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Abstract

Traffic classification seeks to assign packet flows to an appropriate quality of service (QoS)
class based on flow statistics without the need to examine packet payloads. Classification
proceeds in two steps. Classification rules are first built by analyzing traffic traces, and then
the classification rules are evaluated using test data. In this paper, we use self-organizing map
and K-means clustering as unsupervised madeimaing methods to identify the inherent
classes in traffic traces. Threkisters were discovered,roesponding to transactional, bulk

data transfer, and interactive applicationse Kanearest neighbor classifier was found to be
highly accurate for the traffic data and sfigantly better compared to a minimum mean
distance classifier.
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1. Introduction

Network operators and system administratordraerested in the mixture of traffic carried

in their networks for several reasons. Knadge about traffic compaosition is valuable for
network planning, accounting, security, and taffontrol. Traffic control includes packet
scheduling and intelligent buffer management to provide the quality of service (QoS) needed
by applications. It is necessary to determtnewhich applications packets belong, but
traditional protocol layering principles restrict the network to processing only the IP packet
header.

Deep packet inspection (DPI) can classifyffic by examining and decoding the higher
layer protocols carried within packet payloadse Pinotocol field in the IP packet header will
indicate the transport layer protocol (usually TCP or UDP); then the port numbers in the
TCP/UDP header will indicate the application layer protocol if the port numbers are
well-known. However, DPI has major drawbadkst limit its usefulness. If the packet
payload is encrypted, the TCP/UDP headdr we unreadable. Some applications, notably
peer-to-peer protocols, do not use well-known or even predictablayukiers. In addition,
some believe that DPI is an invasive technology that raises privacy issues.

Research in traffic classification has searctuednethods to determine the composition of
traffic, without recourse to examining the packet payload. For the purpose of traffic control, it
is not necessary to classify inttlual packets as to their spiciapplication; this would
require detailed knowledge ol application layer protocolslhe usual goal is more modest.
Traffic flows are classified into a number @bS classes, where flows within the same QoS
class share similar QoS requirements. The fundéhedea of traffic classification is to
differentiate flows based on flow and packitistics that can be easily observed without
examining payloads. Routers and switcheth WetFlow or sFlowcapabilities can collect
traffic flow statistics, such as flow duratiomimber of packets and bytes, and packet length
statistics. Our aim is to make use of thdlaemed flow statistics to determine the QOS
requirements for each flow.

There are three major research issues in @lassification. First, which flow statistics are
the most useful features for differentiating flows? We could use as many statistics as possible
but in practice, it is preferable to minimize the feature set by ignoring features that contribute
little. In this paper, we investigate the useds of several features in four hour-long traffic
traces. Second, what are the QoS €eg8shey could be decided eithariori or preferably
without a priori assumptions using unsupervised clustering algorithms to discover the QoS
classes naturally inherent in traffic data. @erimented with unsupervised clustering using
self-organizing map and K-means clustering. dhow will new flows be classified into QoS
classes? Many machine learning techniques such as neural networks, Bayesian classifier, and
decision trees are possible. We compareelirast neighbor with minimum mean distance
classification.

In Section 2, we review the previous wanktraffic classification. Section 3 addresses the
guestion of useful features and number of QoS classes. We describe experiments with
unsupervised clustering of real traffic tracebudd classification rules. Given the discovered
QoS classes, Section 4 presents experimental evaluation of classification accuracy using
k-nearest neighbor compared to minimum mean distance clustering.

2. Related Work
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Research in traffic classification, which avoids payload inspection, has accelerated over the
last five years. It is generally difficult to ogpare different approaches, because they vary in

the selection of features (some requiring ewon of the packet payload), choice of
supervised or unsupervised classification algorithms, and set of classified traffic classes. The
wide range of previous approaches can be se#te comprehensivaurvey by Nguyen and
Armitage [1]. Further complicating comparisons between different studies is the fact that
classification performance depends on how the classifier is trained and the test data used to
evaluate accuracy. Unfortunately, a universaladdest traffic data does not exist to allow
uniform comparisons of different classifiers.

