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Abstract

A stochastic implementation of the Multiple Mapping Conditioning (MMC) ap-

proach has been applied to a turbulent jet diffusion flame (Sandia Flame D). This

implementation combines the advantages of the basic concepts of a mapping closure

methodology with a probability density approach. A single reference variable has

been chosen. Its evolution is described by a Markov process and then mapped to the

mixture fraction space. Scalar micro-mixing is modelled by a modified “interaction

by exchange with the mean” (IEM) mixing model where the particles mix with their

-in reference space- conditionally averaged means. The formulation of the closure

leads to localness of mixing in mixture fraction space and consequently improved

localness in composition space. Results for mixture fraction and reactive species are

in good agreement with the experimental data. The MMC methodology allows for

the introduction of an additional “minor dissipation time scale” that controls the

fluctuations around the conditional mean. A sensitivity analysis based on the con-

ditional temperature fluctuations as a function of this time scale does not endorse

earlier estimates for its modelling, but only relatively large dissipation time scales of

the order of the integral turbulence time scale yield acceptable levels of conditional

fluctuations that agree with experiments. With the choice of a suitable dissipation

time scale, MMC-IEM thus provides a simple mixing model that is capable of cap-

turing extinction phenomena, and it gives improved predictions over conventional

PDF predictions using simple IEM mixing models.

Key words: turbulent diffusion flame, modelling, scalar mixing, multiple mapping

conditioning

Preprint submitted to Elsevier Science 5 January 2010



1 Introduction

As the concern for the environment increases and more stringent legislation

requires higher efficiency and reduced emissions, modern combustion systems

tend to use leaner mixtures and run at lower temperatures to restrict the

formation of NOx. These facts lead to an increased interest in the modelling

of flows with substantial finite rate chemistry effects and advanced combustion

models that allow an accurate prediction of the interaction between chemical

reaction and turbulent mixing are needed.

Probabilistic methods such as the probability density function (PDF) [1] meth-

ods have been established as powerful modelling tools for combustion processes

since they allow for a direct and therefore, accurate closure of the chemical

reaction rate. However, the modelling of mixing process poses two problems:

Firstly, the lack of information on small scale structures and consequently lack

of information on the dissipation time and secondly, the requirement for the

mixing process of the stochastic particles to mimic the change in composition

of the real fluid particles due to turbulent mixing. These issues lead to certain

principles that should be satisfied by the mixing models such as boundedness

of the scalars, linearity of scalar transport, independence of the evolution of

the particle properties and -most importantly- localness in the physical and

compositional spaces. Detailed discussion regarding the importance of these

principles can be found in the the literature [1,2]. Here, we only emphasise

the importance of localness for mixing to occur [3]. Generally improvements

to the mixing model are limited by the resolution for the flow field and thus

discrepancies are more pronounced in the RANS context [4]. However, results

suggest that if particles mix with other particles in their immediate neighbour-
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hood in composition space so that mixing across the reaction zone is avoided,

the description of mixing is improved [2].

Different models have been suggested in the literature for the closure of the

mixing term. Simple models that are easy to implement such as the “inter-

action by exchange with the mean” (IEM) [5,6] and the various Curl’s mod-

els [7,8] do not ensure localness in composition space. In the present work,

we investigate the applicability of an approach that can ensure localness even

if mixing is based on a simple IEM models. Multiple mapping conditioning

(MMC) [9] combines the PDF method with the basic concepts of a mapping

closure for the modelling of the turbulent mixing term. MMC by itself does not

constitute a specific mixing model but it allows the modification of existing

models so that can accommodate the principles of localness while maintaining

their simplicity. The exact MMC model formulation used in the current work

is introduced in the following sections. The implementation methodology and

its limitations are described and predictions of the mixing field and of reac-

tive species are compared with experimental data for a piloted methane/air

jet diffusion flame (Sandia flame D) [10]. In addition, the sensitivity of the

method to an additional time scale, the minor dissipation time, is tested.

