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ABSTRACT 

A new modal method capable of analysing the aeroelastic response of 
rotorcraft in both steady and manoeuvring flight is developed. 
Particular emphasis is given to the correct modelling of the dynamic 
interactions between the rotor and the fuselage. This is achieved via 
the use of complex rotor modes, which allows the effects of hub motion 
to be incorporated. 

The modal Lagrangian equation for a single rotating blade using real 
modes as state variables is first derived. The important non-linear 
terms based on an ordering scheme are retained. This aeroelastic model 
is then extended to adopt the complex rotor modes as state variables. 
This concept, which is both new and analytically demanding, is 
furnished with minimum algebra. 

A generalised proof of complex modes orthogonality and its application 
to the coupled rotor-fuselage dynamic system are provided. Important 
conclusions drawn from this proof include: 

A set of complex left-hand eigenvectors are required, together with 
the right-hand set, in order to reduce the system response equations 
to an uncoupled modal form suitable for a solution; and 
It is necessary for the modes analysis to be re-formulated as an 
eigenvalue problem replacing the transfer matrix solution procedure. 

An orthogonalisation procedure is employed to reduce the complex system 
response equations to the uncoupled modal form. The procedure not only 
simplifies the algebraic process, but also identifies exactly the 
forcing functions present in the dynamic system modelled. However, for 
consistency wi th the dynamic model, it is necessary to restrict the 
blade model to a straight beam with small pre-deformed angles. 

The need to treat both the complex coupled and reactionless mode sets 
simul taneously, when they are defined in different reference frames, 
requires special attention to the solution of the modal responses. A 
numerical technique is developed for filtering the applied forces and 
hence identifying the forcing for the respective mode types. 

The fundamental issue regarding the true definition of angle of attack 
used for aerodynamic calculation is also addressed. The second order 
pseudo-torsion term must be removed from the incidence expression to 
ensure the aerodynamic loads are calculated correctly. 

The determination of the blade structural loads using both Modal 
Summation and Force Integration methods is discussed and described. A 
novel numerical technique, based on curve fitting using Chebyshev 
polynomials coupled with analytical integration, is devised and shown 
for the first time to minimise the inherent numerical problems 
associated with Force Integration. 

Finally, applications of the analytical model to include the effects of 
hub motion on vibratory loads calculation and to determine loads in an 
extreme manoeuvre are successfully demonstrated. The use of rotor 
modes by including transmission flexibility in a rotor dynamic model in 
loads calculation is also provided. These correlations establish the 
important milestone on the ability of this model to improve vibration 
prediction and to simulate manoeuvring flight. They also demonstrate 
the potential applications of this model. Recommendations for future 
research are also made. 
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NOTATION 

A's,B's 

A,B,C 

dA 
dr 

c 

dD 
dr 

Coefficient matrices of CRFD system equations (Eqn.3.48); 

Coefficient matrices (Eqn.3.71); 

Lift & drag loads resolvent in the axial direction (+ve out); 

Blade chord; 

Complex normalising factor (Eqn.3.89); 

Thrust coefficient, T 

Blade section aerodynamic drag (+ve lag back); 

Flatwise and edgewise c.g. offset from the elastic axis (e. a.) 

(+ve above and forward); 

eA1 ,eA2 Flatwise and edgewise tension axis offset from the e.a. 

(+ve above and forward); 

E Young's modulus; 

EA Spanwise stiffness, ｊｊｅ､ｾ､ｾＬ＠ about the e.a,; 

EB1 First flatwise moment of area, ｊｊｅｾ､ｾ､ｾＬ＠ about the e.a.; 

EB2 First edgewise moment of area, ｊｊｅｾ､ｾ､ｾＬ＠ about the e.a.; 

EC1 

EC2 

EC1 * 

EC * 2 

E111 

E122 

E112 
* E111 
• 

E122 
• 

E112 

FO,FC,FS 

Fk 

Fs 

Fo 

Section elastic integral, ｊｊｅＨｾＲＫｾＲＩｾ､ｾ､ｾ＠ about the e. a. ; 

Section elastic integral, 2 2 
ｊｊｅＨｾ＠ Ｋｾ＠ Ｉｾ､ｾ､ｾ＠ about the e.a. ; 

Section elastic integral, 2 2 
ｊｊｅＨｾ＠ Ｋｾ＠ ＩＨｾＭ･ａＱＩ､ｾ､ｾＬ＠ about the 

tension axis; 
2 2 Section elastic integral, ｊｦｅＨｾ＠ Ｋｾ＠ ＩＨｾＭ･ａＲＩ､ｾ､ｾＬ＠ about the 

tension axis; 
2 Flatwise stiffness, ｊｊｅｾ＠ ､ｾ､ｾＬ＠ about the e.a.; 

Edgewise stiffness, ｊｊｅｾＲ＠ ､ｾ､ｾＬ＠ about the e.a.; 

Cross stiffness, ｊｊｅｾｾ＠ ､ｾ､ｾＬ＠ about the e.a.; 

Flatwise stiffness, ｊｊｅＨｾＭ･ａＱＩＲ､ｾ､ｾＬ＠ about the tension axis; 

Edgewise stiffness, ｊｊｅＨｾＭ･ａＲＩＲ､ｾ､ｾＬ＠ about the tension axis; 

Cross ｳｴｩｦｦｮ･ｳｳＬｊｊｅＨｾＭ･ａＲＩＨｾＭ･ａＱＩ､ｾ､ｾＬ＠ about the tension axis; 

Coefficient matrices of the blade root forces (Eqn.3.S4); 

Vector of forces and moments on the kth blade; 

Vector of spring forces; 

Lag damper load (+ve compression); 

F ,F ,F Modal hub shear: longitudinal, lateral and vertical (+ve 
XH YH ZH 

fl 

£1' f2 

[1'[2 

aft, starboard and up); 

Modal forcing of the ith real blade mode (Eqn.3.89a); 

RHS forcing vector (direct and indirect terms) (Appendix I); 

Vector of coefficients of generalised coordinates (direct and 

indirect terms) (Appendix H6); 
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f RHS forcing vector n long (Eqn.3.89a); 

f Strain energy function; 

gl Modal forcing of the ith complex rotor mode (Eqn.3.89b); 

g RHS forcing vector 2n long (Eqn.3.89b); 

g Kinetic energy function; 

G Shear modulus; 

GA Shear stiffness integral. ｦｦｇ､ｾ､ｾＮ＠ about the e.a.; 

GBl Shear elastic integral. ｦｦｇｾ､ｾ､ｾＮ＠ about the e.a.; 

GB2 Shear elastic integral. ｦｦｇｾ､ｾ､ｾＮ＠ about the e.a.; 

GJ Torsional stiffness. ｦｦｇＨｾＲＫｾＲＩ＠ ､ｾ､ｾ［＠

H Vector of hub motion variables; 

hi Hub generalised variables; 

hi Modal hub motion vector of the ith mode; 

Ii Modal inertia for the ith mode; 

Iij Modal inertia coefficient (Appendix H6); 

kis Coefficients in the 4th Runge-Kutta solution algorithm; 

kA 

K 

Radius of gyration about the tension 

Section flatwise radius of gyration. 

Section edgewise radius of gyration. 

Cross section integral ｦｦｰｾｾ､ｾ､ｾＮ＠
• ｦｦｰ､ｾ､ｾＧ＠

centre; 

ｦｦｰｾ､ｾ､ｾＮ＠

ｦｦｰ､ｾ､ｾ＠ · 

ｦｦｰｾ､ｾ､ｾＮ＠

ｦｦｰ､ｾ､ｾ＠ · 

Kinetic energy of the dynamical system; 

Matrix of linear spring rates; 

KR Matrix of rotational spring rates; 

Li.Lj.L k Components of aerodynamic loads in the undeformed axis system; 

Lx.Ly.L z Linear spring rates; 

lu.Lv.Lw Coordinates of rigid rod attachment in the local deformed axis 

system (Appendix B); 

lr .In Ｎｬｾ＠ Position vector of the fixed end (Fs) of the spring 
s "s "'s 

10 

dL 
dr 

m 

dM 
dr 

relative to the local axis system (Appendix B); 

Lag damper arm length; 

Blade section aerodynamic lift (+ve up); 

Blade mass distribution. ｦｦｰ､ｾ､ｾ［＠

Blade section pitching moment (+ve leading edge up); 

M .M .Mz Modal hub moments: roll. pitch and yaw (+ve starboard uP. 
XH YH H 

pitch up and with rotation); 

Mx.My.M z Modal moments: torque. flap and lag (+ve leading edge uP. flap 

down. lag forward); 
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ｾＬ｣Ｌｯ｣＠ Coefficient matrices (Eqn.3.88); 

M,C,K Inertia, damping and stiffness matrices of a dynamical system 

equation in classical form; 

Ms Vector of moments in the secondary load path (spring); 

n Harmonic index; 

N Number of modes; Number of blades; 

Ns Number of secondary load paths; 

PF,qF,rF Aircraft roll, pitch and yaw rate in the body-axes; 

PH,qH,rH Hub roll, pitch and yaw rate in the HXCYGZG-system; 

Plj,qlj Components of strain tensor, i,j=1,2,3; 

ql Generalised coordinate of the ith real blade mode; 

Q1 Generalised force of the ith mode; 

r Curvilinear radial coordinate; 

r A Position vector of the aerodynamic centre after deformation; 

Io,r1 Position vector of the undeformed and deformed blade point in 

the local blade axis system; 

r Position vector of blade point in the global undisturbed shaft 

axis system; 

ro Vector of linear elastic displacement of the elastic axis; 

r H Vector of linear elastic displacement at the hub; 

Is Position vector of point in the blade section axis system; 

rp Position vector of pre-deformed position of the elastic axis; 

LFs Position vector of load path attachment point; 

aRL Vector of virtual translations in the local blade system; 

afL Vector of virtual rotations in the local blade system; 

R Curvilinear length of rotor blades; 

Rx,Ry,Rz Rotational spring rates; 
. 
R Vector of blade absolute velocities in the HXCYGZG-system; 

RH Vector of rotational velocities at the hub; 

Bs Position vector of blade point in the global HXCYGZG-system; 

s Rotor solidity, ｾｾ［＠

5 Matrix containing steady blade root forces; 

51j Modal stiffness coefficient (Appendix H6); 

s1,s2 Undeformed and deformed spring root attachment; 

SA Vector of non-linear strain terms; 

5B Vector of constants containing gravitational forces and steady 

aerodynamics; 

t Time parameter; Aerofoil thickness; 

tx,ty,tz Control stiffness spring orientations; 

T Axial tension, EAu'; Rotor thrust; 
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U Strain energy of the dynamical system; 

U Total velocity vector of the blade point 

UH Vector of linear velocities at the hub UH={us,vs,ws}; 

ｾｫ＠ Vector of kth blade deformation variables; 

ｕｯＬｾＬｕｳ＠ Vector of collective, cyclic cosine and sine components of 

blade deformation variables; 

Up,Vp,Wp Pre-deformed coordinates of blade elastic axis in the 

H'XpYpZp-system; 

UR,UT,Up Radial, tangential and perpendicular air velocity components 

in the Oxyz-system (+ve outward, I.e. to t.e. and up); 

Us Strain energy contribution due to secondary load paths; 

u,v,w Blade axial, lag and flap displacements; 

uF,vF,wF Aircraft forward, sideslip and heave velocity in the body-axes; 

us.vs.ws Hub velocity components in the undisturbed shaft axis system; 

V Air velocity vector; Modal vector; 

Vx.Vy.V z Blade radial, lag and flap Shear (+ve outboard, fwd and up); 

oW Virtual Work; 

x Non-dimensional radial coordinate: Up=x+O(c2
); 

Xj Blade generalised variables; 

xG'YG,zG Hub coordinate in the fuselage body axis system; 

xH'YH,zH Hub elastic displacement (+ve aft. starboard and up); 

YA,ZA Aerodynamic centre offset from e.a.; 

Z Hub impedance matrix; 

Axis Systems 

OXFYFZF Fuselage body axis system (Unit vectors: IF,lF,KF); 

ｾｙｇｚｇ＠ Non-rotating global undisturbed shaft axis system (lc.le.KG); 
H'XVZ Non-rotating disturbed shaft axis system (l,l.K); 

H'XpYpZp Rotating blade pre-deformed axis system (lp,Jp.Kp); 

Oxyz Rotating blade section axis system (i.1.k); 
ｏＧｲｾｾ＠ Deformed blade section principal axis system (i' ,1' .k'); 

FsXsYsZs Spring axis system (is .1s ,ks ); 

ｾＬｾＬｾ＠ Rotor reference. hub and inertia frames; 

Greek 

Blade angle of attack; 

Inclination of lag damper load path; 

Shaft tilt (+ve aft); 

Variational operator; Damping factor; 

Strain tensor components: Classical (i,j=1.2,3); 

Eulerian ＨｩＬｪ］ｲＬｾＮｾＩ［＠

Blade lag. flap and twist angle (+ve lag forward. flap uP. 
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leading edge up); 

Blade pre-sweep and pre-cone angles; 

ｾＬｾＬｾｺ＠ Normalised shaft velocity components (+ve forward, starboard, 

and down the shaft) Ｈｾｸ］ｾＬ＠ the advance ratio); 

Vector of normalised induced velocity; 

Eigenvalue or complex natural frequency for the ith mode; 

Generalised coordinate for the ith complex mode; 

Blade principal chordwise and flatwise axis; 

Blade chordwise and flatwise coordinate; 

Ao,A1 ,B1 Collective, lateral cyclic and longitudinal cyclic pitch; 
-

Total blade pitch angle: ｾ＠ = ｾｰ＠ + ｾＨｾＩ＠ + ｾ＠ - ｾ｢［＠

Blade control pitch angle: ｾＨｾＩ＠ = Ao - ａｬ｣ｯｳｾ＠ - ｂｬｳｩｮｾ［＠

Blade pre-twist or built-in twist; 

Pseudo-torsion parameter; 

Blade pitch used in modes calculation; 
A 

Blade pitch angle: ｾ＠ = ｾ＠ + ｾＨｾＩ＠ + ｾ［＠p 

Heaviside function H(x-y)= 1 for ｸｾ＠ y; 

= 0 for x< y; 

o(r-rs ) Dirac Delta function: o(x-y)= 1 for x= y; 

= 0 for x:;f: y; 

ｾ＠ Pedal input; 

p Blade density; 

ｾｩｊ＠ Stress tensor components; 

ｾｫ＠ Azimuth position of the kth blade Ｈ］ｾｬＫｑｴＩ［＠

Q Rotor speed; 

wi Blade natural frequency for the ith mode: Ai = iw t ; 

｛ｾ｝＠ Matrix of hub angular velocities (Eqn.3.18); 

Inflow angle; 

Elastic twist; 

ｭｑｾＲ＠
Non-dimensional scaling parameter, ｾ＠ EA ; 

ｾｈＧｾｈＧｾｈ＠ Hub elastic roll, pitch and yaw angles; 

ｾＬｲ＠ Modal matrix comprising of RH and LH modal 

<P,l RH and LH-modal vector n long; 

ｾＬｲ＠ RH and LH-modal vector 2n long; 

Subscripts 

A Aeroelastics; 

t,c Coupled components; 

def. Deformed; 

D Dynamics or damper; 
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vectors 2n long; 



F 

H 

m 

a,c,s 

P 

lR,r 

ST 

T 

Fuselage; 

Hub; 

Modal parameter; 

Collective, cyclic (cosine) and cyclic (sine) components; 

Pre-deformed coordinate; 

Reactionless components; 

Steady state; 

Total; 

Miscellaneous 

( ) 

( ) I 

{ }, ( ) 

[ ] 

[]T 

()* 

[ ] H 

() 

8()18t; 

8 ( )18x; 

Vector notation; 

Matrix notation; 

Matrix transpose; 

Conjugate; 
T 

Hermitian = []* 

Sum of pre-deformed and elastic components; 

Abbreviations 

AHS American Helicopter Society; 

BERP 

c.g. 

CMRB 

CPI 

CRFA 

CRFD 

CRFM 

DRA 

Eqn(s). 

ERF 

KTAS 

LH,LHS 

RAeS 

RH,RHS 

WHL 

British Experimental Rotor Program; 

Centre of gravity; 

Composite Main Rotor Blade; 

Chebyshev Polynomial Integration; 

Coupled Rotor-Fuselage Aeroelastics; 

Coupled Rotor-Fuselage Dynamics; 

Coupled Rotor-Fuselage Model; 

Defence Research Agency; 

(Formerly RAE: Royal Aerospace Establishment); 

Equa t ion ( s ) ; 

European Rotorcraft Forum; 

True air speed (knots); 

Left-hand, left-hand side; 

Royal Aeronautical SOCiety; 

Right-hand, right-hand side; 

GKN Westland Helicopters Limited. 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

The need to predict helicopter rotor loads, aeroelastic stability and 

airframe vibration accurately has always been a challenging and 

formidable task for the designers. The history of helicopter 

development is marked by their continuous efforts to overcome problems 

of unpleasant vibration and dynamic instabilities inherent in this type 

of aircraft. 

The advancement of rotorcraft technology in recent years has furnished 

a basis for designers to expand the flight envelope and manoeuvre 

capability but without increasing airframe vibration or piloting 

difficul ties. In order to ensure that helicopters meet the various 

demanding tasks in military applications and also to improve passenger 

and crew comfort for civil transportation, analysts must have a clear 

understanding of the rotorcraft behaviour in flight. 

The lift and propulsive power of conventional helicopters are derived 

primarily from the main rotor. This feature provides its capability in 

performing both hovering and axial flight. However, in forward and 

manoeuvring flight, the rotor is being forced to operate in a flow 

environment which is continuously changing. Because of such 

complexity, many aspects of helicopter behaviour are still not fully 

understood. Also there is a lack of insight into the physics of rotor 

and fuselage interactions in both dynamics and aerodynamics. This lack 

of understanding does not always guarantee the best helicopter design. 

Helicopter engineering involves many disciplines, as is amply 

illustrated in the textbooks by Bramwell [1.1] and Johnson [1.2]. The 

complexity and highly coupled nature of rotorcraft behaviour stems from 

various sources. In terms of aerodynamics, the rotor is subjected to a 

variety of complex flow regimes such as reverse, transonic and unsteady 

flow as well as the flow field emerging from the fuselage. Also in the 

blade tip region where high speed is evident, 3-dimensional effects 

become important. In terms of dynamics, couplings arise from both the 

structural and inertial properties of the blades and also between the 

rotor and the fuselage. These are further compi ica ted by the non-

linear dynamics of the blade pitch control mechanism. 
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To improve helicopter controllability and agility and to reduce 

maintenance cost, new hub configurations are increasingly used ego 

hingeless and bearingless hubs. These rotor types eliminate the hinges 

used in a conventional articulated rotor but they give a new dimension 

of structural coupling behaviour. In the assessment of flying 

qualities, complexity also arises from the modelling of control 

linkages between the pilot and the rotor and the implementation of 

various control laws. 

All of these technical disciplines must be correctly combined in order 

that the helicopter behaviour can be analysed accurately. The 

challenge now confronting helicopter analysts is the ability to predict 

rotorcraft behaviour in all flight regimes accurately. 

1.2 The Research Objectives 

The main purpose of this study is to develop an analytical model 

capable of analysing the aeroelastic response of the rotorcraft in both 

steady and manoeuvring flight. Two primary objectives are identified. 

First, the model must be capable of including the effects of elastic 

hub motions, ie. the fuselage response, in the loads analysis such that 

the dynamic interactions between the rotor and fuselage are correctly 

incorporated. Secondly, the model must also be capable of determining 

the rotor loads and airframe vibration during manoeuvring flight. This 

is the first time in which both of these issues are being addressed 

together in a rotorcraft aeroelastic analysis. 

In order to accomplish these objectives, the analysis is necessarily 

complex. This study also aims to ensure the method is practical but 

yet the important aspects of the modelling philosophy are captured. 

The rotorcraft configuration to be examined is limited to the 

conventional helicopter with main/tail rotor configuration. However, 

the analysis is developed in such a way that extension to provide 

modelling flexibility can be achieved with ease. 

In addition to the said objectives, some of the more fundamental issues 

of rotor modelling are also addressed. These issues include the true 

definition of angle of attack used in the aerodynamic calculation - an 

issue which has cast doubt for many years. It also aims to address the 
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numerical deficiencies inherent in the force integration method - a 

preferred blade loads determination procedure. 

In order to couple the dynamics of rotor and fuse lage, complex rotor 

modes are needed. The concept of complex modes, not furnished before, 

is introduced. A rigorous mathematical proof of the complex modes 

orthogonali ty by way of a generalised relationship is provided. Its 

application to the helicopter analysis is both new and analytically 

demanding. 

Development of aerodynamic models for the loads calculation is not part 

of this study but description of the various models adopted is provided 

for completeness. 

Let us first review the existing modelling philosophies and examine 

some of the more current aeroelastic analysis tools in order to 

understand the approach taken in this study. 

1.3 Scope and Modelling Philosophy of Helicopter Analysis 

A number of helicopter aeroelastic analyses have been developed wi th 

varying degrees of sophistication. However, the complexity in rotary-

wing systems imposes stringent demands on the level of modelling in any 

analysis, and aeroelastic modelling is far from mature. This has been 

concluded in a number of thorough reviews on rotorcraft aeroelasticity 

published in the past twenty-five years. 

The first significant review provided by Loewy [1.3] in 1969 

highlighted a wide range of specific dynamic and aeroelastic problems 

even when the technology was still fairly basic. For example, one of 

his conclusions was that the effect of the azimuthal variation of 

swash-plate stiffness as experienced by the blade pi tch control rod 

could no longer be ignored. A systematic study of rotor load 

prediction capabilities based on a hypothetical rotor model, was 

carried out by Ormiston [1.4] after the AGARD conference held in 1973. 

He concluded that large differences in the rotor load prediction 

capability between various analyses was attributable to differences at 

the fundamental levels, namely the solution method used and the 

modelling of structural dynamics and aerodynamics. In 1982, Arcidiacono 

and Sopher [1.5] conducted a similar survey and they concluded that a 
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good deal of fundamental work had been done since Ormiston's review. 

These included improvement in aerodynamic modelling in a number of key 

areas such as dynamic stall, blade-vortex interactions and the 

inclusion of 3-dimensional flow effects and also the inclusion of 

structural coupling and control system in the dynamic modelling. 

In the study by Bousman and Mantay [1.6] in 1987, it was concluded that 

al though the prediction of mean and oscillatory loads was acceptable 

for design purposes, the physical phenomena were still not completely 

understood. The comprehensive survey by Friedmann [1.7] in 1990 on the 

principal developments in various modelling aspects also concluded that 

the capabili ty in rotor loads prediction has not been significantly 

improved and there is still much to be done. 

reviews has led to the conclusion that 

A close scrutiny of these 

the modelling in rotor 

aerodynamics and dynamics is still far from satisfactory. 

For reasons of simplicity, most existing analytical methods treat the 

rotor and the fuselage separately and their limitations are well 

recognised. The underlying philosophies are; 

(1) The distribution of loads on the rotor blade and control system can 

be calculated with reasonable accuracy without considering the 

fini te hub impedance. This is based on the assumption that most 

in-service helicopters do not exhibit significant hub motion; and 

(2) The fuselage vibration can be reasonably estimated using the hub 

loads calculated on a hub-fixed condition even when the vibratory 

sources in the rotor are not fully understood. 

Although these analyses have been successfully used in the design and 

analysis of helicopters, some important aspects of rotor behaviour and 

rotor-fuselage interaction are not adequately modelled. The 

applications of these analyses to flight condi tions other than level 

flight are often limi ted and are treated in an ad hoc fashion. For 

example, WHL's coupled modes analysis: Program R1S0 [1.8], calculates 

the rotor loads using hub-f ixed blade modes. The hub loads are then 

used to assess airframe vibration by treating the rotor as a lumped 

mass. The effect of manoeuvre motion is accounted for by including the 

aircraft steady pitch and roll motion only. 

The dynamic characteristics of the rotor system depend not only on the 

distribution of blade structural and inertial properties and the hub 
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configurations, but also on the dynamics of the systems to which the 

rotor is attached. These systems are principally the fuselage, the 

transmission and the control linkage. The assumption of isolating the 

treatment of rotor and fuselage can no longer be justified. In order 

to describe the rotor behaviour adequately, it is important that the 

dynamic interaction between these systems is taken into consideration. 

The advancement of computer technology equips analysts with a powerful 

tool allowing them to model rotorcraft problem with added complexity. 

However, simply introducing more details into the modelling does not 

necessarily provide a better understanding of the complex behaviour of 

the rotorcraft. Johnson [1.9] has highlighted some of the key issues 

which should be included in any rotorcraft aeroelastic analysis. These 

issues include the fully non-linear aeroelastic solution, improved 

aerodynamics and the modelling of configurational dependent dynamics. 

In the next section, the various ways of dealing with these issues by 

some of the current comprehensive analyses is examined. 

1.4 Overview of Current Comprehensive Analyses 

Comprehensiveness is a term now widely used in the rotary-wing 

industry. It defines the ability to combine the modelling of various 

rotorcraft disciplines and to simulate manoeuvring flight. 

provides the flexibility to model different rotorcraft 

I t also 

and hub 

configurations, blade planform geometry and control system dynamics. 

A number of comprehensive rotorcraft aeroelastic analyses are being 

developed, usually by teams of engineers and scientists. Some of the 

modelling philosophies are briefly reviewed. This is a vast subject, 

which is already backed by a considerable volume of existing 

literature. The purpose of this review is to highlight some of the 

important features encapsulated in these analyses. A chart is compiled 

in Table 1 to provide a framework for subsequent discussions. 

One of the more noticeable comprehensive analyses is marked by the 

development of the 2GCHAS suite [1.10A], owned by the US Army. It is a 

large computer software system designed to analyse a wide spectrum of 

rotorcraft problems, to provide resources for basic research and to be 

used as a design tool in the various phases of engineering activity. 

Its method lies in the assembly procedure and is finite element method 
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based. The structural model is founded on a building block approach 

where the coupl ing procedure makes use of constraints appl ied at the 

boundary between individual components. The solution is obtained by 

solving the complete system equation. This system provides the 

modelling flexibility and ability to analyse large motion manoeuvres. 

Despite extensive development since 1979, very little correlation on 

manoeuvres has been published [1.10B] and the software system is not 

available outside the USA. 

Program CAMRAD/JA of Johnson Aeronautics [l.llA] is another 

comprehensive model based on the modal method. Its modelling strategy 

lies in the integration of recent technology uniformly to avoid 

limitations presented by the older analyses. Rotor shaft motion 

effects are included by allowing relative motion from one frame of 

reference to another. A selection of wake and dynamic inflow models is 

also available. The analysis is applicable to a twin-rotor aircraft 

and to various hub configurations but its true manoeuvre capability is 

yet to be demonstrated. An updated version, CAMRAD/II [1.11B], is now 

available. The main differences are the use of finite element methods 

and the extended capability to model more complex configurations. This 

program is gradually gaining popularity and is likely to be used as a 

bench-mark for other comprehensive analyses of the same generation. 

Program RDYNE of Sikorsky Aircraft [1.12], based on the sub-structure 

synthesis method developed by Hurty [1.13], assembles a dynamic model 

of the helicopter from physical components contained in the base and 

external modules. These modules, which contain geometrical and 

aerodynamic non-linearities, are assembled to form the complete dynamic 

equation. The coupled system response is obtained by integrating the 

differential equation wi th respect to time. The structural modelling 

in RDYNE is versatile but its manoeuvre capability is limited. 

The approach adopted by Eurocopter Deutschland (formerly MBB) [1.14] is 

based on multi-body system dynamics, where a number of rigid and 

flexible bodies are inter-connected. This is achieved by considering 

the motion of a typical body in an arbitrarily moving reference frame, 

thus allowing large motions to take place between these elements. The 

central theme is to develop a general set of dynamic equations of 

motion from each of these bodies. In this manner, the arbi trary 

connection between different bodies can be modelled and leads to a 
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model with a high degree of flexibility. However it treats the 

structure as an assemblage of rigid body components and does not 

possess the capability of modelling the true aeroelastic and non-linear 

behaviour. 

Program GRASP [1.15] is an analytical tool used principally to 

investigate the aeromechanical stability problem of a bearingless rotor 

with homogeneous isotropic beams. It combines the finite element 

method for its modelling flexibili ty and the mul ti-body approach for 

its ability to handle large motions. It differs from standard finite 

element programs by allowing sub-structures to move relative to each 

other with no small angle assumption. This capability facilitates the 

modelling of rotorcraft structures including rotating and non-rotating 

interfaces and details of blade/root kinematics for various rotor 

types. It also differs from the standard multi-body approach by 

including aeroelastic effects, inflow dynamics and non-linear 

aerodynamics. The approach is to treat the non-linear static and 

linearised dynamic behaviour of rotorcraft represented by arbitrarily 

connected rigid body and beam elements. It thus removes the 

restrictions introduced by the linear small displacement approximation 

on beam elastic deformation and application to a fixed number of 

configurations. Despite its attractive features, the program is 

currently limited to the analysis of aeroelastic stability only. 

General observations of these comprehensive tools are that they provide 

solutions to a wide range of rotorcraft problems wi th emphases being 

placed on modelling flexibility. They are more complex but do not 

necessarily provide the insight into the rotorcraft behaviour. There is 

also a lack of verification on their true manoeuvre capability. 

1.S Methods of Aeroelastic Analysis 

Various methods: modal, finite element, multi-body dynamics and 

numerical, are all being used for rotorcraft aeroelastic analysis. The 

modal approach assumes that the system dynamics can be described by a 

selected number of degrees of freedom ego Program R150 [1.8]. The 

finite element method assembles the equations governing the individual 

elements into the global system equation by imposing boundary 

constraints from which the solution is obtained ego Friedmann [1.16]. 

The multi-body dynamics approach combines the flexibility of the finite 
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element method with that of multi-bodies for dealing with large motion 

for rotorcraft ego Program GRASP [1.15]. Last but not least, in a 

numerical approach, both the formulation and solution of the equations 

of motion are carried out numerically eg. AGEM by Done et al [1. 17] . 

This avoids the need of invoking ordering assumptions and the laborious 

algebraic derivation of the aeroelastic equations. 

In order to strive for physical insight, a modal method is adopted in 

this study. The modal approach provides a greater analytical 

flexibility than that of the finite element method or the multi-body 

hybrid approach since the number of degrees of freedom used in the 

solution is much less, hence reduced computation time. Although for an 

exact treatment an infinite number of modes is needed, in recognising 

that the dominant vibration modes are confined to the lower frequency 

spectrum, the rotor dynamic behaviour can be modelled with sufficient 

accuracy using only a finite number of lower order modes. The 

deficiency associated with the modal method is that it does not treat 

the forcings of higher order modes due to the inherent truncation of 

the number of modes. However, a method does exist to alleviate such a 

deficiency [1.18]. 

Whilst the finite element or the multi-body methods offer modelling 

flexibility, they have their disadvantages. A shortcoming of f ini te 

element methods is that excessive computation time is needed to perform 

the assembly and solution procedures. In addition, traditional finite 

elements cannot accommodate large rotations and special finite elements 

are needed for modelling centrifugal and Coriolis loads. In the hybrid 

mul ti-body approach, large rigid body motions are included by using 

moving reference frames, and the body is assumed to undergo small or 

moderate rotations relative to the reference. This approach permi ts 

the use of standard fini te elements but requires a more compl icated 

assembly and solution procedure. Despite the simplicity offered by the 

numerical approach, post-processing of the resul ts in terms of the 

modal contents would be needed to gain insight. 

1.6 Structure of The Thesis 

In thi s chapter, a background on the complex nature of he 1 icopter is 

provided. The objectives of this study are then defined. The 

modelling philosophies and limitations of existing methods are reviewed 
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and are followed by an overview of some of the current comprehensive 

analyses. Both of which provide a framework for this study. The 

chapter was concluded by the discussion of various methods applicable 

to this type of analysis and the reasons for adopting the modal method. 

In Chapter 2, the important aspects in the modelling of rotor 

structural dynamics and aeroelastics are considered. The assumptions 

adopted for the beam kinematics are discussed and the basic dynamic 

principles used in the analysis are reviewed. The chapter is concluded 

by discussing the application of REDUCE, a symbolic algebra software 

system, to alleviate the manual effort for deriving the algebraic 

equations but its limitation is also recorded. 

Chapter 3 details the development of the analysis method. Particular 

emphasis is given to the various coordinate transformations and the 

ordering scheme adopted. The concept of complex rotor modes is 

introduced, followed by the description of the dynamic analysis and its 

solution method. A rigorous mathematical proof of the classical 

orthogonality for the complex rotor modes is provided and its influence 

on the dynamic modelling is discussed. An orthogonalisation procedure, 

applicable to all mode types, is introduced. It allows the system 

response equations to be reduced to a modal form, sui table for a 

solution, without reverting to laborious algebra. The method of 

solution employing complex rotor modes is described, with due 

consideration given to the simul taneous treatment of different mode 

types. The various techniques used to determine the blade structural 

loads are discussed. A novel technique for alleviating the inherent 

numerical problems wi th the force integration method is also 

introduced. 

Chapter 4 first describes the main analysis procedure of the software -

Program CRFA, developed for this analysis. Applications of this method 

to determine rotor loads during a manoeuvre and to include the effect 

of elastic hub motions on rotor vibratory loads are demonstrated. 

Finally the application of rotor modes by including the transmission 

flexibility in the loads calculation is also provided. 

Finally, Chapter 5 draws conclusions from this study and recommends 

topics for future research. 
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CHAPTER 2 MODELLING CONSIDERATIONS AND BASIC ASSUMPTIONS 

2.1 Introduction 

An accurate prediction of rotor aeroelastic behaviour requires accurate 

modelling of the structural dynamics of the rotor system, the 

aerodynamic derivatives of the blade aerofoil sections and a detailed 

description of the aerodynamic environment in which the rotor operates. 

The advent of composite materials in the construction of rotor blades 

and hubs has also brought along additional complexity to blade 

structural modelling. As the analysis of rotorcraft becomes ever more 

complex, due consideration must be given to ensure that the modelling 

is sufficiently accurate and yet computationally feasible. In this 

chapter, the modelling of the rotor dynamics and the assumptions on 

beam kinematics, with particular emphasis on practical application, are 

discussed and described. 

2.2 Considerations for the Modelling of Rotorcraft Dynamics 

and Aeroelastics 

One of the main contributors of complexity in rotorcraft dynamic 

coupling arises from the presence of the rotating and non-rotating 

components. The first analytical study to deal with such a system was 

attributed to Coleman & Feingold [2.1], who described the well-known 

ground resonance phenomenon by considering a rotor wi th rigid blades 

having flap-lag freedoms on a rigid fuselage with undercarriage 

flexibility. They made use of the multi-blade coordinate to describe 

the transformation between the coordinate system fixed in the blade and 

that fixed in the body. A useful description and an application of 

these coordinates in coupling the rotor/fuselage were made by 

Hohenemser and Yin [2.2] and also by Done [2.3] in a simplified 

approach to the ground resonance study. However, for most practical 

applications, the use of multi-blade coordinates is still primitive in 

rotorcraft analysis. 

At tempts to couple the rotor wi th the fuselage are done differently. 

For instance, the fuselage vibration is assessed by treating the rotor 

as a lumped mass and using the loads calculated using hub-fixed modes 

as in Program RIS0. Conversely, the fuselage has been incorporated as 

a set of hub impedances, prescribed as a harmonic variation, into the 
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rotor loads calculation, ego the work carried out by Sopher & 

Kottapalli [2.4] on a wind tunnel helicopter model. Further evidence 

has also identified the need for a better representation of the coupled 

rotor-fuselage system. It is the purpose of this study to address some 

of these issues. 

2.2.1 Effects of Transmission System Flexibility on Rotor Dynamics 

The inclusion of the transmission flexibility allows the shaft to 

rotate, which cannot at present be accommodated in the hub-fixed modes 

calculation. The mechanism of this shaft rotation effectively reduces 

the in-plane stiffness of the rotor when a net yaw moment is applied to 

the shaft. An example calculation by Griffi ths [2.5] has detected a 

shift of the blade second lead-lag frequency from 4.31R to 3.48R (lR = 
once per revolution) for a 4-bladed Lynx main rotor when transmission 

flexibility, using an impedance representation, was included in the 

analysis. This frequency shift only occurs for the collective motion 

of the blades, ie. when being forced at OR,4R,8R .. etc. 

Flight test results [2.6] have shown that the 4R mast stresses actually 

decrease with increasing rotor speed, which suggests that the effective 

value of the blade second lead-lag frequency is actually below 4R, 

since the natural frequency reduces as rotor speed increases. 

Griffiths [2.5] also showed that the inclusion of transmission 

flexibility has improved the phase correlation of 4R edgewise bending 

moments with flight test data. Thus the transmission flexibility can 

no longer be ignored and must be included in the dynamic analysis in 

order to improve the loads calculation. 

2.2.2 Hub Motion Effects on Rotor Loads and Fuselage Dynamics 

In a modal approach, the rotating blade modes used in the response 

analysis are normally defined at a hub-fixed condition. The hub-fixed 

assumption for rotor dynamic analyses does not strictly hold because 

perturbatory hub elastic motions exist. The effect of hub motion on 

the oscillatory blade loads, as well as the vibratory hub loads, are 

well recognised as highlighted in [2.4]. This is particularly true 

near the blade passing frequency (NR) and is very sensitive to the 

fuselage dynamic response. 
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The loads on a rotor include both steady and oscillatory components, 

described by lR,2R .. etc. In general, the rotor loads are dominated by 

the steady component and the first few harmonics. These are the loads 

that determine the fatigue life and ultimate strength of blades and 

control circuit linkages, and are of prime interest to rotor designers. 

At harmonics above two, the loads generally become progressively 

smaller and often have little influence on the fatigue life for blades 

of good structural design with natural frequencies well separated from 

the forcing harmonics. However, it is these higher harmonic loads that 

are the main sources of vibration in the fuselage. An understanding of 

the origins of these loads is fundamental in order to predict the 

airframe vibration accurately. 

In addi tion, the approximation of applying head forces and moments, 

calculated for a rigidly supported rotor, to the flexible airframe can 

lead to errors in vibration calculation. For example, Gabel and 

Sankewitsch [2.7] introduced hub motions as harmonic excitations in the 

assessment of helicopter vibration. Using this approach, they showed 

that when the rotor impedance is used to correct the rotor forces and 

moments input to the airframe, the fuselage vibrations are better 

predicted. 

In this analysis, the effects of hub motion will be considered both as 

external inertia forcings at the hub and included in the modes 

calculation. In the former approach, the blade dynamics can be 

modelled as hub-fixed rotating blade modes with the hub motion being 

calculated from measured or predicted fuselage responses. The latter 

approach implies that the modes are complex. 

2.2.3 Coupled Rotor-Fuselage Responses 

An assessment of the importance of rotor-fuselage coupling on airframe 

vibration response using a simplified finite element fuselage 

structural model was made by Rutkowski [2.8]. Forced responses of 

coupled and uncoupled rotor fuselage configurations were studied. The 

results showed that the qualitative behaviour of the responses appeared 

to be similar in the two cases, but that the magnitude of the uncoupled 

(approximate) response was considerably larger than the coupled (near 

exact) response. Also it was found that the magnitude of the fuselage 

response at the natural frequencies was highly dependent on their 
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proximity to the blade frequencies. Rutkowski's study has illustrated 

the significance of coupled system characteristics on fuselage modes. 

2.2.4 Effects of Multiple Torsion Frequencies and Control Circuit 

Stiffness on Rotor Dynamics 

An examination of the Lynx main rotor control circuit load paths 

reveals that the value of control circui t stiffness experienced by a 

single blade depends on the motion of all the blades, since the upper 

part of the swash-plate experiences different stiffnesses around the 

azimuth due to the positioning of the fixed system jacks. 

Multiple torsion frequencies, described as collective, lateral and 

longitudinal cyclic, and reactionless frequencies, ranging from 3.8R to 

6.2R have been identified both analytically and experimentally (using 

spectral analysis of blade torsion moment and spider arm bending 

moment) on the Lynx aircraft. However, in a conventional single blade 

analysis, only one of these frequencies can be used in the calculation 

of blade responses. In the study by Griffiths [2.5], it was shown that 

the prediction of airframe vibration and rotor loads could be 

significantly altered depending on which mode was used. The modes used 

for the response analysis must adequately reflect the true placement of 

torsional frequencies. 

In addition, the calculation on a Sea King tail rotor by Holton [2.9] 

has shown large effects on the blade stability margins when the 

transmission system and control circuit impedance are included in the 

single blade analysis. The control circui t model for both hydraul ics 

on and off cases is represented by two mass-spr ing-damper systems, 

where the parameters are obtained from measured dynamic characteristics 

based on collective rotor motion. The transmission dynamic model is 

represented using ten transmission system modes obtained from a dynamic 

model of the gear-train system. The large differences in the blade 

stability margins for the two cases, with and without coupling to the 

control circuit and transmission system, highlight the need to include 

the latter in the stability calculation. 

