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Abstract

The paper shows that bounded rationality, in the form of limited knowledge of util-

ity, is an explanation for common stylized facts of prospect theory like loss aversion,

status quo bias and non-linear probability weighting. Locally limited utility knowl-

edge is considered within a classical demand model framework, suggesting that costs

of inefficient search for optimal consumption will produce a value function that obeys

the loss aversion axiom of Tversky and Kahneman (1991). Moreover, since this ad-

justment happens over time, new predictions are made that explain why the status quo

bias is reinforced over time. This search can also describe the behavior of a consumer

facing an uncertain future wealth level. The search cost justifies non-linear forms of

probability weighting. The effects that have been observed in experiments will follow

as a consequence.

KEYWORDS: status quo bias, reference dependence, loss aversion, cost of choice,

search costs, probability weighting, transaction costs, bounded rationality.

JEL CLASSIFICATION: D03.

1 Introduction and Literature

Experimental evidence will often show that people are not entirely rational, at least accord-

ing to classical assumptions on what it means to be rational. By irrational, it is usually
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meant that we observe a person acting in what we believe is not her self-interest, implicitly

assuming what her self-interest is. In classical theory, it is not always possible to resolve

such contradictions by the usual methods: a better description of the environment, or a

more sophisticated description of the preferences of the person observed. This is important

because, however we might think of people, we do tend to consider the world as governed

by logically consistent rules, and this includes the world of human biology. So then why are

biological mechanisms creating a being that behaves irrationally? This question is central

to a more refined view of homo economicus, and the obvious answer is that perfect brains

are hard to grow. I approach behavioral economic questions from the point of view that

what we call irrational behavior fits into two categories: (a) classically rational behaviors

that are considered irrational only because the environment or preferences are not described

correctly, and (b) behaviors based on heuristics that are quasi-rational in the "average" en-

vironment, but which can lead to suboptimal choices in the setting observed. Heuristic

behaviors can be learned or hardwired, but they are fundamentally related to limitations

of reasoning capacities. The test of rationality, with its common meaning, is that every

behavior must make sense from an economic maximizing perspective if certain limitations

on reasoning abilities are assumed.

In many contexts, an individual’s choice is influenced by the status quo. This means

that choices are reference dependent. The seminal paper of Kahneman and Tversky (1979)

proposed "prospect theory," and a new direction of research developed, commingling theo-

retical economics and psychological research. This theory proposes ad hoc deviations from

expected utility theory, which are used to explain countless experimental observations that

are hard to account for in classical terms: all else being equal, gains are discounted more

than losses, small changes are discounted more than large changes, speed-ups in a sequence

of payments are preferred to delays, improving sequences of returns are preferred over de-

clining sequences (Loewenstein, 1988), gains with small odds are overweighted, and deci-

sions are biased towards certainty. Confirming evidence can be found in, e.g., Bateman et

al. (1997), who propose an experimental set-up to contrast the predictions of reference de-

pendent utilities with those of classic Hicksian theory. Many other papers study individual

deviations from classic theory, e.g. Thaler (1981), Loewenstein (1988), Loewenstein and

Sicherman (1991), etc.

In a more recent treatment, Tversky and Kahneman (1991) present a set of axioms that

are used to generalize the deterministic part of old prospect theory, to explain a large set of

experimental effects related to reference dependence. Let the choice set X = {x,y,z,r,s, ...}
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be isomorphic to R
2
+, and for x = (x1,x2), x1,x2 ≥ 0 are the consumption values of goods

1 and 2. If ≥r denotes the preference structure related to r, then:

(A0) ∀ r ∈ X : ≥r is complete, transitive and continuous; moreover

{x ≥r y ∧ x 6= y}⇒ x >r y .

(A1) ∀ r,s,x,y ∈ X : Let x1 ≥ r1 > s1 = y1, y2 > x2, and r2 = s2 . Then we have that

x =s y ⇒ x >r y .

(A2) ∀ t,s,x,y ∈ X : Let x1 > y1, y2 > x2, s2 = t2, y1 ≥ s1 ≥ t1 ∨ t1 ≥ s1 ≥ x1 . Then

x =s y ⇒ y ≥t x .

The indices can be reversed throughout, and the domain is 2–dimensional for simplicity.

Assumption A0 is the standard collection of axioms to insure that there exists a strictly

increasing continuous utility representation Ur for the preference structure ≥r given at the

reference point r. Classical theory follows if the subscript r is superfluous; i.e., if any refer-

ence would generate the same preferences. Assumption A1 is what recreates loss aversion.

It implies an asymmetry between gains and losses in terms of the absolute value of the

utility change. A2 is the diminishing sensitivity assumption. It says that the absolute value

of the change in utility is smaller if the consumption shift happens further from the origin,

all else being equal.

It is instructive to consider prospect theory in the one dimensional case, as formulated

by Kahneman and Tversky (1979). In the following, consider the reference to be at the

origin. The three assumptions for the value function over wealth changes, as expressed by

Bowman et al. (1999), are:

(P0) V(x) is continuous, strictly increasing, and V(0) = 0 .

(P1) Let y > x > 0. Then V(y)+V(−y)< V(x)+V(−x) .

(P2) V(x) is strictly concave for x > 0 and strictly convex for x < 0 .

The features of the value function implied by these assumptions can be easily seen in Figure

1, as given by Kahneman and Tversky (1979) or Tversky and Kahneman (1991). Assump-

tion P1 is the loss aversion assumption, and it implies that a shift from x > 0 to y > 0 in

wealth will produce a lower utility change than a shift from −x to −y, all in absolute value.

Assumption P2 is the diminishing sensitivity assumption, and it makes the impact of equal

changes of wealth decreasing in the distance to the origin, which is the reference point.
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Value

Gains

Figure 1: Value function over wealth changes.

This paper studies the impact of the inefficiency of adjustment to optimal consump-

tion because of search, in a classical setting and with bounded rationality. Search in the

consumption space is necessary since the consumer has incomplete knowledge of his pref-

erences, which will be the assumed limitation. The goal is to model the intuitive notion

that it would be hard for a consumer to compare wildly different lifestyles, and in practice

he will be more likely to consider small changes to his current consumption behavior. For-

mally, it is assumed that the consumer has only local knowledge of his utility, and he also

knows the rate at which his utility can be improved by marginal changes in his consumption

vector. An adjustment in consumption must happen every time there is a wealth shift or,

equivalently, a shift in the endowment with a certain good, which is the settings of most

experiments. It will be shown that, with relatively weak assumptions, slow or costly search

generates loss aversion, as formulated in assumption A1 in Tversky and Kahneman (1991),

or as given by P1 in Kahneman and Tversky (1979). The main idea is that finding optimal

consumption bundles is slow and therefore inefficient, and any shock to the wealth level or

to a consumption endowment requires a new optimization of consumption.

Utility losses appear because the allocation is suboptimal during search, and an alterna-

tive approach is to make search itself costly, either in terms of lost time, or directly. Both

positive and negative changes in wealth or endowment require reallocation, and this means

that lost utility will be magnified, while gained utility will be reduced. This effect is the

main feature of prospect theory – loss aversion: in absolute values, gains are valued less

that losses for equal changes in wealth of endowment. Moreover, the search process can

be considered in situations when the consumer faces shocks in wealth or endowment in the
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form of lotteries. A consumer with a heuristic decision making process that takes search

losses into account when planning future allocations will show effects like subcertainty,

the overweighting of small probabilities, and subadditivity of the probability weighting

function, which are described in Kahneman and Tverky (1979). An interesting observa-

tion leading to comparative statics can also be made. The concavity of the instantaneous

utility function, a classic assumption leading to risk aversion, can be shown to determine

how uncertain gains and losses influence the search process. As we would expect, a more

risk averse consumer in the classical sense will search towards lower cost allocations when

facing a lottery. We can conclude that a more risk averse consumer is also more pessimistic.

The idea of costly change is not completely new. Samuelson and Zeckhauser (1988)

mention that status quo bias could be generated by the cost of thinking, as well as by

transaction costs and other psychological effects. In this setting, adjustments are costly

because thinking about a better consumption decision leads to a utility loss over time and

in Appendix B a setting in which changing the consumption vector costs time is considered.

One important question for any new model is whether it offers testable implications.

Here, costly reallocation of resources happens over time. Having the incurred cost depend

on time suggests an experimental set-up in which the status quo can be cemented by letting

time pass before a new option is presented. The expected effect is that the more time

passes with a status quo, the more the loss aversion effect will be accentuated, thereby

providing an experimentally testable implication of the theory. There is already evidence

in support of this interpretation. In Strahilevitz and Loewenstein (1998), the authors look

in depth at the effect of the history of ownership on the valuation of an object. They find

that, in addition to an instantaneous effect, a longer history of ownership of an object will

also increase its valuation, thus the value lost in an exchange will be higher than the value

gained in the beginning. Another way of looking at this is to say that increased duration of

ownership will make the object more a part of the status quo, or more a part of his planned

consumption – having an object, or wealth level, for a longer period of time should make

it more "comfortable" for the consumer. This is similar to thinking of the status quo as a

plan, or an expectation for future consumption.

Other attempts have been made to place prospect theory within a framework of classi-

cal assumptions. The work of Kőszegi and Rabin (2006, 2009) develops a model for the

formation of the reference point, which is set as the probabilistic belief that the person held

in the recent past about the possible outcome. This set-up can be used to explain labora-

tory observations like the endowment effect from the more basic gain-loss bias. Because
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expectations determine the reference, the theory predicts that traders or merchants will not

be affected by the endowment effect, because their beliefs about future outcomes take into

account the fast shifts in the consumption vector. The idea is closely related in interpreta-

tion to the one in the present paper. A trader will not search for a new optimal consumption

bundle, given a shift in wealth or allocation, and this is because the trader will expect the

status quo to be temporary.