A common approach is to classify traffic on tlasis of flows instead of individual packets.
Trussell et al. proposed the distribution of packet lengths as a useful {@atieGregor et
al. used a variety of features: packet length statistics, interarrival times, byte counts,
connection duratiori3]. Flows with similar features were grouped together using EM
(expectation-maximization) clustering. Having found the clusters representing a set of traffic
classes, the features contributing little were tdeléo simplify classification and the clusters
were recomputed with the reduced feature B& clustering was also studied by Zander,
Nguyen, and Armitagp!]. Sequential forward selection (SFS) was used to reduce the feature
set. The same authors also tried AutoClassjresupervised Bayesian classifier, for cluster
formation and SFS for feature set reducfion

Roughan et al. experimented with k-nearest neighbor (KNN) and linear discriminant
analysis (LDA) to classify flows into four QoS classes: interactive, bulk data, streaming, and
transactional6]. This was an example of supervised classification where the number of
classes is known. Their chosen features induplacket length statistics, flow rate, flow
duration, number of packets, interarrival times, and TCP connection statistics. The main
features were connection duration and meangddekgth. In comparison, we do not decide
on QoS classespriori. We discover a set of QoS classes using unsupervised clustering.

Moore and Zuev employed supervised NaBagyes classification of flows into several
classes[7]. Their features included flow duration, TCP port number, interarrival times,
payload sizes, and effective bandwidth. Whkve Bayes classification achieved 65 percent
accuracy for real Internet tradfithe accuracy increased to 93gamt with the combination of
kernel density estimation and 94 percent wheiive Bayes was combined with FCBF (fast
correlation-based filter). A later study followeg on Bayesian classification with a more
detailed discussion of featurg. Ten, of a large set of features, were chosen as the most
useful. Unfortunately, the features include TCP leedields that require inspection of packet
payloads. In comparison, our approach doesiseflf CP/UDP header fields, since they reside
in the packet payloads.

BLINC followed a different approach to examaiflow patterns to classify the behavior of
hosts on three levels: socidlinctional, and applicatiofP]. Only flow statistics are used
without payload inspection. Empirically obsedviiow patterns are represented in “graphlets,”
and host behaviors are classified by matchirgr ttraffic to the closest graphlet. Our goal
differs from that of BLINC. Whereas BLINCses traffic patterns to characterize hosts, our
goal is to characterize each traffic flow in terms of its QoS requirements.

Bernaille et al. suggested that flows coulctlzssified based on the first five packiéi3].

The packet lengths constitute a vector, andlainaectors are grouped by k-means clustering.
The study aim was to find a minimum number of packets to reasonably classify a flow.

Williams et al. compared five machine learning algorithms and concluded that Bayes

network, Naive Bayes tree, and C4.5 achieved similar acc[iratySix traffic classes were
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chosera priori. Analysis of 22 features concluded the most useful features to be: number of
packets in the flow (minimum, maximum, antkan), protocol (TCP or UDP), interarrival
time (minimum, maximum), and flow duratiom contrast, our approach includes a data
exploration phase, where the traffic classes are learned by unsupervised clustering.

Erman et al. compared unsupervisedstgring algorithms: k-means, DBSCAN, and
AutoClass12]. A later study used k-means clustenmigh 25 features that were reduced to:
number of packets, mean packet length, megiopd size, number of bytes, flow duration,
and mean interarrival tim@3]. K-means clustering was also tried by Yinggiu eflal]. Our
methodology differs in that unsupervised clusteitngsed for data exploration to discover an
inherent set of traffic classes in the data, #reh supervised clustering is used for flow
classification.