2.2.5 Modelling of Lag Damper 

Lag dampers are introduced primarily to suppress the ground resonance 
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instability in rotorcraft but they pose significant modelling problems 

to the analysts. The lag damper characteristics, which are highly non-

linear and frequency dependent, must be modelled adequately in order 

that the rotor loads be predicted accurately. 

Correlations of measured and predicted blade root edgewise bending 

moment have shown large discrepancies. This is due mainly to the 

differences found in the fundamental lag frequencies between the 

predicted (based on a single blade mode analysis program) and the 

measured (based on a cyclic stir on the ground run). For instance, 

these frequencies are found to be 0.66R and 0.73R respectively for a 

Lynx main rotor [2.10]. This shift of frequency is primarily 

attributed to the increased stiffness due to the lag damper. Unless it 

is included in the modes calculation, the blade dynamics cannot be 

modelled accurately. 

In this analysis, the effects of a lag damper wi 11 be modelled as 

external discrete loads in the main blade load path. Also the linear 

lag damper load can be included as a main consti tuent in the modes 

calculation. The latter approach implies the modes are complex and 

that the linear lag damper load must be subtracted from the total loads 

in the response calculation. 

2.2.6 Modelling of The Effects due to 

Variation of Rotor Speed and Blade Pitch Angle 

The dynamic characteristics of a rotor blade are normally calculated at 

a constant rotor speed and a representative blade collective pitch. 

The application of time-varying cyclic pi tch implies that the blade 

mode shapes vary around the azimuth. Because of the excessive 

computation required, such time dependent mode shapes cannot yet be 

accommodated. Bell Helicopters of the USA has included an option into 

Program COPTER [2.11] to enable the rotor dynamics to be numerically 

interpola ted for different pi tch appl ica t ions. This has shown some 

improvement in the prediction of oscillatory loads. In this analysis, 

although there is a potential to include cyclic pitch in the modes 

calcula t ion when complex modes are introduced, thi s wi 11 not be done 

for some time yet. In order to account for the time varying pitch, the 

perturbations in pitch will be treated as forCing functions in the 

response analysis. 
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The variation of rotor speed is also of equal importance in rotor 

dynamics. During a manoeuvre, the rotor can operate over a range of 

speed, ego 85%NR to 105%NR (NR=Nominal rotor speed) in a flyaway. This 

means that the modes must be calculated for each rotor speed and this 

is clearly not practical. In this analysis, we consider only the 

kinematic effect of the rotor speed variation to allow transitional 

flight and engine torque perturbation. It will be treated as forcing 

functions and will not be considered in the modes calculation. 

2.3 Blade Structural Modelling 

Rotor blades are effectively slender beams where the aspect ratio is an 

order higher than the lifting surface of a fixed wing aircraft. This 

feature has an important implication in that the rotor blade analysis 

reduces effectively to a 1-dimensional ie. beam problem. Advanced 

section and planform geometry rotor blades are introduced to improve 

aerodynamic efficiency, and for structural simplicity, bearingless hub 

configurations are also used. Both of these can only be accomplished 

by the application of composite materials in the blade and hub 

construction. It is therefore necessary to examine the basic 

assumptions for the practical application of this analysis to composite 

rotor blades. 

2.3.1 Composite Materials and Bearingless Rotor 

The introduction of composite materials in rotor blade construction are 

primarily to increase the blade fatigue strength and damage tolerance. 

Composite materials are anisotropic and their non-homogeneity 

introduces various deformation couplings which are absent in isotropic 

materials. The advantage is that they allow the designers to select 

fibre lay-ups for optimal structural coupling to reduce vibration - a 

topic which has received attention in recent years under the heading of 

aeroelastic tailoring as surveyed by Shirk et al [2.12]. Its 

introduction has also led to substantial research efforts to develop 

dynamic models which are sui table for structural dynamic and 

aeroelastic analysis for these types of blade construction. 

Hodges [2.13] presented an excellent review of composite beam modelling 

in 1990 and he concluded that a structural theory that is sufficiently 
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general to treat such complicated structures with their variation of 

cross-section, spanwise non-uniformity and potentially large 

deflection, does not yet exist. However, many of such composite beam 

theories ego the anisotropic theory developed by Bauchau and Hong 

[2.14] have been successfully applied to a thin-walled section blade 

wi th large displacements. They also highl ighted some of the non-

classical behaviour, such as sectional warping and shear deformations 

in composi te blades. Al though the importance of these non-classical 

effects is recognised, in order to prevent amplification of the problem 

and detraction from the set objectives, certain assumptions on 

composite blade modelling are made in this analysis. 

One of the main difficulties of modelling composite beams is to extract 

the stiffness properties of arbi trary cross-sections and then 

structurally reduce them to a beam problem. Although the 3-dimensional 

anisotropic behaviour in composite blades is recognised, providing the 

geometric variations of the blade are "moderate", the blade can be 

considered uniform at any particular cross-section. Thus the analysis 

can be done once for each cross-section and is independent of the non-

linear global deformation. This partial de-coupling is assumed to be 

possible wi thout rigorous proof as concluded by Hodges [2.13] and is 

adopted in this study. 

The bearingless rotor systems eliminate conventional blade root hinges 

and bearings by using structural elements that are sufficiently soft in 

torsion to accommodate all the blade pi tch control. The flexible 

structure makes the dynamic modelling of the systems much more 

complicated and difficult to analyse. 

In order to account for the softer torsional f lexi bi I i ty, a 

quantitative argument is used. The structural torsional moment along a 

deformed blade is defined principally as the product of torsional 

rigidi ty (GJ) and the rate of twist (q,'). For rotor blades made of 

conventional materials, GJ is of the same order as the bending 

stiffness, hence the twist q, will be small. For flexible structural 

elements, the converse is true. In this analysis, an ordering scheme 

is defined to retain the magnitude on the torsional moment such that a 

balance of rigidity and deformation can be maintained. 
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2.3.2 Assumptions of Small Strains and Uniaxial Stress 

- Moderate Deformation 

Essential to the derivation of non-linear aeroelastic equations is the 

development of a non-linear strain-displacement relationship. The use 

of this relationship, together with the Hooke's Law, permits the strain 

energy to be expressed in terms of the deformation quantities. 

One of the most notable treatments of the non-linear strain-

displacement relationship for rotor blades was due to Dowell & Hodges 

[2.15] in 1974. They derived the relationship from a general 

standpoint and then reduced it to a second order problem on the 

assumption that the strain components are small. The small strain 

assumption is justified by the fact that massive bodies in which strain 

components are small can only be subject to small elastic displacements 

and rotations. Conversely, thin bodies such as beams can undergo 

moderate elastic deformations even when the strains are small. 

The small strain assumption has important implications in that the 

higher order non-linear strain terms can be neglected. Thus the 

definition of strain based on the deformed length increment (Eulerian) 

and on the original length increment (Lagrangian) become identical. By 

adopting this small strain assumption, the usual stress-strain 

relationship of the material can be applied in this analysis. 

Simi larly, the assumption of uniaxial stress is also invoked in this 

study. This implies that the stress components in the other directions 

are at least an order of magni tude smaller than the axial stress. 

Hence the strain energy resul ting from products of stress and strain 

components in the direction normal to the axial orientation can be 

neglected. This assumption reduces the magni tude of analysis by, at 

least, an order [2.13]. 

2.3.3 Effects of Sectional Warping and Shear Deformation 

The Euler-Bernoull i beam bending theory assumes that a cross-sect ion 

remains plane after deformation. However, when composite materials are 

used, several non-classical effects, such as torsional related warping 

and transverse shear deformation can become important. Their effects 

are essentially non-linear and, when included, the computational effort 
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will be substantially increased as shown by Bauchau & Liu [2.16]. 

Shear deformations describe shearing of the cross-section and are of 

the same order as the bending slopes. The difference between the 

shearing and the bending of a cross section represents a reduction of 

bending slope. For conventional rotor blades, including those of 

composi te material construction, shear deformations are very small. 

This is also true for most bearingless rotors. Shear deformation is 

noticeable only if unconventional materials ego rubber based, are used 

in the blade construction. 

In general beam deformation, in- and out-of-plane warping as well as 

torsional warping can occur. The uniaxial stress assumption requires 

only the torsional warping to be considered as shown by Hodges & Dowell 

[2.15]. However, this effect is small for applications involving 

closed sections. It can be safely disregarded without loss of accuracy. 

In order to contain this analysis to a manageable size, both sectional 

warping and shear deformation are excluded ie. Euler-Bernoulli beam 

theory applies and there is no distinction between section rotation 

angles and bending slopes. However, it should be noted that by making 

such assumptions, the important coupling effects ego those induced by 

biased ply lay-ups for aeroelastic tailoring cannot be treated in this 

analysis. 

future. 

Extension to deal wi th these issues is required in the 

2.3.4 Exact vs Approximate Analysis 

In the derivation of the non-linear aeroelastic equations in an 

explicit manner, a large number of higher order terms will appear and 

simplifying assumptions are essential to reduce its complexity. 

Al though an exact treatment of load-strain relationship based on a 

complicated vector approach has been postulated [2.17A], and later 

refined [2.17B] by Hodges, such an approach is highly mathematical and 

does not necessarily provide the insight required. Furthermore, its 

applications are yet to be proven. Exact formulation of the 

displacement-transformation was also initiated by Simpson [2.18] but an 

ordering scheme was eventually invoked in order to simplify his 

analysis. 

- 19 -



A simpler derivation can result if an approximation is assumed at the 

outset. The approach adopted here belongs to the class of explicitly-

ordered beam theories described in [2.13] in which each of the 

parameters is assigned a value relative to an ordering parameter whose 

magnitude is assigned a priori. This provides a systematic process for 

discarding the higher order terms. Furthermore with the use of REDUCE 

(Section 2.5), higher order terms can be included with ease if they are 

found to be important in certain applications. 

ordering scheme is the subject of Section 3.2. 

2.4 Basic Dynamic Principles 

The choice of such an 

Whilst in principle, it is always possible to obtain the equations of 

motion of any mechanical system, whether continuous or discrete, by 

Newton's Second Law and D'Alembert's Principle, the practical task may 

be rendered extremely diff icul t by the presence of internal forces. 

Also one has to consider very carefully the signs of various forces, as 

mistakes often arise because an action has been confused with a 

reaction. Such difficul ties can be avoided by using energy methods, 

ego Hamilton's Principle, which is based on elementary mathematical 

operation such as differentiation of the energy functions. The prime 

task is that of writing down the energy expressions for the idealised 

system, in terms of a sui table set of coordinates referenced to a 

convenient frame. 

Appl ica t ion of both Hami 1 ton's Pr inciple and the Newtonian method to 

developing the rotor aeroelastic equations was made by Hodges & Dowell 

[2.15]. They concluded that the former method is more mathematically 

rigorous and systematic, while the latter provides more physical 

insight. 

Other important advantages associated with Hamilton's Principle are: 

a) It is independent of the coordinates chosen to define the motion of 

the system; 

b) A consistent set of equations will result if the energy expressions 

are accurate to the desired order of magnitude; and 

c) The appropriate boundary conditions will be a by-product of the 

derivation. 
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Thus the energy approach is the most appropriate for this analysis and 

the two energy formulations, namely the Lagrangian equation and the 

Hamilton's Principle, are employed. 

2.4.1 Lagrangian Equation 

The modal response equation for the coupled rotor-fuselage system is 

obtained by applying the Lagrangian equation to the kinetic energy, 

potential energy and virtual work expressed in terms of the generalised 

coordinates. In its general form, the Lagrangian equation is given by 

i =1,2, ..... ,n 

where K is the kinetic energy of the system; 

U is the potential energy of the system; 

W is the virtual work due to external forces; 

q1 is a suitably defined ith generalised coordinate; 

Q1 is the generalised force; 

n is the number of coordinates chosen; and 

0 is the variational parameter. 

The dissipation function f (power), which is dimensionally inconsistent 

with K,U & W (energy and work), is purposely excluded from the 

formulation. Such dissipative actions within the system arise from 

viscous or frictional effects and are non-conservative. They will be 

included in the virtual work. 

external aerodynamic loads. 

The generalised force consists of all 

The above equation presents a complete formulation of the equations of 

motion of a dynamic system with n degrees of freedom, all constraints 

being assumed holonomic. In general, these equations will not be 

linear in qt'S, and their time derivatives Ie. q1qJ' qtqJ,qtqJ' .. ,etc. 

will occur. However, for studies of small oscillation about an 

equilibrium state, the qt'S and their time derivatives may be assumed 

to be small, hence higher product terms can be ignored. 
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2.4.2 Hamilton's Principle 

The expressions for blade structural loads are obtained by applying the 

Hamilton's Principle. By considering the variation of energy due to 

variation in each degree of freedom, the load components are derived. 

The virtual displacements may be arbitrarily assigned at time t 

provided that geometric constraints are not violated. 

The Hamilton Principle, given in its most general form, is 

t2 

J [o(U-K) - oW] dt = a 

tl 

where the variables are defined as before and t 1 ,t2 are the arbitrary 

time limits. Suitable expressions for U,K and W can then be determined 

and combined within the variational statement to give the desired 

equations. 

2.5 Application of REDUCE 

The derivation of non-linear aeroelastic equations, a process which is 

conceptually very straight forward but immensely tedious to perform, is 

carried out using the algebraic computing software system, REDUCE 

[2.19]. An example application to a wind turbine problem was made by 

Garrad & Quarton [2.20]. 

The use of REDUCE provides the basic mechanism for deriving the non-

linear equations, avoiding the labor ious and error prone process of 

derivation by hand. REDUCE allows individual variables to be weighted, 

then an overall weight level is applied. Products of variables 

exceeding the specified weight level are discarded. Algebraic 

differentiation in accordance with Hamilton's Principle and the 

Lagrangian equation can then be carried out. 

Initial attempts to retain terms of higher order had led to substantial 

time and effort being wasted. Although the effectiveness of REDUCE is 

less than originally envisaged, it remains an indispensable tool in the 

formulation and manipulation of lengthy equations. This is especially 

true when fundamental revisions are needed to the modelling assumption 

or when the ordering of a parameter is changed. I n such cases, the 

modified equations can be obtained relatively quickly. 
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CHAPTER 3 METHOD OF ANALYSIS 

3.1 Introduction 

The important ingredients which a rotorcraft aeroelastic analysis must 

possess were described in Chapter 2 where the emphasis was placed on 

practical applications. In this chapter, the development of an 

analytical model suitable for the coupled rotor-fuselage system is 

discussed and described. 

In keeping with a striving for insight, a modal approach is adopted for 

this analysis. The formulation of the modal Lagrangian equation 

appropriate for a single blade is presented here in detail. The modes 

adopted are initially assumed real such that only the kinematic effects 

of elastic hub motion, as well as aircraft motion, are considered. 

Appropriate explanation to extend the Lagrangian equation to use rotor 

modes as state vectors is furnished. The approach adopted here 

provides the necessary insight into the analytical development and the 

application of complex modes in rotor response analysis. 

In the general case, the rotor modes, as developed by Juggins [3.1], 

are appropriate to the coupled rotor-fuselage dynamic (CRFD) system. 

These rotor modes, including hub motion effects, are complex and they 

enable the dynamic interactions between the rotor and the fuselage to 

be correctly modelled. The concept of rotor modes, not given before, 

is furnished here to provide an understanding of its application in 

rotor response analysis. 

The modal approach assumes the modes are small linearised perturbations 

about a steady state, whereby higher order products of these quantities 

can be eliminated systematically using an ordering scheme. The choice 

of such a scheme based on physical reasoning is discussed. 

The various aerodynamic models adopted in this analysis are described 

to provide completeness in aeroelastic modelling. A rigorous approach 

in defining the true angle of at tack expression for the aerodynamic 

calculation is presented to clarify the doubt cast for many years. 

A pre-requisite for the successful application of modal analysis is to 

ensure that the modes possess the orthogonal i ty re la t ionship. Thi s 
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ensures that they indeed provide an independent set of state vectors to 

uncouple the system response equations. However, no such proof was 

furnished before. This has proved to be one of the most formidable 

tasks during this study. The proof is finally accomplished using the 

bi-orthogonali ty relationship, employing both the left-hand (LH) and 

right-hand (RH) eigenvectors. Owing to the algebraic complexity, the 

relationship is available only in numerical form. 

This orthogonality proof is applicable to all linearised dynamic 

systems, but it requires that the dynamic system equations be described 

by a set of second order differential equations in terms of 

displacements only. However, the system equations originally derived 

for the CRFD, configured to use the transfer matrix solution method, do 

not automatically result in the required form. Conversion of the 

system equations is demonstrated to ensure that the LH-eigenvectors can 

be obtained and the important conclusions it has led to in the 

formulation of dynamic equations are discussed. 

Because the complex modes orthogonality obtained is available only in 

numerical form, the concept of an orthogonalisation procedure to 

uncouple the system response equation into a form suitable for a 

solution is introduced. The procedure is applicable to all system 

modes used. 

Two sets of complex rotor modes: coupled and reactionless, are needed 

to define the total rotor response. The need to solve the responses of 

the two mode sets simultaneously, when they are defined in different 

frames of reference, requires special attention to the solution method. 

A numerical process for fil tering the applied forces is introduced. 

This novel method is practical and provides an integrity check on the 

analytical model. This is then followed by the discussion of the 

solution algorithms adopted for this analysis. 

The determination of structural loads on the blade and hub, in order to 

assess the blade stresses and airframe vibration level, is addressed. 

Formulations of the blade structural loads, based on Modal Summation 

and Force Integration methods, are described. The numerical problems 

inherent in Force Integration are discussed and a novel analytical 

integration technique for minimising such errors is introduced. 
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3.2 Formulation of the Modal Lagrangian Equation 

for a Single Blade using Real Modes 

3.2.1 General Considerations 

The formulation of the modal Lagrangian equation described in the 

following sections is valid for a single blade using real modes as 

state vectors initially. Extension and treatment to complex modes are 

described in Section 3.5. 

a. Description of The Rotor Blade Model 

The rotor blade is modelled as a continuous curved beam, which defines 

the locus of shear centres of a typical (kth) blade of an N-bladed 

rotor. The position vector of a point in a cross-section is derived 

relative to an axis system fixed in the rotor. The cross-section, 

which can be non-symmetrical, is given freedoms to translate along and 

to rotate about the 3-directions relative to its local sectional axis 

system. The assumptions of zero warping and zero shear deformation of 

the cross-section are invoked (Section 2.3.3). However, the latter is 

included at the outset in order to provide a compatibility check with 

the dynamic analysis. That is, shear deformations are removed after 

the equations have been derived. 

The fuselage response is included by allowing the hub to undergo 

(perturbatory) elastic deformations comprising 3 translations and 3 

rotations with respect to a non-rotating frame of reference. The blade 

motions are defined relative to the disturbed hub such that the total 

displacement of the blade point referenced to the global axis system is 

the sum of blade and hub displacements. 

We assume the system is holonomic such that the blade elastic 

deformations can be expressed in terms of a set of generalised 

coordinates ql(t), (i=l, .. ,N), where ql are real quantities. 
T blade deflection vector be denoted by ｾ］ｻｵＬｶＬｷＬｾＬｾＬｾｽ＠ , then; 

N 

ｾＨｲＬｴＩ＠ = ｾｔＨｲＩ＠ + L ｱｬＨｴＩｾｬＨｲＩ＠
i=l 

where ｾｔＨｲＩ＠ are the steady state values at position r; 

x1(r) is the ith mode shape values at position r; 

and N is the number of modes considered. 
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It is noted here that only the kinematic effects of hub motion are 

included in this formulation valid for a single blade. However, when 

the elastic hub motions are included in the modes, they are also 

expressible in terms of the generalised coordinates as those in the 

blade ie. 

N 

H(t) = L qi (t)hi 
i=l 

(3.2) 

where H={xH'YH,zH,<PH''OH,t/JH}T and hi is the hub component in the modes. 

In this case, both the mode shapes and the generalised coordinates 

become complex quantities. At present, we are concerned only with the 

modal representation appropriate to Eqn.3.1. 

Substituting the relationships defined in Eqn.3.1 in the kinetic energy 

(K), strain energy (U) and virtual work (oW), and differentiating with 

respect to qi(t), qi(t) and t in accordance with the Lagrangian 

equation; 

ｾｦ＠ aK} aK au 
dt\ aqi - aqi + aqi 

i=l,2, .. ,N (3.3) 

the modal Lagrangian equation for a single blade using real modes as 

state vectors is obtained. 

The control circuit stiffness is modelled as a secondary load path to 

earth represented by a set of linear and rotational springs attached to 

the main blade. The springs, which provide additional strain energy, 

are included in the formulation of the modal Lagrangian equation. A 

non-linear lag damper, generating discrete loads in the main load path, 

is also included. 

b. Modelling of Aircraft Motion 

In order to determine the rotor response and loads through a manoeuvre, 

the rigid body fuselage (aircraft) motion has to be included. However, 

it needs only to be considered as kinematic and is included in the 

kinetic energy formulation. The aircraft motion is defined as a set of 

instantaneous hub rates comprising 3 linear velocities: forward, 

sideslip and heave and 3 angular rates: roll, pitch and yaw. 
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Manoeuvres are, by definition, any flight condition departing from its 

straight and level flight path, ego a symmetric pull-up or a complex 

barrel roll. They are generally non-prescribed and involve large 

aircraft motion. The manoeuvre which the pilot wants to perform is 

limited by many factors, the most important being the control power and 

aerodynamic damping available. The control power depends on the rotor 

thrust and hub moment, which are governed by the pilot input using his 

main rotor controls and/or pedal input. The head moment then 

determines the maximum acceleration at which the aircraft can enter 

into the desired manoeuvre. 

During a manoeuvre the rotor state is changing rapidly and the aircraft 

no longer has only one tr im state. However, the ai rcraft mot ion 

through a manoeuvre can be modelled as a sequence of snap-shots, each 

having its own state. In this manner, the airframe can be modelled as a 

rigid body. The fuselage attitudes, rates and accelerations during a 

manoeuvre are determined by solving the body equilibrium equations. 

These are then fed back into the loads calculation. 

The pilot controls required to maintain the aircraft flight path can 

then be uniquely determined at each time step dur ing the manoeuvre. 

The aircraft motion is thus included in the analysis by effectively 

having a pilot model in the loop interacting with the aircraft 

responses through the manoeuvre. One such pilot model can be found in 

[3.2] developed by Hamm. 

This forms the basis of aeroelastic modelling in this analysis and the 

derivation of the forced response equation can proceed. 

3.2.2 Coordinate Systems and Transformations 

In the formulation of the equations of motion of a rotor blade, various 

coordinate systems are used. As a resul t of the work on coordinate 

transformation by Peters & Ormiston [3.3], the derivation of the non-

linear equations for rotor blades has been systemised to a high degree. 

Consider an ini tially curved, closed section, rotor blade of 

curvilinear length R, mass per unit length m. The position of a 

typical (kth) rotor blade with respect to an axis system fixed in the 

rotor, can be defined. A curved blade segment, in both its undeformed 
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and deformed states, is shown in Figure 3.1 below 
1) r 

ｾｾ］Ｍ __________ ｾｾＭＭＭＭＭＭＭＭＭＭｾｾＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＮＭＭＭ x,I 
H 

Figure 3.1: Blade Coordinate Systems and Deformations 

The orthogonal global undeflected shaft HXcYGZG-axis system, with unit 

vectors .L;,k,&, are fixed in the inertial frame !R wi th the origin 

defined at the undisturbed hub posi tion H. The HZG-axis is defined 

positive up along the rotor shaft and the HXc,HYG-axes are defined 

positive aft and to the starboard respectively, consistent with the 

right-handed system. The hub, which originally occupies position H, is 

allowed to undergo linear elastic deformation xH'YH,ZH parallel to the 

HXc,HYG,HZG-axes and Eulerian rotations taken in the order If>H,1'JH,I/JH 

(roll, pi tch then yaw) and is displaced to the new posi tion H'. The 

rigid body fuselage motion, not yet included, is treated in Section 

3.2.6. 

The disturbed shaft H'XYZ-axis system with unit vectors I,J,K is 

def ined in the hub frame IH. 

system, with unit vectors Ip,Jp,Kp, is fixed in the reference frame ｾ＠

and rotates with respect to IH at an constant angular velocity QKp and 
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occupies position ｾｫ］ｑｴＫｾｬ＠ at time t, where ｾＱ＠ is an arbitrary 

reference position of the first blade. Point H', which is common to 

both ｾ＠ and ｾＬ＠ is located at the disturbed hub centre-line. The plane 

containing X,Xp and Y,Yp is called the reference plane. 

Let the undeformed beam be described by a curvilinear coordinate r 

which is measured from the origin H' along the beam elastic axis ie. 

the locus of shear centres. If r locates a point 0, along the elastic 

axis, then point a is uniquely determined by the Cartesian coordinates 

(Up,Vp,Wp), in the H'XpYpZp-axis system. The orientation of the cross-

section at point a in its pre-deformed state is described uniquely by 

the local pre-sweep ＨｾｰＩ＠ and pre-cone ＨｾｰＩ＠ angles. Note that the pre-

deformed coordinates are functions of not only space (r). but also time 

(t), since the blade portion outboard of the pitch bearing varies with 

cyclic pitch. 

The orthogonal blade section Oxyz-axis system with unit vectors i.1.k 
and origin a is also fixed ｩｮｾＮ＠ Bending deflections of the beam are 

accomplished by the displacements u.v,w of the elastic axis parallel to 

OX,Oy,Oz-axes. After deformation, the origin a moves to 0' and a blade 

fixed ｏＧｲｾｾＭｳｹｳｴ･ｭ＠ with unit vectors i' .1' .k'. is defined in the cross-

section. The axes ｏＧｾＮｏＧｾ＠ are parallel to the section principal axes 

ｏＧｾｯＬｏＧｾｯ＠ with origin defined at the displaced shear centre 0'. 

The Oxyz-system moves wi th the blade as the blade undergoes bending 

deformations and pitch angle ｾＨ］ｾｰＫｾＨｾＩＩ＠ rotations. including the 

built-in twist ＨｾｰＩ＠ and the control pitch ｾＨｾＩ＠ Ｈ］ａｯＭａｬ｣ｯｳｾＭｂｬｳｩｮｾＩＮ＠ The 

cross-section also undergoes ordered rotations; ｾＬＭｾＬｾＬ＠ to occupy a new 

orientation. Although the deformed ｏＧｾＬｏＧｾ＠ axes do not lie exactly in 

the ｾｯＧｾｯＭｰｬ｡ｮ･Ｌ＠ the projection of the blade cross-section in the yz-

plane before and after deformation is shown in Figure 3.2 below. 
z.k 

w 

Ｍｾ＠ y.j 
v 

t"igure 3.2: Blade Cross-Section Before and After Deformation 
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Before deformation, it is assumed that the blade section principal axes 

01)0' ｏｾｯ＠ are rotated wi th respect to the undeformed coordinate by the 

pre-twist angle ｾｰＨｲＩＮ＠ After deformation, the elastic axis is 

displaced by u,v,w and the blade twisted through an angle ｾＬ＠ plus any 

control pitch angle ｾＨｾＩＮ＠

3.2.3 Position Vector of A Blade Point 

By considering the various coordinate transformations described above, 

the position vector of a point on the blade can be defined. Consider a 

point ｐＨｏＬＱＩＬｾＩ＠ defined in the blade section ｏｲＱＩｾＭ｡ｸｩｳ＠ system. The 

posi tion vector of P in the blade elastic Oxyz-axis system, after 

deformation, is given by 

-S
O
i nf3] 1 

o ｣ｯｳｾ＠
cos(3 0 sin.o 

o 

-
where ｾ］ｾｰＫｾＨｾＩＫｾＮ＠ If the undeflected blade state is described by the 

pre-deformed coordinates such that Lp=(Up,Vp'Wp), normalised by the 

rotor radius, R, then the position vector of P in the H'XpYpZp-axis 

system is given by 

Up cos<p -sin<p 0 cos(3p 0 -sin(3p 
r 2 = Vp + sin<p cos<p 0 0 1 0 Ll 

Wp 0 0 1 sinf3p 0 cos(3p 

= rp + T<pT(3P£l (3.5) 

Further, it is assumed that the point P lies on a chosen (kth) blade 

occupying azimuth position ｾｫ＠ with respect to the H'X-axis (+ve towards 

the rear of the disk). Then let the hub elastic deflection be 
T 

described by LH={X H, YH' zH} and rotations taken in the order of roll, 

pitch then yaw; ｾｈＧｾｈＧｾｈＧ＠ the final position vector Bs of P in the 

global HXCYGZG-axis system is given by 

xH 

Bs = YH 
zH 

1 0 0 ｣ｯｳｾｈ＠ 0 ｳｩｮｾｈ＠ ｣ｯｳｾｈ＠ Ｍｳｩｮｾｈ＠ 0 ｣ｯｳｾｫ＠ Ｍｳｩｮｾｫ＠ 0 

+ 0 ｣ｯｳｾｈ＠ ｳｩｮｾｈ＠ 0 1 0 ｳｩｮｾｈ＠ ｣ｯｳｾｈ＠ 0 ｳｩｮｾｫ＠ ｣ｯｳｾｫ＠ 0 'r -2 
0 Ｍｳｬｮｾｈ＠ ｣ｯｳｾｈ＠ Ｍｳｬｮｾｈ＠ 0 ｣ｯｳｾｈ＠ 0 0 1 0 0 1 

= rH + TAl. ｔｾ＠ T,/. T,,, r 2 - ¥'H H ¥'H ¥'k-
(3.6) 

- 30 -



Hence, 

Bs ; LH + ｔｾｈｔｾｈｔｾｈｔｾｫ＠ { rp + ｔ＼ｰｔｾｰ＠ { Lo + ｔ＼ｔｾｾ＠ Is}} (3.7) 

xH Up 
where r H = YH rp = Vp Lo = 

ZH Wp 

ｻｾｽ［＠ Ls ; ｻｾｽＮ＠ and the transformation 

matrices are defined as above. Thus the position vector of a point on 

the kth blade before and after deformation is uniquely defined, and 

from which the energy expressions are obtained. 

3.2.4 Effects of Coordinate Transformations on Blade Deformation 

The blade deformation is described by a series of transformations and 

it is necessary to examine their implications. Let T denote the 

transformation between the systems ｩＬｪＬｾ＠ and i' ,j' ＬｾＧ＠ before and after 

rotational deformations such that 

(3.8) 

-
The ordered Euler angles, <:,-f3,fJ, uniquely define the orientation of 

the local blade system ＨｩＬｪＬｾＩ＠ and are shown in Figure 3.3 below; 

Figure 3.3: Blade Deformations and Euler Angles 

T can be easily expressed in terms of these Euler angles as 

(3.9) 
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-sin<:: 
cos<:: 
o 

[

cos<::COS{3 
= sin<::cos{3 

sin{3 

-sin<:: -COS<::Sin{3] 1 
cos<:: -sin<::sin{3 0 

o cos{3 0 

o 0 
-

cos'O -sin'O 
- -

sin'O cos'O 

- - - -
cos<::cos{3 
sin<::cos{3 

sin{3 

-sin<::cos'O-cos<::sin{3sin'O sin<::sin'O-cos<::sin{3cos'O 
- -= cos<::cos'O-sin<::sin{3sin'O -cos<::sin'O-sin<::sin{3cos'O 

- -
cos{3sin'O cos{3cos'O 

The rotational sequence of the Eulerian angles, taken in the order <:: 
-

-(3,'O, is arbitrary, other forms of transformations may also be used. 

Hodges et al [3.4] provided a detailed study on the effects using 

different orders of rotations. They concluded that the use of a 

different rotational sequence only results in a different definition of 

torsional variable, but the physics of the problem remains unaltered. 

It is the variables used to describe the position that are not unique. 

Since rotor blade equations are normally written in terms of the 

bending and torsion deformations, it is convenient to express T in 

terms of the bending slopes, v', w' . 

exact relationships are obtained; 

where C),_aC) yielding T as 
ax ' 

From Figure 3.3, the following 

C3.10) 

J1 ,2 ,; -v' -w' J 1-v' 2_w'; -v -w 

J 1-W'; J 1-W'; 1 0 0 
- -

T = 
J1 ,2 ,; 

0 cos'O -sin'O 
-v'w' -

v' -v -w 0 sin'O cos'O 

J 1-W'; J 1-W'; 

w' 0 J 1-w' ; 
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J1 ,2 ,; -v -w 
- -I 2 ｾ＠

ＭｶＧ｣ｯｳｾＭｷＧｳｩｮｴｎＱＭｶＧ＠ -w' 
ｾ＠ , - - 2 2 

ｶＧｳｩｮｾＭｷＧ｣ｯｳ＠ I-v' -w' 

J 1-w' ｾ＠ J1-w,2' 

= -I 2 ｾ＠ -
-sintN1-v' -w' ＭｶＧｷＧ｣ｯｳｾ＠-I 2; -

costN1-v' -w' ＭｶＧｷＧｳｩｮｾ＠
v' 

ｾ＠ J 1-w' ｾ＠

w' ｳｩｮｾ＠ 1-w' ｾ＠ ｣ｯｳｾ＠ 1-w' ｾ＠
(3.11) 

T is exact in Eqn.3.11. However, the determination of the third Euler 
-

angle, ｾＬ＠ requires either the formulation and solution of a 

differential equation for T by considering a small rotation wdr of the 

blade-fixed system as shown in [3.5], or more visibly, by considering 

the variation of [T]T[T] = I in stages as shown in Appendix A. Both 

approaches will result in 
r 

I{ -
ｾ＠ = ｾｰ＠ + ｾＨｴＯｊＩ＠ + </> -

0 

= ｾｰ＠ + ｾＨｴＯｊＩ＠ + <P ｾ｢＠

• 

= - ｾ＠ b 

-
an exact solution of the blade pitch angle ｾ＠

v"w' 2 w' w"v' 
} dr + 

J1 ,2 Ｌｾ＠ (1 ,2)J1 ,2 ,2' -v -w -w -v-w 

(3.12) 

where the built-in twist, ｾｐＧ＠ control pitch, ｾＨｴＯｊＩＬ＠ and elastic 

torsional deformation, <p, are taken to be zero inboard of the 
-

feathering bearing. It is clear that ｾ＠ is due not only to ｾｐＧ＠ ｾＨｴＯｊＩ＠ and 

</> alone, but second order contributions ｾ｢＠ also arise. The latter is 

induced by pure lag and flap bending whilst the blade remains 

untwisted. This integral 

torsion" or "quasi-twist". 

r 

ｾ＠ = ｾ＠ - J v"w'dr + 0(c
3

) 

o 
and hence T becomes:-

term, ｾ｢Ｇ＠

To 0(c2
), 
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T = 

IF 

2 2 
(Vi +w ' ) 

1 2 

Vi 

ｾ＠ A 

-v/costl-w/sintl 

12 V A 

(1--)costl 
2 

A A 

v/sintl-w/costl 

Vi 2 A 

- (1--) sintl 
2 3 +0 ( e ) ( 3. 14) 

+(Jv"w/dr-v/w/)sintl +(Jv"w/dr-v/w' )costl 

Wi 
Wi 2 A 

(1-z)costl 

-costlJv"w/dr -sintlJv"w/dr 

The transformation matrix T is orthogonal and is correct to 0(e2
) but 

-
is by no means unique. Different tl, ego [3.4,3.6 & 3.7], have also 

been derived by generating matrix orthogonality using different second 

order bending terms. It should only be regarded as the definition of 
-

the pitch parameter tl, which contains the built-in, applied, elastic 

and kinematic pitch components. The presence of tlb has for some years 

cast doubt on the definition of angle of attack used in the aerodynamic 

loads calculation. Its implication will be discussed in Section 3.4. 

3.2.5 An Ordering Scheme 

In deriving the aeroelastic equations for the rotor blades, it is 

essent ial to retain non-l inear terms. As a resul t, the algebraic 

equations can become extremely complex and contain a large number of 

terms. Over-complication in the equations can be avoided by neglecting 

the higher order product terms. This requires a scal ing process to 

measure the magnitude of individual parameters, and hence their 

importance in a given context. The principle is that each parameter is 

assigned a relative magnitude based on physical reasonings and the 

assumptions made, then terms of higher order are systematically 

rejected. This provides an effective way for neglecting terms of least 

significance in a consistent manner, reducing the algebraic complexity, 

while retaining the essential features of the equations. 

A scal ing parameter e is assigned a typical value of 0.1, the same 

order of magnitude as the (normalised) blade deformation v or w, such 

that e2«1.0 can be assumed. Non-linear terms, which have a magnitude 

of e3 ie. 0.1%, in the forced response and structural load equations, 

can be safely discarded. Essentially, the energy and virtual work 

expressions need only be derived to 0(e
3

) accuracy, where the 

generalised coordinate ql(t) is being assumed to be O(e), in line with 

the small perturbation theory. 
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iiiF 

For dynamical systems, the kinetic and strain energies are governed 

respectively by the inertial and structural properties which are then 

combined into one variational statement in accordance with the 

Hamilton's Principle. These properties are of different quantities and 

their relative magnitudes must first be considered. 

To ensure that both energy expressions are derived to a consistent 

order, a non-dimensional parameter X is used. X was first 

introduced by Dowell & Hodges [3.5]. The physical significance of X is 

that it relates the inertial and the structural properties via the 

blade tension, expressed as ｔ］ｭｑｾＲ］ｅａｵＧ＠ and is assigned to be 

0(1)=0(£°). The fore-shortening term u is taken to be the order of the 

square of the bending slope v' ,w' ie 0(e2
) and upon re-arranging, it is 

clear that x=0(e
2

). Further discussion of the axial motion u will be 

given in Section 3.1.13. 

The introduction of X requires that the strain energy be derived to an 

order 0(£2) higher than the kinetic energy. However this can be dealt 

wi th more easily by choosing an ordering scheme which defines the 

magnitude of individual parameters, while the condition x=0(e2
) is 

maintained. The advantage of using a comparative ordering scheme is 

that for application to other blade structures, the magnitude of X can 

be modified accordingly. 

Depending upon the application, ego for stability or vibration 

calculation, the emphasis can vary and a different ordering scheme can 

be used. Since the main concern here is on rotor load prediction, the 

magnitude for displacements and forces are defined relative to the 

rotor radius (R) and the axial tension (T), both of which are 

considered as 0(1) quantities, consistent with x. In addi tion, the 

radial coordinate x is of the order R ie. O( 1) and the sectional 

coordina tes 11, ｾ＠ are of the same order as the blade chord (c) and 

thickness (t) ie. O(e). The relative magnitudes of the other variables 

are obtained on this basis. A list of the normalising factors is given 

in the Table 3.1 below; 
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Parameters Normalising Factor 

Linear Displacement R 
Linear Velocity QR 

Linear Acceleration 0'1t 
Angular Displacement 1 
Angular Velocity 0 

Angular Acceleration 02 

Blade Forces T(=mO'1t2 ) 

Blade Moments TR 

Table 3.1 - Normalising Factors used for The Blade and Hub Parameters 

The appropriate magnitude of the ordered parameters are summarised in 

the following table; 

Variables 

Blade 

ｶＬｷＬｾＬｾＬｾＬｶＧ＠ ,w' ＬｾＧ＠ ＬｾＧ＠ＬｾＧ＠ ＢｶＬｷＬｾＬｾＬｾＬｶＬｷＬｾＬｾＬｾ＠

u,u,u,u' 

Hub 

Aircraft Motion 
ｾｸ＠

ｾｹＧｾｺＬｐｈＬｱｈＬｲｈ＠

Pre-deformed Coordinates 
Up 

. . .. .. . . 
ｖｰＬｗｰＬｖｰＬｗｰＬｖｰＬｗｰＬｾｰＨ］ｖｾＩＬｾｰＨ］ｗｾＩＬｾｰＬｾｰＬｾｾＬｾｾ＠

Blade Loads 
Vx 
Vy,Vz,My,Mz 

Miscellaneous 

E,G 
m,Q,fJ,fJ,iJ,T,R 

ｮＧｾｳＬｸｇＧｙｇＬｺｇＧｾＧｾ＠

Ordering 

C 

2 
C 

2 
C 

1 

3 
C 

1 

1 

2 
C 

-4 
C 

1 

4 
C 

Table 3.2 - Ordering Scheme used for The Blade and Hub Parameters 
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The choice of this ordering scheme is based on physical considerations 

and the main assumptions invoked. The main implication of this 

ordering scheme is that, to 0(e3
) there is no distinction between the 

section rotation angles and bending slopes ie. <=v', ｾ］ｷＧＬ＠ ＼ｰ］ｖｾＬ＠

ｦＳｰ］ｗｾＬ＠ .. . etc. Although it is recognised that for advanced planform 

blades ego Westland CMRB blade, large sweep and anhedral in the tip 

exist. Typical values are 30° sweep and 20° anhedral, with the extreme 

tip portion of sweep angle reaching 60°, shown in Figure 3.4 below; 

I I I 84% ,20:' 

ｾ＠
B 

, : ＱＱｾ＠ "::i'1 ｾ＠ ! ii--....l-I-------r- p ＭＭＭＭｹＭＭＭＭＭＭ］ｲＭｦｾＭＭ
I I B SECTION ON 8-8 I . 