Another detailed attempt at explaining some parts of prospect theory in classic terms

is in the working paper of Rick Harbaugh (2009). The main idea is that winning or losing

gambles will signal the skill of the player. Thus, a gamble with some probability for loss,

given a perceived default payoff, will signal low skill, while a gamble with a probability

of win above the perceived default will signal high skill. Therefore the framing of a trade

matters, and loss aversion is the result of avoiding the loss of a gamble. Probability weight-

ing is another consequence, since a high gain with a small probability will also be a strong

signal for skill, while losing an almost-sure bet is a strong signal of lack of skill. This

approach is superior in explaining framing effects, but is not very useful in settings with

little uncertainty.

The paper has six sections. The second lays the theory used to model search, proposes

a general search mechanism in continuous time and proves central results. The third uses

the theory to justify loss aversion by inefficient allocation during search, and justifies the

loss aversion axiom A1. Section four looks at search when the consumer faces a lottery

shock to wealth and shows that risk aversion is related to pessimism in planning. Section

five considers a functional form example to show how observations related to the probabil-

ity weighting function of prospect theory can be recreated. The last section discusses an

experimental method that can be used to test the model for confirmation and to contrast its

implications to those of existing theory, and concludes. Appendix A develops the search

method and useful results, Appendix B constructs an alternative theory that models costly

search as lost utility from lost time, and Appendix C contains proofs.

2 Theory

Consider an individual with a rational, continuous and locally nonsatiated preference rela-

tion, in a deterministic continuous time setting. The consumer chooses between consump-

tion bundles x(t) = (x1(t), ...,xn(t)), based on his utility function U : Rn
+ → R, U(x(t)) =

U(x1(t), ...,xn(t)), which obeys the usual assumptions of strict quasiconcavity and conti-
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nuity. i ∈ {1, ..,n} indexes the goods in the consumption bundle, and t ∈ (0,∞) denotes

the time. The consumer starts with a consumption vector plan x(0) = (x1(0), ...,xn(0)),

and with lifetime wealth W (0). p = (p1, ..., pn) is a positive and constant market price

vector, known to the consumer, and β is the intertemporal discount factor. The discount-

ing formula is calibrated such that we can write equations with a familiar discount factor

β ∈ (0,1). For that, use equations like:

NPV (consumption x(t) between times τ1 and τ2) :=
lnβ

β −1

∫ τ2

τ1

et lnβ p · x(t)dt.

[

=
β τ1 −β τ2

1−β
p · x if, say, x(t) is constant

]

Say that x(0) is the optimal consumption vector for the instantaneous utility maximiza-

tion problem, given the budget p · x(0). An important question is if the consumer, starting

with total (lifetime) wealth W (0), is satisfied with continuing to consume x(0) in the future.

E.g., if β is a small number, it could be that the consumer would want to use his wealth

sooner. Optimal behavior depends on whether β is smaller or larger than 1/(1+ r), where

r is the real interest rate. The life-cycle model (Hall, 1978) argues that, in an economy

with many identical consumers, the two values are equal and the consumer uses a constant

fraction of his lifetime wealth each period. It is more complicated when we involve eco-

nomic growth or realistic behavioral models (Shefrin, 1988) and, in either case, consumer

heterogeneity would require a more general approach. However, to avoid unnecessary

complications, we assume that β = 1/(1+ r). To support the assumption, consider that

the average person, who faces the decisions that we consider on time scales significantly

shorter than his lifetime, would be well represented by a stable habitual consumption vec-

tor. The consumer will have access to simple banking, in which he can save his wealth

for later consumption. In Section 4 we’ll consider lotteries, so contingent claims cannot

be available, at least for the scope of the decisions considered, because our risk averse

consumer couldn’t distinguish between lotteries and their expected value.

Now, we deviate significantly from classical assumptions by limiting the knowledge of

our consumer. The only utility he can know is the utility at the point of his current chosen

consumption plan. He can consider changing his consumption x(0), and as soon as he

does, he can know his new utility level. The only information the consumer has, besides

x(0) and U(x(0)), is the rate at which utility can be increased on any of the dimensions,

∇U(x(0)). Therefore, the problem the consumer faces is similar to a simple optimization

problem in which we’re computationally limited to knowing only the linear approximation

of an unknown function. In addition, the utility of 0 consumption, U(0, ...,0) =: U , is also
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always known.

Assume that at the start the consumer has one bundle in mind, x(0), which is optimal.

The plan to consume it forever employs all the initial financial resources the consumer

has, W (0) = p · x(0)/(1−β ). The constant consumption decision is optimal. However, if

W (0) 6= p · x(0)/(1− β ), no change means that the consumer will either go bankrupt at

some point, or has unused resources.

The consumer’s rational behavior is limited by the local nature of the knowledge of

his preferences. From his initial choice x(0), he has the opportunity to search for lifetime

utility improvements by small changes. The search method utilized is steepest descent in

its continuous time limit. Appendix A describes it and some of the results in more detail.

This means that x(t) will change along ∇U(x), where U(x) is the objective function. Let’s

assume the consumer starts at the optimum, and there is a t = 0 wealth shock such that

W (0) > p · x(0)/(1−β ). He suddenly has access to more wealth than before, so the plan

of consuming x(t) = x(0) forever is suboptimal. It then makes sense to look for a new long

run optimal allocation that employs more wealth, which is a step in his search process. If

the search would converge instantly, we would need to consider only a simple constrained

optimization problem:

max
x

U(x), s.t.
p · x

1−β
≤W. (1)

If the initial shock in wealth is such that W (0)< p · x(0)/(1−β ), the initial consump-

tion plan is that the consumer will have x(0) for as long as his wealth W (0) will cover,

and then switch to the utility level of no consumption expenditure, U . As long as the

marginal utility gain from spending is higher at (0, ...,0) than at any x 6= (0, ...,0), the ini-

tial consumption plan is suboptimal, which means that the consumer will want to search

for allocations of lower utility in the beginning, and postpone the moment when he runs

out of wealth. With instant search, the problem he solves is the following:

max
x

U(x)
∫ τ(x)

0
β tdt +U

∫ ∞

τ(x)
β tdt, s.t.

1−β τ(x)

1−β
p · x ≤W. (2)

τ is the moment in time when the consumer switches from consumption bundle x to 0.

The lifetime budget constraint will bind, so x determines τ , because the consumer will stop

x only because he’s out of resources. In the continuous time version of the maximization

problem, it doesn’t matter how low the value W (0) becomes, since there is a small enough

duration τ for which the wealth W will be sufficient to consume the initial allocation x(0).

Now let’s consider how the search works when the convergence towards the optimum is

not instant. The main problem is that, as search proceeds, the wealth level will also change
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according to the spending on intermediate points, which changes the objective function for

the future. This means that, in choosing the next step in the search, the consumer has to

also consider the effect of the search step on the future-self’s search process. Fortunately,

the consumer has only local knowledge of his utility, which greatly simplifies the problem.

The next step depends only on the momentary knowledge and wealth level.

A way to formally state the consumer’s bounded rationality constraint is to have his

prior on U(x) as:

U(x) =



















U(x(0))+∇U(x(0)) · (x− x(0)), x ∈B(x(0),ε|∇U(x(0))|),

U , x ∈ R
n
+/B(x(0),ε|∇U(x(0))|),

(3)

for some small ε . If the search step takes time δτ , then ε|∇U(x(0))|/δτ is the rate of

movement in the search process, assumed constant. Rather than interpreting this as bad a

priori knowledge, we can think of it as the consumer strongly disliking changes larger than

ε|∇U(x(0))| in his consumption bundle because, say, he doesn’t have any certainty on his

utility if he moves too fast and without a clear indication of improvement, |∇U(x(0))|.

Proposition 1. Assume that the boundedly rational consumer knows only his current con-

sumption vector, his current utility level and gradient, as well as the utility of no con-

sumption. Given a line search method for the maximum, at any point in time the optimal

next step is given by the method applied to problems (1) or (2), where x is the momentary

consumption vector and W is the momentary wealth level.

For proofs, see Appendix C. The entire search process is simply the successions of search

steps described in the proposition.

At any point, the search direction depends only on the current consumption x, the di-

rection of the gradient ∇U(x) and the price vector p.

Proposition 2. If the lifetime budget constraint doesn’t bind and doesn’t hold with equality,

the search moves in the direction of ∇U(x). If the constraint binds, the search moves in the

direction ∇U(x)+ [U(x)−U ] · −p
p·x .

When the lifetime budget constraint doesn’t bind, search moves in the direction ∇U(x),

towards higher spending allocations. It’s interesting to consider whether the direction of

search when the lifetime budget constraint binds is towards lower spending per period.
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Proposition 3. Let the utility function U(x) be strictly concave. When the lifetime budget

constraint binds, the consumer searches towards allocations with lower spending. If the

constraint doesn’t bind, but holds with equality, the direction of movement is along the

budget constraint.

An important question is why we need to introduce concavity to generate the result. Intu-

itively, the corollary proves a smoothing result. When the consumer has less wealth than

it would be needed to sustain the level of consumption x forever, consumption smoothing

implies that he will look for a cheaper allocation, and we know that smoothing requires

assumptions on the intertemporal utility trade-off, or simply that the one-period utility is

concave. Therefore, the search steps have to be towards lower allocations only if we have

come kind of concavity generating risk aversion. Strict concavity is not be the weakest

condition required, but it is sufficient.

x1

x2

x(0) x∗

x∗

Figure 2: A search path in 2 dimensions.

For each step in the search algorithm proposed, we have a marginal change in the con-

sumption bundle x, and a change in lifetime wealth remaining. Lifetime wealth is reduced

by the instantaneous consumption and increased by interest:

W ′(t) = (− lnβ )

[

−
p · x(t)

1−β
+W (t)

]

. (4)

The intermediate allocations generate a path x(t) in the allocation space, and the lifetime

wealths a function W (t). The last important question left is whether the search method

proposed reaches a new optimum, i.e., if x(t) given by the algorithm proposed will converge

to a point x∗ and W (t) to W ∗, where W ∗ = p · x∗/(1−β ).

