patton (2001) and then using 

daily data with a BB3 copula which is the copula that appears to be supported 

by the data. 

5.7.1 Weekly data 

We examine the Gaussian copula first simply because multivariate Gaussianity 

is a standard assumption in practice (even if this is only implicit through the 

use of correlation as a measure of dependence) and also because we know that 

the Gaussian copula implies asymptotic independence and hence it provides a 

useful basis for a comparison between quantile dependence and the tail area 
dependence measures. 

5.7.1.1 Cross dependence 

We compute the nonlinear quantile regression estimates of p (p) such that: 
T 

(p) = arg min ý (p 
-'{Sj<<_q(s2t, p. a, eI, e2)}) 

(Sie 
-q 

(S26APAA))) 

(5.39) 

Assuming a Gaussian copula the relationship between any two exchange rates 
Sl and S2 at the p'th-quartile is: 3 

Si = Fl-a 
["D 

(P) ýDr-' (F2 (S2)) + 1- p2 (P)(D'-1ý (P) (5.40) 

with Fl and F2 the empirical marginal distribution functions for the two ex- 

change rates. The estimates of the copula parameter (which in this case is 
3Again simply for interest we start by examining the dependence between the level of the 

exchange rates noting that on the basis of some criteria they may be non-stationary. 
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Figure 5.3: Exchange rates 

Figure 5.4: Empirical (USD/Y, USD/DIET) bivariate return distribution 
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Figure 5.5: Empirical (USD/Y", USD/ £) bivariate return distribution 
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Figure 5.6: Empirical (USD/£, USD/D. NI) bivariate return distribution 
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Si USD/Y USD/Y USD/£ 
S2 USD/. C USD/DM USD/DM 

5% 14.2 37.7 49.1 
(5.4) (3.5) (4.6) 

10% 16.5 31.9 57.2 

(4.7) (4.2) (4.0) 
50% 20.2 32.9 72.0 

(3.8) (4.0) (3.1) 

90% 14.1 28.5 63.2 
(5.5) (4.7) (3.6) 

95% 13.2 23.3 55.8 
(5.9) (5.7) (4.1) 

mean regression 18.3 32.0 65.2 
(4.2) (4.2) (3.5) 

Table 5.1: C- Quantile Regression Estimates based on a Gaussian Copula: 
Levels 

just the correlation coefficient) at each quantile level p (p), expressed in per- 

centage terms, are reported in Tables 5.1 and 5.2 below together with their 

estimated standard deviations. The mean regression results are also reported 
for information. The lower p the higher the quantile regression curve. 

The results in Tables 5.1 and 5.2 indicate significant dependence using 

standard inference procedures at all quantile levels and for all exchange rates 

using the Gaussian copula. There is a relatively low degree of association indic- 

ated between the USD/Y and the USD/£ rates and a much higher association 

indicated at all quartile levels for the USD/£ and USD/DM rates. A fairly 

symmetric degree of dependence is indicated as we range from the 5% quantile 

to the 95% quartile with relatively minor differences from the mean regression 

results. We find the same qualitative conclusions in these two cases when we 

reverse the causality in Table 5.2. What is striking however are the results for 

USD/Y and USD/DM where we can see a clear asymmetric structure in the 

dependency between the lower quartiles and the upper quantiles with much 

stronger dependency being shown in the lower quantiles when the Yen is the 

dependent variable (and vice versa in the upper quantiles when the DM is the 

dependent variable). Use of the mean or median regression in this case could 

give a substantially misleading idea of the relative joint risks. These results 

clearly show that there is considerable quantile dependence at both the upper 
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Sl USD/. C USD/DM USD/DM 
S2 USD/Y USD/Y USD .C 

5% 14.4 21.4 51.2 
(5.9) (6.2) (4.0) 

10% 17.5 20.1 57.7 
(4.9) (6.6) (3.6) 

50% 20.5 33.4 64.3 
(4.1) (4.0) (3.2) 

90% 22.8 37.1 66.1 
(3.7) (3.6) (3.1) 

95% 16.9 34.3 51.2 

(5.0) (3.9) (1.0) 

mean regression 19.2 32.0 62.1 

(4.4) (4.2) (3.3) 

Table 5.2: Reverse C-Quantile Regression Estimates based on a Gaussian Cop- 

ula: Levels 

rl USD/Y USD/Y USD/£ 

r2 USD/£ USD/DM USD/DM 

P e (P) 6(p) 0 (P) 6 (P) 0 (P) 6(p) 

5% 1.07 0.00 1.17* 0.00 1.42* 0.19* 

10% 1.07 0.00 1.17* 0.00 1.39* 0.21* 
50% 1.06 0.03 1.13 0.09 1.21* 0.37* 
90% 1.05 0.08 1.10 0.21 1.07 0.53* 
95% 1.04 0.09 1.09 0.23 1.06 0.55* 

Table 5.3: Joe Clayton C-Quantile Regression estimates: Returns 

and lower tails even though we are certain that the standard tail dependence 

measures would indicate independence since we are using the Gaussian copula 
in this example. Different information is provided by the quantile dependence 

measures at fairly extreme quantiles than shown by the (asymptotic) tail area 

dependence measure. 

