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Write Pattern Format Algorithm (WPFA) for

Reliable NAND-based SSDs
Quan Xu, Thomas M. Chen, Senior Member, IEEE, Yu-peng Hu, and Pu Gong

Abstract—This paper presents and evaluates a pre-coding algo-
rithm to reduce power consumption and improve data retention
in NAND-based solid-state drives (SSD). Compared to the state-
of-the-art asymmetric coding and stripe elimination algorithm
(SPEA), the proposed write pattern format algorithm (WPFA)
achieves better data retention while consuming less power. The
hardware for WPFA is simpler and requires less circuitry. The
performance of WPFA is evaluated by both computer simulations
and FPGA implementation.

Index Terms—Solid-state drive, reliability, NAND flash mem-
ory, power consumption.

I. INTRODUCTION

NAND flash memory is the most popular storage tech-

nology for solid-state drives due to its non-volatility,

lightweight package, and low-power consumption. Basically,

each NAND flash cell consists of a floating gate transistor

whose threshold voltage can be programmed by injecting

certain amounts of charge into the floating gate [? ]. For multi-

level cell (MLC) NAND flash, one memory cell generally

stores more than one bit belonging to different pages that

are sequentially programmed at different times. Considering

two-bit/cell MLC as an example, the cell threshold voltages,

denoted by Vth, are divided into four adjacent levels (L0 ↔

11, L1 ↔ 01, L2 ↔ 00, L3 ↔ 10) after the sequential

programming.

Loss or gain of charge occurring on the floating gate

over time will lead to bit flipping and consequently retention

failures. Experimental measurements have suggested that bit

flipping errors are not random but asymmetric; specifically,

only “0 → 1” errors occur in the lower pages and “1 → 0”

errors are dominant in the upper pages [? ]. Hence, in order to

reduce the retention error rate, it is useful to distribute more

1’s to lower pages while more 0’s to upper pages, in other

words, program most of the cells to states “11” and “01” and

fewer cells to “10.

Besides retention reliability, another practical problem is

the increasing power required for scaling to larger bit-line

capacitances. In SSDs, more power is being consumed to

charge or discharge the parasitic capacitance of the bit-lines

(BLs). The average current consumed during programming is

given by

Ipre = Cbl

∆V

Tpre

nbl (1)
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Fig. 1: Example of SPEA

where nbl the number of bit-lines charged in parallel; ∆V is

the change of bit-line voltage applied in a program operation;

Cbl is the capacitance; and Tpre is pre-charging time [? ].

If the programming data contains too many column stripe

patterns (CSPs), these bit-line capacitances will be charged

and discharged frequently during the programming, increasing

the current flow (and SSD power consumption) and possibly

leading to malfunctions [? ].

Several approaches have been proposed to address the

problems of data retention and power [? ? ? ? ? ]. Among

these, asymmetric coding and the stripe pattern elimination

algorithm (SPEA) proposed by Tanakamaru et al. [? ] have

been shown to perform well by processing data patterns. In the

first step, asymmetric coding calculates the number of 1’s in

the input data which is then used to determine whether the bits

within the unit are flipped or not. As a result, the distribution of

1’s becomes asymmetric, and the number of cells at high Vth

decreases. Secondly, SPEA calculates the difference between

the numbers of 1’s in even and odd columns of the original

data. If the difference is higher than a threshold value, bits

will be rearranged to eliminate the CSPs, which relieves the

power problem.

Even though asymmetric coding and SPEA improve SSD

performance considerably, their implementation is fairly com-

plex especially when the code length of SPEA increases.

Meanwhile, additional CSPs are introduced during the SPEA

processing which could cause power problems as well. Con-

sider the example shown in Fig. 1 where the threshold value,

denoted as NTH , is set to 4, and SPEA is applied since the

calculated difference is higher than NTH . After rearranging,

long CSPs can be observed in both even and odd bits of the

modified data. In this paper, our goal is an efficient solution
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Fig. 2: Proposed WPFA

to the problems above with low complexity implementation.

We first present a write pattern format algorithm (WPFA)

that carries out asymmetric processing and stripe elimination

simultaneously, which allows data patterns to be modified

only once before being fed to an error correction coding

(ECC) module. Here it should be noted that the advantages

of the solution comes at the cost of a small loss of perfor-

mance compared to asymmetric coding. WPFA will achieve

an improvement over the original SPEA approach by avoiding

the extra CSPs introduced in SPEA and reducing power

consumption. The hardware circuitry for WPFA is shown to

use fewer gates and registers, and improve system complexity

and latency. Simulation and implementation results show a

considerable reduction of both NAND cell overhead and

FPGA resource utilization. The trade-offs between complexity

and performance are analyzed quantitatively.