10



Proposition 4. Let the search process be a continuous steepest descent algorithm, where

the wealth bound is updated after each step. If U(x) is strictly concave, the search for the

optimal allocation and wealth converges, and the limit wealth is exactly enough to sustain

the limit allocation forever.

Because the focus is explaining observations in experimental conditions, we can ignore

the cases where the the consumer goes bankrupt before he reaches a new optimal alloca-

tion. It is also conceivable that wealth is so large that search won’t stop and spending per

time can increase forever, because of interest. While this can be sensible for some con-

sumers, we ignore it and focus on the cases with convergence. It is also intuitive that these

circumstances are likelier to happen if the search is slow.

3 Implications of Slow Search

In this section, we show how a loss aversion effect can form from a slow adjustment of the

consumption bundle.

3.1 Efficiency Loss in Search

First, let’s look at the consumer’s lifetime utility change from a wealth shock, as the search

rate is increased or decreased. For that, we compare with a situation with instant search

and one with no search. Consider a sudden change in wealth ∆W at t = 0. Assume that

the optimum consumption level reached with instant search gives instantaneous utility OU .

The lifetime utility gain from ∆W > 0 after instant search is OU −U(x(0))/(1− β ). If

there is no search, or the search is very slow, the gain in lifetime utility is 0. Slow search

gives an intermediate lifetime utility gain:

lnβ

β −1

∫ ∞

0
[U(x(t))−U(x(0))]β tdt ∈

(

0,
OU −U(x(0))

1−β

)

.

If ∆W < 0, the lifetime utility loss after instant search is
U(x(0))−OU

1−β
, while with no

search, the utility loss is

U(x(0))

1−β
−

lnβ

β −1

[

∫ ∞

0
[U(x(t))−U(x(0))]β tdt +

∫ ∞

0
Uβ tdt

]

=

=
U(x(0))−U

1−β

∆W

W
.
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t

U(x(0))

OU

U(x∗)
U(x(t))

Figure 3: Instantaneous utility after ∆W > 0.

t

OU

U(x(0))

U(x∗)
U(x(t))

Figure 4: Instantaneous utility after ∆W < 0.

This time, slow search gives an intermediate lifetime utility loss:

lnβ

β −1

∫ ∞

0
[U(x(0))−U(x(t))]β tdt ∈

(

U(x(0))−OU

1−β
,
U(x(0))−U

1−β
·

∆W

W

)

.

Now plot the lifetime utility changes, as a function of ∆W . The ranges obtained show that

the change in utility has the properties highlighted in Figure 1. Lifetime utility is lost for a

wealth shock ∆W because of the inefficiency of the allocation during search. This way the

utility of a gain is decreased while the dis-utility of a loss is magnified, creating an effect

of loss aversion.

In Figure 5, both the upper and the lower bounds on the lifetime utility change can

be reached, depending on the speed of the search process. We have normalized
(

OU −

U(x(0))
)

/(1−β ) to linearity for exposition. The usual concave shape supports the same

conclusion. Observe that we cannot say if the derivative of the lifetime utility function has

a discontinuity at 0, which is usually assumed for the value function in prospect theory. If
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the cost function is assumed ad hoc, we only need for a kink that its relative size doesn’t

go to 0 as the change ∆W goes to 0. Here, we have modeled the cost as lost efficiency

of allocations with concave utilities. Small shocks to wealth will lead to quadratically

decreasing efficiency losses, since the utility function is locally flat. However, we focus on

heuristic decision making, so it is plausible that experiments with small shocks will induce

behavior that is optimal for important (large) shocks. It can also be that small decisions

introduce direct time costs or other effects, leading again to status quo bias and relatively

high change costs.

OU−U(x(0))
1−β

∆W
W

· U(x(0))−U

1−β

∆W

Figure 5: Lifetime utility change ranges.

3.2 Costly Adjustments

Search for consumption leads to inefficiency, or is costly in some other way. For example,

in Appendix B, a different set-up introduces cost as lost time. It is not necessary to propose

any specific search mechanism to make this point. Costly search will generate a reference

dependent value function that obeys the loss aversion axiom. To consider the payoff of a

new wealth level or endowment vector, the consumer will heuristically estimate the cost of

switching to it. For this section, we only need to assume a cost function, C : R+ → R+,

that is differentiable and strictly increasing, with C(0) = 0 and C′(l)> 0 for l > 0.

For any value function U : Rn
+ → R which describes the consumer’s choices absent

search, define the reference dependent utility over consumption changes v from the refer-

ence r, Vr(v) :=U(r+v)−U(r)−C (||v||), for all possible reference consumptions. ||·|| can

be almost any p-norm, e.g., the euclidean distance, or, in light of our previous discussion,
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the seminorm that gives the money value of the change, |p · v|. The following proposition

verifies that this reference dependent utility satisfies the loss aversion assumption A1.

Proposition 5. Let C : R+ → R+ be differentiable, with C(0) = 0 and C′(l) > 0 for all

l > 0, and let U(x) : Rn
+ →R of class C1, strictly quasiconcave. Define Vr(x− r) :=U(x)−

U(r)−C (||x− r||), for any r ∈ R
n
+, where the norm is any d-norm ||·||d , 1 ≤ d < ∞, or the

seminorm |p ·(x−r)|. Then the preference structure given by Vr(x−r) satisfies assumption

A1, for any pair of indices i 6= j.

The status quo has increased value because the search cost is sunk cost. Loss aversion

also implies status quo bias, so costly search will generate the two experimental effects.

4 Searching with Lotteries

Slow search has other implications, besides loss aversion, that relate to prospect theory.

In this section we consider how the consumer, given his limited knowledge, will evaluate

lotteries. We will assume that he is an expected utility maximizer, and that he knows

the probabilities of an uncertain event which will change his lifetime wealth level. For

simplicity, we assume that the lottery is resolved after his initial search has enough time

to converge. This is relevant for many practical situations in which the risk is evaluated,

because uncertainties rarely have immediate resolutions. It is intuitive that his heuristic

decision making will also apply in decisions that involve lotteries that are resolved instantly.

The next question is if we can describe the path of the allocation x(t) when the con-

sumer faces an initial lottery. Let the consumer start from an optimal initial point x(0),

and consider a shock to wealth in the form of a lottery, (α,W1(0);1−α,W2(0)), where

W1(0)< p ·x(0)/(1−β )<W2(0). Wj(0) is the lifetime wealth if contingency j is realized.

As the consumer spends p · x(t) per unit of time, we know that Wj(t) will also change,

but the interpretation is the same. Because the initial point is optimal, we must have that

p||∇U(x(0)). Then, using the general result from Proposition 6, ∃αc ∈ (0,1) such that

1−αc

1−β
∇U(x(0))+

αcW1

p · x(0)

[

∇U(x(0))− (U(x(0))−U)
p

p · x(0)

]

= 0,

because we know that ∇U(x(0)) and ∇U(x(0))−(U(x(0))−U)p/p ·x(0) are vectors point-

ing in opposite directions. In this case, the odds of the gamble are such that there is no need

to search for a better allocation, momentarily. However, we know that

W ′
1(0) = (− lnβ )

[

−
p · x(0)

1−β
+W1(0)

]

< 0.
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This will reduce the effect of the low wealth outcome on the direction of search, so the

gradient of the objective changes and we start moving towards higher cost allocations. If

the probability of the low wealth event α < αc, the search is going to move towards higher

spending allocations, and vice versa. The following result gives the search direction at any

point for a general lottery function, assuming that all p ·x/(1−β )≤Wj either bind or don’t

hold with equality.

Proposition 6. Let the consumer have current consumption choice x, and say that he faces

a lottery (α1,W1; ...;αl,Wl), expressed in terms of the lifetime wealths for each contingency.

Let W1 ≤ ... ≤Wk < p · x/(1−β ) <Wk+1 ≤ ... ≤Wl , and α1 + ...+αl = 1. The direction

of his search will be given by

αk+1 + ...+αl

1−β
∇U(x)+

α1W1 + ...+αkWk

p · x

[

∇U(x)− (U(x)−U)
p

p · x

]

.

Consider the simple lottery again. It cannot be that searching stops at any x∗ such

that W1(t) < W ∗ := p · x∗/(1−β ) < W2(t). That is because W1(t) will be decreasing, and

the gradient of the objective function will start pointing towards higher cost allocations.

However, without more assumptions on the shape of U(x), we cannot say how the two

"forces" will balance out as consumption changes. It is sensible that, if U(x) is sufficiently

concave, the bundle x(t) can stay somewhere such that the spending rate will not converge

towards any Wj(t). As before, it is also possible that the search will not converge because

the values Wj(t) are also changing very fast, but we ignore such unusual behavior assuming

that the search is fast enough.

The following result gives us convergence for simple lotteries and U(x) that is not very

concave, or equivalently for small enough lottery payoffs. Under the conditions of the

proposition, the movement is towards higher cost consumption for small α , or lower cost

for large α .

Proposition 7. If the consumer faces a lottery in the distant future (α,W1;1−α,W2), with

W1 < p ·x(0)/(1−β )<W2, and the instantaneous utility function has 0 ≻ ∇2U(x)�−MI,

then for any subdomain D ∈ R
n
+, ∃ 0 < αl < αh < 1 for M small enough such that for α ∈

(0,αl]∪ [αh,1) the search converges, x(t)→ x∗, and W ∗ =W1(t) for α ≤ αh, W ∗ =W1(t)

for α ≥ αh, where W ∗ := p · x∗/(1−β ), and Wj is the lifetime utility for outcome j.

