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ABSTRACT

In general,on-line optimisationcan bedefinedas theon-line processof finding
the optimum set-pointsof the system. Several areasmight be concernedin this
procedure.This thesisevaluatesalgorithmsfor on-line Optimisation.Techniques
for steady-statedetection, static datareconciliation, gross errordetection and
steady-stateoptimisationarepresentedand implementedseparatelyand within an
on-lineoptimisationmethodology.

It has beenacknowledgedfor some timenow that the estimationof derivative
information is probably the major drawback of the steady-stateoptimisation
technique consideredhere: the ISOPEalgorithm. This thesis investigatesthe
requirementsof these derivatives, methods proposed to estimate them, and
presentssome attemptsto overcomesome related problems. Also a modified
versionof the dynamicmodel identification methodthat uses anonlinearmodel
representationis proposed,and comparedunder simulation with other available
techniques.In the samecontext,an alternativemethodbased onArtificial Neural
Networksto estimatethe derivativesis alsoimplementedand tested.

Often, rigorous steady-statedetection is crucial for process performance
assessment,simulation,optimisationand control. In general, atsteady-statedata is
collectedfor safe,beneficialand rationalmanagementof processes.A methodfor
automaticdetectionof steady-statein multivariableprocessesis implementedand
tested. Thetechniqueis appliedon a dynamic modelof a chemicalreactor.

The presenceof errors inprocessmeasurementscan invalidatethe potentialgains
obtainedfrom advancedoptimisationand controltechniques.Data reconciliation
and grosserror detectionmethodsare used to reduce theinaccuraciesof these
measurements.The implementationand applicationof static datareconciliation
and grosserror detectiontechniquesin this thesis show anoticeableimprovement
in the operationof the system,and general control systemperformance.

The variousalgorithmsmentionedabove aresuccessfullyimplementedand tested
undersimulation. It is illustratedthat in some cases, it ispossibleto use steady-
state detection in conjunction with data reconciliation, gross error detection,
parameter estimation and optimisation, to form an on-line optimisation
methodology.The methodologywas tested on adynamic model of a chemical
reactor.
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CHAPTERl

INTRODUCTION

On-line Optimisation techniques have been in existencefor quite some

time andyetfew industrial applications have beenimplementedto date. This may

stemfrom the general attitude in manymanufacturingenvironments, where

advancedtechnologiesnot fully understoodare rejected. In addition there are

tendenciesto approach controlproblemsfrom thetraditional side, especiallyif
thesolutionworks "well enough".

1.1 OPTIMISATION

Optimisation, in the context of this work, may bethought of as the scienceof

determining the 'best' solutions to certain mathematicallydefined problems,

which are often models of physical reality. It involves the studyof optimality

criteria for problems,the determinationof algorithmic methodsof solution, the

study of the structure of such methods, and computer experimentationwith

methodsbothundertrial conditionsand on real lifeproblems(Fletcher,1980).

The conceptof optimisation is now well rooted as a principle underlying the

analysis of many complex decision or allocation problems. It offers a certain

degreeof philosophicalelegancethat is hard to dispute, and itoften offers an

indispensabledegreeof operationalsimplicity.

In a mathematical cense, Optimisation may be concernedwith finding the

minimum (or maximum) of an objective function, where there may exist

25



restrictionsor constraintsas to what arepermissiblevalues of the independent

variables.

Generally, it not possible to fully representall the complexities of variable

interactions,constraints,and appropriateobjectiveswhen faced with acomplex

decisionproblem,a particularoptimisationformulation shouldbe regardedonly

as anapproximationlike all quantitativetechniquesof analysis.

1.2 ON-LINE OPTIMISATION

On-line optimisationis an approachfor trying to maintaina plant at its optimum

operatingconditionsby determiningthe required set-pointsof the plant. In the

majority of cases,the set-pointswill be madeavailableto the plant'sDistributed

Control System(DCS), althoughthey could be used by astand-alonecomputer

system. In most industrial processes,the optimal operatingpoint is continually

shifting in responseto changingmarketdemandsfor products,fluctuatingcostsof

raw materials,productsand utilities, and changingequipmentefficiencies and

capacities. In addition, ambient conditions, variations in feed quality and

availability, and changesin equipmentconfiguration are additional constraints

that canalter the location of the optimal operationpoint. The time frame over

which these various changescan occur ranges fromminutes to months. The

competitive economicenvironmentrequirestimely responseto these changing

factors. Thismeansthat theoptimisationmust be carried out on-line to have the

plantoperatecontinuallyunderthe bestconditions.

On-line optimisationtakes advantageof the fact that plantsgenerallyoperateat

steady-stateand have transient periods that are relatively short comparedto

steady-stateoperations.Therefore,in on-line optimisation,steady-statemodelsare

usually able to be used todescribethese plants and theirbehaviour.The basic

methodologyof on-line optimisation adoptedin this thesis is toautomatically

detect steady-statefrom the data samples collected from the process itself,

reconcilethem toremoveany random and! or gross errors, to updateparametersin

the plant model in order to obtain plant-modelmatching. Then thecurrent plant
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and its model are used toconductoptimisationand to generate a setof optimum

set-points. This procedure is able to be runcontinuously to cope with the

possibilityof internalconditions(plant parameters and plantconfiguration)and/or

externalconditions(economic parameters) changing.

Besidesdeterminingthe optimum operatingcondition of the process from the

solutionof the on-lineoptimisationproblem, a numberof other benefits are also

apparent. The detailoperationinformation generated from on-lineoptimisation

providesa betterunderstandingof the processes; this can be used tode-bottleneck

the processand to improve operating difficulties. Also, abnormalmeasurement

informationobtainedfrom gross error detection can helpinstrumentand process

engineersto trouble shoot the plantinstrumenterrors. Parameterestimationis

very useful for process engineers to evaluate the equipment conditions and to

identify the decreasingefficiencies and problem sources. Furthermore, the

detailed processsimulation from on-line optimisation can be used for process

monitoring and serves as a training tool for new operators to obtain first hand

operatingexperience.

There are anumberof areas which are central to the work and these are briefly

introducedin Sections 1.2.1-1.2.5

1.2.1.AutomaticDetectionof Steady-State

Process owners analyse processes when they are at steady-state, for this reason,

and for the reason that static datareconciliation and processoptimisation are

steady-stateprocedures,it is important that the process has to be at steady-state

beforeapplyingthe datareconciliationandoptimisationprocedures.Identification

of the steady-statecan prove to be difficult because process variables may be

noisy andmeasurementsdo not settle. So. steady-stateidentification requires

statisticaltests tocompensatefor the noisy data.
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1.2.2.DataReconciliation

Measuredprocessdata inherentlycontains inaccurate information. This is due to

the fact thatmeasurementsare obtained usingimperfect techniques. Using this

inaccurate information to estimate process variables and control the process.

results in the stateof the system to bemisrepresentedand the controlperformance

to be poor, leading tosub-optimumand even unsafe process operation. The

objectiveof datareconciliationis to correctmeasureddata variables so they obey

natural laws, such as energy and mass balances. Unfortunately, in the presenceof

biases, all theadjustmentscan be greatly affected by these typesof gross error,

and would in general not be reliable indicatorsof the stateof the process.

1.2.3. GrossError Detection

Raw process data is subject to two typesof errors: random errors and gross errors.

Randomerrors are dealt with using datareconciliationtechniques, while gross

errors need a different typeof techniques, namely, gross error detection

techniques. Ideally, the aimof a gross error detection technique is to:

1 Detect the existenceof the gross error

2 Identify its location

3 Identify its type

4 Determineits size

After the gross errors are identified, two responses are possible and/or desired

(Bagajewicz,2003):

Eliminatethe measurementwith the bias, or

J Correctthe model such as the caseof a leak and run thereconciliationagain.
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1.2.4.ParameterEstimation

Mismatchbetweenmodelsand plants can be due to anumberof factors such as:

uncertainparameters,unknownstatevariables,unmeasureddisturbances,error in

the model structure,and measurementnoise. Properadaptationschemes. where

the model parametersareupdatedon the basisof recentmeasurements.need to be

incorporatedinto the model-basedoptimisationcontrol approachto minimise the

plant-modelmismatch.Thereexist severalapproachesto cope with this problem,

whereall areadaptivein nature but differ in theiradaptationschemes.

1.2.5.ProcessOptimisation

Although there are manydifferent availableoptimisationtechniques,they can be

classifiedinto two general categories: direct search andmodel-basedoptimisation

methods(Garciaand Morari, 1981).

As an on-line optimisation procedure, theIntegratedSystem Optimisationand

ParameterEstimation(ISOPE)algorithm(or modifiedtwo step in some literature)

developedby Roberts in 1979, has some special features which can either be

consideredas direct or indirect.It is based on anumberof features including

derivativescalculation,originally estimatedby using realprocessmeasurements,

to updatea model used in themodel-basedoptimisation,thus reaching the real

optimum of the processin spite of plant-model mismatch. Estimation of the

derivatives by means of measurement,which increases geometrically with

problemdimensionality,is a majorproblemof the ISOPEtechnique.

1.3OBJECTIVES OF THE THESIS

The main objective of this researchis to contribute to the improvementof the

current tools in the field of on-line processoptimisation. This includes the

constructionof plant models, thedevelopment,evaluation and comparisonof



algorithms for process derivatives estimation, conducting and implementing

steady-statedetection, data reconciliation, gross error detection, parameter

estimationandoptimisation.

Any improvementin this areashouldhelp give more understandingof the way

on-line optimisationhas to beimplemented,and hencelead to morebenefitsof

on-lineoptimisation.

1.4THESIS SCOPE

This thesis is concernedwith certain on-line optimisation structuresand the

generalISOPEalgorithm which integratesan optimisationscheme togetherwith

parameterestimation.Examplesof situationsusing this structureare presented

within this thesis, and these examplesshould help to indicate how practical

problemscan be treatedand structuredin this form. Thethesisis also concerned

with the analysisand comparisonof algorithmsand techniquesfor solving both

generalon-line optimisationproblemsand somerelatedsub-problems.Problems

of steady-statedetection,datareconciliation,gross error detectionand parameter

estimationare alsodiscussedandtreated.

1.5 THESIS OUTLINE

This thesisis structuredasfollows:

Chapter 2 introduces the well known Integrated System Optimisation and

ParameterEstimation (ISOPE) algorithm developedby Roberts (1979). The

methodwas developedto overcomethe problemsof measurementsand noise in

the direct optimisationapproach,and plant-modeldifferencesin the indirect one.

A brief history is given togetherwith the advantagesand disadvantagesthat the

methodpresents.One major drawbackthat posesa practical limitation and which

wi II be the basisof someresearchin the following chaptersis the need for real

processoutput derivativeswith respectto the set-pointsto be computedat each

iterationof the algorithm.
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Chapter3 presentssimulation case study systems. Twosystemswhich will be

usedthroughoutthe thesisfor simulationpurposesin orderto assess andcompare

the performanceand effectivenessof some of the techniquesdevelopedand

presentedin this thesis.

In chapter4, acomparisonstudybetweensomeof the establishedmethodsfor real

processoutputderivativeswith respectto set-pointswhen used within the ISOPE

algorithmand a newmethodbased on anonlineardynamic model is made. These

methodstry to overcomethe limitation caused to the ISOPEalgorithm, by the

need to perturb the system to obtain these derivatives. Themethods are

implementedundersimulationon oneof the two case study systemspresentedin

chapter3, which is the two ContinuousStirred Tank Reactors (CSTR) system.

Resultsof the simulationsare thenpresentedandcompared

Chapter5 presentsa methodfor estimatingreal processderivativeswith respect to

set-points.This methodis based onArtificial Neural Networks(ANN). At first, a

brief history is given onANN's, togetherwith the mainphilosophybehind the

creationof ANN's. The neuralnetworkscheme is thenpresentedand tested under

simulationon the twosystemspresentedin chapter3. Results arecomparedwith

thoseobtainedusing amethoddescribedin chapter4.

Chapter6 introducesthe areaof datareconciliationand gross errordetectionfor

the use tocorrectdata measurementsby removingboth random and gross errors

from the data set. After areview of previous work, data classificationand a

descriptionof the problemsthat bothrandomand gross errorspresenton on-line

optimisationand a full descriptionof datareconciliationand gross errordetection

techniquesis given. Theperformanceof these techniquesis demonstratedin a

simulationcase study. The case study uses theCSTRsystemdescribedin chapter
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Chapter7 incorporatesthe techniquesimplementedin chapter7 for the static data

reconciliationand grosserror detectionfor the elimination of randomnoise and

biaseswithin the ISOPE algorithm. Again, simulationsare carriedout using the

CSTR system.Resultsof thesesimulationsare discussedand comparedto the

casewhendatareconciliationor grosserrordetectionis not implemented.

Chapter8 presentsthe on-line optimisationmethodologyas adoptedin our work.

and gives a brief descriptionon how eachstepof the methodologyis carriedout.

Methods for steady-statedetection, data reconciliation, gross error detection.

parameterestimation and processoptimisation are reviewed. Difficulties and

drawbacksof eachmethodare discussedand comparedto other methodsin the

literature.Simulationstudieswere conductedto test someof the keymethodson

the two ContinuousStirred Tank Reactors(CSTR) system. Finally, the whole

methodology was implementedunder simulation on the CSTR system. The

implementedmethodologyprocedureincludes a steady-statedetection module

connectedto a grosserror detectionmodule, which in itself connectsto a static

data reconciliationmodule. This latter is directly linked to the ISOPE algorithm

modulefor optimisationof the twoCSTRsystem.

The thesisconcludeswith a numberof suggestionsfor further researchrelatedto

the work carriedout in this thesis.

1.6 SUMMARY

An introduction to the broad area of optimisation was given in this chapter.

Specifically, on-line optimisation, which here is consideredto be a multi-step

procedureconsisting of steady-statedetection, data reconciliation, gross error

detection, parameterestimation and the actualoptimisation procedure. One

particularmethodfor systemoptimisationand parameterestimation(lSOPE)was

presented.The scopeand ashortoutline of the thesiswere also given.

In the next chapter,the ISOPEalgorithmis presentedin more detail.
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CHAPTER2

THE ISOPE ALGORITHM

2.1 INTRODUCTION

The On-line optimisation problem, which consists of the determination of

controls, or set-points,of a system controller, can be divided into two major

categories: the direct and indirect approaches. The direct approach uses

measurementstakendirectly from the real physicalsystemand appliesoneof the

basic optimisation techniquesto optimise the process performanceobjective

function. However, in practice this can give rise to some difficulties such as

having to contendwith measurementnoise and having to allow the processto

settlesufficiently beforemeasurementsare taken.

In the indirect or model-basedapproach,the optimisation is performed on a

mathematicalmodelof the plant insteadof the realsystemitself. Whenfound, the

resultsare thenappliedto the real system.The useof model-basedapproacheshas

severaladvantages.The measurementscontaminatedby noise and other process

disturbancesare largely avoided. Also, there may not be a need to allow the

systemto settlebeforetaking measurementsor to haveavailableall measurements

of processvariableswhich appearin the performanceindex (Ellis et aI., 1988).

Again, this is unlikely to producethe processoptimum, as it is inevitable that

model-realitydifferencesexist at least to someextent, in terms of structureand

parameter.

To overcomethe problemsof measurementsand noisein the direct approach.and

model-reality differences in the indirect one, the ISOPE (Integrated System

Optimisation and ParameterEstimation) algorithm was introduced (Roberts.

1979). Possessingfeaturesfrom both approaches,the key featureof the algorithm



is to replacethe model-basedoptimisationproblem,after an analysisof first-order

optimality conditions(AppendixA) by an equivalentproblemwhich is ultimately

decomposedinto a parameterestimationproblem and a modified model-based

optimisationproblem (Robertset al., 1988). In this method, information gained

from the real processis usedto correctthe errorsoccurring in the model. Hence.

reachingthe optimumof the real processin spiteof model-realitydifferences.

All ISOPEalgorithmsdesignedto dateare derivedfrom the basicandwell-known

two-steptechnique,which consistsof two major steps.The first stepsolves.with

the aid of processmeasurement,a simple model parameterestimationprocedure.

The updatedmodel is then used in the optimisation problem. The secondstep

obtainsthe processcontrols via an optimisationroutine (Figure 2-1). The major

drawbackof the two-stepmethodis that it assumesa completematchbetweenthe

outputderivativeswith respectto set-pointsof the realsystemand its model. This

is highly unlikely to happenin reality where the degreeof non-linearity is very

high andthe environmentsare varying. This problemwasaddressedby the ISOPE

(sometimesreferredto as themodifiedtwo-step)method,by introducing a new

modifier variable. This modifier takes into accountdifferencesbetweenthe real

processand model-basedoutput derivativeswith respectto the set-points,which

ensuressatisfactionof the systemoptimality conditions.

Parameter

Estimation

Realprocess

Optimisation

Model-based

Controls

Figure (2-1): The two-stepMethod.
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2.2 THE ISOPE ALGORITHM AND ITS DEVELOPMENT

The ISOPE algorithm as initially proposedby Roberts (1979), deals only with

unconstrainedproblems.It was only until 1986 that Brdys et al. (1986) and then

laterLin et al. (1988)extendedit to includeproblemswith outputindependentand

output dependentinequality constraints.Nevertheless,the algorithm was used

successfullyin a large variety of casesbefore that. Indeed, Ellis and Roberts

(1981) used thealgorithm for on-line optimisationof a chemical reactor. The

resultswere promising,and openedthe door forother researchersto investigate

the method more deeply. Theperformancesof the algorithm, particularly the

stability and convergenceproperties as well as the effectof real process

measurementerrors were investigatedby Robertsand Williams (1981). Also, a

convergenceanalysiswas conductedby Brdys and Roberts (1987). Ellis et al

(1988) conducteda comparisonstudy where threemethodswere appliedto a fuel

gasmixer process.The methodscomparedwere theConjugatedirection method,

a rationalisedform of the ISOPEalgorithm and anApproximateLinear Model

ISOPE (ALMISOPE)method. It was concludedthat in some specific cases, the

ALMISOPE is moreefficient than theothertwo methods. Analgorithmwith dual

control effect for which the generatedcontrol signalsatisfiesthe main control goal

as well asproviding sufficient information for future identification action was

proposedby Brdys andTatjewski (1994). Roberts(1992) introducedDISOPE, a

dynamic extensionof the ISOPE algorithm used for solving nonlineardiscrete

time optimal control problems. Data reconciliation techniqueswere also used

within the ISOPEalgorithm to improve static optimisationschemeswhere data

was contaminatedby noise andsystematicbias (Abu-el-Zeet,2000). Andlately, a

comparisonstudy including the mostpopular techniquesfor estimatingprocess

derivativesneededby the ISOPEalgorithm,wasconductedby Mansourand Ellis

(2003). In the study, it was shown that theoptimum operatingpoint is reached

with all the different estimatingtechniquesused, but with adifferencein speedof

convergence;the DynamicModel Identificationtechniquebeingsuperior.Further

work was carriedout on the ISOPEalgorithm, including: Abdullah (1988) for the
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AugmentedISOPE(AISOPE) and Becerraet al (1998) in the areaof predictive

control. A reviewof the ISOPEalgorithmcan be seen inRoberts(1995).

2.3 FORMULATION OF THE PROBLEM

Considerthe generalsteady-stateoptimisationproblem of finding the optimum

set-pointsof a system,which the behaviourobeys to thefollowing relationships:

Vmin <v<vmax

(2.1)

(2.2)

(2.3)

where y * is an ny vector of measuredoutputs,v is an nil vectorof manipulated

variables, H* representsthe real process input-output mapping andg is a

mappingof outputdependentinequalityconstraints.

The performanceof the systemis measuredwith the objectivefunction Q, which

is assumedto becontinuous,anddifferentiable.

The systemoptimisationproblemis thenconsideredto be:

Subjectto:

Min Q(v,y*)

y* = H* (v)

\' . <" ｾ "mill max

ｾＶ

(2.4)

(2.5)

(2.6)

(2.7)



In general, the above systemoptimisationproblem is convertedinto a model-

basedoptimisationproblemwherethe following modelof the realsystemis used:

y =H(u,a) (2.8)

wherey is a vectorof model outputs,u is a vectorof decisionvariables:H is the

model usedto approximatethe real processmappingand a is a vector of free

parameters.

After analysisof the 1st order necessaryoptimality conditions(AppendixA), the

problem(2.4) to (2.7) becomes:

subjectto:

min Q(u,y)

y =H(u,a)

H* (v) =H(u,a)

v=u

g(y) < 0

(2.9)

(2.10)

(2.11 )

(2.12)

(2.13)

(2.14)

The free parametersa arechosensothat the modeland realprocessoutputs match

at the currentoperatingpoint, the model is thensaid to be point parametric(Ellis

et al., 1988).

The aboveequations,after applying the necessaryoptimality conditions,yield the

following model-basedprocedure:
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subjectto:

where

min Q(H(u,a),u)-AU+tpwTw+tr II u-v 11
2

u,w

g(H* (v)) + M(u - v) + w ｾ 0

-
Umin ｾ U < U max

-
Umin = maX(Umin , v - 5)

-
U max = min(umax, v + 5)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

5 j is the maximumallowedvalueof IU j - vj I, j =1,. .. ,nu ' M is given by:

(2.20)

A is computedfrom:

and a canbe obtainedfrom:

y* - H(v,a) =0

(2.21 )

(2.22)

Equation (2.16) is equivalentto (2.13), and A is aLagrangemultiplier, usually

referredto as amodifier.

11' is a setof relaxationvariablesand p is apenaltyfactor. The term +r II U - \' 11
2 is

usedonly for highly non-convexobjective functions and is seento improve the

convergenceof the algorithm(r ｾ 0) (Becerraand Roberts,2000).

ｾ Ｘ



The aboveproblemis thentreatedas ageneralnonlinearprogrammingproblem.

When found, the solutionof the problem(Roberts,1979) is then treatedwithin a

relaxationschemeto give in an iterativemannerthe next control (seeprocedurein

section2.5) as follows:

(2.23)

Where K E [0,1) is a relaxationgain matrix, and governsthe actualchangesmade

to the real processinputs from one iteration to another.Its purposeis to ensure

thatexcessivealterationsarenot made.

The basicschemeof the algorithmcanbe seenin Figure(2-2).

*Model-basedOptimisation o, H (v) Parameterestimation
... ,

A Calculatea from (2.22).Solvethe optimisationproblem •
,

• Calculatethe processv
given by equations(2.15)to (2.23). .J derivativesused in(2.20)

and (2.21).

• ComputeAfrom (2.21).

)

Set-points Measurements
*

Vk Y
'If

Real process

Figure (2-2): The ISOPEalgorithm.

From the previous relations (2.20) and (2.21), it can be seenthat real process

derivatives are neededin order to computethe modifier A. Various techniques
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exist and have beendevelopedand appliedto date to estimatethesederivatives.

Finite Differences Techniqueusing perturbation,basedon measurements,was

originally suggestedwith the algorithm by Roberts(1979). Although simple to

apply, the technique proved to be inefficient in the caseof large, slow and

randomly noisy processes.The dynamic model identification methodintroduced

by ZhangandRoberts(1988).The majoradvantagethe techniquebroughtwas the

reductionof the amount of time taken to estimatethe derivatives.However. it

encounteredsomedifficulties such as: thehuge amountof data neededand the

poor inaccuratemodel it givesat thebeginningof the identification.

Broydon'sapproximationmethod,basedon the well-known Broydon'sfamily of

formulas, mainly orientedto the approximationof derivativeswas also usedand

implemented.These techniquesare studied in detail in Chapter 4, where an

assessmentof their efficiency is madethrougha simulationof a ContinuedStirred

two Tank reactor(CSTR) system.Other methodshave beendevelopedwith the

aim of totally eliminatingthe needfor the derivativeinformation from within the

ISOPE algorithm. However, these techniqueshave not proven to be highly

successful,andthereforehavenot beenincludedin this work.

2.4 SPECIAL CASE: QUADRATIC OBJECTIVE WITH

LINEAR MODEL AND CONSTRAINTS

Althoughthe structureof mostdynamicalsystemsis of non-linearform, it is often

possibleto obtain a good linear approximationto the behaviourof the system

arounda suitableoperatingpoint. Thus, many systemscan bedescribedby the

following linear representation:

y=H(u,a)=Au+a

ｧ Ｈ ｹ Ｉ ］ ｇ ｹ Ｍ ｨ ｾ ｏ
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whereA is an (ny x nu ) matrix. Andg is theoutputinequalityconstraints.

In the specialcasewherethe objectivefunction Q is quadraticof the form:

(2.26)

where C and D are symmetric positive definite weighting matrices. e andf

weighting vectors, Yd andud are the desiredsteady-stateoutput and set-point

vectorsrespectively.

The physical interpretationof such aperformanceindex, is that we desire to

maintain the output vector Y close to atarget vector value Yd without using

excessivecontrol effort, by keeping U near a givenvector value uti. The

weighting matrices C and D (Singh and Titli, 1978) enable us to define the

relative importanceof keepingthe outputnear the desired target, theexpenditure

of control effort and the need to ensure that at the final time, theoutputvector will

bevery closeto thedesiredtarget(convergence).

The reasonsbehindusing linear modelswith quadraticperformanceindices is to

be able to useQuadraticProgrammingto solve the generalnon-linearproblemof

finding the optimum point of a given non-linearsystem(which can prove to be

very difficult and time consuming)by converting it into a simplified quadratic

problem. One of the principal propertiesof quadraticprogrammingproblemsis

that the constraintsare linear, so they areconvex, and in the caseof a convex

objective function (which can happenif the weighting matrix is positive definite

or positive semidefinite).there is a uniquesolution to the problemwhich is the

global optimum. Quadraticprogrammingarises in manyapplicationsand it forms

a basisof some specific algorithmsand techniques.As it is usually solvedusing

calculus,many problemswhich arehighly non-linearareconvertedinto quadratic

formulation. A quadratic program is greatly simplified, and can be solved in

closedform if it containsequalityconstraintsonly.
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In this casethe parametera will be calculatedby:

•a = y - Au (2.27)

And A canbe found by combiningequation(2.21)with (2.24) and(2.26) to be:

(2.28)

In this casethe modifier A is found using the aboveformulation with the help of

process information such as measurement(i.e.: matrix A obtained using

measurements)andoptimiserparameterssuchasD, C, ande.

The optimisation problem therefore IS reduced to the following quadratic

programmingproblem:

Subjectto:

. I TS Tmln2"x x+q x
x

-
Gx<h

(2.29)

(2.30)

xm in < X < xmax
(2.31 )

where:

x=[:] (2.32)

s= [ATCA + D + rIll I Onvx,]

°IXII I pI,r
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II = [b - Gy· - GAv]

The aboveoptimisationproblemis solvedusingquadraticprogramming.

(2.35)

(2.36)

2.5 A SIMPLIFIED VERSION OF THE ISOPE ALGORITHM

A practical version of the ISOPE algorithm presentedin this chapter and

developedby Becerraand Roberts(2000) is given below. It is worthwhile noting

that the convergenceof the algorithmfor which a summaryis given in section2.6,

dependsupon severalfactors. Theaccuracyof the derivativeestimationis oneof

thesefactors.The procedureis (BecerraandRoberts,2000):

Data: C,D,e,j'Yd'ud ' G, h, r, p.K,vk andmeansfor measuringy. andcomputing

Ak • Putk = aand go to step l .

1. Apply the current input vk to the plant, wait for asteady-stateto be reached

•and measurethe processoutputYk .

2. Updatethe gain matrix Ak by using one of the availableestimationmethods

presentedin chapter4.

3. Computea k using(2.27) andAk using(2.28).

4. Solve the optimisation problem given by equations(2.29) to (2.36) using

quadraticprogrammingto obtainthe nextinput candidateUk+1 •
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5. Computethe nextprocessinput by using(2.23).

6. Setk = k+ 1, checkfor convergenceand go to step1.

Thesestepsare repeateduntil convergenceis reached.Convergenceoccurswhen

no further improvementis observed.In other words, when the new control is no

longer a better candidatethan the previous one. Theoretically, convergenceis

checked in step 6 by testing the equalityvk+ ) =Vk• Practically, the previous

equalityvk+) =V k is replacedby the following inequality:II Vk+1 - V k 11< e .

Wheree > 0 is adesiredaccuracythreshold.

2.6 CONVERGENCE PROPERTIES

The convergenceand optimality propertiesof the ISOPE algorithm for on-line

determinationof the optimumsteady-stateoperatingpoint of a given processwas

investigatedin detail by Brdys and Roberts (1987). The conclusion was that,

under mild assumptions,a suitable gain matrix K exists such that every point

generatedby the iterativeprocedure(equation(2.23)) is feasible. In fact, in order

to assurefeasibility during iterations for a general constrainedcase, the gain

matrix K mustbe of the form:

K=kI

Wherek is apositivescalar,and I is the identity matrix.

This involves all individual gains k, to havethe sameidentical numericalvalues,

unlike in the unconstrainedcase. where the gain matrix K is allowed to have

di Ifcrent individual diagonal elements.However, the scalar parameterk in the

constrainedcase.is allowedto changefrom oneiterationto another
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Under such conditions, the process performanceindex is improved at each

iteration and each cluster point of the sequencegeneratedby the algorithm

satisfies first-order necessaryconditions for optimality. Furthermore. everv

optimal point belongsto the solutionsetof the algorithm.

Although, in orderto guaranteeconvergence,the compositionof the performance

index andthe processmathematicalmodel shouldbe uniformly convexfunctional

on the setof admissiblecontrols, the realprocessinput-outputmappingmay be

non-linearsuchthat its compositionwith the performanceindex is not requiredto

be convex. Hence,the algorithm is applicableto a broad classof real problems

(Brdys and Roberts,1987).

Also, it wasfound (Kambhampati,1988) that:

1. The derivative differences given by [[ 8H·(J-L)]1' _ [8H (J-L)]7' ]
8J-L JI=1- 8J-L JI=1-

constitutethe model-realitydifferences.

2. Themodifier Acan beinterpretedin eitherof the following two ways:

1. A parameterwhich quantifies the violations of the sufficiency

conditionsby themodels

or

ii. A compensatorwhich permits differences in the model based

performanceindex and thesystembasedperformanceindex.

