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Abstract

This thesis describes the development and application of a numerical pre-
dictive procedure for turbilent flows around full-scale buildings.

Two different turbulence models were considered: a complete Reynolds-
stress model with two alternative proposals for the pressure-strain cor-
relations and a k-¢ model used in conjunction with both linear and non-
linear stress-strain relationships.

The governing differential equations were discretized using finite-volume
techniques and a co-located variable-storage arrangement. A multigrid
method was introduced and was found to reduce the computational time
by nearly a factor of ten. Both the Reynolds-stress transport model
and the non-linear k-¢ model were implemented in a form suitable for
use with body-fitted coordinates on a co-located grid. When using the
Reynolds-stress models, a number of techniques were utilized to stabilize
the solution process and attain rapid convergence.

The atmospheric boundary layer at inlet to the computation domain,
traditionally specified from empirical correlations, was simulated here
using a full Reynolds-stress model in conjunction with a marching inte-
gration procedure. Due account was taken of the terrain roughness which
matched that for the full-scale tests. The outcome of those simulations
consisted of profiles of mean velocity and turbulence quantities that were
self sustaining and in close accord with the few full-scale measurements
available.

The turbulence models’ performance was assessed first through detailed
comparisons with various benchmark flows including the backward-facing
step in both straight and divergent channel, the two-dimensional rib, the
circular cylinder and the three-dimensional cube. Detailed model verifi-
cation was then carried out by comparisons with full-scale measurements
on various structures including a single-span low-rise building, a semi-
cylindrical greenhouse and a multi-span glasshouse. It was found that
the Reynolds-stress models consistently produced more accurate simula-
tions than the k-¢ models. Moreover, it was demonstrated that a recently
proposed model for the pressure-strain correlations yields very satisfac-
tory results without the use of wall-reflection terms.

Parametric studies were performed to determine the sensitivity of the
average pressure loading to various design parameters such as the height
and width of the building, the eaves geometry (sharp or curved) and the
height and location of a solid windbreak placed upstream of the building.

Finally, a method is proposed for representing the unsteady nature of
the flow around full-scale buildings. The unsteady pressure loading is
recovered and so is the peak loading which far exceeds the steady-state
value. The method utilizes classical turbulence modelling techniques and
is shown to yield results that are in qualitative accord with the field
measurements.
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Chapter 1

INTRODUCTION

1.1 BACKGROUND

The structural design analysis for full-scale buildings requires knowledge
of the pressures exerted on their sides by the turbulent wind flows around
them. Those pressures are traditionally obtained from Codes of Practice
which utilize the basic definition for the Coefficient of Pressure (Cp) thus:

Ap = Cpq (L.1)

The value of Cp, which is taken to depend on the building shape and on
the flow conditions that prevail at the chosen site, is given in tabulated

form. q is the dynamic pressure defined as:
1
q= EPVE (1.2)
In the expression above, Vg is not the flow velocity usually used in the

definition of pressure coefficient but, rather, it is the ”design” wind speed

which is obtained from the relation:



Vs =8S1S2S3Vy (1.3)

Three empirical correction factors are involved: S; which is introduced
to take account of local topographic influences (e.g. hilly terrain), Si
which is needed to account for the combined effects of surface roughness,
gust duration and the height of the structure and S3 which is related to
the design life of the building. Vy, is the true (or ”basic”) wind speed,
defined in the UK Code as the 3-second gust speed at 10m height in open
level country likely to be exceeded on average once in 50 years. Its values
are reported by the Meteorological Office which employs a wide-spread
system of anemographs (continuously-recording wind-speed measuring
instruments) to create maps of wind speeds (Fig. 1.1) which are then

used for design purposes.
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Fig. 1.1 Map of the U.K. showing ”basic” wind speed in m/s (British
Standards Institution, 1991).

Codes of Practice are, and will probably remain, the primary method
used by practicing engineers for wind-load calculations. The validity of
this approach is obviously very dependent on the accuracy of the pressure

coefficient used in equation (1.1). To date, this quantity has been deter-



mined from measurements on either full-scale buildings on open sites or

on scaled-down models in wind tunnels.

Data collected from full-scale buildings are probably the most appropri-
ate for design purposes but they are very scarce and are in the main
limited to very few building geometries. They are also influenced by
the random behaviour of the weather which, together with the costs in-
volved, make parametric investigations rather impractical. In contrast,
the flow conditions can be precisely controlled in a wind-tunnel and data
obtained here tend to be more reproducible. The difficulty here is in the
simulation of the atmospheric boundary layer that develops upstream of
the real building. Geometric similarity requires the equality in the real
and the model building of at least one (but preferably both) of the fol-
lowing scale ratios: L/yo and L/é where L is a characteristic buildings
dimension, yp is the effective roughness height and § is the boundary-
layer thickness. Boundary layer turbulence is produced by blocks placed
upstream of the test section and those rarely succeed in reproducing the
appropriate roughness characteristics of the real flow. Moreover, the sim-
ulated boundary-layer thickness is rarely thick enough compared to the
height of the model since wind-tunnels of sufficient length to produce
this are not always available. Real winds are, of course, never steady
and there are many practical difficulties which prevent the reproduction
of the observed gustiness in a wind tunnel. Not surprisingly, therefore,
difference between the modelled and the ’real’ flow conditions remain
and those decrease the significance of wind-tunnel experiments for the

determination of dynamic wind loading.

Computational fluid dynamics (CFD) models offer an alternative, but
as yet untested, approach to problems related to the wind environment.
This approach has developed quite rapidly in recent years due to ad-
vances in computer technology and in the provision of turbulence models
and numerical algorithms suitable for corﬁplex-ﬂow applications. The
main requirement now is for a systematic validation and testing of this
approach to determine its capabilities and limitations for real wind engi-
neering flows. For only then will CFD be accepted by the wind engineer-
ing community and its results used as input to the Codes of Practice,

alongside those from full-scale and wind-tunnel tests.



1.2 THE PRESENT APPROACH AND ITS JUSTIFICATION

The first issue to be addressed in the simulation of flows around buildings
is the choice of the strategy for solving the Navier-Stokes equations of
motion. Direct Numerical Simulation methods (DNS) attempt to simu-
late directly all the dynamically important scales of turbulent flows and,
as such, they require a very large number of grid nodes to resolve all the
scales present. This requirement easily exceeds the capacity of modern
computers and this in turn limits the validity of this approach to some
very simple flows, at low Reynolds numbers. The approach is therefore
not appropriate to wind engineering applications and is unlikely to be-
come so in the foreseeable future. In Large-Eddy Simulations (LES),
the three-dimensional time-dependent Navier-Stokes equations are again
solved numerically but now only motions of scales larger than the mesh
size are resolved. The effects of the small-scale dissipative motions are
modelled. This approach is now producing some very promising results,
but it remains far too expensive to be used as an everyday engineering
design tool.

At present, the only viable prospect for practical engineering calcula-
tions lies in the solution of the time-averaged Navier-Stokes equations
together with a turbulence model for approximating the resulting un-
known Reynolds stresses. Most turbulence models in current enginering
practice are of the eddy-viscosity type in which the turbulent stresses are
related to the local velocity gradients through a suitably-defined "eddy
viscosity”. Depending on the number of additional equations solved,
zero- , one- and two-equation models may be used. The most popular
of the two-equation closure methods is the k-¢ model in which the eddy
viscosity is obtained from a relationship in terms of the turbulence ki-
netic energy (k) and ¢, its dissipation rate. Often, this model has to be
modified to give satisfactory results for different applications and some

examples of these modifications will be tested in this study.

The Reynolds-stress model (RSM) account for non-local effects by solv-
ing differential transport equations for the Reynolds stresses. In three-
dimensional flows, all components of the Reynolds-stress tensor are fi-

nite and hence the complete model involves the solution of a differential



transport equation for each stress together with an additional one for
a turbulence length-scale related quantity. Such models may not there-
fore be suited to everyday use, particularly for complicated geometries,
though their ability to produce very accurate results has been amply

demonstrated in recent years (Speziale, 1991).

The turbulence models chosen for this study are the k-¢ model in both
its standard and modified forms and a complete Reynolds-stress trans-
port model. The purpose was to determine the minimum level of closure
needed to reproduce the correct wind loads on the various building struc-
tures investigated. Various modifications to the k-¢ model were tested,
including the use of a novel non-linear stress-strain relationship. For
the Reynolds-stress model, alternative closure assumptions were investi-
gated and a new model for the pressure-strain correlations, proposed by
Speziale, Sarkar and Gatski (1991), was assessed in detail for the first
time.

Another important issue to be addressed is related to the specification of
the atmospheric boundary layer upstream of the buildings. The velocity
profiles, together with those for the turbulence kinetic energy, the dissi-
pation rate and (for RSM simulations) the Reynolds stresses, are needed
as inlet boundary conditions for the wind-loading simulations. The choice
of those inlet profiles may strongly influence the quality of the simula-
tions. Various possibilities are examined, including the use of empirical

relations and numerical simulations.

The quality of the wind-load predictions is also influenced by the choice
of the numerical method used for solving the governing equations and
hence issues of stability, accuracy and economy of the numerical method
have to be addressed as well. Full-scale buildings are rarely amenable
to analysis with simple orthogonal coordinates (e.g. cartesian) and this
often also applies to the surrounding terrain. There is therefore a need
to abandon the orthogonal formulation in favour of arbitrary, body-fitted
coordinates. The present approach allows for this in the context of a
finite-volume method with a co-located grid-storage arrangement. Ob-
taining a numerically-accurate solution to the governing equations with
the minimum of computational effort remains the ultimate goal for the
computational modeller. However, the two requirements are difficult to

reconcile: accurate solutions are only possible by using ’higher order’



discretization schemes or by refining the grid, both options leading to an
increase in computational effort. In this study, consideration is given to
the multi-grid technique which reduces the computational effort involved

in obtaining numerically-accurate solutions on fine grids.

It is hoped that the combination of an appropriate turbulence model with
an efficient numerical method, together with modern graphics postpro-
cessors to present results, and the validation of the whole package against
experimental data will provide a practical tool to study building-related

flow problems.

1.3 PREVIOUS RELATED STUDIES

Several attempts at modelling the effects of turbulent wind flows around
buildings have been reported in the literature, both for two-dimensional
(2D) and three-dimensional (3D) geometries and for both simple and
complex shapes. Typically, two-dimensional simulations are performed
to test the turbulence models and the numerical methods in isolation of
complicating three-dimensional effects. Hanson, Summers, and Wilson
(1984) used a random vortex method to depict the flow evolution over a
2D hypothetical building. No turbulence model was used and there were
no comparisons with experiments. Mathews and Meyer (1987) applied
a k-¢ model to calculate the flow over a semi-circular building. At in-
let to the solution domain, the velocity were obtained from a power law
with exponent of 0.15, while the turbulence intensity and length scale
were prescribed empirically. Their calculations are open to criticism on
many counts (see Richards and Younis, 1990). The inlet profiles used
were inappropriate in that they were not self sustaining: this means
that their calculations were dependent on the position of the inlet plane.
Moreover, the computational grid used was inadequate for the purpose:
being orthogonal, based on potential flow solution, leading to bad resolu-
tion of the area around the base of the building. Interestingly, a similar
grid-generation method was used by Mathews, Crosby, Visser and Meyer
(1988) for a multispan structure also leading to an inadequate grid and
poor overall agreement with measurements. Selvam (1992) used a k-¢

model to simulate the experiments carried out at Texas-Tech University



for flows around a full-scale building. The results were not satisfactory
leading to the somewhat obvious conclusion that the use of a 2D repre-
sentation of a 3D building is questionable. Crosby, Mathews and Plessis
(1990) also used a k-e¢ model to investigate the effects of windbreaks
placed upstream of buildings. Qualitatively, the results were quite realis-
tic in that they showed the reduction in wind loading due to the presence
of the windbreaks but quantitative comparisons with the data without
windbreaks were again not satisfactory. The effects of eaves geometry
on pressure distribution over a full-scale building were investigated by
Richards (1989) who used the PHOENICS package in conjunction with
the standard k-¢ model. Body-fitted coordinates were used. The Harris
and Deaves (1981) formulae were used to prescribe the profiles of the
atmospheric boundary layer at inlet and the terrain was assumed to be
rough with a specified effect roughness height. His predictions showed
that, on the windward side of the roof, the flow remained attached when
curved eaves were used and became detached with sharp eaves, as indi-
cated by smoke observations. Both 2D and 3D simulations were carried
out, the latter generally closer to the measured pressure distributions
though this quantity was still grossly overpredicted over both the wind-
ward and leeward sides of the roof. Haagvist and Taesler (1989) also used
the PHOENICS to simulate wind tunnel experiments for a single house
and for the same house surrounded by several identical ones. Carte-
sian coordinates were used even though the structures had sloping roofs.
The inlet conditions were taken from the measurements. Where several
houses were modelled, the boundary conditions were cyclic, such that
the outlet conditions from one run were used as the inlet conditions for
the next. The results for the single house showed the calculated pressure
coefficient systematically higher than measured, with agreement being
particularly bad on the leeward side of the roof. For the multiple houses,
the calculated pressure coefficients were again generally higher than those
from experiment. Paterson and Holmes (1991) reported predictions of
the mean and peak wind pressures on arched-roof buildings. The k-¢
model was used, and results were presented for both wind-tunnel flows
and the full-scale data from the Texas Tech building. The root mean
square pressure coefficients were calculated from algebraic expression to
which the steady-flow solutions were an input. Large disagreement for
the pressure coefficients on the all sides of the building were reported,

due probably to the fairly coarse grid employed (26x29x14).



Turbulent flows around cubes are frequently used as test cases for 3D
model validation. Paterson and Apelt (1986) used a linear k-e¢ model and
underpredicted the extent of the separated zones on the sides and on
the top of the cube. The pressures were also underpredicted in those
areas. Similar results were obtained with the same model when used by
Paterson and Apelt (1990), Murakami and Moshida (1989) and Richards
and Hoxey (1991). Murakami and Moshida (1989) made some serious
grid independence checks but the problems remained. Somewhat better
results were obtained by Baskaran and Stathopoulos (1989) who modified
the model for streamline curvature effects along the lines suggested by
Leschziner and Rodi (1981). Murakami, Mochida and Hayashi (1990) re-
ported some Large-Eddy Simulations for the cube which showed improved
predictions of the pressure distribution and the turbulence kinetic energy.
Comparisons were reported for the predicted and measured turbulence
kinetic energy and its production rate and those were used to explain the
reasons for defects observed with the k-¢ model. Large-Eddy Simulations
for the same flow were later reported by Murakami, Mochida, Hayashi
and Sakamoto (1992) who compared the results with the algebraic-stress
model. The latter gave poor results for the pressure distribution es-
pecially for the top surface of the cube. The shape of the spectrum of
fluctuating surface pressure predicted by LES agreed fairly well with that
measured but at the expense of computing time, 50 times greater than

for the k-¢ model (Murakami, private communication).

1.4 OBJECTIVES

The objectives of the present study were:

1. To develop and validate a practical computational method for pre-
dicting the patterns of turbulent flows around buildings and the
associated pressure loading. The alm is to meet an identifiable
requirement of the engineering community for a method which is

reliable, cost-effective and of known capabilities and limitations.

2. To investigate the suitability of different turbulence models for use

for flows around buildings. This will be achieved by comparing the



performance of two very different turbulence models: a k-¢ model,
in both standard and modified forms, and a full Reynolds-stress-
transport model of turbulence. The benchmark flows chosen for
this comparison include the backward-facing step in both straight
and divergent channels, the 2D rib, the circular cylinder and the 3D

cube.

3. To simulate, using a full Reynolds-stress model, the properties of
the atmospheric boundary layers that develop upstream of the full-
scale structures and to use the results as input to the flow-solving
method.

4. To verify the predictive procedure against the full-scale data from
the Silsoe Research Institute (U.K.). A low-rise building, a semi-

cylindrical greenhouse and a multi-span structure will be considered.

5. To conduct parametric studies aimed at quantifying the influences
of geometrical parameters on the patterns of wind flow and pressure

loading on selected full-scale structures.

6. To advance an appropriate method for the prediction of unsteady

wind loading using conventional turbulence modelling techniques.

7. To implement and test a multigrid procedure suited to non orthogo-
nal body-fitted coordinates with a co-located grid arrangement and

to apply the method to the calculation of full-scale flows.

1.5 CONTENTS OF THESIS

This thesis is written in six chapters of which this is the first. The mathe-
matical basis for the present study will be presented in Chapter 2. There,
the mean flow equations will be given and the need for time-averaging
will be described. Alternative, linear and non-linear, relationships for
linking the unknown turbulent stresses with the local rates of strain will
then be presented together with the equations for the turbulence kinetic
energy and its rate of dissipation. Those will form the basis of the k-¢
model used in this study. The transport equations that constitute the

Reynolds-stress model will then be presented, together with the various



assumptions needed to close them. Two very different models for the

pressure-strain correlations are described.

Details of the finite-volume methodology used here to solve the governing
differential equations are presented in Chapter 3. Emphasis is placed on
the techniques used for obtaining solutions with non-orthogonal, body-
fitted coordinates. The SIMPLE algorithm for the pressure-velocity cou-
pling will be presented together with details of the interpolation practice
used to avoid numerical oscillations. Details of the method employed
to achieve the turbulent-stress/velocity coupling will also be given. The
solution algorithm and the convergence criterion are described. Also pre-
sented in this chapter are the details of the multigrid technique used to
accelerate the solution of the governing equations on fine meshes. The
method’s results for a laminar flow over 'a backward-facing step will be
presented in this chapter while the outcome of the application of this
technique to the highly turbulent flows around full-scale buildings are
presented in Chapter 5.

Chapter 4 is concerned with a preliminary assessment of the turbulence
models against data from a number of established benchmark flows. Re-
sults will be presented here for the k-¢ model with both linear and non-
linear stress-strain relationships. Some modifications to the e-equation
were considered and the outcome will be reported here. The Reynolds-
stress model results will also be presented and the predictions obtained

with two versions of pressure-strain correlations compared.

The main results of the present work are reported in Chapter 5 which
compares the performance of the various turbulence models for the ex-
perimental data from the full-scale buildings. Details of the methods used
for simulating the approach atmospheric boundary layer will be presented
here. The computed profiles (obtained by using a Reynolds-stress model
in conjunction with a marching-integration method) will be compared
with established empirical relations and with open-filed measurements
of the atmospheric boundary layer. The procedure for treating ground
roughness will be presented. The chapter will also report the outcome
of tests performed to establish the sensitivity of the computed solutions
to the size of the computational grid and to the choice of the differenc-
ing scheme. Parametric studies aimed at quantifying the effects on the

pressure distribution over a full-scale building of changes in the height or
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width of the building, the shape of the eaves (i.e. sharp or curved) and
the placement of windbreaks upstream of the building will be reported.
Optimization of the position of windbreak with no porosity against the
building is presented for two different heights of windbreak. Finally,
the procedure developed here for simulating the effects of unsteady wind
loading will be explained and some results presented for a full-scale build-
ing.

The main conclusions arrived at from this study will be summarized in

Chapter 6 and suggestions for future research will be made.

Some of the results presented in this thesis have been documented in
Basara and Younis (1992 a, b), Basara, Przulj and Younis (1992), Hoxey,
Robertson, Basara and Younis (1992), Basara and Younis (1993) and
Basara, Cokljat and Younis (1993).
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Chapter 2

MATHEMATICAL FORMULATION

2.1 INTRODUCTION

This chapter presents the basic equations governing fluid motion and
considers the various alternative models used later in this thesis to close
the time-averaged equations. The problems associated with modelling
of turbulent separated flows are, of course, not confined to flows around
buildings and there are, at present, many proposals aimed at improv-
ing the performance of those models. Some of those proposals will be
presented here and their performance verified later in Chapter 4 against

some well documented experiments.

Section 2.2 lists the instantaneous and time-averaged equations of mo-
tion. In Section 2.3, the manner in which the unknown turbulent stresses
are related to the mean rates of strain is explained and options for both
linear and non-linear relations discussed. This section will also provide
the basis of the k— e model used in this study. The Reynolds-stress model
equations are presented in Section 2.4 where the approximations used for
the various unknown terms will be presented, focusing in particular on
two alternative approaches for handling the pressure-strain correlations.

Closure and summary of this chapter are contained in Section 2.5.
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2.2 MEAN-FLOW EQUATIONS

It is generally accepted that the continuity equation together with the
Navier-Stokes equations provide a complete description of fluid flows in-

cluding turbulent ones.

The continuity equation describes the conservation of mass and may be

written as:

% , 30
ot ax_i

=0 (2.1)

A

The Navier-Stokes equations express the conservation of momentum and
may be written as:

8(p0y) , 8(pU;0y) _ [ (6ﬁa 6133)] 5 _ Ob (2.2)

= F: — ——
at o ox |\ T )| T T
In the above equations, the cartesian tensor notation is used wherein
repeated indices imply summation. Symbols with ” “” refer to the in-

stantaneous value of that particular variable.

In most engineering problems, the details of the instantaneous flow field
are not of particular use or interest and it is more useful to construct
models based on averaged quantities. The equations for averaged quanti-
ties can be obtained by first de-composing the instantaneous values into

mean and fluctuating parts, thus:
d=0+3 (2.3)

where ® denotes an averaged value and ®’ denotes the fluctuations about

the mean value.