We briefly compare these Gaussian copula results with those from using the 

Joe-Clayton copula4 in Tables 5.3 (returns) and 5.4 (levels) where the stars 
indicate significance at the 95% level from the value of one for 0 (upper tail 

4 The Joe Clayton Copula was preferred by the data in AIC comparisons with several 
alternative copulae including the Gaussian Copula. 
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S1 USD/Y USD/Y USD/£ 
S2 USD/. C USD DM USD/DM 

P 0 (P) (P) e (P) b (P) 0 (P) a (P)- 

5% 1.01 0.67* 1.39* 0.00 1.04 0.44* 

10% 1.02 0.54* 1.39* 0.00 1.03 0.44* 
50% 1.00 0.00 1.37* 0.00 1.00 0.35* 
90% 1.00 0.00 1.25* 0.17 1.00 0.15 
95% 1.00 110.00 1.24* 0.20 1.00 0.11 

Table 5.4: Joe Clayton C-Quantile Regression estimates: Levels 

dependency) and zero for 6 (lower tail dependency). We can see the same 

indication of upper tail dependence in the (USD/Y, USD/DM) dollar rates in 

levels and (USD/£, USD/DM) dollar rates in the upper tail in returns but 

not in the levels in contrast to the Gaussian Copula results. Some lower tail 

dependence is found for the (USD/£, USD/Y) rates and (USD/., USD/DM) 

rates in levels and more strongly in the (USD/£, USD/DM) in returns. 0th- 

erwise we find little or no dependence at all with 0 (p) being approximately 1 

and 6 (p) not significantly different from 0 for most quantile levels. The obvi- 

ous advantage from using the Joe Clayton copula is that we can separate the 

dependence parameters 0 and S with their distinct interpretations from the 

correlation which describes the entire dependence structure with the Gaussian 

copula. 

Next we compute the upper and lower tail indices for the returns of the three 

exchange rates using both the non-parametric estimator AL discussed above 

and then the parametric estimates using these estimated copula parameters. 
The nonparametric estimates are shown in Table 5.5 and the parametric estim- 

ates in Table 5.6 using the relevant formulae for the Joe-Clayton copula (5.15), 

with the upper tail dependency parameters given above the main diagonal and 

the lower tail dependency given below. 

These two sets of estimates differ in interesting ways; we can clearly see the 

moderate degree of both higher and lower tail dependence in both the non- 

parametric and parametric estimates for the (USD/DM) and (USD/. C) rates 
but critically this is not strongly shown at the median parameter estimates. 
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\rr 

, \2 L 

Yen Sterling DM 
Yen - 0.16 0.03 
Sterling 0.09 - 0.32 
DM 0.20 0.38 - 

Table 5.5: Upper and Lower Tail index Nonparametric Estimates: Returns 

rt USD/Y USD/Y USD/£ 

r= USD/£ USD/DM USD/DM 

p Au AL Au AL Au AL 

5% 0.09 0.00 0.19* 0.00 0.37* 0.03* 

10% 0.09 0.00 0.19* 0.00 0.35* 0.04* 

50% 0.08 0.00 0.15 0.00 0.23* 0.15* 

90% 0.06 0.00 0.12 0.04 0.09 0.27* 

95% 0.05 0.00 0.11 0.05 0.08 0.28* 

Table 5.6: Upper and Lower tail dependency using Joe Clayton C-Quantile 
Regression parameter estimates: Returns. 

In fact the upper tail dependency is shown only at the 5% quantile and not 

at all at the 95% quantile. Conversely the lower tail dependence suggested 

by the non-parameteric estimate is only shown at the 95% quartile parameter 

estimates. The weak relationship between the USD/Y and USD/£ rates is 

shown effectively at all quantiles. The degree of both lower and upper non- 

parametric tail dependence between the Yen and the DM rates is not found 

at any quantile. It is however clear we get substantially more information 

regarding the joint risk structure from carrying out this analysis using the c- 

quantile parameter estimates through being able to examine the dependence 

at all quantiles rather than simply through the mean. The question that is 

implicitly raised is whether we are really interested in asymptotic dependence 

or the dependence as shown by the quantile results at the particular level with 

which the risk manager may be concerned. Coles, Heffernan and Tawn (1999) 

have also suggested that AU (and hence also AL) can be viewed as quantile based 

by varying the level a in (5.10) and (5.11) through the range (0,1) as opposed 

to the normal limiting values at 0 and 1. It is not however entirely clear if the 

interpretation of AU at a particular a corresponds to a quantile based measure 

of upper tail dependence instead of simply a measure of quantile dependence. 