Theseconclusionshelped us understandthe model-realitydifferencesand what

necessarycharacteristicthe modelhas to fulfil in orderthat the performanceof the

algorithm is efficient. And hence,the smaller the model-realitydifferencesare.

the moreefficient is theperformanceof the algorithm.



2.7 SUMMARY

In this chapter, the ISOPE algorithm has beenpresentedand reviewed. An

improvedversionof the algorithm developedby Becerraand Roberts (2000) has

also beenoutlined. The major inconveniencethe methodpossesseswhich is the

need forderivative information to be estimatedat eachoperatingpoint was also

addressed.In the algorithm, a special case for quadraticobjective and linear

model wastreated.Finally, the convergenceand optimality propertieshave been

outlined.
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CHAPTER3

CASE STUDY SYSTEMS

3.1 INTRODUCTION

In this chaptertwo examplesof systems are introduced. These are to be used in

simulationsin order to assess and compare theperformanceand effectivenessof

all the techniquespresentedin this thesis. The first example is a simple SISO

(Single Input Single Output) nonlinear discrete time system used as an

introductionto illustrate simple algorithmic design aspects. The second is a more

realistic systemwidely used in different situations and which consistsof a two

ContinuousStirred Tank Reactors(CSTR's)connectedin series.

The following subsectionintroduces the first example with its basic details and

systemequation. The nextsubsectiongives a detaileddescriptionof the second

system(CSTR), its functionality, equations and anexplanationof all the related

constraintsand restrictions. The design andimplementationissuesof both systems

are also outlined.
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3.2 EXAMPLE 1:

We considerthe Single Input Single Output (SISO) non-linearplant represented

by the following first orderdiscrete-timeinput! outputrepresentation:

y(k+1)= y(k) + u3(k)
1+ y\k)

(3.1)

where y(k)is the plant outputat time kT (T is the samplingtime) and u(k) is the

input.

u

Signal generator uA3

'------I yl( 1+yA2)

yl(1+yA2)

y

Figure (3-1): SIMULINK implementationexampleof the
SISOnon-linearplant.

This example,presentedin Narendraand Parthasarathy(1990) andKambhampati

et al. (2000), is an introductory example only. It is used to illustrate simple

algorithmic design and applicability aspects. InChapter 5 it is used under

simulation to assess theeffectivenessof the Neural Networks model structure

used in identification, after training the model with real input/ output data

candidates(takenfrom the realsystemdescribedabove).

3.3 THE TWO CONTINUOUS STIRRED TANK REACTORS
(CSTR'S)

This examplepresentedby Garciaand Morari (1981) used bylang et al. (1987)

and later treated by Becerra and Roberts (1995),consistsof two Continuous

Stirred Tank Reactors(CSTR's) connectedin cascadein which an exothermic

autocatalyticreactiontakes place (Figure3-2). The componentsinteract in both
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directionsdue to the recycle of 50% fraction of the productstreaminto the first

reactor. Regulatory controllers are used to control the temperature in both

reactors.

The reactionis describedby the basicreactionequation:

(3.2)

whereA andB aretwo chemicalcomponents.

The real processis representedby the following relations:

dCa2 = Cal _ C a2 _ (k C C - k C 2)

dt 2+ a2 h2 2- h2

'2 '2
dCh2 = ChI _ C h2 (k C C - k C 2)

dt
+ 2+ a2 h2 2- h2

'2 '2

(3.3)

(3.4)

(3.5)

(3.6)

Where CXi is the concentrationof componentx in tank i, '1 =30min is the mean

residencetime of reactor 1, '2 =25min is the meanresidencetime of reactor2,

which result in an overall time constantof approximately40 min (Garcia and

Morari, 1981). kit = A± exp(- E± / RI;) are thereactionrates, E+ / R = 17786K,

E_ / R=23523K,A+ = 9.73 x 1022m3
/ kmols,A_ = 3.1xl 030m3

/ kmols,CaO=0.1 IS

the feed concentrationof componentA, 1; is the temperaturein tank 1, T2 is the

temperaturein tank 2.

49



CaO L2 ｾ
Cal, Cbl

Cal, Cb2

CONC
2

Figure (3-2): Thetwo ContinuousStirredTankReactorssystem.

These equations,together with the regulatory control loops, the measurement

transducersand the valve actuatorsprovide the real processdescription. In our

case,the dynamicsassociatedwith the regulatorycontrollerswere neglectedas

well as the measurementtransducersand actuators (which were originally

modelledas first orderlags),as the realsystemprocessis a very slow processand

its dominanttime constantis very largecomparedto thoseof the instrumentation.

Therefore, the aboveequationsrepresentthe mapping H* of the realsystem.

It has to bementionedthat when using the ISOPE algorithm (Chapter 2), an

incorrectand simplified model is usedas amapping H to representthe system.

This mappingis different from the onegiven above.

The two CSTR plant has 4 outputs which are the concentrationsof the two

componentsA andB in both tanks. Hence,the outputvectorcanbe written as:
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(3.7)

The manipulatedvariableswhich are the setpointsof the temperaturecontrollers

in bothreactorsare givenby,

These are bounded between upper and lower levels:

300 <1; <312K, 300 <T2 < 312K and areassumedto beknownnoise free.

3.4 IMPLEMENTATION ISSUES

The implementationof the CSTRand thesimple SISO systemspresentedin this

chapterwas performedusinga MATLAB@/SIMULINK softwareplatform.

MA TLAB is a high-performancelanguagefor technicalcomputing.It integrates

computation, visualisation, and programming in an easy-to-useenvironment

where problemsand solutions are expressedin familiar mathematicalnotation.

Typical usesinclude:

• Mathematicsandcomputation

• Algorithm development

• Modelling, simulation,andprototyping

• Dataanalysis,exploration,andvisualisation

• Scientificandengineeringgraphics

• Application development, including Graphical User Interface (GUI)

building.

MA TLAB is an interactivesystemwhosebasicdataelementis an array that does

not requiredimensioning.
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The name MATLAB stands for matrix laboratory. MATLAB was originally

written to provideeasyaccessto matrix softwaredevelopedby the LINPACK and

EISPACK projects,which togetherrepresentthe state-of-the-artin software for

matrix computation.

MATLAB features a family of application-specificsolutions called toolboxes.

Toolboxesare comprehensivecollectionsof MATLAB functions (M-files) that

extendthe MATLAB environmentto solveparticularclassesof problems.

SIMULINK, a companionprogram to MA TLAB, is an interactive systemfor

simulating both linear and nonlineardynamic systems.It is a graphicalmouse-

driven programthat allows a systemto be modelledby drawing a block diagram

on thescreenand manipulatingit dynamically.It can workwith linear, non-linear,

continuous-time, discrete-time, multivariable and multirate system (The

MathWorks, 1996).

The implementationof both systemswas achievedby creating a SIMULINK

model architecturewhich is able tointeractwith the MATLAB environmentvia

calling a subroutinecontaining the appropriateidentification and optimisation

algorithmsstoredin an M-file. Thesubroutineacquiresthe informationdataunder

the form of measurementsfrom the SIMULINK model of the plant (figure 3-3).

The subroutineis executedat every time samplegiven in the SIMULINK model

parameters,which makesthe whole procedurerecursive.Major considerationand

extra care have to be taken when choosing the simulation parameters.For

example,we mentionthat the time step in aSIMULINK model is not the real time

step which meansif a measuredvariable is plotted againsttime; it would be the

internal SIMULINK time not real time.Thereforethe time, ODE and theother

parametersare to betuned first before simulation starts. Theseparametersare

chosenfollowing some specific criteria so that the whole system(SIMULINK

1110delandoptimisationroutine)works in aperfectstate.

It is worth noting that the simulation times which appear In the results in

subsequentchaptersrelateto the real plant. Thesimulationswould typically run

at speedsof between10 to 100 times faster dependingon thecomputationalload

on the algorithm; and they are run forsuitabletime durations,giving time to the
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appropriate system to settle down for a steady-stateposition and for the

appropriatealgorithmsto performtheir tasks. All theresultsare thenstoredin the

workspaceto beanalysedandplotted.
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Figure (3-3): SIMULINK implementationexampleof the CSTRsystem.

3.5 SUMMARY

Two examplesof systems,which are going to be used in casestudiesthroughout

this thesis, were presentedin this chapter. The first example is a simple

introductorysystem,which consistsof a nonlineardiscretetime plant. Thesecond

one is a twoContinuousStirredTank Reactors(CSTR's)connectedin series. The

two plants equationsand characteristicstogetherwith different implementation

aspectsarepresentedin a way todescribethe functionality of both systems.



CHAPTER4

TECHNIQUES FOR THE ESTIMATION OF

THE DERIVATIVE INFORMATION

4.1 INTRODUCTION

The model-realitydifferencesproblemin the general on lineoptimisationproblem

is usually overcomeby using adaptivemodels which can beupdatedregularly

while seekingto reach thesolution of the optimisationproblem. TheIntegrated

System Optimisation and ParameterEstimation (lSOPE) algorithm uses such

models. The major drawbackthe method possessesis the need forderivative

informationto be estimatedat eachoperatingpoint. Thesederivativesare needed

by thealgorithmin orderto satisfynecessaryoptimality conditions(AppendixA).

This chapterinvestigatesmethodsand techniquesdevelopedfor the purposeof

estimatingthe processderivatives.Methodsof Finite DifferenceApproximation,

Dual Control Optimisation, Broydori's method and a Dynamic Identification

Method, with a Linear and Non-linear models,are presented,implementedand

tested,undersimulation,on thecascadeContinuousStirred TankReactor(CSTR)

systempresentedin Chapter3.



4.2 FINITE DIFFERENCE APPROXIMATION METHOD
(FDAM)

This methodwas the firstemployedfor estimationof derivatives(Roberts,1979)

and use ismadeof processmeasurements.If the processis subjectto noise, then

the derivative estimatescan suffer large errorsgiving problemsin obtaining the

correct final solution. Other difficulties which might arise, apart from those

concernedwith noise, are the obtaining of actual measurementsand, for slow

dynamic processes,having to wait for the processto settle sufficiently before

steady-statemeasurementsare taken.

In most practical situations, the process mappingis not given by aspecific

formula or is difficult to find; rather it is a combinationof experimentaland

computationalprocedures.Thus, theoutput derivativematrix with respectto the

set-pointsneededby the ISOPEalgorithmis usuallyunavailable.

In one dimensionalcase, thederivativeof a certainfunction fix) can bereplaced

by the secantline that goesthroughI at Xc and at somenearby point Xc + h,

(DennisandRobert,1983). Themostobviousformulationof that line slope is:

[t x; +hJ- l(xJa = Ｍ］ＭＭＭｾ｟ＮＺＺＮＮＮＮＮＮＮＭＭＭＭＭＭＭＭＺＧＭＭ

C h
c

(4.1)

Therefore,the output derivative function with respectto the set-pointof a given

processcan bereplacedby thefollowing estimation:

al I(x + h) - I(x)
-ax h

(4.2)

However.will the aboveformulationbe a faithful approximationto the derivative

function off?
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The answercomesfrom the fact that as h goes to zero,a
c

convergesto f'(x).

Therefore,h has to bechosenconvenientlysmall so that theestimation(4.2) can

be true, and ac canbe calledfinite-differenceapproximationto f'(x).

In the multidimensionalcase,it is reasonableto use the sameideato approximate

the (ij),h component of the derivative matrix A by the following forward

differenceapproximation

1;(x +heJ ) - 1;(x)
a.. =---....:..----

If h (4.3)

where ej denotes the /h unit vector. The aboveformula IS equivalent to

approximatingther columnofA by

A = _F_(x_+_he....:c.J_) _F_(x_)
J h (4.4)

whereA is thederivativematrix of the multidimensionalfunctionF.

Again, the matrix A convergesto the truederivativematrix only if h is chosento

be sufficiently small.

In practice, and in MIMO (Multi Input Multi Output) systems, the output

derivativematrix with respectto theset-pointsis similarly givenby:

D =_8y ｾ _y_(v..:..:....k _+_g_)_y_(---,vk",--)

k av g
(4.5)

where 8 is a small perturbationsignal applied to the systemin order to estimate

the derivative matrix and y and v are the output and manipulated(set-point)

variables respectively.The perturbationsignal g is chosento provide enough

excitementneededby the system,and at thesametime ensuresgreateraccuracy

of the derivative estimates. In practice, 8 is usually left as an adjustable

parameter.



Beingthe basicmethodusedin the original ISOPEalgorithm(Roberts,1979), this

technique cangive sufficient accuracyof the derivatives in an acceptabletime

span,for the caseof small and noise-freeprocesseswhich have reasonablyrapid

dynamics.However, it has beenshownto perform very inconvenientlyfor large

andslow processesbecauseof the hugeamountof time it takes for theestimation.

Indeed,as demonstratedby Ellis et al. (1988) and Mansourand Ellis (2003). a

largenumberof set-pointchangesare requiredfor problemswith large numberof

inputs and outputs (Roberts, 1995). Furthermore, the inaccuracy of the

measurementsfor noise-contaminatedprocessesmight makethe robustnessof the

algorithm againstdisturbancesvery poor.

For these reasons,alternativeshad to be found in order to overcome these

problems.A numberof ISOPE techniqueshave beendevelopedand applied in

different situationssincethe algorithm was first proposed.Below. someof these

techniquesare listed. For a review of the different ISOPEtechniquesand their

applications,seeRoberts(1995).

4.3 METHOD FOR DUAL CONTROL OPTIMISATION

This was the first algorithm basedon steady-statemeasurementsthat does not

require additional set-point changesfor the derivative approximation purpose

(Brdy's andTajewski, 1994). It generatesa control signal insucha mannerthat it

fulfils the main control goal, andproducesan outputsignalwhich cariessufficient

information for future identificationpurposes.Below is a brief descriptionof the

algorithm:

The algorithm assumesthe existenceofa collectionofn+ 1 points\,1, Vi-I, ... ,

suchthat all vectors

I-n
\'

dcf
A ik i ; - k
oV = v - v

are linearly independent.i.e.
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del
dettS" = ｛ｾｖｩｬ ｾｖｩＲＮＮＮ ｾｶｩｮｦＩＺ［ｴＺ O. (-+.7)

Directional derivatives F. j of the /h plant output y E 9{ny at a point Vi and in a

d
. . ｾｦ

irection s" = Vi - Vi - ', canbe computedas:

(-+.8)

for eachk = 1, ..., n, j = 1, ..., m, with m is the numberof outputs.Therefore

(4.9)

If the points vi
-

j are closeenoughto Vi thenfor everyj = 1, ..., m,

(4.10)

This formulation assuresgenerationof consecutiveset-points Vi in such a way

that the efficient estimationof the plant output derivativesusing equation(4.10)

canbe applied.However,this estimationcannot be appliedsuccessfullyexceptif

the matrix s' is non-singular and sufficiently well conditioned. This can be

fulfilled only if the consecutiveset-points Vi are appropriately locatedin their

space(Brdy's andTatjewski, 1994).

In order to achievethis goal, a new inequality constrainthas to beintroducedto

the modified model-basedoptimisation problem. This new added constraint is

basedon a function d connectedwith non-singularityof the matrixSf. Brdys and
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Tatjewski (1994) proposedtwo formulationsof the function d. The mostpractical

of themis:

(+'11)

whereO"min(Si) and O"max(Si) are the minimal and maximal singular values ofs'.

This meansthat (4.11) is the reciprocal of the condition numberof the matrix

Si (in 2-norm). This methodis then implementedwithin the ISOPE algorithm in

order to estimatethe output derivative matrix with respectto the set-pointsof a

given process.As shown in section 4.6, the performanceand ability of this

methodare demonstrated,andalsocomparedto someothertechniqueswhich will

be discussedbelow.

For more details of the methodand its practical implementation,seeBrdys and

Tatjewski (1994).

4.4 Broydon's Method

Oneway to avoid estimatingderivatives(sincein practicethe derivativesmay not

be conveniently available) is the so-called Broydon family of algorithms

(Fletcher,1980).

Proposedby C. Broydon, it is consideredto be the most successfulsecant

approximation to the Jacobian. Broydon's approximation or as it is usually

referredto as Broydon'supdate,is usedto solve systemsof nonlinearequations.

The key featureof the methodis that it updatesthe matrixAk at eachiteration so

that the next approximationAk+1 is givenby the equation:

where

Yk = f(xk +1) - f(x)
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(.+.1'+)

Broydon'supdate,belongingas it does to theclassof Newtonmethods,may need

to be supplementedby sometechniquesto convergefrom a starting point. This

startingpoint has to bechosenconvenientlyin order to ensureconvergence.In

practice,the initial approximationAn is computedby using finite differencesin

order to get agood start. This also makesthe minimum-changecharacteristicof

Broydon'supdatemoreappealing.

In practice,equation(4.12) is usedto estimatethe output derivativematrix with

respectto the set-pointsof a givenprocess.The derivativematrix is neededby the

ISOPEalgorithmin orderto calculatethe modifier A(chapter2).

Broydon'supdategives:

(4.15)

Where BRk and BRk_1 are respectivelythe presentand previousestimatesof the

output derivative matrix (also known as Broydon'smatrix), Yk andYk-l are the

presentand previousvaluesof the measuredoutput vector, while Uk andUk-1 are

the presentandpreviousvaluesof the manipulatedvariablesrespectively.The BR

matrix is updatedperiodically using presentand previous measurementsof the

outputand manipulatedvariablesandneedsto beinitialisedat thestartup.

Someremarkshaveto be madehereregardingsomeobstaclesthat the algorithm

might encounter:

1. The first observationis that the algorithm needsan initial value of the

matrix BR to start with. Usually and as mentioned above. the finite

differencesmethod(FOAM) is used tocalculateit. However, in practice

and asexplainedin section4.2, theFOAM has somedisadvantageswhen

used on line. Forinstance,measurementsmight be contaminatedby noise.
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or the systemmight have slowdynamicsleading to a very slowestimation

process.

2. The secondobservationis that close to theoptimum point, the current

controlUk and the previous oneUk-I are very close to each other

(i.e.:Uk ｾ Uk-I)' which may cause theapproximationformula (4.15), to

reach someprohibited values and therefore the algorithm to fail In

convergence.

More details aboutBroydon's family of algorithms can be found In Fletcher

(1980).

4.5 Dynamic Model Identification Method (DMI)

This method is based on theidentification of a dynamic model that is used to

approximatethe real process locally at each working point for the purposeof

estimating steady-statederivatives. It was first introduced into the fieldof

optimisationby Bambergerand Isermann (1978), where it was shown to be an

efficient tool for identification,especiallyin the caseof slow processes.

The key featureof the method is toapproximatethe real process by a dynamic

model during thetransientusing real processinformation(Figure 4-1). In this case

the waiting time for the steady-stateto be reached in order to estimate the

derivativesis avoided; these derivatives arecalculateddirectly from the steady-

state modelderived from the identified dynamic model. The structureof the

dynamic model to beidentified is pre-specifiedand is updated on-line (Forbes,

1994). In many cases a linear structure is assumed (Garcia and Morari,1981ｾ

Becerraet al., 1998).Howeverthis is not always the case as generalnon-linear

forms can also be used(Bambergerand Isermann,1978; Mansour and Ellis,

2003).

In this work, two different structuresof models are used: a linearrepresentation

with a non-iterativetechniquedeveloped byBecerraet al. (1998) and anon-linear

model based on a 2nd order HammersteinModel presentedin Bambergerand
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Isermann, (1978). The two techniques, based on the 1\\'0 different model

representations,follow.

NdSamples

Transient
ｾ

Time

Figure (4-1): The DMI notionaspect.

4.5.1.DMI with Linear Model Representation

A multivariable ARMAX (Auto-RegressiveMoving-Averagewith eXogeneous

inputs) model is employed(Becerraet al., 1998) toestimatethe linear dynamic

model,basedon theleastsquaresmethod.

A generalstate-spacemodelrepresentationwhich has thefollowing form is used:

Llx(k+ l)=ALlx(k)+B!J.u (k)

!J.Y(k )=CLlx(k)

(4.16)

(4.17)

wherek is an integerindex,x E mny is a statevector, U E mnu is a setof independent

inputs, Y E 9,ny is a vector of measuredoutputsand A, B, C are matricesof the

appropriatedimensions.This techniqueis basedon the moving- horizon concept

(Figure4-2), but it exploits the displacementstructureof the datawindow, so that

its cOlnputationalload is reduced.For modelswith multiple outputsand a large

numberof parametersit may provide a lower computationalload than that of the

standardrecursiveleast squaresalgorithm, asdescribedbelow. Moreover.usinga



non-minimal realization, the statespacebasis is invariant even when the model

matricesareupdatedperiodically.

NsSamples. )

Previousdata window 14------+

n, samples

)

NsSamples

Presentdata windowI'" ,

1 N;
I

:samples""--- ---l

1

1 ｾＮＭＭＭＭＭＭＭＭＭＭＭＫ
1
1

Time

Figure (4-2): The movingHorizonaspect.

Assumethat the outputof the systemat discretetime k is denotedasyE mnv
, and

the input variable at time k is given by u(k) E 9{nu
• An ARMAX model of the

systemcanbe written as (BambergerandIsermann,1978):

(4.18)

where

(4.19)

B•( -1) B -1 B -2 B -nhq = lq + 2q +... + n q
h

(4.20)

C•( -I) I C -I B-/1. q = + Iq + ... + n q c
c

(4.21 )

are matrix polynomialsof the degreesna' n, and nc respectively,in the backward

shift operatorq-t . d is the minimum pure time delay in samplesfrom inputs to
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outputs,the sequence&(k) E mny is assumedto be zero meandiscretewhite noise,

and b E mny
is an off-setparametervectorintroducedto take into accountnon-zero

levels in the signalsinvolved. It has to bementionedthat in an ARMAX model

the dynamics of the processare incorporatedin the model by the lags in the

polynomialarraysA, BandC.

An equivalentnon-minimalstate-spacerealizationof the deterministicpart of the

ARMAX model (4.18) is asfollows:

where

x(k+l) Ax(k)+Buu(k)+c

y(k)=Cx(k)

x(k) = [y(k)7' y(k _1)1' ... y(k - na + 1)1'

u(k _1)7' ... u(k - d)1' ... u(k - d - nh + 2)7'f

(4.22)

(4.23)

(4.24)

is a statevectorwhich containspresentand pastdatavaluesof the outputat time

k, and pastvaluesof the input variables,dim x = n = n.n; + nu (nb + d-2), A

andB; are matrices of the appropriatedimensionswhich are formed in termsof

the ARMAX modelpolynomialcoefficients, c E 91" is anoff-set vector.

For instance,for the casewhend = 1, matricesA, B; andC aregivenas:

-A -A2 -All B2 B"I a h

I" 0 0 0 0
\

A= 0 0 ... I" 0 0 0 (4.25)
.'

0 0 0 0 0

o o o
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whereA is of dimension: (n n + n (n -1)) x (n n + n (n -1))ya u b yo u b •

B = 0u

In
"

(4.26)

Multiplying equations(4.22) and (4.23) by the difference operatorl1=l_q-l, the

following incrementalstate-spacemodel is obtained:

Ax (k+ l)=AAx (k )+Bul1u (k)

l1y (k )=CAx (k)

(4.28)

(4.29)

This model is a locally valid linear state spacemodel in the form used in the

specialcasedefinedabove.

The ARMAX modelgivenby equation(4.18)maybe written as aregression:

where

y(k) =eTrp(k)+s(k)
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qJ(k) =[-y(k _1)1' - y(k - na)1'

u(k-d)1' u(k-nh -d+1)1' e(k-1l ... e(k-nJ1'1f

wherethe residualse E 91 nv may bedefinedas:

e(k) =y(k) - e1'rp(k)

( ＭＫＮＳｾＩ

(4.33)

GivenN d distinct datasamples{y(i), rp(i)}, i=l, ... , N d , the leastsquareestimate

of the parametermatrix e is givenby the solutionof the following linearsystem:

where

_ N
d

R =L rp(i)rp(i) r
i=1

Nd

1 =L rp(i) y(i)1'
1=1

(4.34)

(4.35)

(4.36)

It is assumedthat the input sequenceu (k), k E [1, Nd ] is such that matrix R IS

non-singular,which occursif the input sequenceis a sufficiently exciting signal. It

is intendedto usethis formulation in a moving horizonfashion(Figure(4.2)). The

lengthof the datawindow beingNd' the parametermatrix is updatedeveryNil data

samples,where Nil < N d and p =N d / N u is anintegerratio.

A forgetting factor is generallyintroduced(Becerraet al., 1998) toenhancethe

model adaptationto changesin the dynamics,by giving less importanceto older

datawithin the datawindow.
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-
Therefore,the matricesRandr may bewritten asfollows:

- p -

R =I A;-s R.I'
s=l

('+.37)

(4.38)

whereAi is a scalarparameter°< Ai < 1 known as theforgetting factor. R, and

F, are givenas:

sNd

Rs = I rp(t)rp(tf
1=(s-I)Nu+1

.I'Nd

r, = I rp(t)y(t)T
1=(s-I)Nu+1

(4.39)

(4.40)

It is importantto note that the algorithmavoidsthe samesectionsof databetween

consecutiveparameterupdatesby exploiting the displacementstructureof the data

window (Figure 4-2). Also, becausethe matricesR
I
. andr s are updatedat every

sampling instant, there is no need to storeNd pairs of measurements.The

algorithm is recursive if nc > 0, since the previous value of the parameter

matrixeJ-
1affects its current estimateeJ • because the residuals

e( k -1) ... e ( k - n
c

) arecomputedusingeJ-
1

•
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The full algorithmis givenbelow(Becerraet al., 1998):

Data

Step 0

Step 1

Step 2

Set k=O, j=O, jlag=O, I", =0, R, =0, S =1,...,p.

Obtaina newmeasurementvectory(k) and inputvectoru(k).

If k ｾ 1do thefollowing sub-steps:

2.1 Formthe regressionvectoflp(k), using thelatestvalue of e to

computethe residualse(k -1), ... ,e(k - nc ) '

2.2 Ifjlag =°thensetL=Nd, elseL= N u '

2.3 If k < L thendo

2.3.1 Ifjlag = 1 then seti = j, else set

i =int [ (k -1)/ NuJ +1

else do

2.3.4 If jlag = ° then set jlag - 1, and compute the

following summations:

- p -
R=LAP-s(r) Rr

r=l

p

r =LAp-.\(r)rr
r=\
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where s(r) is an integer function mappingthe corresponding

segmentof the datawindow from the indexedmatrix set index

r.

2.3.5 Computethe parametermatrix e by solving the linear

system(4.34).

2.3.6 If} =p thenset} = 0

2.3.7Set} = }+ 1, R = 0 and I". = 0
.I J

2.3.8setk = 0

2.4 Setk = k+1 and go to step 1.

4.5.2.DMI with a Non-linear model representation

Most dynamical systemscan bebetter representedby non-linearmodels,which

are able to describethe global behaviourof the systemover a wide operating

range, rather than by linear ones that are only able toapproximatethe system

arounda given operatingpoint. Hencethe useof a generalnon-linearmodel (2nd

orderHammersteinModel for simplicity) for the identification, in orderto extract

the derivativematrix from it. A HammersteinModel is a seriescombinationof a

memorylessnonlinearity and linear dynamics. It is used toidentify systemsof

high nonlinearities.

This is the first time it is used andimplementedwithin the ISOPEalgorithm. The

work is inspiredfrom that of Bambergerand Isermann,(1978).
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It is assumedthat the processis stable and can beapproximatedby a non-linear

lumpedparametermodel. The process model to beidentified considersn inputs.

7' TU = [U j J U2 J ••• , Un] and p outputs, Y =[YI'Y2, ... ,Yp ]. A generalisedsecond

orderHammersteinmodelis used(Bambergerand Isermann,1978):

Y] (k) = boo + BIIO(q-I )uI(k - d) +...+ Bill (q-I )U]2 (k - d) +...+

B'vJ' (q-I )u1,(k - d)uJ,(k - d) +...+ B'nn (q-I Ｉｵｾ (k - d) - ａｬｾ (q-I )y,(k)

where:

A ( -I) 1 -I -111
11 q = + a1/1q + ...+alllllq

B (-]) b -] b-III

lvu q = 'I'pl q + ...+ h'JI",q

(4.-+1)

(4,42)

(4.43)

are polynomials of order I in the backward shift operator('. and T denotes

Transpose.

Thus,equation(3.41)can now be written in the form:

(4.44)

where:

Q(k) =[1 u
1
(k -d) .. ,u

1
(k - d - m) u]2(k -d) ... u]2(k - d - m) ...

ul.(k - d)up(k - d) .. .ut]: - d - m)uJJ(k - d - m) ... (4.45)

ｵ ｾ Ｈ ｫ Ｍ ､ Ｉ Ｂ Ｌ ｵ Ｌ ｾ Ｈ ｫ Ｍ ､ Ｍ ｭ Ｉ "'YI(k-l) ... y,(k-m)]

and

(4.46)
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The calculation of all the parametersIS made VIa a recursive least-square

algorithm:

(4.47)

1\1\
1\

8(k+l) =8(k)+ P(k)[Yl(k+I)-OT(k+I)8(k)]

and

p(k) = 1 P(k)O(k + I) (4 48)
OT(k + I)P(k)O(k + I) + A .

P(k + I) =[I - p(k)OT (k + l)]p(k)jA (4.49)

with,

P(O)=OJ1, OJ» 1000 (4.50)

1\

0(0) =0 (4.51 )

with 0.95< A ｾ 0.98.

As in our casethe derivativeinformationis needed,only the steady-statemodel of

the systemis required.This is obtainedby simply settingq=1 (final value for z-

transform)in equation(4.41).

Therefore:

The coefficientsboo' BIi; andAil are the result of the least-squareidentification

processof the non-linearmodel.
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By comparison,one caneasilyextractthe outputderivativematrix with respectto

the set-pointsof any systemthat can berepresentedby equations(4.16) and

(4.17).

In the caseof very noisy processes,identification with a special correlation

techniquegivesbetterperformance,without anyparameterestimation(Bamberger

and Isermann,1978).

Only the steady-statemodel obtainedduring the transientphase is used in the

ISOPE algorithm in order to optimise the performanceindex. To start the

procedure,a test signal Vs which has to fulfil certain conditions, is used to

acceleratethe processidentification.After the initial crude model isobtained,the

optimisationstartsproviding additionalchangesof the input v. Thesechangesin

the input are to improve the continuing process identification so that the

amplitudesof the testsignalscan be reduced.