For α >αh, the consumer behaves as if "planing" for the worse outcome, and will reach

a point x∗ which can be consumed without bankruptcy if the worse outcome happens. For
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α < αl , the consumer behaves as if he’s ignoring the worse outcome, and reaches a point

where he consumes at a rate that is sustainable only with the high wealth outcome. We will

say that the consumer plans for a certain outcome if his search is dominated by it, leading

him to incur the cost of switching his consumption to match the outcome’s lifetime wealth.

For α ∈ (αl,αh), it is possible that the search will never converge. When the lottery will

be resolved, the consumer will have a consumption that is in between what can be afforded

under the two wealth outcomes. This behavior is suggestive of hedging. Searching for an

optimal allocation leads to utility loss for the initial search, as well as in the future, if the

lottery will be resolved opposite to the plan. The behavior suggests a bias towards certainty,

since more certain outcomes are less likely to lead to future search costs.

We see here a behavior that suggests the consumer heads towards a discounted con-

sumption level approximated by the expectation of the lottery faced. This is reminiscent

of the work of Kőszegi and Rabin (2006), which assume that "the reference point is fully

determined by the expectations a person held in the recent past."

We can make another interesting observation leading to comparative statics. Propo-

sitions 6, 7 show that planning is influenced by the concavity of the instantaneous util-

ity function. All else being equal, at any point the consumer is more likely to plan for

the worse outcome if his instantaneous utility function is more concave, i.e., if |∇U(x)−

(U(x)−U)p/(p · x)| is higher. This confirms a classic assumption: a consumer that will

be more likely to plan for the worse outcome, i.e., more pessimistic, is a consumer with a

more concave utility function, so more risk averse. Also note that, in the limit of no con-

cavity of U(x), |∇U(x)− (U(x)−U)p/(p · x)| → 0 (Proposition 3), and the consumer will

act in such a way as to make sure he consumes all possible resources if the high wealth

contingency is realized. Low concavity leads to a behavior suggestive of optimism.

Corollary 8. Let Ua(x), Ub(x) be two instantaneous utility functions for consumers a

and b, which have current consumptions x0. If ∇Ua(x0) = ∇Ub(x0) and 0 ≻ ∇2Ua(x) ≻

∇2Ub(x) for all x, then consumer a will increase his spending more than consumer b.

5 Evaluating Lotteries

In this section we will assume that the consumer incurs search costs according to C(·), and

that he always plans for the likeliest outcome when facing a lifetime wealth shock in the

form of a lottery. We want to see what experimental evidence summarized by prospect the-

ory can be explained this way. To keep things simpler, we’ll assume a high intertemporal
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discount factor β , so that the utility cost of a future consumption adjustment is approx-

imately the same as the cost of a current adjustment. For evaluating specific numerical

lotteries, we pick the examples in Kahneman and Tversky (1979), and we use specific

examples of utility and cost functions over wealth changes.

Let Vr(∆W ) :=U(∆W )−C(|∆W |) be our reference dependent value function for changes

∆W . U(∆W ) is the lifetime utility gain from ∆W without any search costs. We make the

usual concavity assumption for it. Furthermore, assume C(|∆W |)/|U(∆W )| is decreasing

when |∆W | grows. This means that the relative utility cost of search is smaller for higher

wealth changes. In our discussion of search, the loss was created by the inefficient alloca-

tion of resources.

First, let’s consider the following example for a value function, Vr(∆W ), where

U(∆W ) :=
∆W

105
−

1

5

(

∆W

105

)2

, C(|∆W |) :=
1

2
ln

(

1+
|∆W |

105

)

.

The utility gain with no search is a quadratic approximation, and the cost function is much

more concave than the quadratic, so that search costs become relatively less significant for

large shocks in wealth. There is a 1/2 factor in front, so that the cost isn’t overwhelming

for small |∆W |.

The Allais paradox, as presented by Kahneman and Tversky (1979), is that in experi-

ments gamble B is preferred to gamble A, and C to D, by a large majority of subjects:

A : 2,500 with probability 0.33, B : 2,400 with certainty,

2.400 with probability 0.66,

0 with probability 0.01,

C : 2,500 with probability 0.33, D : 2,400 with probability 0.34,

0 with probability 0.67, 0 with probability 0.66.

This means that a number of subjects make decisions that violate the substitution axiom.

This result is interpreted to imply subcertainty for the probability weighting function in

prospect theory, i.e, π(p)+π(1− p)< 1 for p∈ (0,1). However, if we evaluate the lotteries

with our value function example:
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Vr(”A”) = U(2400) ·0.66+U(2500) ·0.33−C(2400)−C(100) ·0.33−C(2400) ·0.01 = 0.01183,

Vr(”B”) = U(2400)−C(2400) = 0.01202,

Vr(”C”) = (U(2500)−C(2500)) ·0.33 = 0.004134,

Vr(”D”) = (U(2400)−C(2400)) ·0.34 = 0.004089.

Lottery A leads to a lower gain than B. Although the expected value of U is higher for A,

the small possibility of a loss increases search costs. C has a higher gain than D, which

comes from the higher expected U gain, since search costs are similar.

A similar story can justify the subadditivity property in probability waiting (Kahneman

and Tversky, 1979). Lottery F is experimentally preferred to E, and G to H:

E : 3,000 with probability 0.002, F : 6,000 with probability 0.001,

0 with probability 0.998, 0 with probability 0.999,

G : −3,000 with probability 0.002, H : −6,000 with probability 0.001,

0 with probability 0.998, 0 with probability 0.999.

Vr(”E”) = (U(3000)−C(3000)) ·0.002 = 0.00003008,

Vr(”F”) = (U(6000)−C(6000)) ·0.001 = 0.00003015,

Vr(”G”) = (U(−3000)−C(3000)) ·0.002 =−0.00008992,

Vr(”H”) = (U(−6000)−C(6000)) ·0.001 =−0.00008985.

Finally, consider the effect of small probability overweighting, π(p) > p, for small p.

In the following, I is preferred to J, and L to K in experiments:

I : 5,000 with probability 0.001, J : 5 with certainty,

0 with probability 0.999,

K : −5,000 with probability 0.001, L : −5 with certainty.

0 with probability 0.999,
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Vr(”I”) = (U(5000)−C(5000)) ·0.001 = 0.00002510,

Vr(”J”) = U(5)−C(5) = 0.00002500,

Vr(”K”) = (U(−5000)−C(5000)) ·0.001 =−0.00007490,

Vr(”L”) = U(−5)−C(5) =−0.00007500.

When comparing lotteries I and J, the cost of search is much less relative to the change in

utility for the high wealth shock, and with our functions this effects overcomes the utility

concavity effect. Subproportionality, which is defined as

π(pq)

π(p)
≤

π(pqr)

π(pr)
,

for 0 < p,q,r ≤ 1, is also partially supported. Our example function has reproduced the

experimental observations that justify the shape of the probability weighting function in

prospect theory.

6 Discussion and Conclusion

We have proposed a behavioral model of consumer optimization which leads to inefficient

search for optimal allocations. We have modeled the utility losses as an effect of search,

once the consumer is faced with a shock to wealth or endowment. This cost can justify loss

aversion as observed in experiments. A reference dependent value function that incorpo-

rates a cost of search satisfies the loss aversion axiom of Tversky and Kahneman (1991),

and the equivalent loss aversion assumption of prospect theory in Kahneman and Tversky

(1979). After a lottery shock, the consumer will plan for the likelier outcome, and this

will lead to observed features of the probability weighting function in prospect theory. In

addition, new predictions can be derived, which can serve to contrast this theoretical set-

up from other models. For once, the issue of time in the setting of the reference point is

crucial. An experiment that looks at the strength of the deviations from classical Hicksian

demand in terms of the historical duration of a status quo, and tries to separate this effect

from other potentially valid ones, can be used to confirm.

There is important supporting evidence for the effect of time on loss aversion in the

experimental work of Strahilevitz and Loewenstein (1998). In four related studies, the au-

thors try to separate the effect of ownership history and conclude that, in addition to an

endowment effect component that seems to set in almost instantly, the duration of owner-

ship will also increase the valuation of a given object. In the present framework, the two
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components of this effect can be explained. The initial effect, which sets in almost immedi-

ately, is the reflection of the fact that only a small investment in looking for the optimum at

the beginning can have a large effect. Because the rate at which the optimum is approached

decreases to zero, we must have an efficiency gain that comes only after a while, as the

optimum is approached asymptotically. This gives the later duration-dependent component

that the authors observe.

To support the theory, a mechanism that generates costly search is constructed, with

some basic assumptions about an individual’s search behavior. The search mechanism is

proposed to be the heuristic equivalent of steepest descent, which is an intuitive solution

in convex maximization problems. The individual is said to behave as if he would be

performing such an algorithm, starting from an initial condition – here the status quo. This

is a bounded rationality setting, where the limitation is that individuals have no a priori

knowledge of utility values for consumption bundles they do not hold, unless they choose

them during search.

The theoretical work of Kőszegi and Rabin (2006, 2009) is further suggesting of the

importance of beliefs about future realizations on the choice of status quo. If beliefs on the

future are important, then it’s not a great leap to assume that planning is important. One of

the explanations provided by their model – that traders and merchants are not influenced by

the endowment effect because they don’t hold updated beliefs based on the market traffic

– is also paralleled by an explanation within the framework of the current paper: an agent

who doesn’t expect to hold on to some bundle of goods will not try to find an optimal level

of consumption after every trade. Furthermore, the later explanation has the advantage

that it replaces an ad hoc assumption – expectation as status quo – with an underlining

mechanism.

A valuable extension to the current work would be to distinguish which features of a

reduced functional form for the consumer’s value function, together with search planning,

are crucial for recreating subcertainty, the overweighting of small probabilities, and subad-

ditivity, effects which justify the probability weighting function of prospect theory.

Appendix A: The Search Method

In order to link search to consumption choice, a model of search is proposed in this section.