II. WRITE PATTERN FORMAT ALGORITHM

Fig. 2 illustrates an example of the proposed WPFA with

lower page input data. The presented solution has two primary

stages. The first stage modifies the program data to eliminate

the column stripe patterns; the secon stage increases the

number of 1’s. Note that the length of data processing unit

has been restricted to 2n with n = 2, 3, 4, 5, . . . (although

n = 2 is not practical). Initially, all bits of the data unit are

added together and the result is stored in an n-bit sum register.

For example, in Fig. 2, the length of data unit is 4 bits and the

width of the sum register is 2 bits. The flag in the figure is the

most significant bit (MSB) of the sum register which indicates

whether the majority of bits in the data unit are 0 or 1. WPFA

eliminates CSPs in the following way. If the flag equals 0, the

data unit is passed unmodified to the next processing stage,

such as “data unit 1” in Fig. 2. If the flag equals 1, a column

stripe sequence is added to the input data, and the modulo-2

result is taken as “first stage data”, in other words, half of

the input data will be flipped. In the example shown in Fig.

2, both “data unit 2” and “data unit 3” are half-flipped. As a

result of the first stage, a column stripe pattern (data unit 2)

has been eliminated.

To demonstrate the impossibility of extra CSPs, consider

two specific data patterns: all-zeros and all-ones as shown in

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

MSB 0 MSB 0

2-bit sum register 0 0
MSB

e.g. data unit length: 4

Do not flip

Fig. 3: Analysis of two specific data patterns

Fig. 3. Only these two types of patterns are possible to cause

extra CSPs if half-flipping operations are performed. Half-

flipping will not be performed for these two types of input

since the flag will be 0 in both cases (in the case of the all-

ones data pattern, the MSB of the sum register will be 0 due

to overflow). Without half flipping, these two types of input

will not create extra CSPs.

Concerning data retention, the worst case occurs if all of

the memory cells are programmed to the highest Vth level. To

avoid that, randomized interleaving may be used, in which the

probability of “10” and “00” is about 25% of the total data

on the condition that the output data is completely random.

In WPFA, retention reliability has been further improved by

increasing “1”- and “0”-data of lower and upper pages, respec-

tively. At the second stage, the flag (MSB of the sum register)

continues to be used for determining whether the “first stage

data” is flipped or not. If the flag equals 0, indicating that the

majority in the input data pattern are zeros, all bits of the “first

stage data” are flipped, such as the example of “data unit 1” in

Fig. 2. On the other hand, if the flag equals 1, the “first stage

data” will not be modified, as shown in the examples of “data

unit 2” and “data unit 3”. Consequently, the number of 1’s

in lower pages data increases. This part of WPFA is similar

to asymmetric coding; however, in the corresponding circuit,

as discussed in Section IV, the comparator and multiplexer

have been replaced with only XOR gates, thus resulting in

simpler circuitry. At the end of the algorithm, “second stage

data” together with flag bits are used to form the output. For

the data patterns processing of upper pages, the idea is the

same except the goal is to decrease the number of 1’s.

III. PERFORMANCE EVALUATION

This section presents simulation results of WPFA for com-

parison with randomized interleaving and Tanakamaru’s asym-

metric and SPEA approaches. In these simulations, the data

unit length of WPFA is set to be the same as asymmetric

coding for fair comparisons.

A. Maximum Length of Column Stripe Patterns

A figure of merit for energy savings is taken to be the

maximum length of column stripe patterns after processing.

Let M and N denote the code lengths of WPFA and SPEA,

respectively. According to Fig. 2, the maximum length of CSPs

for the proposed WPFA is M − 1, whereas that of SPEA
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is N/2 − NTH (based on Fig. 1). Since N >> M [? ],

the maximum length of CSPs has been substantially reduced

which suggests the memory system is better protected from

potential damage by current spikes.