Crotti et al. proposed the idea of a “protocol fingerprint” characterized by three flow
statistics: packet length, imgerival time, and arrival ordét5][16]. The proximity of a flow
to a protocol fingerprint is measured by the anomaly score.

NetADHICT used a divisive hierarchical clustering algorithbd]. After clusters are
determined, packets are classified dicision trees based on features callgd){grams.
These are substrings at fixed offsets within packets the offset ana is the length of the
substring). The NetADHICT algorithm findand groups packets containing similar bit
patterns. The approach fundamentally difffsm our approach #t assumes packets are
already associated into flows and uses fipatistics for classification into QoS classes.

Decision trees were also investigated by Cao et al. to differentiate BitTorrent, HTTP,
SMTP, and FTP flow§l8]. Their traffic data was limited to these four specific applications,
whilst our data contain a much wider range of applications.

In a different direction from clustering approaches, Wright et al. proposed the use of
hidden Markov models for packet lengths and tifti®$. Similarly, Dainotti et al. use hidden
Markov models for joint distributions @lacket payload size and interarrival tifaé].

3. Unsupervised Clustering

3.1 Self-Organizing Map

We start with minimal assumptions and makeanpriori assumptions about classes and
features to build classification rules. Some researchers have called this exploratory phase of
traffic analysis, unsupervised clusteringaddf-line classification. The goal of unsupervised
clustering is to discover the inherent classdhértraffic and secondarily to discover the most
useful features for classification. Using a large set of features leads to high complexity and
computation costs that may be unnecessary. Qtiare features little affect classification and
can be ignored with no loss of accuracy.

We analyzed traffic data with two unsupeedl clustering algorithms, self-organizing map
(SOM) and K-means clustering, to discovertiienber of classes and useful features inherent
in traffic data. We used four publicly dlable traffic traces (http://ita.ee.lbl.gov), each
consisting of an hour of Internet traffic reded by Digital Equipment Corp. (designated dec1,
dec2, dec3, dec4). The traffic was separated flows defined in the usual way by the
quintuplet {source address, destination addnesgpcol, source port, destination port}. The
traces have a mix of common applicationsudahg HTTP, NNTP, SMTP, FTP, DNS, telnet,
and SSH.

Many candidate features were considered within the categories:
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o packet level features: packet length statistics (maximum, minimum, mean, variance);

o flow level features: statistics of numberpackets per flow, number of bytes per flow,

flow duration, interarrival times;

e TCP connection level features: statisticspaickets per TCP connection, bytes per

connection, connection duration.
From the literature, we expected that the migsful features would be the mean packet length
and flow or connection duration. From expenmse we found that connection level features
and flow level features captured nearly equinaiaformation. We chose to favor connection
level features over flow level faaes in subsequent experiments.

A self-organizing map is an unsupervised nenevork method. It has properties of both
vector quantization and vector projection algorithigd. SOM can be viewed as a nonlinear
generalization of principal component analysis (PCA) traditionally used for feature extraction.
SOM has been found to be particularly hel@sla visualization tool for data clustering and
analysis. A self-organizing map consists ofiroes organized on a regular low-dimensional
(usually two dimensional) grid or map. &mumber of neurons can range from a few to a
thousand. Thus, whilst other unsupervised ctusgealgorithms are possible, SOM is appeals
for visualizing high dimensional data in low dimensional views. Each neuron is represented by
a d-dimensional vector called a codebook vectoe[m,m,K ,m;], whered is the
dimension of input feature vectors. The neurons are connected to adjacent neurons by a
neighborhood relation; this deterrasthe topology of the map.

SOM is trained iteratively. In each training step, one sample vedtom the input data
pool is chosen randomly, and the distancéwéen it and all the SOM codebook vectors are
calculated using some distance measure. Themnevhose codebook vector is closest to the
input vector is called the best-matching unit (BMU), denotednpy

b mic-m| @
where|l|| is the Euclidean distance, arfuh } are the codebook vectors.