The theory sections in Appendix B uses an assumption that can give the time rate of the
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improvement,

‖x(t)− x∗‖= e−tr‖x(0)− x∗‖⇔ (‖x(t)− x∗‖)′(t) =−r · ‖x(t)− x∗‖. (5)

In this section, steepest descent is proposed and discussed, but such a result can be achieved

by more than one mechanism. For now, let’s consider search in discrete time. If f (x) is C 1,

bounded from above, the domain is bounded, and the gradient is Lipschitz continuous with

some constant N, we know that the steepest descent algorithm will converge for step sizes

0 < ε < 1/N (Ruszczyński, 5.3.2, 2006). Maximum lifetime utility is bounded from above

in our set-up, since we always assume that lifetime wealth is bounded in every contingency,

and by the same argument so is the domain of search. A stronger result can be obtained

with more assumptions on f (x).

Proposition 9. Let f (x) be a twice continuously differentiable function over consumption x,

which does not include a measure of time. It is assumed that −mI � ∇2 f (x)�−MI, ∀x ∈

D, the domain, and 0 < m ≤ M. Furthermore D is convex. (This implies that the Hessian

is negative definite on the domain D, ∇2 f (x) � 0.) A unique maximum x∗ ∈ D must exist,

which is assumed to be an interior point. The search generated by the steepest descent

algorithm, starting from x0 given, with a step length ε ∈ (0,2/M), generates a sequence

{xt}→ x∗, and the following results hold:

(a) ‖xt − x∗‖ ≤ q t‖x0 − x∗‖,

(b) f (x∗)− f (xt)≤
M

m
qmax2t [ f (x∗)− f (x0)],

where qmax := max[|1− εm|, |1− εM|]< 1.

When ‖xt+1−x∗‖/‖xt −x∗‖= const. < 1, the search is said to converge Q-linearly. For

specially constructed f , we can get near the upper bound in the limit, so the upper bound

cannot be improved (Cartis et al., 2009). As for a lower bound on the search convergence

rate, it is obvious that, given the search process, a step length and a starting point, specific

examples can be constructed such that the first steps will coincide with a maximum. But

we can try to consider how fast the search method works for generic quadratic examples,

which will approximate well any f with −mI � ∇2 f (x) � −MI, locally. For quadratics,

Akaike (1959) shows that the steepest descent method with directional minimization, which

is superior to constant step length, will statistically converge only Q-linearly, unless the first

search direction happens to be an eigenvalue of the Hessian. This confirms the observation

that in practical use steepest descent is not better than Q-linear. To show that the search
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speed is limited to Q-linear, we consider steepest descent with constant step length in the

best case scenario: where f (x) is quadratic and the initial search direction is an eigenvector

of ∇2 f (x).

Proposition 10. Consider a quadratic f (x) with non-degenerate Hessian −mI � ∇2 f �

−MI, optimized by steepest descent with constant step length ε ∈ (0,2/M). Let x0 be the

starting point, and ∇ f (x0) an eigenvector of ∇2 f (x0). Then the search method will proceed

only along the direction of ∇ f (x0), and the following hold:

(a) ‖xt − x∗‖ ≥ qmin t‖x0 − x∗‖,

(b) f (x∗)− f (xt)≥
m

M
qmin2t [ f (x∗)− f (x0)],

where qmin := min{|1− εm|, ..., |1− εM|}< 1.

We can conclude that generally our search process has a Q− linear convergence speed.

Now we consider what happens in the continuous time limit to the search process.

Lemma 11. Consider the steepest descent search with step length inversely proportional

to the time interval, and the familiar assumptions on f (x). In the continuous time limit, the

upper and lower bounds on the convergence of the objective function and the argument are

exponentials, and the search converges Q-linearly to the optimum.

We have assumed the step length to be inversely proportional to the time of one search

iteration. In terms of computational costs, the step length doesn’t make a difference. We

can, however, justify it with economic intuition, assuming that larger consumption changes

take more time. The assumption is needed because we want to consider a continuous

time description of individual consumption, even if the search behavior is essentially dis-

crete. Another way to view x(t) is as a continuous approximation of a messy, discrete

consumption pattern, in the same way classic period by period aggregation is a discrete

approximation. Then the continuous steepest descent is an approximation of a real discrete

process.

From Lemma 11, assumption (5) holds if we take r to satisfy the upper and lower

convergence speed bounds. Since we derive stylized results, we only need that the search

process converges Q-linearly in Appendix B.

Appendix B: Alternate Theoretical Set-up

Consider an individual with a rational, continuous and locally nonsatiated preference rela-

tion, implying some utility function U : Rn+1
+ →R, who is making a one-time consumption
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decision over bundles (x1, ...,xn, t) = (x, t), where the last component represents time, or

leisure. Furthermore, U is strictly quasiconcave and of class C1. Assume that his utility

is additively separable in time: U(x, t) = U(x)+T (t). It must follow that U ∈ C1, strictly

quasiconcave. The consumption vectors x = (x1, ...,xn) are expressed in units of money for

simplicity, so the price is normalized to (1, ...,1). Leisure and every good will optimally be

consumed in some amount because:

T ′(t)
t→0
−−→ ∞; ∀i : ∀v1, ...,vi−1,vi+1, ...,vn :

∂U(v1, ...,vi−1,xi,vi+1, ...,vn)

∂xi

xi→0
−−−→ ∞ .

So, for simplicity, the solution to the classical utility maximization problem is an interior

solution for nonzero wealth. Because total utility is additively separable, the individual

solves a classical utility maximization problem if the leisure consumption is fixed:

argmax
x

U(x) s.t.
n

∑
i=1

xi ≤ B, B ≥ 0. (6)

Let δ (r,x)≡ ∑i (ri − xi) be the wealth shift measure in units of money from the initial value

B(r)≡ ∑i ri, given some change in endowment r → x. In general, x will be suboptimal for

the wealth value B+ δ . Let ∆(x,x∗) ≡ ‖x− x∗‖ be the distance in consumption bundle

space to the new optimum x∗(δ ) that solves (6) for B+δ .

Given any deviation from the reference point, the individual will incur a cost over time

at a constant rate while adjusting to the new optimal consumption allocation. To be spe-

cific, begin by setting x(t) as the temporary consumption decision at search time t. In the

following, the setting is deterministic and the search path x(t) is continuous. Search starts

at t = 0 and will continue if the payoff from reaching a more efficient allocation offsets the

cost incurred. Let ts ≥ 0 be the stopping time. To simplify notation, say ∆(t) = ∆(x(t),x∗),

and assume it is differentiable, and:

−
∆′(t)

∆(t)
≡ r > 0, so ⇒ ts =

ts
∫

0

dt =
log∆(0)− log∆(ts)

r
. (7)

The interpretation of this assumption is that reducing the misallocation by a small percent-

age happens in the same small period of time, i.e., the log-rate at which the distance to

optimal allocation is reduced is constant. This assumption will be justified with a mech-

anism for costly search in section 6, but now it is an assumption. We are dealing with a

one-time consumption allocation problem and time discounting is ignored; implicitly, the

consumption aggregation period is assumed much larger than the search time.

An endowment change r → r + v gives a change in wealth δ (r,r+ v) = ∑i vi. For

an arbitrary v with ∑i vi = 1, consider changes of the form r → r + δv, δ ∈ (−∑i ri,∞).
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The following proposition shows that the optimal utility value for the new wealth level is

continuous and differentiable in δ , that U(r+ δv) will deviate as o(δ ) from this optimal

utility, and that the optimal demand function is continuous in δ .

Proposition 12. Let r ∈R
n
+, and Φ(δ )≡U(x∗(δ ))=maxx {U(x) | ∑i xi − (B(r)+δ ) = 0} .

Let x∗(δ ) and r be the solutions for the classical utility maximization problem (6) with bud-

gets B(r)+δ and B(r). Then Φ(δ ) is continuous and differentiable. Furthermore, for all v

such that ∑i vi = 1, Φ(δ )−U(r+δv) = o(δ ), where
o(δ )
|δ |

δ→0
−−−→ 0, and x∗(δ ) is continuous

in δ .

So x∗(δ ) is a continuous curve on the domain, that intersects any expenditure boundary

once. Without other assumptions on the utility function, we can only establish that ∆(r+

δv,x∗(δ )) will be bounded by a positive continuous function passing through the origin:

∆(r+δv,x∗(δ )) = ‖x∗(δ )− (r+δv)‖ ≤ ‖x∗(δ )− r‖+ |δ | · ‖v‖. (8)

This, however, does not say anything about the lower bound of ∆(r+ δv,x∗(δ )). We can

do more if we employ stronger assumptions on U and a result by Debreu (1972, 1976),

which gives conditions for the invertibility of the demand function x∗(δ ). Specifically,

the Gaussian curvature of the hypersurface of constant utility {x |U(x) =U(x∗)} has to be

non-zero at x∗, i.e., the level curves have no flat parts, in a quadratic sense. Observe that the

Hessian condition of Proposition 9 is stronger than and implies that the Gaussian curvature

is strictly greater than zero.

Proposition 13. For all δ ∈ (−B,∞), let x∗(δ ) be the demand induced by the classical

utility maximization problem of U with wealth B+ δ . If κ(x∗(δ )) 6= 0 is the Gaussian

curvature of {x | U(x) = U(x∗(δ ))} at x∗(δ ), then x∗(·) is differentiable at δ , and
∂x∗k
∂δ

=

−
x∗k

B+δ

(

∑ j εk j

)

, ∀k, where εk j is the price elasticity of demand for good k and price j.