2 Reference space

The basic idea of the mapping closure concept [11,12] used in the MMC

methodology is to employ turbulent fluctuations and small-scale mixing in a

mathematical reference space, ξ, with a known (or prescribed) PDF, to model

the turbulent fluctuations and small-scale mixing in the physical composition

space, whose PDF is not known in advance. A deterministic implementation

4



leads to mapping functions that map the reference space to the physical space

and the conditional scalar dissipation appears in closed form [13,14]. In the

stochastic implementation the ”randomness” of species mass fraction Y ∗

I of a

particle is assumed to be reflected by the randomness of the reference variable

ξ∗. This assumption generates three different definitions of fluctuations in the

MMC context: the unconditional fluctuations (Y
′

I = YI−〈YI〉), the major fluc-

tuations (Y
′′

= 〈YI |ξ〉− 〈Y 〉) and the minor fluctuations ((Y
′′′

I = YI − 〈YI |ξ〉).

In MMC, the particle position is tracked in reference space, mixing is allowed

only among particles that are close to each other in ξ-space, and this directly

controls the minor fluctuations. Ideally, events that are close to each other in

physical space should also be close in composition space and thus in reference

space. If this is satisfied, localness of the MMC model is ensured.

One of the challenges of the method is the estimation of the “minor dissipation

time ”, τmin, that controls the minor fluctuations. The minor fluctuations exist

only in the context of MMC, and the only indication for τmin is that the level

of the minor fluctuations should lead to an accurate level of the “physical”

conditional fluctuations [15].

In a recent study by Cleary et al. [16], Sandia Flame D is modelled using one

reference variable obtained from a -to the particle position interpolated- LES

mixture fraction field. However, this approach cannot be applied to RANS.

Any particle properties interpolated from RANS statistics are mean properties

and do not add any information with respect to their instantaneous compo-

sitional localness. An alternative approached is described here that can be

considered an extention to the work of Wandel et al. [17]. It is a probabilistic

MMC formulation with a single reference variable that is used to enforce local-

ness in mixture fraction space and whose evolution is described by a Markov
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process. MMC allows the choice of any number of reference variables, yet for

flames with low levels of local extinction, localness in mixture fraction space is

normally sufficient to indicate localness in the multidimensional composition

space.

We introduce the stochastic reference variable, ξ∗, which is governed for one

single reference variable by the following set of stochastic differential equations

(sdes)

dx∗ = U(ξ∗)dt, (1)

dξ∗ = Aodt + bdw∗ (2)

and a Fokker-Planck equation

∂ρPξ

∂t
+ ∇(UρPξ) +

∂AoρPξ

∂ξ
−

∂2BρPξ

∂ξ2
= 0, (3)

where 2B = b2. If we assume a distribution for the reference space then the

drift and diffusion coefficients of Eq. (2) can be determined from Eq. (3).

3 The model

In the current implementation Eq. (1) and Eq. (2) that account for transport

in the physical and reference space respectively, are solved jointly with

dY ∗

I = [Ω∗

I + S∗

I ]dt, (4)
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that accounts for the evolution of the composition space. ΩI is the reaction

rate and S∗

I is the mixing term. A detailed derivation of Eqs.(1)-(4) can be

found in [9]

In this paper, one of the simplest models is examined for S∗

I : the IEM mixing

model. The original IEM model mixes all particles within one computational

cell with their unconditional means and conventional PDF computations with

IEM are denoted from hereon PDF-IEM. When using the modified IEM model

(MMC-IEM) the particles are mixed with their means conditioned on a certain

value in reference space, 〈YI | ξ〉.

According to the MMC-IEM model, S∗

I is then given by

S∗

I =
YI(ξ

∗) − Y ∗

I

τmin

, (5)

with < S∗|ξ∗ = ξ, x∗ = x >= 0 [9].

The simplicity of the IEM model is attractive for implementation, especially as

a first modelling attempt that is expected to provide qualitative understand-

ing of the stochastic implementation of the MMC method and its application

to real flames. However, a good estimate of the minor dissipation time needs

to be determined. As Pope [18] pointed out PDF predictions are sensitive to

the velocity-to-scalar time scale ratio CYa
value that is not known a priory.