4.6 Simulation Casestudy

A set of simulationsis carriedout on the twoContinuousStirred TankReactors

(CSTR's) connectedin cascadepresentedin chapter3. Thesesimulationswere

createdin orderto assess themethodsandtechniquespresentedin this chapter. A

comparisonis madebetweenthesemethodsin termsof convergence,stability and

speed.

4.6.1.Optimisation objectivesand goals

The objectivefunction for all the simulationsusing this system waschosento be

linear of the measuredvariable Ch2 and reflects the desireof maximising the

amountof componentB in tank 2. Thus the formof the objective function is as

follow:

Liy, v) = -Ch2

1'2

('+.53)



It has to be noted that this objective function is linear of the measuredvariable

Ch2 , but is a nonlinearfunction of the manipulatedvariables 1;. and T
2

. This is

dueto the nonlinearityof the systemequations(chapter3).

However, the model-basedoptimisation is performed on the unfaithful model

chosento be linearof the form:

(4.54)

where a l and a2 are the free parametersto be estimatedand au {i = 1,2, j = 1,21 are

model parametersupdatedperiodicallyusing measurements(for more details. the

readeris referredto Ellis et al, 1993).

A SIMULINK model of the real processwas createdto enableperiodic calls to

the ISOPEalgorithmsavedin an M-file. All the simulationswere startedfrom the

same starting point which is the initial steady-statecondition given by:

1;. =307K and1; =302K, which yields the following steady-state outputs:

Ca]=O.041361 [lanallm 3
] and Ch2=O.058638[lanallm 3

] .

During the simulations,sufficient time was allowed for the systemto settledown

to a new steady-statecondition before measurementswere taken. The only

exceptionwasfor the DMI methodwherethe identificationwascarriedout during

the transientand then the updatedmodel was usedin the optimisationroutine to

updatethe set-points.

When using the dynamic model identification method to approximatethe real

systemoutput derivativeswith respectto the set-points.a pseudorandombinary

sequence(PRBS)of magnitude±0.5K was neededto excite the systemin order

to get an accurateenoughmodel, for which the identifier parameterswere tuned
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as given in Table4.1. The tuning of theseparameterspurely dependson practical

Issues.

Three phases In the DMI procedure can be distinguished: dynamic model

identification (or updating), steady-statemodel updating and model-based

optimisation. The model based optimisation is incorporated in the ISOPE

algorithm as explainedin Chapter2. The identification is performedduring the

transientusing input/output data gainedfrom the realprocess(measurements).

When found the steady-statemodel is extractedand thederivative information is

thereforefound andusedin the model-basedoptimisationprocedure.

The relaxationgain matrix choice is dependenton the methodbeing used. The

value of the gain matrix was practicallychosento suit thealgorithm convergence

andstability.

The final convergedresultsof the simulationsfor the varioustechniquesusingthis

exampleareshownin Tables(4.2) to (4.3) andFigures(4-3) to (4-9).

We notice that all the methodsconvergeto the correct processoptimum point

given by ｾ］ＳＱＲ K andT2=310.2K "'" with the optimum objective function value

of -0.0725.This is to be expected,as all techniquessatisfy the necessarysystem

optimality conditions. Table (4.3) shows that the methodusing dynamic model

identification scheme converges faster than the other methods used in the

simulations. It is also seen from the sametable, that the method using finite

differencesto estimatethe derivativestakesmuchmoretime to converge(in terms

of numberof set-pointchanges),while it only needsa few iterations.This is in

total agreementwith what was stated in the previous sections,becausein the

dynamic model method the derivativesare estimatedduring the transientusing

real systemmeasurements,while the original methodusing finite differencesis

steady-stateand needsn times more thenumberof iteration (n being the number

of set-points);which could be prohibitive for large systemswith a largenumberof

inputsand outputsand also forslow processes.
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Figures(4-3) to (4-7) show the trajectories taken by the manipulated variables

(set-points)and process outputs.It is seen how the changes in the set-points affect

the measuredoutputsand how they derivetheir values from the initial steady-state

condition given byCa2(0)=0. 041361[lana/1m3
] , C

b2(0)=0.058638
[lana/1m3 ] to

the final convergedsolution(Ca2=0.0275[lana/1m3
] , C

b2=0.0725
[lana/1m3 ] ).

Figure (4-8) illustrates the resultsof noise-contaminatedcase simulations for the

dynamicmodel identificationmethod. The results show that this method is noise-

insensitivebecauseeven in thepresenceof noise the final optimum solution was

reached, yet itmadethe algorithmslower taking more time to converge than in

thenoise-freecase.

Table (4.1): Tuning theidentifier parameters.

Linearmodel

-------_._--------------------

Lengthof datawindow

Model orders

Identifier samplingtime

Relaxationgain

n =2n =5n =ld=l
a 'b 'c '

K =0.03/

N =60d

d = 1

K =0.1/

Table (4.2): ISOPE algorithm with the different estimation techniques.

• -'0_" ｟ Ｇ Ｎ ｾ --
Dual control Lineardynamic NonlinearFDAM Broydon's

method method model d}1lamic

model

Functionvalue -0.0725 -0.0725 -0.0725 -0.0725 -0.0725

Numberof Set- 22 12 14 10 12

point changes
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4.6.2. Resultsand Discussion

Techniquesfor estimationof real processderivativesto be used within the ISOPE

algorithmhavebeenpresentedand applied on a cascade processconsistingof two

ContinuousStirredTank Reactors.

All methods,due to thesatisfactionof optimality conditions, do achieve the real

processoptimum providedthey can beimplementedin a stable manner after a

suitablechoice of relaxationgains. The speedof convergenceand thesensitivity

to noise are thecriteriafor algorithmselection.

It is well documentedthat the FDAM is not a good choice in the caseof high

order,slow andnoisyprocesses. Each time a process derivative is requested, a set-

point perturbationneeds to be applied and ameasurementtime must to be

observedto allow the process to settle before the derivatives are calculated.

Additional difficulties are observed when noise is present on the output

measurement.This set-pointperturbation,and thesubsequentmeasurementtime,

is where themajority of time is spent in the algorithm so this is a major

considerationin assessingthe algorithm. As can be seen from the simulationof

the CSTR'ssystem (Table 4.2), the FDAM, approaches twice the numberof set-

point changesof the various following methods and would seem not to be the

perfectchoiceof algorithm.

The dual control methodtakes 14set-pointchanges (Table 4.2) to achieve the

optimumin the CSTR'ssimulation. This is still more than the restof the methods

but the ability of the algorithm to estimate the derivatives without any excess in

the set-pointchangesmakes it a good choice. However, theapplicability of this

algorithm is quite limited due to the needof an additional inequality constraintin

orderto obtaina smoothtrajectoryof successiveset-points in their space, which is

not alwaysreachable(Brdy's and Tatjewski, 1994).
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Both Broydon's method and DMI with non-linear model take 12 set-point

changes in the simulation. Even though they converge to the correct optimum, the

first methodencountereda major drawback near the optimum (equation 4.15). as

it could lead to an infinite estimateof the derivative matrix. While the second

method, which is the DMI withnon-linearmodel proved to be suitable only for

low-order non-linearsystems. TIlls is contrary to DMI with the linear dynamic

model, which has a wideapplicabilityrange.

The most suitable used methodin this example is DMI with the linear dynamic

model as only 10 set-point changes are needed. However, this is likely to be

because the process performance has a fairly smooth nature.In other situations.

where theprocessperformance is more erratic, DMI with the non-linear model

may be more appropriate. The DMI with the linear model method is seen to be the

fastest to converge and moreover noise insensitive as the least square estimator

usedin the algorithmplays a filter role. However, the huge amountof data needed

for the estimationand the poor model estimates it gives at the beginningof the

identificationare its major drawbacks.

Table (4.3): Derivatives Comparison table.

Estimatesof the Derivativesat the
optimum

. --- ------ Ｍ ｾ Ｍ Ｍ ﾭ- - ---- Ｍ Ｍ ｾ Ｍ Ｍ ｾ

[-0.0094 -0.0071
0.0094 0.0071]

[0.0081 0.0086
-0.0081 -0.0089]

[-0.0007 -0.0008
0.0007 0.0008]

[-0.0096 0.0071
0.0096 -0.0071]

[-0.0092 -0.0070
0.0092 0.0070]

Optimumset-points

ISOPEwith Broydon'smethod

ISOPEwith Nonlineardynamic
mooel

ISOPEwith lineardynamic
model

ISOPEwith FDAM

ISOPEwith dual control
method

Method

ｾ ］ Ｓ Ｑ Ｒ K

T2=310.2K

ｾ ］ Ｓ Ｑ Ｒ K

T2=310.2K

T]=312 K

1;=310.2K

ｾ］ＳＱＲ K

T:J=310.2K

ｾ］ＳＱＲ K

T1=310.2K---" Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｟ Ｎ ｟ Ｍ ｟ Ｎ ｟ Ｍ Ｍ Ｍ ｾ Ｍ ｟ Ｎ ---------
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4.7 Summary

In this chapter, algorithmsfor estimatingreal process derivatives were presented.

Thesederivativesare needed by the ISOPE algorithm inorderto satisfy necessary

optimality conditions. The techniquespresented here are well known and mostof

them have beensuccessfullyused in real situations.Comparisonsimulations were

carried out on a TwoContinuousStirred Tank Reactors system connected in

cascade. Resultsshowed the superiority of the dynamic modelidentification

method.

In the next chapter, a neural network method for estimating the process

derivativesto be usedin the ISOPE algorithm will be presented.
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CHAPTERS

A NEURAL NETWORKS APPROACH

5.1 INTRODUCTION

Neural Networks representan emergingtechnologyrooted in manydisciplines.

They are endowed with some unique attributes: universal approximation (of

functions),the ability to learnfrom and adapt to theirenvironment,and the ability

to invoke weak assumptions about the underlying physical phenomena

responsiblefor the generationof the input data.

This ability of learning from the environment and producing accurate

approximationof functionsmake neuralnetworksan effective tool(Narendraand

Parthasarathy,1990) to be used inidentification and control of nonlinear

dynamical systems.In fact, the developmentand designof a neural network

which can learn and quickly adaptfrom its environment,the physical system.is

shownin this chapterto give good results when usedwithin the ISOPEalgorithm

in terms of convergencepropertiesinvolving such factors as: speed,precision.

stability. etc.

This chapterpresentsan attempt to use Artificial Neural Networks (ANN) to

estimate real processderivatives to be usedwithin the ISOPE algorithm. A

generalbut brief introductionto Neuralnetworksis given first, with all the related

detailsandbackgroundrelatedto our work. Then, two typesof ANN architectures

namelyMultilayer and recurrentnetworksaredescribedtogetherwith static back-

propagationalgorithm used to train thenetwork and adjust itsparameters.The

82



performanceof the neuralnetwork schemepresentedin this chapter is tested

undersimulationin two case studiesemployingthe systemspresentedin chapter

3. The resultsare comparedwith those obtained by the FDAM methoddescribed

in the previouschapter.

Artificial neuralnetworks(ANNs) can beconsideredascollectionsof very simple

"computationalunits" which can take a numerical input andtransformit into an

output. It resemblesthe brain in two aspects:

1. Knowledgeis acquiredby thenetworkthrougha learning process.

2. Interneuronconnectionstrengths known as synaptic weights are used to store

the knowledge.

The procedureused toperformthe learning process is called alearningalgorithm,

the function of which is to modify the synaptic weightsof the network in an

orderly fashionso as to attain a desired design objective (Haykin, 1995).

The principle of supervisedlearning in ANNs is that the ANNs take numerical

inputs (the training data) and transform them into "desired"(known,

predetermined)outputs. The input and output nodes may beconnectedto the

"externalworld" and to other nodes within the network. The way in which each

node transforms its input depends on the so-called "connection weights" and

"bias" of the node, which are modifiable. The outputof each node to another node

or theexternalworld then depends on both its weight strength and bias and on the

weighted sum of all its inputs, which are thentransformedby a normally

nonlinear, weighting function referred to as itsactivation function. The great

power of neural networksstems from the fact that it is possible to "train" them.

Training is achievedby continually presentingthe networks with the "known"

inputs andoutputsand modifying the connectionweights between the individual

nodes and thebiases, typically according to some kindof back-propagation

algorithm (Rumelhartet al., 1986), until the output nodesof the network match

the desired outputs to a stated degreeof accuracy. If the outputs from the
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previously unknown inputs are accurate, thetrained ANN IS said to be

generalised.

Neural networks are characterizedby two major capabilities.The first is their

parallel distribution structure and the second, is their ability to learn and

generalize.Thesetwo capabilitiesmake neuralnetworksan attractive tool that can

find applicationin manydisciplines.

The useof neuralnetworksoffers the following usefulpropertiesandcapabilities:

1. Nonlinearity: As mostphysicalactivitieshappeningaround us are mainly

nonlinear,neuralnetworksprovidea useful tool in dealing with suchphenomena

becauseof its nonlinearitycapabilities.

2. Input-Outputmapping: Similar to the nonparametricstatistical inference.

neural networkshave thecapability of performing input-output mappingsusing

the so-calledsupervisedlearning. In fact, this involves training thenetwork for a

givensetof datafor which the synapticweights aremodifiedaccordinglyusing an

appropriateoptimisationcriterion.

3. Adaptivity: The ability to adapt to any changes in thesurrounding

environmentaddedto the naturalarchitectureof a neural network make it an ideal

tool in adaptive pattern classification and adaptive control. Indeed,whenever

changesoccur in the system or itsenvironment,the network is retrainedfor the

new setof data, and the synaptic weights areadaptedto their new values.

4. Uniformity of Analysisand Design: Neuralnetworksenjoy universalityas

information processors.This featuremanifestsitself in different ways (Haykin,

1994):

a. Neurons,in one form or another,representan ingredientcommon

to all neural networks.

b. This commonalitymakes it possible to sharetheoriesand learning

algorithmsin differentapplicationsof neural networks.

c. Modular networkscan be builtthrough a seamlessintegrationof

modules,
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Many other propertiesand capabilitiescan be offered by neural networks. For

further details,seeHaykin (1995).

5.1.1 History and developmentof Neural Networks

The first step toward artificial neural networks came in 1943 when Warren

McCulloch, a neurophysiologist,and a young mathematician,Walter Pitts, wrote

a paper(McCulloch and Pitts, 1943)on how neuronsmight work. They modelled

a simpleneuralnetworkwith electricalcircuits.

Donald Hebb (1949) reinforcedthis conceptof neuronsand how they work in his

book OrganizationofBehaviourpublishedin 1949. In the1950'smore research

was carriedout in the areaof artificial neuralnetworks.Indeed,after many failed

attempts,researchersfinally succeededin simulating a neural network. In 1956

Uttley (1956) demonstratedthat a neural network with modifiable synapsesmay

learn to classify simple setsof binary patternsinto correspondingclasses.In the

sameyear, the DartmouthSummerResearchProjecton Artificial Intelligence(AI,

as it is known in industry) provideda boost to both AI and neural networks,by

stimulating researchin both the intelligent side, AI, and themuch lower level

neuralprocessingpartof the brain.

The following years saw the introduction of a new approachto the pattern

recognition problem by Rosenblatt in his work on the perceptron. In the

beginning of the sixties, Widrow and Hoff (1960) introduced the least mean

square (LMS) algorithm and used it to develop their ADALINE (ADAptive

LINear Element) and MADALINE (Multiple ADALINE) models (Widrow,

1962). MADALINE was the first neural network to be used in a real world

problem, and is still in commercial use. An important disadvantagewas

encounteredin the designof multilayerperceptronswhich is the credit assignment

problem. This problem was first observed by Minsky (1961). However. the

solutionsto this problemdid not emergeuntil the 1980's.The reasonsbehindthis

lag of over 10 years are multiple, but they are mainlv causedhy the halt of
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funding and the more or less dampeningof interest in neural networks in the

1970s,wheremanyresearchersdesertedthe field. In 1982 several eventscauseda

renewedinterest. John Hopfield made atransformationin the field of neural

networks by introducing a new approachto understandingthe computation

performed by recurrent neural networkswith symmetric synaptic connections

(Hopfield, 1982). At the same time theUS-Japanjoint conferenceon cooperative/

competitiveneural networksresultedin a flowing of funding once again. 1986

saw thepublicationof a two volume book by Rumelhartand McClelland. The

book has madeconsiderablecontribution in the useof the back propagation

learningalgorithmwhich is consideredto be the mostpopularlearningalgorithm

for the training of multilayer perceptrons.In the 1990s, neuralnetworksattracted

more interest from researchersin different disciplines becauseof its versatile

applicationand use. Today, neuralnetworksaredevelopingfast and theirpromise

seemsto be verybright as natureitself is the proof that such things do work. A

full and detailedreview of neural networksand itsapplicationscan be found in

Haykin, (1994).

5.2 MUL TIL AYER AND RECURRENT NETWORKS

In general, four different classes of neural networks architecturescan be

distinguished(Haykin, 1994):

1. Single layerFeedforwardnetworks

2. Multilayer Feedforwardnetworks

3. RecurrentNetworks

4. Lattice Structures

The difference betweeneach typeof architectureis the manner in which the

neuronsof the neural network are structuredand organisedwithin the actual

network. Also, we have tomentionthat thearchitectureof an ANN is intimately

linked with thelearningalgorithmused to train the network(Haykin. 1994).
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In this section, two different classes of architecturesnamely the multilayer. "'

feedforward and recurrent networks are described. These twoclasses have

receivedconsiderableattention in the areaof ANN. Multilayer networks have

provedto besuccessfulin patternrecognition,while recurrentnetworkshave been

usedin associativememoriesas well as for thesolutionof optimisationproblems.

Theoretically, multilayer networks representstatic nonlinear maps of systems.

However, recurrent networks are representedby nonlinear dynamic feedback

systems(NarendraandParthasarathy,1990).

5.2.1.Multilayer Feedforwardnetworks

One distinguished class of neural networks architecture is the multilayer

feedforwardnetwork (Figure 5-1). It is characterisedby the presenceof one or

more hidden layers; each layer can have one or morehidden neurons. The

function of the hiddenneurons is to intervenebetweenthe external input and the

network output. By addingone or morehiddenlayers, thenetwork is enabledto

extract higher-order statistics, for the network acquires a global perspective

despiteits local connectivityby virtue of the extrasetof synapticconnectionsand

the extradimensionof neural interactions.The neuralnetworkpresentedin Figure

(5-1) is said to befully connectedas every node in each layer isconnectedto

every othernode in theadjacentforward layer. However,if someof the synaptic

weights are missing, the network is said to bepartially connected.A simplified

block diagramrepresentationof the multilayer neural network of Figure (5-1) is

given in Figure (5-2), where each layerof the network is representedby the

following:

Ni[u] = f[Wiu] (5.1)

The matricesWi·s areweightingmatricestuned asdescribedin section5.3, r is a

diagonalnonlinear operatorreferredto as theactivationfunction.

In this case theinput/output mapping of the multilayer network presented10

Figure(5-2) is given by:
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The choiceof the activation function r dependson the user andsometimesof the

type of the application (Haykin, 1994). The most commonly used activation

function IS the sigmoidal function which the elements yare of the

form (Figure5-3):

(5.3)

One reasonthat makesANN 's with feed-forwardarchitectureso attractive is that

it hasbeenshownmathematically(Hornik et aI., 1990;White, 1990) that a neural

network consistingof only one hidden layer, with an arbitrarily large number of

nodes, can learn any arbitrary, and hence nonlinear, continuous function to an

arbitrary degree of accuracy. In addition, ANNs are widely considered to be

relatively robustto noisy data(Haykin, 1994).
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Figure (5-2): Bloc diagramrepresentationof a two layer network.
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5.2.2. Recurrent Networks

A recurrentneuralnetworkdistinguishesitself from a feedforwardneural network

in that it has at leastone feedbackloop. For example,a recurrentnetwork may

consistof a single layer of neuronswith eachneuron feeding its output signal

backto the inputsof all the otherneurons,as illustratedin the architecturalgraph

of Figure (5-4). In the structuredepictedin this Figure there are noself-feedback

loops in the network; self-feedbackrefers to a situation where theoutput of a

neuronis fed backto its own input. Therecurrentnetwork illustratedin Figure (5-

4) also has nohiddenneurons.Otherstructuresof recurrentnetworkswith hidden

neuronsmay also exist.Figure (5-5) shows anexampleof a networkwith hidden

neurons.The presenceof feedbackloops in arecurrentnetwork structurehas a

profoundimpacton the learningcapabilityof the networkand on itsperformance

(Haykin, 1994). Moreover, the feedback loops involve the use of particular

branchescomposedof unit-delay elements(denotedby z-J), which result in a

nonlineardynamicalbehaviourby virtue of the nonlinearnature of the neurons.

The most commonrecurrentnetworkarchitectureis the Hopfield network shown

in the examplesystemsin Figures (5-4) and (5-6). Oneversion of the network

suggestedby Hopfield consistsof a singlelayer networkNJ, includedin feedback

configuration,with a time delay(Figure5-6). It can bedescribedby the following

discretetime representation(NarendraandParthasarathy,1990):

x(k +1) =N)[x(k)], x(O) =xo (5.4)

In the continuoustime case, thedynamic systemin the feedbackpath (z-J) has a

diagonal transfermatrix with identical elementsof the form:lI(s + a) along the

diagonal.The systemcan then berepresentedby the following equation:

x =-ax + N) [x] + I

90

(5.5)



where xCt) E ｾｈ ｮ is the state of the system at time t, and the constantvector

I E mn is the input.

Inputs
Outputs

Figure (5-5): Recurrent networkwith hiddenneurons.

w r

Figure (5-6): Bloc diagramrepresentationof a typical Hopfield
network.
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5.3 THE BACK PROPAGATION ALGORITHM

The 'Back PropagationAlgorithm' or as it isreferredto in someliterature"The

Error Back-PropagationAlgorithm", consistsof two passesthroughthe different

layersof the network(Haykin, 1994): aforward pass and abackwardpass. In the

forward pass,an activity pattern(input vector) is applied to the sensory nodesof

the network, and itseffect propagatesthroughit, layer by layer. Finally. a setof

outputsis producedas the actualresponseof the network. During the forward pass

the synapticweights of the network are all fixed. During thebackwardpass, on

the otherhand, thesynapticweightsare alladjustedin accordancewith the error-

correctionrule. Specifically,the actualresponseof the networkis subtractedfrom

a desired target responseto producean error signal. This error signal is then

propagatedbackwardthrough the network,againstthe direction of the synaptic

connections.The synaptic weights are adjustedas so as to make the actual

responseof the networkmovecloserto the desired response.

The correspondingarchitecturefor back propagationlearning algorithm of the

architecturelayoutof the multilayernetworkof Figure (5-1) ispresentedin Figure

(5-7). The toppart of the Figureaccountsfor the forward phase where the layer

index I extendsfrom the input layer (l= 0) to theoutputlayer (l = L). In Figure (5-

7) we haveL = 2, whereL is referredto as the depthof the network. The lower

part of the Figure accountsfor the backwardphase, which isreferred to as a

sensitivity network for I computingthe local gradientsin the back-propagation

algorithm.

While the network of Figure (5-1) is merely anarchitecturallayout of the back-

propagationalgorithm, it is found to havesubstantialadvantagesin dynamic

situationswhere the algorithmic representationbecomescumbersome(Narendra

and Parthasarathy.1990).
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Figure (5-7): Architectureof two-layerfeedforwardnetworkand
its associatedback-propagationsignalerror.
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It has to be mentionedthat the pattern-by-patternupdating of weights is the

preferredmethodfor on-line implementationof the back-propagationalgorithm.

For this mode of operation, the algorithm cycles through the training data

{[x(n),d(n)]; n = 1,2, ..., N} asfollows (Haykin, 1994).

1. Initialisation. Start with a reasonablenetwork configuration, and set all the

synaptic weights and thresholdlevels of the network to small random numbers

thatareuniformly distributed.

2. Presentationsof Training Examples.Present the network with an epoch of

training examples.For eachexamplein the set orderedin somefashion, perform

the following sequenceof forward andbackwardcomputationsunderpoints3 and

4, respectively.

3. Forward Computation. Let a training example in the epoch be denoted

by[x(n),d(n)] , with the input vector x(n) applied to the input layer of sensory

nodes and the desired responsevector den) presentedto the output layer of

computationnodes.Computethe activationpotentialsand function signalsof the

network by proceedingforward through the network, layerby layer. The net

-(I)

internal activitylevel Vj (n) for neuronjin layer I is:

-(/) p

v. (n) = L wj/(n)v;l-l\n)
i=O

(5.6)

where v;'-l)(n) is the function signal of neuron i in the previous layer 1-1 at

iterationnand wj;(n) is the synapticweight ofneuronjin layer I that is fed from

-(/-I)

neuron i in layer 1-1. For i = 0, we have VQ (n) =-land ｷ ｪ ｾ Ｈ ｮ Ｉ =B.y)(n).where

e(l)(n) is the threshold applied to neuron j in layer I. Assuming the use of a
.I

logistic function for the sigmoidalnonlinearity,the function of neuronj in layer I

is:
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(5.7)
1VU>Cn) =-----:-::----

J _(I)

1+ exp(- v j (n))

If neuron} is in the firsthiddenlayer (i.e.,1=1), set

(5.8)

where u/n) is ther elementof the inputvector u(n). If neuron} is in the output

layer (i.e., I=L), set

v(L>Cn) =y.(n)
.I J (5.9)

and theerrorsignal is computedas:

(5.10)

where dj(n) is ther elementof the desiredresponsevector den) obtainedfrom

the real plant.

4. Backward computation. Compute the 8's (i.e., the local gradients)of the

networkby proceedingbackward,layer by layer:

for neuron} in outputlayerL

aj'>Cn) =vj/) (n) [1- vy) (n) ] I ai'+I) (n)Wk:+I) (n)
k

for neuron}in hiddenlayer1

Thus the adjustmentof the synapticweightsof the network in layer 1 is obtained

by applyingthe following:

(5.11)

where '7 is the learning-rateparameterand u is themomentumconstant.
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5. Iteration. Iterate the computation by presenting new epochs of trairung

examplesto the networkuntil the freeparametersof the networkstabilisetheir

valuesandthe averagesquarederror C;av computedover theentiretraining set

is at a minimum or acceptablysmall value. The order of presentationof

training examplesshouldbe randomisedfrom epochto epoch. Themomentum

and the learning-rateparameterare typically adjusted(and usually decreased)

asthe numberof training iterationsincreases.

5.4 THE CONTROLPROBLEMAND THE NEURAL

NETWORK SCHEME

As discussedin the precedingchapter,one of the problem areasof the ISOPE

algorithmis the requiredestimationof real processderivatives.

In this section, a method basedon neural networks for estimatingreal process

output derivatives with respect to the set-points for the general optimisation

problem of nonlinear processesis presented.The method is used within the

ISOPEalgorithmpresentedin chapter2.

5.4.1.TheOptimisationproblemandthe ISOPEalgorithm

Although many different process optimisation techniquesexist, they can be

classified into two generalcategories:direct searchand indirect or model-based

optimisation methods (Garcia and Morari, 1981). In the direct method,

measurementsare takendirectly from the realprocessas it is moving from one

operatingpoint to another,and asuitableoptimisationtechniqueis thenappliedto

optimisethe processperformanceobjectivefunction. In the indirect approach,the

optimisationis performedon amodelof the systeminsteadof the physicalsystem

itself, and whenfound the resultsareappliedto the realprocess.
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As describedin chapter2, the IntegratedSystem Optimisation and Parameter

Estimation (ISOPE) technique(Roberts, 1979) hassome special features from

both approaches:direct and model-based.It is basedon derivativescalculation

provided by real processmeasurementsto updatean unfaithful or deliberately

simplified model used in the model-basedoptimisation, thus reaching the real

optimum of the processin spite of model-reality differences. However. it is

establishednow that the needto evaluatereal processderivativesat eachiteration

by the ISOPE algorithm in order to satisfy necessaryoptimality conditions is

probablyits majordrawback.A neuralnetworksapproachhasbeendevelopedand

is presentedhere as an attempt to overcomethis need. Thetechniquereaches

successfulresultsin termsof estimatingreal processderivatives,which makesthe

ISOPEalgorithm,convergeto the exactoptimumpoint without having to wait to

settlefor steady-stateor applyingrepetitivedisturbanceson theset-points.

5.4.2.The Neural Networkscheme

The techniqueis basedon training a neural network to learn from thephysical

processitself. Oncethe training is finished, a steady-stateneuralnetwork model,

which imitates the static behaviourof the dynamical system, is reached.This

model is used to find the system outputs to a given set-points. In this case,

accurateenoughmodel outputsand their derivativesare availableto the ISOPE

algorithmandprohibitive waiting timesareavoidedas in thetraditionalway when

computingthe outputderivativeswith respectto the set-points.In the casewhere

systemparameterschange,the algorithm is set toadaptto it. In other words, the

algorithm will retrain the neural network for a suitable time, and provide an

accurateupdatedmodelof the modified systemasillustratedin Figure(5-8).

It has to bementionedthat during training, switches k2 and k, are closed, k, is

open and k; is in position 1. This enablesthe algorithm to collect input/output

data candidatesrequired for the training in order to generatethe identification

neuralnetworkmodel.The statesof theseswitchesare reversedotherwise.
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Figure(5-8): NeuralNetworksschemeusedwithin the ISOPEalgorithm.

