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ABSTRACT 

Pu and Liu's Q-theory is combined with Lowen's goodness 
criterion for fuzzy extensions to provide a framework for 
fuzzifying topology. This framework is used for the study of 
fuzzy countability properties and for the fuzzification of 
classical sequentiality. In extending classical notions to fuzzy 
theory care is taken to ensure that they are a special case of the 

emerging fuzzy concepts. 
An examination of convergence in the sense of Pu and Liu in 

special fuzzy topological spaces demonstrates the advantage of 
Chang's definition of fuzzy topology, which is therefore adopted. 

A new criterion (called excellence) for the suitability of the 
fuzzy extensions of classical topological properties is 
introduced. In addition to passing Lowen's goodness test, an 
excellent property is expected to behave, under fuzzy extensions 
of induction and coinduction, in a way resembling that of the 

original classical property under these constructions. Fuzzy 

second countability, quasi-first countability and fuzzy 

sequentiality are found to be excellent extensions of classical 
second countability, first countability and sequentiality 
respectively. 
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NOMENCLATURE 

Most of the following classical symbols are not defined in the 

thesis. Note that some of them, such as " ", to " and "E" 

will be used also, in a different sense, that involves fuzzy 

notions, as it will be clear in Part I. 

R the real line 

N the set of the natural numbers 

I the closed unit interval [0,1] 

the empty set 

the relation "less than" on I and its negation 

the relation "less than or equal to" on I and its 

negation 

the relation "greater than" on I and its negation 

the relation "greater than or equal to,, on i and 
its negation 

min minimum 

max maximum 

inf infimum 

sup supremum 

1. u. b. least upper bound 
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g. l. b. greatest lower bound 

xeXx is an element of X 

x+Xx is not an element of X 

(x e X: 'Y(x)) the set of all elements x in X satisfying the 

condition(s) 4r(x) 

(x) the singleton set having the element x 

{xa: a e n} the set of elements xa indexed by an indexing 

set 0 

Zc the complement of the set Z 

Z-Z1 the set {x :xeZ, x4 Z1) 

47- the relation "is properly contained in" on a 
power set and its negation 

the relation "is contained in" on a power set 
and its negation 

the relation "properly contains" on a power 
set and its negation 

the relation "contains" on a power set and 
its negation 

lJ Za ,UZ the union of the family (Za :ae t2) 
On ZEC (respectively C) 

fl 
Za ,nz the intersection of the family (Za :ae n) 

aen ZEC (respectively C) 

f: X----Y a function from X into Y 

II Xa the cartesian product of the family (Xa :ae 12) 
aEn 

IIxQ an element of the cartesian product with xa as 
aen its a-th coordinate 
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fog the composition function f after g 

f(Z), C1(Z') the image of Z and the inverse image of Z' 

under f 

f(x), f-1(y) the image of x and the inverse image of y 

under f 

fIX the restriction of the function f to the set x 

id the identity function 

in the inclusion function 

(X, T) a set X together with a family T of subsets of X 
(usually a topological space) 

To the indiscrete topology 

A the discrete topology 

Ts the Franklin topology of -r (see p. 103) 

Tcc the countable complement topology 

Ti an induced topology 

Tc a coinduced topology 

(I, 1*) the closed unit interval I with its usual topology 

lr the topology (1)) U (I, 4} on I 

47-n> an infinite sequence of terms xn 

<x�_> a subsequence of <xn> 

T 

xn-- ýx the sequence <xn> converges to x (with respect 
to the topology T) 
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TT 

xn_f the negation of the statement xn! x 

C1 first countable 

C2 second countable 

iff, -- if and only if 

ýa) -- (b) (a) implies (b) 

Q Q. E. D. 

Notations representing fuzzy concepts will be given as these 

concepts appear in the text. The following list of the most 

frequently used ones is intended to help the reader trace back the 

fuzzy notations to the place where they are first introduced. 

Item 

Ä 1( ý, 1] the strong A-cut of a fuzzy set A 1.1.3 

Supt A the support of A 1.1.3 

ext A the (proper) extension of A 5.2.9 

res A the restriction of A 5.1.4 

XZ the crisp set of support Z 1.1.5 

lox the empty fuzzy set in X 1.1.6 

FX the full set in X 1.1.6 

11, the constant set of value A 1.1.7 

Z(A) the lower semicrisp set of support Z and 1.1.8 
value A 

(x)A the fuzzy point of support x and value A 1.2.1 
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q the quasi-coincidence relation 1.3.1 

Qe(J) the system of Q-neighbourhood (relative to 2.1.5 

the fuzzy topology J) of the fuzzy point e 

Ve(J) the system of neighbourhoods (relative to 2.1.5 

the fuzzy topology J) of the fuzzy point e 

fts fuzzy topological space 2.1.2 

JA the discrete fuzzy topology 2.2.3 

JO the indiscrete fuzzy topology 2.2.4 

LO the indiscrete Lowen fuzzy topology 2.2.4 

J(b) the trivial fuzzy topology (with the values 2.2.4 

of its constant sets being in b) 

cr(T) the crisp fuzzy topology of a topology T 2.2.2 

W(T ) the natural fuzzy topology of T 2.2.6 

W, \(r) the X-cut fuzzy topology of T 2.2.17 

L(J) the initial topology of a fuzzy topology J 2.2.10 

is the Franklin fuzzy topology of J 3.3.5 

Ci fuzzy first countable 3.1.6 

C2 fuzzy second countable 3.1.1 

Q-C1 quasi-first countable 3.1.7 

Sequentialf fuzzy sequential 3.3.7 

<en>q(N)A the fuzzy sequence <en> is eventually 3.2.4 

quasi-coincident to A 

J 
en _e the fuzzy sequence <en> converges to e 3.2.6 

(in the fuzzy topology J) 

JJ 
en _f to e the negation of the statement en---9 e 3.2.6 

L[C'] the family of the initial topological spaces 5.3.2 

of a family C' of fuzzy topological spaces 

w[C] the family of the natural fuzzy topological 5.3.1 

spaces of a family C of topological spaces 
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INTRODUCTION 

The concept of fuzzy set was first introduced by Zadeh [58] 

in 1965 "to be used in dealing with classes" which "do not have 

precisely defined criteria of membership". In [58], he defined 

fuzzy sets in terms of functions from a set to the closed unit 

interval and introduced other basic related notions such as fuzzy 

union, intersection and complement, all of which have now become 

standard. These notions were explored in 1967 by Goguen [23) who 

extended the concept of fuzzy set by replacing the unit interval 

by any poset; thus leading to a definition of Ir-sets corresponding 

to a given lattice L. Much later, Brown [5] considered the case 

of a Boolean lattice. This was followed by De Luca and Termini 

[11) who, noticing that the closed unit interval is actually a 

Brouwerian lattice, considered the case of functions to these 

types of lattice. 

No attempt, though, to formulate a theory of fuzzy topological 

spaces was made until 1968. Taking advantage of Zadeh"s 

definition of fuzzy union and intersection, Chang [8] introduced 

the notion of a fuzzy topological space. In [8], Chang also 

defined fuzzy image and fuzzy inverse image under a function 

(which are now standard) and extended a number of properties of 

functions, such as continuity, to fuzzy topology. But he avoided 

completely the fuzzification of the notion of point, thus instead 

of describing neighbourhoods and sequences of fuzzy points, he 

talked about neighbourhoods and sequences of fuzzy pets. 

After Chang, many mathematicians tried to formulate a 

reasonable definition for fuzzy point and its membership to a 

fuzzy set. In his first two papers in English on fuzzy topology 
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[54,55], Wong also chose to avoid the idea of fuzzy point and 

fuzzy membership. But the third paper [56], which he published in 

1974 was precisely dedicated to those concepts. Unfortunately, 

his definition of fuzzy membership, which was also adopted in 1977 

by Christoph [9], turned out to be not a good choice. Furthermore 

some of the results obtained using this definition contain errors, 

as was shown later by Gottwald [25]. 

The problems encountered at this stage in the fuzzification of 

points prompted some authors, notably Hutton [e. g. 27] to adopt 

the so-called "pointless approach". Liu [32] observed that 

although such an approach has led to important results, especially 

in relation to the fuzzification of topological properties that 

are independent of the notion of point, its limitation is evident 

and there are instances when it is unavoidable to deal with the 

notion of point. 

Choosing not to follow the "pointless approach" of Hutton, 

some authors, such as Sarkar [45,46), Srivastava et al [47,48], 

rr rr 

Deng [12,13], and Bulbul [6,7] went for a modified version (which 

we term "proper membership definition") of Wong's fuzzy 

membership, while keeping his definition of fuzzy point. 

Unfortunately this still excludes classical points (the so called 

crisp points). Other authors, such as Gottwald [25], Ghanim et 

al [22] and Kerre [30] preferred, as Gottwald put it, to "use only 

the concept" fuzzy 'singleton' and "to speak of singletons instead 

of points". 

Pu and Liu [43] observed that the difficulties encountered 

when trying to formulate a reasonable definition of fuzzy point 

and fuzzy membership are a consequence of "the limitation of the 

notion of traditional neighbourhood". To overcome such 
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difficulties and to allow for a definition of fuzzy point that 

includes crisp points, they introduced an ingenious fuzzy 

relation, to which they gave the name "quasi-coincidence" 

(q-relation). This, together with their fuzzy membership 

relation, provides a fuzzy extension of classical membership. 

These two fuzzy extensions are connected in a way similar to that 

relating classical membership with its antithesis; that is a fuzzy 

point "belongs" to a fuzzy set if and only if it is not 

quasi-coincident to its complement. Moreover the two extensions 

coincide in the classical case. Pu and Liu's idea has also a 

bonus. By extending the concept of quasi-coincidence to a couple 

of fuzzy sets, they arrived at a fuzzy excluded middle principle 

that has the classical version as a special case, thus providing 

an answer to Muir's [42] complaint about the apparent failure of 

this law in fuzzy-set theory. 

But most importantly, quasi-coincidence provides an insight 

into the way in which classical concepts and theories are to be 

fuzzified. Although an alternative fuzzification can be built on 

the "proper membership definition" of fuzzy point, Pu and Liu's 

approach has the advantage of having classical thoery as a special 

case. The introduction of quasi-coincidence and the ensuing 

Q-neighbourhoods, is, in our opinion, one of the most important 

steps in the development of fuzzy topology. 

Another big step in the development of fuzzy topology is the 

invention of the so called "goodness criterion" by Lowen [35], 

which was the result of his recognition of the special place of 

the fuzzy topology defined by lower semicontinuous functions. We 

shall refer to such a fuzzy topology as "the natural fuzzy 

topology". Even before spelling out his goodness principle, Lowen 
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[34], in an earlier work, used it as a guide in the fuzzification 

of classical concepts. This idea has been used in one way or 

another by several authors, such as Martin [39], Srivastava et al 

[47,481 and Bulbul [7] in studies covering different aspects of 

fuzzy topology. 

The Q--theory of Pu and Liu and Lowen's goodness criterion have 

been noticed by many authors, and from time to time, one or the 

other was used as a tool in fuzzy research. However no advantage 

has yet been taken of the way in which each seems tailor-made for 

the other. A major aim of this thesis is to show how well the two 

notions reinforce each other. 

In this study we build up a framework for fuzzy topology which 

combines both concepts and which we hope will form the standard 

one. We use it both for fuzzifying classical sequential spaces 

and for studying other already fuzzified notions such as 

countability properties, properties of functions and the basic 

topological constructions of induction and coinduction. In 

building this framework we concentrated on extending to fuzzy 

theory these topological concepts that are most relevant for our 

purpose. However, our general approach can serve as a guide for 

studying other fuzzy extensions. 

The thesis is divided into six parts. 

In the first part, we state our preliminary definitions 

concerning fuzzy sets and give all properties of fuzzy sets that 

are used in the thesis. Many of these properties have been 

proved as separate items by different authors. However we present 

them as consequences of the fact that the family of all fuzzy 
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sets in a set X is a complete Brouwerian dually Brouwerian 

lattice. Some useful new notions, such as lower semicrisp sets are 

also introduced. We investigate as well the ideas of fuzzy point 

and fuzzy membership. Explaining thoroughly our reasons for 

rejecting both Wong's definitions of these concepts and the 

"proper membership definition", we stress the advantages of Pu and 

Liu's alternative notions which we adopt. The properties of fuzzy 

membership and quasi-coincidence given there are a combination of 

these stated in Pu and Liu [43] and others deduced by us. In this 

part and elsewhere we discuss other authors' alternatives to some 

of our definitions and also mention faulty statements. Such items 

will be marked by an asterisk. 

Part II is dedicated to fuzzy topology. We propose fuzzy 

versions of some known classical assertions concerning open sets 

and bases and examine the notion of fuzzy subbase. We also study 

some special examples of fuzzy topological spaces. We devote much 

attention to the natural fuzzy topological space and use the 

notion of lower semicrisp set to find a base for it. We discuss 

other related concepts, such as the initial and the Martin 

topologies, and construct a useful type of fuzzy topological 

space, which will be used later for providing counterexamples. 

In part III we take advantage of Pu and Liu's fuzzy 

convergence theory to fuzzify classical sequentiality, thus 

introducing sequential fuzzy topological spaces. We discuss the 

relationships between fuzzy sequentiality and various fuzzy 

countability properties and between these notions themselves. We 

test these properties for Lowen goodness and also for initial 

goodness (which we introduce). 

Studying convergence in some special fuzzy topological spaces 
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strengthens our preference for Chang's definition of fuzzy 

topology, rathen than Low' s. This is also supported by an 

observation in part II about the so called crisp fuzzy topology. 

We establish two interesting facts. The first is that Pu and 

Liu's quasi-first countable fuzzy topological space (rather than 

fuzzy first countable) plays in fuzzy topology the role played by 

first countable space in classical topology. Secondly, the fuzzy 

extension of the notion of constant sequence is not simply the 

obvious definition of constant fuzzy sequence, but instead a more 

general type of fuzzy sequence which we call semiconstant. 

Part IV is about fuzzy topological properties of functions and 

contains all assertions about functions used in the next two 

parts. Some of these assertions can be found scattered in several 

papers with a few of them containing minor errors. Alterations 

have been made to these and erroneous claims corrected. We also 

introduce the concept of fuzzy sequential continuity and show that 

it is a good extension of classical sequential continuity. 

Investigating the goodness of the other fuzzy properties of 

functions, we give the first published proof of the goodness of 

fuzzy closedness of a function. 

In part V we study the problem of extending to fuzzy topology 

the classical induced and coinduced topological spaces. These are 

more often known as the initial and final spaces. Since we use 

the term initial topology for the particular space defined in part 

II, we will stick to the names "induced" and "coinduced". Here, 

our approach is different from Pu and Liu's and some other 

authors', but"similar to Lowen's in that we start by fuzzifying 

induction and coinduction and then deduce the fuzzy extensions of 

the special cases of subspace and product on one hand and quotient 
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and disjoint sum on the other. Such an approach was helpful in 

arriving at what we think are the right extensions to fuzzy 

topology of these constructions, and in avoiding some awkward 

definitions of them that have appeared in the literature. 

Our proofs of the goodness of fuzzy induction and coinduction, 

however, differ from those of Lowen in that they are the outcome 

of results obtained in parts II and IV and in that they are based 

on Pu and Liu's Q-theory. 

These proofs have the advantage of being simpler and fuzzy 

topological in nature, thus throwing more light on the kind of 

relationships involved. Our proof of goodness of fuzzy induction 

provides a simpler fuzzy topological proof of the extension 

theorem for lower semicontinuous functions. 

In the last part of the thesis we concentrate on the 

behaviour of fuzzy sequentiality and fuzzy countability properties 

under the basic constructions studied in part V. We introduce the 

notion of excellence as the criterion by which we judge the 

reasonableness of fuzzy extensions of classical concepts. We 

establish the excellence of fuzzy sequentiality, quasi-first 

countability and fuzzy second countability. As in parts II and 

III, our approach of combining the goodness criterion with 

Q-theory proves its advantage. We replace long and detailed 

proofs of three important results proposed by Pu and Liu by a 

single simple proof encompassing all three cases. 

Throughout the thesis, definitions and theorems adopted or 

adapted from other authors are attributed as they appear. All 

unattributed ideas and results should be understood to be our own 

contributions. 
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PART I 

FUZZY SETS AND FUZZY POINTS 

In this part of the thesis, we present all the definitions and 

properties of fuzzy sets and fuzzy points that are used elsewhere 

in our study. For the sake of clarity, we divide this part into 

three sections. 

The first section contains the standard definitions related to 

fuzzy sets. The notions and properties given in this section are 

independent of the type of approach adopted, "pointless" or 

otherwise. 

The second section is devoted to the ideas of fuzzy point and 

fuzzy membership. We start by discussing the alternative 

definitions of these concepts which appeared in the literature. We 

explain our preference for Pu and Liu's choice and state its 

consequences. 

In the third section, we study quasi-coincidence. Deducing 

the relevant relationships involving this notion, we explain its 

role in fuzzy set theory. 

-18- 



1. Fuzzy Sets 

In the following, let X be a set and I= [0,1]. 

Definition 1,1.1 (Zadeh ) 

A fuzzy set in X is a function from X into I. 

Definition 1.1.2 

Let xeX and A be a fuzzy set in X. The value of A at x 

is called the degree of membership of x in A and denoted by 

A(x). 

Definition 1.1.3 (Weiss [53]) 

Let A be a fuzzy set in X and XEI- (1). The set 

A 1(X, 1 ]= (x : A(x) > A) is called the strong A-cut for A. In 

particular the strong O-cut A-1(0,1] for A is called the 

support of A and denoted by supt A. Thus Supt A= (x : A(x) > 0). 

If supt A is a singleton, say (x), then we adopt the (abused) 

notation supt A=x. 

pefinition 1.1.4 

Let A be a fuzzy set in X. The set A-1 [{1)) = 

(x : A(x) = 1) is called the crisp support of A. 
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Definition 1.1.5 (Weiss) 

A fuzzy set A in X satisfying the relation supt A= 

Ä1[ (1) ] is called a crisp set. In other words, a crisp set in 

X is a characteristic function from X into I. The crisp set of 

support Z, where ZCX, is denoted by XZ. 

Definition 1,1.6 

The crisp set in X of support 4 is called the empty fuzzy 

set in X and denoted by OX (or by )(, 0 if no confusion arises 

as to which original set X we are referring). 

The crisp set in X of support X is called the full set in 

X and denoted by FX (and by XX if no confusion arises). 

Definition 1.1.7 

A fuzzy set A in X satisfying, for some AeI, the 

equation A-I[(X}) =X is called a constant set in X, and 

denoted by iX. The number A is referred to as the (constant) 

value of A in X. Obviously, the constant set of value 0 is 

the empty fuzzy set while that of value 1 is the full set 

(i. e. rj0 = )(, o _4 and r), = XX =. FX). 

Definition 1.1.8 

A fuzzy set A in X is said to be a lower (upper) semicrisp 

set iff these is a 6eI and a subset Z of X such that, 

6 if xE Z 
A(x) _ 

0 (respectively 1) if xe ZC 

For the lower semicrisp set A, the number ö is referred to 

as the value of A while A itself is denoted by Z(s). 
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Obviously, every crisp set and every constant set is lower 

semicrisp (that is because XZ = Z(1) and -TI, - X00, for all 

ZCX and AE I) 
.. 

In the following, let A and B be fuzzy sets in X. 

Definition 1.1.9 (Zadeh ) 

The fuzzy set A is said to be contained in B (or 

equivalently to be a subset of B) iff A(x) 4 B(x) for 

all xe supt A. This inclusion relation is denoted by AC B. 

Equivalently we write BA and say that B contains A. 

If A is not, a subset of B, then we write AB or 

equivalently, B #2 A. 

Definition 1.1.10 

The fuzzy set A is said to be equal to B (we denote that 

by A= B) iff A B and BQA. If the statement A=B is 

false, then we write A9B. 

We say that A is a proper subset of B and write ACB 

iff ACB and A *B. 

Definition 1.1.11 (Zadeh) 

A fuzzy set is said to be the complement of the fuzzy set A 

and denoted by Ac if f Ac(x) = 1- A(x), for all xeX. It 

is obvious that, for all ZCX, we have (XZ )c = XZc and that 

for all 8e1, we have (r)6 )c = -nl_s , It is also obvious that 

the complement o fa lower semicrisp set is an upper semicrisp set 

and visa versa. 

-21- 



In the following, let 0 be a nonempty indexing set and Ca 

collection of fuzzy sets in X defined by C= (Aa :ae n). 

Definition 1.1.12 (Zadeh) 

A fuzzy set A is said to be the union of the fuzzy sets in 

the collection C and denoted by 
aUr, 

Aa iff A(x) = sup (Aa(x): 

a¬ n), for all xeX. 

Definition 1.1.13 (Zadeh) 

A fuzzy set A is said to be the intersection of the fuzzy 

sets in the collection C and denoted by 
al 

Aa iff A(x) = 

inf (Aa(x) :ae n), for all xeX. 

The following are consequences of the preceding definitions. 

Consequence 1.1.14 

Let C be a nonempty collection of fuzzy sets in X. Then, for 

every AeI- (1), we have; 

(a) (Ä C )-1 (A, 1] =U 1ý 1(x. 1] 

(X, 1 ]C 1(X, 1 ]. The equality holds for (b) (n A)-1 
ÄC 

finite C. 

Proof 

A)-' (X, 1) iff (AU A)(x) >A (a) xe (A 
C 

Q 

iff AO(x) > ý, for some AO E C, 
by property of 1. u. b. 
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iff xe AD1(, \, 1] 

(b) 

Thus 
At 

lC li, \. 1] 

First, 

xE (Afl )-1 (X 
'1] 

iff xe 
AVC 

-1(A, 1]. 

SAU A)-'- (X, 1]. 

iff ( 
(I 

A)(x) >A 
AEC 

implies A(x) > A, for all AeC, 
by property of 
g. l. b. 

iff xe A-'(), 1], for all 
AEC 

iff 

xE nC 

Thus (t l 
AC 

)-1 (A, 1) C1 A- 1(A, 1]. 
AeC 

If C is finite then we can similarly show that 

nA -1(X, 1]C (Ä A)-" (A, 1 ], and hence the equality 

holds. 

To illustrate that the equality does not necessarily hold 

AEC 

(ÄC )-1 (0,1] ;1n A-1(0,11. C 

for infinite C, let C= {rýl C Fx :ne N). Then 

(Ac-(IC )(O, 1] = 
1(O, 1) = 0. On the other hand A 1(0,1] 

_ 

X, for all AEC, and son A -1 (0,1] = X. Hence 

-23- 



Corollary 1.1.15 (Malghan and Benchalli [36]) 

(a) supt B 
AC 

)ÄC Hupt A 

(b) supt ( 
nC 

A) Cý supt A. The equality holds for finite 

C. 

Proof 

Put X=0 in (a) and (b) of 1.1.14. [] 

Consequence 1.1.16 

A fuzzy set A in X is the empty fuzzy set (the full set) 

in X iff for every fuzzy set B in X, we have ACB 

(respectively B= A) . 

Proof 

First, for any xeX and for each fuzzy set B in X, we have 

fi(x) =04 B(x) 4 1= FX(x). Hence 4) CBC FX. 

Now let A be a fuzzy net in X, such that for every fuzzy 

set B in X, we have ACB (respectively BC A). Let 

B=0 (respectively, B= FX) then A, 0 (respectively FX A) . 

Hence for every xeX, we have A(x) 0 (respectively 

1< A(x)). But then A(x) =0 (respectively A(x). = 1), for 

every xeX. Thus A=4 (respectively A= FX). Q 

Implied in consequence 1.1.16 is a useful fact; that is 

every fuzzy set is a subset of the full set. This provides us 

with a way of symbolizing statements indicating that a certain 

mathematical object is a fuzzy set in some given set. Instead of 
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saying "A is a fuzzy set in X", we can simply write "A C FX" 

Such a symbol agrees with that used to indicate the corresponding 

statement for classical sets. 

In the following, by the "lattice I" we mean the set of all 

numbers in I together with the partial ordering "V". The join and 

meet for this lattice are the usual "sup" and "inf". Such a 

lattice is complete, with the numbers '0' and '1' being 

respectively its universal lower and upper bounds. 

Consequence 1.1.17 

Fuzzy inclusion is reflexive, transitive and antisymanetric. 

Symbolically if A, B and C are fuzzy sets in X, then. 

a. AcA 

b. AQC, whenever ACB and BCC 

C. A=B, whenever ACB and BCA 

Proof 

These properties follow from Definition 1.1.9 and the fact 

that I (together with : 4) is a poset. Q 

In further discussions, let H(I) be the family IX of all 

fuzzy sets in X. Consequence 1.1.17 says that H(I) with the 

binary relation "" is a poset. The join "U" and the meet 

"n" for this lattice are given by definitions 1.1.12 and 1.1.13. 

Consequence 1.1.16 supplies H(I) with universal lower and upper 

bounds 4 and FX; thus making it a complete lattice. 
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The following properties of union and intersection of fuzzy sets 

can be proved directly, but it is more appropriate to think of 

them as properties of lattices guaranteed by lemma 1.5.1 in 

Birkhoff [3). 

Consequence 1.1.18 

The laws of idempotence, commutativity, associativity 

absorption and consistency hold for fuzzy sets. Symbolically, if 

A, B and C are fuzzy sets in X, then 

a. A U A= A, A () A =A 

b. A U B= B U A, A n B= BnA 

C. A U (B U C) = (A u B) U C, An (B 
n 

C) = (A 
n 

B) 
fl 

C 

d. A U (A n B) =A= A n (AU B) 

e. A U B= B iff A C B iff A0 B=A 

Consequence 1.1.19 

For every fuzzy set A in X, we have; 

a. Au FX = FX, A (l FX =A 

b. AU 4= A, A fl 4=4 

Proof 

This follows from consequences 1.1.16 and 1.1.18(e). Q 

Consequence 1.1.20 

Let C be a nonempty collection of fuzzy sets. The union 

(intersection) of the fuzzy sets of c is the "smallest"("largest") 

fuzzy set containing (contained in) every member of C 
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Symbolically, 

(a) for every AEC, we have ACuA and 
nAACA. 

AEC AEC 

(b) If B is a fuzzy set in X such that ACB (respectively 

BQ A) for every AeC, then uAB (respectively 
A¬C 

BCÄ A). 

Proof 

This follows from the properties of the least upper bounds and 

the greatest lower bounds in the lattice I. 0 

consequence 1.1.21 

Let 0 be an indexing set and for every ae0, let 

AIC Ba. Then, 

(a) UA C %jB 
aI a- ea 

bA () äýn«C«En Ba 

This follows from consequence 1.1.20.0 

Goguen [23], observed that properties of the lattice H(L) of 

functions from X into a lattice L (called L-sets) reflect the 

properties of the lattice L itself. 

Let L be a complete lattice with a partial order 'V and 

with symbols 'V' and 'A' indicating 'join ' and 'meet' 
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respectively. Then L is said to be Brouwerian (respectively 

dually Brouwerian) iff for every couple of elements Al and A2 

in L, the set (S : X1 A6< A2) (respectively the set 

(6 : Al V6Z A2)) contains its least upper bound (respectively 

its greatest lower bound). 

De Luca and Termini [11] showed that if L is Brouwerian, 

then so is H(L). Using theorem 5.10.24 in Birkhoff (31, which 

says that a complete Brouwerian lattice has complete 

distributivity of meet over joins, they concluded that if L 

is Brouwerian then H(L) has complete distributivity of meet over 

joins. However, as indicated by De Luca and Termini, who fault 

Goguen [23] who assumed the equivalence of the two distributivity 

laws in lattices, this is not enough to conclude that H(L) has 

complete distributivity of join over meets. This is only possible 

if L is dually Brouwerian. 

Since the lattice I is both Brouwerian and dually Brouwerian, 

then so is H(I). Thus H(I) is a complete Brouwerian and dually 

Brouwerian lattice. We have the following consequence. 

Consequence 1.1.22 

The laws of complete distributivity hold for fuzzy sets. 

Symbolically, if A and C are a fuzzy set and a family of fuzzy 

sets in X respectively. Then, we have; 

(a) A 11 (ji B) 
C(A 

11 B) 

(b) AU( 
CBS B 

(A U 
B) 
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Let us define a complement Ac of an element of the lattice 

I by he - 1-N. It is easy to check that the following five 

properties hold in I. 

(a) (XC )C = x, for all AEI 

(b) )ý 6 iff öo Xo, for all X, 8EI 

(c) min (X, Xc) =0 (respectively, max (X, Xc) = 1) iff 

XE (O, 1). A consequence of this is that I is not 

"complemented". 

(d) min (A, 6) =0 implies A4 öc (and equivalently 8. Ac) 

(e) If C I, then, 

1- sup = if Xc and 1- inf A= sup Ac. 

CCCC 

A consequence of this is the validity in I of De Morgan's 

laws, that is 

(sup A )c = inf 1c and (inf X )c = sup Ac. 
CCCC 

Now, the complement of an element A in H(I) is defined so 

that the degree of membership of a point x in X is equal to 

the 'complement' in I of the element A= A(x). 

Observing this "point by point" correlation, it follows that 

properties of I involving complements are carried on to H(I). 

This is expressed formally in the following consequence 

Consequence 1.1.23 

Let A and B be fuzzy sets in X and Ca nonempty family of 

fuzzy sets in X. We have, 
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(a) (AC)C =A 

(b) ACB iff Bc C AC 

(c) A'1 Ac =4 (respectively AU Ac = FX) iff A is crisp. 