Klimenko [15] suggested that the minor dissipation time should be consider-

ably smaller than the characteristic physical dissipation time, τD, performing

an asymptotic analysis for an homogeneous case, and Direct Numerical Sim-

ulations (DNS) for simple homogeneous flows indeed suggest τmin ≈ 1/8τD as

a suitable estimate for the minimum dissipation time [17]. However, in real
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flames DNS is not an option, and it is far from being clear how to extract

the correct dissipation time from RANS solutions for the flow field. Here, we

report on results using three different values for τmin.

For the current implementation a single “mixture fraction-like” reference vari-

able is used. The term mixture-fraction like variable has the connotation that

closeness in reference space guarantees closeness in mixture fraction space. For

the derivation of coefficients Ao and B a Gaussian distribution of ξ∗is assumed,

and the coefficients are then given in the following form [9]

U = U(ξ;x, t) = U(0) + U(1)ξ, (6)

Ao = −
∂B

∂ξ
+ Bξ +

1

〈ρ〉
∇〈ρ〉U(1) +

2

Pξ

∂BPξ

∂ξ
, (7)

U(0) = ṽ, (8)

U(1)〈ξZ〉 = 〈v
′′

Z
′′

〉, (9)

where ṽ is the mean flow field velocity. The turbulent flux can be modelled by

a standard gradient approximation (〈v
′′

Z
′′

〉 = −D∇ < Z >). B is modelled

independently of ξ, (B = B(x, t)) [9], and is related to scalar dissipation 〈NZ〉

by

B

〈(
∂Z

∂ξ

)2〉
= 〈NZ〉. (10)

In addition, the derivative ∂Z/∂ξ is approximated by ∂Z/∂ξ.

It is apparent from Eq. (10) that closure of the MMC model requires knowl-

edge of the unconditional scalar dissipation of Z. The parameter 〈NZ〉 can be

modelled adopting Corrsin’s suggestion [19] that the decay rate of a passive

scalar variance is assumed to be proportional to the decay rate of the turbulent
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kinetic energy i.e.

〈NZ〉 =
〈Z

′2〉

τD

, (11)

where τD is proportional to the flow turbulent time scale τ = k/ε with pro-

portionality constant commonly assumed to be CD = 1.

It might appear as a paradox that a distribution is assumed for a variable that

in reality is solved. Equation (2), however, is solved such that every particle

has its own stochastic value of ξ∗ that is indicative of the distance of -say- two

particles in mixture fraction space. Attributing a random value for ξ∗ to every

particle that is derived from a Gaussian distribution, without solving Eq. (2)

might present itself as an alternative that would maintain the Gaussianity of

the reference space, however, it would not offer any extra information with

respect to the distance of particles in mixture fraction space. Instead, using

the specific model for Ao and B introduces links between the physical space

and the reference space through U(ξ), 〈NZ〉 and 〈Zξ〉.

4 Test case and numerical implementation

The test case (Sandia Flame D) [20,10] consists of a methane/air fuel mixture

that issues from a central 7.2mm diameter nozzle surrounded by coaxial pilot

flame with an outer diameter of 18.2mm. The fuel is 25% CH4 and 75% air

by volume with a stoichiometric mixture fraction of Zst = 0.351. The jet

Reynolds number is 22,400, the pilot inlet velocity is 11m/s and the velocity

of the co-flowing air is 0.9m/s.

