
Rushby, J., Littlewood, B. & Strigini, L. (2014). Evaluating the Assessment of Software Fault-

Freeness. Paper presented at the AESSCS 2014, 13-05-2015, Newcastle upon Tyne.

City Research Online

Original citation: Rushby, J., Littlewood, B. & Strigini, L. (2014). Evaluating the Assessment of

Software Fault-Freeness. Paper presented at the AESSCS 2014, 13-05-2015, Newcastle upon

Tyne.

Permanent City Research Online URL: http://openaccess.city.ac.uk/8294/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/42628438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

To be presented at AESSCS Workshop, 13 May 2014, Newcastle upon Tyne, UK

Evaluating the Assessment of Software Fault-Freeness

John Rushby

Computer Science Laboratory

SRI International, Menlo Park CA USA

Bev Littlewood and Lorenzo Strigini

Centre for Software Reliability

City University London, UK

Abstract

We propose to validate experimentally a theory of
software certification that proceeds from assessment
of confidence in fault-freeness (due to standards) to
conservative prediction of failure-free operation.

1. Introduction

The quality required of safety-critical software is
such that faults are not expected to be revealed by
post-construction assurance processes, nor are failures
expected in operation. Hence, we cannot expect to
evaluate standards for software assurance by measuring
reductions in faults or failures. Before we can frame
testable hypotheses about standards, we therefore need
to posit a larger hypothesis that evidence for absence of
faults provides the quantifiable basis for certification.

2. A Theory of Certification

The world is an uncertain place, so safety require-
ments are expressed probabilistically: it must be very
unlikely that the system will lead to harm—and the
more serious the harm, the less likely it must be. These
likelihoods may be expressed in terms of probability
of failure on demand (pfd), as rates of failure, or in
terms of total exposure. We will use the latter, which,
for the case of commercial aircraft, is expressed by
requirements such as “no catastrophic failure condition
shall be expected to occur in the entire lifetime of all
aircraft of one type.”

It might then seem that the purpose of standards
and assurance for safety-critical software should be
to deliver direct guarantees that this or similar goals
are satisfied. However, a little reflection shows that
software assurance cannot, and does not, accom-
plish this direct demonstration. Failure is a dynamic
concept—that is, it concerns the behavior of software
in execution—and probabilistic claims about failure
concern repeated executions. But software assurance is
largely comprised of static forms of analysis: for exam-
ple, examination of requirements, specifications, and

code, and traceability among these. These analyses can
discover faults and thereby improve software quality
and reliability but it is not expected that any faults will
be detected during system assurance: if they were, it
would cast serious doubt on the development process.
But if the value of assurance is not in revealing faults,
how does it connect to failures and their probabilities?
The answer is that it does so indirectly: assurance gives
us confidence that faults are rare and from this we infer
that the probability of failure will be low also. But how
can we quantify this purported relationship?

We do more assurance for software with more
stringent failure requirements (e.g., DO178C specifies
71 assurance “objectives” for Level A software, vs.
69 for Level B, 62 for Level C, and 26 for Level
D) and the purpose of doing more assurance must
be to make us more confident—but confident about
what? We can imagine two answers: more assurance
makes us confident in fewer faults and thereby a lower
probability of failure (i.e., more assurance changes
what we are confident about); or, it makes us more
confident in a given rarity of faults and an associated
probability of failure (i.e., it increases our confidence
in a single, fixed, property). The first might seem more
intuitive but it is a special case of the second that
delivers a tractable theory.

The special case is software that is believed to
be entirely free of faults (of kinds that could lead to
failures of the severity under consideration). That is,
more assurance makes us more confident that the soft-
ware is fault-free and our degree of confidence can be
expressed as a probability, namely P (s/w fault-free).
By the formula for total probability

P (s/w fails [on a randomly selected demand]) (1)

= P (s/w fails | s/w fault-free)× P (s/w fault-free)

+ P (s/w fails | s/w faulty)× P (s/w faulty).

The first term in this sum is zero, because the software
does not fail if it is fault-free (which is why the theory
needs this property). Hence, if we define pnf as the

1

probability the software is fault-free (or nonfaulty, so
that P (s/w faulty) = 1− pnf), and pF |f as the proba-
bility that it Fails, if faulty, then pfd = pF |f×(1−pnf).