In general, the time-averaged value, at a single point, is defined by

&= im 2 [ $dt

T7—00 T JO
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where 7 is the time interval for which the averaged value is to be defined.
By substitution of the instantaneous values in the equations (2.1) and
(2.2), and by using certain properties of averaged and fluctuating values
(Hinze, 1959), we obtain the time-averaged equations which for an in-

compressible fluid of constant property may be written as:

Continuity equation

oU;
- — A4
8Xj (2 )
Momentum equations *
0yU; ou; 0 ouv; op
P 5¢ + PUng’j' = —91:5 (H'a—x_" - Puiua) +F; - %; (2.5)

The time-averaging of the Navier-Stokes equations has given rise to some
unknown correlations (Ujdj), known as Reynolds stresses, which have to

be determined somehow before equation (2.5) may be solved.

An exact transport equation for Wj is obtained from the Navier-Stokes

equations by multiplying the equations for the fluctuating components
u; and u; by u; and u; respectively, then summing these equations and
time-averaging the result. The resulting equations for constant-density

flows with no body forces are given as:

ou; ouu; __9U oU;
gt UG Uitk g, T kg
0 P omu;
- I [uiujuk + ';(5jkui + bxu;) — v aka]
p [y oy Ou; Ou;
o (axj 8xi> 2”(axk 3% (26)

The first term appearing on the left-hand side of equation (2.6) repre-

sents the rate of change of Uit with respect to time. This term vanishes
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in steady flows and will therefore be discarded from further considera-
tion. The second term on the left represents the rate at which wyj is
transported (convected) b the mean flow. The terms on the right-side
of equation (2.6) denote respectlvely the rates of: production of wju; by
mean shear, diffusion of Wuj by various agencies, redistribution of the
turbulence kinetic energy amongst the fluctuating components, and, fi-

nally, dissipation by viscous processes.

Equation (2.6) does not by itself constitute a turbulence model since it,
too, contains some unknowns that will first need to be modelled. The
manner in which this is done here will be presented in Section 2.4; the
next section considers how WTj is traditionally obtained from an algebraic

constitutive relationship.

2.3 THE k-¢e MODEL

The k-¢ model of turbulence is based on Boussinesq’s (1877) proposal in
which the turbulent stresses are assumed to vary linearly with the local
mean rates of strain. The proposal is thus simply an extension, to tur-

bulent flows, of Stoke’s Law for laminar flows, and may be written as:

oU;  aU;\ 2
T e | _ L sk .
PRIty = Kt (ax,- + axi) 3P (2.7)

Equation (2.7) defines the eddy-viscosity ut which, unlike its laminar
counterpart, depends on the flow rather than on the fluid. The kine-
matic eddy-viscosity is defined, for later use, as 14 = yui¢/p. The second
term in equation (2.7) was not present in Boussinesq’s original proposal
but was added later to ensure that the sum of the normal Reynolds-

stresses yields the identity:

k= —(u+vZ4+w?) (2.8)

DO |

where k is the turbulence kinetic energy.
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The eddy-viscosity p¢ is assumed to be proportional to a velocity scale
and a length scale characterizing the turbulence motion, which, in the
context of the k-¢ model, are taken to be k% and k% /€, respectively. This
then gives:

pt = pCu— (2.9)

where ¢ is the dissipation rate of turbulence kinetic energy.

Boussinesq’s linear stress-strain relationship is known to give an adequate
representation of the turbulence field in boundary-layer flows, where flow
reversal is absent and the normal stresses do not appear in the governing
equations. In other types of flow, however, the terms du?/dx, 6vZ/dy
etc. can form a significant contribution to the momentum balance and
it is in those cases that Boussinesq’s relation turns out to be a major
source of error in the calculations. Separated flows fall in this category:
the turbulence anisotropy at the point of flow separation is known to
exert a significant influence on the subsequent development of the sepa-
rated layer and hence the large inaccuracies observed in the prediction
of those flows. Since anisotropy is badly represented by a linear relation-
ship, it is logical to consider alternative stress-strain relationships for the
prediction of separated flows. A number of alternative proposals have
been reported in the literature, here the proposal of Speziale (1987) is
adopted in which, by analogy between Newtonian turbulent flows and

laminar, non-Newtonian, flows, the Reynolds stresses are written as:

k2
—T;[_iTli = —-—kb'u-{-ZC —D

k3 1
+ 4CDC§6—2(DimDnﬁ ~ 5 DmaDmndy)

2k3 °

1
+ 4CpC2= (Dj E13,[,“,,(5) (2.10)

where the mean rate of strain tensor can be expressed as:
—_ oU; 0U;
Dj; = (axJ + 3_X1> (2.11)
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and the Oldroyd derivative of the mean rate of strain as:

, aU;
B O D™ G D (212)

The first line in equation (2.10) corresponds to Boussinesq, the remaining
two lines may be considered as corrections to it imparting a non-linear
dependence on the strain rate. Two new constants are now involved: Cp
and Cg. Both are assigned the value of 1.68, deduced by the model’s orig-
inator from comparisons with normal-stress data from turbulent channel
flow. The model does not appear to be very sensitive to the choice of
values for the new coefficients: Speziale showed that even a 15% change

in their values results in only a small change in the computed results.

For the purpose of completeness, the models equations appropriate to

two-dimensional flows are given below in expanded form:
— ou 1
—u? = ——k +2ry— + —L

Y+ 11 |(op - 2¢p) (aU)

ou ou ov
+ (4CD —2CE) (ay) + (ZCD CE) (ay Ox)

1 [0V \? 52U 92v
1 ov -V .
+ (4CD+CE)k6x)]+LCE( - 6y2) (2.13)

— 2 ov 1 ov
—vZ = —— —_— 4 = - -
vZ = 3k + 21 By t3 [(CD 2Cg) (6y)

1 av\? /1 ) auav
+ <4CD_2CE>(6x> +(§CD—CE (aya

1 ou\ 2 5%V 0%U
+ (ZCD + CE) (5)7) +LCE( Jy o2 UW (2.14)

_ ou 9V LAY
—u o= mlgy tax ) TECR Gy oy T ox ox
1 2V 9*V 9*U  9%’U
+ ZLCe [U (6 > — 8y2) +V (6y 8x2>] (2.15)
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where L is defined as:
K3
A2
L=4C}— (2.16)

It is clear from the above that the new stress-strain relationship is far
more complicated than Boussinesq, not only because it involves more
terms but, also, because it contains terms (quadratic in the velocity gra-
dients) that can be difficult to implement in finite-difference schemes.
Whether or not this added complexity is justified will be seen from the

comparisons in subsequent chapters.

In addition to the stress-strain relationship, the complete turbulence
model involves the solution of differential transport equations for the tur-
bulence kinetic energy (k) and its rate of dissipation (¢). The k-equation
can be derived by contraction of the indices in equation (2.6), thus:

d e
O S S SR R
ak+U-ak— RVH S 9 u—-1?+lﬁ-_"— ok d) (2.17)
ot JBXj - 1 0x; 0x; J p iP Vax_i g 0x; |

The pressure-strain term does not appear in the k-equation since the role
of this term is to redistribute the turbulence energy among its compo-
nents without affecting the overall level of turbulent kinetic energy in the

flow.

Terms (a), (b) and (c) (representing temporal and spatial rates of change
and the production rate Py) are exact in the sense that they contain
quantities that are themselves the dependent variable of equations to be
solved. Term (d) is the total diffusion of k. The viscous part is negligible
at high Reynolds numbers, the pressure diffusion is neglected following
standard practice and the turbulent diffusion is modelled by the gradient
transport hypothesis thus:

~uk’ = —— (2.18)
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Term (e) is the dissipation rate of turbulence kinetic energy, hitherto
denoted as e.

The modelled equation for k therefore takes the form:

ﬂ(_+U.3k _ 0 ﬁ@k
ot ‘lax_i - 0x; " oy 0X;j

)+ Px—e¢ (2.19)

A transport equation for € can be obtained by differentiating the equation
for the fluctuating velocity u; with respect to x;, multiplying the result
by 2v(0u;\0x1) and then time averaging, thus:

a b €2 03
. P S— 01 pr—— —
O¢ Oe 0 == 2w Op Ou; e,

T Uign = e e on)

d e
, A~

N (Bui du; ou ﬁ,) oU; . _ ou; 8%U;

—2vu

ox10xy  0x;0x;/) 0x; Y %y axJ8x1
T g
o T o
axJ 8x1 6x1 0x;0x)
Reynolds source

In the limit of high turbulencehlnumbers only two,]terms remain: term
(f) which expresses the generation rate of vorticity fluctuations through
the self-stretching action of turbulence and term (g) which expresses the
decay of the dissipation rate (Hanjalic, 1984). It is usual to model the
difference between terms (f) and (g) collectively as:

2

2

Py —C. — (2.21)

—2v 2%

Ou; Jy; %_, 0%u; _G
0%; %1 0% Vax_iaxl Tk

Term (c1) in equation (2.20) represents diffusion of € by turbulent fluc-
tuations and, like its counterpart in the k-equation, it is modelled by

gradient-transport hypothesis, thus:

— 0
e = ?Exi (2.22)
« 0X;
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The final modelled equation for ¢ takes the form:

Jde Oe 8 [w Oe € €2
5t T Ui ox; 0% (-U_g 6Xj) + Cclipk ~Cay (2:23)

Note that the form of the equations for the k and ¢ remains unaltered irre-
spective of whether the linear or the non-linear stress-strain relationship
is used. The complete model then entails the solution of the momentum
equations (2.5) and of equations (2.19) and (2.23) for k and ¢ respectively.
The mean-flow and turbulence variables being linked via the eddy viscos-
ity as defined in equation (2.7). The constants of this model are assigned
the values in Table 2.1. ?

Cp Ok O Ca |C2 | Cg Cp
0.09|11.0(1.3|1.44 (1.9 |1.68| 1.68

Table 2.1 Constants for the k-¢ model

The k-¢ model is very widely used in practical calculations yet it is known
not to be valid to a wide number of flows unless modified in some way.
Usually, the e-equation is modified to affect the level of the energy dissi-

pation rate and indirectly, the eddy viscosity.

Most modifications are applied to the source terms of ¢ which are given
by:

2

€
S.=Cqy 1 Pr—C (2.24)

€
Czr

Hanjalic and Launder (1980) argued that the irrotational strain rates are
more influential in the production of ¢ than the rotational (shear) strains.
Mathematically, their proposal for ’sensitizing’ the dissipation rate to ir-
rotational strains amounts to splitting the Py term in equation (2.24) into
two parts, one representing production-by-shear and another represent-

ing production-by-irrotational strains, and then multiplying the second
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part by a coefficient greater than that multiplying the first. Details of
this model adaptation and its justification can be found in the original
reference. Here, only the final form of the e-sources is relevant and this

(for two-dimensional flows) may be written as:

S, = E[_C W(B_U+a_v)_q (F_ﬁ)a_U
Yy 1

k 1 0 0x ox
, ouav €2
+ 4(C(1 Ccl )l/f, a E] - ngf (2.25)

In thin shear layers (where dU/dy > 0V /0x), this can be simplified to
the following:

*

dU e €2

6U € ]
ok Cex

Se=-C,uv—-—-C

w2z —v2
€1 3yk el(u v )

(2.26)

Hanjalic and Launder proposed that C.; be kept at its original value of
1.44 and C!; assigned the value of 4.44. Later work by Johnston (1984),
in connection with boundary-layer flows in adverse pressure gradient,
suggested that a lower value for C!; may be more appropriate; the value

of 2.5 was recommended and this will be adopted in the present work.

For later convenience, the following shorthand notation will be used to

identify the various model adaptations:

LKE denotes the standard, linear, k-¢ model;

NKE denotes the model when used with Speziale’s non-linear

stress-strain relationship;

EKE denotes the standard model with irrotational-strain modification

to the e-equation.
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2.4 REYNOLDS-STRESS TRANSPORT MODELLING

Equation (2.6) for the transport of Wiuj may be written in the symbolic

form:
production diffusion pressure-strain s al :
61—1@ dissipation
Uk %y = Py + Dy + ®;; — €ij (2.27)

The production rate of Tiuj is given as:

oU; ay;
Py = (WOT: + T ax]:) (2:28)

Clearly, this term requires no modelling as it is formed of quantities that

are the dependent variables of equations to be solved.

The diffusion term Dj; represents the rate of transport of W by turbu-
lent fluctuations, molecular diffusion and pressure fluctuations and this

term is expressed in the form:

o
OXy

Dj; = —5— |mmuk — v

P’ '
o + ;("’}kui + &icu;) (2.29)

The viscous-diffusion term is small in all regions of the flow except very
close to the walls. At any rate, it is exact and is retained without change.
Almost nothing is known about the pressure-diffusion term and hence
this term is dropped following the usual practice. In an extension to
gradient-transport hypothesis, Daly and Harlow (1970) proposed that

the diffusion of ujuj is proportional to its spatial gradients to write:

T —— (2.30)

where the multiplier k/e may be interpreted as a characteristic time-scale
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of the energy-containing eddies and C; is a constant. Hanjalic and Laun-
der (1972), from consideration of the exact transport equation for wujuy,

proposed an alternative model which is written as:

k oujuy ouxu; ouy;

—mjuiug = Cs— (WU + Wu——— + ukyq
30k se llaxl Jlaxl 3x1

(2.31)

Note that Daly and Harlow’s model is represented by the last term in
above expression. There is no evidence that the adoption of the more
complete expression leads to improved predictions in complex shear flows.
Therefore, and following the example of Launder, Reece and Rodi (1975),
Gibson and Launder (1978) and Gibson and Younis (1982), the simpler
model of Daly and Harlow was used throughout this work.

The pressure-strain term ®;; is given by:

P (Ou  Ou
®;; = P (6xj + a)q) (2.32)

Chou (1945) derived an analytical solution to the Poisson equation for
the fluctuating pressure correlations from which it was obvious that those
correlations may be modelled as the sum of three separate contributions,
thus:

@5 = Pi5,1 + Pij2 + Piyjw (2.33)

The first term represents interactions between turbulence quantities, the
second term represents interactions between the turbulence field with the
mean rate of strain and the third term accounts for the effects of a wall

on the turbulent field in its vicinity.

In non-isotropic homogeneous flow with small or zero mean rate of strain,
only the term ®;;; is significant; its role being to redistribute the turbu-
lence energy amongst its components and to diminish the shear stresses.
Rotta (1951) proposed the following model:

®;;1 = —Ciea; (2.34)
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where C; is a coeflicient and a;; is the normalized anisotropy tensor given
by:

ajj = — — =65 (2.35)

Launder, Reece and Rodi (1975) proposed that the second term ®;;2 may
be modelled as:

aU;  aU;

2 2
52 = a (P;j - gaﬁpk) + Bk ( ot Bxi) 4y (Gﬁ - Eaﬁpk) (2.36)

where v

00Uy ____ k
Y (N ) ) pp—C) ) 37
Gjj (u,uk 7%; + WUy ; i) (2.37)

and a, § and 4 are constants.

Launder et al. (1975) also found that the first term in equation (2.36)
is the dominant one and suggested that it, alone, can also be used as a
complete model for &®;;2, thus:

2
®i52 = —C2 (Pij — E&ﬁpk) (2.38)

Obviously, C, will need to assume a different value from that of o to
compensate for the absence of the additional terms in the simplified ex-

pression.

The complete model for the pressure-strain term has to account for wall-
proximity effects which act to reduce the level of the fluctuating velocity
component normal to the wall and increase the components parallel to
it. On the assumption that both ®;;; and ®;;, are influenced by the
presence of the wall, ®;;w (see equation, 2.33) may be modelled in two

parts as:
Bijw = Bi51 + 5z (2.39)
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Shir’s (1973) proposals for ®;; 1 are widely accepted and may be written
as:

' 1 € 3 3 L
D1 = ClE (uk—umnknm5ﬁ — 5mnknj - Emnkni) f (x—n> (2.40)

where L represents a typical length scale of the energy containing eddies,
n; is a unit vector normal to the wall and x, is the normal distance to
the wall.

Gibson and Launder (1978) extended Shir’s proposal to include a correc-

tion for ®;;2, thus:

+

' ' 3 3 L
Qij,z =C, (ka,znknméij - §§m’2nknj - Eij,znkni) f (x—n> (2.41)

Attention is now turned to consideration of the wall-damping function
f: the ratio of a typical length scale of the energy-containing eddies to
the normal distance from the wall. The turbulence length scale is usually

3
taken to be proportional kZ /e and therefore f can be expressed as:
f=0— (2.42)

3 .
Some authors prefer (—TGV)Z /e but the two definitions are broadly equiv-

alent since the ratio —uv/k is constant in the near-wall region. The

3
proportionality coefficient a is taken as C2/x where « is the von Karman

constant,

With the assumption that the small-scale motions responsible for viscous
dissipation are isotropic at high turbulence Reynolds number, the last
term in equation (2.27), which represents the dissipation of ujuj, may be
related to the dissipation of k, thus:

gui aui 2
ve — 1 Y. 2.43
€j = 2v S D% = 35,Je ( )
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This implies that energy is dissipated by molecular effects from the three
normal stresses in equal proportions. This, of course, would not be
valid in the viscous-dominated regions very close to the walls but cer-
tain boundary conditions may be adopted there to remove the need for

carrying out the computations in that region.

The full modelled Reynolds-stress transport equations adopted for this

study are:

omu;
axk

Uy

9 (e *em?™T) _ (Y 4 Y
€ 2 2
Cl; (“i“.i - §5iik) - C2 (Pij - géﬁpk)

)€ 3 3 L
CIK Uk U kN, b5 — Eukuinknj - Eukujnkni f =

/ 3 3 L
C, (ka,znknmé‘;j — —®y; onkn; — _Qki.anni) f|—
2 2 Xn
2
3 ij€ (2.44)

For two-dimensional flows, the equations for the Reynolds stresses can

be written as:

v 2
Ué’_+

0x

oy ox ox ady
o k ou? — du?
= 1C 2 [gv— 27—

+ 6y[ se(uv x+ 8y)]

' E\ '
- 201 Euzfx + 202 (P]l - gpk) fx

. € 2 ' 2 2
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(2.47)

(2.48)

where fx and f; are the wall-damping functions, and P11, P22 and P12

are the rates of production terms given by:

P11

P2

Pi2

au ou

—o9Mm2__ — -

2u % 2Uuv By

ov ov
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The equation for € used in conjunction with the Reynolds-stress model
is the same as before (see equation, 2.27) except that the diffusion term
(term c; in equation 2.20) is modelled in a manner analogous to its coun-

terpart in the stress equations, thus:

L ) (2.50)

~uje = | C,—Tuj—
J ( ‘€ J Bxl

The final form of e-equation for the Reynolds-stress model is therefore:

Oe Oe a k Oe € €2
E + Uj-a—x; = -an (C(;u_,ula—)q) + CCIEPk - CCZE (251)

Py is now calculated by using the stresses obtained from their own equa-

tions.

The complete model thus entails solving the set of momentum equations
(2.5), together with equations (2.44) for the Reynolds stresses and equa-
tion (2.51) for e. A number of coefficients appear in the model and those

are assigned the values shown in Table 2.2 below.

C1|C2|C;| C, | Co| C. | Cal Ce
1.8 0.6 | 0.5 | 0.18 | 0.22 | 0.18 | 1.44 | 1.90

Table 2.2 Coefficients used for the Reynolds-stress model

The main obstacle to the use of complete Reynolds-stress-transport mod-
els of turbulence in practical engineering calculations arguably lies in the
use of the wall-damping term @®;;,, in such models. In simple, unidi-
rectional, flows bounded by a single wall, this quantity can be defined
without too much ambiguity: the turbulence length scale is taken to
be proportional k%/e and the normal distance from the wall is readily
available from the computational grid. The situation for flows in com-
plex domains is very different. Thus, for example, two (or three) walls

may interset to form a corner and the question then arises as to the
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best practice for specifying the wall damping function in the corner re-
gion: sometimes a linear additive approach is used (wherein the walls are
assumed to act separately from each other) while in other applications
an integral, averaged, approach is preferred. The function is sometimes
taken to vary linearly with distance from the walls and, at other times,
quadratically. There are no rules or guidelines as to be the best practice
to employ for a particular geometry; that has to be determined by trial
and error and, even then, not without discontinuities appearing in the
predicted distributions of wall pressure and shear stresses. When the
fluid is bounded by curved surfaces requiring the use of body-fitted co-
ordinates that may be non-orthogonal, an added difficulty arises, namely
that the normal distances from the walls are not readily available but
must be evaluated from geometric considerations. Those can be costly,
in terms of time- and storage requirements, and may also become en-
tirely impractical when several such complex boundaries are simultane-
ously present.

Clearly, then, the ability to abandon the cumbersome wall-reflections
term without compromising the validity of the complete closure model
must be viewed as an important prerequisite to the wider acceptance and
use of the Reynolds-stress-transport models for practical engineering cal-
culations.

