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SYNOPSIS 

Theoretical and numerical investigations have been carried out on 

the use of the Integral Equation Method of solution for the 

Potential Theory problem of the interaction between a floating body 

and a train of regular waves in a two-dimensional domain. 

In particular, a numerical study has been carried out of the 

indirect method of solution of the integral equation resulting from 

a distribution of Green's Function sources over a boundary 

coincident with the immersed surface of the body. It is demonstrated 

that a significant increase in solution efficiency, with no loss of 

precision, can be effected by improvements in the general numerical 

techniques of solution together with the use of a polynomial type 

distribution of elements over the source boundary. It is also 

demonstrated that significant improvements in solution accuracy for 

rectangular aspects can be achieved by a slight 'rounding' of the 

submerged edges of the mathematical model. 

An experimental investigation of the interaction between a train of 

regular waves and a substantially rectangular floating body includes 

measurements of the reflection and transmission characteristics, for 

both the fixed and floating mode of the body, together with 

measurements of the body motions. 

The primary objective of the experimental study is the validation of 

theoretically predicted interaction parameters derived from the 

above methods. The experimental program was designed both to 

determine the extent of validity of Potential Theory within regimes 



where diffraction effects predominate, and also to determine the 

conditions under which the use of Potential Theory alone becomes 

invalid due to the significant presence of non-linear effects. 

As a consequence of the results of this investigation, 

recommendations are made both with regard to the possible 

achievement of further improvements in solution efficiency and, more 

importantly, with regard to a general improvement of solution 

accuracy by the inclusion of the above-mentioned non-linear effects 

in the theoretical formulations. 
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CHAPTER 1 INTRODUCTION 

1.1 General Introduction. 

The ability to withstand ocean conditions of the utmost severity is 

a fundamental requirement of any offshore structure or marine 

vehicle. To this end, the design of such must be based on a 

comprehensive knowledge and understanding of the physics of wave 

motion and, in particular, the hydrodynamics of wave/structure 

interaction. Contributions to the development thereof have been 

made by applied mathematicians, naval architects and engineers from 

many disciplines and a considerable number of theoretical and 

experimental studies, covering an extensive range of topics, have 

been carried out in this regard. 

The behaviour of gravity waves has been studied by the applied 

mathematician since the nineteenth century and a number of 

alternative wave theories are currently available. The first 

applications of classical wave theories to problems of engineering 

significance, however, were concerned with the problems of ship 

motion and the naval architect has subsequently provided major 

contributions towards the development of a better understanding of 

wave-structure interaction in both theoretical and physical terms. 

In recent years, the expansion of offshore activity by the oil and 

gas industry has generated increased research efforts in this field 

and the continuing exploitation of offshore energy resources, both 

in terms of fossil fuel and wave energy abstraction, guarantees that 

momentum will be maintained in this regard. 
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A number of mechanisms give rise. to wave induced forces on fixed 

obstacles and the governing mechanisms are determined by the 

geometry and location of the obstacle, together with the size of the 

obstacle in relation to the incident wave field. If the 

characteristic dimension of the obstacle is small in comparison to 

the length of the incident wave, the wave-induced force consists of 

two components: the drag force component, resulting from the 

presence of an oscillating fluid wake, and the inertia force 

component which results from the displacement, by the obstacle, of 

an equivalent mass of fluid. As the obstacle characteristic 

dimension increases with respect to the incident wave length, 

sufficient to result in deformation of the ambient wave field, the 

waves undergo significant diffraction by the obstacle which is, as a 

consequence, subjected to a diffraction force. It is assumed, in 

such a regime, that the drag force becomes insignificant and may be 

neglected, permitting the formulation of a potential theory problem. 

Consideration of the appropriate boundary conditions enables a 

solution to be obtained for the diffracted wave potential and 

subsequent evaluation of the hydrodynamic pressure and force 

components. If the obstacle is floating, additional boundary value 

problems are required for each degree of motional freedom, the 

solutions of which permit the evaluation of potentials relating to 

the waves generated by each mode of body motion. 

A number of alternative methods have been employed for the formation 

and solution of these boundary value problems but, with the 

exception of a few simple fixed obstacle geometries, no exact 

solutions are available and the required solutions must be obtained 

by numerical means. Both the Finite Element and Hybrid Element 

approaches have been successfully used in this regard but by far the 
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most popular methods appear to be Ursell's multipole method and the 

method of integral equations, both of which require the introduction 

of fluid singularities and subsequent solution of a system of linear 

algebraic equations. 

The integral equation method has been used in a variety of ways, not 

necessarily restricted to the solution of hydrodynamic interaction 

problems, and is variously referred to as the Source Distribution 

Method, the Boundary Element Method (B. E. M) and the Boundary 

Integral Equation Method (B. I. E. M. ). In recognition of its first 

accredited use to obtain solutions to hydrodynamic interaction 

problems of practical significance, the method is often referred to 

by naval architects as the Frank Close Fit Method. In recent 

years, a fully three-dimensional approach has been developed to 

obtain predictions of the parameters pertaining to the hydrodynamic 

interaction between waves and fixed or floating structures and a 

number of computer programs have been developed for commercial usage 

in this regard. Notwithstanding this development, however, it would 

appear that the principal method of analysis of marine vehicles is 

the use of two-dimensional modelling in conjunction with an 

appropriate strip theory. 

A considerable number of experimental investigations have been 

carried out with regard to wave/structure interaction. In the case 

of fixed bodies which are small in relation to the incident wave 

length, the majority of these investigations have been devoted to 

the provision of data relevant to the use of semi-empirical formulae 

in determining the significant wave induced force components. To a 

certain extent, the same can be said of those investigations 

pertaining to fixed obstacles spanning a significant proportion of 
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the incident wave length. In the main, however, the primary 

purpose of such investigations was the validation of theoretical 

predictions derived from the solution of potential theory problems. 

The results of these investigations, together with those pertaining 

to floating obstacles of similar dimension, are particularly useful 

since they provide an indication of the extent of validity of the 

theoretical predictions subject to the assumptions of small 

amplitude wave theory and inviscid flow conditions. 

In recent decades, great advances have been made both in the general 

understanding of wave/structure interaction and the development of 

theoretical models as a basis for reliable design. Until 

comparatively recent years, however, much of the work has been 

restricted to two particular areas. The bulk of engineering 

research has been concentrated on the behaviour of offshore drilling 

platforms, necessitating the analysis of fixed vertical structures 

located on the ocean floor and spanning all or part of the water 

depth, whilst research in the context of naval architecture has been 

largely directed towards the development of an acceptable ship 

motion theory, entailing the two- and three-dimensional analysis of 

single, elongated structures in the free-surface with or without 

forward speed effects. However, recent developments in the oil 

industry have necessitated the application of established theories 

to a new breed of problem with the advent of increasingly complex 

support systems for offshore drilling platforms, with varying 

degrees of basal fixity and structural rigidity, the multi-legged 

construction of which requires additional consideration of the 

effects of column proximity and consequent mutual interaction. 

Similar recent developments have taken place in the field of naval 

architecture with the increasing use of multi-hulled marine 
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vehicles, and the "alternative energy" field with regard to the 

abstraction of wave kinetic energy by means of single flexible or 

multiform hinged floating structures. 

1.2 Introduction to the Present Study. 

A study has been made of the interaction between a train of regular 

waves and a substantially rectangular surface-piercing obstacle 

which may be fixed or freely floating. This thesis includes a 

theoretical and numerical investigation of the integral equation 

method used to obtain theoretical predictions of the parameters 

pertaining to the hydrodynamic interaction in a two-dimensional 

domain, and an experimental investigation specifically designed to 

validate these theoretical predictions. 

The application of the integral equation method to obtain solutions 

of potential theory problems may take a number of forms, each of 

which is based on a result due to Green's Theorem. The two 

formulations most frequently used in the context of hydrodynamic 

interaction problems both employ a singular solution of an 

associated potential theory problem. This singular solution is 

variously referred to as the Green's Function, the Wave Function or 

the Wave Source. The first method assumes that the unknown 

potential, at any point within the fluid domain, may be represented 

by a distribution of single and double sources over the immersed 

surface of the obstacle. Application of the immersed surface 

kinematic condition results in the formation of an integral equation 

which may be solved directly for the unknown potential on the 

immersed body surface, thereby resulting in this method being 
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referred to as the direct method. The second method assumes the 

unknown potential to be represented by a surface distribution of 

single sources only, with an initially unknown spacial variation of 

strength over the immersed surface of the obstacle. Application of 

the immersed surface kinematic condition gives rise to an integral 

equation for the source strength distribution function, the solution 

of which can be used to derive the unknown potential. As a 

consequence of the inclusion of an intermediate computational step, 

the evaluation of the entirely fictitious source strength 

distribution function, this method is referred to as the indirect 

method. A further variation of the indirect formulation exists, in 

which the unknown velocity potential is represented by a 

distribution of single sources over a fictitious boundary outside 

the fluid domain, but this method is not in common usage except in 

cases of obstacles with no abrupt changes in immersed surface 

geometry. 

The theoretical predictions of the hydrodynamic interaction 

parameters have been obtained, in this thesis, by means of the 

indirect formulation employing a distribution of single sources over 

the immersed surface of the obstacle. 

The numerical investigation has two distinct aspects, the first of 

which is an examination of the computational efficiency with which 

the solution is obtained. The second aspect of the investigation is 

concerned with the sensitivity of the solution to different levels 

of discretisation of the immersed surface of the obstacle. Both 

investigations were carried out with a view to optimising the 

overall numerical procedure in terms of computation time and 

solution accuracy. To this end, a computer program has been 
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written, full details of which can be found in the appendices to. 

this thesis. 

An experimental program has been designed and carried out with the 

primary purpose of validating the predictions of linear, small 

amplitude potential theory subject to the assumptions of inviscid 

flow. In particular, the experiments have been concerned with the 

hydrodynamic interaction between a train of small amplitude regular 

waves and a substantially rectangular obstacle in fixed or freely 

floating mode. Additionally, the experimentation was designed with 

a view to determining the conditions under which the occurrence of 

viscous flow separation at the edges of the obstacle renders 

potential theory problems invalid. Ideally, a complete validation 

of the theory would entail examination of all parameters pertaining 

to the hydrodynamic interaction. However, this was precluded by a 

lack of time and suitable experimental facilities. As a 

consequence, the investigation was limited to the experimental 

measurement of the body reflection and transmission characteristics, 

together with the amplitudes of body motion, and subsequent 

comparison with the appropriate theoretical predictions output by 

the computer program. 
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CHAPTER 2 LITERATURE SURVEY 

2.1 Introduction 

The literature devoted to the theoretical and experimental 

investigation of wave-structure interaction is extensive and covers 

a considerable range of topics. Such literature has been written 

from both the point of view of the Civil Engineer (interaction 

between waves and fixed structures) and from the point of view of 

the Naval Architect (ship motion theory). Consequently, the scope 

of this literature survey has been restricted to include only those 

texts which are directly relevant to the subject matter of this 

thesis together with those which include developments and results 

which are of particular significance to this study. 

The initial part of this chapter deals with the historical 

development of floating body theory in general terms. Since the 

major contributions in this field have been instigated by a desire 

to initiate and subsequently develop increasingly sophisticated 

methods of prediction of the hydrodynamic parameters associated with 

the behaviour of ships at sea, the historical review is largely 

concerned with the development of ship motion theory from the 

eighteenth century to the present day. 

The majority of the subject matter contained in this thesis is 

devoted to a study of the Source Strength/ Integral Equation method 

of solution of the hydrodynamic parameters associated with the 

interaction between an obstacle and a train of regular waves. As a 

consequence, a detailed review is given of the use and development 
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of this solution technique. Since this method has been extensively, 

used not only for the solution of floating body hydrodynamics but 

also for the solution of the response of fixed structures to waves, 

the content of this section of the review has been collated from 

previous studies of both aspects. 

The confidence with which any theoretically developed technique can 

be used for the solution of practical problems is entirely 

dependent upon the establishment of the physical conditions under 

which the theory is valid. Numerous experimental studies have been 

carried out for the purpose of validating the various theoretical 

methods of solution of hydrodynamics problems of engineering 

significance and a review of the relevant studies, together with the 

conclusions reached therefrom, is contained in the final section of 

the chapter. 

2.2 Historical Review. 

The history of ship motion theory may be traced back to the 

eighteenth century(11), the studies of Euler and Bernoulli being the 

earliest known attempts to formulate and to solve the equations of 

ship motions in calm water and in waves. 

It is generally accepted, however, that the real beginning came with 

the investigations of W. Froude(22) and R. E. Froude(21) who studied 

the rolling motion of a ship in beam seas. These studies were 

carried out under the assumption that the beam and draught of the 

ship was small in comparison to the incident wavelength and that, as 

a result, the presence of the ship does not alter the pressure field 
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of the incident wave system. This work was extended in 1896 and 

1898 by Krylov(59-60) who derived a more general description for 

ship oscillations using the same fundamental assumptions. This 

particular theory, known as the Froude-Krylov Hypothesis, made use 

of equations of motion which resemble those in present use, with the 

exception of terms for the hydrodynamic reaction (added-mass and 

wave damping) and the wave diffraction effects. 

The Froude-Krylov approach dominated ship motion analysis for almost 

half a century. During this period, notable contributions to the 

theory came from Lewis(66) and Lockwood-Taylor(67) who initiated the 

inclusion of the added mass-inertia terms subject to the neglect of 

free-surface effects. Additionally, numerical procedures were 

developed to include the orbital motion effect of waves, known 

generally as the Smith effect. With all these modifications and 

corrections, the equations of ship motions assumed the form of a set 

of linear coupled, second order, ordinary differential equations 

with constant coefficients. 

While Naval Architects concentrated their efforts on methods of 

predicting the behaviour of ships based on mainly intuitive 

reasoning, the mathematicians and physicists attempted to tackle the 

problem using a more rigorous and analytic approach. It is 

accepted that the first in this field was the Soviet mathematician 

Steklow(89) who formulated the ship motion problem as a boundary 

value problem of mathematical physics. In the following years, 

many investigations were undertaken on various aspects of the 

hydrodynamics of ship motion theory. These constituted the 

foundations of the computational methods in use today. Amongst 

others, significant contributions came from the works of Kochin(56) 
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and Havelock(36-37) 

A unique effort, bringing together both the naval architectural and 

the mathematical approaches, was made by Haskind(31) in his study of 

the coupled heaving and pitching motions of a ship. Haskind was 

also the first to indicate the dependence of added-mass and wave 

damping upon the frequency of oscillation(34) and went on, some 

years later, to develop a set of practical empirical relationships 

for the initial estimation of the parameters of ship motion(32). 

In the following years, the studies of John(48-49) and Peters and 

Stoker(81) formed the essence of today's understanding of ship 

motion theory. John carried out a rigorous mathematical 

formulation of the equations of motion and indicated a method of 

solving the linearised problem by the application of Green's Theorem 

to a specified mathematical wave function. On the other hand, 

Peters and Stoker derived a thin-ship theory by the introduction of 

small parameter expansion techniques. Although this approach was not 

successful from the point of view of practicality, the method opened 

up new and fertile grounds. 

Notwithstanding these developments, however, the main breakthrough in 

ship motion theory came with the publication of the classic paper by 

Korvin-Kroukovsky and Jacobs(58) which presented an easily usable 

method for the practical computation of ship motion parameters, with 

forward speed effect, based upon engineering use of aerodynamic 

slender body theory. This method was called the "Strip Theory". 

Strip Theory is still the principal method in use for predicting the 

behaviour of ships as a result of wave action, although there exist 
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a number of versions. These versions differ in their basic 

approach to the problem formulation and their method of solution. 

The approach of Korvin-Kroukovsky and Jacobs was based on 

engineering judgement and the various terms in the equations of 

motion derived from a somewhat arbitrary definition of the relative 

motion of the ship and the adjacent water particles. Even though 

the agreement between subsequent experiments and the 

Korvin-Kroukovsky and Jacobs strip theory was usually satisfactory, 

a major objection to the theory was that the forward speed terms in 

the equations of motion did not satisfy the symmetry relationship, 

proved by Timman and Newman(94), between the coupling terms of 

heave/pitch and pitch/heave. Subsequent strip theories, however, 

remedied this defect by satisfying the Timman and Newman symmetry 

relations. 

In subsequent years, improvements of the problem formulation have 

been proposed, both from the intuitive and theoretical viewpoints. 

Such examples of the former and latter approaches are, respectively, 

the studies of Gerritsma and Beukelman(26) and Ogilvie and Tuck(76). 

An important feature of these improvements was the elimination of 

the concept of relative motion. Instead, the total motion was 

derived from the linear superposition of the radiation and 

diffraction problem. This approach, forming the basis of current 

theory, postulated that the forces acting on a body oscillating 

under the influence of an incident wave could be regarded as the sum 

of those forces and moments acting on the body oscillating in still 

water and those acting on the restrained, or fixed, body. This 

approach was also adopted by Haskind(33), Hanaoka(30) and 

Newman( 4), and is of particular importance from the experimental 

point of view. 
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The numerical computation of the hydrodynamic reactive forces- 

(added-mass and damping), based on two-dimensional modelling, have 

been carried out by three different types of approach. The first 

and simplest was the use of conformal mapping techniques with no 

free-surface effects. Apart from the classical extended Joukowski 

transformation technique of Lewis(66), which was enhanced by 

Landweber and Macagno(63-64), Wendel(105) and Hwang(44) used the 

Schwarz-Christoffel transformation to obtain the added-mass. 

The second approach, attributable to Ursell(95), is the use of a 

series of multipoles. Its use, in the context of Naval 

Hydrodynamics, was developed by Grim(28), Tasai(92-93), Porter(82) 

and De Jong(17). This method, applicable only to two-dimensional 

domains, expresses the velocity potential in terms of a source 

potential at the origin and a linear combination of symmetric 

multipole potentials, all of which satisfy the Laplace equation and 

the free-surface boundary condition. A combination of these 

satisfies the remaining boundary conditions i. e. the radiation, 

bottom boundary and immersed surface kinematic conditions. The 

problem was originally considered by Ursell for the case of heave 

motions of a circular cylinder in water of infinite depth, resulting 

in the velocity potential being symmetric about a vertical axis 

through the origin. The extension of this method, to symmetric but 

less regular boundaries, is generally attributed to the concurrent 

but independent studies of Tasai(92) and Porter(82), although 

Grim(28) had previously considered the problem for Lewis-Form 

sections. In each of these approaches, Ursell's results are applied 

by transforming the geometry of interest onto a rectangular cylinder 

by means of a polynomial transformation defined by the Laurent 

Series. The method was extended by De Jong(17) to the 
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skew-symmetric problems of sway and roll by constructing the 

velocity potential from a dipole at the origin and a linear 

superposition of skew-symmetric multipole potentials satisfying the 

required boundary conditions. Further extensions to this technique 

have been made by Count(-3), who generalised both the transformation 

algorithm and the form of the multipoles(14) to facilitate the 

appliance of the method to cross-sections which are non-symmetric 

with respect to the vertical axis, and Ursell(98) and Sayer and 

Ursell(87) in the case of finite depths. 

The third approach is the use of source distributions over the 

immersed surface of the floating body. This can also be attributed 

to Ursell(96), although the practical use of this source 

distribution method was initiated by Frank(20), resulting in the 

fact that it is often referred to as the "Frank Close-Fit" method. 

(A full review of the development of this and other source 

distribution methods is given in section 2.3 of this chapter). 

To overcome some conceptual and practical shortcomings of the strip 

theory, various attempts have been made to include the effects of 

three-dimensionality. Computations, however, indicated that improved 

accuracy did not necessarily result from the application of such 

corrections. In fact, predictions actually worsened on inclusion 

of the appropriate corrections. The only approach which appeared 

promising was that proposed by Grim(29). Essentially a quasi 

three-dimensional approach, this method did not receive wide 

practical acceptance because of the more complicated computations 

required. 

Attempts to calculate the fully three-dimensional hydrodynamic 
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properties of oscillating bodies in or below the free surface of aý 

fluid are not new and, in fact, calculations have been made for 

simple geometric shapes by Havelock(38). In addition, Kochin(57) had 

derived the Green's Function for three-dimensional singularities. 

The possibility of using a fully three-dimensional method as a 

practical method of calculation became possible after the famous 

paper by Hess and Smith(41) who proposed a computer-oriented surface 

distribution of sources for the numerical evaluation of potential 

flow around arbitrarily shaped bodies in the context of aircraft 

design. The development of such methods has, however, been slow due 

to the excessively large computer core and time requirements 

required for meaningful applications of the method. Available 

numerical results have been presented by Garrison and Chow(25), 

Faltinsen and Michelsen(19), who suggested an alternative 

formulation of the Green's Function expression, Hogben and 

Standing(43) and Garrison(23) who used a combination of Monacella's 

singularity removal method(71) and another standard form for the 

evaluation of the singular-integral term of the Green's Function 

based on the integration, term by term, of a series expansion of the 

expression. (Detailed reviews of these and other papers can be found 

in section 2.3 of this chapter). 

Alternative approaches have also been made to use the Finite Element 

Method, derived from a variational formulation introduced by Bai and 

Yeung(4) for the two-dimensional case, for a three-dimensional 

evaluation of wave forces. In this regard, Yue, Chen and Mei(109) 

have performed calculations for bodies of simple geometry and have 

compared their results with known solutions. However, such an 

approach has been limited to stationary structures. 
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2.3 The Integral Equation Method. 

The integral equation method constitutes the basis for a 

considerable number of computer programmes used for the numerical 

solution of the wave diffraction and radiation problem in 

hydrodynamics. 

The original formulations of these problems in the form of integral 

equations may be attributed to John(49) and Urseil(96) permitting 

the way to be paved for subsequently computed numerical solutions. 

Since the integral equation formulation, postulated by John, 

introduces the use of a Green's Function, it may be regarded as a 

combination of two potential theory methods. In this classic paper, 

any function which satisfies the governing differential equations, 

together with the specified conditions at the bottom and 

free-surface boundaries to the domain, is referred to as a "Wave 

Function". John's study is primarily concerned with the 

determination of such a function which defines the motion of the 

fluid from consideration of the kinematic condition on the body's 

immersed surface together with the far field condition. The 

required function is subdivided into two separate and distinct 

components, the first of which is termed the "primary" wave 

component and represents the wave motion in the absence of an 

obstacle. The second component defines a wave which results from 

the presence of the obstacle and which behaves like an outgoing 

progressive wave at large distances from the obstacle. 

The Wave (or Green's) Function chosen behaves in such a fashion and 

is used with the primary wave function in the application of Green's 
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Theorem. More information can be provided about the components of 

the function by inspection of the series form of the Green's 

Function introduced by John who demonstrates that the second main 

component of the function may be represented as the sum of a 

"secondary" wave component and a "local" wave component. The 

secondary component corresponds to the first term in the series 

expression and satisfies the Sommerfield radiation condition whilst 

the local component vanishes at an infinite distance from the point 

of generation and is represented by the remaining terms in the 

series. 

Having analysed the behaviour of the wave function at infinity, an 

integral equation formulation is arrived at by locating the singular 

point on the body surface and applying the kinematic body boundary 

condition. John showed that the subsequent solution, if it exists, 

is unique when the diffracting body is fixed, pierces the 

free-surface and has geometric properties such that no part of its 

immersed surface lies outside a cylinder drawn vertically downwards 

from the intersection of the body and the free-surface. If the 

body floats, however, John could only prove uniqueness at high 

frequencies of prescribed sinusoidal oscillation. 

This particular study was carried out for three-dimensional motion 

resulting from the interaction of a sinusoidal wave with a bounded 

obstacle. It is pointed out, however, that exactly analogous 

uniqueness theorems can be proved for two-dimensional motions. A 

similar wave function decomposition is possible also, with the 

second wave component consisting of two further components: one 

which progresses in the reverse direction to the primary (incident) 

wave, this being the reflected component, and one which combines 
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with the primary wave to give the transmitted component. 

With regard to the existence of a solution for the integral equation 

formulation pertaining to surface-piercing bodies, two complications 

arise. The first concerns the locus of intersection of the 

immersed surface of the body and the free surface at which the 

integral equation kernel becomes singular, rendering normal Fredholm 

theory invalid. This problem can only be overcome by ensuring that 

the body surface meets the free-surface at right-angles. The second 

problem arises from the fundamental assumption, involved in the 

application of the method to problems of Potential Theory, that the 

unknown potential at any point within the domain may be represented 

as due to a distribution of sources over the boundary of the domain. 

At certain incident wave frequences, termed 'irregular frequencies' 

by John, the integral equation has eigenfunctions, resulting in a 

singular solution. Each eigensolution in fact represents a 

non-trivial source distribution over the body surface which leaves 

the flow-field undisturbed. John showed that the lowest irregular 

frequency is �gD (where D is the body draught) and is therefore 

high, and of little consequence, for shallow draughted bodies. 

Frank(20) showed that, even for substantially draughted bodies, the 

lowest irregular frequency is too high to be of any practical 

significance. 

For many physically significant problems of potential theory, exact 

solutions of integral equation formulations are not available, 

resulting in the necessity for numerical solution techniques. Such 

techniques, for example those introduced by Jaswon(46) and Symm(90), 

are particularly valuable tools and form the basis of the Boundary 

Element Method. Jaswon includes a theoretical study of the 
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Fredholm integral equation of the first kind, performed with a view. 

to its numerical exploitation and emphasising the value of Green's 

Theorem, whilst Symm details the techniques of numerical 

discretisation required for the solution of integral equations, some 

of which would not be amenable to any other treatment. The 

considerable flexibility of the method is demonstrated by the 

presentation of solutions to problems with complex domain geometries 

involving the use of Fredholm equations of the first and second kind 

together with coupled integral equations. 

The previously mentioned study by John(49) is particularly thorough 

and the decomposition of the wave motion, the integral equation 

formulation and the derivation of a series form for the Green's 

Function, collectively form the basis of many subsequent studies of 

wave diffraction and radiation. However, no solutions are presented 

in this study. 

To the best of this author's knowledge, it would appear that the 

first solutions evaluated for this class of problem were those 

obtained by Ursell(96) for a partially submerged circular cylinder. 

The initial integral equation formulation takes the same form as 

that presented by John, namely the Green's theorem, but the 

formulation is reduced to a representation of the required potential 

as a distribution of sources only, solution being subsequently 

obtained by an iterative procedure. It would appear that this 

study was motivated by the failure, for large values of the 

diffraction parameter, of the multipole method previously introduced 

by the author(95). 

The earliest solutions obtained by using a discretisation procedure, 
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involving the subdivision of the immersed body surface into a number, 

of elements enabling the Fredholm integral equation to be expressed 

in terms of a finite number of linear equations which can be solved 

by straightforward methods, appear to be attributable to Kim(55). 

This study consisted of the numerical computation of the 

hydrodynamic coefficients, pertaining to the translational modes of 

motion, for two- and three-dimensional models. The results 

presented show good agreement with previously published 

results(82,93,95) derived largely from application of Ursell's 

multipole method. An interesting feature of this paper is the 

solution of the integral equation for a function which has no 

physical significance (the source strength distribution function) 

followed by back substitution to obtain the solution for the 

discretised unknown potential. The adoption of this approach, 

together with its subsequent popularity, is surprising since the 

formulation differs from that presented by John in which Green's 

Theorem is involved. The Green's Theorem formulation, in which the 

unknown potential is represented as the sum of a distribution of 

wave sources and double sources, yields the required solution 

directly without necessitating the prior solution for the source 

strength distribution function. As a consequence, the two methods 

are generally referred to as 'indirect' or 'direct' respectively. 

Despite the apparent drawbacks of the indirect method in comparison 

with the direct method of integral equaton solution, the majority of 

published works utilize this particular method of solution and the 

author is unaware of any comparative studies indicating a possible 

reason for this preference. 

Published works making use of the indirect method of integral 

equation solution include Frank(20) (two-dimensional floating 
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bodies); Faltinsen and Michelsen(19) (three-dimensional floating 

bodies); Garrison and Chow(25) (three-dimensional submerged fixed 

bodies) and Hogben and Standing(43) (three-dimensional vertical 

cylinders, submerged and surface-piercing). Those making use of the 

direct solution method include Naftzger and Chakrabarti(72) 

(two-dimensional fixed horizontal cylinders) and Adee and Martin(2) 

(two-dimensional floating bodies). 

The paper published by Frank(20) is worthy of particular mention as 

it appears to be the first practical application of the Source 

Distribution/Integral Equation method, resulting in the fact that 

this particular method has subsequently been referred to by Naval 

Architects as the 'Frank Close-Fit' method. The study consisted of 

the numerical computation of the hydrodynamic coefficients for a 

number of substantially rectangular ship sections for a practical 

range of values of the diffraction parameter. For computation 

purposes, an infinite water depth was assumed, necessitating the use 

of a Green's Function appropriately modified for deep water 

conditions. To the best of this authors knowledge, this particular 

study was the first to take account of the effects of varying 

degrees of subdivision of the immersed surface of the body with 

regard to the previously mentioned discretisation procedure. The 

criterion of subdivision employed by Frank was that the cylindrical 

cross sections should be closely approximated by a polygonal 

succession of straight line elements. The assumption was made that 

the source strength on each element was constant and acted at the 

centroid of each element. No details were given, however, of 

element size limits to render this assumption valid. Similarly, no 

account appeared to be taken of the permissable variation in lengths 

of adjacent elements such that the overall accuracy of solution 
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remained substantially unaffected. 

A feature of particular interest in this study is the graphical 

presentation of results pertaining to incident wave frequences in 

the immediate vicinity of the irregular frequencies first indicated 

by John(). In addition to providing a clear illustration of the 

erratic behaviour of results in this vicinity, the graphical 

presentation suggests that the frequency related extent of the 

erratic behaviour is reduced by finer subdivision of the immersed 

surface into boundary elements. It can be seen that, even for a 

comparatively coarse degree of subdivision, the extent of this 

erratic behaviour is sufficiently localised to permit the use of 

graphical or numerical interpolation techniques to obtain corrected 

solutions within the affected region. 

The papers by Hogben and Standing(43) and Hogben, Osborne and 

Standing(42), reporting essentially the same study, present a 

theoretical and experimental comparison of the vertical and 

horizontal forces associated with the interaction between a train of 

regular waves and submerged or surface-piercing vertical cylinders 

of various cross-sectional aspects. In similar fashion to a study 

previously carried out by Garrison and Chow(25) on the hydrodynamic 

response characteristics of bottom-seated fully submerged storage 

tanks, theoretical predictions were obtained from the indirect 

solution of a discretised integral equation resulting from a 

distribution of three-dimensional, finite-depth Green's Functions. 

This method is generally regarded as a fully three-dimensional 

approach in comparison with the pseudo three-dimensional approach of 

applying a strip-theory to the results obtained from a 

two-dimensional sectional analysis. It was reported by the 
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authors(43) that the original Green's Function expressions, derived- 

by Wehausen and Laitone(104), exhibited erratic behavioral patterns 

under deep-water conditions, due to numerical shortcomings. As a 

consequence, an interesting modification was made to the original 

expressions resulting in a reported improvement in deep-water 

behaviour. (A similar modification is made to the corresponding 

two-dimensional expression used in this study. Full details can be 

found in Appendix A2.3 of this thesis). It must be concluded that 

the modification, together with the overall approach, was 

satisfactory since the numerical results presented agree exactly 

with those computed from the closed-form series technique introduced 

by MacCamy and Fuchs(68) for the case of vertical surface-piercing 

circular cylinders. 

Agreement between numerical predictions and experimental measurement 

was generally good with the exception of those pertaining to a 

submerged cylinder, the top of which was in close proximity to the 

free-surface. The authors attribute this discrepancy to a 

violation of linear boundary conditions incurred by the breaking of 

waves over the top of the cylinder. 

It is generally accepted that satisfactory numerical solutions for 

sharp-cornered bodies may only be obtained if a degree of "rounding" 

is applied to the corners of the mathematical model prior to 

discretisation, subject to the geometric and inertial properties of 

the model remaining substantially unchanged by the procedure. This 

is partly attributable to the fact that John's existence proof 

(mentioned earlier in this section) did not extend to bodies with 

sharp corners but was restricted to bodies with smooth 'Lyapunov' 

type immersed surface aspects. It is mainly attributable, however, 
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to the fact that an inability to define the outward normal vector at, 

a corner results in a discontinuous source strength distribution 

function, at this point, with its associated numerical inaccuracies. 

Hess and Smith(41) treat this matter in some detail in the proposal 

of a source distribution method developed by them to compute the 

potential flow around bodies of arbitrary shape in the context of 

aircraft design. This approach was extended by Hogben et al. to 

the context of the hydrodynamic problem. As a consequence, several 

recommendations were propounded by them in respect of the 

subdivision of an immersed three-dimensional surface into discrete 

boundary elements. (These are dealt with in detail in Appendix A5 

of this thesis). 

It must be said however that, notwithstanding any numerical 

improvements achieved by this rounding technique, the validity of 

theoretical predictions for sharp-cornered bodies, in a physical 

sense, is somewhat questionable as a consequence of non-linear 

viscous flow separation induced by the sharp corners under certain 

conditions. 

A fundamental assumption made, to permit the straightforward 

discretised numerical solution of the Fredholm integral equation, is 

that the source strength may be regarded as constant over the extent 

of any given boundary element, resulting in the use of an equivalent 

point source acting at the element centroid. This was investigated 

in some detail by Hess and Smith who concluded that the assumption 

was valid for field and source point separations greater than four 

element diameters but for smaller separations, the source should be 

represented as a combination of sources and quadripoles. 

Subsequent authors have, in fact, relaxed this requirement having 
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found it sufficient to assume a point source throughout, except when 

considering the influence of an element at its own centroid. 

Lacey(61) investigated the effect of assuming a higher order (linear 

and quadratic) source strength distribution on individual elements 

of a submerged horizontal cylinder using two-dimensional modelling. 

Inspection of the results presented indicates than any improvement 

to be gained from the use of higher order source strength 

distributions is insignificant for any practical purposes. The 

author is, however, unaware of any similar investigations 

pertaining to floating bodies and is therefore unable to comment on 

the use of higher order distributions in this context. 

Hess and Smith proposed that, in order to avoid the inherent 

singular behaviour of the Green's Function expression when the field 

point approaches the source point along the immersed surface 

boundary, the influence of a source element at its own centroid 

could be approximated by assuming the source to be uniformly 

distributed over the element rather than concentrated at the element 

centroid. Hogben et ai. 
(43) 

considered this matter in some detail 

and formulated a limiting value of the Green's Function expressions 

when field and source point coincide on a three-dimensional 

boundary. (Such a formulation has been adapted for the 

two-dimensional case and can be found in Appendix A3 of this 

thesis. ) 

As outlined above, two of the major numerical problems associated 

with the use of a source distribution boundary coincident with the 

obstacle boundary are the occurrence of irregular frequencies 

together with the logarithmic singularities contained within the 

Green's Function expressions. The problem of irregular frequencies 
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occurs only in the case of surface-piercing bodies but the problem, 

of logarithmic singularities is inherent to all obstacles whether 

surface-piercing or not. Both of these problems, however, can be 

overcome by the use of an auxiliary or fictitious boundary which is 

distinct from the boundary of the domain. 

The first use of a separate source distribution boundary would 

appear to be oliveira(7 ). The author of this study classifies the 

method as an integral equation method but presents the theory as a 

matrix equation derived from the linear superposition of independent 

elementary solutions. Initial testing of this method with various 

locations of the source distribution boundary indicated a degree of 

failure in cases of substantial separation of source and domain 

boundary. The author's application of the method to several 

problems, together with his comparisons with solutions obtained by 

other methods, demonstrated that improved accuracy could be achieved 

by the use of an auxiliary source distribution boundary which was 

located sufficiently remote from the domain boundary to remove the 

effects of the logarithmic singularities. 

The use of auxiliary source distribution boundaries, in the context 

of the numerical solution of hydrodynamic problems, has been studied 

in some depth by Coates(12) and Lacey(61). Coates investigated the 

effect on three-dimensional problems by a numerical and experimental 

study of the forces acting on vertical surface-piercing cylinders, 

whilst Lacey carried out a largely numerical study on the 

interaction between regular waves and a submerged, fixed horizontal 

circular cylinder, the former study using three-dimensional 

modelling and the latter using two-dimensional modelling. Both 

authors found that a considerable improvement in results could be 
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achieved by using a boundary separation of sufficient magnitude to 

remove the effect of the singular kernel of the integral equation 

but not sufficiently great to incur ill-conditioning effects in the 

resultant matrix equation. Lacey found that the most accurate 

results could be obtained by using an internal source distribution 

boundary separated from the cylinder boundary by a distance equal 

to 30% of the cylinder radius. The results presented by Lacey 

demonstrate quite conclusively that, in the case of a fully 

submerged fixed horizontal cylinder, the regular kernel method 

(separated boundaries) was significantly more efficient than the 

singular kernel method (coincident boundaries) in that, under a 

given set of conditions, progressively finer subdivision of the 

boundaries resulted in a more rapid convergence to the correct 

result using the regular kernel method with, according to the 

author, no significant indication of matrix ill-conditioning. 

It has previously been stated that the ability to achieve a 

reasonably straightforward discretised solution to the integral 

equation depends on the assumption that the source strength remains 

constant over the extent of any given boundary element. It is 

similarly assumed that the element distribution is such that the 

value of the Green's Function remains reasonably constant over any 

given boundary element. The analysis of any body having areas of 

high curvature necessitates a sufficiently high concentration of 

elements in those areas to permit accurate modelling of the body 

geometry. This results in a similarity of magnitude of the Green's 

Function on adjacent elements. This, in turn, leads to a distinct 

lack of diagonal dominance in the matrices used in the discretised 

solution technique, giving rise to ill-conditioning and consequent 

loss of numerical stability. It is the opinion of this author that 
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the use of an internal auxiliary boundary in the analysis of such 

bodies will exacerbate the situation and that any increase of 

computational efficiency to be gained from such use will be 

significantly outweighed by inaccuracies arising from matrix 

ill-conditioning. As a consequence, it is felt that the use of 

auxiliary boundaries in such cases is not advisable. 

Three comparatively recent studies by Hearn and Donati(39), Eatock 

Taylor(18) and Hearn, Donati and Mahendran(40) indicate that, 

notwithstanding the fact that a considerable number of studies have 

been carried out using the Green's Function/Integral Equation method 

of analysis, there are still subsidiary topics which demand a more 

detailed consideration if the method is to be applied efficiently 

and reliably. In particular, it has been shown that the application 

of the method to the design of offshore structures is not 

necessarily straightforward and requires an appreciation of the 

effects of different discretisation schemes. 

In this regard the paper by Hearn and Donati, together with the 

subsequent paper of Hearn, Donati and Mahendran, both merit further 

review since they concern the application of the Boundary Element 

Integral Equation method to solve the hydrodynamic problem for 

various bodies in motion. 

It is stated that the first of these papers was prepared with the 

intention of making sea-keeping theories more comprehensive to the 

practicing Naval Architect and, taken with the second paper which 

presents the results of analyses peformed in preparation for an 

experimental study of wave energy devices, demonstrates that the 

application of the three-dimensional integral equation formulation, 
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and the two-dimensional formulation in conjunction with Strip. 

Theory, is not a straightforward process. 

The first paper, reporting the application of the method to a 

warship and a merchant vessel, is particularly concerned with the 

problems of numerical stability. It is noted that different results 

may be obtained by different discretisations due either to possible 

improvements in the geometrical representation of the body or to the 

improved numerical stability of the system of algebraic equations. 

It is also noted that particular discretisations may prove to be 

more acceptable to some motions than to others. The problem of 

irregular frequencies is also identified by the onset of numerical 

instability, but this cannot be avoided by improvement of the 

discretisation, since it is an inherent feature of the analysis of 

surface-piercing bodies using this method. 

The second paper includes a hydrodynamic analysis of two floating 

structures: a rigid body form of the Lancaster Flexible Bag and an 

articulated Cockerell Raft system. Results for the rigid 

structure, which has a simple geometry, confirm several simple facts 

pertaining to the relationship between discretisation and numerical 

instability. The analysis of the articulated system, however, 

resulted in considerable numerical instability due to discretisation 

problems in the vicinity of the hinge. Owing to the fact that the 

complete analysis of the articulated structure requires that all 

possible configurations of the raft system are considered, the 

three-dimensional programme was extended to permit simultaneous 

solution of twenty radiation and ten diffraction problems. An 

interactive computational analysis was devised to enable failures to 

be identified and to permit subsequent introduction of modifications 
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to the discretisation. In this manner, it was established that, 

satisfactory predictions could only be achieved by a detailed 

discretisation, thus demonstrating that proper application of the 

method is by no means straightforward and requires not only an 

appreciation of the effects of discretisation schemes but also a 

greater understanding of the sources of numerical instability. 

The problems of wave hydrodynamics have also been solved using the 

application of Green's identity formula to a distribution of simple 

and double sources over the entire boundary of the fluid domain. 

The first application of this method, initiated by Jaswon(46) and 

Symm(90), to free-surface problems where the free-surface extends to 

infinity, was reported by Bai and Yeung(4). The method entails the 

use of an integral equation with the unknown function being the 

potential along the entire fluid boundary. An alternative scheme, 

to deal with the case of an infinitely deep fluid, was also 

presented. The authors. considered the case of oscillating 

cylinders in the free surface of a finite and infinite depth fluid 

for which they computed the hydrodynamic coefficients. The results 

presented agree excellently with results obtained by the more 

conventional methods(51,65,97). It was noted that, in the case of a 

finite depth fluid, the computation time involved was approximately 

the same as that required for the conventional Green's Function 

method but that, for a fluid of infinite depth, the computation time 

was around five times as long. 

The use of a source distribution over the whole boundary of the 

fluid domain permits consideration of fluid domains with any bottom 

configuration, a feature which is not amenable to analysis using the 
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Green's Function formulation. Despite this significant advantage,. 

however, together with the fact that this method overcomes the 

'irregular frequency' problem, this approach has not been widely 

used in subsequent studies. Exceptions to this are the study of 

wave interaction with large submerged structures by Bird and 

Shepherd(9) and the study of the interaction of waves with 

elastically moored floating breakwaters by Yamamoto, Yoshida and 

Ijima(107). 

It is pertinent to review the paper by Yamamoto et al. since it 

reports a study which is similar in many ways to that which is 

reported in this thesis. The study entailed the theoretical and 

experimental investigation of the body motions and transmission 

characteristics associated with the interaction between a train of 

regular waves and an elastically moored floating breakwater. 

Two-dimensional mathematical modelling was used. 

Despite the previously cited advantage that the source and doublet 

distribution method may be used in the analysis of arbitrarily 

shaped domains, since a source distribution is considered over the 

entire boundary of the fluid domain, there is one major disadvantage 

associated with its use. In order to solve the far-field radiation 

condition, imaginary vertical domain boundaries must be considered 

at large distances from the obstacle/fluid interface. Since the 

entire fluid boundary is considered, this procedure results in a 

prohibitively large number of source points on the sub-divided 

free-surface. This problem was overcome by the assumption that the 

scattered wave, normally represented by an infinite series of 

scattered wave terms, decays exponentially with increasing distance 

from the obstacle and thus becomes insignificant at a comparatively 
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small distance from the obstacle/wave interface i. e. the point of 

generation of the scattered wave. At distances greater than this, 

it was assumed that the wave profile consisted of transmitted and 

reflected components only, the potential of which was analagous to 

the standard expression derived from linear theory. A series of 

numerical tests enabled the authors to conclude that, provided the 

imaginary vertical domain boundaries were located at distances in 

excess of one incident wavelength from the obstacle/wave interface, 

the error associated with the solution could be limited to the order 

of 1-3%. Using two-dimensional modelling with a linear element 

length of the order of 1/20 of the incident wave length, a series of 

numerical evaluations were carried out and compared with previously 

published data for the case of a fixed cylinder(16), a fixed 

rectangular cylinder(IO) and a moored rectangular cylinder( 
5). The 

authors report excellent agreement in all cases, although no 

graphical or numerical comparison is presented. 

In a brief review of the analysis of hydrodynamic loading on 

offshore structures by boundary element methods, Eatock-Taylor(18) 

details how the integral equation method may be used in conjunction 

with the Finite Element method. This method is variously called 

the "Boundary Element Coupled Method" and the "Hybrid Element 

Method". 