Carrying out their suggestion produces the results shown in Figures 5.7 to 5.12, 
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Figure 5.7: (USD/£, USD/Y) estimates of A for varying a 

where their X and X statistics and 95% confidence intervals which correspond to 

our au and ý statistics evaluated at each a value are shown. The USD/Y and 

USD/£ rates can be seen from these figures to be effectively independent except 

as we get close to the upper tail which contradicts our c-quantile results shown 

above. The USD/Y and USD/DM rates also appear to show weak dependence 

from these figures with somewhat more upper tail dependence as suggested by 

the quartile regression results above. The USD/£ and USD/DM results show 

dependence which appears to decline as we get close to the upper tail and then 

explodes as we get to the tail, however at this point the confidence intervals 

are very wide. It would seem that the C-quantile approach is providing an 

alternative and perhaps more reliable view of tail area and moderate quantile 

dependence. 

s We are grateful to Jan Heffernan for making the SPL US code for computing these figures 
publically available. 
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Figure 5.8: (USD/C, USD/Y) estimates of 

Chi 

0 0.2 0.4 0.6 0.8 1.0 

u 

Figure 5.9: (USD/Y, USD/DM) estimates of A 
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Figure 5.11: (USD/£, USD/DM) estimates of A 
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Figure 5.12: (USD/£, USD/DM) estimates of ) 
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Figure 5.13: Nonlinear quantile regression of USDI Y on USDI. C for 5%, 10%, 
50%, 90%, 95% probability levels. 
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Figure 5.14: Nonlinear quantile regression of USD/Y on USD/DM for 5%, 

10%, 50%, 90%, 95% probability levels. 
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Figure 5.15: Nonlinear quantile regression of USD/. C on USD/DM for 5%, 
10%, 50%, 90%, 95% probability levels. 
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rt_1 USD/Y USD/. C USD/DM 

re USD/Y USD/Y USD/Y 

P 0 (P) b (p) 0 (P) b (P) e (P) b (P) 

5% 1.00 0.00 1.00 0.00 1.00 0.00 

10% 1.01 0.00 1.00 0.00 1.00 0.00 

50% 1.03* 0.00 1.00 0.00 1.00 0.00 

90% 1.05* 0.00 1.01 0.00 1.01 0.00 

95% 1.05* 0.00 1.01 0.00 1.02 0.00 

Table 5.7: C-Quantile Regression estimates of the relative return of the ex- 

change rate rt = SS/St-1- 1 on rt_1. 

5.7.1.2 Dynamic c-quantiles 

We next compute the nonlinear dynamic quantile regression estimates 
(b (p) 

,B 
(p)) 

using the Joe-Clayton Copula concentrating now only on the weekly return 

data so that: 

T 
( (p) 

,8 
(p)) = arg min (p 

- ]<{r<: 5q(rt-jj,, 6, e)}) (rt -q (rt-i, p; b, 0)) 

(5.41) 

with 

q (re-i, p; 5,0) = F(-i) ßb, ä X6,8 
(�_i (! 

i 
(F (rc-i)) - ýa, e 

(F (Te-i)) 

(5.42) 

with ¢6, e the generator of the Joe-Clayton copula defined in equation (5.31) 

and F the empirical distribution function of the exchange rate return rt. The 

estimates are given in Tables 5.7 to 5.9. The quantile curves corresponding 

to these estimates are plotted in Figures 5.13,5.14 and 5.15. 

These results show that there is no significant dynamic dependence, either 

cross rates or within rates, at any quantile level between the returns of the 

exchange rates in this weekly data. The Clayton Joe parameter estimates 

indicate independence even in the relative extremes of the joint distribution. 

This result appears to suggest that forex markets retain efficiency, in a very 

standard sense, even when the markets are in crisis and in either the upper or 

lower tail. These quantile results are confirmed, but not quite so clearly, as 

148 



CHAPTER 5. COPULA QUANTILE CURVES AND QUANTILE 

REGRESSIONS 

rt_1 USD/Y USD/£ USD/DM 

rg USD /L USD/£ USD/£ 

P 0 (P) 6 (P) 8 (P) b (P) 0 (P) 6 (P) 

5% 1.02 0.00 1.00 0.08 1.00 0.06 

10% 1.02 0.00 1.00 0.07 1.00 0.06 

50% 1.02 0.00 1.00 0.01 1.00 0.04 

90% 1.02 0.00 1.00 0.00 1.02 0.00 

95% 1.02 0.00 1.00 0.00 1.03* 0.00 

Table 5.8: C-Quantile Regression estimates of the relative return of the ex- 

change rate rt = SS/St_1-1 on rc_1. 

rß_1 USD/Y USD/£ USD/DM 

rt USD/DM USD/DM USD/DM 

P 0 (P) 6 (P) 0 (P) 6 (P) 0 (P) S (P) 

5% 1.00 0.02 1.00 0.08 1.00 0.06 

10% 1.00 0.02 1.00 0.07 1.00 0.06 

50% 1.00 0.02 1.00 0.04 1.00 0.04 

90% 1.00 0.01 1.00 0.00 1.02 0.00 
95% 1.00 0.01 1.00 0.00 1.02 0.00 

Table 5.9: C-Quantile Regression estimates of the relative return of the ex- 

change rate rt = Si/St-1 -1 on rt_l. 

shown in the table 5.10, when we examine the asymptotic tail area dependency 

measures. 