Recently, Speziale, Sarkar and Gatski (1991) proposed a new model for

the complete pressure-strain correlations which is written as:

1
®;; = — (Cie+ CiPx)by; + Cze(bjkbyj — gbmnbmn(sij)
1 2
+ [Cs — C3(bmnbmn)2]kSy + Cak(bjkSjk + bjxSix — gPmnSmny)

+ Csk(bixWik + bjxWik) (2.52)

where by; is the anisotropy tensor, Wj; is the mean vorticity tensor and

S;; is the mean rate of strain tensor, quantities defined as:

bj; = 2K " §5ij (2.53)
1/0U; JU;
W.. = _ (' _ _7J
) ( 0x; 0% ) (2:54)
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_1(98U; 09U;
Si =5 (axj + a_x,) (2.55)

The new model differs from that of Launder, Reece and Rodi in being
quadratic in the Reynolds-stresses and, as such, potentially more capable
of representing the complex interactions between the mean flow and the
turbulence fields. Indeed, the Launder et al. model can be recovered
by simply setting the coefficient Cj, C2 and Cj to zero. The originators
also excluded some data sets for homogeneous free shear flows from its
calibrationwith the result that the new model obtains the correct rela-
tive stress levels in both free and wall-bounded flows , the latter without
contribution from a wall-reflections term. When this model was first
considered in the present work, no assessment of its performance had
been carried out anywhere and hence its suitability to complex, sepa-
rated, flows was yet to be determined. The present study thus forms the
first attempt at a detailed assessment of this model in practically-relevant
flows. The full set of model equations for two-dimensional flows are listed

below for completeness:

ox ay 9x € ox ay
[,k ( 0uZ —ouZ
_ — ov— 2

+ oy [C‘*e(“vax A )]

+ P11 - (Cie+ CiPy)byy

A
+ Cae (b%l + b%z - ?2) + (Cs - CQ\/Az)kSu

4 2 2
+ C4k (gbnsn + §b12512 - gbzzszz)

2
+ 2C5kb12W12 - §6 (256)
ov2? vz ] k [—0v2 av2
U—+4+V-— = — il T IR
ox T oy ox [Cse (u ox T oy )]
9 k([ _ovZ —_ov2
— |Cq= [TV 2YY
+ ay[ e(“"ax TV By)]

+ P22 — (Cie+ CiPk)ba2

A
+ Czﬁ (bgz + b%z - —3§> + (Cs - C?;\/Az)kSzz
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0 CE —ia-vﬁ_*_u_vaﬁ
ax | e \" ox dy

9 [k _ow? —ow?
53’- [CS; (uv % +v 3y )J

A
(C1e+ CiPy)bss + Cae (b§3 - —33)

2 4 2 2
C4k (—§b11511 — gb12812 - gbzzszz) — 3¢ (2:58)

o [0 (% + o5 )]

Pis - (le + CIPk)blz
Cz2¢(b11biz + b2zbi2) + (C3 — C31/A2)kS12
C4k(b11S12 + b22S12 + b2;S11 + b21S22)

2
Csk(b2z — b11)Wiz — 3€ (2.59)

Az = b}, +b3; 4+ b3; +2b, (2.60)

The coefficients used here are those recommended by the model origina-

tors and are given in Table 2.3.

Ci

Cs|Ci|cs|Cs]c, [c,

3.4

4.2

1.8/ 0.8/1.3|1.25({0.4|1.44|1.83

Table 2.3. Coefficients for the Speziale, Sarkar and Gatski model
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The following labels are adopted to identify the alternative treatments
for the pressure-strain correlations:

RSMO the model of Launder et al. (1975) plus the wall-damping
models of equations ( ®};, of Shir, 1973, and, ®;;, of
Gibson & Launder, 1978).

RSM1 the model of Speziale et al. (1991).

2.5 CLOSURE

This chapter was concerned with presenting the mathematical basis of
the k-¢ model and the Reynolds-stress closure. Two extensions to the
'standard’ k-¢ model were considered and adopted for further testing:
the first is Speziale’s non-linear stress-strain relationship which should
hopefully correct some of the defects associated with Boussinesq’s lin-
ear approximation and the second is the irrotational-strain modification
which has lead to some improvements in boundary-layer flows and may

still be of benefit in separated flows.

Closure proposals for the Reynolds-stress equations were reviewed and
some selected for the present application. In particular, two alterna-
tive proposals for the influential pressure-strain correlations are to be
assessed: the first is a very well established one but requires a wall-
damping function while the second is recently proposed, as yet untested,
but potentially quite useful for practical computations as it does not ap-

pear to require a wall-damping function.

The implementation of the non-linear stress-strain relations and the com-
plete Reynolds-stress closure in a general, non-orthogonal, flow solver
utilizing a co-located storage arrangement is quite a challenging task, as

will be demonstrated in the next chapter.
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Chapter 3

SOLUTION PROCEDURE

3.1 INTRODUCTION

This chapter considers various aspects of the solution of the differen-
tial equations formulated in Chapter 2. A finite-volume method is used,
derived from one advanced originally by Peric (1985) to calculate tur-
bulent flows in complex domains. The method utilizes a co-located grid
arrangement, whereby all the dependent variables are stored at the same
location, and employs the Cartesian components for the dependent vari-
ables thus avoiding the troublesome ’curvature terms’ associated with
alternative methods. The method was extended here by the inclusion of
the non-linear k-¢ model and the Reynolds-stress model. Efforts were di-
rected towards the advancement of a predictive procedure which is both
economical and reliable for use by practicing engineers. To this end, an
algorithm for Reynolds-stress model simulations is proposed and its per-
formance compared with alternative proposals. Section 3.2 presents the
governing differential equations in general coordinate system and out-
lines the basis of discretization procedure for non-orthogonal body-fitted
coordinates (Peric, 1985, Demirdzic and Peric, 1988). The differencing
schemes used are briefly presented in Section 3.3. Those include the cen-

tral, upwind, hybrid, power-law and linear-upwind differencing schemes.
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The iterative SIMPLE algorithm of Patankar and Spalding (1972) used
to couple the pressure and velocity calculations is introduced in Section
3.4, together with details nf the special interpolation practice required
to obtain stable solutions on a co-located grid. Section 3.5 considers
the implementation of the Reynolds-stress model and gives details of the
special practices required to obtain coupled velocity-stress solutions on
a co-located grid. The boundary conditions are treated in Section 3.6
and details of the solution algorithm and convergence criterion provided
in Section 3.7. A multigrid method was implemented in the code to ac-
celerate the attainment of accurate results on fine meshes. Details of
this method, and the results of its validation for some laminar-flow cases,
are given in Section 3.8. The chapter is concluded in Section 3.9 with a

summary of its main points. N

3.2 THE DISCRETIZATION PROCEDURE

For the derivations that follow, it is more convenient to use the compact
forms of the continuity and momentum equations proposed by Demirdzic
(1982) and Peric (1985) which, for steady flows, are written as:

10 .

jaﬁxj(pUmﬁJm) =0 (3.1
19 :

7 550 (PUmUi — Tiyi)BL] = Sy, (3.2)

where the system (xl’ x?, x3) is a general coordinate system and (y!,
y2, y3) is the reference Cartesian coordinate system. The ﬂ} represent

the cofactor of dyJ/dx' in the Jacobian of the coordinate transformation

yd = yd(x!) given as:
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The generalized equation for a representative variable (®) can be written

as:

10

36—[(pUm'1’ am)Bl] = Sa (3.4)

where & represents any of the variables Uj, Ug, k, ¢, u2, vZ and so on.

The diffusive flux qn may be defined by gradient-transport hypothesis as:

%1,

The diffusive flux in the momentum equations (3.2) is the stress tensor
which can be written as:

T = j#(a—x;ﬂm + - %1 ——p)) — pumm; (3.6)

Again, gradient-transport hypothesis (here Boussinesq’s stress-strain re-

lationship) can be used to obtain the equation below:

1

au; . aU
Tmi = j,ueﬁ‘(aTl:ﬂm =

ﬂ,‘) (3.7)

where peff is the sum of molecular and turbulent viscosity. When the
non-linear stress-strain relationship is used, then the stress tensor can be
derived from equation (2.10) by using the following transformed expres-

sions
e ) (55)

and
Di= UG 57 - Do) - —aU‘@ (3.9)
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When the Reynolds-stress model is used, each component of the Reynolds-
stress tensor is obtained from its own equation (2.44). Those equations
have the same form as equation (3.4) with sources that contain, among

other terms, the production rate of uji; which can now be expressed as:

1 an oU;

Py = —j(uiukmﬂl‘(“ + “J'ukaxm

B) (3.10)

In finite-volume methods, the governing equations are integrated, term-
by-term, over control volumes such as the one shown in Fig. 3.1. All the

dependent variables are stored at the control-volumes centers.

<
1l
»

Fig. 3.1 Three-dimensional control volume.
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In carrying out the integrations, Gauss’ theorem is used to convert the

volume integral into a surface one:
/ div ?=f fdA (3.11)
A\’ A

Thus, for the control volume in Fig.3.1, we have

/div? = / fedA—/ fwdA+/ fndA—/ f.dA
v Ae Aw An As

+ / f.dA — / fodA (3.12)
At Ab B

The resulting balance equation for each control volume and variable ®

may now be expressed as:

L—Tw+In—L+1 T = /AV SgdV (3.13)

Each of these terms is made up of two distinct parts, namely a convection
contribution C and a diffusion contribution D. The latter is also in two

parts: a normal DN part and a cross-derivative part DC.

The numerical evaluation of the terms in the last equation requires the
calculation of various geometric parameters. Those include the quantity
Bj which can be expressed in terms of the projection area of the control

volume as:

b}Axi

i
bi = AxiBxaixs (3.14)

where bj are the projection areas shown, for two-dimensional cases, in

Fig. 3.2 (see next page). The cell volume AV is evaluated from:

AV = JAXlAXZAX:; (3.15)
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Fig. 3.2 Area projections for two-dimensional control volume.

The mass flux entering the control volume through its east face can be

evaluated as:

Fe = pe(Uib] + Uzb} + Usbi).
= Pe{Ule[(Yne - YSe)(zte - zbe) - (Yte - }’be)(zne - Zse)]
+ Uze[(xte - xbe)(zne - zse) - (xne - Xse)(zte - zbe)]

+ U3e[(xne — Xse)(Yte — Ybe) — (Xte — Xbe)(Yne — ¥Yse)|} (3.16)

The mass fluxes through the other faces are calculated from similar ex-
pressions. The integral form of the continuity equation (3.1) for three-

dimensional flow can now be written as:
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The integrated mass fluxes are used in evaluating the convective fluxes of
® in equation (3.4). Thus convection contribution through the east cell

face can now be written as:
Ce = pe(Uib} + Usbl + Uzbl)e®e = Fe®. (3.18)

The diffusive flux (equations 3.4 and 3.5) through the east face is ob-

tained after integration as:

D. = DY+D¢

I's
~ (%) (Blb}+ b6} + bibe(@s — 2p)
/e
—(b%b% + b%b% + bgb;)e(ine - Qse)

—(b3b} + b3bl + bib)e(Pte — Bbe)] (3.19)

Note the emergence of terms containing values of & other than at E or
non-zero

P. Those are ”cross-diffusion” terms (DS) which are only | for non-
orthogonal grids. The geometrical factors appearing above are obtained

from:

bse = (zE —2P)(Yte — Ybe) — (Zte — Zbe)(YE — YP)
b3. = (XE — Xp)(Zte — Zbe) — (Xte — Xbe)(ZE — ZP)
ble = (Xte — Xbe)(YE — YP) — (XE — XP)(Vte — ¥be)
bje = (YE— YP)(Zne — Zse) — (Yne — ¥Yse)(2E — ZP)
ble = (Xne — Xse)(zE — 2P) — (XE — XP)(Zne — Zse)

bje = (XE— XP)(¥ne — ¥se) — (Xne — Xse)(YE — Yp) (3.20)
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Finally, the source term Ss is assumed to be uniform over the whole

control volume and hence the term, after integration, can be expressed

as:
Sp = /v sadV ~ (s3)pVol. (3.21)

Thus, for example, the pressure-gradient term in the U;-component equa-

tion, integrated over the control volume, is obtained as:

Su, = —(Pe — Pw)bip — (Pn — Ps)bip — (Pt — Pb)bip (3:22)

Al

The geometric factors blp, b?p and bip now relate to the central point
P rather than to the cell faces; they are evaluated from:

bip (Yn — ¥s)(zt — Zb) — (Yt — ¥b)(2n — 2s)
b2p = (¥t — ¥Yb)(Ze — Zw) — (Ye — Yw) (2t — Zb)

bgP = (Ye — Yw)(2zn — 2s) — (Yn — ¥s)(Ze — Zw) (3.23)

Following the usual practice, and to enhance the stability of the solution
process, the integrated source term may be linearized in the following

form:

Sg = Sg — S4p (3.24)

where S3 must be positive.

The above procedure apply to both the mean-flow and the turbulence-
model equations with some additional treatments required for the latter.
When the non-linear k-¢ model is used, additional terms arise and those
are incorporated as source terms in the appropriate momentum equa-
tion. The various terms of the Reynolds-stress equations are treated in
the same way as in the scalar equation (3.4). The diffusion coeflicient in

those equations I'g is now evaluated from the Daly and Harlow model as
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the product of Cgk/e with the appropriate Reynolds stress.

The outcome of the discretization procedure is a set of algebraic equa-

tions which can be writter..in the form:

Ap®p =) A, p®Pnp + S (3.25)
nb

where

Ap = ZAnb +S3
nb

and
nb=E W N,S,T,B

where S} is the linearized source term from equation (3.22) and Ay, are

coefficients containing convective and diffusive contributions.

The set of algebraic equations (3.25) is solved by the strongly implicit
procedure of Stone (1968).

3.3 INTERPOLATION PRACTICES

An interpolation scheme is required to obtain the value of a dependent
variable on the cell face from knowledge of the values at surrounding grid
nodes. The choice of interpolation scheme has a profound influence on
the stability of the numerical algorithm and the accuracy of the com-
puted solutions. This choice is governed by various requirements which
include robustness, economy and accuracy for a given grid density. Var-
ious schemes were tried in the course of this study. Below is an outline

of their main features.

3.3.1 Central differencing scheme

In this scheme, the value of & at the east cell face is obtained from the
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expression:

®. = Pefip +@p(l-fip) (3.26)

where f;p is an interpolation factor given by

Pe
f = _ .2
1P Pe + eE (3.27)

Pe is the distance between the central point P and point e in the center
of the east cell face and eE is the distance between e and point E at the

centre of the east neighboring volume (see Fig. 3.1).

If this scheme is used to evaluate the convective parts of the coefficients

A, then that results in:

and, for the west side:

AG = Fiw(1-fiw) (3.28)

It is clear from the above that the convective part of the coefficients
may become large and negative leading to the whole coefficient A, to
become negative with undesirable consequences to the stability of the
solution process. For this reason, and for flows dominated by convection,

this scheme is usually abandoned in favour of one of the following below.

3.3.2 Upwind differencing scheme

In this scheme, the cell-face values are obtained from the following ex-

pressions:
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&, = B if F10<0 (3.29)

If a new operator is defined by MAX]a,b] to denote the greater of a and
b, the convective parts of the coefficient Ay, can be written as:

A = MAX[0,—F|
or, for the west face, as:

A% = MAX[0,Fivw] (3.30)

This scheme is formally only first-order accurate thus requiring relatively
fine grids for accurate solutions. On the other hand it is also stable, since

it does not allow for the coefficients to become negative.

3.3.3 Power-law differencing scheme

The power-law scheme was proposed by Patankar (1980) to operate on

both the diffusion and convection fluxes, thus:

0.1|F.[\°
e
or, for the west side:
0.1|Fw |\’
Aw =DyMAX |0,(1- 5. + MAX](0,—Fy] (3.32)
w

This scheme, like the central-differencing scheme, is second-order accu-

rate. It is also stable since it guarantees the positivity of the coefficients.
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3.3.4 Linear-upwind differencing scheme

In this scheme, the value at the cell-face is obtained by linear extrapola-

tion of the values at the two nodes upwind of it, thus:

®. =Pp 4+ (Pp — ®w)(1 —fiw) if Fi1e>0

&, = g + (P — Pge)(1 — fig) if Fie<O (3.33)

With this definition, the convective parts of the coefficients Ay}, may be

written for the east face as:

A§ = MAX][0,-Fi.](1+ fig) + MAX[0, —F1wlfip

Afey = —-MAX[0,-F]Jf1e

and, for the west face as:

AG MAX][0, F1w)(2 — fiww) + MAX[0, F1¢)(1 — fiw)

AGw = —MAX[0,F1](1 - fiww) (3.34)

In this scheme, therefore, the coefficient Ay in equation (3.25) now con-
tains additional contributions from nodes lying beyond the ones immedi-

ately surrounding it, thus:
AS§ = ZAS‘D nb=E W N,S T,B,EE,WW NN,SS, TT,BB (3.35)
nb

This scheme is second-order accurate but it is also unbounded which
means that the interpolated values may take on values greater or less

than those at the domain boundaries.
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Peric (1985) suggested a ’flux-blending’ method to enable the use of
higher-order schemes with guaranteed bounded solutions. In this method,
the flux is re-interpreted as the combination of two different contribu-
tions, weighted in some arbitrary manner, thus

I=1Ip+ o(Iy —1Ip) (3.36)

where it can be seen that I, the resultant flux, is formed from contribu-
tions from the unbounded, higher-order, scheme (subscript U) and from
the bounded scheme (subscript B) which is usually the upwind differenc-
ing scheme. The coefficient « is the weighting factor which can either be
specified within the calculation process or, rhore usually, set once and for

all at the start of calculations.

3.3.5 Hybrid differencing scheme

One scheme which can be formulated using the flux-blending method is
the well-known hybrid differencing scheme introduced originally to com-
bine the merits of the central- and upwind-differencing schemes. Here,
the former becomes the U scheme and the latter the B scheme. a (see

equation 3.36) is a control parameter whose values are set as follows:

a=0 for | Pe [< 2

a=1for |Pe > 2

where P, is the Pecklet number defined as:

Pe= -2 (3.37)

It can be seen that for highly-convective flows, i.e. for P > 2, o will be

equal zero and hence the fluxes will be evaluated entirely from the upwind
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scheme. In flows where diffusion and convection are in approximate bal-

ance, a will be unity and the second-order accurate central-differencing

scheme will be used.

3.4 PRESSURE-VELOCITY COUPLING

The coupling of the pressure and velocity calculations is achieved by the
well known SIMPLE algorithm (Patankar and Spalding, 1972). In this
algorithm, a pressure-correction equation is derived from the discretized
equations for momentum and continuity. Details of this derivation may
be found in the original reference. Here, th; focus will be placed on the

special adaptation of this technique for co-located grid storage.

The discretized U;-momentum equation (3.25) for node P can be written

as.:

. Znb AnbUlyp + S5
1P A
p

+ {53 — B3 [(Va — ¥o) (2 — 2b) = (ve — Y)(zm — 2)]
P

Il

— (pa — P)l(yt — ¥b)(Ze — Zw) — (Ye — Yw)(2t — 2b)]

— (Pt —Pb)[(Ye — ¥Yw)(Zn — 2s) — (Yn — ¥s)(Ze — Zw)]} (3.38)

where the pressure gradient term is treated separately from the sources

Su. This equation can be re-written as:

. {an AnbUlpp + S5 — (Pn — P3)I(yt — ¥b)(Ze — Zw) — (Ye — yw)(Zt — 2b))
iP = Ap
+ ~(Pt — PE)[(Ye = Yw)(2n — 2s) — (Yn — ¥s)(Ze — Zw)]
Ap
~ dp(pg — Py) (3.39)
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where

dp = A—P[(Yn — ¥s)(zt — 2b) — (¥t — ¥b)(2Zn — Zs)] (3.40)

The cell-face velocities are now obtained not from simple linear interpo-
lation of the grid-node values but by interpolation of the equation above
(see Rhie and Chow, 1982 and Peric, 1985). Thus, for the east face, for

example, Uj, is now obtained from:

« 2nb AnbU;nb + 83 — (p; - P;)[()’t - Yb)(ze - ZW) - (Ye - YW)(Zt - zb)]
le AP
~(Pt = PR)l(Ye — Yw)(Zn — 2s) — (¥n = ¥s)(Ze — Zw)]

Ap

— de(pg — PP) (3.41)

where the overbars signify terms calculated by linear interpolation from
nodes P and E while the pressure differences are evaluated from their

nodal values.

By starting from a guessed pressure field, the calculated velocities do
not necessarily satisfy the continuity equation and so a correction has
to be introduced to those velocities in order to ensure this. The role of
this correction can be seen from considering the discretized form of the

continuity equation, expressed in terms of mass fluxes as:

Ft—F, +F.—F +F, —F} =Sm (3.42)

The quantity S, represents a false mass source which should disappear
when a converged solution is attained. It can be shown that the velocity

correction needed to enforce continuity is given by:

U}, = —de(pg — Pp) (3.43)
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where the term de is as defined above and is obtained by linear interpo-
lation.