The Eulerian flow field equations are solved using an in-house RANS code
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(BOFFIN). Turbulence is modeled by a standard k-ε model. A cylindrical

domain extends 0.65m in downstream direction and 0.15m in radial direction

and is discretised by 80 axial and 50 radial finite volume cells. For the compo-

sition field there are 800.000 Lagrangian particles corresponding to an average

number of around 200 particles per cell. The evolution of the particle prop-

erties is modelled by Eqs. (1), (2) and (4). It is important to emphasise that

every particle carries information on its (stochastic) velocity, species concen-

tration and ξ. Note that the reference space is Gaussian and unbounded, but

the determinisic drift term counteracts the random diffusion term and keeps

particles close to the mean. Then, depending on their ξ value, the particles

within each cell are ordered in the reference sample space that extends from

-4 to 4 and that is divided into 40 bins. Chemistry is modelled by a reduced

15-step methane-air mechanisms [21].

Two extra equations for the mean mixture fraction and its variance are also

solved in the RANS context. Conventional closure are used for these deter-

ministic equations for 〈Z〉 and 〈Z ′′2〉. The values are used to initialise Z∗ and

for comparison with the stochastic solutions for the mixing field.

The mapping functions of mixture fraction and of the reactive species YI(ξ
∗)

are obtained from a binning procedure. In every Eulerian cell the sample space

of the reference variable is defined and divided into a number of bins. Then

the particles that are in the cell are ordered depending their ξ∗ value. In each

ξ-bin, YI(ξ) is defined by an ordinary averaging process. For the ξ-bins that

are empty, values are obtained from linear interpolation. The computation

of YI(ξ) is needed for the mixing with the conditional mean, postulated by

MMC-IEM.
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5 Results

Three computations with different minor dissipation times have been run and

are compared with experiments and solutions from deterministic, Reynolds-

averaged transport equations for mean mixture fraction and its variance. The

three mixing time scales that are investigated here are τmin = τd, τmin = 0.7τd

and τmin = 0.5τd.

Figure 1 shows the mixture fraction profiles over the reference space at various

axial locations and r/D = 1 for the three test cases of the MMC-IEM mixing

model. It can be seen that particles cluster around the conditional mean (solid

line). At upstream locations the slope is rather moderate due to the low mix-

ture fraction variance in these areas. Downstream the slope increases. There is

significant scatter around Z(ξ) for all three cases, however there are quantita-

tive differences. As τmin decreases, mixing becomes more intense, particles are

mixed faster towards their conditional means and fluctuations are reduced.

This - of course- affects predictions for mixture fraction mean and in particular

its variance. Figures 2 and 3 show radial profiles of mean and rms of mixture

fraction Z at different axial locations. Predictions MMC-IEM are presented

and compared with experimental data. Predictions from the solution of the

conventional RANS equations (solid lines) and from PDF-IEM (diamonds) are

also included, but no results are shown for τmin = 0.7τd for clarity of presen-

tation. Predicted mixture fractions and rms generally fall between predicted

values for τmin = τd and τmin = 0.5τd.

Overall the predictions are in qualitative agreement with the experimental

data for all time scales. Mean mixture fracture is well predicted everywhere
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in the domain and the differences are rather small between all models. With

respect to mixture fraction variance, differences are more pronounced. The

predictions are generally good and they constitute a slight improvement in

comparison to the deterministic RANS and PDF-IEM predictions. However,

the effects of different time scales are apparent and consistent with Fig.1.

In Fig.3, dashed lines denote computations with τmin = τD and stars repre-

sent τmin = 0.5τD. A smaller mixing time scale enhances mixing, it reduces

the scatter around the conditional mean and therefore, predicted 〈Z ′′2〉 are

noticeably decreased.

It is noted that MMC-IEM profiles are not smooth which can be attributed to

the stochastic MMC implementation. The derivation of the drift and diffusion

coefficients of Eq. (3) is based on the assumption of a normal distribution for

ξ∗. It is important for the accuracy of the method that the computed PDFs

remain close to the presumed distribution throughout the simulation. For all

three test cases the agreement with the normal distribution is satisfactory

(not shown), but 200 particles per cell do certainly not reproduce the exact

continuous Gaussian distribution. Further, computation of 〈Y ∗

I |ξ
∗ = ξ〉 intro-

duces inaccuracies. The conditional mean 〈Y ∗

I |ξ
∗ = ξ〉 is calculated for every

ξ bin and therefore the calculation is based on a considerably smaller number

of particles than present in the corresponding RANS cell. Temporal averaging

may alleviate these problems but this is not attempted here.