5.4.3. Identification

As mentionedearlier, the ability of learningfrom the environmentand producing

accurate approximation of input-output mappings of systems make neural

networksa prime candidatefor use in dynamic modelsfor the representationof

non linear plants. Therefore,the identification problem consistsof setting up a

suitably parameterisednetwork model and adjustingthe parametersof the model

to optimise a performanceindex basedon the error betweenthe plant and the

identificationmodel outputs.Every neuralnetworkmodel is composedof a series

of weight vectors,which form what we call weight matrices.Thesematricesare

updatedeachtime the network is trained for anotherinput! output data sample

until no further improvementis hoped.Hence,the procedureconsistsin adjusting

the parametersof the neural network in the model using a suitable training

algorithm. In our case, we chose the back-propagationalgorithm presentedin

section 5.3 basedon the error betweenthe plant and the identification model

outputs.However,othertypesof model networksand training algorithmscan also

be used.The training of the network is performedonceonly. This takesplace

at the beginning of the optimisation procedure.Once a performancegoal is
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Figure(5-9): Flow chartdiagramrepresentationof the neural
networkscheme.
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reached,training stops, the model and itsparametersare saved to be

used In the optimisation procedure. In case one or moreof the svstern

parameterschange,the neuralnetwork model has to be retrained. In this case, a

suitabletime is givento thealgorithmto performidentificationandproducea new

model. Once training is finished, the modelparametersare updated. saved and

passedto the optimisation routine (Figure 5-9). In practice, to coveragainst

systemparameterchanges,retrainingmay becarriedout at periodic intervals.

5.5 SIMULATION CASE STUDIES

In order to evaluatethe performanceof the neuralnetwork schemepresentedin

this chapter,two setsof simulationswerecarriedout using the systemspresented

in chapter3. The first set uses a simple singleinput-single output non linear

system.This setof simulationswas used to assess the accuracy. andadaptability

of the neural network scheme. While thesecondset was carried out on a two

Continuous Stirred Tank Reactors (CSTR's) connectedin cascade, and was

employedwith the aim of demonstratingthe characteristicsof the same neural

network scheme on a higher scale, when incorporated within the ISOPE

algorithm. A comparisonis made betweenthis method and an older method

presentedin the previouschapter.

5.5.1.Casestudy1

Considerthe single input-singleoutput non linear plant driven by thefollowing

input/outputrelationship:

y(k+l)= Y(:) +u\k)
1+ y (k)

where l' is theoutputand u is the input.
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A nonlinearfeedforwardbackpropagationnetworkmodel of the abovesystemis

createdin orderto imitatethe behaviourof the actualsystem.

This model has threenodesin the input layer, onehiddenlayer with five nodes,

and one output node. This choice of node numberswas entirely practical, and

dependedon which option resultedin the bestapproximationof the real system

behaviourby the identification model. Thestructureof the input vector to the

modelwasthereforechosento be:

X(k) = [u(k), u(k -1), y(k)] (5.13)

where u(k) and u(k -1) are thepresentand previousinputs to the realsystem

respectively, y(k) is the presentoutput of the real systemresulting from the

applicationof u(k) to its input.

At first, the network was trained for 10000 different input/outputdata samples

measuredfrom the real system. Theinput was arandominput whoseamplitude

was uniformly distributedin the interval [-2, 2]. This resultsin the neuralnetwork

model approximatesthe behaviourof this plant over this interval only (which is

enoughfor our application). This in tum results in the variation of y over the

interval [-10, 10]. After training, a modelof the systemis developed.The internal

architectureof this model is not known, however its behaviourfollows exactly

that of the realsystem.

The resultsof the simulationsfor various input signalsare shown in Figures(5-

10)to(5-12).

Figure (5-10) shows the trajectory taken by the real plant and neuralnetwork

identification model output signals when applied a sinusoidal function of the
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ｾ (k)' (2n k) . 2n .. .rorm: u =SIn - + sinf- k) In Its Input It is clear that the identification
10 25 .

model output follows exactly the realoutput signal, and that theerror difference

betweenthe two signalsis very small andnegligible.This showshow accuratethe

neuralnetworkmodelusedin approximatingthe behaviourof the realsystem.

In the casewhenthe input signalchanges,the modeloutputalsoadaptsto the new

setof dataand follows the realprocessoutput(Figure5-11). Theinput to the plant

d jd ificati d I . b . 2n 2nan 1 enu ication mo e wasgiven y: U(k)=sIn(-k)+sin(-k) for k ｾ 350
10 25

and u(k)=0.2sin(2n k) + 0.8sin(2n k) for k > 350. The functions y = flu) and
5 25

1\

y = N[u] are shownin figure (5-12). Again, thedifferencebetweenthe two output

signalscan not be distinguished,evenafter the input signal waschanged.This is

in total agreementwith the resultsfound inNarendraandParthasarathy,(1990).

A secondset of simulationsthis time employinga Radial BasisFunction(RBF)

network,hasbeenperformedon thesamesystem. Theresultsareshownin figures

(5-13) to (5-15). From the figures, it is clear that the model output signal

trajectory matchesthe real systemoutput signal trajectory with great precision.

Comparedto the results found with the back propagationnetwork, this type of

network gives more accurateapproximationof the systemmapping. This is to

show the fine ability of an RBF network to approximatenonlinearfunctions. In

fact, RBF networksare differentiatedfrom backpropagationnetworksby the fact

they learn much fasterespeciallyif the numberof input variablesis not too high

like in our case. However, the requirednumberof neuronsin the single hidden

layer increasesgeometrically with the number of the input variables. This

becomesprohibitive for systemswith a large numbersof input variables. RBF

networksare alsoknown to work best when manytraining vectorsare available.

which meanswhen more time is spentcollecting the input-outputcandidatesfor

training the network.
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5.5.2.Casestudy2

Thetwo CSTRsystemis describedin detail inchapter3. It has fouroutputswhich

are theconcentrationsin the two tanks:y. = (Cal'Chl'Ca2,Cb2f.Temperaturesin

the two tanks T; and T2 are theset-points.In our case study, we onlyconsidertwo

componentsfrom theoutputvector y., which are: Ca2and Ch2.

A feedforwardback propagationneural network with one hidden layer and six

outputneuronsor units was used insimulation.In a feedforwardnetwork, the first

layer has weights coming from the input. Each subsequentlayer has a weight

comingfrom thepreviouslayer. The last layer is thenetworkoutput.

In our case,a feedforwardbackpropagationnetworkwith one single hidden layer

was chosenbecausesucha structureis capableof accurateapproximationof an

arbitrary function and its derivatives (Hornik et aI., 1990) and forsimplicity

reasons.Other types of networks can be used toaccurately approximatethe

system'smapping. For instance, RBFnetworks are best candidatesfor this

purpose.

It has to bementionedthat thechoiceof numberof neurons in the singlehidden

layer dependstotally on the experimenter.The main factor to be taken into

accountis the numberof input andoutput samples, and thealgorithm behaviour

towardsthe different valuestested. The choiceadoptedaboveprovedto be more

suitablebecauseit producedthe best results among those many tested. In practice,

the algorithm can betestedwith different combinationsof layers insimulations

basedon robust modelsof the systemwhich is the usual step to becarried out

before any real implementationis performed.The optimum (best) choice is then

appliedon thephysicalsystemitself.
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The training of the networkwasperformedusing theback-propagationalgorithm,

Training takesplace only once (at thebeginning,unless thesystem'sparameter

change),when a suitableperformancegoal is reached,training is stopped, model

parametersareupdatedand thenpassedto the ISOPE algorithm.

At first, the network was trained for 100000different input/outputdata samples

measuredfrom the real system. Since the real system is a BIBO(BoundedInput

BoundedOutput) system,the training input set used to train the neuralnetwork

was chosento be arandominput in the interval [295, 320]. This is due to the fact

that we want to cover all the input interval range that the real systeminequality

constraintssatisfy. Theseare given by theset-pointsof temperaturecontrollers

upperand lower bounds: 300s T; < 312K, 300< t, S 312K.

After training, a model of the system is developed. The internalarchitectureof

this model is not known, but as with the first case study, itsbehaviourfollows that

of the real system.During the simulations,sufficient time was allowed for the

systemto settle down to a newsteady-stateconditionbeforemeasurementswere

takenor newset-pointswere applied.

The optimisationwas performedon a linearobjective function of the measured

variable C
hZ

and reflectsthe desireof maximisingthe amountof componentB in

tank2.

L(y, v) = -ChZ
(5.14)

As mentionedin the previous chapter, thisobjective function is linear of the

measuredvariable C
hZ

' but is anonlinearfunction of the manipulatedvariables

To. and Tz. This is due to thenonlinearityof the systemequations(chapter3).
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A SIMULINK model of the processwas createdto enableperiodic calls to the

ISOPEalgorithmsavedin a MATLAB file. The simulationswere startedfrom the

same starting point which is the initial steady-statecondition given by:

T; =307K andT2 =302K, which yields the following steady-stateoutputs:

Ca2=O.041361 [kmol/m
3

] and Cb2=O.058638[kmol/m3
]. The relaxation gain

matrix was chosento be: K =0.11. The choiceof the relaxationgain is crucial

and was adoptedafter a number of trials, and is the mostappropriateamong

severaltested.This gain allows the systemto remainstable bygeneratingsmall

but suitablechangesto the set-pointsas thesystemmovestowardsthe optimumas

quickly aspossible.

5.5.2.1Simulation results:

The resultsof the varioussimulationsappliedon this system areshownin Table

(5.1) and Figures(5-16) to (5-17).

In table (5.1), a comparisonof the final set-pointsand derivativematrix values is

given. The comparisonwas setbetweenthe neuralnetwork schemepresentedin

this chapterand theFinite DifferencesApproximationmethod(FDAM) presented

in chapter4 for approximatingprocessderivatives.It is clearthat the newmethod

basedon neural network model performsa good estimationof the real process

derivatives;moreover, it is fast and does notneeda waiting period for settling

down neither it needs major disturbanceson the real system inputs. This is

demonstratedby the small number of set-point changesthe neural network

method takesto convergecomparedto that of the FDAM. It is known that the

FDAM take at least(n+ 1) times set-pointchangesmore as itattemptsto compute

the processderivatives(n beingthe numberof set-points).

Figure (5-16) showsthe trajectorytakenby the realsystemoutputsand set-points.

while attempting to find the optimum operating point when using the Finite

DifferencesApproxinlation method (FDAM) (chapter4) to computethe output
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derivativematrix with respectto the set-points.From the figure, we see that time

is mostly consumedwhen the derivatives are computed by applying small

perturbations and waiting for the system to settle down before taking

measurements.Figure (5-17) shows the trajectories taken by the real system

outputs, identification model outputs and set-points. Unmistakably the

identificationmodeloutputsfollow exactlythoseof the physicalsystemwith a big

precision driving it from the initial steady-state position given bv

Ca2(0)=0.04136[kmol/m3
] , Ch2(0)=0.05864[kmol/m3

] to the final converged

solution (Ca2=0.0275 [kmol/m3
], Ch2=0.0725 [kmol/m3

] ). It is clear that in this

case,time is not wastedwaiting for the systemto settle down for asteady-state

position to compute the derivative matrix as this latter is found using the

identification (neural network) model instead. This modelprovides the model

outputs that match the real processoutputs for a given set-pointas well as an

approximationof the realprocessderivatives.This leads to theoptimumoperating

point beingreachedquickly without applyingany perturbationson the system.

It has to besaid that for large scalesystems,the training takes much more time.

This is due to the fact thatalmost all the situations that the system can be

subjectedto have to beconsidered.For instance,in caseof no parameterchange

in the system, we can say that thealgorithm performs well and is more

advantageousthan using earlier methodslike the FDAM. as it allows us to gain

the time taken to computethe real processderivativeswith respectto the set-

points which results in a faster convergence.It also provides an accurate

estimationof the processoutputsif the training was performedwell. Moreover. it

avoids applying unnecessaryperturbationsto the actual system when on-line

optimisation(lSOPE)is performed.
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Table(5.1): DerivativesComparisontable.

ESTIMATES OF NUMBER OF SET-
METHOD OPTIMUM THE POINTSCHANGES

SET-POINTS DERIVATNESAT
THE OPTIMUM

ISOPEwith FDAM T]=312 K [-0.0094 -0.0071 22

T]=310.2K 0.0094 0.0071]

ISOPEwith Neural ｾ ］ Ｓ Ｑ Ｒ K [-0.0094 -0.0071 7
Networkscheme T;=310.2K 0.0094 0.0071]
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Figure(5-16): Set-pointschangesand outputstrajectoriesfor the
FDAM method.
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Figure(5-17): Set-points changes and outputs trajectories for the
neural network scheme.

The simulation case studies presented in this chapter do not include the case

where the system wassubjectedto an additive noise or gross error. This issue is

addressedin chapter 7 where data reconciliation and gross error detection

techniqueswill be employed.

5.6 SUMMARY

A Neural Networktechniquefor estimationof real process output derivatives with

respectto the set-points for generalnonlinear systems to be used within the

ISOPE algorithm has been presented, implemented and applied under simulation

on two examplesof systems. The first system was a simple single input-single

outputnon linear plant, while the second was a cascade process consistingof two

ContinuousStirred Tank Reactors. The method converged to the correctoptimum
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point even when a change in the real processparametersoccurred. The only

drawbackof the methodencountersis that as the processparameterschange. the

algorithmneedssome time tocollect data andretrainthe neuralnetwork to adapt

to the new changes.In practice, to coveragainst system parameterchanges.

retrainingmay becarriedout atperiodic intervals.However, since thegenerated

neural network identification model is asteady-statemodel, waiting periods for

calculatingderivativesis avoided, hence, the ISOPE algorithmconvergesfaster.

Simulationsthat include noise contaminatedprocesses are treated in chapter 7

together with the data reconciliation and gross errordetection techniquesfor

detecting,locating,estimatingandeliminatingrandomand gross errors.
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CHAPTER6

DATA RECONCILIATION AND GROSSERROR

DETECTION

6.1 INTRODUCTION

Processdataand measurementsare the basis formonitoring, evaluatingprocess

performance,and for processmodels that are used tooptimise and control

processes.The reliability of measureddata is of great importance.However,

measurementsare usually subjectto randomerrors and/or gross errors, and also

not all variablesare availablefor measurementbecauseof cost considerationor

technical unfeasibility.The presenceof such errors causes theviolation of the

mass, energy and other physical constraintsof the process. Wheninformation

gainedfrom flawed measurementis used for stateestimationandprocesscontrol,

the stateof the systemis misrepresentedand theresulting control performance

may bepoor and can lead tosuboptimaland evenunsafeprocessoperation.The

objectiveof datareconciliationand gross errordetectiontechniquesis to correct

the measuredvariablesby removing both therandomand gross errors from the

dataset, and toestimatethe valuesof the unmeasuredvariables, so that we obtain

an estimateof the true stateof the plant. Hencereachingbetter results when

applied in optimisationand control. Inotherwords, using datareconciliationand

grosserrordetectionwithin the ISOPEalgorithmto remove errors frommeasured

variables,can improve the parameterestimation,and enhancethe quality of the

derivativeestimationresultingin moreefficient operationof the system.

In this chapter,static datareconciliationand gross errordetectionmethodsfor the

estimationof randomand gross errorsrespectivelyare presented.These are used

in casedatameasurementsarecorruptedwith random and/ or gross errors in order
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to detectand eliminatethem. The performanceof thesemethodsis demonstrated

in a simulation casestudy. The casestudy uses a twoContinuousStirred Tank

Reactors (CSTR) connectedin series system. This system was described in

chapter 3. In the simulations, biases and random errors were added to the

measurements,to investigatewhether static data reconciliation and grosserror

detectionare able to detect,estimateand eliminatethem. Comparisonsare made

betweensimulationresultswhenmeasurementsare affectedby noise and! or bias,

with and without data reconciliationand grosserror detection.Section6.5.4 of

this Chapterprovidesa discussionof the results,and Section6.6 summarisesit.

6.2 DATA RECONCILIATION

Data reconciliation, also called validation, allows state estimation and

measurementcorrectionproblemsto be addressedin a global way. The aimof

validation is to remove errors from available measurements,and to yield

consistentand completeestimatesof all the processstate variablesas well as

unmeasuredprocessparameters.Data reconciliation is basedon measurement

redundancy(Arora et al., 2003). Aredundantmeasurementis a measurement

which the value can be calculatedbasedon other measurements.There are two

types of measurementredundancy(Liebmanet al., 1992):spatial and temporal.

A measurementis said to be spatially redundantif there are more thanenough

datato completelydefinethe processmodel at anyinstantin time, in otherwords

the systemis overdetermined. Whereasa temporallyredundantmeasurementis

defined as ameasurementwhich past values are available and can beused for

estimationpurposes.Datareconciliationusesmeasurementredundancythat arise

from the factthat at leastsomeinformationaboutthe processis knownand relates

the measurementsto eachother (Liebmanet al., 1992).Theseare usedto correct

measurementsand convert them into accurateand reliable knowledge. As a

result the reconciledvaluesexhibit a lower variancecomparedto original raw

measurements:this allows processoperationcloserto limits (when this results in

improvedeconomy).

113



One main aspectof the data reconciliationproblem is incompletemeasurement

sets. Usually, not all process variables are available (or convenient) for

measurementbecauseof costconsiderationsor technicalunfeasibility. Therefore.

Coaptation (Mah et al., 1976),which is the processof estimatingthe valueof

some unmeasuredvariables through mass, energy and componentbalances,is

used.

In general, the data reconciliation problem IS stated as follows (Bagajewicz,

2003):

Given a set of measurementvaluesof a subset state variables,it is desiredto

obtain the bestestimators of these measuredstate variablesand as many

unmeasuredvariablesas possible.

6.2.1.Typesof errors

Raw processdatais subjectto two typesof errors,randomerrors and gross errors.

Grosserrors are causedby non-randomeventssuch asprocessleaks, biasesin

instrumentmeasurements,malfunctionof instruments,inadequateaccountingof

departuresfrom steady-stateoperationsand/or inaccurateprocessmodels. The

randomerrorscomefrom the randomnessof measurements,such aprocessnoise,

andtheyarenormallydistributed.

6.2.2. Measurementdataprocessing

Figure (6-1) illustrates the concept of the three basic steps forprocessing

measurementdata(Liebmanet al., 1992).

Step 1 concernsvariable classification. It embroils orgarusmgvariables into

specific categories.Multiple algorithmshave beendesignedto date to deal with

this issue(Stanleyand Mah, 1981, Crowe, 1986, and Mah, 1990).Variablesare

classified as observableor unobservableand redundantor undetermined.A

variable is said to beunobservableif it is possibleto make a feasiblechange

(without violating the conservationconstraints) for a variable without being

detected bv the instruments. In other words, ameasuredvariable is always
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observable,but an unmeasuredvariablemayormay not beobservable(Figure 6-

2). The testfor redundancyis asstatedabove.

The secondstepconcernsgrosserror detectionand identification. In this step. any

grosserror is detected,identified, its valueestimatedand subsequentlyeliminated.

Many grosserrordetectiontechniquesexistandhavebeendevelopedto date. This

subjectwill be addressedin detail in section6.3.

The third and final step is the coaptationand datareconciliationstep which is as

described earlier. The mathematical formulation of the steady-state data

reconciliationproblemis given in section6.2.6.

Measurements Model

Undeterminable
Variable

Classification

Determinable

GrossError
Detectionand
Identification

Coaptation
andData

Reconciliation

"
Estimates

Figure (6-1): Threestepsfor processingmeasurementdata
(Liebmanet al., 1992).
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Variables

I

Measured Unmeasured

Model

Redundant Not redundant Observable Unobservable

Figure 6-2: Variableclassification

The commonassumptionsunderlyingsteady-statedatareconciliationmethodsand

softwareimplementationsare asfollows (Kim et al., 1997):

1. A stationaryprocess:The systemis at steady-state.

2. Measurementerror is Gaussianwith zero meanvalue, and known variances

(usuallydiagonalcovarianceis assumed).This signifiesthat the measurements

are not affectedby any grosserror.

6.2.3.History

Datareconciliationhasbeenusedfor severalyearsasmeansof obtainingaccurate

and reliable data in processplants.The earliestwork reportedin the literature is

probablythat of Kuehn and Davison(1961). The authorspresenteda formulation

of the datareconciliationproblemand amethodbasedon LagrangeMultipliers in

orderto solvethe steady-statedatareconciliationproblem.In dynamiccases.Gelb

(1974) used Kalman Filtering successfullyto recursively smooth measurement

dataand estimateparan1eters.However.both concepts(steady-stateand dynamic)
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were developedfor linear systems only. Therefore,modificationshad to be made

in order to handlenonlinearsystems.Knepperand Gorman (1980)proposeda

method basedon successivelinearisationof the system'snonlinear equations

(constraints).The methodwas based on the applicationof the analytical solution

for the linearly constraineddata reconciliationproblem. In acomparisonstudy,

Jang et al. (1986) came to aconclusionthat better results in termsof response to

changesin parametersand robustnessin the presenceof modelling errors and

strong nonlinearitiescan be achieved when nonlinearprogrammingis used. So

much so,LiebmanandEdgar(1988) illustratedthat nonlinearprogramminggives

improvedreconciliationestimatescomparedto successive linearisation. Crowe et

al. (1983) proposeda method based on matrixprojection to reconcile process

flows. In this method, a Chi-square test based on the inverseof the reduced

Hessianwas used. Thismethodwas later reviewed by Crowe (1986).Narasimhan

and Mah (1987) introducedtheir GeneralisedLikelihood Ratio (GLR) method for

grosserror detection.This methodbased on the likelihood ratio statistical test is

capableof detecting, identifying, estimatingand eliminating a wide varietyof

gross errors. Also, a strategy for identifying multiple gross errors namely the

Serial Compensationstrategy was proposed in the same paper. Based on the Chi-

square test, a linearcombinationtechnique that identifies equivalent gross errors

was derivedby Rollins et al. (1996). A reviewof important results for gross error

detectionis availablein Crowe (1996), forsteady-statesystems and Albuquerque

and Kramer (1995) for dynamic systems. Based on a bivariatedistribution

function constructedusing themaximum likelihood principle, Tjoa and Biegler

(1 991) presenteda method for combined data reconciliation and gross error

detectionappliedto steady-stateprocesses.

One of the problemsresearcherswere faced with is the detectionof the steady-

state. The fact thatprocessesare never in a steady-state, which is theassumption

that all datareconciliationalgorithmsare based on, means not only random errors

but alsoprocessvariationsare averaged with goodmeasurements.This issue was

addressedin many publications(Narasimhan, 1984, Holly et al., 1989, and Abu-

el-zeetet al., 2000).
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Most recently,NarasimhanandJordache(2000)publisheda book, which provides

a systematicand comprehensivetreatmentof datareconciliationand grosserror

detectiontechniques.

The literature is rich with excellent review papers:Mah (1982); Tamhaneand

Mah (1985);Mah (1990);Madron(1992);andCrowe(1996).

6.2.4.Benefits

The benefitsderivedfrom datareconciliationin chemicalandprocessindustryare

many.They include(Arora et al., 2003):

• Improvementof measurementlayout.

• Fewerroutineanalyses.

• Reducedfrequencyof sensorcalibration (only faulty sensorsneed to be

calibrated).

• Removalof systematicmeasurementerrors.

• Systematicimprovementof processdata.

• A clearpictureof plantoperatingcondition.

• Reducedmeasurementnoisefor key variables.

Moreover, monitoring through data reconciliation leads to early detection of

sensordeviation and equipmentperformancedegradation,actual plant balances

for accountingand performancefollow-up, safe operationcloser to the process

limits and improvedquality andperformanceat theprocesslevel.

6.2.5.Recentdevelopmentsand software packages

Peopleboth from academiaand industry, are being attractedto the areaof data

reconciliation. Hundredsof articles have beenpublished,few books have been

wri tten and a coupleof industrial softwarepackagesexist at the presentmoment

(Bagajewicz,2003).

Recentdevelopmentsin the field aim atcombining online data acquisitionwith

data reconciliation, where reconciled data are displayed in control rooms in
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parallelwith raw measurements.Departure betweenreconciled andmeasureddata

can trigger alarmsand analysisof time variation of those corrections can draw

attentionto drifting sensorsthat needrecalibration(Arora et al., 2003). Amongst

the softwarepackagesdevelopedto date, we note: PRECISE, fromOk-Solutions,

VALI, which is a datareconciliationand datavalidationsoftware available from

BELSIM s.a, we also note RAGE, which is a software for datareconciliationand

gross error detectiondevelopedby the ChemicalEngineeringDepartment(lIT

Madras).

The next subsectionpresentsthe mathematicalstructureof the steady-state data

reconciliationproblem.A comprehensivecase study that illustrates the useof this

structureis providedin Section6.5. The case study also motivates the treatmentof

grosserrorsusinggross error detection techniques, and uses the two CSTR system

presentedin chapter3.

6.2.6. Mathematicalstructureof thedatareconciliationproblem

The underlyingidea in DataReconciliationis to formulate the process model as a

set of constraints.Here, this will involve mass and energy balance and some

constitutive equations. All measurementsare corrected in such a way that

reconciledvalues do not violate the constraints. Corrections are minimised in the

least-squaressense, and themeasurementaccuracy is taken into account by using

the measurementvariance-covariancematrix as a weight for themeasurement

corrections.

The datareconciliationproblem is formulated from data collected at sampling

instantsi, If we assume these data sets to beindependentof each other, and that

no grosserror is present, and the process is at steady-state, themeasurement

vector(YIII) can be written as:

Y - V +&
III - . true
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where Ytrue is the vector of the true values of the variables. e is a vector of

randommeasurementerrors.Theseerrorsare assumedto be normally distributed

with zeromean,anda covariancematrix V.

The generaldatareconciliationproblemcan be statedas thefollowing nonlinear

programming(NLP) problem:

Min F(ym, Ytrue)
Ytrue

Subjectto: h(ytrue) = 0
(6.2)

where F(Ym' Ytrue) is some objective function that dependson a difference

betweenthe measurementsandtheir reconciledvalues,and h is a setof algebraic

equality constraintequations.In (6.2), we assumethat all variablesare identified

with a particular data set and the problem is an errors in variables measured

(EVM) problem.On the otherhand,one canalso havemultiple measurementsof

eachvariable,suchas inproblemswith movinghorizons.

Problem (6.2) is usually formed with objective functions derived from the

maximumlikelihood (Arora et aI.,2003). Herea numberof specialisationscan be

made for data reconciliation. In particular, if we assumedata snapshotsi are

independentand all data have errors from similar sources,we can simplify the

error structure.For most applicationsthe objective function in (6.2) is simply a

WeightedLeast-Squares(WLS):

) _ ｾ ( _ )1' V-I ( _ )F(ym, Ytrue - 2 Ym Ytroe Ym Ytroe (6.3)

V, the variance-covariancematrix which eachelement ｾ ｪ is (Jj2 , is assumedto be

the samefor all datasets. Inaddition, if we assumethat the elementsof eachdata

vector are independentof each other, then the off diagonal elementsof the

variance-covariancematrix can beassumedto be zero. Inotherwords (6.3) can be

\vritten as:

120



Hencethe steady-statedatareconciliationproblem (6.2) can besimplified to:

min ｻｾＨｙ _ )T V-I ( )}
2 m Y true Y m - Y true

subject to:h(Ytrue) = 0

(6.4)

(6.5)

Once formulated, problem (6.5) can be solved with a numberof efficient

approaches.

6.2.6.1 NonlinearProgramming(NLP)

For instance,any NonlinearProgramming(NLP) solver can solve problem (6.5).

Often SequentialQuadraticProgramming(SQP) is the methodof choice as it

requiresthe fewest function evaluations. In this case, it is simple to add upper and

lower bounds on the measuredvariables, so problem (6.5) can be more

generalised.These upper and lower bounds are considered as an extra inequality

constraint,and can beformulatedas:

Y , . < y .<y .true, ,I - truei - trueui Vi, (6.6)

where Ytrue,l,i and Ytrue,u,i refer to the lower and upperconstraintson variableYtrue,i'

6.2.6.2 QuadraticProgramming(QP)

In case theequalityconstraintequations are linear, or linearisedif they are almost

linear. problem(6.5) can be reduced to anunconstrainedQuadraticProgramming

problem(QP) that can be solved analytically. In this case,

(6.7)
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where A is the Jacobianof the constraintequations,and the solution is obtained

by the useof Lagrangemultipliers and isgiven by (Abu-el-zeet.2000):

_ T T -1
Y'nJe - Ym- VA (AVA ) a

where a is the residualof the unsatisfiedbalancesandis givenby:

a=Ae=Aym

(6.8)

(6.9)

6.2.6.3 SuccessiveIinearisation

A shortcomingof the linear solution is that the solution does not necessarilv

satisfythe non-linearconstraints. In successiveIinearisation,the linear problemis

iterateduntil an optimalpoint is obtainedsatisfyingthe non-linearconstraints. As

in the linear solution method, the advantageof successivelinearisation is its

relativesimplicity andfast calculation.

Before solving the NLP problem,equation(6.5), somevariableclassificationand

pre-analysisis neededto identify unobservablevariablesand parameters,and non-

redundantmeasurements.As statedin section6.2.2, Stanleyand Mah (1981),and

later Crowe (1986), proposedobservabilityand redundancytestsfor steady-state

data reconciliation. Albuquerqueand Biegler (1996) extendedtheseto dynamic

systemsand applied a sparseLV decompositionrather than a QR factorization.

The reconciliation algorithm will correct only redundant variables. The

preliminaryanalysisshouldalso detectoverspecifiedvariables (particularlythose

set to constants)and trivial redundancy,where the measuredvariable does not

dependat all upon its measuredvalue but is inferred directly from the model.

Finally, it should also identify model equations that do not influence the

reconciliation but are merely usedto calculatesomeunmeasuredvariables.Such, .
preliminary testsare extremelyimportant,especiallywhen the datareconciliation

runsas anautomatedprocess.
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In the preVIOUS section we indicated the usefulnessof data reconciliationfor

obtaining accuratestates, assessingthe sensitivity of measurementsand their

uncertaintieson estimatedparameters,and in providing a tool for fault detection.

In the following sectionwe focus on efficient strategiesfor handlinggrosserrors

in datareconciliation.

6.3 GROSSERROR DETECTION

The leastsquaresobjectivefunction in equation(6.3) can, incertainsituations,be

severely biased leading to incorrect reconciliation and estimation. A common

procedure can identify the measurementsthat suffer from gross errors and

eliminate them in a sequentialprocedure.This procedureis called gross error

detection.Early paperson the subjectdescribetestsbasedon Chi-squarestatistics

as the criteria for identifying outliers (Crowe, 1996). Madron (1985) and (1992)

proposeda Chi-squaretestbasedon the squaredstudentizedresidualsfollowing a

non-centralChi-squaredistribution. They also provided methodsfor grosserror

detectionand the conceptof measurementcredibility. Kao et al. (1992) proposed

a Chi-squaretest for grosserror detectionin serially correlatedprocessdata.They

alsocomparedthis with threeothertestsfor outlier detection.