If x∗(δ ) is differentiable, then so is ∆(r + δv,x∗(δ )). Therefore, for small δ , ∆(r +

δv,x∗(δ )) can be approximated by a linear function, which is nonzero for a.e. v:

∆(r+δv,x∗(δ ))≈ |δ | ·

∥

∥

∥

∥

(

∂x∗1
∂δ

− v1, ...,
∂x∗n

∂δ
− vn

)∥

∥

∥

∥

. (9)

The upper and lower bounds for the linear approximation at small δ values are given by:

|δ | ·

∣

∣

∣

∣

∥

∥

∥

∥

(

∂x∗1
∂δ

, ...,
∂x∗n

∂δ

)∥

∥

∥

∥

−‖(v1, ...,vn)‖

∣

∣

∣

∣

/ ∆(r+δv,x∗(δ ))

/ |δ | ·

∥

∥

∥

∥

(

∂x∗1
∂δ

, ...,
∂x∗n

∂δ

)∥

∥

∥

∥

+ |δ | · ‖(v1, ...,vn)‖.
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The slope is positive and bounded if the price elasticities are bounded locally on the de-

mand curve, which is a reasonable assumption far away from extreme allocations. In the

following, it will be assumed that ∆(r+ δv,x∗(δ )) is monotonic and strictly increasing in

δ . The assumption is reasonable if εk j can be taken to change at a small enough rate, which

is true if each consumption component xi is the aggregate of many goods. Alternatively,

there can be very many xi that can have elasticities which change rapidly, but for which

‖(
∂x∗1
∂δ

− v1, ...,
∂x∗n
∂δ

− vn)‖ still changes at a rate smaller than one, because of the averaging

effect.

Effective spending of resources means that the temporary consumption choice x(t) is

close to the budget frontier, as optimal allocations should use all the available wealth. The

difference to the maximum in the utility value will be o(x∗− x(t)), because the budget

frontier is tangent to the level curve:

U(x) =U(x∗)+
n

∑
i=1

∂U

∂xi
(xi − x∗i )−o(x∗− x),

∂U

∂xi
=

∂U

∂x j
and

n

∑
i=1

xi =
n

∑
i=1

x∗i ⇒U(x)−U(x∗) =−o(x∗− x)≤−o(||x∗− x||).

(10)

Define the utility centered around the reference point on the budget frontier:

∀x∗ ∈ R
n
+ : let Ux :

{

x

∣

∣

∣

∣

∣

∑
i

xi = ∑
i

x∗i

}

→ R , Ux∗(x− x∗)≡U(x)−U(x∗). (11)

The differential DUx∗(x
∗− x) becomes the 0 map at x∗ = x and it’s continuous, and T is

strictly increasing in leisure, so:

∃∆(ts)> 0 s.t.

∣

∣

∣

∣

dUx∗(α(x∗− x))

dα

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

dT (t − 1
r

log(α‖x− x∗‖)+ 1
r

log∆(0))

dα

∣

∣

∣

∣

∣

=

T ′(t − 1
r

log(α‖x− x∗‖)+ 1
r

log∆(0))

rα
, if ||x− x∗|| ≤ ∆(ts).

(12)

Therefore the search stops at ∆(ts). We can find bounds on the final utility in terms of δ

and ∆(ts):

Φ(δ )+T (t)≥ U(x(ts), t − ts) =



























Φ(δ )−o(∆(ts))+T



t −
log

∆(0)
∆(ts)

r



 , ∆(0)> ∆(ts)

Φ(δ )−o(∆(0))+T (t), ∆(0)≤ ∆(ts).

(13)
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U

Φ(δ )+T (t)

δ

Figure 6: U deviates from the linear shape of Φ(δ )+T .

Because the budget frontiers intersect the demand function x∗(δ ) only once, Φ(δ ) can

be scaled arbitrarily by any monotonic transformation. For simplicity and convenience, let

Φ(δ ) be linear.U(r, t) = Φ(0)+T (t) is the utility at the status quo, and Φ(δ )+T (t) is the

utility in absence of search costs, for a given δ . If δ is small enough, we can simplify

things further by making T (t) ≡ k1t and ∆(0) = ∆(r+δv,x∗(δ )) ≡ k2|δ | linear. Consider

the effect of the adjustment cost on the slope, for positive and negative δ , in Figure 6.

Φ(δ )+T (t)≥ U(x(ts), t − ts) =























Φ(δ )−o(∆(ts))+T (t)−
k1

r
log

k2|δ |

∆(ts)
, k2|δ |> ∆(ts)

Φ(δ )−o(k2|δ |)+T (t), k2|δ | ≤ ∆(ts).

(14)

The absolute value of the slope is decreased for positive δ values and increased for

negative ones. This gives the loss aversion effect. Compare the shape of the function with

the one in Figure 1. The cost function C(·) used before would be given by:

C(||δv||) =























o(∆(ts))+
k1

r
log

k2|δ |

∆(ts)
, k2|δ |> ∆(ts)

o(k2|δ |), k2|δ | ≤ ∆(ts).

(15)

This graph requires that we talk about risk aversion. In the original Kahneman and

Tversky (1979) treatment, one of the assumptions is that utility of money is concave, to
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account for risk aversion. The cardinality of the utility function itself is linked to the basic

test for risk aversion, which is assumptions (P1). Here, we deal with choice over a set of

goods, with utility arbitrary up to monotonic transformations. To be able to connect it to

the one dimensional utility over money only, we need to fixate the cardinal values of U .

The natural choice is to set U such that Φ(δ ) satisfies the usual one-dimensional utility

assumptions, including concavity for risk aversion, but here assuming a linear Φ(δ ) would

not change the results.

Appendix C: Proofs

Proposition 1. Assume that the boundedly rational consumer knows only his current con-

sumption vector, his current utility level and gradient, as well as the utility of no con-

sumption. Given a line search method for the maximum, at any point in time the optimal

next step is given by the method applied to problems (1) or (2), where x is the momentary

consumption vector and W is the momentary wealth level.

Proof. Consider the search process at a moment in time. Let the current consumption

vector be x(0) and current wealth W (0). Besides U(x(0)), the consumer knows the linear

approximation U(x) ≈ L(x) :=U(x(0))+∇U(x(0)) · (x− x(0)). The consumer’s problem

is to find the best move from x(0) that will maximize his lifetime utility, which means he

should potentially consider the effect of his next step on the search process in the future.

However, even as he anticipates future knowledge and future search, he doesn’t have access

to the utility levels of choices outside of B(x(0),ε), so, in the absence of other information,

his best move is the same as if he would be doing a one step search. Therefore, he will

maximize the objective function derived from problems (1):

max
x

U(x) = max
x

{L(x)+λ [(1−β )W ∗− p · x]} ,

or (2):

max
x

U(x) = max
x

{

L(x)− (L(x)−U)

(

1+
W

p · x
(β −1)

)}

,

s.t. x ∈ B(x(0),ε|∇U(x(0))|). The best point to move to is x(0) + ε∇U(x(0)), in the

direction of steepest descent. This maximization will be one step in the search algorithm.

As ε,δτ → 0, we get a continuous movement along the line of steepest descent.

Proposition 2. If the lifetime budget constraint doesn’t bind and doesn’t hold with equality,

the search moves in the direction of ∇U(x). If the constraint binds, the search moves in the

direction ∇U(x)+ [U(x)−U ] · −p
p·x .
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Proof. The maximization problem is

max
x

U(x)
∫ τ(x)

0
et lnβ dt +U

∫ ∞

τ(x)
et lnβ dt,

s.t.
1−β τ(x)

1−β
p · x ≤W.

If the budget constraint doesn’t bind, we have that τ(x) = ∞, and the local maximization

problem is trivial because we are away from the boundary. That is, in the Lagrangian we

can ignore the constraint. Then the objective maximizing direction is given by ∇U(x).

When the lifetime budget constrain binds, we have that

1−
W

p · x
(1−β ) = β τ(x),

so we can rewrite the maximization problem as

max
x

U(x) :=−(U(x)−U)

[

1−
W

p · x
(1−β )

]

+U(x) = (U(x)−U)
W (1−β )

p · x
+U .

This gives us

∇U(x) =
W

p · x
(1−β )

[

∇U +(U(x)−U) ·
−p

p · x

]

.

Proposition 3. Let the utility function U(x) be strictly concave. When the lifetime budget

constraint binds, the consumer searches towards allocations with lower spending. If the

constraint doesn’t bind, but holds with equality, the direction of movement is along the

budget constraint.

Proof. By the multivariate mean value theorem, we have that U(x)−U =U(x)−U(0) =

∇U((1− c)x) · x, for some value c ∈ (0,1). Therefore, we can write the projection on p of

the expression that shows the direction of search like

p

|p|
·

[

∇U(x)+(U(x)−U) ·
−p

p · x

]

= ∇U ·
p

|p|
− (U(x)−U)

|p|

p · x
=

= ∇U(x) ·
p

|p|
−∇U((1− c)x) · x

|p|

p · x
.

Multiply by
p·x
|p| to get

(

∇U(x) ·
p

|p|

)(

x ·
p

|p|

)

−∇U((1− c)x) · x ≤ ∇U(x) · x−∇U((1− c)x) · x,
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because the first term is positive. ∇U(x) ·x−∇U((1−c)x) ·x is negative since U is concave,

therefore the projection is negative, which is what we required.

Now let’s consider the case when the lifetime budget holds with equality, p · x/(1−

β ) = W , but doesn’t bind. We’ll prove that the best marginal change direction has to be

perpendicular on p. W.l.o.g. consider a small change in x by a+b, where a · p = 0, b · p =

|b||p| > 0. If b increases spending per unit of time, then lifetime utility can be increased

by a change of consumption of −b, by ∇U(x) · (−b), since we have proved that ∇U(x) is

directed towards allocations of lower spending when the spending rate exceeds W . This

means that a change of a is better than a change of a+b. Similarly, if b decreases spending

per unit of time, then we can increase lifetime utility by moving back by ∇U(x) · (−b),

because ∇U(x) points towards allocations of higher spending.