The Finite Element Method, on account of its consideration of the 

whole fluid domain, is particularly well suited to compact, closed 

domains with complicated geometries. However, there are certain 

difficulties, both numerical and computational, associated with the 

use of this method in the analysis of exterior problems in which 

part of the domain extends to infinity. The Green's Function 
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Integral Equation method, however, is ideally suited to such 

problems since the boundary conditions at infinity are automatically 

satisfied. It is therfore suggested that the Hybrid Element method 

combines the advantages of both the aforementioned methods. 

Another cited advantage is that careful choice of the dimensions of 

the interior domain, in which the Finite Element Method is used, 

eliminates the problem of the previously mentioned irregular 

frequencies. 

2.4 Experimental Validation of Theory. 

The linear potential theory formulation of wave scattering and 

radiation problems is well established and solutions may be obtained 

by a variety of methods, both numerical and analytic, enabling 

predictions to be made with regard to the wave reaction and body 

response characteristic associated with the interaction of an 

incident wave system with an obstacle inserted therein. 

If the various theoretical models are to be of subsequent practical 

use, the validity of the theory must be established by comparison 

with experimental measurements for a comprehensive and exhaustive 

range of problems. The various features which distinguish the 

different problems are, for example, whether the object is fixed or 

in motion, whether it is entirely submerged or surface-piercing and 

whether the modelling is two- or three-dimensional. 

At this stage, two important points must be emphasised with regard 

to comparison between theory and experiment for validatory purposes. 

The first point concerns the range of parameters and conditions over 
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which theoretical predictions have been compared with experimental, 

measurements. Validation of theory under one particular set of 

conditions does not necessarily guarantee validity under other 

related but essentially different conditions. This is particularly 

true if the presence of non-linear effects is suspected. The 

second and equally important point is that, if a set of experiments 

is designed and undertaken with a view to validation of a particular 

theoretical model, the experimental conditions must be such that no 

substantial violations are incurred with respect to the boundary 

value problem as posed. (As an example of this, Sarpkaya and 

Isaacson(85) recommend that, if linear wave theory is to be 

validated by experiment, incident wave heights should be chosen such 

that higher order components of velocity potential are at least one 

order of magnitude smaller than the fundamental velocity potential 

component). Such experiments(15) may be distinguished from 

others(61,99) in which the physical conditions are purposely chosen 

to violate those upon which simplified linear theory is based. In 

the absence of any general and complete higher order theory for 

wave/obstacle interaction, such studies are of value in determining 

the limits of validity of linear theory. 

Before considering in detail the available experimental studies 

which most closely resemble the study reported in this thesis, a 

number of additional studies may be mentioned which are concerned 

with the validation, by experiment, of potential theory as 

pertaining to wave/obstacle interaction. 

Several experimental studies have been carried out to determine 

whether linear diffraction theory provides satisfactory predictions . 

for the horizontal force on a surface-piercing vertical circular 

34 



cylinder. To the best of this authors knowledge, the most recent, 

publications in which these studies have been reviewed are Sarpkaya 

and Isaacson(86), Coates(12) and Lacey(61). 

In the case of the vertical circular cylinder, it is generally 

accepted(43,86) that diffraction effects become significant when the 

cylinder diameter is greater than one fifth of the incident 

wavelength. Examination of the force results of Hogben and 

Standing(43) and Mogridge and Jamieson(70), reproduced by Sarpkaya 

and Isaacson for comparative purposes, indicate that the 

experimental results obtained for the interaction between a train of 

regular waves and a vertical cylinder agree excellently with 

theoretical predictions in regions where pure inertial forces 

dominate. However, in regions where diffraction effects become 

significant, a noticeable departure from theory occurs. Both sets of 

experimental results demonstrate, with a degree of consistency, that 

this departure occurs at a value of the cylinder diameter/wavelength 

ratio of approximately 0.24. This departure is of great 

significance if the use of linear theory is proposed for problems in 

which diffraction effects dominate. However, it must be noted that 

in the majority of studies carried out in the diffraction regime, 

the actual force measurements observed are significantly less than 

those predicted by linear theory. Hogben er al. consider this to 

be reassuring from the point of view of the designer. 

Coates observed that measurements of pressure distribution 

demonstrate less satisfactory agreement with theoretical predictions 

than do force measurements. Hogben et al. suggest that this may be 

attributable to the presence of certain non-linear second harmonic 

pressure fluctuations which do not decay in the usual way with 
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depth. They also draw attention to the incurrence of spurious. 

temperature effects when measuring pressure fluctuations. 

One further feature, identified by Sarpkaya and Isaacson in their 

review, is that the bulk of the data has been obtained for waves of 

small steepness where the effects of wave non-linearity are not 

expected to be significant. They suggest that the available evidence 

therefore provides sufficient justification for the confident use of 

linear theory to provide solutions to problems of this nature. No 

indication is given, however, of the suitability of linear modelling 

for defining the interaction of the obstacle and the steeper waves 

which would be encountered under realistic ocean conditions. 

Garrison(24) suggests an upper limit of unity for the ratio of wave 

height to cylinder diameter, beyond which the effects of non-linear 

viscous forces dominate. 

A study of particular importance, with regard to the validity of 

linear theory, was that carried out by Salvasen(83) concerning the 

generation of waves by a fixed two-dimensional obstacle in steady 

flow conditions. The results obtained show that linear theory gives 

a poor representation of wave/obstacle interaction, for a small 

depth of obstacle submergence, due to non-linear effects. These 

findings serve to illustrate the necessity for further investigation 

of interaction problems pertaining to obstacles in or just below the 

free-surface. 

A study of similar relevance was carried out by Dean and Urseil(15) 

who investigated the forces and wave effects resulting from the 

interaction between a semi-immersed horizontal cylinder and a train 

of regular waves, using two-dimensional modelling. This study can be 
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considered in two parts, the first of which consists of a comparison 

between the experimentally measured vertical and horizontal force 

components with those predicted by theory, and the second of which 

consists of a comparison between the theoretically predicted 

diffracted wave form and that experimentally measured. The 

parameters chosen to indicate the form of the diffracted wave were 

the far-field reflection and transmission characteristics of the 

body. In both aforementioned parts, the theoretical predictions were 

obtained by the application of the multipole method, first 

introduced by Ursell(95) and detailed in section 2.3 of this 

chapter, and the study was carried out using waves of small 

steepness to comply with the conditions imposed by linear theory. 

The experimental measurement of the force components demonstrated 

good agreement with theoretical predictions, the average error being 

approximately 6%, but the measurement of the diffracted wave profile 

showed less satisfactory agreement, the average error being about 

12%. The fact that this error was largely applicable to the 

reflection coefficients, the transmission coefficients showing 

acceptable agreement between theory and experiment, led the authors 

to conclude that a loss of energy was associated with the wave 

reflection process. Two suggested reasons were given for this lack 

of agreement, the first of which was the reported presence of 

observable second harmonics in the wave train. The authors 

concluded that this was a feasible source of error since the 

subsequent use of a surface baffle at the nodal points of the 

combined wave profile led to a significant improvement in agreement. 

The second suggested reason for the measured reflection coefficents 

being significantly less than those predicted by theory was the 

possibility of vorticity in the wave reflection process although no 
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evidence, in the form of a report of noticeable vortex shedding, was 

presented to support this suggestion. 

An equally feasible reason for the discrepancy, in the opinion of 

this author, arises from the examination of the wave profile 

analysis technique employed in the study. Wave " amplitude 

measurements were recorded at regular intervals along the 

experimental flume and analysis of the resultant envelope permitted 

resolution of the overall profile into positive (incident and 

transmitted) and negative (reflected) components with respect to the 

direction of travel. A fundamental assumption made in this regard is 

that the amplitude envelope exhibits a sinusoidal variation with 

respect to length along the experimental flume. As a consequence, the 

maxiumum value of the sinusoid can be regarded as the sum of the 

positive and negative components while the minimum value of the 

sinusoid represents the numerical difference between the two 

component amplitudes. The two resulting equations permit resolution 

of the two unknown components. It must be pointed out, however, 

that this assumption is only valid if the negative component is 

small in comparison to the positive component. Such a condition 

invariably pertains to the downstream wave profile since the use of 

an efficient energy absorbing beach ensures that the beach reflected 

component is small in comparison to the component transmited by the 

body. This, however, is not always the case with the upstream 

profile since the body reflected wave is very often of a comparable 

order of magnitude to the incident wave, thus rendering the 

assumption invalid. In this case, accurate component resolution can 

only be achieved by analysis of the sinusoidal variation of the 

amplitude squares with respect to the position along the flume, the 

maximum and minimum values being the sum and difference respectively 
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of the squares of the amplitudes of the positive and negative wave. 

components. A brief mathematical exercise shows that, in the case 

of comparable magnitude components, the amplitude variation is a 

root sine curve with a smooth crest and sharp trough. It is the 

experience of this author that an a priori assumption of sinusoidal 

amplitude variation leads to an overestimation of the minimum value 

of the envelope resulting in a significant underestimation of the 

negative (reflected) component. This sugestion for a possible source 

of error is reinforced by the fact that the most significant 

departure from theory occurred under conditions of high body 

reflectance. 

The study by Dean and Ursell was repeated comparatively recently by 

Martin and Dixon(69) but was extended to give an indication of the 

variation of experimental values with wave steepness. The force 

measurements obtained in this study exhibited satisfactory agreement 

with theoretical predictions in the case of waves of small steepness 

but significant departure from theory occurred with waves of 

increasing steepness. As with the previous study, the measured 

reflection coefficients were significantly different from those 

predicted by theory in the case of small steepness waves. 

Interestingly though, the magnitude of the discrepancy did not 

exhibit any systematic variation with waves of increasing steepness 

as would reasonably be expected. 

An extensive study was carried out by Lacey(61) to investigate the 

limits of validity of linear theory with regard to a horizontal 

circular cylinder located at various depths below the surface of a 

train of regular waves. To this end, the parameters measured 

experimentally were the pressure distribution on the obstacle 
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boundary and the induced wave characteristics. In order to, 

investigate the significance of non-linear effects, the behaviour of 

the parameters was studied for waves of increasing steepness such 

that linear boundary conditions were purposely violated. The 

theoretical predictions were obtained from the use of the indirect 

method of solution of the source strength distribution formulation 

employing two-dimensional Green's Functions. 

The experimental results pertaining to the body reflection and 

transmission characteristics are of particular interest since they 

exhibit deviations from theory which are at total variance with 

those obtained from the two previously cited studies. In these 

studies the major deviation from theory occurred with the reflected 

wave component, the transmitted component agreeing satisfactorily 

with theoretical prediction. In the study by Lacey, however, the 

measured reflected wave components agree well with theory but the 

measured amplitude of the transmitted wave was significantly less 

than that predicted by theory. Lacey concluded that this was due to 

a significant loss of energy in the process of wave/obstacle 

interaction, possibly attributable to viscous separation, which was 

largely dissipated in the transmitted wave. This loss of energy, 

obtained from consideration of the relative amplitudes of the 

reflected and transmitted waves, was found to be approximately 7% 

for incident waves of small amplitude, but increased to the order of 

20% for waves of maximum steepness H/L = 0.08. 

The experimental measurements of the pressure distribution on the 

obstacle boundary were generally in good agreement with theoretical 

predictions, the maximum deviation being approximately 5%, with the 

exception of those pertaining to locations near the free-surface. 

40 



The author concluded that this could be attributable to localised 

high particle velocities in the shallow water region immediately, 

above the obstacle, leading to abnormally high pressures in this 

region. In general, the discrepancy between theory and experiment 

increased significantly with increasing wave steepness and also with 

increasing values of the diffraction parameter thereby demonstrating 

the need for further investigation, not only in regions where 

diffraction effects are dominant, but also under conditions where 

non-linear effects become significant. 

Having detailed and discussed those experimental studies pertaining 

to the interaction between waves and fixed obstacles, consideration 

must now be given to studies which involve an experimental 

investigation of the interaction between waves and obstacles with 

one or more motional degrees of freedom. Such studies may be 

classified according to two sub-groups: those in which a forced 

motion is applied to the body and those in which the body is freely 

floating or, at most, partially restrained in one or more of the 

motional modes. 

The experimental study carried out by Ursell, Dean and Yu(99) is 

reported to be the first confirmation of the validity of linear wave 

theory for forced motions of a body in otherwise still water. The 

theoretical formulation of the wave motion due to a piston-type 

wavemaker, introduced by Havelock(35), expresses the velocity 

potential in the form of a localised wave, which vanishes at a 

distance of the few wavelengths from the wavemaker, and a constant 

amplitude harmonic wave travelling away from the wavemaker. The 

experimental procedure, designed to simulate a longitudinally 

infinite fluid domain by means of complete energy absorbtion by 

41 



beaches at either end of the experimental wave flume, was used in 

two separate sets of experiments. The first set of experiments 

entailed the generation and measurement of waves of small steepness 

to comply with linear theory boundary conditions. The results from 

this set of experiments show good agreement with theory in that the 

measured heights of the generated waves differed from theoretical 

predictions by 3-4% at most. The second set of experiments, however, 

were specifically designed to violate linear conditions by 

generating waves of a steepness in excess of that which would be 

acceptable to small amplitude wave theory, the intention being to 

establish the importance of wave steepness in this regard. The 

measured heights of the generated waves exhibited a significant and, 

more importantly, systematic deviation from theory, the experimental 

values being around 10% smaller than theoretical predictions. The 

authors conclude that this confirms the validity of small amplitude 

wave theory. 

The study carried out by Yu and Ursell(108), regarded by the authors 

as a sequel to the previously cited study and of greater practical 

significance, compares theoretical and experimental amplitudes of 

surface waves generated by the forced heaving oscillation of a 

circular cylinder in water of constant finite depth. Theoretical 

predictions were obtained from an extension of Ursell's multipole 

method to the case of waves in water of finite depth. The 

experimental technique of wave profile analysis was identical to 

that employed by Dean and Ursell and was considered by the authors 

to completely eliminate the effect of reflections from the vertical 

end beaches. It was suggested that this technique, despite being 

more elaborate than that used by Ursell er ai. 
(99), 

was more 

effective and would result in the accurate evaluation of the 
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generated wave amplitude that would have been observed in a wave 

flume of infinite length. The results presented show good agreement 

between theory and experiment, the experimental measurements being 

generally lower than theoretical predictions by about 3%. A 

noticeable feature of the results, however, was the increase in 

magnitude of the discrepancy with increasing values of the 

diffraction parameter suggesting perhaps, as with previous studies, 

certain doubts as to the applicability of linear theory to 

diffraction regimes. Notwithstanding these discrepancies, however, 

the results of the investigations under differing depth conditions 

gave a good indication of the importance of finite depth effects 

with regard to generated wave heights. 

To the best of this authors knowledge, the first comprehensive study 

of the effects of forced translatory and rotational oscillations of 

a body in water of finite depth was that carried out by Vugts(101). 

This study consisted of a comparison between theory and experiment 

of hydrodynamic coefficients, exciting forces and generated wave 

amplitudes pertaining to cylinders of various cross-section using 

two-dimensional modelling. The various cross-sections used were 

Lewis-Form, triangular, circular and rectangular and the theoretical 

predictions were obtained by the multipole method, introduced by 

Ursell for the specific case of heaving circular cylinders and 

extended by De Jong(17) for the non-symmetric sway and roll modes of 

motion. The theoretical predictions of the hydrodynamic coefficients 

were computed for a semi-circular immersed profile and subsequently 

transformed to those pertaining to other aspects by the use of 

conformal mapping techniques. A similar procedure was adopted to 

compute the generated wave amplitudes. The formulation of 

Newman( 73), relating the exciting forces acting on an axisymmetric 
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body to damping coefficients and the far-field potential by 

consideration of the Haskind Relations, was applied to compute the 

theoretical predictions of the exciting force components. 

The experimental technique employed was to provide a forced 

sinusoidal oscillation to the cylinder in each of the three modes of 

motion pertaining to two-dimensional modelling. Consideration of the 

measured in-phase and quadrature components of the applied force, in 

conjunction with the measured amplitude of motion, enabled the 

evaluation of the hydrodynamic coefficients from the equations of 

motion. Insertion of these parameters into Newman's formulation, 

together with the measured amplitude of the generated waves, 

permitted evaluation of the exciting force components. (A more 

detailed review of this study, including a comparison of the 

theoretical and experimental results with those obtained from the 

Source Strength/Integral Equation formulation, can be found in 

section 4.10 of this thesis). 

A feature of the presented results which merits particular mention 

is the considerable discrepancy between theory and experiment of the 

damping and coupled damping parameters associated with the roll mode 

of motion. Examination of the graphical results presented in this 

regard shows that the magnitude of the discrepancy increases 

systematically with increasing frequency and amplitude of motion. 

It is of particular interest to observe that the discrepancy is most 

pronounced in the case of immersed profiles with sharp corners, such 

as the triangular and rectangular aspects. The author suggested 

that this discrepancy could possibly be attributable to the effects 

of viscosity both with regard to skin friction and vortex shedding 

resulting from flow separation at the sharp corners. An empirical 
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expression was proposed, defining the consequent correction to the 

roll damping parameters as being a function of the frequency and 

amplitude of motion. Owing to the constant amplitude of the forced 

motion in each set of experiments, this implies that the required 

correction factor is a function of the velocity of motion of the 

body and that the empirical coefficients used in the expression are 

functions of the viscosity of the fluid and the body geometry. 

A subsequent study of the motions of a freely floating body carried 

out by Vugts(102), the results of which are presented by 

Wehausen(103) in a review of the paper, shows that the effects of 

viscous roll damping only become significant at the natural 

frequency of roll motion of the body, when a relatively small 

correction to the potential damping term in the equations of motion 

results in a comparatively large reduction in resonant roll 

amplitude. A similar review of this study, carried out by 

Salvasen, Tuck and Faltinsen(84), reports the use by Vugts of a 

quasi-linear correction to the roll damping terms in the equations 

of motion. Such a correction factor, derived from expressions 

postulated by Kato(50) for skin friction and by Tanaka(91) for 

eddy-making resistance, is a function of the maximum roll velocity 

of the body extremities, the frequency of motion, the fluid 

viscosity and the body geometry. 

The results presented in the above reviews demonstrate that 

acceptable agreement, between theory and actuality, can only be 

achieved in the vicinity of the system resonant frequency if the 

effects of viscosity are accounted for in the theoretical 

computation procedure. 
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A similarly comprehensive study was carried out some years later by 

Keuning and Beukelman(52) who experimentally measured the 

hydrodynamic coefficients of a rectangular pontoon, of immersed 

surface aspect ratio (Length/Draught) of 4.2, in shallow water using 

forced oscillation techniques. The reason for this study, according 

to the authors, was the absence of experimental results pertaining 

to such small draught sections from forced oscillation tests in 

shallow water. 

The experimental procedure entailed the application of a forced 

oscillatory motion, in all six directional modes associated with 

three-dimensional modelling, to the body and subsequent evaluation 

of the hydrodynamic coefficients using the same technique as 

previously discussed with reference to Vugts' study. Of particular 

interest was the fact that similar sets of experiments were carried 

out at various flume depths to investigate the effect of still water 

depth on added-mass and damping. In addition, the amplitude of 

forced motion was varied to provide a check on the limits of 

validity of linear theory with regard to wave steepness. 

The theoretical predictions of the hydrodynamic coefficients were 

obtained by several methods according to the particular flume depth 

used. For deeper water (flume depth/body draught = 4.55) the 

authors used the multipole method (c. f. Vugts(101)) and the Frank 

Close-Fit method. In both cases, infinite depth conditions were 

assumed since the authors considered that bottom effects would be 

negligible and could, consequently, be ignored. This assumption 

is, perhaps, a little surprising in view of the results presented by 

Kim(53) which clearly demonstrated the effect of finite depth on 

added-mass, particularly at low frequency. For shallow water 
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(flume depth/body draught = 1.2; 1.75) the method used was that 

introduced by Kiel(51). This method is basically an extension of 

Ursell's multipole method, extended by De Jong(17) for the case of 

finite depth and further extended by Kiel for the specific case of 

rectangular bodies in shallow depth water. In all cases, sectional 

parameters were computed using two-dimensional modelling, followed 

by the application of Strip Theory to evaluate the equivalent 

three-dimensional parameters, thus making the study of particular 

relevance to the investigation detailed herein. The results 

presented clearly illustrate the influence of water depth on the 

hydrodynamic parameters, particularly in the case of heave motion. A 

similar comment can be made with regard to the dependence of 

translatory hydrodynamic parameters on the amplitude of forced 

oscillation. This is particularly evident in the case of heave 

damping. The authors conclude that, since this latter dependence 

increases with increasing frequency, viscosity effects are the most 

likely cause. This conclusion is further supported by their report 

of observable vortex shedding from the sharp corners at high 

frequencies of oscillation. Unfortunately, no reliable experimental 

results are presented for roll motion owing to a reported 

combination of equipment malfunction and an apparent inability to 

ensure that the axis of rotation of the body in this mode passed 

through the body centroid in compliance with the linearised 

equations of motion. 

Comparison between theory and experiment was generally good in the 

case of deep water. However, a substantial deviation from theory 

was exhibited with regard to the added-mass at low frequency, 

possibly attributable to the neglect of finite depth effects as 

discussed previously. The suggested influence of viscous effects is 
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demonstrated by a degree of deviation from theory of the heave 

damping coefficient at high frequency, the experimentally measured 

damping being substantially greater than that predicted by theory. 

In shallow water conditions, however, agreement was significantly 

poorer than in deep water conditions, particularly in the case of 

low frequency damping. Unfortunately, no explanation is offered 

for this discrepancy, perhaps emphasising the need for further 

examination of the shallow depth problem. 

In a subsequent discussion of this study, two important points were 

mentioned, both pertaining to the influence of viscous damping 

effects. In reply to a suggestion(100) that lack of structural 

rigidity in the experimental apparatus might be a cause of the 

reported deviation of high frequency damping from theory, the 

authors re-stated their conviction that viscous damping effects were 

responsible, particularly in view of the observed vortex shedding 

from unradiussed edges. The authors reported that subsequent 

re-calculation of the heave damping results on the basis of constant 

velocity (decreasing amplitude of motion with increasing frequency 

of oscillation) yielded a more-or-less constant difference between 

the theoretically predicted potential damping and the experimentally 

measured damping, thus confirming the effect of viscous damping. 

In the course of this discussion, it was pointed out by Patel(80) 

that the results of a study(79), carried out by him to investigate 

the effect of vortex shedding by bodies in oscillatory flow, 

indicated that a slight rounding of submerged edges was sufficient 

to significantly reduce the effect of vortex shedding such that 

experimental damping agreed satisfactorily with the values predicted 

by potential theory. The authors concurred with this finding but 

suggested that a determination of the submerged edge radius 
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influence at model scale was of questionable value due to scale 

effects. 

For comparative purposes, it is worthwhile to mention at this point 

the experimental study carried out by Faltinsen and Michelsen(19) in 

which a forced oscillation technique was used to experimentally 

measure the exciting forces and hydrodynamic coefficients pertaining 

to a floating rectangular box. The appropriate theoretical 

predictions were obtained by two methods, both of which utilised an 

indirect solution of the Green's Function/Source Distribution 

formulation for the case of infinite depth. 

The first method entailed the computation of sectional parameters, 

using the two-dimensional Frank Close-Fit method, in combination 

with the strip theory introduced by Salvesen er al. 
(84) 

as an 

extension of the theory first postulated by Korvin-Kroukovsky and 

Jacobs(58). The strips were oriented in a lengthwise direction in a 

similar fashion to the procedure of Kim and Chou(54) who, it is 

reported by the authors, obtained satisfactory results for the 

prediction of motions of a barge with length/beam ratio equal to 

1.5. 

The second method entailed the use of a three-dimensional Green's 

Function Source Distribution technique, similar in formulation to 

that used by Hogben et x,. 
(42,43) for the study of wave forces 

acting on a vertical cylinder. An interesting feature of the 

formulation used in this study was the authors' modification of the 

standard form of the three-dimensional Green's Function expression 

as defined by Wehausen and Laitone(104). The particular value 

integrand in the integral form of the Green's Function expression 
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was converted from an infinite to a finite integral by making use of, 

an alternative representation of the Bessel Functions, contained 

therein, in conjunction with the use of the exponential integral as 

defined by Abramovitz and Stegun(1). However, in view of the fact 

that the integral form of the Green's Function is used only in cases 

of small source point/field point separations (see section 4.7.3 of 

this thesis), it must be suggested that this modification is of 

limited validity in the context of accuracy of results and 

computational effort. 

A surprising aspect of both methods of solution was the disregard 

of the Haskind Relations in the process of computing the exciting 

force, thus necessitating additional computational effort to compute 

the scattered wave potential, a parameter of no relevance to the 

investigation. No explanation is given for this procedure. 

A series of numerical tests was carried out to investigate the 

sensitivity of the three-dimensional source distribution formulation 

to progressively finer sub-division of the immersed body surface 

into boundary elements. With the exception of the parameters 

pertaining to the rotational modes of motion, the results presented 

exhibit very little sensitivity to the source distribution density. 

However, no meaningful numerical conclusion can be drawn from this 

behaviour since no details are given, other than the overall number 

of elements, of the nature of element distribution in the vicinity 

of sharp corners etc. A considerable discrepancy is evident, 

however, between the theoretical predictions obtained from the 

three-dimensional source distribution method and those derived from 

the application of Strip Theory to the two-dimensional section 

parameters. Since the experimental results, in general, agree well 
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with those using the former method, the authors conclude that 

satisfactory analysis is not possible from the use of a 

two-dimensional approach in conjunction with Strip Theory. This is a 

particularly interesting conclusion in view of that reached by the 

authors of the previously cited paper, and only serves to emphasise 

the need for further investigation in this regard. 

There finally remains to be considered experiments with freely 

floating bodies. Compared to the number of experimental studies 

carried out using the technique of forced oscillation, there have 

been comparatively few studies on the behaviour of freely floating 

bodies. Apart from the comprehensive investigation carried out by 

Vugts(102), reviews of which have been made by many authors, two 

comparatively recent studies which merit particular attention, in 

that they closely resemble the experimental investigation reported 

in this thesis, are those carried out by Yamamoto, Yoshida and 

Ijima(107) and Yamamoto(106). Despite the fact that these two 

studies are classified as pertaining to "freely floating bodies", it 

must be said that this classification is slightly erroneous since 

the investigations were carried out on the motions and wave effects 

associated with elastically moored floating breakwaters under the 

influence of water waves. 

The first of these studies entailed a comparison between theory and 

experiment of the transmission characteristics and body motions of a 

circular and a rectangular floating breakwater in a train of regular 

waves. Two-dimensional modelling was used to enable theoretical 

prediction of these parameters by the source and doublet 

distribution technique described in the previous section of this 

chapter. Strip Theory was not used in this case since the 
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transverse width of the breakwater closely matched the experimental 

flume width to accurately simulate the two-dimensional flow 

condition. The effect of the elastic mooring forces is accounted 

for by the inclusion of the spring constants in the equations of 

motion in a similar way to that detailed in Appendix A4.6 of this 

thesis. However, owing to the fact that the moorings were oblique, 

thus exerting restraining forces in a horizontal and vertical 

direction, accurate measurements were required for the initial 

tension in the spring moorings at equilibrium. This differs from 

the formulation contained herein in which only symmetrical 

horizontal restraint is imposed, thus avoiding the necessity of 

initial spring tension measurement. 

The results presented, for the heave and surge motion of the body 

together with measured transmission coefficients, demonstrate 

excellent agreement between theory and experiment in the case of the 

partially immersed circular breakwater. However, some deviation is 

exhibited in the case of the rectangular section. This is 

particularly pronounced with regard to the heave motion and 

transmission coefficient in the region of the system's natural 

frequency. The authors attribute this, quite reasonably, to the 

damping out of the heaving motion of the breakwater by viscous flow 

separation at the sharp submerged edges. This conclusion is 

reinforced by the fact that no such deviation is evident in the case 

of the circular section breakwater. 

A noticeable feature of the experimental procedure detailed in this 

paper is the fact that measurements were taken during the first two 

or three cycles of wave motion. According to the authors, this 

procedure was adopted because the breakwater system was observed to 
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settle down to a steady harmonic motion almost immediately. It is 

the experience of this author, from tests carried out in the course 

of the present study, that such quick settling down is most 

definitely not the case, particularly in instances of high body 

reflection. Depending on the degree of reflection from the 

floating body and the degree of reflectance of the wave generator, 

it was found that steady state conditions were not reached until the 

reflected wave front had sufficient time to travel at least three 

times along the length of the flume between the obstacle and the 

generator - considerably longer than two or three cycles of the 

incident wave. It must, therefore, be suggested that the 

experimental results be viewed with a certain degree of caution. 

A second possible source of error was the apparent lack of any 

experimental procedure to eliminate the effect of tank reflection. 

In the absence of any information to the contrary it must be assumed 

that, since only transmission characteristics were considered, the 

effects of beach reflection in the transmission zone were so small 

as to be considered insignificant. Depending on the energy 

absorbtive properties of the beach, this might possibly have proved 

to be an over-optimistic assumption. 

The second study by Yamamoto(106) was regarded by the author as an 

extension of the previously cited study. It was felt that, whilst 

the first study provided excellent experimental verification of the 

theoretical formulation pertaining to small scale models interacting 

with regular waves, further investigation was required into the 

interaction of large scale models with random waves. As with the 

previous study, a two-dimensional source and doublet distribution 

technique was employed to generate the theoretical predictions. Two 
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models of different cross-section were used for the tests, the first 

of which was rectangular and the second of which was described by 

the authors as having a "three-circle profile". This was 

essentially a substantially rectangular cross-section with radial 

ends, the diameters of which were one third of the overall length of 

the model. In both cases, the oblique spring mooring force was 

adjusted to ensure coincidence between the body centroid and still 

water level at equilibrium. 

It was intended by the authors to investigate the theory, first 

postulated by St. Denis and Pierson(88), that the profile of a random 

wave can be considered as the linear sum of a finite number of 

fundamental waves, the relative energy proportions of which can be 

quantified by the appropriate spectral density function. The 

measurement technique employed to determine the spectral density 

functions of both the random incident wave and the corresponding 

body response was identical to that used in the investigation 

reported herein. The output signal from each measurement device was 

analysed using the Fast Fourier Transform technique, fully described 

in chapter 5 of this thesis, enabling the overall signal to be 

expressed as a combination of discrete frequency components. 

Comparison of the spectral density function of the incident wave 

with those pertaining to the body motions, mooring forces and 

transmitted wave enabled the frequency response functions of those 

parameters to be evaluated. (For a more detailed description of this 

theory, together with the experimental techniques required, the 

reader is directed to the report of a study carried out by 

osment(78) concurrently to that reported herein). In order to 

achieve a complete validation of this theory, it was necessary to 

carry out a series of measurements of body response to regular waves 

54 



at a comprehensive range of discrete frequences and compare the 

results with the spectral response function of the body under the 

action of a random wave. 

A feature of the analysis technique used in this investigation which 

is of particular relevance to the present study is the resolution of 

the incident and reflected wave spectra from the confused wave 

system created by multiple reflections between the wave generator 

and the floating breakwater model. To this end, the technique of 

Goda and Suzuki(27) was employed, entailing the analysis of 

simultaneous output signals from two wave probes separated by a 

known distance. (For a full description of this method, the reader 

is referred to section 5.8.2 of this thesis). It must be pointed 

out at this stage that, despite the rejection of this particular 

method of component resolution for the analysis of regular waves in 

the study reported herein, the technique of Goda and Suzuki remains 

the only suitable method of wave component resolution in the case of 

random waves. 

In general, the frequency response functions obtained from analysis 

of the random wave tests agree excellently with those obtained from 

the regular wave tests with the possible exception of low 

frequencies, corresponding to a body length/wave length ratio of 

less than 0.2, where significant discrepancies were evident. No 

explanation for this deviation is given by the authors. 

Nevertheless, the generally good agreement of results demonstrates 

the validity of the linear superposition theory in the analysis of 

random wave regimes. Comparison of experimental measurements with 

theoretical predictions was generally good with the exception of the 

frequency domains in the vicinity of the resonant frequencies of the 
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various systems and also in frequency domains where diffraction 

effects clearly predominate. The deviations exhibited in the latter 

frequency domain concur with similar deviations encountered in other 

studies, suggesting the need for further investigations into the 

validity of linear theory for the solution of hydrodynamic problems 

in diffraction regimes. However, it must be suggested that the 

practical relevance of such studies, pertaining to regimes in which 

the floating body length is of a similar order of magnitude to the 

incident wavelength, is somewhat questionable. 

A feature of the deviation between theory and experiment, in the 

vicinity of the modal reasonant frequencies, was the fact that the 

deviatory trend was more pronounced in the case of the rectangular, 

sharp-cornered profile than with the radially edged profile. The 

author concluded that this could be attributed to a significant loss 

of energy incurred in the process of vortex shedding as a result of 

viscous flow separation at the sharp corners. As a consequence of 

sets of tests performed at different wave energy levels, the results 

of which were suitably non-dimensionalised, the author concluded 

that the effect of viscous damping was reasonably linear and was 

therefore predictable, with an acceptable degree of precision, from 

linear theory. 

A series of similar tests was also performed on large scale models 

to investigate the effects of scale. The results presented 

demonstrate good agreement between small and large scale response 

characteristics for values of the diffraction parameter less than 

0.3, thereby suggesting the absence of significant non-linear 

effects in this regime. At larger values of the diffraction 

parameter, however, a significant discrepancy becomes evident 
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between the two sets of results. Since the experimental 

measurements for the large scale test agree with the theoretical 

predictions using a mathematical model based on the geometry of the 

large scale physical model, the authors conclude that linear theory 

is valid even in regimes where diffraction effects dominate. This 

conclusion is based on the authors statement that the 

abovementioned discrepancy can be attributed to slight differences 

in mooring conditions between the two sets of tests. However, no 

information is presented to support this statement which leads to a 

certain degree of doubt being placed on the validity of the author's 

conclusion. 
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CHAPTER 3. WAVE HYDRODYNAMICS AND FLOATING BODY DYNAMICS 

3.1 Introduction 

This chapter deals with the motion of the two-dimensional mechanical 

system consisting of a fluid and a partly immersed body. The fluid 

is assumed to be incompressible, inviscid and to have an 

irrotational motion. The surface of the fluid is assumed to extend 

longitudinally to infinity in both directions. 

On account of the assumed irrotationality of motion, the state of 

the fluid may be completely described by a Velocity Potential 

'(x, y; t) which satisfies the Laplace Equation. 

The boundary of the fluid consists of a fixed horizontal and 

impermeable bottom, the free-surface and the immersed surface of the 

body. On each of these surfaces, the condition pertains that the 

normal particle velocity is continuous across the surface, thus 

permitting expression of the particle velocity in terms of the 

derivatives of ". The kinematic free-surface boundary condition 

states that the fluid particle velocity, normal to the free-surface, 

is equal to the velocity of the free-surface itself in that 

direction, whilst the dynamic free-surface boundary condition states 

that the pressure at the free-surface is constant and equal to 

atmospheric pressure. Surface tension effects are neglected. 

The kinematic boundary condition on the immersed surface of the body 

states that the normal velocity of the body, expressed in terms of 

its angular and translatory velocities, is equal to the normal 
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particle velocity of the fluid at the point of contact. 

The fixed, horizontal and impermeable nature of the bottom gives 

rise to the condition that the normal (i. e. vertical) component of 

particle velocity thereon shall be zero. 

It may be stated that the body moves under the influence of gravity 

and of the fluid pressure on the immersed surface. Under these 

conditions, no flow of energy takes place through the bottom or free 

surface. Energy is gained or lost by the system only through waves 

arriving or departing at the fluid boundary. 

The additional assumption is made that the waves are of small 

amplitude and that the resulting motions are also of small 

amplitude. Under these conditions, errors resulting from the neglect 

of second or higher order terms may be regarded as insignificant, 

allowing the mathematical problem to be much simplified by 

linearisation. 

When the body length is significant with regard to the incident 

wavelength, the incident waves undergo significant scattering or 

diffraction. The situation may, therefore, be conveniently 

considered in terms of a combination of two fundamental and related 

problems. 

(i) The scattering (or diffraction) problem of an incident wave 

train interacting with a fixed body. 

(ii) The wave generation problem of a body forced to oscillate 

in otherwise still water. 
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Resulting from the above mathematical linearisation, these two 

motions may be superposed with the wave forces of the scattering 

problem providing the forcing function in the wave generation 

problem. The solution of the boundary value problem permits the 

calculation of the exciting force on the body, the body's 

hydrodynamic coefficients together with the diffracted and generated 

wave fields. Insertion of these parameters in the relevant equations 

of motion enables a solution for the motion response of the body to 

be found. 

3.2 Definitions and Sign Convention 

The components of motion of the floating body are defined in three 

dimensions as shown in Fig. 3.1. 

SWA 

Fig. 3.1 BODY MOTION DEFINITION 

The translations: surge, heave and sway are taken as positive if 

they take place in the direction of the respective positive axis. 
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The rotations: roll, yaw and', }: itch are taken as positive if they 

take place in a clockwise direction around the relevant axis when 

viewed from the axis origin in the direction of the positive axis. 

In two dimensions, only surge, heave and pitch need to be considered 

and they will hereinafter be designated as directions 1,2 and 3 

respectively. 

The fluid domain is defined as shown in Fig. 3.2 

HI 

DIRECTION 
OF WAVES 

y 

Fig. 3.2 DEFINITION SKETCH 

3.3 The Velocity Potential 

Consider an object, with surface denoted by r(x, y) = 0, immersed or 

partly immersed in an incompressible and inviscid fluid. The fluid 

(see Fig. 3.2) is bounded by a horizontal bottom at y= -d and a mean 

free surface which lies on the plane y=0. 
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Resulting from the asssumed irrotationality of motion, the flow 

field in the presence of an incident wave train may be completely 

described by a Velocity Potential, defined in complex form thus: 

, t(x, y; t) = Re(4(x, y)e-1°t) (3.3.1) 

where: Re( ) denotes the real part. 

the time parameter t is understood to be real throughout. 

The linearity of the problem permits the expression of the potential 

as the sum of three separate components: 

="W+4S+4F (3.3.2) 

where: -tW is the known potential of the incident waves. 

tg is the unknown potential of the scattered waves. 

4ýg is the unknown potential of the waves generated by 

body motion. 

The following conditions are satisfied by each of the three 

components together with their sum as given by equation (3.3.2): 

a) The Laplace Equation: 

v2y(x, y; t) =o 

b) The bottom boundary condition; 

(3.3.3) 

aP(x, y; t) 
=o at y= -d (3.3.4) 

ay 
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c) The free-surface boundary condition resulting from the 

combination of the dynamic and kinematic free surface boundary 

conditions appropriately linearised in accordance with small 

amplitude wave theory: 

azq(X, y; t) +gg 
(X, y; t) o at y=o (3.3.5) T2 ay 

where: IP = 4ýW, 'Iýs, ýDF and respectively. 

Detailed derivations of equation (3.3.5) are contained in many texts 

on small amplitude wave theory, e. g. Sarpkaya and Isaacson(85). 

The potentials pertaining to the scattered and generated waves must, 

in addition, satisfy the far-field radiation condition guaranteeing 

that the waves are outgoing and have proper amplitude behaviour at 

infinity: 

Lim lxl 
{I- 

ikms(x, y)J =0 (3.3.6a) 
ýx13ý 

Lim (xIM{ä 
xý - ikOF(x, y)} =0 (3.3.6b) 

x 1400 

where: oS and OF are defined in similar fashion to equation (3.3.1). 

Although the radiation condition has been introduced as an 

expression of a physical condition, it is also mathematically 

necessary if the solution of the problem posed is to be unique. 

Uniqueness proofs have been given by John(48) and Wehausen(103). 

The kinematic boundary condition on the immersed surface of the body 
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states that the velocity of the body must equal the particle 

velocity of the fluid at the point of contact: 

aft 
++ 

lo-F 
=V 

an an an n 

where: Vn is defined by: 

Vn = Re(vn(x, y)e-iot) on r(x, y) =0 

(3.3.7a) 

(3.3.7b) 

where: vn(x, y) denotes the complex function which represents the 

spacial normal component of velocity on the immersed 

surface. 

Strictly speaking, this condition should be applied at the 

instantaneous position of the immersed surface. However, for 

purposes of mathematical simplification, the condition is applied at 

the equilibrium or rest position since, as a consequence of the 

small motions, any errors introduced thereby are small. 

Following the superposition postulations made in Section 3.1, 

equation (3.3.7a) may be broken down into the following equations: 

AW 
+ 

ats 
=0 an an 

-V an n 
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3.4 The Body Motion 

As a consequence of the assumption that the body oscillates 

harmonically with small amplitude motion, the three modes of 

oscillation may be written: 

aj = ade-1Ot for j=1,2,3 (3.4.1) 

where: aj is a translation for j=1,2 

aj is a rotation for j=3. 

aj is the corresponding amplitude of motion in the jth 

direction and is assumed to be small 

The normal velocity Vn(x, y; t) is made up of three components 

associated with each mode of motion and each proportional to the 

corresponding velocity of motion(86): 

3 

Vn 
atj. 

nj 

j=1 

(3.4.2) 

where: nj represents the outward normal component scalar of 

velocity in the jth mode of motion. 

In formulating the equations of motion (see Section 3.5), the 

assumption is made that rotation of the body takes place about its 

centroid. With this in mind, the velocity components of the body may 

be expressed: 

VX =1 - (Y-YG) ät3 (3.4.3a) 
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V= aa2 
+x 

a3 
y at at 

(3.4.3b) 

where: the coordinates of the body centroid are (O, yG) in terms of 

the fluid axis system (Fig. 3.2) at the rest position. 

By definition: 

Vn = Vx. nx + V,. ny (3.4.4) 

where: nx, ny are the direction cosines of the outward normal from 

the body at (x, y). 

Combining equations (3.4.3) and (3.4.5) gives: 

Vn = 
ätl. 

nx + 
at2. 

ny + 
ät3{xny 

- (y - yG)nx} 

Comparison between equations (3.4.2) and (3.4.5) shows that: 

n1 = nx 

n2 = ny 

n3 = xny - (y - yG)nx 

(3.4.5) 

(3.4.6a) 

(3.4.6b) 

(3.4.6c) 

Substitution of equation (3.4.1) into equation (3.4.2) gives: 

Vn = 
Z-ioajnje-1Ot 

i=i 

(3.4.7) 

Defining Vn according to equation (3.3.7b) and substituting in 
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equation (3.4.7) gives: 

3 

vn = 

Z-ioajnj 

(3.4.8) 

j=1 

It is convenient(86) to decompose the generated wave potential 'IF 

into three components associated with each degree of freedom and 

each proportional to the displacement «j. 

Thus: 

3 

4F = 
zcljej 

(f) (3.4.9) 

j=1 

Substituting from equation (3.4.1) gives: 

3 

4F = 
>ajcDj(fle0t 

(3.4.10) 

j=1 

But 

3 

V 
>aj aO. (f)-lot 

n an an 
(3.4.11) 

j=1 

Comparison between equations (3.3.7b) and (3.4.11) yields: 

3 
f 

vn = 
Zaj 

ant 
(3.4.12) 

j=1 
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But, the normal velocity associated with the jth directional motion , 

is: 

vnj 
aný(f) 

(3.4.13) 

Substitution in equation (3.4.12) gives: 

3 

vn = 
7ajvnj 

(3.4.14) 
Lj=i 

Comparison betwen equations (3.4.8) and (3.4.14) shows that: 

vnj _ -ionj (3.4.15) 

3.5 The Equations of Motion 

Following the sign convention as shown in Figs 3.1 and 3.2, the 

generalised equations of motion in two-dimensions may be stated 

thus: 

2 
a 

m1 
atz 

F1 (3.5.1a) 

M2 
a2ta2 

= 
ýF2 

(3.5. lb) 

I3 
ata3 

M3 (3.5.1C) 
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where m denotes mass. 

I denotes mass rotational inertia. 

F denotes the sum of the extraneous 

forces acting on the body. 

M denotes the sum of the extraneous 

moments acting on the body. 