By substituting for the velacities by their corrections, mass-flux correc-
tions F' are obtained and those are then used to obtain the corrected

fluxes, thus:

F*=F +F (3.44)

Manipulation of the above now gives:

F,-Fy+F,—F.+F,—F, 1Su =0 (3.45)

which, when combined with the equations for the velocity corrections

(see equation, 3.43) yields the pressure-correction equation:

Appp =Y AubPop — Sm (3.46)
nb

Solution of this equation yields the pressure corrections p’', which are now
used to evaluate the velocity corrections from equation (3.43) and obtain
new field values, thus:

Uy = Ui+ U, (3.47)
Uy = U340, (3.48)
Uy = U3+ U, (3.49)
p” = p"+ap’ (3.50)

where « is an underrelaxation factor (Peric, 1985)

The newly-corrected values are then used in the solution of the momen-

tum and pressure-correction equations until convergence is attained.
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3.5 PRESSURE-STRESS-VELOCITY COUPLING

When using the Reynolds-stress transport models, there are certain ben-
efits to be gained from treating the gradients of Reynolds stresses in the
momentum equations as sources to those equations rather than as diffu-
sion terms. One implication of this is that the expressions for the cell-face
velocities, listed in the previous section, can now be re-formulated to ac-
count for the additional sources. In this work, the equivalent expression
to equation (3.38) is obtained as:

. A Uiy, +S; N -
.- [an ! fu u]_dp[(pe_pw)+(puze_ puZy)] (3.51)

From this, and similar expressions at neighboring nodes, cell-face values

are obtained by Rhie and Chow interpolation as:

[ubAnb Uy + S5 |
Ap

Ui = — de[(PE — Pp) + (puZ — pud)] (3.52)

e

where overbars again denote linear interpolation and, as was the case
with the pressure, the normal-stress differences are evaluated from nodal

values.

Note in the above equations that the stress-gradient terms have been split
into two parts, one of which has gradients in the same direction as the
pressure (i.e. 8/0x) and is therefore included explicitly in the equation
while the other part contains gradients in the other directions (i.e. /9y
and 0/0z) and is therefore included in S},. Similar expressions may be

obtained for the all components of velocity at the various cell faces.

Another consequence of treating the stress-gradient terms as sources is
rather more undesirable; namely that the calculation of velocities and
stresses may become uncoupled. The velocities and the Reynolds stresses,
it should be remembered, are linked via their gradients and hence the
potential for uncoupled solutions when the two are stored at the same

grid location. The basic question which needs to be answered here, then,
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is how best to incorporate the stress-gradient terms into the source-terms
of the momentum equations without giving rise to oscillatory solutions.
The answer lies in the way in which the values of the Reynolds stresses

at the cell faces are obtained.

The most obvious way for obtaining those cell-face values is by linear
interpolation of the stress values at the nodes. This approach was the
first to be tried here and it was found to be satisfactory in some cases
(e.g. flows in straight channels). In other cases, for example in some
of the full-scale non-orthogonal geometries, this approach proved inade-
quate either because it produced oscillatory profiles (where positive and
negative velocities occurred alternately) or because of very slow conver-
gence. This approach was therefore abandoned in favour of one having

its origins in the Rhie and Chow interpolation.

The discussion that follows uses the stress-components u? and TV as
examples; the approach is valid for all other components. The finite-
difference equations for those two components (for two-dimensional and

orthogonal grids) are:

— [Enb AppuZ, +S—
uP -

Ap
— U
—[—2 + c2 - —szx - Eczf ]puZ Zx (3.53)
ovp = lan Anbw;l_b- + Sﬁ‘v’]
Ap
1 —8U

The u? component appears in the U-momentum equation as 0uZ/9x and,
for this reason, terms containing dU/dx have been grouped together in
the way shown above. Similarly, uv appears in the same equation as

ouv/dy and hence the grouping together of terms in gU/dy.

Now, in order to obtain the cell-face values of those stress-components,

the following relations are used:
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? _ an Anbu_lzﬂ—) + S;i
e Ap
1 ) 8 . 2..— Ug—Up
- ] = —— S 2L -
AP[ 2+ 3Cz — 3Cafx — S Cafylu®( — ) (3.55)
v = {an AppUVip + SE’\T]
Ap
1 3 ., S ,.,—, Un—-Up
- S [-1 —2C - SOt VBN P
AP[ + C2 2 2fx 2 2fy]vE( YN —¥p ) (3.56)

Here, again, overbars denote linear interpolation. Note, however, the
treatment of the velocity gradients that were grouped together above:
those are now evaluated from differences of mean velocity values at the
grid nodes and it is this feature of the treatment that ensures that the
stresses respond to the velocities themselves and this ensures that the

solution process remains coupled.

Alternative methods for treating the diffusion terms in the momentum
equations are available and some were used in this work to determine
the optimum one. For the sake of later comparisons, the method details
above will be referred to as METHOD 1: it consists of extracting the
whole of the stress-gradient terms out of momentum diffusion and treat-
ing them as sources. In this method, then, diffusion of momentum, in

the context of the difference equations, is purely by molecular agencies.

METHOD 2 is one advocated by Obi, Peric and Scheuerer (1989) and
by Lien and Leschziner (1991). In this method, part of the turbulent-
diffusion term is restored to the difference equations by extracting from
the terms multiplying the velocity gradients in equations (3.55 and 3.56)
those that are unconditionally positive and treating them as ’apparent’

or pseudo-viscosities.

In METHOD 3, which was advanced in the course of this work, a tur-
bulent diffusion term, identical to the one appropriate to the k-¢ model,
was added to the difference equations for momentum via their diffusion

coefficients and taken away from the same equations via their sources.
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Meanwhile, the stress-gradient terms were treated in exactly the same
way as in METHOD 1.

Those methods were applied to a number of simple benchmark flows in
order to assess their relative merits. In those tests, the RSM1 variant

was used. For completeness, the stresses in this model are given by:

— [an Anbulzlb + Su-z‘:l
uZz = Ap

il —
— “A—P[—ZUZ + Cjuzbi1 + (Cs - 2;\/ Az)k

- _Ug-U
+ 4/3C4kbp)(———%) (3.57)
XE — Xp
— [Tob AUV + SWJ
uvp =
Ap

1 —

Un - Up
YN—YP

+ 1/204k(b11 + bzz) + 1/205k(b22 — bll)]( ) (358)

The performances of the various methods, in terms of CPU time required
to attain the same level of convergence, are compared below for the 2D

channel flow and the backward-facing step.

For the channel (whose length to width ratio was 25), 105x22 nodes were
used and the results obtained with the various methods are shown in
Table 3.1 (RES in that table denotes the maximum value of the normal-
ized residuals of pressures or velocities). The relative performance of
each method is clear. It should be emphasised that all the methods were
started from the same initial fields (k-¢ converged solutions were used
to speed-up convergence) and that identical solutions were obtained by

each method.

52



method | RES | Number of iterations | CPU time required
1 10-3 428 2837.6
2 10-5 414 2745.3
3 10-5 375 2346.4

Table 3.1 CPU time needed by METHODs 1, 2 and 3 for 2D channel

flow.

The results obtained for the backward-facing step are shown in Table 3.2.
Here, 185x69 nodes were used. The precise flow conditions are described

later in section 5.4.

method | RES | Number of iterations | CPU time required
1 10-4 2104 72237.6
2 10~% 1615 55234.8
3 104 792 27421.4

Table 3.2 CPU time needed by METHODs 1, 2 and 3 for the
backward-facing step.

Clearly, then, METHOD 3 seems to provide the best option for the treat-
ment of the diffusion terms in the momentum equations and for this

reason this method will be used throughout this study.

3.6 BOUNDARY CONDITIONS

The types of boundaries employed in this study, namely inlet, outlet,

symmetry and wall are presented below.
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3.6.1 Inlet boundaries

The values of the dependent variables at inlet to the solution domain are
usually known from experiments and can therefore be used to provide the
boundary conditions. In the absence of experimental data, those profiles
may be obtained from some empirical relations. In all cases, profiles of
turbulence dissipation rate (¢) are obtained either from the measured tur-
bulence kinetic energy (using e « k3/2/1 where 1 is distribution of length
scale) or from assumption of local equilibrium. For the cases of turbulent
flows around buildings, the inlet boundary conditions were specified by
carrying out simulations of the atmospheric boundary layers that develop
upstream of the solution domain. A Reynolds-stress model was used for

this purpose, details are given later in Chapter 5.

From the numerical point of view, the treatment of the inlet boundary is
very simple: the mass- and momentum convective fluxes at inlet are cal-
culated in the usual way and those then act to convect the pre-specified
values into the flow domain. The inlet mass flux is also used to correct
the mass flux at exit from the solution domain in order to ensure the

satisfaction of mass balance for the whole domain.

3.6.2 Outlet boundaries

The flow at exit from the solution domain is assumed to be parallel,
or fully-developed, which is true only if the exit plane is sufficiently re-
moved from the regions where the flow undergoes some perturbation.
Numerically, this condition is achieved by setting to zero the appropriate

coefficient in the finite-difference equation (3.25).

3.6.3 Symmetry boundaries

When the flow is bounded by a plane of symmetry, the velocity com-
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ponent normal to this plane is set equal to zero while the gradients of
all the remaining variables normal to the plane are set to zero. When a
symmetry boundary condition is used in the absence of a natural plane
of symmetry, care should be taken in placing this boundary at a location
where the above conditions apply. For turbulent flows around buildings,
for example, the top of the solution domain is treated as a plane of sym-
metry and is therefore located at a distance from the building so as to
exert no effect on the calculated flow around it. This approach can be
rather wasteful of computer resources and may not therefore be suitable
for practical calculations. An alternative approach adopted and devel-

oped in this work is described below.

3.6.4 Fixed pressure boundaries

If the top boundary (in the example of a flow around a building) is not
to be a plane of symmetry, then a method has to be found for calculating
the flow across it. This can be done by adopting a ‘pressure boundary

conditions’ as was done here.

The approach is based on the use of an initial solution for the whole flow
domain, obtained on a fairly coarse grid. The calculated values of pres-
sure at a certain height within the solution domain, and below the top
boundary, are stored for later use. The calculations are then repeated,
only this time in a domain which extends only as far as the height at
which pressure values were stored. The grid nodes are now distributed
in a smaller domain, leading to a greater mesh density. The pressure is
again stored at a certain height, below the top boundary, and used in
a repeat calculation over a yet smaller domain. The pressure gradients
across the last row of cells are always calculated from values appropriate
to the previous (coarser) grid and used for the determination of the ’en-
trainment’ velocities there. Thus, for example, if the velocity component
V is required at point P in Fig. 3.3, then that will be obtained from the

following expression:

Vv _ | an Anbvnb + Sy |
P p—

—dpg_ss(pp — Ps 3.59
Ap S-SS 5-5 ) ( )

55



The pressure-difference term above is evaluated from the previous, coarser,
grid. The terms with overbars are unknown at point P and will need to be

calculated. This is done, following Demirdzic (1991, private communica-
tion) by extrapolation of the two equivalent terms in the finite-difference

equations appropriate to points S and SS. The latter may be written as:

Y nbAnbVab + 8 .
[ nb nAPn VI = V§ +ds(pn — Ps)s (3.60)
s
and “
> ub Anb Vb + 8 .
[ = nA . | =Vis+dss(pn — Ps)ss (3.61)
P SS

SS

Fig. 3.3 Notation for fixed-pressure boundary

The velocities thus calculated serve to provide the boundary condition
for the velocity. The values of k and ¢ from the previous grid are used as

fixed-value boundary conditions for those parameters.
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3.6.5 Wall boundaries

In laminar flows, the boundary conditions used at the wall are simply
that the velocities there are zero. In turbulent flows, the computational
grid does not normally extend into the viscous sub-layer but only to a
point outside it, in the fully-turbulent region of the flow. The boundary
conditions are not different from before. For the velocity components
parallel to the wall, a flux boundary condition is used. The momentum

flux at the wall, the wall shear stress, is obtained from the log.-law:
U,
Up = — In(Ey$) (3.62)

where U, is the friction velocity \/*rw/p, Up is the velocity component
parallel to the wall and y* is the normal distance in wall coordinates,
defined as:

_ pU.én
7

yt (3.63)

E is a constant whose value depends on the wall roughness (for smooth
walls, E is taken to be equal 2) and von Karman’s constant « is equal
0.41.

The wall shear stress may be expressed as:
Tw= —\w Up (3.64)

where ), is a coefficient evaluated differently depending on whether the
computational point lies in the laminar or fully-turbulent parts of the
flow. Thus:

Aw = 6—’“— if y* < 11.63 (laminar sublayer) (3.65)

n
Aw = pU A if y* > 11.63 (turbulent laye 3.66
YT hEyny Y | yer) (3.66)
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The flux of k, the turbulence kinetic energy, at the wall is taken to be zero;
a condition simply enforced by setting the appropriate finite-difference
coefficient to zero. The value of k at the node closest to the wall is
therefore obtained from the solution of its equation there. A single mod-
ification to the standard equation is required: it concerns the way in
which the rate of production of k is evaluated at the grid node closest to
the wall. Thus with the assumption of a constant-stress region close to

the wall, the production rate of k there is given by:

aUP LY
on

Py =mw (3.67)

where n is the normal distance from the wall. Moreover, in this expres-

sion, the velocity gradient is evaluated from the log.-law relation, thus:

gUp U,
on  kén (3.68)

The value of the dissipation rate ¢ is fixed for the node closest to the wall

by assuming that the turbulence there is in local equilibrium, thus:

|85
€=~ (3.69)

There are two alternative methods for specifying the boundary conditions
for the Reynolds stresses at the wall. In the first of those, the values of
those quantities are fixed to levels appropriate to local-equilibrium flows
over plane walls. Thus, for example, models RSMO0, with wall-damping

function f set to unity, yield:

uZ=1.098k vZ=0247Tk wZ2=0653k uv=-0255k (3.70)

The above stresses are wall-oriented and, in the case of non-orthogonal

geometries, should be transformed to Cartesian components, as discussed
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in Lien and Leschziner (1991). This approach is rather too restrictive and

occasionally quite unstable and was not therefore used here.

The second method, and the one used here, sets the fluxes of the Reynolds-
stress components at the wall to zero and then determines those quan-
tities from the solution of their equations. Here, again, the velocity

gradients are evaluated from appropriate log.-law relations.

The boundary conditions appropriate to rough terrains are discussed in
Secticn 5.2.

3.7 SOLUTION ALGORITHM AND CONVERGENCE CRITERION

The solution algorithm for the k-¢ model may be summarized as follows:

(1) Provide the initial distributions of all the dependent variables.

2) Solve the equations for the velocit components equations 3.2 and
y P
3.:).

(3) Solve the pressure correction equation (equation 3.46) and use out-
come to correct the velocity components, pressure and mass fluxes (equa-
tions 3.47-3.50).

(4) Calculate k and € from their equations (equations 2.19 and 2.23) and
update the eddy viscosity (equation 2.9).

(5) Repeat the procedure from step (2) until convergence is attained.

The solution algorithm for the Reynolds-stress model may be summa-

rized as follows:

(1) Read from file previously-obtained k-e model results and use those to
initialize the Reynolds-stresses using Boussinesq’s stress-strain relation-

ship.

(2) Solve the equations for the velocity components (equation 3.2 and
3.6) in which the diffusion terms and the cell-face Reynolds stresses are

treated as proposed in Section 3.5.
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(3) Solve the pressure correction equation (equation 3.46) and use the
outcome to correct the velocity components, pressure and mass fluxes

(equations 3.47-3.50) as pr~posed in Sections 3.4 and 3.5.

(4) Calculate the Reynolds stresses from their equations (for the RSMO
model equation 2.44) and solve for ¢ from equation (2.51).

(5) Repeat the above from step (2) until convergence is attained.

The convergence criterion adopted here is the usual one: the sum of the
absolute values of the residuals for ali variables, normalized by the ap-

propriate inlet flux, should drop below a pre-specified level, or

“

k
RALEYY (3.11)
n

3.8 A MULTIGRID METHOD

There are two conflicting requirements in the computation of practical
flows over large domains. The first requirement is accuracy of the numer-
ical solutions, something usually attained by employing very fine compu-
tational meshes. The second is the minimization of the computational
effort and this is more readily achieved by using coarse grids. Multigrid
methods have been developed with the aim of satisfying both those re-
quirements by, essentially, accelerating the convergence process on fine

grids.

The first practical multigrid algorithm was proposed by Brandt (1977),
though he did not use it in any calculations. Ghia, U., Ghia, K.N. and
Shin (1982) demonstrated the method’s potential for the driven cavity
test case where a four-time reduction in computing time was obtained.
Vanka (1986 a, b) obtained results for the driven cavity and for a three-
dimensional sudden expansion flow which showed that the computing
time with the multigrid method is directly proportional to the number
of grid nodes used. Barcus, Peric and Scheuerer (1987) presented results
for the driven cavity and the backward facing step showing a reduction in
computing time by a factor of 220. Becker, Ferziger, Peric and Scheuerer
(1989) extended the work of Barkus et al., again testing the method in
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laminar flows only. This was also the case in the work of Rayner (1991)
who reported a 94% saving in computing time compared to the single-
grid method. Peric, Ruger and Scheuerer (1989) appear to have been the
first to apply the method to turbulent flows. For a backward-facing step
case, they reported a two orders of magnitude reduction in computing
time compared to a single grid method. The prospects of achieving such
reductions in the calculation of turbulent flows around buildings provide
the main motivation for implementing and testing the multigrid method
in this study.

There are four distinct aspects to any multigrid method. Those are:

*

a) Multigrid V cycle

The multigrid method is implemented as a fixed V-cycle (see Fig. 3.4)
through the grid levels, the finest level chosen to yield grid-independence
solutions. The V cycle starts with the transfer of the fine-grid solution to
a coarser grid. A prescribed number of iterations is then performed on
the coarse grid to obtain corrections. Those are then either interpolated
(i.e. restricted) to a yet coarser grid or, if the coarsest grid is reached,

they are extrapolated to a finer grid.

Fig. 3.4 Multigrid V cycle
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There are two ways of switching the grid levels, one involves monitoring
the convergence rate (e.g. Brandt, 1977) and the other, which is used
here, is to set the number of iterations at each level and then proceed
to the next one irrespective of whether or not convergence has been

attained. Usually, more iterations are performed on the coarser grids.

In order to calculate corrections on the coarser grid, the coarse-grid error

equation has to be derived and that is given below.

b) Coarse-grid equations A

The discretized equation for the finest grid My ( following equations 3.25)

has the form:

> Ak(®y) By = S(Py) (3.72)
Ny

where N is the total number of nodes.
After some iterations, the solution ®; will satisfy equation (3.72) up to

residuals R:

Y Ax(®}) @5 = S(®%) — Ry (3.73)
Nk

If a correction ®| to be added to ®; is needed to reduce the residuals to

zero, then we have:

Y Ak(® + BL)(B5 + B) = S(Pf + D)) (3.74)
Nk

The last two equations may be combined into one as:

D AR(PE + B (B +BL) = S(Bi+ i)+ Ak(®)BE  (3.75)
Nx k
— S(®%) + Rk
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Equation (3.75) is represented on a coarser grid Myg_; in the following

form:

NZ Ap(Pi_1 + B4 1)( By + P1) = S(Ph-q + Piy)
k-1

1"\'12 Ax-1 (k1) ®x_1 — S (P§_1) + Rk (3.76)
k-1

where ék—l denotes the restricted value of #, and can be written as:

A ]

Br_1= L1y (3.77)

I¥-! is an interpolation operator for the transfer of the variable values
from fine (k) to coarse (k-1) grids. When the correction ®|_, is calculated
on the coarse grid then a new approximation to the fine grid solution ®x

can be found from:
doew = M 41X @ (3.78)

The term I¥_, is an interpolation operator for the transfer of the variable
values from coarse (k-1) to fine (k) grids. In the last equation, correction
®! _, is extrapolated to the finer grid and added to the old value &p!d.

The terms on right hand side of equation (3.76), which are restricted

from the fine grid, do not change during iterations on the coarse grid.

c) Restriction and extrapolation

Restriction refers to the process of interpolating on to the coarse grid the
residuals and the field values obtained on the fine grid. Fig. 3.5 illustrates

the coarse and fine-grid arrangements and defines some relevant fluxes.
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Fig. 3.5 Restriction-extrapolation scheme

Successively finer grids are obtained by dividing the coarser cell into four

volumes.

Treatment of the residuals is straightforward: the residuals at a particu-
lar cell on the coarse grid are simply the sum of the residuals from the

four surrounding cells on the fine grid, thus:

o LY . - s yq s siq3
Ri-1= Ry + R 4+ RPN 4 RyHHIH (3.79)

Different interpolation operators may be used to obtain the field values
on the coarse grid from their values on the fine grid. Here, the simple
linear interpolation is used, again using the values from the four sur-
rounding nodes. When the sum of residuals Ry is zero, equation (3.76)

has to ensure that the corrections made to the coarse-grid values are zero.

When restricting from fine to coarse grids, the convection and diffusion

contributions of coefficients A} _, are treated separately. The diffusion
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fluxes are re-calculated on the coarse grid using restricted field values.
The cell-face mass fluxes are initially set equal to the sum of the cor-
responding fluxes on the fine grids. After each iteration on the coarse
grids, new velocities are obtained and those are then used to re-calculate
the mass fluxes. The differences between the restricted mass fluxes and
those obtained from restricted velocities are subsequently used to correct
the mass fluxes. For consistency reasons the source terms § (®_q) are

re-calculated on the coarse grid using restricted ®* values.

After the coarsest grid has been reached, the coarse-grid corrections are
extrapolated back to the next finer grid where they are added to the
values there. Linear extrapolation is used. -The fluxes are re-calculated

on the finer grid using those extrapolated values.

d) Boundary conditions

The inlet-boundary values are taken as fixed and known and therefore
do not require any correction. Care must be taken to ensure that the
inlet fluxes for all variables remain the same across the whole boundary
irrespective of the grid level used. Treatment of the symmetry and outlet

boundaries is unaffected by the level of the grid.

At the walls, the wall-function method is applied in the same way as for
a single grid. Note, however, that no corrections are applied to ¢ but,
rather, its value at the point nearest to the wall is obtained from the
value of k there.