Two central issuesare of concern when dealing with a gross error detection

problem: proper location of the gross errors (instrumentbiasesand leaks) and

estimationof their sizes.Thus,the maintaskis to (Bagajewicz,2003):

• Identify the existenceof grosserrors

• Identify the grosserrorslocation

• Identify the grosserror type

• Determinethe sizeof the grosserror.

After the grosserrorsare identified. two responsesarepossibleand/ordesired:

• Eliminate the measurementwith the bias,or

• Correctthe 1110del(caseof a leak) and run thereconciliationagain.
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The first alternativeis the oneimplementedin commercialsoftware.which only

considersbiases.

One of the most recognisedmethodsfor grosserror detectionis the Generalized

Likelihood Ratio (GLR) methodofNarasimhanand Mah (1987).

6.3.1. Formulation of the GLR method for grosserror detection

As describedin Narasimhanand Mah (1987), theGeneralisedLikelihood Ratio

(GLR) method is used for thedetection,identification and estimationof gross

errorsin steady-stateprocesses.

The methodis basedon theGLR methoddevelopedby Willsky and Jones (1974)

to identify abrupt failures in dynamic systems.It assumes theknowledgeof a

mathematicalmodel describingthe effect of a leak and / or bias on the process.

Although suited for single gross erroridentification, a serial compensation

strategyis often adoptedin combinationwith the GLRmethodwhen dealing with

multiple grosserrors(Narasimhanand Mah, 1987).

The methodis describedbelow:

I. Processmodel:

Considera steady-statemodel of a chemicalprocessdescribedby (6.1) and (6.7).

In otherwords:

Y -Y +&III - true
(6.10)

(6.11)

whereall variablesare same as before. Tomentionthat equation(6.11) represents

the linearor linearisedmass andenergyconservationconstraints.

For asystemaffectedby a gross errorof unknownmagnitudeb, the modelof the

svstem IS given by: )'11/ =Ytm e + e + be; for a measurement bias and
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h(Ytnle) = AYtnle- bmI =0 for a process leak as a leak affects the balance

constraintsonly.

For the generalproblemof detectingthe presenceof a gross error.identifying its

sourceand estimatingits value, we firstconsiderthe case where only one gross

error is presentat most.

Considerr to be theresidualsof the materialbalances

r=Aym (6.12)

Since r is a linear transformationof Y
III

' it has amultivariatenormal distribution.

Moreover, in the absenceof gross error, theexpectedvalue of E(r) = 0 (where

E(r) is the statisticalmeanof r), and thecovariancematrix cov(r) = H = A VA' .

where V is the variance-covariancematrix of the randommeasurementerrors. are

assumedto beknown.

If a grosserror due to a biasof magnitudeb is present in ameasurementi. then

E(r) = bAe; "* o. So much so,if a gross error due to a process leakof magnitudeb

is presentin a certainnodej (in the system), thenE(r) =bmj "# 0 .

In general,in the presenceof any typeof a gross error, we can write:

where

E(r) =bf

={Ae;
i; m.

J

for a bias inmeasurementi

for a process leak in nodej

(6.13)

(6.14)

Therefore.the hypothesesfor gross errordetectioncan beformulatedas follows:

Ho:p=O

HI: p =bf,
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where Jl is the unknownexpectedvalueof r, Ho is the null hypothesisthat there

is no grosserrorand HI is thealternativehypothesisthat eithera processleak or a

measurementbias is present.HI has got twounknownparameters,band f. The

value of the grosserror magnitudeb can be any real number. and1; (gross error

vectors(Narasimhanand Mah, 1987)) can be anyvectorfrom the setF given as:

F = {Aej,m j : i = 1...n,j = 1... m}

The likelihood ratio teststatisticin our case isgivenby:

A =sup Pr{r IHI I}
Pr{r Itt, I}

(6.16)

(6.17)

where Pr is the normal probability density function for r and thesupremumin

equation(6.17) is computedover all possiblevaluesof the parameterspresentin

the hypotheses.

Using the normalprobabilitydensityfunction for r, equation(6.17) can bewritten

as:

') exp{-0.5(r-b1;)'H-I(r-b1;)
/l. =sup I

h,i; exp{-0.5r' H- r}

Equation(6.18)can besimplified to thefollowing (as it isalwayspositive):

T =2ln A=supr 'H -1 r - (r - b1;),H- I(r - b1;)
h.I,

(6.18)

(6.19)

The computation of the test statistic T is very important in the processof

detecting,identifying andestimatingthe valueof the grosserrorof magnitudeh.

The procedureto computeT is given as follows.
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1\

First, we calculatethe estimateb of b for which equation(6.19) is satisfied.bIS

calledthe maximumlikelihood estimate,and is given by:

1\

(6.20)

1\

Substitutingthis valueof b in equation(6.19)we obtain:

T _ d%2
i - C

I

Where

(6.21 )

(6.22)

(6.23)

After every 1; (for every J; in the setF) is computed,the test statistic T is

obtainedas:

ii. The test:

T =sup1; (6.24)

At this stage,a comparisontest isperformedon the valueof the teststatistic T. If

T is greaterthana certainthresholdC , a grosserrorassociatedwith the vector r
is detected,identified and then itsvalueestimatedusing equation(6.20). r being

the vectorthat leadsto thesupremumin equation(6.24).

The abovealgorithmis summarisedin Figure (6-3).
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Computethe residuals

r=AYm

Computethe grosserrorvectors1;'s

_{Aei for a bias inmeasurementi
1;- c. I k i dmj lor a processea In no ej

for every i =1.. ,n, j =1...m

Computethe 1; 's

1;=%

ComputeT
T =sup1;

NO
Stop

Identify Grosserror (associated

with the grosserrorvector 1;*,
1\

andestimateits value b ,

Estimatethe valueof Ytrue using
1\

.1'tnle = Ym -B-be,

Figure(6-3): Bloc diagramrepresentationof the GLRalgorithm.
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In the aboveformulation, additionalconstraintscan be added as tooblige process

leakvaluesto bepositive.This can be done bytestingthe computedvalue of b for

nonnegativity. If the value of b is negative,we discard that processleak as a

possiblesourceof grosserror. Somuchso, and in asimilar way, one can include

upper and lower bound constraints on the magnitude of process leaks

(NarasimhanandMah, 1987).

The above formulation of the GLR algorithm is applicableonly when a single

grosserror is present.In the caseof multiple gross errors,Narasimhanand Mah

(1987) proposeda strategybasedon serial compensationof gross errors. This

strategyis describedin section6.4.

6.3.2. Bias estimation

In the specialcasewherethe locationsof the biasedvariablesareknown a priori,

biascan beestimatedas aparameter(McBrayerand Edgar, 1995).

The procedureis to solve thefollowing NLP problem:

"
Min J(y, b)

subjectto:

fey) =o.

(6.25)

- < -. < - .y/,i - y, - yu" Vi,

Vi, (6.26)

where

ley, b) = [)71 ＭＨｾｉ -bl)J+ [)7, ＭＨｾＬＧ -b,)J+

,.. + ()7; - ＨｾＺｩ -b,)J
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whereYmi is the i
th

measuredvariable,Yi is the i th estimate,(Ji is the measurement

noisestandarddeviationof the ith measuredvariableand b is the estimateof bias
I

h ·th . A

on tel measuredvanable. Note that b, is also included in the inequality

constraints.This allows for physicallimits on the rangeof admissiblebiases.

6.4 STRATEGY

DETECTION

FOR MULTIPLE GROSS ERROR

The GLR methodpresentedin the previoussectionis only applicablefor single

grosserrordetectionand identification. However,whenmore thanonegrosserror

is present,strategiesare neededto identify them. Many strategiesexist and have

beendevelopedfor this purpose.The serial elimination strategy(Ripps, 1965) is

one of the first proposedstrategies.It is basedon applying the test recursivelyon

the different variables and the elimination of the current measurement.

Commercial versions of this procedure (Datacon, Sigmafine) eliminate one

measurementat a time and use the measurementtest or similar. The serial

compensationstrategywhich is basedon identifying one grosserror at the time

usingthe GLR testwasdevelopedby Narasimhanand Mah (1987).This strategy

can be used to identify multiple gross errors of any type. This method will be

presentedin detail in the next subsection.Another strategy known as serial

collective compensationmethod, exists (Bagajewicz,2003), and it is basedon

applying the test recursively, to determinethe sizesof all errors and adjust the

measurements.

6.4.1.The Serial CompensationStrategy

The serial compensationstrategyproposedby Narasimhan and Mah (1987). as

opposedto its predecessors.can be usedto identify multiple grosserrors of any

type. In this techniqueone grosserror is identified at atime, by applying the GLR

test as presentedearlier in this chapter.After estimatingits magnitude.this value
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is used to compensatefor the error before moving to other gross errors. This

processis repeateduntil no further gross errors are detected.

The serialcompensationstrategyis described below:

Let us denotethe compensatedmeasurementsand residuals afterk applicationsof

the GLR testas Ymk and rk , respectively.Let h* and b; be the gross error vector

and estimatedmagnitude, respectively,of the gross error beingidentified in

applicationk of the GLR test. Also, let the following matricesE;, AI; and G; be

definedas follows:

where

(6.28)

* {Oe -i-e.
J

if a bias is notidentified in applicationi

if a bias in sensorj is identified in applicationi
(6.29)

where

M; =[m; ,m; ... m;] (6.30)

m* ={O
I m ,

J

if a leak is notidentified in applicationi

if a leak in nodej is identified in applicationi
(6.31)

Fromthe aboveformulationsof E;, M; and G;, anddefinition of the gross error

vector I; we can put into effect that:

(6.32)
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We can then deducethat the compensatedmeasurementsand constraintsat the

endof applicationk are:

(6.33)

ＨＶＮＳｾＩ

where

(6.35)

If we definethe compensatedresidualsr
k
as

(6.36)

Then,by usingequations(6.31), (6.32) and (6.12) we can see that

(6.37)

Thereforethe hypothesesfor applicationk+1 of the GLR test isformulatedas

H o.k : E[rkJ =0

Hi, : E[rkJ =bf.i ], E F,
(6.38)

where ｾ is the setof grosserrorvectorscorrespondingto the grosserrorsthat arc

not identified in the first k applicationsof the GLR test.If we assumethat the

grosserrorsidentified in the first k applicationsareactuallypresentin the data and

that their actual magnitudesare equal to the estimatedmagnitudes,then under

H the true constraint model is given by equation Ｈ Ｖ Ｎ Ｓ ｾ Ｉ and that true
O.k

measurementmodelof the systemis given by:



(6.39)

Then,by usingequations(6.12), (6.32), (6.34), (6.37) and (6.39), we arrive to the

conclusionthat

rk ｾ N(O, H) underHo,k (6.40)

The test statistic for each gross error vector in F; can therefore be achieved

through equations(6.21), (6.22) and (6.23) by using rk for r. We draw the

attention here that the test statistics for application k+1 are conditional test

statisticsof the previoustests.In other words, if a grosserror is not detectedin.

say applicationn of the GLR, thenno test is carriedout for the applicationn+1.

and the serial compensationstrategy is brought to an end. Thecompensated

residualsrn_1 are usedin datareconciliationto estimateall the variables.

Also, it should be noted that the serial compensationstrategydescribedabove

should be applied only if the detectionof a gross error is not affected by the

presenceof any othergrosserror. In casethis is not satisfied,thena more correct

procedureis to apply the test to all postulatedcombinationsof gross errors

(NarasimhanandMah, 1987).

6.5 SIMULATION CASE STUDY

In order to assessthe Steady-stateData Reconciliation(SDR) and Gross Error

Detection (GED) schemespresentedin this chapter, a set of simulations was

carried out on the two Continuous Stirred Tank Reactors (CSTR's) system

(chapter 3). In the simulations, biases and random errors were added to the

measurements,to test whetherthe aboveschemesare able todetect,estimateand

eliminate them. Comparisons are made between simulation results when



measurementsare affectedby noise and or bias, with and without the SDR and

OED scheme.

6.5.1. Thesystem

Thetwo CSTRsystemis describedin detail in chapter3. It hasfour outputswhich

are the concentrationsof the two componentsA and B in the two tanks:

y = (CapC hl'Ca2, C h2f . In our example,only two concentrationsare consideredC
hI

and Ch2 •

Temperaturesin the two tanks T; and1; are the set points. Theseare bounded

between upper and lower levels: 300 ｾ T; ｾ 312K, 300< 1; ｾ 312 K and are

assumedto beknownnoisefree.

6.5.2. Thesimulations

All simulations were started from the same initial operating point given by

T; =307K andT2 =302K, yielding the following steady-stateoutputvaluesof the

concentrationof product B in Tanks 1 and 2, ChI (0) =0.05165[kmol/rrr'] and

Ch2(0)=0.058638[lana/1m3
] . The set-pointsof the temperaturecontrollers were

not changedduring the simulations.Sufficient time was allowed to the systemto

settle down for a steady-statecondition before measurementswere taken. This

time was chosento be T =60 min which is enoughfor the systemto settledown

given the system'sopenloop time constantI: =40min.

The simulationscarriedout on the abovesystemwere to assessthe ability of the

SDR and OED schemein eliminatingthe effect of noiseand detecting,estimating

and eliminating biases.These noise and biaseswere deliberatelyadded to the

outputmeasurementsin orderto simulatea real life situationwheremeasurements

might be contaminatedby randomand/or grosserrors.

The biasesaddedto the measurementsare given as follows.



In the casewhereonly Chi was biased, the added bias wasof a valueof +25% of

the nominal value. In the case where onlyCh1 was biased. the valueof the bias

addedto theoutputmeasurementCb2 was+30%of the nominal value.

In the casewhereboth measurementswere biased, the valueof the bias added to

Chi was -20% of the nominalvalue, and+200/0of the nominal value forCi..

The noise presenton the measurementsis consideredto be normally distributed

andof zero mean. The valueof thevariance-covariancematrix is:

(6.41)

where (j"1 is the standarddeviationfor the variableChi and was chosen to be50/0

of the nominal value, (j"2 is the standarddeviation for Ch2 and wasof a valueof

50/0.

The implementationof the CSTRsystemtogetherwith the SDR and GED scheme

presentedin this chapterwasperformedusing aMATLAB@/SIMULINK software

platform.

A SIMULINK model of the CSTR process (saved in an .mdl file) was used to

enableperiodic calls to the SDR algorithm saved in an M-file. As the SDR and

GED schemesare steady-stateprocedures,the CSTRsystem was led to a steady-

statepositionand left static. Therefore, there was no need to wait for the system to

settle down afterwards.The algorithm was calledperiodically to reconcile the

noisy and biasedmeasurementsChi and! or C h2, until the algorithmconverged,

and the correct values of Chi and! or C h1 were found. Onceconvergenceis

reached,the valuesof the biases(if they exist) on themeasurementsareestimated.

and comparedto the values simulated, and latereliminated to provide a more

accuratestateof the currentmeasurement.



6.5.3. The results

Simulationresultsfor this case study are shown in Table(6.1) and Figures(6-4) to

(6-7).

Table (6.1) summarisesthe results obtained when the SDR and QED scheme was

applied to reconciliate measurementsaffected by noise and biasof different

values. The table givesimportant details of the valuesof the real, noisy and

reconciledoutputvector. The levelof bias added to the measurementChI for this

case was in the range -40% to+400/0 of the nominal value, whereas the levelof

bias added toCh2 was in the range -20% to+300/0of the nominal value.It is clear

that datareconciliationwas successfullyimplemented and conducted, and that

noise andbiaseswere eliminated.

Figures(6-5), (6-6) and (6-7) show thetrajectoriestaken by the outputsof the

plant whena biasof a given magnitude was present on measurementsChI or C h2

and ChI and C h2 togetherrespectively. The figures show the valuesof the outputs

before and after the SDR and QED scheme was applied.It is clear that the

reconciled estimatesof the plant outputs and the real system outputs are

superimposed,and there is no difference between them. Also, it is shown how the

datareconciliationperformedon the output measurements does converge in short

time whetherone measurementor two were biased. This time is relatively small

comparedto the system'ssettling time constant, which makes it desirable to be

used insteady-stateoptimisationand control especially for slow processes, when

most time is spent waiting for steady-state to be reached.
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Table (6.1): Bias values and their estimates.

Bias Added Bias Added Associated Reconciled Bias

to CbI to Cb2
Figure Value estimates

- -------- .---- -

No No 6-4 CbI = 0.05165 No

Cb2= 0.05863

-0.0206 No
A

b, =-0.0206
CbI = 0.05165

Cb2= 0.05863
0.0129 No 6-5 A

CbI = 0.05165
bI =0.0129

C
b2

= 0.05863

CbI = 0.05165 "No -0.0117 b
2=-O.0117

Cb2= 0.05863

No 0.0175 6-6 "
CbI = 0.05165 ｢ｾ］ｏＮＰＱＷＵ

-

Cb2= 0.05863
"

-0.0103 0.0117 6-7 CbI = 0.05165 b =[-0.0103:

Cb2= 0.05863 0.0117]

0.0129 0.0175 "

CbI = 0.05165 b ］｛ＭＰＮＰＱＲＹｾ

C
b2=

0.05863 0.0175]
｟ＮｾＭｾＭＮＭＭ］ｾＮ｟ＧＮＮＮＮＭＮＮＮ］ＭＭＢＢ "
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6.5.4. Discussionof the results

Oneof the main aimsof any simulationexerciseis to verify the theorydiscussed.

It was mentionedearlier in this chapterthat data reconciliationis a tool used to

correctmeasureddatavariablesby removingerrorsfrom data sets using mass and

energybalancesequationsof the system.

From the simulation resultspresentedabove, it is seen that theSDR and GED

schemehas beensuccessfullyimplementedand conductedin order to detectand

eliminateerrorsfrom faulty measurements.In the casewheremeasurementswere

biased,the bias was effectively detected,its value estimatedand consequently

eliminated.Given valuesof bias added(imposed)rangingfrom -400/0 to 40% of

the nominalvalues,we cansaythat the whole SDRand GEDprocedureproduced

good results.Also, it was observedthat the schemewas seen to be able to detect

affectedmeasurementsand correctthem in most cases. Inoverall, the SDR and

GED schemestudiedin this chapter,which comprisesof a gross errordetection

module and a data reconciliationunit, has beensuccessfullytestedin different

cases.The resultsobtainedfrom the simulationscarried out on aCSTR system

wereencouraging.

6.6 SUMMARY

In this chapter,datareconciliationand grosserror detectiontechniqueshave been

presented.The techniquesensuremeasurementcorrectionin presenseof different

sortsof noise and errors. The threebasic steps forprocessingmeasurementdata

were also presented.In this concept,data collected from any plant is initially

classified, then any grosserrors are removed,and finally datareconciliation is

applied to adjust the set of data so thequantitiesderived from the data obey

natural laws, such as material and energybalances.The techniqueswere tested

undersimulationon acascadeprocessconsistingof two ContinuousStirredTank

Reactors(CSTR). The simulationresultsshowedthat the datareconciliationand

gross error detection techniquespresentedin this chapter were successfully
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implementedand applied. This was tested for a largevariety of cases using the

two CSTR system. In the next chapter, these techniques will beimplemented

within the ISOPEalgorithmto verify if they can improve optimisation.

I of 1



CHAPTER 7

GROSSERROR DETECTION AND DATA
RECONCILIATION IN ON-LINE OPTIMISATION

7.1 INTRODUCTION

Datareconciliationand parameterestimationare important componentsof model

fitting, validation, and real time optimisation in the chemical and process

industries. In its most general form, datareconciliation is a minimisation of

measurementerrorssubjectto satisfying the constraintsof the process model. The

most commonly used formulation of both problemsis to minimise the sumof

squaresof the measurementcorrectionssubject to model constraints and bounds.

This formulation is based on theassumptionthat measurements have normally

distributedrandomerrors, in which caseleast-squaresis the maximum likelihood

estimator.However, the datareconciliationproblem is compounded when gross

errors arepresentin the data, as these can lead to incorrect estimates and severely

biasedreconciliationof the othermeasurements.Therefore, gross errors have to

be removed from the measurementsbefore data reconciliation can be applied.

Gross errordetectiontechniquesas seen in the previous chapter are based on

hypothesis testing. Combined techniques for gross error detection and data

reconciliationexist. They are based on thedistribution function of measurement

errors. Themeasurementtest method using a normaldistribution and robust

statisticalmethodusing robust functions are the two algorithms used.

In this chapter,datareconciliationand gross error detection methods presented in

chapter6 are applied within the on-lineoptimisationscheme (ISOPE algorithm)

introducedin chapter2. Theeffectivenessof this scheme and issues related to it
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are demonstratedundersimulationon the twoCSTRsystem,describedin chapter

3. Simulation results are also comparedwith results obtained from previous

chapters.

7.2 Data Reconciliation

Process measurementsfrom a plant are never error free. Typically, these

measurementscontain both random and gross errors.Data reconciliation is a

necessaryoperationfor obtainingaccurateandconsistentdatain processplantsby

forcing themto obeyconstrainingmass,component,or energybalances.

Resultsof researchon datareconciliationhavebeenreportedfor both steady-state

and dynamic and linear and nonlinear processes.Chapter 6 provides a short

reviewof previouswork.

Generally speaking, the data reconciliation problem can be formulated as a

constrainedoptimisationproblem. That is a least-squaresestimationproblem if

the measurementscontainrandomerrorsonly.

Ifwe considere to be avectorof randommeasurementerrors:

£ =Y1I/ - Y'me (7.1 )

where Y is the vectorof measuredprocessvariables,and Y'me denotesthe vector
11/

of true valuesof measuredvariables.

If theseerrors are normally distributed(which is assumedin almostthe majority

of the cases)with zero mean,and acovariancematrix V, the datareconciliation

problemcanbe easilydefinedas aleast-squaresestimationproblemas follows:

1 T 1
Minimise: F(Ym' Y,roJ= 2 (Ym - Y,roe) V- (Ym - Y'rue)

Ytrue

subject to:h(Y'me) = 0

where h is a setof algebraicequalityconstraintequations.
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If the equality constraintsare linear, orlinearisedif they are almost linear, then

the above optimisationproblem can be reduced to anunconstrainedQuadratic

ProgrammingProblem(QP) that can be solved analytically (Mah and Tamhane.

1982).

7.3 THE ON-LINE OPTIMISATION PROBLEMAND THE ISOPE

ALGORITHM

As has been described in Chapter 2, many different processoptimisation

techniquesexist. They all fall into two major categories: direct search and model-

basedoptimisationmethods(Garcia and Morari, 1981). The direct approach uses

measurementstaken directly from the real systemitself and applies oneof the

basic optimisation techniquesto optimise the process performance objective

function. While in themodel-basedapproach, the optimisation is performed on a

mathematicalmodel of the system, when found, the results are then applied to the

real system.However, the two approachespresentsome major drawbacks as in

practice,measurementscan becontaminatedby noise or all sortof gross errors,

and it is inevitablethat model-realitydifferences exist, at least to someextent. in

termsof structureand parameters.

As stated in Chapter 2, the Integrated System Optimisation and Parameter

Estimation(ISOPE) technique(Roberts, 1979) was developed to overcome such

problemsas model-realitydifferencesand is an indirect method.It is based on

derivatives calculation provided by real process measurements to update an

unfaithful or deliberatelysimplified model used in the model-basedoptimisation,

thus achieving the real optimum of the process in spiteof model-reality

differences. All ISOPE algorithmsdesigned to date are derived from the basic

and well-known two-steptechnique, which consistsof two major steps. The first

step solves. with the aid of processmeasurements,a simple modelparameter

estimation procedure. The updated model is then used in theoptimisation

problem.The secondstep obtains the process controlsvia anoptimisationroutine

(Figure7-1).
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Variousversionsof the ISOPEalgorithmexistsuch asApproximateLinearModel

ISOPE, ALMISOPE (Ellis et al, 1988) andAugmentedISOPE (Abdullah et al.

1988).

Ootimisation

Set-Points

Realprocess

Parameter

Estimation

Figure(7-1): The two-stepMethod.

The solution of the ISOPE algorithm problem,as given inChapter2, is usually

converted from the following general nonlinear programming problem (with

equalityandinequalityconstraints):

subjectto:

Min Q(v,y*) (7.3)

(7.4)

(7.5)

(7.6)

to a simple quadraticprogrammingproblem in the caseof a quadraticobjective

function and linear constraints.Quadratic programming problems are easv to

solvebecausethe theory is rich and thecomputationis less.
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Figure(7-2): Schematicrepresentationof the SDRand GEDscheme
whenimplementedin steadystateoptimisation.

7.4 SIMULATION CASE STUDY

In this casestudy, a group of simulationswas carried out in order to assessthe

Steady-stateData Reconciliation (SDR) and Gross Error Detection (GED)

schemes presented in the previous chapter when applied in steady-state

optimisation(using theISOPEalgorithm, figure 7-2). The simulationsuse a two

ContinuousStirredTank Reactors(CSTR's)connectedin cascade(Chapter3). A

comparisonis made betweensimulations when measurementsare affected by

noiseandor bias,with andwithout the SDRand GED scheme.

The two CSTR systemhas four outputswhich are theconcentrationsin the two

tanks: y. = (C
a l

,C"I' Ca2,C"2)T. In our example here. only two concentrationsarc
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assumedto be availablefor measurementCbl and Cb2 • Temperaturesin the two

tanks T, andT2 arethe set-points.In otherwords:

(7-7)

All simulations were started from the same initial operating point given by

ｾ =307K andT2 =302K, yielding the following steady-stateoutputvaluesof the

concentrationof product B in Tank 1 and 2 ChI (0) =0.05165[kmol/nr'] and

Ch2(0)=0.058638[kmol/m3
] . Sufficient time was allowed to the systemto settle

down for a steady-stateconditionbeforemeasurementsweretaken.This time was

chosento be T =60min. Oncethe systemis at steady-state,the datareconciliation

and grosserror detectiontake placein order to detectand eliminaterandomand/

or grosserrors.

The addednoisewassimulatedas normally distributedwith zeromean.The value

of the variance-covariancematrix waschosento be:

(7.8)

where 0"1 is the standarddeviationfor the variable Chi and was chosento be 5%

of the nominal value, 0"2 is the standarddeviationfor Ch2 and was of a value of

5%. Thesevalueswere chosenas they representtypical valuesin many realistic

situations.

The optimisationwas performedon a linear objective function of the measured

variable C
h

7. ' This choiceof the objectivefunction manifestsa desireto maximise

the amountof componentB in tank 2. Therefore,the mathematicalform of this

function is given as:

(7.9)
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Thewhole procedureis carriedout asfollows (Figure 7-3):

1. The set-pointsare appliedto the CSTRsystem.

2. Measurementsare takenafter a suitableperiod giving time for the system

to settledown.

3. Themeasurementsare fed to theSDRand GEDmodulewhich has the role

of eliminatingrandomnoiseanddetecting,identifying andestimatinggrosserrors

if anyarepresent.

4. The noisy data is corrected(reconciled).Hencea more accurateprocess

outputmeasurements(andderivativeswith respectto the set-pointsneededby the

ISOPEalgorithm)are found.

5. Reconciledmeasurementsare fed into theISOPE algorithm box. One

iteration of the optimisationalgorithm is performedand theresultswhich are the

set-pointsof the temperaturecontrollers T; and T
2

are found.

6. The set-pointsvaluesof T; andT; areappliedto the realsystem.

The whole procedure is repeateduntil convergenceis reached. Convergence

occurswhen no further improvementis observed.In other words, when the new

set-pointsare nolongera bettercandidatethanthe previousone.

The whole processwas implementedusing a MATLAB@/SIMULINK software

platform. The CSTR system was modelled under SIMULINK, while the data

reconciliationand grosserror detectionand ISOPEalgorithmswere implemented

under MATLAB in a separatemodule. Becauseof the interaction capability

between MA TLAB and SIMULINK that the software offers, a SIMULINK

model of the systemwas run for a suitabletime, during which periodicalcalls to

the data reconciliation and ISOPE algorithms module saved in an M-file were

made.

Simulationresultsfor the casestudyoutlinedaboveare shownin Table (7.1) and

Figures(7-4) to (7-13).

In the first simulation, both measurementswere subjectedto 50/0 additive noise.

with no datareconciliation.The ISOPEalgorithmfailed to converge(figure 7-4).
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Figure(7-3): Bloc diagramrepresentationof theapplication
of the SDR and OEDschemewithin the ISOPE algorithm.
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In the secondsimulationhowever,datareconciliationwas appliedon the output

measurementsand the reconciledmeasurementsfed into the ISOPEalgorithm. It

is clear from figure (7-6) and (7-7) that the reconciled measurementsfollow

exactly the real processoutputs (which are the values of the measurements

without the noise). Moreover, the outputs convergeto the real optimum point

given by: Chi=0.0644 [kmol/m3
] andCh2=0.0725 [kmol/m3

] correspondingto the

set-pointvaluesof ｾ ］ Ｓ Ｑ Ｒ K and T2=310.2K.

In the following simulations, biasesof differentvalueswereaddedto eitherone of

the measurementor both at the time. Figure (7-8) shows the real outputs and

reconciledmeasurementstrajectorieswhen bias of a value -200/0of the nominal

valuewasaddedto the measurementof Chi' Figures(7-10) and (7-11) presentthe

resultsof the overall schemeincluding SDR, OED and steady-stateoptimisation

when Ch2 was addeda bias of 250/0 of the nominal value. In thepresenceof

multiple biases,both measurementsChi and C h2 were addedbiasesof different

values. For instance,the simulationwas carried out with a bias of -200/0of the

nominal value addedto Chi and 20% of the nominal value addedto C h1 . The

resultsof this simulationare shownin figures (7-12) and (7-13).