I I , 
93% 95% 97'1. 

--------I 
I 

84% 86% 95% 100% 

Figure 3.4: Example CHRB Blade Tip Sweep and Anhedral 

While these angles are large, they exist only over small span in the 

tip region. For example, on the production CMRB main rotor blade, the 

30° sweep is over 14%R and the 20° anhedral is over 5%R at the tip, and 

hence the pre-deformed coordinates are globally small. It is 

reasonable, and without loss of accuracy, to treat these quantities as 

O(e). Using this assumption, the initial problem of having to derive 

the energy expressions of enormous size, when they were assumed to be 

0(1) quantities, was avoided. 

3.2.6 Velocity Vector of The Blade Point 

The kinetic energy of a single blade is given by 

R 

K = J ｾ＠ II p R'B ､ｾ＠ ､ｾ＠ dr 

o ｾｾ＠

(3.15) 

where p is the blade density and R is the vector of absolute velocities 

of the blade point. The velocities at the hub are obtained by 

transforming the body veloci ties. 

diagram Figure 3.5 

Consider the following schematic 

- 31 -



-:> 

o 

------------

Fwd 
«- 4-------- _____ ＭｾＮＮＮＮＮＺＮＮＮＮＮＭ］ＮｌＭＭｾ＠

Xf.lF 

Figure 3.5: Aircraft Motion Kinematics 

The vectors of linear and rotational velocities at the hub are related 

to the velocities at the aircraft c.g. as 

= 

and 

= 

COSl's 0 sinl's 
o 1 0 

-sinl's 0 COSl's 

uF-zGqF-YGrF 
. vF+zGPF+xGrF 

wF+YGPF-xGqF 

COSl' s 0 s inl' s PF 
o 1 0 . qF 

-sinrs 0 COSl's r F 

(3.16) 

(3.17 ) 

where ,..L>C' Ily, Ilz are the aircraft veloci ties wi th Ilx being the advance 

ratio and PH,qH,rH are the aircraft rates. 

offsets from the aircraft c.g. 

appropriately. 

In the shaft axis system, 

Us -Ilx 
UH = Vs = Ily and BH = 

Ws -Il z 

All the quantities are normalised 

Ps -PH 
qs = qH 
rs -rH 
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The absolute velocity of the blade point is then given by 
. 

R = Bs + 

0 -rs 

+ 

qs 

W ＮＧｑｾ＠
H ｾＧｓ＠

0 rH qH 

(3.18) 

where wH= rs 0 -Ps = -rH 0 PH is the skew-symmetric matrix of hub 

-qs Ps 0 -qH -PH 0 

angular velocities and Bs is the vector posi tion of a blade point, 

defined in Eqn.3.7. 

3.2.7 Kinetic Energy Consideration 

The manner in which the kinetic energy of the blade is to be formulated 

is such that only the strain energy contribution to the total potential 

energy needs to be considered. The potential energy due to centrifugal 

stiffening effects, is implicit in the kinetic energy formulation. 

The blade kinetic energy K can be written in the integral form as; 
R 

K = I ｾ＠ II P R·R ､ｾ＠ ､ｾ＠
o ｾｾ＠

R 

= I ｾ＠ II P (B! + ｾｾ＠ - B!·wH)(Bs + ｾｈ＠ + wH·Bs ) ､ｾ＠ ､ｾ＠ dr 

o ｾｾ＠

R 

= I ｧＨｵＬｶＬｷＬﾢＬ＼ＬｾＬｵＬｶＬｷＬﾢＬ＼ＬｾＬ＠
o . . . . . . 

ｘｈＧｙｈＧｚｈＧﾢｈＧｾｈＧｾｈＬｘｈＧｙｈＧｚｈＧﾢｈＧｾｈＧｾｈＧ＠ . . .. . 
ｾｘＧｾｙＧｾｺＬｐｈＬｱｈＬｲｈＬｲＬｖｰＬｗｰＬ＼ｰＬｾｰＬｶｰＬｷｰＬ＼ｰＬｾｰＬｾＬｾＬｑＬｴＩ＠ dr 

where g is the kinetic energy function. 

(3.19) 

3 The explicit derivation of the kinetic energy to a(e ) accuracy is not 

entirely straightforward even with the use of REDUCE. I t can be made 

th t an BK } BK . th L . simpler by deriving e erms dt -.- -a-- In e agranglan equation 
Bql ql 

directly using the differential operators defined as 

= \" a ax 
L. ax Bqi 
x 

x 

where x denotes ｵＬｶＬｷＬﾢＬｾ＠ or (, and from Eqn 3.1, 
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= (3.21) 

The section inertial constants are defined in the blade principal axis 

system wi th the origin at the shear centre, coincidental wi th the 

quarter chord, as 

m = II ｰ､ＱＩ､ｾ［＠ mel = II ｰｾ､ＱＩ､ｾ［＠ me2 = II ｰＱＩ､ＱＩ､ｾ［＠

ＱＩｾ＠ ＱＩｾ＠ ＱＩｾ＠

2 II ｰｾＲ､ＱＩ､ｾ［＠ 2 II ｰＱＩＲ､ＱＩ､ｾＮ＠ II ｰＱＩｾ､ＱＩ､ｾ［＠ (3.22) mkml = mkm2 = mkm12= 

ＱＩｾ＠ ＱＩｾ＠ ＱＩｾ＠

where p is the blade density and m is the mass per unit length at the 

blade section, e1,e2 are the c.g. offsets from the elastic axis and 

km1,km2 are the radii of gyration about the two principal axes. 

3.2.8 Strain Energy Consideration 

The strain energy is obtained by considering the blade deformation. 

Let r 1 and La denote the position vectors of the same point P in the 

deformed and undeformed state respectively in the H'XYZ, then, 

Up {W ｾｔｾ＠ ｻｾｽ＠ } 
r 1 = Vp + ｔｾｰｔｻＳｰ＠ + 

Wp \ J , 

= rp + P { I.D + Tl ｔｾ＠ r:.s} (3.23) 

where P = ｔｾｰｔｻＳｰ＠ ; Tl = ｔｾｔｻＳ＠ ; and 

r:.o= I.l ｬｵ］ｶ］ｷ］ｾ］ｻＳ］ｾ］ｏ＠
Up 0 

= Vp + ｔｾ＠ T{3 ｔｾ＠ 1)0 

Wp 
p p 

ｾｯ＠l J , 

= rp + P ｔｾ＠ I.s 0 (3.24) 

where 1) =1)1 . ｾ＠ ］ｾｉ＠o ｵ］ｶ］ｷ］ｾｻＳ］ｾ］ｯＧ＠ 0 ｵ］ｶ］ｷ］ｾ］ｻＳ］ｾ］ｯ＠

The classical strain tensor components £iJ (i,j=1,2,3) can be written 

in terms of the differentials of I.l and I.o as 

= 2{dr d1) ､ｾｽ＠
£11 £12 £13 

£22 £23 
Sym. £33 
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where ､ｲＬ､ｾＬ､ｾ＠ are the increments along the deformed elastic axis, and 

the two cross-sectional axes respectively. The differentials dr1 and 

dro are obtained by differentiating £1 and I.o with respect to ｲＬｾＬｾ＠ as 

8r1 8x 8£1 8r 
dr1 = 8x 8r 

dr + - ､ｾ＠ + -1 ､ｾ＠ (3.26a) 
Ｘｾ＠ Ｘｾ＠

dro 
8£0 8x dr + 

8£0 Ｘｾｯ＠ 8£0 Ｘｾｯ＠ (3.26b) = 8x 8r Ｘｾｯ＠ Ｘｾ＠
dl) + Ｘｾｯ＠ Ｘｾ＠ ､ｾ＠

The assumption of zero warping implies that 

｡ｾｯ＠ Ｘｾｯ＠
1 8 8 8 a (3.27) 

Ｘｾ＠
= 

｡ｾ＠
= - and 

Ｘｾｯ＠
-

Ｘｾ＠｡ｾｯ＠ Ｘｾ＠

ie. to o (£2) , ｾＬｾ＠ ｬＩｯＧｾｯ＠
a 8 that 

8x_
1 are equivalent to and -:::f--= ( ) I such 

ar ax 8r . 

Hence, the differentials dr1 and dro become; 

dr, = { rp + P'£o + PLo + ＨｐＧｔＬｾ＠ + ｐｔｩｔｾ＠ + ｐｔＬｔｾＧ＠ lIs } dr + ｐｔＧｔｾｻｾｾｽ＠

dro = {Lp + ＨｐＧｔｾ＠ + ｐｔｾＧｬ＠ Is} dr + ｐｔｾ＠ ｻｾｾｽ＠
For ease of evaluation, they are written in component forms as 

Pll P12 P13 

ﾷｈｾｽ＠dr1 = P21 P22 P23 (3.28a) 

P31 P32 P33 

qll q12 q13 

Ｎｻｾｾｽ＠dro = q21 q22 q23 (3.28b) 

q31 q32 q33 

such that the strain tensor componen t s £ i j (i,j=1,2,3) are expressed as 

3 
1 L (PklPkj-qkl qkJ) i,j=1,2,3 (3.29) £1j = 2 

k=l 

Although the shear strain £23 is usually non-zero, its magnitude is two 

orders smaller than those of £12 & £13' and can therefore be neglected 

[3.5] . Also the assumption of uniaxial stress for a slender beam ie. 

ｏＧｾｾ］｣ｔｾｾ］｣ｔｬＩｾ］ｏＬ＠ implies that it is only necessary to evaluate the 3 

strain components, £11'£12'£13' From REDUCE and to 0(£3) accuracy with 

＼ｰ］ｖｾＬ＠ ｾｰ］ｗｾＬ＠ .. etc, they are, 
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CRFA Strain Tensor Components 

2 2 ,2 ,2 
Cll = (1) Ｋｾ＠ ),:)'4>' + u' + ｾ＠ + ｾ＠ - vV" - w'W" + u(v'V" + w''W') 2 2 p p p p 

+ 21K}'{ 4> (l:,.-v' )eos,:) + Ｔ＾ＨｾＭｷＧ＠ Ｉｳｩｮｾ＠ - ｵＨｖ［ｳｩｮｾＭＧｗ［｣ｯｳｾＩ＠ ｾ＠ (l:,.-v' )sin':) - ＨｾＭｷＧ＠ Ｉ｣ｯｳｾ＠ } 

+ ＲｾｾＧｻ＠ -4>(l:,.-v' Ｉｳｬｮｾ＠ + Ｔ＾ＨｾＭｷＧ＠ Ｉｳｩｮｾ＠ - ｵＨｖｬ･ｯｳｾＭＧｗＢｳｩｮｾＩ＠ + ＨｬＺＬＮＭｶＧＩ･ｯｳｾ＠ + ＨｾＭｷＧ＠ Ｉｳｩｮｾ＠ } - p p 

21) { 4>' (l:,.-v' )sln,:) 
I 

+ Ｔ＾ｖ［ｳｬｮｾ＠ - Ｔ＾Ｇｗ［･ｯｳｾ＠ } + - 4>' ＨｾＭｷＧ＠ )eos" - l:,.' Ｈ･ｯｳｾＭＴ＾ｳｩｮｾＩ＠ - ｾＧ＠ ＨｳｩｮＢＫＴ＾･ｯｳｾＩ＠

+ Ｒｾ＠ { 4>' (l:,.-v' )eos" + 4>' ＨｾＭｷＧ＠ )sln" + l:,.' ＨｳｩｮｾＫＴ＾･ｯｳＢＩ＠ - W Ｈ･ｯｳｾＭＴ＾ｳ＠ in") + 4>V"cos" + 4>'W"sin':) } + O(c4
) 

P P 

= .!. { f;(-4>' - ｾｬＺＬＮＧ＠ + l:,.'W" - ｾｖＢＩ＠2 p p 

1 2 1 2 
+ l4> (l:,.-v' )eos" + l4> ＨｾＭｷＧ＠ Ｉｳｩｮｾ＠ - Ｔ＾ｵＨｖｾｳｬｮＬＺＩ＠ - Ｇｗｾ･ｯｳｾＩ＠ + ｵＨｖｾ･ｯｳＬＺＩ＠ + ＧｗｾｳｩｮＬＺＩ＠

+ 4>(l:,.-v' ) sin':) - Ｔ＾ＨｾＭｷＧ＠ )eos" + (,(vV" + w'W")eos,:) + f3(vV" + w'W")sin" 
1/' ( V" V"·) p p p p - "p w peos" - v pSln':) - u' (v'eos,:) + w'sin") 

r2 ( r ') 2 ( ) . 1 2 1 2 + ｾ＠ ｾＭｶ＠ cos" + ｾ＠ f3-w' sin" + f3l:,.(l:,.-v' Ｉｳｬｮｾ＠ + ｾ＠ ＨｬＺＬＮＭｶＧＩ･ｯｳｾ＠ - Zw'l:,. sin,:) 

13 13 } 4 - }< ･ｯｳｾ＠ - ｾ＠ ｳｬｮｾ＠ - (l:,.-v' )eos" - ＨｾＭｷＧＩｳｩｮＢ＠ + O(c ) 

= ｾ＠ { 1)( 4>' + ｾｬＺＬＮＧ＠ - l:,.\oI; + ｾｖ［Ｉ＠

1 2 1 2 
- ｾ＠ ＨｬＺＬＮＭｶＧＩｳｬｮｾ＠ + ｾ＠ ＨｾＭｷＧ＠ Ｉ･ｯｳｾ＠ - Ｔ＾ｵＨｖ［･ｯｳｾ＠ + ｜ｯｉ［ｳｩｮｾＩ＠ - ｵＨｖ［ｳｩｮｾ＠ - ｜ｯｉ［･ｯｳｾＩ＠

+ ,«-v' )cos,:) + ＧＨｾ｟ｗＧ＠ Ｉｳｬｮｾ＠ - (.(vV" + ｷ｜ｯｉＢＩｳｩｮｾ＠ + ｾＨｖｖｈ＠ + ｷ｜ｯｬＢＩ･ｯｳｾ＠, p p p p 
+ ｜ｯｉｰＨｷｖ［ｳｩｮｾ＠ - ｶｖ［･ｯｳｾＩ＠ + u' ＨｶＧｳｩｮｾ＠ - ｷＧ｣ｯｳｾＩ＠

2, 2 12 1 2 
- (. «.-v )sln" - ｾ＠ ＨｾＭｷＧ＠ Ｉ･ｯｳｾ＠ + ｦＳﾫ＼ＭｶＧＩ･ｯｳｾ＠ - ｾ＠ ﾫＭｶＧＩｳｬｮｾ＠ - Zw'< ･ｯｳｾ＠

+ ｾＳｳｩｮＬＺＩ＠ - ｾＳ｣ｯｳｾ＠ + (l:,.-v' ＩＤｾｮｾ＠ - ＨｾＭｷＧ＠ ＩｃｃＤｾ＠ } + O(c4
) 

(3.30) 

I t should be noted here that many of the terms in Eqns. 3.30 wi 11 

disappear if the zero shear flexibility is assumed. They are retained 

here in order that a check with the dynamic analysis can be made. Then 

by applying Hooke's Law, the stress tensor components ｾｩｊ＠ can be 

written in terms of the Eulerian strain tensors c 1J ＨｩＬｪ］ｲＬｾＬｾＩ＠ as 

ｾｲｲ＠ = E crr 

ｾｲｾ＠ = G ｣ｲｾ＠ (3.31) 

ｾｲｾ＠ = G ｣ｲｾ＠

where E and G are the Young's and shear modulus of the cross-section. 

The Eulerian strain tensors are related to the classical strain tensors 

[3.8] via 

｣ｲｾ＠ = 2c12 

｣ｲｾ＠ = 2c13 

The blade strain energy U can be written in the integral form as; 

R 

U = I ｾ＠ II ｻｾｲｲ｣ｲｲ＠ + ｾｲｾｃｲｾ＠ + ｾｲｾ｣ｲｾｽ＠ ､ｾ＠ ､ｾ＠ dr 

0 ｾｾ＠
R 

= I ｾ＠ II { 2 2 2} dl) di; dr EC ll + 4G(C 12 + C13) 

0 ｾｾ＠
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R 

= J ｦＨｵＬｶＬｷＬｾＬ＼ＬｾＬｵＧ＠ ,v' ,w' ＬｾＧ＠ ,<' ＬｾＧ＠ ＬｕｰＬｖｰＬｗｰＧ＼ｰＬｾｰＧ＼ｾＬｾｾＩ＠ dr 

o 

(3.33) 

where f is the strain energy function. Similarly, the formulation can 

be made simpler by deriving aau using 
qi 

au IR II { aCll 
aqi = ｅｃＱＱｾ＠ + 

o ｬＩｾ＠

dl) ､ｾ＠ dr (3.34) 

where the differential operator is defined as 

(3.35) 

x x 
wI·th x - u v W A.. Q r ' , 'A..' Q' r' - , , ,'#',P,...",U ,v ,w ''#' ,P ,..." • The section elastic constants 

are defined in the blade principal axis system as 

EA = ｊｊｅ､ｬＩ､ｾ［＠ EB1= ｉｉｅｾ､ｬＩ､ｾ［＠ EB2= ｉｉｅｬＩ､ｬＩ､ｾ［＠
ｬＩｾ＠ ｬＩｾ＠ ｬＩｾ＠

EI ll = ｊｊｅｾＲ､ｬＩ､ｾ［＠ EI 22= ｉｉｅｬＩＲ､ｬＩ､ｾ［＠ EI 12= I I ｅｬＩｾ､ｬＩ､ｾ［＠
ｬＩｾ＠ ｬＩｾ＠ ｬＩｾ＠

GA = ｊｊｇ､ｬＩ､ｾ［＠ GB1= ｉｉｇｾ､ｬＩ､ｾ［＠ GB2= ｊｊｇｬＩ､ｬＩ､ｾ［＠ GJ = ｊｊｇＨｬＩＲＫｾＲＩ､ｬＩ､ｾ＠

ｬＩｾ＠ ｬＩｾ＠ ｬＩｾ＠ ｬＩｾ＠

(3.36) 

3.2.9 Virtual Work and Generalised Force 

The blade general ised force Q1 is obtained by first determining the 

virtual work oW due to all external applied (non-conservative) forces 

ie. aerodynamics only. Consider the blade element, which is acted upon 

by the distributed aerodynamic lift, drag and moment, defined in the 

d · t dM., dD., dLk , h . F' 3 6 b deforme aXIS sys em ､ｲｾ＠ - ､ｲｾ＠ + dr- as s own In Igure . elow, 

k 

j 

k' dL 
-(l; 

ｾ＠

1 

Figure 3.6: Aerodynamic Loadings on An Aerofoil Section 
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To obtain the virtual work, we first need to define the aerodynamic 

load components in the undeformed axis system, which is 

0 0 0 

Li dD [ cosC;cosf;l Ｍｳｩｮｾ＠ -COSC;Sin,B] 
dD +1, -v' T] dD 

dr dr L j =T = ｳｩｮｾ｣ｯｳＨＳ＠ ｣ｯｳｾ＠ ＭｳｩｮｾｳｩｮＨＳ＠ dr 1 

Lk dL sin(3 0 cos(3 dL w' 0 dL 
dr dr dr 

where T is for the bent blade (Eqn. 3. 11) . Using the small 

assumption and dL dD 0(£) quantities, then to assume dr'dr are 

accuracy, 

L = dL + 0(£3) 
k dr 

Hence the virtual work due to aerodynamic loadings is 
R 

3 +0(£ ) 

angle 

0(£2) 

OWAERO=J{ ｛ＨｾｾｙＧＭｾｾｗＧ＠ ＩｩＭｾｾｬＫｾｾｫ｝ﾷ｛ｯｕｩＫｯｙｬＫｯｗｫ｝＠ + ｾｾｩＧ＠ ＮｯｾｩｩＧｽ｣ｴｲ＠ + 0(£4) 

o 
Since OU=0(£2) , then 

R 

J{ dD dL dM ｾ＠ 4 
oWAERO= - dr' OY + dr' ow + ､ｲＧｯｾｩ＠ ｊｾｲ＠ + 0(£ ) 

o 

Consider the virtual rotation ｯｾｩＧ＠ which from Appendix A, is given by 

ｯｾｬ＠ = ｯｾ＠ + ｯｾｳｩｮＨＳ＠

= ｯｾ＠ + W'OY' + 0(£3) 

and ｾ＠ = ｾｰ＠ + t/> - Iw'ylldr + 0(£3) 
3 

ｾ＠ ｏｾｩ＠ = ot/> - I [OW'y" + w'oyll]dr + W'Oy' + 0(£ ) 

Integrate the underlined term by parts, 
3 

= ot/> - W'Oy' + I [W"Oy' - ow'yll]dr + W'Oy' + 0(£ ) 

= ot/> + I [W"Oy' - ow'yll]dr + 0(£3) 
2 Since the aerodynamic pitching moment is 0(£ ), oWAERO reduces to 

R 

oWAERO = J { - ｾｾＮｏｙ＠ + ｾｾＮｯｷ＠ + ｾＮｯｴＯ＾＠ } dr + 0(£4) 

o 

(3.37) 

The exercise above is used to illustrate the more thorough treatment of 

the pseudo-torsion and axial motion terms, should they not be neglected 

because of the ordering imposed on the pitching moment and axial 

displacement. 

applications. 

integral of 

The assumption made here is valid for most rotor 

It should be noted that the simple appearance of this 

aerodynamic terms (Eqn.3.37) is deceptive. The 

determination of blade section aerodynamic coefficients will be 

addressed in Section 3.3. 
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3.2.10 Modelling of Control Circuit System Stiffness 

The control circuit system stiffness is modelled as a set of springs as 

shown in Figure 3.7 below. 

ｬｳＮｊｳＮｾ＠ -- Spring axis system 

Rx.Ry.Rz -- Rotational spring stiffness ＨｾＩ＠

ｾＮｌｹＮｌｺ＠ -- Linear spring stiffness ＨｾＩ＠
Line of Action 

of Spring Forces 

Figure 3.7: Modelling of Control Circuit System Stiffness 

These spring forces and moments give rise to an addi tional strain 

energy Us. which is included in the formulation of Lagrangian equation. 

Us is obtained by considering the linear and rotational deformations of 

Ns such spring sets (Appendix B) and is given by 

R Ns 

Us= ｾ＠ J L ｯＨｲｳＩｻｻｕＭｾｬｶＭｾｬｷＮｖＫｾｬｵＭｾｬｷＮｗＫｾｬｵＭｾｬｷｽ＠ [L] 

o s=1 

lu Irs 

ｵＭｾｬｶＭｾｬｷ＠

ｶＫｾｬｵＭｾｬｷ＠

ｷＫｾｬｵＫｾｬｶ＠

where Iv - ｬｾｳ｣ｯｳｾＭｬｾｳｳｩｮｾ＠

lw ｬｾｳｳｩｮｾＫｬｾｳ｣ｯｳｾ＠

are the coordinates of the rigid rod 

attachment Fs in the local deformed axis system. origin at rs' 

(lr .In Ｎｬｾ＠ ) is the position vector of Fs before deformation and 
s -'s ':>s 

[L] = pTS.Diag(Lx.Ly.Lz)·sTp; [R] = ｰｔｳＧｄｩ｡ｧＨｾＮｒｹＮｒｺＩﾷｳｔｰ［＠

where ｐ］ｔｾｰｔｾｰＧ＠ S is the transformation matrix between the spring and 

blade axis systems. Lx.Ly.L z and ｒｸＮｾＮｒｺ＠ are the linear and 

rotational spring rates representing the control circuit and are 

defined in Appendix B. The variation of Us is 

(3.39) 

x 
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3.2.11 Modelling of Lag Damper 

The lag damper is modelled as an external load path attached to the 

main blade via massless rigid rods. It generates discrete loads at the 

damper attachment points and is included in the Lagrangian equation as 

discrete forcings. For the EH101 aircraft, the inner arm of the lag 

damper is assumed to be earthed at the hub and for the Lynx aircraft, 

the damper is parallel to blade with both inboard and outboard 

attachment points. 

3.8 below, 

The EH101 lag damper geometry is shown in Figure 

Hub 

-----. ＭＭｾＭＭｆＭｄｳＭｩＭ］ｮ］］｡ＺｄＭＮＮﾷｾＱ＠
-- to 

12 

Blade Root Hinge . Main Load Path 

Lag Damper Geometry 

2000. 

1000. 
r--------
I 

Vo ( in/sl 

ＭＭｾＭＭｾＭＭＭＫＭＭＭＭｾＭＭｾＭＭ

-4. -2 o. 2. 4. 

-\000 

.------------. 
-2000. 

Lag Damper Characteristics. (Typical) 

Figure 3.8: EH10l Lag Damper Geometry and Characteristics (Typical) 

The non-linear damper characteristics, input in a table of force vs 

velocity, are shown typically above. The damper veloci ty is first 

determined from the modal contribution as; 

the damper characteristics. 

r 2 is obtained from 

The discrete lag damper modal forcing at 

(3.41) 

The discrete lag damper moment at position r is determined from 

o 
Mr = -Fo[l2cosaO+(r2-r)sinao] if r

1
< ｲｾｲＲ＠

-Fo[l2cosaO+(r2-r)sinao]+Fo[llcosaO+(rl-r)sinao] r ｾ＠ r
1 

(3.42) 
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3.2.12 Modelling of Structural Damping 

Energy is dissipated in all dynamical system through internal friction 

or hysteresis of elastic material, so some form of structural damping 

representation is required. However, a mathematical description of 

structural damping that is both general and accurate does not yet 

exist. Through experimental studies, structural damping has been found 

to be both small and a function of a wide range of parameters. 

By far the most practical approach for modelling structural damping has 

been to represent it either by a form of equivalent viscous damping or 

by a complex form of stiffness. In the latter form, the imaginary part 

of the stiffness is proportional to the energy dissipative structural 

damping. However the general observation is that the energy loss per 

cycle of oscillation is relatively invariant with respect to frequency, 

but the complex stiffness form pre-supposes that the motion of the 

structure is that of sustained simple harmonic motion. It is for this 

reason that we choose the equivalent viscous damping model as 

structural damping. The damping in each of the modes is proportional 

to the magni tude of the displacement and in-phase wi th the veloci ty. 

The modal response equation thus appears in the form; 

where Vi is the equivalent viscous damping in %critical, which can be 

obtained using various experimental means. 

3.2.13 Axial Mode Representation 

In the derivation of the modal Lagrangian equation, the axial motion is 

included as an independent degree of freedom. However, unlike the 

blade lag and flap bending deformations, further consideration on the 

axial deformation is required. 

Within the frequency range of interest, up to 12R (lR=once per rev.), 

it is unlikely that a pure axial mode frequency is encompassed, which 

occurs typically at a frequency in excess of 30R. Thus the axial 

motion is not modelled and subsequently, the Coriolis term such as 2mQu 

cannot be represented. 
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It is shown in Appendix C that in order to include the effect of axial 

motion, it must be expressed as a fore-shortening term. This is done 

by considering the radial shear (Vx ) expression and the u' eliminant is 
3 defined, to O(e ) accuracy, as 

u' = ｾｾ＠ + ｶｖｾ＠ + ｷｗｾ＠ - ｾＨｶＬＲＫｷＬＲＩ＠ - k!'f)'q,' 

+ [v" + "'(w" + W")] ( .0. •• 0.) 'I' P eA2cosv - eA1 Slnv 

+ [w" - q,(v" + ｖｾＩ｝＠ (eA2sin'f) + eAlcos'f)) + O(e
4

) (3.43) 

where ･ａｬＭｓｦｊｅｾｾｾｾｾ［＠ eA2 ｓｦｊｅｾｾｾｾｾ＠ are the flatwise and edgewise offsets 

.• 2 ｓｓｅＨｾＲＫｾＲＩ､ｾ､ｾ＠
of the tension centre from the elastIc aXIS and kA S ｓｅ､ｾ､ｾ＠ is 

the square of the radius of gyration about the tension axis. This is 

then substi tuted in the modal Lagrangian equation whereby the axial 

freedom is effectively eliminated and replaced by fore-shortening 

terms. 

3.2.14 Elimination of Shear Flexibility 

In the above derivation. the shear flexibility is retained such that a 

compatibility check with the CRFD can be made. As discussed in Section 

3.2.5 in order that the analysis can be reduced to a manageable size, 

we assume that there is no distinction of the bending angles and slopes 

ie. t;,=v' , (3=w' , .. . etc in the Lagrangian equation. The reduction by 

eliminating shear flexibility is purely a numerical process and the 

equivalence between the dynamic and response systems, once 

demonstrated, remains valid. 

3.2.15 Summary 

In this section, the basic formulation of the modal Lagrangian equation 

for the coupled rotor-fuselage system has been presented. The 

Lagrangian equation. which is fully coupled. is valid for a rotor blade 

using real modes as state vectors. Only the kinematic effects of 

elastic hub motion and rigid aircraft motion are considered. 

algebra has been avoided as far as possible to provide clarity. 
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3.3 Modelling of Dynamics 

3.3.1 Introduction 

An essential ingredient in the modal analysis is a set of sui tably 

defined modal vectors (state variables). The modes used can be, by 

definition, any admissible functions which approximate the natural 

modes and satisfy the boundary conditions of the dynamic system 

concerned. 

connection 

A fini te 

wi th the 

sequence of these functions 

Galerkin or Rayleigh-Ritz 

is then used in 

method for the 

determination of the system characteristics, as illustrated by Bramwell 

[3.9]. The approach is referred to as the method of assumed modes. 

For practical rotor applications, a set of hub-fixed structurally and 

inertially coupled rotating blade modes is usually used in rotor load 

prediction programs such as R1S0 [3.10] at WHL. These mode types, 

being more representative than those of admissible functions on the 

blade dynamics, allow more insight to be gained. However, because of 

the hub-fixed nature, these modes cannot represent the dynamic 

interactions between the rotor and the fuselage. 

This can be illustrated qualitatively by considering a blade in the 

rotor when being forced by some unsteady loads. The unsteady loads 

will result in dynamic response of the blade which may be described by 

the natural modes of that blade. However, the response is dependent on 

the loads forcing the other blades in the rotor since the hub is free 

to move at the rotor centre-line. These hub translations and rotations 

are dependent on the dynamic characteristics of the fuselage and 

transmission system to which the rotor is attached. Indeed, each 

different combination of translational and rotational freedoms would, 

in general, yield a different blade response. 

In order to model the dynamic interactions of the coupled rotor-

fuselage system correctly. a complementary study was conducted by 

Juggins [3.1]. A number of methods were examined but were discarded as 

not being able to represent the dynamics of the coupled system 

correctly. For example, these methods included the classical impedance 

matching using free-free blade modes and hub-fixed modes superimposed 

on rigid body hub motion. The main conclusion drawn from this 

extensive study is that the dynamics of the coupled rotor-fuselage 
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system can only be correctly modelled using complex rotor modes. The 

dynamic coupling is achieved by transforming the blade motion to the 

fixed frame where hub motions are imposed. The hub motions represent 

the fuselage response and can be described by a set of free-free 

fuselage modes, which can be obtained analytically or experimentally. 

The use of complex rotor modes will inevitably increase computational 

effort. However, not only does it enable coupling between the rotor and 

fuselage to be modelled, it also allows linear Coriolis and lag damper 

effects to be included in the modes calculation. Both effects cannot 

be modelled when real modes, ego WHL's blade modes analysis program: 

J134 [3.11], are used but are treated as forcing functions in the 

response analysis [3.12]. Because the rotor modes are complex, special 

attention is needed to use these modes correctly. It is essential to 

understand how they are obtained and what implications they may have on 

the response analysis. The concept of complex rotor modes, not given 

before, and their solution are the subjects of the next few sections. 

3.3.2 Description of Rotor Coordinates and Rotor Modes 

The possible combinations of blade patterns within a rotor are 

infinite. However, it is possible to define a finite set of independent 

(orthogonal) rotor patterns, known as the rotor coordinates, from which 

any combination of blade motions may be described. This is analogous 

to the Fourier Transform method of re-constructing a time history from 

a set of orthogonal sine and cosine waveforms. 

Rotor coordinates were first introduced by Coleman and Feingold [3.13] 

in their study of helicopter ground resonance (Coleman instabili ty) 

based on a rigid rotor/fuselage system. However, the application of 

rotor modes is not widespread and is normally confined to stability 

calculation. For example, Done [3.14] demonstrated that the helicopter 

ground resonance problem could be reduced to a two degree of freedom 

model and was sufficient to provide an understanding of the physical 

mechanism. 

The rotor coordinates are obtained from the blade coordinates via a 

fixed frame or mul t i-blade coord ina te transformation. If xk denotes a 

displacement, such as flap or lag deflection, on the kth blade of an N-

bladed rotor, then the corresponding rotor coordinates are defined as 
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N N N 

Xo = ｾ＠ L Xk Xc = ｾ＠ L xkcosl/1k Xs = ｾ＠ L XkS inl/1k 

k=l k=l k=l 
N N 

Xnc = ｾ＠ L xkcosnl/1k 
2 L xksinnl/1k n=2, ... (3.44) Xns = N 

k=l k=l 

where are known as the collective, cyclic cosine 

(longitudinal) and cyclic sine (lateral) coordinates and xnc,xns are 

known as the nth reactionless cosine and sine coordinates. I/1k is the 

271(k-l) 
azimuth position occupied by the kth blade, where I/1k= 1/11+ Nand 1/11 

is the arbitrary reference position of the first blade. 

Diagrammatical representations of example lead-lag rotor coordinates, 

normal ised by the blade tip deflection, for the 4 and 5-bladed rotor 
o 

with 1/11=0 , are shown in Figure 3.9 below, 

Co 11 ec ti ve Lag 

--

Reactlonless Lag 
(4-bladed) -

I 
I 

Lateral Cyclic Lag 

N 
2 
N L vkcosl/lk 

k=1 

Reactlonless (Cosine) Lag 
(S-bladed) 

Longitudinal ｃｹ｣ｾｩ｣＠ Lag 

Ii N 
2 
N L v"sinl/l k 

"=1 

Reactionless (Sine) Lag 
(S-bladed) 

N=5 
2 
N L vksinZl/lk 

k=l 

o 
Figure 3.9: Example Lead-Lag Rotor Pattern with 1/11=0 
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The corresponding inverse transformation from the fixed frame to the 

rotating blade coordinate system is 

Xk = Xo + ｘｃｃｏｓｾｫ＠ + ｸｓｳｩｮｾｫ＠ + L { ｸｮ｣｣ｯｳｮｾｫ＠ + ｸｮｳｳｩｮｮｾｫ＠ } 

n=2 

(3.45) 

Two important features of this transformation must be noted. It is 

orthogonal and is independent of time for an odd-number ＨｾＵＩ＠ bladed 

rotor, but becomes time dependent for an even-number ＨｾＴＩ＠ bladed rotor. 

This is because for an odd-number bladed rotor, the number of 

reactionless patterns is always even and occur as independent pairs. 

I t is possible to transform the pair into the fixed frame as higher 

harmonic component pairs ego cos2Qt,sin2Qt,cos3Qt,sin3Qt. .. etc. For 

an even-number bladed rotor, the number of reactionless pat terns is 

always odd, there will always be a rotor pattern which cannot be 

transformed into a pair of independent higher harmonic components. As 

a result, different solution methods can emerge depending on the number 

of blades in the rotor, as described by Holton [3.15]. 

To avoid this, Johnson [3.16] introduces the reactionless term as 

xR=E( -1 )kXk in the transformation for an even-number bladed rotor and 

modifies the harmonic summation index n to range from 1 to Int (N;2). 

However, this still leaves the frequency defined in the rotating frame 

and the transformation cannot be used for the response solution since 

the phasing of the forcing relative to the blade cannot be prescribed. 

The number of independent rotor coordinates necessary to describe the 

possible rotor motion is clearly dictated by the number of blades in 

the rotor. However, not all of them will give rise to net motion at 

the hub. The collective motion Xo is independent of azimuth position 

with each blade moving identically and resulting in net motion along or 

about the axis of rotation, ego hub vertical and yaw motion. The 

cyclic motions xc,xs are dependent on the azimuth position, where the 

motion on each blade repeats itself once every rotor revolution 

resulting in net motion along and about axes in the plane of rotation, 

ego hub inplane or disc tilt motion. Thus these coordinates: xo'xc and 

xs, couple with the fixed frame motion and are therefore referred to as 

coupled coordinates. 

The remaining coordinates: x2c ' x2s' .... , xnc ' xns' necessary to complete 

the description of the rotor motion, do not couple with the hub motion. 
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The motion of each blade repeats twice or more in each rotor revolution 

resulting in no net motion at the hub. They are referred to as 

reactionless coordinates and can be treated in the same way as the 

rotating blade coordinates in a hub-fixed condition, ie. in the 

rotating frame, except that they include Coriolis effect. 

The rotor modes, which describe the time independent natural motion of 

a complete rotor, are therefore made up of these 3 primary components; 

collective, cyclic and reactionless. Hence, only two mode types: the 

coupled modes (containing both collective and cyclic motions) defined 

in the fixed frame and the reactionless modes defined in the rotating 

frame, need to be considered. Once they are determined, the total 

response of a given blade can then be obtained by transforming the 

coupled motion from the fixed frame into the rotating frame and 

superimposing the reactionless motion for that blade. 

The transformation (Eqn. 3.45) merely introduces a convenient set of 

coordinates to enable coupling between the rotor and the fuselage to be 

carried out, the physics of the problem remains unchanged. Since xk is 

a function of both time (t) and space (r), so must the rotor 

Because of the nature of 

coupling, it is only necessary to consider the transformation up to and 

including the cyclic components, thus Eqn.3.45 reduces to 

(3.46) 

It is important to note that by differentiating xk wi th respect to 

time, gyroscopic and centrifugal terms are introduced, 

xk = Xo + (xc + ｑｸｓＩ｣ｯｳｾｫ＠ + (X S - ｑｸ｣Ｉｳｩｮｾｫ＠ (3.47a) 

• 2 ..' 2 
Xk = Xo + (xc+ ZQxs - Q ｘｃＩ｣ｯｳｾｫ＠ + (xs - ZQxc-Q ｸｳＩｳｩｮｾｫ＠ (3.47b) 

where the notations of r,t dependencies are omitted from Eqns.3.47. 

3.3.3 Modelling of Blade Dynamics 

The determination of the dynamic characteristics: frequencies and mode 

shapes, for the coupled rotor-fuselage system is defined wi thin the 

framework of CRFD. The full description of the solution process can be 

found in a number of reports by Juggins ego [3.1,3.17A,3.17B]. A 

summary is provided here. 
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The intention of CRFD modelling is to provide a variety of mode types, 

ranging from undamped (real) blade modes to damped (complex) coupled 

modes, to be used for rotor response analysis. This enables the rotor 

modelling complexity to vary dependent upon the application. However 

the formulation is common to all mode types and is based on a single 

blade. The system equations differ only in the terms being retained, 

and subsequently, the dynamic characteristics vary. 

In CRFD, the rotor blade is modelled by a continuous beam made up of a 

series of straight segments defining the locus of shear centres. Large 

pre-cone and pre-sweep angles are accommodated through numerical blade 

segment resolution. The blade is of a Timoshenko type beam with shear 

deformation included. Warping restraint is also included by modifying 

the torsional stiffness distribution. 

The blade and hub are allowed to undergo elastic deformations similar 

to aeroelastic formulation. It is known that the blade steady state is 

influenced by many parameters, the most notable being the rotor thrust. 

A representative collective pitch ｾｭ＠ is applied to achieve the required 

thrust calculated using quasi-steady or perturbatory aerodynamics. 

The derivation of the equations of motion, defined at a point on the 

blade elastic axis, proceeds by the application of Hamilton's Principle 

using an ordering scheme. Once derived for a single blade, the 

equations are then transformed into the fixed frame to describe the 

motion of a blade point in a rotor made up of a number (>2) of 

identical blades. For a 2-bladed rotor, the collective can be 

described but there are two cyclic freedoms which have a time 

dependency between them and has not been dealt with. 