(d) An B= 4) implies AQ Bc (and equivalently BQ Ac) 

(e) De Morgan's laws hold for fuzzy sets. Symbolically, 

Acc 
AEC A6C 

and Ac=U Ac 
AEC A¬C 

Proof 

All five properties follow from the corresponding five 

properties in I. A detailed proof for (e) is provided in Deng 

(12l" Q 

Consequence 1.1.24 

(a) A fuzzy set is lower semicrisp iff it is the intersection of 

a crisp set and a constant set. More specifically, if ZCX 

and 6e I: then res n XZ = Z( S 

(b) Let C be a family of subsets of X and AeI. Then, 

( zpz) (ý`) _ ýz(x) 
and (Znlz) (ý`) _ 

Pe z(x ) 

(c) Let b I, A= sup b and A' = inf b. Then, 

Z(x) =H z(s) and z(X') = 
(ý 

z(6) 
6Eb 

-30- 



Proof 

Let xeX 

(a) (*is (l XZ)(x) = min (i 6(x), XZ(x)) = min (s, XZ(x)) _ 

S if xeZ (S) {0 
if xe Zc -Z (x). 

Therefore, res n XZ = Z(B). 

(b) 1. (U Z('))(x) = sup {Z(\)(x) : ZEC} 
a if xeZ 

ZEC = ZEC 0 otherwise 

U Z) (x) 
. 

Hence 

ZEC 
(U Z)") = Uz('`). 

z¬c zc 

2. The case for the intersection is proved similarly. 

(c) 1. 
suýz(s)(x) 

= sup {z(s)(x) Ste} 
sup{S: SEb} _A if xEZ 

_ {o 
if X *z 

= z(ý`)(x). 

Therefore, 
sUibZ( 

s)= Zo . 

2. The case for the intersection is proved similarly. Q 
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2. Fuzzy Points 

The concept of fuzzy membership -had its difficulties from the 

start. Zadeh [58] commented that "the notion of "belonging" which 

plays a fundamental role in the case of ordinary sets, does not 

have the same role in the case of fuzzy sets". And as mentioned 

before, the first three papers on fuzzy topology written by 

Chang [8] and Wong [54,55] did not even consider the concept. 

In his third paper [56], Wong gave the first definitions for 

fuzzy point and fuzzy membership which we will refer to 

respectively as "the excluding definition" and the "strict 

inequality definition". 

Definition 1.2. *1 (The excluding definition) 

A fuzzy point in X is a fuzzy set e given, for some 

x0 EX and AE I- {0,1} by, 

x= x0 

e(x) 
0xeX- (x0). 

According to this definition, crisp sets of singleton support 

are excluded from being fuzzy points. 

Definition 1.2. *2 (The strict inequality definition) 

Let A and e be a fuzzy set and a fuzzy point in X 

respectively. We say that e belongs to A and write eFA 

iff e(x) < A(x), for all xeX. Otherwise we write efA. 
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Assuming definitions 1.2. *1 and 1.2. *2, Wong claimed that 

a fuzzy point e "belongs" to the union of a nonempty family C of 

fuzzy sets if f there is some fuzzy set A e C, such that e < A. 

(Theorem 3.1 in [56]). Other assertions (e. g. theorem 3.2 in 

[56]) were deduced from that claim. Gottwald [25] constructed an 

example to show the falsehood of these theorems. In the 

following, we present a much simpler counterexample that 

contradicts theorem 3.1 in [56]. 

Counterexample 1.2. *3 

Let X= (x, y, z) and define the fuzzy sets A and B in 

X by: 

1_ t=x, y t-x, z 
A(t) _ (Z 

t=z 
and B(t) = {0 

t= Y 

Then AUB= rýl . Now, consider the fuzzy point e in x 

It=Z 

with support z and non-zero value 3. Then, e(t) = (3 
tý zThus 

e(t) <2= ý1 (t) = (A U B)(t), for all teX. 
i 

Hence e <- A UB. On the other hand, we have e(z) =340= 

A(z) and e(y) =0 40 = B(y). Therefore, e "belongs" to 

neither A nor B. Q 

Wong's definitions also lead to the following undesirable 

consequence: 

*4 Consequence 1.29 

If A is a fuzzy set in X with support other than X, then 

no fuzzy point belongs to A. 
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Proof 

Let supt A ; 11 X, then (Supt A )c 0 0. Let xe (supt A )C . 

Hence A(x) = 0. If e is a fuzzy point in X, then e(x) 0= 

A(x ), and so, e +A. D 

Implied in consequence 1.2. *4 is that the empty fuzzy set is 

not the unique solution for the assertion " e 4ýA, for all fuzzy 

points e in X". This deprives 4 of the uniqueness 

associated with the empty set in the classical case. 

Sarkar [45,46), Srivastava et al [47,48], Deng [13], Bulbul [6,7] 

and others chose to adopt "the excluding definition" of fuzzy 

point while rejecting "the strict inequality definition" of fuzzy 

membership and replacing it by the following definition to which 

we shall refer by the name "the proper membership definition". 

However, they retained the notion of fuzzy inclusion as given 

in definition 1.1.9. 

Definition 1.2. *5 (Proper membership) 

Let A be a fuzzy set and ea fuzzy point (in the sense of 

definition 1.1. *1) of support x. Then e is said to belong to 

(be in) A iff e(x) < A(x). We write e t> A. 

Starting from definitions 1.2. *1 and 1.2. *5, Srivastava et al (47] 

arrived at a correct version of theorem 3.1 in [56]. However, 

these definitions have two undesirable features. First, 1.2. *5 

does not agree with the definition of fuzzy inclusion since we can 
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have a fuzzy set e with a singleton support which is contained in 

some other fuzzy set A but which, as a fuzzy point, does not 

belong to A. That is, if xe supt A and X= A(x), then for 

the fuzzy point e with Supt e=x and e(x) = X, we have e 

not in A although, as a fuzzy set, e is contained in A. 

The other undesirable result is that, as Pu and Liu [43; 

pointed out, a classical point would not be a special case of 

fuzzy point. This view is also shared by Kerre [30]. 

Now, we introduce the definition of fuzzy points and fuzzy 

membership which we propose to adopt. 

Definition 1.2.1 (Pu & Liu [43]) 

A fuzzy set in X is said to be a fuzzy point in X iff'it 

has a singleton support. 

If e is a fuzzy point in X, then according to this 

definition, there is a point x in X and a number X in 

I- (0} such that e(x) =A and e(y) = 0, for all yeX- (x). 

The number X is called the value of e. A fuzzy point of 

support x and value A is denoted by (x)A. 

Before moving to the next definition, it may be worthwhile to 

point out that our notation, (x),, differs from that of Pu & Liu 

and others which is simply xX, it was motivated by the fact that 

our work contains a great amount of discussion involving fuzzy 

sequences and hence a lot of indexing. The clumsiness resulting 

from adding subscripts to an already indexed symbol is, as pointed 
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out by Tong [50], very inconvenient and confusing. 

Our convention allows the recognition of the indices by the 

separation provided by the parentheses. Thus (xn)A is a fuzzy 

point of support xn and value A while (x)A is a fuzzy point 
n 

of support x and value A. 

Definition 1.2.2 (Pu & Liu [43)) 

A fuzzy point with value 1 is called a crisp point. 

Definition 1.2.3 (Pu & Liu [43]) 

Let e= (x), be a fuzzy point in X. The fuzzy point e 

is said to belong to (be in) a fuzzy set A if fA4 A(x). We 

denote this by eeA. 

If e does not belong to A, then we write efA. 

It follows that e belongs to A if f, as a fuzzy set, e is 

contained in A. This is actually the way Wang (51] defined fuzzy 

membership. 

Definition 1.2.4 

A fuzzy point is said to pro perly belong to a fuzzy set if it 

"belongs" to that fuzzy set in the sense of the proper membership 

definition 1.2. *5 . Thus (x)A properly belongs to A iff 

(x), 'A (or equivalently A < A(x)). A fuzzy point that 

properly belongs to A is called a proper int 

of A. 

We have the following consequences of definitions 1.2.1 and 1.2.3. 
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Consequence 1.2.5 

For any fuzzy point e in X, we have ee FX and e 4. 

Proof 

This follows from consequence 1.1.16. Q 

The previous result provides a convenient notation for indicating 

that a given mathematical object is a fuzzy point in a certain 

set. In place of the sentence "e is a fuzzy point in X", we can 

substitute the symbolic expression "e e FX". We recall that 

consequence 1.1.16 legitimized the use of the notation "A C FX" 

as an equivalent way of saying that A is a fuzzy set in X. 

Consequence 1.2.6 

Let A, BC FX 
. 

AGB iff for every eeA, we have eeB. 

Proof 

The trivial case is a corollary of consequence 1.1.17(b). To 

show the converse, let xe supt A and A= A(x). Then (x), eA 

and hence, by hypothesis, (x), e B. But then A4 B(x). Thus 

A(x) 4 B(x). Therefore, by definition 1.1.9, AQ B. Q 

Consequence 1.2.7 

Let C be a nonempty collection of fuzzy sets in X. For 

every ee FX, we have, 

(a) If ee A0, for some A0 e C, then ee 
AUA 1ýEIC 
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(b) eenA iff eeA, for all AeC 
AEC 

Proof 

(a) Since AO U. A by consequence 1.1.20(a), then given 
AEC 

ee A0, we have eeUA by consequence 1.2.6. 
AEC 

To show that the converse need not hold, let XE (0,1), and 

consider the family c= (rs :6e (0,? )) of constant sets in X. 

Let xeX and e= (x). Then eeU res but e4 res , for all 

na E C. 

(b) If eenA, then by combining consequence 1.1.20(a) and 
AEC 

1.2.6, we get eeA, for all AEC. 

On the other hand if for every AeC, we have eeA, then 

ee 
Dec 

A, by consequence 1.1.20(b). (D 

Before concluding this section, we mention three interesting 

remarks concerning fuzzy points. 

The first has to do with the union of fuzzy points belonging 

to a fuzzy set. Srivastava, et al [47] observed that a fuzzy set 

is the union of all fuzzy points 'belonging' to it in the sense of 

the "proper membership" definition 1.2. *5. Thus, in our 

terminology, a fuzzy set is the union of all of its proper points. 

It is easy to show that a fuzzy set is the union of all of its 

fuzzy points (in the sense of our definitions). Moreover if for 

a fuzzy set A, we call the fuzzy point of support x and value 

A(x), the dominating point of A at x, then a fuzzy set is 

obviously also equal to the union of all of its dominating 

points. 
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The second is about Wong's motivation for his strict 

inequality definition of fuzzy membership. Wong was interested in 

preserving in fuzzy theory the classical fact that a point never 

belongs to a point that is distinct from it. If we refer to any 

couple of fuzzy points sharing the same support as comparable, 

then, according to Pu and Liu's definition of fuzzy membership, no 

two fuzzy points which are not comparable belong to each other. 

Since distinct classical points are surely not comparable, then we 

still have a form of generalization of the classical fact that so 

much concerned Wong. 

The third is that a fuzzy point can belong to both a fuzzy set 

and its complement. For example let AC Fx ,xeX and 

A(x) = 14, then Ac(x) =4. But then for the fuzzy point 

e= (x )1 we have eeA and ee Ac. Thus in 
s 

fuzzy thoery, the relation '+' does not mimic its classical 

counterpart in assuming the role of the antithesis of 'E' with 

respect to complementation. The ingenious device of 

quasi-coincidence provides us with a fuzzy version of that duality 

as we will see later. It also leads to a fuzzy extension of the 

classical assertion behind theorem 3.1 in Wong [56] (namely the 

converse of 1.2.7(a)) which is still not reached in the context of 

our definition of fuzzy membership. 
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3. Quasi-Coincidence 

Definition 1.3.1 (Pu and Liu) 

Let e= (x)A e FX and AC FX. e is said to be 

quasi-coincident with A if f A(x) +A>1. We denote that by 

eqA. If e is not quasi-coincident with A, we write e#A. The 

relation (x)XgA will often be expressed in the equivalent form 

"A(x) >1- A".. 

In the following, let A, BCF. 

Definition 1.3.2 

The set {x eX: A(x) + B(x) > 1) is called the set of 

quasi-coincidence for A and B and denoted by SQ(A, B). 

We say that A is quasi-coincident with B at x and write 

Aq(x)B iff xe SQ(A, B) . We say that A is quasi-coincident 

with B and write AqB iff SQ(A, B) * 4). Otherwise, we say that 

A is nowhere q uasi-coincident with B and write AOB. We 

say that A is everywhere quasi-coincident with B and write 

Aq(X)B iff SQ(A, B) = X. 

Since the quasi-coincidence relation is, obviously, symmetric, 

the statements "A is quasi-coincident with B" and "B is 

quasi-coincident with A" are equivalent and will sometimes be 

replaced by the statement "A and B are quasi-coincident (with 

each other)". 
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It is also clear that SQ(A, B) C Supt (An B). Note that 

the equality holds for crisp sets. 

Consequence 1.3.3 

(a) Let A, BC FX. 

A=B iff for all ee FX, we have eqA iff eqB. 

(b) Let e, de FX. 

e=d iff for all AQ FX, we have eqA iff dqA. 

Proof 

This is obvious. 0 

Consequence 1.3.4 

(a) Every fuzzy point is quasi-coincident to the full set and 

no fuzzy point is quasi-coincident to the empty fuzzy set. 

(b) If AC FX and for every fuzzy point e in X, we have e4A 

(respectively eqA), then A=4 (respectively A= FX). 

(c) For every fuzzy set (respectively every nonempty fuzzy 

set) A in X, we have Af4 (respectively AgFX) . 

Proof 

(a) Let e= (x), e FX, then 0 cX4 1 and hence FX(x) +X_ 

1+X> 1 and 4(x) +A= 0+A 4 1. Thus egFX and 

e44ýx' 

(b) Considering part (a), it is enough to show that if A* 

(respectively A# FX), then there is a fuzzy point e in 
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X such that eqA (respectively efA). 

First, let A04, then there is an xeX such that 

A(x) > 0. Let e - (x)1, then A(x) +1> 1 and so eqA. 

Now, let A0 FX, then there is ayeX such that 

A(y) < 1. Let A e (A(y ), 1) and consider the fuzzy point 

d= (y )1_ý 
. We have, A(y) + (1-a) <X+ (1-X) = 1. Hence 

d43A. 

(c) First, let AC FX. Then SQ(A, 4) _ (x : A(x) +0> 1) 

since A(x) 4 1. Hence A* 
. 

Now, let AC FX. Then there is an xeX such that 

A(x) > 0. But then A(x) + FX(x) = A(x) +1>1. Hence 

AqF "Q 

Consequence 1.3.5 

Let A, B, CC FX ,BCC, yeX and e= (x )A e FX 
. 

Then, 

(a) eqB implies eqC 

(b) Aq(y)B Implies Aq(y )C . 

Proof 

(a) Let eqB. We have; B(x) +A>1 and C(x) B(x). 

But then C(x) +A%1, and hence eqC. 

(b) Let Aq(y)B. Then A(y) + B(y) > 1. But 

C(y) B(y). Therefore, A(y) + C(y) > 1, and so, 

Aq(Y)C" Q 
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It is worth mentioning that the q-relation is not transitive. 

For instance n1q 713 and n3q nl but n1 j nI. . Nor is it 
244323 

reflexive (r)s t TI, 
33 

The next consequence of definitions 1.3.1 and 1.3.2 provides a 

substitute for theorem 3.1 in [56]. (See discussion following 

definition 1.2 . *2) . 

In the following let C be a nonempty collection of fuzzy sets, 

8c FX, eE FX and xeX. 

Consequence 1,3.6 

(a) Bq(x)(AJCA) iff Bq(x)A0, for some AO E C. 

(b) eq(AU A) iff egAO, for some AO EC (Pu and Liu (43; ). 

Proof 

It is enough to prove (a), since (b) is a corollary of (a). 

First, let Bq(x)A0, for some AO E C. Since, AO CUA 
- AEC 

by consequence 1.1.20(a), then Bq(x)(AUC ), by consequence 1.3.5(b) 

Now, let Bq(x)(AUC ). Let b= {A(x) :Ae C) &A= sup b. 

Then A>1- B(x). Let 8e (1-B(x), A). But then 8 is not an 

upper bound for b and so, there is an AO E C, such that 

AD(x) S. Hence, 

B(x) + A0(x) ; at B(x) +6> B(x) +i- B(x) = i. 

Therefore, Bq(x )A0 .0 
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Consequence 1.3.7 

(a) Bq(x)( (l A) implies Bq(x)A, 
AEC 

holds for finite C. 

for all AeC. The converse 

(b) eq( 
ýA) implies eqA, for all AeC. The converse holds 

for finite C. 

Proof 

Since (b) follows from (a), it is sufficient to show only (a). 

Let Bq(x)(Ä C). For all AeC, by consequence 1.1.20(a), we 

have, ÄACA, 
and hence, by consequence 1.3.5(b), Bq(x)A. 

If C is finite, then (n A)(x) = min (A(x) :AE C) _ 
AEC 

AO(x), for some AO E C. Thus if A(x) + B(x) > 1, for all AEC 

then B(x) + AO(x) > 1, and so, Bq(x) (n A). 
AeC 

To show that the converse is not true for nonfinite C. Let 

C= (n, 
1 

FX :ne N). Consider the fuzzy set r)l 
i+ nz 

(respectively the fuzzy point (x)1). Then 71iq(X)(, rl1 
+ 1) 

2iin 

OD 
(repectively (x)lq(r), 

1) 
), for all neN. But r1lo(n i 1) -fin i i+ n2 n=1 2 

OD OD 

(respectively (x)1O((I rýl 1) 
), since n 

X11 s= 'ýl Q 
i n=1 Zn n=1 in 

As has been indicated before, the intersection of a fuzzy set 

A with its complement Ac is not necessarily the empty fuzzy set 

4, X i and hence the set Supt (A n Ac) need not be equal to 4). 

Consequence 1.3.8 provides us with a fuzzy version of the excluded 

middle principle. It also explains our assertion in the 
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introduction that the q-relation together with the e-relation 

serves as a fuzzy extension of classical membership. The former 

two relations are related in the same manner as classical 

membership and its antithesis. 

Consequence 1.3.8 (Pu and Liu [43]) 

Let A, BC FX and ee FX. Then 

(a) SQ(A, AC) = 4' (or equivalently AoAC). 

(b) ACB if f At[BC. Equivalently, AqB iff A$ Bc. 

(c) eeA iff e Ac. Equivalently, eqA iff e+ Ac. 

Proof 

(a) SQ(A, AC) = (x : A(x) + AC (x) > 1) (x :1> 1) since 

A(x) + AC(x) = A(x) + (1 - A(x)) = 1. 

(b) AgBc iff A(x) >1- (BC)(x) = (BC)C(x), for some xeX 

iff A(x) > B(x) 

iff A(x) B(x) 

iff AB. 

To get the equivalent form replace Bc by B. 

(c) This fol lows from (b). Q 

Definition 1.3.9 (Gerla [20,21]) 

Let L be a complete lattice. Let H(L) be the lattice LX 

of Insets with the symbols "V' and 'A' indicating join and 

meet in H(L). Moreover, let P(L) be a subfamily of H(L) 

and ia relation from P(L) to H(L). Then the pair 
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(P(L), E) is called an L-point space for H(L) if and only if 

the following conditions are satisfied: 

(a) If C is a finite subfamily of H(L) and ee P(L), then 

(1) e VA iff e A0, for some AD EC 
AEC 

(2) eAA iff e A, for all AeC 
AEC 

(b) If 0 and 1 are the universal lower and upper bounds in 

H(L), then for every e e P(L), e40 and eE1 

(c) If A, BE H(L), then 

A=B iff (e e P(L) :eE A) = (e e P(L) :eE B) 

(d) If e, de P(L), then 

e=d iff (A E H(L) :eE A) _ (A E H(L) :dE A} 
. 

In particular an I-point space for H(I) is called a fuzzy 

point space. 

Gerla refers to the Ir-point space (P(L), E) as good if 

and only if condition (a) holds for arbitrary subfamilies C of 

H(L). This is clearly the "obvious" generalization of the 

properties of the classical "point space" (P((0, l) ), e) = (X, e) ), 

where "ell is the classical membership relation. 

However this "goodness" in the sense of Gerla is stronger than 

we need for the task of fuzzifying classical topological 

assertions involving points. Gerla [20] also refers to (P(L), e-) 

as a disjunction L-point space iff the condition (a)1 holds for 

arbitrary subfamilies C of H(L). The following is an 

adaptation of this idea. 

Let (P(I) ), be a fuzzy point space. Then (P(: r), E) is 
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said to be suitable if and only if for every family C of 

fuzzy sets, the following condition is satisfied: 

(a) (1)' eEA 
CU 

A iff 

Corollary 1.3.11 

ee A0, for some A0 EC 

Let P1 be the family of all fuzzy points in X. Then the 

pair (N, q) is a suitable fuzzy point space. 

Proof 

Obviously MC H(I) and q is a relation from M to H(I). 

The conditions (a) and a(1)' are satisfied by consequences 

1.3.6(b) and 1.37(b). Conditions (c) and (d) are satisfied by 

consequence 1.3.3. Lastly consequence 1.3.4(a) satisfies 

condition (b). Therefore, (M, q) is a suitable I-point (or 

fuzzy point) space for H(I). Q 

However, (M, q) is not the only suitable fuzzy point space for 

B(I). To show this, Let ! sue be the family of all proper points of 

FX (i. e. the noncrisp fuzzy points in X) and '' the proper 

membership symbol of definition 1.2.4. Then C: w is a relation 

from H* to H(I). It turns out that the pair (H, r p) is also a 

suitable fuzzy point space. 

The question to be asked is: can (M*, p) be a 'reasonable' 

alternative for (11. q)? The answer, in our opinion, is an 

"almost yes". No other author has illustrated this point for us 

more than Hu [26]. 

Hu introduced the idea of 'dual point'. If (x), eK (i. e. 

AeI- then the fuzzy point (x )1_A is called the dual 
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Point of (x), (it was also called the complementary point by 

Deng [12]). If we denote the dual point of e by e, then given 

a fuzzy set A in X, we have eqA iff e VA. 

Thus the fuzzy point space (k*, C> ) can also be a corner- 

stone for a non-pointless fuzzy topology. This is exactly what Hu 

and other authors chose to adopt. 

However, (M*, t: ý: w) has the disadvantages (explained in section 

(2)) that do not allow it to reduce to the classical case. In 

contrast, classical points and classical membership are 

respectively a special case of fuzzy points and the q-relation as 

expressed in the fuzzy point space (M, q). 

The different choices of fuzzy point spaces led to 

alternative ways of fuzzifying some topological concepts. 

Unfortunately, different fuzzy extensions of a given concept were 

sometimes given the same name. In the paragraph following 

proposition 3.1.26 in part III, we discuss a particular case where 

such a problem occurs. 
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PART II 

FUZZY TOPOLOGICAL SPACES 

Different definitions of fuzzy topology have appeared since 

Chang [8] introduced the concept. A radical alternative to 

Changes notion is the one proposed by Lowen [33]. Lowen requires 

that a fuzzy topology should have one more axiom, namely that it 

includes the constant sets. Here we adopt Chang's definition of 

fuzzy topology and consider that of Lowen as a special case 

(definition 2.2.1). Such preference is motivated by two reasons. 

The first is connected with the so called 'crisp fuzzy topology' 

(example 2.2.2). The other reason has to do with the theory of 

fuzzy convergence which we explain in part III. 

In section (1), we introduce the basic notions of fuzzy 

topology. Of interest are the fuzzy extension of a classical 

assertion about a base for a topology (proposition 2.1.10) and an 

examination of the idea of a fuzzy subbase (proposition 2.1.11). 

A characterization of open fuzzy sets is also given (proposition 

2.1.9). 

Section (2) contains special examples of fuzzy topological 

spaces of which the fuzzy topological spaces in the sense of Lowen 

are one. We concentrate in particular on the natural fuzzy 

topology and produce a base for it. Other related concepts such 

as the initial and the Martin topologies are discussed. We also 

introduce the "X-cut fuzzy topology" which we use in the following 

parts of the thesis to provide important counterexamples. 



1. Basic Definitions and Assertions 

In the following, let X be a set. 

Definition 2.1.11 (Chang) 

A nonempty collection J of fuzzy sets in X is called a 

fuzzy topology on FX if the following conditions are met 

(a) 4, Fx eJ 

(b) An BeJ, whenever A, BEJ 

(c) JA 
E J, for every nonempty subfamily C of J. 

In the following, let J be a fuzzy topology on Fx. 

Definition 2.1.2 

(a) The pair (FX , J) is called a fuzzy topological space (or in 

short, fts) 

(b) A subset 0 of FX is said to be J-open or open in the fts 

(FX J) iff 0 EJ 

(c) A subset E of FX is said to be J-closed or closed in the 

fts (Fx J) iff EC c j 

(d) A fuzzy topology J1 on FX is said to be stronger (or 

larger) than J iff iG J1. If Jl is stronger than J, 

the fuzzy topology J is said to be weaker (or smaller) than 

Jl. 

-50- 



Definition 2,1.3 (Wong [56]) 

A subfamily B of J is said to be a base for J iff for 

each 0eJ, there is a subfamily C of B such that 0=UB. 
BEC 

Definition 2.1.4 (Wong [56]) 

A subfamily D of J is said to be a subbase for J if f the 

family of all finite intersection of members of D forms a base 

for J. 

Definition 2.1.5 (Pu & Liu) 

Let (FX J) be a fts, ee FX and AC FX. The fuzzy set 

A is said to be a neighbourhood (Q-neighbourhood) of e iff 

there is an 0ej such that ee0CA (respectively 

eqO C A). 

The family of all neighbourhoods (Q--neighbourhoods) of e is 

called the system of neighbourhoods (respectively the system of 

Q-neighbourhoods) of e and denoted by Ve (respectively Qe). 

It follows from the definition that while a neighbourhood of a 

fuzzy point e necessarily contains it, a Q-neighbourhood of e 

need not contain e. To illustrate that, let J be the fuzzy 

topology on FX given by J= (FX, 4, Z(5), where 0ZCX. 
32 

Let xeZ; e= (x) 
4 and A= Z(5 . 

Then egZ5 C A, and so 
s 

A is a; neighbourhood of e. But e= (x) 
44A. 
5 

In keeping with our stated intentions to improve on assertions by 

other authors that contain incorrect claims (so as to avoid 

misunderstanding when applying them to our study), we discuss the 
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following proposition given without proof by Pu and Liu 

(proposition 2.2 in [43]). 

Proposition 2.1. *1 

For every ee FX, let Ue be a family of subsets of FX such 

that the following conditions are satisfied 

(1) eqU, for all UE Ue (respectively eeU, for all UE Ue) 

(2) U ý} VE Ue, whenever U, Ve Ue 

(3) VE Ue, whenever UCV and UE Ue . 

Then the family J of all subsets A of FX, such that 

Ae Ud whenever de FX and dqA (respectively de A) 

is a fuzzy topology on FX. 

The "q° version of proposition 2.1. *1 is easily proved, but 

the "E" version is untrue as the following counterexamples shows. 

Counterexample 2.1.6 

For a set X of at least two points, let e= (x)1 E FX , for 
3 

some xeX. Let U(y) _(U: A4 U(y)), for every fuzzy point 

(y), in X that is distinct from e and let Ue = (U :? 4 U(x) ). 

Then for every de FX the family Ud satisfies conditions (1), (2) 

and (3) of proposition 2.1. *1. Since for every yeX and 

AeI- (0), such that (y )X ;4e, we have A4 U(y), and hence 

Ue U(y )A whenever (y), \ eUC FX , then the family J as described 

in proposition 2.1. *1 can be expressed explicitly by: 

J- (U : (x), 
t 

4U or 2 u(x)) = (U : U(x) 4 [3 , 2)}. 
3 
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Consider the family C= (r 
: 

sn 
3(n+1) A, ne N). 

n 

Since 71(x) =n<1, for all neN, then CCJ. sn 3(n+1) 

But res = rj, 4 J, since r)l(x) =3e 
n3 

But then J is not a fuzzy topology on FX. 0 

Thus, we state a modified version of proposition 2.1. *1. 

Proposition 2.1.7 (Pu and Liu) 

For every ee FX let Ue be a nonempty family of subsets of 

FX such that eqU, for all Ue Ue and that conditions (2) and 

(3) of proposition 2.1. *1 hold. Then the family J defined by 

J= (U C FX : ""d e FX and dqU" implies Ue Ud) is a fuzzy 

topology on FX . Moreover we have Ue = Qe (with respect to 

this topology) iff the following condition holds: 

If UE Ue then there is aVe Ue such that VQU and 

Ve Ud whenever dgV .............. (4) 

Proof (cf Kotze [31]) 

J is closed under arbitrary union (finite intersection) 

thanks to the combination of consequences 1.3.6(b) and 1.1.20(a) 

and condition (3) of proposition 2.1. *1 (respectively consequence 

1.3.7(b) and condition (2)). 4 is in J since ecc , for all 

ee FX by consequence 1.3.4(a). FX is guaranteed to be in Ue 

for all ee FX by condition (3) and the fact that Ue is 

nonempty, and so FX E J. 

If Ue is the Q-neighbourhood system Qe of e, for 

ee FX then conditions (4) follows from definition 2.1.5. 
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Conversely, assume that the condition holds, ee FX , and 

UeQ, 
e. 