If n represents the unit normal vector at the body surface, the 

force and moment with respect to the body centroid are given by: 

F= 
JPndP 

(3.5.2a) 

M= 
JP(r 

-rG) xndI- (3.5.2b) 

where: the pressure p is determined from the linearised Bernoulli 

Equation: 

p+pät+Pgy=0 (3.5.3) 

Insertion into equations (3.5.1) results in the specific equations 

of motion which may, using the notation of Wehausen(103), be 

expressed thus: 

i 
mi 

atz 
=p 

ät 
n1 dr (3.5.4a) 

r 

2 

M2 
ata2 -prlt n2 dr pgW«2 - pgWxc«3 (3.5.4b) 

Jr 

13 -j- -P(ät n3 dr - PgWxca2 - P90 M+ WxC)a3 (3.5.4c) 
Jr 
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where: m= Body mass. 

W= Waterplane area at equilibrium. 

V= Displaced volume at equilibrium. 

xc = x-coordinate of the axis of rotation of the body in 

the pitching mode relative to the centroidal 

x-coordinate of the waterplane area. 

H= Metacentric Height for pitch rotation 

Ig = Mass moment of inertia of the body for rotation in the 

pitching mode. 

dr = The length of an element of the immersed 

two-dimensional "surface". 

The integrals are taken in the fluid axis system rather than the 

body centroidal axis system. This simplification, and also the 

simplicity of the equations, is a consequence of the assumed small 

motions. Otherwise, the complete equations for the dynamics of a 

rigid body are required together with both coordinate systems. 

For a body which is axi-symmetric about the x= 0 axis, the 

equations may be further simplified by noting that xc = 0. 

In order to exploit later the convenience of index notation, the 

equations may be re-written thus: 

2 

mij 
ataJ -Cijai -p 

ät 
ni dr i=1,2,3 (3.5.5) 

r 
j=1,2,3 
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3.6 The Hydrodynamic Coefficients 

Consider the integral term pr 
ät 

ni dI* in equation (3.5.5): 
Jr 

Substitution from equation (3.3.2) gives: 

Plat ni dr = Pfat(ýw + ýS)ni dr + prat ni dr (3.6.1) 

rr 
Jr 

Differentiation of equation (3.4.10) gives: 

3 

at 
= 

Z-icajoj (f ) 
e-iOt 

j=1 

(3.6.2) 

Expressing the complex potential ©j in terms of its real and 

imaginary components gives: 

mj(f) = m3m + ioi'(f) 

Substitution in equation (3.6.2) and thence into the last term of 

equation (3.6.1) gives: 

3 
f-- 

at nl dr = 
>t_b0paje0tff)ni 

r 

+ opake-iatJcrj(f)ni dr} (3.6.3) 

r 

In accordance with Wehausen(103), the left hand side of equation 
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(3.6.3) may be expressed in the form: 

3 

P 
ja 

nl dr 
foij 

W+ >'ij 
atý5 

r ý=i 

i=1,2,3 (3.6.4) 

But from equation (3.4.1): 

aaJ = 
-ioaje-iot at 

2 

8 
°Cj 

= a2a je-iat atZ 

Thus: 

3 

pä ni dr- _ 
>{'AjjIozaje_bat+ 

>ij(-ioaje-iat) 
J} 

r 
, 
i=i 

(3.6.5a) 

(3.6.5b) 

(3.6.6) 

Comparison of the real and imaginary parts of equations (3.6.6) and 

(3.6.3) shows that: 

uij =a 
(Imag{of(f)}ni 

dr (3.6.7a) 
Jr 

aid = -pjRef4J(f)Ini dr" (3.6.7b) 

r 

where: mij, Xij, are termed the "added-mass". and "damping" 

coefficients in the ith direction due to motion 

in the jth direction. 
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From equations (3.4.13) and (3.4.15), it may be inferred that: 

f 

aoi(f) 
= - -ioni (3.6.8) 

an 

Rearrangement gives: 

i ami(f) 
ni 

an 
(3.6.9) 

leading to the alternative expressions: 

uiJ = 
6PJImag{©Vi(f)}a3iM dr" (3.6.10a) 

r 

aid =- 
fRe[Qj(flh anl(f) dI' (3.6.1Ob) 

r 

(f) 
In accordance with equation (3.6.8), ä is always imaginary over 

r. Therefore uij and ßi3 are always real. 

By applying Green's Theorem to mj(f) and oi(f), and remembering that 

they both satisfy the Laplace Equation within the fluid domain, it 

may be shown that: 

"ij ° µji 

xij = xji 

It must be noted at this point that the expressions for the 

added-mass and damping coefficients contained herein derive from the 

decomposition of the forced potential into three components, each of 

which is proportional to the respective amplitude of motion. Some 
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texts, e. g. Wehausen(103), decompose the potential in proportion to 

the velocities of motion. This leads to different expressions for 

the added-mass and damping coefficients. However, bearing in mind 

the different numerical values of the potential arising from such a 

decomposition, the resulting numerical values of the hydrodynamic 

coefficients are the same. 

3.7 Forces, Moments and Motions. 

The hydrodynamic forces given by the last term in equation (3.5.5) 

can be expressed in terms of components F(f), due to the generated 

potential, and components F(e) due to the incident and scattered 

potentials. The latter is called the "Exciting Force" and is 

identical to the wave induced force in the fixed body case. The 

component of the exciting force associated with the incident wave 

potential is the Froude-Krylov force. 

The equations of motion (3.5.5) may therefore be re-arranged: 

3 
z icci 

mlj 
ata+ 

Cijaj} = F1(e) + Fi(f) i=1,2,3 (3.7.1) 

j=1 

Substitution from equations (3.6.1) and (3.6.4) gives the i 

equations: 

3 
z} D 

(mij + uij) 
aj+ 

Xij 
ätj 

+ cljaj} = Fi(e) i=1,2,3 (3.7.2) 

j=1 
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Consideration of equation (3.6.1) shows that the exciting force 

components may be obtained from: 

Fi(e) plat ('w + ýDg)ni dr (3.7.3) 

This, of course, necessitates prior evaluation of the scattered 

potential. 

As first pointed out by Haskind(33), and later emphasised by 

Newman(73), it is not, however, necessary to solve for the scattered 

potential Dg once the solution has been obtained for the generated 

potential 4p 

The derivation of the so-called "Haskind Relations" is presented by 

Wehausen(103) but, for purposes of completeness, is contained 

hereunder. 

Consider the fluid region bounded by a two-dimensional "surface" r 

composed of: 

(i) Vertical boundaries at x= t- (rW) 

(ii) An impermeable bottom boundary at y= -d (IB) 

(iii) The free-surface. (IF) 

(iv) The immersed surface of the body. (I'p) 

Within this region os and ci(f) are harmonic. 
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By use of Green's Theorem, it may be stated: 

A*S amj_ 
m (g) ams dr 

an an =o 

r 

The radiation condition in two-dimensions states: 

Lim jxI {aýxI 
- ikm} =0 

ýx140 

Since both mS and ©j(f) comply with the radiation condition: 

as 
= ikoS; of )= 

ikmj(f); at r'. 
aixi 

Therefore, at rc,, the integrand in equation (3.7.4) becomes: 

©g{ikQJ(f)} - ©Vi(f){ikmg} 

which is clearly zero. 

To comply with the bottom boundary condition: 

aos 
= 

aoj ýfý 
=o ay ay 

aty= -d 

Thus, the integrand in equation (3.7.4) vanishes on I*B. 

The free surface boundary condition states: 

a2 
+ga=0 

at ay 

(3.7.4) 
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But, as previously defined: = oe-jot 

Thus: 

z4ý ätZ 
-ozme-iot 

The free-surface boundary condition may therefore be re-written: 

am ago 

ay g 

Since oS and of(f) both comply with the free surface boundary 

condition: 

o? mg 
, 

aoj(f) 
=. 

j(f) 
on r 'F 

ay g ay g 

It can therefore be seen that the integrand in equation (3.7.4) 

vanishes on rF. 

Thus, equation (3.7.4) may be re-expressed: 

it 
s anJ(f) 

°j(f) 
an 

dr =0 on r0. (3.7.5) 

r 

From equation (3.7.3): 

Fe(e) = platw ni dr" + prat ni dr" (3.7.6) 

r 
Jr 

But: mW = oWe-iot and ýDg = ©Se-iot by definition. 

77 



Differentiation of these expressions followed by substitution in 

equation (3.7.6) yields: 

Fi(e) = Pr-ioniGWe-iot dr + 
J_ioniose_10t 

dr. 
Jr 

r 

Substitution from equation (3.6.8) gives: 

F1(e) = pe-iot{row 
än1(f) dr- + f'. 's 

an(f) dr} (3.7.7) 
Jr 

r 

But from equation (3.7.5): 

f 
äoJ(f) dr = 1©ß(f) ä dr 

r 
Jr 

and from equation (3.3.8a) it can be inferred that: 

aos gow 
an an 

This permits re-expression of equation (3.7.7) thus: 

Fi(e) = 
{F0(e)}1e-iot 

(3.7.8) 

where: 

{(e)} 
i= Pf 

f low an1(f) 
- Qi(f 

90W, dr-} 
a 

r 

This demonstrates that the evaluation of the exciting force 

components does not necessitate the prior evaluation of the 

scattered potential. 
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Consideration of equation (3.7.2) together with the fact that: 

a=a e-iat; 
ac, 

= -ioa"e-iot; 
a2aj 

= _aza"e-iot. at ate 

permits expression of equation (3.7.8) thus: 

3 
Z {[_oz(mij 

+ µ1j) - iaXij + cljIaj} = 
fF0(e}. 

(3.7.9) 

j=1 

It has been demonstrated that: 

(1) Evaluation of the hydrodynamic coefficients is possible 

from equations (3.6.7) or (3.6.10) 

(2) Evaluation of the exciting force components is possible 

from equation (3.7.8) 

(3) Evaluation of the body motion components is possible from 

equation (3.7.9) subject to prior evaluation of the 

parameters in (1) and (2) above. 

Since all the equations used in the above evaluations contain terms 

petaining to the generated velocity potential, it becomes apparent 

that an initial requirement is the evaluation of these components. 

The absence of any terms referring to the scattered potential 

emphasises the usefulness of the Haskind Relations (3.7.8). 

It must be stated, however, that in using the Wave-Source method 

described in following sections, the matrix equations formed to 

determine the scattered and generated potentials differ only in 

their right hand sides and can thus be combined. The additional 
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work required to evaluate the scattered potential is, therefore, 

minimal. 
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CHAPTER 4 NUMERICAL ANALYSIS 

4.1 Introduction. 

In this chapter, it will be demonstrated that the velocity potential 

describing a fluid in motion may be represented by a continuous 

distribution of sources over an essentially fictitious boundary. If 

the source distribution boundary is chosen to coincide with the 

fluid boundary, a number of integral equation formulations may be 

written, each of which is a Fredholm Integral Equation of the second 

kind containing singular kernels which may be simple sources or 

Green's Functions. 

One method of solution requires that the velocity potential be 

expressed as the sum of potentials resulting from a continuous 

distribution of sources and double sources. The integral formulation 

is solved directly for the unknown velocity potential. The method is 

thus termed 'direct'. 

Alternatively, the velocity potential may be represented by a 

continuous distribution of sources or double sources. The method of 

solution for the potential may be termed 'indirect' owing to the 

prior requirement that the integral equation formulations are solved 

for the unknown source distribution function. 

If the source distribution boundary is located outside the fluid 

domain, the resulting Fredholm equations are of the second kind and 

contain regular kernel functions which may be simple sources or 

Green's Functions. It must be noted that, in this case, the direct 
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method of solution is inappropriate. 

This chapter describes the numerical solution, using the 'indirect' 

method, of the singular kernel integral equation formulation of the 

linear diffraction boundary value problem for an obstacle in a 

two-dimensional domain. 

The exact solution of the integral equation requires that the 

specified boundary conditions are satisfied at all points on the 

fluid boundary. However, an acceptable relaxation may be applied 

that only requires the satisfaction of boundary conditions at a 

discrete number of locations on the fluid boundary. The unknown 

velocity potential may thus be assumed to result from the presence 

of a discrete number of sources located on the fictitious source 

boundary, thus reducing the problem to that of solving a system of 

linear algebraic equations. 

If a simple source is chosen as the kernel of the integral equation, 

the coefficients of the algebraic equations may be easily evaluated 

but the system of equations required to produce an acceptable 

solution may prove to be of considerable magnitude. Introduction of 

the appropriate Green's Function ensures that certain boundary 

conditions are automatically satisfied, thus further reducing the 

problem. Details of the numerical discretisation techniques required 

to evaluate the coefficients of the linear equations are given in 

this chapter, together with the numerical evaluation of the Green's 

Function appropriate to a two-dimensional domain with an impermeable 

bottom boundary at constant finite depth. 

The efficacy of a numerical method is judged not only by the 
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accuracy of the solutions obtained but by the efficiency with which 

the computations are performed. In view of this, a substantial 

amount of effort was devoted to achieving maximum efficiency of 

evaluating the formulations without loss of accuracy. Details of the 

steps taken to ensure this state of affairs are included in this 

chapter, together with indications of the numerical limitations of 

the source strength integral formulation. 

An unfortunate feature of the wave diffraction problem in a 

two-dimensional domain is that no exact solutions exist and initial 

program testing may only be achieved by comparison of results with 

published data. To this end, a theoretical analysis was performed on 

a two-dimensional freely floating body with a substantially 

rectangular immersed surface. The results are presented in graphical 

form at the end of this chapter. 

4.2 The Two-Dimensional Source Strength Distribution Equation. 

It may be shown (see Appendix Al) that the velocity potenial at some 

point () in the fluid domain due to the presence of a simple source 

of strength 'm' located at (J may be represented by: 

p(x) __m 
log r(x, E) 
2n 

(4.2.1) 

where: x= (x, y) and represents a point in the fluid domain 

known hereinafter as the 'field point'. 

C= (a, b) and represents the source location known 

hereinafter as the 'source point'. 
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rz = (x-a) 2+ (y-b) z and represents the separation 

between source and field points. 

It can be shown that equation (4.2.1) is a singular solution of the 

Laplace Equation. 

For the purpose of formulating and solving a linear surface-wave 

problem entailing the use of a pulsating source, a singular solution 

of the Laplace Equation, i. e. a Green's Function G(x£; t), is 

required which satisfies the free surface, bottom and radiation 

conditions described in section 3.3. Such a function has been 

constructed by Wehausen and Laitone(104) and is defined in Appendix 

A2. 

The field point potential may thus be represented by 

4ý(x, t) = mG(x, E; t) (4.2.2) 

where: c is the field point potential due to the presence of a 

pulsating Green's Function source of strength 'm' located 

at jQ 
. 

Equation (4.2.2) may be extended to define the field point potential 

due to the presence of a distribution of pulsating sources of 

unknown strength located on a source boundary r: 

, D(x; t) = 
ff()G(xE; 

t) 

F 

(4.2.3) 

where: fW represents the unknown source strength distribution 

function. 
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Since and G are harmonic functions and may be expressed as: 

ý(x; t) = m(x)e-iot 

G(x, £; t) = g(x, £)e-iot 

equation (4.2.3) may be written in terms of spacial functions: 

OW = 
ff(. 

L)g(x, £) dr" (4.2.4) 

4.3 The Source Strength Integral Equation Formulation. 

The kinematic boundary condition on the immersed surface of the body 

may be expressed as: 

an(x'y) 
= an 

vn on the immersed surface (4.3.1) 

where: vn denotes the complex function which represents the 

magnitude of the normal spacial component of velocity 

given by: 

Vn = Re(vn(x, y)e-iot) (4.3.2) 

Applying this boundary condition to equation (4.2.4) gives: 

(4.3.3) 
ff() 

v(x) _ 
än(X'L) dr 

r 

This is a Fredholm Equation of the first kind and is used when the 

source distribution boundary does not coincide with the immersed 

85 



surface. 

When the source distribution boundary coincides with the immersed 

surface it becomes apparent, from inspection of the Green's Function 

expressions in Appendix A2, that ag/an has a 1/r type singularity as 

() approaches jj from the fluid domain. The effect of this 

singularity is removed by surrounding the source point with a 

semi-circular boundary as shown in Figure 4.1. 

n Indicates the outward 
normal direction From 
the immersed surFace 

n 

SOLI 

Fig. 4.1 REMOVAL OF SOURCE POINT SINGULARITY 

Equation (4.3.3) may be re-expressed as: 

Lim 
vn() = 

J1(£) 
an 

(X, ) 
dr + 

Eimrf(k) an 

(x, ) 
dr (4.3.4) 

r 
JI 
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But on rE :x=E+r 
r=e 

g(x, ) = log rlr=e + 0(E) 

a ag 
an ar 

aI rI 
r=e 

de 

fý = f(xJ +0 (e) 

Thus the limiting value of the last term in equation (4.3.4) 

becomes: 

IT 
Lim I 
c; -40 

1 

'r`r=e. rlr=e de 

0 

n 

_ 
Lim j 

[f(x) + O(E)]. 
-. 

e de 

0 

IT 
Lim I 

Cf(x) + O(E)] do 

0 

lT 

0 (c) do =0 But: 
Lim J 

0 

Lim Thus: 
e40'f( 

an(X' dl, _ f(x) (4.3.5) 

PC 

Substitution in equation (4.3.4) leads to 

vn(x) _ 
ff() 

£an 
(X') 

dr" + irf(x) (4.3.6) 

r 
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This is a Fredholm Integral Equation of the second kind and is used 

when the source distribution boundary coincides with the immersed 

surface of the body. 

Both equations may be solved numerically for the unknown source 

strength distribution function f(Q, which may then be substituted 

in the source strength distribution equation (4.2.4) to evaluate the 

velocity potential at any point in the fluid domain. 

4.4 Numerical Solution of the Fredholm Integral Equations. 

Equation (4.3.6) states that: 

vn(x) = 
Jf() ä(X' dr' +0 (4.4.1) 

r 

where: 0=0 if the source distribution boundary does not 

coincide with the immersed surface of the body 

(regular kernel method). 

e= nf( ) if the source distribution boundary coincides 

with the immersed surface of the body (singular 

kernel method) 

4.4.1 The Fixed Body Case. 

On account of the assumed linearity of the problem, the total 

potential may be expressed as the sum of the incident wave 

potential 
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and the scattered wave potential: 

0= ©W + ©S 

Thus: 

(4.4.2) 

ao 
= 

a0w + amG 
= an an an 

vn (by definition) (4.4.3) 

In the fixed body case, the normal velocity components at all points 

on the body surface are zero. 

Thus: 

a-- aOw 
on the immersed surface 

an an 

If the source distribution boundary is chosen to coincide with the 

immersed surface of the body, equation (4.4.1) may be re-expressed: 

_ 
ä0(2) 

=f f(£) 
an 

(x, ) 
dI" + irf(x) (4.4.4) 

r 

This integral equation may be solved numerically, beginning with the 

subdivision of the source distribution boundary into N elements of 

length nr"j(j = 1,2,..., N) and identifying as node points the 

centroid of each element. 

The continuous formulation of the problem indicates that equation 

(4.4.4) be satisfied at all points (x) on the source distribution 

boundary 1-(x) = 0. In order to obtain a discretised numerical 

solution, it is necessary to relax this requirement and apply. the 
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condition at only N control points. The location of these points 

may, in principle, be chosen arbitrarily but for convenience the N 

node points at the element centroids are used. 

Equation (4.4.4) is therefore replaced by the N equations: 

ýf(xl) + If(s) än(ß' dE =- 
anw(Xi) i=I, 2,..., N (4.4.5) 

Jr 

Furthermore, the integral in equation (4.4.5) may be written as the 

sum of the integrals over the N elements of length ar"j. As a valid 

approximation, the source strength distribution function f(£) may be 

taken as constant over each element. 

Lacey(61) investigated the validity of this approximation and 

concluded that there was no significant improvement in numerical 

results obtained from the use of higher order (linear and quadratic) 

distributions of source strength over individual elements. 

Equation (4.4.5) may thus be expressed: 

N 

rrfi + 
Z«ij 

fj = 
f_wJ. 

(4.4.6) 

i=i 

where: «ij = dr Wi(-ý"E) 

rJ 

In physical terms, aij denotes the velocity induced at the ith node 

point, in the direction normal to the surface at that point, by a 

source of unit strength distributed uniformly over the jth element. 
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The definition of aij as given by equation (4.4.6) indicates that 

ag/an is to be integrated over the jth element. 

For discussion purposes, ag/an will be re-expressed in the form; 

P (X'E) 
= 

än flog 
R(x, £)] + 

(X, E) 

Thus; 

«1j _ 
f-s--[log 

R(x)] dr+ 
ýa *() 

(4.4.7) 

"j ar j 

The integrand in the second term of the above equation is regular 

throughout the fluid domain and oscillates with a wave length having 

an order of magnitude comparable to that of the incident wave. In 

practice, the incident wavelength is generally large in comparison 

to the dimensions of the immersed surface and it may therefore be 

assumed that ag*/an varies slowly over the immersed surface and is 

very nearly constant over the element length. 

The integrand in the first term of the equation is not, however, 

gradually varying as the point i approaches the point j. It is, in 

fact, singular as R40. Thus, when field and source point coincide, 

the integrations must be evaluated properly as the above 

approximation is rendered invalid. 

In general, however, ag/an may be taken as constant over the element 

and equal to its value at the element centroid. 
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Thus: 

«= Ar 
(Xi. Ej) 

iý 3 an 
(4.4.8) 

Equation (4.4.6) may therefore be expressed in matrix notation: 

[A] (f) _ (B) 
(N, N) (N, 1) (N, 1) 

where: Aid = bid + A,, j 
än(Xi. Ei) 

Bi aN 
an 

)i 

ölt =0 for i*j 

611 =n 

Note that: subscript i refers to the field point (xi, yi); 

subscript j refers to the source point (aj, bj); 

The parameter ag/an may be evaluated from: 

ag(Xi. j) Pff-(Ai,. Lj)(nx)i 
+ 

ag(Xi(ny) for iýj 
an ax ay 

(4.4.9) 

where: nx, ny are the components of the unit normal vector defining 

the field point element orientation. 

For purpose of clarity, the expressions for g, ag/ax and aglay are 

contained in appendix A2. 

The parameter 
änW(Xi) 

may be evaluated in similar fashion. 
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When i=j, it may be shown (see Appendix A3) that: 

ag(q, £j) 
=n an nr"j 

However, this contribution is taken care of in equation (4.4.9) by 

virtue of the fact that sii = ir and need not, therefore, be included 

in the diagonal terms of the [A] matrix. 

Since [A] and (B) are known, equation (4.4.9) may be solved for the 

unknown source strength distribution vector (f). 

4.4.2 The Floating Body Case. 

The total potential may be regarded as the sum of the incident, 

scattered and generated potentials. The solution of the integral 

equation for the scattered source distribution has been detailed in 

section 4.4.1; it only remains, therefore, to consider the equation 

in terms of the generated source distributions. 

Resulting from the Haskind Relations discussed in Chapter 3, the 

solution for the generated source distributions may be obtained 

without the prior solution for the scattered source distributions. 

However, if the scattered source distributions are required, as in 

this investigation, the computations may be combined in the 

following fashion: 
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If, as stated in Chapter 3, the directions of motion are defined: 

and, in addition: 

Surge - Mode I 

Heave - Mode 2 

Pitch - Mode 3 

Scattering - Mode 4 

the integral equation formulations may be expressed using index 

notation for convenience: 

IffO20 + 
fekw 

an 

(X' ) 
dr" = (vn)k k=1,2,3,4 (4.4.10) 

r 

Following the same discretisation procedure as adopted in Section 

(4.4.1), each of the k equations in (4.4.10) may be replaced by the 

N equations: 

, rfk(xi) + 
Jr 

(fk(E) ä( , xi)dr, 
= (vn)ik i=1, N 

k=1,4 

where, from (3.4.15) and (4.4.3): 

(vn)ik = -io(nk)i k=1,2,3 

(vn)ik =- 
äow(-ý) k=4 

(4.4.11) 

By making the same assumptions and approximations as in Section 

4.2.1, equation (4.4.11) may be expressed as: 

N 

"fik + 
Zaijfjk 

- (vn)ik 

j-1 

i=1, N 

k=1,4 

(4.4.12) 
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where: «ij =oil "a(Xi, 
j) 

In matrix notation, equation (4.4.12) becomes 

[A] [f] _ [B] (4.4.13) 
(N, N) (N, k) (N, k) 

where: Ali = öl] + ,,, j 
än( '£J) 

Bik = (vn)ik 

bij =0 for ij 

6ii =n 

The same assumption may be made regarding the value of ag/an where 

field and source point coincide. 

Equation (4.4.13) may be solved for the unknown source strength 

distribution matrix [f]. 

4.5 Numerical Evaluation of the Discretised Source Distribution 

Function. 

In Section 4.2, the matrix equation to be solved for the discretised 

Source Distribution Function was expressed in general terms. It may 

now be expressed in specific terms relating to a two-dimensional 

floating body in a regular, finite depth regime. 

In this section, the matrix elements referred to in equation 

(4.4.13) will be re-subscripted to avoid confusion with the complex 

quantity i= �-1 and the regular wave parameter k= 2n/L. 
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If the immersed surface of the body is subdivided into N boundary 

elements, equation (4.4.13) may be re-written: 

[A] [f] = [B] (4.5.1) 
(N, N) (N, 4) (N, 4) 

Consider, firstly, the elements of the [A] matrix: 

Alk=sek+Lr-kag(an-Jx",. 
£ ) 

(4.5.2) 

where: 6jk =0 for j*k 

au = 

From equation (A2.3) of Appendix A2: 

qg-l +i 
agz 

an an an 

Thus: 

- (4.5.3) Alk = sek + Olr"kf 
anl(i, 

-) +i 
an 

z(j,. 
W1 

Separation of real and imaginary parts, together with the limiting 

value of the normal gradient of the Green's Function at its source, 

leads to the following expression: 

A3k = Cjk + iDik 

where: l 
(ii,. W 

for jk Cjk = Olrk 
an 

Cjk =n for j=k 

(4.5.4) 
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Djk = Ark -aK2(xj, 
k) for all j, k 

Consider now the elements of the [B] matrix: 

Bim = (vn)jm (4.5.5) 

where: (vn)jm = -io(nm)j for m=1,2,3 

(vn)jm =- 
än (XJ) 

for m=4 

The complex expressions for the incident wave potential are: 

_iH 
Cosh k(d+yJ) 

e ikxj aW(xý) = 2o Cosh kd 
(4.5.6a) 

anW(xj) axw(xJ)(nx)J 
+ 

ayW(xJ)(ny). 
(4.5.6b) 

where: nx and ny are the direction cosines as previously defined. 

As before, separation of real and imaginary parts, together with 

straightforward differentiation, leads to the following expression: 

Bim = Gym + iHjm 

where Gym =0 for m=1,2,3 

gHk Gj° 
2o Cosh kdL(nx)j 

Cosh k(d+yj) Cos kxj 

+ (ny)j Sinh k(d+yj) Sin kxj 
} 

Him = -io(nm)3 for m=1,2,3 

9P 

(4.5.7) 



H7CgHk 
os 

j(n')j 
Cosh k(d+y ) Sin kx 4 20 Cosh kdl JJ 

- (ny)j Sinh k(d+yj) Cos kxj } 

By using the matrix solution method detailed in Appendix A4.2, the 

matrix equation (4.5.1) may be solved for the Source Distribution 

Function expressed in matrix notation: 

Cf7 [ 
F, 

(2N, 4) 

where: fpm = Elm + iFjm 

(4.5.8) 

4.6 Numerical Evaluation of the Discretised Velocity Potential. 

The equation from which the velocity potential may be evaluated is: 

mm(x) = fm(£)g(x, £) dr" (4.6.1) 
Jr 

where: m refers to the four modes referred to in Section 4.3. 

Using similar reasoning as in Section 4.2. it may be stated that, 

since the value of the Green's Function varies slowly over the 

length of the body, its value may be taken as constant over each 

element and equal to its value at the element centroid. This permits 

equation (4.6.1) to be expressed in discretised form thus: 

N 

©m(Xj) =zg(xj,. ýlc)fm( kork 

k=1 

(4.6.2) 
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The parameters o, f and g are complex quantities and may be defined: 

0= m' + i©� 

f= f' + if" 

g_91+ igf I 

Substitution in equation (4.6.2) together with separation into real 

and imaginary parts gives: 

N 
>{gjk 

fkm - gjk fkm 
}nIk 

(4.6.3a) 
[k=1 

N 

m(Xj) = 
Ztgjk 

fkm + gjk fkm}ock (4.6.3b) 

k=1 

where: gýk and gjk may be evaluated from the expressions 

contained in Appendix A2. 

fkm and fkm have been evaluated from equation (4.5.8); 

It must be noted that, as with its normal gradient, the value of the 

Green's Function does not change gradually when the source point 

approaches the field point. In this case, the real part of the 

Green's Function must be evaluated from the expression derived in 

Appendix A3. 

4.7 Numerical Evaluation of the Green's Function Expression. 

The evaluation of the expressions defining the Green's Function and 

its normal gradient at the specified nodal points on the object 
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boundary resulting from the presence of a discrete number of point 

sources located on the source distribution boundary constitutes the 

basis of the formulation employed in the numerical solution of the 

hydrodynamics problem. 

It can therefore be seen that the accuracy of the overall solution 

is significantly dependent upon the precision with which the 

individual functions are evaluated. 

The degree of precision, however, is subject to diminishing returns 

in that, beyond a certain point, a relatively small improvement in 

precision is achieved at the expense of a disproportionately large 

amount of computation time. Since the subdivision of the immersed 

profile of the object into N boundary elements necessitates the 

evaluation of 3N2 Green's Functions (no distinction is made between 

the Green's Function and its gradients since the time required for 

evaluation is, in each case, of a comparable order of magnitude), it 

becomes obvious that the efficiency, both with regard to precision 

and time, with which each function is evaluated has considerable 

bearing on the overall solution efficiency. 

The relationship between overall efficiency and the efficiency of 

individual function evalutions becomes even more signficiant in 

view of the fact that the bulk of CPU time required for the overall 

solution is consumed in evaluating the functions for inclusion in 

the matrices described in preceding sections. (In practice, the 

proportion of overall CPU time required for function evaluation is 

in the order of 95%). 

Since the evaluation of the imaginary part of the function is solely 
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a matter of direct substitution in the appropriate expression, it 

presents no numerical problems. This section is concerned with the 

numerical techniques required for the evaluation of the real part of 

the function. 

4.7.1 The Integral Formulation. 

Inpsection of the expressions detailed in Appendix A2.3 shows that 

the Particular Value integral can be subdivided into two distinct 

parts: 

(i) The Singular Portion 04u4 ul 

(ii) The Remainder Portion u1 IAI umax 

Each part will be dealt with separately herein. 

a) The Singular Portion 01aIol 

A preliminary series of tests demonstrated that there was no obvious 

advantage to be gained from taking the value of ul to be anything 

other than 2k. 

A series of tests, using parameters within the range of this 

investigation, was performed in order to decide the most efficient 

method of numerically integrating the modified functions in the 

range 04u4 2k. 

Two alternative methods of integration were investigated: 
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DEPTH (m) 1.200 

FREQUENCY (Hz) 0.684 

FIELD POINT COORDINATES (m) (0.1000, -0.0375) 
SOURCE POINT COORDINATES (m) (0.0000, -0.0375) 

METHOD 1 

0 -> 0.999K 
0.999K -> 1.001K 
1.001K -> 2K 

METHOD 2 

SIMPSONS RULE 
TRAPEZOIDAL RULE 
SIMPSONS RULE 

0 -> 2K THREE EIGHTHS RULE 

FUNCTION : GPVM 

METHOD NO. OF ORDINATES INTEGRAL VALUE 
1 42 -0.74984536 
2 82 -0.74984591 

FUNCTION : DGXPVM 

METHOD NO. OF ORDINATES INTEGRAL VALUE 
1 22 -0.80800964 
2 82 -0.80801011 

FUNCTION : DGYPVM 

METHOD NO. OF ORDINATES INTEGRAL VALUE 
1 26 1.8778552 
2 82 1.8778605 

Table 4.7.1 Numerical Integration of the Modified 
Green's Functions. 
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Method 1. 

0u<0.999k Simpson's Rule. 

0.999k GuC1.001k Trapezoidal Rule using a single interval. 

1.001k uC 2k Simpson's Rule. 

Method 2. (Monacella(71)) 

0Ga 2k : Three-Eighths Rule avoiding the 

indeterminate central ordinate. 

Both methods employed the same convergence criteria. 

The results demonstrate conclusively that-Method 1 is significantly 

more efficient than Method 2 with no loss of precision. 

A typical test result is shown in Table 4.7.1. 

The function notation in the table refers to the computer program 

functions used for evaluation: 

GPVM : The modified Green's Function 

DGXPVM : The x-gradient of GPVM 

DGYPVM : The y-gradient of GPVM 

b) The remainder portion 2k IaI omax 

Consideration of equation (A2.7) of Appendix A2.3 shows that, at 
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large values of u, the integrand approaches the form: 

fg+vl 

je Cos u(x-a) 
gl(integrand) 4u 

u-v 
(4.7.1a) 

Straightforward differentiation leads to the corresponding 

expressions for the x and y gradients: 

äx1(integrand) 
4- 

%(u+v)eu(b+y)Sin u(x-a) (4.7.1b) 
u-v 

ag'(integrand) 
4 

(u+v)eu(b+y)Cos u(x-a) 
aY u-v 

It can thus be seen that, in all three cases, the integrand decays 

with eu(b+y) since the quantity (b+y) is invariably negative. 

In the case of floating bodies, (b+y) is usually small resulting in 

slow decay of the integrands. 

It can be seen from the above expressions that when (b+y) is zero, 

no integrand decay takes place in the case of the x and y gradients 

and the integrands converge to purely sinusoidal terms. However, 

since function evaluations are only required at the centroids of 

submerged boundary elements, the case is unlikely to arise and is of 

academic interest only. 

In all three cases, however, when (b+y) is small the integrands 

commence a sinusoidal oscillation prior to significant decay taking 

place. This behaviour, clearly illustrated in Figures A2.1 to A2.3, 

presents problems in determining the point of acceptable 

convergence. 
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DEPTH (M) 1.200 
FREQUENCY (Hz) 0.488 
FIELD POINT COORDINATES (M) (0.0500, -0.0250) 
SOURCE POINT COORDINATES (M) (0.0000, -0.0250) 

FUNCTION : GPV 

NO. OF STEPPING NO. OF INTEGRAL 
STEPS FACTOR INTERVALS VALUE 

6 1.55663 72 1.137445 
7 1.46127 72 1.137445 
8 1.39360 72 1.137446 
9 1.34315 72 1.137445 

INTEGRATION WITHOUT STEPPING 

NO. OF INTERVALS : 256 
INTEGRAL VALUE 1.137445 

FUNCTION : DGXPV 

NO. OF STEPPING NO. OF INTEGRAL 
STEPS FACTOR INTERVALS VALUE 

8 1.51973 44 -5.910771 
9 1.45068 48 -5.910772 

10 1.39770 52 -5.910773 
11 1.35580 56 -5.910773 

INTEGRATION WITHOUT STEPPING 

NO. OF INTERVALS : 128 
INTEGRAL VALUE : -5.910818 

FUNCTION : DGYPV 

NO. OF STEPPING NO. OF INTEGRAL 
STEPS FACTOR INTERVALS VALUE 

6 1.55663 48 6.749044 
7 1.46127 44 6.749044 
8 1.39360 40 6.749053 
9 1.34315 44 6.749046 

INTEGRATION WITHOUT STEPPING 

NO. OF INTERVALS : 128 
INTEGRAL VALUE 6.749067 

Table 4.7.2 Effect of Stepped Integration of the 
Green's Function Remainder Integral. 
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The following method of numerical evaluation has therefore been 

adopted: 

Taking the integrand expression for the x-gradient as an example, it 

can be seen that the integrand becomes zero at the following 

points: 

µ(x-a) = 0, v/2, n, 3n/2 etc. 

Similarly to the method suggested by Hogben and Standing(43), the 

function is integrated in step fashion using Simpson's Rule until 

the first zero point after µ= 2k has been reached. 

Starting from u= 2k, the current value of µ is multiplied by a 

factor to determine the succeeding step length. Providing that the 

factor exceeds unity, this ensures that the step length becomes 

progressively larger as the integrand decays thus reducing, by a 

significant amount, the number of ordinates to be considered in the 

numerical integration. The integrand is then integrated over each 

step length using Simpson's Rule. 

A series of tests, carried out using a suitable range of parameters, 

demonstrated that the optimum step factor was 1.44. Use of this step 

factor resulted in a 50-60% reduction in the number of computations 

required. 

A typical result is shown in Table 4.7.2. 

Having reached the first zero point after u= 2k, the function is 

integrated cycle by cycle, the step length being 21T/(x-a), until the 
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contribution to the overall integral by any individual cycle is 

negligible. The assumption is made that the remaining integral in 

the range Amax <u<' is zero. 

Three possible methods of cyclic integration were tested: 

Method 1: Straightforward numerical integration over the whole 

cycle length. 

Method 2: Integrating 4 times over quarter-cycle steps and 

summing the results. 

Method 3: Subdividing the cycle length into the ratios suggested 

by Appendix A4.3 and summing the individual values. 

The test results demonstrated conclusively that adoption of Method 3 

would achieve a 30% reduction in the number of ordinate evaluations. 

A flow-chart describing the computer subroutine used to evaluate the 

Green's Function integral formulation can be found in Appendix A7. 

4.7.2 The Series Formulation. 

From Appendix A2.4 it can be seen that the evaulation of the series 

formulation of the Green's Function is a straightforward summation 

operation. 

It can be seen, however, that the summation terms for the function 

and its x and y gradients are similar in form. If each function was 

computed in a separate routine, a great many computations would be 

needlessly repeated incurring considerable expenditure of CPU time. 
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DEPTH 1.200 (m) 
FREQUENCY 0.684 (Hz) 
FIELD POINT Y-COORDINATE -0.0250 (m) 
SOURCE POINT Y-COORDINATE -0.0250 (m) 

WAVE NUMBER 1.9206 61 (1/m) 

HORIZONTAL SEPARATION LIMIT (G1) 0.0047 (m) 
HORIZONTAL SEPARATION LIMIT (DG1/DX) 0.0120 (m) 
HORIZONTAL SEPARATION LIMIT (DG1/DY) 0.0115 (m) 

HORIZONTAL G1 NO. OF Gl NO. OF 
SEPARATION (INTEGRAL) ORDINATES (SERIES) TERMS 

0.006 -0.857795D 00 370 -0.857594D 00 313 
0.005 -0.887233D 00 338 -0.886697D 00 313 
0.004 -0.923093D 00 370 -0.922304D 00 361 
0.003 -0.969148D 00 338 -0.968150D 00 457 
0.002 -0.103387D 01 338 -0.103214D 01 601 

HORIZONTAL DG1/DX NO. OF DG1/DX NO. OF 
SEPARATION (INTEGRAL) ORDINATES (SERIES) TERMS 

0.014 0.123812D 02 358 0.123806D 02 264 
0.013 0.131916D 02 338 0.131902D 02 265 
0.012 0.141461D 02 342 0.141430D 02 265 
0.011 0.152844D 02 246 0.152827D 02 313 
0.010 0.166624D 02 254 0.166580D 02 313 

HORIZONTAL DG1/DY NO. OF DG1/DY NO. OF 
SEPARATION (INTEGRAL) ORDINATES (SERIES) TERMS 

0.013 -0.394727D 01 418 -0.394728D 01 361 
0.012 -0.397859D 01 408 -0.397857D 01 385 
0.011 -0.400791D 01 426 -0.400790D 01 433 
0.010 -0.403511D 01 458 -0.403513D 01 457 
0.009 -0.406008D 01 490 -0.406010D 01 505 

Table 4.7.3 Comparison of Integral and Series 
Evaluation of the Green's Function 
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To avoid this, each function may be computed in the same routine, 

the summation term being modified accordingly. 

A flow-chart describing the relevant computer subroutine can be 

found in Appendix A7. 

4.7.3. Comparison between the Integral and Series formulation. 

Many authors (e. g. Garrison(24)) state that the series formulation 

provides a more efficient function evaluation when the horizontal 

separation between source and field point is large. 

Conversely, when the horizontal separation Ix-al is small, it 

becomes more efficient to use the integral formulation. 

The results of a series of tests show that the optimum change over 

point is a function not only of horizontal source/field point 

separation but also of the combined field and source point depths 

below the mean free-surface of the fluid. 

A typical test result is shown in Table 4.7.3. 

The following empirical formulae have been derived in order to 

determine the optimum "change-over" point: 

It is more efficient to use the Integral Formulation when: 

Ix-al 
ILoglb+4 + 5.0211 

in the case of gi 432.2 
(4.7.2a) 
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Ix-al 
Logjb+yl + 5.627 

218.8 
1 

Ix-al ILogjbtyl 
+ 8.468 

474.2 

1 

in the case of 
äX1 (4.7.2b) 

in the case of 
äy1 (4.7.2c) 

It must be said in hindsight, however, that very little benefit with 

regard to efficiency is gained from the accurate determination of 

the change point. Such benefit that might be gained is more than 

outweighed by the additional CPU time spent in computing the 

change-over value. 

4.7.4 Convergence Criteria. 

In order to obtain overall function evaluations which are precise to 

within a specified tolerance, a convergence residual criterion is 

computed from: 

RESCON =1- 
ACC 
100 

where: RESCON denotes the convergence criterion 

ACC denotes the required function precision in (%). 

In the use of any iterative method, convergence testing is carried 

out after each iteration for the purpose of not only ensuring that 

the end result is sufficiently precise but also for the purpose of 

avoiding unnecessary computation. Generally, a comparison is made 

between two successive iterative values and if the difference 

between them, as a proportion of the overall value, is less than 

some specified value convergence is deemed to have been achieved. An 
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additional requirement is usually made that the absolute value of , 

the most recently computed iteration should exceed a given value. 

The use of Simpson's Rule for numerical integration of a function 

entailed making an initial estimate for the integral value using a 

minimum number of intervals (generally 2). The number of intervals 

was successively doubled with convergence tests, as described above, 

performed after each successive doubling of the number of intervals. 

Similar convergence tests were performed after each successive step 

length in the stepped integration procedure, and after each cycle in 

the cyclic integration procedure, for the evaluation of the integral 

formulation of the real part of the Green's Function. 

In all cases, a series of tests demonstrated that sufficiently 

precise evaluations could be achieved if the individual convergence 

criteria did not exceed 1/10 of the overall convergence criterion. 

Convergence using the Series Formulation was found to be exceedingly 

gradual and the method of convergence testing required modification. 

It was found that sufficiently precise evaluations could only be 

achieved if convergence testing was carried out on three successive 

iterations. If the three successive iterations satisfied the 

convergence criterion, then convergence was deemed to have taken 

place. 

A series of tests showed that an adequate convergence criterion was 

1/100 that of the overall criterion. 
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4.8 Computational Efficiency Considerations. 

In the process of matrix formation for the solution of the integral 

equations, described in Section 4.2, certain time-saving techniques 

can be employed as a result of the nature of the matrices and as a 

result of possible symmetry of the object profile about its vertical 

centroidal axis. 

It must be noted, however, that the time-saving techniques resulting 

from axial symmetry, and described in this section, apply only to 

the particular type of element distribution employed in this 

investigation (see Appendix A5). 

Consideration of the expressions in Appendix A2, defining the 

Green's Function and its gradients, allows the following 

observations to be made: 

a) When field and source points are transposed, both the real and 

imaginary evaluations of the Green's Function remain unchanged. 

b) When field and source points are transposed, both the real and 

imaginary evaluations of the Green's Function x-gradient remain 

unchanged in magnitude but undergo a sign change. 

Regardless of body symmetry and element distribution, this results 

in a 30% reduction in the number of Green's Function evaluations 

required for matrix formation. 

For an object profile which is symmetric, both with respect to 

geometry and element distribution, about the vertical axis through 
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the centroid, the following additional time-saving techniques, using, 

the nomenclature of equations (4.5.4) and (4.5.7), may be applied: 

c) In both the [C] and [D] matrices, the (n-i+1)th row is the 

reverse mirror image of the ith row. 