The ordering assumption is similar to that adopted in the aeroelastic 

analysis, with the following exceptions; 

(i) The precone, presweep and anhedral angles are not small; 

(ii) The radial deflection (u) is assumed to be O=O(e) to accommodate 

the axial resolution through the blade kinks, because no small 

angle assumption is made to the pre-deformed angles; 

(iii) Shear deformations are retained ie. blade section rotations ＨｾＮ＼Ｉ＠

and bending slopes (w' ,v') are distinct; and 

(iv) 80th blade torsion inertias ｭｫｾｹ＠ and mk:z are assumed to be O(e) 
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instead of O(c
2

). This is strictly incorrect but it allows the 

third order inertia terms to be retained in the torsion equation. 

The equations of motion for a rotating (kth) blade, including the hub 

motion, are written in terms of the coefficient matrices of which 

Ao,At,A2,BO,Bt,B2,B3,B4 are constant for the blade variables and 

Bs(t),B6 (t) are time dependent for the hub variables as shown, 

AOUk + AtUk + AiEk + SA = 0 

BoFk + BtUk + ｂｾｫ＠ + ｂｾｫ＠ + ｂｾｫ＠ + Bs(t)H + B6 (t)H + SB = 0 (3.48) 

where Uk={U,v,w,Rx,Ry,Rz}Tis the vector of blade deformation variables; 

Fk={Vx,Vy,Vz,Mx,My,Mz}Tis the vector of blade forces and moments; 

H ］ｻｘｈＧｙｈＬｚｈＧｾｈＧｾｈＧｾｈｽｔ＠ is the vector of hub motions; 

SA = vector of constants containing non-linear strain terms; 

SB = vector of constants containing gravitational force and steady 

aerodynamic terms; and 

()' _aU. 
- ar' 

( ') = a() 
at . 

The coefficient matrices (all real 6x6) possess the following 

properties; 

and 

A! = A "0 0; 

At 

A2 

is general; 

= -I; 

Bo = I; 

Bt is general; 

ｂｾ＠ = B2 ; Bs's and B6 's are general 

they satisfy the following important relationships; 
T 

( 1 ) At = -Bt ; and 

(2) 
-t 

BtAO At -B2 is symmetrical. 

The system equation of this particular form is configured for the use 

of the transfer matrix solution method. It is however to be pointed 

that the form and the properties of coefficient matrices of the 

original CRFD system equations are not as shown in Eqn. 3. 48. As a 

result of proving the orthogonality relationship (Section 3.5.2) 

carried out within this study, the form of system equations was re-

visited by Juggins [3.34], where inconsistencies were found and 

corrected with the revised form being shown above. 

changes, the solution procedure remains unaltered. 

3.3.4 The Steady State and Modal Equations 

Despite such 

The solution proceeds by defining the blade variables as the sum of the 

steady state and perturbatory components in both Uk and Ek• and 
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perturbatory only in H. The equations of motion are then linearised 

about the steady state. Upon separation, non-linear steady state and 

linearised modal equations are obtained. 

The steady state solution is governed by the equations 

AOUST + A1UST + AiEST + SA = Q 

BoFsT + BlUST + ｂｾｓｔ＠ + SB = Q (3.49) 

where suffix ST refers to the blade steady state and is valid for all 

mode types. 

The linearised modal equations in the single (kth) blade form, are 

described by; 

ａｏｾｫ＠ + A1Uk + A2Fk = 0 

BoFk + B1Uk + ｂＲｾｫ＠ + ｂｾｫ＠ + ｂＴｾｫ＠ + (Bso + ｂｓｃ｣ｯｳｾｫ＠ + ｂｳｳｳｩｮｾｫＩｈ＠

+ (B60 + ｂＶｃ｣ｯｳｾｫ＠ + ｂＶｳｳｩｮｾｫＩｈ＠ = 0 

(3.50) 

where the periodicity of matrices Bs(t) and B6(t) is stated explicitly 

with Bso,Bsc,Bss,B60,B6C,B6S being constant. Eqns.3.50 provide the 

basic form of equation from which the system equations for various mode 

types are obtained. 

3.3.5 Linearised Modal Equations 

a. Real Blade Modes 

By far, the simplest form of the system equations defined by CRFD is 

that for the undamped blade modes, where nei ther damping, hub motion 

nor Coriolis term is present. The system equations are obtained 

directly by eliminating these terms from Eqns.3.50, 

AOUk + A1Uk + A2Fk = 0 
.. 

BoFk + B1Uk + ｂＲｾｫ＠ + B4Uk = 0 (3.51) 

The solution is obtained in the rotating frame, with the assumption 

that the motions of all the blades are identical. Because there is no 

velocity term, the modes are real. 

b. Undamped Complex Reactionless Modes 

Since the reactionless modes involve no motion of the hub, they can be 

treated in the rotating frame. The system equations differ from those 
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for the real blade mode type in that they include the Coriolis terms, 

ie. BJll, 

.. 
BoFk + B1 Uk + B2Uk + BJllk + B&k = 0 (3.52) 

This system resembles that of a gyroscopic system, and the dynamic 

characteristics are complex as shown by Lancaster [3.18]. 

c. Undamped Complex Coupled Hodes via The Fixed Frame Transformation 

For the coupled modes wi thout damping, both Coriolis and hub motion 

terms are present, the system equations for these mode types in the 

rotating frame are those given by Eqns.3.50. They contain azimuthally 

dependent terms, which are removed by transforming the system equations 

into the fixed frame using Eqn.3.46. It is to be noted that the 

transformation is complete only by applying the following operators to 

the system equations, 
N N 

L (..) 1 L (. . ) cosl/Jk 

k=1 k=1 

By equating the coefficients 

coupled equations are obtained; 

Collective Equations 

ａｾｄ＠ + ａＱｾ＠ + A2Eo = 0 

, 

of 

N 

L ( .. ) sinl/Jk 

k=1 
1 ike terms, the following sets of 

... .. 
BoED + B1 UD + ｂｾ＠ + B:&o + B41lo + Bso!! + B6o!! = 0 

Cyclic Cosine Equations 

AoU c + A1!:!c + A2Ec = 0 

BoEc + B1 Uc + B2!:!c + B3 (!:!c+QUs) + B4 ＨＱｫＫＲｑＡｬｳＭｑｾＩ＠ + Bsc!! + B6cH = 0 

Cyclic Sine Equations 

AoUs + A1Us + A2Es = 0 

BoEs + B1 Us + B2US + B3 (Us-Q!:!c) + B4 ＨＡｬｳＭＲｑＡｬ｣ＭｑｾＩ＠ + Bss!! + B6sH = 0 
(3.53) 

where ｾＧＡＺＡ｣Ｇｕｳ＠ are the collective, cyclic cosine and cyclic sine 

components of the coupled modes. These coupled sets of equations are 

far more complicated than those of reactionless modes. Apart from the 

hub terms, additional gyroscopic and centrifugal terms are also 

introduced as a result of the transformation. The system equations are 
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to be solved in the fixed frame. Despite such complexity, this system 

also resembles a gyroscopic system. 

Eqns.3.53 describe only the blade-hub dynamics. The dynami cs of the 

sUb-system to which the rotor is attached, are included using an 

impedance representation. The frequency dependen t impedance, Z, is 

obtained by considering a set of undamped normal modes defined in a 

free-free condition. The sUb-system dynamic characteristics can be 
obtained either analytically ego finite element 

The hub compatibility equation, ie. 

method or 

the boundary experimentally. 

condi tion, is derived from Hamil ton's Principle by considering the 

variation of virtual work due to the hub motions, and equating the 

coefficients of individual variations to zero ie. oW I a where 
ohi r=O 

This is done by summing the shears and moments 

from all the blades, and by equating them to the hub values. The 

following matrix equation results 

1 
(N 2 + 5) H = FC'Ec + FS'Es + Fa·Eo (3.54) 

where N is the number of blades; 

2 is the fuselage impedance matrix at the rotor hub (a function 

of coupled frequency); 

5 is a matrix containing linearised steady blade root forces; 

H is the vector of hub motions (as before); 

FC,FS,Fa are the coefficient matrices of the blade root forces; 

Eo,Ec,Es are the root collective, cyclic cosine and sine forces. 

Eqn.3.54 is then combined with those in Eqns.3.53 to obtain the 

solution for the coupled modes. 

d. Reactionless and Coupled Modes with General (Real) Damping 

The retention of veloci ty terms allows linear damping: structural, 

aerodynamic or viscous, to be included in the modes solution for both 

the react ionless and coupled modes. The system equations are those 

defined previously by Eqns.3.53 & 3.54 except B;*-B 3 ie. the gyroscopic 

nature of the undamped system is destroyed. Indeed, the inclusion of 

damping effect is responsible for the vastly increased complexity 

during the analytical development of this study. Further discussion on 

this topic will be given in Section 3.5.2e. 
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3.3.6 Method of Modal Solution 

The solution procedures for the steady state and the various mode types 

are based on the multi-blade transfer matrix approach. 

Steady State Solution 

The steady state solution proceeds as a single blade hub-fixed 

condition, by re-expressing the governing equations (Eqn.3.49) as 

or 

[ 1 O]{U'} -1 F' = 
Bo B1 1 - ST 

= 

-A-1SA 
0-

-B-1SB 
0-

-1 ]{ } 
-Aa A2 U 

B-1B A -1 A E + 
o Ｑｾｾ＠ 2 ST 

Using the known properties, A2=-I, Bo=1 (Eqn.3.48), it reduces to 

ｻｾＺｽ＠ = 
ST 

｟ｾｬａＱ＠

-1 B1Ao A1-B2 

(3.55) 

The solution can be obtained by integrating Eqn. 3. 55 along the blade 

using the known boundary condi tion at the tip (natural) ie. FTIP=O as 

the starting point and also the condition at the root (geometric) ie. 

The blade root forces and displacements can be written in 

transfer matrix form as 

(3.56) 

where T
11

, T21 are the transfer matrices and CD,CS are the steady load 

vectors. The steady state solution in terms of the vectors ｾｔ＠ and EsT 

can then be evaluated iteratively. 
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Solution for The Blade and Reactionless Modes 

The modal solutions for both the blade modes and the complex 

reactionless modes proceed in the same manner as in the steady state 

solution, except that the transfer matrix will be frequency dependent. 

Solution for The Coupled Modes 

In transfer matrix form, the blade root forces and displacements for 

the coupled modes can also be written as a set of coupled equations, 

Collective 

Cyclic (cos) 

{!lc} [T 11 cc 
Ec ROOT - T 21CC 

Cyclic (sin) 

(3.57) 

where T110, T210 ... , TH21S are coefficient matrices which are functions 

of the complex natural frequencies. Substituting Eqns.3.57 into the 

hub compatibility equation (Eqn.3.54) leads to the matrix equation, 

TH11 T11 a a 0 0 
TH11 a T T H a C 11CC llCS 

ｾ＠ a 
THll a T T = S llsc llSS !lc a 

FC'TH21 +FS'TH21 Fa -T21 FC-T 21 Fe-T21 !:Is a c s 0 cc CC 
1 +FS -T21 +FS'T21 +Fa-TH21 -(-2+5) 

o N SC SC 

or 

D V = 0 (3.58) 

The determinant of the coefficient matrix D, which is a function of the 

blade properties and the complex frequency, is evaluated successively 

for a given search frequency. The mode frequencies and shapes are then 

determined by finding the zero determinants of matrix D and the 

corresponding complex eigenvector y, which contains the values of the 

coupled coordinates in the fixed frame. The complex modal vector Y is 

normalised to unity and zero phase by the largest component in V. The 

modal solution is thus complete. 
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3.4 Modelling of Aerodynamics 

3.4.1 Introduction 

The determination of blade aerodynamic loads is an integral part of a 

rotor aeroelastic analysis. For this purpose, it is essential to know 

the local components of airflow at any station along the blade and 

this, in turn, requires a knowledge of the air velocity, induced by the 

lift of the blades. 

The flowfield through the rotor is extremely complex and the 

oscillatory pitching motion of the blade has a significant effect on 

the aerofoil section characteristics. The correct modelling of 

aerofoil behaviour undergoing these rapid changes in incidence around 

the azimuth is important to ensure the aerodynamic loadings are 

determined accurately. 

When the rotor blades are treated as slender beams, the modelling of 

blade aerodynamics essentially reduces to one of finding the spanwise 

distribution of normal force, chordwise force and pitching moment 

coefficients ie. the lifting line theory. Even with such a 

simplification, the task is still a difficult one. 

Development of aerodynamic models is not part of this study but 

description of models adopted is provided here for completeness. The 

aerodynamic models adopted, cumulating many years of development at 

both WHL and DRA (Farnborough), represent the state-of-the-art 

mode 11 ing of wake geometry and unsteady aerodynamics. 

made here to discuss in detail all the theories 

aerodynamic model is based. 

No attempt is 

upon which the 

For many years, there have been doubts on the true definition of the 

angle of attack expression used for aerodynamic calculation. A 

rigorous approach is provided here to clarify such an issue. 

3.4.2 Wake Induced Velocity and Fuselage Upwash Models 

The determination of induced velocity distribution involves the 

modelling of the wake geometry shed from the rotor. Once the 

distribution of these vortex lines trailing from the rotor is 
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determined, the induced velocity at a given point of the flow can be 

calculated by applying the Biot-Savart law. Wake models of varying 

complexity are included as options in this analysis. 

The simplest wake model included is due to Glauert [3.19], where the 

induced velocity increases linearly from the front to the rear of the 

disc and is constant across any lateral cross-section. A more 

representative wake model is the vortex ring model developed by Cook 

[3.20] . It consists of half vortex rings originating at the tip and 

root cut-out of the reference blade, with complete vortex rings being 

displaced down-stream. The family of vortex rings are assumed to be 

equally spaced in both the vertical and horizontal planes. The root 

and tip vortices are opposite but equal in strength such that 

circulation is constant along the blade. Both the Glauert and vortex 

ring wake models provide an overall representation of induced velocity 

for the rotor. 

In a more detailed modelling of rotor induced velocity, it is common to 

model the wake geometry using both a near wake and a far wake. The 

near wake defines the interaction of the trailed vortices immediately 

behind the blade, and the far wake defines the significant part of the 

mean inflow levels and the blade vortex interactions (BVI's). 

The interactive near wake model incorporated in this analysis is based 

on that developed by Young [3.21]. It is an extension to Cook's vortex 

ring model by replacing the half rings, at the tip and the root 

originating from the reference blade, wi th a series of half rings 

across the span. This allows a spanwise variation of circulation. The 

trailing wake ie. the system of complete rings, remains unchanged but 

both wake contraction and non-uniform vertical displacements of the 

vortex rings are incorporated. It is however assumed that at any given 

azimuth angle, the circulation does not vary along the half ring. 

Since the loading history is neglected, excessive computational effort 

is avoided. However, the error is small, as the veloci ty induced at 

the calculation points is dominated by the part of the ring closest to 

the blade, the effects from the rest of the rings are small. This 

model provides a reasonably accurate definition of the overall inflow 

model and the blade vortex interactions. It is computationally 

efficient and has been shown to improve the vibratory loads prediction 

in cases away from the retreating blade stall envelope [3.21]. 
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In general, the far wake model is assumed to comprise the cycloidal 

path of the point on the blade from where the fully contracted tip 

vortex originates. The downwash at any point on the blade is 

calculated by summing the effects of a series of small straight line 

segments following the cycloidal path. This is computationally 

expensive. To avoid complexity, Beddoes' far wake model [3.22] is 

adopted in this analysis. 

Beddoes' model replaces each spiral turn of the wake by only 2 straight 

line vortex elements, both having length equal to the contracted wake 

diameter and positioned tangentially to the cycloidal path and 

centrally on points, known as the critical points. They are defined as 

the only points where the normal to the cycloidal path passes through 

the control point on the blade, at which the induced veloci ty is 

evaluated. From the definition of the spiral path there are only two 

cri tical points ensuring one of which will always be closest on the 

spiral to the control points, hence the approximation of the spiral by 

2 straight line elements. The induced velocity on the blade is 

calculated by applying the Biot-Savart law to the spiral. 

This model has been well-validated in level flight. To include 

application to manoeuvring flight, it has been extended by Harrison 

[3.23] to include the effects on the wake distortion due to the 3-

dimensional aircraft motion. This avoids the need to use a free wake 

model for which computation is intensive, although the incorporation of 

3D aircraft motion is relatively easy. 

The discussion has so far concentrated on the rotor induced flow field. 

Wilby et al [3.24] has shown that the flow about the helicopter 

fuselage has a major effect on the rotor behaviour and is recognised as 

an important source of oscillatory loading on a rotor. The fuselage 

produces an upwash over the inboard part of the blade at the front of 

the disc. This increases the blade incidence and can lead to premature 

blade stall. The upwash also keeps the tip vortex from the preceding 

blade closer to the plane of the disc thereby increasing the loading 

outboard of the crossing point. The effect of these additional 

loadings is to increase the forcings of certain modes, with frequencies 

in the vicinity of (N±l)R and hence the loads transmitted to the 

fuselage. 
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In this analysis, two fuselage upwash models are included. Young's 

model [3.25] is based on a panel-source method, developed originally 

for fixed-wing aircraft. The method had been modified to give velocity 

components in the rotor disc at any specified radial and azimuth 

position. A simple interpolative procedure is then used to determine 

the upwash distribution. The other upwash model, due to Hawkings 

[3.26], is based on a slender body theory using potential flow. The 

fuselage upwash distribution is interpolated from tabulated data. 

3.4.3 Modelling of Unsteady Aerodynamics 

The flow over the rotor blade is a complicated phenomenon wi th the 

aerofoil oscillating over a range of angles of attack and this affects 

the blade loading. The principal features of this mechanism, known as 

dynamic stall, are described by the flow separation, formation of the 

leading edge vortices and passage of these vortices. The timewise 

variation of the angle of attack along the blade determines the 

torsional damping when the flow is attached, and the high control load 

generated when the blade undergoes dynamic stall limi ts the flight 

envelope of the aircraft. The rapid increase in pitch link loads, ego 

due to retreating blade stall, cannot be estimated accurately unless 

the dynamic stall process is modelled correctly. The modelling of 

unsteady aerodynamics is principally to simulate the dynamic stall 

mechanism. 

The simplest unsteady aerodynamics model used for rotorcraft 

aeroelastic analysis is Theodorsen's theory. It is however well-known 

that the theory is not directly applicable for rotary-wing aircraft 

because the unsteady wake beneath a rotor is quite different from the 

wake postulated. Nevertheless, various quasi-steady and unsteady 

models for determining aerodynamic loads based on this theory have been 

developed for rotorcraft stability analysis ego Friedmann's dynamic 

inflow model [3.27]. The dynamic inflow, defined as a combination of 

steady and perturbation inflows, captures the low frequency aerodynamic 

effects associated with the wake. 

The two unsteady aerodynamic models adopted for this analysis are based 

on a semi-empirical approach and both are well-validated against wind 

tunnel test data. The first model is the original dynamic stall model, 
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developed by Beddoes [3.28] which is based on an indicial approach. It 

consists of distinct attached and separated flow regimes which 

simulates the physics of the separation process. The mode I of the 

dynamic stall process assumes that there are two distinct time delays, 

one due to the lift and the other due to the pitching moment 

coefficient. This determines the lift and moment break points when the 

angle of attack for static stall is exceeded. The method is robust and 

generally produces acceptable predictions for aerofoil sections that 

exhibit leading-edge stall. The second model, by Leishman & Beddoes 

[3.29], is an extension to [3.28] by including a trailing edge 

separation to account for the vortex shedding during dynamic stall. 

Both of these unsteady aerodynamics models are provided as a table of 

data for a range of Mach numbers from which the aerofoil section 

coefficients can be synthesised. 

3.4.4 Angle of Attack for Aerodynamic Calculation 

In Section 3.2.4, an integral term ｾ｢＠ was derived. This second order 

change in pitch angle is induced by pure lag and flap bending whilst 

the torsion angle remains zero. A rigorous approach is given here to 

determine its significance on the definition of angle of attack used in 

the calculation of aerodynamics. Consider the following diagram; 

n J 

ｖｉｾ＠ ALONG ａｒｒｏｾ＠ A' 

Deformed 
l' 

I 

Figure 3.10: Angle of Attack on An Aerofoil Section 
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The angle of attack (a) for aerodynamic calculation is expressed as 

a = f} + cp (3.59) 

- -1 Up 
= f} + tan ( ) 

UT 
- A __ 

where f} (=f}-iv"w'dr) 

the inflow angle, 

is the pitch angle defined in Eqn.3.12 and cp is 

Up and UT are the velocity components of air 

perpendicular and tangential to the blade in the undeformed blade axis 

(i,j,k) coordinate system. These velocity components are related via 
A 

the transformation matrix T, as follows; 

- 2 - 2 

1 
(v' +w' ) 

v' w' 
2 

U1 

= -,2 . UJ 
+ 0(c

3
) (3.60) -v' ＨＱＭｾＩ＠ 0 

2 Uk 
- w'2 

-w' -v'w' (1--) 
2 

where T is equivalent to TT in Eqn.3.11 but the following are noted; 
A _ 

(1) T is devoid of the f} component since UR,UT,Up are the components of 

air velocity relative to the unpitched blade; and 

(2) v,w contain both built-in (pre-deformed) and elastic deformations 
- -

such that v=Vp+v,w=Wp+w, etc. 

The veloci ty components U1 , U J' Uk of the blade are defined as follows. 

Let the position vector of the aerodynamic centre £A={O'YA,ZA}T in the 

blade axis system, after deformation, be given by 

(3.61) 

If U denotes the total velocity of the blade section relative to the 

air in the undeformed (i,j,k) system, then 

U1 a£A 
U = UJ = V + A + 

at 
+ Q 1\ £A (3.62) 

Uk 

where V is the hub velocity vector, A is the induced velocity vector 

(+ve with axis) and Q is the rotation velocity vector, defined as 
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ＭＨｾｸ｣ｯｳｾ＠ - ｾｹｳｩｮｾＩ＠

V=QR ｾｸｳｩｮｾ＠ + ｾｹｃｯｓｾ＠

Ｍｾｺ＠

ＭＨｐｈｃｏｓｾ＠ - ｱｈｳｩｮｾ＠ - ｾＩ＠

Q=Q ｐｈｳｩｮｾ＠ + ｱｈ｣ｯｳｾＩ＠
1 - r H 

where all the quantities are normalised in accordance with Table 3.1. 

ａＧｓＧｙａＬｺａＬｾｹＬｾｺＬｕＬｶＬｷＬｾＧｐｈＬｱｈＬｲｈ＠ are at least O(c) quantities and ｾＬｸ＠

are 0(1). It is to be noted that u is set to O(c) here in order that a 

check with other analyses can be made. Therefore, 

and 

O ( CO
2 ) X + U - rHx + c.. 

ＭＨｾｸ｣ｯｳｾ＠ ＭｾｹｳｩｮｾＩ＠ + Ai + U - (V+YA) +0(c
2

) 

U =QR - ( 2) .. X + ｾｸｳ＠ ｩｮｾ＠ + ｾｹｃｏｓｾ＠ + A j + v + u - r HX +0 C 

- . - 3 
ＭＨｾｺＭａｫＭｗＩＭＨｰｈ｣ｯｳｾＭｱｈｳｩｮｾＭｾＩＨｶＫｙａＩＭＨｰｈｳｩｮｾＫｱｈ｣ｯｳｾＩＨｸＫｵＩ＠ +O(c ) 

(3.63) 

It is noted that the Uk component is expressed to an order higher than 

Ui,U j such that they can be used to determine the inflow angle to 0(c
2

) 

accuracy. Hence from Eqns.3.60 & 3.63, 

= 

- 2 - 2 
(Vi +W' ) 

1 2 

-
-Vi 

-Wi 

-
Vi 

- 2 
Vi 

(1--) 
2 

-V/W' 

-
Wi 

o 

W/2 
(1--) 

2 

. 
no 0 (c-2 ) • ｾｾ＠ X + ｾｸｳｩｮｾ＠ + ｾｹｃｏｓｾ＠ + Aj + v + u - rHx + c.. 

ＭＨｾｺＭａｫＭｗＩＭＨｐｈｃｯｳｾＭｱｈｳｩｮｾＭｾＩＨｙＫｙａＩＭＨｰｈｳｩｮｾＫｱｈ｣ｯｳｾＩＨｸＫｵＩ＠

which after some re-arranging, 

3 +O(c ) 

(3.64) 

(V-+YA) + v-, (x+llxsin'J.)] + 0(c
2

) UR = ｑｒ｛ＭＨｾｸ｣ｯｳｾ＠ - ｾｳｩｮｾＩ＠ + Ai + U - ｾ＠ ｾ＠

U
r 

=_QR[ ＨｸＫｾｳｩｮｾＩ＠ + Ｈｾ｟ｖＯｾｸＩｃｏｓｾ＠ + Aj + Y + u - rHx ] +0(£2) 

Up = ｑｒ｛ＭＨｾｺＭａｫＭｗＩ＠ - Ｈｰｈ｣ｏｳｾＭｱｈｳｩｮｾＭｾＩＨｙＫｙａＩ＠ - ＨｰｈｳｩｮｾＫｱｈ｣ｯｳｾＩＨｸＫｵＩ＠

+W' ｻｾ｣ｯｳｾ＠ ＭｾｹｳｩｮｾＭａｩＭｕＫＨｙＫｙａＩｽ＠ _y/W' ＨｸＫｾｳｩｮｾＩ｝ＫＰＨ｣ＳＩ＠
(3.65) 

from which the inflow angle ｾ＠ is defined and the angle of attack a then 

takes the form, 
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a. = 'f} + <p 

- -1 Up 
= 'f} + tan ( ) 

UT 

Q:: ,'}p + ,'}(t/J) + <P Jv"w'dr + 
Up 
UT 

- -
= ,'} 

P 
+ ,'}(t/J) + <P - Jv"w'dr + v'w' + 

{ - (Jlz - Ak Ｍｾ＠ ) - Ｈｰｈ｣ｯｳｴＯｊＭｱｈｳｩｮｴＯｊＭｾＩＨｾＫｙａＩ＠

+w' {Jlxcost/J ＭｊｬｹｳｩｮｴＯｊＭａｉＭｕＫＨｾＫｙａＩｽ＠ } 

{ -[(x+Jlxsint/J) + ＨｾｹＭｖＧｊｬｸＩ｣ｯｳｴＯｊ＠ + AJ + ｾ＠ + U - rHx] } + 0(£3) 

(3.66) 

This expression can be checked by letting ｐｈ］ｱｈ］ｲｈ］ｾｹ］ａｬ］ａｊ］ｏ＠ and 

Ak=v,,'}(t/J)=O and a. becomes 

- -

Jv"w'dr + v'w' 
ｾｺ＠ -v -w -YA<P -w' (Jlxcost/J -u +v) 

+ _ _ +0 (£3) 
(x +Jlxsint/J) + Jlxv'cost/J +v + u 

(3.67) 

which is the same as that obtained by Walker [3.6] but without aircraft 

rate terms. The underlined terms are those derived by Peters [3.3] for 

the hover condition. 

Eqn.3.66 is accurate to 0(£2) and is indeed complicated. In practice, 

the velocity components UT,Up are evaluated numerically from which the 

inflow angle <p is determined. The derivation here is rigorous and 

clarifies the effect of the second order pseudo torsion term due to 

pure bending in the a. expression (Eqn. 3.67). It should also be 

regarded as a definitive treatment of the blade pre-deformations, such 

as geometric anhedral and sweep, in the calculation of aerodynamic 

loads. If these pre-deformations are defined in the blade segment 

geometry for the modes calculation, then they are automatically 

included in the steady state twist and their effect must be removed 

from a., otherwise spurious torsion will be introduced. It is worth 

noting that for an accurate determination of aerodynamic loads, the 

blade section coefficients should also be evaluated to a comparable 

accuracy. The latter is however often carried out in a semi-empirical 

approach. 
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3.5 Method of Solution for The Rotor Response 

The modal Lagrangian equation derived in Section 3.2 is valid for a 

rotor system modelled wi th real blade modes. Having introduced the 

concept of complex rotor modes, we examine their application in the 

rotor response calculation. 

entirely new. 

The analytical concept that follows is 

3.5.1 Modal Representation of Rotor Coordinates 

The response of the rotor is described by the time history of all the 

blades around the azimuth. On the basis that the rotor behaviour can 

be completely described by the responses of both coupled and 

reactionless modes, the motion of the individual kth blades ＨｾｫＩ＠ in the 

rotor can be uniquely determined from the following representation; 

Nc 

= ｾｔＨｲＩＫ＠ \ ｾ｣＠ ＨｾＩｾ＠ ＨｲＧｾｫＩ＠ + L 1 1 

i=l 
Nc 

Nr 

L ｾｲ＠ 1 ＨｾＩ＠ ｾｲ＠ 1 (r) 

i=l 

= xST(r) + L ｾｃｬＨｾＩ｛ｾＨｲＩ＠ + ｾＨｲＩ｣ｯｳｾｫ＠ + ｾｳＨｲＩｳｩｮｾｫ｝＠

i=l 
Nr 

+ L ｾｲ＠ 1 ＨｾＩ＠ ｾｲ＠ 1 (r) 

i=l 

(3.68) 

where suffices a::: (or c), r refer to the coupled and react ionless modes 

respectively. ｾ｣ｬＧ＠ ｾｲｬ＠ are the generalised coordinates (modal 

responses) for the i th mode and Nc ' Nr are the numbers of respect i ve 

mode types used in the response analysis. It is noted that the 

azimuthal dependence of the i th coupled mode shape, ｾｩ＠ (r, ｾｫＩＧ＠ arises 

from the cyclic motion and that the kth blade occupies the position of 

ｾｫ＠ at time t. 

It has been noted in Section 3.2 that when hub motions are included in 

the modes, they are also expressible in terms of the generalised 

coordinates as follows; 

Nc 

ｈＨｾＩ＠ = L ｾ｣ｬ＠ ＨｾＩｨｬ＠

i=l 

(3.69) 

where hi is the vector of hub motions in the i th coupled mode and 

E 3 20 & 3.21 must be extended as follows; qns .. 
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8 
L 

8 8x 8 8H = -.- + . . . 
8T1c 8x 8T1c 8H 8T1c 1 1 1 

(3.20a) 

8 
= L 8 8x 8 8H 

8T1c 8x -- + 
8H 8T1c 8T1c 

1 1 1 

(3.20b) 

Substituting these expressions into the Lagrangian equation will yield 

two sets of response equations, 

ｾＨｾＩ＠ 8K 8U oW 
8T1c 

+ 
8T1c 

= oTlcl 
= QCl dt Ｘｾ＠ Cl 1 i 

i=1,2, ... ,Nc (3.70a) 

ｾＨｾＩ＠ 8K 8U oW = Qrl 8T1rl 
+ 

8T1r 
= oTlrl dt Ｘｾ＠ rl i 

i=1,2, ... ,Nr (3.70b) 

The response equations described by Eqns. 3.70 are fully coupled. By 

applying the modes orthogonality relationship, they can be reduced to a 

set of (Nc) uncoupled modal response equations representing the coupled 

modes system and (NxNr ) uncoupled equations representing the 

reactionless system for an N-bladed rotor ie. Nr number for each blade. 

The structures of the response equations are similar but the forcing 

functions differ. The forcing functions clearly depend on the features 

modelled in the system modes, any features, not modelled, will 

subsequently result as RHS forcings. Since the single blade response 

equation is derived (Section 3.2) in such a way that all possible 

forcings present in the rotor system can be identified, there is no 

need to invoke the Lagrangian equation twice using Eqns.3.70. 

For the coupled rotor-fuselage system, we only need to identify the 

forcing functions which are appropriate for the system modes concerned. 

Because the reactionless system is hub-fixed, the forcings which are 

confined to fixed frame ie. hub and rate terms will be absent and can 

be obtained from the single blade equation by removing these terms from 

the RHS forcings to give Qr in Eqn.3.70b. Furthermore, the linearised 
1 

Coriolis terms, if included in the modes, must be removed. Similarly, 

the response equations for the coupled system modes can be obtained but 

this time, the linearised hub motion terms are removed from the RHS 

forcings as they are already included in the modes to give QCl in 

Eqn.3.70a. A more detailed treatment will be provided in Section 3.5.3. 

Before we proceed to obtain these equations, we first need to prove the 

orthogonality relationship of the complex rotor modes. This is 

followed by the examination of the effect of this relationship on the 

solution method. A full report on the orthogonality proof is provided 

by the author [3.30], only a summary is given here. 
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3.5.2 Proof of Orthogonality Relationship for The System Hodes 

Defined by CRFD 

The orthogonality relationship of the mode shapes is a powerful feature 

in that it allows a reduced number of these modal vectors to be used in 

the response analysis. The task of providing a mathematical proof of 

the orthogonality relationship for the complex rotor modes, configured 

in a form suitable for the transfer matrix solution method, has proved 

to be one of the most formidable tasks undertaken wi thin this study. 

Significant efforts and numerous attempts throughout much of the study 

were made but a rigorous proof was elusive for some time. 

Essentially, the CRFD system equations define the loads equilibrium of 

the blade in a linearised fashion (Section 3.3). It takes the form of 

a set of first order spatial differential equations in displacements 

and rotations as well as internal forces and moments at a point along 

the blade. As noted previously, the CRFD system equations (Eqns.3.48) 

include additional terms ego Coriolis, hub motions or damping terms 

together with the gyroscopic and centrifugal terms introduced from the 

multi-blade coordinate transformation. It provides flexibility for 

varying the modelling complexity for the rotor dynamic system, in which 

case the forms of system equations would differ. In the absence of 

damping, the system resembles a gyroscopic system for which an 

orthogonali ty relationship exists for the system modes as shown by 

Meirovi tch [3.31]. The viabili ty of this technique depends on the 

system equation being described by a set of second order differential 

equations in terms of displacements only with explicit mass, damping 

and stiffness matrices. It is herein referred to as the classical form 

ie. mx + cx + kx = O. 

The existing CRFD system equations do not automatically yield the 

required form. Subsequent discussions and communications wi th 

academics [3.32,3.33] revealed that concerted effort would be needed to 

examine the matrix structure of the system equations. It is only then 

possible to decide whether any viable proof exists for such a complex 

system. 

A further literature survey has also revealed three important facts:-

(1) All linear dynamical system equations must be reducible to the 

classical form; 
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(2) The form of modal orthogonality relationship for the various 

dynamical systems depends on the type of damping represented; and 

(3) A generalised relationship of modal orthogonality must be 

reducible to all simpler systems. 

The proof of a generalised modal orthogonali ty relationship, known as 

bi-orthogonality, employing both the left-hand (LH) and the right-hand 

(RH)-eigenvectors. is first established and is given in Appendix D. 

The CRFD system equations. especially in the presence of hub motions. 

are not readily reducible to the classical form. The prime effort must 

be that of converting the system equations into the classical form. 

A viable approach to re-configure the CRFD system equations is to use a 

dynamic stiffness matrix formulation. as suggested by Simpson [3.32]. 

Essentially. the approach is to establish the elemental stiffness 

matrix. as well as the inertia (and damping. if any) matrix. between 

the neighbouring nodes of a continuous system. Thence by assembling 

these elements. a global system equation in the required classical form 

can be constructed and the orthogonality proof follows. 

a. Structure of The CRFD System Equations 

The rotor blade is essentially a continuous system in which the CRFD 

system equations derived originally are of the form. 

{U:} = [Tll 
F 1 T21 

T12] {u} 
T22 l' E 1 

ie. the spatial derivative of displacement and forces (state variables) 

are related to the local variables via the transfer matrix. The 

consti tuent matrices Tll . T12•... are functions of the structural and 

inertia properties of the blade system. For system equations of this 

form. Walker [3.34] has by inspection laid down a sufficient. but not 

necessary. condition upon which the orthogonality relationship is 

assured. The proof is furnished by converting the system equations 

from the form suitable for the transfer matrix solution method to the 

classical form. 

matrix equation. 

The condi tion is conveniently described by a single 

(3.71) 
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where matrices A,B & C (all real) describe the beam properties of which 

A and Care self-adjoint, ( ) I = a ( ) 
ax and suffix i refers to the 

element. £qn.3.71 relates the blade displacements and their 

derivatives and is reversible. This condition implies that all of the 

sub-sets of CRFD can be converted into the classical form wi th the 

nature of the LH-eigenvectors shown in Table 3.3 below; 

Case System Description Frame of Form of CRFD System Eqn, Nature of eigen-sol'n Order of Solution 
(CRFD System Equivalent) Reference (Homogeneous) eigenvalue eigenvector System 

(A) Ｈｾ＠ or ｾＩ＠

1 Undamped System ｾ＠ + ｫｾ＠ = Q; c=O Imaginary Real n 2nd order lS. = ｾａｴ＠

a) Single Blade (No Coriolis) Rotating (A=-iw where w is real) ｛ＷＱＢＧ｛ｾＱ＠

2 Symmetrically Damped System ｾ＠ + ｣ｾ＠ + klS. = Q; 
T Complex ｾ＠ = ｾ･ａｴ＠c =c Complex 2n 1st order -

b) (a) + Symmetric Damping Rotating Ii - ｓｾ＠ = 0; le, ｛ｲｉＳ｛ｾＱ＠

｛ｾ＠ ｾ｝ｻｾｽＭ｛ｭＭｉｬ｣＠ ｭＭｾｫ｝ｻｾｽ］ｻｾｽ＠

3 Undamped Gyroscopic System mlS. + g)S. + k)S. = Q; T g =-g Imaginary Complex 2n 1st order ｾ＠ = ｾ･＠ H 

. 
c) Reactionless Modes Rotating Ii - ｓｾ＠ = 0; le, ｛ｲｊﾷ｛ｾｬ＠

(Single Blade with Coriolis) ｛ｾ＠ ｾ＠ ｝ｻｾｽＭ r-I19 ［ｮｾｫ＠ ｝ｻｾｽ］ｻｾｽ＠
or in a special form ｂｩＭａｾ］ｑ＠

or c) Blade ± Coriolis Fixed ｛ｾ＠ ｾ｝ｻｾｽＭ｛Ｍｾ＠ Ｍｾ｝ｻＡｽ］ｻｾｽ＠ Imaginary Complex 

d) Coupled Modes ± Coriolis Fixed NB: k must be +ve definite, 
(Gyroscopic with Hub motion 
± Coriolls) 

4 Linearly Damped Gyroscopic System m)S. + blS. + klS. = Q; b general Complex Complex 2n 1st order ｾ＠ = ｾ･ｈ＠-
e) Reactionless Modes Rotating Ii - ｓｾ＠ = 0; le, [rJ =general 

f) Coupled Modes Fixed [; ｾ｝ｻｾｽＭｲＭｉｬ｢ｾｾｫ｝ｻｾｽ］ｻｾｽ＠

Table 3.3: Summary of CRFD System Characteristics 

It was noted in Section 3.3.3 that the original CRFD system equations 

DID NOT, in fact, meet Walker's condi tion and this proved to be the 

major obstacle in all the previous attempts at establishing the modes 

orthogonality. The requirement for the system equations to meet 

Walker'S condition prompted an investigation by Juggins [3.35] into the 

basis of the original formulation. During that process, a number of 

inconsistencies were identified and corrected in order to meet Walker's 

condition. The main findings are that the coefficient matrix B1 is now 

associated wi th U' (instead of E) and also that the sequential blade 

moments (a non-orthogonal set) are now used instead of the original 

instantaneous set. 

In the absence of damping, the revised CRFD system equations in the 

single (kth) blade form are repeated below;-
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L "Uk' + A U A F Ｎｾ＠ 1-k + 2!-k = Q 

BoEk + B1Uk + ｂｾｫ＠ + ｂｾｫ＠ + ｂｾｫ＠ + (Bso+Bsccos ｾｫＫｂｳｳｳｩｮ＠ ｾｫＩｈ＠

+ (B60+B6Ccos ｾｫＫｂＶｳｳｩｮ＠ ｾｫＩｈ＠ = 0 

(3.48) 

where the coefficients matrices (all real 6x 6) possess the following 

properties; 

ｾ＠ = Aa; 

A1 is general; 

A2 = -I; 

Bo = I; 
B1 is general; 

B; = B2 ; Bs's and B6's are general 

It can be easily demonstrated that Eqns.3.48 conforms to 

Eqn.3.71 by considering the equivalent quasi-steady form ie. 

AaU' + A1 U + A2F = 0 

B F' + B U' + B..,U = 0 0- 1- c.-

where the suffix k is dropped for clarity. 

substituting A2=-I and Bo=I, we get 

After re-arranging and 

-1 -1 
-Ao A1 Aa 

ｂＱｾｬａＱＭｂＲ＠ ＭｂＱｾＱ＠

using the matrix properties, 
-1 

A = Ao 

B = ｟ｾｬａＱ＠ [ie. ｟ｂｔ］ＨｾｬａＱＩｔ］ａｩＨｾＱＩｔ］ａｩＨｾＩＭＱ］ａｩｾＱ］ＭｂＱｾＱ｝＠
-1 T 

C = B1Aa A1-B2 = C 

Thus Walker's condition is met. 

b. Conversion of CRFD System Equations into The Classical Form 

using The Dynamic Stiffness Matrix Formulation 

(3.72) 

(3.73) 

In order to perform the conversion of the system equations into the 

classical form, it is necessary to invoke an integration scheme. It is 

concluded in [3.35] that the only requirement is that the integration 

scheme is reversible in order to ensure the solution is independent of 

the direction in which it is progressed. A slope averaging integration 

scheme is adopted, but it should not be regarded as the only one 

possible. 