B. Average Program Current

Apart from the maximum length of stripe patterns, the aver-

age program current is another performance metric for energy

saving. The bit-line capacitance of a NAND flash memory is

composed of the inter bit-line capacitance Cbl−bl and other

capacitances Cothers [? ]. In case that the program data of

the memory cell connected to the nth bit-line BLn is 1, BLn

will be pre-charged to Vcc, and therefore the program data

of memory cells connected to BLn−1 and BLn+1 determine

whether the inter bit-line capacitance is charged or not. If both

adjacent bit-lines, BLn−1 and BLn+1 are pre-charged to Vcc,

BLn will only charge Cothers because the effect of Cbl−bl will

have been eliminated. If both adjacent bit-lines are not pre-

charged, BLn will charge Cothers and two Cbl−bl because

BLn−1 and BLn+1 are biased to Vss (column stripe pattern).

In the last possible case, one of the adjacent bit-lines is pre-

charged to Vcc, in which case BLn charges Cothers and one

Cbl−bl.

Considering these three cases and assuming that charging

the bit-lines is the dominant component of the program

current, we can then calculate the average current per page-

programming according to Eq. (1). To this end, we built a

simulator based on 2 bits/cell MLC having the page length

of 8 KB and 256 pages per block. The simulator uses the

physical parameters of NAND flash memory presented by

Fukuda et al. [? ] where Cbl−bl and Cothers occupy 78%
and 22% of the total bit-line capacitance, respectively. We

assume 1 µs charging time and consider three memory systems

with random data input. SPEA and asymmetric coding are

employed in the first system while WPFA is employed in the

second one. The third system is used as a reference since it

does not use power saving scheme and employs asymmetric

coding only.

The average page-programming current is calculated when

16 blocks data are written to the memory systems. The reduced

program current over the reference system as the bit-line

capacitance increases is shown in Fig. 4. In this experiment,

the data unit length is set to 8 and NTH of SPEA is set to 6.

It has been observed that in terms of energy consumption,

the system employed with WPFA outperforms the system

employed with SPEA whose codeword is larger than 257 bits.

Since the large codeword is generally used in SPEA to reduce

flag overhead, WPFA will typically be advantageous.

C. Proportion of the Highest Vth State

To theoretically analyze the proportion of NAND cells on

the highest Vth state, it is necessary to derive the amount of

1’s in lower pages (or 0’s in upper pages) of programming

data, which is calculated in the following way.

All possible input patterns are divided into two groups: A

and B, by the MSB of the sum register, as shown in Fig. 5.

For group A with MSB=0, the second stage of the algorithm
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is performed and the number of 1’s (with flag bits) is given

by

NA
1 =

N−1X

k=0

Ck
2N (2N − k) (2)

where Ck
n is the binomial coefficient Ck

n = n!
k!(n−k)! . For group

B with MSB=1, the first stage of the algorithm is performed

and only half of the bits are flipped. It is not possible to exactly

determine the number of 1’s for each individual data pattern,

which is the reason it is not shown in Fig. 5. Nonetheless,

the total number of 1’s after processing can still be calculated

taking advantage of symmetry. If we think of the number of

1’s related to flags, the total number of 1’s in group B after

WPFA processing is expressed as

NB
1 =

2N−1X

k=N

Ck
2N (2N)−

1

2

2N−1X

k=N

Ck
2N (k) +

2N−1X

k=N

Ck
2N (3)

Since the total number of data patterns is 22N × (2N +1), the

probability of 1’s (P1) is calculated by dividing the number
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of 1’s in all data patterns with flag bits by 22N × (2N + 1),
which is

P1 =
NA

1 + NB
1

22N × (2N + 1)

=

2N−1P
k=N

Ck
2N (N + 1) +

N−1P
k=0

Ck
2N (2N − k)

22N × (2N + 1)

(4)

Note that for the flag bits, we could choose either 1 or 0 for

the specific group; however, setting the flag bits of group B

to be 1 can increase the probability of 1’s of the output bit

stream, and the condition is adverse for the upper pages.

In computer simulations, we measured the probability of 1’s

of lower pages data for both asymmetric and WPFA encoder,

as illustrated in Fig. 6. When the length of input data is large

enough, the simulated probability of 1’s for WPFA is fairly

close to its theoretical counterpart. Performance loss has been

observed in the proposed design comparing to asymmetric

coding because of the half-flip operations. At the unit length

of 24, this loss is about 5% in the target of 1’s probability.