Thus: 

Cij - Cn-i+l, n-j+l 
i=1, n; j=1, n; 

Dij = Dn-i+l, n-j+l 
i=I, n; j=l, n; 

d) In the [G] matrix: 

Gij = -Gn-i+i, j i=1, n; j=4; 

e) In the [H] matrix: 

iiij = -Hn-i+1, j i=I, n; j=1,3; 

Hij = Hn-i+1, j i=1, n; j=4; 

Application of these properties results in a 50% reduction in 

computation time. 

f) The matrix of Green's Functions required for the solution of 

equations (4.6.3) is symmetric about both diagonals. This 

enables a 75% reduction in CPU time for formation of the matrix. 

In Appendix A4.2, which describes methods of solution of complex 

matrix equations, it can be seen that Methods 2 and 3 derive from 

the method outlined by Hogben and Standing(43)" Their method was 
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used in the solution of a three-dimensional source distribution 

matrix and required the inversion of the matrix pertaining to the 

imaginary parts of the normal gradient of the Green's Function. As 

will be seen, this is not possible in the solution for a 

two-dimensional source distribution matrix for certain immersed 

surface configurations. 

From equation (4.5.4): 

Dia 
[z(. i'Eii)(n)i + 

äy2(Xi'i)(ny)i}orj (4.8.1) 

If the ith and mth element are both on vertical surfaces: 

(ny)i = (ny)m =0 

(nx)i = *(nx)m = *1 

Substitution of these values in equation (4.8.1), together with the 

expression for age/ax from equation (A2.4), yields the following: 

Dia Cosh k(d+yi)Sin k(xi-aj) 

-=f 
Dmj Cosh k(d+ym)Sin k(xm-aj) 

(4.8.2) 

It can be seen that if Sin k(xi-aj) = Sin k(xm-aj), the ith and mth 

row of the [D] matrix will have a common factor since the expression 

is independent of the column number J. The determinant of [D] will 

thus be zero preventing the use of solution techniques having the 

[D] matrix as the coefficient matrix. 

The most likely case of the above situation arising is when the ith 

and mth element are on the same vertical surface, i. e when xi = xm. 
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It becomes obvious, therefore, that the determinant of [D] will 

become zero when the immersed surface of the object is substantially 

rectangular. 

4.9 Limitations of the Green's Function-Integral Equation 

Method. 

4.9.1 Irregular Frequencies. 

John(49) proved the existence and uniqueness of the solutions to the 

two- and three-dimensional potential problems pertaining to 

oscillations of a rigid body in a free-surface. The solutions were 

subject to the provisions that no point of the immersed surface of 

the body would be outside a cylinder drawn vertically downward from 

the intersection of the body with the free-surface and that the 

free-surface would be intersected orthogonally by the body in its 

equilibrium position. This last provision derives from the fact that 

the kernel of the Fredholm equation is singular on the curve of 

intersection of the body and the free-surface rendering Fredholm 

theory invalid. This problem can be overcome by the orthogonality 

requirement. 

John also showed that for a set of discrete 'irregular' frequencies, 

the integral equation method failed to give a solution. He 

demonstrated that the irregular frequencies occurred when the 

integral equation had eigenfunctions. At an irregular frequency, the 

matrix to be inverted in the process of obtaining a solution becomes 

singular as the number of boundary elements increases without limit 

i. e. as N4 e'. In practice, with a finite number of boundary 

115 



elements, the determinant of this matrix becomes very small, not 

only at the irregular frequency but also within an interval about 

this frequency. The extent of this interval can be reduced by 

increasing the number of boundary elements. 

Each eigensolution, in fact, represents a non-trivial source 

distribution over the body surface which leaves the external flow 

field undisturbed. The irregular frequencies are a feature of 

describing the body in terms of a distribution of sources and are 

not inherent in the original hydrodynamics problem. They can be 

eliminated by locating the sources inside the body boundary (the 

regular kernel method) or by solving the problem in another way. 

Frank(20) graphically illustrates the behaviour of computed 

hydrodynamic coefficients in the region of an irregular frequency. 

It can be seen therein that, provided the solutions pertaining to 

the narrow band surrounding the irregular frequency are not 

considered in isolation, correct values may be obtained by graphical 

or numerical interpolation. 

Frank (amongst others) evaluated the irregular frequencies for a 

rectangular two-dimensional floating body. For, the purpose of 

completeness, however, details of the evaluation method are included 

herein: 

Consider a rectangular two-dimensional floating body of length B and 

draught D: 
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Let ? (x, y) be such that: 

1. 
a2y 

+ 
aZq, 

ax2 ay2 

in the region bounded by the immersed surface of the body and the 

extension of the free-surface within the body. 

2. P=0 

on the surface of the body below the free surface. 

x= 0; 0 4 y 4 D 

@ x= B; O iý, y 

@ y= B; 0 < x ý B 

3. 
äy 

vnY 

on the extension of the free-surface within the body, where vn is 

the deep-water wave number corresponding to the irregular radial 

frequencies on, n=1,2,... 

Integration of Laplace's equation (condition 1) using the method of 

separation of variables and applying boundary condition 2 yields the 

eigenfunctions: 

n= An SinýnBX}Sinh{nBD n=1,2,.... (4.9.1) 
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where: An are Fourier Coefficients to be determined from an 

appropriate boundary condition. 

Applying the free surface boundary condition (3) on y=D for 

0<x<B gives the irregular wave numbers: 

vn = 
FB-}Goth{nB 

n=1,2,.... (4.9.2) 

But: vn = 
2n 
Ln 

Substitution in equation (4.9.2) yields: 

tBLIn 
=2 Cotht-BD} (4.9.3) 

where: (B/L)n is the body length/wavelength ratio corresponding to 

the nth irregular wave frequency. 

By substituting realistic values of B/D in equation (4.9.3), it can 

be seen that the irregular frequencies are too high to be of 

practical interest. 

4.9.2 I11-Conditioning of Matrix Equations. 

The matrix equation: 

[A] [X] = [B] 

is said to be ill-conditioned if a small change in the matrix [B] 
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results in a disproportionately large change in the solution matrix 

[XI. 

Without going into the labororious procedure of computing the 

so-called 'ill-conditioning numbers', it can be stated that 

ill-conditioning of matrix equations is generally associated with a 

lack of dominance of the elements on the leading diagonal of the 

coefficient matrix [A]. The leading diagonal may be regarded as 

dominant if: 

IAii1 > 
>1A1j1 

i 

j#i 
j 

The formulations used in the evaluation of the matrix elements 

discussed in section 4.2 dictate that lack of diagonal dominance 

will always be a feature of the coefficient matrices. It is this 

feature which suggests the lack of suitability of iterative solution 

techniques, such as the Gauss-Seidel method, since diagonal 

dominance is a necessary condition to ensure rapid convergence. 

In this particular investigation it was found that, providing the 

degree of ill-conditioning was not especially severe, acceptably 

precise solutions could be obtained from the use of the Gauss-Jordan 

Elimination method employing Pivotal Element techniques to minimise 

round-off errors. 

In view of the relaxation adopted to permit a discretised solution 

of the integral equations (4.4.4) and (4.4.10), it may be theorised 

that increasingly fine subdivision of the source and object 

boundaries will result in more precise solutions. To a certain 

extent this is the case in practice. However, there comes a point at 
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which any advantage to be gained from finer subdivision is 

outweighed by the effects of matrix ill-conditioning. 

It has previously been stated that the possibility of an acceptably 

accurate discretised solution depends substantially on the fact that 

the Green's Function varies insignificantly over the length of a 

boundary element. As a consequence, finer subdivision of the 

boundaries results in elements around the leading diagonal of the 

coefficient matrix converging to the same order of magnitude, 

resulting in total lack of diagonal dominance which, in turn, leads 

to severe ill-conditioning of the equations. 

In the case of body profiles containing areas of high curvature, it 

is recommended (see Appendix A5) that high element concentrations 

are required to model these areas adequately. It is also recommended 

that, in order to preserve accuracy, element lengths should change 

gradually between areas of high and low curvature. It becomes 

apparent, therefore, that ill-conditioned matrices will be a 

distinct feature of solutions for these body configurations, thus 

imposing severe limitations on the use of this method. 

4.10 Comparison with Published Data. 

Several texts (e. g. Salvesen, Tuck and Faltinsen(84); Frank(20)) 

contain theoretical computations of the hydrodynamic coefficients, 

exciting forces and generated wave amplitudes pertaining to 

substantially rectangular sections. They do not, however, present 

experimental results for comparative and validatory purposes. 
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A systematic theoretical and experimental investigation was carried 

out by Vugts(101) on a variety of two-dimensional immersed surface 

profiles, including rectangular sections with differing aspect 

ratios, and many theoretical texts published since that date (e. g. 

Wehausen(103); Adee and Martin(2)) utilise these results for 

comparison with their own theoretical results. 

In order to provide a comparison with published data, a theoretical 

analysis was performed on a freely-floating rectangular section, 

with an immersed surface aspect ratio of 4, using the method and 

formulation described herein. Several authors (e. g. Sarpkaya and 

Isaacson(86)) cite the numerical advantages of smoothing-off sharp 

corners on the mathematical model to provide a continuous immersed 

surface. For comparative purposes, therefore, a similar analysis was 

performed on a substantially rectangular section, of similar 

immersed surface aspect ratio, having radial submerged edges. 

To conform with the experimental data published by Vugts, a body 

length of 0.4m was used together with a flume depth of 2.0m. 

In the case of the radially-edged body, the minimum element length 

was dictated by the number of constant length elements used to 

describe the radial edge. To comply with the recommendations 

contained in Appendix A5, pertaining to the subdivision of the 

immersed surface, four constant length elements were used on each 

radial edge. In the case of the squared-edged body, a similar 

minimum element length was chosen to validate a comparison of 

results with those obtained from the radially-edged body. In both 

cases, an element length ratio (see Appendix A5) of 0.99 was 

employed to minimise the variation in element length over the 
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immersed surface. 

In the absence of any data being available with respect to the mass 

and inertia of the floating body used in Vugts' experimental 

analysis, suitable parameters were chosen to provide the required 

immersed surface aspect ratio. The body was assumed to be of uniform 

density and the inertia was computed accordingly. The radius of the 

edges of the substantially rectangular section was chosen to 

minimise any difference in mass or inertia parameters arising from 

the change in edge geometry. 

The geometric, inertial and element distribution data pertaining to 

the two bodies is contained in tables 4.10.1 and 4.10.2 and the 

results are presented, in conjunction with Vugts' theoretical 

experimental results, in Figs. 4.2 to 4.5. 

In the analysis performed by Vugts, conformal transformation 

technqiues were employed to derive the theoretical added-mass and 

damping coefficients. The method of superposition of potential 

functions, postulated by Ursell( 5) and developed by De Jong(17), 

was employed to derive the coefficients for a floating circular 

cylinder and these results were conformally transformed to those 

pertaining to a rectangular section by means of a standard 

five-parameter polynomial transformation. 

The exciting forces acting on the body were obtained from the 

relationship, derived by Newman(73), between the exciting force and 

the damping coefficient for an axi-symmetric body. 

The generated wave amplitudes were obtained by applying the 
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far-field boundary conditions to the generated potentials computed 

in the process of solving for the hydrodynamic coefficients. 

Despite Vugts' use of deep-water approximations in his theoretical 

formulations, the actual depths specified are insufficient to 

achieve deep-water conditions at the lower end of the frequency 

range. A brief calculation, using the water depth and body length 

specified, shows that deep-water conditions were achieved for values 

of the diffraction parameter o(L/2g)ß > 0.7. Thus comparison between 

Vugts' theoretical results and those derived from the 

source-distribution formulation is only valid for o(L/2g)M > 0.7. It 

can be seen from fig. 4.2 that agreement in this range is good. 

The low frequency trend of Vugts' experimental added-mass 

coefficients in heave show good agreement with the theoretical 

added-mass coefficients derived from the source-distribution 

formulation. In the lower frequency range, Vugts' results for surge 

added-mass coefficients differ substantially from the source 

distribution results. Reference to Kim(53) shows that this deviation 

is entirely attributable to the neglect of finite depth effects 

mentioned above. 

Whilst maintaining the same trends, the damping coefficients 

presented in Fig. 4.3 differ in value from both the experimental and 

theoretical results presented by Vugts. Since values of damping 

coefficients in surge and heave do not display the same sensitivity 

to depth as the added-mass coefficients, it is unlikely that the 

difference results from neglect of finite depth. However, the 

constant difference exhibited in the case of the heave coefficients 

suggests the possibility of a systematic error in Vugts' computation 
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procedure. Since the -exciting force coefficients are computed 

directly from the damping coefficients, a similar deviatory trend is 

to be expected and this is illustrated in Fig. 4.4. Agreement of 

results is good in the case of waves generated as a result of surge 

motion but not in the case of waves generated by heave. No obvious 

explanation can be given for this. 

The experimental technique employed by Vugts was to apply a forced 

motion, of known amplitude, to the body. The external force was 

measured and inserted, together with the motion amplitude, into the 

equations of motions to give the hydrodynamic coefficients. The 

experimental results, however, must be treated with a certain degree 

of caution since zero values were assumed for the coupling 

coefficients of pitch into surge and the equations of motion 

modified accordingly. Inspection of additional results presented by 

Vugts demonstrated that this clearly was not the case. 

For source-distribution results pertaining to surge and heave, there 

is very little difference between the results obtained from the 

square- and radially-edged bodies. The pitch results, however, 

exhibit a marked sensitivity to changes in edge geometry. In the 

absence of any obvious physical reason for this, it must be 

concluded that an inability to define the normal direction at a 

sharp corner gives rise to a discontinuity of the source strength 

distribution function at that point, resulting in numerial 

inaccuracies. In the preceding chapter, it was shown that the 

added-mass and damping coefficient matrices are symmetrical. The use 

of radial edges resulted in a marked improvement of agreement 

between reflected elements of the above matrices, thus providing 

further evidence to conclude that the improvement in results must be 
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attributed to numerical rather than physical reasons. 

The non-dimensional parameters used in Figs. 4.2 to 4.5 are detailed 

below: 

Added-Mass Coefficients: 

u11 uzz 933 

µll = ü2z - 9133 

MM ML2 

Damping Coefficients: 

X11 1L 
_ 

NZZ 
L_ 

>33 1L 
X33 

MLZ 
zg 

ýiý =M 2g 
X22 =M 2g -j'ýi 

l' 

Exciting Force Components: 

F, (e) F2(e) 

gl(e) g2(e) 
Mgk(H/2) pgH(L/2) 

(e) 
F3(e) 

F3 _ 
pg(LZ/12)k(H/2) 

Generated Wave Ratios: 

(11/2) (x/2) 
n, = n2 = 

TI1 n2 

where: M= Body mass per unit width. 

L= Body length in direction of wave travel. 

n= Generated wave amplitude. 

All other symbols are as defined in Appendix A9. 
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COMPUTATION DATA 

Greens Function Accuracy 99.990 (%) 

GEOMETRICAL DATA (SQUARE EDGES) 

Body Length 0.4000 (m) 
Body Depth 0.2000 (m) 
Draught 0.1000 (m) 
Centroidal Y-Coordinate 0.00000 (m) 
Metacentric Height 0.08333 (m) 

INERTIAL DATA PER M. WIDTH (HOMOGENEOUS) 

Density 500.000 (Kg/m3) 
Mass 40.000 (Kg) 

2 
Mass Moment of Pitching Inertia 0.667 (Kg. m 

SPRING RESTRAINT DATA N/M (PER M. WIDTH) 

Surge FREE 
Heave FREE 
Pitch FREE 

ELEMENT DISTRIBUTION DATA 

Nominal Element Length Ratio 0.99 
No. of Side Elements 10 
No. of Base Elements 37 
Total No. of Elements 57 
Min. Element Length 0.010000 (m) 
Max. Side Element Length 0.010000 (m) 
Max. Base Element Length 0.011712 (m) 
Side Element Length Ratio 1.000000 
Base Element Length Ratio 0.991261 

TABLE 4.10.1 Floating Body Details 
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COMPUTATION DATA 

Greens Function Accuracy 

GEOMETRICAL DATA (RADIAL EDGES) 

Body Length 
Body Depth 
Edge Radius 
Length/Draught Ratio 
Draught 
Centroidal Y-Coordinate 
Metacentric Height 

99.990 (%) 

0.4000 (m) 
0.1993 (m) 
0.0250 (m) 
4.0000 
0.1000 (m) 
0.00032 (m) 
0.08455 (m) 

INERTIAL DATA PER M. WIDTH (HOMOGENEOUS) 

Density 500.000 
Mass 39.732 
Mass Moment of Pitching Inertia 0.655 

SPRING RESTRAINT DATA N/M (PER M. WIDTH) 

Surge FREE 
Heave FREE 
Pitch FREE 

ELEMENT DISTRIBUTION DATA 

Nominal Element Length Ratio 
No. of Side Elements 
No. of Base Elements 
No. of Radial Elements 
Total No. of Elements 
Min. Element Length 
Max. Side Element Length 
Max. Base Element Length 
Side Element Length Ratio 
Base Element Length Ratio 

(Kg/m3) 
(Kg) 2 
(Kg. m ) 

0.99 
7 

33 
4 

55 
0.009817 (m) 
0.011422 (m) 
0.011387 (m) 
0.978611 
0.991314 

TABLE 4.10.2 Floating Body Details 

127 



i . 
20 

1.00 

. 
80 

. 
60 

. 
40 

. 
20 

. 
00 

µ 11 

f 

00 
0 0 

0 

d=2.0m 
L=0. ßm 
L/D =4 
d/D = 20 

ý - 00 - [ 

. 00 

- 
5- 

4 

3 

2 

1 

04. 
- 

. 
00 

i. 

. 
to I. e2 

L 
1 . 50 

6 29 

L a 
. 
59 9 

Fig. 4.2 ADDED-MASS COEFFICIENTS 

128 

.W 
1 . 1410 

ý. 
50 z9 

/122 Vugts (1968) Theory 

o Vugts (1968> Expt 

----- R=0 (N = 57) 
R=L/16 (N= 55) 

o 00 



1.00 

80. 

. 
60 

. 40 

20 

00. x 
- 

. 
00 

t_ 20_ 

00 

. 80-- 

. 
60-- 

, 40, 

. 
20- 

. 
00. 

Vugts (1968) Theory 
0 Vugts (1968) Expt 

-----R=0 (N=57) 

-- R=L/16(N=55) 
°°° 

." 0 o 

All 
4f 

/ 

. 
50 1.02 1.50 

a9 

'122 

O 

a e ,' 
O 

"ý 
( 

O 

O 
`O O 

d=2.0m o0 
L=0.4m 
L/D =4 
d/D = 20 

. 
08 

4- 

3 

2 

0 

-1 

. 
50 1.2 1.50 

aJ1c 

10 A 33 

ý' \ 

. 
50 

Fig. 4.3 DAMPING COEFFICIENTS 

129 

k-T 
50 

a9 



2.00 

1 . 52 

1 ee 

. 
5Q 

00 

. 
00 

i_0A 

. 
80. 

.. 
-0: 

. 
20, 

. 
00: 

Vugts (1968) Theory 
C) V t (1968) E t ug s xp 

---- R=0 (N = 57) o 
R= L'16 (N 55) 

nn cn nn 

4. 

I 52 
a9 

F2 e) 

d= 2.0m 
L= 
L/D 

0.4m 

=4 
ý. 

ý 
d/D = 20 

. 
00 

. 
50 

t_0 Gl 

. 
80- 

. 
60. 

A0. 

. 
20: 

. 
00: 

1.00 1.50 
6JL9 

F3 e) 

, , 

. 
00 

. 50 1.00 

Fig. 4.4 EXCITING FORCES AND MOMENTS 

130 

4 
1.50 

a9 



1 . 
50 

1 . 25 

1.00 

. . 
75 

. 50 

. 25, 

. 
004L- 

. 00 

1.00 

. 
80 

. 
60 

. 40. 

. 
20. 

. 
00.. 

E 
. 00 

Fig. 4.5 

Vugts (1968) Theory 
0 Vu ts (1968) E t g xp 

---- R=0 (N = 57) o 
=L/16(N=55) 

r, 
r' o 

_ J. 
;; 

0 

/o 

. 
50 

1.50 C, 
9 

rL- 

OO 

% O 
O 

O 

/y 
. 

d=2.0m 
L=0.4m 

Q L'D =4 
00 / dfD = 20 

50 

1.00 

1.60 

GENERATED WAVE AMPLITUDE 

L 
1 . 

50 
611`9 

131 



CHAPTER 5. THE EXPERIMENTAL INVESTIGATION 

5.1 Introduction. 

An experimental study has been carried out to investigate the 

interaction between a substantially rectangular body and a train of 

regular waves, with particular regard to the validation of 

parameters output by a computer program compiled using the methods 

previously detailed in Chapters 3 and 4. 

Since the primary purpose of this experimental study was the 

validation of theory, it was felt that it should take the form of 

previous studies carried out with a similar purpose(101). However, 

the limit of available experimental facilities, together with the 

more obvious time limitation, imposed certain constraints on the 

scope of the study, precluding the investigation of certain aspects 

of the system. This chapter discusses the selection of parameters to 

be validated by experimentation, together with the range of incident 

wave conditions over which the behaviour of the chosen parameters 

was to be investigated. 

As a consequence of the fact that the hydrodynamic behaviour of a 

floating body is related not only to the incident wave 

characteristic but also to the body dimensions, it was felt that the 

variation in wave/body interaction should be investigated with 

regard to a non-dimensional diffraction parameter defining the 

relationship between the incident wave and the characteristic 

dimension of the body. In view of the fact that the range of 

incident waves was constrained by existing flume and wave-generation 
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facilities, both of which are discussed in this chapter, the body 

characteristic dimension had to be such that a suitable range of 

diffraction parameter could be achieved. 

An inspection of the results obtained from previous studies has 

shown that floating body behaviour departs substantially from 

theoretical predictions in the region of the system's resonant 

frequency, particularly in the rotational modes of motion. It is 

suggested(84) that this departure is a consequence of the increase 

in viscous damping effects engendered by large rotational body 

motions. It is further suggested(52) that the effect of this damping 

may be somewhat alleviated by the rounding of submerged edges of the 

body. The limitation of experimental facilities precluded a 

comprehensive quantitative investigation of this phenomenon. 

However, it was felt that the adoption of rounded body edges, of 

various radii, would provide an indication of the validity of this 

suggestion. The decision to employ rounded body edges was also the 

result of practical and numerical considerations, both of which are 

discussed in this chapter. 

The major problem associated with experimental studies of this type 

is the allowance of free and unrestricted motion of the body, a 

basic condition necessary to ensure a valid comparison between 

theory and actuality. For this reason, a considerable degree of 

attention had to be paid to the design of suitable bearing 

arrangements. An additional factor which had to be taken into 

account in this regard was the abstraction of the various motion 

components, the accurate measurement of which could be facilitated 

by the configuration of the bearings. 
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A feature of flume waves, generated in the fashion described in this 

chapter, is the significant presence of higher order components 

resulting in a departure from the assumed linearity of the system. 

The most obvious consequence of this is the presence of drift 

forces. It was thus necessary to design the translatory bearing 

arrangement to accommodate a facility for horizontal restraint of a 

type that could be quantified and included in the theoretical 

formulations. Full details of the construction of the body, together 

with details of the design and manufacture of the bearing 

arrangements, are given in this chapter. 

The quality of data obtained from any experimental investigation is 

a direct function of the standard of equipment used in its 

collection. A major source of error, in this regard, is the accuracy 

with which such equipment is calibrated. For this reason, 

considerable attention was devoted to the calibration of measurement 

equipment, both statically and dynamically, with the intention of 

minimising the systematic error content of the eventual results. 

Another source of possible error is the method by which data is 

abstracted. Having selected the parameters to be measured, it was 

necessary to ensure the optimum method of measurement thereof, both 

with regard to acceptable experimental accuracy and expenditure of 

time. Full details of the methods of collection and analysis of data 

are given and, where alternative methods exist, each alternative is 

discussed and reasons given for its eventual acceptance or 

rejection. 

134 



5.2 Objectives of the Experimental Study. 

The primary objective of the experimental study was the validation 

of the parameters output by a computer program compiled using the 

theoretical and numerical methods contained in Chapters 3 and 4. It 

was intended to determine whether, and under what conditions, the 

physical behaviour and induced wave-effects departed from the 

predictions resulting from linear diffraction analysis. 

The parameters generated by the computer programme are as follows: 

(i} Added-mass and damping characteristics of the body. 

(ii) Exciting forces and phase angles, relative to the incident 

wave train, in the three directional modes. 

(iii) Motion characteristics of the body in the three directions. 

(iv) Reflection and transmission characteristics of the body in 

the fixed mode. 

(v) Generated wave characteristics resulting from the motions 

of the floating body. 

(vi) Overall reflection and transmission characteristics of the 

floating body as determined from the combined effects of 

(iv) and (v). 

An experimental study pertaining to the added-mass and damping 

characteristics of the body, together with measurement of the 

exciting force components, would necessitate a technique similar to 

that employed by Vugts(101), in which a sinusoidally oscillating 

forced motion is applied to the body. Consideration of the in-phase 

and quadrature components of the applied force, in conjunction with 

the equations of motion, enables computation of the hydrodynamic 
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coefficients. Since the forced body motion is applied separately in 

the three directional modes, it is also possible to measure the 

generated wave amplitudes and phases. Owing to a lack of 

experimental facilities for this particular study, the provision of 

a forced motion was out of the question, therefore precluding any 

investigation of the abovementioned parameters. 

It was adjudged that, since phase considerations are relatively 

unimportant in a practical context, sufficient validation could be 

obtained from an investigation limited to the following parameters: 

(i) Amplitudes of body motion in the three directions. 

(ii) Fixed-body Reflection and Transmission Coefficients. 

(iii) Overall Reflection and Transmission Coefficients. 

The lack of any suitable theory pertaining to higher order waves 

necessitated restriction of the investigation to motions and wave 

effects resulting from fundamental frequency incident waves. 

5.3 Experimental Parameters. 

5.3.1 The Diffraction Parameter. 

In the manner of previous experimental studies in this field, it was 

intended to investigate the body motions and wave effects with 

respect to a dimensionless diffraction parameter which was variable 

aver a suitable range. 
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Previous studies(84,101) have employed the dimensionless parameter: 

DP = o(B/2g)ß (5.3.1) 

where: B= Body length in the direction of wave travel; 

o= Wave radial frequency; 

It must be pointed out, however, that investigations in which this 

particular parameter has been used have been limited to deep-water 

conditions. Since the parameter takes no account of finite depth 

conditions, its use was considered unsuitable for studies involving 

intermediate or shallow depth conditions. 

According to the linear dispersion equation : 

a2 = gk for deep-water conditions. ) (5.3.2 

Substitution in equation (5.3.1) yields: 

DP = (nB/L) 

where: L= Incident wave length 

(5.3.3) 

Since deep-water conditions were not feasible in this investigation, 

it was decided that a suitable diffraction parameter would be the 

ratio of body length to incident wave length B/L. 

The difference between the two diffraction parameters with respect 

to depth conditions is illustrated below. It can be seen that the 

difference, and hence the validity of use, is significant for 

137 



intermediate depth conditions. 

Depth Frequency Incident Body o(B/2g)3 B/L 
Wavelength Length 

(m) (Hz) (m) (m) 

1.2 0.488 5.691 0.96 0.678 0.169 

10.0 0.488 6.556 0.96 0.678 0.146 

Table 5.3.1 Diffraction Parameter Variations. 

In order to comply to a certain degree with realism, a maximum value 

of 0.5 was chosen for the diffraction parameter. A preliminary 

series of numerical evaluations showed that this would be 

sufficiently large to encompass the natural frequencies of the body 

in the heave and pitch modes. This was particularly important since 

the results of previous investigations had shown that the major 

departure from theoretical predictions would be likely to occur in 

this region. 

5.3.2 Non-Dimensional Parameters. 

Since the body motions and associated wave-effects were to be 

investigated with respect to a dimensionless diffraction parameter, 

it was necessary that they also be suitably non-dimensionalised. In 

accordance with previous investigations, the following dimensionless 

parameters were chosen: 

nR 'IT al a2 Ba3 
R=-; T=-; ä1 =-; ä2 =- a3 -; 

ni ni nI nI nI 
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where: ni, nR, 'IT represent 

transmitte 

al, a2 represent 

amplitudes 

a3 represents 

in pitch. 

the incident, reflected and 

d wave amplitudes respectively. 

the translatory body motion 

in surge and heave respectively. 

the angular body motion amplitude 

R, T denote the Reflection and Transmission 

Coefficients. 

5.3.3 Choice of Body Geometry and Dimensions. 

For purposes of ease, speed and accuracy of construction, together 

with the more obvious economic reaons, a substantially rectangular 

profile was chosen for the floating body. 

The Frank Close-Fit Method (see Chapter 4), on which this particular 

numerical method of analysis is based, was developed primarily for 

the purpose of predicting the behaviour of complex ship-shapes for 

which no explicit closed-form solutions exist. In this light, it 

would have been desirable to investigate the dynamic behaviour of a 

body possessing a ship-like profile. However, the lack of 

fabrication facilities and expertise precluded the construction of 

such a body. 

Since the behaviour of the body was to be investigated with respect 

to the ratio of body length to incident wave length, the length of 

the body in the direction of travel of the incident wave was 

dependent on the range of incident wavelengths to be used in the 

investigation. A previous experimental study, carried out by the 
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author, of the generation and behaviour of regular waves in the 

laboratory flume showed that the maximum frequency at which 

well-behaved and stable regular waves could be generated was around 

0.9Hz. Above this frequency, the waves lacked essential 

two-dimensional consistency owing to a marked degree of transverse 

oscillation. The proposed method of resolution of the free-surface 

profile into incident and reflected wave components (see section 

5.8.2) required wave amplitude measurements to be taken at discrete 

locations over a range of approximately one incident wavelength. The 

available facilities were such that acceptably accurate resolution 

could be achieved for a maximum incident wavelength of 5m. For the 

proposed flume depth, this corresponded to a frequency of 0.45Hz. 

The frequency range of the incident waves was thus limited to 

between 0.45Hz and 0.9Hz. A few calculations, using the linear 

dispersion equation, showed that a body length of approximately l. Om 

would enable investigations to be carried out over a diffraction 

parameter range of 0.1 B/L e, 0.5. For practical purposes, the 

actual length chosen was 0.96m. 

It was intended to investigate the validity of the theoretically 

formulated parameters for various length/draught ratios of the 

floating body. To this end, the aspect ratios chosen were 2,4 and 

8. Within each value of aspect ratio, it was intended to investigate 

the effect of different submerged transverse edge radii. The maximum 

edge radius was limited by the deviation from a 'substantially 

rectangular' aspect ratio. It was felt that substantial 

rectangularity was maintained providing the ratio of edge-radius to 

draught was not greater than 4. The minimum edge radius was limited 

by the computer storage space required to provide an adequate 

solution using an immersed surface subdivision which complied with 
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the recommendations stated in Chapter 4 and Appendix A5. 

In view of these limitations, the following sets of investigations 

were proposed: 

L/D =2 L/D =4 L/D =8 

D/R 48 16 48 16 48 16 

L/R 8 16 32 16 32 64 32 64 128 

Table 5.3.2 Proposed Body Immersed Surface Aspects 

The values of draught/radius were chosen principally for the sake of 

economy and minimisation of the construction time. It can be seen 

from the above table that, with the exception of the largest and 

smallest radius, multiple use could be obtained from each radial 

edge, thus minimising the number of different radial edges requiring 

construction. 

5.4 Experimental Apparatus. 

5.4.1 The Experimental Flume and Wave Generation. 

The experiments were carried out in a sunken flume of total length 

65m, nominal width 1.8m and total depth from floor level of 2m. A 

beach consisting of ridged concrete planks was constructed at the 

downstream end of the flume to provide a means of energy 

dissipation. The beach was set at a slope of approximately 6° from 

the horizontal and rose from the base of the flume to a height of 

1.3m where it became horizontal and continued to the vertical 

141 



downstream end of the flume. In order to avoid the possibility of 

100% wave reflections from the vertical end wall, the effective 

beach height dictated that the depth of water in the flume should 

not exceed 1.25m. 

A preliminary series of experiments showed the dissipative 

properties of the beach to be acceptable for experimental purposes. 

Within the range of wave frequencies investigated at that time, the 

average beach reflection factor was found to be approximately 2%, 

while not exceeding 4% in any particular instance. Owing to the 

excellent energy dissipation provided by the beach, it was not found 

necessary in this investigation to take into account secondary body 

motions engendered by waves reflected from the beach. 

A train of regular waves was generated by vertical oscillations of a 

triangular cross-sectioned wedge having a vertical angle of attack 

of approximately 30°. A servo-unit reacted to an oscillating D. C. 

voltage signal input, in this case, from a standard sinusoidal 

signal generator. The servo-unit operated a hydraulic pump which 

motivated the wedge. 

A disadvantage of many signal generators is that the frequency is 

set by a ten-division dial, the scale of which operates on a decade 

system: 0.1 4 1.0 4 10.0 4 100.0 etc. The resultant coarse 

resolution enables frequencies to be set with only limited accuracy. 

In the normal course of events, this would not pose a significant 

problem. However, the proposed method of frequency analysis (see 

section 5.8.1) necessitated the setting of frequency to a greater 

degree of precision. The particular type of signal generator used in 

this investigation possessed certain features which permitted small 
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alterations in frequency to be achieved by the input of a constant 

D. C. voltage. Used in conjunction with a ten-turn potentiometer and 

a digital timer/counter, this feature enabled frequencies to be set 

with considerable accuracy. 

An unfortunate feature of wedge-generated waves is the presence of 

additional second and higher order free waves with dispersive 

properties which are independent of the fundamental wave. In the 

absence (to the best of the author's knowledge) of any simple theory 

for this type of wave generation, it can be reasonably concluded 

that the higher order free waves result from fluid/wedge 

interaction. The wedge oscillations provide a pulsating velocity 

component to the fluid, which does not vary exponentially with depth 

in the manner predicted by Stokesian theory. The difference in 

velocity distributions gives rise to a surfeit of energy which is 

dissipated in the form of higher order free waves. Previous studies 

carried out by the author have shown that the amplitude of the 

second-order free wave is of a similar order of magnitude to that of 

the Stokesian second-order component and, in many cases, greater. It 

can be seen, therefore, that the presence of free waves cannot be 

ignored in any study involving second and higher order components. 

However, this investigation entailed measurement of fundamental 

components only and, since the method of analysis (see section 

5.8.1) enabled resolution of an oscillating signal into discrete 

sinusoidal frequency bands, the higher order wave and motion 

components could be neglected. 
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5.4.2 The Floating Body. 

The body was constructed as shown in Figure 5.1. For reasons of 

water-resistance, robustness and economy together with ease and 

speed of construction, the material chosen for the body itself was 

20mm marine-bonded plywood. The water-resistant properties of the 

material were further enhanced by several coats of proprietary yacht 

varnish finished with a single coat of bituminous paint. 

To minimise the possibility of the occurrence of transverse forces 

and motions, and to preserve the essential two-dimensionality of the 

system, it was necessary for the transverse width of the body to 

conform as closely as possible with the width of the flume. A 

series of measurements showed that this could be achieved, whilst 

leaving sufficient space to ensure unimpaired motion, by specifying 

a transverse body width of 1795mm. 

At the maximum required depth of flotation of the body, the draught 

was 480mm. It was envisaged that the maximum incident wave height 

would be in the region of 50mm. A series of numerical evaluations of 

the predicted body motion amplitudes and phase angles, resulting 

from the action of incident waves of known height, was carried out 

for the proposed range of experimental frequencies. The results of 

this preliminary investigation showed that, for an incident wave 

height of 50mm, the maximum freeboard necessary to preclude the 

possibility of over topping was about 100mm. Allowing a certain 

margin of error for non-linear wave behaviour in the immediate 

vicinity of the body, it was adjudged that a freeboard of 120mm 

would be appropriate, resulting in an overall body depth of 600mm. 
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The removable radial edges consisted of several layers of 20mm 

plywood glued together and planed to the appropriate dimensions, 

rendering them effectively solid. Countersunk-head screws, inserted 

through holes pre-drilled at 300mm c/c along the corner bracing 

member and screwed directly into the solid radial edge, provided the 

required degree of fixity and tightness of fit to the main frame of 

the body. Watertightness was preserved by the insertion of a 

compressible grommet into the countersink prior to screwing tight. 

Since the experimental measurements of the three directional 

components of the overall body motion were required, the bearings 

had to be designed accordingly. 

In formulating the equations of motion of the body, a fundamental 

assumption is made that body rotation takes place about an axis 

coincident with the body's centroidal axis. To comply with this 

assumption, it was decided to physically constrain pitch rotation to 

take place about this axis. Owing to the likelihood of the body 

centroid varying for different conditions of ballasting, it was 

necessary for the vertical location of the rotational bearings to be 

easily adjustable. To facilitate ease of adjustment, steel 

slider-plates were fixed to the side-walls of the body, onto which 

the rotational bearings were mounted (see Fig. 5.2). Following 

adjustment to the required vertical location, the bearings could 

then be locked into position. 

In order to alleviate the effect of fractional misalignment of the 

axial shaft, commercially produced rotation bearings are generally 

capable of a certain degree of rotation in a direction orthogonal to 

the primary axis of rotation. The bearings used in this 
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investigation unfortunately possessed this capability, thus 

presenting some initial problems in maintaining perpendicularity 

between the vertical bearing shafts and the axis of rotation of the 

body. Constant perpendicularity was eventually achieved by the use 

of a machined steel shim inserted in the body of the bearing and 

designed to restrict orthogonal rotation when the bearing base-plate 

was locked against the steel slider-plate. 

To provide horizontal and vertical translatory motions, together 

with separate measurement thereof, a bi-axial bearing was designed 

as shown in Figure 5.3. Since relative vertical motion of the 

floating body and the vertical bearing shaft was prevented by the 

steel connecting block, the bearing shaft moved vertically with the 

body but relative to the steel bearing plate which was vertically 

restrained by the fixture of the horizontal bearing shaft to the 

supporting structure. The bearing plate, however, was free to move 

in a horizontal direction. Owing to possible frictional resistance 

in the bearings, the possibility of damage to the bearings resulting 

from moment transfer could not be overlooked. A bearing separation 

of approximately 500mm was adjudged sufficient to minimise this 

possibility. The use of a bearing plate, which was free to move in a 

horizontal direction, resulted in additional translatory inertia. 

This, however, was easily accounted for by the inclusion of an 

additional mass term in the equation of motion pertaining to the 

horizontal direction. 

The presence of Stokesian and free second-order components in any 

flume-generated wave gives rise to the probability of horizontal 

drift of a floating obstacle in the direction of travel of the 

waves. To ensure true sinusoidal horizontal motion taking place 
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about a constant mean position, it was necessary for the horizontal 

motion of the body to be partially restrained by springs. This was 

achieved by restraining each horizontal bearing plate by means of 

springs attached to immovable collars fixed to the horizontal 

bearing shafts. The fact that the restraint was imposed on the 

bearing plate, and not the body itself, ensured that the horizontal 

restraint force effectively acted through the body centroid. In this 

way, mathematical complications in the equations of motion, arising 

from restraint force eccentricity, could be avoided. As a result of 

the bearing design, the freedom of motion in the heave and pitch 

directions was independent of the freedom of motion in the surge 

direction. Thus, any horizontal restraint imposed acted solely in 

that direction. 

To provide a constant restraint stiffness, the ratio of restraint 

force to displacement, it was a requirement that each spring 

remained in tension throughout the complete cycle of motion of the 

body. Compliance with this requirement was achieved by the 

attachment of springs to both the upstream and downstream edges of 

the bearing plate. With both sets of springs attached, the body 

naturally found its own equilibrium position. Any minor adjustment 

of this equilibrium position, to ensure orthogonality of the 

transverse axis of the body with respect to the direction of travel 

of the incident wave train, was carried out by movement of the 

collars clamped to the horizontal bearing shafts. 

A few numerical evaluations were carried out, for a variety of body 

draught and incident wave conditions, to ensure that the induced 

horizontal resonant frequency of the mechanism, resulting from the 

presence of spring restraints in that direction, did not intrude 
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within the proposed experimental frequency range. For the sake of 

convenience and consistency of results, it was decided to use a 

constant spring strength for each flotation depth setting. A series 

of preliminary physical tests was performed to determine the 

particular spring strength required for each draught setting, the 

criterion being that horizontal drift be tust prevented throughout 

the proposed frequency range of the investigation. Account was taken 

of the restraint imposed by the springs by the insertion, in the 

equations of motion, of a constant of proportionality relating 

horizontal force to displacement, that constant being the spring 

stiffness. 

In order to achieve the depths of flotation specified for the 

investigation, a considerable quantity of ballast was needed. For 

ease of inertial and centroidal computation, together with ease of 

handling, pre-cast concrete blocks were chosen as the ballast 

medium. However, to enable the dimensions of the ballast blocks to 

be determined, the weight of the body had to be ascertained together 

with that of the bearing arrangements. This necessitated the 

completion of construction of the body and testing for 

watertightness prior to casting of the blocks. 

In order that all joints and points of possible ingress of water 

could be subjected to the maximum hydrostatic pressure likely to be 

encountered under experimental conditions, it was intended to 

immerse the body in water to the maximum possible draught. The fact 

that the ballast blocks had not yet been cast, together with the 

absence of any suitable alternative, resulted in the exercise being 

less straightforward than first impressions would indicate. 
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Consideration was given to the idea of filling the body with water 

and noting any leaks that appeared, the philosophy being that a 

point of leakage would indicate a point of possible water ingress. 

This idea, however, was discounted owing to the fact that, under 

these conditions of loading, the joints would be subjected to 

negative stress. The test would not, therefore, give a reliable 

indication of watertightness. The only effective way of achieving 

the necessary depth of immersion was to restrain the body on the 

bottom of the empty flume and then fill the flume up to the required 

depth. To this end, two transverse scaffold poles were fixed to the 

side railing of the flume. Affixed to these poles were four vertical 

poles resting on blocks in the base of the body. It was intended 

that vertical displacement of the body would, in this way, be 

prevented on filling the flume. Having achieved the required 

immersion, it was intended to leave the body in this position for 24 

hours. However, insufficient consideration was given to the 

magnitude of the axially-acting reactive forces, engendered by the 

upthrust, at each point of contact between the base of the body and 

the vertical scaffold member. In the course of the test, this point 

loading resulted in significant opening of the joints, subsequently 

necessitating substantial repair operations. The problem was 

ameliorated by resting the vertical scaffold members on a plane 

framework of timber, situated in the base of the body, which 

effectively distributed the point loads over the area of the base. 

In order to avoid the laborious and inconvenient exercise of 

weighing the body with each of the five pairs of radial edges 

attached, the body was weighed once with the largest pair of radial 

edges attached and, from that weight and the body geometry, the 

average density of the body material was computed. This enabled 
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straightforward computation of the mass, centroidal and inertial 

parameters of the body with the remaining radial edges attached. 

The computed ballast weights were approximately 660kg, 250kg, and 

46kg for B/D = 2,4,8 respectively. It was appreciated that, owing to 

possible imperfections in the symmetry of mass distribution of the 

ballast, a uniform draught could not automatically be assumed. For 

this reason, some form of adjustment of ballast position had to be 

possible. The 46kg ballast was thus composed of four blocks of 

approximately llMkg each. In the event of asymmetric draught 

occurring, these blocks could be re-positioned accordingly. The 

remaining ballast consisted of two blocks, the plan dimensions of 

which were such that, allowing for clearance in the area of the 

rotation bearing, a uniform distribution of ballast could be 

achieved over the transverse length of the body. These two blocks 

could then be used singly or in combination, in conjunction with the 

four movable blocks, to achieve the necessary flotation depths of 

the body. 

5.5 Measurement of Experimental Data. 

5.5.1 Free-Surface Displacement. 

The oscillation of the free-surface was measured at fixed locations 

by means of vertically orientated parallel wire wave probes, of the 

resistance type, in conjunction with a dedicated amplifier based on 

a design developed at the Hydraulics Research Station (now Hydraulic 

Research Ltd. ). Although this method of measurement is intrusive, 

the diameter of each arm of the probe is small in relation to the 

153 



wavelength of the surface oscillation. Consequently any disturbance 

of the surface, resulting from the presence of the probe, is minimal 

and can be regarded as insignificant. As the free-surface oscillates 

over the length of the probe, an oscillating voltage is output, 

amplified and recorded thus providing a measure of the free-surface 

oscillation. 