After finding BMU, the SOM codebook vectors are updated, such that the BMU is moved
closer to the input vector. The topological neighbors of BMU are also treated this way. This
procedure moves BMU and its topological neighbors towards the sample vectors. The update
rule for theith codebook vector is:

m(n+1)=m,(n) +a, (nhy(M[x(n) - m(n)] 2)
wheren is the training iteration numbex(t) is an input vector randomly selected from the
input data set at theh training, ¢, (n) is the learning rate in thh training, andh;(n) is the
kernel function around BMUn,. The kernel function defines the region of influence that
has on the map.

The training is performed in two steps. In thetfstep, coarse training is made using a large
initial learning rate and large neighborhood wadiln the second step, the learning rate and
neighborhood radius are chosen to be relatively small for fine training. After training,
neighboring neurons have similarototype vectors. We used segments from all four traffic
traces for training.

We use a unified distance matrix (U-matrix)visualize the cluster structure of the map.
From the U-matrix map, distances betweeigingoring map units can be visualized. This
helps perceive how the clusters distribute m iap. High values of the U-matrix indicate a
cluster border, whilst uniform areatlow values indicate clusters.

From the candidate features, we chose sexatnifes that could be calculated easily: mean
and variance of bytes per connection; connedigation; interarrival variability (ratio of the
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mean to standard deviation of interarrival times); total number of packets per connection; total
number of bytes per connection; aodtrmean square of packet length.

Since the SOM algorithm uses the metric Eaiclidean distance between vectors, the
components of the data set must be normalieddre any visualization. The common way to
normalize is to linearly scale all variables, stizit the variance of each variable becomes one,
and the mean becomes zero. Typically, a Gausssamnbution is assumed for the variable, but
we noticed that the Gaussian assumption Wwesrrect for the training data; the variables
could not be normalized based on unit variancee&tstwe linearly scaled the value ranges of
all the components to the range [0,1]; thus, none of the components could dominate the
distance calculation.

Fig. 1 shows the U-matrix and the componeptanes for the feature variables. The
U-matrix is a visualization of distance tiveen neurons, where distance is color coded
according to the spectrum shown next to the Bie areas represent codebook vectors close
to each other in input space, i.e., clust&ed areas represent cluster separators, where
codebook vectors are more separated in ispate. Several observations we made from the
map. First, there are at ledabtree clusters in the map. ®ad, variablel, variable4, and
variable7 are similar in shape. This indicathat the three features are highly linearly
correlated. Third, variable5 and variable6 aghlyi linearly correlated. Fourth, there seems to
be some correlation between \adlie3, variable5 and variable6.

WVariahle Vanable2
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: 0.0443
l HL‘I{IE{E?

0.0141 = 0.228
0000684 = 0.0286 0.00108
n n

Variabte3 Variables Wariables
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] H{I‘Im HI}EE ‘ HI}DDE-EE

00497 i 0.0GES 0000421
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Fig. 1. U-matrix with 7 components scaled to [0,1].
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We subsequently confirmed the linear correlation between feature components by plotting
component-versus-component scatters. Froen isults, we chose to keep variablel,
variable2 and variable3 as the most useédtdres. The remaining features were either
correlated with another variable ot as important for clustering.

The U-matrix map was drawn using the reduceedlieature variables. We noticed that some
applications such as HTTP, SMTP, and FTP had a much larger number of connections than the
other applications. We randomly selected egaaiples from these applications to balance the
number of samples from all the applications to prevent data from these applications
dominating the map. The resulting U-matrix map is showfign2. This map is a little
different, but resembles the previous map, skibwing at least three clusters. Again, blue
areas indicate clusters, whilst red areas indichister separators. We applied the K-means

clustering algorithm to the data set for further analysis.