Then there is an 0eJ such that eqO C U. But then 

0e Ue, by definition of J, and hence UE Ue, by condition (3). 

Therefore, Qe C Ue. Now, let Ue Ue. Then by condition (4), 

there is a Ve Ue such that VCU and VE Ud whenever dqv. 

Hence Ve J, by definition of J and eqV U. Therefore, 

UE Qe, and hence Ue C Qe. Thus Re = Qe. 13 

Proposition 2.1.8 (Pu & Liu) 

Let (FX, J) be a fts. 

A nonempty subfamily B of J is a base for J iff for all 

0EJ and ee FX such that eq0 there is aBeB such that 

eqB C 0. 

Proof 

See proposition 2.4 in Pu & Liu [43). Q 

The following characterization of open fuzzy set was formulated 

independently by us and Ma and Yu [37]. 

Proposition 2.1.9 (A characterization of open fuzzy sets) 

AeJ iff for all ee FX such that eqA, there is an 

0EJ such that eq0 C A. 

f (cf Pu and Liu (43]) 

(An alternative proof can be found in Ma and Yu [37]) 

First if AEJ, take O=A. 

Conversely, assume A4J and let C= (0 :0eJ, 0 (=-: A). 

Since 
U0eJ, then AýU0, and combining that with 

OEC 0 EC 
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consequence 1.1.20, we have, 0CU0CA, for all 0EC. But 

OEC 

then there is an xeX, such that 0(x) s(U 0) (x) < A(x), for 
OEC 

all 0EC. Let A =(u 
06c 

0)(x) then A<1, and so 1-A>0. Let 

e= (x)1_, e F. Then A(x) 4 e(x) >A+1-A=1, 

but, 0(x) + e(x) 4A+ 1-A = 1, for all 0eC. Hence eqA, 

but e40, forall0EC. [] 

The following proposition is an extension of a useful 

classical assertion. 

Proposition 2.1.10 

Let B be a nonempty family of subsets of FX . Then B is a 

base for some fuzzy topology on FX iff the following two 

conditions are satisfied. 

(1) For all ee FX , there is aBEB such that eqB 

(2) For every B1 
, 

B2 eB and ee FX such that eq(B1n B2 )1 

there is aB eB such that eqB C B1 n B2 

Proof 

First, let B be a base for some fuzzy topology J on FX . 

Let e be a fuzzy point in X, then egFX and hence by 

proposition 2.1.8, there is aBeB such that eqB C FX . Thus 

condition (1) is satisfied. To check for condition (2), let B1, 

B2 E B, ee FX and eq(B1 (I B2) 
. 

Since BCJ, then 

B1 
n B2 E J, and hence by proposition 2.1.8 there is aBeB 

such that eqB C B1 n B2. Thus condition (2) is satisfied. 
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Conversely, let i= {A : "eqA and ee FX" implies 

eqB Q A, for some BE B). Considering proposition 2.1.8, it is 

enough to show that J is a fuzzy topology on FX which contains 

B. 

First BCJ, since BcB, for all BeB. The full set is 

in J, by condition (1) and the fact that BC FX , for all 

BeB (consequence 1.1.16). The empty fuzzy set is in J, since 

e4q for all ec FX . 

Now, let A1, A2 eJ and eq(A1 
n A2). Then there are B1, 

B2 eB such that egB1 C Al and eqB2 C A2. Hence, by 

consequences 1.3.7(b) and 1.1.21(b), eq(Bln B2) C A1(I A2. But 

then by condition (2), there is aBeB such that 

eqB C B1 fl B2. Hence eqB C Al n A2 by consequence 1.1.17(b). 

Therefore, Al n A2 5 J. 

And last, let CCJ and eq( U A). 
A6C 

Then, by consequence 

1.3.6(b), there is an A0 EC such that egA0. Hence AO e J, 

and so there exists a BeB such that eqB C A0. But then by 

consequence 1.1.20(a), eqB c A. 
AAC 

Hence UA 
AEC 

e J. 

Thus J is a fuzzy topology on FX. 0 

In classical topology if C is a family of subsets of X, 

then it is a subbase for some topology on the set II Z which 
VC 

is 

not necessarily equal to X. Thus any nonempty collection of 

subsets of X is a subbase for some topology. However, in fuzzy 

topology, the situation is different. For if C is a collection 

of subsets of FX , then so would be the collection' B of finite 

intersections of members in C and, thus B can be only a base 

for a fuzzy topology on FX . But then FX has to be the union of 

members of B. Thus unlike in the classical case, an axiom is 
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needed for a subbase for fuzzy topology. 

Proposition 2.1.11 (Axiom for a subbase) 

A collection W of subsets of Fx is a subbase for some 

fuzzy topology on FX iff UD= FX 
DEW 

Proof 

First, if W is 

then it follows from 

Conversely, let 

such that 
UD= 

FX 
DEW 

finite intersections 

a subbase for some fuzzy topology J on FX 

definitions 2.1.4 and 2.1.3 that 
DU 

D= FX 

W be a nonempty family of subsets of FX 

. We need to show that the family B of all 

of members in W is a base for some topology 

on FX . But this will be the case if B satisfies the two 

conditions of proposition 2.1.10. 

Thus, first, let ee FX then eq( 
JD) 

and hence by 

consequence 1.3.6(a), there is a D0 eW such that eqD0. Since 

WCB, then condition (1) of 2.1.10 is satisfied. 

Now, let B1, B2 eB and eq(B1 n B2) . Let us express Bl 

N K 

and B2 as 11 Dn and 11 D' respectively, for some N, KeN 
n=1 n=1 k 

and (D1, D2, 
..., 

DN}, {Dl, D2, 
..., 

Dk} C W. Rewrite 

Dn = DN+n. Then, by the associativity of fuzzy intersection 

N+k 
(consequence 1.1.18(c)), we have B1 n B2 =P Dn . But then 

1 

B1 
n 

B2 E B. Let B= B1 
n 

B2, then eqB C B1 
n 

B2, and hence 

condition (2) of 2.1.10 is satisfied. 
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Therefore, B is a base for some fuzzy topology on FX , and 

so 11 is a subbase for that fuzzy topology. D 
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2. Special Fuzzy Topological Spaces 

Definition 2.2.1 (Pu and Liu [44]) 

A fts (FX L) is said to be fully stratified iff 

TIX EL for all X E (0,1); i. e. all constant fuzzy sets are in L. 

It is clear from definitions 2.1.1 and 2.1.2 that a fuzzy 

topological space in the sense of Lowen [33] coincides with the 

definition of a fully stratified fts. In order to show the 

advantages and disadvantages of Lowen's definition of a fts as we 

progress a fully stratified fts will be referred to as a Lowen 

fts. The latter is therefore the only name we will use for this 

type of fuzzy topological space. 

In the following, we give examples of some special fuzzy 

topological spaces. The notation introduced here will then be 

used throughout. 

LEample 2.2.2 

Let T be a topology on X. The crisp fuzzy topology cr(T) 

of the topological space (X, T) is defined by 

cr(T) _ (XZ :ZE T). 

Notice that the crisp fts is not Lowen. This is a 

disadvantage of Lowen's definition of fuzzy topology. In the 

words of Ganther et al [19] Lowen "has lost the concept that a 

fuzzy topology generalizes topology". 
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Example 2.2,3 

The discrete fuzzy topology JA on FX is defined by 

J, & - (A sAC FX). 

Example 2.2.4 

Let b be a closed from above subset of I that contains 

both 0 and 1. The collection J(b) = (, nX C FX :Xe b) is a 

fuzzy topology on FX which we call trivial. (Notice that the 

from-above closedness of b guarantees that every subset of b 

has its least upper bound in b and hence that J(b) is closed 

under arbitrary unions). 

The trivial fuzzy topology on FX for which b = {0,1} is 

called the weakest trivial or the indiscrete fuzzy topology on 

FX and denoted by JO. Thus JO = (FX , 4ýX). 

The trivial fuzzy topology on FX for which b=I is called 

the strongest trivial or the indiscrete Lowen fuzzy topology on 

FX and denoted by L,. Thus LO = {'l, :Xe I}. 

Pu and Liu [44] used the names "purely stratified" for trivial 

fuzzy topological spaces and " simply stratified" for the 

indiscrete fts. We shall use only the names introduced in 

example 2.2.4 since they better describe the respective spaces. 

Example 2.2.5 

Let X be a one point set, say X= (x). Then the discrete 

fuzzy topology on Fx coincides with the indiscrete Lowen fuzzy 

topology on FX . 
That is; 

Ja = ((X)) :Ae (0,1]) U (ox) = Lo 
. 

Here the indiscrete fuzzy topology JO = (FX ,)= 
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((x)1,4) is, of course, distinct from J.. 

Since in classical topology the discrete and the indiscrete 

topologies coincide in the case of one point spaces, this is a 

point at which Lowen's definition seems to have an advantage over 

Changes. 

Let b be a closed from above subset of I, such that 

{0,1} b, then for any xeX, the family 

J(b) = {(x), :Aeb- (01) U (4) is a trivial fuzzy topology 

on FX , for the one-point set X= (x). 

This shows that unlike the case in classical topology where 

only one topology "can be defined" on a singleton, in fuzzy 

theory, there are as many fuzzy topologies on a full set with a 

singleton support as there are subsets b of I which contain 0 and 

1 and are closed from above. 

The natural fuzzy topological space 

It is a known classical result (e. g. Bourbaki [4] p. 360) that 

the family of all lower semicontinuous functions from a given 

topological space to the unit interval is closed under finite 

infima and arbitrary suprema and contains all the constant 

functions. In fuzzy language, such a family is actually a Lowen 

fuzzy topology. This special type of fuzzy topology was first 

mentioned by Wong [54] who called it "the semi-continuous fuzzy 

topology�. Since then other names appeared in the literature, 

Weiss [53] referred to it as "the induced fuzzy topology" which 

was also used by Pu and Liu [43], Martin [39] and 

Hu[26] who also called it "the product-induced topology". Lowen 
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[33] gave it the name "topologically generated" which was adopted 

by Srivastava, et al [48], Artico and Moresco [2], Zhou [60] and 

others. Mohannadi and Warner [40] referred to it as "the 

corresponding fuzzy topology". Conrad (10) introduced the label 

"the natural topology" which was adapted by Ghanim et al [22] and 

Kotze [31) as the "natural fuzzy topology". This last name is the 

one most appropriate for us, since its wording does not overlap 

with that of other concepts contained in this thesis. For 

instance, we reserve the term "induced fuzzy topology" to describe 

the fuzzy extension of classical induction (see part V). 

Throughout this thesis, we will denote the usual topology on 

I by the symbol 1* while using the symbol lr to indicate the 

topology {(t, 1] :AeI- {1)) U {4, I). 

In the following, let (X, I) be a topological space. Recall 

(e. g. Bourbaki [4] p. 360) that a function A is lower semi- 

continuous from (X, T) to (I, 1*) iff for every AeI- (1) and 

xeX, such that A(x) > A, there is a basic Topen neighbourhood Z 

of x satisfying the inequality A(y) > A, for all y¬Z. 

Equivalently, A is lower semi-continuous from (X, T) into 

(I, 1*) iff A 1(X, 1] E T, for all AEI- (1), that is iff A 

is continuous from (X, -r) into (I, 1). 

Definition 2.2.6 

The collection of all lower semi-continuous functions from 

(X, T) into (I, 1*) is called the natural fuzzy topology of 

(X, r) and denoted by W(T). The latter notation was introduced 

by Lowen [33] and has become by now standard. The pair 
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(FX ,W (T)) is called the natural fts of (X, T). 

It follows that a subset A of FX is open in (FX , w(T) ) 

iff for every AEI- (1), the strong A-cut A 1(A, 1] is in T. 

On the other hand a subset D of FX is closed in (FX , w(-r-)) 

iff D is an upper semi-continuous function from (X, T) into 

(I, 1*), or equivalently for every AEI- (0), D-1(O,. k) E T. 

Since constant and crisp open sets in X are lower 

semi-continuous from (X, T) into (1,1'ý) , we have, 

1, u 
cr(T) C W(T). 

In general, a fts (FX , J) will be called natural if J is 

the natural fuzzy topology of some topology on X. 

In the following, we introduce a base for the natural fts of 

(X. T). 

Proposition 2.2.7 

(a) Let B(T) = (Z(6) :ZET and 6E I), where z(s) is 

defined as in 1.1.8 . Then B(r) is a base for w(T) and 

t'o U cr(-r)4; =B(T). 

(b) Let C be a base for T, and B' (T) _ (Z(s) :ZEC and 

6E I). Then B' (T) is a base for W(T). 

Proof 

(a) Let e= (x), e FX and 0e W(T) such that eqO. Then 

O(x) >1-X and so O(x) >1-X+e, for some ee (0, X). 

Denote S=1-A+e, then öeI and O(x) > B. Let 

Z= 0-1(6,1]. Hence xeZeT. Let B= Z(s), then Be B(T), 

B(x) + e(x) = (1 -A+ E) +A=1+E>1 and 0(y) >S= 

B(y), for all yeZ. Therefore, eqB C 0. But then, by 
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proposition 2.1.8, B(-r) is a base for tu(r). 

Since every constant set and every crisp set is lower 

semicrisp, then they are in B(-r) and so LO U cr(T) C 

$(T). 

(b) Considering (a), it is enough to show that every member of 

B(T) is a union of some members of B'(T). If Be B(-r), then 

B= Z(6) p for some Zer and 6eI. But since C is a 

base for -r, there is a subfamily C' of C such that, 

Z= U Y. Hence, B= Z(s) 
U 

Y)(6) _U Y(8) by 
yEC' y¬C, y6C, 

consequence 1.1.24(b). Q 

Corollary 2.2.8 

Let r= (rn :ne N} be the set of all rationals in I. 

r 
Then, the family B"(-r) = (Z n: ZeT, ne N) is a base for 

W(T). Moreover, if 

(rn ) 
(Z :ZEC, ne N) 

Proof 

C is a base for T, then the family 

is a base for w(Tr). 

Considering proposition 2.2.7, it is enough to show that every 

member of B' (T) is the union of some members of B"(T). Let 

Z(s) e BI(T). Since 6eI, then there is a set b of rationals 

in I, such that S= sup b. But then, by consequence 1.1.24(c), 

Z(s) = 
U 

rEb 

Z(r). Q 

Corollary 2.2.9 

Let T be a topology (on X) and Ja Lowen fuzzy topology 

that contains cr(T). Then w(T) C 
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Proof 

Let B= {Z(S) :ZeT, öE I). Considering proposition 

2.2.7, it is enough to show that BCJ. Thus, let BeB. Then 

B= Z(8), for some Ze rr and 8eI. Since J is Lowen, 

res E J, and by the hypothesis (cr(T) C J), we have XZ e J. 

But then res fl XZ e J. By consequence 1.1.24(a), we have, 

B= Z(s) _ %) f XZ e J. Therefore, BQJ. Q 

Definition 2.2.10 (Lowen [33]) 

Let (FX J) be a fts. 

A topology on X having the subbase {A 1 (A, 1] :AEJ, 

Ae I- (1)) is called the initial topolo gy of J and denoted 

by i(J). (In a subsequent paper [36], Lowen called it the 

topological modification of J). 

It follows that L(J) is the smallest topology on X that 

makes every member of J continuous from (X, T) into (I, 1). 

It is a classical result that the family L, of all lower 

semi-continuous functions from the indiscrete topological space 

(X, -r0) is actually the family of all constant functions 

from X. In our terminology, we write; 

L0 = W(T0). 

By definition 2.2.10, we have; ß. (L0) = T0. 

The following proposition is a generalization of this result. 
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Proposition 2.2.11 

Let J be a fuzzy topology on FX . Then (FX J) is trivial 

iff i(J) - TD. 

Proof 

First, let J be trivial and AEJ. Then A= r6, for some 

6eI. Hence for every AeI- (1), we have, 

x if A<6A 1(A, 1] _( Therefore, by definition 
4) if 84A 

2.2.10, (X, 4) is a subbase for i(J) and so i(J) = (X, 4} _ 

T0. 

Now, let t(J) = T0 and assume that (FX J) is not trivial. 

Then there is an AeJ and x, yeX, such that A(y) > A(x). 

Let A(x) = ö, then öeI - (1). Hence A(y) > 8, and so 

y6 A71(8,11 and thus, A71(6,1] * 0. But A71(8,1] eL (J) = TD , and 

hence A-1(8 , I) = X. But then xeA -1(8, I), and so A(x) > 8. 

Thus, we arrive at a contradiction. Therefore every member of J 

is a constant set, and hence (FX J) is trivial. Q 

The following results are direct consequences of definitions 

2.2.10 and 2.2.6. 

Consequence 2.2.12 

Let (X, T) be a topological space and (FX J) a fts. 

Then, 

(a) C(W(T)) =T and JC W(L(J)) (men). 

(b) If J1 is a fuzzy topology on FX such that JC J1, then 

L(J) Q i(J1). 
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(C) If Tl is a topology on X, then 

W(T) C OJ(T1) iff T T1 (W(T) = (ß(T1) iff T= Tl). 

(d) c( t(J)) is the smallest natural fuzzy topology on FX 

containing J (Lowen). 

Proof 

(a)1. If ZET, then XZ e w(T) and so Ze L(w(r)). Thus, 

T C(W(T)). On the other hand for every YE (A 1(A, 1 ]: 

Ae W(T), AeI- (1)), we have YeT, by the definition 

of the natural fuzzy topology. Hence T contains a 

subbase of L(W(T) ), and so t. (w( -r)) G -r. Therefore, 

W(T)) = T. 

2. If AEJ, then by definition of L(J), A 7'(, \, I) E L(J), 

for all AeI- (1), and so Ae w( L(J) ), by definition 

of the natural fuzzy topology. Therefore, 

(b) If JCJ., then (A 1(A, 1] :AEJ, AEI- (1) }C 

(A71 (X, I]: Ae Jl, AeI- (1)) and so, by 

definition 2.2.10, L(J) C L(Jl ). 

(c) First if w(T) W(Tl), then by (b), L(W(T)) L(W(Tl)). 

By (a), T= L(W(T)) and T1 = L(W(T1) ), and hence 

T= Tl 
. Similarly, if W(T) = W(T1 ), then T= Tl . 

Now, let TC Ti and 0E W(T). Then, for every 

AEI- (1) ; O-1(%, 1] E T, by definition of W(T). But 

then, 0 
1(X, 

1] E T1, for every AEI- (1), and so, 

0e W(Ti) . Hence W(T) C W(Ti) . 

Similarly if T= Tl, then W(T) = W( Tl) 
. 
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(d) Let J1 be a natural fuzzy topology on FX that contains 

J. Then J1 = W(T1), for some topology T1 on X and 

JC W(T1). But then by (b) and (a), L(J) C L(W(T1)) _ 

T1. Hence, W( L(J)) C W(T1) = J1, by (C). Thus every 

natural fuzzy topology on FX that contains j also 

contains W( L(J) ), and hence W( L(J)) is the smallest 

fuzzy topology containing J. Q 

Definition 2.2.13 

Let (FX J) be a fts. 

Then the family µ(J) = (Z : XZ e J) is clearly a topology on 

X. It is said to be the Martin topology of J. 

The idea of defining such a topology is due to Martin [39] who 

did not give it a name. 

It follows from the definition that cr(g(J)) C J. 

Consequence 2.2.14 

Let (X, T) be a topological space and (FX J) a fts. 

Then, 

(a) T= µ(W(T)) 

(b) µ(J) C c(J). 

(c) If J1 is a fuzzy topology on Fx such that JC J1, then 

µ(J)C 1 (J1)" 

Proof 

(a) ZET iff XZ e C)(T) iff ZE µ((A)(T)), by definition 

2.2.13. Therefore, T= µ( W(T)) . 
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(b) Let zE µ(J), then XZ E J, by definition of Martin's 

topology. Hence ZE L(J), by definition 2.2.10, and so 

µ(J) C L(J). 

To show that the converse is false, let i= (FX 
, 4, X , Z(2)), 

where Z is a nonempty proper subset of X. Then 

i(J) = (X, 4, Z) (X, 4) = µ(J). 

(c) Let JC Jl and Ze µ(J) . Then XZ E J, by definition 

2.2.13, and so XZ e J1 Hence Ze µ(J1). Thus 

M(J) C {L(Jl). 

To show that the converse need not hold, let 
]ii 1 

J= {4x FX 
, Z(3)} and Jl = (4x 

, FX , Z(4)}, where Z is a 

nonempty proper subset of X. Then µ(J) X) = µ( Jl ), 

but J ;e J1. Q 

Consequence 2.2.15 

Let (FX J) be a Lowen fts. Then, 

(a) w(µ(J))C J (Martin). 

(b) c, 3(g(J)) is the largest natural fuzzy topology on FX 

contained in J. 

(c) µ(J) = L(J) iff (FX , J) is natural. 

Proof 

(a) The inequality is obtained by substituting µ(J) for T in 

corollary 2.2.9. This is possible since J is Lowen and by 

the remark following definition 2.2.13, cr(µ(J)) C J. 

compare this proof with the one given in a different context 

by Martin (theorem 2.4 in Martin [39]) and which contains a 

minor error, which, however, does not affect the outcome. 

-69-- 



(b) Let T be a natural fuzzy topology on FX that is contained 

in J. Then T= w(T), for some topology -r on X and 

UK T) J. But then by consequence 2.2.13(c), 

µ( w(T)) C µ(J) . But, by consequence 2.2.14(a), µ(w(T)) _ 

T, and hence, -r C u(J) . Therefore, by consequence 2.2.12(c) 

T= w(T) C w(µ(J)). Thus every natural fuzzy topology on 

FX that is contained in J is also contained in w(µ(J) ), 

and hence w(µ(J)) is the largest natural fuzzy topology 

contained in J. 

(c) Since J is Lowen, then w(µ(J))C JC W( L(J)), by (a) 

and consequence 2.2.12(a). Thus, 

µ(J) =L (J) if f w(µ(J)) = W(L (J)) 
, 

by consequence 2.2.12(c) 

iffc, 3(µ(J)) =J= c( c, (J)) 
, 

by part (b) and 

consequence 2.2.12(d) 

iff J is natural. Q 

Now, we introduce a topology and a fuzzy topology which owe 

their existence to consequence 1.1.14. The former was mentioned 

by Lowen [35], Hu [26] and Wuyts [57]. The latter we construct 

because of its usefulness, especially in providing 

counterexamples. 

Definition 2.2.16 

Let (FX J) be a fts. Then, as observed by Lowen [35], for 

every XeI- (1), the family (A 1(X, 1] :AE J) is a topology 

on X. Lowen denoted such a topology by L, (J) and later Wuyts 

(57] called it the A-level topology of J. It is obvious, that 

for every XeI- (11, L (J) Ct (J) 
, and that, as indicated by 

Lowen, L(J) is the union of the family (L, (J) :AEI- (1)). 
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The O-level topology was called by Kotze [31) the support 

topolocty 
. 

Definition 2.2.17 

Let (X, T) be a topological space. For each AEI- (1), 

define the family wA(T) of subsets of FX by C (T) _ (A C FX : 

A 1(X, 1] e T). This family, as we will show, is a fuzzy topology 

on FX which we call the A--cut fuzzy topol ogy of T. 

It is obvious that W(T) _f WA(T) . 
1eI-(1) 

The 0-cut fuzzy topology of -r appears in Zheng (59) in its 

explicit form (A : Supt A E -r) and under the name "the fuzzy 

topology introduced by -r ". 

Proposition 2.2.18 

Let (X, T) be a topological space. Then for each 

A6I- (1), (FX , 63, \(T)) is a fts. 

Proof 

Let AEI- (1). 

First 4 Fx e cj, (T), since 4 1(A, 1) = 4) ET and 

FXl(A, I] =X6T. 

Now, let A1, A2 E WA(T). Then Al1(A, 1], A210,1] E T, 

and hence All(A , 1] n A21(X, 1] E T. By consequence 1.1.14(b), 

we have (Ain A2)-1 (X, 1) = A11(?, 1] 
n 

A21(X, 1] E T. 

Therefore, Ain A2 E W, \(T). 

Lastly, let 
, 

(T) . CC W'\ Then A(, 1] e T, for all 

AeC, and hence, 
U 

CA 
1 (X, 1] E T. By consequence 1.1.14(a), we 
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have, (U A)-'(ý, 1) =U A71 (x, 1 ] 

ÄUAE( 
(T). 

Thus (FX , WA(T)) is a fts. Q 

Proposition 2.2.19 

e T. Therefore, 

Denote the discrete topology on X by A. 

Let T be a topology on X and XEI- (1). Then, 

(a) L(wx(T)) =e 

(b) wX(i) = w(L) = JA 

(c) i- =A iff there is aSeI- (X, 1) such that either 

WA(T) C ws(T) or ws(T) C w, \(T). 

Proof 

(a) Let Z be a subset of X. Choose 8e (X, 1) and define 

the upper semicrisp set A in X by, 

1xeZ 
A(x) 

otherwise 

Then A1(X, 1] =XET. But then Aew, (T ), and so by 

definition of the initial topology, A71(6,1] e l(WA(T)). 

But A 1(S, 1] = Z. Therefore, Ze i(WA(T)). Thus 

L(SA(T)) _ A. 

(b) It is true, since for every AG FX and every 

AeI- {1}, the strong A-cut A 1(A, 1] is open in the 

discrete topological space (X, A). 

(c) Considering (b), it is enough to show that if T ;dA, then 

for every sEI we have wX(T) c ws(r) and 

Ws(T) wý(T)" 

-72- 



Thus, let T0A, and 8eI- (X, 1). We can assume that 

A>S. Since T 96 A, then there is a subset Z of x such 

that Z4T. 

First, consider the lower semicrisp set A= ZO). We have, 

e T, and hence AeW,, (T). On the other hand, 

Ä 1( S, 1]=Z4T, and so A4 w8(T). Therefore, 

( (T) C W6(T). 

Now, define the upper semicrisp set B by, 

1xeZ 
B(x) _ 

x otherwise 

We have, B-1(8,1] =Xe Ti and hence Be W6 (T) . On the 

other hand, B-1 (A, I] =Z4T, and so B4 wX(T). 

Therefore, as(T) CW (T). Q 

We will return to the X-cut fuzzy topological space in other 

parts of this thesis. It will be used to produce counterexamples 

in part III (e. g. proposition 3.1.21) IV (proposition 4.3.9) and 

V (counterexample 5.3.13). 
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PART III 

FUZZY COUNTABILITY AND FUZZY SEQUENTIALITY 

This part of the thesis focuses on four extensions of 

classical properties, namely fuzzy second countability as defined 

by Wong [54], fuzzy first countahi]ity and quasi-first 

countability as given by Pu and Liu [43) and fuzzy sequentiality 

which we introduce. (The latter was also discussed in Mohannadi 

and Warner [41] ). 

In section (1), we investigate the goodness (in the sense of 

Lowen) and the initial goodness (definition 3.1.13) of the three 

countability properties and establish their mutual relationship. 

Such investigation is made simpler by our approach of combining 

Q-theory (viz the theory of quasi-coincidence) and Lowen's 

goodness (e. g. propositions 3.1.25 and 3.1.27). 

In section (2), we use Pu and Liu's fuzzy convergence theory 

to determine the types of fuzzy sequences converging in some 

special fuzzy topological spaces so as to 'discover' the fuzzy 

versions of familiar objects such as constant sequences. We find 

that certain fuzzy sequences, which we call semiconstant sequences 

behave in a manner similar to that of constant sequences in 

classical topology (propositions 3.2.11 and 3.2.17(a)). We also 

discover that only one type of fuzzy sequence, which we call 

predictable, can converge in a Lowen fts (Corollary, 3.2.13(a)) and 

that it is in the nondiscrete fts in the sense of Chang [8] and 

not in the sense of Lowen [33] that every fuzzy sequence 

converges. The result demonstrates the advantage of Chang's 
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definition of fuzzy topology. 

In section (3), we fuzzify the concept of sequentiality and 

define the ensuing sequential fuzzy topology. We investigate the 

goodness and the initial goodness of this new concept and 

establish its relationship to the fuzzy countability properties. 

An important conclusion arrived at in this part of the thesis 

is that Pu and Liu's quasi-first countable fts plays in fuzzy 

theory the role of first countable space in classical topology. 
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1. Fuzzy Countability Properties 

In the following, let (FX J) be a fts. 

Definition 3.1.1 (Wong (54]) 

The fts (FX , J) is said to be fuzzy second countable (or 

C2) iff there is a countable base for J. 

In the following three definitions, let e6 FX. 

Definition 3.1.2 (Pu and Liu [43]) 

A subfamily Br, of the Q-neighbourhood system Qe(J) of e 

is said to be a Q-neighbourhood base for J at e iff every 

member of Qe(J) contains a member of BQe. 

In other words, BQ is a Q-neighbourhood base for J at e 
e 

iff BQec Qe(J) and Qe(J) = (A C FX :DCA, DeB}. 

Definition 3.1.3 (Pu and Liu (43]) 

A subfamily By of the 
e 

neighbourhood system Ve(J) of e 

is said to be a neighbourhood base for J at e iff every member 

of Ve(J) contains a member of BV 
e. 