5.5.2 Translatory Body Motions. 

The translatory motions of the body were measured directly using 

induction-type displacement transducers affixed to one of the 

bearing plates (See Section 5.4). A constant D. C. excitation voltage 

is input to the transducer and displacement of an axially moving 

plunger, situated within the body of the transducer, causes this 

voltage to be modified in such a way that the output voltage is 

directly related to the plunger displacement. In order that surge 

and heave displacements could be measured directly, the transducer 

plungers were displaced by plates attached to the relevant bearing 

shafts. 

5.5.3 Rotational Body Motions. 

In the absence, to the best of the author's knowledge, of 

transducers capable of direct measurement of angular displacement, 

the rotational motion of the body had to be derived from 

measurements of rotational acceleration (See Section 5.8.3). This 

acceleration was obtained by means of two piezo-ceramic acceleration 

transducers fixed to opposite faces of the body. When a transducer 
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of this type is subjected to an acceleration, the resultant inertial 

force causes a piezo-ceramic module inside the transducer to deform 

and generate a charge proportional to the degree of deformation. A 

purpose built amplifier/converter receives the charge, which is then 

amplified and converted to a measurable voltage output proportional 

to the acceleration. 

5.6 Calibration of Measuring Equipment. 

5.6.1 Static Calibration. 

The measurement of free-surface or body displacements, using the 

methods outlined in Sections 5.5.1 and 5.5.2, necessitated the prior 

determination of the relationship between displacement and the 

resulting voltage output. In the case of the wave probes, the 

procedure involved displacing the probe in still water through a 

sequence of known distances and recording the voltage output for 

each displacement. Static calibration of the displacement 

transducers necessitated the displacement of the transducer plunger 

through a similar sequence of known distances and recording the 

individual output voltages. A mathematical function could then be 

derived, relating the output voltage to the displacement. 

Previous experimental studies involving the use of these particular 

wave-probes have assumed the relationship between displacement and 

output voltage to be linear. At the time the studies were carried 

out, this was a correct assumption and static calibration simply 

required the measurement of output voltage resulting from two 

displacements, the minimum necessary to obtain a linear 
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relationship. However, a comprehensive series of tests demonstrated 

that the passage of time has, to a certain degree, affected the 

linear voltage response of the probe/amplifier combination. As a 

result, it was felt that the displacement/voltage relationship could 

best be represented by a polynomial expression derived from a 

'Least-Squares' regression exercise performed on the data set. 

Owing to the possibility of significant variation of the voltage 

sensitivity of wave probes with temperature and time, it is 

advisable, in the interests of accuracy, to statically calibrate 

wave probes as regularly as possible, i. e. before every set of tests 

in which the probes are used. To this end, a dedicated interactive 

computer program was developed by the author to facilitate rapid 

polynomial static calibration of wave-probes in conjunction with the 

High Speed Scanner (see Section 5.7). This resulted in static 

calibration becoming a somewhat less arduous task and, therefore, 

less susceptible to avoidance. 

Owing to the fact that the voltage response of the probe/amplifier 

combination could be adjusted by a potentiometer, inserted within 

the amplifier circuitry to make full use of the available scanner 

range, it was felt advisable to relate the probe displacement 

directly to the scanner output without performing the intermediate 

operation of computing the scanner voltage sensitivity. 

The displacement transducers, available for use in the 

investigation, had been commercially calibrated but linearity had 

only been guaranteed over a rated stroke of 50mm. The displacements 

likely to be encountered in the course of the investigation were in 

excess of this rating and it was consequently felt advisable to 
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perform a similar calibration exercise over the maximum attainable 

stroke range. However, in view of the fact that the voltage output 

sensitivity of the transducers did not vary with ambient temperature 

changes, the calibration exercise needed performing only once. 

Typical static calibration results, shown in Figures 5.4 and 5.5, 

demonstrate a slight deviation from linearity in both cases. 

Subsequent tests on the voltage sensitivity of the High Speed 

Scanner showed a precise linear relationship between voltage input 

and digital output, leading to the conclusion that the deviation 

from linearity, observed in the static calibration, was a feature of 

the measurement device and not the High Speed Scanner. 

5.6.2 Dynamic Calibration. 

A feature of the measurement system described in section 5.5.1, 

which has only recently been appreciated, is the existence of a 

dynamic calibration factor applicable to both the amplitude and 

phase of an oscillating input signal. A series of tests, carried out 

by the author prior to this investigation, showed that the true 

amplitude and phase angle of sinusoidal oscillations of the 

free-surface deviated to a varying degree from those derived from 

static calibration procedures described in Section 5.6.1. 

The preliminary test results showed the deviation in phase angle to 

be an inherent feature of the amplifier rather than the interaction 

between probe and free-surface, as it represented a constant time 

lag which was independent of the frequency and amplitude of the 

oscillating input signal. 
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The pattern of results pertaining to amplitude measurement, however, 

showed that there was a linear relationship between true and 

measured amplitude which varied with the frequency of oscillation of 

the free surface. Since the proposed scope of the experimental 

investigation did not include measurement of relative phase angles, 

the incurred phase shift between true and measured oscillation could 

be ignored. However, in the interests of quantifying all significant 

systematic errors, a series of calibration exercises was required to 

determine the dynamic amplification factor pertaining to amplitude 

measurement. Since there was insufficient time to carry out the 

considerable number of tests required to determine an acceptably 

precise mathematical relationship between input signal frequency and 

dynamic amplification factor, in order to obtain a generalised 

calibration expression, it was only possible to determine individual 

calibration factors applicable to the particular frequencies 

proposed in the investigation, these frequencies being 

pre-determined by the intended method of analysis (See Section 

5.8.1). 

At a known constant frequency, the wave-probe was vertically 

oscillated in still water, to simulate a regularly oscillating 

free-surface, by attaching it to the vertical connecting shaft of 

the wave-generator, with the wedge disconnected. By means of 

potentiometers within the generator circuitry, it was possible to 

vary the amplitude of motion of the probe over a suitable range thus 

enabling mathematical correlation between a set of discrete measured 

amplitudes and the corresponding amplitudes derived from static 

calibration data. In all cases, this correlation was found to be 

linear as shown in Figure 5.6. (For reasons of clarity, it must be 

noted that 'scanned stroke' refers to the stroke computed from 
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measured values of the peak to peak wave-probe output voltage). 

Since the dynamic response characteristics of the displacement 

transducers were not known, it was considered advisable to perform a 

similar series of tests thereon. Typical test results, shown in 

Figure 5.7, demonstrate the dynamic amplification to be significant 

when considered in terms of an acceptable overall magnitude of 

experimental error. 

The accelerometers, to be used for the measurement of rotational 

body motion, had been factory-calibrated by the manufacturers prior 

to dispatch. It was stated, however, that the lowest frequency at 

which the calibration could be guaranteed was 2Hz. In view of the 

fact that the proposed range of investigational frequencies was 

substantially lower than this recommended minimum, calibration tests 

were carried out at each proposed frequency to correlate known 

accelerations, derived from measurements of motional amplitude, with 

those obtained from the manufacturers calibration data. Typical 

results, shown in Figure 5.8, demonstrate a considerable deviation 

between true and measured acceleration. 

5.7 Collection and Processing of Raw Data. 

The fluctuating voltage signals from the wave probes, together with 

those from the displacement and acceleration transducers, could be 

fed in continuous form into a High Speed Scanner module operated in 

conjunction with a DIGITAL PDP-11 micro-computer. Commercially 

supplied software enabled the sequential scanning of up to thirty 

two input channels at discrete user-determined intervals. Following 
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the performance of an analogue/digital conversion, the collected 

data could be written to disk files. Since the data thus obtained is 

in binary machine code, further software is required to convert it 

to octal or decimal form for further analysis. Certain modifications 

were carried out on the software to permit scanning in 'burst' 

fashion. In this way, successive passes over the specified number of 

sequential channels could be separated by a user-determined time 

interval, specified as a multiple of the mains period of 0.02 

seconds, up to a maximum of ten seconds. In this way, it is possible 

to obtain a discretised scan of a fluctuating voltage signal input 

to a particular channel, subject to a minimum time interval of 0.02 

seconds between successive scans. The sensitivity of each module of 

sixteen channels could be adjusted in 3dB intervals to record peak 

voltage inputs ranging from 2OmV to 5V. 

Further analysis, according to the methods described in section 5.8, 

could be carried out either using the micro-computer or the 

main-frame HONEYWELL 60/66 computer, depending on resource 

requirements. In order to facilitate transfer of text or data files 

between the micro and main-frame computers, an interface program was 

developed. In the absence of graphics facilities for the PDP-11 

system, this interface feature proved most useful for graphical 

presentation of transferred data, using the HONEYWELL facilities. 

A flow chart describing the overall procedure is shown in Fig. 5.9. 
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5.8 Analysis of Data. 

5.8.1 Resolution of Periodic Data. 

Since all data output from the measuring instruments was of a 

periodic nature, the analysis was carried out using the Fast Fourier 

Transform algorithm: 

If N discrete observations of a fluctuating signal are made at time 

intervals of at then, providing the value of N is an integer power 

of 2, resolution of the signal into the following components is 

possible: 

S= ao + a1Cos 2irfit + b1Sin 2nfit 

+ a2Cos 2nf2t + b2Sin 2nf2t + ..... 

where: S represents the fluctuating input signal. 

fn = n/Not. 

(5.8.1) 

For a signal which is essentially sinusoidal, it can be seen that 

precise evaluation of the fundamental and higher order frequency 

components is possible only if the total observation period is a 

multiple of the fundamental period of the signal. As a result of 

this constraint, the following frequencies were chosen for the 

investigation, permitting 512 observations to be made at time 

intervals subject to the scanning conditions described in Section 

5.7: 
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Frequency 
(Hz) 

Time Interval 
(secs) 

No. of cycles 
observed 

0.4883 0.02 5 

0.5371 0.04 11 

0.5859 0.02 6 

0.6348 0.04 13 

0.6836 0.02 7 

0.7324 0.04 15 

0.7813 0.02 8 

0.8301 0.04 17 

0.8789 0.02 9 

Table 5.8.1 Proposed Investigational Frequencies. 

It was adjudged that this would be a sufficient number of 

frequencies, over the required frequency range, to give a 

satisfactory spread of results for comparison with theoretical 

predictions. 

5.8.2 Free-Surface Displacement. 

As a consequence of the reflective and transmissive properties of 

the body, together with the slight reflective properties of the 

beach, the upstream and downstream free-surface profiles are 

composed of components travelling in both the positive and negative 

directions. In the case of the upstream profile, these components 

are the incident and body-reflected waves respectively. In the case 

of the downstream profile, the components are the body-transmitted 

and beach-reflected waves respectively. For a complete analysis of 
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the reflective and transmissive characteristic of the body, together 

with evaluation of the non-dimensional components of body motion 

(see Section 5.3.2), resolution of the free-surface profile into 

positive and negative components is required. 

For comparative purposes, details are given of two methods of 

resolution together with comments on their usage: 

Consider a flume wave consisting of the following fundamental 

frequency components: 

(i) The incident component, having a positive direction of 

travel: 

nj = aI Cos(kx-ot) (5.8.2a) 

(ii) The reflected component, having a negative direction of 

travel: 

nR = aR COs(kx+ßt+ER) (5.8.2b) 

where: 'ER is the phase angle of the reflected component relative 

to the incident wave. 

Assuming linear superposition the combined wave profile, at any 

location x along the flume length, may be defined by the expression: 

(nI+nR) = aI Cos(kx-ot) + aR Cos(kx+ot+CR) (5.8.3) 
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Re-arrangement of this expression, into a form comparable with that 

of equation (5.8.1), yields: 

(nI+nR) =A Cos at +B Sin at 

where: A= aI Cos kx + aR Cos(kx+CR) 

B= aI Sin kx - aR Sin(kx+eR) 

(5.8.4) 

The components A and B may be evaluated, using the Fast Fourier 

Transform algorithm detailed in Section 5.8.1, from a time-based 

observation of the free-surface profile at the specified location. 

Method 1 (see Goda and Suzuki(27)). 

Consider the simultaneous observation of the free surface profile at 

2 separate locations xl and (xl+1x): 

{nI+nR}X__X1 
= Al Cos at + B1 Sin at (5.8.5a) 

{nIýnR}+oX 
= A2 Cos at + B2 Sin at (5.8.5b) 

where: A,, B1, AZ, B. are in the form indicated by equation (5.8.4). 

An algebraic exercise, performed on equations (5.8.5a) and (5.8.5b) 

yields the following parameters: 

1y 
aI 21Sin koxl 

(F 

1 
(FRS aR 2ISin knxl 

(5.8.6a) 

(5.8.6b) 
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where: aj = Incident wave amplitude. 

aR = Reflected wave amplitude. 

FI = (AZ-A1Cos kox-B, Sin knx)Z + (BZ+A1Sin kox-B1Cos kax)Z 

FR = (A2-A1Cos kox+B1Sin k. x)2 + (B2-A1Sin kax-B1Cos kax)2 

An advantage to be gained from use of this method derives from the 

fact that component resolution can be effected directly using data 

obtained from simultaneous observation of the surface profile at two 

discrete locations. This minimises the data collection time for each 

particular set of conditions and, in investigations which entail the 

abstraction of data pertaining to a considerable number of different 

conditions, can result in a substantial reduction in the time 

required to complete the investigation. 

Inspection of equations (5.8.6a) and (5.8.6b) shows that the 

accuracy of the resolved parameters is directly related to the 

precision with which the probe separation, ox, is measured. In the 

course of this investigation, it would have been entirely feasible 

to position the wave probe trollies with the required degree of 

precision but, owing to the relatively imprecise manufacture of the 

trolleys and attendant railing, it would have been impossible to 

guarantee a correspondingly precise separation of the probes at the 

free-surface. As a consequence of the depth of the free-surface 

below the top of the flume, direct access to the free-surface was 

difficult, thus posing certain problems in carrying out an accurate 

physical check on wave probe separation. Had this method of 

resolution been adopted, however, these difficulties could possibly 

have been surmounted to ensure an acceptably accurate wave probe 

separation resulting in the incurrence of minimum analytic error. 

170 



The overriding disadvantage associated with the use of this method, 

and the reason behind its eventual rejection, was the lack of 

information to be gleaned from inspection of the individual results. 

The presence of behavioural abnormalities in the wave train, such as 

those induced by resonance, could only be detected from an 

inspection of the pattern of readings obtained from several probe 

locations. Whilst such a procedure would enable a realistic 

assessment to be made of the confidence with which individual 

results could be viewed, it would of course nullify any possible 

time-saving advantage to be gained from use of the method. 

Method 2 

Consideration of equation (5.8.4) shows that the measured wave 

amplitude, at any point xi along the flume, may be defined by the 

expression: 

(A0)j = 
fai2 

+ aR2 + 2aIaR Cos(2kxi+cR)}' (5.8.7) 

It can be seen from this expression that the square of the measured 

wave amplitude varies sinusoidally with longitudinal flume position. 

If a number of amplitude measurements are abstracted at various 

known positions along the flume, using the coordinate system defined 

in section 3.2, a correlation exercise may be performed, using the 

method of Least-Squares, to derive the following relationship 

between the data sets: 

{A0}2 = cl + c2 Cos(2kx+6) (5.8.8) 
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Comparison between equations (5.8.7) and (5.8.8) shows that: 

c1 = aIz + aR2 

cZ = 2aIaR 

b= eR 

(5.8.9a) 

(5.8.9b) 

(5.8.9c) 

Substitution of equation (5.8.9b) in (5.8.9a) yields the following 

quartic equation: 

4a14 - 4c1aIz + c2 =0 (5.8.10) 

Reduction of this expression to quadratic form gives the following 

solution for a12, indicating the existence of 2 roots: 

ail = 
C1 

f (c2 
- cZ)M 

2iz 
(5.8.11) 

Substitution from equations (5.8.9a) and (5.8.9b), together with 

consideration of the fact that the value of aR/aI must not exceed 

unity, leads to the unambiguous expression: 

a12 = 
LI 

+ (ci _c z)m 
2 

which can be solved for ai and, by back substitution, aR. 

(5.8.12) 

The principal reason for adoption of this method of resolution, in 

preference to the previously detailed alternative, lay in the fact 

that it offered the facility of detection of any abnormalities in 

wave behaviour. In order to take full advantage of this facility 

and, at the same time, obtain acceptably accurate results, it was 
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necessary to apply a certain amount of forethought to the process of 

data collection. 

As a consequence of the predicted sinusoidal variation of the square 

of measured amplitude with flume position, the longitudinal range of 

sampling locations had to be sufficient to permit analysis of at 

least one complete variational cycle i. e one beat wavelength equal 

in magnitude to half the incident wave length. In order to detect 

the presence of behavioural abnormalities, indicated by deviation 

from the predicted sinusoidal variation, the range of sampling 

locations had to be such that graphical representation of the 

sinusoid included at least two troughs or crests. Compliance with 

this requirement dictated a minimum sample length of 1J beat wave 

lengths. 

It is a feature of statistically based regression techniques, such 

as those used in this method of analysis, that the parameters 

obtained therefrom are essentially estimates and are, consequently, 

subject to a certain margin of error. This error margin is a 

function not only of the scatter of input data about the regression 

curve but also of the number of data points considered in the 

analysis. An increase in sample size with a view to minimising the 

error would, however, lead to an increased expenditure of data 

collection time, a direct consequence of which would be an increase 

in overall project duration. In order that a compromise could be 

reached, enabling the acceptably accurate estimation of regression 

parameters from analysis of a minimal number of observations, it was 

necessary to determine the sampling density at which the error 

magnitude associated with each parameter became relatively 

insensitive to a change in sample size. The results of a series of 
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numerical tests, carried out on data obtained from a previous 

wave-profile investigation, showed that an acceptable degree of 

accuracy could be achieved from a sampling density of 20 

observations per beat wavelength. 

As a consequence of occasional minor imperfections in the wave 

generation, together with the normal random errors associated with 

any method of measurement, it was decided to take several 

measurements of wave amplitude at each sampling location in order to 

minimise the effect of random errors on the overall computation of 

the regression parameters. Inspection of the results obtained from a 

preliminary series of tests demonstrated that the stability of the 

wave train and the measuring equipment was such that no significant 

advantage could be derived from the abstraction of more than two 

measurements at any particular location. 

A fundamental assumption, concerning the use of asymptotic values of 

potential functions to evaluate the far-field reflection and 

transmission characteristics of the body (See Appendix A6), is that 

the wave train may be defined by these characteristics at large 

distances from the body, i. e. at distances sufficient to ensure 

total decay of non-linear localised effects. A series of numerical 

evaluations, entailing comparison of the surface profile obtained 

from consideration of potential functions and that obtained from 

consideration of the far-field Reflection and Transmission 

Coefficients, showed that 99.99% of decay of localised effects took 

place within one incident wave length of the wave/body interface. In 

the absence of any numerical results pertaining to the surface 

profile immediately adjacent to either the wave generator or the 

beach, it is not unreasonable to assume that a similar distance is 
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BODY NUMBER 2 (Floating Mode) 

Length 0.960 (m) 
Nominal Draught 0.480 (m) 
Submerged Edge Radius 0.060 (m) 

Still Water Depth 1.199 (m) 
Incident Wave Frequency 0.781 (Hz) 

Theoretical Wave Number 2.469 (ml) 
Theoretical Beat Wavelength 1.272 (m) 

THE UPSTREAM WAVE 

Wave Number 2.482 (m-1) 
Beat Wavelength 1.266 (m) 
Incident Wave Amplitude 8.323 (mm) 
Reflected Wave Amplitude 1.636 (mm) 
Reflection Coefficient 0.197 

THE DOWNSTREAM WAVE 

Wave Number 
Beat Wavelength 
Transmitted Wave 
Beach Reflected 
Beach Reflection 

2.452 (m-1) 
1.281 (m) 

Amplitude 6.373 (mm) 
Wave Amplitude 0.623 (mm) 
Coefficient 0.098 

BODY REFLECTION AND TRANSMISSION 

Reflection Coefficient R 0.1965 
Transmission Coefficient T 0.7657 

Energy R2 + T2 0.6249 

TABLE 5.8.2 Reflected and Transmitted 
Wave Analysis. 
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Fig. 5.10 REFLECTED AND TRANSMITTED WAVE ANALYSIS 
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required to ensure a comparable decay of localised effects 

associated therewith. In order to ensure the far-field validity of 

reflection and transmission characteristics obtained by this method 

of resolution, it is a necessary requirement that surface profile 

measurements are abstracted from locations which remain 

uncontaminated by the decay of localised effects. Since the 

proportion of overall flume length occupied by these decay zones is 

a direct function of the incident wave length, it becomes 

immediately apparent that compliance with the above requirement 

imposes a limit on any investigational frequency range, below which 

the use of this method becomes no longer feasible. Conversely, use 

of this method imposes an upper limit on the frequency range such 

that accurate positional resolution, between individual sample 

points, remains possible. 

In this investigation, however, the proposed range of wave 

frequencies (See Section 5.3.3) was encompassed by the above limits, 

thus imposing no restrictions on the use of this method of 

resolution. 

A graphical representation of a typical surface profile variation 

with position is shown in Figure 5.10. Numerical details of the 

associated analysis are shown in Table 5.8.2. 

5.8.3 Body Motions. 

a) Translatory Motions. 

The surge and heave motions of the floating body were separately 
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measured using the method described in Section 5.5.2. The peak 

voltage output from each transducer was determined from Fast Fourier 

Transform analysis of the oscillating output signal, permitting 

derivation of the individual motion components when used in 

conjunction with the appropriate static and dynamic calibration 

factors. 

b) Rotational Motion. 

Measurement of rotational motion of the floating body was achieved 

indirectly from the measurement of rotational acceleration, as 

described in Section 5.5.3. Two acceleration transducers were 

affixed to opposite faces of the floating body as shown in Figure 

5.11. 

Fig. 5.11 MEASUREMENT OF PITCH ROTATION 

178 



As a consequence of the assumed rigidity of the body, the 

acceleration measured by each transducer consists of a linear 

superposition of the following components: 

(i) Horizontal acceleration, aX, resulting from surge motion of 

the body centroid. 

(ii) Vertical acceleration, ay, resulting from heave motion of 

the body centroid. 

(iii) Radial and tangential accelerations, ah and a0, resulting 

from rotation of the transducer about the body centroid. 

Resolution of the components, in the direction of positively 

measured acceleration, yields; 

al = - ax Sin 0 + ay Cos 0 + ah - ae Cos 13 (5.8.13a) 

a2 = - ax Sin 0 + ay Cos 0 + ah + ag Cos ß (5.8.13b) 

where: ai = acceleration measured by transducer No. l. 

az = acceleration measured by transducer No. 2. 

9= instantaneous angular displacement of the body. 

A= tan-'(h/r) 

Subtraction of equation (5.8.13a) from (5.8.13b) yields: 

az - al = 2ae Cos ß (5.8.14) 

The instantaneous angular displacement may be defined: 

e= a3 Cos(at+(; 3) 
(5.8.15) 
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where: a3 = amplitude of angular displacement. 

e3 = phase of angular displacement. 

But by definition: 

ae = (r2 + h2)ß 
ate 

atz 

=- oz(r2 + h2)3i Cos(ot+E3) (5.8.16) 

Substitution in equation (5.8.14), followed by a little algebra, 

yields: 

a2 - al =- 2ro2«3 Cos(ot+e3) (5.8.17) 

The use of Fast Fourier Transform techniques permits resolution of 

the transducer output signals into the following form: 

a1 = Al Cos of + B1 Sin of 

a2 = AZ Cos at + BZ Sin at 

Substitution of equations (5.8.18) into (5.8.17) yields: 

(5.8.18a) 

(5.8.18b) 

(AZ - A1)Cos at + (BZ - B1)Sin at = -2ro2a3 Cos(ot+e3) (5.8.19) 

Expansion of (5.8.19) followed by equating coefficients of Cos at 

and Sin at yields: 

AZ - A, = -2ro2a3 Cos e3 

BZ - B1 = 2ra2«3 Sin e3 
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which gives: 

a3 2roz{(Bz - B1)2 + (A1 - AZ)Z}% (5.8.20) 

It must be noted that, in order to provide compatibility, the 

coefficients A and B must be derived from simultaneous observation 

of output from the transducers, taking into account the appropriate 

calibration factors. 
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CHAPTER 6. PRESENTATION OF RESULTS. 

6.1 Introduction 

As discussed in Chapter 5, the primary objective of the experimental 

investigation was the validation of the parameters output by a 

computer program constructed from the theoretical and numerical 

formulations detailed in Chapters 3 and 4 of this thesis. 

Ideally, a complete validation would require an experimental 

investigation of all the output parameters but, for reasons 

discussed in Chapter 5, this was not possible. The lack of suitable 

experimental facilities limited the investigation to the measurement 

of wave-effects and body motions associated with the interaction of 

a floating obstacle and a train of regular waves. Since the 

computation involved the determination of the 'fixed body' 

potentials as described in Chapter 3, experimental measurement was 

also carried out of the wave-effects resulting from the equivalent 

fixed body interaction. The various non-dimensional parameters 

measured are detailed in section 5.3.2. 

It was intended to investigate the validity of the theoretical 

formulations for various body length/draught ratios of the 

fixed/floating body. To this end, the aspect ratios chosen were 2,4 

and 8. Within each value of aspect ratio, it was intended to 

investigate the effect of different submerged transverse edge radii, 

both numerically and experimentally. Details are given in Table 6.1 

at the end of this chapter. 
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In order to investigate the behaviour of the parameters over a 

suitable range of values of the diffraction parameter (see section 

5.3.1), nine incident wave frequencies were chosen to give a 

diffraction parameter range of 0.17 to 0.48 approximately. These 

frequencies, chosen for their compatibility with the Fast Fourier 

Transform analysis technique (see section 5.8.1), are detailed in 

the various tables of experimental results presented in this 

chapter 

Since previous investigations in this field have demonstrated the 

dependence of the hydrodynamic parameters on still-water depth, it 

would have been desirable to carry out the above-mentioned 

investigations for a series of different flume depths. Owing to 

certain time-related limitations being imposed upon the availability 

of experimental facilities however, this was not possible and the 

investigations were consequently limited to a single flume depth. 

For physical reasons, this depth was chosen as a nominal 1.2m and 

all the theoretical predictions were computed using this value: Any 

slight variations arising as a result of leakage or evaporation are, 

detailed in the tables of experimental results. 

In the event, it became necessary to curtail the original 

experimental program owing to persistent failure of the electronic 

measuring equipment, resulting in the experimental investigation of 

Body No. 9 being cancelled owing to shortage of time. 

It must be noted that, for ease of inspection and consistency of 

format, all tables and graphs of results are presented at the end of 

this chapter. 
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6.2 Floating Body Details. 

In order to facilitate possible repetition of the computations in 

any subsequent studies in this field, full details are given of the 

computational, geometric, inertial and element distribution 

parameters used to derive the theoretical predictions. These details 

are presented in Tables 6.4 to 6.11. 

Physically measured geometric parameters were limited to the body 

length and submerged transverse edge radii. The remaining geometric 

and inertial parameters were calculated from the geometric 

properties and measured mass density of the materials used for the 

body and the necessary ballast to ensure the correct flotation 

depth. The additional horizontal mass component consisted of the 

measured mass of the bi-axial bearing arrangement (see section 

5.4.2) since that component contributed only to the horizontal 

inertia of the body. 

A horizontally-acting spring restraint system (see section 5.4.2) 

was required to counteract the effects of higher order drift forces. 

For various physical and economic reasons, it was not possible to 

provide the required restraint by means of single springs of known 

stiffness. As a consequence, the restraint was provided by a number 

of nominally identical smaller springs acting in parallel. A series 

of tests was performed to determine the stiffness of each spring and 

the results indicated a consistency of individual stiffnesses such 

that the overall system stiffness could be determined with 

reasonable accuracy by multiplying the number of springs in the 

system by the average individual spring stiffness as determined from 

the above tests. A preliminary series of tests was performed on each 
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body to determine the minimum number of springs necessary to ensure 

a substantially sinusoidal horizontal motion of the body about a 

constant mean position over the whole range of envisaged incident 

wave conditions. 

In order to graphically represent the behaviour of the chosen 

theoretical parameters over the given range of diffraction parameter 

values, a vast number of solutions was required, necessitating 

considerable expenditure of computer processor time. Since CPU time 

per solution increases proportionally with the square of the number 

of boundary elements (see Appendix A7), it was necessary to limit 

the number of elements such that an acceptably accurate solution 

could be obtained from a minimal expenditure of CPU time. The 

results of a few numerical tests showed that this situation could be 

achieved by the use of an element length ratio (see Appendix A5) of 

0.85 for each body configuration. The corresponding element 

distribution parameters, presented in Tables 6.4 to 6.11, are 

defined in Appendix A5. 

6.3 Numerical Results. 

Previous investigations(40) into the numerical problems associated 

with the solution of the three-dimensional hydrodynamic problem by 

the source-distribution formulation have demonstrated the 

considerable degree of dependence of the solution on the nature of 

the boundary element distribution. To the best of the author's 

knowledge, no similar study has been carried out for the 

two-dimensional case of a substantially rectangular floating body. 
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Using the form of element distribution detailed in Appendix A5, a 

series of numerical evaluations was carried out to determine the 

effect of varying the element length ratio (E. L. R. ) while 

maintaining a constant number (Nc) of elements on each submerged 

radial edge. In order to demonstrate the effect under differing 

conditions of body draught and submerged edge radius and to provide 

a correlation with the results of the experimental investigation, 

the tests were carried out for Bodies 1,4 and 7 using 4 constant 

length elements on each submerged and radial edge. Element 

distribution details are given in Table 6.2 and the test results are 

presented in graphical form in Figs. 6.1 to 6.3,6.7 to 6.9 and 6.13 

to 6.15. 

It must be noted that, for Body No. 7, an element length ratio of 

0.99 could not be investigated owing to the fact that available 

computer space limited the number of boundary elements to a maximum 

of 76. 

A similar series of tests was performed on the same bodies to 

demonstrate the effect of varying the number of constant length 

radial edge elements whilst maintaining a constant element length 

ratio. To provide a correlation with the results of the experimental 

investigations, an element length ratio of 0.85 was used throughout. 

Element distribution details are given in Table 6.3 and the test 

results are presented in graphical form in Figs. 6.4 to 6.6,6.10 to 

6.12 and 6.16 to 6.18 
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6.4 Fixed Body Wave-Effects. 

Simultaneous measurements of the incident, reflected and transmitted 

wave components were made for the eight body configurations, defined 

in Tables 6.4 to 6.11, in the fixed mode in a train of regular 

waves. This enabled computation of the non-dimensional reflection 

and transmission coefficients R and T (see section 5.3.2) together 

with subsequent computation of the energy conservation 

characteristic (R2+T2). 

The experimentally measured values of the Fixed Body Reflection and 

Transmission coefficients are presented in tabular form in Tables 

6.12 to 6.19 together with the computed energy conservation 

characteristic. The results, together with the theoretically 

predicted values are presented in graphical form in Figs. 6.19 to 

6.26. 

In order to highlight any systematic deviatory trends together 

between the experimental and theoretical values of the reflection 

and transmission coefficients, the absolute deviations between 

theory and experiment for these parameters are presented in 

graphical form in Figs. 6.27 to 6.29. 

It must be noted that the incident wave steepness (H/L) varied 

between 0.0026 and 0.0075. A brief calculation, using measured wave 

steepness in conjunction with measured flume depth, results in the 

observation that at no time did the second-order component of the 

incident wave velocity component exceed 0.6% of the fundamental 

component, thus adequately complying with the conditions imposed by 

linear potential theory. 
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6.5 Floating Body Wave-Effects. 

Exactly the same procedure was carried out for the eight body 

configurations in the 'freely-floating' mode. The results are 

presented in tabular form in Tables 6.20 to 6.27 and in graphical 

form in Figs. 6.30 to 6.37. 

For the same reasons as mentioned above, the absolute deviations 

between theory and experiment are presented in Figs. 6.38 to 6.40. 

For this series of experiments, the incident wave steepness varied 

between 0.0047 and 0.0114 indicating a maximum second-order velocity 

potential component of 0.9% of the fundamental potential component, 

thus complying with the conditions imposed by linear potential 

theory. 

6.6 Energy Conservation Characteristics. 

The energy conservation characteristics were derived from the 

measured reflection and transmission coefficients obtained from the 

fixed and floating body wave-effect experiments described in 

sections 6.4 and 6.5 above. 

The results pertaining to the 'fixed' mode are presented in 

graphical form in Fig. 6.41 and those pertaining to the 'floating' 

mode in Fig. 6.42. 
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6.7 Floating Body Motions. 

Simultaneous measurements were made of the three body motion 

amplitudes: surge, heave and pitch, for the eight body 

configurations. In order to provide a correlation between the body 

motions and the floating body wave-effects, the measurements were 

taken concurrently with the previously detailed floating body wave 

effects. 

In order to minimise the effect of random errors in both the 

measurement system and the motion of the mechanical system, ten 

motion measurements were consecutively taken for each incident wave 

condition and the computed average was taken to be the experimental 

value. 

As detailed in Chapter 5, the translatory motions were abstracted 

directly from displacement transducer output and the rotational 

motion was computed from the body's tangential component of 

acceleration abstracted from the output from a pair of axi-symmetric 

acceleration transducers affixed to the floating body. 

The results, converted into the appropriate non-dimensional 

parameters (see section 5.3.2) are presented in tabular form in 

Tables 6.28 to 6.35 and in graphical form, together with the 

theoretical predictions, in Figs. 6.43 to 6.50. 

In order to highlight any trends in deviation between theory and 

experiment, the absolute deviations of the non-dimensional 

parameters are presented in graphical form in Figs. 6.51 to 6.53. 
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6.8 Accuracy of Experimental Results. 

In order that a valid comparison be made between the experimentally 

measured parameters and those predicted using theoretical 

formulations, consideration must be given to the sources of possible 

errors in both the measurement system, used to abstract the raw 

experimental data, and the subsequent analysis techniques used to 

process that raw data into the form presented in the tables and 

graphs of results. 

In general, two basic classes of parameters were experimentally 

measured: those pertaining to the surface profile and those 

pertaining to the body motions. These are considered individually 

and the resultant estimated error magnitudes used to evaluate the 

error content of the subsequently computed non-dimensional 

parameters. 

Wherever possible, such as in the case of the linear regression 

analysis of raw calibration data to obtain static and dynamic 

calibration factors, statistical analysis techniques have been 

employed to assess the maximum probable errors i. e. those error 

magnitudes which have an exeedance probability of less than 1%. In 

cases where the application of such techniques is not possible, 

engineering judgement has been used to assess error magnitudes. 

Since the primary objective of the experimental investigation was to 

provide a comparison between theory and actuality, a comprehensive 

assessment of the validity of that comparison requires consideration 

to be given to any source of error in the basic input parameters 

leading to the incurrence of systematic errors in the theoretical 
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hydrodynamic parameters computed therefrom. 

Following assessment of the magnitudes of the above errors, an 

examination of the results permits the identification of genuine 

discrepancies between the experimentally measured parameters and the 

corresponding theoretical predictions. 

6.8.1 Collection and Primary Analysis of Periodic Data. 

Since the experimental measurement of free-surface displacement and 

floating body motions entailed the observation of substantially 

sinusoidal data, the procedures used in the collection and primary 

processing thereof were identical. 

The procedure (see section 5.7) entailed the sampling, at known 

discrete time intervals, of a fluctuating voltage signal and 

simultaneous analogue/digital conversion of the signal samples. The 

application of Fast Fourier Transform techniques (see section 5.8.1) 

to the discretised digital signal permitted resolution of the signal 

into its various in-phase and quadrature components. 

As a consquence of the experimental investigation being concerned 

largely with the validation of linear theory, all Fourier components 

other than those pertaining to the fundamental frequency band could 

be ignored. In this way, any errors resulting from the presence of 

high frequency electronic noise in the circuity could be completely 

eliminated. Similarly, any errors due to low frequency 'wandering' 

of the signal mean could also be eliminated subject, of course, to 

the signal remaining within the range of the High Speed Scanner at 
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all times. 

The results of a comprehensive series of tests, entailing the 

sampling and subsequent Fourier analysis of sinusoidally fluctuating 

voltage signals of known amplitude and frequency, suggested that any 

error incurred in this operation could be regarded as insignificant 

for all practical and experimental purposes. 

6.8.2 Free-Surface Displacement. 

Experimental measurement of the surface profile (section 5.5.1) 

entailed the sampling of a surface-displacement related voltage 

signal output from a surface-piercing parallel wire wave-probe. 

Following analogue/digital conversion of the discretised signal, a 

Fourier analysis was carried out to determine the positive and 

negative peak values of the sinusoidal signal in terms of the 

digital output of the Scanner. These digital values were converted 

to the corresponding surface displacements by the application of 

static calibration factors obtained using the methods detailed in 

section 5.6.1. In order to account for certain amplifier-related 

dynamic effects, the 'static' displacements were then multiplied by 

the appropriate dynamic calibration factors obtained using the 

methods detailed in section 5.6.2. The resulting peak displacements 

could then be regarded as 'true' peak displacements enabling 

subsequent computation of the 'true' amplitude of vertical motion of 

the free-surface. A sinusoidal regression exercise, performed on the 

variation of the square of measured wave amplitude with longitudinal 

flume location, permitted resolution of the overall surface profile 

into positive and negative components (section 5.8.2). 
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Since the above-mentioned calibration factors were determined 

empirically using a 'Least-Squares' regression technique, a certain 

margin of error must be associated with each factor. Consideration 

of the individual magnitudes of these errors, together with the 

error incurred in the component resolution procedure, permits the 

estimation of the maximum probable errors which may be associated 

with each measured parameter. 

(i) Wave Probe Static Calibration. 

From some typical calibrations: 

Maximum Probable Error =t0.7% of F. S. D. (6.1) 

where: F. S. D. = Full Scale Deflection of Scanner. 

In order that maximum scanner resolution be maintained whilst 

ensuring that the scanner range was not exceeded, a few preliminary 

wave amplitude measurements were taken prior to static calibration 

of the probe for each incident wave frequency. The amplifier/scanner 

sensitivity was adjusted according to the maximum wave amplitude 

encountered. 

In general: F. S. D. = 1.5 (Maximum wave amplitude) (6.2) 

Thus, from expressions (6.1) and (6.2): 

Maximum Probable Error =t1.05% (6.3) 
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(ii) Wave Probe Dynamic Calibration. 

From examination of the calibration results: 

Maximum Probable Error =t1.06% 

(iii) Component Resolution. 

(6.4) 

A 'Least-Squares' regression exercise performed on the variation of 

the square of measured wave amplitude 'A2' with flume position 'x' 

yields a sinusoidal expression of the form: 

A2 = C1 + C. Cos(2kx+6) (6.5) 

It can be shown (see section 5.8.2) that: 

aI = 
ý21 

+ 
[Ci 

- Cz]J} (6.6a) 

CZ 

aR =- (6.6b) 

2aI 

where: aI is the amplitude of the incident or transmitted wave 

component. 

aR is the amplitude of the reflected wave component. 

For any function of 'n' variables, f(x1, x2,.... xn), it can be shown 

that: 

of = 
of 

bx1 + 
of 

bx2 +, .... ,+ 
of 

bxn 
ax1 axe axn 

(6.7) 

194 



where: bxn represents the error associated with the nth variable. 

of represents the cumulative error associated with the 

function as a result of the 'n' individual errors. 

a implies partial differentiation. 

Thus, from equations (6.6a) and (6.6b): 

- 

6C1 
+ C16C1 - C26CZ1 

6aI = 
L2 (6.8a) 

2[aI(C1 - CZ)]! 
ý 

6C2 CZ6aI 

6aR =-+ (6.8b) 
2aI 2aI2 

The results of some typical upstream and downstream regressions', 

used in conjunction with equations (6.8), indicate that the Maximum 

Probable Errors associated with component resolution are: 

Incident component: * 0.4% 

Reflected component: * 1.3% 

Transmitted component: t 0.68% 

(6.9a) 

(6.9b) 

(6.9c) 

A combination of the individual error magnitudes, enumerated by 

expressions (6.3), (6.4) and (6.9), yields the following overall 

Maximum Probable Errors which may be associated with the 

experimental measurement of each surface profile parameter: 

Incident wave amplitude error =f2.5% 

Reflected wave amplitude error =t3.4% 

Transmitted wave amplitude error =f2.8% 

(6.10a) 

(6.10b) 

(6.10c) 
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6.8.3 The Body Motions. 

The errors associated with the experimental measurement of body 

motion amplitudes are similar in source to those associated with the 

measurement of wave amplitudes in respect of the fact that the major 

proportion of overall error may be attributable to instrument 

calibration errors. A quantitative assessment of the individual 

errors is given below, permitting the estimation of an overall 

Maximum Probable Error which may be associated with each parameter. 

(i) Displacement Transducer Static Calibration (Surge/Heave). 

From examination of the calibration results: 

Maximum Probable Error =*1.75% (6.11) 

(ii) Displacement Transducer Dynamic Calibration (Surge/Heave). 

From examination ofthe calibration results: 

Maximum Probable Error =t0.55% 

(iii) Acceleration Transducer Calibration (Pitch). 

From examination of the calibration results: 

(6.12) 

Maximum Probable Error in Acceleration =*0.9% (6.13) 
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(iv) Accelerometer Cable-Flexure Error (Pitch). 

As a consequence of the capacitative properties of the cables used 

to connect the accelerometers to the charge amplifier (see section 

5.5.3), any movement or flexure of the cables resulted in the 

generation of a voltage additional to that generated by the motion 

of the accelerometers. A few preliminary tests, carried out prior to 

commencement of the calibration operations, indicated that this 

additional voltage varied in-phase with that generated by the 

accelerometers and would therefore be a source of possible error in 

the measurement of the floating body pitch motion. In this light, it 

was felt advisable to carry out a quantitive assessment of the 

effects thereof. 

During the calibration operations (see section 5.6.2), voltage 

fluctuation measurements were taken from a dummy cable affixed to 

the cable connecting the charge amplifier to the accelerometer under 

investigation. Since cable motion was identical in both cases, it 

was not unreasonable to assume that cable flexure generated voltages 

would be identical in both cables. The 'dummy' voltages were 

subsequently compared with the adjacent accelerometer generated 

voltages to give an indication of the relative magnitude of cable 

flexure error. 

From examination of the calibration results: 

Maximum Probable Cable Flexure Error =t0.35% (6.14) 
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(v) Errors of Means (Surge/Heave/Pitch). 

As detailed in section 6.7, the experimentally measured amplitude of 

body motion was taken to be the mean of 10 consecutively measured 

amplitudes of motion. 

From consideration of the spread of the individual results, the 

errors of the means of those results are: 

Surge amplitude: ± 2.28% 

Heave amplitude: t 2.60% 

Pitch amplitude: * 0.88% 

(6.15a) 

(6.15b) 

(6.15c) 

A combination of the individual errors, enumerated in expressions 

(6.11) to (6.15), yields the following overall Maximum Probable 

Errors which may be associated with the experimental measurement of 

each body motion amplitude: 

Surge amplitude error: ± 4.6% 

Heave amplitude error: * 5.0% 

Pitch amplitude error: ± 3.4% 

6.8.4 Non-dimensional Parameters. 

(6.16a) 

(6.16b) 

(6.16c) 

Using the expressions for the various non-dimensional parameters 

defined in section 5.3.2, the Maximum Probable Errors which may be 

associated with each parameter have been estimated using equation 
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(6.7) in conjunction with the previously computed component errors: 

Reflection Coefficient, R: t 5.9% 

Transmission Coefficient, T: t 5.3% 

Non-dimensional Surge amplitude, ä,: t 7.1% 

Non-dimensional Heave amplitude, ä2: f 7.5% 

Non-dimensional Pitch amplitude, ä3: t 5.6% 

6.8.5 Systematic Errors. 

In this particular instance, systematic errors are regarded as those 

which may be associated with the input parameters used to derive the 

theoretical predictions. These errors, together with their effect on 

the resultant theoretical predictions, are considered in turn. 

(i) Still Water Depth. 