The last simulation was performedto highlight the contribution of SDR to the

enhancementof datacollectionand use of Artificial Neural Networks(ANN). In

fact, the neuralnetwork schemepresentedin chapter5 was testedin presenceof

noise and bias without datareconciliation.The resultswere not promising (table

(7.1 )). However,when SDR and OED techniqueswere appliedtogetherwith the

neural network schemefor estimatingprocessderivatives,the resultswere very

encouraging.Table (7.1) gives a comparisonbetweenthe two schemeswith and

without SDR and OED. From the table, it is clear that the real processoptimum

was reachedeven in presenceof noiseand bias in both measurementswhen data

reconciliationwas applied with the applicationof a neural network model based

on thesemeasurenlents.
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Theseresultstogetherwith thosefound earlier show that whenever a noise and or

bias arepresenton one or both measurements, the data reconciliation and gross

error detectionalgorithm detects and eliminatesthem This also proves that the

applicationand useof datareconciliationand gross error detection on corrupted

datameasurementswithin the ISOPE algorithm improvesoptimisation This is

mainly due to theimproved parameterestimation, andderivative estimation as

well. Resulting in the ISOPE algorithmperformingwell and converging to the

optimumpoint even in presencerandomerrors and biases.

Table (7.1): ISOPE with neural network scheme when data reconciliation is

applied.

Bias Added Bias Added Convergence Final measured

Method to Cb1 to Cb2
outputs

Ｍｾ｟Ｎ｟ＭＭ

ｾ

ISOPE

without SDR -0.0103 0.0117 No No converged

andGED values
Ｍ｟Ｎ｟ＭＭＭＭＭＭｾｾＭＭｾＭｾＭＭＭＭ｟Ｎ｟ＭＭ .

ISOPE with

SDRand CbJ=O.0644 [kmo/lm3
]

GED using -0.0103 0.0117 Yes

ANN Cb2=O.0725 [kmovm3
]

,...---_.._--..-...... ｾＭＭｾＭＭＭＭＭＭ

____ Ｎ Ｎ Ｍ Ｍ Ｍ ｾ Ｎ ｵ ｟

..-.-"_._---.=,.................｟＾ＬＮＮｾＭＬ .... ｟ｾＢｾ -_..".-'"""...^ＭＮｾＧＧＧＧ •.｟ｾＮ｟ •ＮＮＬＮＮ［＼ＭＭｾｾＧＧＧ .. ,..."
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7.5 SUMMARY

Gross error detection and data reconciliation techniques are partof model

validationfor processmonitoringand control. The applicationof these techniques

to datameasurementscollectedfrom a two CSTR system simulated in this chapter

hasprovedto improveoptimisationespecially when using a neural network model

to representthe real system.

In the next chapter, methodologyof on-line optimisation is studied, where a

detailed descriptionof on-line optimisationwith its different components and

structureis given.
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CHAPTER8

THE METHODOLOGY OF ON-LINE OPTIMISATION

In this chapter, all the stepsstudied separately in the previous chapters. are

groupedtogether,in order to form a methodologyof on-line optimisation. The

methodology would, typically, be implementedwithin a Distributed Control

System (DCS) as such systemsare new common place within the process

industries. For this reason, the description here will focus on the DCS

implementationof the methodology.However,it should be borne in mind that the

methodology is not restricted to DCS implementationas, especially with the

computingpower availableat thepresenttime, the elementsof the methodology

could exist safely within a stand-alonecomputersystem. The various stepsof

Steady-stateDetection, Gross Error Detection, Data Reconciliation, Parameter

Estimationand Optimisationwhich are partof the methodologyare performed

sequentiallyin a modularway in order for the on-lineoptimisationprocedure to

be completedsuccessfully.The applicationof this methodologyis generally seen

to be more beneficial than when on-lineoptimisationis applied in the traditional

way. Theadvantagesanddisadvantagesof using each stepof the methodologyare

given. Also, simulation case studies areperformedthroughout to assess these

schemeswhenincorporatedwithin the ISOPE procedure.

8.1 INTRODUCTION

As shown In figure (8-1). on-line optimisation involves three steps: Data

Validation, ParameterEstimation, and Optimisation. Data sampled from the

processand, typically, held within the DistributedControl System (DCS) is first

validated. This procedureinvolves steady-statedetection,gross errors removal.

and data reconciliationto be consistentwith material and energybalancesof the
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process. This data is next used in parameterestimation to update the plant

parameters.This in tum updates the process model to enable plant-model

matching. When finished, the updatedmodel is then usedin the optimisationto

determinethe optimal operatingpoint of the plant.

-------------------- Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ

Data Validation
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I
I
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I
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I
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I
I
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I
I
I
I
I
I
I

ｾＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭ
-------------------- ------------------,

I
I

Optimisation :
I
I

NoIs plant still
steady?

YesSolutionto ｾ __<,

DeS

Figure (8-1): Schematicrepresentationof on-line optimisation.
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8.1.1. Methodology of On-line Optimisation

Industry practitionershave reported that after four decadesthere has been an

increasein the applicationof on-line optimisation,but the same initialweaknesses

or more generally speaking some common causesof poor performancestill

remain.Theseissuesare relatedwith the different stepsof steady-statedetection,

datareconciliationandtheoptimisationitself.

On-line optimisers are directly linked to the plant instrumentationthrough the

DCS. The DCS gathersreal time datameasurementsfrom theprocess.This data is

usedto updateandrefine the plantmodel on acontinuousbasis.

On-lineoptimisationcan beusedin two ways:

1. Open-loop: In this case, thecomputationsare carriedout off-line, but the

resultsare appliedor givento theoperatorto applyon the system.

2. Closed-loop: Automatically implementing optimal set-points VIa the

plant'sDCS.

Closed-loopoptimisers run continuously; respondingto changes,ameliorating

upsetsand exploitingopportunitiesto createmore profit.

The general on-line optimisationproblem is to find those optimum operating

points for which the systemoperatesmostefficiently. This involvesthe solving of

three Non Linear Programming(NLP) problems:one for combinedgross error

detectionand data reconciliation, one for simultaneousdata reconciliation and

parameterestimationand one for theactualoptimisation.

Eachof the threeNLPshas thefollowing form:

Optimise:

Subject to:

Objectivefunction fix)

Constraintsfrom plantmodel
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The objective function to be optimised,can be ajoint distribution function for

datareconciliation,a leastsquaresfor parameterestimationor aprofit function for

planteconomicoptimisation.

The constraintsarise from a variety of causes.They are almost referred to as

maximum allowable stressesor displacementsaccording to normative and

materialcapabilities.They canbe materialand energybalances,chemicalreaction

rate equations,thermodynamicequilibrium relations,capacitiesof processunits.

demandfor product,availability of raw materials,andso on.It is usualto express

constraintsas inequalities;neverthelessinequalitiescanbe convertedinto equality

expressionswith the help of slackvariables.

The aboveNLP problemcanbe solvedusingmanyof the methodsand techniques

thathavebeendevelopedduringthe years.

Anyoneof the abovethreeoptimisationproblems:grosserror detectionand data

reconciliation;parameterestimation;or optimisationcanbe solvedseparately.

As statedin the previoussection,the key elementsof on-line optimisationare:

• Steady-statedetection

• GrossError Detection

• DataReconciliation

• ParameterEstimation

• Economicoptimisation

These steps are carried out in real time as the processis moving from one

operating point to another (Figure 8-1), and are described in detail in the

following sectionsof this chapter.
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8.2 AUTOMATIC DETECTION OF STEADY-STATE

Often, in the areaof processcontrol, rigoroussteady-statedetectionis crucial for

processperformanceassessment,simulation,optimisationand control. Ingeneral,

at steady-statedata is collectedfor safe, beneficial and rationalmanagementof

processes.

However, identifying steady-statecan prove to be a difficult task. This may be

due to theprocessvariablesbeing noisy and measurementsdo not settle down at

onevalue(Brown andRhinehart,2000).

Steady-statecan bedefined as anacceptableconstancyof the mean valuesof

measurementsover a given period of time. Statistical methods based on the

constancy of these variables are generally used to test for steady-state

identification.

The issueof steady-statedetectionhas beenaddressedby a numberof researchers

in the field. In whatcould be consideredto be the first method developed for this

purposethe crow et al. (1955)methodwhich uses an F-test. This test is based on

the ratio of two variancesasmeasuredby two different methods on the same set

of data. The firstvarianceis calculatedas themean-squared-deviationfrom the

averageof the mostrecentwindow data. While the second one iscomputedfrom

the meansquareddifferencesof successivedata. If the process is at steady-state.

the ratio of the two variancesis unity, as the two methods produce unbiased

estimatesof the processvariance. Inpractice,however, the ratioof the variances

will not be exactlyunity, due tolimited samplingand random noise but will have

a value nearunity. If the processis not atsteady-state,the ratio will be unusually

large. Themajor drawbacksto this methodinclude theconsiderablequantity of

on-line datahandling,as well as userexpertisechoicesof datawindow length.

Narasimhanet al. (1986) presenteda two-stagecompositestatistical test to detect

departuresfrom steady-state.The techniqueexaminessuccessivetime periods and

consistsof two tests: the first oneestablisheswhetherthe unknowncovariance

matriceswereequal,and the second testestablisheswhetherthe meansof the two

periodswere equals(using theHottelings r 2 test). This method presents asimilar
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drawback to that presented above, which IS that it requires extensive

computationaleffort.

In anotherwork, Narasimhanet al. (1987) applied themathematicaltheory of

evidenceto the detectionof changesin steady-stateswhich is analternativeto

their earliermethod,but it cannotbe applied if the variables to be tested are not

independent.

An alternativemethod(BethaandRhinehart,1991) is to perform linear regression

over a datawindow, and use at-teston theregressionslope. The system is said to

be at steady-stateif the slope is equal to zero. This method also requires

considerabledatastorageandcomputationaleffort as well asuser-requiredchoice

of the datawindow length.

More recently, Loar (1994) presenteda method based on a Statistical Process

Control (SPC)moving averagechart. In the same year, Alekman (1994) proposed

a techniquewhich comparesthe averagecalculatedfrom a recent history to a

standardbasedon an earlier history, then applies the t-statistic test to analyse

whetherthe averageis unchanged:the steady-statehypothesis. Again, storage and

dataprocessingis acomputationalburden.

Perhapsthe mostpracticalof the methodsreviewedby authors in literature, is the

Cao andRhinehart(1995)method,which is a modificationof the primitive F-test

type of statisticsof, crow et al. (1955). The ratioof two variances as measured on

the sameset of databy two different methodsis calculated. However, in order to

reduce computational effort, exponentially weighted moving average and

variancesare usedinsteadof the conventionalaverage or variance. These values

are calculatedfrom exponentiallyweightedmoving average filters. In this case,

datacan betreatedsequentiallyfor steady-stateidentificationwithout the need to

selecta time window requiredin most of the earlier methods which is the main

drawbackof thesemethods.For this techniqueto be effective on-line, the filter

constantsmustbe chosenjudiciouslyand optimally. Critical values for R (ratioof

variances),based on the processbeing at steady-statewith independentand

identically distributed variation, were also developed by Cao and Rhinehart

(1997). An extensionto the multivariablecase waspresentedand experimentally

demonstratedon adistillation columnby Brown andRhinehart(2000).
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Themethodof CaoandRhinehart(1995) is givenbelow:

We considerthe discretefiltered valueof the measurementvalueX given by:

where:

Xi : is theprocessmeasuredvariableat time i

X f ,i: is the filtered valueofX at time i

X f ,i-1 : is the filtered value ofX at time i -1

L1 : is a filter factor

(8.1 )

In this method, one needsto calculatetwo variancesin order to obtain the R-

statistic value. The first varianceusesa filtered meansquaredeviation from the

previous filtered values ｖ ｾ Ｌ ｩ and the other one uses afiltered mean square

differenceof successivedata ､ ｾ Ｌ ｩ Ｇ The ratio of the two gives thevalue of the R-

statistic.

The filtered mean square deviationfrom the previous filtered values

computedas follows:

where:

ｖ ｾ Ｌ ｩ Ｚ is the curentfiltered meansquaredeviation

v}i-\ : is the previousfiltered meansquaredeviation

L2 : is a filter factor

While filtered meansquaredifferenceof successivedata d}.i is given by:

16.+

.,
v.. IS(,I

(8.2)

(8.3 )



where:

d},i : is thecurentfiltered squaredifferenceof succesive data

d},i-I : is theprevioussquare differenceof succesivc data

L3 : is a filter factor

From the aboveequations,we cancomputethe R-statisticwhich can be used to

ascertainthe existenceof the steady-stateas follows(AppendixB):

R= (2-L,)v},i

-:,1 (8.4)

The four equationsgiven aboverepresentthe onlyrequirementsneeded in order to

check for steady-statecondition. These requirementsare direct, need no-logic.

havelow storageand lowcomputationaloperationcalculations. In total. there are

three variables to be stored, tenmultiplications, eight additions, and one

comparisonper observedvariable.

The R-valuefound in equation(8.4) is comparedwith some critical valueof R-

statistic (ReriD. The systemis said to be atsteady-stateif the R-value is found to

have adistributionof valuesclose toRerit.

An Rerit value is selected and determined by the level of significance,a .

alternatelythe confidencelevel, [100(1- a )], that we want to achieve. The null

hypothesisis that the processis at steady-state.If the computedR-statistic from

equation(8.4) is greaterthan Rerit, then we are 100(1-a) percentconfidentthat

the processis not atsteady-state.Consequently,a valueof R-statisticless than or

equalto Rerit meansthe processmay be atsteady-state.We assign valuesof either

"0" or "1" to a variable, say SS,which representsthe stateof the process. If R-

calculated> Rerit (a) "reject" steady-statewith 1OO(1- a) confidence,assign

SS=O. Alternately, if R-calculated<Rerit(a) "accept"that the process may he at

steady-state,andassignSS=1.

Cao andRhinehart(1997) suggestedsome critical values forR, togetherwith the

filter factors ｾ Ｌ L2 and L). Thev came to aconclusion that filter valuesof
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L) =0.2 andL2 =L3 =0.1 producethe bestbalanceof Type I and Type II errors.

Type I error is the error associatedwith wrongly rejecting the null hypothesis

(process at steady-state)when it is true. While Type II error is the error

associatedwith wrongly acceptingthe null hypothesiswhen it is false.

An alternativeprocedureto find theoptimal valuesof ｾ Ｌ L
2

and L
3

is given here

(Bhatet aI., 2003):

1. Selecta valueof L3 (say 0.01)

2. Selecta valueof L2 (say 0.05)

3. For thesevalueof L2 and L3 , start with a low valueof L; (say 0.02). and

calculateRerit, Type II errors as well assteady-statedetection lag.

4. IncreaseL) and repeat calculationof step 3 until allowable Type II error

limit is crossed.

5. IncrementL2 by 0.05 and return to step 3. Keep onincrementingL
2

until

the local minimum in termsof earlierdetectionof steady-state is obtained

correspondingto given valueof L
3

•

6. IncrementL3 andreturnto step 2 until a globalminimum is obtained.

A small drawback to the steady-statedetection method outlined above is

illustrated in the fact that datapoints cannotbe auto-correlatedat steady-state.

Commonly,we getaroundthis disadvantageby adjustingthe sampling interval to

eliminateauto-correlationwhen atsteady-state.

The extension of the Cao andRhinehart method for steady-statedetection

presentedin this chapterto multivariableanalysis wasperformedby Brown and

Rhinehart(2000),and is given as follows:

It is assumedthat asystemis not atsteady-stateif at least one process variable is

not at steady-state.and might be atsteady-stateif all variablesmight be at steady-

state.
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This canbe easilytestedwith a single statistic:

N

SSprocess=11SSi
i=1

whereN is the total numberof processvariables.

A steady-stateconditionis identifiedwhen:

(8.5)

N N

P(SSprocess=1)=11P(SSi=1)=11 (1-ai) (8.6)
;=1 ;=1

N

(1- aprocesJ=11 (1- aJ (8.7)
;=1

a process IS the global level of significance, while a i are individual levelof

significancefor eachvariable. From equation(8.7) it can be deducted that each

individual level of significancea is equal to:a = 1-N/(l- a )
I I 'J process'

Two requirementsarenecessaryfor this method to be used. The firstrequirement

is the traditional non auto-correlationof the data in every single variable. The

secondone isthat there shouldnot becross-correlationbetween the variables (at

steady-state).This meansthat in steady-statecondition, the noise on one variable

shouldnot becorrelatedto the noise onanother(Brown and Rhinehart, 2000).

8.2.1.Application

The abovesteady-stateidentification algorithm is applied and tested on the two

CSTRsystempresentedin detail inchapter3.

The systemhas fouroutputswhich are theconcentrationsof the twocomponents
. T '

A and B in the two tanks, I.e.:y = (Cal,ChI'Ca2,Ch2) . In our example,thesefour

variablesare to bemonitoredfor steady-stateidentification. Temperaturesin the

two tanks, T; and T2, are the set points.
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Equation (804), used for calculating the R-statistic was rearrangedin order to

avoid dividing by zero. Therearrangementwas: If (2 - ｾＩ *v2 > R
erit

*d 2 then SS

= 0, elseSS=1.

Choosinga global level of significanceaprocess=0.05,and fourvariables,then the

individual level of significance for each variable IS given by:

a, =1- ｾ Ｈ Ｑ Ｍ a process) , where i =1,2, ..,4 and N =4. Which results ina; =0.012

for eachvariable.This meansthat, we were [100(1-a
j

) ] confidentthat variable i

might be at steady-statewhen its correspondingSSj value was high, and we

rejectedsteady-statewith [100(1-aJ] confidencewhen itscorrespondingSSjwas

low. This confidencelevel is equalto 98.8.

The threefilter parametersLI , L2 and L3 were chosen,following some trial and

error procedure,to be: LI =0.06, L2 =0.01 and L3 =0.01 . These values proved

to be thebestvalueswhenappliedamongstthose tested. The valuesof Rerit were

chosento be asfollows: Rerit = [104 ; 1.35 ; 104 ; 1.35]. Rerit is a vectorof four

values,aseachelementcorrespondsto oneoutputvariableof the process.

The simulationswere carried out using MATLAB® and were started from the

same initial operating point given by T; =307K andT2 = 302K, yielding the

following steady-stateoutput valuesof the concentrationof productsA and B in

the two tanks 1 and 2, Cal (0) =0.04835 [krnol/rrr'},ChI (0) =0.05165 [kmol/rn'] .

C
a2

(0)=0.04137[kmollm3
] and Ch2 (0)=0.058638[lanollm 3

] . In order to perform

the steady-statedetectionscheme,the set-pointswere changedfour times during

simulations to enable us to test thesteady-statedetection schemein multiple

cases.Thesechangeswererandom.

Simulationresultsarepresentedin figures (8-3) to (8-13).

Figure (8-3) showshow sampleddata takenfrom variable C"I are organised.It is

clear that there is no auto-correlationbetweenthe samples(which is requirement

for this methodto work). This ismainly due to thewell choiceof samplingtime.
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Cross-correlationbetweenvariablesis illustrated in figure (8-4). It is shown that

thereis no cross-correlation(anotherrequirementfor the method to be applied and

used)for exampleduring steady-statebetweenChI and C
h2

, and betweenrest of

variablesin general.

Figures(8-4), (8-5), (8-6) and (8-7) showtrajectoriesof the different valuesof R

for different outputs,togetherwith their correspondingSS variable values.It has

to be mentionedthat an SSj variable is at a high level"1" if the corresponding

output i is probably at steady-state,and low "0" otherwise.It is clear from the

graphsthat when the R-value for eachoutput is below a selected point, steady-

state isdetectedand thecorrespondingoutputmight be at steady-state. In this case

the correspondingSS variable is put to a high level. However,if the Rvvalueis

abovethe selectedpoint given by Rerit the correspondingoutput is probably not at

steady-stateand its SSvariablevalue is put to a low level.

Figures (8-8), (8-9), (8-10) and (8-11) show the trajectoriesof the different

outputsof the systemand their correspondingSS values. In these figures, it is

demonstratedthat when an outputmight be at steady-state, thecorrespondingSS

variable value is set to a high level,indicating the variable might have reached

steady-statewith a confidencelevel of [100(l-aj ) ] = 98.8.

Figure (8-12), is a summaryof the previous figures, in which all four output

trajectoriesare shown,togetherwith the overall SSproceo'o,variable. which indicates

that the systemmight be at steady-statewhen SSprocessis at a high level (which

valueis dividedby agivenfactor inorderto have all variables plotted on the same

graph). By visual inspection,the methodis shown to be working well as during

the transient,the valueof the SSprocessvariable was always null, which indicates

systemnot at steady-statewith a confidencelevel of [IOO(l-a)] = 95. While it

goes up to a high level when the system might be atsteady-statewith the same

level of confidence.

169



0.051

0.05

ｾ 0.049

CD
E
.:: 0.048
to

(3
i::: 0.047 +0

ｾ
c:
ｾ 0.046 +c:

8
0.045

0.044 +

+

+-r

+

+ +
++

+ +
+ +

+ +

+-

+ +

+ + +

0.043
+

+ +

0.043 0.044 0.045 0.046 0.047 0.048 0.049
Concentration : Ca1 at time i

0.05 0.051 0.052

Figure (8-2): No auto-correlation in variable Cal

0.042,-- - - -,-- - - -,-- - - -.---- - - -.---- - - -.---- - - -.---- - - ,--- - ,..--

+

-+

-I
-+t +

+
+
+ ++*+

+ .:t + ++ + -il.

+ ++ +
t + ++ + +

+ +
+ +-+ I- + +

-1+ tt--'tt "*
#

+0.041

0.04

+
+

0.039 + +
N +
.0 +0 -t-

+ ++c: +0 +
Ｎ ｾ 0.038 +
c: +
CD + + +0
c: +
8 0.037 +

+ +

0.036
+

F"+
+

0.035

0 0420.0410.040.037 0.038 0.039
Concentration: Cb1

0.0360.035
0.034L __--l-__----l. Ｍ ｌ Ｎ Ｎ Ｚ Ｚ Ｍ ｟ Ｍ Ｍ Ｚ Ｚ ］ Ｍ ］ Ｍ ］ Ｍ Ｍ Ｍ Ｍ ］ Ｍ Ｚ Ｚ Ｚ Ｚ Ｚ Ｚ Ｍ Ｍ Ｍ Ｍ ［ Ｚ ［ Ｍ ］ Ｍ Ｍ ［ Ｚ Ｚ ［ ｾ ｾ Ｍ ｾ

0.034

Figure (8-3): No cross-correlation between hI and ｨｾ

170



Ｖ Ｑ Ｍ ＭＬＭ Ｍ ＭＮ Ｍ ＭＮ ＭＭ ＮＭＭＭＭ Ｍ ＭＭＬＭＭ Ｍ ＭＮＭ ＭＭ ｲＭＭＭＭ Ｍ ＮＮＮＬＭＭ Ｍ ＭＭＮＭ Ｍ ｾ

5
Steady-state

4
/ R1 J

\
Non steady-s tate

";;;
l/l

-g 3
<0

\c::

2 \
\
I,

1 J

SS1

0 I I .... 1

0 4 8 12 16 20 24 28 32 36 40
Time (H)

Figure (8-4): R-value and SS trajectories forCal

6 ..-- -----r- - ---.- - ---.-- - ---,-- - -,-- - ,-- - ,.-- -----r- - ---.-- - -,

5

Steady-state

4036
I

3228

Non steady-state

16 20
Time (H)

I

128
I

4

4

2

N
(j)
(j)

-g 3
<0

Nc::

Figure (8-5): R- alue and SS trajectories forbl

171



Non steady-state

Steady-state

t I

0.5

5

4.5

4

I
R33.5 I

3
M
(f)
(f)

-g 2.5
'"M
0::

2

1.5 \ r
.., J

o
o

I

4 8
I

12 28 36 40

Figure (8-6): R-value and SS trajectories for C 'I
｡ ｾ

Steady-state

5

4.5

4

3.5

3
ｾ

(f)

('
(f)

-g 2.5

'"ｾ
0::

2

1.5 r
"..

Non steady-state

0.5

,I
I

0 I ' I I

0 4 8 12 16 20 24 28 32 36 40

TIme (H)

Figure (8-7): R-value and SS trajectories for b'2

172



O·06 I - ---.-- - -,--- -r- - -r-- -r- - -r-_ -.-__Ｎ Ｍ Ｍ ｟ Ｍ Ｍ ｲ Ｍ ｟ ｾ

0.055
Ca1

Steady-state

0.05

0.045

c:
o
ｾ 0.04
'E
<D
o
c:

<3 0.035

0.03

Non steady-sta te

0.025 SS1

403632282420161284
0.02L--------.J-.:---l-----L_ _ ----L__--l..---!.-_...l.-__.L...-_-----.J --l

o
TIme (H)

Figure (8-8): Cal and SStrajectori es

0.06 ,--- -,,-- ----r- - -----r- - -,-- - -,-- - ,--- - ,--- -,- - -----r- - ,

0.055

0.05

0.045

c:
o
ｾ 0.04
'E
<D
o
c:

<3 0.035

0.025

SS2

Steady -state

Nonsteady -state

36322816 20 24
TIme (S)

1284
0.02L_---1.__ｾＭ Ｍ ｾ Ｍ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｍ ｟ ｟ ｟ ｟ Ｚ ｾ Ｍ ｟ ｟ ｟ ｟ Ｚ Ｚ ｾ ｾ ｟ ［ ［ ［ Ｍ Ｍ Ｚ ［ ［ ｟ Ｍ ｟ ｟ Ｚ ［ ｾ Ｍ ｾ［ Ｍ Ｍ 40

o

Figure (8-9): "and SS trajectories
｡ｾ

173



Ｐ ﾷＰＸ Ｑ Ｍ ＭＬＮＭ Ｍ ＭＭＭＮＭ ＭＭ ＮＭＭ Ｍ ＭＮＭ ＭｾＭＭ Ｎ｟｟ Ｍ ｟Ｎ｟｟ Ｍ ｟｟｟ＬＮ ＭＭ ｟Ｌ｟｟ Ｍ ｾ

Non steady-stale

Stea dy-state

SS3

Cb1

0.07

0.06

0.04

0.03

.0o
c:
o
ｾ 0.05
C
<D
o
c:

8

4 8 12 16 20
Time (H)

24 28 32 36

Figure (8-10): Cbl and SStrajectories

0.08,---,----,--- -,----,----,--- - ,--- -,- - ---,- - ---r- - --,

0.07

0.06

ｾ
o
c:
.2
ｾ 0.05
C
Ql
o
c:

8
0.04

0.03

Cb2

SS4

Steady-slate

Non steady-state

3632282416 20
Time (H)

1284
0.02 L_.-L__ ｊ Ｍ ｟ｾ ｾ Ｍ ｟ ｟ Ｚ Ｚ Ｚ ｟ ｟ Ｍ ｟ ］ ｟ Ｎ Ｍ Ａ Ｍ Ｍ Ｍ Ｍ Ｍ Ｚ ｾ Ｍ ｾＭＭ Ｚ ［ ［ ｟ Ｍ ｾｾ Ｍ Ｍ Ｚ Ｎ

o

Figure (8-11): Cb2 and SStrajectories

17



0.08, - .--- -.-- --.-- ---,r-- ..---_ --.--_ -.-_ --.-_ ----r_ --..

Non steady-state
Cb2

0.03

Cb1

t
0.02

55 ,
0 4 8 12 16 20 24 28 32 36 40

lime (H)

0.07

5teady-state

0.06
U)
U)

u
c:
Rl

III Ca2
c:
.2 0.05
ｾ Ca1
C
CIl
o
c:

8
0.04

Figure (8-12): Outputvectorand overall SS trajectories

8.3 DATA RECONCILIATION

Measuredprocessdatamay containinherentl yinaccurateinformation because, for

example, the measurementsare obtained with imperfect instruments or the

presenceof random errors. When imperfect information is used for state

estimationand processcontrol, the stateof the system is thusmisrepresentedand

the resulting control performancemay be poor and can lead to suboptimal and

evenunsafeprocessoperation.

The objectiveof datareconciliationis to correctmeasureddata variables sothej

obey natural laws, such asmaterial and energy balances. Data reconciliation is

achievedby removing all sorts of randomerrors that might have corrupted the

datameasurements. Becauserandomerrors are caused b., the randomnessof the

measurements, they possessa zero-mean and are assumed to be normally

distributed. This contrasts\ ith gross errors \ hich are usually caused by non-

randome ents such asprocess leaks and biases. Datareconciliation techniqu



cannotremove such grosserrors, and thereforegrosserror detectiontechniques

are used in such circumstances(section 8.4). In this section, xve assumeonly

random errors are present in the measurementdata, which is the frequently

encounteredpracticalsituation.

The data reconciliationproblem can be defined as the estimationof measured

processdatavariablesto reducemeasurementerror through the useof temporal

and specialor functional, redundancies(Liebmanet aI., 1992).Mathematically.it

canbe definedas anNLP problem.

As introducedin chapter6, themeasurementerror e is givenby:

e =YIII - Y/rne (8.8)

where Ym is the vectorof measuredvariables,and Y/roe is thevectorof true values

of variables.

The measurementerrorsare estimatedby minimising sum-squaresof standardised

measurementerrors, &7'V-
I&, subject to a set of constraintsthat describe the

relationshipamongthe variables,i.e., theprocessmodel. In otherwords:

Min
Y'rue

ｾ (Ym - Y,ro,)' V-I (Ym - Y,m)

Subjectto: h(y,rol') = 0

(8.9)

where V is the variance-covariancematrix where eachelement v,; is (J,2, and is

assumedto be the same for all data sets, andh is a setof algebraic equality

constraintequations.h canbe linear as well asnonlinear.The aboveequationis a

general formulation of the data reconciliationproblem. It is a NLP problem as

statedearlier. Solving equation(8.9) gives the reconciledvalues of the process

variablesandthe estimatedmeasurementerrors.
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In the caseof linear constraintequations,where material balances areconsidered

only, so,

(8.10)

where A is the Jacobianof the constraint equations. Then theoptimisation

problemof equation(8-9) has ananalyticalsolutionwhich can be written as:

(8.11)

and thevectorof measurementadjustmentsis:

(8.12)

However,if the constraintequationsarenonlinear,that ish includes material and

energybalances,chemicalreactionrate equations,thermodynamicrelations...etc;

the solution found in equation(8.11) is no longer applicable. In this case. the

problemof equation(8.9) is solved bynonlinearprogrammingtechniques.

8.4 GROSSERROR DETECTION

Gross error detectiontechniquesare used to detect errors which areof a non-

random nature. As mentionedpreviously, raw process data are subject to two

typesof errors: randomerrors and gross errors. Gross errors areof different types.