Equivalently, HVe is a neighbourhood base for J at e iff 

BV C Ve(J) and Ve 
e 

(J) _ {A C FX iDCA, DE HVe} . 
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Qefinition 3.1.4 

Let B be a family of open Q-neighbourhoods (respectively 

neighbourhoods) of e (i. e., BC Jn Qe (respectively B C 

Jf Ve)). Then B is said to be an ope n 0-neighbourhood base 

(respectively open neighbourhood base) at e iff for every 

UeJf1 Qe, (respectively, UEJ (I Ve ), there is aBEB, such 

that BCU. 

We can easily see that an open Q--neighbourhood base 

(respectively open neighbourhood base) is a Q-neighbourhood base 

(respectively neighbourhood base). 

Definition 3.1.5 (Pu and Liu [43]) 

The fts (Fx , J) is said to be quasi-f irst___ countable (or Q-C1) 

iff there is a countable Q-neighbourhood base for J at every fuzzy 

point in X. 

Definition 3.1.6 (Wong /Pu and Liu) 

The fts (Fx 1j) is said to be fuzzy first countable (or Ci ) 

if f there is a countable neighbourhood base for J at every fuzzy 

point in X. 

Consequence 3.1.7 

The fts (Fx J) is Q-C1 (respectively Cf) iff it has a 

countable open Q-neighbourhood base (respectively neighbourhood 

base) for J at every fuzzy point in X. 

P r00 f 

This follows almost vebatim the classical case. Q 
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Definition 3.1.8 

A family C oC fuzzy sets in X is said to be nested iff for 

every couple A and B in C, ni ther A9B or BCA. 

Consequence 3.1.9 

The fts (FX J) is Q-C1 (respectively Ci) iff there is a 

nested countable (open) Q-neighbourhood base (respectively 

neighbourhood base) for J at every fuzzy point in X. 

Proof 

We will prove the assertion for the Q-C1 case. The proof for 

the Ci case is obtained similarly by replacing "q" by "E" and 

the reference to consequence 1.3.7(b) by the reference to 

consequence 1.2.7(b). We will only show the nontrivial part. 

Thus, let (FX , J) be Q-C1. Then given eE Fx , there is a 

countable open neighbourhood base Be = (Bn :ne N) at e. For 

n 

every neN, let Dn =n Bk. Then for every neN, we have 
k=1 

Dn EJ and, by consequence 1.3.7(b), egDn. By consequence 

1.1.20(a), we have Dn C Bn, for all ne N. Then the family 

Be = (Dn :ne N) is also a countable Q-neighbourhood base for J 

at e. This family is nested, since for every ncN, we have; 

n+ In 

Dn+1 
flBk 

= Bn+i fl (1 l Bk) = Bn+i 
fl 

Dn G Dn, by consequences 

k=1 n=1 

1.1.18(c) and 1.1.20(a). Q 

Consequence 3.1.10 

A base for J contains an open Q--neighbourhood base for J 
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at every fuzzy point in X. 

Proof 

r, et B be a base for J and eE FX . Consider Be = (B EB: 

eqB). Obviously, Be C Qe n J. To show that Be is an 

open Q-neighbourhood base for J at e, let AE Qe () J. Then, by 

proposition 2.1.8 , there is aBEB such that eqB C A. But 

BE Be, by definition of Be, and so Be is an open 

Q-neighbourhood base for J at e. IJ 

Corollary 3,1.11 (Pu and Liu [43]) 

Every fuzzy second countable fts is quasi-first countable. 

Proof 

This follows from consequence 3.1.10 and the fact that a 

subset of a countable set is countable. Q 

Proposition 3.1.12 (Pu and Liu) 

Every fuzzy first countable fts is quasi-first countable. 

See proposition 3.1 in Pu and Liu [43]. 0 

Now we introduce the concept of initial goodness and Lowen's 

criterion for goodness of fuzzy extensions of classical 

topological properties. In the following, let P be a classical 

topological property and Pf some claimed extension of that 

property to fuzzy topology. 
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Definition 3.1.13 (Initial goodness) 

The fuzzy property Pf is said to be an initially good 

extension of P iff whenever a fts (FX J) has the property Pf, its 

initial topological space (X, L(J)) has the property P. 

Definition 3.1.14 (Lowen's goodness criterion) 

The fuzzy property Pf is said to be 

good extension of P iff for every topological space (X, T), 

(X, -r) has the property P iff the natural fts 

(FX , w(, r)) has the property Pf. 

It follows that an initially good fuzzy extension is good if, 

(FX , (T)) has Pf, whenever (X, -r) has P. 

Initial goodness 

a 

It turns out that all three fuzzy countability properties are 

initially good. In the following, let (FX J) be a fts and let 

r* be the set r- (1), (recall that r is the set of all 

rationals in I). 

proposition 3.1.15 

Let B be a base for J. Then the family C' = (B 1(r, 1] 

BEB: re r*) is a subbase for t (J) . 

Proof 

We will show that the family C of all finite intersections of 

members of C' is a base for L(J). 

First, by definition of c(J ), we have CC L(J). 
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Now, let xeZe L(J). Then by definition of L(J), we have 

N 

xEn1 (ßn, 1 ]CZ, An 6 J, n4N, for 

some NEN. Hence xe An'( Xn 1], and so (x), 
_, 

qAn ,14n4N. 
n 

But then, there is a Bn eB such that (x )1_A qBn C A. and 
n 

hence xe B1( Xn, 1 ] An1(An, 1 ], 1(n4. N. 

Since, Bn(x) )' Xn, 14n4N, then for each ne (1,2, ..., 

N), there is an rn e r*, such that Bn(x) > rn > Xn, and hence 

Bl(r 
n n, 

1] Bn1( Xn, 11. Thus, we have xe B7n (rn, 1 ] F7n1(Xn, 11 

NN 

14n4N. But then xe 
flB1(r, 

1) C 
flA1(x, 

1) Z. Let 

n=1 n=1 
N 

Y=n Bn1(rn, 1]. Then YeC. 

n=1 

Thus given an x¬X and Z6c, (J ), there is aY6CC L(J) 

such that xeYCZ. Therefore, C is a base for L(J). Q 

Proposition 3.1.16 

Fuzzy second countability is an initially good extension of 

classical second countability. That is, if (FX J) is C2, then 

(X, L(J)) is C2 . 

Proof 

If (FX J) is C2, then there is a countable base B for J. 

Let C' = {Bnl(rk, l]: rk e r*, Bn e B, k, neN} and consider 

the family C of all finite intersections of members of C'. Then C 

is countable (see theorem 18 in Kelley [29]), and, by proposition 

3.1.15, C is a base for L(J). Therefore, (X, L(J)) is C2 .Q 
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Proposition 3.1.17 

Let x be a point in x, r** - 

be an open Q -neighbourhood base 

(B 1(1-r, i] :Be Br). Then 

intersections of members in tj 

rer 
* 

at x. 

=r- (0). For each re t'** let Br 

for J at (x )r Define Cr by Cr = 

the family Cx of all finite 

Cr is an open local base for t(J) 

Proof 

First Cx is a subfamily of open neighbourhoods of x (relative 

to L(J)). Let Z be an open neighbourhood of x. Continuing in 

a similar way to that used in the proof of proposition 3.1.15, we 

can show that there is aYe Cx , such that YCZ. Q 

Proposition 3.1.18 

Quasi-first countability is an initially good extension of 

classical first countability. That is if (FX J) is ¢-C1, then 

(X, t(i» is Cl 6 

Proof 

Let xeX. 

Since (FX J) is Q-C1, then there is a countable open 

Q-neighbourhood base Br for J at each fuzzy point (x)r , k k 

where, rk er 
**. Let Crk = (Bn1(1-rk, 1] : Bn E Brk) and 

consider the family Cx of all finite inter sections of members of 

OD OD 

Cr Since 
" 

IJCr 
is countable, then Cx is countable 

k=1 k k=1 k 

(see theorem 18 in Kelley (29]). By proposition 3.1.17, cx is 

an open local base for L (J) at x. Therefore, (X, t (j)) is 

cl. 0 
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Proposition 3.1.19 

Fuzzy first countability is an initially good extension of 

classical first countability. That is, if (Fx J) is Ci, then 

(X, i(J)) is C1. 

Proof 

Let (FX J) be C. Then, by proposition 3.1.12 (FX J) 

is Q-C1. But then, by proposition 3.1.18, (X, L(J)) is Cl. Q 

However, if the initial topological space of some fts is 

first countable (second countable) this does not imply that the 

fuzzy topological space is fuzzy first countable or even 

quasi-first countable (respectively second countable). To show 

this, we use the )-cut fts we introduced in part II (see 

Definition 2.2.17). In the following, let XeI- (1), (X, T) 

be a topological space and (FX , wX(T)) its A-cut fts. 

Proposition 3.1.20 

If (FX , WX(T)) is C2, then (X, T) is C2 . 

Proof 

Let (FX , WA(T)) be C2 , then there is a countable base 

B= (Bn : ne N) for wA(T). Consider the family C= {B1(, 1]: 

ne N). Obviously C is countable and, by the definition of 

WX(T), it is a subfamily of T. To show that it is a base for T, 

let Xe ZeT. Let A= XZ. Then AE W(T), and so 

Aew, (T) 
. 

Since A EI- (1), then 1-MO. Consider the fuzzy 

point e= (x),. 
-X. 

Then eqA, and so there is a Bn EB such 
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that egBn C A. But then Bn1(A, 1]EC, Bn1(X, 1]CA 1(X, 1 ]_ 

Z, and Bn(x) Therefore, xe Bn1(, \, 1) CZ. 

Thus the countable family C is a base for T, and so (X, r) is 

c2,0 

Proposition 3.1.21 

If (FX 
,W 

(T)) is Q-C1, then (X, T) is Cl. 

Proof 

Let (FX , WX(T)) be Q-C1 and xeX. 

Consider the fuzzy point e= (x)1_,. By the quasi-first 

countability of W, (T), there is a countable open Q-neighbourhood 

base Be = {Bn :ne N) for W, (T) at e. Let C= {Bn1(X, i] 

ne N). Following the procedure used in the previous proof, it 

can be shown that the countable subfamily C of r is an (open) 

local base for T at x. Therefore, (X, -r) is C1. Q 

In the following, let (FX J) be a fts. 

Proposition 3.1.22 

The second countability of (X, i(J)) does not imply the 

fuzzy second countability of (FX , J). 

proof 

Let X= ((x, y) : x, yeNu (0)). Then X is countable. 

Define the topology T on X, by the following. 

(1) For every (x, y) Ex- ((0,0)), ((x, y)) is an open 

neighbourhood of (x, y) in the topological space (X, T). 
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(2) A subset Z of X is an open neighbourhood of the point 

(0,0) in (X, T) iff for all , except, may be, a finite 

number of elements x in X, the set (y : (x, y) E Z) 

is infinite. 

The topological space (X, T) which is called the Arens-Fort 

topological space is not C2 (see II (26) in Steen and Seebach 

(49])" 

Now, let AeI- (1) and consider the fts J=w, (T). (In 

particular we can consider J= wo(T) = {A C FX : Supt Ae -r)). 

Then, by proposition 2.2.19(a), i(J) _ A. Since x is 

countable, then the discrete topology A on X is C21 and so 

the initial topology (X, i(J)) is C2. But since T is not 

C21 then, by the counterpositive of proposition 3.1.20, J is not 

4. o. 

Proposition 3.1.23 

The first countability of (X , L(J)) does not imply the 

quasi-first countability of (FX , J). 

Proof 

Let (X, r) be any non-first countable topological space, 

(for example the countable complement topology on R). Let 

AeI- (1) and consider the fts, J=W, \(T). By proposition 

2.2.19(a), L (J) = A. Since the discrete topological space is 

first countable, then (X, L(J)) is C1. But since T is not 

Cl, then, by the counterpositive of 3.1.21, J is not Q-C1. Q 
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Corollary 3.1.24 

The first countability of (X, L(J)) does not imply the fuzzy 

first countability of (FX �J). 

Goodness 

In the following, we investigate the goodness of our fuzzy 

countability properties. 

Proposition 3.1.25 

Fuzzy second countability is a good fuzzy extension of 

classical second countability. That is, a topological space 

(X, T) is C2 iff its natural fts (FX , W(T)) is C2. 

Proof 

Considering proposition 3.1.16, it is enough to show that the 

second countability of (X, T) implies the fuzzy second 

countability of (FX , w(T)). 

Thus, let (X, T) be C2. Then there is a countable base 

C= {Zn :ne N} for T. 

= {Zn k: 
n, ke N) of all lower Consider the family Br 

semicrisp sets of values rk in r and supports in C. Then, by 

corollary 2.2.8 the countable family B is a base for W(T). 

Therefore, co(T) is Cf. Q 

Proposition 3.1.26 

Quasi-first countability is a good fuzzy extension of 

classical first countability. That is, a topological space 

(X, T) is C1 if f its natural fts (FX , ()(T)) is Q-C1. 
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Proof 

Considering proposition 3.1.18, we need only show that if 

(X, T) is C1, then . (FX 
, W(T)) is Q--C1. 

Thus, let (X, T) be C1 and e= (x)x e FX. By the first 

countability of (X, T), there is an open countable base C= 

(Zn :ne N) for J at x. Let b=rn (1-A, 1], i. e. b is 

the set of all rationale in (1-X, 1]. Notice that 1-A91. 

Consider the family B= (Z(6k): Sk ebn, k e N) of all lower 

semicrisp sets with values in b and supports in C. Then B is 

a countable family of open Q--neighbourhoods of e. 

To show that B is an open Q-neighbourhood base for J at e, 

let A be an open Q-neighbourhood of e. Then xe A-1(1-, \, I] E 

T. Hence A(x) > 1-A, and so we can choose some rational 

Sk E (1-X, A(x)). But then Sk e b, xeA 
1(Bk, I] ET and 

A-1(Sk, 1] C A-1(1-A, 1]. 

Since C is a local base for T at x, then there is a 

Zn EC such that Zn CA 71(6k 1], (of course xe Zn) . 

Therefore, the lower semicrisp set B= Zn) is in B. Now 

B(y) =0< A(y), for all ye Zc and B(y) = Sk < A(y), for all 

ye Zn . 
Thus BC A, and therefore B is an open Q-neighbourhood 

base for w(T) at e. Hence (FX , W(T)) is Q-C1. Q 

Our proof of goodness for fuzzy second countability given in 

proposition 3.1.25 is based on proposition 2.2.8 which connects 

the concept of a base with that of a Q-neighbourhood. An 

alternative proof that does not involve the notion of 

quasi-coincidence can be found in Bu'lbu'l [7]. Bülbül also showed 

that "fuzzy first countability" is good. But his definition of 

fuzzy first countability is different. It follows from his 
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definitions of fuzzy point and fuzzy membership which are that of 

the "excluding definition" and the " proper membership definition" 

given in 1.2. *1 and 1.2. *5 respectively. 

To show the relationship between Bulbul's first countability 

and our fuzzy countability properties, recall the fuzzy point 

space (M*, d ), where M* is the family of all proper 

points of FX (i. e. the noncrisp fuzzy points in X) and t: * 

is the proper membership relation defined in 1.2.4. For an 

ee M* , define a proper neighbourhood of e in (Fx, J) as a 

fuzzy set V in X such that evACV, for some Ae J. 

Define a proper neighbourhood base B* for J at e as a family of 

proper neighbou rhoods of e such that every proper neighbourhood of 

e cont ains a member of B*. Lastly call a fts that has a 

countable proper neighbourhood base at every ep Fx by the 

name proper first countable (or simply P-C1). These are Bulbul's 

definitions for a neighbourhood, neighbourhood base and fuzzy 

first countability respectively. 

Hu [26] observed that if e= (x), e ä*, then a proper 

neighbourhood of e is actually a Q-neighbourhood of the dual 

point e= (x)1_, of e. It follows that a proper neighbourhood 

base at e is a Q-neighbourhood base at e. Thus a quasi-first 

countable fts is P-Cl or "first countable" in the sense of 

Bulbul and Hu. 

proposition 3.1.27 

Fuzzy first countability is not a good extension of classical 

first countability. 
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Proof 

Consider the topological space (I, 1*) which, as we know 

is first countable. But, as has been shown in Pu and Liu [43], 

the natural fts (FI , w(1*)) is not Ci (it does not have a 

countable base at any crisp point in I). [] 

The fts (FI , sß(1*)) used in proposition 3.1.27 was actually 

used in Pu and Liu (43] as an example of a fts which is Cf but 

not Cf. To show that (FI , (l*)) is C2, Pu and Liu gave a 

long and detailed proof (see lemmas 3.1 and 3.2 in [43]). It turns 

out now that their result is a particular case of the more general 

and simpler assertion; proposition 3.1.25. This is shown in the 

following proposition. 

Proposition 3.1.28 (Pu and Liu) 

Fuzzy second countability does not imply fuzzy first 

countability. 

roo 

Consider again the fts (FI , w(1*)) . Since (I, 1*) is C2, 

then (FI , w( 1*)) is C2 by proposition 3.1.25. On the other 

Q hand (FI , w( 1*)) is not Ci (see proof of proposition 3.1.27). 
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Proposition 3.1.29 

Fuzzy first countability does not imply fuzzy second 

countability. 

Prooof 

Consider the fts (FR , w(A) ), where A is the discrete 

topology on R. By proposition 2.2.19(b), w(t) = J, . And since 

at every ee FX , (e) is a countable neighbourhood base for JA 

at e, then (FR , W(A)) is Ci . On the other hand (R, A) is 

not C21 and hence, by proposition 3.1.25, (FR , w(A)) is not C2. Q 

Proposition 3.1,30 

Quasi-first countability implies neither fuzzy first 

countability nor fuzzy second countability. Moreover there is a 

fts which is Q-C but neither Ci nor C21 . 

Proof 

We have given an example of a C2 fts which is not Ci 

(proposition 3.1.28) and an example of Ci fts which is not C2 

(proposition 3.1.29). But, by corollary 3.1.11 and proposition 

3.1.12, every Ci and every C2 fts is Q-C1. Hence we have an 

example of a Q-C1 fts which is not Ci, and an example of a 

Q-C1 fts which is not C2. In the following we give an example 
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of a Q-C1 fts which is neither Ci nor C2. 

Consider the natural fts (FR , w(T)) of the right half-open 

interval topological space (R, T). Recall that this topological 

space is Cl and not C2 (see Steen and Seebach (49]), and hence 

(FR , W(T)) is Q-C1 but not CZ . Recall also that for every xeR, 

(- co, x) eT and C_([x, x+C) :t> 0) is an open 

neighbourhood base for T at x. In the following we borrow 

Pu and Liu's method of theorem 3.1 in [43] to show that 

(FR , W(T)) is not C. 

Assume that (FR , M(T)) is C1. Consider any crisp point e 

in R and let y= Supt e (for example take y=5, and hence 

e= (5)1). Then there is a nested countable open neighbourhood 

base Be = (Bn :ne N} for u(T) at e with Bn+1 G Bn, neN. 

Then for every neN, ee Bn, and hence Bn(y) = 1. But then 

for every ne N, Bn(y) >1 -n, and so ye Bn1(1 -n, 1]. 

Now, for all neN, we have Bn e W(T) and therefore, 

Bn1(1 - 
n, 1] e T. By the nature of members of the neighbourhood 

base CY _ ([y, y+C) :C> 0) for T at y and the nestedness 

of Be, for every ne N, there is an Cn >0 such that 

{n ' rn+l and yE (y, y+ tn) C Bn1(1 - n, 
1]. 

For each neN choose xn e (y + Cn+l, Y+ Cn). Then xn > Xn+i 'y 

and xn e Bn1(1 -n, 1], and hence Bn (xn) >1- n, neN. 

Define the fuzzy set A in R by, 

1xiy 

A(x) (1 
n+ xn 

1- 
xn+l) 

(n 
n)xe[ xn I xn+i 

0x> xi 
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Y x4 X3 X2 Xl 

Since A(y) =1, then eeA. Now, for every AeI-{1}, 

A1 ]- (- aa, A 1(A)) 
6 T, and hence Ae W(T). But on the 

other hand A(x) =1 -- 
n< Bn(xn ), for all nEN. Thus we have 

an open neighbourhood A of e that does not contain any member 

of Be. Therefore, Be cannot be a neighbourhood base for 

W(T) at e. Q 
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2. Fuzzy Sequences and Fuzzy Convergence 

Definition 3.2.1 (cf Pu and Liu [43]) 

A fuzzy sequence in X is a sequence with range in the set 

E_ (e :ee FX) of all fuzzy points in X. 

A fuzzy subsequ ence in X is a subsequence of a fuzzy 

sequence. 

.A 
fuzzy sequence having the nth term en ,neN is denoted 

by cen>. A subsequence of <en> having the kth term, enk, 

keN is denoted by <enk>. 

In the following, let <en> be a fuzzy sequence in X. 

Definition 3.2.2 

Let en = (xn)in ,neN. 

The sequence <xn> is said to be the support sequence of 

<en> and denoted by supt <en>. 

The sequence <Xn> is said to be the value sequence of <en> 

and denoted by Val <en>. 

Definition 3.2.3 

The fuzzy sequence <en> is said to be of (eventual) constant 

support if f supt <en> is an (eventually) constant sequence. 

Similarly, <en> is said to be of (eventual) constant value 

iff Val <en> is an (eventually) constant sequence. 
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It follows that cen> is (eventually) constant iff it is of 

both (eventual) constant support and (eventual) constant value. 

In the following, let AC FX. 

Definition 3.2.4 (Pu and Liu (43)) 

The fuzzy sequence <en> is said to be eventually quasi- 

coincident to A if f there is an NEN such that engA, for all 

n N. To indicate this, we write <en>q(N)A. When N=1, we 

simply write <en>qA and say that <en> is quasi-coincident to A. 

If for every neN, there is an m>n such that emgA, then 

we say that <en> is frequently quasi-coincident to A. 

We write <en>OA to indicate that en4jA, for all neN. 

Definition 3.2.5 (Pu and Liu) 

The fuzzy sequence <en> is said to be eventually in A if f 

there is an NEN such that en e A, for all n N. We say that 

<en> is in A iff en e A, for all neN. 

We mention two definitions of convergence proposed by Wong 

[56] and Bulbul [6]. 

Avoiding the notion of fuzzy points, Chang (8) introduced the 

term "sequences of fuzzy sets" for which he defined clustering and 

other related concepts. Wong (56) observed that, only by 

introducing the idea of fuzzy points, was a meaningful discussion 

of convergence in fuzzy topological spaces possible. 
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The following is Wong's definition expressed in our notation. 

Definition 3.2. *1 

Let <en> be a sequence of fuzzy points in a fts (FX , J) 

and xn = supt en, neN. Let e be a fuzzy point with support 

x ; f- xn, n2 no , for some no E N. Then <en> is said to 

converge to e in (FX J) iff for every AEJ such that 

e 4- A, there exists an NeN such that en E- A, for all n N. 

Here " ý- Of is Wong's membership relation (see definition 

1.2. *2 ). 

Bulbul [6] rightly rejected the underlined restriction which he 

described as somehow "unnatural" and observed that it prevents 

constant fuzzy sequences from converging in any fuzzy topological 

space. He modifies Wong' s definition by both omitting the 

restriction and replacing the relation " <- 
" by the proper 

membership relation "" (see definition 1.2 . *5) . If we 

substitute for the latter the q-relation, we obtain Pu and Liu's 

concept of sequential convergence which we adopt here. 

In the following, let <en> be a fuzzy sequence in X. 

Definition 3.2.6 (Pu and Liu [43]) 

The fuzzy sequence <en> is said to converge in a fts 
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(FX , J) to a fuzzy point e in X (called a limit of <en>) iff, for 

every AEJ such that eqA there is an NEN such that <en>q(N )A. 

J 
We denote this by en--ý e. If this is not the case, we write 

i 
en-f-S e. 

It follows from the definition that if a fuzzy point e in X 

is not quasi-coincident to any member of J- {FX}, then every 

fuzzy sequence in X converges to e. 

Proposition 3.2.7 

J 
(a) en---B e iff every subsequence of <en> converges to e 

in (FX, J) 

J 
(b) en e iff every subsequence of <en> has a subsequence 

that converges to e 

(c) If Jl is a fuzzy topology on FX which is stronger than 

JJ 
J, then en---A e, whenever en-- '-e 

JJ 
and en +--6 e, whenever en-- - -b e. 

Proof 

The proofs follow almost vebatim those of the corresponding 

classical assertions. Q 

The following three definitions will be useful when we 

investigate later sequential convergence in some special fts's. 

Let <An> = Val <en> and AeI- {0}. 
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Definition 3.2.8 

The fuzzy sequence <en> is said to be predictable by A 

iff for every te (0, A), there is an N e N, such that 

An E (A-C, 1], for all n N. 

If <en> is predictable by X, then a fuzzy point e in X 

of value A is said to be a predictable point of <en>. 

Definition 3.2.9 

Let T be a topology on X. 

The fuzzy sequence <en> is said to be -r-convergent in 

support iff Supt <en> converges in (X, T). 

A corresponding definition for Val <en> is not needed. A 

fuzzy sequence <en> for which Val <en> converges in (I, 1*) 

is simply a special case of a predictable sequence. Another 

special case is the situation when Val <en> is eventually equal 

to or greater than some number A in I - (0). 

Definition 3.2.10 

The fuzzy sequence <en> is said to be sem iconstant iff 

<en> is (eventually) constant in support and there is a 

AEI- (0) such that <en> is predictable by A. I f this is the 

case and x is the eventual support of <en>, then a predictable 

point of support x (i. e. (x), ) is called a trivial l imit of <en>. 

Semiconstant sequences play in fuzzy the role played in 

topology by constant sequences as the following proposition shows. 
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Proposition 3.2.11 

A senniconstant sequence converges to each of its trivial 

limits in every fuzzy topological space. 

Proof 

Let (FX J) be a fts and <xn> = supt <en>. 

Let <en> be predictable by A and supt <en> eventually x. 

Let AeJ and (x )aqA. Then A(x) > 1-A, and hence 

A(x) > 1-A+C, for some C e (0, )). Since <xc> is eventually x, 

there is an N1 E N such that A(xn) = A(x) > 1-A+C, n N1. On 

the other hand <en> is predictable by A, and hence for that 

same there is an N2 E N, such that en(xn) E (A-, 1], 

n N2 . Let N= max (N1, N2). Then, A(xn) + en(xn) > (1-A+C) + 

J 
(ý-{) = 1, nZN. Therefore, <en>q(N )A. Thus en---* (x )A .Q 

Proposition 3.2.12 

(a) In the indiscrete fts (FX Jo) every fuzzy sequence 

converges to every fuzzy point. 

(b) A fuzzy sequence converges in the Lowen indiscrete fts 

(FX LO) if and only if it is predictable. It converges 

to and only to its predictable points. 

Proo 

(a) It follows from the fact that the full set is the only open 

fuzzy set that it is quasi-coincident to any fuzzy point. 
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(b) Let <xn> - supt <en> . 

First, let <en> be predictable by A and xeX. Let 

res e LO and (x)qr. Then 6> 1-A, and hence S> 1-A+C, for 

some Ce (0, h). Since <en> is predictable by A, then for that 

same { there is an N EN such that en(xn) EnaN. 

Hence, n6(xn) + en(xn) =6+ en(xn) > (1-A+C) +n2N. 

L Q Thus, <en>q(N )res . There fore, en -- -4(x )A . 

Now, let AeI - (0) and assume that <en> is not 

predictable by X. Let xeX and e= (x)A E F. We will show 

L 
that en }-Q-+ e. Since <en> is not predictable by A, there is 

a subsequence <enk> of <en> and ae (0, A), such that 

enk(x )e MA-C], for all keN. Let 6= 1-A+t, then 

0<S<1. Consider th e constant set Ye.. Since S+A = (1-A+C ) 

+A= 1+C > 1, then egn6. But n6(x�_ )+ e(x) '8+ 

L - + (A-t) = 1, and --fie . But hence <enk> 8. Thus enk-1- 

then, by proposition 3. 2.7(a), en- 4e. 

Corollary 3.2.13 

(a) Only a predictable sequence converges in a Lowen fts. It 

converges to and only to its predictable points. 

(b) Only a predictable sequence converges in a natural fts. 

It converges to and only to its predictable points. 

Proof 

(a) Combine proposition 3.2.12 and 3.2.7(c) with the fact that 

a Lowen topology contains L0. 

(b) It follows from (a), since a natural fts is Lowen. Q 
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Notice that in a non-Lowen fts a fuzzy sequence can converge 

to some fuzzy point e without having to be predictable by the 

value of e. This is trivially true in the indiscrete fts where 

every fuzzy sequence converges to every fuzzy point. The 

following generalizes this observation. 

Example 3.2.14 

Let b be any closed from above subset of I that contains 0 

and 1 and J(*b) a trivial fts (see example 2.2.4). Then each 

fuzzy sequence in X converges in (FX , J(b)) to every fuzzy 

point of value 1-X, for each A e [sup (b-(1}), 1). 

Proof 

Let a=b- (1) and Ae (sup a, i). Then 1-A 41- sup a. 

For every res E J(b) - {FX}, we have s4 sup a, and hence 

6+ (1-)) 4 sup a, + (1-sup a) = 1. Therefore, e4n6, for every 

res e i(b) - (FX) and every fuzzy point e with value 1-A. But then 

every fuzzy sequence in X converges to e, by remark following 

definition 3.2.6. 