U—malrix Maanbyla
0.686
0.348
0.0088
0.686
0.348
0.0008
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0.00671 w

233

115

{00671

Ciuralion IniMetric
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0.275 » G285
0.0279
000303 0.422
0.55 1 0225
0.02749
0.275
0.422
0.000303 ¢ 0225
00279
n ]

Fig. 2. U-matrix with 3 components.

3.2 K-Means Clustering

The K-means clustering algorithm starts withearnting data set and a given number of clusters
K. The samples in the training data set assigned to a cluster based on a similarity
measurement. Euclidean distance is generald to measure the similarity. The K-means
algorithm tries to find an optimal solution by minimizing the square error:
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K n
2
Er :ZZ”XJ —ci” 3
i=1 j=1
whereK is the number of clusters ands the number of training samples,is the center of
theith cluster,|[x—c| is the Euclidean distance between samptend centex; of theith

cluster.

We applied the K-means algorithm to segments from all four traffic traces with different
values ofK, and ran the algorithm multiple times for edchThe best results were selected
based on the sum of squared errors. Theid3aBouldin index was calculated for each
clustering.Fig. 3 shows the Davies-Boulding clusteriimgdex that is minimized with best
clustering. The Davies-Boulding index indicatedttthere are three clusters, consistent with
the results from the self-organizing map.

After determining the presence of three s from both SOM and K-means clustering,
we investigated the typical applications in each cluster. To check how different applications
corresponded to the clusters in the data, we used so-called “hit” histograms in the
self-organizing map. They are formed bkitg a data set, finding the BMU of each data
sample from the U-matrix map, and incrementing a counter in a map unit each time it is the
BMU. The hit histogram shows the distribution of the data set on the map. From the hit
histograms, it became evident that the threa@tasvere predominantly represented by four
main applications: DNS in cluster 1, Telnet and FTP control in cluster 2, and HTTP in cluster
3.

We examined the features of packet lergytld connection duration of the applications to
investigate the reference data set for the thiessek. The mean and standard deviation of the
features were plotted for individual applicats. Inspection of the results suggested that the
applications of interest could be clusteranto three regions. The first region includes
transactional applications, exemplified by DNIfe applications in ik region have small
average packet size and short connection duration time. The second region includes interactive
applications, exemplified by Telnet and FTP cohtApplications in this region have small
average packet size, but long connection duration. The third region includes HTTP and
represents the bulk transfer class. Applicatimense medium or large average packet size, but
low or medium connection duration. Whilst odiscovery of these three traffic classes is
consistent with the traffic classes proposed by Roughan [éf alve arrived at these traffic
classes by an unsupervised learning procedure, rather than ragkiogi assumptions. The
results of our procedure lend support to the intuitive arguments put fgfth in

4. Experimental Classification Results

The previous section identified three clustéss QoS classes and features to build up
classification rules through unsupervised téag. In this section, the accuracy of the
classification rules is evaluated experimentally. For classification, we chose the K-nearest
neighbor (KNN) algorithm. Experimental rdsuare compared with the minimum mean
distance (MMD) classifier.

Several common algorithms to consider fosslfication include Bayesian decision theory,
K-nearest neighbor, linear discriminant analysis (LDA), support vector machines (SVM),
learning vector quantization (LVQ), and neunaktworks. We chose the KNN algorithm for
three reasons. First, KNN is generally very goo low-dimensional feature vectors. Second,
practical problems often have a low intrinsic dimensionality even though they may have much
input data. Third, accurate estimates for d¢timlal probabilities are unnecessary for accurate
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classification, thus the importance of dimensionality is reduced.

3 clusters

12.8

2.6

2.4

2.2

Fig. 3. Three clusters suggested from K-means clustering.

In the KNN algorithm, we first calculate the Euclidean distance of a new dataXgdmall
the training data point$X; —X; || (j=1K ,Ky), then theK nearest neighbors of; vote with

their class indexC and the clas€; with highest proportion is assigned to data poiptin
some respect, the KNN approach can \bewed as an approximation to Bayesian
classification.