5.7.2 Daily Forex Returns 

We next turn to consider the effect of temporal aggregation by examining the 

dependence between daily Dollar exchange rates for several emerging econom- 

ies as well as the Yen, DM and Sterling Rates considered above. Table 5.11 

presents penalised likelihood statistics, in fact the negative value of Akaike's 

Tail Area Dependency AL Au Au AL 
Yen 0.017 0.186 0.061 -0.016 
DM 0.0 0.011 -0.054 -0.114 
Sterling 0.097 0.0 -. 0613 0.126 

Table 5.10: Tail Area Dependency Measures on lagged own returns 

149 



CHAPTER 5. COPULA QUANTILE CURVES AND QUANTILE 
REGRESSIONS 

Copula (USD/Dri, USD/£) (USD/DM, USD/Y) (USD/Y, USD/£) 

Gaussian 136.56 27.09 8.39 

Frank 127.93 22.10 7.29 

K-Sampson 110.62 18.32 5.66 

Gumbel 133.73 32.51 9.77 

Galambos 132.68 29.81 7.44 

liusler-Reiss 128.96 26.88 6.12 
Tawn 133.49 32.96 11.40 
BB 1 144.76 32.83 9.52 

BB2 109.61 17.32 4.66 

BB3 171.95' 49.47* 20.26* 

BB4 144.00 30.50 7.63 

BB5 132.72 31.51 8.77 

BB7 141.88 33.40 9.46 

Joe 103.29 27.32 6.85 

Table 5.11: Penalised Maximum Likelihood Values for daily forex returns 

Information Criterion applied to the three major currencies in this sets. The 

copula supported by the sample data in this case is the BB3 copula (see Joe 

(1997)) is best able to describe these daily exchange rates as opposed to the 

Joe Clayton for the weekly data used above. 

The BB3 copula is similar to the Joe-Clayton copula in that it is able to 

describe both positive and negative dependence. The estimates of the BB3 

copula are estimated for the log-returns of six exchange rates (with respect 

to USD): the Argentinean peso (ARS), the British pound (GBP), the Chilean 

peso (CLP), the Colombian peso (COP), the Deutsche mark (DEM), the Ja- 

panese yen (JPY). The sample period is 01/01/2000 to 15/12/2002. The 

log-returns are computed with daily data. Through the estimation of the 

C-quantile regression curves, lower tail dependence and upper tail dependence 

for different conditional probability levels and as above the higher the probabil- 
ity level, the lower the C-quantile regression curve. For example, a probability 
level means that the joint observations below the curve are weighted with 1% 

and observations above the curve with 99%. The scatterplot can be divided 

in four quadrants: long/long, long/short, short/short and short/long. Grosso 

modo, for the C-median regression curve (with a 50% probability level) an up- 
6The BB3 copula is in fact preferred by all six of these daily exchange rates but for ease 

of presentation we have just shown the AIC values for the developed economy rates. 
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per tail dependence (respectively lower tail dependence) corresponds to joint 

observations in the long/long (respectively short/short) quadrant. The results 

of the estimation are reported for 

" (El) cross-dependence between currency returns for the same day (no 

lag) (see Appendix), 

" (E2) cross-dependence between currency returns with one day lag (see 

Appendix), and, 

" (E3) one day dependence for each currency (see Appendix). 

For (E1) and (E2), the results are given in matrix form. The upper (re- 

spectively lower) triangle part of the matrix corresponds to the estimates of 

0 (respectively b). A matrix is computed for 11 different C-quantile levels: 

1%, 5%, 10%, 30%, 50%, 70%, 90%, 95% and 99%. For each quantile level, 

we obtained "z1 estimates of 0 and 5 for the static dependence (El) and 

n(n -1) for the dynamic case (E2). Indeed, the dynamic dependence has two 

characterizations: either between Y and Xt_1, or between Xt and Y_1. 

Let us comment first the static results. Concerning lower tail dependence, 

the currencies can be divided into two groups. (1) high lower tail dependence 

for low quantiles and low lower tail dependence for high quantiles (GBP, DEM), 

(2) low lower tail dependence for low quantiles and high lower tail dependence 

for high quantiles (ARS, CLP, COP, JPY). Concerning upper tail dependence, 

we observe low upper tail dependence for low quantiles and high upper tail 

dependence for high quantiles - (GBP, DEM) and (JPY, DEM). An important 

point is that for most of the currencies, the dependence is higher towards the 

tails (low or high conditional probability) that for median events. 

The dynamic results are very interesting since they furnish a subtle measure 

of the efficiency in the foreign exchange markets. The efficiency of each market 

alone is measured by (E3). Four types of serial dependence are observed: (1) 

both upper tail dependence for low quantile levels and lower tail dependence 

for high quantile levels (ARS), (2) upper tail dependence for low quantile levels 

(COP), (3) upper tail dependence for high quantile levels (DEM). No dynamic 
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GBP 11 DEM 11 JPY 

AL \U AU AL AL \U AU AL AL AU 

ABS 110.00 0.00 0.00 0.08 110.00 0.04 0.06 0.03 li 0.00 0.00 0.03 0.10 

GBP 

DEM 
JPY 
CLP 

0.34 0.22 0.47 0.54 11 ö ý4 
0.08 0.26 0.30 

CLP 11 COP 

AL AU AU AL AL AU AU AL 

0.08 0.00 0.12 0.16 
0.02 0.00 0.06 0.12 
0.04 0.01 0.06 0.12 
0.00 0.07 0.10 0.00 

0.00 0.07 0.08 0.06 
0.01 0.04 0.22 0.03 
0.05 0.06 0.15 0.03 
0.10 0.04 0.14 0.08 

0.02 0.03 0.16 0.18 

Table 5.12: Asymptotic tail area dependency measures for daily rates 

dependence is detected for GBP and JPY and their respective one day lag 

returns. 