As an illustration, let b= [0,12] U (1). Then i(b) = (res : 

s [O, 2] U (1)), a= [0,2] and BU pa=2. If we take 

A ä, then 8e [sup a, 1) [1, I), and so every fuzzy sequence 

in X converges to any fuzzy point of value A. That includes, 

for instance, any constant fuzzy sequence of value i But this 

latter fuzzy sequence is not predictable by since 

for {_0 

In the following, let (X, T) be a topological space, <en> 

a fuzzy sequence in X, supt <en> _ <xn>, and e= (x)A E FX. 
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Proposition 3.2.15 

Ct(T T 

en- e iff xn ) x. 

Proof 

T 
First, let xn *j x and egXZ , XZ e cr(T). Then xeZ 

and ZeT. Hence, by the T-convergence of <xn>, there is an 

NeN, such that, x1,1 e Z, n2N. But then, <en>q(N )XZ, and so 

cr(r) 
en- - e. 

Since all implications are reversible, the converse 

follows. Q 

Proposition 3.2.16 

W(T) T 

en----fi(x ), iff <en" is predictable by A and xn----ý> X. 

Proof 

W(T) 
First, let en-----D(x )x . 

By proposition 3.2.13(b), <en> is predictable by X. Since 

T 

cr(T) C W(T ), then by propositions 3.2.15 and 3.2.7(c), xn---: ý x. 

T 
Now, let <en> be predictable by A and xn --JO' x- Let 

(x ), qA and Ae W(T). Then A(x) > 1-A, and so A(x) > 1-A+{, 

for some tE (0, A). Let ö= 1-)\+C. Then xeA 
1(6,1) 

E T. 

But then, there is an N1 e N, such that xn e A-1(8,1), 

n N1. 

Hence A(x) >ö = 1-h+C, for all n N1. 

On the other hand for the same C, by the predictability of 

<en>, there is an N2 E N, such that en(xn) en N2. 

Let N= max (N1, N2) 
. 

Then, A(x) + en(x )>+ 

1, n N. Therefore <en>q(N )A, and so en-(-T-) e. Q 
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Corollary 3,2,17 

In the following fuzzy topological spaces only a semiconstant 

sequence converges. It converges to and only to its trivial 

points. 

(a) The discrete fts. 

(b) The natural fts of the countable complement topological 

space (X, rcc) for an uncountable set X. 

(c) The A-cut fts of the countable complement topological 

space (X, Tcc) for an uncountable set X, for all 

A¬I- {1} 
. 

Proof 

(a) It follows from proposition 3.2.16, since J. = w(, &) and 

since in the topological space (X, A), the sequence <xn> 

converges iff it is eventually constant. 

(b) Recalling that if X is uncountable, a sequence converges in 

(X, -rcc) iff it is eventually constant, the proof follows 

from applying proposition 3.2.16 to the convergence in 

(FX " W(TCC))" 

(c) Combine (b) with proposition 3.2.7(c) and the fact that 

CA)(rcc) C (i)( rcc) , for all AEI- (i. ). Q 

The combination of corollary 3.2.17(a) and proposition 3.2.11 

establishes the semiconstant sequences as the inheritors, in 

fuzzy topology, of the role of classical constant sequences. 
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3. Sequential Fuzzy Topolocrical Spaces 

Before we introduce fuzzy sequentiality, it is worthwhile 

discussing briefly the classical notion of sequentiality and the 

ensuing sequential spaces. These spaces have been studied 

extensively by Franklin [16,17] who referred to them as "spaces 

in which sequences suffice". The following summary is from 

Franklin (loc. cit. ) and Antosik et al [1]. 

If (X, T) is a topological space, then a subset Z of X 

is said to be Sequentially open in (X, T) or sequentially T-omen 

iff every sequence in X that converges to a point of Z is 

eventually in Z. The subset z is said to be 

sequentially closed or sequentially T-closed iff every sequence in 

Z has its limits in Z. It follows that every open set is 

sequentially open and that a set is sequentially open iff its 

complement is sequentially closed. 

The family of all sequentially open sets in (X, T) defines a 

topology on X. Such a topology has been called the Franklin 

topology of (X, T) and denoted by rs. It follows that the 

Franklin topology of (X, T) contains -r. if the converse of this 

also holds, that is if the Franklin topology of (X, T) is equal 

to T, then (X, -r) is said to be sequential. Thus a topological 

space is sequential iff every sequentially open set in it is open. 

An equivalent statement is that a topological space is sequential 

iff every sequentially closed set in it is closed. 

It turns out that all first countable spaces, and hence the 

discrete and the indiscrete spaces, are sequential. However, the 
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converse of that statement is false. A counterexample based on 

the invariance of sequentiality under coinduction can be found in 

Franklin (16). Soquentiality is not, however, invariant under 

induction and even a subspace of a sequential space or a product 

of a couple of sequential spaces need not be sequential. This can 

be seen from counterexamples provided in Franklin [16] and 

Antosik et al [1). 

The information on sequential spaces provided in this summary 

is all that is needed to understand the content of this section. 

In the following, let (FX , J) be a fts and Aa fuzzy set 

in X. 

Definition 3.3.1 

The fuzzy set A is said to be sequentially open in (FX J) 

or sequentially 3-open iff every fuzzy sequence converging to a 

fuzzy point which is_ quasi-coincident with A is itself 

eventually quasi-coincident to A. Symbolically, 

J 
A is sequentially J-open iff "en---- eqA" implies 

"'<en>q(N)A, for some NE F". 

The fuzzy set A is said to be peguentially closed in (FX J) 

or sequentially J-closed iff every fuzzy sequence in A has its 

limits in A. 

Proposition 3.3.3 

A fuzzy set is sequentially J-open iff its complement is 
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sequentially J-closed. 

Proof 

J 
First, let A be sequentially J-open. Let en---D e and 

en e Ac, neN. Hence <en>ýA, and so, by the sequential 

J-openness of A, e4A. But then ee Ac. Therefore, Ac is 

sequentially J-closed. 

J 
Now, let A be sequentially J-closed. Let en- eqAc. 

Then e A. By the sequential J-closedness of A and 

proposition 3.2.7(a), every subsequence of <en> is not in A. 

Hence there is an NEN, such that en f A, n N. But then 

<en>q(N)A. Therefore, A is sequentially J-open. Q 

Proposition 3.3.4 

(a) Every J-open (J-closed) fuzzy set is sequentially J-open 

(sequentially J-closed). In particular the full and the 

empty fuzzy sets are both sequentially J-open and 

sequentially J-closed. 

(b) The family J. of all sequentially J-open fuzzy sets in 

X is a fuzzy topology on FX which is stronger than J. 

(a) is trivial. Thus we only need to show that Js is closed 

under finite intersection and arbitrary union. 

J 
First, let Ai A2 E J. and en- b- eq(A1 (l AZ) . 

Then, by 

consequence 1.3.7(b), egA1 and eqA2, and hence there are N1, 

N2 e N, such that <en>q(N1)Ai and <en>q(N2 )A2 . Let 

N= max (Ni , N2 ). Then <en>q(N)(Ai n A2), by consequence 
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1.3.7(b). Thus, Al n A2 E Js. 

J 
Now, let C' Jg and en eq( 

AULA). 
Then, by 

consequence 1.3.6(b), there is an AO e C, such that egAO, and 

hence there is an NeN, such that <en>q(N)Ao. But then 

cen>q(N)(A C ), by consequence 1.3.6(b). Thus, JC e Js. CO 

Definition 3.3.5 

The family J. of all sequentially open sets in (FX J) is 

called the Franklin fuzzy topology of (FX , J). By proposition 

3.3.4(a), JCJ. The converse of this inclusion need not be 

true, as is shown by the following proposition. 

Proposition 3.3.6 

Let X be uncountable and for every AeI- (1), let J. \ be 

the A-cut fuzzy topology wA(Tcc) of the countable complement 

topological space (X, -rcc). Then for every AEI- (1), 

(JI )s JA' 

Proof 

Choose ö0 e (X, 1) and yeX, and consider the fuzzy set 

E= (y)6 . We have E 1(, \, 1] = (y} # 0, and (E 1(), l))c =X- (y}, 

and hence E 1(X, 1] is a nonempty subset of X the complement of 

which is uncountable. Hence E1(, 1) 4 Tcc, and so E4w, \(Tcc ) 

JÄ. 

On the other hand if <en> is a fuzzy sequence in X, 

e= (x) 5E FX and en---ý-ý eqE, then x=y and 8> 1-80, 

Hence 8= 1-80+{, for some Ce (0,60]. By the convergence in 
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w (Tcc) (proposition 3.2.17(C)) Supt <en> is eventually x and 

<en> is predictable by 8. Thus for the same {, there is an 

NeN, such that en(xn) = en(x) e (6,1], E(xn) = 80 ,nN. 

Hence E(xn) + en(xn) = S0 + en(x) > SO + (8-0 = 80 + (1-80+C-C ) 

= 1, naN. Thus, cen>q(N)E. It follows that E is sequentially 

J. -open. 

Therefore, EE (JX )s - J. , and so (Jx )6 Jý .0 

Definition 3.3 .7 

A fts (FX J) is said to be fuzzy sequential or sequentialf 

'ff JB C J. 

It follows that (FX , J) is sequentialf iEf is =J or 

equivalently every sequentially J-open fuzzy set is J-open. 

Corollary 3.3.8 

(FX , J) is sequentialf iff every sequentially J-closed fuzzy 

set is J-closed. 

Proof 

It follows from proposition 3.3.3 and definition 3.3.7. Q 

Proposition 3.3.9 

(a) If T is a fuzzy topology on FX which is stronger than 

J, then T. is stronger than J. 

(b) If AEJ. then A -'(A, 1] E (i(J) )s 
, 

for each X6I- (1) 

(C) If T is a topology on X, then z is sequentially Topen 

iff XZ is sequentially W(T)-open. 
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Proof 

(a) This follows from the fact that convergence in (FX T) 

implies convergence in (FX J) (proposition 3.2.7(c)). 

(b) Let Ae JS . Since iC w(r)), then, by (a), 

is C (W L (J) )8 
. Let 

t(J) 
xn---: ýP xeÄ 

1(A, 1 ]. Since AEI- 

(1), then 1-AeI- (0). Consider the fuzzy point (x)i_, \. 

Since A(x) > A, then (x )1_,, qA. 

Consider the fuzzy sequence <en> of constant value 1-A 

and with supt <en> = <xn>. Given any Ce (O, 1-X), we have 

1-A hence en(xn) 6 11, for all 

neN. Therefore, the fuzzy sequence <en> is predictable by 

1-1, and hence by the convergence of <xn> to x in (X, i(J)) 

and proposition 3.2.16, en-- 
- ((x 

)1_A . Therefore, there is 

an NeN such that <en>q(N )A. Hence A(xn) + en(xn) > 1, 

n N. But then A(xn) >1- en(xn) =1- (1-A) = A, n N. 

So, xn eA 
1(A, 1), n? N. Thus A 1(X, 1] is sequentially 

L(J)-open. 

(c) Considering (b), we need only show that if Z is 

sequentially Topen then XZ is sequentially W(T)-open. 

Thus, let enw(T)4 egXZ and Z be sequentially T-open. 

T 

Then xn----t? ý x, by proposition 3.2.16, and xeZ, where 

<xn> = supt <en> and x= supt e. But then, by the 

sequential T-openness of z, xn e Z, n N, for some 

NE 19. But then <en>q(N )XZ. Therefore, XZ is 

sequentially J-open. 
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proposition 3.3.10 

Fuzzy sequentiality is a good fuzzy extension of classical 

sequentiality. That is, a topological space (X, T) is 

sequential iff its natural fts (FX , (T)) is sequentialf. 

Proof 

First, let (FX , w(T)) be sequentialf. Let ZE Ts. Then 

XZ E (w(T) )s by proposition 3.3.9(c). But then, by the 

sequentiality of (FX , w(T) ), XZ E w(T). Hence zET. Thus 

(X, T) is sequential. 

Now, let (X, T) be sequential. Let Ae ((-r))8. Then by 

proposition 3.3.9(b), A 1( X, 1] e (T)S, for every AEI- {1} 
. 

But then, by the sequentiality of (X, T), A1,1] e -r, for 

every AeI- (1). Hence Ae w(r). Thus, (FX 
, CJ(T)) is 

sequentialf. 13 

Proposition 3.3.11 

Quasi-first countability implies fuzzy sequentiality. 

Proof 

Let (FX J) be Q-C1. We will show that if A+J, then 

A JS. 

Thus, let A4J. Then, by consequence 2.1.9, there is an 

ee FX such that eqA, and no open Q-neighbourhood of e is 

contained in A. By consequence 3.1.9, there is an open nested 

Q-neighbourhood base Be = (Bn :ne N) for J at e with 

Bn+1 Q Bn, neN. Then for each neN, we have Bn A, and 

hence Bn(xn) > A(xn), for some xn e X. Then, 1- B( x) <1- A( x) 

neN. For each neN, let An =1- A(x), then An E (01131 
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and hence we can consider the fuzzy points en = (x )Xn , and 

subsequently the fuzzy sequence <en> . Now Bn(xn) + en(xn) = 

Bn(xn) + ýn > Bn(x )+1- Bn(xn) = 1, hence engBn ;neN. But 

Bn+1 C Bn, neN, and so engBk, n. k. Thus for every Bk e Be 

there is an Nk e N, (namely Nk = k), such that engBk, n Nk, 

and so <en>q(Nk)Bk. Thus <en> is eventually quasi-coincident 

to every member of Be, and hence to every open Q-neighbourhood of 

J 
e. Therefore, en --9 e. 

On the other hand, A(xn) + en(xn) = A(x) + 'ý'n = A(x) + 

(1-A(x)) = 1, and so <en>A. Therefore, A is not sequentially 

J-open. 

Corollary 3.3.12 

Both fuzzy first countability and fuzzy second countability 

imply fuzzy sequentiality. 

Proof 

This follows from propositions 3.3.11 and 3.1.12 (respectively 

3.1.11). p 

Proposition 3.3.13 

Fuzzy sequentiality does not imply quasi-first countability. 

Proof 
OD 

Let R* =R- 
U1{n, 

-n} and define the function h* by 

hR -- R* and h* (x) 
x if xe R* 

. Consider the topology 
0 otherwise 

-rh* on- R* defined by, T*_[ Z-: e 
:h* 

1[ 
Z] is open in Rh 

(equipped with its usual topology)). 
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The topological space (X, rh*) was shown to be sequential 

and not first countable (Corollary 1.3 in Franklin [16]). Hence by 

propositions 3.3.10 and 3.1.26, (FR* , c(, rh*)) is sequentialf but 

not Q-C1. Q 

Proposition 3,3.14 

Let (Fx J) be a fts. 

The sequentiality of (X, i(J)) does not imply the fuzzy 

sequentiality of (Fx , J). 

Proof 

Let X be an uncountable set, Xe I- (1) and J = wx(Tcc). 

Then, by proposition 2.2.19(a), L(J) = A, and hence (X, i(J) ) 

is sequential. On the other hand, by proposition 3.3.6, (FX J) 

is not sequentialf. Q 

We have been unable to prove the converse of the previous 

proposition. However, we make the following conjecture. 

Conjecture 3.3.15 

Fuzzy sequentiality is not initially good. 

The following is a summary combining results from sections (1) 

and (2) about relationships between fuzzy sequential spaces, 

quasi-first countable spaces and fuzzy first and second countable 

spaces. 
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Conclusion 3.3.16 

We have the following diagram for fuzzy topological spaces. 

None of the arrows in the diagram is reversible and the missing 

ones indicate the lack of any implications. 

Cf Cf 12 

Sequentialf 
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PART IV 

FUNCTIONS IN FUZZY TOPOLOGICAL SPACES 

The idea of extending to fuzzy topology classical results 

involving functions by fuzzifying classical properties of 

functions rather than introducing fuzzy functions was implicit in 

Chang's work [8]. As was observed by Warner [52] and others, this 

is quite sufficient for the fuzzification of topology. Extending 

the notion of function to fuzzy theory, as was done by Erceg [14) 

is a generalization which we do not find necessary for the purpose 

of this thesis. We follow Chang's point of view which is now 

standard. 

In section (1), we give Chang's definitions of fuzzy image and 

fuzzy inverse image and present their consequences. In the 

process, we correct some faulty claims which have appeared in the 

literature. 

In section (2), we study basic fuzzy properties of functions. 

Introducing fuzzy sequential continuity, we show that it provides 

another way of defining sequential fuzzy topological spaces. 

In section (3), we investigate the goodness of the fuzzy 

extensions introduced in section (2). In particular it has been 

implied as obvious that fuzzy closedness of a function is good 

( 26), and no proof of this assertion appears in the. literature. 

We present a proof of the goodness of fuzzy closedness which in 

itself demonstrates the non-triviality of the claim. 
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1. Images and Inverse Images of Fuzzy Sets 

In the following, let X and Y be sets and let f: X --- Y. 

Definition 4.1.1. (Chang) 

Let EC FX. 

A subset of FY is said to be the image (in Y) of E under 

f and denoted by f[E] iff, for every y in Y, we have 

sup (E(x) : f(x) = y) if 
f(E] (y) ={ 

0 if f1(y) _4 

It follows that for every xeX, we have f [E ] (f(x)) a E(x) 

and that f(E) (f(x)) = E(x) if the function f is injective. 

Definition 4.1.2 

The image of a fuzzy point e in X is defined to be the 

image of the fuzzy set e of singleton support. 

Definition 4.1.3 (Chang) 

Let D C--- Fy. 

A subset of FX is said to be the inverse image (in X) of 

D under f and denoted by f-'[D] iff, for every x in X, we 

have ; 

1ýýý fix) =D (f(X)). 

It follows that f-1[D] is the composition function Dof: 

X---I, as the following diagram shows: 
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f 
X- yY 

f-1[D] = Dof %% 

I 

It also follows that if g is a function from Y to some set 

Z, then for a fuzzy set ACZ- FZ , we have; 

(gof)-1[A] = A0(gof) = (Aog)of = g-1(A]of = f'-1[g-1[A]]. 

This is illustrated by the following diagram. 

r 

X --------- 

f-1[g-1[A]] '. 

9 

i/ 

9-1 [A ], ' 

A 

I 

Consequence 4.1.4 

Let xEX, yEY and XE I- (O ). 

(a) f((x), ) = (f(x))x 

(b) f'-1((y)X) = Z(X), where Z= f-1(y). If f is injective 

then f1((Y), ) = (f-1(Y))x. 

Note: we have not used square brackets for fuzzy points. 

Proof 

(a) The formula in (a) was given in Pu and Liu [44] as the 

definition of the image of fuzzy point. However it can be 

proved as a result of definitions 4.1.1 and 4.1.2 as we now 

show. 

Let tEY 

sup I(x)x(z) :ze f-1(t)) if f-1(t) ý 

f((x)A) 
0 if r1(t) _4 
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A if z=x 
Now, by definition of (x), , (x), (z) =(0 

if zeX- (x) 

and since xe f-1(t) iff t= f(x), then, 

f((x )x) (t) _{ 
if t= f(x) 

if týf 
Therefore, 

O (x) 

f((x)x) (f(x))A 

(b) Let xeX. 

f-l((Y), \) (x) _ (Y)X (f(x)) _{A 
if xe f^i(Y) =Z 

0 if xf f^ (Y) =Z 

= Z(X)(x) 

Therefore, f-1((Y )A) = ZOO. 

If f is injective, then 

f-l((Y)A) = ({1(Y))A. Q 

Z is a singleton, and hence 

Notation 4.1.5 

To distinguish constant sets in the domain X of f (i. e. 

constant subsets of FX) from those in the codomain Y (i. e. 

constant subsets of FY), we adopt the following convention. For 

aAe I, the already established symbol 71A represents a 

constant set in X with value A, while the primed symbol n". 

denotes a constant set in Y of the same value A. In the same 

manner we will notationally distinguish between crisp sets in X 

and those in Y. 

Consequence 4.1.6 

Let ZCX, Z1 CY and aEI. 

(a) 1. = (f[Z])(') 

2. ý1(zl(ýý] = (fT1[zl])(ý) 
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(b) 1. f[XZ] = X'f[Z] 

2. fT1[X'Z1] = Xrl[Zi] 

(C) I. f[r}, \] = (f[X])()). If f is surjective, then 

2. f-1[n'X] = rjA 

(d) 1. f[4] = and f(FX] = X' f[X]. If f is 

surjective, then f[FX] = Fy 

and f-1[FY] = FX 

Proof 

(a) 1. Let teY. 

ý 4b 
f[Z(, )] (t) {gimp 

(Z(, )(z) 
:zef 

1(t)? if f -"(t) 

O if f-1(t) 

{ 
A if f-l(t) nzo 

O if f-1(t) nz= 
cb 

But f-1(t) 0Z*0 iff te f(Z]. Thus 

f(Z(")] (t) 
A if t f(z] 

0 if t f(Z] 

(t). 

Therefore, f[Z(X)] = (f[Z])(), ). 

2. Let zeX. 

1 (ý) (ý) A if f(z) e Zl 
f- [Zl ] (z) = Zl (f(z)) _{0 

if f(z) Zi 

A if ze f^1(Z1] 

0 if z4 f^1(Z1] 

(f-1[Z1])(11) (z). 
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(f 1[Z1])(ß)" 
Therefore, f-1[Z1(ß)] = 

(b) XZ = Z(1) and X'1 = Z1(1) . By part (a), we have, 

1. f[xz] = f[Z(1)] = (f[Z])(1) x'f[Z] 

fT1[Z1(1)] = ({1[zl])(1) = xr-l[Zi] 

(c) r), = XM and r)', = YM. By part (a), we have, 

1. f[nxl = f[X(')] _ (f[X])(). If f is surjective 

then Y= f[X] and so f[n. ] = Y(\) _ T)'A 

2. = f_1[Y(A)) = (fTl[Y])(') = 

(d) 1.4ýX X4, _ and FX = XX . Hence, by part (b), we have, 

f(4) = f[)(10] = Xf[0] = X'O = Oy , and f[FX] = f[XX] _ 

X'f[X]. If f is surjective then, Y= f(X), and so 

f[FX] = X'y = Fy . 

2. = 710 and Fy = ri . Hence, by part (c), we have, 

f-1[4] =f -1 [ r1ý] _ no = and 

f-1[Fy) = f-'[nj] = TIJ = Fx 
.Q 

Consequence 4.1.7 

Let E, E1 C FX, D, D1 C Fy ,ee FX, de Fy , and <en> 

a fuzzy sequence in X. 

(a) 1. If ECE1, then f[E]C f[E1] 

(Chang) 
2. If DC Dl, then f--'(D)E-: f-'-(D, ] 

(b) 1. If eeE, then f(e) E f[E] 

If eqE , then f(e) q f(E) 
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ee f-1[D] iff f(e) ED (cf Bulbul [6] ) 

eq fT1(D) iff f(e) q D. 

(c) If h eI - (0) and <en> is predictable by x, then so 

is <f(en )>. In particular if <en> is semiconstant with e 

being a trivial limit of <en> , then < f(en) > is also 

semiconstant and f(e) is a trivial limit of <f(en )>. 

Proof 

(a) See theorem 4.1, c and d in Chang [8]. 

(b) 1. The first assertion follows from part a. 1. To prove the 

second assertion, let x= supt e, then f(x) = supt f(e), by 

consequence 4.1.4(a), and recalling that f[E] (f (x)) E(x), 

we have, 

f[E)(f(x)) + f(e)(f(x)) 3 E(x) + e(x) 

>1 if eqE. 

Hence, f(e) q f[E] if eqE. 

2. Let x = supt e, then f(x) = Supt f(e), f(e)(f(x)) _ 

e(x), and f-1[D](x) = D(f(x) ). We have, 

f(e)qD iff 1< f(e)(f(x)) + D(f(x)) = e(x) + f-1[D](x) 

iff eq 1 (D). And 

f(e) eD iff f(e)(f(x)) 4 D(f(x)) iff e(x) f 1[D](x) 

iff eef 1(D] 
. 

(c) 1. Let <xn> = supt <en>, then < f(xn) >= supt < f(en) > and 

f(en)(f(xn)) = en(xn ), neN, by consequence 4.1.4(a). Let 

Ce (O, A) and <en> be predictable by X. Then, there is 

an NeN, such that, en(x) EnN. But then, 

f(en) (f(x)) en>N. Therefore, <f(en)> is 
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predictable by A. 

2. Now let <en> be semiconstant and ea trivial point of 

<en>. Let e= (x)5 for some xeX and öEI- (0). 

Then <en> is predictable by 8 and Supt <en> is 

eventually x. But then, <f(en)> is predictable by s and 

supt. <f(en)> is eventually f(x). Therefore, <f(en)> is 

semiconstant and (f(x) )s = f((x)s) = f(e) is a trivial point 

of < f(en) >. Q 

Consequence 4.1.8 

Let C and C' be families of subsets of FX and Fy 

respectively. Then 

(a) 1. f[EUC ]= Cf[E] 

2. f-1 [D U'D 
= 

DU 9f 
--'[D] 

(b) 1. f[I1E]C 
fl f[E] . The equality holds if f is inj ect ive 

, EEC EEC 

2. fT1[D 
CAD] 

=p 

Proof 

(a) 1. Let yeY. If f^1(y) = 4), then f[E] (y) =0 for all 

EeC, and hence (ELCf(E)) (y) = sup (f[E] (y) :Ee C) 

=0= [IV E] (Y) 

If f-1(y) 0 0, then 

f[ UC ] (Y) = sup (( C) (x) :xE f^1(Y)) 

= sup (sup (E(x) :EE C) :xe f-1(y) ) 

= sup (sup (E(x) :xe f-1(y)) :EE C) ) 
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= sup (f(E) (y) :EE C) _ (U f(E]) (y). 
EeC 

Therefore, f[ UC ]= 
EUCf[E]. 

2. Let xeX. 

f-1[DUC, D] (x) _ 
DE'C'D 

(f(x)) = sup (D(f(x)) :DE C') 

= sup (f-1[D] (x) :DE V) 

= 
DUCf-1[D] 

(x), 

Therefore, f-l[DUCD] = 
DEC' 

(b) 1. See Foster [15]. The equalilty holds if f is injective, 

because then, for all ye f[X], f-1(y) is a singleton, say 

(x), and hence f[ nC ](y) E)(x) = inf(E(x) :Ee C) _ 

inf{f[E)(y) :Ee C) _ 
Pec 

f[E](y). 

The converse of (b)1 need not be true, since it does not 

necessarily hold in the classical case. For instance, let 

X= (xl, x2, z), Y= (y, t) and define f: X --- Y, by 

f(xl) =y= f(x2) and f(z) = t. Then choosing Z1 = {xl) 

and Z2 = {x2, z}, we have f[Z1 n Z2] = f[4] = 4), but 

f[Z1]fl f[Z2] = (y)() (y, t) = (y). Thus, for the crisp fuzzy 

sets, XZ1, XZ2 C FX we have f[XZ10 XZ23 X'f[Z1 fl Z2] _ 

X"0 =, while f[XZ130 f[Xz23 = X'f[Z1)fl X'f[Z2] _ 

X'f[Zll fl f[Z23 X'{Y) 4sY . 

Thus f[Xz1) n f[XZ2) f[XZl n XZ2]. 

2. It is proved in a similar fashion as (a)2. [] 

Ganguly & Saha [18], in result 2.7, gave and proved the 

following statement; 

If A, BC FX, then f[A U B] C f[A] U f[B]. 
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This result, although not false, gives the impression that the 

converse need not be true. This has made it necessary to supply 

the straightforward proof of (a)1. 

Another inaccuracy appeared in Chang [8]. In theorem 4.1(b) 

in (8), Chang claimed that, given an AC FX we have 

(f([A] )c Cf [Ac ]. This faulty statement was borrowed later by 

Malghan and Benchalli (38). Since this claim is not even true in 

classical set theory, it is certainly false for fuzzy sets. In 

the following, we give the correct version of that property. 

Consequence 4.1.9 

Let EC FX and DC Fy then 

(a) If f is surjective, then (f[E])c C f[Ec]. 

If f is injective, then f[Ec] (f[E])C. 

If f is bijective, then (f[E])c = f[Ec]. 

(b) (f-1[D] )c = f-'[Dc] (Chang). 

Proof 

(a) First, let f be surjective. Then, for every yeY, we 

have f -1(y) * co, and hence, 

(f(E] )c (y) =1- f(E] (y) =1- sup (E(x) sy = f(x)) 

= inf (1 - E(x) :y= f(x)) 

% sup (1 - E(x) :y= f(x)) 

= sup {EC(x) :y= f(x)) 

= fCECl (Y). 

Thus, (f[E])C C f[Ec]. 

Now, let f be injective, then for every yE f[X], 
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f-1 (y) is a singleton, say (x), and hence f CE] (y) = E(x) 

and f[Ec) (y) = Ec(x), (see definition 4.1.1). Thus, 

(f[E])c(Y) =1- f[E] (Y) =1- E(x) = Ec(x) = f[Ec] (y)" 

If yeY- f[X], then f[EC] (Y) =04 (f[E) )c (Y)" 

Therefore, f[EC] C (f[E])C. 

Lastly, if f is bijective, then combining the two 

former results, we have (f[E])c = f[EC]. 

To show that neither of the converses of the first two 

results needs hold for an arbitrary function, let X= {xl, x2}, 

Y= (y, t) and define f by, f(xl) =y= f(x2 ). Let 

E= X[xl}. Then f[E] = X(Y) and (f[E])o = X(t). On the 

other hand Ec = X{x2} and f[EC] = X(y). Thus, 

f[Ec] (f[E])c and (f[E])c f(Ec). 