Define the slope average integration scheme (from tip to root) between 

two neighbouring nodes, Stations i and i+1, as 
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U1+1 = U1 + °2
X 

(Ui +1 + !:li) 

El+1 = El + °2
X

(Fi+1 + E1) 

Substituting Eqn.3.71 into Eqns.3.74 yields 

ox 
Ui +1 = lh + T(B!:li+1 + AE i +1 + B!:li + AEi ) 

ox T T 
Fl+1 = Ei + T(CUi +1 - B Fi +1 + ClI i - B Ei ) 

Re-arranging, 

ox 
[I - TB ]U1+1 = 

ox T ox T ox ox 
[I + TB ]Ei +1 = [I - TB ]Ei + ｾｩＫＱ＠ + ｾｩ＠

(3.74) 

Expressing this in a conventional finite element formulation ie. 

introducing -Ei as a state vector, results in 

1+ oXB - 0 _ oXB ) 2 2 
(3.75) 

OXC OXC 
2 2 

ox 
For illustrative purpose, one can choose ox such that ｾ＠ =1, then 

The inversion can be carried out using the method of sub-matrices ego 

Collar & Simpson [3.36] 

I] [I +B B- I] {!:Ii } 
ICC !:II +1 

(3.76) 

and its transpose, 

[
K ]T_l(1+BT c] [A- 1 0+B) ａＭｬＨｂ｟ｉＩ｝］｛ＨＱＫｂｔＩａｾｬＨＱＫｂＩＫｃ＠ ＨＱＫｂｔＩａｾＺＨｂＭＱＩＫｃ｝＠

e 2 BT-1 C I I (BT-1)A 1(1+B)+C (BT-1)A (B-1)+C 

= [Ke] 
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T -1 T T -1 -1 
where C =C and (A ) =(A) = A are used. Using Eqns.3.72, [Ke] can 

be expressed in terms of the CRFD coefficient matrices as 

(3.77) 

It is apparent that the 12x12 elemental stiffness matrix [Ke] is 

symmetric. Past experiences indicate that it is useful to know the 

algebraic form of [Ke] in terms of the blade properties as this can 

often provide physical insight. However, an attempt to evaluate [Ke] 

algebraically using the known coefficient matrices has proved to be 

extremely cumbersome. Even for a straight blade without any section 

centre offsets, [Ke] is fully populated wi th lengthy expressions of 

structural and inertia properties. One must therefore revert to 

numerical evaluation. This implies that any orthogonality relationship 

subsequently identified cannot be easily expressed algebraically 

without extensive manipulation. However, the fact that conversion of 

the system equations is possible enables one to proceed. 

c. System Equations for The Undamped Reactionless Modes 

The above conversion process can be easily extended for the undamped 

reactionless mode system equations, where H=Q. Eqns.3.52 are repeated 

below, 

AOUk + A1Uk + A2Ek = 0 .. 
80Fk + 81Uk + ＸＲｾｫ＠ + Ｘｾｫ＠ + ＸＴｾｫ＠ = 0 (3.52) 

Using the above procedure, one obtains 

ｻｾＺｽ＠
-1 -1 

ｻｾｽ＠ + ｛Ｍｱｻｾｽ＠ + ｛ＭｾＴ｝ｻｑｽ＠-Ao A1 Ao 
= -1 ＭＸＱｾＱ＠8 l AO A1-82 

= ｛ｾ＠ _:r]{i} + ｛ＭｾＳ｝ｻｾｽ＠ + ｛ＭｾＴ｝ｻｑｽ＠ (3.78) 

8y inspection, Eqn.3.78 also conforms to Walker's condition (Eqn.3.71), 
A 2 A 

with C being modified to be C = C-;\83-;\ 84 and ;\ is complex, ie. C is 

Hermitian: X=Y+iZ with and yT=y,ZT=_Z and is self-adjoint. Applying the 

reversible integration scheme as before, one obtains, 
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ox 
[I - 2B HIl +1 = 

ox T 
[I + 2B 1 E 1 + 1 = 

ox T ox 
[I - 2B lEI + -TC(1l1+1+1l1 ) 

ox .. 
2B4 (1l1+1 + Vi) 

ox or when - =1 
2 ' 

where from Eqn. 3. 16, is the elemental 

symmetric stiffness matrix given by Eqn. 3.11 and the corresponding 

damping and inertia matrices are 

it is apparent that [Cel and [Mel are 

skew-symmetric and symmetric respectively. It is interesting to point 

out here that both [Cel and [Mel are 6-fold degenerate (rank=6) but 

this is of no particular concern. It is merely the resul t of the 

deployment of a reversible integration scheme where the mass is 

concentrated at the mid-point of each element and zero at each end. 

Other reversible schemes can of course be employed instead. 

On assembling, the global system equation becomes; 
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EtiP=O !:I tlp !:Itip 

0 
= [ [ ] ] !:Ii [ [ ] ] !:Ii 

0 !:Ii +1 
+ 

l ] l ] !:Ii +1 

Eo !do 
!do 

.. 
!:I tlp 

[ [ ] ] 
.. 

+ 
!:Ii .. 

L ] !:Ii +1 

.. 
!do 

or 
.. . 

M UB + C UB + K UB = F (3.80) 

where UB is the 6nx1 global state vector for the blade and each [ ] is 

a square matrix of order 12. Suffices tip,O refer to the tip and root 

values respectively. It is noted that the force vector E is everywhere 

zero (including the tip) except at the root ｅｯｾｑ＠ where the geometric 

boundary condi tion is applied. Thus, the required classical form is 

obtained and the orthogonality relationship follows immediately. 

d. System Equations for The Undamped Coupled Modes 

It has been shown that the system equations for the undamped blade and 

reactionless modes, both defined in the rotating frame, can be 

converted to the classical form and that the LH-eigenvectors are known 

in relation to the RH-eigenvectors (Table 3.1). However, for the 

coupled modes system wi th hub motions included, the dynamic 

characteristics are to be solved in the fixed frame, further 

consideration is required. 

Eqns.3.53 can be re-expressed as 3 sets of coupled matrix equations, 

ｻｾｾｽ］＠ ｛ｾ＠ ｟ｾｔ｝ｻｾｽ＠ + ｛ＭｾＳ｝ｻｙｯｽ＠ + ｛｟ｾＮ｝ｻｴｩｯｽ＠ + ｛ＭｾＵＰ｝ｻｈｽ＠ + P60]{ti} 

ｻｾｾｽ］＠ ｛ｾ＠ ｟ｾｔ｝＠ ｻｾｽＫ＠ ｛ＭｾＳ｝ｻｾＫｑｾｽＫ＠ ｛ＭｾＮ｝＠ ｻｾＫＲｾｳＭｑｾｽＫ＠ ｛ＭｾＵｃ｝＠ {H}+ ｛ＭｾＶｃ｝＠ {ti} 

- 78 -



(3.81) 

where matrices A,B,C are those defined in Eqn.3.73. When assembled in 

sub-global matrix form, the following equations are obtained, 

U' -0 

U' -c 
U' -s 
F' -0 

F' -c 
F' -s 

B 

= C 

B 

+ -B 4 

B 

A 

-B 4 

A 
A 

.. 
!lo .. 
!lc + 
.. 
1ls 

o 
o 
o 

+ 

-Bso H + 

-Bsc 

-Bss 

o 
o 
o .. 

-B
60 

H 

-B6C 

-B6S 

-200 4 

(3.82) 

where each of the elements is a square matrix of order 6 and the blank 

elements are null matrices. Re-expressing this in the form of Eqn.3.80 

yields, 

[
A 0 0] C 

and the matrices fA= 0 A 0 , c= 0 

o 0 A 0 

!lo Eo 
where !lc- !lc ' &;- Ec 

Us Es -OB 3 

(3.83) 

o 
-003 

2 
C+O B4 

which are still self-adjoint. Thus Walker's condition is maintained in 

the (18x18) matrices ｦａＬｾＬｃＧｳＮ＠ When H=Q, Eqn.3.83 is directly analogous 

to Eqn.3.78 and must therefore represent the system equations for the 

reactionless modes, being transformed into the fixed frame. As the 

reactionless modes possess the orthogonality relationship in the 

rotating frame, this must also be true when the system equations are 

transformed into the fixed frame since the multi-blade coordinate 

transformation (Eqn.3.4S) is itself orthogonal. 

However, in the presence of hub motion, it is not obvious that Eqn.3.82 

is readily expressible in the classical form. It is recalled that the 

blade motion defined by CRFD is relative to the moving hub. I t is 

shown in Appendix E that the following relationship between the 

relative and total (absolute) blade displacement holds; 
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!Jo !Jo [[HO] ] 
!1c = !1c + [HC] H 

Us Us [HS] 
T R 

or 

!k =!k + [HM] !:! (3.84) 
T R 

where the suffices T,R refer to the total and relative quantities. The 

matrix [HM] and its consti tuents are defined in Appendix E for a 

straight blade with coincidental blade centres. To ensure the 

orthogonality relationship holds for the coupled mode system, the 

system equations (Eqn.3.82) must also be reducible to a form similar to 

Eqn.3.80. Now express Eqn.3.82 in terms of the absolute blade 

displacement, and in so doing, the hub motion terms will be implicit in 

the total displacement vector and the displacement at the centre line 

will, in effect, be the hub displacements. 

U' +[HO]'H 8 A ｾｒＫ｛ｈｏ｝ＡＺＡ＠-OR -
8 A U' + [HC] , H !:!cR + [HC ] !:! -cR - 8 A 

U' +[HS]'H C _8T !:!5R + [HS ] !:! -SR - = 
F' 2 -Q83 

_8T Eo -0 C+Q 84 F' Ec -c 2 _8T 
F' Q83 C+Q 84 Es -5 

!1oR+[HO]H ｾｒＫ｛ｈｏ｝ｴｬ＠
. . lIcR+[HC]H + -83 
!:!cR+[HC]!:! + -8 4 

-83 -2Q84 U5R + [HS]H -84 Q5R + [HS]tl 
2Q84 -83 

-8 4 

(3.85) 

Eqn. 3. 85 must be interchangeable wi th that of Eqn. 3.83 and matrices 

85's and 86's are related to the matrices 83 ,84 when appropriate 

ordering is imposed (Appendix E). 

-83 [HO] = -850 

-83 [HC] 2Q84[HS] = -8sc 

-83 [HS] + 2Q84[HC] = -855 
(3.86) 

-84[HO] = -860 

-84[HC] = -86C 

-84[HS] = -865 

Even when this substitution is applied, there are residual!:! terms in 

Since the hub terms are perturbatory in the CRFD system ie. Eqn.3.85. 

eXl'st, there will be no steady state!:! terms. 8earing only H,H terms 
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this in mind, the original equation Eqn.3.83 is recovered. This is not 

at all surprising as the physics of dynamic system cannot be altered, 

the system equations are only described by a different set of 

coordinates. Clearly the above relationship can be easily generalised 

to a blade with pre-deformations and section centre offsets. 

Thus Eqn.3.8S can be re-expressed in terms of the total displacement 

vector (ie. !! is implicit in !:!l as 

U' B A !lo -0 B A U' !Ie -c B A !do U' !Is -s C _BT 
!Ie = + -B3 F' Eo -0 

C+Q2B4 _BT 
F' -00 Ec -B3 -2QB !:Is -c 3 4 

F' C+Q2B4 _BT Es 2004 -B3 T 
-s 003 

T T 

.. 
!lo .. 

+ !l.c 

or 

(3.87) 

which is of the identical form as Eqn.3.78. By applying the same 

technique shown in Section 3.S.2c, the classical form is obtained, 

o 
o 

fro 

= [[]l]] 

+ 

!ktip 

[[]l]] !ki + 
!ki+l 

!leo 

.. 
!letip 

[[]l]] 
.. 
!lei .. 

!lei +1 

.. 
!leo 
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!ktip 

. 
!lei 

!lei +1 

!leo 



or 
.. . 

IMU-CT + IC!lcT + I)(!lcT = Ec (3.88) 

where !M,I)( are the global (banded diagonal) symmetric mass, stiffness 

matrices and IC is the skew-symmetric veloci ty matrix ie. the coupled 

modes system without damping also resembles the gyroscopic system. The 

exercise here has provided two important conclusions:-

(1) It has been proved possible to convert the system equations into 

the classical form and the required LH-eigenvectors can be deduced 

from the conventional system characteristics; and 

(2) The orthogonality relationship of the coupled modes is thus assured 

even if the modes are still obtained using the transfer matrix 

solution method. 

Thus prior to the use of damped modes, which is not anticipated for 

some time, the modes obtained using the existing transfer matrix 

solution method remain valid. 

However, it must be stressed here that the need to use absolute 

coordinates is primarily to ensure that the conversion is feasible. 

This is not a necessary condition for the orthogonality proof, should 

the system equation be derived as an eigenvalue problem using relative 

blade and hub displacement. 

e. System Equations for The Blade, Coupled and Reactionless Modes 

with General Damping 

The conversion of the system equation in transfer matrix form into the 

classical form has been demonstrated for the systems of blade, 

reactionless and coupled modes without damping. These systems 

considered belong to the specific types in which the required LH-

eigenvectors can be identified without actually being evaluated. Thus 

the transfer matrix solution method, currently adopted for the CRFD 

analysis, can be retained. However, this will no longer be the case 

for any of the systems when general damping is present ie. the velocity 

matrix [B
3

] does not have any special properties. Although the above 

technique of conversion can be employed, the LH-eigenvectors must be 

determined by other means. 

drawn from this observation; 

Two further important conclusions can be 
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Either 

(1) All the RH-eigenvectors must be determined in order that the 

similarity transformation (Appendix D) can be used to uncouple the 

forced response equation; 

or 

(2) One must formulate the system equations for these cases with 

general damping as an eigenvalue problem at the outset. 

Neither method seems particularly favourable at this stage as the first 

is not computationally feasible and the second requires a fundamental 

change of solution method for the CRFD system equation. However, in 

the long term, the eigenvalue problem formulation approach would be a 

far better choice. Not only will it assure the orthogonality 

relationship, but it will also allow the use of standard algorithms, 

which are readily available, in solving the system dynamic 

characteristics. It is strongly recommended that the approach using 

eigen-formulation should be adopted in CRFD1. 

3.S.3 Complex Mode Response Equation in Modal Form 

- An Orthogonalisation Process 

Having established that the various system modes defined by CRFD do 

possess the required orthogonality relationship, we proceed to examine 

its application in the forced response equation. Let us first recall a 

number of key issues: 

(1) The Lagrangian equation derived in Section 3.2 is valid for a 

single blade on the basis that the blade motions are modally 

represented using a set of real blade modes (Eqn.3.1); 

(2) The complete blade motion can be described in terms of both 

coupled and reactionless mode responses (Eqns.3.68 & 3.69); and 

(3) The orthogonality relationship for the complex modes is available 

only in numerical form. Although a mathematical derivation of the 

mode orthogonality relationship for the real blade modes system is 

furnished in Appendix F, the algebraic evaluation process is still 

far from straightforward. 

1 As a result, the CRFD system has been re-formulated as an eigenvalue 
problem by Holton [3.37]. However, it is currently limited ｴｯＮｯｮｬｾ＠ a 
small number of spanwise stations for the blade properties definition 
because of computer storage problem. Refinements are still required 
before it is fully operational. 
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To derive the system response equations modelled with complex rotor 

modes, one can proceed in the same manner as CRFD. This can be 

achieved by transforming the blade coordinates into the rotor 

coordinates and then applying the Lagrangian equation in terms of 

complex rotor modes as in Eqns.3.70. However the algebraic process 

will be extremely laborious and instead, we employ a process termed as 

orthogonalisation. 

The CRFD system solves the free response of the coupled rotor-fuselage 

system about a steady state, and provides a set of modes (state 

vectors) to be used in CRFA. CRFA identifies all the possible 

forcings, including those not modelled by CRFD. By subtracting the 

steady state and linear terms from the forcings derived for CRFA, the 

additional forcings present in the response equations can be defined. 

These additional forcings are essentially the non-linear, perturbatory 

aerodynamic, time varying and rigid body motion terms. Al though the 

two system equations are derived independently using different 

assumptions, they are the same systems. 

assumptions, the two systems must be identical. 

Based upon the same 

Hence the process of deriving the modal response equations for the 

various mode types reduces to one of identifying the RHS forcing terms 

in the exact manner. Thi s process is bes t descr i bed as a reversed 

Hamil tonian Principle by which the modal Lagrangian equation can be 

constructed, if necessary. This avoids the need to derive different 

system response equations for each mode type considered. And by 

applying the mode orthogonality, the system response equation can be 

further reduced to the uncoupled modal form, suitable for a solution. 

Although for the case of complex modes, one needs to reduce the system 

response equation to the first order form, this is only a numerical 

process by which the modal response solution can be obtained. 

This orthogonalisation process has a number of advantages; 

(1 ) 

(2) 

(3) 

It simplifies the algebraic derivation process; 

It correctly identifies the RHS forcings for the forced response 

equations for all mode types used; and 

It provides an option to include certain forcing terms for 

parametric study without introducing complexity to the dynamic 

modelling ego to include measured hub motions as forcing functions 

for the real mode system. 
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The determination of the RHS forcings is accomplished by first deriving 

the structural loads for the CRFA system (Appendix G), where a more 

detailed description will be given in Section 3.6.3. The analytical 

expressions for the CRFD system equations and the CRFA structural loads 

are summarised in Appendix Hl. 

Because some of the modelling and basic assumptions between CRFD and 

CRFA are different (Section 3.3.3), in order to ensure that compatible 

forcing terms can be identified, certain algebraic processes are still 

needed. The following approach is adopted; 

(1) The structural loads for the CRFA system are derived using the same 
. .. 2 

ordering scheme as CRFD initially ie. u,u,u=O(c) (NB. u'=O(c) in 
2 

both analyses) and mkm=O(c) - this ensures the energy functions for 

both systems are accurate to the same order before any algebraic 

process is applied; 

(2) The blade shear flexibility in CRFD is removed by imposing 

Rz=v'+0(c
4
),Ry =-w'+0(c4

) after the equations are obtained; 

(3) The axial degree of freedom is retained in the CRFA structural load 

equations to provide clarity; and finally, 

(4) The CRFD equations are expressed using the same notation as those 

used in CRFA. 

Principally, this can be achieved and has been successfully applied to 

the kinetic energy function. However the different blade models assumed 

in the two systems lead to some algebraic inconsistency, leaving a 

number of residual terms in the structural stiffness expression. We 

need to examine the conditions for which both systems are compatible. 

The system equations for CRFD are derived for a blade model made up of 

a number of straight segments which are connected at 'kinks'. This 

allows large blade pre-deformed angles to be modelled. The resolution 

of loads and displacements from one segment to another is accomplished 

by a numerical transformation at each of these kinks. In CRFA, the 

equations are derived for a generally curved blade model where pre-

deformed curvature terms ＨｖｾＬ＠ ｗｾＩ＠ exist. In addi tion, the blade pre-

deformed slopes ＨｖｾＬｗｾＩＬ＠ and likewise the curvatures, are assumed to be 

O(c) in order to reduce the problem to a manageable size (Section 

3.2.5). In essence, the CRFD system equations do not contain any pre-

deformed curvature terms and this can be readily seen by examining the 

strain tensor components for both CRFD and CRFA (Appendix H2). 
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However, if it is assumed that the curved blade is made up of a large 

but finite number of straight segments and that the small pre-deformed 

angle assumption is imposed, a direct equivalence between the variables 

defined for the straight and curved segments can be established 

(Appendix H3). By using this variable transformation, it is possible 

to reduce the CRFA load equations to those of CRFD. The only residual 

terms are those not accounted for in CRFD. However, algebraic 

inconsistency arises, leaving a number of residual pre-deformed 

curvature terms in the CRFA expressions. This inconsistency is solely 

induced by the ordering analysis and the simplification carried out by 

REDUCE. The transformation would require the strain energy for CRFA to 

be raised to an order higher such that terms can be appropriately 

grouped for simpl if ica t ion. If the above transformation is applied 

rigorously, all these pre-deformed curvature terms will vanish and the 

CRFA load equations reduce to those of CRFD. Unless the same 

assumption is made in both systems, this problem is always present. 

To reduce algebraic complication in ensuring system equivalence, the 

following restriction is imposed. The blade models used in both 

analyses are made up of straight segments wi th small pre-deformed 

angles imposed. This is justified in practice. For example, the large 

tip sweep and anhedral for the EHI0l main rotor blade are not modelled 

as kinked segments but as c.g. offsets to avoid problem with undesired 

geometric coupling [3.38]. The precone angle for the Lynx CMRB blade 

is 3 0 so that the assumption of small pre-deformed angles is satisfied. 

However this restriction must be accompanied by the numerical 

transformation of the loads and displacements between the segments as 

is done in CRFD. 

Based on this restriction, the CRFD system equations, after being re-

expressed in the CRFA notation, are given in Appendix H4. They are 

directly compatible with the structural loads of CRFA, given in 

Appendix HS. The additional terms appearing in the CRFA equations are, 

as expected, those associated with the time varying (eg. ｾＬｗｰ＠ etc.) and 

aircraft rate (eg. PH,qH etc.) terms. There are also the non-linear 

terms since CRFD equations are linearised. They are not obvious since 

CRFD exhibits non-linearity which are subsequently linearised. These 

terms, together with those explicit ones, will result on the RHS as 

forcing functions. When mul tiplied by the appropriate modal vectors, 

they become the modal forcing for the system mode concerned. 
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Having identified the forcing functions, we proceed to describe the 

process by which the Lagrangian equation can be constructed using 

effectively a reversed Hamiltonian Principle. The process is described 

in Appendix H6 where the coefficients associated wi th each of the 

virtual displacements (EqnoG14) are treated to provide the coefficient 

in terms of each qi's. In order to provide insight, the indirect terms 

are re-expressed. This allows the non-linear and pi tch perturbation 

terms to be identified analytically since the modes are linearised and 

calculated at a constant pitch angle ｾｭＧ＠ In addition, by combining the 

technique described in Appendix H6 with the expressions given by 

Appendix HS, the analytical expressions of modal inertia and stiffness 

for the single blade system can be constructed. If (C)A and (C)o are 

the total coefficient with each of the generalised coordinates for the 

CRFA and CRFD systems respectively, then by invoking orthogonality, 

(C)A= 0 =(C)o + f i ; (C)o= -lijqj-Sijqj where I 1j=O ; Sij=O if i;tj 

I ｾＲＱ＠ 10f 0 0 = i =1\.1 1 l=J 

For the real blade modes system, the system response (Lagrangian) 

equation, without structural damping, can thus be written in the form 

of a set of second order differential equations as, 

R R 

Jfidr ｊｾｉｾ､ｲ＠
2 0 0 i 1,2, ..... ,N ql + A1q1 = = = 

ｑｾｉｬ＠ ｑｾｉｬ＠

(3.89a) 

where ａｩＬｉｬＬｦｩＧｾｬ＠ are the ith 

force and modal vector, N is 

mode frequency, inertia, generalised 

the number of modes considered. The 

forcing vector f for a single (kth) blade, occupying the azimuth 

position ｾｫＧ＠ is defined in Appendix I. f is defined such that 

1) The hub inertia terms are present as external forcings; 

2) The ordering is consistent with the CRFA assumption; 

3) The axial freedom (u) has been eliminated; and 
(evaluated [ ｝ ｾＩ＠4) The non-l inear st iffness and pi tch perturbation 

ｾｭ＠

forcing terms are separately identified. 

For systems using complex modes as state vectors, the dynamic models 

differ only in the form of the velocity matrix and damping modelled. 

The system response equation can be uncoupled using the bi-

orthogonal i ty re la t ionship (Appendix D). Thi s enables the response 

equation for the system concerned: coupled or reactionless, damped or 

undamped, to be expressed in the form of a set of first order 

differential equations as, 
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= i = 1,2, ..... ,2N (3.89b) 

with the various modal parameters summarised conveniently in Table 3.4 

below; 

Case System Mode Description Frame of Form of System Definition of Definition of Order 
Reference Response Eqn. Normalising Factor Generalised Force of System 

1 Undamped Blade Modes Rotating 
.. 2 _ fl r r 
ql + Alql 

Ｍｾ＠ CI=tlmtl f l= tlf Second 

2 Blade Modes with Symmetrical Damping Rotating - AI1)1 
gl r r{ -I } 1)1 - CI 

CI=!I!I gl= !I mQ f First 

where rl=<I>1 

3 Undamped Gyroscopic System - AI1)1 
gl H H{ -I } 1)1 - CI 

CI=!I!I gl=!1 mQf First 

c) Reactionless Modes Rotating where ｾｉ］Ａ［＠
d) Coupled Modes Fixed 

4 Linearly Damped Gyroscopic System - AI1)1 
- gl H 

gl= ｾｻｭ［ｬｦｽ＠1)1 Ｍｾ＠ cl=rl<l>1 First 
- -

e) Reactionless Modes with Damping Rotating 
f) Coupled Modes with Damping Fixed where !:I=general 

Table 3.4: Forms Of System Response Equation 

The modal parameters: normalising factor mode frequency 

(eigenvalue) 1\1 and mode shapes (eigenvectors) !i'!:i' are obtained 

directly from CRFD and are complex quanti ties. The terminology of 

normalising factor is used here rather than modal mass since the latter 

is normally associated with real modes. When complex modes are used, 

C
1 

is not only associated with the inertia of the system but also with 

the complex frequency. 

Depending on the system modes used ie. coupled or reactionless, the 

modal parameters will be defined in different reference frames. This 

is immaterial as the coupled mode shapes can be re-constructed in the 

rotating frame. Thus the RHS forcings for all mode types can be 

conveniently represented by a single expression f already given in 

Appendix I. The function f defines all the possible forcings for the 

single blade system, where the following must be noted, before it is 

used to construct the modal forcing. 
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In the case of reactionless modes, being hub-fixed, the hub and rate 

terms are to be removed from f... In addition, the linearised Coriolis 

forces must also be subtracted. Similarly for the coupled modes, the 

linearised hub terms need to be removed from f since they are already 

included in the modes. Finally, for modes including a I inear lag 

damper, the linear damper loads must also be removed. 

This orthogonalisation process correctly identifies all 

functions for any mode type used without reverting 

the forcing 

to laborious 

algebra. Should it become necessary to express the modal response 

equations for all mode types in full, they would only differ in two 

aspects: the number of RHS forcing terms being retained, and the 

definition of modal forcing ie. the mode shape function to which the 

appl ied force is mul t ipl ied. This process is a systematic way of 

identifying the forcing vector even when complex modes are used, and is 

made easier when the eigenvalue formulation is adopted in CRFD. 

In the next section, the technique of filtering the forcings 

appropriate to the coupled and reactionless modes is introduced. 

3.5.4 Method of Solution for The Modal Response Equation 

The method of solution for the rotor response is to determine the time 

history of both the coupled and reactionless mode responses, 

ie.T)c (I/I),T)r (I/Il. for all the blades within a rotor. The need to 
i i k 

treat both mode types simultaneously when they are defined in different 

frames of reference requires special attention to the solution method 

and a novel numerical technique is introduced by the author [3.39]. A 

summary is given here. 

In the presence of the hub motion, the response on a blade will become 

dependent on the loads forcing the other blades in the rotor. One 

cannot solve the response on an isolated blade without first 

determining the loads on the other blades. The generalised forces on 

the coupled modes are obtained by summing the load components from each 

of the blades. For the blade mot ions, independent of the hub, the 

reactionless mode response can be determined separately in the rotating 

frame, hub-fixed condi tion. The total response of a single blade at 

position I/I
k 

would then be the sum of the responses of the coupled and 

of the reactionless modes. 
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The loads on a blade at any azimuth ｾｫＧ＠ can be determined fully from 

aerodynamic and dynamic considerations. Part of these loads would 

force the coupled modes and the residual loads would only force the 

reactionless modes. The blade loads, such as aerodynamic lift. are 

known in the rotating frame, and the load components that force the 

coupled modes must first be transformed into the fixed frame. The 

residual loads remain in the rotating frame. 

There are two ways of determining the blade total response. The first 

approach is to transform algebraically the single blade response 

equation into the fixed frame and then determine the response in the 

fixed frame using the coupled mode shapes directly. The residual loads 

on each of the blades are then used to determine the reactionless mode 

response. The total blade response can be obtained by first resolving 

the coupled mode responses back to the rotating frame and added to the 

reactionless mode responses. The second approach, which is much 

simpler, performs this transformation numerically using only the single 

blade equation defined at the ｾｫ＠ position. 

This numerical method, which is applicable to a rotor with a number of 

blades greater than 2, eliminates the need to express the modal 

response equations for different numbers of blades. In fact. the 

method is also applicable to a 2-bladed rotor, but in this case, there 

is a time dependency between the two cyclic freedoms about the fore/aft 

and lateral axes. Certain modifications are required to adopt this 

solution method to a 2-bladed rotor. As the application of CRFD to the 

2-bladed rotor is not planned for some time, the modifications required 

are not dealt with here. 

It is to be noted that all the RHS forcing terms in f (Appendix I) are 

ei ther azimuthally or time dependent. The most obvious azimuthally 

dependent terms are those associated with the hub motion and aircraft 

rates. The implicit time dependence is in the aerodynamic loadings, 

the control pitch variation and the pre-deformed coordinates, which in 

turn are functions of the pi tch variations. Since the reactionless 

modes are independent of the hub, the fixed frame forcings ie. hub and 

rate terms need not be evaluated. Otherwise, it is generally not 

possible to isolate analytically the time dependent forces on the blade 

for the coupled or reactionless modes. 
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The generalised forces can be conveniently described in the form of a 

product of an applied force ｆｫＨｲＩ］ｆＨｲＧｾｫＩ＠ with a modal quantity 

xl ＨｲＩ］ｸｬＨｲＧｾｫＩ＠ on the kth blade. The applied forces, either linear or 
k 

non-l inear, can be determined on all the blades. The coupled mode 

applied forces can be obtained by filtering the blade forces using the 

fixed frame transformation. The generalised forces acting on each of 

the blades, are obtained by multiplying these applied forces with the 

coupled mode shapes, being transformed into the rotating frame. The 

generalised force for the coupled mode on the blade is re-constituted 

by summing the contributions over all the blades, hence the coupled 

mode responses. 

The residual applied force on each of the blades is determined by 

subtracting the load component, already used for the coupled mode 

response, from the total blade force. Similarly the generalised force 

for the reactionless modes is obtained by mul tiplying the residual 

applied force with the reactionless mode shape. This is then used to 

determine the responses on each blade. 

The above procedure can be more easily understood using simple 

mathematics, by defining the coupled mode modal forcings as 

N R 

ｍｆｴＨｾＩ＠ = L J ｆｴＨｲＧｾｫＩＧｸｴｬＨｲＧｾｫＩ＠ dr 

k=l 0 

(3.90) 

where Xt and Ft are the ith coupled mode shape and applied forces on 
1 1 

the kth blade and defined as 

(3.91a) 

(3.91b) 

with FQ,Fe and Fs are the collective, cyclic cosine and cyclic sine 

components of forcings, defined as; 

N 

F Q ( r) = & L F ( r , ｾｫ＠ ) 

k=l 
N 

Fe ( r) = ｾ＠ L F ( r , ｾｫ＠ ) ｣ｯｳｾｫ＠

k=l 
N 

F 5 ( r) = ｾ＠ L F ( r , ｾｫ＠ ) s i ｮｾｫ＠

k=l 

(3.92) 
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and the reactionless mode modal forcing, 
R 

ｍｆｾＨｾｫＩ＠ = J ｆｾＨｲＧｾｫＩＧｸｾｩＨｲＩ＠ dr 

o 
(3.93) 

where ｘｾｩ＠ (r) is the reactionless mode shape and the residual blade 

force on the kth blade is determined from 

(3.94) 

The above procedure, which can be performed numer ically, acts as a 

f i 1 ter ing process such that the coupled and react ionless mode modal 

forcings are separated. This will ensure that the modes are correctly 

excited and minimise any numerical errors. 

The procedure can be easily programmed and is best described in the 

form of a flowchart, illustrated using the lift modal forcing 

dL S ( -d ) (r , ｾｫ＠ ) wk dr. 
r i 

The technique is applicable to all the RHS forcing 

terms of the response equation, but is clearly not needed on the fixed 

frame forcings since they are only present in the coupled mode system, 

ie. the residual loads from these terms for the reactionless modes are 

identically zero. 

For the non-linear forcings, ego the Coriolis (SZmQv1Jv'v'drdr) or 

bending-torsion coupling terms, the difference hinges only on the 

calculation of the applied force. That is the total function values 

ego v' and v', are first determined from 

Nc 

\ ｾ｣＠ Ｈｾｫ＠ l)[vb +vc ｣ｯｳｾｫＫｶｓ＠ ｳｩｮｾｫ｝＠ + L. 1 - 1 1 1 

v' ＨｲＧｾｫＩ＠ = 

1=1 
Nc 

L ｾｃｩ＠ Ｈｾｫ｟ｬＩ｛ｶＰＱＫｶｃＱ｣ｯｓｾｫＫｶｓＱｳｩｮｾｫ｝＠

1=1 
Nc 

+ L ｾｃｬＨｾｫＭｬＩ｛ＭｶｃｬｳｩｮｾｫＫｶｓｬ｣ｯｓｾｫ｝＠ + 
1=1 

Nr 

\" ｾｲ＠ ＨｾｫＭｬＩｶｾ＠ (r) 
ｾ＠ 1 1 

1=1 

(3.95) 

where 

1=1 

ｾＱ＠ ＨｾｫＭｬＩ＠
is the response from the previous time step and the 

process is performed as a timewise solution. 
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3.5.5 Timewise Solution 

The filtering process described previously separates the forcings for 

the coupled and reactionless modes at each time step. An azimuthal 

integration scheme is then employed to determine the response history. 

In view of the extensive computation needed, a separate investigation 

to identify suitable solution algorithm(s) was conducted by Hawkings 

[3.40] under the CRFM development. 

In Hawking's study, a series of tests were carried out on a selection 

of algorithms and their performance was compared based on a number of 

criteria - accuracy, stability and efficiency. The findings concluded 

that the NAG FORTRAN routine (D02CBF) is the most efficient algorithm 

and should be incorporated into the response analysis. However the 

structure of implementation is significantly different from the other 

algorithms, which are also recommended. The NAG routine is based on a 

predictor-corrector method and for improved efficiency, it has a built-

in varying steplength mechanism. The other algori thms are ei ther 

explicit or predictor-corrector types but they are all based on a fixed 

stepsize. 

A separate study undertaken by the author [3.41] has demonstrated that 

the NAG routine, due to its variable stepsize feature, misses important 

discrete forcings arising from blade vortex interactions unless a very 

fine tolerance is imposed. Further evaluations by the author [3.42] 

also revealed that other algorithms, except the 4th order Runge-Kutta 

method, failed to model the highly non-linear lag damper behaviour 

accurately and they were eliminated. Although the Z-transform method 

was not recommended from [3.40], its robustness and effectiveness in 

dealing with non-linear forcings as shown in [3.10] warrants its re-

instatement. It has shown comparable accuracy wi th the 4th order 

Runge-Kutta method but is more computationally efficient for 

application for real modes. The only deficiency would be its 

application to the response equation in the first order form, for which 

the formulation is not readily available. For the above reasons, the 

chosen algorithm is the 4th order Runge-Kutta method. 

The solution algorithm for the Runge-Kutta method is defined as follow. 

The response equation is conveniently described by a set of 

differential equations in the form, 
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2 y" + 2<wy'+ w y = F(x,y,y') 

or 

y" = G(X,y,y') = F - 2<wy' - w2y (3.96) 

where y = the modal response Ｈ］ｾｩ［＠ i=l,2, ... ,N), x = the azimuth angle 

Ｈ］ｾＩＬ＠ <,ware the normalised structural damping and modal frequency. 

In the first order form, 

Y' = H(x,Y) (3.97) 

For many modes, there is a family of the above equations, one for each 

mode. In the formulation below, ｨＨ］ＶｾＩ＠ denotes the integration time 

interval, the solution at time tn+l is given by 

Yn+l = Yn + ｨｻｙｾ＠ + i(k1+k2+k3 l} 
ｹｾＫｬ＠ = ｹｾ＠ + ii k1+ 2k2 + 2k3 + k4} 

where kl = h G(xn, Yn' ｹｾＩ＠

h ｨｹｾ＠ hkl kl 
k2 = h G(xn+z, y +--+- y'+-) n 2 8' n 2 

h ｨｹｾ＠ hkl k2 
k3 = h G(xn+z, y +--+- y'+-) 

n 2 8' n 2 

h G(xn+h, 
hk3 

ｹｾＫｫＳＩ＠k4 = ｹｮＫｨｙｾＫＲＧ＠
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3.6 Formulation of Blade Structural Loads 

3.6.1 Introduction 

The determination of the responses for the CRFD modes constitutes only 

part of the complete aeroelastic solution for this analysis. Once the 

modal responses, and hence deflections, are known, the next task is to 

determine the blade structural loads. 

The structural loads are the resultant forces and moments experienced 

by the blade and hub due to all external and internal loadings. The 

blade loads are used to determine the stresses, hence the fatigue life 

and static strength of various components in the rotor system. The hub 

loads are required to determine the mean and vibratory loads at the 

blade passing frequency to assess the vibration level in the airframe. 

Traditionally, two different techniques have been employed to determine 

the blade structural loads. The most widely used is the Modal 

Summation method, which expresses blade loads as the sum, over the 

modes considered, of the product of modal responses wi th modal load 

distributions. The latter are obtained directly from the modal 

solution in the form of modal bending moments and shears ie. the 

eigenvectors. The other technique, which is still favoured, is the 

Force Integration method. This involves the direct integration of all 

loading actions on the blade, both aerodynamic and dynamic. 

There are relative advantages and disadvantages with both methods. 

Modal Summation is easy to implement and is computationally efficient. 

It is particularly favoured for the physical insight it provides in 

identifying the sources of oscillatory loads. Ormiston [3.43] described 

a notable exercise comparing the results of different rotor load 

methods for a hypothetical rotor. One of his observations was the 

degree of variation of predicted bending moment at the hinge position. 

The Modal Summation method, due to the nature of the modal solution, 

inherently produces a zero hinge moment for an articulated rotor while 

the Force Integration method does not necessarily satisfy this boundary 

condition. 

Both techniques were evaluated by Bielawa [3.44] wi th the conclusion 

that Modal Summation is inadequate in its modelling of discontinuous 
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applied loads when using only a limi ted number of modes. The two 

methods were again compared by Walker [3.45], the results however were 

not totally conclusive since Force Integration showed relatively 

inferior flatwise moment predictions in the root region, yet chordwise 

moments were better predicted in the presence of lag damper loads. 

The concern over the accuracy of Modal Summation is not restricted to 

lag damper load modelling. It is associated with the general inability 

to model discrete or loading distributions due to higher order mode 

shapes because of the mode truncation inherent in this method. Indeed, 

variable spanwise pi tching moments cannot be properly represented by 

the inclusion of a single torsion mode. Also, the discrete nature of 

impulsive loadings due to blade vortex interactions may also require 

higher order modal modelling. 

The method has however performed satisfactorily in the past, since it 

offers better insight into the physical source of structural loads and 

such higher modal forcings are generally not very significant. This is 

of course, not true when a lag damper is present in the rotor system. 

The presence of a lag damper induces discrete loads, and the vortex 

interaction at low speeds could induce higher modal forcings which 

cannot be adequately represented using Modal Summation alone. There is 

another potential difficulty which is associated with the elimination 

of the axial degree of freedom. The axial motion is expressed in terms 

of flap and lag freedoms. As a result, Modal Summation mis-represents 

the radial loads as flap and lag shear components. These loads should 

strictly be re-aligned after the summation process. For the above 

reasons, Force Integration would appear to offer greater potential 

accuracy by the direct integration of applied loadings. 

Force Integration has however, a reputed history of numerical problems 

as it involves the process of finding small differences between large 

load fields. It is obviously more computationally intensive due to the 

repeated spanwise integrations required at each azimuth position. The 

air loads are integrated in the exact form rather than by an equivalent 

modal representation. Hence, the modal contribution to the structural 

loads are not immediately available, as they are in Modal Summation. 