Figure (8-13) shows some examplesof these types(Narasimhanand Jordache.

2000). As data reconciliation techniquesonly remove random errors with the

conditionof non-existenceof gross errors, a gross error detection phase is needed

in orderto dealwith such non random errors.
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Figure(8-13): Typesof grosserrors(NarasimhanandJordache,2000).

Ideally, the main tasksof a grosserrordetectiontechniqueare to:

Detect the existenceof grosserrors, identify their locations, identify their types

and to determinetheir sizes. After that, the gross errors are eithercorrectedor

eliminated.

Severalapproaches,such as time seriesscreening,statistical,or neural network

methodshavebeenproposedanddevelopedfor gross errordetection.

In the time screeningapproach,horizontal time screeningis used to checklor

steady-statedata,while vertical screeningis used to filter out the gross errors in

sampleddata. This approachhaspractisedin industrial applications.But because

instrumenterrors and processleaks usually result in persistentgross errors.they

cannotbe detectedor eliminatedby time screeningmethodswhich areinsensitive

to suchtypesof errors(Chen, 1998).
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In the neural network approach,trained ANN's can beused for effective fault

detectionand diagnosisof chemicalplants. Artificial Neural networks Ｈ Ｎ Ｍ ｜ ｾ Ｑ ｜ ﾷ ｳ Ｉ

can be consideredas collectionsof simple computationalunits which can take a

numerical input and transform it into an output. Because they possessa

considerableability to learn from and adapt to their environment.they can be

trained to learn associationsbetweenfaults in systemsand thevector of sensor

measurement.Noise in processmeasurementis accommodatedand therefore.

effectively detectedand identified. However, this approachpresentsone major

drawback: it is computationallyexpensive.In other words, the complexity of

computationsincreaseswith the numberof sensors.For example,if the numberof

sensors IS: 1000 sensor, training and its consequentcomputations become

prohibitive.

The statistical approach however, requires a detailed model of the process.

Knowledge of the measurementerror structure is also essential. Generally

speaking,a statisticalmethodinvolvessolvinga NLP problemin orderto estimate

the errors. This kind of approachhas been reported to be the mosteffectivc

methodfor grosserrordetection.

We considera linear (or linearised)measurementmodel representedby:

Y -Y +s11/ - true

S = S + e e.r g 1

(8.13)

(8.1'+)

h and e are asabove,the measurementerror e containsrandom
were Y111 ' Y1me'

errors(e, ) andgrosserrors.Sx is avectorof grosserrorsvalues,while ei is a unit

vectorwhich all elementsare zeroexceptthe ith elementis 1.

The constraintresidualsvectorr is givenby (Mah, 1990):

r > t\' -c.. III
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whereA is asabove,andc is aconstantvectorin the constraint.

The vectorof measurementadjustmentsa can begivenby:

a=y -ytrue m (8.16)

It is typically assumedthatthereare nounmeasuredvariables(Sequiera,2003).

Statisticalmethodsfor grosserrordetectioncanbe divided into two categories:

The first categoryusesthe distributionof constraintresidualsr, while the second

oneusesthe distributionof measurementadjustmentsa.

Methods basedon constraintresidualsinclude: the Global test. Nodal test and

GLR (seechapter6). In thesemethods,linearity of the constraintsis assumed,and

all variablesmustbe measured.

Methodsbasedon measurementadjustmentsinclude: the measurementtest. Tjoa

andBiegler'scontaminatedGaussiandistributionmethod,and therobustfunction

method.Unlike the methodsbasedon constraintresiduals,the methodsbasedon

measurementadjustmentsneedto reconcileprocessdatafirst, then thereconciled

data is testedor examinedfor errors (the reconcileddatashould follow a normal

distribution(Sequiera,2003)).Also, thesemethodsallow unmeasuredvariablesto

be included in the plant model and canhandle nonlinearconstraintsas well as

linear. This kind of methods is classified as gross error detection and data

reconciliationmethodsandwill be coveredin detail in the nextsection.

Below, is a list of the maincontributionsin the areaof grosserrordetection:

• The Global Test(Ripps, 1965): This methoduseshypothesistestingto test for

grosserrorspresence.The null hypothesistest u., that there is nogrosserror, is

used. It is basedon the factthat the objective function of the datareconciliation

problem has a Chi-square distribution at the minimum if the sampled data

measurementsare independentand normally distributedaroundtheir true values.

This methodwas later modified by Almasy and Sztano(1975) to include cases

wherethe variancesof the measurementsare notknown.
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• The Nodal Test (Reilly and Carpani, 1963; Mah et al.. 1976):Basedon the

constraintresidualsr. In the absenceof grosserrors r follows . I
,11 a m-vanatenorma

distribution.Therefore

(8.17)

follows a standardnormal distribution,N(O,1), under n., If fA is larger than the

critical value basedon a confidencelevel a, then it is concludedthat there is at

least one gross error presentin the setof measurementthat participatesin the

correspondingnode balance.Rollins et al. (1996) proposeda strategyusing this

teston linearcombinationof nodes.

• The MeasurementTest (Mah and Tamhane, 1982): this method is for

combined gross error detection and data reconciliation and will be treated in

section8.5.

• The GeneralisedLikelihood Ratio Test (GLR): Originally by Wilsky and

Jones(1974) and thenNarasimhanand Mah (1987). This methodwas developed

to identify different types of gross errors causedby either measurementbiases

and/ or process leaks with the GLR test. This method assumeslinearity (or

linearised)of the constraintequations,and requiresa model thatdescribesthe

effect of eachtype of grosserror. For instance,the model of the systemis given

by: Y =Y + e+ be. for a measurement bias of magnitude b, and
11/ true I

h(Ytrue) = AYtrue- bmj =° for a processleak. Although suited for single gross

error identification,a serialcompensationstrategyis oftenadoptedin combination

with the GLR methodwhen dealingwith multiple gross errors (Narasimhanand

Mah, 1987).

• The UnbiasedEstimationTechnique(UBET, Rollins and Davis (1992. 199))):

This method considersboth biasedmeasurementsand processleaks. It is only

applicableto normally distributederrors,steady-stateand linearconstraints.First.
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the global test is appliedto detectany grosserrors, then UBET is usedto detect

the numberand locationof grosserrorsby trial anderror. using two test statistics

(F and Bonferoni tests).Rollins and Roelfs (1992) extendedthis approachto the

casewherethe constraintsarebilinear.

• The Principle ComponentAnalysis Test (PCA, Tong and Crowe (1996)): In

this technique,a set of correlatedvariables is transformedinto a new set of

uncorrelated variables, known as principal component (PC). through an

orthonormalmatrix constructedby the eigenvectorsof the covariancematrix H

for the projectedconstraintresiduals,i.e.,

d=WTr (8.18)

where W is constructedfrom theeigenvectorof covariancematrix H of constraint

residualsandsatisfies

W = VA-liZ (8.19)

where matrix A is diagonal,consistingof the eigenvaluesof H on its diagonal

andsatisfies

A=VTHV

The matrix U consistsof the orthonormalisedeigenvectorsof H so that

VVT = !

(8.20)

(8.21 )

Throughthis transformation,the new vectord becomesa new set of uncorrelated

variablesand is normally distributed, i.e.. d - N(O. 1). Then the grosserrors are

detectedby the nodal testmethodasdiscussedpreviously.
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8.5 COMBINED GROSS ERROR DETECTION AND DA.TA.

RECONCILIATION

In combinedgross error detectionand data reconciliation,data reconciliation is

required to reconcile processdata and to estimatethe measurementerrors for

grosserror identification,Thesemethods,canbe appliedto modelsthat are highly

nonlinearandacceptprocessvariablesthatare unmeasuredor unmeasurable.

There are severalefficient methodsfor combinedgrosserror detectionand data

reconciliation available, As mentioned previously, they are all based on the

distribution function of the measurementadjustments.The processto proceedfor

grosserrordetectionanddatareconciliationis asdescribedbellow:

First datareconciliationis conductedto reconcileall processdataby maximising

the joint distribution function subjectto the processconstraints.Whenall process

datahave randomerrors removed,a test statistic is applied to identify the gross

errors,

Below are some of the most recognisedmethods In combined gross errors

detectionanddatareconciliation:

8.5.1. MeasurementTest

Developedby Mah and Tamhane(1982), this methodis basedon the distribution

function of measurementerrors,Theseerrorsare estimatedby minimising the sum

squaresof the standardisedmeasurementerrors subject to the processmodel

constraints,In otherwords:

)1' l ' -l ( )Minimise: (y", - Ytnle Y", - J'tMie
.r",

Subjectto : h(y", ) = 0

(8.22)

This formulation is exactly the sameas the one in equation(8.9) for solving the

'I' ti bl 1 This NLP problem can be solved bv nonlineardata reconci ia IOn pro en. .
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programmingtechniques,or canhavean analyticalsolution if the constraintsare

linear as shown in equation(8.11). The measurementerrors (equation Ｘ Ｎ Ｑ ｾ Ｉ can

then be usedfor a test to determinewhethergrosserrors exist or not. This test is

given as follows:

If IOj I/O'j > C thenmeasurementi containsa grosserror.

where OJ = Ym j - Yt ruej is the measurementerror i, and C is acertaincritical value.

C is chosenfrom a table of a standardnormal distribution function basedon the

selectedsignificantlevel f3 for individual measurement,which is given by:

f3=I-(1-a)l/m (8.23)

where a is the overall significancelevel, and m is thenumberof distinct values

of IOj I/O'j for all measurementerrors.

The main advantagesof usingthe measurementtest is that it candetectsourcesof

grosserrors,canbe appliedto nonlinearconstraintcases, and allowsunmeasured

variablesin the model. A crucial disadvantageis that, as in mosttraditional gross

error detection methods, it assumesa normal distribution of the measurement

errorswhich is not alwaystrue.

The implementationof the measurementtest algorithm as describedin Serth and

Heenan(1986) is givenbellow:

Step 1: Computereconciledvalues Ytnle and measurementadjustmentsa for the

full systemusingequations(8.11)and (8.12).

Step 2: Compute standardisedmeasurementadjustments: cj =Q/ / (J/ for each

measurement.
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Step3: Compareeach £; with the critical value of test statistic, C, selectedfrom

the table of standardnormal distribution at the selectedsignificant level f3. If

1£; I> C, then denote measurementi as a suspectedmeasurementcontaining

systematicerrorsand add the suspectedmeasurementsto set S.If 1£/1 < C for all

measurements,thengo to Step7.

Step4: If the set S is empty,proceedto step7. Otherwise,removemeasurements

containedin S from the systemby nodal aggregation.This processeliminates

some of the constraintsand variables and yields a new system with reduced

numberof constraintsand variables,and the original constraints(A -"/me = 0) are

reducedas Bd = O. In the reducedconstraints,d representsthe variable vector as

Y,me excludingthe variablesthat are eliminatedby the nodal aggregation,and B

representsthe constraintcoefficient matrix as A excludingthe rows and columns

that are correspondingto the eliminatedconstraintsand variablesfrom the nodal

aggregation. Also, the measurementvector Ym is reduced to vector 11' that

excludesthe eliminatedmeasurementsfrom nodal aggregation,and let T denote

the set of measurementscontainedin w. In addition, the varianceand covariance

matrix of measurementerrors V is reducedto matrix P that excludesthe variances

andcovariancesof the eliminatedmeasurements.

Step 5: RepeatStep 1 to computethe estimatedvaluesof processvariablesand

measurementadjustmentsby equations(8.11) and (8.12) with A, Ym ' and I'

replacedby B, w, andP, respectively.

Step6: Computecorrectedvaluesof variablesin S by solvingA Y,me = 0 with the

variablesin setT specifiedwith the estimatedvaluesfrom step5 and thevariables

in set R specifiedwith the original measuredvalues. R is a setof variablesthat

were eliminatedduring the nodal aggregationand whosemeasureddatadoesnot

containgrosserror, i.e .. R = U - (SUT ), whereU is the setof all variablesi11 the

system.Thengo backto Step2.
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Step7: If the setS is empty,thenall measurementsdo not containgross error. and

the estimatedvalues of processvariables in step 1 by equation(8.11) are the

reconciledvaluesof all processvariables.Otherwise,the setof reconciledvalues

is obtainedfrom the valuescomputedin step6 for the variablescontaininggross

errorsin setS, the reconciledvaluescomputedin step 5 for thevariablesin set T.

andthe original measuredvaluesfor the variablesin set R.

The above procedure ensuresthe detection of gross errors in systems wi th

nonlinearmodel constraintsby minimising the sum squaresof the standardised

measurementerrors.However,the measurementtestas it wasoriginally proposed.

helps spreadthe gross error to all the measurements,leading to large residuals

correspondingto good measurements.This results in the measurementsbeing

erroneouslyidentified as containing gross errors (Type I errors). An iterative

elimination method was developed(Ripps, 1965; Serth andHeenan. 1986). to

overcomethis problem,and wasincorporatedin the measurementtest methodto

form the IterativeMeasurementTest(lMT). In this method,only the measurement

correspondingto the largest standardisederror is automatically identified as

containinga grosserror and isdeletedeachtime the measurementtest isapplied.

The IMT reducestype I errors (a grosserror is identified, while there is none)

significantly, but again, this method encountersone major problem: the setof

reconciled flow rates may contain negative values or absurdly large values

remains. Therefore, the Modified Iterative MeasurementTest (MIMT) was

proposed by Kim et aI. (1997) to avoid this problem. This technique was

implementedon a simple CSTR systemand resultswere comparedwhen using

nonlinearprogrammingtechniqueswith thoseusing successivelinearisation.The

results showedthat the MIMT with nonlinearprogrammingtechniqueperforms

betterand provides moreaccurateresults(Kim et al., 1997). The IMT and \fl\ 1'1'

algorithmprocedurescan befound in AppendixC.

To summarise. the measurementtest is based on measurementerrors. It

necessitatesthe eliminationof randomerrorsfirst by applyingdatareconciliation.
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The methodthenuses theerrorestimatesto directly detect and locate gross errors.

It canbe appliedto nonlinearconstraintcases and allowsunmeasuredvariables in

the model. However, the major drawbackof the method is that it assumes a

normaldistributionof the errors,which cannotdescribethe distributionbehaviour

of grosserrors.The IMT and MIMT versionsof the measurementtest overcome

this kind of problems.

8.5.2.Tjoa andBiegler'sContaminatedGaussiandistribution

This methoduses a twomode(randomand gross errors)Gaussiandistributionof

the functionof measurementerror. It wasproposedby Tjoa and Biegler (1991) for

gross error detectionand datareconciliation.The proposeddistribution function

of the measurementerrorswasgivenas:

P(Ymi IY,ruei) = (1- TJ )P(Ymi IY'ruei' R)+ TJri»; IY'ruei'G) (8.24)

where P(y ,I Y ,R) is theprobabilitydistributionfunction for the random error,1/11 truet ,

P(y , IY ,G) is the probability distribution function for the gross error, with a
III/ 'mel'

grosserroroccurringwith a prior probability TJ, and 1-TJ for a random error.

Becausethe distribution function of randomerrors is normal, with zero mean and

known variance (5'2 , it can bewritten as follows:

(8.25)
-(Ym-YI",.)2

217 21
P(YmIY'rue'R) = J21UYe

So much so, the distribution function for a gross error which is assumed to be

normally distributedwith zero mean and a largervariance Ｈ ｢ Ｈ ｊ Ｂ Ｉ ｾ (with h» 1), can

beexpressedas:

-(Ym-,VI"" )2

G 1 2(h(j)2

P(Ym I.l',rue' ) = ｾｨ e
....; ':';7 (J"
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Tjoa and Biegler usedthe global likelihood function for all measurements.which

is the productof the individual distribution functions for eachmeasurementand

calledit the ContaminatedGaussianDistributionfunction. It is civen by:
'- .

N N

P(YmIYtrue)=TI P(Ym; IYtrueJ=TI {(1-77)P(Y
nll

IY/n/l!/' R)
;=1 ;=1 (8.27)

This function is maximisedor its negative logarithm minimised subject to the

constraintsin plantmodel in orderto reconcileprocessmeasurementsas follows:

Minimise:
Y/rue

Subject to:

-ｾ {In [(l-17)e ＭＨｙｾ［ＺＺ［ＭＩＧ + ｾ eＭＨｙｾ［ＺＷＧＩＧ ] -In[J2mT, J}
h(Ytrue)=0

YL <Y < yU
true true true

(8.28)

whereall the variablesare aspreviouslydefined,and ｙｴｾｬ･ and ｙｴｬｾＯｬＧ are lower and

upperboundson the processvariables.

The abovenonlineardatareconciliationproblem(equation8.28) is solved using

nonlinearprogrammingtechniques,wherevaluesfor 77 and b are needed.

After data reconciliation is accomplished,the measurementsare analysed for

grosserror presenceby applyingthe following teststatistic:

If: 77P(Ymi IYtnlei'G) > (1-77)P(YmiIYtnlei' R) , then a gross error exists on

measurementi. Alternatively, use

1£;1= Yn ll
- Ytnlel >
a;

2b
2

In [b(l- 77)]
b2 -1 77

(8.29)

If equation(8.29) is satisfied,thenmeasurementi containsgross error.Otherwise,

no grosserror is presentin this measurement.
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The following proceduredescribeshow the contaminatsr]G . di 'b .aussian istn uuon
methodis implemented:

1. Solve the data reconciliationproblem given by equation(8.28) to give the

reconciledvaluesfor measuredand unmeasuredvariables,and thencomputethe

vectorof measurementadjustmentsa =y _ Y
true m .

2. Apply the test statistic (equation8.29) to determineif the measurementIS

contaminatedby a gross error. If the test ispositive, i.e.: the measurementIS

affectedby a grosserror, replaceit with its appropriatereconciledvalue. This test

is applied on all measurements.When finished, construct a new set of

measurementusing the reconcileddatawhich replacethe measurementsaffected

by gross errors, and those original measurementswhich contain random errors

only. This new setof measurementscontainsrandomerrors only, and it is used in

simultaneous data reconciliation and parameter estimation to update plant

parametersfor on-lineoptimisation.

As mentionedearlier, the valuesof 1] and b are two parametersneeded by the

contaminatedGaussiandistribution algorithm. b is a tuningparameterto shape

the distribution. Increasing b will reduce the effectof a gross error on the

estimation and increasesthe robustnessof this approach. However, it will

decreasethe asymptoticefficiency to the normality. In practice, the valueof b is

usuallychosenbetween10-20, and theweight coefficient for a measurementwith

a grosserror is 100-400times smallerthan one with a random error. As for the

secondparameterwhich is the prior probability of a gross error,1], if no prior

information about the errors is available, then the value of 1] = 0.5 is

recommended(Chen,1998).

It has to be saidthat the contaminatedGaussiandistribution method is more

effectivethanthe measurementtest method(Chen, 1998). This isillustratedin the

fact that the contaminated Gaussian distribution method incorporates the

distributionpatternfor both randomand gross errors, and it is able to rectify both

randomand grosserrors in measurements.Another feature that thecontaminated
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Gaussiandistribution methodposses,is that it candirectly locate the gross error

andgivesunbiasedestimationfor all reconcileddata.

8.5.3.Robust Function Methods

In robuststatistics,insteadof assumingan idealdistribution of the measurement

errorsas in classicalapproaches,an estimatorwhich will give unbiasedresults in

presenceof this ideal distribution is constructed.At the same time, thisestimator

is insensitiveto deviationsfrom ideality. Therobust function is to beinsensitive

to the presenceof gross errors insampleddata when this function is used to

conduct data reconciliation, and it still maintains a high efficiency (lower

dispersion)that indicates the accuracyof estimation(Huber, 1972 and Seber,

1984).

Severaldifferent classesof estimatorshave been developed: theLcstimators.R-

estimatorsand M-estimators. The most important ones are theM-estimators,

which are generalisationsof the maximum-likelihoodestimator(Albuquerqueand

Biegler, 1996). It is describedin the following:

n

min -L P(Ymi,Y'roei )
Ylrue ;=1

Subjectto: h(Y,roe)= 0
L < < l!

Y'roe - Y'roe - Y'roe

(8.30)

Severaldistribution functions have beenproposedin the literature. To note: the

Lorentzianand Fair function.

The Lorentziandistributionis given by(JonstonandKramer. 1995):

1 (8.31)
p(£J=1+ 1£;2

where e is the standardisedmeasurementerror comprising both random and,

grosserror, i.e.: e,=(Yml - )'troc, )/a.
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The Fair function which is convexand has gotcontinuousfirst and secondorder

derivative.It is givenby (Albuquerqueand Biegler, 1996):

p(e,c)=c' [1:1_1og(I + 1:1)J (8.32)

where ci is the standardised measurementerrorand c is atuningparameter.

A boxplot techniqueis usedto testfor grosserror presence.The centreof the box

representsthe median,and the sidesrepresentthe quartiles.Outliers are detected

by computingthe order statistics(medianand quartiles)and their distancesfrom

these.In this test,the interquartile-rangeis definedby:

(8.33)

where Fu andF; are thethird and first quartilesrespectively.The outlier cutoffs

are given by: F; - ad; and F" +ad; , with a usuallyset to 1/3(Albuquerqueand

Biegler, 1996).Measurementsoutsidethe cutoffareconsideredasoutliers.

Robuststatisticalmethodswere developedto overcomedifficulties with data that

contain grosserrors and that does notfollow the ideal normaldistribution. This

kind of method usesan objective function that is insensitiveto gross errors in

sampled data and known to have the advantageof having a very simple

mathematical form and also for having very convenient properties for

optimisation.Moreover, robustmethodsdo not need anyprior knowledgeof the

error structureof the outliersand of the data.However,the accuracyof estimation

from thesemethodswill be slightly lost becauserobust functions have a flatter

shapethat gives larger variation in the estimation.Also, the test used todetect

gross errors for robust methodsis not asstraight forward as the contaminated

Gaussiandistribution,althoughthe boxplot and dotplot methodsfrom exploratory

statistics(AlbuquerqueandBiegler, 1996) may be used toidentify the grosserrors
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of sampleddata. Moreover,suchrobustmethodstend to cause more type I errors

thata grosserrordoesnot existbut waspositively identified.

Chen(2003), reportingthe resultsof theoreticaland numericalevaluationsof the

three methods for combined data reconciliation and gross error detection

presentedabove,showedthat:

The Tjoa and Biegler's contaminatedGaussiandistribution methodhas the best

performancefor measurementscontaminatedby random errors andmoderate

grosserrorsof the range(3 (J -30(J).

The robust method using Lorentzian distribution function proved to be more

effectivefor measurementswith very large gross errors(largerthan 30cr ).

The measurementtest provides a more accurateestimation for measurements

containingrandomerrors only. However it gives significantly biasedestimation

whengrosserrorslargerthan 10a arepresentin the measurements

8.6 PARAMETER ESTIMATION

In on-line optimisation,some modelparametersare regularly updated. In reality,

there is generally a difference betweenthe model and the realprocessit 1S

representing,so the aim is to reducemodel-reality(or plant-model)differences.

For an unconstrainedproblem, a model of a plant can beexpressedfunction of

process variablesx, fixed parametersPa , andvariableor updatedparametersPfJ ,

as:

(8.3'+)

The vectorof updatedparametersP
fJ

is estimatedfrom processmeasurementsy

with the help of an appropriateparameterestimationproblem formulation. In case

the data n1easurementsare affectedby noise, datareconciliationcan beused to

reducethe effectof noiseand datavariability. and hence improve theestimation.
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Deming(1943)originally formulatedthe generalproblemof parameterestimation

by taking into accountall the errors in measuredvariables. Britt and Luecke

(1973) presentedgeneralmethodologyfor the parameterestimationof error-in-

variablesmodel. According to them, there are two typesof modelsfor parameter

estimation.The first type is the explicit model. In this model,measurementsare

divided into two sets: dependentand independentvariables. Theindependent

variablesare measuredwith greateraccuracythanthe dependentones. In fact. the

dependentvariablesare expressedas anexplicit function of measuredvariables.

Parameterscan be estimatedby such proceduresby minimising the sum of

squarederrorsof dependentvariables(least squaresmethod)or maximizing the

likelihood function, a probability distribution function of the measurementerrors

of dependentvariables(maximum likelihood method).This is anunconstrained

optimisationproblem, and linear regressionmethodis one of examplesfor this

type of estimation.

The secondtype of model is the implicit or error-in-variablesmodel. Where errors

are present in all measurementsand the variables cannot be divided into

dependentand independentvariablesas in theexplicit model. Theconstraintsof

processmodels are implicit. Therefore,the optimisation problem of parameter

estimationmustbe formulatedas aconstrainedoptimisationproblem. Inerror-in-

variablesmodels, the vector of measurementsy is divided into measuredand

unmeasuredvariablesYIII and YII·

Often, data reconciliation and parameterestimation are joint and performed

together in what's called Simultaneous data reconciliation and parameter

estimation.They use error-in-variablesmodels, where all themeasuredvariables

haveerrorsin them,and aregivenby the following traditional relationship:

Y -Y +&III - true

whereall the variablesare aspreviouslydefined.

The vectorof updatedparametersand reconciledvariables Pp and Ytnlt' arc found

b
.... th obicctive function subject to the equality constraints iny Inlnln11s1ng C J . •

equation(8.34).

19)



Therefore,the general formulation of the Simultaneousdata reconciliation and

parameterestimationis a leastsquaresconstrainedoptimisationproblem.

rmn : (y - )TV-1(
P • mY/rue Y m - Y/rue)

fJ

subject to:h(y,rue, Pa ' P
fJ

) =0
(8.36)

Britt andLuecke(1973)describedthe useof Lagrangemultiplier methodto solve

the optimisation problem of equation (8.36). The constraints are implicit

nonlinear, and there is no analytical solution for it. The authors developedan

iterative linearisationtechniqueto solve this nonlinearproblem. They linearised

the nonlinearconstraintsusing Taylor expansionat the solution point of the last

linearisation,andthen iteratively searchedfor the optimal solution. They came to

a conclusion that their algorithm provided a feasible approachto the general

parameterestimationproblems.

In order to eliminateplant-modelmismatch,therehave been severalproposalsto

integratethe parameterestimationproblemwith the systemoptimisationproblem

in one whole formulation (Haimesand Wismer, Ｑ Ｙ Ｗ Ｒ ｾ Roberts, Ｑ Ｙ Ｗ Ｙ ｾ Chengand

Zafiriou, 2000). The main contributionto the subjectand relevantto our study is

of no doubt the Integrated System Optimisation and ParameterEstimation

(lSOPE) algorithm developedby Roberts (1979). The general ideabehind the

ISOPE algorithm is to replace the model-basedoptimisation problem, by an

equivalentproblem which is ultimately decomposedinto a parameterestimation

and a modified model-based optimisation problems. This algorithm was

introducedin chapter2, andwill be reviewedin the following subsection.
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8.7 VARIANCE-COVARIANCE MATRIX ESTIMATION

One crucial point when solving data reconciliation. gross errordetection and

parameterestimationproblems,is the choiceof the variance-covariancematrix. T'.

Severalmethodsto estimatethis matrix have been reported in the literature. To

note, thedirect methodbasedon the meanof the measurementsamples. and the

indirect method which uses theestimatesof the constraintresidualscalculated

usingthe directmethod.

In the directmethod,the variance-covarianceis given by:

where Y . is the meanof the measuredvariable YIII ; over a numberof samplesn,
nil

and isgivenby:

1 n

Ymi =- LYmik
n k=1

The variance-covariancematrix of the measurementerrors V is formed from the

aboveformulation,and is given by:

(8.39)

The aboveformulation of the variance-covariancematrix is only valid for cases

where there are no gross errorspresenton the measurements.and the sampled

dataare independentof each other. In other words, then samples have to be taken

from the samesteady-stateoperatingpoint.
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From equation(8.39),onecandeductthe covariancematrix of constraintresiduals

H (in the caseof linearconstraints)asfollows:

(8.40)

This formulationwas usedby Keller et al. (1992), in his indirect method to avoid

or eliminate the dependencybetweensampleddata which occur in the direct

method.

Equation(8.40), which representsthe constraintresidualsmatrix H found by the

direct method,is usedto estimatethe varianceof the measurementerrors using a

simpleoptimisationprocedure.This procedureis the minimisationof the squared

differencesbetweenH and theestimatedconstraintresidualvariancesAV· A, with

V· in the unknown:

(8.41 )

Equation (8.41) is solved to determine V· which IS the variance-covariance

matrix of the measurementerrors.

8.8 OPTIMISATION

Oncethe dataandmodelsare reliable, i.e.: after the datameasurementshave been

tested for steady-statedetection, data reconciliation to remove random errors,

grosserror detectionto removegross errors andparameterestimationto update

the model parameters,optimisation,which is the determinationof those optimal

set-pointsfor which the systemoperatesmost efficiently. is requiredto becarried

out.

Generally speaking,optimisation is concernedwith the mathematicalproblem

definedby minimising (or maximising)an objective function of n variablessay[.

subjectto somem equalityandp inequalityconstraints:
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Minimize ft» x x )x' , l' 2' .. ·····, n
1,(/=1" ..n)

Subjectto: hj (xI'X2, ,xn ) =0, for} =1,2, m

gk(XI'X2, ·,xn ) < 0, for k =1,2 p

(8,42)

Many methods and techniqueshave been developedand used to solve the

mathematicalproblem(8.42). Dependingon the natureof the objective function.

equality and inequality constraints, it is possible to divide them into three

categories(Ellis, 1994):

" Category1: Linear programmingproblems,wherethe objectivefunction f{x).

the equality and inequality constraints(h(x) and g(x» are all linearfunctions

of the independentvariablex. It is without doubt the mostnaturalmechanism

for formulating a vast array of problems with modest effort. Linear

programmingformulationsarepopularbecauseit lends itselfmore readily to a

mathematicalformulation, the theory is richer, and thecomputationsimpler

for linear problemsthan for nonlinearones. TheSolutions of this problem

always lay on constraintboundariesand algorithms exploiting this fact are

well established.

ｾ Category2: Quadraticprogrammingproblems,where theobjectivef{x) is a

quadratic function of x, with perhaps, linear or quadratic constraints.

Quadraticprogrammingarises in many applicationsand it forms a basisof

some specific algorithms and techniques. As it is usually solved using

calculus, many problems (which are highly non-linear) are converted into

quadraticformulations.