Tail dependence measures are computed for the daily data in the Table 

5.12. 

These final results on asymptotic tail area dependency measures would 

seem to suggest that currency dependencies are localised to a considerable 

degree. In particular the developed economies rates appear to be almost com- 

pletely unaffected in the extremes by the emerging currencies even during this 

period which includes the crisis in Argentina. The relatively strong depend- 

ence shown between the USD/£ and USD/DEM rates reflects almost exactly 

what we found for the weekly returns above. 

5.8 Conclusion 

In this chapter we have developed and applied a new approach to measur- 

ing tail dependence. The methodology rests on identifying the copula which 

captures the dependence structure between the series of interest and then de- 

riving the implied conditional quantile regression specification. This enables us 

to examine the conditional dependence of one variable conditional on the other 

at a range of quantile levels as opposed to the normal regression relationship 

which examines the form of dependency at the conditional expectation. In this 

AU AL 
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way we can explore causal dependencies at moderate risk levels that may be 

more relevant to risk managers than the normal approach given by examining 

standard asymptotic tail area dependency measures. We have developed sev- 

eral theoretical results describing the properties of C-quantiles and compared 

their performance with the standard tail area dependency measures. 

Our empirical results are indicative of the structure that can be uncovered 

using copula based quantile regressions. We note that the independence shown 

between the returns of the own exchange rates applies at all quantiles and hence 

a much stronger "efficiency" condition seems to apply, even into the tails of the 

distribution than implied by standard martingale efficiency conditions which 

involve the conditional expectation. 

153 



CHAPTER 5. COPULA QUANTILE CURVES AND QUANTILE 

REGRESSIONS 

5.9 Appendix 

Static dependence for daily data 

The first column corresponds to X (t) and the first line to Y(t). 

1.00% ARS GBP CLP COP DEM JPY 

ARS - 1.17 1.25 1.23 1.20 1.19 

GBP 0.00 - 1.00 1.00 1.00 1.00 

CLP 0.00 0.00 - 1.02 1.00 1.00 

COP 0.00 0.00 0.00 - 1.13 1.10 

DEM 0.00 0.43 0.00 0.00 - 1.00 
JPY 0.00 0.31 0.00 0.00 0.46 - 

Table 5.13: BB3 c-quantile Estimates for daily forex returns between Xt and 
Yc 

5.00% ARS GBP CLP COP DEM JPY 

ARS - 1.16 1.24 1.21 1.18 1.18 

GBP 0.00 - 1.00 1.00 1.00 1.00 

CLP 0.00 0.00 - 1.02 1.00 1.00 

COP 0.00 0.01 0.00 - 1.12 1.10 
DEM 0.00 0.44 0.00 0.00 - 1.00 

JPY 0.00 0.32 0.00 0.00 0.46 - 

Table 5.14: BB3 c-quantile Estimates for daily forex returns between Xt and 

10.00% ARS GBP CLP COP DEM JPY 

ARS - 1.14 1.22 1.19 1.17 1.16 
GBP 0.00 - 1.00 1.00 1.00 1.00 
CLP 0.00 0.00 - 1.02 1.00 1.00 

COP 0.00 0.01 0.00 - 1.11 1.09 
DEM 0.00 0.45 0.00 0.00 - 1.00 
JPY 0.00 0.32 0 00 0.00 0.46 - 

Table 5.15: BB3 c-quantile Estimates for daily forex returns between Xt and 
Yt 

Cross-dependence and auto-dependence with one day lag 

In the left tables, the first column corresponds to X(t - 1) and the first 

line to Y(t). In the right tables the first column corresponds to Y(t) and the 

first line to X (t - 1). The last table corresponds to auto-dependence. 
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30.00% ARS GBP CLP COP DEM JPY 

ARS - 1.08 1.13 1.11 1.10 1.10 
GBP 0.00 - 1.00 1.00 1.00 1.00 

CLP 0.00 0.00 - 1.03 1.00 1.00 

COP 0.00 0.01 0.00 - 1.06 1.05 
DEM 0.00 0.52 0.00 0.00 - 1.00 
JPY 0.00 0.34 0.00 0.00 0.47 - 

Table 5.16: BB3 c-quantile Estimates for daily forex returns between Xt and 
Yt 

50.00% ABS GBP CLP COP DEM JPY 
ARS - 1.02 1.03 1.03 1.03 1.04 
GBP 0.00 - 1.00 1.00 1.19 1.05 
CLP 0.07 0.00 - 1.03 1.00 1.00 
COP 0.00 0.02 0.00 - 1.01 1.01 
DEM 0.03 0.30 0.00 0.02 - 1.09 
JPY 0.00 0.28 0.03 0.00 0.32 - 