3.8.1 Solution algorithm

The multigrid cycle starts on the coarsest grid where a converged solu-
tion is obtained. This is then extrapolated on the next finer grid where
now a V-cycle is employed. If satisfactory convergence on that level is

attained, then the solution is again extrapolated on the next finer grid
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and so on. Usually, two or more V-cycles are repeated. The following

steps are involved in a complete solution cycle:
(1) Initialize the flow field on the coarsest grid.

(2) Solve the appropriate difference equations using as many iterations
as required until the absolute sum of residuals, normalized by the inlet
fluxes, falls below a certain limit.
(3) Extrapolate the coarse-grid results to the next finer grid.

up to
(4) Performni’a pre-specified number of iterations on the fine grid.

(5) Restrict the solution and residuals on the next coarser grid and again
perform a pre-specified number of iterations.

(6) After reaching the coarsest level, the calculated corrections are ex-
trapolated and added to the values on the previous finer level.

(7) Once the finest level in a particular V-cycle is reached, check for

residuals and, if below a certain limit, proceed to the next V-cycle.

A flowchart of the solution algorithm is given in Fig. 3.6.
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(1) Initialise field values on coarsest level M=1

(2) Apply relaxation operator

(3) Convergance criterion satisfied ?

T

(4) Extrapolate solution to next finer level M=M<+1

(5) Apply relaxation operator

F

(6) Convergance criterion satisfied ? T

(13) Finest level ?

F

T
(7) Restrict solution to next coarselevelM=M-1 @

(8) Apply relaxation operator

(9) Coarsest level ?

T

(10) Extrapolate solution to next finer level

F
(12) Fine grid level equal M ?

(11) Apply relaxation operator

T

Fig. 3.6 Flowchart of solution algorithm
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3.8.2 Verification tests

To assess the multigrid method, and to check its implementation, calcu-
lations were performed for the laminar flow over a backward-facing step
at Re of 73 (based on a step height H of 0.015m and maximum veloc-
ity at inlet). This flow was documented experimentally by Denham and
Patrick (1974). The calculation domain is shown in Fig. 3.7. The multi-
grid method was applied for four grid levels: 42x17, 82x32, 162x62, 322
x122.

A ]

The predicted and measured reattachment lengths for the different grid

sizes are shown in Table 3.3.

Grid size | 42x17 | 82x32 | 162x62 | 322x122 | experiment
3.35 4.11 4.54 4.7 4.7

Table 3.3. The predicted and measured reattachment lengths for

different grid sizes.

Fig. 3.8 compares the predicted and measured velocity profiles. The
predictions on the 322x122 grid are in very good agreement with the
experiment. To quantify the grid effects, an additional parameter, the
nodal absolute relative error, is defined as the difference between the re-
sults calculated with a particular grid and those obtained on the finest
grid. The distribution of this parameter is shown in Fig. 3.9 for different
grids. There, it can be seen that the maximum error occurs at the cells
within the recirculation region and its maximum value is varies from 3%
on the 162x62 grid to the 100% on the 42x17 grid. The Table 3.4 gives
a summary of the CPU times (on the SUN SPARC station 1%), taken
to obtain solutions by single-grid and by multigrid method. The conver-
gence patterns for both the single- and multi-grid methods are compared
in Fig. 3.10. The behaviour of the residuals for the single-grid case is
similar to that reported by other authors (Rayner, 1991) and is due to

the adoption of the maximum of the velocity or mass residuals at any
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one time. Overall, the complete computational effort for the multigrid
method is 8 times less than for the single-grid method.

Grid size | Number of grid levels | CPU time required
82x32 1 524.60
2 229.17
162x62 1 4527.52
3 955.39
322x122 1 60986.67
4 7626.10

Table 3.4 The CPU times obtained by single-grid and multigrid methods.

3.9 CLOSURE

This chapter presented the discretization procedure used in conjunction
with the body-fitted coordinates and considered the way in which the
pressure-velocity coupling is effected to eliminate oscillations on a co-
located grid. The method used in this work for the pressure-stress-
velocity coupling was also explained. The alternative methods of treat-
ing the diffusion terms in the momentum equations, when using the
Reynolds-stress model, were described and the new method was pro-

posed.

A multigrid method was also introduced and was shown to reduce the
computational effort for a laminar flow quite significantly. Its application

to turbulent cases follows in Chapter 5.
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H=0.015m

X/Hﬁ

Fig. 3.7 Backward-facing step coordinates and geometry.
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Y (m)
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2 4
U/Uo (Uo=0.00485 m/s)

Fig. 3.8 Predicted and measured cross-stream profiles of mean velocity

for the different grid size.
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Chapter 4

PRELIMINARY VERIFICATION OF
THE COMPUTATIONAL METHOD

4.1 INTRODUCTION

It is necessary to first check the complete computational method against
some well-documented separated flows prior to its application to the
study of flows over full-scale buildings. The test flows chosen for this
purpose are universally accepted as being suited for the verification of
turbulence models and solution methods. They are: the two-dimensional
flow over backward-facing step (Section 4.2), the flow over a square rib
(Section 4.3), the flow over backward-facing step in straight and diver-
gent channels (Section 4.4), the flow over a circular cylinder in uniform
stream (Section 4.5) and, finally, the three-dimensional flow around a
cube (Section 4.6). The first two test cases were chosen to examine the
behaviour of the non-linear stress-strain relationship and the new model
for the pressure-strain correlations particularly with respect to their con-
vergence properties and time requirements. The flow in the divergent
channel checks the method’s performance when a non-orthogonal grid
is used and the implementation of the Reynolds-stress model in a non-
orthogonal non-staggered code. This was also the motivation for choosing

the circular cylinder which also required particular attention to be paid
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to the generation of a smooth grid over the curved surface procedure.
The flow around a cube, a classic test case in Wind Engineering (see Sec-
tion 1.3), is studied here to determine the differences between the various
modified forms of the k-e model.

As a reminder of the notation used to designate the various models, the
standard ”linear” k-¢ model is identified by LKE, the ”non-linear” ver-
sion by NKE and, when the irrotational strain modification is used, it
is labeled EKE. The Reynolds-stress model with the pressure-strain cor-
relation of Launder, Reece and Rodi (1975) is called RSMO and, when
Speziale, Sarkar and Gatski’s proposal is used, it is labeled as RSM1.

Al

4.2 BACKWARD-FACING STEP

The turbulent flow over a backward-facing step is now a generally-accepted
test case for turbulence models assessment (e.g. 1980-81 AFOSR-HTTM-

Stanford Conference on Complex Turbulent Flows, Comparison of Com-

putation and Experiment). The flow is particularly suited for models

testing because it is two-dimensional, occurring in an uncomplicated ge-

ometry and because the position of the separation point is fixed a priori.

The standard test flow is that of Kim, Kline and Johnston (1980) with

Reynolds number (based on the step height and maximum velocity at

inlet) of 105. The calculation domain is shown in Fig. 4.1.

A number of different grids were used and grid-independent results were
obtained on the finest one which consisted of 161x62 nodes, unevenly dis-
tributed. The predicted velocity vectors, plotted for clarity at selected
streamwise locations, are shown in Fig. 4.2. The figure shows the evo-
lution of an initially very thin boundary layer upstream of the step and
the development of a new one on the upper surface of the tunnel. The
predicted mean-flow streamlines are compared in Fig. 4.3 (a, b, c, d, e).
It is immediately clear that both the Reynolds-stress models predict a
primary recirculation zone greater in extent than that captured by the
two-equation models. The non-linear model results are closest to those
obtained by the Reynolds-stress models and it is interesting to note from

Fig. 4.3 (c) that this model also captures a small, counter-rotating vor-
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tex downstream of the step. A quantitative assessment is presented in
Table 4.1 where the predicted and measured reattachment lengths are
compared.

xr/H
Experiment 7.0
(Kim et al., 1980)
Linear k-¢ model 5.6
Modified ¢ equation 5.87
Non-linear k-¢ model 6.3
RSMO 6.46
RSM1 6.43
Obi, Peric and Scheuerer (1989) (RSMO0) | 6.44
Speziale and Ngo (1988) (NKE) 6.4

Table 4.1. The predicted and measured reattachment lengths for the
backward-facing step.

Note that the present RSM results are almost identical and underpre-
dict the measured value for re-attachment length by about 8%. The k-¢
models, in contrast, underpredict this quantity by about 20% with the
standard model, reducing to abosut 10% when the non-linear formulation
is used. The reasons for this discrepancy are not clear but have vari-
ously been attributed to uncertainty in specifying the inlet conditions,
inadequate treatment of the wall region and, recently, to the inherently
unsteady nature of this flow (Lasher and Taulbee, 1992).

The predicted wall static-pressure distributions are shown in Fig. 4.4 (a)
for the k-¢ models and in Fig. 4.4 (b) for the Reynolds-stress models.
The k-¢ models results are again different, though all consistently show a
much more rapid pressure recovery than obtained in the measurements.
The non-linear model is in overall better agreement with the data espe-
cially in the recovery region. The best agreement is achieved with the
RSMO, although the RSM1 predictions are more accurate in the recircu-

lation region.

The predicted and measured cross-stream distributions of mean velocity
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at x/H of 2.67, 5.33 and 7.11 (x here measured from the obstacle) are
compared in Fig. 4.5 (a, b). The NKE model results are better than
those of the others though none succeeds in predicting the position of
the dividing streamline. The Reynolds-stress models are much closer to
the measurements though they exhibit an unrealistic rearward curvature
of the velocity profiles at the first station downstream of re-attachment.
This behaviour is more clearly apparent in the streamline plots already
presented where it is clear that the minimum velocity in the re-attached
flow occurs away from the wall. Similar behaviour is also evident in the

predictions of Obi et al. (1989), attributed there to various agencies.

The axial turbulence intensity and the Reynolds shear stress are com-
pared in Fig 4.6 (a, b) and Fig. 4.7 (a, b) at x/H of 7.667, 8.553 and
10.333. The Reynolds-stress models give the closest correspondence to
the measurements. As for the two-equation models, the best agreement
is obtained with the NKE which alone seems to capture the higher levels

of the Reynolds stresses produced in the separated shear layer.

Turning now to some of the practical aspects of the present computations,
it was mentioned earlier that the non-linear stress-strain relationship pro-
duces a large number of terms which are treated as additional sources in
the momentum equations. Since those terms can be extremely large, it
was feared that they may lead to slower convergence or even divergence
of the solution cycle. Some special treatments were therefore introduced
to avoid this. The velocity gradients at the nodes closest to the wall were
calculated from the ”log-law” relationship rather than from interpolation
of field values. Furthermore, it was found best to initialize the dependent
variables with the converged linear model results. Sometimes the addi-
tional momentum sources were added gradually, but this was not always
found to be necessary. Consequently, the computing time required for
the NKE model is approximatively twice that for the LKE model, which
is similar to the result reported by Speziale and Ngo (1988).

This test case also confirmed that converged solutions for the Reynolds-
stress models are only attainable by adopting the pressure-stress-velocity
coupling procedure presented in Section 3.5. Failure to do this usually
resulted in oscillatory solutions. As before, faster convergence was ob-
tained by starting the calculations from converged k-¢ model results. The

computing efforts involved in RSM1 and RSMO are almost the same.
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4.3 TWO-DIMENSIONAL SQUARE RIB

The flow considered here is that obtained around a two-dimensional
square rib, placed on a smooth flat plate, in a fully-developed turbulent
boundary layer. The flow has some relevance to a number of practical
problems such as flows around two-dimensional buildings and windbreaks.
Here, as for the flows around buildings, flow reversal occurs upstream and
downstream of the obstacle and the disturbed boundary layer relaxes to

a new state downstream of the perturbation.

The calculations are compared with the measurements of Crabb, Durao
and Whitelaw (1981). The calculation domain is shown in Fig. 4.8: it
extends to 20 H (H is the rib height) downstream of the rib which is suf-
ficient for the flow to relax to a new equilibrium state. The top boundary
is a wall. Computations were carried out on grids of 60x37 and 101x50;

the latter grid results are presented below.

The predicted and measured lengths of the downstream recirculation
zones are compared in Table 4.2. The measurements obtain the re-
attachment length at around 12.3H. The k-c model results underestimate
this quantity by about 13% which is similar to what was obtained for the
backward-facing step. Note that here again, as for the previous case, the
present linear-model result agrees very closely with results obtained by
other workers with the same model. The irrotational-strain modification
improves the predictions somewhat but it is the non-linear model which
is seen here to yield the best agreement with the data. The two Reynolds-
stress models overpredict the measured value by about 7% though it is
again evident that the two model results are quite similar. Prediction of
the flow in the similar conditions is reported in the work done by Obi,

Peric and Scheuerer (1990) where reattachment length was also overpre-
dicted.

The predicted and measured wall static-pressure distributions are com-
pared in Fig. 4.9 (a, b). The measurements are quite well reproduced
by all the models: the pressure minimum immediately behind the rib is
accurately reproduced. Pressure recovery is also well reproduced. The

closest agreement is achieved with the RSMO.
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XR/H

Experiment 12.3
(Crabb et al., 1981)

Linear k-¢ model 10.7

(Durao, McGuirk and Palma, 1982)
Linear k-¢ model 10.7
(present )

Modified ¢ equation 11.2

Non-linear k-¢ model 12.2

RSMoO 13.02

RSM1 . 13.1

Table 4.2. The predicted and measured reattachment lengths for the

two-dimensional rib.

The cross-stream profiles of mean velocity are presented in Fig. 4.10 (a,
b). Focusing on the Reynolds-stress results, it is clear that the large
distortion to the profiles introduced by the recirculation zones both up-
stream and downstream of the rib are gradually smoothed out with down-
stream development with the predicted profile shapes generally matching
the measured ones. The exception to this appears to be the profile at the
last measured station at 13 rib heights from the end of the rib where the
data give a profile which appears to be in an advanced state of recovery
while the Reynolds-stress models still obtain a small region of reversed
flow. The cross-stream profiles of turbulence intensity are presented in
Fig. 4.11 (a, b). All models underestimate this quantity at all stages of

development, particularly at the last measurement station.

4.4 BACKWARD-FACING STEP IN DIVERGENT CHANNEL

This experiment was featured in the Collaborative Testing of Turbu-
lence Models exercise organized at Stanford University (Bradshaw, 1992).
There, several models were applied with results that were in many cases

very different from each other, even when the same turbulence model was

78



used! This lead to the conclusion (Bradshaw, 1992) that grid-independent
solutions were yet to be obtained. Since the performance of the k-¢ model
and its variants is already known for the backward-facing step (see Section
4.2), consideration in this section will be confined to the Reynolds-stress

models only.

The flow configuration is shown in Fig. 4.12. Two angles of wall diver-
gence are considered here, namely zero and six degree. The free-stream
velocity was 44.2 m/s and the Reynolds number based on the momentum
thickness was 5000. The inlet values were obtained from the experimen-
tal data which were tabulated and distributed to all participants in the

Stanford exercise. “

The grid used for the zero-angle case is shown in Fig. 4.13 (a). The ef-
fects of the grid sizes on the predicted reattachment length for this case
are presented in Table 4.3.

Grid size | LKE model | RSMO0 model | RSM1 model
95x42 4.1 4.3 -
160x63 4.5 5.67 -
185x69 4.74 5.45 -
185x82 4.76 5.44 5.40

Table 4.3. The predicted reattachment lengths for the the zero-angle case

for different grid sizes.

It is reasonable to assume that the results for the 185x82 grid are essen-
tially grid-independent. Those results are therefore compared in Table
4.4 with the measurements of Driver and Seegmiller (1984) and with
other predictions reported for the Stanford exercise. The model used by
Leschziner is in fact the present RSMO and it is therefore interesting to
see the extent to which numerical diffusion acts to shorten the extent of
the separated zone. The RSM1 is again almost identical to the RSMO.
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a =0 deg. | Grid size | k-e model | RSMO | RSM1 | experiment
Driver and 6.26
Seegmiller
Present calc. | 185x82 4.76 5.44 5.40
Goulas 5.00
Singhal 80x60 4.80
Leschziner 85x45 4.60 4.80

Table 4.4. The predicted reattachment lengths for the the zero-angle case

The grid used for the 6-degree case is shown in Fig. 4.13 (b). The finest
grid from the previous test is again used here and the present results are

compared with the measured value and the other predictions in Table
4.5.

a =6 deg. | Grid size | k-e model | RSMO0 | RSM1 | experiment
Driver and 8.21
Seegmiller
Present calc. | 185x82 5.73 6.90 6.90
Goulas 5.60
Singhal 80x60 5.80
Leschziner 85x45 5.30 6.10

Table 4.5. The predicted reattachment lengths for the the six-angle case

In this flow, the RSMO0 and RSM1 results for the reattachment length
are exactly identical and underestimate the measured value quite sub-
stantially. Again, the same models (Leschziner’s and the present RSMO0)
appear to give different results though this is not unexpected considering

the different grids used.

The predicted and measured field values are compared in Figs. 4.14-4.20.
All those figures are in the same format: the top part(s) for the zero-
angle case and the bottom parts are for the 6-degree case. The mean-flow
streamlines are shown in Fig. 4.14 (a, b). As mentioned before, divid-

ing streamline is seen to curve backwards near the reattachment point

80



for reasons that remain unclear. The RSM1 appears to emphasizes this
behaviour which suggests that the choice of pressure-strain model plays
at least so role in shifting the location of minimum velocity away form
the wall. Small contra-rotating vortices are captured downstream of the
steps in all cases although they may be smaller than those obtained in
the measurements. This can be inferred from the plots of skin-friction
coefficient, presented in Fig. 4.15 (a, b). The predictions do not quite
reproduce the measured minimum skin friction and later, in the recovery

region, the measured Cs is overestimated.

The wall static-pressure distributions are compared in Fig. 4.16 (a, b).
For the zero-degree case, this quantity is well reproduced by the predic-
tions in the reattachment and recovery regions but is overestimated at
distances greater than about 15H from the obstacle. For the 6 degree

test case, Cp is much more closely predicted throughout.

The axial-velocity profiles are presented in Fig. 4.17 (a, b) and show
close correspondence between predictions and measurements. Profiles of
the Reynolds stresses, at five axial locations downstream of the step, are
shown in Fig. 4.18 (a, b) for uv, in Fig. 4.19 (a, b) for u? and in Fig. 4.20
(a, b) for v2. The maxima of the uZ and TV stresses are well predicted
though there is some shift in their locations. The vZ normal-stress com-
ponent is underpredicted for all the downstream positions. Here again,
as before, RSMO0 and RSM1 give essentially similar results which support

the exclusion of the wall-damping function from the latter model.

4.5 CIRCULAR CYLINDER

For the case of a flow over a circular cylinder, the boundary layer devel-
oping downstream of the stagnation point encounters increasingly more
adverse pressure gradients till it eventually separates from the surface.
Thus, in contrast to the cases above, the point at which the flow separates
is not known a priori but has to be obtained by the model. This flow,

therefore, provides a more exacting test for the closure method.

Achenbach (1968) obtained surface pressure measurements on a circular
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cylinder placed normal to a uniform flow. Reynolds number was 3.6x108.
The measurements were previously used by Majumdar and Rodi (1985)
to validate a calculation mnrthod employing a k-¢ model on a cylindrical-
polar mesh. The inlet conditions used by those workers are employed
here: the inlet flow was assumed to be uniform with low relative tur-
bulence intensity. The body-fitted mesh used here consisted of 109x67
nodes. The flow was assumed to be steady and hence only one half of the
whole domain was modelled. In order to prevent pressure discontinuities
from appearing on the cylinder surface, it is necessary to generate a grid
which is both closely packed as well as smooth close to the cylinder. This
was achieved here by using a simple technique described by Peric (1985).
The technique concerns the grid nodes lying next to the solid surface
(e.g. nodes M; and M3 straddling node Mg, as can be seen in Fig. 4.21).

Fig. 4.21 The smoothness of grid lines.

A discontinuous grid will be generated but this can be made less discon-

tinuous by moving node My a new position such that:

B (4.1)

O =

P11~ fp ~ B3 ~
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This new position for the point M3®¥ can be found by first finding the
location of the cross point M and then placing the new point in the mid-
dle of the distance MgM.. This procedure can be repeated a number of
times, with each result checked visually, till a satisfactory final distribu-
tion is obtained. A grid which has been generated using this procedure
is shown in Fig. 4.22.

Achenbach (1968) only reported the wall static-pressure distribution and
this is compared in Fig. 4.23 with results from LKE (NKE results are
identical) and RSM1 (RSMO results are identical). It is immediately
obvious that the results of those very different models are essentially
identical: they obtain the separation point at about 128° which is ap-
proximately 13° later than that measured. The pressure is well predicted
up to the point of minimum value but the rate of pressure recovery from
then on is badly reproduced. A similar result was obtained by Majumdar
and Rodi who attributed it in part to the use of a steady-flow formulation
to simulate a flow which may have been influenced by vortex shedding.
Another explanation is that in the experiments, the boundary layer starts
as laminar near the stagnation point and becomes turbulent somewhere
downstream of it while in the computations the flow was assumed to be

turbulent from the very start.

Nevertheless, the results presented above can be regarded as being quite
satisfactory from the numerical point of view because of the good con-
vergence rates achieved and the attainment of a smooth and continuous
pressure field throughout the flow field. The CPU time needed by the
Reynolds-stress models are approximately four times greater than for the
k-¢ models.