»: Category3: The generalnon-linearprogrammingproblem. This problem is

usually too complexto solve usingcalculusbecauseof the nonlinearityof the

objective function and constraints.Usually numerical techniquesarc used to

solvethis kind of problems,
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Optimisationtechniquescan be divided into two generalcategories:direct and

indirect (model-based)optimisationmethods(GarciaandMorari. 1981).

In the direct approach,measurementsare takendirectly from the realprocessas it

is moving from one operating point to another, and a suitable optimisation

techniqueis appliedto find the optimum operatingpoint. Theway to proceedin

choosinga suitable optimisationmethod for the direct approachdependsupon

severalcriterions,suchasstability andconvergence(Mansourand Ellis, 2003).

Although theseclassicaltechniqueshaveprovedto deliver good performancein

optimising someprocesses'off-line', they still have two major problemswhen

applied on-line (Ellis et al, 1988): the first onerelatedto the processdynamics,

while the secondto noisepresence.

As all real processesare dynamic in their nature,enoughtime (waiting period)

must be given to the systemto settledown, as theoptimising control problem is

essentiallya steady-stateproblem, before taking any measurementsor applying

any inputs. This procedurecanbe time consumingespeciallyin the caseof slow

processeswhere the waiting period may becomeprohibitive (Ellis et aI, 1988).

Also in practice, measurementsmight be affected by some noise, thus givmg

wrong valuesof the measuredvariablesyielding to sub-optimality.

In the indirect or model-basedapproach,optimisationis performedon a modelof

the systeminsteadof the physical systemitself. When found theresultsare then

appliedto the real process.In this case,measurementnoisesarehighly unlikely to

occur, and the problem of the systemdynamic is overcomevia using a steady-

statemodel.

In practice,suchproblemsrequirea realistic representationof the physicalsystem

by means of a suitable mathematical model and the explicit or implicit

formulation of an appropriateperformancecriterion. The mathematicalmodcl

must describecorrectly at least the qualitative featuresof the practicalsystemin
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the complete range of the probable operating conditions. and the optimality

criterionmustbe avalid representationof the practicalmeaningof optimality.

Although proved effective in some cases,this approachpresentssome major

difficulties, as we could never provide the right model of the system,as there

always exist differencesor mismatchesbetweenthe model and reality. This has

beenacknowledgedfor sometime now, and it hasbeenwelcomedthat themodel

must be adaptive so that some model parameterscan beperiodically updated

(Lowe andHidden, 1971).

8.8.1 The ISOPE algorithm

The key feature of the ISOPE algorithm IS to replace the model-based

optimisation problem, after an analysis of first-order optimality conditions

(Appendix A), by an equivalentproblemwhich is ultimately decomposedinto a

parameterestimationproblemand amodified model-basedoptimisationproblem

(Robertset al, 1988).As an on-line optimisationprocedure,the ISOPEalgorithm

(developedby Robertsin 1979) hassomefeatureswhich can either be taken as

direct or indirect. It is basedon derivativescalculationprovided by real process

measurements(can be thought of as using elementsof the direct technique)to

updatean unfaithful model usedin the model-basedoptimisation,thus reaching

the real optimum of the processin spite of model-reality differences(refer to

chapter2 for a detaileddescriptionof the ISOPEalgorithm).

However,this methodsuffersfrom a major problem,which is that thederivatives

have to be estimatedby meansof measurementswhich increasesgeometrically

with problemdimensionality.

Methodsand techniqueshavesincebeendevelopedfor the purposeof estimating

these process derivatives, such as: Finite Difference Approximation \ lethod

(FDAM), Dual Control Optimisation, Broydons method and Dynamic vlodel

Identification method (DMI), with a linear model. Thesemethods have been

describedand applied under simulation, to a cascadeContinuousStirred Tank

Reactor(CSTR) systemin chapter4 of this thesis.togetherwith a new versionof
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the DMI which usesa nonlinearmodel insteadof a linear one. Resultsof the

comparison simulations showed the superiority of the dynamic model

identificationmethod.In chapter5, anArtificial NeuralNetwork methodwas also

introducedfor the samepurposeof estimatingreal processderivatives.Simulation

results showed the method produces extremely accurate estimates of the

derivativesin absenceof noise,and resultsin a fasterconvergenceof the ISOPE

algorithm.

8.9 SIMULATION CASE STUDIES

In this final sectionof this chapter,two simulationcasestudiesareconducted.The

two studiesare carriedout using the two CSTRsystemof chapter3 (Figure 3-2).

In the first simulationcasestudy, the systemwith its measurementscontaminated

by noise and bias is optimisedwithout recourseto steady-statedetection.gross

error detectionor data reconciliation. While in the secondcase study,on-line

optimisation is applied as a package on the system with its measurements

contaminatedby noise and bias. Thepackageincludes: steady-statedetection,

static datareconciliation,grosserror detection,and the actualoptimisationgiyen

by the ISOPEalgorithm.

The whole packagewas implementedunder a MATLABH/SIMULINK platform

in groupsof interconnectedmodules.The first moduleobtainsthe measurements

from the system. It is directly connectedto the steady-statedetection module

where the data is treated for automatic identification of steady-stateusing the

Brown and Rhinehart, (2000) method presentedearlier in this chapter. This

module is connectedto the gross error detection module. If steady-stateis

reached,the datameasurementsare passedto the gross errordetectionmodule to

be clearedof any grosserrors.After that, the datareconciliationmoduleuses mass

and energybalancesequationsto reconcilethe datameasurementsresulting from

the gross error detection module. After being cleared from gross andrandom

errors, the data is passedto the optimisationmodule.where the ISOPEalgorithm

performsthe integratedsystemoptimisationand parameterestimation.The whole

conceptis illustratedin figure (8-14).
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Figure (8-14): On-line OptimisationProcedure

In our case,the concentrationsof speciesB in both tanks are consideredas the

measuredvariables,Ym = [ChI Ch2f.
Both simulationswere carried out using MATLAB(I{ and werestartedfrom the

same initial operating point given by T, =307K and T2 =302K, yielding the

following steady-stateoutput valuesof the concentrationof productsA and B in

the two tanks 1 and 2, and

For the steady-statedetectionmodule,a global level of significancewas chosento

be a process =0.05. Which meansthat the individual level of significancefor each

variable is given by: a, =1- IV (1- aprocess) , where i =1,.... .\'. and .\' = :2. This

results in a =0.025 for eachvariable. The three filter parametersｾ Ｌ L, and L\
I - .

werechosenby trial error to be: ｾ =0.06. L2 =0.01 and L, =0.01. Thesevalues

proved to be the best valueswhen appliedamongstthe various tested.The value
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of Rerit was chosento be: Rerit = [1.35 ; 1.35]. Rerit is a vectorof 1\-\"0 elements:

eachelementcorrespondsto onemeasuredvariableof the process.

For the grosserror detectionand static datareconciliation,the added noisewas

simulatedas a normally distributednoise with zero mean. where thevariance-

covariancematrix V was obtainedas shownin section8.7. After a short training

periodof time, which includedapplyingsome given set-points. andmeasuringthe

correspondingoutputs,the matrix V was built upon these valuesobtainedby trial

anderror. The matrix Vcanbe updatedregularlyusing on-linemeasurements.

A bias was added(in simulation) to one of the two variablesCn.? and wasof a

valueof 0.01172[kmol/rrr'] which correspondsto 200/0of the initial value ofC,,:.

Finally, the optimisation was performedon a linear objective function of the

measuredvariableC
h2

• This choiceof the objectivefunction manifestsa desire to

maximisethe amountof componentB in tank 2. Therefore. themathematicalform

of this function is givenas:

L(y, v) = -Ch2

8.9.1. Results

Resultsof simulationsareshownon figures (8-15) to (8-22).

(8...U)

For the first case study, figures (8-15) and (8-17) show thetrajectoriesof the true

and measuredvaluesof the output variables Chi and Ch.? when nosteady-state

detection,data reconciliationor gross errordetectionwere applied, butonly the

ISOPEalgorithmto optimisethe objectivefunction given byequation(8"+3). The

first figure when only noise. and no bias waspresenton the measurement.('/ll'

while the secondfigure has both noise and bias. Figures(8-16) and (8-18) arc the

correspondingset-pointstrajectoriesfor each case.
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In the secondcasestudy,the full methodologyof on-line optimisationwas applied

as apackageon the twoCSTRsystem. Gross error detection andelimination.data

reconciliationand also theISOPEalgorithmwere not applied until we were sure

that the systemwas at steady-statewith a certainconfidencelevel. Figures(8-19)

to (8-22) showthe resultsobtainedwith this methodology.

8.9.2. Discussionof the Results

In the first casestudy, it is clear that the system does not converge to what we

exactly want it to. Especially in the case when oneof the measurementswas

biased.However,when no bias waspresenton eithermeasurementsthe outputs

tendto follow a certainpatternleadingto anear-optimumpoint. But, at thatstage.

the outputdoesn'tsettlefor a given value, but keeps fluctuating up and down with

a certainerror. In thesecondstudyhowever,we can see from the results obtained

that the algorithm converges even in presenceof a bias on oneof the

measurements.The slownessof the procedureshown in figures(8-19) and (8-20)

is due to the fact we had to leaveenough time to the steady-statedetection

algorithmto confidentlydetectsteady-statebefore applying datareconciliationor

the ISOPE algorithm. However, this huge waiting time is reduced in figures(8-

21) and (8-22). Reducingthe wastedtime was achieved byactivating the data

reconciliation,and thus stop thesteady-statedetectionprocedure as soon as we

are certain(of coursewith the givenconfidencelevel) thatsteady-stateis reached.

In fact, andasseenfrom bothsetsof figures this waiting time is reduced by half.
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the methodology wasnot appl ied with bothmeasurementsaffectedb noise only.
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Figure (8-17): Real process output and noisy measurement trajectories, case when
the methodologywas not applied with both measurements affected by noi e and

Cb2 is biased.
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Figure (8-19): Real processoutput noisy andreconciledmeasurem nt
trajectories, casewhen the methodology wasappliedwith b2 biased .
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Figure (8-20): Set-point trajectories, case\ hen the methodology was appli d
with b2 biased.
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time.
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8.10 SUMMARY

In this chapter,a methodologyof on-line optimisationhas beenpresentedand

reviewed. Conceptsof automatic detectionof steady-state,data reconciliation.

grosserror detectionandparameterestimationhave beenpresented. A method for

detecting steady-statein multivariable processesdeveloped by Brown and

Rhinehart (2000) has been implementedand tested on a two CSTR system.

Methods for combineddata reconciliation and gross errordetection have also

been reviewed. Simultaneous data reconciliation and parameter estimation

methods have also been outlined. A method for estimating the variance-

covariancematrix has alsobeenpresentedand implementedon the two CSTR

system.Finally, optimisationand the ISOPEalgorithm, which integratessystem

optimisationandparameterestimation,have been outlined. Thismethodologywas

implementedsuccessfullyon a two ContinuousStirred Tank Reactors(CSTR)

system.

In the next chapter,a summationof all the work carried out during this research

andconclusionsare given,togetherwith somethoughtsfor further research.
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CHAPTER9

CONCLUSIONS AND RECOMMENDATIONS

9.1 CONCLUSIONS

This thesis is concernedwith certainon-line optimisationstructuresand thegeneral

ISOPE algorithm which integratesan optimisation schemetogetherwith parameter

estimation.Algorithms to improve the performanceof the algorithm were presented.

These algorithms were for derivative estimation. steady-statedetection. data

reconciliation, gross error detection and optimisation. These topics were also

reviewed and testedto assestheir performanceand effectivenesson a two CSTR

system.

The concernhere has been issuesrelatedto the developmentand useof algorithms

for on-line optimisation and control. The methodology to apply an on-line

optimisationprocedureis complex, and may involve several steps andstagesfrom

different areas. A number of topics have beencovered in this thesis. These are:

Derivativesestimation,automaticdetectionof steady-state,static data reconciliation.

gross error detection,parameterestimationand processoptimisation. These topics

havebeenextensivelyconsidered.

In order to assessand comparethe performanceand effectivenessof the techniques

presentedin this thesis,two examplesof systemshave been used. The firstsystemis
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a simple SISO nonlinear discrete time system, while the second one is a more

complexsystemwhich consistsof a two ContinuousStirred Tank Reactors(CSTR)

connectedin series. These are presentedin Chapter3. A practical version of the

ISOPEalgorithmdevelopedby Becerraand Roberts(2000) has beenimplementedon

these systems and used throughout each time the ISOPE algorithm was called.

Severalmethodsand techniquespresentedin this thesishave also beenimplemented

and testedundersimulationon modelsof thesesystems.The implementationsof the

models of these systems together with all the different techniques have been

performedusing a MATLAB@/SIMULINK software platform. During simulations.

the SIMULINK model calls the subroutinescontaining the appropriatealgorithms

stored in M-files. These M-files acquire the information data under the form of

measurementsfrom the SIMULINK model,and processit as appropriate.

The solutionofan on-lineoptimisationproblemcan beachievedin two ways:

The direct approachand the indirect or model-basedapproach. Both approaches

possessadvantagesas well as disadvantages.For instance, the disadvantages

associatedwith the direct approachare mainly due to thepresenceof noise and

disturbancesin the measurementson one hand, and the internalnatureof the process

in termsof its time responseon theotherhand. As in the caseof a very slow process.

the algorithm usedto optimise the systemmight take a long time toconverge.The

disadvantagesassociatedwith the indirect approachhowever,are mainly causedhy

the mismatchthat exist betweenthe systemand the modelrepresentingit, as it is very

difficult, evenunlikely to obtain a correctmodel of the systemand itsenvironment.

One way to overcome the problems of measurementsand noise in thedirect

approach,and model-realitydifferencesin the indirect one. is to usemodel-adaptive

techniquein which somemodel parametersare regularly updatedusing realprocess

measurements.The ISOPE algorithm is one of thesetechniques.It has got features

from both the direct and indirect approaches,and do achieve the real optimum in

spiteof model-realitydifferences.
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However, it has been acknowledgedfor some time now that probably the major

drawbackof the ISOPEalgorithm is the requirementof real processderivativesto be

computedat eachiterationof the algorithm. Theseprocessderivativesare neededbv

the ISOPE algorithm in order to satisfy necessaryoptimality conditions..Attempts

havebeenmadeto overcomethis problemby eitherdevelopingalternativetechniques

to successfullyestimatethesederivativesor totally eliminate this necessity.In this

thesis,severalalgorithmsandtechniquesfor estimatingprocessderivativeshave been

presented,implementedand testedunder simulation on a two CSTR system.These

are: Finite difference approximation,dual control optimisation. Broydori's method

anddynamicmodel identificationwith linearmodel method.A comparisonstudy has

also beenconductedusing thesetechniques,and resultshave beenpresented.Also. a

novel techniquedevelopedduring the courseof this researchbasedon a nonlinear

dynamic model identification has been presentedand tested under simulation. The

aim was to provide accurateestimatesof the processderivatives,while avoiding the

difficulties encounteredin the previous techniques.These difficulties are mainly

causedby excessiveexcitationof the set-pointsfor somemethods,and slownessand

sensitivity to noise for others. The techniquewhen implementedhas shown to be

successfulandgaveleadingperformancewhencomparedto the othertechniques.The

only exceptionwas the dynamic model identification basedon a linear model. The

resultsof the simulationsshow that this method is the most suitable method to be

usedfor processderivativeestimationamongstthosetestedin our example.because

it makesthe ISOPEalgorithm convergefaster, and its leastsquareestimatorplays a

filter role against noise. Also, it was shown that all the techniquesdo achieve

convergenceto the optimum point, but with a small difference in the time taken to

converge,with the exceptionof FOAM, which provedto convergeslowly due to the

needfor extra set-pointchanges,which is problematicin the caseof large-scaleand

slow processes.

In the same context but with a different approach.an Artificial ;\cural network

(ANN) method has been implementedand applied on two different systeITIs. I IlL'
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method exploits the ability of ANN's to learn from theenvironmentand produce

accurateapproximationsof functions,and train an ANN model inorderto imitate the

behaviourof the real system. At the beginning of the procedure,and before the

optimisationis applied,input/outputcandidatesare collectedfrom the realsystem by
. .

applyinga setof inputsto the system.A waiting period isallowedto transpireso that

a steady-stateis reachedand thenthe correspondingoutputsare gathered. This data is

then used to train the neural network in order to obtain the model that would

representthe real system.Although the methodmakes the ISOPEalgorithmconverge

faster comparedto that using FOAM to estimatethe derivatives.as it is based on a

steady-statemodel, changesin processparameterscan result in the whole scheme

producing erroneousestimatesof the processderivatives and hence lead to sub-

optimality. In suchcases,the algorithm needs someconsiderabletime to retrain the

neural network model to adaptto the newchanges,which can beprohibitive in the

case of slow processes.In practice, to cover against systemparameterchanges.

retrainingmay be carriedout atperiodic intervals.

The reliability and accuracyof measureddata isof a greatimportancein monitoring.

evaluatingprocessperformance,and forprocessmodels that are used inoptimisation

and control. The objectiveof datareconciliationis to correct themeasuredvariables

by removing random errors from the data set, and toestimate the valuesof the

unmeasuredvariables,so that we canobtainan estimateof the true stateof the plant.

The procedureis to reconcileprocessdata byrequiringit to beconsistentwith natural

laws such as energy and massbalances.The data reconciliation problem can be

solved using a numberof efficient approaches.Nonlinear programming.quadratic

programmingand successivelinearisationmethodsare thecommon methodsused.

However,in presenceof grosserrors,the least-squaresobjectivefunction used in data

reconciliation can be severely biased leading to incorrectreconci1iation and

estimation.Grosserrorsas opposedto random errors areconsideredto be causedby

non-randomeventssuchasprocessleaks, biases ininstruments.and so on.
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Therefore,a grosserrordetectionphaseis usuallyneededbeforedata "1""
II rcconci ration IS

applied.Ideally, the aim of a grosserrordetectiontechniqueis to:

1 Detectthe existenceof the grosserror

2 Identify its location

3 Identify its type

4 Determineits size

After the grosserrorsare identified, two responsesarepossibleand/ordesired:

Eliminatethe measurementwith the bias or,

2 Correctthe model suchas the caseofa leak and run thereconciliationagain.

In this thesis, static data reconciliation and gross error detection han? been

implementedin a module, and tested under simulation on the two CSTR system.

Errorsandbiasesofdifferent valueshave beenaddedto theoutputsof the realsystem

to simulateerroneousmeasurements.The resultsof the simulationshave shown that

the schemehas beensuccessfullyimplementedto detectand eliminate errors from

flawed measurements.Given valuesof biasesaddedto the measurementsto simulate

errors ranging from -400/0 to +40% of the nominal values, the whole data

reconciliation and gross error detectionprocedureproducegood results.However,

this was only observedin this exampleusing theCSTR system.in other situations,

otherfactorsmay needto beconsidered.

The applicationof the abovedatareconciliationand grosserror detectionwithin the

on-line optimisation procedure, the ISOPE algorithm has been implemented in

software. The resulting scheme (data reconciliation and gross error detection -+-

ISOPE) collects data measurementsfrom the system. and applies the data

reconciliation and gross error detection to remove both random and gross errors.
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After that, the reconciledmeasurements(free of errors)are used in theoptimisation.

The performanceof the schemehas beendemonstratedundersimulationon the two

CSTR system, where the measurementswere contaminatedby random errors and

biases.Optimisationwas performedusing the ISOPEalgorithm on a linear objective

function which reflectsthe desireof maximisingthe concentrationof one component

in the secondtank of the CSTRsystem.The implementationof the whole procedure

was achievedby allocating a separatemodule for each task. These tasks interact

whereandwhennecessary.The simulationresultshaveshownthat the applicationof

datareconciliationand grosserror detectionon corrupteddatameasurementswithin

the ISOPE algorithm proved to improve optimisation. This is mainly due to the

improved parameterestimation,which improves the derivative estimationas \\ clI.

resultingin a moreefficient operationof the system.

In order for datareconciliation,grosserror detectionand steady-stateoptimisationto

be applied, data measurementshave to becollected from the system when at the

steady-state.For this purpose,a methodfor automaticdetectionof steady-statethat

can be used in multivariable analysishas beenpresented,implementedand tested

under simulation on the two CSTR system. This method is capableof detecting

steady-statewith a certainconfidencelevel. The testingof the algorithm has proved

to be successfulgiven the right choice of values of the parametersused in the

algorithm. These parametersare highly important, and a wrong tuning of these

parameterscould leadto anearly, late, or a nondetectionof steady-stateat all.

As most methodsfor data reconciliationand grosserror detectionare based on the

knowledgeof the Variance-covariancematrix V of measurements.The choice of a

suitable V matrix is crucial and sometimesproves to be verv difficult. SL'\ cral

methodsto estimatethis matrix have beenreportedin the literature. \\'c mentioned

the direct method basedon the meanof the measurementsamples.and the indirect

methodwhich usesthe estimatesof the constraintresidualscalculateduxi llt! the di rcct
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method.The direct methodhas beenpresentedand implementedundersimulationon

the two CSTRsystem,andthe resultshavebeenpresented.

In the final sectionof this thesis,the separatemodulesimplementedfor steady-state

detection,data reconciliationand grosserror detection,Variance-co\'ariancematrix

estimation, process derivative estimation, and the actual optimisation (IS0PE

algorithm) have been assembled and implemented sequentially to form a

methodologyof on-line optimisation. This methodologyhas beenimplementedIn

software and testedon the two CSTR system.Each task in the rnethodoloux was

carried out sequentiallyin a modular way starting from detectingsteady-stateand

finishing by obtaining the optimum set-points that achieve the most efficient

operationof the system.The modulesare interconnectedtogetherwhere and when

necessaryin order to enable an easy and reliable interaction and transfer of the

information.Simulationresultshaveshownthat this methodologycan successfullybe

usedto achievethe optimum operatingpoint of the systemif all parametersof each

taskare tunedappropriately.It also reducesthe time wastedwaiting for the systemto

settle down. This time can beeither too short or wastedby a wrong choice of the

waiting time. This can be avoidedby activatingthe steady-statedetectionalgorithm,

which cantell us whenthe systemsettlesdown, within a certainconfidencelevel.

9.2 RECOMMENDATIONSFORFUTURE RESEARCH

As an extensionto the work carriedout in this thesis,the following items are most

recommendedfor further research:
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For the ISOPE algorithm, insteadof estimatingthe processderivativeswhich some

times proves to be difficult, it might be moreadvantageousto develop techniques

which are indirect, but do not require derivative information to be obtained. Initial

thoughtsare to usesomeof the featuresof the well establishedPowell's conjugate

direction methodin conjunctionwith the ISOPE. This could be an areaof possible

further research.

In the areaof datareconciliationand grosserror detection,oneof the challengesthat

should attractmore attentionand seekmore consideration,is the elimination of the

uncertaintieson the locationof the gross errors anduncertaintiesthat areindependent

of the methodof detectionandcompensation.

As for the simulationscarriedout in this work, only biases have beensimulatedas a

type of gross error. Further testing with different types of gross errors might be

beneficial to assessthe data reconciliation and gross errordetection methods

implementedin this work.

All the techniquespresentedin this thesis have beenimplementedand tested on the

two CSTRsystem.A similar task would be to test thesetechniqueson different type

of systems.

The developmentof an on-line optimisation package based on the methodology

presentedin this thesis might also be very useful. With thenew capabilities that

MATLAB®j SIMULINK offers, it is possibleto developthis sortof packages which

can implement, apply and simulate the methodologyon either linear ornonlinear

systems.
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AppendixA

NecessaryOptimality Conditions

Given the following optimisationproblem:

min I(x)

subject to: hex) = 0

g(x) ｾ 0

(:\ 1)

where j(x) is the Objective function to be minimised, and hex) and g(x) are the

equalityand inequalityconstraintfunctionsrespectively.

First-Order NecessaryConditions

The First-ordernecessaryconditionsfor optimality, also known as: TheKuhn-Tucker

Conditions(Luenberger,1983)are:

J1 ? 0,

V/(x·)+)"IVh(x·)+JiVg(x·) = 0

u'g(x·) = 0

(:\2 )

where x· is a relativeminimum point for the aboveoptimisationproblem.and I, and ｾｬ

arethe Kuhn-Tuckermultipliers.
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Second-OrderConditions

In addition to the First-orderNecessaryconditions given above. theSecond-order

Sufficiencyconditionsnecessitatesthat the Hessian matrix

is positivedefinite on thesubspaceM given by:

M ={y: Vh(x*)y =0,Vg/x·)y =°for all} E J}.

J ={}: g/x·) =O,j.1j > O}.

(:\3)

(:\-+ )

whereF, HandG are the 2nd orderderivativesof the objective function. the equality

constraintand inequalityconstraintrespectively.
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Appendix B

The R-statistic

Given the filtered valueof the measurementvalueX:

(8. 1)

Onecancomputethe filtered meansquaredeviationfrom the previous filtered values

2 b .
Vf,i Y·

(B.2)

If the processis stationary:

(8.3)

Equation(B.2) is an unbiasedestimateof'v' , and thevarianceof vI,i 2 is givenby:

2 1S2 2
Var(v

f
· ) = Var((X; - Xf,. ) ),/ 2 -1S ,-1

2

(BA)

This means that equation (B.2) provides a computationally efficient unbiased

estimateof(X; - X k \ )2.

Thenthe estimateof the noisevariancewith the first approachwill be:

2 2 - AI 2
SI· = vr;,/ 2·'
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Also, giventhe filtered meansquaredifferenceof successive datad},i :

､ｾＬ［ =L3(X; - X i _I)2+(1- ｌ Ｓ Ｉ ､ ｾ Ｌ ［ ｟ Ｑ

It is easilyshownthatthe secondestimateof the noise variance would be:

d 2

8 2 =-.l..:!...-
2,; 2

(8.6)

The R-statistic is computedby taking the ratio of the two estimatesof variance

(measuredby the twomethods)asdeterminedby equation(8.5) and equation(B.7):

R
= 81/ = (2-L1)vj /

. 2 2
1 8

2
, d

j
.

,I ,I
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AppendixC

The IMT and MIMT algorithms

The procedureof IterativeMeasurementTest(lMT) is:

Step 1: Computereconciledvector Y true and measurementadjustmentsvectora as in

the Measurementtest (MT).

Step2: Calculatethe standardisedmeasurementadjustmentss, = 0, / (j,. as in ｾｉｔＮ

Step3: Compareeach G; with the critical valueC of teststatisticas in MT. If /G,I < C

for all measurements,go to step6. Otherwise,selectthe measurementcorresponding

to the largestvalueof IG; I andadd it to setS assuspectedmeasurementthat contains

a grosserror. If two or more measurementshave the samemaximum valuesoflG,I,

selectthe onewith lower index.

Step 4: If set S is empty, proceedto Step 6. Otherwise,remove the measurements

containedin S from system by nodal aggregationto obtain a lower dimensionof

systemwith constraintcoefficient matrix B, measurementvector w, and covariance

matrix P as MT (B, w, and P havethe samemeaningas given in MT). Let I denote

the measurementscontainedin w. RepeatStep 1 to computeYtrue and 0 with A, Ym ,

and Vreplacedby B, w, andP, respectively.

Step 5: Computecorrectedvalues for measurementsin set S bysolving equations

A Ytrue = 0 with the variablesin setT specifiedwith the reconciledvaluesfrom step4

and the variablesin set R specifiedwith the original measuredvalues. R is a setof

variablesthat wereeliminatedduring the nodalaggregationand whosemeasureddata

doesnot containgrosserror, i.e., R = U - (SUT ), whereU is the setof all \ ariablcs

in the system.Then,go backto Step2.

Step6: If the set S is empty, then all measurementsare freeof grosserrors,and the

estimatedvaluesof processvariablesin step 1 are thereconciledvalLies of all pWl'ess



variables. Otherwise, the set of reconciled values is obtained from the computed

values in step 5 for the variablesaffected by gross errors in set S. thereconciled

valuescomputedin step4 for the variablesin set T. and theoriginal measuredvalues

for the variablesin setR.

The procedureof modified iterativemeasurementtest (MIMT) is:

Step 1: Computereconciledvector Ytrue and measurementadjustments\ ectora as in

the MeasurementTest(MT).

Step2: Calculatethe standardisedmeasurementerrorsc; = G; / (J;, as in the \ IT.

Step3: Compareeachcj with the critical valueC of test statisticas in i\IT. If Ii: 1< c

for all measurements,go to step7. Otherwise,selectthe measurementcorresponding

to the largestvalueof ICjIandadd it to set S assuspectedmeasurementthat containsa

gross error. If two or more measurementshave the samemaximum values ofl£,I.

selectthe onewith lower index.

Step 4: If set S is empty, proceedto Step 7. Otherwise,remove the measurements

containedin S from system by nodal aggregationto obtain a lower dimensionof

systemwith constraintcoefficient matrix B, measurementvector w. and covariance

matrix P asMT (B, w, and P have thesamemeaningas given in MT). Let Tdenote

the measurementscontainedin w. RepeatStep I to compute Y,me and a with :\. y.

and Vreplacedby B, w, and P,respectively.

Step 5: Computecorrectedvalues for measurementsin set S bysolving equations

A Y = 0 with the variablesin set Tspecifiedwith the reconciledvalues from step 4
true

and the variablesin set R specifiedwith the original measuredvalues. R is a setof

variablesthat wereeliminatedduring the nodalaggregationand whosemeasureddata

doesnot containgrosserror, i.e .. R = U - (SUT ). whereU is the setof all vuriublcs

in the system.

Step 6: Check the reconciled values of processvariables with the pre-specified

bounds. If one or more of reconcileddatadoesnot satisfy the bounds.then discard



the reconcileddataand return to step 3, delete the last entry in set S. and replace it

with the measurementcorrespondingto next largest valueOfl&,I. If no bound

violation is found, go backto Step 2.

Step7: If the set S isempty,thenall measurementsdo not contain gross error. and the

estimatedvaluesof processvariablesin step 1 are the reconciled valuesof all process

variables. Otherwise, the setof reconciledvalues is obtained from the computed

values in step 5 for the variablescontaining gross errors in set S. the reconciled

valuescomputedin step 4 for thevariablesin set T, and the original measuredvalues

for thevariablesin set R.
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