(b) See theorem 4.1(a) in Chang [8]. Q 

Consequence 4.1.10 

Let EC FX ,DC Fy ,ee 
FX and de Fy . 

(a) 1. ECf 1[f(E]] 
and f[f-1[D]] CD (Chang). 

2. If for every ye f(X], there is a Xy e I, such that 

E(x) _ NY for all xe f--1(y), then E= f-1[f[E)). In 

particular, if f is injective, then E= f-'[f[E]] 

(Pu & Liu). 

3. If DQ f[X], then D= f[f-1[D]]. In particular if f 

is surjective, then D= f[f-1[D]] (Pu & Liu). 

(b) 1. ee f-1(f(e)) and f(f-1(d)C d. 

2. If f is injective, then e= f-1(f(e)). 

3. If f is surjective, then d= f(f-1(d)). 
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Proof 

(a) 1. See theorem 4.1(f, g) in Chang (8). 

2. Let xeX, 

C 1[f(E] ] (x) - f(E] (f(x)) = sup (E(x) ix 6f 
1(y)) 

= E(X), since E(x) is the same for all xeF 
1(y ), 

by hypothesis. 

Thus, E= f-1[f[E]J. 

3. Let y E supt D. Then y e f[X], by hypothesis. Thus, 

f(f-'[D] ] (y) = sup (f-1[D] (x) ix e f-'(Y)) = 

sup (D(f(x)) :y= f(x)} = D(y). 

Therefore, D= f[f 1[D]]. 

(b) This follows from (a). Notice that if supt d4f (X], 

then, f-1(d) = 4 and so f(f-1(d)) _4. 0 

The following three consequences will be useful later. The 

first consequence will be frequently used. 

In the following, let AEI- {1}. 

Consequence 4.1.11 

Let EC FX ,DC Fy 

(a) 1. f(E 1(), 1]) = (f[E])-1 (ý, l). 

2. f1(ß 1(ý, 1] =( f1[ß] )-1 
�1]. 

(b) In particular, 

1. f(supt E) = Bupt (f[E]). 

(Malghan and Benchalli [38]) 

2. f-1(Bupt D)- suet (f-1 [D]) 
. 
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Proof 

(a) 1. Let ye Y. 

y f: f(E-1(x , 1]) iff there is an xe f-1(y) such that E(x) >A 

iff sup (E(x) :y= f(x)) > 

iff f[E] {y) > )ý 

iff ye (f(E))-z (X, 1] . 

Therefore, f(E-1(A, 1]) = (f[E])-1 (A, 1]. 

2. (f-1 [D])-1(A, 1 ]= (Dof)-1(A, 1 ], by remark following 

definition 4.1.3 

= f1(D 1(A, 1))" 

(b) Substitute A=0 in (a). Q 

Consequence 4.1.12 

Let n be an indexing set and for every ae i2, let Ya be a 

set and fa a function from X into Ya" Moreover, for every 

aEn, let Da C Py 
a. 

Then, 

(a) (U äl[DQ] )-1 (Ail. ] =U äl[Dal(x, 1]]" 
a6f a(En 

(b) ( 11 
aet2 äl[Da])-1 

(A, 1] 
Q. 

an 
ä1[D71(A, 1]]. The equality 

holds for finite t2. 

(c) In particular, 

supt 
Uf1[D]=U 

fr' 1(supt D) and 
«en aa aEn aa 

supt 
n c' [ Da ]Cn f-,,,, '(supt Da) . 

(The equality holds 
aen aen 

for finite a). 

(a) (U faacl[Da] )-1 (A, 1] Uff( a'[Dal )-1(X, 1], by consequence 
aea 1.1.14(a). 
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= 
U. äl(Da'(A, 1 ] ), by consequence 

CKUI 4.1.11(a)2. 

(b) ( 1) {1[Da])-1 (A, 1) C 
(1 

(f-al [Da])-1 (A, 1], (with the 
aerl a cxen 

equality holding for finite n) 
by consequence 1.1.14(b). 

= 
nn ' [Da1(x, 1 ], by consequence 

4.1.11(b)2. 

(c) Put A=0 in (a) and (b). Q 

Consequence 4.1.13 

Let Y be a set and n an indexing set and for every aen, 

let Xa be a set and fa a function from Xa into Y. 

Moreover, for every ae0, let Ea C FXa. Then, 

(a) (Uýfa(Ea] )-1 (), 1 ]= VOfa(E-1(X, 1 ]. 

(b) (n fa[Ea) )-1 (A, 1 ]Cn fa(E-1(A, 1 ]. The equality holds 

for finite t2. 

(c) In particular 

supt 
Uf [E ]=Uf (supt Ea) and 

Supt 
11 

92 
fu[EQ] 

QE 
I1 fa(supt Ea). (with the equality 

QEf2 

holding for finite 11) . 

Proof 

Combine consequence 4.1.11(a)1 with consequence 1.1.14 in a 

similar manner as in the proof of the previous consequence and put 

A=0, to obtain the particular cases. [] 
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2. Basic Fuzzy Topological Properties of Functions 

In the following, let f: X 
_- 

Y, and let J and T be 

fuzzy topologies on FX and FY respectively. 

Definition 4.2.1 (Chang) 

The function f is said to be fuzzy continuous 

(fuz-continuous) from (Fx J) into (FY T) iff 

UET implies f^1[U) E J. 

It follows from definition 4.2.1 that constant functions are 

fuzzy continuous between Lowen fts's. This was actually the main 

reason which Lowen [33] gave in justifying his definition of fuzzy 

topology. 

Extending the idea of 'sequential continuity' to fuzzy 

topology, we introduce the following concept. 

pefinition_4.2.2 

The function f is said to be pequentially fuzzy continuous 

(sequentially fuz-continuous) from (FX J) into (FY T) iff for 

every fuzzy sequence <en> and every fuzzy point e in X, 

JT 
en----O e implies f(en)----YO" f(e). 

Consequence 4.2.3 (Chang/Pu & Liu) 

The following statements are equivalent 

(a) f is fuz-continuous from (FX 
, J) into (FY , T) . 

(b) f-1(D] is J-closed, whenever D is T-closed, where Dc Fy 
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(C) For every fuzzy point e in X and every neighbourhood D 

of f(e) (i. e. De Vf(e)(T) ), there is an 0EJ, such that 

eE0 and f[0] D. 

(d) For every fuzzy point e in X and every Q--neighbourhood D 

of f(e) (i. e. DE Qf(e)(T)), there is an 0eJ, such that 

eqO and f[O) D. 

Proof 

See thoerem 4.2 in Chang [8] for the equivalence of the 

statements (a) and (b). For the implication (a) -- (d), see Pu and 

Liu [44]. The implication (a) -- (c) is proved similarly. 

Notice that consequences 4.1.7(b)2,4.1.7(a)2 and 4.1.10(a) come 

in handy. 

To show that (d) -- (a), assume that f is not 

fuz-continuous. Then there is aUeT, such that f-1[U] 4 J. 

But, then by proposition 2.1.9, there is an ee FX such that 

eqf-1[U]. But, for every 0eJn Qe(J), we have 0 f--'[U]. 

Hence f(e)qU, by consequence 4.1.7(b)2, and f^1 [U ] (x0) < O(x0) 

for some xO e X. Thus, U(f(x0)) = f-1[U](x0) < 0(x0) 4 f(O](f(x0)), 

by definitions 4.1.3 and 4.1.1. Hence f[O] U. Therefore, by 

the counterpositive argument, (d) implies (a). 

The implication (c) -- (a) is proved similarly. Combining all 

the results, we have (a) - (b) -- (c) -- (d). Q 

Consequence 4.2.4 

(a) The composition of fuzzy continuous functions is fuzzy 

continuous (Chang). 

(b) The composition of fuzzy sequentially continuous functions is 

fuzzy sequentially continuous. 

-128- 



Proof 

(a) See comment following definition 4.2 in Chang (8]. 

(b) This is obvious. Q 

Proposition 4.2.5 

Every fuzzy continuous function is sequentially fuzzy 

continuous. 

Proof 

Let f be fuz-continuous from (FX J) into (FY T) and 

J 
en ---b e. Let f(e)qU and UET. Then f^1 (U) EJ and, by 

consequence 4.1.7(b)2, eqf'-1[U]. But then there is an NEN, 

such that <en>q(N)f-1[U], and hence by the same consequence, 

T 
<f(en)>q(N )U. Therefore, f(en) f(e), and so f is 

sequentially fuz-continuous. D 

The converse of consequence 4.2.5, however, is not true. The 

following counterexample proves this point. 

Proposition 4.2.6 

A sequentially fuzzy continuous function need not be fuzzy 

continuous. 

Consider the countable complement topology Tcc on an 

uncountable set X. Choose a set Y, a function f: X -Y and a 

fuzzy topology T on FY such that f is not fuz-continuous from 

(FX , (A)(Tcc)) to (FY , T). (e. g. let Y=X, f be the identity map 
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idc X ---- Y=X, and T the discrete fuzzy topology JA on Fy .) 

Let <en> be a fuzzy sequence that converges to e in (Fx, 

W(Tcc)). By corollary 3.2.17(b), <en> is semiconstant and e is 

a trivial limit of <en>. But then, by consequence 4.1.7(c), 

<f<en>) is semiconstant and f(e) is a trivial limit of <f(en)>. 

T 
Therefore, by proposition 3.2.11, f(en) ----I>, f(e). Thus, f is 

sequentially fuzzy continuous. D 

Pro Bition 4.2.7 

Let J. be the Franklin fuzzy topology of the fts (Fx , J). 

Then, the identity map on X is sequentially fuzzy continuous 

from (FX J) into (FX Jr , 

Proof 

J 
Let en ----s e, 06J. and eqO. Then 0 is sequentially 

J-open, and hence <en> is eventually quasi-coincident to 0. 

Thus id(eas) = en 
3S--* 

e= id(e) . Hence id is sequentially 

fuz-continuous from (FX , J) into (FX , Js) .Q 

Proposition 4.2.8 (Characterization of sequential fts's) 

A fts is sequentialf if f every sequentially fuzzy continuous 

function in it is fuzzy continuous. 

Proof 

First, let (FX J) be sequentialf and let fi X ---" Y be a 

sequentially fuz-continuous function from (FX , J) into some fts 

(FY , T). Let 0ET, and let en -----e eqf-1[O]. By the sequential 

T 
fuz-continuity of f and consequence 4.1.7(b)2, f(en)----4. f(e )qO. 
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Hence < f(en)>q(N )O, for some NEN, and so, by the 

consequence mentioned earlier, <en>q(N)f-1[O]. Hence, f-'[0] is 

sequentially J-open. But then, by the fuzzy sequentiality of 

(FX , J), f-'(0) e J. Therefore, f is fuz-continuous. 

Conversely, let (FX , J) be a fts having the property that 

every sequentially fuz-continuous function in it is 

fuz-continuous. Consider the identity map id: X --- X. By 

proposition 4.2.7, id is sequentially fuz-continuous from 

(FX O J) into (FX , Js). But then, by hypothesis, id is 

fuz-continuous from (FX J) into (FX Js). Hence is C J, and 

so (FX J) is sequentialf. Q 

Proposition 4.2.9 

(a) A fuzzy continuous image of a sequentialf fts need not be 

sequentialf. 

(b) A fuzzy continuous image of a Q-C1 fts need not be Q-C1. 

(c) A fuzzy continuous image of a Cf (respectively CZ) fts 

need not be Ci (respectively 4). 

Proof 

Let X be an uncountable set, JA the discrete fuzzy 

topology, and T= w(rcc). The identity function id :X -- -X 

is fuzzy continuous from (FX , J4) to (FX , T). 

Now (Fx , JD) is Ci , Q-C1 and sequentialf. But 

(FX , T) is not sequentialf (by proposit ion 3.3.6), and hence not 

Q-C1, by proposition 3.3.11, nor Ci by corollary 3.3.12. 

For the case C21 let (X, T) be the Arens-Fort space of 

proposition 3.1.22. Then (FX 
, W(T)) is not CZ but is the 
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image of the fuzzy second countable fts (FX , J. ) under the 

identity function id :X-X. Q 

In the following, let f: X ----- Y, and let J and T be 

fuzzy topologies on FX and Fy respectively. 

Definition 4.2.9 (Wong [56]) 

The function f is said to be fuzzy open (fuz-open) from 

(FX , J) into (FY , T) if f for every 0C FX 

O6J implies f[O] E T. 

Definition 4.2.10 (Christoph [9]) 

The function f is said to be fuzzy closed (fuz-closed) from 

(FX J) into (FY T) iff for every EC FX 

E is J-closed implies f[E] is T-closed. 
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3. Goodness of Fuzzy Extensions 

Now, we expand Lowen's idea of goodness, which was originally 

defined for properties of fuzzy topological spaces, to include 

fuzzy properties of functions. 

In the following, let P be a classical property of functions 

and Pf a fuzzy extension of P. 

Definition 4,3.1 

The fuzzy property Pf is said to be a good fuzzy extension of 

P iff for every couple of topological spaces (X, T) and (Y, T1) 

and every function g: X ---- Y, we have, 

g has the property P from (X, r) into (Y, Tl) iff it has 

the fuzzy property Pf from (FX , ()(T)) into (FY , cu(rl)) . 

Similarly, we expand the concept of initial goodness. 

Definition 4.3.2 

The fuzzy property Pf is said to be an initially good 

fuzzy extension of P if f for every couple of fuzzy topological 

spaces (FX , J) and (FY , T) and every function g: X Y, we 

have, 

g has the fuzzy property Pf from (FX J) into (Fy T) 

implies it has the property P from (X, L (J)) into 

(Y. L(T))" 

Proposition 4.3.3 

Fuzzy continuity is an initially good fuzzy extension of 
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classical continuity. That is; if a function f is fuzzy 

continuous from a fts (FX , J) into a fts (FY , T), then f is 

continuous from (X, L (J)) into (Y, L(T)). 

Proof 

Let f be fuz-continuous from (FX , J) into (FY , T). 

It is enough to show that the inverse image under f of every 

member of the subbase ([1 1(X, 1] :UET, AeJ- (1)) of L(T) is 

in L(J). 

Thus, let UeT and AeI- (1). Then fT1[U] E J, by the 

fuzzy continuity of f, and hence, (f-1[U])-1 (X, 1) E i(J). But 

(f-1[U])-1 (X, i] = f-1(CT 1( ý, 1] ), by consequence 4.1.11(a)2. 

Therefore, f-1(U 1(X, 1 ]) e L(J). Q 

Proposition 4.3.4 (Weiss) 

Fuzzy continuity is a good fuzzy extension of classical 

continuity. That is, a function f is continuous from a 

topological space (X, T) into a topological space (Y, T1) iff 

it is fuzzy continuous from (FX , W(T)) into (Fy , w(T1)). 

Proof 

First, we have L(w(T)) =T and C(a(rl)) = T1, and so, by 

proposition 4.3.3, the fuzzy continuity of f from (FX , W(T)) into 

(FY W(-' )) implies the continuity of f from (X, T) into (Y, T1) . 

The converse is the result of consequence 4.1.11(a)2 (see 

Conrad [101). In Weiss [53], the proof is a little bit confused, 

because of the sudden departure from the definition of fuzzy set 

as a function into I to that into R. 
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The following diagram illustrates the idea of the simpler 

proof for this part of the result. 

f 
(X. T)ý " ------------(Y. T1) 

f-1 [A] = Ac fAE W(T1) 

E G)(T) 
`ý 

(Iý1r) 

Proposition 4.3.5 

0a 

Sequential fuzzy continuity is a good fuzzy extension of 

classical sequential continuity. That is; a function f is 

sequentially fuzzy continuous from a topological space (X, r) into 

the topological space (Y, T1) iff it is fuzzy continuous from 

(FX , W(T)) into (FY , W(T. 1)). 

Proof 

First, let f be sequentially continuous : (X, T) ----- (Y, T1) . 

Let <en> be a fuzzy sequence in X, <xn> = supt <en> and 

(ß(T) 

en -----fi (x), , 
for some xeX and AEI- (0). Then, by 

T 

proposition 3.2.16, <en> is predictable by Iý and xn ---) X. 

But then, <f(en)> is predictable by A, by consequence 4.1.7(c) 

TI. 
and f(xn) ---9 f(x), by the sequential continuity of f. Hence, 

w(T) 
by proposition 3.2.16 f(en) 14 (f(x) )X. Therefore, f is 

sequentially fuzzy continuous from (FX , w(T)) into (Fy , w(T1)). 

Now, let f be fuzzy sequentially continuous : (FX 

T 
(Fy , W(T, )). Let xn -) x. Consider the fuzzy sequence <en> 

in X with all its term being crisp points and with <xn> = 

W(T) 
supt <en>. Then <en> is predictable by 1 and hence en --_--+(x)1, 
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by proposition 3.2.16. But then, by the sequential fuzzy 

(T ) 

continuity of f, f(en) -----I(f(x))1. Hence, by proposition 
T1 

3.2.16, and since f(en) _ (f(xn) )1, we have, f(xn ) f(x). 

Therefore, f is sequentially continuous from (X, T) into 

(Y. T1)" Q 

Proposition 4.3.6 (Conrad) 

Fuzzy openness of a function is a good fuzzy extension of 

classical openness. That is, a function f is open from a 

topological space (X, T) into a topological space (Y, T1) if f 

it is fuzzy open from (FX , w(T)) into (Fy , u)(T1)) . 

Proof 

The proof is obtained in one way by using consequence 

4.1.11(a)l and conversely by using the facts that a subset Z of 

X is in T if f XZ E W (T) and that f[x] = X' f[Z]. (See Conrad 

[10]). Hu [26], also proved this proposition using different 

terminology; namely that of "shapes" of fuzzy sets. Q 

Hu [26], also implicitly claims that a proof of a similar 

proposition for closedness of functions is straightforward. We 

consider this not to be the case. So here we give a proof of the 

proposition which is in tune with our approach. But first, we 

prove the following lemma. 

Denuna 4.3.7 

Let f: X --- Y, AG FX and AEI- (0). Then, 
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(f(A 1[ý-6,1)))C. 
(f[A])-1 [0, N) =U 

s« 0, X) 

Proof 

Let yeY. 

Y (f[A])-1 [, \, 1] iff f[A](Y) A 

iff for every 8e (0, X), there is an 

xef 
1(y) 

, such that A(x) 3-6 

iff for every Se (0, X ), there is an 

xe f-1(y), such that xe Pº 1[a-S, 1] 

iff for all 8E (0, A ), ye f(Ä 1[A-S, 1 ]) 

iff yen f(Ä 1[A-6,1) ). 
66(O, A) 

Thus, 

(f[A) )-1 [)'%, l) =1I f(H 1[-s, l] ). 

6«O, a) 

Taking the complements, we have; 

(f[A])-1 (0, A) =U (f(A-1[)-ö, 1)))C. Q 
66(0, ) ) 

Proposition 4.3.8 

Fuzzy closedness of a function is a good fuzzy extension of 

classical closedness. That is, a function f is closed from a 

topological space (X, T) into a topological space (Y, T1) iff 

it is fuzzy closed from (FX , W(T)) into (Fy 

First, let f be closed from (X, T) into (Y, T1) and let A 

be w(-r)-closed. Then A-1(0,8) e T, for all, 8 eI - (0}, by the 

remark following definition 2.2.6. But then for every 
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we have 1j "[S, 1] is T-closed, and hence, by the closedness 

of f, f(Ä 1[6.1)) is T1 closed. Thus, (f(A71[s, l)) )c e T1, 

for every 6eI- (0)...... (*) 

Now, let AeI- (0). By lemma 4.3.7, we have; 

, A)(f(A 

1[ý-s, l]))c (f[A])-1 [O, A) - 
sE 0C 

E Tl , 
by (*). 

Therefore, f[A] is an upper semicontinuous function in 

(X, T1) and hence W(T1)-closed. Thus f is fuz-closed from 

(FX 
, W(T)) into (FY 

, W(T1)). 

Now, let f be fuz-closed from (FX , W(T)) into (FY , W(T1) ) 

and let Z be -r-Closed. Then XZ is W(T)-closed, and hence, by the 

fuzzy closedness of f, f[XZ] is W(rl)-closed. But, by 

consequence 4.1.6(b)l, f[XZ] = X'f[Z]. Hence f[Z] is 

-rl-closed . 
Thus f is closed from (X, r) into (Y, r1) .Q 

Proposition 4.3.9 

Let (Fx , J) and (FY , T) be fts's and f: X --- Y. 

The openness (closedness) of the function f from (X, L(J)) 

into (Y , L(T)) does not imply its fuzzy openness (respectively 

closedness) from (FX , J) into (FY , T). 

f Proo 

Let X= (x1, x2, x3}, Z= (x1 , x2) and consider the 

topology T= (X, 0, Z) on X. Let J= W%(T) and T=W, (T) be 

8ý 

respectively the ä -cut and 4 -cut fuzzy topologies on FX. 

By proposition 2.2-19(a), L (J) =0= L(T), and hence the 

identity map id :XýX is open from (X, c(J)) into 

(X. t(T))" 
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On the other hand, let A C Fx be defined by, A(x3) = A. and 

A(x1) =4= A(x2). Then A -1(4L 
, 11 =X e T, and hence 

Ae wl(T) J, but A 1(L 
, 1] - (x3) 4 T, and so A4 c& r) - T. 

4 

Therefore, id[A] + T, and hence is is not fuz-open from (FX J) 

into (Fy , T). The map id is not fuz-closed either, since the 

fuzzy set Ac is J-closed but not T-closed. 0 

We have been unable to prove the converse of the preceding 

proposition. However, we make the following conjecture. 

Conjecture 4.3.10 

Fuzzy openness (closedness) of a function is not initially 

good. 
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PART V 

BASIC FUZZY TOPOLOGICAL CONSTRUCTIONS 

This part of the thesis deals with the fuzzification of the 

classical concepts of induction and coinduction. Many authors 

attempted to extend to fuzzy topology some or other special 

instances of these general constructions. Great attention has 

been given to the particular cases of subspace and product. 

Goguen [24] defined a product of L-topological spaces. He was 

followed by Wong [55] who gave the first definitions of product 

and quotient fuzzy topologies. Lowen [34] defined fuzzy induction 

and coinduction and applied the former to formulate a definition 

for the product fuzzy topology. He also studied the goodness of 

these fuzzy constructions. The notion of fuzzy subspace was 

treated in many papers including Foster [15] and Pu and Liu [43] 

(who also studied the fuzzy product [44]), Sarkar [45], Ghanim, et 

al [22], and Zhou [60]. Special cases of fuzzy coinduction were 

considered separately by Ghanim et al [22] who were the first to 

define the fuzzy topological sum and Christoph [9] who adapted 

Wong's definition of quotient fuzzy topology. 

We adopt Lowen's concepts of fuzzy induction and fuzzy 

coinduction. We apply the former to arrive at fuzzy subspace and 

the latter to formulate the definitions of the quotient and the 

disjoint sum fuzzy topologies. We follow each of these 

definitions by its consequence; an explicit description of the 

respective fuzzy topology. This is succeeded by a discussion of 

the relevant alternative descriptions appearing in the literature 

and their relationships to ours. This approach is observed in 
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both sections (1) and (2). 

In section (1), we make a correction to a useful result given 

by Pu and Liu [44) and investigate a fuzzy version of the box 

topology showing its relationship to the fuzzy product. 

In section (2), we introduce the disjoint sum sets and use 

them to describe the disjoint sum fuzzy topology. Proving a 

"disjoint sum" version of consequence 4.1.8(a), we arrive at a 

fuzzy version of the classical assertion that the quotient of a 

sum is the sum of the quotients. 

In section (3), we investigate the goodness and initial 

goodness of the concepts introduced in the preceding two sections. 

All the proofs of goodness and initial goodness are based on our 

previous results derived from Pu & Liu's Q-theory. They are thus 

fuzzy topological in nature and considerably simpler than those of 

Lowen. 
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1. Induced Fuzzy Topological Spaces 

In the following let X be a set and t2 an indexing set. For 

every ae fl, let Ya be a set, fa a function from X into Ya 

and Ja a fuzzy topology on FY 
a. 

For any aen, we have fal[FY ]= FX. Thus the union of the 
a 

family (fý-l[Ua] : Ua e Ja ae f2} is equal to FX. It follows that 

this family satisfies the axiom for a fuzzy subbase (proposition 

2.1.11) and hence is a subbase for some fuzzy topology on FX. 

Definition 5.1.1. (Cowen [34]) 

A fuzzy topology on FX is said to be the induced fuzzy 

topolocýy for the family of functions (fa: a e 12) and the family of 

fuzzy topological spaces (FY 
a , Ja) :ae t2), and denoted by Ji iff 

it has as a subbase the family Bi ={ äl[Ua] : Ua E Ja, ae nj* 

It follows that Ji is the smallest fuzzy topology on FX 

making every fa (aen) fuzzy continuous. It is also called the 

weak fuzzy topology on FX. 

Using this notation, we have the following two propositions. 

proppsition 5.1.2 (Adaptation of theorem 3.1(iii) in Wong [55]) 

If (FZ T) is a fts and g is a surjective function from Z 

to X. Then, 

g is fuzzy continuous from (FZ T) into (FX Ji) iff 

faog is fuzzy continuous from (FZ 
, T) into (FYa , J(, ) for 

every a c: t2. 
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Proof 

Considering consequences 4.1.8(a)2 and 4.1.8(b)2 about the 

inverse images of union and intersection and the remark following 

definition 4.1.3 about the inverse image under a composition 

function, the proof follows the classical version. Q 

Proposition 5.1.3 (Adaptation of theorem 2.4 in Pu and Liu [44] 
to induction and fuzzy sequences) 

Let cen> be a fuzzy sequence in X and ee FX. 

Then, 

en - -s e if f fa(en) -Ja ft fa(e ), for every ae t2. 

Proof 

J- 
First, let en 1 

-+ e. By definition of Ji, for every 

aen, fa is fuz-continuous, and hence, by consequence 4.2.5, 

fuzzy sequentially continuous from (FX , Ji) into (FY 
(X 

�J«). 

Therefore, fa(en) 
J- 
a fa(e). 

Conversely, let fa(en) - 
Ja 

fa(e), for every aen. Let 

0e Ji and eqO. Then, by proposition 2.1.8 and definition of 

Ji there is a KEN and a family (0N :1 

such that eq(n f--, [O )C0. But then, 
k=1 k (xk 

[O] ), and hence, f (e )qO , by K), eq( f 
(Ix ("k (71C 

Therefore, by the convergence of <fak (en)> 

every ke (1,2,..., K), there is an 

4k4 K), 

for every k 

consequence 

in (FY , 

Nk e N, 

0E J41k , 4711 

(1,2, 
.., 

4.1.7(b)2. 

Jam) , 
for 

such that, 

<fak(en)>q(Nk)Oak. Hence, by consequence 4.1.7(b)2, for every 

ke (1,2, 
..., 

K), <en>q(Nk)f- [O ]. Let N= max (N1, N2, ... 

NK) . 
Then < en > q(N) f1[O14k4K. By consequence 1.3.7(b) 

K 

cen>q(N)(k 
1 

cl-co ] ). Hence, <en>q(N)O, by consequence 1.3.5(a). 

J- 
Q Thus en ---I foe. 
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In the following, let XY and D F. 

Definition 5.1.4 

A subset of FX is said to be the restriction of D to X 

and denoted by res D (or simply res D if no confusion arises) 
X 

if f for every xeX, res D (x) = D(x). 

The classical notation for restriction will be used for 

arbitrary functions while our notation is reserved for fuzzy sets. 

In the following, let in be the inclusion function from X 

into Y. 

Consequence 5.1.5 

(a) in1[D] = res D. 

(b) (res D)c = res Dc. 

(c) If DG Di, then res DC res Dl . 

(d) The restriction of a fuzzy point in Y with support in X is a 

fuzzy point in X. Moreover if ee Fy , such that supt eeX, 

then, for the fuzzy point d= res e, we have, dq(res D) iff 

eqD (and de res Diffee D). 

(a) By definition 4.1.3, in'(D]C FX and for every xeX, 

in1 [D) (x) = D(in(x)) = D(x). Therefore, inl[D) = res D. 

(b) (res D) c= (in1[D])c, by (a) 

= inI(Dc], by consequence 4.1.9(b) 

= res if. 
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(c) res D= in'[D] C inl[D1], by consequence 4.1.7(a)2 

= res D1. 

(d) This is true, since e and d share the same value and 

support and on the other hand D and res D have identical 

values at all points of X. Q 

pefinition 5.1.6 

Let J be a fuzzy topology on Fy .A 
fuzzy topology on FX 

is said to be the X-relative fuzzy topology of (Fy J) and denoted 

by J' iff it is the induced fuzzy topology for the singleton 

family of functions (in :X ---y Y} and the singleton family of 

fts's ((Fr 
�J) 

). 

The fts (FX , J') is called a (fuzzy) subspace of (FY , J). 

Consequence 5.1.7 

J' = {res U: UE J} 
. 

Proof 

By definitions 5.1.1. and 5.1.6, we have, J' = (U: in1(U) E J). 

But in1(U) = res U, by consequence 5.1.5(a). Hence the result 

follows. Q 

The description of the fuzzy subspace given by the previous 

consequence coincides with the definition proposed by Pu and Liu 

[43). The fact that we have arrived at this definition, starting 

from the general concept of fuzzy induction reinforces its 

reasonableness as the proper extension of the classical notion of a 
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subspace. In section (3) of this part the validity of this 

definition will be even more strengthened by a goodness proposition. 