However, by appropriate post-processing of applied loads determined 

using the Force Integration method, the structural loads can be 

analysed in terms of their modal components to provide the necessary 
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insight. It is therefore decided to implement Force Integration as an 

option in this analysis in addition to the Modal Summation option. 

A hybrid technique known as the Unified Formulation method was 

introduced by Hansford [3.46]. It combines the potential accuracy of 

Force Integration with the simplicity of Modal Summation by introducing 

a correction term due to higher mode forcing. Thus the advantages of 

both computational speed and insight can be retained. The fundamental 

principle for Unified Formulation is however dependent upon the 

knowledge of the orthogonality condition for the modes. Although the 

orthogonali ty relationship has been established for the complex rotor 

modes, it only exists in numerical form. Further work is still 

required to use such a relationship for Unified Formulation. 

Consequently, it cannot yet be incorporated as an option for structural 

load calculation. One reason why it might still be valuable would be 

if the computation of Force Integration becomes too excessive. 

The determination of structural loads based on Modal Summation and 

Force Integration is described in the next 2 sections. This is 

followed by the description of a novel analytical integration 

technique, developed to alleviate the inherent numerical problem with 

Force Integration. 

3.6.2 Modal Summation Method 

Once the response solutions ie. generalised coordinates of both the 

coupled and reactionless modes are determined using the method 

described in Section 3.5.4, the structural loads can be obtained 

directly if Modal Summation is used. The total structural loads, as a 

radial and azimuthal distribution, are the sum of contributions from 

both mode types as, 

Nc 

= L ｾ｣＠ ＨｾｫＩ｛ｆｮ＠ (r) + ｾ＠ ＨｲＩ｣ｯｳｾｫ＠ + Es ＨｲＩｳｩｮｾｫ｝＠
1 -vIII 

i=1 
Nr 

+ L ｾｲｬＨｾｫＩ＠ Erl(r) (3.99) 

i=1 
where ｅｯｬＧｾｬＬｅｳｬ＠ are the collective, cyclic (cosine) and cyclic (sine) 

components of the modal load-vector (radial distribution) of the i th 

coupled mode and Erl is the modal load-vector of the i th reactionless 

mode. 
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3.6.3 Force Integration Method 

The structural load expressions are derived by the application of 

Hamilton's principle, similar to those of CRFD. The main differences 

are that the effects due to aircraft motion, non-linear, pitch 

perturbation terms, . . etc. are also included. 

Hamilton's Principle states 

t2 

J [0 (K-U) + oW ]dt = a 

tl 

or in terms of the energy functions f,g, 

t2 r 

J [J o(g-fl dr + oW ] dt = a 

tl 0 

(3.100) 

By considering the variations of f,g with respect to each of the blade 

freedoms ＨｵＬｶＬｷＬｾＬｾＬｾＩ＠ and the virtual work, the structural load 

expressions can be derived. Details of the derivation are given in 

Appendix G. The analytical expressions for the structural loads are 

defined as 

-H' 
Ydef 

V' = ｾＨ｡ｧＩ＠ _ ag + 
x dt ｡ｾ＠ au 

V' = ｾＨ｡ｧＩ＠ _ ag + 
y dt a;" av + 

dA 
dr 

dD 
dr 

(3.101) 

where the suffix (def) denotes the loads are in the blade deformed 

ｏｲｾｾＭ｡ｸｩｳ＠ system. The boundary conditions, obtained as a by-product of 

applying Hamilton's Principle, are 
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Vx 
af = au' 

Vy 
af = av' 

Vz 
af = aw' 

Mx + <;:My + 13M = af + 0(c3
) z a <I> , , 

I • 
(3.102) 

M 
xdef 

-My + ＼［Ｚｾ＠
af 

+ 0(c3
) = af3' , 

• 
-M 

Ydef 

M 
af = a<;:' zdef 

The structural load expressions, derived using REDUCE, are given in 

Appendix J1, where the axial freedom is retained and in Appendix J2, 

where it has been re-expressed as fore-shortening terms. 

3.6.4 Chebyshev Polynomial Integration Technique 

Because of the need to find small differences between large load 

fields, potential numerical error is always present in Force 

Integration. This numerical deficiency is compounded by the fact that 

only a limited number of stations are generally available for spanwise 

integration. The inaccuracy is reflected in the erroneous boundary 

condition, characterised by the non-vanishing hinge bending moment for 

an articulated blade, and can lead to significant error in load 

prediction. In order to apply Force Integration successfully, it is 

essential to ensure that these errors are reduced to a minimum. 

A detailed study leading up to the development of an analytical 

integration technique was conducted by the author [3.47]. The theory 

and conclusions are summarised here. The approach took a number of 

steps. First, it proved that this numerical ill-conditioning is always 

present unless all the radial integrations are carried out over the 

same (RH) stations at which the dynamic characteristics are calculated. 

However, because of the varying properties of the rotor blade, the 

number of stations is necessarily large, in excess of 500, and this is 

clearly not computationally feasible at every azimuth position. Thus 

it is necessary to establish an accurate integration scheme using only 

a limited number of radial stations. The technique was initially 
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demonstrated using an analytical example and then applied to a 

simplified, but real, blade problem. 

a. Description of Problem 

Consider a simplified form of the blade response equation, 
R 

.. . 2 1 J dL qi + 2V i Aiqi + Aiqi = -- -d Wi dr 
Q2I i r 

e 

for i= 1,2, .. ,N (3.103) 

where only the lift modal forcing is shown and the usual meanings apply 

to the various parameters. The lift modal forcing is defined as the 

d t f th d . 11' f t dL d th f 1 pro uc 0 e aero ynam1c dr an e ap mode shape wi' The 

lift is normally defined over the aerodynamic (Re) stations, typically 

25 points spanning from the root cut-out to the tip with the assumption 

that inboard of the root cut-out, the aerodynamic loadings are 

uniformly zero. The flap mode shape is described by a distribution 

over the dynamic output (RF ) stations, typically 25 points spanning 

from the blade root to the tip. Unless these RF stations are carefully 

chosen, accurate details of the mode shapes and properties cannot be 

guaranteed. The normal procedure is to integrate radially the product 

of ｾ［＠ with the flap shape interpolated at the RG stations. 

It is shown in Appendix Kl that the expressions for the flap hinge 

bending moment for both Modal Summation and Force Integration, due to 

pure flapping motion, are given respectively by; 

N N RK 

MHS(e) = [ q,M, (e) = [ q, f ｭｑｴ｜ｾＨｲＭ･Ｉ＠ - r]w, dr (3.104) 

1=1 1=1 e 

N RG 

w1dr N L Wi J ｾ［＠
( 8L _mQ2 1=1 e 

8r Q2I 
) (r-e) _mQ2r ｛ｱＧ｛ａｾＨｲＭ･ＩＭｲ｝ｷＧｲｲ＠

i i=l 

such that (3.105) 

RF RG N 

Mn(e) = MHS(e) + ( f - f) mg
2
r ｛ｱＧ｛ａｾＨｲＭ･ＩＭｲ｝ｷＬ＠ dr 

o 0 1=1 
(3.106 ) 

It should be noted that even though the calculation of response 

coefficient ql may be in error, the correct boundary condi tion is 
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always assured for Modal Summation. For Force Integration. unless all 

the integrations are carried out using the most populated array, namely 

the dynamic integrated (RM) stations, erroneous boundary conditions 

will result. This incompatibility of using integration stations other 

than RM will always be present. In addition, unless the true features 

of the blade properties, which are often largely varying and 

discontinuous, are captured, errors induced from radial integration 

will be significant. An example mass distribution is given in Figure 

3.11 below. 
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Figure 3.11: Example Mass Distribution of Rotor Blade (EH101) 

In order to implement Force Integration successfully, numerical errors 

from these origins must be minimised. 

b. The Theory 

The shortcoming of defining mode shapes at limited RF stations can be 

h th tatl'ons For this, the overcome by fitting a polynomial throug ese s . 

Chebyshev polynomials are chosen because of the accuracy they provide 

and computational routines for fitting and integration are readily 

available ego the NAG FORTRAN library. 
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The Chebyshev polynomial approximates a set of data points by an 

analytical function, p(x), using a least square method; 

1 
p(x) = ｾｔｯＨｸＩ＠ + a1T1 (x) + a2T2 (x) + ••.... + ｾｔｮＨｸＩ＠ (3.107) 

where To(x) 

Tl (x) 

T2 (x) 

etc .. 

= 
= 
= 

1 

x 

2x 
2 

1 -

are simple analytical and orthogonal functions. The fit t ing process 

involves the determination of the coefficients aO,a1 ,a2 •...• an defined 

in p(x) [3.48]. Providing a high enough order of polynomial is taken. 

the fitting process will always produce the most accurate curve fit of 

maximum order RF-1 to the mode shape. Products of mode shapes. where 

required, can be found by multiplying the fitted polynomials and the 

mode slopes by analytical differentiation. The problem of dealing with 

integrands of mode shape weighted wi th a discontinuous function eg. 

mass, can be accommodated by treating the distribution as a piecewise 

analytical linear function, f(x). 

The principle of the Chebyshev Polynomial Integration technique. thence 

named as CPI, involves the piecewise analytical integration of a 

product of discontinuous f(x) and continuous functions p(x) as shown 

schematically in Figure 3.12 below; 

f(x) 

p(x) 

! ! 

I 
III 
I 
I ' 
I 1 ________ 

f J+1 (x) 
I 
I 

! 
! I 

I ! 
I : x 

I 

x 

Figure 3.12: Treatment of Continuous and Discontinuous Functions 
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Consider f(x) being defined over the range of (xO'x1 ), each of the bays 

defining f(x) over (x j ,X j +1 ) can be conveniently written as 

fj(x) = ajx + bj where Xj S x S x j +1 

where the segment coefficients aj,bj are defined as 

f j+l - f j 
a j = x j+l - X j 

= (f j+l + f j) 
b j 2 

(3.108) 

Consider the fitted polynomial p(x) which is defined over the range 

(xO'x1 ). Noting that (xO'x1 ), (xO'x1 ) are not necessarily the same, 

however, (Xo' Xl) must lie wi thin (xo' Xl) . The bay integral for the 

product of fj(x) and p(x) is then given by 

x j +1 

I j = J f j (x) p ( x) dx 

Xj 

X j+l 

= J (ajx + bj) p(x) dx 

x J 
xJ+1 xJ+l 

= a J J xp ( x ) dx + b j J P ( x ) dx 

xJ Xj 

Integrating the first term by parts leads to, 

xJ+1 x j+1 xJ+1 

I J = (a J x + b J) J P (x) dx - a j J J p ( x) dx dx 

xJ xJ xJ 

(3.109) 

This analytical technique is exact and can easily be adopted for other 

applications involving integration of similar products. 

c. An Application 

Validation of the technique in application to a rotor blade based on a 

set of uncoupled single blade modes; 4 flap, 3 lag and 1 torsion, can 

be found in [3.47]. Being uncoupled, the forcings associated wi th 

flap, lag and torsion are conveniently separated. 

The mode response coefficients are first determined from the following 

simplified form of the response equation, 
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f{ ;;w! 
ｾＭＭＭＭＭＭｾＮＭＭＭＭＭＭｾ＠
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• 
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e3.110) 

where vi is the structural damping for the ith mode. The corresponding 

hinge bending moment expressions are defined as: 

RR RR R R R R 

-Mydefee)= JJ ｾｾ＠ drdr - ｊｊｭｑＲｾ＠ drdr - Jw'Jmn
2
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e r er , 
• 

er , 
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e r , 
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• 

• 
Coriolis 

Lag damper 

} 

e3.111) 

By inspection, all the integrands, except the Coriolis terms, are 

defined as products of discontinuous and fitted functions for which the 

CPI technique can be applied. Further consideration to the treatment 

of Coriolis and non-linear torsion-flap-lag forcings is given below. 

d. Treatment of Coriolis and Non-linear Forcings 

Coriolis Forcing 

The non-linear Coriolis modal forcing is given by 

R 

CMF = _1 f -mll( 
ｑｾｉｬ＠ e 

r 

Ｍｚｖｉｊ･ｶＧｾＧＫｷＧｾＧ＠ ) 

o 
dr -

r 

ｺｾｊＨｖＧｶｬＫｷＧｷｬＩ＠ dr 

o 
(3.112) 

and it involves double integrations with the inner integrals defining 

the fore-shortenings as, 

r 

ｊｶＧｾＧＫｷＧｾＧ＠

o 

r 

dr = J ( 
o 

N N N N 

L ql v i L qJvJ + [ql v i L qJWJ 
1=1 J=l 1=1 J=l 
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r r N N 

Sv/v/+W/W' dr = J ( Vi [ qjV J + Wi L qjWJ ) dr 1 1 1 1 (3.113) 

0 0 j=l j=l 

which must first be evaluated from root to tip. It is possible to 

follow a similar process by fitting polynomials to individual mode 

shapes and differentiating to give the mode slopes. However, this 

proves to be cumbersome and non-beneficial due to the presence of a 

large number of non-l inear terms. It can be more effectively dealt 

with by fitting a polynomial to the non-linear integrand as a global 

function defined at RF stations and performing analytical integration 

from root to tip. The outer integrals are treated similarly by first 
. . 

defining v1S(v'v'+w'w')dr etc as a product of two fitted polynomials 

and then integrating with the mass function. 

To ensure compatibility, a similar technique must also be applied to 

the Coriolis component in the lag bending moment expression, which 

involves triple integrals, 

RR r 

M ( r) = IJzmQ J (v<../ ＫｷＧｾＧＩ＠ drdrdr 
Zcor 

(3.114) 

er 0 

The predictions of vibratory flatwise and edgewise bending moment, 

including the lag damper loads, using both Force Integration and Modal 

Summation (wi th and wi thout the Unified Formulation treatment of the 

damper load) are shown in Figure 3.13 below, extracted from [3.47]; 

EHIDI FLIGHT 133 - 41 KNOTS TAS 
VIBR.UORY FlATWIS£ HOH(NTS USING" UNCOVPLED FLAP 10400£5 
l"OI/R COMPARISON r:6 PAEOICTlQHS 

Q ICIOAL ,.,....rlON 

9 'OACI INrE6AATIOH 

iii F\.IIHT TEST 

>0000. 

" -. 
" 

" 

10000. 

G. 

. \ 

\\" 
" ｾｾ＠
\. \ 

'\ . \ 

C\ 

" . . \ 
\. 

EHIDI FLIGHT 133 - 41 KNOTS TAS 
VIBRATORy EDGEWISE MOMENTS USING 3 UNCOUPLED LAG MOOES 

o N()()ow... Sl-...TIC»I I«J U' ｾａ＠ 1.040 

• ｾ＠ su.Lt.TtON - wITH U" ｾａ＠ LOAD 

V FORCE IN1(GA.&JJON 

(J FlllOl-iT TEST 

" 
" 

.0000 

>0000. 

10000 .• 

, 
1 

.0--- _____ ---+------------ --.-- - • 

\ 
ｾ＠
t, 

. . . '. 
0.0 0.1 0.1 0) 0" 0' OS 0.7 o It 0 9 I 0 00 01 02 oJ o •• , J' 

...... '!."'i ............... IKIJf 

t .• '0 II 10 

ｾｉｕｓ＠ ｾｉｓｬｏｉ＠

of CPI l1ethod in Vibratory Homent Calculation Figure 3.13 - Application 

- 106 -



It can be seen clearly that Force Integration shows comparable accuracy 

with Modal Summation in flatwise moment prediction. In edgewise moment 

prediction, Force Integration shows considerable improvement over Modal 

Summation and compares well with Modal Summation when Unified 

Formulation treatment of the lag damper load is included. The results 

confirm that Force Integration is a preferred method in the structural 

load calculation, since the Unified Formulation method is currently 

1 imi ted in its appl ica t ion to lag damper and aerodynamic pi tching 

moment forcings only. 

Torsion-Flap-Lag Forcing 

An extension to apply the CPI technique to deal with non-linear 

torsion-flap-lag forcing terms was carried out by Griffi ths [3.49]. 

These terms involve the product of modal curvature and stiffness 

functions, which are both discontinuous. The approach is to re-express 

these terms as a product of the inverse 

moment, where the latter can be fitted 

formulation can be found in Appendix K2. 

3.7 Summary of Analytical Model 

of stiffness and bending 

with polynomials. The 

In this chapter, the development of the analytical rotor response model 

has been described in detail. The model is valid for the coupled 

rotor-fuselage system modelled using either real blade modes or complex 

rotor modes as state vectors. Owing to algebraic complexity, tedious 

algebra has been avoided as far as possible in order to provide clarity 

and insight. 
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CHAPTER 4 CORRELATIONS AND DISCUSSION OF RESULTS 

4.1 Introduction 

The concept and application of complex rotor modes for the rotor 

response analysis were described in Chapter 3. A FORTRAN program, the 

ｾｯｵｰｬ･､＠ Rotor-Euselage ｾ･ｲｯ･ｬ｡ｳｴｩ｣ｳ＠ (CRFA), is being jointly developed 

by WHL and ORA (Farnborough)2. The program is based on the foregoing 

theory and is used to calculate the rotor loads in flight. To provide 

an understanding of the algorithm, its main features are described in 

this chapter. 

Owing to unforeseen delays in the software development, not all the 

analytical features described in Chapter 3 have been incorporated in 

CRFA to-date. CRFA currently solves the in-flight forced response for 

an isolated rotor using either blade modes or real rotor modes as state 

vectors. The software implementation of the complex rotor modes 

solution [4.1] has been started but is not anticipated to be completed 

for some time. Thus the appl ication of complex rotor modes in rotor 

response analysis cannot yet be evaluated. However a correlation 

exercise using CRFA is undertaken and the results obtained in a variety 

of applications are discussed and compared with flight test data. 

Wherever appropriate, results from Program R150 [4.2] will be presented 

so that a direct comparison of the analytical capability can be made. 

While CRFA is continuously being developed, a parallel activity to 

extend the single rotor trim capability to the complete rotorcraft trim 

(multiple rotors), is being undertaken by Young [4.3]. The requirement 

is needed to define a trim state to be used as an initial condition for 

a manoeuvre simulation. The ability to simulate manoeuvre constitutes 

the third and final phase of the ｾｯｵｰｬ･､＠ Botor-Euselage Model (CRFM) 

development. The completion of software development is not expected. 

realistically, for at least a few more years. 

4.2 Description of The Computer Software - Program CRFA 

Program CRFA is the main rotor load module among a suite of programs. 

The integration of these programs is described in Figure 4.1 below; 

2 The author would especially I ike to thank Mr C Young of ORA for 
furnishing most of the software. 
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Figure 4.1: Primary Structure of The Coupled Rotor-Fuselage Hodel 

Briefly, CRFA reads the dynamic characteristics of the rotor, ie. mode 

frequencies and shapes, from Program CRFD [4.4] and performs the forced 

response analysis. The main processing algorithm and the convergence 

logic used in CRFA, not furnished before, are provided in the flow-

charts (Figures 4.2 and 4.3). The rotor response calculation is 

similar to all dynamic models defined in CRFD. The main difference 

lies only in the definition of forcing functions and the treatment of 

the solution method for the mode types used, as described in Sections 

3.5.3 and 3.5.4. 

The loadings on all the blades, both aerodynamic and dynamic (including 

the non-linear and the time varying terms, .. ,etc) are calculated and 

used as forcing functions for the rotor response evaluation. The blade 

loads can then be determined and used to assess the blade stresses and 

airframe vibration. Even for an isolated rotor in flight, the task is 

still a demanding one. 

The other modules, the Aircraft Response Model (ARM) [4.3] solves the 

aircraft response through a manoeuvre and the HELicopter Manoeuvre 

ｾｩｭｵｬ｡ｴｩｯｮ＠ MANager (HELMSMAN) [4.5] determines the pilot input required 

to maintain the flight path. The pilot inputs so determined are then 

fed back into the loads module (CRFA) to solve the forced response of 

the rotor during manoeuvre. Both modules are continuously being 

developed and are outside the scope of this study. Together they form 

the complete CRFM. 
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4.3 Correlation using Program CRFA 

4.3.1 The Approach 

The approach on correlation using CRFA is carried out in stages. 

Initially, a set of datum cases using hub-fixed blade modes for a range 

of rotor and flight conditions are performed. The results are compared 

with those obtained from Program R150 and flight test data. 

Program R150 is chosen as the benchmark mainly because many of its 

features are similar to CRFA and they adopt similar aerodynamic models. 

Furthermore, it is a proven model, culminating many years of 

development at WHL, and has been validated against numerous flight test 

condi t ions. The corre la t ion wi th flight test data between both R150 

and CAMRAD/JA can be found in the WHL/NASA collaborative report [4.6]. 

The simulated conditions cover a wide-range of thrust and speed 

combinations for a Lynx aircraft fitted with metal blades. The 

correlation shown represents the general level of prediction capability 

in the rotorcraft industry. By comparing the results with those 

obtained from R150, this will ensure that CRFA can be operated in the 

current level of capability, which will still be extensively used in 

the foreseeable future. 

Based on a single blade model, the effects of hub motion on rotor loads 

are examined by introducing measured hub motions as external (fixed 

frame) forcings on the EH10l aircraft. Then the application of CRFA on 

rotor load calculation on a simulated Lynx loop exi t manoeuvre is 

demonstrated. Finally, the rotor mode concept is demonstrated by 

applying CRFA to a Lynx case with the transmission system flexibility 

included. Appropriate explanations on the modelling philosophy will be 

given. 

4.3.2 Datum Correlations 

f f · the datum correlation is not to show The purpose 0 per ormlng 

advancement in the theory. I t aims to provide an opportuni ty to put 

together a working model and to address discrepancies. if any. seen 

between analytical results. 
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The cases studied include 2 WHL aircraft: Lynx fitted with both metal 

and BERP blades and EH101 fi t ted wi th early development blades. The 

flight conditions for these cases are at nominal disc loading and over 

a range of speed. In addition, cases of BERP Lynx in high disc loading 

are also examined. The latter cases reveal the program characteristics 

in handling conditions close to the edge of the flight envelope - an 

area which is generally difficult to simulate. 

The process taken is described as follows. Ini t ially, the blade 

dynamics for the various rotor models are obtained using CRFD. The 

steady state, based on a hover model [4.7], is first calculated. The 

hover model calculates the aerodynamic loads for a rotor in hover or 

axial flight by setting up a wake model consisting of both a near wake 

sheet and a far wake (a system of tip and root vortex rings). The 

loads are iterated to the required thrust and pitch angle. 

After the steady state, the modes are calculated by searching the 

eigenvalues of the system. Without damping, the real blade mode shapes 

(eigenvectors) are defined as radial distributions of deflections and 

rotations, as well as shears and moments, and are normalised by the 

largest tip deflection, either in flap, lag or torsional sense. They 

are referred to as the fundamental, second, third,.. flap, lag or 

torsion modes. The first 8 modes, comprising 4 flap, 3 lag and 1 

torsion modes for each blade, are used for the datum correlation. The 

modal frequencies and tip couplings for the 4 different blade models at 

the required thrust are summarised in Table 4.1. 

The main rotor assembly, blade planform geometry and a schematic 

diagram of the blade and control system for the metal-bladed Lynx (4-

bladed semi-rigid rotor) and the EH10l (S-bladed articulated rotor) are 

shown in Figures 4.4 & 4.5 respectively. Both blades are modelled by a 

straight segment rotating at a constant angular veloci ty O. The 

control system stiffness is modelled as a secondary load path to earth 

attached to the blade. The inertia and structural properties ie. mass, 

flatwise, edgewise and torsional stiffnesses, c.g., centroidal offsets 

and radii of gyration, defined as radial distributions, for the two 

blade models are shown in Figures 4.6. 

throughout. 
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....., 
TITLE: LYNX MAIN ROTOR METAL BLADE AT 9500 LB THRUST - SINGLE BLADE COUPLED MODES Il> 

0- NEWMETAL: CRFA/R1SO CORRELATION - MODAL DATA AT n= 34.167 R/S '-
Cb 

ｾ＠ MODE NUMBER 5.5. 1 2 3 4 5 6 7 8 ..... MODAL FREQUENCY (n) .64695 1. 10952 2.69264 4.32476 4.85113 5.90906 7.95160 9.90764 
MODAL DISPLACEMENT-FLAP 2.99806 -.01051 1.00000 1.00000 .07269 1.00000 -.81438 1.00000 .34345 

to LAG -.90615 1.00000 .00354 -.12327 1.00000 .00480 .32138 -.24802 1.00000 ..... 
\II TORSION -.01918 -.00002 .00101 -.00190 -.00311 .03071 1.00000 -.03058 -.00915 0.. 
ｾ＠

ｾ＠
MODAL INERTIA (CHUGS-IN**2) .01183 .01518 .01591 .08663 .11600 1.85588 .13115 .18856 

8. 
\II ..... 

TITLE: LYNX MAIN ROTOR MONOBLOC HUB BERP BLADE AT 9540 LB. THRUST 
0 

LXBERPLO: CRFAlR150 CORRELATION - MODAL DATA AT 0= 34.161 RlS \II 
ｾ＠

\II 

"""' MODE NUMBER S.S. 1 2 3 4 5 6 1 8 .,., 
MODAL FREQUENCY (0) .66542 1. 11382 2.63601 4.51109 5.01813 5.35253 8.23150 10.43134 ., 

ｾ＠
MODAL DISPLACEMENT-FLAP 3.18136 -.01236 1.00000 1.00000 .14281 1.00000 1.00000 1.00000 .32731 ｾ＠

ｾ＠ LAG .14149 1.00000 .00338 -.11306 1.00000 -.11965 .52746 -.15345 1.00000 
:J 

TORSION -.00518 -.00011 .00100 -.00348 -.02126 -.04838 .59548 .01323 -.00048 () ..... 
MODAL INERTIA(CHUGS-IN**2) ｾ＠

til 
.01061 .07385 .06525 .01663 .07526 .77841 .06273 . 12972 

<h 

() 
TITLE: EH101 MRB 15JAN92 EH53 FLAT TIPPED STD. DEV. BLADE + ADD. ALTIP 0 

ｾ＠
\: EH53D3NEW: CRFAlR150 CORRELATION - MODAL DATA AT 0= 21.967 RIS 'tl 

ｾ＠ ..... .,.. ..... 
ｾ＠ MODE NUMBER 5.5. 1 2 3 4 5 6 7 8 
til MODAL FREQUENCY (0) .28254 1.03368 2.88118 4.91954 5.88786 6.58553 10.99203 12.87110 "-

\: MODAL DISPLACEMENT-FLAP 13.7273 -.00538 1.00000 1.00000 .34732 1.00000 1.00000 1.00000 .10099 
til LAG -21.4222 1.00000 .00622 -.19472 1.00000 -.22666 -.18302 -.14083 1.00000 ｾ＠
0.. TORSION -.00684 -.00041 -.00073 .00157 -.00402 -.04676 .12504 .00624 .00736 ..... MODAL INERTIA(CHUGS-IN**2) .24810 .24533 .14871 .22534 . 17011 .49815 .09163 .23098 :J 

0 
\II 
ｾ＠

\: TITLE: LYNX MAIN ROTOR MONOBLOC HUB BERP BLADE AT 11905 LB. THRUST (CRFD) !3 

() LXBERPHI: CRFA/R150 CORRELATION - MODAL DATA AT n= 32.801 RIS 
0 ., ., 

MODE NUMBER 5.5. 1 2 3 4 5 6 7 8 ｾ＠
'- MODAL FREQUENCY (n) .67343 1. 11356 2.65679 4.54521 5.10296 5.54942 8.37279 10. ]<)S'14 \II 
ｾ＠ MODAL DISPLACEMENT-FLAP 9.3120 -.02331 1.00000 1.00000 .09763 1.00000 1.00000 1 . 00000 . ＵＹ＿ｓｾＩ＠.... 
0 LAG -4.1697 1.00000 .00682 -.19215 1.00000 -.09098 .53511 -. l?()! 1 1 . 00000 :J 

TORSION 0.04792 -.00035 .00102 -.00281 -.02763 -.04695 .49881 .011?() -.00090 
MODAL INERTIA(CrillGS-IN--2) .07055 .07388 .06692 .07987 .07266 .5591 () .O()530 . 150S() 



MONOBLOC HEAD ASSEMBLY. 

Modelling Details 

K. = 21950 lbf/in 
E = (10.625,6.437,0.556) 
xT = 1. 0236 in 

Not to Scale 

Figure 4.4 - Lynx Main Rotor Assembly and Hodel Schematic Diagram 
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z. 

Hinge Stiffness 

Modelling Details 

ｾ＠ = 56000 lbf/in 
E = (16.507,-4.807,1.162) 
xT = 1. 89 in 

Kx = 9454 Ibf-inlrad 
Ky =25439 Ibf-inlrad 
Kz =25439 Ibf-inlrad 

Figure 4.5 - EHIOI Main Rotor Assembly and Hodel Schematic Diagram 
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---- CRFD BLADE PROPERTIES:-
LYNX METAL MAIN ROTOR BLADE AT 9500 LB - SINGLE BLADE COUPLED MODES 
NEWMETAL: CRFA/R150 CORRELATION - MODAL DATA: OMEGA- 34.167 RIS 
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ｾ＠ Ｇ［ＧＱｾｄＨｊｪＧｒｲｵｈｲ＠ 199J - ｾｮｉａｈｉｃｾ＠ ｏｈﾷＮｒｔｈｾｎｔ＠

CRFD BLADE PROPERTIES:-
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EH101 MRB 15JAN92 ｅｈｾＳ＠ FLAT TIPPED STD. DEV. BLADE + ADD. AlTIP 
ｅｈｾＳｄＳｎｅｷＺ＠ CRFA/R150 CORRELATION - MODAL DATA: OMEGA- 21.967 RIS 
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Blade Structural Properties (a) Lynx (Hetal) (b) EHIOI (Dev.Std.) 
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Now for the forced response calculation. For all the datum cases, the 

rotor is trimmed to the required thrust and head moments by adjusting 

the collective and cyclic pi tch angles. The thrust and head moment 

values are derived from flight test data using the Strain Modal 

Synthesis (SMS) method [4.8]. SMS is a technique by which a best fit, 

using the same blade mode set, is made to the harmonic components of 

the measured bending moment. The solution of the modal quantities from 

the best fit is then used to construct other loads, particularly hub 

loads, and deflections that are not measured. 

The blade geometry ie. chord, sweep angle, aerodynamic centre offset, 

aerofoil section, etc are input as radial distributions. The section 

coefficients (CL , CD & CM) are determined using Beddoes' indicial 

aerodynamic model [4.9]. Both the fuselage upwash model based on the 

slender body theory [4.10] and the non-linear lag damper model are 

included. 

Using the procedure briefly described above, the results for all the 

datum correlation cases were obtained and reported in detail [4.11]. 

The resul ts for all the metal and BERP Lynx cases at nominal disc 

loadings compared extremely well between the two programs and 

favourably with flight test data. The results on the two speeds each 

for the EH101 and the high disc loading Lynx cases are presented here. 

The rotor performance parameters are tabulated in Table 4.2 alongside 

the R1S0 results. The corresponding structural loads, calculated using 

Modal Summation with unified formulation of lag damper loads, are 

presented as waveform plots in Figures 4.7 and compare well with only 

detailed differences. 

For the EH1D1 rotor, the prediction for both flatwise and edgewise 

loads are similar in both programs (Figures 4.7(a) and 4.7(b» It is 

evident that both programs under-predict the 3R flatwise loads at the 

two speeds but for reasons which are still unclear. The inability to 

predict the 3R load at low speed is initially thought to be attributed 

to the induced veloci ty modelling around the azimuth. However the 

NASA/WHL collaborative study [4.6] has revealed that there was no 

particular benefit when the free wake model was introduced. The slight 

improvement in the control load prediction using CRFA on the advancing 

side and in the mid-span torque for the high speed case, was attributed 

to an error found in R1S0. 
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For the BERP Lynx cases, a deficiency with the trim process using the 

partial derivative matrix (PDM) method in CRFA has been highlighted. 

The problem is due to the numerical sensi tivi ty in this highly non-

linear region of the lift-incidence curve. Figure 4.7(c) shows the 

typical variations of rotor parameters during the trimming process for 

both the low and high disc loading conditions. The PDM method 

calculates the changes of rotor parameters by perturbing each of the 

rotor controls in turn. It assumes the variation is linear over the 

range of perturbation and is used to relate the out of trim conditions. 

The use of PDM, a process which is mathematically simple, does not 

always guarantee that the required trim can be achieved in this region 

since the linear assumption is no longer valid. Al though a trim in 

this regime was achieved using CRFA, earlier resul ts showed large 

discrepancies in the rotor power between CRFA and R150. These 

discrepancies were attributed to the different amount of stall 

penetration characterised by the two programs. This was eventually 

overcome by ensuring that both rotor models generate the same H-force, 

a measure of stall penetration, using an iterative trim process. 

Using the revised trim in both programs, the comparison of rotor 

performance is shown in Table 4.2 and is considered reasonably good in 

such a flight regime. When correlating the loads prediction wi th 

flight test data, shown in Figures 4.7(d) & (e), CRFA has shown 

improvement in the peak-to-peak flatwise loads prediction as the over-

predictions of the SR content exhibi ted by R150 no longer exist. 

However, the control load comparisons indicate that there is a slight 

degradation on the advancing side at the low speed. 

The conclusions from this datum correlation are that the agreement in 

the rotor performance and structural loads on a range of rotor and 

flight conditions is very good. The main difficulty lies with the trim 

calculation for the high disc loading cases using the PDM method in 

Program CRFA. However, directly comparable resul ts between the two 

programs can be obtained provided that care is taken to ensure similar 

of stall penetration are experienced by both rotor models. This 

level of capability as R150. 
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..... ---------------------------------------------------------------------------------------------------------------
(1) Aircraft EH10l EH10l LYNX LYNX 
>A (DEY. STD. ) (DEY. STD. ) (BERP) (BERP) 
I\J TAS (kts) 40.0 150.0 66.0 102.0 

t::7 Date Run 12/05/94 11/05/94 12/05/94 11/05/94 14/12/93 04/01/94 18/01/94 04/01/94 
III ..... Version R150SS CRFA R150SS CRFA R150SW3 CRFA R150SW3 CRFA 
I: a 

& Control Angles (deg) (-ve Fourier Series) ., Collect! ve, AO 15.527 15.881 17.522 18.421 15.547 14.719 16.687 14.593 ., 
Lateral, Al -6.044 -6.044 -2.254 -2.940 -4.809 -4.805 -3.831 -4.839 ｾ＠

"- Longitudinal, Bl 6.238 6.238 10.585 11. 422 6.478 6.577 8.622 9.282 III ..... 
I-

0 Tip Flapping (deg) (-ve Fourier Series) :J 
" Coning, aO 5.24 5.532 4.65 4.996 4.74 5.195 4.58 5.076 
(') Longitudinal, al -2.84 -2.701 -1.26 -1. 222 -0.221 -0.217 -0.476 -0.107 
0 Lateral, bl 0.718 0.709 1. 51 1. 519 0.088 0.031 0.040 0.057 -6 
III ., 

Tip Mean Lag (deg) -0.074 -0.491 -1. 20 -1. 729 0.106 -0.009 0.370 0'.189 1-. 
II) 
0 
:J Tip Torsion (deg) (-ve Fourier Series) 
0 Mean -0.350 -0.358 -0.192 -0.165 0.198 0.419 -0.050 0.005 
....... 

::tI 
A1 0.488 0.478 -1. 24 -1. 276 -0.952 -0.967 -1. 47 -1.221 

0 B1 -0.425 -0.375 -0.441 -0.441 -0.507 -0.453 -0.831 -0.976 ..... 
0 

ｾ＠ ., 
Rotor Forces (lbf) N 

0 ." 
ｾ＠ Thrust 26931.4 26874.4 26213.3 26308.8 11754.9 11766.8 11612.7 11634.9 ., 

X-Force 1514.0 1464.2 784.7 723.9 209.6 166.1 381.1 261.0 ....... 
0 Y-Force -1144.7 -1092.5 -603.5 -550.8 -541. 4 -561. 6 -546.1 -562.0 ., 
!'3 
III 

Rotor Moments(lbf-in) :J 
(") 
ｾ＠ MX 5809 6846 13078 16216 -9070 -7638 -11301 -9639 
." MY -176740 -180397 -80155 -80417 -6814 -9784 12403 9746 
III ., 
t Power (hp) 
ｾ＠ Induced Power 1867.9 1945.3 2181.2 2237.0 638.7 654.6 187.2 177.0 ..... 
ｾ＠ Prof lle Power 466.5 497.1 608.1 673.4 306.0 262.5 550.2 587.0 ., 
II) Total Power 2334.4 2442.4 2789.3 2910.3 944.7 917.1 737.4 764.0 
....... 
0 

Convergence Level Thrust Modal Thrust Partial Thrust Partial: Thrust Partial ., 
!'1'] & Moment & Moment & moment & Moment 
:x:: Trim only Trim only trim only Trim only ..... 
a ..... 
en Modes J134 J134 J134 J134 CRFD CRFD CRFD CRFD 

to 
!'1'] ---------------------------------------------------------------------------------------------------------------
ｾ＠
r-
'-< 
ｾ＠
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.fl/1160 ' EHIOI ORTUM CORRELATION 
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I!l 

'g.oo .00 .b.oc 0.00 1 0.00 zbo.oo 
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CONTROL LOAD 
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I!l FLJ GHT TE6T 
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8 .. I ... ,.101.1 ｾ＠ ...... :.l.:..:. .:..:..:.- •. : •.•• ,.. HIT···· 

ＺＺＺｾＧ＠ j:l:l:t ｾｾｴｩ＠ jig ±±±± i::'ti: ::.: .. ＺＺＮＺＺＮﾷＮ［ｾｾＮＺｉＺｩＮＺ＠ .. Ｚ［ＮＺＮｾＮＧＮｾ｟［ＺＮ［ＮＺ＠ ｾＺｩｾＺＺＺ＠
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Figure 4.7(a) Structural Loads Comparison for EHI0l ( 40 ktas) 
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Figure 4.7(b) Structural Loads Comparison for EH101 (150 ktas) 
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Figure 4.7(c) - Example of Trim Parameter Traces using The PDn method (BERP Lynx) 
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Figure 4.7(d) Structural Loads Comparison for BERP Lynx ( 66 ktas) 
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Figure 4.7(e) Structural Loads Comparison for BERP Lynx (102 ktas) 
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4.3.3 Effects of Hub Motions on Rotor Vibratory Loads 

One of the two main objectives of this study is to include the effects 

of hub motion on rotor loads and hence, airframe vibration. The 

effects of hub motion can be introduced using complex rotor modes as 

state vectors in the forced response analysis. Alternatively, they can 

be introduced as external forcings on a single blade modelled with real 

modes. Since the software development for incorporating the complex 

rotor modes solution is currently being carried out, it is decided to 

adopt the latter approach. Program CRFA is modified to incorporate hub 

motions as external NR (N/rev) fixed frame forcings, N being the number 

of blades. The hub motion modal forcing, for the ith blade mode, is 

defined by the following terms (extracted from Appendix I), 
R 

HMFi= 
1 J{ 

ｑｾｉｩ＠ o 

Based on modal summation, these additional forcings will result in 

different blade inertia responses from the case when the hub is assumed 

fixed. Providing a sufficient number of modes are used, the N/R 

effects due to hub motion, in both flap and lag senses, wi 11 be 

properly accounted for. Since no axial mode is included in the forced 

response analysis, correction to the radial shear is needed. The 

radial shear, calculated by the modal summation method (VxH)' must be 

modified by an additional term due to hub motion (VxH)' 
R 

ie. Vx = VXM + VXH where VXH= ｊ｛Ｒｭｑｲｾｈ＠ - ｭＨｸｈ｣ｯｳｾｫＫｙｈｳｩｮｾｫＩ｝＠ dr 

r 

r 

It is noted here that VXH normally include the 2mQv term but to assess 

the effect due to hub motion, this terms is purposely excluded. 

Flight test data reveals that the EH10l aircraft exhibits some hub 

motions in flight and is therefore chosen for this study. The elastic 

hub motions are introduced as SR hub veloci ty components in terms of 

both magni tude and phase, in all six direct ions. They are determined 

by performing spectral analysis on vibrations (g) measured on the 

gearbox at 3 (tri-axial) locations: two on the engine drive-shafts and 
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one on top of the gearbox. The interconnecting structure between the 

gearbox and the rotor head is assumed rigid. A least-squares fi t is 

then applied to the SR contents of the measured data to obtain the hub 

motions [4.12]. Two speeds (44 and 167 ktas) are selected and the 

corresponding flight test data are analysed using SMS. The derived SR 

hub motions are given in the table below, where the phase angles are 

relative to ｾ］ｏｯ［＠

. 
xH YH ZH <PH ｾｈ＠ t/JH 

44 KTAS 
Magnitude (in/sec) 1. 38 2.59 1. 92 0.0375 0.0173 0.0366 
Phase (deg) 305 -48 239 148 -52 300 

167 KTAS 
Magnitude (in/sec) 3.90 4.11 1. 33 0.0483 0.0829 0.0832 
Phase (deg) 26 -18 220 138 -328 8 

To understand the effects of hub motion on rotor vibratory loads, we 

consider the following. The main rotor vibratory loads transmitting to 

the airframe, are the NR fixed frame head loads. They are, in turn, 

obtained from summing the loads of (N-1 )R, NR, (N+1)R harmonics in the 

rotating frame at the hub. In lag and flap senses, the blade inertia 

effects cancel wi th the appl ied hub motion in the fundamental modes. 