4.6 CUBE

The flow around a cube is the most often used test flow in wind engineer-
ing for the obvious similarities it shares with flows around sharp-edged
buildings. The flow is rather complicated since it contains recirculation
regions at the front, the back, the sides and the top of the model. In this
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section, the aim is to examine the overall pattern of flow but with a par-
ticular focus on the region around the upstream corner of the cube which
is known to exert a substantial influence on the downstream development
of the flow. Simulations are carried out for experiments of Murakami and
Moshida (1989) in which the Reynolds number (based on the velocity Un
and the height of the cube H) was 7x10%. The inlet profiles used in the
computations are those obtained in the experiments, shown in Fig. 4.24
(a-c). The remaining velocity components V and W are set to zero while
the dissipation rate is deduced from the measured Iength scale using the

relation

3
_ Cpk}

» (4.2)

¢y
where constant Cp is equal 0.09.

The computational domain (Fig. 4.25) extends over 15H, 8H and 5H in
the x-, y- and z-directions, respectively. Tests carried out here showed
that this domain size is sufficient to ensure that the calculated pressure
field on the cube was uninfluenced by the conditions imposed at the
boundaries. Three different grids were used in order to check the sensi-
tivity of the solutions: grid A consisting of 44x28x21 nodes, grid B with
55x33x28 nodes and grid C with 70x48x41 nodes. No symmetry was as-
sumed in those tests. The grids were non-uniform, as can be seen in Fig.
4.26.

The effects of grid density can be seen in Fig. 4.27. Grid A ( and also
B which is not shown here) does not capture the region of reverse flow
on the top of the model which is present in the data (Fig. 4.27). Grid A
also underestimates the turbulence energy as can be be seen from Fig.
4.29. Grid C gives somewhat better velocity field (Fig. 4.27 c) but that
is much improved when the second-order accurate LUDS (Fig. 4.28 a)
is used in place of the Upwind scheme. The results of grid C and LUDS
are very similar to those obtained by Murakami, Mochida, Hayashi and
Sakamoto (1991) using the same turbulence model on a grid of 50x49x28
and with the QUICK differencing scheme and hence grid C and LUDS
will be used for the remainder of the present simulations. The turbulence
kinetic energy distribution predicted by grid C and LUDS is shown in
Fig. 4.30 (a). Clearly, some large discrepancies with the measurements

are apparent and attention is now turned to the performance of the tur-
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bulence model used.

In Fig.4.28 , the predicted velocity vectors as obtained by the various
k-e variants are presentec. For the case of the linear model (LKE), a
region of reversed flow is predicted near the top of the cube but its ex-
tent is smaller than that suggested by measurements. Somewhat longer
recirculation zone is obtained with the non-linear model but that, too, is
shorter than the measured length. The prediction of a too small recir-
culation zone is probably due to the overestimation of turbulence kinetic
energy near the frontal corner (see Fig. 4.30): too high turbulence ki-
netic energy levels produce large eddy viscosities and the reverse flow
is reduced by large turbulent mixing. It is not very surprising that the
standard k-¢ model overestimates the levels of k. The reasons for this can

be seen by comparing the ‘real’ production rate of k, which is obtained as:

Gk,n Gk,s
T U —aV U av._
= — 2— —_— 2__ —_— —_— —_— .
Gx uf———v By uv( By + I (4.3)

with the equivalent term used in the k-¢ formulation which is obtained

with the use of Boussinesq as:

Gkn Gks

Gr = 2v @2 + a_Vz;+ (a_U + a_Y_)z
k=« 141 Jy %

Tn Gy (4.4)

Inspection of equation 4.3 shows that, while production-by-shear is al-
ways positive (bar, perhaps, for a small region somewhere in the flow),
production by normal strains may be positive or negative, depending on
the signs of the 0U/0x and 0V/dy. In contrast, it is clear from equation
4.3 that all contributions to the production term are always positive and
hence the total term is greater than its exact counterpart. Larger pro-
duction rates normally produce larger levels of the quantity produced
and hence the overestimation of k in regions where 9U/dx or dV/9y (see

equation 4.3) must surely be positive.

It is relatively straightforward, once the reasons for higher k are under-
stood, to modify the model to take into account the limitations of Boussi-

nesq. The focus is on the e-equation sources which can be expanded thus:
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The separation of the production of k in the e-equation into generation
by shearing and irrotational strains has already been discussed in Section
2.3. What has been done here, however, differs slightly from the original
Hanjalic and Launder proposal in that a term involving (9U/dy)(dV/0dx)
has been dropped here since its sign cannot be guaranteed. The above
argument has been focused, for simplicity, on two-dimensional flows. The
case for three-dimensional flows is identical and there, again, all cross-

gradient terms were dropped from the production of dissipation term.

With this modification, the model now predicts a separated zone on top
of the cube which is in very close accord with measurements (Fig. 4.28
c). Also, the measured contours of k are much better predicted (Fig.
4.30 c) especially near the top corner where the predicted maximum-

level contour is now much smaller in extent than before.

The capture of a recirculation zone of approximately the correct size
leads to significant improvements in the calculated wall static-pressure
coefficients, as can be seen in Fig. 4.31. The improvements obtained
with the modified model (EKE) are not confined only to the roof but are
also apparent in the region on the upstream face near the top corner.

However, some differences with measurements are still apparent.

4.7 CLOSURE

The results presented in this chapter serve to verify the implementation of
the various turbulence models into a numerical procedure based on the
use of body-fitted coordinates and a non-staggered grid arrangement.
For the two-dimensional test cases, the advantages of using Reynolds-
stress turbulence models became apparent: the predicted reattachment

lengths were closer to the measured values and so where the predicted
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wall-pressure distributions. The two alternative models for the pressure-
strain correlations gave essentially identical results and this argues in
favour of using the model of Speziale, Sarkar and Gatski (RSM1) which
does not require wall-damping terms. For the k-¢ models, the non-linear
relationship produced results for the backward-facing step and the 2D
rib that are more accurate than the linear model results. Modification
of the production of dissipation term produced the best results for the

three-dimensional flow around a cube.

The circular-cylinder results were generally unsatisfactory, irrespective
of the turbulence model used. This may well be due to the use here of
a steady-flow method in a flow with possible vortex shedding. Laminar-
turbulent transitions may also have occurred in the experiments and that,

too, was not accounted for here.

In the next chapter, the techniques and models developed and tested so
far will be applied to flows around full-scale buildings.
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Fig. 4.1 Backward-facing step coordinates and geometry.
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Fig. 4.2 Backward-facing step. Predicted mean-velocity vectors by LKE.
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d)

1 EKE
Fig. 4.3 Backward-facing step. Predicted streamlines by LKE (a),
(b), NKE (c), RSMO (d) and RSMI1 (e).
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Fig. 4.4 Backward-facing step. Distribution of wall pressure coefficient
predicted by LKE, EKE, NKE (a) and LKE, RSM0, RSM1 (b).
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b)

Fig. 4.5 Backward-facing step. The mean-velocity profiles as obtained
by LKE, EKE, NKE (a) and LKE, RSM0, RSM1 (b).
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Fig. 4.6 Backward-facing step. The turbulence intensity profiles as
obtained by LKE, EKE, NKE (a) and LKE, RSM0, RSM1 (b).
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Fig. 4.7 Backward-facing step. The shear stress profiles as obtained
by LKE, EKE, NKE (a) and LKE, RSM0, RSM1 (b).
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Fig. 4.9 Two-dimensional rib. Distribution of wall pressure coefficient

predicted by LKE, EKE, NKE (a) and LKE, RSM0, RSM1 (b).
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Fig. 4.10 Two-dimensional rib. The mean-velocity profiles as obtained
by LKE, EKE, NKE (a) and LKE, RSM0, RSM1 (b).
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Fig. 4.11 Two-dimensional rib. The turbulence intensity profiles as
obtained by LKE, EKE, NKE (a) and LKE, RSM0, RSM1 (b).
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Fig. 4.12 Backward-facing step (in divergent channel) coordinates and
geometry.
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Fig. 4.13 Grid size 185x82: (a) 0 degree and (b) 6 degree
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Fig. 4.14 Backward-facing step: (a) 0 degree and (b) 6 degree. Predicted
streamlines by RSMO0 and RSM1.
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predicted by RSMO0 and RSM1.
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Fig. 4.16 Backward-facing step: (a) 0 degree and (b) 6 degree.
Distribution of wall pressure coefficient predicted by
RSMO and RSM1.
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Fig. 4.17 Backward-facing step: (a) O degree and (b) 6 degree. The mean
velocity profiles as obtained by RSMO0 and RSM1.
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Fig. 4.18 Backward-facing step: (a) O degree and (b) 6 degree. The shear
stress profiles (V) as obtained by RSM0 and RSM1.
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Fig. 4.19 Backward-facing step: (a) O degree and (b) 6 degree. The
normal stress profiles (u?) as obtained by RSMO0 and RSM1.
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Fig. 4.20 Backward-facing step: (a) O degree and (b) 6 degree. The
normal stress profiles (vZ) as obtained by RSM0 and RSM1.
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Fig. 4.24 Inflow boundary conditions: velocity U (a), turbulence kinetic
energy k (b) and length scale 1 (c), non-dimensionalized by

Uy and H, measured in the wind tunnel.
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Fig. 4.25 Cube. Computational domain.
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Fig. 4.26 Cube. Vertical cross section: 44x28x21 (a), 55x33x28 (b)
and 70x48x41 (c).
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Fig. 4.27 Cube. Velocity vectors as obtained by measurements a) and
predicted by LKE using the grids A (b) and C (c).
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39943

Fig. 4.29 Cube. Turbulence kinetic energy as obtained by measurements
(a), and predicted by LKE using the grids A (b) and C (c).
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Fig. 4.30 Cube. Turbulence kinetic energy predicted by LKE (a), NKE
(b) and EKE (c) (grid C and LUDS scheme).
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Fig. 4.31 Cube. Comparison of surface pressure coefficients at vertical

and horizontal plane (y=H/2)
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Chapter 5

COMPUTATION OF FULL-SCALE FLOWS

5.1 INTRODUCTION

This chapter presents the results of the numerical simulations of tur-
bulent flows around full-scale buildings. The validity of the simulations
is demonstrated by comparisons with full-scale tests conducted by the
Agriculture and Food Research Council - Engineering Institute, Silsoe.
Various building shapes were investigated but the ones of interest here
are a two-dimensional, long, portal-framed barn designated FB16, a sin-
gle span film clad building designated FB17 and a multi-span glasshouse
designated GO7.

The reported measurements consist of:

e The velocity profile in the atmospheric boundary layer with rough-

ness yo = 10mm, and y¢ = 40mm.
e Values of the turbulence intensity at ridge height.

e The distribution of the coefficient of pressure Cp, around the mid-
length section for a wind direction normal to the ridge
(Cp = Ap/0.5pU% where Uy, is velocity at ridge height).

e Some flow visualization.
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The remainder of this chapter is in seven sections. Section 5.2 considers
the prescription of the atmospheric boundary layer by empirical relation-
ships and by full Reynolds-stress model simulations. The predictions for
buildings FB16, FB17 and GO7 are presented in Sections 5.3, 5.4 and
5.5, respectively. A parametric study is presented in Section 5.6 to de-
termine the effects of varying the height to width ratio, the shape of the
eaves and the placement of a solid windbreak. A method for simulating
the unsteady wind loading is presented in Section 5.7 and the chapter is

concluded in Section 5.8 with a summary of the main findings.

*

5.2 SIMULATION OF THE ATMOSPHERIC BOUNDARY LAYER

The forces on a structure immersed in a boundary layer are very strongly
influenced by the profiles of velocity and turbulence within this layer and

hence the need for a very accurate representation of the approach flow.

Two alternative approaches were tried in the present work:

o The use of empirical correlations for the mean velocity, the tur-
bulence kinetic energy and its dissipation rate which are based on
experimental observations and assume that the atmospheric bound-

ary layer is in equilibrium.

e The simulation of the atmospheric boundary layer with complete

Reynolds-stress-transport model of turbulence.

In each case, the objective is to reproduce, as closely as possible, the
conditions prevailing in the field tests. Examples of the field measure-
ments are presented in Fig. 5.1 (a, b) (see next page) for two different

roughness lengths.

The straight lines are best-fit lines to the data, passing through the yy
points, and are typically of the form:

log(35)

Uy, = U, —20.
v = Uniog(a)

(5.1)
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where Uy is mean velocity at height ¥, U, mean ’reference’ velocity at

height n (usually 10 m), y distance from the ground and yo - ground
roughness length.

a) b)

Height
Tim)
100.0
( g . loaiairy)
l‘zh!(irl::\)t _Uz_ . log t2/2,) v ‘1o og (10/2, \ 2 points
100 + Uig tag (10/2) \ 100 L Where 2 = 0.010

L
where 2, = 0.043m )

1988 data

B Kites

O Reference anemometer

® 20 min record

A Average of 2x27 . 31min
record

1986 data
O Reference 2nemometer 0.1
@® 20min record

0.1

001 | 0.01

Fig. 5.1 Figure from Hoxey and Richards (1991) showing measured
velocity profiles for the roughness a) yo = 40mm and b) yo =

10 mm (N.B: z above correspond to y in the present notation).

While it is relatively easy to measure the velocity or even obtain it from
the above using a reference velocity from the Meteorogical Office data
(Section 1.1), the measurement of turbulence quantities is much more
difficult and complete profiles for those quantities are almost never re-
ported in the full-scale tests. The aim of the empirical correlations or the
numerical simulations is therefore to create, from knowledge of a single
measured value for Lhe reference velocity, representative profiles of ve-

locity and turbulence quantities that are self-sustaining (i.e. will remain
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unaltered in the absence of a building).

5.2.1 Empirical correlations

Profiles of mean velocity and turbulence parameters in a smooth flat-

plate boundary layer can be obtained from the following correlations.

The mean-velocity is assumed to follow the seventh power law, given by:

U _ (Z>'1' (5.2)

k= (5.3)

The shear stress is approximated using the mixing-length relation by:

2
—av =12 (?9_[;) (5.4)

The mixing length is defined as:

lm = min(0.41y,0.0856) (5.5)
And, finally, local-equilibrium is assumed so that the dissipation rate is
obtained from:

€= —UV—o (5.6)

The Reynolds stresses (when RSM is used) may be evaluated from their

respective equations as suggested in Section 3.6.5.

117



Some preliminary calculations were carried out based on the above as-
sumptions. As expected, the computed results showed a great sensitivity
to the choice of § - boundary layer thickness (Fig. 5.2). This approach
was abandoned because, not surprisingly, it produced velocity profiles
that were quite different from the measured ones (Fig. 5.1). The compu-
tations did nevertheless serve one important purpose: they showed that
the computational domain should extend vertically to 55 building heights
to obtain é-independent solutions. The results for § = 55H are shown in
Fig. 5.3 where it is clear that they overestimate the measurements at the

windward and leeward sides by approximately 40% .

Another approach tried here was based on the correlations of Harris and
Deaves model (1981) which are the most popular of the empirical models
in Wind Engineering. This model is based on asymptotic similarity the-
ory in which velocity scaling is with the friction velocity and the length
scale parameter is taken to be either the roughness length yg or the thick-

ness 6, depending on position within the boundary layer:

= e ena (3) eus () e (%)
Uy-— - lny0+a16+a2 5 + ag 5 + a4 5 (5.7)

Note that for small distances from the ground, this expression becomes
equal to equation (5.1). The constants a;, az, ag, a4 were determinated
from comparisons with measured wind profiles and are given the values
5.75, —1.875, —4/3, 1/4 respectively. For lower heights, expression (5.7)

can be written as:

U, |y y
= — — 75= ]

from which the friction velocity is obtained in the usual way.

The shear stress 7y is assumed to decrease parabolically with height, thus:
2
ry = pUZ [1 - (%)] (5.9)

The dissipation rate of turbulence kinetic energy is again obtained from
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local-equilibrium assumptions while k itself is evaluated from:

_ua- )

/C.

This approach was previously adopted by Hagen, Skidmore, Miller and
Kipp (1981) who took the constant C, to be 0.026 instead of its usual

value of 0.09 in order to obtain a better correlation with the measure-

ky (5.10)

ments. The consequence of decreasing the constant C, is that the inlet
boundary layer was no longer self-sustaining (Richards, 1989). Results
obtained by using this approach are presented in Section 5.2.3.

5.2.2 Reynolds-stress transport modelling

RSMO, one of the Reynolds-stress models discussed in Chapter 2, was
used in the simulation of the atmospheric boundary layer upstream of
the buildings. The solution procedure used for those calculations is a
finite-volume one based on the solution of the boundary-layer equations
in transformed coordinates. Details may be found in Spalding (1975)
and Younis (1987) but, essentially, the solutions are now obtained in the
transformed plane (x,7) where x is the coordinate direction aligned with

the flow while 7 is a normalized cross-stream coordinate defined by:

Y—-n Y—YyI
= = 5.11
YE —YI ) (5.11)

where yp is the height of the inner boundary, yg is the height of the ex-
ternal boundary and the difference between the two height defines §, the
flow width. As can be seen, the computations are always confined in the
region 0 < n < 1 irrespective of the actual physical width of the flow (see
Fig. 5.4, next page).

The discretized equations are solved by marching integration which is
appropriate for boundary-layer flows. The calculations start at a given

point with arbitrary profiles for the dependent variables and then move
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by a small interval in the main direction of flow till the whole domain is
covered. Results from one plane are used for the calculation of the next

plane downstream from it

a)

b)

X Xu Xd

Fig. 5.4 The physical a) and transformed b) coordinate system.

In the near-wall region, it is assumed that the turbulent stresses are con-
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stant and hence all their gradients normal to the wall are set to zero.
The effects of surface roughness are included in the calculation proce-

dure through a modified logarithmic relation, thus :

This defines the wall shear stress value which i1s then used as a flux

boundary-condition for the axial momentum equation.

The purpose of the calculations was to obtain an equilibrium atmospheric
boundary layer where the velocity U at a given height (the reference
height) was equal to the value reported in the full-scale tests.” This was
done by performing an initial calculation with guessed free-stream veloc-
ity and initial boundary-layer thickness and, once equilibrium is reached,
comparing the calculated velocity at the reference height with the data. If
the velocities are different, another run is performed with slightly differ-
ent Ufreestream and § till an acceptable match is obtained. The computed

results are then stored for later use in the elliptic-flow calculations.

5.2.3 Effects of inlet profiles

The profiles of streamwise velocity, turbulence intensity and energy dissi-
pation rate generated with the Harris and Deaves formula are compared
in Fig. 5.5 with those obtained with the Reynolds-stress model. Ground
roughness length was 10 mm and the mean velocity at 10m height was
10 m/s in each case. The profiles obtained with either method are quan-
titatively and qualitatively similar. The RSMO results for the turbulence
intensity are higher than those for the empirical correlations and this
remains the case for the two roughness heights of y9p=20 mm and yo=40
mm shown in Fig. 5.6. The full-scale results tend to be closer to RSMO:
Hoxey and Richards (1991) reported turbulence intensities of 15-17% and
18% for roughnesses of y9p=16-25 mm and yp=40 mm, respectively. The
full-scale measurements of mean-velocity are well reproduced by either
method (see Fig. 5.7).
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The effects on the predicted wall static pressure distributions arising from
the choice of inlet profiles can be seen in Fig. 5.8. Plotted there are the
RSMO results for yo = 0 and 10 mm and the Harris and Deaves corre-
lations. The differences in predicted pressures are due to the different
levels of turbulence intensity obtained with either method. Those differ-
ences are not as great as might have been expected because the inlet to
the computational domain was located at 13H (H is the building height)
upstream of the building with the result that the inlet boundary layers
developed into similar new states before interacting with the building.
Had the inlet plane been located closer to the building, the Harris and
Deaves profiles would still be undergoizlg adjustment to attain a self-

sustaining state.

On the basis of those and other results, it was decided that all full-scale
calculations would be carried out using inlet atmospheric boundary layer
profiles generated by the Reynolds stress model. Those equilibrium and
self-sustaining profiles allow the inlet boundary to be located at shorter
distance from the building with obvious savings in computer time and
storage. From a practical point of view, the boundary-layer code is very
simple to use and complete simulations take only a few minutes on a SUN
SPARC 1* machine. The practice here has been to prepare inlet profiles
for a wide range of flow and roughness conditions and then to use those

in later calculations.

5.3 RESULTS FOR BUILDING FB16

FB16 is a low-rise building which is sufficiently long (120 m) for the flow
along the mid-length section to be effectively two-dimensional. The roof
is twin-pitched with a 15 degrees included angle. The geometry is shown
in Fig. 5.9. In the full-scale tests, the building was situated on a flat,
open, field and oriented with the ridge normal to the prevailing wind
direction. Smoke visualization revealed the presence of a recirculation
zone on the windward side of roof (see Fig. 5.10 and Fig. 5.11.a) while
snow tracks give some indication of the position of the stagnation point
(see Fig. 5.11.b). The actual sizes of the recirculation zones are therefore

not known with any precision, particularly as the smoke patterns were
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severely influenced by wind gusts. The anticipated pattern of pressure
distribution on a building such as FB16 is positive external pressures on

the windward side and suction on the roof and the leeward side.