Table 5.17: BB3 c-quantile Estimates for daily forex returns between Xt and 
Ye 

70.00% ARS GBP CLP COP DEM JPY 
ARS - 1.00 1.00 1.00 1.00 1.00 
GBP 0.12 - 1.03 1.05 1.35 1.18 

CLP 0.22 0.00 - 1.00 1.01 1.00 
COP 0.12 0.00 0.12 - 1.00 1.00 
DEM 0.16 0.19 0.01 0.05 - 1.26 
JPY 0.18 0.14 0.10 0.03 0.11 - 

Table 5.18: BB3 c-quantile Estimates for daily forex returns between Xt and 
Ye 

90.00% ARS GBP CLP COP DEM JPY 
ARS - 1.00 1.00 1.00 1.00 1.00 
GBP 0.23 - 1.07 1.12 1.49 1.28 
CLP 0.34 0.00 - 1.00 1.00 1.00 
COP 0.22 0.00 0.20 - 1.00 1.00 
DEM 0.27 0.14 0.07 0.07 - 1.37 
JPY 0.32 0.05 0.18 0.05 0.01 - 

Table 5.19: BB3 c-quantile Estimates for daily forex returns between Xt and 
Y 

155 



CHAPTER 5. COPULA QUANTILE CURVES AND QUANTILE 

REGRESSIONS 

95.00% ARS GBP CLP COP DEM JPY 

ARS - 1.00 1.00 1.00 1.00 1.00 

GBP 0.26 - 1.08 1.13 1.53 1.30 

CLP 0.37 0.00 - 1.00 1.00 1.00 

COP 0.25 0.00 0.22 - 1.00 1.00 

DEM 0.29 0.13 0.09 0.08 - 1.39 

JPY 0.36 0.03 0.21 0.06 0.00 - 

Table 5.20: BB3 c-quantile Estimates for daily forex returns between Xt and 
Yt 

99.00% ARS GBP CLP COP DEM JPY 
ARS - 1.00 1.00 1.00 1.00 1.00 

GBP 0.28 - 1.09 1.15 1.55 1.32 

CLP 0.39 0.00 - 1.00 1.00 1.00 
COP 0.27 0.00 0.24 - 1.00 1.00 

DEM 0.31 0.12 0.10 0.08 - 1.40 

JPY 0.39 0.02 0.23 0.06 0.00 - 

Table 5.21: BB3 c-quantile Estimates for daily forex returns between Xt and 
Y 

1.00% ARS GBP CLP COP DEM JPY 
ARS - 1.18 1.24 1.17 1.16 1.21 

GBP 0.00 - 1.00 1.00 1.00 1.00 
CLP 0.00 0.03 - 1.07 1.03 1.02 
COP 0.00 0.07 0.00 - 1.09 1.08 

DEM 0.00 0.00 0.00 0.00 - 1.00 
JPY 0.00 0.00 0.00 0.00 0.01 - 
1.00% ARS GBP CLP COP DEM JPY 
ARS - 1.00 1.00 1.36 1.00 1.00 
GBP 0.00 - 1.03 1.06 1.00 1.00 
CLP 0.00 0.00 - 1.09 1.00 1.00 
COP 0.00 0.00 0.00 - 1.00 1.00 
DEM 0.00 0.00 0.11 0.03 - 1.00 
JPY 0.00 0.00 0.00 0.00 0.00 - 

Table 5.22: BB3 c-quantile Estimates for daily forex returns between Y and 
Xt_1 (left table) and Xt and Y_1 (right table) 
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5.00% ARS GBP CLP COP DEM JPY 
ARS - 1.17 1.23 1.16 1.15 1.20 
GBP 0.00 - 1.00 1.00 1.00 1.00 
CLP 0.00 0.03 - 1.07 1.03 1.02 
COP 0.00 0.07 0.00 - 1.09 1.07 
DEM 0.00 0.00 0.00 0.00 - 1.00 
JPY 0.00 0.00 0.00 0.00 0.01 - 

5.00% ARS GBP CLP COP DEM JPY 

ARS - 1.00 1.00 1.34 1.00 1.00 
GBP 0.00 - 1.03 1.05 1.00 1.00 
CLP 0.00 0.00 - 1.09 1.00 1.00 
COP 0.00 0.00 0.00 - 1.00 1.00 
DEM 0.00 0.00 0.11 0.03 - 1.00 
JPY 0.00 0.00 0.00 0.00 0.00 - 

Table 5.23: BB3 c-quantile Estimates for daily forex returns between Y and 
Xt_1 (left table) and Xt and Y_i (right table) 

10.00% ARS GBP CLP COP DEM JPY 
ARS - 1.15 1.21 1.14 1.14 1.19 

GBP 0.00 - 1.00 1.00 1.00 1.00 
CLP 0.00 0.03 - 1.07 1.02 1.02 
COP 0.00 0.07 0.00 - 1.08 1.06 
DEM 0.00 0.00 0.00 0.00 - 1.00 
JPY 0.00 0.00 0.00 0.00 0.00 - 