However, the performance gap between these two schemes

gets smaller when the data unit length increases. In the design

of SSD systems, if we set the data unit length to be 24,

the WPFA will modify the data programmed to NAND so

that at least 55% of the lower and upper pages are 1’s and

0’s, respectively. As a result, the highest Vth state, “10”

occupies 20% of the total data, which has been reduced by

20% compared to randomized interleaving.

D. Overhead of NAND Cell Area

Due to the fact that extra flag bits have to be used for

SPEA while the proposed scheme shares only one flag bit for

both realizations, Tanakamaru’s design consumes more NAND

cell area. Fig. 7 depicts the reduced overhead of the system

employed with WPFA compared to three systems employed
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Fig. 8: Framework of coding mechanism in SSDs

with same asymmetric coding and different length of SPEA

codeword. It is seen that the reduced overhead increases with

data unit length and Tanakamaru’s design consumes even more

cell area when the codeword of SPEA gets shorter. For 256-bit

data unit and 1025-bit SPEA codeword, the extra cell area of

Tanakamaru’s design has been reduced as much as 20%.

IV. HARDWARE DESIGN AND IMPLEMENTATION

COMPLEXITY

In this section, we consider the logic circuits for the

proposed algorithm and propose several ways to reduce the

hardware complexity. Generally, WPFA will be implemented

together with the ECC module as part of the flash controller in

FPGA. The overall framework of FPGA-based flash controller

is shown in Fig. 8. Fig. 9 illustrates the circuit structure

for the WPFA of 16-bit data unit. Before write patterns

processing, the parallel 16-bit data and upper/lower-page select

signal (U/L) are generated from information bit stream by

the serial/parallel converter. The number of 1’s in the data

unit is then calculated with 16-bit adder circuit and the MSB

of the 4-bit sum register is used as the judge signal for the

subsequent computations. In the proposed circuit, comparators

and multiplexers have been replaced with simple XOR gates

to perform bit-flipping operations. The flag bit is created

through a series of logic operations over MSB and U/L. For

Tanakamaru’s design, upper page and lower page asymmetric

encoders are implemented with a separate circuit unit. These

two encoders for WPFA are integrated in a single circuit

which saves FPGA resources. Note that the U/L signal will
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TABLE I: Comparisons of FPGA Resource Utilization

Encoding Units ALUTs Registers Packed ALMs

Asymmetric (len = 16) 81 34 43

SPEA (len = 129, NTH = 6) 357 150 183

SPEA (len = 257,NTH = 6) 717 281 364

SPEA (len = 513, NTH = 6) 1432 540 727

SPEA (len = 1025, NTH = 6) 2828 1055 1433

WPFA (len = 16) 38 17 19

be correspondingly produced when the flash controller fetches

data from the memory array. Hence, in the decoding side,

the decoder circuit is easy to implement by performing XOR

operations over the input data, the flags and the U/L signal.

Due to the fully combinational circuits, the latency, circuit

area, and logic resources related to WPFA are small. To

quantitatively depict the complexity of each computation unit,

we used Verilog to model the proposed circuits. The encoding

units were synthesized with Synplify Pro and Altera EP2S180

FPGA according to area optimization. The adaptive look-up

tables (ALUTs) and logic registers utilized for each encoding

unit are listed in Table I. Results for Tanakamaru’s design

are included for comparison. In this experiment, the same

serial/parallel conversion circuits were assumed for either

design thus we only need to compare the complexity of the

computation units. As seen, WPFA requires much less logic

resources than that of asymmetric coding and SPEA, especially

when the code length of SPEA increases. Even compared to

the design employed with asymmetric coding only, WPFA still

shows lower complexity. The estimated adaptive logic modules

(ALMs) used for WPFA encoder is about 8% of the ALMs

consumed by Tanakamaru’s design for code length of 129 and

NTH of 6 for SPEA. The resource utilization of Tanakamaru’s

design should be double if considering both lower and upper

pages whereas that of the proposed design stays the same.

V. CONCLUSIONS

In this paper, we present a write pattern formatting algo-

rithm of low complexity to improve the data retention relia-

bility and power consumption of NAND flash based SSDs. The

proposed algorithm improves on the existing SPEA approach

to completely eliminate column stripe patterns. Furthermore,

simulation results show that the overhead for the proposed

algorithm is about 80% compared to SPEA using the same

parameters. Finally, hardware synthesized results over Altera

EP2S180 demonstrate that the implementation complexity of

the proposed scheme is much less than that of asymmetric

coding and SPEA.
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