In determining the extent of the computational domain, a compromise
has to be made between the need to place the boundaries sufficiently
removed from the building to ensure that their influence does not affect
the computed results yet for the overall domain to remain small enough
to allow for adequate grid resolution. During the course of numerous
numerical experimentations, it was found that the inlet boundary plane
must be placed at a minimum distance of 8H from the building for the
computed solutions to be completely independent of the position of the
inlet. In other words, placing the inlet at distances greater than 8H
produced essentially identical results, but with more computational ef-
fort. The exit plane was located at 20H downstream from the building,
a distance shown by the two-dimensional rib calculations of Chapter 4
to be sufficient for total flow recovery. The top boundary was placed at
a distance of 300 m (or 55 building heights) which is a typical depth of
the atmospheric boundary layer and the minimum recommended in the
Code of Practice.

The effects of grid density and distribution on the computed solutions can
be very large, as can be seen in Figs. 5.12 and 5.13 where results for two
grids (108x100 and 142x110) are plotted. It is immediately apparent that
the discretization errors associated with the coarser grid have reduced the
size of the recirculation zone on the windward side and eliminated it al-
together on the roof. The absence of this roof vortex is often blamed on
the use of the k-¢ model but this is clearly incorrect as demonstrated by
the present results which were obtained with the standard model. Sev-
eral other grids were tested and a quantitative comparison between them
is presented in the Table 5.1 which reports the location the stagnation
point obtained with each grid.

grid 78x56 | 108x100 | 142x110 | 160x125

Ystagnation 0.3 0.4 0.5 0.5

Table 5.1 Grid effects on the position of the stagnation point
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The same, standard, k-¢ model was used in all those tests. The results
of this test suggest that the 142x110 grid would be suitable for all later

calculations.

The effects of grid density are, of course, not easily separable from those
associated with the differencing scheme. Several calculations were there-
fore carried out with the aim of testing the sensitivity of the computed
solutions to the choice of differencing scheme. In all those tests, the *best’
grid to emerge from the last test (i.e. 142x110) was used. The differ-
encing schemes tested were the upwind scheme, the power-law scheme,
the linear-upwind scheme and, finally, the standard central-upwind (hy-
brid) differencing scheme. The results of these tests were in many cases
indistinguishable when plotted on a normal scale. A sample result is
presented in Fig. 5.14 where the (first-order accurate) upwind scheme
is compared with the (second-order accurate) power-law scheme. Since
the upwind scheme is relatively more robust than the others, as well as
being easier to obtain converged solutions with, this scheme was to be
used in the majority of subsequent calculations. The other schemes were
also used from time to time, mainly to provide an independent check on

the grid resolution.

Full-scale measurements were reported for two values of ground-roughness
lengths, yo = 10 mm and 40 mm. The former value corresponded to the
state of the surrounding field shortly after the grass has been cut, the
latter when the grass was at nearly full height (Robertson, 1989). The
measurements appeared to suggest that ground roughness in those limits
had very little effect on the pressure distribution on the building and
calculations were therefore carried out to check this result. The effects
of roughness entered the simulations through the modified log.-law dis-
cussed in Section 5.2.2. The calculations, like the measurements, appear
to show that roughness effects are indeed small in this range. That is
not to say they are unimportant: Fig. 5.15 (a, b) which presents the
streamlines for the yp = 0 and 40mm (the 10 mm results can be seen in
Fig. 5.13), shows illustrative results obtained for a smooth ground (see
also Fig. 5.8) and those are clearly very different from the rough-ground

results.

Further calculations were carried out to determine the consequence of

treating the surface of the building itself as being rough. The experi-
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ments suggest that a roughness height for the buildings is about 0.5 mm
and calculations based on this value were identical to ones obtained for
a smooth wall. The building was therefore treated as smooth in all sub-

sequent calculations.

The mean-flow streamlines obtained with the standard k-e¢ model are
shown in Fig. 5.13.b. The position of the stagnation point on the wind-
ward side is about 50% of the eaves height from the ground. There is
also a separated zone on the windward side of the roof, much smaller in
size, extending to only about 25% of the width. The pressure distribu-
tion predicted by the linear k-e¢ model, presented in Fig. 5.14, shows that
the largest discrepancy with the data occurs on the windward side of the
roof where the model appears to underpredict the measured values as
well as obtain the wrong profile shape. It will become clear from later
results that the size of the separated zone on the roof and the shape
of the predicted pressure distribution there are very closely linked: the
correct shape being obtainable only when a sufficiently deep separated
zone is predicted. The results for the windward and the leeward walls
compare extremely well with the data. Those results are quite similar
to those obtained with the same turbulence model for the cube (Section
4.6) which suggests that here, too, production of k is being overestimated

by Boussinesq’s relationship.

It was not possible to obtain results with the non-linear k-¢ model on the
fine grid deemed necessary for grid-independent solutions. Even dropping
the difficult second-order differential terms did not resolve the conver-
gence problem and hence the results for this model, reported below, were
obtained on the coarser 102x74 grid and may therefore not be entirely
grid independent. The pressure distribution obtained with the non-linear
model is compared with the data in Fig. 5.16. The results are not very
different from those of the linear model except on the windward roof
where they are somewhat worse. The downstream reattachment length
is about 10% longer than obtained with the linear model, which is similar
to the results obtained for the backward-facing step and the 2D square
rib (Chapter 4).

The results for the ’irrotational-strain’ modification to the e-equation are
presented in Fig. 5.17 for the pressure coefficient and Fig. 5.18 for the

mean velocities. The windward-wall stagnation point now occurs at is

125



60% of the eaves height and it is immediately clear that a deeper roof re-
circulation zone is obtained with this model and that the static pressure
distribution on the windward roof is much more closely predicted. The
pressure distributions on the windward and the leeward walls are also
well predicted. Contours of the turbulence kinetic energy (defined as
k/U2;) are presented in Fig. 5.19 (a, b) for the linear and the modified
models respectively. Again, as for the cube, the maximum turbulence
energy obtained with the linear model occurs close to the top front cor-
ner where higher levels of eddy-viscosity will be generated, leading to the
small separated region observed in Fig. 5.13.b. In contrast, the use of the
modified model shifts the position of maximum turbulence energy further
along the windward roof and reduces the maximum levels by about 25%

which is consistent with the prediction of a deeper separated zone.

Attention is now turned to the Reynolds-stress model results. All the
computational details discussed above apply here as well. Numerous
tests were conducted using both the upwind and the linear-upwind dif-
ferencing schemes with a different grids. The outcome of those tests
supported the use of the upwind scheme in conjunction with a mesh of
142x110 which is also the combination used for the k-¢ model tests. The
conditions at inlet are more detailed than before: profiles are required
for all the Reynolds-stress components and not just for the turbulence
kinetic energy. Those were again obtained from the boundary-layer cal-

culation method as described in Section 5.2.

The predicted streamlines of the two Reynolds-stress model variants
RSMO and RSM1 are presented in Fig. 5.20 (a, b), respectively. Like the
k-e¢ models before, both of the present models obtain the windward-wall
stagnation point to be around 50% of the eaves height from the ground.
The similarity, however, ends here. The Reynolds-stress models predict
significantly deeper separated zones on the windward roof and, moreover,
they predict separated flow over the leeward side which is also seen in
some flow visualization tests. The pressure distributions on the building
walls are presented in Figs. 5.21 (a, b) where the RSMO0 and RSM1 re-
sults are compared with the data and, for illustration, with the linear k-¢
model. On the windward and leeward walls, the Reynolds-stress model
results are virtually 1identical and in very close correspondence with the
data. Some differences are apparent but those differences are small and

do not favour either model over the other. The shapes of the pressure
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profiles on the windward roof are better predicted, as could have been
inferred from the deeper separated zones obtained there, but the pres-
sures on the leeward side are somewhat underestimated due, perhaps, to
prediction of detached flow there. The exact position of dividing stream-
line cannot be determined with any certainty from the measurements and
so no comparisons are possible with this parameter. The distributions
of the turbulence kinetic energy predicted with the RSM0 and RSM1
models are shown in Fig. 5.22 (a, b) where it is clear that the maximum
is calculated to occur some way downstream of the top front corner, with
maximum the levels being well below those obtained with the linear k-¢

model.

In conclusion, therefore, the results obtained with RSM1 are very close
to those obtained with RSMO0 with the difference mainly in the size of
the separated region on the leeward roof. The computational times as-
sociated with the Reynolds-stress models are approximately three times
greater than for the k-¢ models but the results of the former are in much

better agreement with the data.

There are two further aspects of the present computations of FB16 that
need to be presented: the first relates the use of the ’entraining’ bound-
ary condition to reduce the overall size of the computational domain, the
second to the use of the multigrid technique to reduce the computational

time.

To appreciate the physical dimensions involved in the present calcula-
tions, Fig. 5.23 shows the building and the computational domain drawn
to scale. The height of the domain is initially determined by the depth
of the atmospheric boundary layer (300 m). Computations were first
performed with the extremely coarse grid of 37x29. In a subsequent run,
the depth of the solution domain was reduced to 18 m, simply be remov-
ing the top 9 nodes in the y-direction (Fig. 5.24 a). The ’entraining’
boundary conditions described in Section 3.6 were next applied at the
top boundary. Now if this procedure is valid then the results for the new
domain should exactly match those of the old, larger, domain since the
number of nodes and their distribution remained the same within the 18
m region. This was checked and found to be the case. The remaining
task was to refine the grid within the 18 m region. Two further grids
were used: 75x38 and 142x74 (Fig 5.24 b and c). The effects of this grid
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refinement on the predicted flow streamlines are shown in Fig. 5.25. The
figure shows that there is now a net outflow through the top boundary
while a comparison with the streamlines presented in Fig. 5.13 shows
that patterns of separated flow are identical to those obtained with the
142x110 grid but with a 25% reduction in the computing time. This re-
duction in computing time is not really satisfactory considering the effort
involved in attaining it and for this reason very few ’entraining’ boundary

calculations were obtained in the course of this work.

In contrast, the performance of the multigrid method was quite impres-
sive as can be seen from the table below. The comparison there is between
the CPU times of a single-grid calculation with a 142x110 with multigrid
results obtained on three grids of 37x29, 72x56 and 142x110 (Fig. 5.26).

Grid size | Number of grid levels | CPU time required
142x110 1 43062.8
37x29
72x56 3 3669.09
142x110

Table 5.3 CPU times for the single-grid and multigrid methods (FB16)

It is clear that the multigrid method has produced an order of magnitude
reduction in the total CPU time which is very welcome considering that
the real time for performing a single-grid calculation for FB16 is about
15 hours on SUN SPARC station 1% .

The convergence limits for both methods were, of course, identical: the
sum of absolute residuals, normalized by the inlet fluxes, had to fall to
below 0.0002 in each case. The rates of convergence of the two methods
are compared in Fig. 5.27 where the average normalized residuals for
the finest grid (RES) are plotted against the actual CPU time (TIME).
It can be seen that, in the multigrid results, there is a discontinuity in
the residuals curve each time the corrections are extrapolated to the
finest grid but that this discontinuity decreases with time and eventually

disappears altogether.
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5.4 RESULTS FOR BUILDING FB17

Attention is now directed to consideration of building FB17 which corre-
sponds to a single-span, plastic-clad greenhouse of semi-cylindrical cross
section. The dimensions are given in Fig. 5.28. The ratio of building
length to its height is 7.1 and hence two-dimensional flow conditions may
be assumed to apply at the center-plane. The building is situated on a
flat open field with no obstructions to the prevailing wind and the only
measurements obtained are for the wall static-pressure distribution along
the center-plane and for the mean velocity at ridge height (6 m/s) (Hoxey
and Richardson, 1984). Some smoke visualization tests were carried out
but those proved to be of limited value due to rapid smoke dispersion
and chaotic behaviour attributed to wind gusts. Nevertheless, some indi-
cation of the separation point position was obtained from those tests; the
point of flow separation apparently fluctuated in the range 100° - 120°
(polar angle).

In the calculations, the atmospheric boundary layer was simulated in the
same way as for FB16 with the ground roughness length yg set to 10 mm.
Grid-sensitivity tests were carried out on three grids, as shown in Table
5.5.

model grid size separation point (degree)
LKE 55x34 175.0
109x67 160.8
216x123 159.6
109x67 (LUDS) 159.2
RSMO 55x34 176.0
109x67 146.5
216x123 152.0
RSM1 55x34 176.0
109x67 145.0
216x123 151.0

Table 5.5 Grid effects on the location of separation point (FB17)
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In carrying out the grid-sensitivity tests, the Upwind Differencing scheme
was used and the coarsest grid doubled in both directions and then dou-
bled again. The grid-smoothing procedure presented in Section 4.5 was
used and a sample grid (216x123) is shown in Fig. 5.29. Further calcula-
tions were also performed using the Linear-Upwind Differencing Scheme
(LUDS) and those produced results that where no different from the Up-
wind results obtained on a finer mesh. For the k-¢ model, the position
of the separation point, which is taken to be a sensitive flow parame-
ter, reduces, monotonically, by about 9 % as a result of the successive
grid refinement. In contrast, the Reynolds-stress model exhibit a non-
monotonic behaviour with the finest-grid result about 14% smaller than
the coarse-grid result. This correspond; to 24 degrees of turning angle.
Clearly, the correspondence between predictions and measurements is
not very close with predicted position of the separation point delayed by
about 40° when the LKE model is used and by about 32° when either one
of the Reynolds-stress models is used. Such discrepancy is due in part to
the gusty nature of the flaw, as indicated by the smake tests.

The reasons behind the earlier separation obtained with the Reynolds-
stress models can be guessed from Fig. 5.30 which compares the wall skin-
friction coeflicient as obtained with all the models (no data are available).
It is immediately clear that the k-¢ model is less sensitive than the RSMs
in simulating the reduction in this quantity due to stabilizing stream-
line curvature effects. Those are associated with the development of a
boundary layer on a convex surface and lead to a reduction in the level
of turbulence activity and wall-shear stress. As the k-¢ boundary layer
possesses relatively higher wall-shear stress values, it is able to withstand
greater adverse pressure gradients, and progress through larger turning

angles before eventually separating from the surface.

The predicted flow streamlines are shown in Fig. 5.31 (a-c). Note
the emergence, in the Reynolds-stress models results, of a small contra-
rotating vortex downstream of the building. This result is quite similar
to that observed in the backward-facing step case and arises from the

fact that a longer separated region is now obtained by those models.

The predicted and measured wall static-pressure distributions are com-
pared in Fig. 5.32. The closest correspondence is obtained with the

Reynolds-stress models. The observed underestimation of the pressure is
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due to the use in the full-scale tests of permeable walls very close to the
ground: air was therefore free to flow within the structure and this is the
cause of the observed pres-ure relief on the surface. Contour plots of the
static pressure across the whole field are presented in Fig. 5.33 for the k-¢
model and for the RSM1. Those contours show a smooth and continuous
distribution of this parameter, something which was only attainable with

the use of the grid-smoothing procedure.

Contours of the turbulence kinetic energy (defined as k/U%), obtained by
LKE, RSMO and RSM1, are shown in Fig. 5.34 (a-c). The two Reynolds-
stress models yield very similar results which is a very encouraging result
for RSM1 where no wall-damping terms were present. The k-¢ model,
in contrast, ylelds much higher levels of this quantity but this is to be

expected since the model is not very sensitive to convex-curvature effects.

5.5 RESULTS FOR BUILDING GO07

The target here are the measurements of Hoxey and Moran (1991) on a
long, multi-span glasshouse. The geometry is shown in Fig. 5.35 which
also shows the position of the pressure tappings. The roof of this building
contained 52 spans and hence, for normal flow directions, the flow was
expected to become cyclical after an initial development length. In the
calculations, the domain extended to cover only the first 15 spans which,

as will be seen below, was sufficient to obtain this cyclic behaviour.

The atmospheric boundary layer was simulated here for a mean velocity
of 8 m/s at ridge height. The ground roughness length was set equal to
10 mm. It proved difficult to simulate this flow with RSMO0 due mainly
to difficulties in prescribing the wall-reflections function. Therefore, all

Reynolds-stress model results presented here are for RSM1.

The predicted and measured wall pressure distributions are presented in
Fig. 5.36 (a). The coefficient C, becomes well established after very few
spans which justifies the truncated solution domain used in the calcu-
lations. Hoxey and Moran (1991) concluded from their measurements
that only the first three or four spans of this structure are subjected to

a significant wind load while the remaining spans have a very small net
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wind load. This is confirmed by the present predictions.

The predicted streamlines obtained with the modified k-¢ and RSM1 are
compared in Fig. 5.37 (a, b) and the corresponding turbulence kinetic
energy are presented in Fig. 5.38.

Further computations were carried out using the multigrid method. Three
grids were used: 63x29, 124x56 and 246x110 (see Fig. 5.39 a-c). The con-
vergence characteristics are compared with those for the single grid in
Fig. 5.40. In this flow, the computational effort involved with the multi-
grid method is 8.14 times less than that for the single-grid, as can be
seen from Table 5.3.

Grid size | Number of grid levels | CPU time required
246x110 1 56703.9
63x29
124x56 3 6962.59
246x110

Table 5.3 CPU times for the single-grid and multigrid methods (G07)

Note that, in this flow, the reduction in CPU time is rather less than
that obtained for FB16. This is probably due to the fact that the first
grid-level employed is not really very coarse as many cells are needed to
resolve the complex roof geometry. Nevertheless, the method is clearly

suited for use for parametric studies, which is the subject treated next.

5.6 PARAMETRIC STUDIES

Having determined the performance of the predictive method by compar-
isons with field data, the task now is to exercise the method to determine,
computationally, the consequences of changes to some geometric param-
eters. In this section, we investigate the effects on the averaged pressure

loads of changes in the building’s height and width, the shape of the eaves
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(sharp or curved) and, finally, the consequences of placing a windbreak
ahead of the building. The difficulties in designing experiments to study
those effects in isolation are discussed in Hoxey, Robertson, Basara and
Younis (1992). In all the calculations presented below, the extended k-¢
model (EKE) was used in conjunction with the multigrid method. The
use of the k-¢ model is justified by the fact that the interest in paramet-
ric studies is confined to the relative changes in a particular parameter,
rather than in its absolute value. Moreover, the computed wall-pressure
values were averaged over the entire surface and hence any refined mod-

elling of this quantity would seem unnecessary.

Al

5.6.1 Effects of geometry

The purpose of the following computations is to provide information on
the effects of varying the building’s height and width, independently, on
the averaged pressure loads. The reference building used in those tests
is FB16 with the roof pitch always fixed at 15 degrees. The atmospheric
boundary layer was simulated as before (Section 5.4) and the finest grid

in the multigrid scheme was 142x110.

To investigate the influence of the building’s height, four different heights
were computed, with eaves heights set to 3m, 4.5m (FB16), 5.5m and 7m.
The grids used are shown in Fig. 5.41 a-d. The predicted streamlines for
each case are shown in Fig. 5.42 a-d. As expected, the size of the vor-
tex generated on the windward wall increases with the building’s height
though the ratio of the reattachment length to building height appears
to remain sensibly constant. There is also a separated region on the
windward side of the roof and, again, its size increases with building’s
height till a point is reached when the flow over the entire roof becomes
detached. Turning now to consideration of the averaged pressure coeffi-
cient (i.e. the quantity that enters in the Code of Practice calculations),
the variation of this quantity with the building’s height is shown in Fig.
5.43. In Fig. 5.43 a, the windward wall results are plotted and those are
clearly insensitive to changes in height. For the roof, Fig. 5.43 b, again
little variation is observed with the values being different by no more
than 10% . The largest differences occur on the leeward side (Fig 5.43
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c) where it is seen that changing the building’s height by 60% leads to
changes of the same order in the averaged pressures.

Assessing the effects of changing the building’s width was by carrying
out computations for four different widths: 5m, 6.7m (FB16), 8.6m, 10m.
The grids are shown in Fig. 5.44. The computed streamlines (Fig. 5.45)
show a largely unaffected flow upstream of the buildings and on the roofs
except, perhaps, for the narrowest case where a larger portion of the
roof flow is separated. The averaged pressure coefficients (Fig. 5.46)
are largely insensitive to the width except on the leeward wall where a
100% increase in width is seen to cause a reduction of about 25% in the

averaged pressure. x

5.6.2 Effects of eaves shapes

Curved eaves are sometimes used on buildings both for aesthetic reasons
as well as to reduce the overall pressure loading. Computations were
therefore carried out to study the effects of eaves shapes. Those were
performed for the Silsoe building FB28, shown in Fig. 5.47 a, for which
full-scale measurements are available for both sharp and curved eaves
(radius 0.635 m). The grids used were the same for both types and
consisted of 168x110 nodes distributed as shown in Fig. 5.47 (b, ¢). The

grid for the curved eaves was smoothed as already described.

The predicted streamlines are shown in Fig. 5.48 (a, b). those show
patterns that are generally in line with the smoke observation shown
in Fig. 5.49 (see, also, Fig. 5.7). The flow was attached around the
curved eaves and detached from the sharp eaves, as can be seen from
the enlarged sections shown in Fig. 5.50 (a, b). The pressure coefficients
(for the mid-length line of the roof) are presented in Fig. 5.51. Those
show that the curved eaves may be of benefit on the windward side of the
roof where the pressures (vacuum) are about 40% smaller than for the
sharp eaves. On the leeward side, the curved eaves produced pressure
that are 16% greater than for the sharp eaves. Those results are in good

agreement with the full-scale measurements of Robertson (1989).