The mixing model performance is now evaluated in terms of scatter plots of

mixture fraction and reactive species. This is presented in Figs 4 and 5 for

the MMC-IEM model. The column to the left shows the experimental data,

the three columns in the middle show MMC-IEM for the three different time

scales and the column to the right show “conventional” PDF-IEM computa-
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tions. The agreement with experimental data in terms of conditional species

profiles and peak values is rather satisfying. The degree of scattering around

stoichiometric, however, is somewhat underpredicted for all time scales and

our model does not seem to predict local extinction that is evident in the

experiments very accurately. However, the effects of τmin are evident. Only

a minimum dissipation time scale of the order of the integral turbulent time

scale allows some deviation from a fully burning flamelet regimes. Stronger

mixing in conditional (reference) space inhibits all significant deviations from

the conditional mean and reduces the degree of extinction. Small time scales

of the order of 0.1τD as suggested by [15,17], would significantly overpredict

conditional mixing in Sandia Flame D, and MMC-IEM would yield very smilar

prediction as PDF-IEM where conditional mixing is not explicitly modelled.

It can be seen in the right column that PDF-IEM predictions do not exhibit

much scatter around the conditional mean which is consistent with results

reported in the literature[4]. MMC-IEM is thus distincly different from PDF-

IEM that tends to destroy all conditional fluctuations, but a suitable estimate

of τmin should be larger than τmin = 0.5τD. Estimates of τmin ∈ 0.7τD, 1.0τD

seem consistent with experiments. An increase of the minimum dissipation

time scale above τmin = τD does not seem physical and cannot be justified.

Not surprisingly, additional computations (results not shown here) have given

a considerable overprediction of the mixture fraction fluctuations that cannot

be consolidated with the experimental data.

A better quantitative estimate is given in Figs 6 and 7 where temperatures

and their RMS are conditionally averaged on mixture fraction and plotted for

different downstream positions. MMC-IEM and PDF-IEM give good predic-

tions for the conditional temperatures. They are slightly overpredicted due

to the underprediction of local extinction that could be observed in Figs. 4
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and 5. Small differences can be seen for the conditional mean at x/D = 15

where MMC-IEM with τmin = τD gives somewhat lower temperature predic-

tion due to the decreased mixing, the increased scatter and therefore increase

local extinction. Differences are more pronounced in Fig.7. It is apparent that

PDF-IEM and MMC-IEM with a small minimum dissipation time scale does

not allow for the correct level of conditional fluctuations and the mixing implic-

itly oppresses variations in conditional temperature. Longer time scales yield a

relatively accurate level of conditional fluctuations, in particular at x/D = 15

and possibly x/D = 30. It is not yet quite clear why conditional fluctuations

remain relatively low at x/D = 7.5, but improvements to conventional mixing

models are clear.

6 Conclusion

The current work is one of the first implementions of stochastic MMC coupled

to a RANS solver for the computation of mixing and reaction in a turbulent

jet flame. A single Markovian reference variable with Gaussian distribution

is selected and mapped to the mixture fraction space. The advantage of the

method is that despite the use of a very simple mixing model such as IEM, the

localness in composition space can be enforced and the conditional fluctuations

can be modelled more accurately and be better controlled. MMC can capture

parts of the physical behaviour of moderately complex phenomena such as

extinction and ignition and can provide accurate levels of fluctuations if a

suitable estimate of τmin is found. It has been shown that for a turbulent jet

flame such as Sandia Flame D, the appropriate time scale needs to be close

to the integral turbulence time scale and good predictions of all quantities of

interest such as unconditional and conditional means of passive and reactive

14



scalars and their fluctuations can be achieved. Further studies, however, would

need to establish the dependence of τmin on Reynolds number and/or flow

geometries.
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Fig. 1. Profiles of the mixture fraction in reference space at various axial locations
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