For ease of computation and to maintain theoretical continuity, the 

same flume depth of 1.2m was assumed for all theoretical 

predictions. In reality, however, the flume depth varied by up to 

10mm either side of that value due mainly to evaporation and 

subsequent over-filling. The results of a comprehensive series of 

numerical evaluations showed the effect of such a depth variation on 

the resultant theoretical predictions to be insignificant for 

practical and experimental purposes. 

199 



(ii) Horizontal Spring Restraint System. 

As detailed previously, the horizontal spring restraint system 

consisted of up to 32 nominally identical springs. Tests were 

carried out to determine the strength of each spring and the overall 

strength of the system was computed from the average strength of all 

the tested springs multiplied by the number of springs in the system 

at any particular time. A subsequent statistical analysis of the 

spread of individual spring strengths, however, indicated that the 

overall strength of the system could vary up to 10% either side of 

the computed strength. A series of numerical evaluations, performed 

for each body configuration, demonstrated that a spring strength 

variation of up to 20% could be tolerated before any significant 

change in the theoretical behaviour of the floating body could be 

observed. It can thus be reasonably concluded that, in this 

instance, the spring restraint system was not a source of 

significant systematic error. 

(iii) Body Rotational Inertia. 

As discussed previously, the rotational moment of inertia of each 

body configuration was computed from the measured mass density of 

the materials used in the body and the necessary ballast. However, 

as a consequence of non-uniformity of construction materials, 

ingress of water into construction joints in the course of the 

experiment and unavoidably inaccurate placing of ballast materials, 

it was adjudged that the computed value of the body's moment of 

inertia was subject to a confidence limit of t 5ro. The effect of 

such a variation is presented in Figs. 6.54 to 6.59. 
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6.8.6 Abnormal Experimental Errors. 

Up to now, experimental errors have been quantified from a general 

point of view using 'typical' sets of results. However, as with many 

investigations of this nature, certain physical conditons give rise 

to experimental errors which must be regarded as atypical. 

A series of preliminary tests, performed in still water prior to 

commencement of the experimental investigation, elucidated the fact 

that the level of the wave-probe trolley support railing varied 

significantly over the length of the flume. Whilst in the normal 

course of events this would have had no effect on the accuracy of 

measurement of wave amplitudes, it presented the possibility of the 

scanner range being exceeded if maximum sensitivity was to be 

maintained for small amplitude waves. Consequently, a lower limit 

had to be imposed on the range of displacements over which the wave 

probes were statically calibrated, irrespective of the amplitude of 

the wave to be measured. This resulted in a relatively coarse wave 

probe static calibration for small amplitude waves leading to an 

increased magnitude of Probable Error. An examination of the results 

shows that this situation pertains to approximately 10% of 

transmitted waves and does not, therfore, affect the measurement 

accuracy of either the upstream wave components or the 

non-dimensional body motion parameters. An examination of the 

relevant cases indicates that the resultant error in transmission 

coefficient may be as great as 12% in some cases. 

A feature of wave behaviour in closed basins is the possibility of 

wave resonance. It can be shown that a resonant condition pertains 

in an essentially two-dimensional experimental wave flume if the 
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distance between the wave generator and the vertical end wall is 

equal to an integer number of wavelengths of the generated wave. 

Such a condition is equally likely to occur if a fixed, 

surface-piercing obstacle, of width equal to that of the flume, is 

located at an integer number of wavelengths from the wave generator. 

Owing to a certain lack of forethought on the part of the author, 

this possibility was not considered when the location of the body 

support structure was decided upon. It was only after everything had 

been set up and the investigation was underway, that it was 

discovered that the location of the 'fixed' body was such that a 

resonant condition pertained at one particular investigative 

frequency. Such a condition was characterised by an inherent lack of 

stability of the upstream wave train. This lack of stability, 

indicated by a distinct reluctance of the upstream wave train to 

achieve an equilibrium condition, was exacerbated by the fact that 

the fixed body Reflection Coefficient was extremely high for all the 

body configurations at this frequency. The effect of such a 

condition is graphically illustrated in Fig. 6.60 which clearly shows 

the abnormal behaviour of the upstream and downstream wavetrains. A 

few calculations, using the appropriate sinusoidal regression 

results, indicate that the error associated with measurement of the 

reflection and transmission parameters in these cases is likely to 

be as much as 20 to 30%. 
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Body Nominal Nominal Nominal 
Number Length/Draught Length/Radius Draught/Radius 

1 8 4 
2 2 16 8 
3 32 16 

4 16 4 
5 4 32 8 
6 64 16 

7 32 4 
8 8 64 8 
9 128 16 

Table 6.1 Experimental Body Configurations 

Body Element Length Ratio 
Number 0.50 0.60 0.70 0.85 0.99 

1 17 19 21 27 37 

4 19 23 25 33 55 

7 21 25 29 41 87 

Table 6.2 Number of Boundary Elements with 
Varying Element Length Ratio 

Body No. of Elements per Rad ial Edge 
Number 2 4 6 8 

1 15 27 37 45 

4 21 33 43 53 

7 27 41 51 62 

Table 6.3 Number of Boundary Elements with Varying 
Number of Radial Edge Elements 
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BODY NO. 1 

COMPUTATION DATA 

Greens Function Accuracy 

GEOMETRICAL DATA (RADIAL EDGES) 

Body Length 
Edge Radius 
Length/Draught Ratio 
Draught 
Centroidal Y-Coordinate 
Metacentric Height 

99.990 ($) 

0.9600 (m) 
0.1200 (m) 
1.9835" 
0.4840 (m) 

-0.28300 (m) 
0.20790 (m) 

INERTIAL DATA PER M. WIDTH (NON-HOMOGENEOUS) 

Mass 458.458 (Kg) 
Horizontally acting Mass Component 39.383 (Kg) 

2 
Mass Moment of Pitching Inertia 26.590 (Kg. m ) 

SPRING RESTRAINT DATA N/M (PER M. WIDTH) 

Surge 371.900 
Heave FREE 
Pitch FREE 

ELEMENT DISTRIBUTION DATA 

Nominal Element Length Ratio 0.85 
No. of Side Elements 5 
No. of Base Elements 9 
No. of Radial Elements 4 
Total No. of Elements 27 
Min. Element Length 0.047124 (m) 
Max. Side Element Length 0.094234 (m) 
Max. Base Element Length 0.116119 (m) 
Side Element Length Ratio 0.870576 
Base Element Length Ratio 0.834964 

TABLE 6.4 Floating Body Details 
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BODY NO. 2 

COMPUTATION DATA 

Greens Function Accuracy 

GEOMETRICAL DATA (RADIAL EDGES) 

Body Length 
Edge Radius 
Length/Draught Ratio 
Draught 
Centroidal Y-Coordinate 
Metacentric Height 

99.990 (%) 

0.9600 (m) 
0.0600 (m) 
1.9926 
0.4818 (m) 

-0.28100 (m) 
0.20161 (m) 

INERTIAL DATA PER M. WIDTH (NON-HOMOGENEOUS) 

Mass 460.977 (Kg) 
Horizontally acting Mass Component 39.383 (Kg) 2 
Mass Moment of Pitching Inertia 26.995 (Kg. m ) 

SPRING RESTRAINT DATA N/M (PER M. WIDTH) 

Surge 371.900 
Heave FREE 
Pitch FREE 

ELEMENT DISTRIBUTION DATA 

Nominal Element Length Ratio 0.85 

No. of Side Elements 8 
No. of Base Elements 15 
No. of Radial Elements 4 
Total No. of Elements 39 
Min. Element Length 0.023562 (m) 
Max. Side Element Length 0.087217 (m) 
Max. Base Element Length 0.102900 (m) 

Side Element Length Ratio 0.849085 
Base Element Length Ratio 0.831715 

TABLE 6.5 Floating Body Details 
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BODY NO. 3 

COMPUTATION DATA 

Greens Function Accuracy 

GEOMETRICAL DATA (RADIAL EDGES) 

Body Length 
Edge Radius 
Length/Draught Ratio 
Draught 
Centroidal Y-Coordinate 
Metacentric Height 

99.990 ($) 

0.9600 (m) 
0.0300 (m) 
1.9948 
0.4812 (m) 

-0.28100 (m) 
0.20050 (m) 

INERTIAL DATA PER M. WIDTH (NON-HOMOGENEOUS) 

Mass 461.606 (Kg) 
Horizontally acting Mass Component 39.383 (Kg) 

2 Mass Moment of Pitching Inertia 27.133 (Kg. m ) 

SPRING RESTRAINT DATA N/M (PER M. WIDTH) 

Surge 371.900 
Heave FREE 
Pitch FREE 

ELEMENT DISTRIBUTION DATA 

Nominal Element Length Ratio 0.85 
No. of Side Elements 12 
No. of Base Elements 23 
No. of Radial Elements 4 
Total No. of Elements 55 
Min. Element Length 0.011781 (m) 
Max. Side Element Length 0.077223 (m) 
Max. Base Element Length 0.087994 (m) 
Side Element Length Ratio 0.854974 
Base Element Length Ratio 0.845721 

TABLE 6.6 Floating Body Details 
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BODY NO. 4 

COMPUTATION DATA 

Greens Function Accuracy 

GEOMETRICAL DATA (RADIAL EDGES) 

Body Length 
Edge Radius 
Length/Draught Ratio 
Draught 
Centroidal Y-Coordinate 
Metacentric Height 

99.990 (%) 

0.9600 (m) 
0.0600 (m) 
3.9563 
0.2427 (m) 

-0.11800 (m) 
0.31681 (m) 

INERTIAL DATA PER M. WIDTH (NON-HOMOGENEOUS) 

Mass 231.400 (Kg) 
Horizontally acting Mass Component 39.383 (Kg) 

2 
Mass Moment of Pitching Inertia 14.142 (Kg. m ) 

SPRING RESTRAINT DATA N/M (PER M. WIDTH) 

Surge 278.900 
Heave FREE 
Pitch FREE 

ELEMENT DISTRIBUTION DATA 

Nominal Element Length Ratio 
No. of Side Elements 
No. of Base Elements 
No. of Radial Elements 
Total No. of Elements 
Min. Element Length 
Max. Side Element Length 
Max. Base Element Length 
Side Element Length Ratio 
Base Element Length Ratio 

0.85 
5 

15 
4 

33 
0.023562 (m) 
0.047375 (m) 
0.102900 (m) 
0.869626 
0.831715 

TABLE 6.7 Floating Body Details 
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BODY NO. 5 

COMPUTATION DATA 

Greens Function Accuracy 

GEOMETRICAL DATA (RADIAL EDGES) 

Body Length 
Edge Radius 
Length/Draught Ratio 
Draught 
Centroidal Y-Coordinate 
Metacentric Height 

99.990 ($) 

0.9600 (m) 
0.0300 (m) 
3.9653 
0.2421 (m) 

-0.11800 (m) 
0.31509 (m) 

INERTIAL DATA PER M. WIDTH (NON-HOMOGENEOUS) 

Mass 232.030 (Kg) 
Horizontally acting Mass Component 39.383 (Kg) 

2 
Mass Moment of Pitching Inertia 14.661 (Kg. m ) 

SPRING RESTRAINT DATA N/M (PER M. WIDTH) 

Surge 278.900 
Heave FREE 
Pitch FREE 

ELEMENT DISTRIBUTION DATA 

Nominal Element Length Ratio 0.85 
No. of Side Elements 8 
No. of Base Elements 23 
No. of Radial Elements 4 
Total No. of Elements 47 
Min. Element Length 0.011781 (m) 
Max. Side Element Length 0.043982 (m) 
Max. Base Element Length 0.087994 (m) 
Side Element Length Ratio 0.848181 
Base Element Length Ratio 0.845721 

TABLE 6.8 Floating Body Details 
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BODY NO. 6 

COMPUTATION DATA 

Greens Function Accuracy 

GEOMETRICAL DATA (RADIAL EDGES) 

Body Length 
Edge Radius 
Length/Draught Ratio 
Draught 
Centroidal Y-Coordinate 
Metacentric Height 

99.990 ($) 

0.9600 (m) 
0.0150 (m) 
3.9676 
0.2420 (m) 

-0.11800 (m) 
0.31466 (m) 

INERTIAL DATA PER M. WIDTH (NON-HOMOGENEOUS) 

Mass 232.187 (Kg) 
Horizontally acting Mass Component 39.383 (Kg) 

2 
Mass Moment of Pitching Inertia 14.697 (Kg. m ) 

SPRING RESTRAINT DATA N/M (PER M. WIDTH) 

Surge 278.900 
Heave FREE 
Pitch FREE 

ELEMENT DISTRIBUTION DATA 

Nominal Element Length Ratio 0.85 
No. of Side Elements 12 
No. of Base Elements 31 
No. of Radial Elements 4 
Total No. of Elements 63 
Min. Element Length 0.005890 (m) 
Max. Side Element Length 0.038945 (m) 
Max. Base Element Length 0.083133 (m) 
Side Element Length Ratio 0.854362 
Base Element Length Ratio 0.847517 

TABLE 6.9 Floating Body Details 
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BODY NO. 7 

COMPUTATION DATA 

Greens Function Accuracy 

GEOMETRICAL DATA (RADIAL EDGES) 

Body Length 
Edge Radius 
Length/Draught Ratio 
Draught 
Centroidal Y-Coordinate 
Metacentric Height 

99.990 (%) 

0.9600 (m) 
0.0300 (m) 
8.0356 
0.1195 (m) 
0.03400 (m) 
0.55166 (m) 

INERTIAL DATA PER M. WIDTH (NON-HOMOGENEOUS) 

Mass 114.304 (Kg) 
Horizontally acting Mass Component 39.383 (Kg) 

2 
Mass Moment of Pitching Inertia 10.802 (Kg. m ) 

SPRING RESTRAINT DATA N/M (PER M. WIDTH) 

Surge 185.900 
Heave FREE 
Pitch FREE 

ELEMENT DISTRIBUTION DATA 

Nominal Element Length Ratio 0.85 

No. of Side Elements 5 
No. of Base Elements 23 
No. of Radial Elements 4 
Total No. of Elements 41 
Min. Element Length 0.011781 (m) 
Max. Side Element Length 0.022955 (m) 
Max. Base Element Length 0.087994 (m) 
Side Element Length Ratio 0.875104 
Base Element Length Ratio 0.845721 

TABLE 6.10 Floating Body Details 
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BODY NO. 8 

COMPUTATION DATA 

Greens Function Accuracy 

GEOMETRICAL DATA (RADIAL EDGES) 

Body Length 
Edge Radius 
Length/Draught Ratio 
Draught 
Centroidal Y-Coordinate 
Metacentric Height 

99.990 ($) 

0.9600 (m) 
0.0150 (m) 
8.0531 
0.1192 (m) 
0.03400 (m) 
0.55128 (m) 

INERTIAL DATA PER M. WIDTH (NON-HOMOGENEOUS) 

Mass 114.344 (Kg) 
Horizontally acting Mass Component 39.383 (Kg) 

2 
Mass Moment of Pitching Inertia 10.812 (Kg. m ) 

SPRING RESTRAINT DATA N/M (PER M. WIDTH) 

Surge 185.900 
Heave FREE 
Pitch FREE 

ELEMENT DISTRIBUTION DATA 

Nominal Element Length Ratio 0.85 
No. of Side Elements 8 
No. of Base Elements 31 
No. of Radial Elements 4 
Total No. of Elements 55 
Min. Element Length 0.005890 (m) 
Max. Side Element Length 0.021421 (m) 
Max. Base Element Length 0.083133 (m) 
Side Element Length Ratio 0.850971 
Base Element Length Ratio 0.847517 

TABLE 6.11 Floating Body Details 
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Body Number: 1 

F- Incident Wave Frequency (Hz) 
B- Body Length (m) 
L- Incident Wave Length (m) 
D- Still Water Depth (m) 
R- Reflection Coefficient 
T- Transmission Coefficient 

FD B/L RT R2 + T2 

0.4883 1.201 0.1688 0.8270 0.4306 0.8693 

0.5371 1.201 

0.5859 1.201 

0.6348 1.201 

0.6836 1.201 

0.7324 1.201 

0.7813 1.201 

0.8301 1.201 

0.1948 

0.2239 

0.2567 

0.2931 

0.3333 

0.3772 

0.4248 

0.9067 

0.9246 

1.0000 

1.0000 

1.0000 

0.9280 

0.7676 

0.3541 0.9475 

0.2705 0.9281 

0.2348 1.0551 

0.1417 1.0201 

0.1340 1.0180 

0.1034 0.8719 

0.1271 0.6054 

0.8789 1.201 0.4755 0.8374 0.0648 0.7054 

TABLE 6.12 Fixed Body Reflection 
and Transmission 
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Body Number: 2 

F- Incident Wave Frequency (Hz) 
B- Body Length (m) 
L- Incident Wave Length (m) 
D- Still Water Depth (m) 
R- Reflection Coefficient 
T- Transmission Coefficient 

FD B/L RT R2 + T2 

0.4883 1.199 0.1689 0.8304 0.4158 0.8625 

0.5371 1.199 0.1949 1.0000 0.3581 1.1282 

0.5859 1.199 0.2240 1.0000 0.2679 1.0718 

0.6348 1.199 0.2567 1.0000 0.2208 1.0488 

0.6836 1.199 0.2932 1.0000 0.1251 1.0157 

0.7324 1.199 0.3334 1.0000 0.1350 1.0182 

0.7813 1.199 0.3773 1.0000 0.0907 1.0082 

0.8301 1.199 0.4248 0.7867 0.1215 0.6337 

0.8789 1.199 0.4755 0.8343 0.0609 0.6998 

TABLE 6.13 Fixed Body Reflection 

and Transmission 
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Body Number: 3 

F- Incident Wave Frequency (Hz) 
B- Body Length (m) 
L- Incident Wave Length (m) 
D- Still Water Depth (m) 
R- Reflection Coefficient 
T- Transmission Coefficient 

FD B/L RT R2 + T2 

0.4883 1.210 0.1685 0.8163 0.4021 0.8280 

0.5371 1.210 0.1945 0.9420 0.3244 0.9926 

0.5859 1.210 0.2237 1.0000 0.2521 1.0636 

0.6348 1.205 0.2566 1.0000 0.2474 1.0612 

0.6836 1.210 0.2929 1.0000 0.1273 1.0162 

0.7324 1.205 0.3333 1.0000 0.1045 1.0109 

0.7813 1.205 0.3772 0.9265 0.1063 0.8697 

0.8301 1.205 0.4247 0.8102 0.1061 0.6677 

0.8789 1.205 0.4755 0.8430 0.0532 0.7135 

TABLE 6.14 Fixed Body Reflection 
and Transmission 
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Body Number: 4 

F- Incident Wave Frequency (Hz) 
B- Body Length (m) 
L- Incident Wave Length (m) 
D- Still Water Depth (m) 
R- Reflection Coefficient 
T- Transmission Coefficient 

FD B/L RT R2 + T2 

0.4883 1.199 

0.5371 1.199 

0.5859 1.200 

0.6348 1.200 

0.6836 1.200 

0.7324 1.200 

0.7813 1.200 

0.8301 1.200 

0.8789 1.200 

0.1689 

0.1949 

0.2240 

0.2567 

0.2931 

0.3334 

0.3773 

0.4248 

0.4755 

0.6885 

0.7624 

0.8498 

0.8457 

0.9308 

0.9023 

0.9394 

0.8646 

0.8235 

0.6512 0.8981 

0.5979 0.9387 

0.4796 0.9522 

0.4604 0.9272 

0.3067 0.9605 

0.2969 0.9023 

0.2292 0.9350 

0.1597 0.7730 

0.1207 0.6927 

TABLE 6.15 Fixed Body Reflection 
and Transmission 
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Body Number: 5 

F- Incident Wave Frequency (Hz) 
B- Body Length (m) 
L- Incident Wave Length (m) 
D- Still Water Depth (m) 
R- Reflection Coefficient 
T- Transmission Coefficient 

FD B/L RT R2 + T2 

0.4883 1.200 0.1688 0.7377 0.6129 0.9198 

0.5371 1.200 0.1948 0.7832 0.5667 0.9346 

0.5859 1.200 0.2240 0.8559 0.4724 0.9557 

0.6348 1.200 0.2567 0.9003 0.5322 1.0938 

0.6836 1.200 0.2931 0.9362 0.3102 0.9727 

0.7324 1.200 0.3334 1.0000 0.2572 1.0662 

0.7813 1.200 0.3773 0.9485 0.2196 0.9479 

0.8301 1.200 0.4248 0.8869 0.1556 0.8108 

0.8789 1.200 0.4755 0.8491 0.1264 0.7369 

TABLE 6.16 Fixed Body Reflection 

and Transmission 
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Body Number: 6 

F- Incident Wave Frequency (Hz) 
B- Body Length (m) 
L- Incident Wave Length (m) 
D- Still Water Depth (m) 
R- Reflection Coefficient 

T- Transmission Coefficient 

FD B/L RT R2 + T2 

0.4883 1.203 0.1687 0.7534 0.6278 0.9617 

0.5371 1.203 0.1947 0.7907 0.5442 0.9214 

0.5859 1.203 0.2239 0.8332 0.4537 0.9001 

0.6348 1.203 0.2566 0.8650 0.4504 0.9511 

0.6836 1.203 0.2931 0.9057 0.2879 0.9032 

0.7324 1.203 0.3333 0.9485 0.2851 0.9809 

0.7813 1.203 0.3772 1.0000 0.2206 1.0487 

0.8301 1.203 0.4247 0.8635 0.1423 0.7659 

0.8789 1.203 0.4755 0.8552 0.0868 0.7389 

TABLE 6.17 Fixed Body Reflection 

and Transmission 
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Body Number: 7 

F- Incident Wave Frequency (Hz) 
B- Body Length (m) 
L- Incident Wave Length (m) 
D- Still Water Depth (m) 
R- Reflection Coefficient 
T- Transmission Coefficient 

FD B/L RT R2 + T2 

0.4883 1.200 0.1688 0.6425 0.7322 0.9489 

0.5371 1.200 0.1948 0.6690 0.6687 0.8947 

0.5859 1.200 0.2240 0.7485 0.5976 0.9174 

0.6348 1.200 0.2567 0.7620 0.5750 0.9113 

0.6836 1.200 0.2931 0.8117 0.4785 0.8878 

0.7324 1.200 0.3334 0.8273 0.4757 0.9107 

0.7813 1.200 0.3773 0.8695 0.3882 0.9067 

0.8301 1.200 0.4248 0.8721 0.3235 0.8652 

0.8789 1.200 0.4755 0.8597 0.2223 0.7885 

TABLE 6.18 Fixed Body Reflection 

and Transmission 
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Body Number: 8 

F- Incident Wave Frequency (Hz) 
B- Body Length (m) 
L- Incident Wave Length (m) 
D- Still Water Depth (m) 
R- Reflection Coefficient 
T- Transmission Coefficient 

FD B/L RT R2 + T2 

0.4883 1.198 

0.5371 1.198 

0.5859 1.198 

0.6348 1.198 

0.6836 1.198 

0.7324 1.198 

0.7813 1.198 

0.8301 1.198 

0.8789 1.198 

0.1689 

0.1949 

0.2240 

0.2568 

0.2932 

0.3334 

0.3773 

0.4248 

0.4755 

0.6299 

0.6593 

0.7485 

0.7857 

0.8249 

0.8722 

0.8757 

0.8551 

0.8900 

0.7091 0.8996 

0.6993 0.9237 

0.6164 0.9402 

0.5928 0.9687 

0.4870 0.9176 

0.4812 0.9923 

0.3875 0.9170 

0.2908 0.8158 

0.2149 0.8383 

TABLE 6.19 Fixed Body Reflection 
and Transmission 

219 



Body Number: 1 

F- Incident Wave Frequency (Hz) 
B- Body Length (m) 
L- Incident Wave Length (m) 
D- Still Water Depth (m) 
R- Reflection Coefficient 
T- Transmission Coefficient 

FD B/L RT R2 + T2 

0.4883 1.199 0.1689 0.2911 0.8944 0.8847 

0.5371 1.199 0.1949 0.6330 0.6479 0.8205 

0.5859 1.199 0.2240 1.0000 0.1340 1.0180 

0.6348 1.199 0.2567 1.0000 0.1366 1.0187 

0.6836 1.199 0.2932 1.0000 0.1202 1.0144 

0.7324 1.199 0.3334 0.8727 0.1306 0.7787 

0.7813 1.199 0.3773 0.5904 0.5376 0.6376 

0.8301 1.199 0.4248 0.0793 0.7207 0.5257 

0.8789 1.199 0.4755 0.5189 0.6975 0.7558 

TABLE 6.20 Floating Body Reflection 
and Transmission 
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Body Number: 2 

F- Incident Wave Frequency (Hz) 
B- Body Length (m) 
L- Incident Wave Length (m) 
D- Still Water Depth (m) 
R- Reflection Coefficient 
T- Transmission Coefficient 

FD B/L RT R2 + T2 

0.4883 1.199 0.1689 0.3422 0.8587 0.8545 

0.5371 1.199 0.1949 0.7090 0.5520 0.8074 

0.5859 1.199 0.2240 1.0000 0.0313 1.0010 

0.6348 1.199 0.2567 1.0000 0.1729 1.0299 

0.6836 1.199 0.2932 1.0000 0.0748 1.0056 

0.7324 1.199 0.3334 0.7479 0.3537 0.6845 

0.7813 1.199 0.3773 0.1965 0.7657 0.6249 

0.8301 1.199 0.4248 0.3268 0.7258 0.6336 

0.8789 1.199 0.4755 0.6312 0.6000 0.7584 

TABLE 6.21 Floating Body Reflection 
and Transmission 
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Body Number: 3 

F- Incident Wave Frequency (Hz) 
B- Body Length (m) 
L- Incident Wave Length (m) 
D- Still Water Depth (m) 
R- Reflection Coefficient 

T- Transmission Coefficient 

FD B/L RT R2 + T2 

0.4883 1.205 0.1686 0.3209 0.8704 0.8606 

0.5371 1.205 0.1946 0.7181 0.5295 0.7960 

0.5859 1.205 0.2238 0.9092 0.0331 0.8277 

0.6348 1.205 0.2566 1.0000 0.1795 1.0322 

0.6836 1.205 0.2930 0.9687 0.0329 0.9395 

0.7324 1.205 0.3333 0.6238 0.5384 0.6790 

0.7813 1.205 0.3772 0.1113 0.8200 0.6848 

0.8301 1.205 0.4247 0.4009 0.6739 0.6149 

0.8789 1.205 0.4755 0.7020 0.5796 0.8287 

TABLE 6.22 Floating Body Reflection 

and Transmission 
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Body Number: 4 

F- Incident Wave Frequency (Hz) 
B- Body Length (m) 
L- Incident Wave Length (m) 
D- Still Water Depth (m) 
R- Reflection Coefficient 
T- Transmission Coefficient 

FD B/L RT R2 + T2 

0.4883 1.200 

0.5371 1.200 

0.5859 1.200 

0.6348 1.200 

0.6836 1.200 

0.7324 1.200 

0.7813 1.200 

0.8301 1.200 

0.8789 1.200 

0.1688 

0.1948 

0.2240 

0.2567 

0.2931 

0.3334 

0.3773 

0.4248 

0.4755 

0.0587 

0.1333 

0.2074 

0.4161 

0.5458 

0.6892 

0.7620 

0.3801 

0.4034 

0.9514 0.9086 

0.9071 0.8406 

0.8816 0.8202 

0.7778 0.7781 

0.6733 0.7512 

0.4670 0.6931 

0.4845 0.8154 

0.6578 0.5772 

0.6680 0.6090 

TABLE 6.23 Floating Body Reflection 
and Transmission 
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Body Number: 5 

F- Incident Wave Frequency (Hz) 
B- Body Length (m) 
L- Incident Wave Length (m) 
D- Still Water Depth (m) 
R- Reflection Coefficient 
T- Transmission Coefficient 

FD B/L RT R2 + T2 

0.4883 1.200 0.1688 0.0704 0.9530 0.9132 

0.5371 1.200 0.1948 0.1197 0.9076 0.8381 

0.5859 1.200 0.2240 0.2175 0.8739 0.8110 

0.6348 1.200 0.2567 0.4558 0.7762 0.8102 

0.6836 1.200 0.2931 0.5757 0.6537 0.7588 

0.7324 1.200 0.3334 0.7371 0.4679 0.7622 

0.7813 1.200 0.3773 0.6773 0.4974 0.7061 

0.8301 1.200 0.4248 0.1605 0.7398 0.5731 

0.8789 1.200 0.4755 0.5308 0.6332 0.6827 

TABLE 6.24 Floating Body Reflection 
and Transmission 
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Body Number: 6 

F- Incident Wave Frequency (Hz) 
B- Body Length (m) 
L- Incident Wave Length (m) 
D- Still Water Depth (m) 
R- Reflection Coefficient 

T- Transmission Coefficient 

FD B/L RT R2 + T2 

0.4883 1.200 

0.5371 1.200 

0.5859 1.200 

0.6348 1.200 

0.6836 1.200 

0.7324 1.200 

0.7813 1.200 

0.8301 1.200 

0.8789 1.200 

TABLE 6.25 

0.1688 0.0535 0.9480 0.9016 

0.1948 0.1249 0.9087 0.8413 

0.2240 0.2111 0.8767 0.8132 

0.2567 0.4520 0.7578 0.7786 

0.2931 0.5747 0.6524 0.7559 

0.3334 0.7220 0.4623 0.7350 

0.3773 0.6017 0.5527 0.6675 

0.4248 0.1318 0.7410 0.5665 

0.4755 0.6061 0.5782 0.7017 

Floating Body Reflection 
and Transmission 
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Body Number: 7 

F- Incident Wave Frequency (Hz) 
B- Body Length (m) 
L- Incident Wave Length (m) 
D- Still Water Depth (m) 
R- Reflection Coefficient 
T- Transmission Coefficient 

FD B/L RT R2 + T2 

0.4883 1.200 0.1688 0.0952 0.9464 0.9047 

0.5371 1.200 0.1948 0.0613 0.9242 0.8579 

0.5859 1.200 0.2240 0.0272 0.9038 0.8176 

0.6348 1.200 0.2567 0.0925 0.8936 0. -8071 

0.6836 1.200 0.2931 0.0996 0.8622 0.7533 

0.7324 1.200 0.3334 0.2047 0.8490 0.7627 

0.7813 1.200 0.3773 0.1259 0.8259 0.6980 

0.8301 1.200 0.4248 0.3307 0.6898 0.5852 

0.8789 1.200 0.4755 0.6996 0.4006 0.6499 

TABLE 6.26 Floating Body Reflection 

and Transmission 
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Body Number: 8 

F- Incident Wave Frequency (Hz) 
B- Body Length (m) 
L- Incident Wave Length (m) 
D- Still Water Depth (m) 
R- Reflection Coefficient 
T- Transmission Coefficient 

FD B/L RT R2 + T2 

0.4883 1.200 0.1688 0.0750 0.9457 0.9000 

0.5371 1.200 0.1948 0.0629 0.9211 0.8524 

0.5859 1.200 0.2240 0.0588 0.9161 0.8427 

0.6348 1.200 0.2567 0.0927 0.9046 0.8269 

0.6836 1.200 0.2931 0.1186 0.8949 0.8149 

0.7324 1.200 0.3334 0.1962 0.8682 0.7923 

0.7813 1.200 0.3773 0.1042 0.8090 0.6653 

0.8301 1.200 0.4248 0.3710 0.6194 0.5213 

0.8789 1.200 0.4755 0.7072 0.2702 0.5731 

TABLE 6.27 Floating Body Reflection 

and Transmission 
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Body Number: 1 

F - Incident Wave Frequency (Hz) 
B - Body Length (m) 
L - Incident Wave Length (m) 
D - Still Water Depth (m) 
7 - Incident Wave Amplitude (mm) 
al - Body Surge Amplitude (mm) 
a2 - Body Heave Amplitude (mm) 
a3 - Body Pitch Amplitude (Rad) 

FD B/L 71 al/il a2/7J a3*B/7) 

0.4883 1.199 0.1689 20.571 0.947 1.631 1.260 

0.5371 1.199 0.1949 15.911 0.827 1.843 1.556 

0.5859 1.199 0.2240 14.971 0.785 1.527 1.947 

0.6348 1.199 0.2567 12.918 0.717 0.870 2.393 

0.6836 1.199 0.2932 9.740 0.731 0.430 3.192 

0.7324 1.199 0.3334 10.211 0.549 0.265 4.224 

0.7813 1.199 0.3773 14.556 0.276 0.149 4.644 

0.8301 1.199 0.4248 10.684 0.053 0.074 3.760 

0.8789 1.199 0.4755 8.351 0.134 0.055 2.783 

TABLE 6.28 Floating Body Motions 
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Body Number: 2 

F - Incident Wave Frequency (Hz) 
B - Body Length (m) 
L - Incident Wave Length (m) 
D - Still Water Depth (m) 
7 - Incident Wave Amplitude (mm) 
al - Body Surge Amplitude (mm) 
a2 - Body Heave Amplitude (mm) 
a3 - Body Pitch Amplitude (Rad) 

FD B/L q al/1J a2/17 a3*B/1J 

0.4883 1.199 0.1689 21.637 0.909 1.763 1.342 

0.5371 1.199 0.1949 14.843 0.815 1.909 1.592 

0.5859 1.199 0.2240 15.396 0.768 1.306 2.008 

0.6348 1.199 0.2567 14.071 0.718 0.821 2.642 

0.6836 1.199 0.2932 9.516 0.718 0.390 3.812 

0.7324 1.199 0.3334 8.883 0.408 0.232 4.876 

0.7813 1'. 199 0.3773 8.323 0.082 0.141 4.646 

0.8301 1.199 0.4248 8.628 0.189 0.184 3.049 

0.8789 1.199 0.4755 8.538 0.214 0.111 1.987 

TABLE 6.29 Floating Body Motions 
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Body Number: 3 

F - Incident Wave Frequency (Hz) 
B - Body Length (m) 
L - Incident Wave Length (m) 
D - Still Water Depth (m) 
1 - Incident Wave Amplitude (mm) 

al - Body Surge Amplitude (mm) 
a2 - Body Heave Amplitude (mm) 
a3 - Body Pitch Amplitude (Rad) 

FD B/L 77 a1/T a2/, q a3*B/i1 

0.4883 1.205 0.1686 16.265 0.945 1.753 1.285 

0.5371 1.205 0.1946 12.455 0.813 1.936 1.551 

0.5859 1.205 0.2238 10.452 0.756 1.226 2.001 

0.6348 1.205 0.2566 13.974 0.731 0.678 3.009 

0.6836 1.205 0.2930 7.729 0.739 0.360 4.274 

0.7324 1.205 0.3333 8.529 0.374 0.178 5.591 

0.7813 1.205 0.3772 7.509 0.040 0.148 4.002 

0.8301 1.205 0.4247 8.251 0.232 0.117 2.681 

0.8789 1.205 0.4755 8.323 0.222 0.073 1.775 

TABLE 6.30 Floating Body Motions 
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Body Number: 4 

F - Incident Wave Frequency (Hz) 

B - Body Length (m) 
L - Incident Wave Length (m) 

D - Still Water Depth (m) 
7 - Incident Wave Amplitude (mm) 
al - Body Surge Amplitude (mm) 
a2 - Body Heave Amplitude (mm) 
a3 - Body Pitch Amplitude (Rad) 

FD 

0.4883 1.200 

0.5371 1.200 

0.5859 1.200 

0.6348 1.200 

0.6836 1.200 

0.7324 1.200 

0.7813 1.200 

0.8301 1.200 

0.8789 1.200 

B/L 

0.1688 

0.1948 

0.2240 

0.2567 

0.2931 

0.3334 

0.3773 

0.4248 

0.4755 

77 

24.281 

16.378 

16.409 

10.356 

13.763 

7.685 

11.395 

10.193 

6.636 

al/ij a2/rj a3*B/ij 

0.979 1.109 1.155 

0.880 1.126 1.320 

0.778 1.237 1.499 

0.681 1.371 1.771 

0.654 1.162 2.122 

0.568 0.852 2.541 

0.521 0.658 4.330 

0.230 0.444 4.613 

0.132 0.257 4.342 

TABLE 6.31 Floating Body Motions 
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Body Number: 5 

F - Incident Wave Frequency (Hz) 
B - Body Length (m) 
L - Incident Wave Length (m) 
D - Still Water Depth (m) 
7 - Incident Wave Amplitude (mm) 
al - Body Surge Amplitude (mm) 
a2 - Body Heave Amplitude (mm) 
a3 - Body Pitch Amplitude (Rad) 

FD 

0.4883 1.200 

0.5371 1.200 

0.5859 1.200 

0.6348 1.200 

0.6836 1.200 

0.7324 1.200 

0.7813 1.200 

0.8301 1.200 

0.8789 1.200 

B/L 

0.1688 

0.1948 

0.2240 

0.2567 

0.2931 

0.3334 

0.3773 

0.4248 

0.4755 

71 

24.600 

13.226 

15.838 

11.388 

12.980 

10.375 

9.191 

10.263 

6.133 

al/rJ a2M a3*B/rj 

0.994 1.086 1.192 

0.882 1.092 1.391 

0.769 1.250 1.599 

0.708 1.320 1.965 

0.665 1.081 2.465 

0.634 0.827 3.537 

0.459 0.447 5.027 

0.083 0.260 5.555 

0.199 0.377 3.844 

TABLE 6.32 Floating Body Motions 
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Body Number: 6 

F - Incident Wave Frequency (Hz) 

B - Body Length (m) 
L - Incident Wave Length (m) 
D - Still Water Depth (m) 
7 - Incident Wave Amplitude (mm) 
al - Body Surge Amplitude (mm) 
a2 - Body Heave Amplitude (mm) 
a3 - Body Pitch Amplitude (Rad) 

FD B/L 77 al/71 a2/ij a3*B/71 

0.4883 1.200 0.1688 15.982 1.000 1.091 1.187 

0.5371 1.200 0.1948 13.276 0.897 1.110 1.399 

0.5859 1.200 0.2240 13.157 0.786 1.257 1.599 

0.6348 1.200 

0.6836 1.200 

0.7324 1.200 

0.7813 1.200 

0.8301 1.200 

0.8789 1.200 

0.2567 

0.2931 

0.3334 

0.3773 

0.4248 

0.4755 

10.464 

9.989 

10.370 

11.297 

7.193 

6.094 

0.696 1.310 1.933 

0.690 1.086 2.566 

0.665 0.846 3.753 

0.446 0.551 5.632 

0.091 0.349 5.420 

0.215 0.374 3.584 

TABLE 6.33 Floating Body Motions 
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Body Number: 7 

F - Incident Wave Frequency (Hz) 
B - Body Length (m) 
L - Incident Wave Length (m) 
D - Still Water Depth (m) 
1 - Incident Wave Amplitude (mm) 
al - Body Surge Amplitude (mm) 
a2 - Body Heave Amplitude (mm) 
a3 - Body Pitch Amplitude (Rad) 

FD 

0.4883 1.200 

0.5371 1.200 

0.5859 1.200 

0.6348 1.200 

0.6836 1.200 

0.7324 1.200 

0.7813 1.200 

0.8301 1.200 

0.8789 1.200 

B/L 

0.1688 

0.1948 

0.2240 

0.2567 

0.2931 

0.3334 

0.3773 

0.4248 

0.4755 

n 

14.940 

17.511 

14.019 

12.411 

15.243 

8.759 

9.010 

11.575 

7.777 

al/q a2/J a3*B/, ) 

0.973 0.747 1.256 

0.850 0.942 1.469 

0.753 0.970 1.672 

0.656 1.039 1.892 

0.663 0.910 2.510 

0.609 0.913 3.427 

0.503 0.804 4.912 

0.245 0.657 5.740 

0.085 0.617 4.855 

TABLE 6.34 Floating Body Motions 
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Body Number: 8 

F - Incident Wave Frequency (Hz) 

B - Body Length (m) 
L - Incident Wave Length (m) 

D - Still Water Depth (m) 
7 - Incident Wave Amplitude (mm) 
al - Body Surge Amplitude (mm) 
a2 - Body Heave Amplitude (mm) 

a3 - Body Pitch Amplitude (Rad) 

FD 

0.4883 1.200 

0.5371 1.200 

0.5859 1.200 

0.6348 1.200 

0.6836 1.200 

0.7324 1.200 

0.7813 1.200 

0.8301 1.200 

0.8789 1.200 

B/L 

0.1688 

0.1948 

0.2240 

0.2567 

0.2931 

0.3334 

0.3773 

0.4248 

0.4755 

17 

15.336 

15.148 

16.933 

12.440 

14.805 

9.248 

9.316 

8.871 

5.945 

al// a2/ij a3*B/q 

0.942 0.798 1.262 

0.841 0.845 1.459 

0.747 0.987 1.692 

0.657 1.050 1.987 

0.680 0.956 2.695 

0.617 0.929 3.765 

0.476 0.795 5.238 

0.226 0.705 6.023 

0.141 0.566 4.249 

TABLE 6.35 Floating Body Motions 
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CHAPTER 7. DISCUSSION OF RESULTS. 

7.1 Introduction. 

The discussion of the main results of the investigation reported in 

this thesis commences with a consideration, in general terms, of the 

suitability of the various formulations available for the numerical 

solution of the generalised hydrodynamic interaction problem. In 

particular, the various integral equation formulations are 

considered in terms of their applicability to certain specific 

problems, together with the specific advantages and disadvantages 

associated therewith. 

In view of the importance of achieving an efficient procedure for 

the solution evaluation, in terms of both accuracy and expenditure 

of time, a discussion is presented of the various computational 

aspects contributing thereto. Particular attention is paid to the 

problems associated with the discretisation of the immersed surface, 

for which numerical results have been presented as illustration. 

The validation of linearised potential theory results, under 

controlled experimental conditions, is necessary if numerical 

methods are to be used with any degree of confidence. The 

experimental investigation reported in this thesis has been limited 

to the hydrodynamic interaction between a train of regular, small 

amplitude waves and a substantially rectangular obstacle which may 

be fixed or freely floating, and attempts have been made to 

determine how well the actual physics of the interaction can be 

predicted by linear diffraction theory. Physical mechanisms which 
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are not accommodated in the diffraction model are considered in an 

attempt to explain discrepancies between theory and experiment. 

. 
The dicussion of results is concluded by considering further 

improvements which may be made in the numerical formulations and 

procedures, both with regard to computational efficiency and the 

applicability of the method to generalised hydrodynamic integration 

problems. A discussion is also presented with regard to future 

investigations, both experimental and theoretical, which are 

recommended to enable the inclusion of non-linear effects in the 

theoretical formulations, with a view to improving the accuracy with 

which the actual hydrodynamic interaction can be predicted by 

theory. 

7.2 The Numerical Results. 

7.2.1 General Aspects. 

If a solution is required for the potential theory problem of the 

interaction of a floating body with small amplitude waves in an 

essentially two-dimensional environment, there are a number of 

alternative numerical formulations which are available in this 

regard. The Finite Element Method, the Multipole Method, the 

Integral Equation methods and the Hybrid Element Method have all 

been used to varying extents and each has certain associated 

advantages and disadvantages which must be considered when assessing 

its suitability to any particular problem. 

The most obvious disadvantage associated with the use of the 
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Multipole Method is the constraint imposed on obstacle geometry by 

the use of conformal mapping techniques. Such techniques limit the 

application of the method to solutions for simple axi-symmetric 

obstacle profiles which may be conformally mapped onto a circle (in 

the case of submerged bodies) or a semi-circle (in the case of 

partially submerged bodies), thus precluding the method's 

suitability for generalised solutions. Whilst no such constraints 

are imposed on the use of the Finite Element Method, the fact that 

the entire fluid domain must be considered gives rise to certain 

difficulties in obtaining a solution for problems in which the fluid 

domain extends to infinity in any direction. Unless such a 

formulation is used as part of a Hybrid Element scheme, it would 

appear that its usefulness is limited to domains of finite extent 

i. e. closed basins. It is therefore not unreasonable to suggest that 

the Integral Equation methods, in which the unknown velocity 

potential is represented by a distribution of fluid singularities 

over the domain boundary, are the most suitable for obtaining the 

generalised solution of the hydrodynamics problem. This suggestion 

is reinforced by the extensive use of such methods in research and 

design. 