In conclusion, then, the curved eaves reduce the overall loading but may
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actually increase it for some region. The peak levels are, however, lower

than for the sharp eaves case.

5.6.3 Effects of windbreaks

Windbreaks are permeable walls placed upstream of low-rise buildings in
open fields for the purpose of reducing the wind loads on those build-
ings. There are three important parameters to consider when using a
windbreak: its permeability (defined as the ratio of open to total frontal
area) and its position and size relative to the building. Various computa-
tional and wind-tunnel studies were carried out to quantify the effects of
permeability (e.g. Wilson, 1985, Raine and Stevenson, 1977 and Hagen,
Skidmore, Miller and Kipp, 1981) and those seem to show that optimum
pressure-reduction performance can be attained when the windbreak per-
meability is in the range 0.3 - 0.5. The purpose of this part of the work
was to investigate the geometric parameters affecting the performance of
the windbreak in isolation of permeability effects. For this reason, all the
computations presented here were obtained with solid walls. The effects
of permeability can be included simply by adding to the streamwise mo-
mentum equation some drag-related term which will contain an empirical

coefficient whose value can only be deduced from experiments.

All the computations reported here were obtained with the multigrid
method utilizing three grid levels, the finest being 142x110. The inlet
boundary conditions were specified with the Reynolds-stress models cal-
culations and the roughness length yo was set to 10 mm. The extended
k-¢ (EKE) model was used.

All computations were performed for building FB16. The geometry is
defined in Fig. 5.52 a and the computed streamlines corresponding to a
windbreak of height H = 2.18 m placed at distance X = 5 m are shown
in Fig. 5.52 b. For this arrangement, the presence of the windbreak
generates a large region of reversed flow downstream of it. The flow
does not reattach before reaching the windward wall and this is seen to
reduce the size of the separated flow region on the roof. The averaged

wall-pressure coefficients are the parameters of interest in this applica-
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tion and the variation of these with the position of the windbreak relative
to the building is shown in Fig. 5.53 (a-c). Plotted there are results for
two different windbreak heights: 1.42 and 2.18 m (respectively 0.3 and
0.6 eaves height). The experimental values for FB16 (obtained without
windbreaks) are also shown for reference. As expected, the pressure on
the windward wall turns out to be the most affected by the presence of
the windbreak. Note that the pressures on all walls asymptote to their
reference levels but the rate at which this takes place varies from one wall
to the other. For the leeward wall, the pressure recovery is fastest and is
completed when the windbreak is placed at a distance of 30 m or more
from the building. In contrast, on the windward side, the pressure re-
main affected by the windbreaks till the latter are at 200 m or more from
the wall. With the windbreaks located so far away from the building, the
disturbed flow relaxes to a new equilibrium and the effects of the distur-
bance are completely forgotten. In all cases, there is an optimum location
for placing the windbreak to achieve maximum pressure reduction and

the present results suggest that this location is almost independent of the
windbreak height.

5.7 SIMULATION OF PEAK LOADS

The random nature of the wind mean velocity causes the pressures acting
on a building to be unsteady and randomly behaved. Examples of typical
recordings of wind mean velocity and pressure at a point on the roof of a
house are shown in Fig. 5.54. Those plots are taken from the 1991 Code
of Practice and clearly show the peak pressure value to be many times
greater than the mean value. Clearly, knowledge of those peak values is

essential to the safe design of buildings.

There are many proposals in the literature for taking into account the
effects of the pressure peaks. A widely used one is that of Whitbread
(1980) :

Ap = (Cp + gcprms)q (5.13)
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where g is a ’peak factor’ and Cprms is the standard deviation of the peak
pressures from the mean which is normally obtained from wind-tunnel
tests. This quantity turns out to be very sensitive to the state of the
approach boundary layer such that, often, wind-tunnels tests are not re-
peatable and are quite different from the full-scale results. The aim of
this part of the work was to investigate how best to predict the unsteady
effects (e.g. peak pressure coefficients, rms values and load spectra) by

using conventional turbulence modelling technique.

In all the calculations reported so far, a steady-state method was used
to obtain pressure coefficients that did not vary with the time. The first
step, therefore, for obtaining peak and rms loads is to extend the solu-
tion method to handle the unsteady forms of the governing equations.
An additional term 9®/0t is now present and this is handled here by

direct integration, viz.

0p® _ xn o POV
/v ZEdv = (2" - e°)l = (5.14)

where superscripts o and n refer to values of variable & at the old and
the new time levels respectively. The ’old’ part of the integrated term
is moved to the right-hand-side of the appropriate difference equation

where it is then treated as a source of the quantity &:

5§V
Sg = Siteady | %t—@f, (5.15)

The 'new’ part of the integrated term is retained on the left-hand-side of

the difference equation which now becomes:

oV
(CAwm  +S3+22)28 (5.16)
nb

The remaining terms in the equation are treated fully implicitly, i.e.
evaluated with reference to their new time-level value. The fully-implicit
scheme has the advantage of being stable for large time steps but is only
first-order accurate. A number of iterations were conducted at each time

step till the normalized residuals fell below a prespecified level. All other
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aspects of the steady-state approach (e.g. boundary conditions, pressure-

velocity coupling etc.) remained unchanged.

The results of the first time-dependent simulations obtained for FB16
were very disappointing. Thus starting from the same boundary condi-
tions as before and marching in time from there, the predicted pressure
coefficient varied at first with time but eventually settled on a steady-
state value. The drag coefficient Cq is plotted in Fig. 5.55 and the
corresponding flow streamlines are shown in Fig. 5.56 for a number of
time steps. In fact, the streamlines predicted by the unsteady simulations
after a sufficiently long period of time were identical to those obtained
iteratively by the steady-state method.after convergence has been at-
tained. The mechanism underlying the unsteady nature of the observed
pressure loading on real buildings is therefore not necessarily due to the
shapes of those buildings but to some other agency not accounted for in

the simulations.

It was eventually concluded that the unsteady pressure loading is a conse-
quence of the properties of the approach flow. This was not immediately
obvious from the start since it is sometimes the case that unsteady load-
ing occurs in conditions of uniform and steady approach flow (e.g. vortex
shedding from a bluff body). The task now was to incorporate this into

the calculation method.

Examination of a typical instantaneous velocity record (Fig. 5.54) shows
that this quantity fluctuated randomly around the mean value. This can
be reflected in the calculations by imposing random fluctuations on the
profiles of the atmospheric boundary layer that are predicted with the
Reynolds-stress model. To achieve this, a routine for generating random
numbers was adapted and used to perturb the velocity profile by a cer-
tain amount within a pre-specified maximum limit. Fig. 5.57 shows a
typical result for a velocity at a certain point randomly perturbed by
15%, 10%, 5% and 1% of its mean level. The turbulence quantities were

simply scaled from their steady-state values.

With this modification to the inlet profiles, the computed variation of
the pressure coefficient with time no longer tends to a steady-state level
but fluctuates, randomly, in response to the changing input. This can
be seen from Fig. 5.58 where the roof values are plotted. It is immedi-

ately clear that the method now predicts peak values that are about five
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times greater than the apparent average value. The perturbation time
interval specified for those predictions, i.e. the time interval over which
the variables were perturbed around their steady-state values, was set
equal to one second, shorter than the 3-15 second interval recommended
in the Code of Practice for gust measurements. The time-step size for
advancing the solution from the old time level to the new one was 0.01

(corresponding to non-dimensionalized time U, ét/H).

A further refinement to this technique was introduced: it involved using
the full-scale measurements of wind velocity with time to perturb the
inlet flow instead of the random number generator. An example of the
measured velocity signal is shown in Fig. 5.59 ( Hoxey, 1992, private
communication). The consequences on the calculated results of using the
measured velocity signal can be seen from Fig. 5.60 for the roof pressure
coefficient and in Fig. 5.61 which shows the spectrum of the pressure
signal. It is very encouraging to note that, now, the calculated peaks
exceed the mean value by a factor of about twenty which is of the same
order as the value observed in some field measurements (Hoxey, 1992,

private communication).

5.8 CLOSURE

This chapter presented the main results of this thesis by way of compar-
isons between the numerical method and turbulence models described in
Chapters 2 and 3 and data from many full-scale experiments conducted

on buildings in open fields.

It was first found that the computations were very sensitive to the as-
sumed distribution of velocity and turbulence in the approach atmo-
spheric boundary layer. A Reynolds-stress model was then used, in con-
junction with a boundary-layer method, to obtain this inlet boundary
layer from knowledge of the velocity at a given, reference, height and an
assumed boundary-layer width. The terrain roughness was also an input
to those simulations. The results obtained here, namely profiles of rough
boundary layers in equilibrium, proved far preferable to those obtained

from empirical prescriptions.
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Comparisons were then obtained for the different variants of the k-¢ model
and for the two Reynolds-stress model formulations. Those showed that
the standard k-¢ model fails fairly badly for full-scale buildings and is not
therefore recommended for practical use. In particular, it obtained a sep-
arated zone on the windward side that was much smaller than measured.
The pressure distribution predicted with this model was at variance with
the data on the windward side of the roof. The results of the non-linear
k-¢ model were less conclusive. The model generally faired better than
its linear counterpart but still produced incorrect roof pressure distri-
butions. By far the best performance from the k-¢ model variants was
obtained from the version extended to magnify the contribution to the
e-sources of production. This has lead towthe prediction of a small but sig-
nificant region of separated flow on the windward side of the roof which,
in turn, lead to much improved prediction of the wall static-pressure dis-

tribution.

As for the Reynolds-stress models, it has generally been found that the
two versions tested yielded solutions that were quite similar. This argues
very strongly in favour of RSM1 which does not require a ’wall- reflec-
tions’ term in its formulation. The comparisons with the measurements
were quite good for FB16 and G07 but the computed surface pressures
tended to underestimate the measured values on FB17. As mentioned
earlier, this underprediction may well have been due to the pressure re-
lief obtained in the full-scale tests as a result of the permeability of the

lower parts of the structure.

The performance of the numerical part of the method has been satis-
factory. The use of grid-smoothing greatly assisted the attainment of
smooth and continuous pressure field around the building and on its sur-
face. The multigrid method yielded a consistent one order of magnitude

reduction in total CPU time compared to the single-grid results.

This chapter also included some illustration of what can be achieved us-
ing a well validated predictive procedure. In particular, the consequences
of using a windbreak to shield an existing structure were quantified in
terms of the optimum height and position of the windbreak. Also, a
parametric study was conducted to demonstrate the consequences on the
averaged wall pressure values of altering the building’s height and width

in isolation.
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Finally, a novel method for accounting for the peak loads within the
context of a conventional turbulence-modelling approach was presented.
The method was shown to produce results that are qualitatively in ac-
cord with full-scale measurements though the lack of any quantitative
data prevented a more detailed verification. The way for simulating this

type of loading has, nevertheless, been demonstrated very clearly.
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Fig. 5.11 Smoke observations on the roof of the building (a) and snow
tracks in front of the building (b).
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Fig. 5.12 FB16. a: Grid 108x100, b: predicted stream lines, c: velocity
vectors (LKE).

148



{68 W o
=
jrami

b) =  —

\
\
)
\

(o]
-~
\
\
Y

R R
~|.'

LS T RN ALY
LSRN (RN
YOOY N RN )

A}
)
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Fig. 5.20 FB16. Predicted streamlines by RSMO (a) and RSM1 (b).
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Fig. 5.23 FB16. Computational domain (height = 300m) covered with
grid 38x29.
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for the multigrid method.
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Fig. 5.30 FB17. Wall skin-friction coefficient predicted by LKE, RSMO0
and RSM1.
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Fig. 5.31 FB17. Predicted streamlines by LKE (a), RSMO (b), and
RSM1 (c).
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Fig. 5.37 GO07. Predicted streamlines by EKE (a) and RSM1 (b).
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for the multigrid method.

Fig. 5.39 G07. Grid levels 63x29 (a), 124x56 (b) and 256x110 (c) used
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Fig. 5.40 GO7. The convergence rate obtained with the multigrid and
single-grid methods.
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Fig. 5.41 Grid distribution for buildings of same width W but different
heights. H = 3m (a), 4.5m (b), 5.5m (c) and 7m (d).

175



.
PadiINTL

o

Frnlings

THVRLLELELLY

Fig. 5.42 Predicted streamlines for heights H = 3m (a), 4.5m b), 5.5m ¢)

and 7m d).

176



2.00
1.75]
2 1.50
B 1.25 )
§1.00 Pl
80.75] : P s
6 o-75) ': L ':
0.50 ; : : :
0.25] i 5 ? i
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
H/H (FB1§)
WINDWARD
b)
2.
1.
s 1.
9_._1.
&1 : ;
< : H
So. ; :
0.50 . ] ; 5
0.25] : P ;
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
H/H (FB16)
ROOF
c)
2
1
< 1
2} 1
&1
a
60.73] : ; : :
0.50 : ; ' ;
0.25] § E i §

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
H/H (FB16)

LEEWARD

Fig. 5.43 Predicted average pressure coefficients for buildings of different
heights, on the windward (a), roof (b) and leeward (c) sides.

177



b)

H

U

Al

d)

W=8.6m " W=10m

Fig. 5.44 Computation domains for the buildings with the same height
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10 m (d).
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Fig. 5.48 Predicted streamlines for sharp eaves a) and curved eaves b).

Fig. 5.49 Flow visualization around curved eaves. (From Robertson,
1989).
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Fig. 5.56 Evolution of mean-flow streamlines with time.
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Chapter 6

CLOSURE

6.1 INTRODUCTION

The present study was intended to address some fundamental issues that
are specific to the calculation of turbulent flows around full-scale buildings
and to advance a predictive procedure suitable for their simulation. An
existing finite-volume method was extended in a variety of ways includ-
ing the implementation of a complete Reynolds-stress transport model of
turbulence, the simulation of wind gusts and acceleration of the solution
procedure with a multigrid technique. Two different closure methods
were considered: a complete Reynolds-stress model used with two al-
ternative proposals for the pressure-strain correlations (Section 2.4) and
a k-¢ model used in conjunction with both linear and non-linear stress-
strain relationships. A modified k-e¢ model, emphasizing the contribution
of irrotational strains, was also tested. The complete method was then
verified by comparisons with data from a number of full-scale tests. The
extent to which the objectives of this study have or have not been fulfilled
is discussed in Section 6.2. Suggestions for future work are proposed in
Section 6.3.
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6.2 FULFILLMENT OF OBJECTIVES

The development of a practical predictive method for turbulent flows
around full-scale buildings formed a primary objective of the present
study. The activities undertaken concerning this objective were as fol-

lows:

e A finite-volume procedure for solving the governing equations on
body-fitted coordinates was extended by the inclusion of the nonlin-
ear k-e model and the Reynolds-stress transport model. When either
model was used, it was found that distributions of the dependent
variables that were both smooth and continuous in the near-wall
regions were only possible by evaluating the gradients of mean ve-
locities there from log.-law relationships. When using the Reynolds-
stress model, a special interpolation practice was adopted to allow
for the mean velocities and the Reynolds stresses to be stored at the
same grid location without producing oscillatory solutions. Another
special treatment advanced here concerned the inclusion of pseudo-
diffusion terms in the momentum equations which accelerated the

attainment of converged solutions.

¢ The pressure field was calculated using the well-known SIMPLE al-
gorithm. The Peric (1985) procedure for pressure-velocity coupling
on co-located grids was used in modified form through the inclusion
of the normal stresses. This had the effect of improving the stability

of the method and the attainment of converged solutions.

e A number of preferred practices were to emerge. It was found, for
example, that it is preferable to use converged linear k-¢ model re-
sults as the starting fields for the non-linear and the Reynolds-stress
models. In the case of the Reynolds-stress model, the turbulent
stresses were recalculated from the converged mean-velocity and
turbulence kinetic energy fields by using Boussinesq’s stress-strain
relationship. Furthermore, when using the Reynolds-stress model,
the stresses were solved altogether, based on their values from pre-
vious iteration. In the near-wall region, it was assumed that the

stresses were uniform.
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The suitability of various turbulence models for wind flows around build-
ings was then assessed. In Section 2.3, it was suggested that the main
obstacle to the use of complete Reynolds-stress-transport models of tur-
bulence in practical engineering calculations lies in the use of those mod-
els of *wall reflection’ terms. A new pressure-strain model was published
in the course of the present work, one which apparently did not require
those terms, and attention was then focused on the detailed verification
of this model which was here applied, for the first time, to separated
flows. Detailed testing was also to be carried out for the non-linear k — ¢
model which, for separated flows, had hitherto been applied only to a

flow over a backward-facing step.

Data from a number of experiments were chosen for models verification.
Those consisted of the backward-facing step in both straight and diver-
gent channels, the two-dimensional square rib, the circular cylinder and
the cube mounted on a flat surface. The main findings to emerge from

these tests were as follows:

e For the backward-facing step in a straight channel, both the Reynolds
stress models tested gave reattachment lengths in close accord with
the data. This was also the case for the wall static pressure dis-
tribution which was predicted particularly well with RSMO0. Fur-
ther, those two models and the non-linear variant of the k-¢ model
captured the small contra-rotating corner vortex whose existence is

confirmed in flow-visualization tests.

e For the backward-facing step in the divergent channel, only the
Reynolds-stress models were tested. Grid-independent results were
obtained and those provided further confirmation that the new model
for the pressure-strain correlations predicts the correct behaviour

without requiring a wall-reflections term.

¢ For the two-dimensional square rib, the results were not very dif-
ferent from the backward-facing step cases: the Reynolds-stress and
the non-linear k-¢ models obtained the right reattachment length
in contrast to the linear model which underestimated this quantity
quite significantly. The wall static pressures were better predicted

by the Reynolds stress models.

e For the circular cylinder in uniform approach flow, all the models

failed to obtain the surface pressure distribution due, perhaps, to
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the use of a steady-state method in what may well be an unsteady

flow.

e For the flow around a cube, only the k-¢ model and its variants
were used since it would not have been possible to obtain grid-
independent results with the Reynolds-stress models due to the
limited computing resources available. Both the standard model
and the non-linear variant failed around the area of the frontal cor-
ner leading to a small recirculation zone and an incorrect pressure
distribution on the top of the cube. The modification introduced
to amplify the contribution to the production of ¢ of irrotational
strains proved most successful herer with predicted levels of turbu-
lence kinetic energy, for example, comparing quite closely with the
data.

e Compared with the CPU time for the standard k-¢ model, the non-
linear variant’s was greater by a factor of two and the RSMs’ by a

factor of three.

The third objective was to simulate atmospheric boundary layer to pro-
vide accurate inlet boundary conditions for the main code. A full Reynolds
stress model was used in conjunction with a marching integration proce-
dure to obtain mean-velocity and turbulence profiles appropriate to equi-
librium boundary layers of given depth and for specified terrain rough-
ness. The computed results were internally self-consistent and were quite

close to the very few measurements reported in full-scale tests.

The fourth objective of the present study was to verify the predictive
procedure by comparisons with data from a wide range of full-scale tests.

The most important findings here were as follows:

e It was found that the computations were very sensitive to the as-
sumed inlet conditions and that, further, the accurate simulation
of the atmospheric boundary layer using the Reynolds stress model

was essential for predicting the correct flow field.

¢ It emerged that both the linear and non-linear forms of the k-¢ model
were incapable of reproducing the behaviour of the flow around the
windward side of the roof. This result is similar to that obtained
with the same model for the cube and amounts to significant under-

prediction of the extent of the separated zone.
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e The RSMs produced far more accurate predictions of the separated
flow around a semi-cylindrical building. In particular, the position
of the separation point was better predicted than with the two-
equation models.

e It was found that the two models for the pressure-strain correlations
yielded results that were approximately similar and this favour the

use of RSM1 in future calculations.

The fifth objective was to conduct the parametric studies aimed at quan-
tifying the influences of geometrical parameters on the pattern of wind
flow. This was achieved by conducting parametric studies into the con-
sequences on the wall pressure distribution of varying, in isolation, the
height and the width of a certain building. Also, the effects of changing
the eaves geometry from sharp to curved were assessed and the computa-
tions compared to full-scale data. Finally, some sample calculations were
performed to illustrate how to use the prediction method to determine
the optimum size and location of a solid windbreak placed upstream of
the building.

The sixth objective was to advance a technique for simulating the gust
loading on full-scale buildings within the context of classical turbulence
modelling techniques. A method was proposed, having as its basis the use
of a random-number generator to perturb the inlet atmospheric boundary
layer. Sample calculations were carried out to demonstrate this technique
and the results obtained were broadly in accord with expectations. Fur-

ther testing against more more detailed measurements is required.

The seventh objective was to improve performance of the computational
method through the implementation of a multigrid procedure. This was
done and the implementation checked by comparisons with a standard
single-grid method. The multigrid method was found to consistently re-
duce the CPU time by nearly a factor of ten.

6.3 RECOMMENDATIONS FOR FUTURE WORK

The present study has shown that Reynolds-stress transport models of
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turbulence can provide both accurate and practical means for predict-
ing the behaviour of turbulent flows around full-scale buildings. This is
especially so when used together with a particular model for the pressure-
strain correlations which does not require wall-reflection terms. The rec-
ommendation, therefore, is to extend the verification of this model to the
full-scale tests now available for three-dimensional buildings. The tech-
nique for simulating gust loading should be explored further, perhaps in
close coordination with full-scale measurements. The overall performance
of the predictive method will be enhanced by allowing for the multigrid
method to be used in conjunction with local grid refinment.
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