Other definitions, of a fuzzy subspace have appeared in the 

literature. Zhou (60] defines a relative topology JA of a fts 

(FY J) on a fuzzy set A in Y by JA = (A fU: UE J). He 

then claims that JA is a fuzzy topology. This is, of course, 

not true since JA does not contain the full set in Y. Such a 

claim also was made by Sarkar [45). The same construction was 

called by Foster [15], "the induced fuzzy topology on A", where J 

here is assumed to be Lowen. He comments that "in general" JA 

does not contain the constant sets. Actually JA never contains 

the constant sets or even the full set FX except in the trivial 

case when JA =J (i. e. when A= FX). 

Another extension of the concept of subspace appears in 

Ghanim, et al (22). Their definition was made in such a way as to 

help in fuzzifying the classical topological sum. We will discuss 

both definitions in section (2). 

Another special case of fuzzy induction is the product fuzzy 

topology. 

Definition 5.1.8 (Lowen (34]) 

Let fl be an indexing set, C= ((FY 
a 

Ja) :ae f2) be a family 

of fuzzy topological spaces, and X=nY. 

aen 
A fuzzy topology on FX is said to be the product of the 

fuzzy topological spaces in the family c and denoted by n Ja 

aefl 
(or simply II) iff it is the induced fts for the family C and 

f2 

the family of projections (Pa :X ---- Ya :ae n). 
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It follows that n is the smallest fuzzy topology on FX 

n 

making every projection Pa fuzzy continuous. The pair (Fx , n) 
f2 

is called the product fts of the fuzzy topological spaces in C. 

It also follows from this definition that the family B1 = 

{n Pal[Ua] : Ua e Ja A is a finite subset of 0) is a base for 
aeA 

R. This is precisely the definition of the product fuzzy topology 

n 
given by Wong [56]. 

Until the end of this section we use the notation of 

definition 5.1.8. 

Foster [15] introduced the idea of a product of fuzzy sets. 

The following is an adaptation of Foster's definition. 

pefinition 5.1.9 

Let Da C Fya ,ae fl . 

A fuzzy set in X is said to be the product set of the fuzzy 

sets Da (a e 0) and denoted by n Da if f for every xeX, we 
n 

have 

(IIDa)(x) = inf (Da(Pa(x)) :aE ný. 
n 

It follows that nD= il P 1[D ]. 

ri 
a a(EiZ aQ 

Using definition 5.1.9, we arrive at an alternative 

description of the product fts. 

Consequence 5.1.10 

Let B'' =(R Ua : Ua e Ja and Ua = FY for all but a 
aEn a 

finite number of a). Then, BITT = Bi 
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Proof 

First, let Be B'Tr Then B=R Ua, for some family {Ua E Ja: 

aen 

ac n) with Ua = Fya , for all but a finite number a. Let 

Aca, such that Ua * F; ,aeA. Then A is finite and for 

every xeX and ae tt - A, we have, 

Ua(Pa(x)) = F. 
a 

(Pa(x)) = 1. Therefore 

( II Ua)(x) _ (nn 
al[U(x])(x) 

aEt2 

= in f (Ua( Pa(x)) :ae n) 

= min (Ua(Pa(x) : or e Al = (fl 
al[Ua])(x)" 

Therefore n UQ =n PQ-1 

«En 
cxeA 

[Da] E Btr . 

The same argument can be inverted to show that every member of 

Bi is actually in B'n . Therefore, B. = B'n .Q 

The following results for the product fuzzy topology are due 

to Pu and Liu [44]. The first result contained a minor 

inaccuracy, and since also no proof was provided, we thought it 

useful to prove it. We use the following lemma. 

Let Z be a set, q; a function from Z into I and beI. 

Then 

sup min (%V(z), b) = min (sup ui(z), b}. 
z¬Z z¬Z 

roo 

Denote f1= sup min (W(z), b) and f2 = min (sup W(z), b). 

z¬Z z¬Z 
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Either W(z) 4b for all zeZ or there is a subset Z' of Z, 

such that i(z') > b, for all z' E V. 

First, if W(z) 4b for all zeZ, then sup ui(z) 4 b. 
z6Z 

Hence fl - sup W(z) = f2 . 
zEZ 

On the other hand if there is a Z' C Z, such that %p(zl) >b 

for all z' E Z', then sup 4; (z') > b, and hence f2 = b. 

zeZ 
Now, 

b if ze Z' 

min (W But then, z_ 
W(z) b if z4 Z' 

fl = sup min {(z), b) =b= f2 . 
z¬Z 

Therefore, f1= f2. Q 

Consequence 5.1.12 (Pu and Liu) 

For every BeB. (defined on p. 147) and aen, Pa[B] is either 

a constant set or an intersection of a constant set and a member 

of J. 
N 

Symbolically, if B=nP 1[0 ]. Then, 
n=1 an °ýn 

for some E I, 
Pa[B) 

's (1 Oa for some 6EI, 

Proof 

if a4 (al, a2, .., aN} 

if ae {al, a2, .., aN}. 

First, let a4 (al, a2, .., aN). Let ye Ya. 

N 
(P (x)). PaIBI(Y) = PaLri I1P-1t0a1l(Y) s sup min 0 

an (xn 
x6Pal(y) 1(n<N 

Now, for every family (yam e Yan :14n4 NJ, there is an 

xe Pal (y) , such that Pan(x) = Ya '1n4N, (e. g. any element 

of x having y as its cx-th coordinate and y(xn as its an-th 

coordinate, 14n4 N). 
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Therefore, Pa[B](y) = Sup min 0 (y 
(xn 

). Hence 

14n <N 
NN 
II YE Ij YQ 

n=1 °[n n=1 n 

the value of Pa[B](y) does not depend on y, and so it is equal 

to some constant say A, for all yeY. Thus Pa[B] = nX. 

On the other hand, if ae {a1, a2, ... , aN}, then a= ak 

for some ke (1,2, 
..., N). Let A= (1,2, 

..., N) - {k} and 

yEYQ . 

Now, for every family (yan e Yan :ne A), there is an 

xe Pal (y) such that Pan (x) = yan ,neA (any element of X 

having y as its o -th coordinate and ya as its an-th 
n 

coordinate, ne A). 

Therefore, PQ[B](y) = sup min 0 
°c(P °c(x)) 

xEP«1(Y) 14n Nnn 

= sup min (min (o 
°c(P 

(x) ), oa(y)} ) 
xEPýl(Y) ný n% 

= min ( sup min(0 (y )' o(X(Y) ) 
IIy e nY neA 

neA nEA 

by lemma 5.1.11. 

Since the value sup min 0 (yam) does not depend 

IIy e nY neh (xn 
neAan nE 

on y, then it is equal to a constant, say 8, for some 6eI. 

Hence Pa[B](y) = min (6, OQ(y)) _ (res n Oa)(y). Therefore, 

Pa (B) n8() Oa 13 

Proposition 5.1.13 (Pu & Liu) 

For every ae t2, the projection Pa is fuzzy open from 

(FX , n) into (FY 'Ja), whenever (FY 
'Ja) is Lowen. 

naa 



roof 

This follows from consequence 5.1.12. Q 

Now we introduce the box fuzzy topology which, although related 

to the product fuzzy topology, is not a special case of fuzzy 

induction. 

Remark 5.1.14 

Let C= ((FY Ja) :ae n} and X=n Ya . Define the 
a aet2 

family Bb by, 

Bb =( 11 Ua : Ua E Ja). Then Bb is a base for some 
a¬r2 

fuzzy topology on FX. 

Proof 

Considering proposition 2.1.10, it is enough to show that Bb 

satisfies the two conditions of this proposition. 

Condition 1. First, FX =¶n ý1[Fy ]=n Fy e B,, and hence 

afen a 

every fuzzy point in X is quasi-coincident to a member of Bn. 

Condition 2. Now, let B1, B2 E Bb. Then B1 =n Da and 

aet2 

B2 =n Ga , where Da Ga e Ja ae t2. Let Ua = Da n Ga then 

aerl 
Ua e Ja, aen. Condition (2) will be surely satisfied if the 

intersection of B1 and B2 is in Bb, which we now show. 

Bl f\ B2 =(11 Da) n(11 G(X) = (1 )P 1[Da] )n(11 pa1[Ga] ) 
aef Q6iý2 

a en den 

=n Pa1CGa)1I P-'[DU)), by the 

associativity property 
(consequence 

. 1.18 (c) ) 
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= 1i Pa1[Ga(l Dal, by consequence 
aerl 4.1.8(b)2 

, 
pal(Ua) _ Ua E Bb 

aen 

Definition 5.1.15 

The fuzzy topology on FX having Bb as its base is called 

the box fuzzy topology and denoted by Jb. 

Unlike the situation for the product fuzzy topology, where the 

fuzzy continuity of the projections is assumed in the definition, 

the definition of the box fuzzy topology does not contain an 

explicit reference to fuzzy continuity. The following consequence 

shows that the projections are fuzzy continuous also in this case. 

Consequence 5.1.16 

For every aen, Pa is fuzzy continuous from (FX , Jb) into 

(FY 
a 

, 
Ja). 

Proof 

Let ae t2 and Ue Ja . For every pe t2, define Dß , by 

Up=a 
Dp =( Then for every pE f2, D0 e J, 3 and for every 

FYp pia 

pen- (a), Pp1[Dp] = PQ1[FYp] = Fx (consequence 4.1.6(d)2). 

Hence, P-1[U] = 
P-1[DO] 

n Dp E Bb G Jb. 
pen pe2 

Therefore, Pa is fuz-continuous from ( FX , Jb) into 

(FY 
a 

. JQ)" 11 
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Implied in consequence 5.1.16 is the fact that fC Jb, since 

Jb is a fuzzy topology on FX that makes the projections fuzzy 

continuous while n was defined to be the induced fuzzy topology 
0 

for this family of projections, that is the smallest fuzzy 

topology on FX making all of them fuzzy continuous. 

The idea of the box fuzzy topology was a consequence of the 

notion of a fuzzy product set. The latter concept is trouble-free 

when we consider the fuzzy product of a finite family of fuzzy 

sets or nonfinite family that has only a finite number of nonfull 

fuzzy sets, where the situation resembles that for classical 

product sets. The radical differences from the classical case 

appear when considering nonfinite fuzzy products of non-full fuzzy 

sets. 

First for a family (Da C FY :ae 0), the support of n Da 
a aen 

(or equivalently supt (( Pal [Da] ))need not equal 
n 

suet Pal[Da] 

aen «en 
(see consequence 1.1.15(b)). Thus, it is not surprising, as 

indicated by Wong (56), that the product of a collection 

{ea e Fa :ae ß) of fuzzy points need not be a fuzzy point. For 

ao 
instance, let xen Yn =X and define en e FY by en = 

n=1 n 
OD 

(Pn(x))1 ,neN. 
Then (11 en)(x) = inf (en(Pn(x)) :ne N) _ 

R 

inf (n ne N) = 0. Since for any zeX- (x), there is a 

keN, such that Pk(z) ;e Pk(x), then ek(Pk(z)) =0 and hence 

OD OD 

( en)(z) = 0. Therefore, en =4 
n=1 n=1 

Another important difference is that we can have two distinct 

families Cl = (Da C Fya :ae 0) and C2 = (Ba C FY 
a: 

ae 0) 

such that II Da = 11 Ba ; something that does not happen in the 

aen aen 

classical case. As an illustration, let a=N, and Yn = Y, neN 
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and define Cl = (Dn :ne N) and C2 = (Bn :ne N) by, 

Dn ill Fy and Bn = rl 1C 
FY Then, for every xe 

44 
+n 

we have; 

00 1 OD 00 00 
( II Bn) (x) =4( II Dn) (X) 

, and so, n Bn =n Dn 
. n-1 n-1 n=1 n=1 
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2. Coinduced Fuzzy Topological Spaces 

In the following, let Y be a set and n an indexing set and 

for every aen, let (FX 
a 

, Ja) be a fts and fa a function from 

Xa into Y. 

Remark 5.2.1 

Let Jc = (D C FY : f-1[D] E Ja for every ae ft). Then Ja 

is a fuzzy topology on Fy. 

Proof (cf classical case) 

_ First, for every aen, fal[4t] = 4NC e Ja and fal[Fy] 

FX 
aE 

Ja by consequence 4.1.6(d)2. Hence, i0y Fy e Jc. 

Now, let D1, D2 E Jc. Then, for every aeD, ä1[D1 

fa-1[D2] e Ja and hence fa-1[D1] n fa-l[D2] e Ja 
. 

By consequence 

4.1.8(b)2, fQ1[D. n D2] = fa1[D1] 1lf; -l[D2] e Ja ae tt. 

Therefore, D, () D2 E Jc. 

Lastly, let CCJ. Then, for every DEC and every 

aeQ, ä1[D] E Ja and hence U Cal[D] E Ja By consequence 
DEC 

4.1.8(a)2, f-1[ u D] =U f-1[D] E J,, aen. Therefore, 
a DEC DEC 

fa --'(D] 

UD 
E Jc. 

DEC 

Thus, Jc is a fuzzy topology on F. 

pefinition 5.2.2 (Lowen [34) ) 

The fuzzy topology of remark 5.2.1 is called the coinduced 

fuzzy topolocy on FY for the family of functions ( fa : Xa -- Y, ae 0) 

and the family of fuzzy topological spaces (FX ,. 7a) :ae n). It 
a 
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is the largest fuzzy topology on Fy making every fa , (a e Cl) 

fuzzy continuous. It is also called the strong fuzzy topology on 

FY. 

An important special case of coinduced fuzzy topological 

spaces is the quotient fts. 

Definition 5.2.3 

Let f: X-Y be a surjection and ia fuzzy topology on 

FX . A fuzzy topology is said to be the quotient fuz zy topolocty of 

(FX J) under f and denoted by Jf iff it is the coinduced 

fuzzy topology on Fy for the singleton family of functions (f) 

and the singleton family of fuzzy topological spaces ((Fx J)). 

It follows that if J' is a fuzzy topology on Fy that makes 

f fuzzy continuous (from (FX j)), then J' C if. 

The fts (FY Jf) is called the quotient under f of the fts 

(FX , J) and the function f is referred to as the fuzzy quotient 

map. 

Consequence 5.2.4 

Let Jf be the quotient fuzzy topology on Fy under the 

function f of the fts (FX , J). Then Jf is the largest fuzzy 

topology on Fy making f fuzzy continuous. More precisely, 

if = {U G FY :f -'[U] E J). 

Proof 

It follows from definition 5.2.2 and 5.2.3. I] 



The description of the quotient fts given by the previous 

consequence coincides with the definition introduced by Christoph 

[9]" 

The following four propositions are due to Christoph. The 

detailed proofs which can be seen in Christoph [9) follow the 

corresponding classical versions. Here, we only mention which 

consequences of definitions 4.1.1 and 4.1.3 are needed for these 

proofs. In the next four propositions, let f: X --- Y be a 

surjection, Ja fuzzy topology on FX and Jf the quotient fuzzy 

topology of (FX J) under f. 

Proposition 5.2.5 

If g: Y-Z and T is a fuzzy topology on FZ . Then, 

g is fuzzy continuous from (Fy if) into (FZ T) iff 

gof is fuzzy continuous from (FX , J) into (FZ , T). 

Proof 

It follows from consequence 4.2.4(a) and the remark following 

definition 4.1.3 concerning a composition function. 

In the following two propositions, let it be a fuzzy 

topology on Fy . 

Proposition 5.2.6 

Let. f be fuzzy continuous from (FX 
, J) into (Fy , J). 

Then, J' = Jf iff for every fts (FZ T) and every function, 
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gcY --- Z, the fuzzy continuity of gof from (FX J) into 

(FZ T) implies the fuzzy continuity of g from (FY , J') into 

(FZ 
. T). 

Proof 

Considering proposition 5.2.5, it is sufficient to prove the 

converse. Since J' C Jf (by remark following definition 5.2.3), 

we only need to show that if J' or equivalently that the 

identity map id :Y-Y is fuz-continuous from (FY , J') into 

(FY , Jf). This follows from the fact that idof =f is 

fuz-continuous from (FX , J) onto (FY �J1). 0 

Proposition 5.2.7 

Let f be a surjective function from X onto Y. If f is 

fuzzy continuous and either fuzzy open or fuzzy closed from 

(FX 
, J) into (FY 

, J'), then J' =Jf. 

Proof 

We only need to show that Jf = J'. That is proved using 

consequence 4.1.10(a )3 (in addition to consequence 4.1.9(b) for 

the case of fuz-closedness of f). [j 

Proposition 5.2.8 

Let (FZ , T) be a fts and ga function from Y into Z. 

Then, 

(FZ , T) is the quotient of (FY , Jf) under g iff it is 

the quotient of (FX J) under gof. 
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Proof 

It is proved using the remark following definition 4.1.3 

concerning the inverse image of a fuzzy set under a composition 

function. Q 

Another important special case of the coinduced fts is the 

fuzzy disjoint sum. We first introduce some useful tools. 

Definition 5.2.9 

Let X S-Z Y and A FX. 

A subset of Fy is said to be the (proper) extension set of 

A to Y and denoted by ext A (or simply ext A, if no confusion 
Y 

arises) i ff 

ext A (x) _ {A(x) 
xEX 

0, xE Y-X 

It follows that an extension of a fuzzy point d in X is a 

fuzzy point in Y and that if e= ext d, then dqA if f eq(ext A) 

(and deA if fee ext A). It also follows that if B A, 

then ext BC ext A. 

Definition 5.2.10 

Let C= (Xa :ae 0) be a family of mutually disjoint sets, 

y- UXa and Ea C FX ,aE (l. 
aeO a 

A subset of FY is said to be the (disjoint) sum of the 

fuzzy sets E. and denoted by E Ea iff 
aeO 

Jext E 

aerl aet2 Ya 
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Consequence 5.2.11 

Let C and Y be as in definition 5.2.10. 

(a) For every D FY1 we have 

D=1 res D. 

a¬ 
Xa 

(b) If Ea C FX 
a, 

aen. Then, 

D=L Ea iff res D= Ea aen. 
aefl 

Xa 

Proof 

(a) is obvious from definition 5.2.9 and (b) follows from 

(a)" 0 

Through definition 5.2.10 and the succeeding consequence, we 

notice an important difference between working with classical sets 

and working with fuzzy sets. Had the Ea been classical sets, the 

union 'u' would have replaced the sign 'E', regardless of the fact 

that the Ea are subsets of different (and even disjoint) sets. 

In fuzzy theory, however, the situation is not quite the same. The 

fuzzy union is defined for fuzzy subsets of the same full set. 

(i. e. functions from the same set). Thus, for the Ea in 

definition 5.2.10, the expression "UE" is meaningless. In 
ael a 

the discussion of the (disjoint) sum fuzzy topological space, 

something that replaces this expression is needed, and will turn 

out to be provided by definition 5.2.10. 

Definition 5.2.12 

Let tl be an indexing set and C={F, Ja }: ae t2) a family 

of fuzzy topological spaces with all the Xa being mutually 
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disjoint, and Y=U. 
aEf2 

A fuzzy topology on PY is said to be the (disjoint) sum of 

the fuzzy topologies in C and denoted by E Ja (or simply E) 

ae) f2 

iff it is the coinduced fuzzy topology for the family of 

inclusion functions ((in )a : Xa --- Y: ae ft) and the family 

C of fts's. 

It follows that E is the largest fuzzy topology making each 

of the ( in )a fuzzy continuous from (F 'Ja) . 

The fts (FY , L) is called the disjoint (sum) fts of the 
n 

topological spaces in C. 

Consequence 5.2.13 

Let C, Y and E be as in the previous definition. Then, 

f2 

E= (OC Fy : res 0E Ja 
,ae 

t2} ={j Oa : Oa e Ja ,ae n} 
. 

n xa 
a¬t2 

Proof 

Let O Fy and Oa = res O. By consequence 5.2.11, we have 
Xa 

O=E Oa . Let (in)a : Xa ---- Y. Then, 

aEt2 

OEE 'ff (in)a1[O) e Ja aen, by definition of 5.2.12 
D 

iff Oa = res 0e Ja ae0, by consequence 5.1.5(a) 
Xa 

'ff 0=E Oa , Oa 6 Ja aen, by consequence 5.2.11. Q 
aEfl 
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In Ghanim et al (22], we come across a description of the 

(disjoint) sum fuzzy topology which although appearing to be 

different, is equivalent to that given in the previous 

consequence. However, it is not presented rigorously. The authors 

define the (disjoint) sum fuzzy topology E of the fts's in C= 

12 

((FX 
, 

Ja) :a E t2) , 
by E _ (0 :0 

0 Xa E Ja 
, 

for all 
a n 

ae n). The symbol "Xe" is what they and other authors 

term the full set in Xa (i. e. Fx ) , but here it 
a 

actually stands for the crisp set XX in Y; a flexibility which 
a 

they allow. Now the int ersection 0 fl Xa (or 0 (l xX in our 
a 

terminology) is a fuzzy set in Y (i. e. 0 XXa FY) and not 

in Xa , and so it can not be in Ja . But again thanks to an 

"agreement" stated in the start of the paper, the zero values of 

O (1 XX 
a 

at Y- XQ are disregarded, so that it is thought of as 

a fuzzy set in XQ . This awkwardness can be overcome by 

substituting restrictions for intersections as we have done in 

5.2.13. This adjustment has also the conceptual advantage of 

allowing the sum fts to be a special case of coinduction. Their 

definition of a fuzzy subspace which is evident from their 

description of fuzzy sum given above invites similar comments. 

They also defined openness for a fuzzy subspace, so that (FX , J') 

would be an open subspace of a fts (Fy J) iff XX e J. This 

notion is obviously not very useful, since a fuzzy topology need 

not contain any crisp set other than the empty fuzzy set and the 

full set. It is clear that they had the fuzzy sum in mind when 

they made this definition. 

The following two consequences are extensions of some results 
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in classical topology. Compare them with the corresponding ideas 

in Ghanim et al (22]. 

Let (FY E) be the (disjoint) sum fts of the family 

n 
((F Ja) :ae n) of fts's. 

Consequence 5.2.14 

For every aen, (FXa 
'Ja) 

is a subspace of (FY 
, E) 

. 

Proof 

Let ae £L We will show that Ja is the Xoý-relative fuzzy 

topology Jý = {res 0: 0e E} of E. 
Xa t2 1i 

First, let Ue Jý . Then there is an 0e such that 

n 
U= res 0. But then by consequence 5.2.13, Ue Ja . Thus, 

Xa 

Jý C Ja . 

Now, let VE Ja . 
Define 0C Fy by 0=E 01 , where 

Aen 

V if p=a 
O, = 

FXp if pEn {a} 

Since Op e Jp pE0, then 0eE by consequence 5.2.13. 

t2 

But then by the definition of Jý , we have res 0e Jý 
. 

But 
Xa 

res 0=V, and so Ve Jý . 
Thus Ja C Jß . Xa 

Therefore, Ja = Jý Q 

Consequence 5.2.15 

(a) For every aen and Ue Ja , we have ext UeE. 
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(b) For every ae f2, the fuzzy set X, is both open and 

closed in (FX 
a 

, Ja). 

roof 

(a) Let ae 12, UE Ja and A= ext U. Then for every pe f2, 

U if ß=a 
res A=(. Therefore, res AE Jp 

, 13 6 0, 
X13 4IX0 if p#a Xß 

and hence AeE. 

(b) First, since XX 
a= 

ext FX 
a 

then, by (a), XX 
aeE. 

Now, let A= XX 
a 

Then, 

res Ac _ (res A)c , by consequence 5.1.5(b) 
Xp Xp 

Xs x"6 
13 

(FXa )c if p=a 

(4a)c if 0 ia 

4ý6 j3 

FX 

13 
j3 

E JO 0 13 En . 

Thus, by consequence 5.2.13, Ac eE. But then A is 

E-closed. Q 

A useful result in classical topology connecting the concepts 

of quotient topology and (disjoint) sum is the following. 

Let n be an indexing set and let (Xa :ae n) and (Ya :ae 0) 

be two families of mutually disjoint sets. For every aen, let 
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(Ya ) be the quotient of , Tf the topological space (Xa Ta) under 
a 

the surjective map f :X- aa 
Y. Let X=UXa 

a a 
Y=UY 

a ag avin 

and define the function f :X -- -- Y, by, f IX 
a 

fa sa e f2. Then 

the topological sum of the family ((Ye , Tf ) :a6 
a 

n) is the 

quotient under f of the topological sum of the family 

((Xa 
, Ta) :ae Cl). 

To arrive at a fuzzy version of this classical theorem, we 

need the following consequence of definition 5.2.11 of (disjoint) 

sum set and definitions 4.1.1 and 4.1.3 of image and inverse image 

of fuzzy sets. 

Using the foregoing notations (with fa not necessarily 

surjective), we introduce the 'disjoint sum' version of 

consequence 4.1.8(a). 

Consequence 5.2.16 

(a) Let D=E Da Da C Fy 

aei2 a 
aEn . 

Then 

f-' [D1=1 l[Da]. 

aEl 

(b) Let E= E Ea 
, 

Ea CF 

QEf2 

f[E] =E fa(Ea] 

QEf 

«¬0. Then 

(a) Let pen. Since D=E Da , then res D= Dp , and so, 

aen 
Yß 

for every ye Yß , D(y) = Dß(y) . 

Let xe Xß , then f(x) = fß(x) ef [Xß] C Yß . 
Therefore, 

Cl[D](x) = D(f(x)) = D(fß(x)) = Dß(fß(x)) =f 
1[Dß] (x)" 

Thus, resß f-1[D] = f, -31[D, ], and hence, f-1[D] =E f--'[D, 3]. 
fen 
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(b) Let pEC. Since E_E Ea , then res E= Eß , and so, 
aen 0 

for every xe X0 , E(x) = EO(x). 

Let ye Yp , then, since the X. (and the YQ) are mutually 

disjoint, we have f1(y) - f--1(y) 
. 

Either f-1(y) = 4), and hence f[E](y) =0= fß[EQ] (y), or 

f-1(y) ;f 4), and hence, 

f[E](y) = sup (E(x) :xe fTl(y) = fill(y)} = sup (Eß(x) 

xe fp1(Y)) = fp[Ej3] (Y)" 

Thus, res f[E] = fß[E. ], and hence f[E] _E fp[Eß]. Q 
Yp $En 

Proposition 5.2.17 

Using the foregoing notations, for every aen, let 

(FY , if ) be the quotient of the fts (FX , Ja) under the 
a 

surjective function fa. Then, 

the fts (FY 
,E Jf ) is the quotient under f of (FX 

,E Ja). 

aea a aEt2 

Proof 

OE EJf iff 0= EOa, OaEJf 

a61 a aeO a 

iff f-1[o] _1 fa1[o ], Cal[Oa] E Ja , by 

aEn 

consequences 4.1.10(a)3 and 5.2.16 

iff f-1[O] EE Ja 

aet2 

Therefore, E Jf = {O : f-1[O1 eE Ja) , and hence 

aeO a aell 

(FY ,E Jf ) is the quotient of (FX 
,E Ja) under f. Q 

... a aell 
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3. Goodness and Initial Goodness of Extensions 

For the purpose of brevity, we introduce the following 

notations. 

Notation 5.3.1 

Let C be a family of topological spaces. The family of the 

natural fuzzy topological spaces of all members of C is denoted 

by (A)[C]. Thus 

G1[C] = {(Fx 
'W(T)) : (X, T) E C). 

Notation 5.3.2 

Let C' be a family of fuzzy topological spaces. The family 

of the initial topological spaces of all members of C' is denoted 

by i(C']. Thus, 

L(C' ]= {(X, t(J)) : (FX , J) E C, ). 

Goodness of fuzzy induction 

In looking for a criterion for goodness of a definition of 

fuzzy induction, we consider the case of one function f: X - Y. 

Let T be a topology on Y and Ti the induced topology on X 

for f and (Y, T). 
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I (X. Ti). --"----4 (Y, T) 1 

1(FX 
" ý(Ti)) 

' --------ý. (Fy . c(T)) 
1 

(FX " (4(T))i) 
1 0. 

- -- -----------ei 

The above diagram illustrates two possible ways of 

constructing a fuzzy topology on FX namely induction followed by 

taking the natural fuzzy topology and taking the natural fuzzy 

topology followed by fuzzy induction. It seems reasonable that 

goodness should require that those two fuzzy topologies coincide, 

that is; w(-ri) _ (w(r) )i . This motivates the definition of 

goodness for fuzzy induction, which, as we will show, is satisfied 

by definition 5.1.1. 

Proposition 5.3.3 

Fuzzy induction is a good extension to fuzzy topology of 

classical induction. More precisely for every set X and every 

family of topological spaces C= ((Ya , Ta) :ae t2) and family 

of functions IF = {fa :X- Ya :ae n}, we have; 

Ji = GJ( Ti , 

where Ti is the induced topology on X for T and C and Ji 

the induced fuzzy topology on FX for ? and w[C]. 

Let B be the family of all finite intersections of the 

family D= {fal(Oa] : Oa E w(Ta), ae il}. By definition 5.1.1, 

B is a base for Ji. We will show that B is a base for w(Ti). 