More importantly, psrv (n), the probability of sur-
viving n independent demands (e.g., flights) without
failure is given by

psrv (n) = pnf + (1− pnf)× (1− pF |f)
n. (2)

A suitably large n can represent “the entire lifetime of
all aircraft of one type.” The notable feature of (2) is
that the first term establishes a lower bound for psrv (n)
that is independent of n. Thus, if software assurance
gives us the confidence to assess, say, pnf > 0.99
(or whatever threshold “not expected to occur” means)
then it looks like we have sufficient evidence to certify
the aircraft as safe (with respect to software aspects).

But certifiers (and the public) will also want guar-
antees in case the software does have faults. Thus,
we need confidence that the second term in (2),
which decays exponentially, will be well above zero.
This confidence could come from prior failure-free
operation (e.g., flight tests). Calculating the overall
psrv (n) can then be posed as a problem in Bayesian
inference: we have assessed a value for pnf , have
observed some number r of failure-free demands, and
want to predict the probability of seeing n − r future
failure-free demands. To do this, we need a prior
distribution for pF |f , which may be difficult to ob-
tain, and difficult to justify for certification. However,
there is a distribution that delivers provably worst-
case predictions (specifically, one in which pF |f is
concentrated in a probability mass at some qn ∈ (0, 1])
[1] so we can make predictions that are guaranteed to
be conservative given only pnf , r, and n. For values
of pnf above 0.9, we find that psrv (n) is well above
the floor given by pnf , provided r > n

10
.

If we regard a complete flight as a demand, then n

might be as large as 108–109 (e.g., the Airbus A320
series have already performed over 62 million flights),
but flight tests prior to certification might provide only
r = 103, so it looks as if these are insufficient for
certification by the criterion above. However, it can be
argued that when an aircraft type is certified, we do not
require (and in fact cannot feasibly obtain) sufficient
evidence to predict failure-free operation over the
entire lifetime of the type; instead, we initially require
sufficient confidence for only, say, the first six months
of operation and the small number of aircraft that will
be deployed in that period. This will be a much smaller
value of n, and our pnf (from assurance) and our r

(from flight tests) will be sufficient for confidence in
its failure-free operation. Then we will need confidence

in the next six months of operation, with a larger fleet,
(i.e., a larger n) but now have the experience of the
prior six months failure-free operation (i.e., a larger r)
and in this way we can “bootstrap” our way forward.

3. Suggested Experiments

We contend that the account of the previous section
provides the first scientific explanation for the way
software certification in some industries (particularly
commercial aviation) actually works: that is, it pro-
vides a model for beliefs and their quantification that
explains and is consistent with current practice.

The hypotheses we propose to examine are (a)
do the numbers work, and (b) do certifiers find the
account plausible—to the extent that it can be used as
a foundation on which to improve future practice?

For the first, we need to ask what values of pnf can
reasonably be assessed for the various DO-178C Soft-
ware Levels. Two approaches are: (i) ask certifiers what
pnf , cast in a frequentist interpretation, they might
assess for each group of objectives: e.g., “given 100
software systems assessed to have accomplished all 7
objectives of DO-178C Section 6.3.2, how many of
those systems do you believe might ever suffer a soft-
ware failure due to flawed low level requirements?”;
(ii) consider how many such systems have been in
use and never exhibited such failures. Both approaches
have (different) weaknesses, but allow construction of
a first-cut plausible argument, e.g., using Bayesian
Belief Nets and suitable conservative simplifications,
to yield assessment of pnf for the whole of DO-178C.

We will also build models for the growth in fleet
size over time and the “bootstrapping” of confidence in
future failure-free operation (i.e., as r and n increase)
for representative values of pnf .

For hypothesis (b), we will present the model, peer-
reviewed and populated with “plausible” data from
(a), to certifiers. If they accept the structure of the
argument then we may proceed to investigate methods
by which its parameters, the pnf values, can be based
rigorously on evidence. Possible approaches include
analysis of the assurance case underlying the objectives
of DO-178C and of means for accomplishing them.
Further explorations could include modified objectives
and alternative means (e.g., software monitors) to
support assessment of high pnf , enhancing psrv (n).

References

[1] L. Strigini and A. Povyakalo, “Software fault-freeness
and reliability predictions,” in SAFECOMP 2013, ser.
LNCS, vol. 8153. Toulouse, France: Springer-Verlag,
Sep. 2013, pp. 106–117.