10.00% ARS GBP CLP COP DEM JPY 
ARS - 1.00 1.00 1.32 1.00 1.00 
GBP 0.00 - 1.03 1.05 1.00 1.00 
CLP 0.00 0.00 - 1.08 1.00 1.00 
COP 0.00 0.00 0.00 - 1.00 1.00 
DEM 0.00 0.00 0.10 0.03 - 1.00 
JPY 0.00 0.00 0.00 0.00 0.00 - 

Table 5.24: BB3 c-quantile Estimates for daily forex returns between Yt and 
Xt_1 (left table) and Xt and Y_1 (right table) 
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0.00% ARS GBP CLP COP DEM JPY 

ARS - 1.08 1.14 1.08 1.08 1.13 

GBP 0.00 - 1.00 1.00 1.00 1.00 
CLP 0.00 0.05 - 1.06 1.01 1.00 
COP 0.00 0.07 0.00 - 1.04 1.03 
DEM 0.00 0.00 0.00 0.00 - 1.00 
JPY 0.00 0.00 0.00 0.00 0.00 - 

30.00% ARS GBP CLP COP DEM JPY 

ARS - 1.00 1.00 1.22 1.00 1.00 

GBP 0.00 - 1.01 1.02 1.00 1.00 

CLP 0.00 0.00 - 1.04 1.00 1.01 

COP 0.00 0.00 0.00 - 1.00 1.00 

DEM 0.00 0.01 0.07 0.04 - 1.00 

JPY 0.00 0.00 0.00 0.03 0.00 - 

Table 5.25: BB3 c-quantile Estimates for daily forex returns between Yt and 
Xt_1 (left table) and Xt and Y_1 (right table) 

50.00% ARS GBP CLP COP DEM JPY 
ARS - 1.01 1.05 1.01 1.02 1.05 

GBP 0.00 - 1.00 1.00 1.00 1.00 
CLP 0.05 0.06 - 1.04 1.00 1.00 
COP 0.00 0.06 0.04 - 1.00 1.00 
DEM 0.00 0.00 0.00 0.01 - 1.00 
JPY 0.02 0.00 0.02 0.00 0.00 - 

50.00% ARS GBP CLP COP DEM JPY 
ARS - 1.00 1.00 1.11 1.00 1.00 
GBP 0.00 - 1.00 1.00 1.00 1.03 
CLP 0.07 0.03 - 1.00 1.00 1.01 
COP 0.07 0.00 0.00 - 1.00 1.00 
DEM 0.00 0.03 0.04 0.06 - 1.00 
JPY 0.01 0.00 0.04 0.07 0.00 - 

Table 5.26: BB3 c-quantile Estimates for daily forex returns between Yt and 
Xt-1 (left table) and Xt and Yt_1 (right table) 
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70.00 o ABS GBP CLP COP DEM JPY 

ARS - 1.00 1.00 1.00 1.00 1.00 

GBP 0.11 - 1.07 1.03 1.02 1.00 
CLP 0.23 0.00 - 1.00 1.00 1.00 
COP 0.12 0.01 0.16 - 1.00 1.00 

DEM 0.10 0.00 0.01 0.04 - 1.02 

JPY 0.22 0.00 0.04 0.04 0.00 - 
70.00% ARS GBP CLP COP DEM JPY 

ARS - 1.00 1.00 1.01 1.00 1.00 
GBP 0.00 - 1.00 1.00 1.08 1.02 

CLP 0.20 0.04 - 1.00 1.08 1.00 
COP 0.26 0.00 0.01 - 1.06 1.00 

DEM 0.00 0.00 0.00 0.00 - 1.00 

JPY 0.09 0.09 0.10 0.12 0.06 - 

Table 5.27: BB3 c-quantile Estimates for daily forex returns between Y and 
Xt_1 (left table) and Xt and Y_1 (right table) 

90.00% ARS GBP CLP COP DEM JPY 

ARS - 1.00 1.00 1.00 1.00 1.00 
GBP 0.20 - 1.15 1.13 1.10 1.08 

CLP 0.38 0.00 - 1.00 1.00 1.00 
COP 0.24 0.00 0.22 - 1.00 1.00 
DEM 0.20 0.00 0.01 0.07 - 1.12 
JPY 0.37 0.00 0.05 0.08 0.00 - 

90.00% ARS GBP CLP COP DEM JPY 
ARS - 1.02 1.00 1.00 1.13 1.03 
GBP 0.00 - 1.00 1.00 1.16 1.00 
CLP 0.34 0.05 - 1.00 1.12 1.00 
COP 0.42 0.05 0.03 - 1.17 1.00 
DEM 0.00 0.00 0.00 0.00 - 1.01 
JPY 0.13 0.20 0.16 0.17 0.12 - 

Table 5.28: BB3 c-quantile Estimates for daily forex returns between Y and 
Xt_1 (left table) and Xt and Y_1 (right table) 
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95.00% ARS GBP CLP COP DEM JPY 

ARS - 1.00 1.00 1.00 1.00 1.00 
GBP 0.22 - 1.17 1.15 1.12 1.10 

CLP 0.42 0.00 - 1.00 1.00 1.00 
COP 0.27 0.00 0.24 - 1.00 1.00 
DEM 0.23 0.00 0.01 0.08 - 1.15 
JPY 0.41 0.00 0.06 0.10 0.00 - 

95.00% ARS GBP CLP COP DEM JPY 

ARS - 1.05 1.00 1.00 1.17 1.05 
GBP 0.00 - 1.00 1.00 1.18 1.00 
CLP 0.38 0.05 . 