First, we show that B w(Ti). It is enough to show that 
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each member of D is in W(Ti). Let DED, then D= c1[Oa] 

for some Oa e W(Ta) and ae cl. Since, by the definition of 

induction 
, fa is continuous form (X, Ti) into (Ya , Ta), then, 

by proposition 4.3.4, fa is fuz-continuous from (FX , c)(Ti) ) 

into (Fya W(Ta)) . But then, fal [ Oa] E GJ( Ti) and hence, 

DE W(Ti). 

Now, let 0e w(Ti) and e= (x), e FX , such that eq0. 

Then O(x) >1-X+., for some Ce (0, a) . Let S=1-X+C, 

and Z= 0-1(8,1]. Then xeZe Ti. By the definition of Ti, 

N 

an an 
[Z) = Z' C Z, for some NeN, and ZET, x is 

n 
f- 

n=1 
om 

S 
14n s N. For every ne (1,2,..., N), let O= Zan , 

(i. e. the 

semicrisp set in Yan of support Zan and value 6). Then, 

N 

Oan e w(T 14n4N. Consider B=n än[O«]. Hence, we 
n=1 

N 

have BeB and, by consequence 4.1.12(c), suet B=n fal(supt Oa ) 

n=1 n 

N 

=nf (Z%) = Z' . 
For every zeX, we have; 

n=1 

B(z) = min (0 (fa (z)) :14n4 N} _ (6 
< 0(z) if ZE Z' 

°'n n0 0(z) if zEX- Z' 

Therefore BC0, and since xe Z' , then B(x) =6=1-X+{, 

and so eqB. Thus eqB Q 0, and so B is a base for w(Ti). Q 

Remark 5.3.4 

Taking the initial topology of both sides of the equation 

ii = W(Ti) in the previous proposition, we get, i(Ji) = Ti. 

Later, we will show that the latter equality holds even if the 

family w[C] is replaced by a family of arbitrary fuzzy 
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topological spaces. 

Corollary 5.3.5 

In the sense of proposition 5.3.3, 

(a) the fuzzy subspace is a good extension of the classical 

subspace. 

(b) the product fts is a good extension of the classical 

topological space. 

Corollary 5.3.6 

Let (X, r') be a subspace of the topological space (Y, T). 

Then a lower semicontinuous function from this subspace into 

(I, 1*) can be extended to the space (Y, T) . 

Proof 

Let Uec, i)(T' ). Let (FX , J') be a fuzzy subspace of the fts 

(Fy , W(T)). By the goodness of the fuzzy subspace, we have 

J' = w(T'). Hence Ue J', and so, by definition of J', there is an 

AEJ such that, U= res A= inl[A] = Aoin . This is illustrated 

by the following diagram. 

in 

�(Y, T) (X, T' )ý 'P 

U= Aoin ý\ /AEJ 

\ 
EJ'%%/ 

, 

(I. 1* ) 
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Goodness of fuzzy coinduction 

To motivate a criterion of goodness for a definition of fuzzy 

coinduction, we consider again the case of one function 

f! X ------ Y. But this time, let T be a topology on X and Tc 

the induced topology on Y for f and (X, r) 

(X, T)------------------- { Y, Tc) 
1 

(Fy 
(FX w(T))------- --ý 

L: LS 

The above illustration shows two possible ways of constructing 

a fuzzy topology on Fy , namely coinduction followed by taking 

the natural fuzzy topology and taking the natural topology 

followed by fuzzy coinduction. Again it is reasonable that 

goodness should demand that the two fuzzy topologies coincide, 

that is l W(TC) _ (c( T) )C 
. 

The following proposition shows that 

our definition of fuzzy coinduction is good in this sense. 

Proposition 5.3.7 

Fuzzy coinduction is a good extension to fuzzy topology of 

classical coinduction. More precisely, for every set Y and 

every family of topological spaces C= ((Xa , Ta) saE 0) and 

family of functions IP = {f(x : Xo ----ý Y, ae 0), we have: 

Jc ° ((TC) , 

where -rc is the coinduced topology on Y for ! and C, and 

is is the coinduced fuzzy topology on Py for ! and w[C]. 
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Proof 

By definition of Tc , for every ae0, fa is continuous 

from (Xa , ra) into (Y, Tc), and hence, by proposition 4.3.4, 

fuz-continuous from (FXa , w( ra)) into (FY , W( Tc)) . Thus, for 

every 0E w( Tc) , we have ; f äl [O] E w( Ta) ; ae0, and hence, 

0e Jc. Therefore, W() C Jc. 

On the other hand, if Ae Jc , then, by definition of Jc 

fa-l [A] E W( Ta ), aE Ll. So, for every ae tt and AEI- (1), we 

have; ( ä1[A])-1 (A, 1] E Ta . 
But ( ä1[A])-1 (A, 1] _ 

f«1(Ä 1(A, 1] ), by consequence 4.1.11(a)2. Therefore, by 

definition of Tc ,A 
1(A, 1] E TC ,AEI- 

(1). But then, 

AE W( Tc) . 
Therefore, Jc C W( Tc) . 

Thus, Jc = W(Tc) .Q 

Alternative proofs of propositions 5.3.7 and 5.3.3 can be 

found in Lowen [34]. The proofs we gave are more in tune with our 

approach. They are also in our opinion simpler and fuzzy 

topological in nature. 

Remark 5.3.8 

Taking the initial topology of both sides of the equation, 

Jc = W(Tc) in the previous proposition, we get, i. (Jc) = Tc . 

The latter equality, however, does not necessarily hold if the 

family w[C] is replaced by a family of fts's which are not all 

natural. This we discuss later. 

Corollary 5.3.9 

In the sense of proposition 5.3.7, 

(a) the quotient fts is a good extension of the classical 

-172- 



topological space. 

(b) the (disjoint) sum fts is a good extension of the classical 

(disjoint) sum topological space. 

Initial goodness 

In the following, let Ji be the induced fuzzy topology on 

FX , for the family of functions 9_ (fa :X ----- Ya :aE n) 

and the family of fuzzy topological spaces, C' = ((FY 
a , Ja) : 

aE n}. 

Lemma 5.3.10 

Let C= ((Uao fa)-1 (A, 1] : Ua E Ja 
,ae t2, AEI- (1)) 

. 

Then C is a subbase for L(Ji). 

Proof 

First, if ZeC, then, Z= (Uaofa )-1 (A'13 = fal(Ual(ý, 1 ]) 

for some Ae I- (1), aE t2, and Ua e Ja. By consequence 

4.1.11(a)2, Z = (fat [Ua])-1 (A, 1], and since, by definition of 

Ji , 
fäi [Ua] E Ji , we have ZE i(Ji) . 

Therefore, CC L(Ji). 

Now, let ZE L(Ji) and xe Z. By definition 2.2.10, 

N 

xEn Anl(An, 1] C Z, for some NEN, An e Ji , XEI- (1), 

n=1 

1n<N. But then xeA 1(ßn 
I'll 1(n<N. For each 

ne (1,2,..., N), define en e FX , by en = (x)'-'\* Hence, for 
n 

every ne (1,2,..., N), engAn , and so by definition of Ji 
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K 

enq( 
n 

[U ]) C_ An , for some KEN, ak e n, UCk e jcxk 
k=1 

1<k4K. But 

ne (1,2,.., N), enq( 

n 
(Ucofk)-1 (Xn, l), 

ke (1,2,..., K). 

then, by consequence 1.3.7(b), for every 

f [Ü ]), and hence xe(f[] )-1 (Nn ,1] (711 ak 

by definition 4.1.3, for every 

K 

Therefore, xe 
fl 

(UUof 
(xk 

) -1 (X 
, 11 Anl(Xn 

I'll 14n4N 
k=1 

NKN 
n 

and so xe (n (Uakaf)-1 (X "] 
n 

A7n1('n 
11] Z. 

n=1 k=1 n=1 

Therefore, the family of all intersections of members of C 

is a base for L(J), and hence, C is a subbase for it. Q 

Now, we are ready to prove the following proposition. 

Proposition 5.3.11 (Lowen (341) 

Fuzzy induction is an initially good extension to fuzzy 

topology of classical induction. More precisely, for every set X 

and every family. C' = ((Fr , Ja) :ae 12) of fuzzy topological a 

spaces and family of functions IF = (fa :X -- Ya ,ae n), we 

have; 

L(Ji) - Ti , 

where Ji is the induced fuzzy topology on FX for ! and C' 

and Ti the induced topology on X for 9 and i[C']. 

Proof 

For every aen, let ha be the cardinal number of Ja and 

Ca the family of identical topological spaces (I, 1 r) indexed by 
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Aa 
- 

By definition 2.2.10 of initial topology, for every ae n, 

L(JQ) is the induced topology on Ya for the family of 

topological spaces C. and the family of functions (U : Ya -I: 

v JQ}. 

Now, for each aen, we have; fa :X -- (Ya , L(Je)) and 

U: (Ya 
,i (Ja)) ----- (I , 1=) , for every Ue Ja. Hence by the 

transitivity of classical induction (e. g. James [28]), Ti is the 

induced topology on X, for the family 
UC 

of a identical 
a¬c 

topological spaces (I, 1=) and the family of functions (Uaofa 

Ua e Ja ,ae t2). Thus, by the definition of induction, the family 

((Uao fa)-1 (A, 1] : Ua e Ja , aen, Ae I- (1)) is a subbase 

for Ti. But by lemma 5.3.10, this family is a subbase for t(Ji). 

Thus Ti = i(Ji) "Q 

Fuzzy coinduction, however, is not initially good. The 

following proposition and counterexample complete the picture of 

this basic fuzzy topological construction. 

Proposition 5.3.12 

Let Y be a set, C' = ((Fx 
a 

, Ja) : ae n) a family of 

fts's and 9 = {fa : Xa - -- Y: a e r2} a family of 

functions. Then, 

L (Jc) C Tc 11 

where Jc is the coinduced fuzzy topology on Fy for v and 

C', and Tc the coinduced topology on Y for 9 and t[C']. 
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Proof (c f Lowen [34)) 

It is enough to show that every member of the subbase of 

c. (Jc) is in Tc. Thus, let D be a member of this subbase, then 

D= A1 (X, 1], for some Ae Jc and X e I- (1). Hence 

fai[A] e Ja ,aen, 
by definition of Jc. Therefore, for every, 

ae tl, by definition of L(Ja ), (fal(A])-1 (A, 1 ]e t(Ja) . But, 

(fai[A])-1 0\111 = fai(A 1(1 
, 1] ), by consequence 4.1.11(a)2. 

Hence, fal(A 1(?, 1]) e L(Ja ), aen, and so, by definition of Tc, 

Pi A, 1]E 'fc .Q 

The converse of proposition 5.3.12 need not hold, as the 

following counterexample shows. 

Counterexample 5.3.13 

Let T be any topology on X such that T; A. Let 

n=I- (1), Xa =X and Ja = wa(T) ,ae0, and let 9 be the family 

of identical identity functions {id : id :XY= X). 

Then Jc = to : idl [A] E Wa(T ), aE LI} =n cýa(T) = c, ý(T ), by the 

allen 

remark following definition 2.2.17, and so L (ic) =l (o)(T)) = T, 

by consequence 2.2.12(a) and (b). 

On the other hand, 

Tc = (Z : idl [Z] E L(Wa(T) ), ae fI} 

_ {Z :ZE 0} = A, by proposition 2.2.19(a). 

Therefore, Tc =A 96 T= t(Jc). Q 

Since in the preceding counterexample each of the Ja is 

Lowen, then the converse of proposition 5.3.12 need not hold even 

if C' is a family of Lowen fuzzy topological spaces. Lowen [34) 
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provides another counterexample to illustrates the same point. 

Now we give a simpler counterexample but for which members of 

C' are not Lowen. 

Counterexample 5.3.14 

Let X be a set of more than one point, Z1 a nonempty 

proper subset of X and J1 and J2 the fuzzy topologies 

on FX given by, J, = (FX ,, D) and 

A3 
J2 = (FX ,4,4», where D is the upper semicrisp set 

1xeZ 
given by, D(x) = (2 

x4Z. 
Let C' = ((FX 

, 
J1) 

, 
(FX 

, 
J2) } 

31 

and V fn = 1d :X ----- Y=X, 14n4 2). Then, 

Jc = (A FX : n1(A) E Jn 11 
4n4 2) 

(A :Ae J1 n J2) _ {FX 
, 

}. 

Therefore, L(Jc) (X, "). 

On the other hand, 

TC = (Z Cx: fn1[Z] 6 L(Jn), 14n4 2} = (Z :ZE L(ii. ) n 
L(ýT2 )) 

= (X, 4, Z1) 

Therfore, -rC C L(JC). Q 
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PAKT VI 

TEE BEHAVIOUR OF FUZZY PROPERTIES 

UNDER FUZZY TOPOLOGICAL CONSTRUCTIONS 

In part three we introduced fuzzy sequentiality and showed 

it, together with fuzzy second countability and quasi-first 

countability, to be a good extension of the corresponding 

classical property. Here, we submit these fuzzy properties to 

another test which further establishes their suitability as the 

right fuzzy extensions of these respective classical notions. 

This new criterion will be called constructive goodness. It 

demands that, under the four basic topological constructions of 

part V, the behaviour of a classical property agrees with that of 

its fuzzy extension. 

The advantage of our Q-goodness approach is demonstrated very 

clearly in this part. Long and complicated proofs given by Pu and 

Liu [44] of three important results are replaced by a single 

simple proof encompassing all three cases. 
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I. Constructive Goodness and Excellence 

Notations and definitions 6.1.1 

We will refer to the four basic (fuzzy) topological 

constructions of part V as operations. An operation of this type 

is denoted by © (respectively ¬). 

A (fuzzy) property is said to be inductive (respectively 

coinductive) iff it is invariant under (fuzzy) induction 

(respectively (fuzzy) coinduction). 

We have the following four special cases of (fuzzy) induction 

and coinduction. 

(1) (Fuzzy) subtraction : The construction of a subspace from 

a given (fuzzy) topological space. 

(2) Fuzzy) division : The construction of a quotient (fuzzy) 

topological space from a given (fuzzy) topological space. 

(3) (Fuzzy) addition : The construction of a (fuzzy) 

topological sum of a family of (fuzzy) topological spaces. 

(4) (Fuzzy) multiplication : The construction of a (fuzzy) 

topological product of a family of (fuzzy) topological spaces. 

A (fuzzy) property is said to be subtractive iff it is 

preserved under subtraction. In the same manner we define, 

divisibility, (countable) additivity and (finite, countable) 

multiplicativity. 

In the following, let P be a topological property and Pf a 

fuzzy extension of P. 
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Definition 6.1.2 

The fuzzy property Pf is said to be a constructively good 

extension of P iff for every basic topological operation 40 we 

have; 

Pf is invariant under l` iff P is invariant under ©. 

Definition 6,1.3 

The fuzzy property Pf is said to be an excellent extension 

of P iff it is both a good and constructively good fuzzy 

extension of P. 

Notation 6.1.4 

Let C (respectively C") be a family of (fuzzy) topological 

spaces. A (fuzzy) topological space resulting from C 

(respectively C') by means of a (fuzzy) topological operation 

(respectively ®) is denoted by ©c (respectively ®C') 
. 

Remark 6.1.5 

Let Pf be a good fuzzy extension of P. For every basic 

topological operation ®, we have; 

If P is not invariant under then Pf is not invariant 

under @f 
. 

Proof 

Since P is not invariant under ©, then there is a family 

C of topological spaces, such that every member of C has the 

property P, but ®C does not have it. Let C' = w[C]. By the 

goodness of both Pf and V (see section 3 of part V), every 
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member of C' has the fuzzy property Pf but ®fC' does not 

have it. Thus, Pf is not invariant under 
&. Q 

Consequence 6.1.6 

The fuzzy property Pf is an excellent extension of P if f 

it is good and for every topological operation ®, the invariance 

of P under ® implies the invariance of Pf under Of 
. 

Proof 

This follows from remark 6.1.5. Q 

Considering the goodness of the basic fuzzy topological 

operation shown in part V, one might wonder if goodness or initial 

goodness of a fuzzy property implies its contructive goodness and 

hence its excellence, thus the equivalence of the two concepts. 

The answer to this is provided in the following counterexamples. 

Counterexample 6.1.7 

Goodness does not imply constructive goodness. 

Proof 

Consider the fuzzy extension of classical compactness given by 

Lowen (definition 4.3 in Lowen (33] and definition VI in Lowen 

(35]) and called "weak fuzzy compactness". (A fts (FX , J) is 

said to be weakly compact iff for every subfamily B of J such 

that 
ö0= FX and for every CE (0,1] there is a finite 

subfamily Bo of B such that UU 

Ue% 
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By theorem 2.1 in Lawen [35], weak compactness is a good 

extension of classical compactness, but, by the counterexample in 

page 17 in Lowen [34], it is not multiplicative. Since classical 

compactness is multiplicative by Tychonoff's theorem (e. g. theorem 

5.13 in Kelley [29] ), then weak compactness is not constructively 

good. Q 

Counterexample 6.1.8 

Initial goodness does not imply constructive goodness. 

Proof 

Consider fuzzy first countability. By proposition 3.1.19 it 

is initially good, but by theorem 4.3 in Pu and Liu [44] it is not 

finitely multiplicative. Since classical first countability is 

countably multiplicative, then fuzzy first countability is not 

constructively good. Q 

Proposition 6.1.9 

Let both Pf and Of be initially good. Assume that the 

following statement is true; 

"For every family C of topological spaces, if ®C has the property 

P, then all but a countable number of members of C are 

indiscrete". 

Then the following statement is true; 

"For every family C' of fuzzy topological spaces, if OfC'has the 

property Pf, then all but a countable number of members of C' are 

trivial". 
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Let C' be a family of fts's such that ®f C' is Pf. By the 

initial goodness of both Pf and Of, ®(L [ C' ]) has the property 

P. But then, by hypothesis, all but a countable number of members 

of L[C') are indiscrete. Therefore, by proposition 2.2.11, all 

but a countable number of C' are trivial. Q 
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2. The Excellence of quasi-first Countability and 

Fuzzy Second Countability 

Proposition 6.2.1 

Neither quasi-first countability nor fuzzy second countability 

is divisive. 

Proof 

This follows from remark 6.1.5 and the fact that neither 

classical first countability nor classical second countability is 

divisive. As a classical counterexample consider the quotient 

topological space (R*, Th*) described in the proof of 

proposition 3.3.13. As indicated there, (R*, Th*) is not C1 

(and hence not C2) although it is a quotient of a second countable 

(and hence first countable) topological space (i. e. R with its 

usual topology). Q 

Although, as demonstrated by the previous proposition, 

quasi-first countability and fuzzy second countability are not 

preserved under fuzzy division in general, they are preserved 

under a special type of fuzzy division, namely that of proposition 

5.2.7. This we now prove. 

propositon 6.2.2 

A fuzzy continuous fuzzy-open image of a quasi-first countable 

fts is quasi-first countable. 
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Proof 

Let f be a function from X onto Y. 

First, let f be fuz-continuous fuzzy-open from (FX , J) 

into (FY 
, T) and let (FX 

, J) be Q-C1. Let d e Fy 
. 

We 

will show that there is a countable Q-neighbourhood base for T 

at d. 

By the surjectivity of f, there is a fuzzy point e in X 

such that d= f(e) (take any fuzzy point in X with the same 

value as d and with its support lying in the inverse image of 

support d). By the quasi-first countability of (FX , J), there 

is a countable open Q-neighbourhood base B at e. Let 

B' _ (f[B] :BE B). Then B' is countable, and by the 

fuz-openess of f, B' G T. Also, since for every BeB we have 

eqB, then, f(e)gf[B), by consequence 4.1.7(b)1. Thus every member 

of B' is an open Q-neighbourhood of e. To show that B' is a 

Q-neighbourhood base at d, let UeT and dqu. Then fT1[U] eJ 

and, by consequence 4.1.7(b)2, eqf-1[U]. But then there is a 

BeB, such that BC f--'[U]. Therefore, f[B] E B', and 

f[B] f[f 1[U]] 
= U, by consequence 4.1.7(a)1 and 4.1.1O(a)3. 

Therefore, B' is a countable Q-neighbourhood base at e, and 

so (FY , T) is Q-C1. Q 

Proaosition 6.2.3 

A fuzzy continuous fuzzy open image of a fuzzy second 

countable fts is fuzzy second countable. 
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Proo 

This is proved in a similar manner to proposition 6.2.2. Q 

In the following, we show that while quasi-first countability 

is additive, second countability is only countably additive. 

Proposition 6.2.4 

Quasi-first countability is additive. 

Proof 

Let (Fy , E) be the (disjoint) sum fts of the family 

C= ((FX 
a, 

Ja) :ae t2) of quasi-first countable fuzzy topological 

spaces. Let ee Fy . We will show that there is a countable 

Q-neighbourhood base at e. 

- x« 

(and, hence ext d= e). By the quasi-first countability of 
Y 

(F , Ja), there is a countable open Q-neighbourhood base B for 

Ja at d. Let B' = (ext B: Be B). Then B' is countable, 
Y 

and by consequence 5.2.15(a), B' C E. Also, since for every 

Be B' , we have dqB, then eq( extB ), 
Y 

by remark following 

definition 5.2.9. Thus every member of B' is an open 

Q-neighbourhood of e. To show that B' is a 

Q-neighbourhood base at d, let 0EE and eqO. Let U= res 0, 

a 

then Ue J« , by consequence 5.2.13, and dqU. But then, there 

is aBEB, such that BQU. Hence ext Bc ext Uc0 and 
YY 

ext BE B' . Y 

There exists an ae0 and de Xa , such that res e=d v 

Therefore, B' is a countable Q-neighbourhood base for E at 

e, and hence (FY , E) is Q--C1. [] 
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Proposition 6.2.5 

Fuzzy second countability is countably additive. 

Proof (Cf Ghanim et al [22) and classical case) 

Let (FY , E) be the (disjoint) sum fts of the family 

C= ((F , Jn) :ne N) of fuzzy second countable fts. For each 

neN, let Bn be an open countable base for Jn and define B'n 

by B' 
n= 

(ext B: Be Bn). Then, we can show that the family 
Y 

B= B'n is a base for (FY 
, E) following similar steps 

n=1 

to those used in the proof of proposition 6.2.4.0 

Proposition 6.2.6 

Fuzzy second countability is not additive. 

Proof 

This follows from remark 6.1.5 and the fact that classical 

second countability is not additive. 

As an illustration consider the uncountable family (Xa = {xo}: 

ae n) of mutually disjoint singletons, and for every aen, let 

Ja ={ (xa )A :XEI -10,3-)) 
u (FX 

a, a 
1. Then, for every ae t2, 

Ja is the natural fuzzy topology of the one point topological 

space (Xa {Xa}) and hence is C. Let Y=U Xa and 
aen 

(FY , E) be the (disjoint) sum fts of the family {(FX , Ja) : 
a 

ae nj. Then for every Ac FY and aen, we have; 

(xa)x " 
res A =( 

Xa 
4Xa 

for some 

if Xa + Supt A 

if xa e Supt A 

E JQ . 

Therefore, AeE, and so E is the discrete fuzzy topology on 
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PY . Since Y is uncountable, then (FY , E) is not C2.0 

Lastly, we investigate multiplication. 

Proposition 6.2.7 (Pu and Liu) 

Both quasi-first countability and fuzzy second countability 

are countably multiplicative. 

Proof 

See theorem 4.2 in Pu and Liu (44] for the case of quasi-first 

countability. The case of fuzzy second countability is proved 

similarly. Q 

Proposition 6.2.8 (Pu and Liu) 

If a product fuzzy topology of a family C of fuzzy topological 

spaces is quasi-first countable or fuzzy second countable, then 

all but a countable number of members of C are trivial. 

Proof 

Considering the initial goodness of quasi-first countability 

and the product fuzzy topology (propositions 3.1.18 and corollary 

5.3.11), the result follows from proposition 6.1.9 and the 

corresponding classical result (e. g. theorem 3.5 in Kelley [291). 

Note that fuzzy second countability implies quasi-first 

countability (corollary 3.1.11). (] 
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Pu and Liu (44] gave a long and complicated proof of the 

previous result. This proof consisted of two lemmas (lemma 3.1 

and 3.2), a theorem (4.1) and the bulk of the proof of another 

theorem (3.1). Our simpler proof is a consequence of the overall 

approach adopted in this thesis. 

Proposition 6.2.9 

Both quasi-first countability and fuzzy second countability 

are not multiplicative. 

Proof 

Let C be an uncountable family of fts's such that each 

member of C is both ¢-C1 (respectively C2) and not trivial (for 

instance we can take each member of C to be the natural fts of R 

equipped with its usual topology). Then, by proposition 6.2.8, the 

product fts of the fts's in C can not be ¢-C1 

(respectively CZ) .Q 

The following proposition completes the picture for products. 

Proposition 6.2.10 

The Lowen factors of a quasi-first countable (fuzzy second 

countable) product fts are quasi-first countable (respectively 

fuzzy second countable). 

This follows from propositions 5.1.13,6.2.2 and 6.2.3. Q 
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Proposition 6.2.11 

Both quasi-first countability and fuzzy second countability 

are subtractive. 

Proof 

Let (FX , J') be a subspace of the quasi-first countable fts 

(FY , J) . Let de FX , then there is an ee Fy , such that 

d= res e. Let Be be a countable open Q-neighbourhood base for 
x 

J at e. Consider the family B' = (res B: Be Be). We have 
dx 

B' C J' and, by consequence 5.1.5(d), every member of B' 

is quasi-coincident with d. Now, let UE J' such that dqU. 

Then, there is an 0eJ, such that U= res 0, and hence eq0. 
X 

But then there is aBe Be , such that BC0. Therefore, 

res Be B' and res BC res 0=U, by consequence 5.1.5(c). 
XdX-X 

Thus the countable family B'' is an open Q-neighbourhood base 

for J' at d, and hence (FX , J') is Q-C1. 

Similarly if B is a countable base for J, then the 

family B' = (res B: BE B) is a base for J'. Thus, if 
x 

(FY J) is C2 , then so is (FX J"). Q 

We now state a result that sums up previous propositions. 

propositions 6.2.12 

Both quasi-first countability and fuzzy second countability 

are excellent. 
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Proof 

Constructive goodness follows from the propositions of this 

section and goodness from propositions 3.1.26 and 3.1.25 

respectively. Q 

Notice 6.2.13 

We have shown that fuzzy first countability is neither good 

(proposition 3.1.27) nor constructively good (counterexample 

6.1.8). However proofs similar to those given for quasi-first 

countability can be easily provided to show that fuzzy first 

countability is subtractive and additive and that a fuzzy 

continuous fuzzy open image of a Cf fts is Cf. Virtually the same 

proofs as for propositions 6.2.10 and 6.2.8 show respectively that 

the Lowen factors of a Ci fts are Ci and that if the product fts 

of a family C of fts's is Ci , then all but a countable number 

of members of C are trivial. 
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3. The Excellence of Fuzzy Seguentiality 

Proposition 6.3.1 

Fuzzy sequentiality is neither subtractive nor finitely 

multiplicative. 

Proof 

This follows from proposition 6.1.5 and the fact that 

classical sequentiality is neither subtractive (see example 1.8 in 

Franklin [16]) nor multiplicative (see example of section (2) in 

Antosik et al [1]). Q 

To investigate the behaviour of fuzzy sequentiality under 

addition and division, we need the following lemma. 

Lemma 6.3.2 

Let Jc be the coinduced fuzzy topology on FY for the 

family of functions 4' = {fa : -- Y, ae fl} and the family of 

fts's C= ((FXa , Ja) :ae 0) and let DC Fy . 
Then, the 

-' 

Jc-sequential openness of D implies the Joý-sequential openness 

of fäl[D], ae0. 

groof 

Let D be Jc-sequentially open. Let ae 12, and let <en> be 

a fuzzy sequence in Xa , en 
jae 

and egf-a'[D]. Then by the 

fuz-continuity, and hence the sequential fuz-continuity, of 
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fa from (FX 
a, 

Ja) into (FY , Jc ), and by consequence 4.1.7(b)2 

fa(en) --9---o fa(e )qD. So, there is an NEN, such that 

< fa(en) > q(N )D, and hence again, by consequence 4.1.7(b)2, 

cen>q(N) äl[ß). Therefore, 

Proposition 6.3.3 

ä1[D] is Ja-sequentially open. Q 

Fuzzy aequentiality is coinductive. 

Pof 

Using the foregoing notations, assume that for every aen, 

(Fx 
a, 

J«) is sequential. 

Let D be Jo-sequentially open. Then, by lemma 6.3.2, ä1[D) 

is Ja-sequentially open, aeC. But then for every ae Cl, 

fa1 [D] e Ja , and hence DE Jc . Therefore (FY Jc ) is 

sequentialf. [] 

Corollary 6.3.4 

Fuzzy sequentiality is both divisive and additive. 

P 

This follows from proposition 6.3.3. Q 

Corollary 6.3.5 

A fuzzy continuous fuzzy open (closed) image of a sequential 

fts is sequential. 

-193- 



This follows from corollary 6.3.4 (the fact that fuzzy 

sequentiality is divisive) and proposition 5.2.7. Q 

Corollary 6.3.6 

Lowen factors of a sequential product fts are sequential. 

Proof 

This follows from corollary 6.3.5 and proposition 5.1.13.0 

Proposition 6.3.7 

Fuzzy sequentiality is excellent. 

Proof 

Combine the goodness of fuzzy sequentiality (proposition 

3.3.10) with its constructive goodness which follows from 

corollary 6.3.4 and proposition 6.3.1. Q 
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