Thus the hub motion effects on the other hub load components: vertical 

shear, pitch and roll moments are small. They predominantly affect the 

inplane (longitudinal and lateral) shears due primarily to the radial 

load in the rotating frame. Since there is no axial mode used in the 

analysis, the hub motion effects resul t in a direct change in the 

radial shear, primarily be the (N-1)R and (N+1)R in the rotating frame. 

To account for the effects of hub motion on these rotating harmonics, 

the inertia loads due to hub motion in the fixed frame are first 

transformed into the rotating frame and then added to the radial shear. 

Figures 4.8(a) & (b) show the effects of hub motions on all the fixed 

frame (SR) hub load components for the two speeds examined. The 

components corresponding to (x) are for the datum case wi thout hub 

motion, (LU for the case with hub motion and (0) for the test data. 

The loads are plot ted in an Argand diagram form where the Four ier 

coefficients of ｣ｯｳｓｾ＠ and ｳｩｮｓｾＬ＠ ie. AS and BS components, are plotted 

on the x-y axes. In this manner, both the magnitude and phase 

correlation with flight test data can be assessed. 
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It is evident from Figures 4.8 that for the low speed case, both the 
magnitude and phasing of the 5R lateral shears (Fy) are much improved. 

Although the magnitude of the 5R longitudinal shear (F
x

) is still 

under-predicted, the phasing is improved. F th h' h or e 19 speed where the 
biggest effect is, both inplane shear components are much better 

predicted. The effects of hub motion on other components are small, as 

expected. A more qualitative assessment on the effect of hub motions 

can be 

inplane 

made by compar ing the rat l' os of th t e roo mean square of the 

shears S=J (F:+F:; for the 2 cases with flight data, which are; 

ktas SDatum SHub 

SSMS SSMS 

44 0.2607 0.8472 
167 0.2024 0.7599 

It is clear that the ratios have increased by more than 3 folds when 

hub motion is included. 

The conclusions drawn from this exercise is that the inclusion of hub 

motions have shown significant improvement on the hub vibratory load 

calculations and must be included in order to provide a better estimate 

of airframe vibration. The observation is in line with expectation and 

confirmed by the vastly improved correlation. This represents a 

significant milestone in the ability to include hub motion effects on 

vibratory load calculation. 

However, it should be pointed out in order to substantiate the effects 

of hub motion on vibratory loads, an accurate knowledge of measured hub 

motions and fixed axis loads is needed. This depends on many factors, 

which include the fitting process used to infer the hub motion data and 

the assumption of a rigid interconnecting structure used in the 

spectral analysis. Both must be sufficiently sound to ensure the 

correct phasing of the inferred hub motions is defined. Also when 

inferring flight load data in SMS, care must also be taken to ensure 

the true rotor dynamics are modelled. 

A more qualitative study would be to use complex rotor modes in both 

the forced response analysis and SMS. However, even if this approach 

is taken, the calculated loads will still depend on factors such as the 

accuracy of the fuselage modes used and the hub impedance calculation. 
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4.3.4 Rotor Loads Evaluation for a Manoeuvre 

The second objective of this study is to develop a method capable of 

predicting rotor loads during manoeuvre flight. In an ideal manoeuvre 

simulation, the aim is to model the rotorcraft behaviour over time as 

if there were a pilot in the loop. This leads to a set of pilot 

controls and aircraft states which are then fed back into CRFA from 

which the loads are determined. The rotor loads so determined are then 

used to define the fuselage motion during the manoeuvre. The process 

is repeated at each time step throughout the manoeuvre. 

For non-steady flight, a multi-bladed rotor model should be used as 

each blade would behave differently. Since the software for the rotor 

mode solution is not yet available in CRFA, we proceed in the same 

manner as the hub motion study ie. use the single blade rotor model. 

A comprehensive manoeuvre flight trial on the Lynx aircraft, fitted 

with both metal and BERP blades, was carried out in 1990. The exercise 

was carried out primarily to establish both the behaviour and the 

absolute level of performance of the BERP rotor in manoeuvring flight 

and was reported by Phipps [4.13]. The manoeuvre of a loop with high 

"g" load factor on exit was chosen to demonstrate the application of 

this model in calculating rotor loads in manoeuvres. 

The time history traces of CT/s v Il and some selected parameters for 

this transient condition are shown in Figure 4.9(a). The loop manoeuvre 

was performed by pi tching the aircraft and increasing the pi tch rate 

over the top of the loop and on exit, the aircraft load factor reached 

3.3g. At such a high ｃｔＯｳＨｾＰＮＴＩＬ＠ the aircraft experienced deep stall. 

In steady flight conditions, the rotor is normally operating in a non-

stalled condi tion and the aircraft trim state is well-defined. For 

manoeuvre simulation of this kind, we adopt the following approach. We 

define a snap-shot trim state by selecting a time slice of the event 

and assume the condition is quasi-steady on a chosen cycle. The flight 

condition data: true airspeed, descent rate, fuselage attitude, 

aircraft pitch and roll rates, are obtained from the measured data. 

The thrust can then be estimated using an iterative aircraft trim 

analysis and the head moment inferred from gauge data. 
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The theoretical model cannot be expected to simulate the manoeuvre 

exactly by matching all the aircraft state t parame ers simultaneously. 

It is therefore decided that one of the constraints - shaft incidence, 

is allowed to be var ied in order to obtain a power match since the 

power available from the engines is a real physical constraint. This 

method of trimming is chosen because the primary influence on the blade 

loads will be the level of stall penetration which can be controlled by 

matching the power. Hence the blade load characteristics are more 

likely to be modelled correctly. The following trim condi tion is 

defined for this loop exit manoeuvre; 
Flight Data 

True air speed (ktas) 
Fuselage attitude (deg) 
Roll rate (deg/s) 
Pitch rate (deg/s) 
Rotor speed (%NR) 
Thrust (lbf) 
Roll moment (lbf-in) 
Pitch moment (lbf-in) 
Rotor power, PH (hp) 
(j 

CT/s (-) 

11 (-) 

Loop Exit 

143.490 
36.580 

0.0 
30.789 
107.5 
22200 
33290 
56090 

640 
0.9189 
0.4055 
0.3236 

This manoeuvre simulation is proceeded by first generating a set of 

blade modes using CRFD. This time, the steady state is obtained by 

trimming the rotor to the required thrust to ensure that the modes are 

still small perturbations. The process used in CRFA to trim the rotor 

to the required thrust/head moment and matching the rotor power 

simultaneously has, as expected, proved to be not straightforward. 

Initially, the simulation was performed using zero pitch rate ie. using 

the level of capability available in R150. This has been unsuccessful 

in acquiring the trim condi tion wi th the highest achievable thrust 

being some 2000 lbf short of that required. When the pitch rate was 

included, the required thrust was achievable. This result has 

substantiated the existence of the physical phenomenon known as pitch 

rate alleviation [4.14]. Positive pitch rate developed during the 

manoeuvre resul ted in a favourable gyroscopic moment acting on the 

rotor. This gyroscopic moment provided a starboard down flapping 

moment ie. positive flapping on the retreating side. In order to 

generate the same longitudinal flapping motion required for trim, the 

aerodynamic moment on the retreating side was reduced. This was 

achieved by a decrease in blade incidence which relieved the stall and 

it was this mechanism which enabled the trim to be achieved. 
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Al though a trim was achieved, the deficiency associated wi th the PDM 

trim method to handle such a highly non-linear flight regime was once 

again highlighted (Fig.4.9b). Because of the numerical sensitivity and 

non-linearity in this regime, even a numerical difference of 0.050 in 

the shaft incidence could switch the rotor condition from a moderately 

stalled to a stalled one. Clearly in reality, this would not occur. 

After a number of attempts, a thrust/moment trim was eventually 

achieved but the predicted power was some 800hp lower than that 

required. Because of the approximations inherent in this simulation, 

it was felt that further improvement could not be guaranteed by 

refining the trim process, therefore the acquired trim was accepted. 

Examination of the control load waveform (Fig.4.9b) reveals that apart 

from the phase shift on the 1R and some missing higher harmonics on the 

advancing side, the correlation is good when considering the extreme 

aerodynamic environment encountered and the approximations of the 

manoeuvre by a quasi-steady rotor state used. 

Figures 4.9(c) also show the flatwise and edgewise moments at the root 

and mid-span posi tions. It is evident that the correlation of the 

peak-to-peak flatwise loads and the general shape of the waveforms is 

very good. Al though at the mid-span, there is an over-prediction of 

the peak value at ｾ］ＴＰﾰＬ＠ the overall magnitude is much less than the 

inboard value and so represents only a relatively small error. For the 

edgewise moments, the 1R loads at the inboard region are slightly 

under-predicted but the mid-span correlation is truly excellent. 

The main conclusion drawn from this exercise is that the inclusion of 

the pi tch rate in the analytical model has correctly alleviated the 

retreating blade stall. This has allowed the simulation to be 

performed even in such a high CT/s (=0.4) manoeuvre, which would 

otherwise not be possible. This value represents a physical limit at 

which most existing rotors can operate and it forms the basis for limit 

loads correlation for the EH101 certification [4.15]. Thus it is 

important to be able to predict the loads at such an extreme condition. 

The ability of this model to simulate severe manoeuvres with the level 

of correlation similar to the level flight represents an important 

achievement. When the HELMSMAN and ARM modules, together wi th the 

rotor modes solution, are incorporated, the full potential of CRFA in 

manoeuvres can be explored. 
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4.3.5 Application of Rotor Modes 

- Effect of Including Transmission System Dynamics 

This analytical model adopts a new dynamic modelling strategy based on 

the concept of rotor modes. Before the full (complex) rotor mode 

solution is used, it is necessary to gain some insight into its 

application. This will provide a sound basis for applying this 

technique to the more comprehensive dynamic modelling. 

Rotor modes are normally complex. However, by examining the rotor 

system, it is not difficul t to see that certain types of rotor/sub-

system coupling involve only collective motions of all the blades, with 

each blade moving identically. This resul ts in net motion along or 

about the axis of rotation ego hub vertical and yaw motion. Thus, 

these systems can be mode lIed using only the collect i ve and 

reactionless modes and are conveniently separated from the cyclic 

modes. In the absence of damping, aerodynamic or Cor iol is coupl ing, 

the collective mode eigenvectors are real and can be expressed in 

ei ther the rotating or non-rotating frames. The react ionless modes, 

which involve no motion of the hub and with all motion being confined 

to the rotor, are also real and are expressed in the rotating frame. 

Hence, under the preceding condi tions the rotor modes, which can be 

treated as wholly real, are the reactionless and the collective modes, 

both expressed in the rotating frame. This forms the basis of the 

intermediate, as opposed to the full, rotor mode solution as introduced 

by Holton [4.16] and has been programmed in CRFA. 

The test case for the rotor mode concept is to include transmission 

flexibility for the Lynx rotor system. Figure 4.10(a) shows the Lynx 

transmission system gear diagram and the dynamics torsion model. Two 

sets of (real) modes; the reactionless (ie single blade) and collective 

modes (calculated with 10 transmission system modes) are set up using 

CRFD and the modal properties are given in Table 4.3. The three lag 

mode shapes and modal bending moment distribution for the two sets of 

mode types are shown in Figure 4.10(b). The differences, primarily in 

the lead-lag dynamics, are attributed to the transmission flexibility 

being included and are shown in the table of frequencies below; 
Mode Reactionless Collective 

L1 
L2 
L3 

(Q) (Q) 

0.66222 
4.45706 

10.12104 
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The most significant change is in the second lag mode frequency, where 

it has moved from above 4R to below 4R. This will clearly affect the 
edgewise loads. The change in the fundamental lag frequency is 

attributed to the stiffening effect whereby the 2 isolated systems, 

free-free (transmission) and fixed-free (blade), are moving out-of-

phase with each other. The blade is effectively shortened as a result 

of the shift of the node in the lag mode shape from the blade centre 

line to some 30%R (Figure 4.10(b)). 

The biggest effect of including transmission flexibility is on the NR 

loads whilst the rotor trim parameters, mainly steady components, are 

unaffected by the changes in the lag modes. To ensure that the 

application of rotor modes is correct, the check is made on the modal 

responses. This is performed using the harmonic balance method ie. by 

re-constructing the harmonic contents of modal responses from the modal 

forcings. Consider 

where 

fBn + (5 fAn 

(A2_n2) I (1+(52) 
where (5 = 

where I,A,v are the modal inertia, frequency, damping and f,q are the 

modal forcing and response for the second lag mode and n=4 here. The 

suffices An,Bn refer to the Fourier coefficients of a positive Fourier 

series. The 4R modal responses are summarised below; 

Case L2 Modal Modal Response 
Data Forcing Calculated H.Balance 

Collective A= 3.40387 A4 -0.000028 0.000060 0.000057 
+ v= 0.01 B4 0.000000 0.000009 -0.000004 
Reactionless 1= 0.11070 

The calculated modal responses compared well to those based on the 

harmonic balance method. Further scrutiny of the modal responses 

reveals that all collective modes respond only at OR,4R,8R (for the 4-

bladed Lynx rotor) f ·· the correct mode is as expected con lrmlng 

Likewise, the reactionless modes responding at the correct harmonics. 

respond to all other forcing harmonics except, of course, the 

collective forcing harmonics. 
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Figure s 4. 10 ( c) show the edgew i se momen t waveforms f b or a num er of 
radial stations and the overall changes are slight but, as previously 
noted, the biggest improvement would be on the fixed frame edgewise 

loads. The 4R edgewise moment at 31.1%R is shown in the Argand diagram 

Figure 4.10(d) below. 

-1000. -2000. 

B4 (lbf-in) 

2000. 

1000. 

BLADE HODE 

-1000. 

-2000. 

FLIGHT TEST 

MODE 

2000. A4 (lbf-in) 

Figure 4.10(d) - Comparison of 4R Edgewise Moment at 31.1%R 

It is clear that the use of rotor modes has improved the phasing 

correlation. The improvement is due primarily to the correct second 

lag mode frequency (below 4R) being used, thereby changing the phasing 

of 4R response. Al though the ampl i tude has not been improved, the 

prediction is of the same order as the single blade case. A simple 

calculation reveals that in the proximity of 4R lag resonance, assuming 

1% structural damping, an increase in lag mode frequency typically of 

13% would be sufficient to quadruple the 4R edgewise moment. This 

reflects the fact that a relatively small frequency discrepancy near 

resonance, can lead to significant changes in the amplitude of 

structural loads at the near resonant frequency. This is especially 

important in a flyaway simulation where the rotor speed variation can 

sweep across the resonant frequency. 

This exercise has provided the insight into the use of rotor modes in 

response analysis and the observations are in line with those seen in 

[4.17]. It provides the confidence and forms the basis of applying the 

full (complex) rotor modes in the forced response analysis in the 

future when the software becomes available. 
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TItle: LYNX MAIN ｒｏｔｏｾ＠ BERP BLADE 9500 LB. THRUST - REACTIONLESS MODES 
LXBERP_REAC: NO TRANSMISSION SYSTEM - 0=34.167 R/S, Collective=14.5315 DEG 

MODES NUMBER S.S. 1 2 3 4 5 
MODAL FREQUENCY (n ) .66222 1. 11142 2.62495 4.45706 4.97108 
MODAL DISPLACEMENT-FLAP 3.37660 -.01165 1.00000 1.00000 .14147 1.00000 

LAG 0.21978 1.00000 .00301 -.11163 1.00000 -.11857 
TORSION -0.00625 -.00017 .00096 -.00325 -.02042 -.05279 

MODAL INERTIA(CHUGS-IN··2) .07085 .07415 .06518 .07665 .07542 

Collective Modal Data 

Title: LYNX MAIN ROTOR BERP BLADE 9500 LB. THRUST - COLLECTIVE MODES 
LXBERP_COLL: 10 TRANSMISSION MODES - n=34.167 R/S, Collective=14.5315 DEG 

MODES NUMBER S.S. 1 2 3 4 5 
MODAL FREQUENCY (n) 1.00876 1. 11145 2.61850 3.40387 4.96901 
MODAL DISPLACEMENT-FLAP 3.37660 -.06900 1.00000 1.00000 .29045 1.00000 

LAG 0.21978 1.00000 .00859 -.15882 1.00000 -.18376 
TORSION -0.00625 -.00066 .00096 -.00304 -.00905 -.04936 

MODAL INERTIA(CHUGS-IN··2) .05902 .07417 .06636 .11070 .07649 

Transmission System Hodes used in the calculation of Collective Hodes: 

Frequency Modal Deflection 
at the hub 

(normalised to unit 
Mode (R/S) modal mass) 

1 4. 9464E-05 1.254E-02 
2 46.310 4. 759E-03 
3 99.458 1.507E-04 
4 237.89 5.290E-02 
5 431. 45 3.034E-02 
6 738.71 1.096E-02 
7 970.41 9. 640E-04 
8 1676.3 1.596E-04 
9 1903.4 1.966E-05 

10 2502.5 1.057E-02 

6 7 8 
5.31862 8.14309 10.12104 
1.00000 1.00000 .29150 

.35110 -.15259 1.00000 

.48677 .01118 -.00007 

.53482 .05891 .12594 

6 7 8 
5.30270 6.57788 8.15675 
1.00000 .36623 1.00000 
-.03212 1.00000 -.23256 

.56389 .01421 .01112 

.70419 .09044 .06137 
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CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 

5.1 The Conclusions 

A new modal method capable of analysing the rotorcraft aeroelastic 

response in both steady and manoeuvring flight has been developed. The 

two main objectives of the study: to include the effects of hub motion 

in the rotor loads calculation and to be able to analyse rotor loads 

during manoeuvring flight, have been achieved. The rigid aircraft 

motion is introduced in the analytical model as a set of aircraft 

veloci ties and rates. The effects of elastic hub motions on rotor 

loads are included (1) as external hub inertia forcings on a rotor 

modelled using real blade modes; and (2) as the main constituent of the 

rotor dynamic model by way of complex rotor modes. 

The main conclusions drawn from this study are; 

- In order to provide the thorough modelling and insight of the dynamic 

interactions between the rotor and the fuselage systems, complex 

rotor modes are needed. The use of complex modes as state variables 

in rotor response analysis is a concept which is both new and 

analytically demanding. 

The various rotor mode types differ in the type of damping and 

velocity terms modelled in the rotor dynamic system, but the solution 

treatments are significantly different. For the simplest rotor 

dynamic model without damping or gyroscopic coupling, ie. real 

rotating blade modes, the rotor response can be solved wholly in 

terms of real quantities. For the general rotor model using a 

complex modes representation, ie. coupled and reactionless modes with 

or without damping, the rotor response must be solved in the form of 

first order complex differential equations. 

- The coupled and react ionless rotor modes are both needed to def ine 

the total response of the coupled rotor-fuselage system. The modes 

are necessarily expressed in different frames of reference: rotating 

(reactionless modes) and fixed (coupled modes). Care must be 

exercised to ensure that the forcings appropriate to each mode type 

are correctly identified. As a result, a numerical filtering process 

to isolate the forcing has been developed. This method, combined 
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with the use of complex rotor modes, can be easily adopted to solve 

the forced response of other dynamical systems consisting of both 

rotating and non-rotating components. 

- The successful application of the modal method depends on the modes 

being orthogonal, This ensures that any subset of the modes forms an 

independent set and allows the use of a reduced number of degrees of 

freedom for the response analysis. The task of providing a text-book 

proof of the orthogonality relationship for the complex rotor modes, 

originally configured in the form sui table for the transfer matrix 

solution method, proved to be one of the most formidable tasks 

undertaken within this study. A generalised proof is furnished by 

way of the bi-orthogonality relationship employing both the left-hand 

and right-hand eigenvectors and has revolutionised the tradi tional 

approach in rotor dynamic analysis. Important conclusions drawn from 

this proof include; 

(1) A set of complex left-hand eigenvectors are required, together 

wi th the right-hand set, in order to reduce the system to a 

subset of modal response equations suitable for a solution; and 

(2) It is necessary for the modes analysis to be re-formulated as a 

classical eigenvalue problem replacing the transfer matrix 

solution procedure. 

- In order to use the modes correctly, it is necessary to ensure that 

the dynamic and the aeroelastic systems are compatible - a process 

which requires significant algebraic manipulation of complicated 

expressions. The complexity of the reduction of the response 

equation to the uncoupled modal form has been minimised by employing 

an orthogonalisation process. The concept is simple and the process 

can be appl ied to all system modes for the coupled rotor-fuse lage 

system with the added advantages; 

(1) It simplifies the algebraic derivation process and correctly 

identifies the RHS forcing terms for all the mode types used; and 

(2) It provides the option to include certain forcing terms for 

parametric study without adding complexity to the dynamic model. 

- Because some of the modellings and basic assumptions used in the 

dynamic and aeroelastic analyses are different, to ensure 

t . t th blade mode 1 
t ' b' I' t l' t 1'S necessary to res r1C e compa 1 1 1 Y 

representation to straight segments with small pre-deformed angles. 
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This restriction is in line with practical modelling but requires 

future review when other applications are necessary. 

- Much of the derivation of various algebraic expressions is performed 

using the symbolic algebraic package REDUCE. The deficiencies of 

REDUCE in dealing with expansion of linearised polynomials are high-

lighted. However it remains as an indispensable tool in the 

formulation and manipulation of lengthy equations. 

- In the derivation of both the modal response equation and structural 

load expressions, the important non-linear terms were retained by 

employing an ordering scheme. The ordering scheme was based on both 

physical and practical reasonings. 

- The fundamental issues regarding the true definition of aerodynamic 

incidence (a) expression is addressed. It is necessary to include 

the second order pseudo-torsion term in the a-expression. The 

derivation provided is rigorous and should be regarded as definitive 

when pre-deformation and aircraft rate terms are included in the 

response analysis. However, in order to use this definition 

effectively, it should also be complemented by an accurate 

determination of the aerodynamic loads. 

- The numerical problem inherent with the Force Integration procedure 

used for structural loads calculation has been addressed. This is 

overcome by the deployment of a novel analytical integration 

procedure known as the Chebyshev Polynomial Integration (CPI) method. 

Application of the method in predicting vibratory edgewise moment has 

shown a defini te improvement over Modal Summation and comparable 

accuracy to Modal Summation when Unified Formulation treatment to lag 

damper load is included. This novel method is numerically exact and 

can be easily adopted to other applications involving integration of 

similar product of discontinuous and continuous functions. 

_ Application of the analytical model to include the effects of elastic 

hub motion is demonstrated by introducing the latter as external 

inertia forcings in the loads calculation. This has improved the hub 

vibratory load calculations significantly, establishing an important 

milestone in the ability to provide a better estimate of airframe 

vibration. However, this approach depends on the integri ty of the 
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process of inferring hub motion data from measured accelerations. 

Thi s appl ies equally to the case when the complex rotor modes are 

used where the fuselage dynamics must also be accurately modelled in 

order to use this aeroelastic model successfully. 

- Application of the model to manoeuvring flight has been successfully 

demonstrated on a loop exit manoeuvre by approximating it as a quasi-

steady condition. The inclusion of pitch rate has correctly 

alleviated the retreating blade stall thus allowing simulation to be 

performed even in such a severe manoeuvre, which is otherwise not 

possible. The ability of this model to simulate such a severe 

manoeuvre with the level of correlation similar to the level flight 

represents an important achievement. 

The application of rotor modes in response analysis is demonstrated 

by including transmission flexibili ty in the rotor dynamic model. 

The improvement in the phasing calculation of the edgewise loads is 

due to the use of correct second lead-lag frequency. This exercise 

has provided the insight into the mechanism of the dynamic 

interactions between the rotor and the subsystem. It has also 

increased the confidence in the use of complex rotor modes. 

5.2 Recommendations for Future Work 

Having achieved the research objectives of this study, a number of key 

areas have been identified for future research topics. The immediate 

requirement is clearly to refine the PDM trim method and to complete 

the implementation of the rotor mode solution method in Program CRFA. 

These are essential in exploring the potential applications of this 

model to the complete helicopter. 

Other tasks which could be undertaken as future works include; 

The integration of the HELMSMAN and ARM into this model to explore 

its application through a manoeuvre; 

The extension of this model to other rotorcraft configurations and 

other applications such as aeroelastic tailoring. 

On completion of these tasks, the full potential of this model can be 

further explored and indeed be turned into an analytical tool wi th a 

wide range of applications. 
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Appendix A: Derivation of The Eulerian Angle ｾ＠ from Blade Deformation 

Consider a small rotation wdr of the blade-fixed system as shown in 

Figure 1 which occurs as r goes through the increment dr. 

Z 

Figure 1. Blade coordinate systems. 

To second order, there is no distinction between the distance along the 

deformed dr and the undeformed dx elastic axes, hence dr=dx. The 

vector components of the rate of rotation W can be identified as the 

torsional rotation rate ｷｩ］ｾＧ＠ and the bending curvatures wJ and wk as 

shown. Consider the transformation from the undeformed ＨｩＬｪＬｾＩＭｳｹｳｴ･ｭ＠

to the deformed (1' ,j' ,k')-system (Eqn.3.8) in the order ＼ＬＭｾＬｾ＠ (NB. ｾ＠

is devoid of the control pitch ｾＨｾＩＩ＠ such that 

[
C(3 0 -S(3] [1 0 0] T(3 = 0 1 0 ; ｔｾ＠ = 0 ｣ｾ＠ Ｍｳｾ＠ wi th the 
s(3 0 c(3 0 ｳｾ＠ ｣ｾ＠

t t · A A A 'nA etc used Consl'der the orthonormality no a Ions Cv=COSv, Sv=SI v, ... . . 

relation of T, 

TTT = I 

Take the first variation, 

o(TTT) = oTTT + TToT = 0; 
T 

where oCT ) 

=> oTTT = -TToT 

Take the transpose of the left hand side, 

=> (oTTT)T = TToT 

0 wk -w J 
oTTT Ｍｾ＠ 0 wi is necessarily skew-symmetric .. = 

WJ -wi 0 

and 

in terms of w
1
,w

J
,w

k
' which are to be determined as follows. 

- At -

is expressed 



First consider the transformation, ｔ］ｔ＼ｔｾＮ＠

op = O(TTT) 

T T 
= ｯＨｔｾｔ＼Ｉ＠ T<T{3 

T T T T 
= (oT{3T< + T{3oT<) T<T{3 

T T T 
= oT{3T{3 + T{3oT<T<T{3 

where 

o oPn2 -oPn l 

op - -oPn 2 0 OPt 

oPn l -OPt 0 

where OPt' 0Pnl' oPn2 are the rotations about the local t, nl , n2 

directions respectively. In view of the Figure 2 below, 
2 k 

, -

Figure;2, Euler angles. 
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v' dr 

I w' dr 
! 



the following exact relations can be established 

ｾ＠ , 
ｳｩｾ＠ = w', ｣ｯｳｾ＠ = ｾＱ｟ｗＯｇ［＠ ｳｩｮｾ＠ = v . 

J 1-w' ｾＧ＠

J1 ,2 ,; -v -w 
｣ｯｳｾ＠ = ---------

j 1-W'; 

where ( ) I =a ( ) 
ar ' denotes the derivative with respect to the running 

length along the elastic axis, r. From which we deduce that 

ov' 
ｯｾ＠ = r:::===::::::; 

'1 12 Ｌｾ＠ｾ＠ -v -w 

and ｏｾ＠ = 
ow' 

J 1-w / ; 

==> 

= 

ｏｾ＠ ｣ｯｳｾ＠ = 

+ 
v'w/ow 

w/ov' 
-;:::::===:::;; + 
'1 12 Ｌｾ＠ｾ＠ -v -w 

-ow' 

J 1-w' ｾ＠

ｏｖＯｾ＠
+ 

J 1 
12 Ｌｾ＠-v -w 

2 v' Wi ow' 

J1 ,2 ';(1 ,2) -v -w -w 

v'w'ow' 

J1 12 ＧｾｾＱ＠ ,2 -v -w ｾ＠ 1-w' G 

The variation OPt' which is due to the resolution of bending slopes 

rather than elastic torsion (</», is the quasi-torsion, '\'}b where 

r r 

J 
I 

J 
Wi v" v' W' 2w" 

] dr t)b = Pt dr = + 

J 1 ,2 ,; Jl ,2 ';(1 ,2) 
0 0 -v -w -v -w -w 

where 0 = ()' has been used. To determine the torsional rate '\')' and 

the bending curvatures wi,wj,w
k

' consider the variation of T in full, 

0 ｾ＠ -w j 
oTTT = Ｍｾ＠ 0 wi 

Wj -Wi 0 

Again, 

[g 
0 0][1 a 0) [g 

0 

!) T ot) -s'\'} ct) 0 ct) -s'\'} = O'\'} 0 
o Tt)Tt) = 

-ct) -st) 0 st) ct) -1 

｛ｾ＠ a 0) 0 OPn2 -oPnl [1 a 0) T T cfJ sfJ -oPn2 0 OPt o cfJ -sfJ 
TfJoppTfJ = 

-sfJ cfJ oPnl -OPt 0 o sfJ c'\'} 
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0 Wk -W J 
.. oTTT = Ｍｾ＠ 0 Wi = 

o 

WJ -Wi 0 skew symm. 

where the virtual rotation vector ｯｾ＠ is defined as 

ｯｾ＠ = ｯｾｫ＠ + ｯｾＨ｣ｯｳｾｬ＠ - ｳｩｮｾｩＩ＠ + ofJi' 

= ｯｾｩｩＧ＠ + ｯｾｊｬＧ＠ + ｯｾｫｫＧ＠

=> ｯｾｩ＠ = ofJ + ｯ＼ｳｩｾ＠

ｯｾｊ＠ ］Ｍｯｾ｣ｯｳｦｊ＠ + ｯ＼｣ｯｳｾｳｩｮｦｊ＠

ｯｾｫ＠ = ｯｾｳｩｮｦｊ＠ + ｯｾ｣ｯｳｾ｣ｯｳｦｊ＠

On replacing the variation parameter, o=()', then 

Wi - P' + fJ' = fJ' + fJ' + </>' - fJ' = fJ' + </>' - t b P b P 

=> IfJ'= fJ' + </>'- Pt I p 

-oPn2SfJ-oPnl cfJ 
OPt + ofJ 

o 

which yields the exact expression for the third Eulerian angle, fJ, 
r 

fJ fJp + </> - J w'v" v'w,2w" 
= + 

J1 ,2 ,; J1 ,2 ';(1 ,2) 0 -v -w -v -w -w 

The expressions for ｷｊＧｾ＠ are also given by 

= 

J1 ,2 Ｇ［ｾＱ＠ ,2 -v -w ｾ＠ 1-w' G 

ｾ＠ = oPn2cosfJ - oPn1sinfJ 

] 

cosfJ(v" - v"w,2 + v'w'w") + SinfJW"J1-v,2-W'; 
= 

J 1-V,2-w,2J 1-w,2' 

dr 

as 

ie. ｗｩＧｗｊＧｾ＠ are identical to those obtained in [3.5]. 

may be simplified to 

2 To O(e ), they 

r 

6 = fJp + </> - J w'v"dr + 0(c
3

) 

o 
and 

3 
WJ = v"sin(fJp + </» - w"cos(fJp + </» + O(e ) 

= v"cos(fJ ＫｾＩ＠ + w"sin(fJ + </» + 0(e
3

) ｾ＠ p ｾ＠ p 
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Appendix B - Modelling of Control Circuit System Stiffness 

B.l Control Circuit System Geometry 

The control circuit system stiffness is included in the formulation of 

modal Lagrangian equation as an external load path. The load path is 

modelled as a set of linear and rotational springs which give rise to 

additional strain energy. Consider there are Ns such load paths 

attached to the blade (main load path) via massless rigid arms at r=rs 

(s=l, .. ,Ns ) as shown in the schematic diagram below, 

Hub 1{iJ-
rY'-.... 

f2 

is.ls.ks -- Spring axis system 

ｾＮｒｹＮｒｺ＠ -- Rotational spring stiffness ＨｾＩ＠

Lx.Ly.L z -- Linear spring stiffness ＨｾＩ＠

z 

y 

Modelling of Control Circuit System Stiffness 

Line of Action 
of Spring Forces 

.... x 

where i J.. k are the unit vectors in the spring axis system; 
-s' 5'-5 
Lx,Ly,L z are the linear spring rates; and 

Rx,Ry,Rz are the rotational spring rates. 

Let -{lll}T be the position vector of the fixed end Fs of 
rF - r' 11 ' <;: s s s s .. t 

the s'th load path relative to the local axis system with the orlgln a 

If Am l·S the pitch angle applied in the modes the attachment point Ps . v 

analysis, the position vector of Fs in the rotating blade axis system 

then becomes 

rF = Tf} r F sm m - s 

or 

ｬｾ＠ 1 0 0 lr s 

Iv = 0 cosf}m -sinf}m . Ills m 
lw 0 sinf}m cosf}m 1<;:5 m 

where lr ' III ,1<;: are O(e) quantities. 
5 5 S 

- Bl -



In order to determine the addi tional strain energy contribution from 

the control circuit springs, the linear and rotational deformations of 

the spring attachment point Fs are needed. 

8.2 Linear Deformation of Spring Attachment Point 

The coordinates of the root-end Fs in the rotating blade axis system 

are, after deformation, 

ｾｆｬ＠ = at r = I.s 

and before deformation, 

S = S I -Fo -Fl 
u=v=w=</>=(3=c;. =0 

= + ｐｔｾ＠

Hence, the linear displacement of Fs is given by 

oSF = SF
1 

- SFo 

where I is a unit matrix of order 3. For small <,(3,</>, and to O(e) 

accuracy, 

(

0 -c;. -(3] 2 
T c;. T {3 T </> - I = c;. 0 -</> + 0 (c ) 

{3 </> 0 

{ {:} ｾ＠
-c;. 

= P + 0 
</> 

{ {:} (i 
-c;. 

= P + 0 
</> 

Ｍｾ｝＠-</> 
0 

Ｍｾ｝＠-</> 
0 

o 
｣ｯｳｾ＠

sin-o 

Ir s 
l1}scos-o-Ic;.ssin-o 

I1}ssin-O+Ic::scoS-o 

Iu 
} + 0(e

3
J Iv 

lw 
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u-<:lv-/3l w 
= P v+<:lu-q,lw + 0(£:3) 

W+/3I U+q,I V 

IU lr s 
where Iv = 11lscost'}-I<:ssint'} are the coordinates of the rigid rod 

lw III sint'}+l<: cost'} s s 

attachment Fs in the local blade axis system. 

B.3 Rotational Deformation of Spring Attachment Point 

For the rotational deformation at Fs' we proceed in a similar manner. 

Consider the final position of Fs is achieved via ordered rotations, 

<:,-/3,q,. The rotational displacements of Fs in the rotating blade axis-

system are, after deformation, 

and before deformation, 

ｾｯ＠ = ｾｆｬｬ＼］ｾ］ｾ］ｯ＠
= 0 

Hence the rotational displacement of Fs is given by 

ot'}F = t'}F
1 

- ｾｆｯ＠

= P { ｔ＼ｔｾｾｽ＠ + ｔ＼ｻＭｾｽ＠ + ｻｾｽ＠ } 

= P ｻＺｾｾｾｾｾｾＺＺｾＺｾｾｾｾｽ＠
q,sin/3+<: 

2 
For small <:,/3,q, and to O(£: ) accuracy, 

ｯｾｆ＠ = = P ｻＭＺＺｾｾｽ＠ + 0(£:3) 
<:+q,/3 

B.4 Spring Orientation 
Now consider the spring orientation. Suppose the root-end of the rigid 

arm is earthed via a system of springs, both linear and rotational 

types. In general, the line of action of the force will not be 

parallel to the displacement, ie. the cross-impedance of the attachment 

system is non-zero and the same would apply to the rotations. 
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Assume that there exists a set of mutually orthogonal directions 

relative to the rotating axis system for which both the translational 

and rotational cross-impedances are zero. Let these orientations be 
achieved by successive rotations tz,-ty,tx about the respective axes, 

then the transformation matrix, S, from the spring axes to the blade 
axes is therefore defined as 

where S 

is 
Tt Tt Tt ls 

z y x 

= Tt Tt Tt z y x 

= 

= 

= 

is 
So ls 

ks 

ctz -st z 
stz ctz 
0 0 

ctzcty 
stzcty 

sty 

0 cty 0 -st 1 0 

Ｍｾｴｸｬ＠
y 

0 0 1 0 0 ctx 
sty 0 cty 0 stx ctx 1 

-stzctx-ctzstystx stzstx-ctzstyctx 
ctzctx-stzstystx -ctzstx-stzstyctx 

ctystx ctyctx 

with the notations ctz=costz,stz=sintz, etc. used. Let the linear and 

rotational spring rates in the (orthogonal) spring axis system be given 

by KLs=Diag(Lx,Ly,Lz) and KRs=Diag(Rx,Ry,Rz)· Therefore, the spring 
forces and moments in the spring axes F sXs Y sZs ' origin at Fs, are 

Fx Lx 0 0 u-<::lv-{3lw 
K ST STp 3 Fy = ｏｾｆ＠ = 0 Ly 0 v+<::lu-</>lw + O(e ) Ls 

Fz 0 0 Lz w+(3lu+</>lv 

Mx Rx 0 0 

My = K ST 
Rs o""F = o Ry 0 STp -(3+</><:: + 0 (e 

3 
) { ｾＫｾｾｽ＠

Mz 0 o Rz <:: + </>(3 

where Lx,Ly,L z and Rx,Ry,Rz are 0(1) quantities. 

B.S Strain Energy Contribution from the Control Circuit System 

contrlObutlOon from all Ns load paths is then The total strain energy 

obtained by summing, 

R Ns 

Us = ｾ＠ J L 0 (r s) 

Os=l 

- B4 -

o 0 u-<::lv-(3lw 
Ly 0 STp v+<::lu-</>lw 

o Lz w+{3lu+</>lv 

4 dr + O(e ) 



Let 
Lx 0 0 

[L] = pTS 0 Ly 0 STp and [R] = 
o 0 Lz 

R Ns 

Rx 0 0 

PTS 0 R T Y 0 S P, then 
o 0 Rz 

Us= ｾ＠ J L ｯＨｲｳＩｻｻｕＭ＼ｬｶＭｾｬｷＧ＠
ｵＭ＼ｬｶＭｾｬｷ＠

v+<lu-¢lw' ｗＫｾｬｵＭﾢｬｶｽ｛ｌｊ＠ v+<lu-¢lw 
w+t31u+¢lv Os=l 

4 
+ 0(£ ) 

For zero shear flexibility, ｾ］ｷＧＫＰＨﾣＴＩＮ＼］ｶＧＫＰＨﾣＴＩＮ＠ then 

R Ns u-v' 1 -w'l v W 

Us= ｾ＠ J L o(rs){{U-V'lv-W'lw. v+v'lu-¢lw. W+w'lu-¢lv}[L] 

Os=l 

v+v'lu-¢lw 
w+w'lu+¢lv 

{¢+V'W' ,-w'+¢v' ,v'+¢W'}[R] -w'+¢v' } dr + 0(£4) 
{ 

¢ +V'W'} 

v'+¢w' 
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Appendix C - Treatment and Representation of Axial Degree of Freedom 

C1 - Treatment of Axial Modes 

Consider a straight blade wi th coincidental section axes. Assume it 

has undergone elastic axial and flap deformations only, ie. no lag or 

torsion, and the modes are calculated in vacuum with zero collective 

pitch ie. 'Om=O. Also assume the axial and flap modes are uncoupled 

such that the bending moment and radial shear at radius r for the i'th 

mode, are conveniently given by 

R R R 

-Myl = Elw" = I (V Z ＭｖｸｷｾＩ＠ dr = I { ＭｊＨｭｗｾｗｩＭｖｘｗｾＩ､ｲ＠i i 
r r r 

r 

where wi is the natural frequency. From Eqn.C2, 

Vx = EAui 
I 2 2 

V' = -m(Q +WI lUI xl 

} dr (C1 ) 

(C2) 

(C3) 

(C4) 

Multiply Eqn.C3 by uJ and Eqn.C4 by u j and integrate with respect to r 

to give, 
R R 

I Vx1uj dr = I ｅａｵｾｵｊ＠ dr 
(C5) 

o 0 

R R 

I ｖｾｬｕｊ＠ dr = -(Q2+w7>I muiuj dr 
(C6) 

o o 
Integrate the LHS of Eqn.C5 by parts and apply the boundary conditions 

R 

'* Iv u' dr = Xi J 

o o 

Add to Eqn.C6 leads to 
R R 

J EAuiuj dr = ＨｑＲＫｷｾＩｉ＠ muiuj dr 

o o 

R 

= - I 
o 

V' u j dr Xi 

(C7) 

I such that the inertia orthogonality 
Since the modes are orthogona 

relationship for the uncoupled axial modes is 

R 

J muiuj dr = 0 for all ｩｾｪ＠

0 (C8) 
= Il for all i=J. 
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From Eqn.C7, the stiffness orthogonality follows, 
R 

J EAu' u' 1 J dr = 0 for all ｩｾｪ＠

0 
2 2 = (Q +w1 )!i for all i=j (C9) 

Now consider the simplified modal response equation, 

I { OJ 

2 1 dl [ w' w' w' w' ]} ql + A1ql = drwi EA L q. (u' +--j )w' w' + __ J u' dr 
Q2r J J 2 1 2 1 

1 j=l 

Wi . 
where A1(-Q ) IS the normalised natural frequency. Since u1 and wi are 

uncoupled, then for the axial mode only, it reduces to 
R 

-1 J w' 2 = -- EA - ui dr 
Q2! 2 

1 0 

let the fore-shortening effect be represented by 

R 

r 

,2 -w 
2 

co 

J=l 
OJ 

= L 
J=l 

Then Eqn.C10 becomes 
R OJ 

ql + ａｾｱｬ＠ = + J EA L ajujui dr 
Q rIo j=l 

and apply the stiffness orthogonality (Eqn.C9), it reduces to 

2 2 a
l 

(Q +W i ) 

= 
Q2 

= (1 + ａｾＩ＠ a1 1 

Therefore, the n'th harmonic of qi in Eqn.C12 becomes 

= [1 + ａｾ＠ ] a
i 

"\2 2 
1\1 - n 

(C10) 

(C11 ) 

(C12) 

(C13) 

(C14) 

Since for the axial modes, Ai is high, typically 30R (lR=once per rev), 

then for n « Al and 1 « Ai' qi ｾ＠ a1 

co co , 2 

L q1ui L a1ui 
-w 

ｾ＠ = .. 2 
(C1S) 

1=1 i=1 
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Hence if there is no pure axial mode defined within the frequency range 

of interest, upto 12R typically, then ut=Q for all modes considered and 

therefore LqtUi=O. Thus the fore-shortening effect is not represented. 