If the integral equation methods are to be regarded as the most 

suitable for the numerical solution of wave/obstacle interaction 

problems, it is relevent to consider which of the various 

formulations is to be preferred. Six possible formulations are 

available, these formulations being dependent on the choice of fluid 

singularity, the method of solution and the location of the source 

distribution boundary relative to the obstacle boundary. The 

earliest published solutions were for the wave-source 'indirect' 

formulation but subsequent investigations have included solutions 
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derived from the wave-source and simple-source 'direct' 

formulations. Most authors have preferred the wave-source (Green's 

Function) formulations, however, since their use results in a 

smaller system of equations. 

This derives from the fact that automatic satisfaction of the 

free-surface, bottom boundary and radiation conditions by the 

Green's Functions precludes the necessity of considering the entire 

domain boundary. The automatic satisfaction of the far-field 

radiation conditions provides the additional facility of a solution 

check using the Principle of Conservation of Energy. Whilst several 

comparatively recent studies have investigated the use of the 

regular kernel integral equation method, in which the source 

distribution boundary is separate from the obstacle boundary, the 

majority of authors have indicated a preference for the singular 

kernel method in which the two boundaries are coincident. This 

preference is supported by the susceptibility of the regular kernel 

approach to numerical instability resulting from matrix 

ill-conditioning, particularly in the case of irregularly shaped 

profiles containing abrupt changes of geometry. 

Further refinements include the use of linear and higher order 

elemental source strength distributions, as opposed to the more 

conventionally used constant elemental source strength, but results 

have indicated that no significant advantage can be derived 

therefrom. 

For the above reasons, together with those detailed in Chapter 2, 

the numerical method chosen for this investigation was the 

'indirect' Green's Function formulation using a source distribution 
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boundary coincident with the obstacle boundary. 

7.2.2 Green's Function Evaluation. 

One of the computational features associated with the use of the 

Green's Function Integral Equation method is that the vast bulk of 

CPU time, as a proportion of that required for the overall solution, 

is consumed in evaluating the Green's Function expressions for 

inclusion in the matrices required for the discretised solution of 

the unknown velocity potential. For an immersed surface subdivided 

into N boundary elements, whether the direct or indirect formulation 

is used, the overall solution requires the evaluation of 3N2 Green's 

Function expressions. It can therefore be seen that the efficiency 

with which each function is evaluated has a direct bearing on the 

overall solution efficiency, a feature which must be taken into 

account when assessing the viability of the method. For this reason, 

considerable effort has been devoted to achieving maximum efficiency 

in respect of Green's Function evaluation, resulting in a 

substantial reduction in overall computation time. Additionally, a 

considerable saving in CPU time has been effected by taking into 

account the axi-symmetry of the immersed surface and, hence, the 

symmetry of the Green's Functions. Full details can be seen in 

Chapter 4 of this thesis. 

One of the factors directly affecting the efficiency and precision 

of Green's Function evaluation is the correct specification of 

convergence criteria to determine the point at which a sufficient 

number of iterations have been carried out to produce an acceptably 

precise evaluation. The importance of correctly specifying such 
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criteria is further emphasised by the fact that, in general, each 

iterative value is itself the result of a series of intermediate 

iterative procedures each of which has its own convergence 

criterion. Whilst considerable attention has been given to the 

investigation of convergence, it must be said that the relevant 

tests were performed on what was adjudged to be a representative 

sample of source/field point locations. The resultant criteria were 

taken to be those pertaining to 'worst-case' instances to ensure 

that all possible future evaluations would be sufficiently precise. 

It might be reasonably suggested, therefore, that a considerable 

number of function evaluations were computed from an excessive 

number of iterations, resulting in a somewhat spurious degree of 

accuracy. In order to minimise function evaluation time whilst 

maintaining acceptable precision, it is therefore suggested that 

further investigations are warranted in this regard using an 

exhaustive combination of the appropriate variables such as 

source/field point locations, still water depth, incident wave 

length etc. 

Since the computer program described herein was constructed to 

provide theoretical predictions of the parameters associated with a 

particular range of experimental conditions, all of which may be 

classified as pertaining to intermediate depth, no account was taken 

of the approximate forms of the Green's Functions relating to deep 

and shallow water conditions. Since any future investigation would 

entail solutions pertaining to both conditions, it is felt that 

inclusion of the appropriate modifications in the relevant routines 

would be advantageous. 
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7.2.3 Element Distribution. 

The continuous formulation of the problem indicates that the 

resultant integral equation be satisfied at all points on the source 

distribution boundary. In order to obtain a discretised solution, it 

is necessary to relax this requirement and apply the condition at a 

discrete number of control points, those points being the centroids 

of the boundary elements. As a consequence of this relaxation, 

together with certain assumptions made in regard of the elemental 

variation of the source strength and Green's Function, the eventual 

solution is an approximation. As indicated by previous authors, the 

closeness of this approximation to the 'true' solution is highly 

dependent on the efficiency of discretisation of the source 

distribution boundary. 

In the case of a substantially rectangular immersed profile, two 

factors have the most significant effect on the efficiency of 

discretisation: the precision with which the submerged radial edges 

are modelled and the relative dimensions of adjacent elements. The 

former factor is determined by the number of constant length 

elements (Nc) on each submerged radial edge and the latter by the 

nominal element length ratio (E. L. R. ) as defined in Appendix A5. 

Both factors are considered separately for the fixed and floating 

modes of the obstacle. 

a) Fixed Mode 

It can be seen from Fig. 6.1, pertaining to the fixed mode reflection 

and transmission characteristics of body No. 1, that the sensitivity 
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of the solution to changes in element length ratio increases 

dramatically with increasing values of the diffraction parameter. 

This behaviour may be attributed to the proximity of the first 

'irregular' frequency (see section 4.9.1) associated with this 

particular body configuration which, using equation 4.9.2, is 

equivalent to a diffraction parameter value of 0.545. It can clearly 

be seen that, as suggested in section 4.9.1, both the magnitude and 

extent of the effects associated with the irregular frequency are 

substantially reduced by employing a more precise boundary 

discretisation. It must be noted however that, for relatively coarse 

levels of discretisation, the onset of numerical instability is more 

gradual than previously suggested in section 4.9.1. In the case of 

solutions which are less well-behaved than those illustrated, this 

could result in a failure to identify the occurrence of an irregular 

frequency, particularly if the body configuration is sufficiently 

complex to preclude prior evaluation of the irregular frequency, 

leading to an erroneous interpretation of results. 

It is fortunate, however, that application of the Principle of Energy 

Conservation provides a check on the accuracy of the solution. The 

proximity of an irregular frequency can be readily identified by 

inspection of the energy residual (1-RZ-TZ) which dramatically 

increases in magnitude in the event of numerical instability, 

emphasising the inadvisability of considering individual solutions 

in isolation. 

The results presented in Fig. 6.4, pertaining to a change in 

submerged radial edge discretisation for the same body 

configuration, indicate little or no evidence of the proximity of an 

irregular frequency. Comparison with the corresponding results in 
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Fig. 6.1, however, suggests that the initial level of discretisation 

is sufficiently precise to minimise numerical instability and that 

any further increase in discretistion precision is superfluous in 

this regard. 

As detailed in section 4.4, the secondary regular component of the 

Green's Function oscillates in value with a wavelength of comparable 

magnitude to that of the incident wave, enabling the simplifying 

assumption to be made that the function remains virtually constant 

over the extent of any particular boundary element. This, of course, 

is subject to the proviso that the element dimension is small in 

comparison to the incident wavelength. It would, therefore, be 

reasonable to expect higher frequency solutions to exhibit greater 

sensitivity to increasingly precise discretisation than lower 

frequency solutions. Notwithstanding the effects of irregular 

frequency proximity, the results presented in Figs. 6.1 to 6.6 

exhibit no consistent pattern in this regard suggesting that, at 

this level of discretisation, the above assumption may be regarded 

as valid for all practical and experimental purposes. 

An interesting feature, associated with the variation of solution 

sensitivity to increasing levels of discretisation over a range of 

values of the diffraction parameter, is illustrated in Fig. 6.3 and, 

to a lesser extent, in Fig. 6.2. In these cases, contrary to logical 

expectations, the sensitivity actually decreases with increasing 

values of the diffraction parameters. The results presented in 

Fig. 6.4 exhibit a similar pattern of behaviour compounded with a 

variation of results inconsistent with an increased precision of 

discretisation. Examination of results, not presented herein, shows 

that this behavioral inconsistency is reflected by a similar 
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variation of associated energy residuals. It is reasonable to 

suggest, therefore, that the solution inaccuracies may be associated 

with variations in numerical conditioning of the matrix equations 

used to derive the discretised source strength distribution 

function. However, it can be seen that, for the fixed body 

configurations investigated, any inaccuracies resulting therefrom 

are small and may be regarded as insignificant for all practical and 

experimental purposes. 

It can be seen from Fig. 6.3 that solution sensitivity to changes in 

discretisation is markedly increased for shallow draught bodies. 

However, it is not clear from the results whether the increased 

sensitivity derives from the large aspect ratio of the body or the 

proximity of the body to the free-surface. Nevertheless, the results 

provide a clear indication of the necessity for further 

investigation to be carried out in respect of the discretisation of 

shallow draught immersed surfaces. 

b) Floating Mode 

Comparison between the results presented in Figs. 6.1 to 6.6 and 

those presented in Figs. 6.7 to 6.12 demonstrates clearly that, 

notwithstanding the difference in overall behavioral trends, the 

reflection and transmission characteristics pertaining to the 

floating body mode are significantly more sensitive to 

discretisation changes than the equivalent fixed body mode results. 

Since the discretised solution of the' integral equation (see 

sections 4.2.1 and 4.2.2) requires the use of identical coefficient 

matrices for both modes, the difference in sensitivity must be 
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attributable to the three degrees of motional freedom associated 

with the floating mode. 

As with the fixed body case, for reasons connected with the 

oscillation of the regular part of the Green's Function, it would be 

reasonable to expect a gradual increase in discretisation related 

solution sensitivity with increasing values of the diffraction 

parameter. As a consequence of the similarity of all three function 

expressions, it would also be reasonable to expect this gradual 

increase in sensitivity to be equally evident in all three modes of 

motion. Figs. 6.13 to 6.18 show that, whilst the surge and pitch 

motion solutions appear to exhibit such a trend, the corresponding 

heave motion solutions only demonstrate a significant degree of 

sensitivity in the vicinity of the body's resonant frequency 

pertaining to that mode. Additionally it can be seen that, 

notwithstanding the effects of numerical instability induced by the 

proximity of an irregular frequency, the heave solutions exhibit 

little or no sensitivity to changes in discretisation precision at 

comparatively high incident wave frequency conditions. It would 

therefore be reasonable to conclude that, for the cases 

investigated, it is perfectly valid to assume that the Green's 

Function is constant over the extent of any individual element. 

It must therefore be suggested by process of elimination that, 

within certain ranges of value of the diffraction parameter, the 

spacial variation of the source strength distribution function is 

such that it is no longer valid to assume a constant source strength 

over the extent of each boundary element. On the basis of the 

results presented, however, it is not possible to assess whether the 

invalidity of the assumption applies to all boundary elements or, 
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perhaps, merely to those in the vicinity of abrupt variations in the 

geometry of the immersed surface. Although the solutions for all 

three modes of motion exhibit increased sensitivity to 

discretisation in the vicinity of the modal reasonant frequency, the 

scope of the numerical investigation is insufficiently comprehensive 

to determine whether the two factors are related or whether the 

connection is merely fortuitous. 

An interesting feature arising from a comparative evaluation of the 

body motion solutions is the fact that the sensitivity of the surge 

and pitch solutions increases for shallow draught bodies whilst the 

sensitivity of the corresponding heave solutions appears to be 

unrelated to changes in draught. Since the heave motion of the body 

is dependent on a distribution of potential sources only over those 

sections of the immersed surface having horizontal orientation 

components, and is independent of both surge and pitch motion, the 

conclusion must be reached that the spacial rate of change of source 

strength over these parts of the surface does not significantly 

change with increasing proximity to the free-surface. In this light, 

therefore, it is logical to suggest that increasing proximity to the 

free-surface induces an increase in the rate of spacial variation of 

the source strength distribution function over those regions of the 

immersed surface having vertical orientation components, such that 

the assumption of a constant elemental source strength no longer 

remains valid. This suggestion is supported by the dependence of 

both surge and pitch motions on the distribution of sources thereon. 

In the case of substantially rectangular bodies of the type 

investigated herein, this would indicate the need at shallow 

draughts for a higher level of discretisation precision on the 

vertical sides of the immersed surface than on the horizontal base. 
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7.3 The Experimental Results. 

7.3.1 Fixed Body Reflection and Transmission. 

A major feature of wave/obstacle interaction, pertaining to the 

fixed body mode, may be seen in Fig. 6.41 which shows the variation 

of the experimentally measured energy conservation characteristic 

(RZ+TZ) with respect to the diffraction parameter. The pattern of 

results clearly demonstrates that a loss of energy is incurred in 

the interactive process, the magnitude of which systematically 

increases with increasing values of the diffraction parameter. 

It can be seen from Figs. 6.19 to 6.26 that, in general, the 

experimentally measured transmission coefficients agree acceptably 

with theoretical prediction throughout the whole range of values of 

the diffraction parameter. The agreement between theory and 

experiment of the corresponding reflection coefficients is, at the 

lower end of the diffraction parameter range, of a lesser order but 

can nevertheless be regarded as acceptable for practical purposes. 

At the higher end of the diffraction parameter range, however, the 

experimentally measured reflection coefficients become substantially 

less than the theoretical predictions to an extent far in excess of 

that which might be attributable to normal experimental error. It is 

therefore reasonable to conclude that the above-mentioned overall 

energy loss is largely attributable to substantial energy losses 

incurred in the wave reflection process. It is worth noting that 

this concurs with the conclusion reached by Dean and Ursell(15) 

following a similar form of investigation carried out on a fixed, 

semi-immersed circular cylinder. 
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In view of the above conclusion, the comparative magnitudes of the 

appropriate reflection and transmission coefficients indicate that 

an increase in energy loss may be associated with an increase of 

wave amplitude. Similarly, the variation of the energy conservation 

characteristic with respect to the diffraction parameter suggests 

that energy loss increases with increasing wave frequency. A 

combination of these two variational dependencies indicates an 

implied relationship between energy loss and wave particle velocity. 

As a consequence, it is reasonable to suggest that the loss of 

energy may be attributed to the onset of viscous flow separation, 

induced by high wave particle velocities and resulting in the 

shedding of vortices at body locations with high curvature, i. e. 

sharp corners or edges. The validity of this suggested source of 

energy loss is supported by the observed presence of free-surface 

vortices in the immediate vicinity of the body. Although the density 

of these observed vortices increased with higher incident wave 

frequency conditions, it must be suggested that their structure and 

location indicated possible emanation from the sharp vertical end 

corners of the body. 

The results of previous investigations( ), 
on the effects of vortex 

shedding by sharp cornered fixed bodies in oscillatory flow, have 

indicated that vortex shedding is not only dependent on wave 

particle velocity but also on the degree of sharpness and 

included-angle of the body edges. It would be reasonable, therefore, 

to expect the discrepancy beween experimentally measured and 

theoretically predicted values of reflection and transmission 

coefficients to increase with decreasing radius of the submerged 

radial edges of the body. It can be seen from Figs. 6.27 to 6.29 that 

no consistent trend is exhibited in this regard. It is therefore 
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reasonable to suggest that the relationship between vortex shedding 

and edge sharpness is highly non-linear and that, at this level of 

edge rounding, the rate of change of vortex shedding with respect to 

edge sharpness is sufficiently small to preclude identification of 

the effects of differing edge radii by the experimental techniques 

described herein. 

Notwithstanding the absence of any detectable dependence on 

submerged edge radius, the deviation between theory and experiment 

of the reflection coefficients exhibits a noticeable dependence on 

body draught. It can be seen from Figs. 6.19 to 6.29 that the 

experimentally measured reflection coefficients start to deviate 

from theoretical prediction at wave frequencies which become 

progressively lower as body draught decreases, giving a clear 

indication of the increase in interactive energy loss with 

increasing proximity to the free-surface. Since wave particle 

velocity increases non-linearly with proximity to the free-surface, 

this behavioral trend provides further support for the suggestion 

that the deviation between theory and experiment is attributable to 

the effects of vortex shedding. It might also be suggested that a 

proportion of the deviation is attributable to a violation of linear 

boundary conditions in the highly non-linear free-surface zone. 

Figs. 6.27 to 6.29 illustrate an interesting trend of deviation 

between theory and experiment pertaining to the transmission 

characteristics of the fixed body. It can be seen that, irrespective 

of submerged edge radius and body draught, the experimentally 

measured transmission coefficients exceed the corresponding 

theoretical predictions by a magnitude which systematically 

increases with increasing frequency of wave motion. In the absence 
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of any other obvious cause associated with the hydrodynamic 

interaction, and notwithstanding any increase in measurement error 

of the small amplitude transmitted' waves (see section 6.8.6), 

intuitive reasoning suggests that such a trend would result from 

slight horizontal body movements attributable to a lack of rigidity 

of the body support structure. Such movements were observed in the 

course of the investigation, although it was felt at the time that 

they would not be a significant source of error. 

7.3.2 Floating Body Reflection and Transmission. 

It can be seen from Fig. 6.42, showing the variation of energy 

conservation characteristic with respect to the diffraction 

parameter, that the same trend of energy loss is demonstrated with 

the floating body as with the fixed body, namely an increase of 

energy loss with increasing wave frequency. Comparision of Fig. 6.42 

with Fig. 6.41 demonstrates, however, that the general magnitude of 

energy loss associated with the floating body/wave interaction is 

significantly greater than that associated with the fixed body. 

Since the floating mode possesses three additional degrees of 

motional freedom, it is not unreasonable to expect such a 

phenomenon. 

Comparison of the numerical results presented in Figs. 6.7 to 6.12 

with those presented in Figs. 6.13 to 6.18 demonstrates that, for a 

given change in discretisation precision, the variation of 

reflection and transmission is disproportionately greater than the 

variation in corresponding body motions. This serves to illustrate 

the high degree of sensitivity of the reflection and transmission 
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coefficients to minor variations in body motion. The inference may 

be drawn that comparatively small discrepancies between the 

experimentally measured and theoretically predicted body motions 

would result in substantially larger discrepancies in the 

corresponding reflection and transmission characteristics. It is 

therefore suggested that no meaningful conclusion may be derived 

from a comparison between fixed and floating body results in terms 

of the relative magnitude and trend of discrepancy between 

theoretical and experimental values of the reflection and 

transmission characteristics. 

In deriving the theoretical predictions of the wave-effects 

associated with the interaction between a floating body and a train 

of regular waves, a fundamental assumption is made that the overall 

wave-effect consists of a linear superposition of the effects 

associated with the fixed mode and those associated with each degree- 

of motional freedom. Using the theoretically derived generated wave 

ratios in conjunction with the experimentally measured values of 

amplitude and phase of each motion, it is possible to predict the 

wave-effects associated with the actual motions, thus permitting a 

more meaningful conclusion to be reached from examination of the 

discrepancies. In view of the localised wave effects associated with 

the interactive process, however, experimental measurement of the 

phase of each motion relative to the incident wave would require a 

comparison of body motion phase with that of the wave train at some 

distance from the floating body. It was felt that, as a consequence 

of irregularities in flume dimensions, the error associated with the 

extrapolated phase difference would be too large to enable 

derivation of an acceptably accurate, and therefore meaningful, 

prediction of reflection and transmission. Aside from that, however, 
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there exists no method of experimentally analysing the overall wave 

profile to enable resolution of the various components associated 

with each mode. As a consequence, it would not be possible to make 

an assessment of the relative discrepancies between theory and 

experiment associated with each mode of motion, thereby rendering 

the exercise largely pointless. 

Notwithstanding the above shortcomings, however, the experimental 

results presented in Figs. 6.30 to 6.37 show a distinct conformity 

with theoretical predictions in terms of variational trend, if not 

in magnitude, throughout the whole range of values of the 

diffraction parameter. Of the reflection and transmission 

characteristics, the only parameter of practical significance is the 

transmission coefficient in the context of floating breakwater 

design. If the results presented in Figs. 6.30 to 6.37 are examined 

in this context, it is encouraging to note that, where significant 

discrepancies exist between theory and experiment, the 

experimentally measured transmission coefficients are generally 

lower than those predicted by theory. 

7.3. Floating Body Motions. 

a) Surge Motion 

It can be seen from Figs. 6.43 to 6.45 that, for the body 

configurations pertaining to an immersed surface aspect ratio of 2, 

the experimentally measured amplitudes of surge motion agree 

excellently with the theoretically predicted values throughout the 

entire range of values of the diffraction parameter. It can be seen 
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from Fig. 6.57, in conjunction with Figs. 6.13 and 6.16, that any 

discrepancies between theory and experiment are within the 

acceptable limits associated with measurement error, systematic 

errors resulting from variations in rotational inertia, and 

discretisation-related inaccuracies in the theoretical predictions. 

A noticeable exception to this trend of agreement is the 

experimentally measured amplitude of surge motion pertaining to a 

diffraction parameter value of 0.293. It can be seen from Figs. 6.43 

to 6.45 that, in comparison with adjacent results, the discrepancy 

between theory and experimental appears to be somewhat abnormal. 

Fig. 6.51 shows that, for each body configuration within the immersed 

surface aspect ratio grouping, the discrepancy is virtually 

identical thereby precluding the possibility of a random error. 

Additionally, the wave analysis results and raw surge measurement 

data (not presented herein) display no evidence of instability in 

either the wave regime or body motions. It is particularly 

interesting to note that, despite the coupling effect between pitch 

and surge, the corresponding pitch motions are apparently 

unaffected. In this light, it is not unreasonable to suggest that 

the discrepancy is related in some way to the inherent resonant 

frequency characteristics of the mechanical system in the horizontal 

mode of motion, as opposed to the hydrodynamic interaction between 

the wave train and the floating body. 

The results presented in Figs. 6.46 to 6.50 show that the 

experimentally measured surge motions pertaining to those body 

configurations having immersed surface aspect ratios of 4 and 8 

demonstrate less good agreement with theoretical predictions. 

Nevertheless, it can be seen that the general trend of deviation 
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between theory and experiment is consistent within each immersed 

surface aspect ratio grouping. Examination of Figs. 6.52 and 6.53 

shows that the general magnitude of the deviations increases with 

decreasing body draught, suggesting the source of deviation to be 

associated with proximity to the free-surface. Furthermore, Fig. 6.52 

illustrates a distinct pattern of deviation, for body configurations 

having an immersed surface aspect ratio of 4, consistent with 

decreasing radius of the submerged edge of the body. The same trend 

is exhibited in Fig. 6.53 although the absence of a third body 

configuration within this aspect ratio group must give rise to a 

certain degree of uncertainty over the continuity of the trend. 

Notwithstanding this uncertainty however, it is reasonable to 

conclude that the deviation between experimentally measured and 

theoretically predicted surge motion increases with increasing 

'sharpness' of the immersed edges of the floating body and also with 

increasing proximity to the free-surface. 

As with the fixed body case, this deviatory trend indicates the 

presence of vortex shedding effects induced by viscous flow 

separation at the body edges. However, intuitive reasoning suggests 

that vortex shedding effects, as a consequence of the surge motion 

of the body, would result in the experimentally measured surge being 

somewhat less than the theoretical prediction. It can be seen from 

Figs. 6.46 to 6.50 that this is not the case, the experimentally 

measured amplitude of motion being generally greater than theory to 

an extent which increases with edge sharpness and proximity to the 

free-surface. In the absence of any other feasible explanation for 

this behavior, it must be suggested that the deviation between 

experiment and theory is, by virtue of cross-coupling effects, 

largely attributable to the theoretical and experimental deviation 
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of the corresponding pitch motions of the body. This suggestion is 

supported by the fact that, with the exception of results pertaining 

to frequencies in the immediate vicinity of the pitch resonant 

frequency, the deviations between theory and experiment for pitch 

and surge exhibit distinctly similar trends. Examination of 

Figs. 6.57 to 6.59 suggests, however, that the surge deviations are 

far greater than would be expected from cross-coupled pitch 

deviations alone. In this light, it is not unreasonable to conclude 

that the actual cross-coupling parameters are significantly 

different from those predicted by theory. 

b) Heave Motion 

The results presented in Figs. 6.43 to 6.45, pertaining to body 

configurations having an immersed surface aspect ratio of 2, show 

that the experimentally measured heave motions of the body agree 

excellently with those predicted by theory over a substantial 

proportion of the diffraction parameter range. It can be seen, 

however, that significant deviations between theory and experiment 

occur in the vicinity of the diffraction parameter value pertaining 

to the body's resonant frequency in the heave mode, the 

experimentally measured heave motion always being less than 

theoretically predicted. Figs. 6.46 to 6.50 show that, whilst this 

deviatory trend is maintained for body configurations having 

immersed surface aspect ratios of 4 and 8, a decrease in body 

draught has the effect of increasing the range of diffraction 

parameter values over which this 'localised' increased deviation 

occurs. It must be suggested, however, that this is probably related 

to the fact that a decrease in body draught results in a more 

gradual increase of heave motion as the frequency of motion 
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approaches the modal resonant frequency. Examination of Figs. 6.51 to 

6.53, illustrating the trends of deviation between theory and 

experiment with respect to the diffraction parameter, shows that 

within each immersed surface aspect ratio grouping, the magnitude of 

deviation in the vicinity of the modal resonant frequency increases 

consistently with increasing 'sharpness' of the submerged radial 

edge. It is therefore reasonable to suggest that the deviations are 

attributable to viscous flow separation, and consequence vortex 

shedding, induced by severe velocity gradients in the immediate 

vicinity of the submerged edges of the body. 

A feature of interest arises from examination of Figs. 6.49 and 6.50. 

It can be seen that, at relatively low frequencies, the 

experimentally measured heave motions are substantially lower than 

the theoretical predictions despite the fact that the heave 

amplitude of the body is of a similar order of magnitude to the 

amplitude of the incident wave. This deviation is explained by the 

fact that the heave motion of the body, within this frequency 

domain, is approximately 180° out of phase with the incident wave, 

resulting in high velocity gradients in the immediate vicinity of 

the body/fluid interface, thus supporting the suggestion that vortex 

shedding effects are a function of the relative velocity of the body 

and adjacent fluid. 

c) Pitch Motion 

It has generally been accepted, from the results of a considerable 

number of experimental studies in this field, that the effects of 

vortex shedding induced by viscous flow separation are more 

significant in the context of rotational body motions than in the 
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context of translatory motions. Previous studies have further 

indicated that the most significant deviations between theory and 

experiment, due to this phenomenon, occur in the vicinity of the 

modal resonant frequency. The results presented in Figs. 6.43 to 6.50 

confirm this behaviour and demonstrate that the amplitude of pitch 

motion at the modal resonant frequency can be reduced by as much as 

35% by the effects of viscous flow separation. 

Apart from these localised deviations, however, the experimental 

results over the remaining range of values of the diffraction 

parameter demonstrate excellent agreement with theory. It must also 

be stated that, unlike the results pertaining to the surge and heave 

body motions, no significant draught-related general increase in 

deviation is evident. As a consequence of the relatively coarse 

frequency distribution of results over the range within which the 

localised large deviations occur, the deviations presented in 

Figs. 6.51 to 6.53 do not exhibit any obvious behavioral trends 

consistent with a decrease of submerged edge radius. It would, 

therefore, be unwise to infer such a relationship from the results 

presented herein. 

Notwithstanding the fact that the deviations between theory and 

experiment, outwith the immediate vicinity of the modal natural 

frequency, are within the acceptable limits of measurement error, 

inertial variation and discretisation-related numerical inaccuracies 

in the theoretical predictions, the trend of deviations illustrated 

in Figs. 6.51 to 6.53 suggests the experimental results are 

consistently greater than the theoretical predictions. Since this 

trend pertains to all of the body configurations investigated, the 

presence of a systematic error is indicated. In order to comply with 
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the assumptions made in connection with the simplified equations of 

motion, each body was constrained to rotate about a transverse axis 

passing through the centroid of the body. As a consequence of the 

size and mass of the body, it was not possible to physically check 

the centroidal axis as computed from the mass and relative location 

of the constituent components of the body and ballast. It can be 

reasonably suggested, therefore, that the body was constrained to 

rotate about an axis marginally lower than the true centroidal axis. 

This may have been due to a computation error or, alternatively, a 

systematic physical error associated with the precise location of 

the pitch rotation bearings. 

An interesting feature, pertaining to the magnitude of the 

theoretically predicted amplitude of pitch motion at the modal 

natural frequency, can be seen from comparison of Figs. 6.43,6.44 

and 6.57. The results presented in Fig. 6.57 show that, for body 

configuration No. 1, a 5% increase of inertia without a change of 

body geometry results in an increase of resonant pitch amplitude of 

a comparable order of magnitude. However, comparison of the 

theortical predictions presented in Figs. 6.43 and 6.44 shows that a 

reduction in submerged edge radius from 120mm to 60mm, equivalent to 

an increase in rotational inertia of 1.5%, results in a 17% increase 

in resonant pitch amplitude for the same immersed surface aspect 

ratio. It may therefore be concluded that the increase in resonant 

pitch amplitude, associated with a decreased edge radius, is 

attributable to the change in body geometry rather than the 

associated inertial increase. This sensitivity is displayed by the 

corresponding experimental results, thereby emphasising the 

importance of precise geometric construction of the body in the 

context of future experimental investigations in this field. 
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7.4 Conclusions and Recommendations. 

The results of the numerical investigation, and subsequent 

discussion thereof, have shown that the singular kernel, indirect 

solution of the Green's Function Integral Equation formulation is a 

suitable method for obtaining the numerical solution to the 

hydrodynamic problem of the interaction between a fixed or freely 

floating body and a train of regular waves. 

Notwithstanding the considerable improvements in computational 

efficiency which have been achieved without significant loss of 

solution accuracy, it is felt that additional improvements may be 

made, in this regard, following the results of further 

investigations as recommended hereunder. For purposes of clarity, 

the recommendations are presented in list format. 

(1) The most significant factor affecting the efficiency and 

accuracy of evaluation of the Green's Function expressions, with 

consequent effect on the overall solution, is that pertaining to 

numerical convergence of the integral and series form thereof. 

It is recommended that further numerical tests be carried out, 

using a comprehensive range of combinations of the appropriate 

variables, to determine the convergence criteria which would 

result in an optimised function evaluation in terms of 

computation time and precision. 

(2) In order to improve the efficiency of solution for a 

comprehensive range of incident wave and flume conditions, it is 

recommended that routines be included in the computer program to 

facilitate use of the appropriate deep and shallow water 
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approximations of the Green's Function expressions. It is 

further recommended that tests be performed, for a comprehensive 

range of flume conditions and body configurations, to determine 

the range of validity of these approximations. 

(3) It has been shown that the numerical solutions are, under 

certain conditions, extremely sensitive to variations in the 

level of discretisation of the immersed body surface. Whilst 

considerable improvements have been achieved with regard to the 

efficiency of discretistion by the use of the element 

distribution format described herein, it is suggested that 

further investigation be carried out in respect of the validity 

of assuming a constant source strength distribution over the 

extent of each boundary element. For the particular case of 

substantially rectangular bodies, it is recommended that a 

series of numerical evaluations of the source strength 

distribution function be carried out, for a comprehensive range 

of body aspects, flume depths and diffraction parameter values, 

to determine the variation of source strength with respect to 

the immersed body surface. It is felt that the results of such 

tests will enable the determination of more precise rules of 

element distribution such that the above assumption is valid 

under all conditions. 

(4) It has been suggested that the overall solution accuracy is 

adversely affected by the effects of matrix ill-conditioning, 

the occurrence of which is related to the discretisation of the 

immersed body surface. It is therefore recommended that the 

matrix solution routines in the computer program be extended to 

include facilities for computing a 'conditioning number', 
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details of which can be found in a number of texts on matrix 

operations, to assist in the identification of unsuitable 

discretisation schemes. 

(5) It has been demonstrated that the sensitivity of solutions to 

different levels of discretisation varies for each mode of 

motion of the floating body. Owing to the cross-coupling of 

certain motions, together with the method of simultaneous 

solution for the appropriate velocity potential components, the 

use of separate discretisation schemes for each mode of motion 

is not recommended for a freely floating body. 

The experimental study was designed primarily to examine the 

validity of the theoretically predicted parameters, derived from the 

formulations detailed in this thesis, pertaining to the interaction 

between a train of small amplitude regular waves and a substantially 

rectangular body in fixed and/or floating mode. By investigating the 

behaviour of the body over a suitable range of values of the 

diffraction parameter, it was additionally intended to examine the 

extent of validity of linearised potential theory within regimes 

where diffraction effects predominate. 

The results obtained indicate that the theoretical formulations 

provide a good representation of the wave refection and transmission 

characteristics of the body at the lower end of the diffraction 

parameter range. As the body dimension increases with respect to the 

incident wave length and diffraction effects become increasingly 

dominant, a progressively increasing loss of energy is incurred in 

the system. The general magnitude of the energy loss is 

significantly greater in the case of the floating body than in the 
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case of the fixed body. 

In the case of the fixed body, the general trend of results 

indicates this energy loss to largely associated with the wave 

reflection process, resulting in singificant deviations between the 

experimentally measured reflection coefficients and those predicted 

by theory for values of the diffraction parameter greater than about 

0.3. The experimentally measured transmission coefficients, however, 

demonstrated good agreement with theory, within the limits of 

practical significance, throughout the entire range of values of the 

diffraction parameter. 

As a consquence of the high degree of dependance of the floating 

body reflection and transmission characteristics on the motions of 

the body, together with an inability to resolve the combined wave 

profile into the individual components associated with each degree 

of freedom, a firm conclusion cannot be reached with regard to the 

limits of validity of the theoretically-predicted wave effects with 

respect to the diffraction parameter. 

It would be reasonable, however, to assume that the theoretical 

predictions pertaining to the individual generated wave components 

are valid over a similar range to that associated with the 

corresponding body motions. 

The agreement between theoretical and experimental surge motion 

amplitudes is excellent, over the entire range of values of the 

diffraction parameter, for substantially-draughted bodies but 

gradually deteriorates with decreasing body draught. For body 

configurations of constant draught, the deviation between theory and 
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experiment increases with increasing sharpness of the submerged 

edges of the body. It is suggested, however, that these deviations 

may be largely associated with cross-coupling effects between pitch 

and surge motions, rather than effects associated with surge motion 

per se. 

The standard of agreement between theoretical and experimental heave 

motions is generally of the same order as that pertaining to surge 

motion although the deterioration associated with decreasing body 

draught is more rapid. The most significant deviations between 

theory and experiment occur in the vicinity of the resonant 

frequency of the body in the heave mode and are substantially 

greater than would be acceptable for practical purposes. 

In general, the agreement between theoretically-predicted and 

experimentally-measured amplitudes of pitch motion is excellent and 

exhibits no draught-related deterioration. As with the heave 

motions, however, unacceptably large deviations between theory and 

experiment are incurred in the immediate vicinity of the modal 

resonant frequency. 

For reasons discussed in the preceding sections, it is suggested 

that the major discrepancies between theory and experiment, for both 

fixed and floating bodies, may be directly attributed to the effects 

of vortex shedding induced by viscous flow separation at locations 

of abrupt changes, in geometry of the immersed surface of the body. 

It must therefore be stated that, notwithstanding any improvements 

in solution techniques which may results from further numerical 

investigation, the application of linear diffraction theory to the 

solution of hydrodynamic interaction problems is of somewhat 
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questionable validity unless such effects are considered in the 

derivation of the theoretical formulations. 

The significance of vortex shedding, in the context of rotational 

body motions in the vicinity of the modal resonant frequency, has 

long been recognised. Previous investigators in this field, noting 

the damping effect of vortex-shedding forces on rotational motions, 

have corrected for this effect by including an additional component 

in the potential damping term in the equations of motion, resulting 

in a marked improvement in agreement between theory and experiment 

for the particular model under consideration. Although the 

application of this correction factor has the desired effect, its 

magnitude can only be determined a posteriori by empirical means 

from the results of model testing, suggesting its somewhat limited 

validity in the context of theoretical prediction. Notwithstanding 

the fact that it is no doubt possible, from the results of an 

exhaustive series of model tests, eventually to derive an empirical 

relationship between the magnitude of this corrective term and 

factors such as the fluid viscosity, the velocity of body motion and 

the geometry of the body, the highly probable existence of 

non-linear scale effects must raise certain doubts regarding the 

validity of this approach in terms of the derivation of a 

generalised viscous damping correction. 

The results of this study indicate that vortex shedding effects are 

not limited entirely to rotational body motions. It has been 

demonstrated that the effects are equally significant in regard to 

the heave motions and also in regard of the interaction between a 

wave train and a fixed body. The apparent ubiquity of such a 

phenomenon provides further emphasis of the unsuitability of the 
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above-mentioned empirical approach and suggest the urgent necessity 

for a more fundamental examination of the problem. It is felt that 

such an investigation should initially take the form of a 

theoretical examination, reinforced by suitable experimentation, of 

the fluid particle velocity distribution within the region 

immediately adjacent to the interface between the fluid and the 

immersed body surface. It is suggested that such an approach, in 

possible conjunction with the accepted concepts relating to 

boundary-layer theory, would provide a better understanding of the 

cause of the phenomenon and, in view of its applicability to fixed 

and floating bodies alike, would serve to pave the way towards the 

derivation of a truly generalised solution to the hydrodynamic 

interaction problem. 
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APPENDIX Al. THE TWO-DIMENSIONAL SOURCE STRENGTH 

DISTRIBUTION EQUATION. 

Consider a simple source with velocity potential o. (see Lamb(62)) 

Then the flux across any surface =- 
rJär 

ds 

where: r represents the radial vector; 

ds represents the area of a surface element; 

If m is called the source strength and represents the flux 

travelling outward across a small closed spherical surface 

surrounding the source, it can be stated that: 

ffao 
m= -J ar 

ds 

By analogy, for a two-dimensional source: 

m= jar 
dr 

where: dr represents the length of a two-dimensional element. 

But: dr = rde 

Substitution in equation (Ai. 1) gives: 

21T 

m=- 
I ärrde 

(A1.1) 
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Thus: 

2n 

r-f ar 
de - -2n 

ar 

0 

Integrating both sides gives: 

m log r= -2i0 

Thus 

©=_mlog 
r 

2n 
(A1.2) 
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APPENDIX A2. THE GREEN'S FUNCTION FORMULATIONS. 

The Green's Function may be expressed thus: 

G(x, y; a, b; t) = g(x, y; a, b)e-iot 

Since the parameter g is complex, it may be expressed as: 

(A2.1) 

g(x, y; a, b) = g, (x, Y; a, b) + igz(x, Y; a, b) (A2.2) 

A2.1 The Normal Gradient. 

From equation (A2.2): 

99 
_ 

a91 
+ ia9Z A2.3an an an 

where: 
and 

- 
aX'(nx) 

+ 
äy1(ny) 

fQ2 
_ 

agz(n) + agz(n 
an - ax X ay y 

nx, ny are the direction cosines of the normal with 

respect to the positive x and y axes and have 

been defined in Chapter 3. 

A2.2 The Imaginary Part. 

From Naftzger & Chakrabarti(72), the imaginary part of the 
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two-dimensional finite depth Green's Function may be expressed as: 

g2 =- go Cos k(x-a) 

where: go 
2vv Cosh k(d+b) Cosh k(d+y) 

k vd + Sinh 2 kd 

oZ 
V=- 

g 

(A2.4) 

The x and y gradients, and hence the normal gradient, may be 

obtained by straightforward differentiation. 

A2.3 The Integral Form of the Real Part. 

In integral form, the real part may be expressed as: 

gl = Loge d+ Loge 
dZ - 2I, (A2.5) 

co 

where: I1 
[µ+v e-« Cosh u(d+b)Cosh u(d+y)Cos u(x-a) 

+ 
e-ud I 

du 
u Sinh pd -v Cosh ud a 

0 

rz = (x-a)z + (Y-b)z 

rz = (x-a)' + (Y+2d+b)z 

f 
denotes the Cauchy Principal Value Integral 

A little algebra shows that the expression 

e-ud cosh u(d+b) Cosh u(d+y) 
It Sinh pd -v Cosh ud 

(A2.6a) 
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may be alternatively expressed as: 

j6eu(b}Y)(1 + e-2u(b+d))(1 + e-2u(d+Y)) 
(u-v) - (P+v)e-ztld (A2.6b) 

Hogben and Standing(43) have shown that expression (A2.6a) tends to 

be badly behaved in deep water (kd >, 5) whereas expression (A2.6b) 

is well behaved at any depth. 

Using the alternative expression, the Principal Value Integral in 

(A2.5) may be re-expressed as: 

umax F,. FZ. F3. Cos u(x-a) e-ud 
I1= -F + -- du (A2.7) 

0 
(µ_v) - (µ+v)e-2ud u 

where: F1 = M{ju 
u+v}eu(b+Y) 

Fz =1+ e-2u(b+d) 

F3 =1+ e-2u(d+Y) 

umax is an arbitrarily chosen point at which the 

contribution to the integral becomes insignificant. 

By applying the linear dispersion equation v=k Tanh kd, it can be 

seen that the denominator of the P. V. integrand in (A2.7) becomes 

zero at u=k. This may be resolved by adopting the following 

procedure: 
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In general, if a function f(u) has a simple pole at u=k, it may be 

written thus: 

f(u) = 
g(u 
h(u) 

Then: 

(A2.8) 

f(u) du =1 f(u) -, 
g(k) du + 

g(k) Loge _k (A2.9) 
Jh (k) (u-k)J h '(k) IkI 

00 

where: h' implies ah/au 

ul is an arbitrarily chosen point kG 91 < umax- 

It can clearly be seen from Figs (A2.1) to (A2.3) that the effect of 

the singularity is removed. It is important to note that the 

modified integrand in (A2.9) is indeterminate at u=k and that this 

ordinate must be avoided in any numerical integration procedure. 

The functions f(µ), g(µ) and h(u) can be derived from expression 

(A2.7) together with their derivatives. 

A2.4 The Series Form of the Real Part. 

The real part of the Green's Function expression may be 
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alternatively expressed in series form thus: 

gl = go Sin kix-al 

Co 

- 2z r1 Cm. Cos um(d+y). Cos um(b+d). e-umlx-al 
(A2.10) 

! LlýýJ um 
m=1 

where: um(m < 1) are the positive real roots of umTan umd +v=0 

Cm = 
Um2 + vz 

um2d + vzd -v 

go is defined in equation (A2.4). 

The x and y derivatives may easily be obtained from straightforward 

differentiation. 

The solution of the modified dispersion equation above is detailed 

in Appendix A4.1 
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APPENDIX A3. THE GREEN'S FUNCTION LIMIT AT ITS SOURCE. 

Following the nomenclature of section (4.2.1), the Green's Function 

and its normal derivative may be expressed thus: 

gij = Log R(Xi, £J) + gij 

ii 
an 

ii =a 
[Log 

R(xl, Lj)} + an 

(A3. la) 

(A3. lb) 

As the field point (xj) approaches the source point Ij), the 

logarithmic term in both of the above expressions outstrips the g* 

term and both functions have a "Log R" type of singularity. The 

normal expressions cannot, therefore, be used to evaluate the 

parameters. 

The singularity is removed by distributing the source uniformly over 

the element length rather than concentrating it at the element 

centroid. Free surface effects are neglected. 

P 

Fig. A3.1 THE GREEN'S FUNCTION LIMIT AT ITS SOURCE 
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Consider the potential o at P due to a unit source uniformly 

distributed over the element length: 

1/2 

m=i Log R dr 

-1/2 

(A3.2) 

It is numerically convenient to re-arrange equation (A3.2) thus: 

1/2 
i 

Log R dr where e40 
J 

6 

Substituting R2 = (y2+r2) gives: 

1/2 

2 
m=1J Log(r2+yz)M dr 

Integration by parts yields: 

(A3.3) 

Log(rz +yz)%- 1 
r. 1 

1/2 
(A3.4) o= 

it it 
+ 

iy 
Tan-y 

e 

In the limit as y40: 

= Log 
2-1- 

ic- 
Loge + 

2c 

In the limit as c40: 

o= Log 
1-1 

(A3.5) 
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This may be regarded as the limiting value of gib when source and 

field points coincide. 