00 1.13 1.00 
COP 0.46 0.06 - 1.20 1.00 
DEM 0.00 0.00 

19 

. 
00 1 - 1.01 

JPY 0.13 0.23 . 
19 c 0.14 - 

Table 5.29: BB3 c-quantile Estimates for daily forex returns between Y and 
Xt_1 (left table) and Xt and Yt_1 (right table) 

99.00% ARS GBP CLP COP DEM JPY 
ARS - 1.00 1.00 1.00 1.00 1.00 
GBP 0.24 - 1.19 1.17 1.14 1.12 
CLP 0.45 0.00 - 1.00 1.00 1.00 
COP 0.30 0.00 0.26 - 1.00 1.00 
DEM 0.25 0.00 0.01 0.09 - 1.16 
JPY 0.44 0.00 0.06 0.11 0.00 - 

99.00% ARS GBP CLP COP DEM JPY 
ARS - 1.07 1.00 1.00 1.20 1.06 
GBP 0.00 - 1.00 1.00 1.20 1.00 
CLP 0.41 0.06 - 1.00 1.14 1.00 
COP 0.49 0.07 0.04 - 1.22 1.00 
DEM 0.00 0.00 0.00 0.00 - 1.01 
JPY 0.13 0.25 0.19 0.20 0.15 - 

Table 5.30: BB3 c-quantile Estimates for daily forex returns between Y and 
Xt_1 (left table) and XX and Yt_1 (right table) 
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Y(t"1) Y(t) 

probability level p 

1.0% 5.0% 10.0% 30.0% 50.0% 70.0% 90.0% 95.0% 99.0% 

AAS ARS 
e 

1.69 1.66 1.63 1.47 1.30 1.12 1.00 1.00 1.00 

1 1 
6 

0.00 0.00 0.00 0.00 0.13 0.56 1.09 1.16 1.21 

CBP CBP 
0 

1.00 1.00 1.00 1.00 1.00 1.07 1.15 1.17 1.19 

2 2 
6 

0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 

CLP CLP 
0 

1.01 1.01 1.02 1.01 1.00 1.00 1.00 1.00 1.00 
S 

3 3 0.00 0.00 0.00 0.01 0.06 0.10 0.14 0.15 0.16 

COP cop 
0 

1.22 1.20 1.17 1.09 1.03 1.00 1.00 1.00 1.00 

6 
4 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

DEM DEM 
0 

1.00 1.00 1.00 1.00 1.00 1.05 1.15 1.17 1.19 

5 5 
6 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

JPY jPY 
0 

1.00 1.00 1.00 1.00 1.00 1.01 1.03 1.03 1.04 

6 8 
6 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

BB3 c-quantile Estimates for daily forex returns between Y(t) and Y(t) 
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Chapter 6 

Conclusion 

In this thesis, we first considered the origin of the concept of copulae, the 

general framework for the analysis of copulae and we provided a review of the 

literature. We then proposed three applications of copulae to finance. 

The third chapter proposes a methodology for developing risk measures 

for portfolios during extreme events. The approach is based on splitting the 

multivariate extreme value (MEV) distribution of the assets of the portfolio 

into two parts: the distributions of each asset and their dependence function 

- copula. The estimation problem is also investigated. A trivariate MEV 

empirical application for market index portfolios (US, German and Japanese 

stock markets) is provided. Then, stress-testing values and Monte-Carlo based 

risk measures - Value-at-Risk and Expected Shortfall - are computed. 

In the fourth chapter, we propose a general to specific approach that can 

avoid spurious assumptions such as linearity in the form of the dynamic rela- 

tionship between variables. A new model based on the Gaussian copula with 

the same dependence structure as an AR(p) with non-gaussian marginals is 

presented. Copula based dynamic dependency measures - auto-concordance 

in place of autocorrelation - are developed. An important added value of 

our model is that it encompasses the AR(p) model and allows non-linearity. 

Non-linear time dependence functions that generalize the autocorrelation func- 

tion are also given. We have developed the concept of a C-autoregression 

whose structure can be deduced from the copula given the marginals. The 

C-autoregression is a generalization of the standard linear autoregression and 

provides a general framework for non-linear regression that is compatible with 
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given assumptions on the dependence structure between the random variables. 
We introduce a general approach to nonlinear quantile regression modelling, 

the C-quantile regression, that is based on the identification of the copula 

function that completely defines the entire dependency structure between the 

variables of interest. Hence we extend Koenker and Bassett's (1978) original 

statement of the quantile regression problem by determining a distribution 

for the dependent variable Y conditional on the regressors X and hence the 

specification of the quantile regression functions. Some properties of the G 

quantiles are then derived. Finally, we develop an empirical application which 

examines conditional quantile dependency in the foreign exchange market and 

compare this approach with the standard tail area dependency. 
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