Proposition 4. Let the search process be a continuous steepest descent algorithm, where

the wealth bound is updated after each step. If U(x) is strictly concave, the search for the

optimal allocation and wealth converges, and the limit wealth is exactly enough to sustain

the limit allocation forever.

Proof.

W ′(t) = (− lnβ )

[

−
p · x(t)

1−β
+W (t)

]

.

If the lifetime wealth constraint doesn’t bind and doesn’t hold with equality, the direction

of movement is ∇U(x). Because preferences are assumed non-satiated, as the algorithm

proceeds we have that consumption per unit of time, p · x(t), is increased. Moreover, as

spending increases, current lifetime utility is also increased. As mentioned, we ignore the

case of unbounded growth of consumption, when the new initial wealth is so large that it

exceeds the net present cost of the path of consumption growing infinitely. In other words,

p · x(t)

1−β
→W (t),

and
p · x(t)

1−β
=W (t)⇒W ′(t) = 0,

so the wealth level converges, W (t)→W ∗ > 0. Search when the lifetime wealth constraint

holds with equality is discussed last.

Now assume that the lifetime wealth constraint binds, and begin by incorporating the

constraint into (2). We then have the following generic objective function that we consider
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for a step in the algorithm:

max
x

{

−(U(x)−U)

[

1−
W

p · x
(1−β )

]

+U(x)

}

.

In the steepest descent algorithm, a step in the search should weakly increase the value

of the objective function. (See Theorems 5.1, 5.3 in Ruszczyński (2006).) This function

is the discounted lifetime utility of the consumer, where he stops searching and consumes

x as long as he can afford it. Therefore, each step in the search increases lifetime utility.

Moreover, lifetime wealth is decreased after each step, since the consumer spends more

than he can afford in the long run. From equation (4):

1

1−β
p · x(t)≥W ⇒

lnβ

β −1
p · x(t)≥W (− lnβ )⇒W ′(t)≤ 0.

Since lifetime wealth is bounded from below by 0 and W ′(t) is monotonic, W (t) → W ∗.

As mentioned, we ignore the case where the consumer searches so slowly that he goes

bankrupt before he reaches a new optimum, i.e., W ∗ > 0.

When the lifetime budget constraint holds with equality, the consumer solves

max
x

U(x) := max
x

{U(x)+λ [(1−β )W ∗− p · x]} ,

by Proposition 3. With U(x) strictly concave, steepest descent will find the unique maxi-

mum, x∗, and W ∗ = p · x∗/(1−β ).

Proposition 5. Let C : R+ → R+ be differentiable, with C(0) = 0 and C′(l) > 0 for all

l > 0, and let U(x) : Rn
+ →R of class C1, strictly quasiconcave. Define Vr(x− r) :=U(x)−

U(r)−C (||x− r||), for any r ∈ R
n
+, where the norm is any d-norm ||·||d , 1 ≤ d < ∞, or the

seminorm |p ·(x−r)|. Then the preference structure given by Vr(x−r) satisfies assumption

A1, for any pair of indices i 6= j.

Proof. Let r,s,x,y ∈ R
n
+, and i = 1, j = 2, w.l.o.g. In addition, x1 ≥ r1 > s1 = y1, y2 >

x2, r2 = s2 , and x =s y. Define a ≡ y2− s2, b ≡ x2− s2, c ≡ r1− s1 > 0 and d ≡ x1− r1 ≥ 0.

Then x =s y means:

Vs(x− s) =Vs(c+d,b,0, ...,0) = U(x)−U(s)−C
(

‖(c+d,b,0, ...,0)‖
)

=

Vs(y− s) =Vs(0,a,0, ...,0) = U(y)−U(s)−C
(

‖(0,a,0, ...,0)‖
)

.
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Vs
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c d

With respect to the reference r, the value functions are:

Vr(x− r) =Vr(d,b,0, ...,0) = U(x)−U(r)−C
(

‖(d,b,0, ...,0)‖
)

, and

Vr(y− r) =Vr(−c,a,0, ...,0) = U(y)−U(r)−C
(

‖(−c,a,0, ...,0)‖
)

,

⇒Vr(x− r)−Vr(y− r) = U(x)−U(y)−C
(

‖(d,b,0, ...,0)‖
)

+C
(

‖(−c,a,0, ...,0)‖
)

.

So, solving for U(x)−U(y) in the first equation:

Vr(x− r)−Vr(y− r) =+C
(

‖(c+d,b,0, ...,0)‖
)

+C
(

‖(−c,a,0, ...,0)‖
)

−

−C
(

‖(d,b,0, ...,0)‖
)

−C
(

‖(0,a,0, ...,0)‖
)

> 0.

The last inequality follows from the fact that, for p < ∞, c > 0, C strictly increasing, and:

‖(0,a,0, ...,0)‖< ‖(−c,a,0, ...,0)‖,

‖(d,b,0, ...,0)‖< ‖(c+d,b,0, ...,0)‖.

Therefore x >r y, which was required.
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Proposition 6. Let the consumer have current consumption choice x, and say that he faces

a lottery (α1,W1; ...;αl,Wl), expressed in terms of the lifetime wealths for each contingency.

Let W1 ≤ ... ≤ Wk <
p·x

1−β
< Wk+1 ≤ ... ≤ Wl , and α1 + ...+αl = 1. The direction of his

search will be given by

αk+1 + ...+αl

1−β
∇U(x)+

α1W1 + ...+αkWk

p · x

[

∇U(x)− (U(x)−U)
p

p · x

]

.

Proof. We have argued that the consumer, having restricted knowledge, behaves at any

point as if he’s maximizing his lifetime utility given his current consumption plan. For this,

write the maximization problem for the consumer:

max
x

lnβ

β −1

{

∑
j

α j

[

U(x)
∫ τ j(x)

0
β tdt +U

∫ ∞

τ j(x)
β tdt

]

}

s.t. ∀ j ∈ {1, ...,k} :
1−β τ j(x)

1−β
p · x =Wj, and τk+1 = ...= τn = ∞.

It’s easy to solve the constraints for β τ j(x) and introduce them into the objective function,

and we get

max
x

{

k

∑
j=1

α jWj

p · x

[

U(x)− (U(x)−U)

(

1+
Wj

p · x
(β −1)

)]

+U(x)
l

∑
j=k+1

α j

}

.

The gradient of this new objective function is the formula given in the proposition.

Proposition 7. If the consumer faces a lottery in the distant future (α,W1;1−α,W2), with

W1 < p ·x(0)/(1−β )<W2, and the instantaneous utility function has 0 ≻ ∇2U(x)�−MI,

then for any subdomain D ∈ R
n
+, ∃ 0 < αl < αh < 1 for M small enough such that for α ∈

(0,αl]∪ [αh,1) the search converges, x(t)→ x∗, and W ∗ =W1(t) for α ≤ αh, W ∗ =W1(t)

for α ≥ αh, where W ∗ := p · x∗/(1−β ), and Wj is the lifetime utility for outcome j.

Proof. First, let’s consider W1 < p · x/(1−β ) < W2. At any x, the direction of search is

given by
1−α

1−β
∇U(x)+

αW1

p · x

[

∇U(x)− (U(x)−U)
p

p · x

]

. (16)

Let’s rewrite the expression for component i, by dividing by the positive scalar
α(1−β )W1

p·x

and regrouping:

Ui(x)

(

1+
1−α

α

p · x

(1−β )W1

)

− (U(x)−U)
pi

p · x
.
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Now consider a small change in x j by δ j, happening in the time δτ , and write the marginal

change in the component i of the search direction vector:

Ui j(x)δ j

(

1+
1−α

α

p · x

(1−β )W1

)

+Ui(x)
1−α

α

p jδ j

(1−β )W1
+ (17)

+Ui(x)
1−α

α

p · x

(1−β )W 2
1

(

−W ′
1δτ

)

−Ui(x)
p jδ j

p · x
− (U(x)−U)

−pi p jδ j

(p · x)2
.

For small enough maximum curvatures M, the negative first term is dominated by the other.

Observe that the 2nd, 3rd and 5th terms are strictly positive (W ′
1 < 0!), and the 4th is

negative. We know that (1−β )W1 < p ·x, so for any α < 1/2 we have that the second term

is bigger in absolute value than the 4th. Given a small M, ∃α
i j
l > 0 such that the expression

is positive on D for x, and define αl := mini, j{α
i j
l } > 0. We can conclude that, for any

0 < α ≤ αl , a marginal movement towards higher spending will not lead to a reversal of

direction.

Similarly, we can discuss high α values. Group the last two terms together by factoring

−p jδ j/p · x, and observe that the expression is negative, by Proposition 3. Terms 2 and 3

can be grouped together into a positive expression as well, with a factor Ui(x)(1−α)/α in

front. Ui(x) > 0, so ∃α
i j
h < 1 such that the expression is negative for α > α

i j
h and x ∈ D.

This means that, for α > αh := maxi, j{α
i j
h } < 1, a marginal movement towards lower

spending will not lead to a reversal of direction.

The above deals with the case when the budget constraint for the low wealth contin-

gency binds, but the other one doesn’t bind or hold with equality. As usual, we exclude

the cases when the search is not fast enough and W1 → 0, or when the consumer increases

his consumption forever: W1,W2 → ∞ and p · x → ∞. The search moves either toward

lower or higher spending, until the spending level p · x(t) reaches either W1(t) or W2(t)

respectively. At that point, the respective contingent wealths converge, and maximization

problem changes.

Now, let’s assume that W1(t)→W ∗ > 0, so the current consumption level x(t) is such

that p · x(t)/(1−β ) =W ∗. Then the claim is that the search will move perpendicular to p,

similarly to the situation in Proposition 3. The argument is similar and tedious; from (16),

note that moving away from the plane p · x(t) means that utility is lost proportional to

α

1−β

[

∇U(x)− (U(x)−U)
p

p · x

]

,

and gained proportional to (1 − α)∇U(x)/(1 − β ). If that were positive, we wouldn’t

have moved towards the lower spending. So the movement has to be along the plane. If
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W2(t)→W ∗, then a similar argument shows that the search will then move along the plane

p · x(t), because
αW1

p · x

[

∇U(x)− (U(x)−U)
p

p · x

]

is decreasing from W1. In this stage, the search is a simple optimization problem, and we

get x(t)→ x∗ and p · x∗ =W ∗(1−β ).