From equation (A3.3): 

1/2 

an ay 1f ýy(Log R) dr (A3.6) 

0 

Substituting for R and integrating yields: 

ao 2 
an 

tTanl[F]} 

In the limit, as y40: 

ab__IT 
an 1 

(A3.7) 

This may be regarded as the limiting value of agil/an when source 

and field point coincide. 
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APPENDIX A4. NUMERICAL DETAILS. 

A4.1 Solution of the Modified Dispersion Equation. 

The modified dispersion equation, as used in the evaluation of the 

Series Form of the Green's Function (see Appendix A2.4), can be 

written: 

um Tan umd +v=0 (A4,1j 

where: v= o2/g 

um = the mth positive real root of the equation. 

For purposes of clarity, the equation may be rearranged thus: 

vd 
umd 

= Tan umd (A4.2) 

The behaviour of both sides of the equation is shown in Fig A4.1. It 

can be clearly seen that the mth positive root of the equation may 

be defined as: 

(m - M)ir < umd mit (A4.3) 

The solution to equation (A4.1) may be obtained by utilising the 

Newton-Raphson iterative method: 

f (µm) 
(um)i - (A4.4) 

f'(um)i 
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where: f' implies of/au 

subscript i denotes the ith iteration. 

Tan(µd) 

µ 
2 

a I p 

1 

-n/2 0 

Fig. A4.1 

7r/y n =f2 yr 

SOLUTION OF MODIFIED DISPERSION EQUATION 

Differentiation of equation (A4.1), followed by the appropriate 

substitution in equation (A4.4), leads to the following equation: 

(um)s = (�i) o- 

(um)o Tan (um)od +V 

(um)od Sec' (um)od + Tan (um)od 

where: (um), is a reasonably accurate initial guess for u,. 

(A4.5) 

(um)o is either mit or (m - 3)a according to equation (A4.3) 

µd 
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If (um)od = my, substitution in equation (A4.5) gives: 

MIT 
_v (um)1 °d 

mit 

However, from Fig A4.1, it can be seen that: 

mir - (um), d * n/2 

(A4.6) 

Thus, an initial guess (um)1 defined by equation (A4.6) will only 

result in convergence within the range specified by equation (A4.3) 

if: 

vd ý mnz 
2 

If vd does not comply with the conditions of equation (A4.7): 

(um)o = (m IT 

(A4.7) 

Since Tan (m - M)n =t-, it can be seen that substitution of the 

above value of (um), into equation (A4.5) will give an indeterminate 

initial guess resulting in non-convergence. 

Since the initial guess specified by equation (A4.8) depends on a 

maximum value of vd, it may be postulated that, in this case: 

1 
(um)id = (m - M)n + 

vd 
(A4.8) 

Using similar reasoning as above, it may be stated that an initial 
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guess defined by equation (A4.8) will only result in convergence 

within the specified range if: 

vd (A4.9) 

A series of tests showed that rapid convergence occurred if: 

MV 
-v ("m)' 

d mir 
for vd < 3.5 

m 
(A4.10a) 

(µm)1 = (m -)d + 
vdz 

A4.2 Solution of a Complex Matrix Equation. 

Consider the following matrix equation: 

[A] EX] = CB] 
(n, n) (n, k) (n, k) 

which must be solved for the unknown [X]. 

for vd 3.5 
m 

(A4.10b) 

(A4.11) 

The elements of the matrices are the complex quantities: 

Ami = Cmj + iDmj 

Xmj = Emj + iFmJ 

Bmj = Gmj + iHmj 

m=1, n; j=i, n; 

m=1, n; j=1, k; 

m=1, n; j=1, k; 

(A4.12a) 

(A4.12b) 

(A4.12c) 
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Substitution of equations (A4.12) into equation (A4.11) gives: 

[C] -[D] [E] 

[D] [C] [F] 

(A4.13) 

(2n, 2n) (2n, k) 

[G] 

[H] 

(2n, k) 

Possible methods of solution are as follows: 

Method 1. 

Equation (A4.13) may be solved directly for [E], [F] using the 

Gauss-Jordan elimination technique. 

Array storage (k = 4) = (2n)2 + 2nk = 4n2 + 8n 

CPU time (k = 4) = a(2n)3 

where: « represents the time-based constant of proportionality for 

Gauss-Jordan solutions. 

Method 2. 

Expanding equation (A4.13) and using the notation CE [C] etc. 

gives: 

CE - DF =G (A4.14a) 

DE + CF =H (A4.14b) 

Premultiplying (A4.14a) by C-'DC-1, premultiplying (A4.14b) by C-' 
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and adding the results gives: 

(SZ+I)F = C-1H + SC-'G 

where: S= C-1D 

I= the Unit Matrix. 

(A4.15) 

Solution for the unknowns E and F may be obtained by the following 

procedure: 

a) Evaluate C-1 from the solution of CC-1 =I 

b) Evaluate S= C-1D 

c) Evaluate J= C-1H 

d) Evaluate K= SC-1G 

e) Evaluate F from the solution of (Sz+I)F = (J-K) 

f) Evaluate E from back substitution E= C-1G + SF 

A little algebra shows that: 

Array storage (k = 4) = 3n2 

CPU time (k = 4) = «(2n)3 + ß(3n4 + 16n3) + y(8n) 

where: «, ß, y are the time-based constants of proportionality for 

Gauss-Jordan solutions, matrix multiplication and 

matrix addition/subtraction respectively. 

Method 3. 

Starting from equation (A4.15), solution for E and F may be obtained 

as follows: 
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a) Solve C(SG'H') = (DGH) to give: 

S= C-1D 

GI = C-16 

H' = C-1H 

b) Evaluate SG' = SC-'G 

c) Evaluate J= H' - SG' 

d) Evaluate L= Sz +I 

e) Evaluate F from the solution of LF =J 

f) Evaluate E from back substitution E= G' + SF 

Array storage (k = 4) = 3n2 + 16n 

CPU Time (k = 4) = «(2n3) + ß(n4+8n3) + y(8n) 

where: a, 5, y are as previously defined. 

For 13 =y=1; n= 50; a comparison of the product (Array storage x 

Time) yields the following: 

Method «=5 «= 10 «= 20 

1 1.00 1.00 1.00 

2 3.18 1.68 0.93 

3 1.36 0.78 0.49 

It can clearly be seen that, providing a 10, Method 3 is the most 

efficient. An actual comparison between Methods 1 and 3 can be seen 

in table A4.1. 
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METHOD 1 

NO. OF C. P. U ARRAY STORAGE 
ELEMENTS TIME STORAGE 

(SECS) (kWORD) TIME 

19 1.82 1.60 2.91 

25 3.98 2.70 10.74 

31 7.38 4.09 30.18 

37 12.42 5.77 71.69 

43 19.20 7.74 148.61 

49 28.09 10.00 280.82 

55 39.41 12.54 494.22 

METHOD 3 

NO. OF C. P. U ARRAY STORAGE 
ELEMENTS TIME STORAGE 

(SECS) (kWORD) TIME 

19 1.31 1.39 1.81 

25 2.79 2.28 6.36 

31 5.06 3.38 17.09 

37 8.37 4.70 39.34 

43 12.86 6.24 80.16 

49 18.66 7.99 149.05 

55 26.03 9.96 259.09 

Table A4.1 Comparison of Methods of Solution 
of a Complex Matrix Equation. 
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A4.3 Numerical Integration of a Sinsuoidal Function using 

Simpson's Rule. 

If a function f(x) is numerically integrated, using Simpson's Rule, 

in the range xo <x< xn, the error in the approximate integral can 

be shown to be: 

E= 
180 

ff(3)(x) 
- f(3)(Xo)I (A4.16) 

where: h is the interval length 

f(3) implies a3f/ax3 

The interval length can be expressed as: 

xn - xo 
h= (A4.17) 

N 

where: N is the number of intervals. 

Substitution of equation (A4.17) into equation (A4.16) yields: 

(x - xo)4 
E=- 

1f(3)(xn) 
- f(3)(xo) (A4.18) 

180N4 

Consider the function f(x) = Sin kx: 

Then: f(3)(x) = -k3Cos kx 
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The error in numerical integration of the function in the range 

0SxG aii/2 is: 

-(air/2)" 
E1 = -k3 Cos(an/2) + k3 (A4.19) 

180 N1 I. 

Similarly, the error in numerical integration in the range 

«u/2 x ir/2 is: 

[(ir-air)/2]s 

EZ = -k3 Cos(an/2) (A4.20) 

180 NZ 

The assumption is made that maximum efficiency of integration (i. e. 

a minimum number of subdivisions for a given error) is achieved 

when: 

E2 = E1 and N2 = N1 

Equating the two expressions yields: 

a=0.667 

It can thus be postulated that maximum efficiency of integration of 

a cyclic function is achieved when the cycle is sub-divided in the 

following ratios. 

2: 1: 1: 2: 2: 1: 1: 2 

The total integral is the sum of the individual integrals over the 

subdivided intervals. 
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A4.4 Numerical Evaluation of the Incident Wave Potential. 

Evaluations of the normal gradient of the incident wave velocity 

potential, at points (xi, yi) on the immersed surface of the body, 

are required for the formation of the matrices used in the 

discretised solution of the integral equations. 

The incident wave velocity potential may be defined(86) in complex 

form thus: 

oW(x, Y; t) = ©W(x, Y)e-iot 

where: -igH Cosh k(d+y) 
eikx aw(x, y) = 2o Cosh kd 

Expansion of eikx gives: 

(x4.21) 

Re{©W(x, y)} - 
gH Cosh k(d+y) 

Sin kx (A4.22a) 
20 Cosh kd 

Im{©W(xýy) -- 
gH Cosh k(d+y) 

Cos kx (A4.22b) 
2o Cosh kd 

The normal gradient is defined thus: 

aoW(x, Y) 
_ 

amw(x, Y)(n )+ aow(x, Y)(n ) 
an - ax x ay y 

where: nX, ny are the direction cosines of the normal at (x, y) with 

respect to the positive x and y axes. 
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Differentiation of equation (A4.21) gives: 

Re{an} = F[nxCosh k(d+y)Cos kx + nySinh k(d+y)Sin kx] (A4.23a) 

Imaaol 
n= 

FlnxCosh k(d+y)Sin kx - nySinh k(d+y)Cos kx] (A4.23b) 

where: F= gHk 
20 Cosh kd 

o= ow(x, y) 

A4.5 Numerical Evaluation of the Exciting Force components. 

From equation (3.7.8): 

Fi(e) = Re{Foi(e)Ie-iot (A4.24a) 

W drl (A4.24b) where: Fol(e) = 
[f[w än1 f- 

o. (f) 
an j 

1' 

But from equation (3.6.8): 

a©l(f) 
= - -ioni an 

(A4.25) 

It must be noted that the potential and force terms are complex and 

may be defined: 

0= a' + ip" 

F= F' + iF" 
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where superscripts ' and " denote the real and imaginary parts 

respectively. 

A little algebra, together with equating real and imaginary parts of 

equations (A4.24), gives: 

ý If 

Re{Foi} 
[fjooni 

-f an+ 
f änW}drl (A4.26a) 

rJ 

+ of 
än}dr] (A4.26b) Im{Foil _ -PI 

r{oo; gni +f 
an ll Jr 

Note that, for the sake of clarity, the superscripts (e) and (f) 

have been omitted. It may be understood that: 

Foi =_ Foi(e) 

©i = oi(f) 

Following the discretisation procedure described previously, 

equations (A4.26) may be expressed thus: 

N 

(x ReIFol(e)I = P>{aoW(xj, yj)nji - oji aonW j, yj) 

i=i 

+ 0. l 
a0W(Xj, Yj)}AI'j (A4.27a) 

N 

Im{Fo1(e)} _ -p>{ooJ(xj, yj)nji + ©ýi 
aoW(xj, Yj) 

an 
j=1 

+ °ýi äw(xj, yj)}nr"j (A4.27b) 
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Expanding equation (A4.24a) and taking the real part only gives: 

Fi(e) = Re{Foi(e)I Cos at + Im{Foi(e)I Sin at 

= FAi(e) Cos (ot+5) (A4.28) 

where: FAI(e) = 
[Re2{F01(e)J 

+ Im2{Foj(e) 
11 % 

Tan-1-Im{F01(e)} b= 
Re(Fo, (e)) 

Note that FAX(e) represents the real amplitude of the exciting force 

in the ith mode and a represents its phase angle with respect to the 

incident wave. 

A4.6 Numerical Evaluation of the Complex Amplitudes of Motion. 

From equation (3.7.9): 

3 
ýj[-oz(mij 

+ uij) - ioXij + clj 
JJJ 
laj (A4.29) 

j=1 

where: Foi(e) is the complex exciting force amplitude. 

mid, cif are coefficients defined in the equations of 

motion (3.5.4). 

uij, aid are the added-mass and damping coefficients. 

If the above parameters are known, equations (A4.29) can be solved 

for the complex amplitudes of motion, aj. 
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Using the nomenclature of Appendix (A4.2), the equation may be 

expressed, in matrix terms, thus: 

[A] {x} = (B) 
(3,3) (3,1) (3,1) 

(A4.30) 

where: Aid = Cif + iDiJ 

Xi = Ei + iFi 

Bi = Gi + iHi 

Comparing equation (A4.30) with equation (A4.29), it may be stated 

that: 

C1j =- o2(mjj + uij) + eij 

D1j =- aXij 

Ei = Re{ai} 

Fi = Im{ai} 

Gi = Re{Foi(e» 

Hi = Im{Foi(e» 

i= 1,2,3; j=1,2,3 (A4.31a) 

i= 1,2,3; j=1,2,3 (A4.31b) 

i= 1,2,3 (A4.31c) 

i= 1,2,3 (A4.31d) 

i= 1,2,3 (A4.31e) 

i= 1,2,3 (A4.31f) 

From equations (3.5.4) the following substitutions may be made: 

m11, m22 = Mass of Floating Body. 

m33 = Rotational Moment of Inertia of the Floating Body in 

the pitch mode. 

cz2 = Pw g Lw 

c33 =p g'V H 
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where: pw = Mass density of water. 

Lw = Waterline area per unit width of Body. 

IV = Displaced volume per unit width of body. 

H= Pitch Metacentric Height. 

All other cif, mid are zero. 

If the body is subject to any spring restraints to prevent drifting 

or to simulate mooring conditions, the spring constants may be added 

to the cij terms. 

The real amplitudes of motion, together with their phase angles, may 

be evaluated in a similar fashion to the exciting force components 

described in appendix (A4.5). 

A4.7 Numerical Evaluation of Reflection and Transmission 

Coefficients. 

Consideration of equations (A6.15) in appendix A6 shows the 

following integral expressions require to be numerically evaluated. 

-irf(S)(a, b) go(O, b) e-ika dr (A4.32a) 
Jr 

Iij(f) -iffj(f)(a, b) go(O, b) e-ika dr (A4.32b) 

r 

12(s) = -irf(s)(a, b) go(O, b) eika dr (A4.32c) 
lr 

I2 (f) 
= -ilfj(f)(a, b) go(O, b) eika dr (A4.32d) 

r 
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where: (s) denotes the scattered component. 

(f) denotes the forced or generated component. 

Following the previously adopted discretisation procedure, and 

noting the complex expansions: 

f=fl+ if, 

e10 = Cos e+i Sin e 

e-1e = Cos 0-i Sin 0 

the following expression may be derived: 

N 

Re{I1(s)} _ 
Zarm 

go(O, bm)LIf2(s)() Cos kam 

m=1 

-fl 
(s) (£yn) Sin kamt (A4.33) 

For brevity, only the real part of I, (s) has been considered. All 

remaining real and imaginary parts have a similar format. 

Substitution of the evaluated real and imaginary parts into 

equations (A6.19), (A6.20), and (A6.21) yields the Transmission 

Coefficient and phase angle. 

The Reflection Coefficient may be similarly evaluated from 

consideration of equation (A6.23) et seq. 
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APPENDIX A5. BOUNDARY ELEMENT DISTRIBUTION. 

In practice, the number of elements into which the source 

distribution boundary is subdivided is limited by available computer 

storage space. Apart from this physical limitation, the fact that 

the run-time for any particular solution is roughly proportional to 

the square of the number of elements emphasises the importance of 

restricting the number of elements to the minimum required for an 

acceptably accurate solution. 

To ensure an adequate representation of the object boundary subject 

to the above limitations, Hogben, Osborne and Standing(42) have 

recommended the following guidelines, based on experience, for fixed 

three-dimensional objects. 

1. Elements should be concentrated in areas where the body geometry 

(slope or curvature) changes rapidly with position. 

2. Individual element dimensions should not exceed the local radius 

of curvature. 

3. No element dimension should exceed 1/8 of the incident 

wavelength. 

4. Element dimensions should change gradually between areas of high 

and low concentrations. 

5. The dimensions of an element should not be more than 50% greater 

than those of neighbouring elements. If several small elements 

surround a larger one, the accuracy is that associated with the 

large element resulting in an inefficient distribution. 

In the case of two-dimensional floating bodies, the author is 

unaware of the availability of similar guidelines. However, it may 
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be reasonably assumed that the principles remain the same. 

In the case of an immersed surface which is substantially 

rectangular, the following formulation has ben adopted to comply 

with the above recommendations. 

A5.1 Rectangular Immersed Surface with Square Edges. 

i 

ý 
13 

brux 

L 

I 
OMAX 

JITmnrrý 

LnuNI 

Fig. A5.1 ELEMENT DISTRIBUTION (SQUARE EDGES) 

The element parameters may be defined thus: 

Maximum element length on a vertical side = amax 

Maximum element length on the base = bmax 

Number of elements on each vertical side = Ns 

Number of elements on base = 2Nb +1 

Minimum element size = lmin 

These are illustrated in Fig. A5.1. 
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The element distribution on each side may be defined thus: 

yl = amax 

yi = amax ai-1 i=1,2,..., Ns; «G1; 

where: suffix i denotes the ith element from the free surface. 

a is the constant element length ratio pertaining to each 

vertical side. 

The element distribution on the base may be defined thus: 

71 = bmax 

yi = bmax ßi-1 i=1,2,..., Nb; ßG1 

where: suffix i denotes the ith element from the centroidal axis. 

P is the constant element length ratio pertaining to the 

base. 

A little algebra results in the following governing equations for 

the side elements: 

Log F1 
Ns = (A5.1) 

Log a 

D(1-a) 

amax = (A5.2) 
1-o s 

1l 
1 

min N -1 S (A5.3) 
«max 

«lmin 
where: Fi = 

D(1-«) + almin 
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Similarly, the governing equations for the base elements are: 

Log F2 
Nb = (A5.4) 

Log 13 

L(1-ß) 
bmax - (A5.5) 

1+ß- 2RNb+1 

1 
lmin 

Nb= (A5.6) lbmaxIl) 

lmin(1+ß) 

where: F2 = 
L(1-5) + 2ßlmin 

The procedure for evaluating the distribution is illustrated for the 

side elements. It can be taken that the procedure is exactly the 

same for the base elements. 

1. A value for lmin is specified, generally as a proportion of 

the draught D. 

2. A nominal value of a is inserted in equation (A5.1) to give 

the real number Ns'. 

3. The value of Ns is taken to be the nearest integer to Ns' 

4. The values of Ns and a are inserted into equation (A5.2) to give 

a value for amax" 

5. The value of amax is inserted into equation (A5.3) to give an 

updated value of the element length ratio. 

6. Steps 2 thru' 5 are repeated until successive values of the 

element length ratio compare within a specified tolerance. 

In practice, the same nominal element length ratio is used for both 

side and base elements, resulting in a roughly symmetric increase in 
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side and base elements away from the submerged edge of the body. 

Depending on the aspect ratio of the immersed surface, the computed 

element length ratios generally differ by only a few percent either 

side of the input nominal value. 

A5.2 Rectangular Immersed Surface with Radial Edges. 

1 

ý 
0 

Fig. A5.2 ELEMENT DISTRIBUTION (RADIAL EDGES) 

The element parameters may be defined thus: 

J%Ax 

Maximum element length on-a vertical side = amax 

Maximum element length on the base = bmax 

Number of elements on the straight portion of each side = Ns 

Number of elements on the straight portion of the base = 2Nb +1 

Number of constant length elements on each radial edge = Nc 

These are illustrated in Fig A5.2 

If it is assumed that the minimum element length occurs on the 
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radial edges, it may be stated that: 

nR Minimum element length, 'min - 2N G 

The side and base element distributions are defined as for the 

square edged body. 

By following the same procedure as in the case of the square edged 

body, the governing equations can be obtained: 

Log F1 
NS = (A5.7) 

Log a 

(D-R)(1-a) 

amax = (A5.8) 

1- aNs 

R 
Ns 

liNra 

max 
(A5.9) 

Log F2 
Nb = (A5.10) 

Log ß 

(L-2R)(1-ß) 
bmax = (A5.11) 

1+ß- 2ßNb+1 

ß= 1TR Nb+l 
2Nc bmax 

(A5.12) 

where: F, irR 
_ (D-R)(2Nc)(1-a) + nR 

nR(1+ß-1) F2 = (1-0)(L-2R)(2Nc) + 2nR 

The evaluation procedure is identical to that described for the 

square edged body with the exception that, in this case, the minimum 

element length is specified by the input parameter Nc. 
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APPENDIX A6. EVALUATION OF THE REFLECTION AND TRANSMISSION 

CHARACTERISTICS OF A FLOATING BODY. 

From Section 3.3, the velocity potential describing the flow field 

in the presence of an incident wave train may be expressed in 

complex form as: 

(D(x, y; t) = RefD(x, Y)e-iatI (A6.1) 

where Re( ) denotes the real part, and the time parameter t is 

understood to be real throughout. 

Application of the free-surface dynamic and kinematic boundary 

conditions, and appropriately linearising, gives the expression for 

the free-surface profile: 

n(x; t) 
1 alý(x, 0; t) 

g at 

Substitution from equation (A6.1) yields: 

n(x; t) =g ReIio(x, O)e-1°t} (A6.2) 

For the sake of computational convenience, the free-surface profile 

may be non-dimensionalised thus: 

n(X't) 
nH/2t) 

where: if represents the wave height. 

(A6.3) 
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Substitution in equation (A6.2) gives: 

n(x; t) = Re{ö(x, 0)e-1°tI (A6.4) 

where: the non-dimensionalised velocity potential © is defined by: 

ö(x, 0) = 
Ä(x'0) (A6.5a) 

where: A=-" (A6.5b) 

From equation (3.3.2) it may be inferred that: 

= pW + ps + ; 5F (A6.6) 

where: © is the total non-dimensional velocity potential. 

mW is the non-dimensional velocity potential associated with 

the incident wave. 

ms is the non-dimensional velocity potential associated with 

the scattered wave. 

©p is the non-dimensional velocity potential associated with 

the generated wave. 

The potential associated with the incident wave may be expressed, in 

complex form thus: 

x, y; t) =A 
Cosh k(d+y) 

ei(kx-at) =4x, -iot W( Cosh kd W( y)e (A6.7) 

where A is defined by equation (A6.5b) 
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From equation (A6.5a) it can thus be seen that: 

öW(x, 0) = eikx (A6.8) 

Expression of the scattered and forced potentials in terms of the 

source distribution equation (4.2.4), bearing in mind the 

decomposition given by equation (3.4.10), and non-dimensionalising 

in accordance with equation (A6.5a), permits the non-dimensional 

scattered and generated wave potentials to be expressed in terms of 

the relevant source distribution and Green's Functions; 

ý5g =A f(s)(a, b) g(x, y; a, b) dr (A6.9) 

3 

mg = 
ÄZaj{ffj(f)(a, 

b) g(x, y; a, b) 
I 

dC (A6.10) 

j=1 

Substitution of these parameters into equation (A6.6) and thence 

into equation (A6.4) gives the generalised expression for the 

non-dimensional surface profile: 

n(x; t) = Re 
[e1 kx +A 

rf(s)(a, 
b) g(x, 0; a, b) dr 

Jr 

3 

+ 
Äý]aj(f)(a, 

b) g(x, o; a, b) dr}]e-iat (A6.11) 

j=1 

Insertion of the appropriate numerical values into equation (A6.11) 

enables the surface profile at any point in the fluid domain to be 

evaluated. However, since localised wave effects in the immediate 

vicinity of the floating body are generally unimportant owing to 
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their rapid decay, the surface profile evaluation may be much 

simplified by the use of asymptotic values of the functions(72). 

Consideration of equations (A2.2), (A2.4) and (A2.10) of Appendix A2 

yields the following expressions: 

g (x, y; a, b) = gl(x, y; a, b) + ig2(x, y; a, b) (A6.12a) 

gl(x, y; a, b) = go(y, b) Sin klx-al - f(µ, v, d, y, b)e-ulx-al (A6.12b) 

g2(x, y; a, b) = -go(y, b) Cos k(x-a) (A6.12c) 

where: go is defined by equation (A2.4) of Appendix A2. 

From equation (A6.12b): 

Lim gl(x, y; a, b) = go(y, b)Sin klx-al 

IxI4co 

Thus, in equation (A6.12a): 

Lim gl(x, y; a, b) = go(y, b)Sin klx-al - igo(y, b)Cos k(x-a) 

1xI-)CO 

=- igo(y, b){Cos k(x-a) + iSin klx-al] (A6.13) 

But for positive x: Sin klx-al = Sin k(x-a) 

and for negative x: Sin kix-al =- Sin k(x-a) 

Substitution in equation (A6.13), together with the expansions of 

eti8, gives the asymptotic values of the Green's Function: 

g+(x, y; a, b) = -1go(y, b)eik(x-a) (A6.14a) 

g-(x, y; a, b) = -igo(y, b)e-ik(x-a) (A6.14b) 
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where the superscripts +/- denote the asymptotic values for positive 

and negative values of x. 

Substitution of these expressions in equation (A6.11) yields the 

following expressions for the non-dimensional surface profile at 

large distances upstream (x negative) and downstream (x positive): 

3 

n+(x; t) = Re ei(kx-ot)[1 + 
ÄI1(5) 

+ 
Ä>ajll. (f)1 (A6.15a) 

LJ 
j=1 

3 

Re ei(kx-ot)+e-i(kx-at)h I2(s) + 
ÄZajI2J 

. 
(f) (A6.15b) 

L 
j=1 

1 

where: 

Ills) _ -iff(s)(a, b) go(O, b) e-ika dr" 
Jr 

Iij(f) = -i fj(f)(a, b) go(O, b) e-ika dr" 

r 

I2(s) = -irf(s)(a, b) go(O, b) eika dr" 
Jr 

Izj(f) = -iffj(f)(a, b) go(O b) eika dr" 

r 

The transmission coefficient, T, may be defined as the ratio of the 

surface profile at large distances downstream to that of the 

incident wave, with the incurrence of a phase shift PT. 

It must be noted that the transmission coefficient is a complex 
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quantity and that the value of T is taken to be the modulus: 

T= IT' + iT"I 

where: superscripts ' and " denote the real and imaginary parts 

respectively. 

From equation (A6.4), the non-dimensional transmitted wave profile 

may be defined: 

n+(x; t) = Re{T©(x, O) e-i(at+ßT)j (A6.16) 

Substitution from equation (A6.8) followed by re-arrangement gives: 

n+(x; t) = Re{ei(kx-ot)Te-i'T) (A6.17) 

Comparison between equations (A6.17) and (A6.15a) shows that: 

3 

Te-1ßT =1+ A{I1(S) + 
>ajIi. (fl} (A6.18) 

j=1 

Taking into account the complex quantities aj and I1j, the 

definition of A according to equation (A6.5b) and the decomposition 

of e-1ßT, the real and imaginary parts of equation (A6.18) may be 
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compared to give the following expressions: 

3 

T Cos 13T =1- 
gH 

I1(S) + 
>faý 

I1ýM + a- I, 
j(f)} 

(A6.19a) 

j=1 

3 

T Sin ßT =- 
gH 

Ii(S) I1ý(f) - a" I1 
J 

(f (A6.19b) 

j=1 

where: superscripts ' and " denote the real and imaginary parts 

respectively. 

The values of T and OT may be evaluated from the expressions: 

T Sin ßT 
ßT = Tan-' (A6.20a) 

T Cos ßT 

T= {(T Cos ßT)2 + (T Sin IT)ZIM (A6.20b) 

It may be inferred from equation (A6.18) that: 

Ts e-' Ts 
=I+Ä II(s) (A6.21a) 

-ißT =1f Tj ej=A aj I1 ()j=1,2,3 (A6.21b) 

where: Ts, tTs are the transmission and phase shift components 

appropriate to the scattered mode. 

Tj, ßTj are the transmission and phase shift components 

resulting from body motion in the jth mode. 

As a consequence of the postulation made in Section 3.1, Tj may be 

regarded as the downstream generated wave ratio resulting from body 
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motion in the jth mode. The individual components may be evaluated 

using the same procedure as for the overall components. 

The reflection coefficient, R, may be defined as the ratio of the 

change in surface profile at large distances upstream to that of the 

incident wave with the incurrence of a phase shift ßR. 

The employment of a similar procedure to that used in the formation 

of equation (A6.17) yields the following expression: 

n-(x; t) = Re{ei(kx-ot) + Re-i(kx+ot) e-ißR) (A6.22) 

Comparison with equation (A6.15b) yields the expression: 

3 

Re-1ßR =Ä IZ(S) + 
Ä>ajI2. ýf) 

J 
j=1 

(A6.23) 

An identical procedure to that adopted previously results in 

expressions equivalent to (A6.19a) and (A6.19b) from which the 

overall and individual components may be evaluated. 

From the application of Green's Theorem to the overall potential 

and its complex conjugate, it may be shown(75) that: 

TT* t RR' =1 

where: superscript indicates the complex conjugate. 
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This may be interpreted as 

ITIZ + JR12 =I 

in which ITS is the modulus of T as used above, and likewise for 

IRI 
" 

In the case of an asymmetric body, the result provides a useful 

check on the solutions for the velocity potential components ©g and 

OF obtained from the source distribution methods described in 

Chapter 4. It must be noted that, in the case of an axi-symmetric 

body with a symmetric element distribution, the nature of the 

formulations used dictates that this condition will be met 

regardless of the accuracy of the potential components, thereby 

suggesting the relationship to be of limited value. 

Another relationship, derived by Newman(75) is: 

113R - 13TI =n2 for symmetric fixed obstacles. 

but, like the previous relationship, this is of limited value in the 

case of symmetric element distributions. 
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APPENDIX A7. THE COMPUTER PROGRAM. 

A7.1 Introduction. 

Using the theoretical formulations and methods described in this 

dissertation, a computer program FLOATER has been compiled to 

predict the motions, forces and wave effects associated with the 

interaction between a substantially rectangular floating body and a 

train of regular waves. 

It was decided at the outset to construct the program as a series of 

interlinked subroutines, rather than as a single entity, with each 

subroutine relating to a particular aspect of the numerical 

solution. In addition to providing a systematic and progressive 

checking facility, it was felt that such partitioning would render 

the program more amenable to possible modification for the purpose 

of extending its usage. In the case of any particular numerical 

procedure being required on more than one occasion, generalised 

subroutines were compiled to avoid unnecessary repetition. 

Since the compilation of the computer program constitutes a major 

part of the study, it would appear illogical not to include a 

program listing within the dissertation for the purpose of providing 

a computational base for any further investigations within the 

field. However, it is the experience of this author that any 

advantage to be gained from direct transcription of a program 

listing, for the above mentioned purpose, is likely to be far 

outweighed by the considerable expenditure of time required to trace 

errors arising from possible inaccuracies in transcription which are 

not immediately obvious. 
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Consequently, program information is presented in the form of 

flow-charts where appropriate, together with details of each 

subroutine used in the program. 

A7.2 Program Operation. 

By means of an interactive initialisation program SETDATA, a data 

file is created containing parameters relating to a particular set 

of flume and body conditions. The parameters define the body 

geometry and inertia, the incident wave and the required 

computational accuracy. The latter parameter enables the computation 

of convergence criteria as described in section 4.7.4. The 

compilation of this 'user-friendly' initialisation program was 

intended to facilitate the creation of data files, in the format 

specified by the relevant input statements contained within the main 

program, without the necessity for prior examination of those 

statements. 

The contents of a particular data file are read by FLOATER which 

then carries out the computational procedure as illustrated by the 

Flow-Chart in Fig. A7.1. As a consequence of the partitioned 

structure of FLOATER, output statements can be inserted at any stage 

of the computation procedure as desired by the user. 
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A7.3 Subroutines and Functions within the Program. 

a) General 

SIMPSN Numerical integration of a specified external function, 

between specified limits, using Simpson's Rule. 

GJSOLN Solution of a matrix equation with multiple R. H. S. using 

the Gauss-Jordan elimination technique. 

MATSOL Solution of a matrix equation with prior checking for zero 

determinant of the coefficient matrix (section 4.8). 

b) Floating Body Parameters 

RECTELS Computes immersed surface element distribution (centroids, 

lengths and direction cosines) for a substantially 

rectangular body according to the specified distribution 

parameters. (Appendix A5) 

BORECT Computes inertia and flotation parameters (Moment of 

Inertia, Centroid, Centre of Buoyancy, Metacentric Height) 

for a substantially rectangular body. 

c) Wave Parameters 

DISPER Computes the incident wave number from the dispersion 

equation using the Newton-Raphson iterative technique. 
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d) Evaluation of the Green's Functions 

GPV User-specified function defining the P. V. integrand of the 

integral form of the Green's Function. (Equation A2.7) 

DGXPV As GPV but for the x-gradient. 

DGYPV As GPV but for the y-gradient. 

GPV User-specified function defining the modified form of GPV. 

DGXPVM As GPVM but for the x-gradient. (Equation A2.9) 

DGYPVM As GPVM but for the y-gradient. 

GIMAG1 Computes the imaginary part of the Green's Function 

together with its x and y derivatives (Equation A2.4 and 

derivatives thereof). 

GINT1 Numerical integration of the modified P. V. integrand of the 

Green's Function expressions in the range 0u<, 2k. The 

subroutine calls SIMPSN and performs the integration on any 

of the modified integrands as specified above. (Section 

4.7.1a) 

CYINT Cyclic numerical integration of the Green's Function 

expressions. The subroutine calls SIMPSN and performs the 

integration on any of the unmodified integrands as 

specified above. (Section 4.7.1b) 

GINTEG Evaluation of the integral form of the real part of the 

Green's function or its x and y derivative as required 

(Appendix A2.3; Section 4.7.1). The subroutine calls GINT1, 

SIMPSN and CYINT. A flow-chart, showing the computational 

procedure, can be seen in Fig. A7.2. 

MTANMD Evaluation of the mth positive root of the modified 

dispersion equation (Appendix A4.1) for use in the series 

formulation of the Green's Function expressions. 
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GSER1 Evaluation of the series formulation of the real part of 

the Green's Function together with its x and y derivatives. 

(Appendix A2.4; Section 4.7.2). A flow-chart of the 

computational procedure can be seen in Fig. A7.3. 

GREENS Evaluates the real and imaginary part of the Green's 

Function, together with its x and y derivatives, for any 

pair of boundary elements. This subroutine calls the 

relevant subroutines, to enable computation using the 

integral or series formulation, depending on the physical 

separation of the element pair (Section 4.7.3). A 

flow-chart can be seen in Fig. A7.4 

e) Evaluation of the Hydrodynamic Parameters. 

SSD1 Forms the matrices required for the discretised solution of 

the Fredholm Integral Equations. (Sections 4.4/4.5/4.8). 

Solution of the resulting matrix equation, for the 

discretised source strength distribution function, is 

achieved by the methods described in Appendix A4.2. 

MULAMB Evaluation of the discretised Velocity Potential (Section 

4.6). Evaluation of the Added-Mass and Damping Coefficient 

matrices using the Velocity Potential components (Equations 

3.6.7). 

FIE Evaluation of the Exciting Force components (Appendix 

A4.5). 

MOTION Evaluation of the components of Body Motion. (Appendix 

A4.6). 

RTCOEF Evaluation of the Body Reflection and Transmission 

Characteristics (Appendix A6; Appendix A4.7) 
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Input-parameters via interactive program "SETDATA" 

Body Geometry Incident wave Greens Body 

Element Distribution frequencylht. Function Mass 

parameters Water depth accuracy Data 

SUBROUTINE "RECTELS" SUBROUTINE "DISPER" 

Computation of Solution of 
Element distribution Dispersion Equation 

Element lengths Incident-wave data 

and 
direction cosines SUBROUTINE "SSD1" 

Formation and solution 

of Fredholm 

matrix eauation 

Source distribution function 

SUBROUTINE "MULAMB" 

Computation of VP's and 
hydrodynamic coeffs. 

Velocity Potential comaonents 

A-M and Damping coeffs 

SUBROUTINE "FIE" 

Computation of 
Excitinq forces 

SUBROUTINE "BORECT" 

Computation of 
inertial parameters 

SUBROUTINE "MOTION" 

Computation of 
Body motion 

Exciting force components II Amplitudes of motion 

SUBROUTINE "RTCOEF" 
Computation of 

Reflection 

and Transmission 

Fixed-body R, T 

Fig. A7.1 

Floating-body I Overall R, T 

generated waves 

FLOW-CHART FOR PROGRAM "FLOATER" 
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Enter subroutine 

Compute log term 
-`1 = xQ i nt i- 

Integrate modified funcn 

= xintl Fix 
Update cumulative val. 

jt=xint+xint1 ging(x-a)=0 

No 

Compute cycle length 
Cyclic integration not possible. 
Integrate unmodified function 

13 Compute zero point in step fashion 
zeropt=nllx-al 

until convergence achieved. 

>2k 
zero t? 

<2k 

Compute no. of steps = 2k 

to reach zeropt zeropt=zeropt+cyclel2 

Yes 
steps >1? 

No 

Stepped integration Integrate 
2k < 1, < zeropt (one step) 

2k <p< zeropt 

Yes 
convergence? 

No 
` 

Update 
} cumulative value 

Integrate over 
cycle length 

Yes No 
Convergence? 

  Subroutine "G1NT1" 
Exit subroutine Q Subroutine "SIMPSN" 

" Subroutine "CYINT" 

Fig. A7.2 GREEN'S FUNCTION INTEGRAL EVALUATION. 
FLOW-CHART FOR SUBROUTINE "GINTEG" 
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Enter subroutine 

Set convergence coding Set code value 2 for any 
icode; jcode; kcode =l function previously computed 

Set iteration counter 
m=1 

Compute µm" 

Compute mth term 
"sterm 

Yes 
mode>I? 

No 

g, previously converged g, = g, - sterm 

No Yes 
Convey ence ? 

ico dle-=2 

Yes 
jcode > 1? 

No 

dg, ldx previously converged dg, ldx = dg, ldx+ (EPm. sterm ) 

t No 
Convergence ? 

Yes 

jcode= 2 

dg, Idy previously converged 

Yes 
kcode > I? 

No 

dg, ldy=dg, /dy+ (fýmTan[d+y]K sterm) 

Convergence? 
Yes 

kcode z2 

All functions converged 

(Exit subroutine{ 

icode >1? 
and. Yes 

code > 1? 
No Further fitere 

. and. require 

kcode >1? 

M= M-1 

"Subroutine "MTANMD" 

Further iterations 
} required 

Yes . and. 
jcode >1? 

and. 
kcode >1? 

Fig. A7.3 GREEN'S FUNCTION SERIES EVALUATION. 
FLOW-CHART FOR SUBROUTINE "GSERl" 

m=m+1 
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Input -parameters: (a, b); (x, y), a; k; d; 

Enter subroutine 

Compute horiz. separation limits 
XLIM(1); XLIM(2); XLIM(3) 

1 
-1 Compute imaginary parts 

Set computation code 
1LCODE =0 

No 
Ix-al Yes 

Compute integral form 

LCODE= LCODE +1 

1o 

Compute integral form " 
dg, /dx 

LCODE= LCODE+1 

No 

Compute integral form " 
dgi /dy 

LCODE= LCODE+ 1 

No 

All functions computed 
using integral form 

Ix-al >XLIM(2)? 
Yes 

Ix-al >XLIH(3)? 

LCODE < 3? 

Exit subroutine 

Yes 

Yes 

Compute series form of 
all functions not yet 
-1 computed 

" SUBROUTINE "61 NTEG " 

0 SUBROUTINE "GS ER1 " 

Fig. A7.4 GREEN'S FUNCTION EVALUATION 
FLOW-CHART FOR SUBROUTINE "GREENS" 
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A7.4 Computer Operational Requirements. 

In order to ascertain the viability of the boundary element computer 

program presented herein, details of the program storage 

requirements are presented, together with details of run-time 

performance in terms of CPU time. These details are presented in 

graphical form in Fig. A7.5. 

The required computer storage space can be considered in two parts: 

the working space required for operation and storage of the 

fundamental parameters, and the storage space required for arrays 

dependent on the number of boundary elements. The basic operational 

space was found to be approximately 25 kWords whilst the element 

dependent array storage was equivalent to 6N2 + 44N words. 

6N2 + 44N 
Thus: Total required working space = 

{25 
+ 1000 

} 
kWords 

Where: N= No. of boundary elements. 

(It is understood that double precision variables occupy 2 words of 

storage space. ) 

A series of tests, carried out to determine the CPU time required 

for a complete solution, indicated that the required CPU time was 

proportional to the square of the number of elements. A feature of 

particular interest arising from the investigation of CPU time was 

the fact that, on average, 98% of the overall CPU time was consumed 

in constructing the matrix of Green's Functions required for the 

solution of the source strength distribution integral equation. 
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In terms of potential commercial usage of the boundary element 

program, the cost of each run is determined from the product of the 

required storage space and the overall CPU time consumed. This 

parameter is presented in Fig. A7.5. 

It must be noted that the figures presented pertain to the 

operational requirements of a HONEYWELL 60/66 Main-Frame computer. 

Since CPU time varies considerably from computer to computer, it is 

suggested that the figures are used for comparative purposes only. 
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APPENDIX A9. NOMENCLATURE 

This appendix contains a list of the main symbols used in the text 

of this thesis. Any additional symbols which occur from time to time 

are defined as and when they occur. 

a Acceleration. 

aj Complex amplitude of body motion in the jth mode. 

äj Non-dimensional amplitude of body motion in the jth 

mode. 

al, aR, aT Incident, reflected and transmitted components of wave 

amplitude. 

Aij -3 Hij Matrix elements. 

B Body length in direction of wave travel. 

Cm mth coefficient of the Green's Function series form. 

d Still water depth. 

D Body draught. 

f Source strength distribution function. 

F Force. 

Fi(e) Exciting force component in the ith mode. 

Fi(e) Non-dimensional exciting force component in the ith 

mode. 

g Gravitational acceleration. 

G, go, gl, g2 Green's Function components. 

H Wave height, Metacentric height. 

I3 Rotational Mass Moment of Inertia of the floating body 

in the pitch mode. 

k Wave Number. (= 2A/L) 

1 Element length. 
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L Incident wave length, Body length in direction of wave 

travel. 

m Mass, Source strength. 

M Moment. 

nx, ny Direction cosines with respect to the x and y 

coordinate axes. 

nj Outward normal component scalar in the jth direction. 

n Outward normal vector with respect to the body 

surface. 

p Pressure. 

r, R Radial separation. 

r, R Radius vector. 

R. R Reflection Coefficient. 

t Time Parameter. 

T, T Transmission Coefficient. 

v, V Velocity. 

-V Displaced volume of floating body at equilibrium. 

W Waterline area of floating body at equilibrium. 

x= (x, y) Cartesian coordinates of Field Point. 

yG Cartesian coordinates of body centroid. 

aj Body motion component in the jth mode. 

ß Phase angle. 

rj Length of jth boundary element. 

r(x, y) Immersed surface of the body. 

bij Kronecker Delta. 

. t, T Velocity Potential. 

m Spacial component of Velocity Potential. 

Non-dimensional Velocity Potential. , t, ö 

Xij Damping coefficient. 
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Xij Non-dimensional Damping Coefficient. 

uij Added-Mass Coefficient. 

üij Non-dimensional Added-Mass Coefficient. 

um mth positive real root of the modified dispersion 

equation. 

V Deep-water wave number. (= a2/g) 

P Mass density. 

o Wave radial frequency. 

_ (a, b) Cartesian Coordinates of Source Point. 

n Free-surface displacement. 

n Non-dimensional free-surface displacement. 
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