Since KNN uses the Euclidean metric to meaglistances between vectors, the scaling of
variables is important. Generally, the way tomalize data is to scale all variables so the
variance of each variable equals one, but the nlyidg assumption is that the variables are
Gaussian. Since the three feature variableusesl in the classification are not Gaussian
distributed, we compared variance normalization with range normalization, which scales all
the variables to be within the range [0,1], by thassification error rates. Experimental results
showed that the two normalization metholksd to similar accuracy. The variance
normalization method has a slightly lower errate than the range normalization method.
Thus, variance normalization was used in the classifier.

The three feature vectors of the reference data set are sh&wn 4n The feature vectors
from different classes were significantly sepataWWe used the leave-one-out cross validation
method to test the validity of the classification algorithm. This method takeaining
samples, leaves the first sample for testimgj e remaining samples for training, and records
the classification result. The procedure iseaed until all the training samples have been
used as test samples once. The error rate is then calculated as the number of misclassifications
in the training samples divided hyWe observed that the total error rate is sufficiently low for
accurate classification.
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The three features used in the experimentre mean packet length per connection,
connection duration, and interarrival variabilitwith three QoS classes: transactional,
interactive, and bulk transfer. The 5NNgatithm was used for classification of all
connections in the four traffic tracdsg. 5, displays the classification error rates of the 5NN
classifier for the two normalization methods. Hadected application lists for each class and
the number of applications in each class are showialihe 1.
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The accuracy of the 5NN classifier was camgal to the minimum mean distance (MMD)
classifier. The MMD classifier tries to condense information stored in the training data to a
reduced set of statistics, for example, sheple mean of the training data. For classonly

the sample meap,, of the training data belonging to the class is recorded. A test samsple
classified to the clase; wheny,, is closest to it. However, since thg does not contain

the information about the spatial distribution of training samples, but covariance Eatrix
does, we use the normalized distante; ) Ejl(x—,uwi) , to measure the distance

between samples and cluster means. The misclassification rate for the MMD classifier was
found to be 7.26%, significantly worse than the 5NN classifier.

Table 1. Applications in each class

Class Applications Total number

Transactional 53/TCP, 13/TCP, 111/TCP,... 112
23/TCP, 21/TCP, 43/TCP, 513/TCP14/TCP, 540/TCP, 251/TCR, 77
1017/TCP, 1019/TCP, 1020/TCP, 1022/TCP,...

80/TCP, 20/TCP, 25/TCP, 70CP, 79/TCP, 81/TCP, 82/TCP,
83/TCP, 84/TCP, 119/T®; 210/TCP, 8080/TCP,...

Interactive

Bulk data 1351

5. Conclusions

Traffic classification was carried out in two phsisk the first off-line phase, we started with
no assumptions about traffic classes and tisedinsupervised SOM and K-means clustering
algorithms to find the structure in the traffic data. The data exploration procedure found three
clusters corresponding to three QoS classes:dctingal, interactive, and bulk data transfer.
This result lends experimental support to prevemgsiments for a similar set of traffic classes.

In addition, we found that the three most uséfatures among the candidate features were
mean packet length, connection ation, and interarrival variabilitylhis is not to say that the
discovered set of traffic classes is optimal ig aanse. The composition of Internet traffic is

constantly changing due to new applicationd Huctuations in the popularity of different
applications over time. It is necessary totaarally re-examine traffic. This is likely to
uncover new traffic classes.

In the second classification phase, the accuoétiye KNN classifier was evaluated for test
data. Leave-one-out cross-validation tests shaheaithis algorithm had a low error rate. The
KNN classifier was found to have an error ratatodut 2 percent for the test data, compared to

an error rate of 7 percent for a MMD classifier. KNN is one of the simplest classification
algorithms, but not necessarily the most accu@tker supervised algorithms, such as back
propagation (BP) and SVM, also have attracteagures and should be compared in future
work.
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