Corollary 8. Let Ua(x), Ub(x) be two instantaneous utility functions for consumers a

and b, which have current consumptions x0. If ∇Ua(x0) = ∇Ub(x0) and 0 ≻ ∇2Ua(x) ≻

∇2Ub(x) for all x, then consumer a will increase his spending more than consumer b.

Proof.

U j(x0)−U j(0) =
∫ 1

0
∇U j(θx0) · x0dθ =

=
∫ 1

0

[

∇U j(x0)−
∫ 1

0
∇2U j(x0 −ρ(1−θ)x0) · x0dρ

]

· x0dθ =

=
∫ 1

0
∇U j(x0) · x0dθ −

1
∫

0

1
∫

0

xT
0 ·∇2U j(x0 −ρ(1−θ)x0) · x0dρdθ .

We know that, for strictly concave utilities, ∇2U j(x) are negative definite, so we can con-

clude that Ua(x0)−Ua <Ub(x0)−Ub. From (16), we see that the gradient of the objective

of b minus that of a is p/(p ·x)(Ua(x0)−Ub(x0)−Ua+Ub)< 0, which is directed towards

lower cost consumptions.

Proposition 9. Let f (x) be a twice continuously differentiable function over consumption x,

which does not include a measure of time. It is assumed that −mI � ∇2 f (x)�−MI, ∀x ∈

D, the domain, and 0 < m ≤ M. Furthermore D is convex. (This implies that the Hessian

is negative definite on the domain D, ∇2 f (x) � 0.) A unique maximum x∗ ∈ D must exist,

which is assumed to be an interior point. The search generated by the steepest descent

algorithm, starting from x0 given, with a step length ε ∈ (0,2/M), generates a sequence

{xt}→ x∗, and the following results hold:

(a) ‖xt − x∗‖ ≤ q t‖x0 − x∗‖,

(b) f (x∗)− f (xt)≤
M

m
qmax2t [ f (x∗)− f (x0)],

where qmax := max[|1− εm|, |1− εM|]< 1.
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Proof. Apply, for example, Theorem 5.5 in Ruszczyński (2006) to obtain (a). The Hes-

sian condition −mI � ∇2 f (x) � −MI, and the fact that ∇ f (x∗) = 0 give the following

inequalities:
m

2
‖x− x∗‖2 ≤ f (x∗)− f (x)≤

M

2
‖x− x∗‖2, ∀x ∈ D.

Using (a), this implies:

f (x∗)− f (xt)≤
M

2
‖xt − x∗‖2 ≤

M

2
q2t‖x0 − x∗‖2 ≤

M

m
q2t [ f (x∗)− f (x0)].

Proposition 10. Consider a quadratic f (x) with non-degenerate Hessian −mI � ∇2 f �

−MI, optimized by steepest descent with constant step length ε ∈ (0,2/M). Let x0 be the

starting point, and ∇ f (x0) an eigenvector of ∇2 f (x0). Then the search method will proceed

only along the direction of ∇ f (x0), and the following hold:

(a) ‖xt − x∗‖ ≥ qmin t‖x0 − x∗‖,

(b) f (x∗)− f (xt)≥
m

M
qmin2t [ f (x∗)− f (x0)],

where qmin := min{|1− εm|, ..., |1− εM|}< 1.

Proof. For steepest descent with constant step length, xt+1 = xt + ε ·∇ f (xt), so

∇ f (xt+1) = ∇ f (xt)+(xt+1 − xt) ·∇ f (xt) = ∇ f (xt)+ ε∇2 f (xt)∇ f (xt) =

= ∇ f (xt)(1− εK),

where K ∈ [m,M] is the eigenvalue of ∇ f (xt). After each step, the gradient has the same

direction, which means that all search steps are on the same direction. Therefore, we can

analyze the search in one dimension. The section of f on one dimension will be a 1-

dimensional quadratic function, and we’ll parametrize the points with y ∈ R. Let y∗ be the

maximum, and y0 the starting point. Steepest descent gives:

yt+1 − yt = εK(yt − y∗)⇒ yn = (1− εK)ty0 + εK
(1− εK)t −1

1− εK −1

⇒ yt − y∗ = (1− εK)n(y0 − y∗)⇒‖xt − x∗‖= (1− εK)t‖x0 − x∗‖.

The condition for convergence is ε ∈ (0,2/K). From this, the fastest speed of conver-

gence is reached for the direction with the eigenvalue that minimizes |1− εK|, so qmin :=

min{|1− εm|, ..., |1− εM|}. As in Proposition 9,

m

2
‖x− x∗‖2 ≤ f (x∗)− f (x)≤

M

2
‖x− x∗‖2, ∀x ∈ D.
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This means that

f (x∗)− f (xt)≥
m

2
‖xt − x∗‖2 ≥

m

2
qmin2t‖x0 − x∗‖2 ≥

m

M
qmin2t [ f (x∗)− f (x0)].

Lemma 11. Consider the steepest descent search with step length inversely proportional

to the time interval, and the familiar assumptions on f (x). In the continuous time limit, the

upper and lower bounds on the convergence of the objective function and the argument are

exponentials, and the search converges Q-linearly to the optimum.

Proof. Let s be the size of the time period, sε the step length in the search, and T a total

finite amount of time. The number of time periods is t := T/s. Define q := 1− sεK, where

K is such that qt can describe either the upper or lower bounds on the search speed. Now

consider the bonds in the limit when the search period goes to 0:

lim
s→0

qt = lim
s→0

(1− sεK)T/s = (eεK)−T .

We know that (1− 1
n
)n, where n := 1

sεK
, is monotonically increasing in n, so as s decreases,

the upper bond on ‖xt − x∗‖ after a finite period of time T is reduced. Also, for arbitrarily

small time periods s, the search process will converge to the same limit, and it is Q-linear.

The same arguments apply to [ f (x∗)− f (xt)].

Proposition 12. Let r ∈R
n
+, and Φ(δ )≡U(x∗(δ ))=maxx {U(x) | ∑i xi − (B(r)+δ ) = 0} .

Let x∗(δ ) and r be the solutions for the classical utility maximization problem (6) with bud-

gets B(r)+δ and B(r). Then Φ(δ ) is continuous and differentiable. Furthermore, for all v

such that ∑i vi = 1, Φ(δ )−U(r+δv) = o(δ ), where
o(δ )
|δ |

δ→0
−−−→ 0, and x∗(δ ) is continuous

in δ .

Proof. By Proposition 2.13(b) of Kreps (1990), Φ(δ ) is continuous. U(x) is differentiable

so, by the envelope theorem, Φ(δ ) is differentiable also. Moreover, from the envelope

theorem:
dΦ

dδ
≡ λ =

∂U

∂xi

∣

∣

∣

∣

x=x∗
, ∀i, and

dU(r+δv)

dδ
= ∑

i

vi
∂U

∂xi

∣

∣

∣

∣

x=r+δv

.

Therefore:

d(Φ(δ )−U(r+δv))

dδ

∣

∣

∣

∣

δ=0

=
∂U

∂xi

∣

∣

∣

∣

x=r

−∑
i

vi
∂U

∂xi

∣

∣

∣

∣

x=r

= λ (1−∑
i

vi) = 0.

Applying Taylor’s Theorem gives Φ(δ )−U(r + δv) = o(δ ). To show that x∗(δ ) is con-

tinuous, let δn → δ , with x∗(δn) 9 x∗(δ ). But Φ(δn) → Φ(δ ), since Φ is continuous.
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Therefore, U(x∗(δ )) = Φ(δ ) = limn Φ(δn) = limnU(x∗(δn)) =U(limn x∗(δn)), where the

last equality follows from the continuity of U . Moreover:

n

∑
i=1

x∗i (δn)− (B+δn) = 0 ⇒
n

∑
i=1

lim
n

x∗i (δn)− (B+δ ) = 0

⇒ lim
n

x∗(δn) ∈ argmax
x

{

U(x)

∣

∣

∣

∣

∣

n

∑
i=1

xi − (B+δ ) = 0

}

,

because limn x∗(δn) solves the utility maximization problem. Since U is strictly quasicon-

cave, the solution to the maximization problem must be unique, so limn x∗(δn) = x∗(δ ), so

x∗(δ ) is continuous in δ .

Proposition 13. For all δ ∈ (−B,∞), let x∗(δ ) be the demand induced by the classical

utility maximization problem of U with wealth B+ δ . If κ(x∗(δ )) 6= 0 is the Gaussian

curvature of {x | U(x) = U(x∗(δ ))} at x∗(δ ), then x∗(·) is differentiable at δ , and
∂x∗k
∂δ

=

−
x∗k

B+δ

(

∑ j εk j

)

, ∀k, where εk j is the price elasticity of demand for good k and price j.

Proof. Define the general demand function f (p,W ) given some arbitrary nonzero price

vector p and wealth W . By Debreu (1972, 1976), the Jacobian of f at x is given by:

J( f ) =
‖∇U‖

∂U
∂xn

κ(x)
, if κ(x) 6= 0.

Therefore x∗(δ ) ≡ f ((1, ...,1),B + δ ) is differentiable as a function of δ . Because the

demand function is homogeneous of degree zero, we can write:

n

∑
i=1

∂x∗k
∂ pi

pi +
∂x∗k
∂δ

(B+δ ) = 0 ⇒
∂x∗k
∂δ

=−
x∗k

B+δ

(

∑
j

εk j

)

, ∀k.
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