Consequently, the axial freedom must be eliminated from the equation by 

expressing it as fore-shortening terms. This can however lead to 

problems using Modal Summation to calculate structural loads and 

correction terms are needed. For example, the radial loads due to 

axial motion can be mis-constructed as flap shears. Further work is 

required in this area, but these problems should not arise if 

structural loads are computed using Force Integration (Appendix G) 

instead of Modal Summation. 

C2 - Representation of Axial Degree of Freedom 

af 
From Eqn.G24 of Appendix G that the radial shear is defined as Vx= au'· 

To O(c) accuracy and with zero shear flexibility, 

1 2 2 - vV" - wW" + -(v' +w' ) 
P P 2 

+ EBt [ v"sin-o - w"cos-o + ｦＯ＾ＨｶＢＫｖｾＩ｣ｯｳＭｯ＠ + 

+ EB2[-v"cos-o - w"sin-o + ｦＯ＾ＨｶＢＫｖｾＩｳｩｮＭｯ＠ -

+ GBtf/>' [v'cos-o + w'sin-o] + GB2f/>' [v'sin-o 

ｦＯ＾ＨｗＢＫｗｾＩｃｏｓＭｯ＠

ｦＯ＾ＨｷＢＫｗｾＩ｣ｯｳＭｯ＠

2 - w/cos-o] + O(c ) 

where ｅｉＲＲ］ｊｊｅｾＲ､ｾ､ｾ［＠ ｅｉｴｴ］ｊｊｅｾＲ､ｾ､ｾ［＠ ｅｂｴ］ｊｊｅｾ､ｾ､ｾ［＠ ｅｂＲ］ｊｊｅｾ､ｾ､ｾ［＠
ｾｾ＠ ｾｾ＠ ｾｾ＠ ｾｾ＠

ｅａ］ｊｊｅ､ｾ､ｾ［＠
ｾｾ＠

ｇｂｴ］ｊｊｇｾ､ｾ､ｾ［＠ ｇｂＲ］ｊｊｇｾ､ｾ､ｾＮ＠
ｾｾ＠ ｾｾ＠

To 0(c2
) accuracy, the u' eliminant is defined as 

Vx 2 1 ( ,2 12) U' = - kA-o ' A..' + vV" + wW" - - v +w EA 0/ P P 2 

EBl EB2 k2 EI22+EI11 
where eAl-EA' eA2-EA' A EA Hence 

r 

u = J{ V 2 1(,2 ,2) 
ｾ＠ - k -0' A..' + V" + wW" - - v +w EA A 0/ V P P 2 

= 

o _ eAlsl'naQ.) + w"(eA2sin-o + eAlcos-o) ｾｲ＠ + 0(£3) + V" (e A2cos-o v ) 

Integrate the underlined term by parts, 

r 

J 
V 2 1( ,2 ,2) 

W' { ｾ＠ - k -0' A..' - v'V ' - w' W' - - v +w .. u = ｶｖｾ＠ + w P + EA A 0/ P P 2 

o "( . -0 + eAlcos-o) ｾｲ＠ + 0(£3) 
+ v"(eA2cos-o - eAlsin-o) + w eA2s1n ) 
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Appendix D: Proof of the Generalised Orthogonality Relationship 

- Bi-orthogonality 

0.1 Eigenvalue Problem 

Consider the basic set of linear equations of order n for a dynamical 

system, 

ｾ＠ + cx + ｫｾ＠ = f (Dl) 

where the coefficient matrices are not necessarily all real and with at 

least one being unsymmetrical. The system is generally referred to as 

a linear non-self-adjoint1• system. The dynamic characteristics 

obtained by solving the homogeneous equation, ie. when f=Q, 

mx + cx + kx = 0 

are 

(D2) 

Assume a solution of the form 

then Eqn.D2 becomes 

At 
ｾ］ｾ･＠ where ｾ＠ is a complex eigenvector, 

(A
2m + AC + k) ｾ＠ = 0 (D3) 

This gives a characteristic equation of order 2n in A, and subsequently 

2n ｾＬ＠ such that the roots A can be real or complex. If the roots are 

real, they can be either negative which correspond to a damped system 

with an aperiodic decaying motion or positive for which the system is 

dlvergent. If the roots are complex, they appear in conjugate complex 

pairs with corresponding eigenvector pairs. 

Assuming that all the roots are distinct, a constituent solution of the 

homogeneous equation is 
At. k Art x = 'l'r r e 

= [;] {kreArt } 

r = 1,2, .. 12n 

where kr are arbitrary constants which may be real or pairs of 

conjugate complex numbers. ｛ｾ｝＠ is the rectangular (nx2n) modal matrix 

consisting of columns of eigenvectors ｾｲＧ＠ It is noted immediately that 

｛ｾ｝＠ cannot be used as a transformation matrix of the form 
(D4) 

1. 

Consider an eigenvalue problem AY=AY, the adjoint eigenvalue problem is 
T 

defined as ATv=Av. Since the eigenvalues of A and A are the same and 
the ･ｩｧ･ｮＭｦｾ｣ｴｩｯｮｳ＠ corresponding to distinct eigenvalues are 

I · T 0 l' f "\ .... "\ The system is said to be self-adjoint orthogona leo YsYr= ｉ｜ｲｾｬ｜ｳＧ＠

if v =u (r=1,2, ... n) ie. when A is symmetric. 
-r -r 
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to obtain a solution of the non-homogeneous problem since there are 2n 

<P.r's and consequently 2n coordinates of T'l r (t) but there only are n 
coordinates of ｾＮ＠ The normal approach is to introduce ｾ＠ as a vector of 
auxiliary coordinates. This leads to a set of 2n first order 
differential equations however it should be noted that the solution 

will not be affected by the form of the system equation. 

Eqn.Dl can be re-cast into the first order form in a number of ways of 

which we quote 
. 

ｉｾ＠ - ｓｾ＠ = g 

where 

The homogeneous form of Eqn.DS is a standard eigenvalue problem, 

Sz = AZ 

(DS) 

(D6) 

in comparison with the generalised eigenvalue problem of the form 

AZ=ABz where S=B-
1
A is the system matrix. The proof of generalised 

orthogonality (bi-orthogonality) relationship now involves the use of 

both the right-hand (RH) and the left-hand (LH) eigenvectors, which are 

defined below. 

D.2 Definition of Left-Hand Eigenvectors 

Consider a particular solution to the standard eigenvalue problem, 

SZr = ArZr (D7) 

where Ar is the eigenvalue and ｾｲ＠ is the RH-eigenvector of the system 

matrix S, where the nomenclature of the RH portion is usually ignored. 

For each of zr' there is a corresponding vector Yr such that it 

satisfies 
H H 

YrS = Y Ar or (D8) 

where Yr 
is known as the LH-eigenvector of S and that the Hermitian 

notation is used here, where SH=S·r ie. the conjugate transpose. It is 

noted that if A is one of the eigenvalues of the S, then ｾＮ＠ is the 
r 

corresponding eigenvalue of SH [Dl]. The bi-orthogonality relationship 

follows. 
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D.3 Bi-orthogonality Relationship 

.Consider a typical solution of the standard 

letting 
eigenvalue problem by 

(09) 

Note that ｾ＠ is a 2nx1 vector and ｾ＠ is a nx1 vector. 

solution of Eqn.D9 satisfies 
The r'th RH eigen-

(S - A ｉＩｾ＠ = 0 r _r - __ {A_: 'fr r} where !r 'I' 

The s'th LH eigen-solution of Eqn.D10 is defined as 

Pre-multiply Eqn.D10 

subtract, one obtains 
H 

(As-Ar ) ｾｳｉＡｲ＠ = 0 

by and post-multiply 

for all r,s 

Eqn.011 

and from which the following relationships are obtained, 

ｲｈｾ＠ = Diag(Cr ) 

ｲｈｳｾ＠ = Diag(ArCr ) 

(010) 

(D1!) 

by and 

(012) 

(D13) 

where Cr is a complex constant, which may be normalised to unity by 

scaling the rows of rH and columns ｯｦｾＮ＠ Eqns.D13 state the bi-

orthogonality (or sometimes known as the bi-normal orthogonality) 

relationship. The modal matrix [r], composed of the LH-eigenvectors, 

are just those needed with ｛ｾ｝Ｌ＠ composed of the RH-

Ｑ
ａｲｾｲｽ＠eigenvectors, ｾ＠ - - , (r=l, .. ,2n) to diagonalise the system matrix S. _r At. 
ｾｲ＠

This bi-orthogonality relationship is general and is valid for any 

physical linear dynamical system. 

D.4 Similarity Transformation 

In Section D3, it is shown that it is possible to diagonalise the 

system matrix S using both the RH and LH-eigenvectors. However, should 

we not be able to obtain the LH-eigenvectors, we can proceed the 

following manner [D2]. Consider Eqn.D6, 
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=> 

Sz = AZ 

ｓｾ＠ = ｾａ＠

where A=diag(Ar }. Pre-multiply Eqn.D14 by ｾＭＱＬ＠

ｾＭｬｓｾ＠ - ｾＭｬｾａ＠ = 0 

ｾＭｬｓｾ＠ = A 

(DI4) 

(DIS) 

ie. ｾＭｬＨｅｲｈＩ＠ is just needed, together with ｾＬ＠ to diagonalise the system 

matrix S=B-
1
A. This process is known as the similarity transformation 

and is used extensively as an iterative procedure in eigen-solution 

[D3] . However, the drawback is that all the RH-eigenvectors are 

required and cannot be used if only a sub-set of the eigenvectors is 

determined. 

D.S Application of Bi-orthogonality Relationship to System Response 

Let us examine how the bi-orthogonali ty relationship is used in the 

system response analysis. 

Eqn.DS, 

Assume a transformation of variables in 

Z = ｾ＠ 1)(t) (D16) 

where ｾ＠ is the 2nx2n modal matrix consisting of columns of ｾｲ＠ and ｾＨｴＩ＠

is the 2nxl vector of unknown generalised coordinates 1)r' Pre-multiply 

Eqn.DS by ｲｾ＠ leads to 

(D17) 

Using the bi-orthogonality relationship (Eqn.D13), Eqn.D17 reduces to 

2n uncoupled first order equations in 1)r' 

H 
!:rg 

1)r(t) - Ar1)r(t) = Cr 

r= 1,2, .... , 2n (D21) 

where ｃｲ］ｲｾｾｲ＠ is the normalising factor for the dynamical system. 
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Appendix E: Relationship of Blade Absolute and Relative Displacements 

Consider a straight (k'th) blade occupying azimuthal position ｾｫＧ＠

Assume that a point P on the blade elastic axis, distance r from the 

hub, has undergone deformation described by !:!={u,v,w.Rx.Ry.Rz}T 

relative to the moving hub and the hub itself has also undergone 
T 

elastic deformation described by ｴｬ］ｻｸｈＧｙｈＬｺｈＧｾｈＧｾｈＧｾｈｽ＠ as follows; 

z 

z y y 
1 ｾ＠
\ v 

k'th blade 
X 

t/lH 
p 

Rx 

H -

From simple kinematic consideration, the components of total 

displacement at point P can be shown to be related to the blade and hub 

displacements as 

uT = Uk + xHcosl/lk + ｙｈｳｩｮｾｫ＠

vT = vk - xHsinl/lk + ｙｈ｣ｏｓｾｫ＠ + ｲｾｈ＠

wT = wk + zH + ｲＨｾｈｳｩｮｾｫ＠ - ｾｈ｣ｯｳｾｫＩ＠

RxT = Rxk + ｾｈ｣ｯｳｬＯｬｫ＠ + ｾｈｳｩｮｾｫ＠

RYT = I\.k - ｾｈｳｩｮｬＯｬｫ＠ + ｾｈ｣ｯｳｾｫ＠

RZT = Rz + I/IH k 

where suffix T refers to the total (absolute) value. Apply the multi-

blade coordinate transformation to the blade displacements. one gets 

Uo uC+xH Ug+YH 
u vO+rl/lH VC+YH vS-xH 
v 

ｷｃＭｲｾｈ＠ ｷｓＫｲｾｈ＠
w wO+zH 

+ ｳｩｮｾｫ＠
Rx 

= 
Rxo 

+ cosl/lk Rx Ｋｾｈ＠ Rx Ｋｾｈ＠
C 5 

Ry 1\.0 ｒｹｃＫｾｈ＠ ｒｹｳＭｾｈ＠

Rz R +I/IH Rzc Rzs 
T Zo 
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= 

or 

a a a a a a 
a a a a a r 
a a 1 a a a 
a a a a a a 
a a a a a a 
a a a a a 1 

Us 
Vs 
Ws 
R + Xs 

f\.s 
Rz s R 

1 a a a a a 
a 1 a 0 0 0 

o 0 0 0 -r 0 ZH } 

a a 0 1 a a <PH 
a 0 a 0 1 a ｾｈ＠
o 0 0 0 a 0 

a 1 0 a a a 
-1 a a 0 0 a 
o 0 a rOO 
o 0 0 a 1 a 
a a a -1 0 a 
o a a 0 0 a 

I/lH 

UT = ｾｒ＠ + [Ha]H + ｃｏｓｾｫｻｕｃｒＫ｛ｈｃ｝ｈｽ＠ + ｳｩｮｾｫｻｕｳｒＫ｛ｈｓ｝ｈｽ＠
\ } • • 

ｾ＠ T !:Ie T 
Us T 

where suffix R refers to the relative blade value and Un , Ur and US 
-VT --\..T - T 

are the total blade displacements in terms of the coupled coordinates. 

Noting that the hub matrices [Ha], [HC], [HS] are independent of time 

and by equating the harmonics, one gets 

T 

+ ｛ｾｾｾｾ｝＠ H 
[HS] 

R 

or 

UII' - UII' + [HM] _H 
ｾｔ＠ - ｾｒ＠

Matrix Products 

The matrix products defined in Eqn.3.85 are 

B a 
a B 
a a 
C a 

2 a C+Q B4 

a 

a 
a 
a 

-B3 
a 
a 

nB3 

a a 
a a 
a a 
a a 

-B3 -2ru34 
2ru34 -B3 

｛ ｾｾｾｾ｝＠ H = 
[HS] 

｛ ｾｾｾｾ｝＠ H = 
[HS] 

B[Ha] 
B[HC] 
B[HS] 
C[Ha] 

(C+Q2B4 ) [HC]-ru33[HS] 

(C+Q2B4 ) [HS]+QB3[HC] 

a 
a 
a 

-B3 [Ha] 
-B3[HC]-2QB4[HS] 
-B3[HS]+2QB4[HC] 
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0 0 0 0 
0 0 0 0 
0 0 0 [[HO] ] 0 .. 

P3 = -B 0 0 [HC] H = -B4[HO] H 4 [HS] 
0 -B 0 -B4[HC] 4 
0 0 -B 4 -B4 [HS] 

where 

-1 0 0 0 0 0 
0 -1 0 0 0 0 
0 0 -1 0 0 0 

B - m 4 - 0 0 0 - (kzz+ky ) 0 0 B3 = 2mQ 

0 0 0 0 -kzz 0 
0 0 0 0 0 -k yy 

0 o 0 0 0 0 100 0 0 
000 0 0 r o 1 0 0 0 

[HO] o 0 1 000 [HC] o 0 0 0 -r = = o 0 0 000 000 1 0 
o 000 0 0 000 0 1 
o 0 000 1 o 0 0 0 0 

Then, 

o 0 0 0 0 r 
o 000 0 0 

-B3 [HO] -2mQ o 0 0 0 0 0 = o 0 0 0 0 0 
00000 0 
o 0 0 0 0 0 

000 0 0 0 
000 0 0 0 

-B3 [HC] - 2OB4 [HS] 
000 -r 0 0 

= -2mQ 0 -k 0 000 yy 

and 

0 0 0 
o 0 0 
o 0 -1 

-B4 [HO] = -m 0 o 0 
o 0 0 
o 0 0 

000 
000 

000 
000 
000 

= +2mQ 0 0 0 

o 0 
o 0 
o 0 
o 0 
o 0 
o 0 

000 
000 

0 
-r 
0 
0 
0 

-k yy 

0 0 
0 0 

o 0 0 
o 0 0 
OrO 

-kyy 0 0 

o 0 0 
o 0 0 
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0 
0 

0 
0 
0 
0 
0 
0 

0 1 0 0 0 0 
-1 o 0 0 0 0 
0 o 0 0 0 0 
0 o 0 0 kzz 0 
0 0 0 -kzz 0 0 

0 o 0 0 0 0 

0 1 0 0 o 0 
-1 o 0 0 o 0 

[HS] 0 o 0 r o 0 = 0 o 0 0 1 0 
0 o 0 -1 o 0 
0 o 0 0 o 0 



-1 a a a a a 
a -1 a a a a 
a a a a r 0 -B4[HC] = -m a a a -(kzz+kyy ) 0 a 
a a a a -kzz a 
a a a a 0 0 

a -1 a a 0 a 
1 a a a 0 a 
a a a -r a a 

-B4[HS] = -m a a a a - (kzz +kyy) a 
a a a k zz a 
a a a a a a 

The Bs and B6 matrices for a straight blade with coincidental axes are 

a a a a a r a a a 0 a 0 a a a a a a 
a a a a a a a a a a a a a 0 a a a a 

Bso =2mQ a a a a a 0 
Bsc =2mQ 000 -r a 0 0 a a a -r a 

a a a a a a 000 0 0 a Bss =2mQ 0 a a 0 0 a 
a a a a 0 a 000 0 a a a a a a 0 a 
a a a a a a o a 0 0 o 0 a 0 a a a a 

a a a o 0 0 -1 a a a o a a -1 a a a a 
a a a o a -r a -1 a a o 0 1 a a a a a 

B60 =m 
a a -1 a a 0 

B6C =m 
a a a -r a a 

B6S =m 
a a a -r a a 

a a a a a 0 a a a a a a a a a a a a 
a a a a a a 0 0 a a o a a a a a a a 
a a 0 a 0 0 a a a a a a a a a a a a 

By considering the products of B3, B4 matrices wi th those of 

[Ha] , [HC] , [HS] and the orderings of hub displacement and mkzz terms, we 

note immediately the following relationship; 

-B3[Ha] = -Bso 

-B3[HC] 2OB4[HS] = -Bsc 

-B3[HS] + 2OB4[HC] = -Bss 

-B4[Ha] = -B60 
-B4[HC] = -B6C 
-B4[HS] = -B6S 

ie. The coefficient matrices Bs's and B6's are expressible in terms of 

B3 and B4 matrices. 
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Appendix F - Derivation of Modal Inertia and Stiffness Expressions 

for the Single Blade Real Modes System 

The analytical expressions of the modal inertia and stiffness for the 

single blade real modes system are derived from the first pr inc iple, 

where the system equation is given by Eqn.3.72, with u=o as 

[ = 0 } 

F' + Bl U' + ｂｾ＠ + B& = 0 
(fl) 

where the matrices possess the properties as defined in Eqn.3.73 ie. 

ｾ＠ = Ao; Al ］Ｍｂｾ［＠ ｂｾ＠ = B2 ; B! = B4 · 

In matrix form, Eqn.Fl becomes 

(f2) 

A t solution Ｈｾ］ｾｪ･＠ J ) can be expressed as 

(f3) 

(f4) 

Integrate from tip to root, 

R R 

J(U;TFj+U;FJldr =J{ ｾ［ｔｾｪ＠ Ｋｾ［ｔａＧｾｪ＠ ＫｾＡｔａ［ｾｊ＠ ＭｾｩｂＲｾｪ＠ Ｍａｾｩｂｾｪ＠ } dr 

o 0 (fS) 

Integrate the second term on the LHS by parts and apply boundary 

condition, 
R 

JuTF/dr = -1-j 
0 

Therefore, 

R 

R 

｛ｾＱ｛ｪ｝ｏ＠

J(UiTEj-UiTEj)dr= 0 

o 

R R 

J ｾｩ＠ T[Jdr = -ｊｾｩ＠ T[Jdr 

0 0 

R 

=J{ Ui
T
Ao1lJ 

o (F6) 
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Interchanging i and j in Eqn.F6, 
R 

o = J { Uj T Ao1II. +!:!j TAl Ui ＫＡＺＡｾａｩＡＺＡＱＮ＠ ＭＡＺＡｾｂＲＡＺＡｩ＠ Ｍａｾｾｂｾｩ＠ } dr 
o 

Transpose Eqn.F7 and use the matrix properties, leads to 
R 

o = J{ UI.
T
Ao1Ij +uiAiUj +!:!I. TA1!:!j -!:!i B2!:!j Ｍａｾｩｂｾｪ＠ } dr 

o 
Subtract Eqn.F8 from Eqn.F6 leads to 

R 

2 2 J T (Ai-A j ) ＡＺＡｩｂｾｪ＠ dr = 0 

o 
Thus the modal orthogonality relationship is 

R 

J UiB4Uj dr = 0 for all ｩｾｪ＠

0 
= Ii for all i=j 

From Eqn.F6, the modal stiffness relationship is obtained as 

R 

J{ UiTAoUj +!:!iTA1!:!j +!:!iAi!:!j ＭＡＺＡｩｂｾｪ＠ }ctr = 0 

o 
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(F7) 

(F8) 

(F9) 

(FlO) 

(Fll) 



Appendix G - Formulation of Blade Structural Loads 

G.t Hamilton's Principle 

The expressions for the blade structural loads are obtained by the 

application of Hamilton's Principle, 

or 

a 

t2 

I [a(K-U) + aWl dt = 0 

tl 

in terms of the kinetic and energy functions, 

t2 r 

HI (g-f) dr + oW ] dt = 0 

tl 0 

(Gl) 

(G2) 

By considering the arbitrary variation of the energy funct ions and 

virtual work with respect to each of the blade displacements: 

ｵＬｶＬｷＬｾＬｾＬ＼Ｌ＠ the analytical structural load expressions can be derived. 

G.2 Variation of Kinetic Energy 

The variation of kinetic energy with respect to each of the generalised 

variables, defined by the blade elastic deformation, xk, where xk= 

ｵＬｶＬｷＬｾＬｾＬ＼Ｌ＠ is 

t2 t 2r t 2r 

aIK dt a I I g drdt II [ 8g 8g . ] (G3) = = rXk + -.-aXk drd t 
Xk ax k 

tl t10 t10 

Note that the operators; a, ()-:t' and the order of integration are 

commutative such that 

and II () dr dt = I I () dt dr 

t10 ot1 

Integrating the second term of Eqn.G3 by parts, yields 

r r t2 

= I [8g t dr - I H ddt (::k1oxk ] dtdr 
ｾｘｫ＠

aXk tl 
0 0 tl 

the variation of xk ie. c5xk= 0 at both t=tl and 
Since by definition, 

t 2, then 

t2 t 2r 

IK JJ[ ag _ ｾＨ＠ ｡ｾ＠ ) ] oXk drdt 
(G·1 ) 

a dt = .. aXk dt aXk 
tl t10 

- Gl -



G.3 Variation of Strain Energy 

The variation of strain energy wi th respect to the blade general ised 

variables xk & xk then becomes 

t2 t 2r t 2r 

o J U d t = 0 J J t drd t = at ] + ax
k

oXk drdt (GS) 

Using the commutation of the operators; 0, ( ) , - a , and the order of ar 
integration such that 

ax 
o(xk') = o(_k) = ar 

Integrating the second term by parts, 
t 2r t 2r 

J J ｾｾｫ＠ oXk drdt = J J ｾｾｫ＠ :r (OXk ) drdt 

t 10 t 10 

t2 

= J [ ｾｾＮ＠ 5Xk]:dr -
t1 

drdt 

t2 

drdt + J [::. 5Xk]: drdt 

t1 

(G6) 

G.4 Variation of Additional Strain Energy due to Secondary Load Paths 

As discussed in Section 3.2.10, the control circuit system stiffness is 

considered as an external load path, modelled as a set of springs. 

They will give rise to additional strain energy, Us' where from 

Appendix B, 

Us= ｾｊ＠ L o<rs){ ｻｕＭｾｬｶＭｾｬｷＬｖＫｾｬｵＭｾｬｷＬｗＫｾｬｵＭｾｬｷｽ｛ｌ｝＠ ｶＫｾｬｵＭｾｬｷ＠
ｷＫｾｬｵＫｾｬｶ＠o s=l 

(G7) 

The partial derivatives of Us are 

r Ns ｵＭｾｬｶＭｾｬｷ＠
aus 

J L o<r-rs) [L] 2 
= {1,0,0} ｶＫｾｬｵＭｾｬｷ＠ + 0 (e ) 

au 
ｷＫｾｬｵＫｾｬｶ＠o s=l 

r Ns ｵＭｾｬｶＭｾｬｷ＠
aus 

J L o<r-rs) [L] 3 
= {O,l,O} ｶＫｾｬｵＭｾｬｷ＠ + O(e ) 

av 
ｷＫｾｬｵＫｾｬｶ＠o s=l 
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= J [o<r-rs ) {O,O,l} [L] 
o s=l 

r Ns 

u-<:ly-(3lw 

y+<:lu-</>lw 
w+(3lu+</>ly 

ｾｩ＠ = f ｉ＾ｾＨｲＭｲｳＩｻ＠ {O.-lw.1v} [L] 
u-<:ly-(3lw 
y+<:lu-</>lw 
w+(3lu+</>ly o s=l 

= J [o<r-rs ){ {-lw,O,lu} [L] 
o s=l 

= J L (5<r-rs ){ {-ly,lu'O} [L] 
o s=l 

and = au' = ay' 

G.S Virtual Displacement 

u-<:ly-(3lw 
y+<:lu-</>lw 
w+(3lu+</>ly 

u-<:ly-(3lw 
y+<:lu-</>lw 
w+(3lu+</>ly 

(G8) 

The virtual work is determined by first defining the virtual 

displacement of the blade point. The virtual displacement are 

considered to be made up of two parts: the linear def lect ion of the 

blade elastic axis and the rotation of a point on the cross-section. 

G.S.l Virtual Deflection 

The position vector of the blade elastic axis in the local blade 

section ｏｲｾｾＭ｡ｸｩｳ＠ system, after deformation, is simply given by, 

and the vector of virtual deflections is 

(G9) 
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G.S.2 Virtual Rotation 

The virtual rotation of a point on the blade cross-section is obtained 

in a similar fashion. Consider the d d ( or ere sequential) rotations <,-

ｾＬｾ＠ of the blade cross-section, the vector of virtual rotations of the 

blade cross-section, in the local blade cross-section ｏｲｾｾＭ｡ｸｩｳ＠ system, 

is then given by 

orx 

= { ｔ＼ｔｾｧｾｽ＠ Ｋｔ＼ｻ［ｏｾｽ＠ {t} } o.!b = Ory + 

orz 

[cos< -sln< 0] ｛｣ｯｳｾ＠ 0 Ｍｓｩｮｾ｝＠where T< = sion< cos< 0 ; Tf3 = 0 1 o . 
o 1 sin{3 0 cosf3 

orx ｻｯｾ｣ｯｳ＼｣ｯｳｾ＠ + ｏｾｓｩｮ＼ｽ＠. orb = Ory = ｯｾｳｩｮ＼｣ｯｳｦＳ＠ of3cos< (G10) .. 
orz ｯｾｳｩｮｦＳ＠ + 0< 

G.6 Virtual Work 

G.6.1 Contribution from Applied Loads 

The virtual work due to all external applied loads; aerodynamic lift, 

drag and moment on the blade is identical to those for the Lagrangian 

equation and is given by Eqn.3.37; 

r 

OWAERO = J { dA· ou - dD·ov + dL· ow + ､ｍﾷｯｾ＠ } dr 
dr dr dr dr 

(G1l) 

o 

where ｾｾ＠ is the lift and drag loads resolved in the axial direction. 

G.6.2 Contribution from Blade Loads 
T 

The virtual work due to the internal blade loads; E={V x' Vy, Vz} and 

M={Mx,My,Mz}T in the local blade cross-section ｏｲｾｾＭ｡ｸｩｳ＠ system is 

oWBLADE = F· oBe + M· o.!b 

orx 

= {Vx,Vy,V z}' ory 
or z 

orx 

+ {Mx,My,M z}' Ory 
orz 

(G12) 

Eqn.G12 is valid for all radial positions r and is expressed as 

coefficients of ｯｵＬｯｶＬｯｷＬｯｾＬｯ＼ＬｯｦＳ＠ and becomes 

oWSLADE = Vxou + Vyov + Vzow + {Mx.My.M z}·{ ｔ＼ｔｾｻｾｾｽＫｔ＼ｻ［ｏｾｽＫｻｾ＼ｽ＠ } 

= Vxou + Vyov + Vzow + Ｈｾ｣ｯｳ＼｣ｯｳｾ＠ + ｾｳｩｮ＼｣ｯｳｾ＠ + ｍｺｳｩｮｻＳＩｯｾ＠

+ Ｈｾｳｩｮ＼＠ - ｍｹ｣ｯｳ＼Ｉｯｾ＠ + Mzo< (G13) 
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G.1 Hamiltonian Equation 

Having defined the . varIOUS components, 

(Eqn.GZ) can be written in full as 
the Hamiltonian Equation 

ou{ ag _ ｾＨ｡ｧＩ＠ _ a(f+Us ) a af 
au dt au' + -(-)} au ar au' 

{ ag ｾＨ｡ｧＩ＠ a(f+Us ) 
+ ｾＨ＠ af )} + OV --av dt av av ar av' 

+ ow{ ag _ ｾＨ｡ｧＩ＠ a(f+Us ) 
+ ｾＨ＠ af )} aw dt aw aw ar aw' 

+ oq{ ag _ ｾＨ｡ｧＩ＠ a(f+Us ) 
+ a af } 

a if> dt ｡ｾ＠ a if> ar (a¢>' ) 

+ 0(3{ ag _ ｾＨ｡ｧＩ＠ _ a(f+Us ) 
+ a af } a(3 dt ｡ｾ＠ a(3 ar (a(3' ) 

+ o<{ ag _ ｾＨ｡ｧＩ＠ _ a(f+Us ) 
+ a af } } 

a< dt a< a< ar(a<' ) dr 

[ 8f + af 0 + af + af af af 1: - au'ou av' v aw'ow a¢>'o¢> + a(3,o{3 + a(,,'o< 

r 

+ I { ｾｾＮｾｵ＠ dD dL elM} - _·ov + _·ow + -'o¢> dr dr dr dr 
0 

+ [ ｖｸｾｵ＠ + ｖｹｾｖ＠ + ｖｺｾｷ＠ + Ｈｍｸ｣ｯｳ＼｣ｯｳｾ＠ + ｍｹｳｩｮ＼｣ｯｳｾ＠ + Mzsin$lo¢ 

+ (Mxsin< - ｍｹ｣ｯｳ＼ｬｯｾ＠ + Mzo< J: } dt = a 

(G14) 

The above expression is true for a single blade. 

G.g Blade Structural Load Equations 

The variations in u,v,w,¢>,(3,< may be arbitrarily assigned at time t, 

provided that the boundary conditions are not violated. It is 

therefore possible to postUlate an alternative variation in the range 

from ro to r whilst retaining the same value at both r=ro and r. 

Subtracting the two variation equations, the coefficient of oXk must 

vanish and the following expressions are thus obtained. 
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ag _ ｾＨ｡ｧＩ＠ _ a(f+Us ) + ｾＨ＠ af ) dA 
au dt au au ar au' + dr = 0 (a) 

(b) 

ag _ ｾＨ｡ｧＩ＠ _ a(f+Us ) + ｾＨ＠ af) + dL 
aw dt aw aw ar aw' dr - 0 (c) 

ag _ ｾＨ｡ｧＩ＠ _ a(f+Us ) + ｾＨ＠ af) + dM 0 
a</> d t ｡ｾ＠ a</> ar a</> , dr - (d) 

(GIS) 

ag _ ｾＨ｡ｧＩ＠ _ a(f+Us ) + a af 
｡ｾ＠ dt ｡ｾ＠ ｡ｾ＠ ｡ｲＨ｡ｾＧＩ＠ = 0 (e) 

= 0 (f) 

And as a by-product, the following boundary conditions are obtained; 

v - af = 0 
x au' 

v _ af 
y av' - 0 

v _ af 
z aw' - 0 

af 
+ ｍｸｳｩｮｾ＠ - ｡ｾＧ＠ - 0 

af 
Mz - ｡ｾＧ＠ = 0 

(a) 

(b) 

(c) 
(G16 ) 

(d) 

(e) 

(f) 

Eqns.G15 can be re-arranged to eliminate the derivatives, ego 

differentiate Eqn.G16a and then substitute into Eqn.GISa results, 

V' = ｾＨ＠ af ) = ｾＨ｡ｧＩ＠ ag a(f+Us ) dA 
x dr au' dt au au au dr 

Similarly, 

V' = ｾＨ｡ｧＩ＠ ag a(f+Us ) dD - av 
+ -

Y dt a;' av dr 

V' = ｾＨ｡ｧＩ＠
ag a(f+Us ) dL -z dt aw aw aw dr 

Use small angle assumption, Eqns.GI6d-f become 

af 3 
= - + a(e ) a</> , 

af 3 
= ｡ｾＧ＠ + a(e ) 
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(a) 

(b) 
(GI7) 

(c) 

(d) 

(e) (GIS) 

(f) 



Differentiate Eqns.G18d-f with respect to r and substitute into the 

Eqns.G15d-f will lead to, 

M' + «My) I + ((3M
z

) , ｾＨ｡ｧＩ＠ ag a(f+U s ) dM + 0(c3
) = + x 

dt ｡ｾ＠ a(j> a(j> dr 

- (M ) I «Mx ) I ｾＨ｡ｧＩ＠ ag a(f+Us ) 
3 + = + + O(c ) y 

dt ｡ｾ＠ a(3 a(3 (G19) 

M' = ｾＨ｡ｧＩ＠ ag a(f+Us ) 
+ Z dt ai;, a< a< 

Thus, the analytical expressions for the structural loads are 

V' = ｾＨ｡ｧＩ＠ ag a(f+Us ) dA + x dt au au au dr 

V' ｾＨ｡ｧＩ＠ ag a(f+Us ) dD = - + + Y dt a;" ay ay dr 

V' ｾＨ｡ｧＩ＠ ag a(f+Us ) dL = - + Z dt ｡ｾ＠ aw aw dr 

ｾＨ｡ｧＩ＠ ag a(f+Us ) dM 3 M' + «My) I + ((3Mz ) I = - + + O(c ) x dt ｡ｾ＠ a(j> a(j> dr 
\ 

(G20) 
t 

M' 
xdef 

ｾＨ｡ｧＩ＠ ag a(f+Us ) 3 - (M ) I + «Mx ) I = - a(3 
+ + a (c ) y dt ｡ｾ＠ a(3 

\ • 
-M' 

Ydef 

= ｾＨ｡ｧＩ＠ ag a(f+Us ) 
M' - + 

Zdef dt ai;, a< al;, 

and the corresponding boundary conditions are 

Vx 
af 

= au' 

Vy 
af 

= ay' 

af 
Vz = aw' 

af 3 
Mx + <My + (3Mz = a(j>' 

+ a (c ) 
\ ) ... 

(G21) 

M 
Xdef 

af 3 
-M + <Mx = a(3' 

+ O(c ) 
y 

\ J .. 
-M 

Ydef 

af 
M = a<' zdef 
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The above analytical expressions can be further simplified using the 

. 122 3 following relationships, by notIng that u' =-Z(v' +w' )+O(e) (Appendix 

442 B), ｾ］ｷＧＫｏＨ･＠ ＩＬｾ］ｶＧＫｏＨ･＠ ) and manipulating the equations. To O(e ), 

af af , af + 0(e3
) - V + w'V 3 = aw' + w au' = + a (e ) 

｡ｾ＠ z x 
(G22) af af , af 

+ 0(e3
) = - V + v'V + 0(e3

) = av' + v au' ｡ｾ＠ y x 

Hence Eqns.G20 and G21 are simplified respectively as 

V' = ｾＨ｡ｧＩ＠ _ ag + a(f+Us ) dA 
x d t ｡ｾ＠ au au dr 

V' = ｾＨ｡ｧＩ＠ _ ag + 
Y dt a;' av + dr 

dD 

ｾＨ｡ｧＩ＠ _ ag a(f+Us ) dL V' = + 
dr z dt ｡ｾ＠ aw aw 

(G23) 
= ｾＨ｡ｧＩ＠ _ ag a(f+Us ) dM 3 M' + ＨｾｍｹＩ＠ , + ＨｾｍｺＩ＠ , + + O(e ) x dt ｡ｾ＠ aq, aq, dr 

ｾＨ｡ｧＩ＠ ag aus 3 - M' + ＨｾｍｸＩ＠ , = - + - V + w'V + O(e ) y dt ｡ｾ＠ a(3 ｡ｾ＠ z x 

ｾＨ｡ｧＩ＠ ag aus 3 M' = - + - Vy + v'Vx + O(e ) z dt ｡ｾ＠ ｡ｾ＠ ｡ｾ＠

and the boundary conditions are 

Vx 
af 

= au' 

Vy 
af 

= av' 

Vz 
af 

= aw' 
(G24) 

af 3 
Mx + ｾｍｹ＠ + (3Mz = aq,' 

+ O(e ) 

- M + _ af + a (e3
) y ｾｍｸ＠ - ｡ｾＧ＠

af 
M = 

｡ｾＧ＠z 

These expressions can be derived using REDUCE. 
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Appendix H - Orthogonalisation Process 

Appendix Hi: Analytical Expressions 

- CRFD System Equations vs CRFA Structural Loads 

\CRFDI 

Load Derivatives 

V'= ｾＨ｡ｧＩ＠ ag dAo 
-x dt . au dx au 

V' = ｾＨ｡ｧＩ＠
ag + 

a(f+Us ) dA 
x dt aU au au dr 

V'= ｾＨ｡ｧＩ＠
ag + 

dDa - av dx y dt a;" 
V' = ｾＨ｡ｧＩ＠

ag + 
a(f+Us ) dD + y dt a;" av av dr 

V'= ｾＨ｡ｧＩ＠
ag dLa - aw dx z dt ｡ｾ＠

V' = ｾＨ｡ｧＩ＠ ag a(f+Us ) dL + z dt ｡ｾ＠ aw aw dr 

H'= ｾＨ｡ｧＩ｟＠ ag af dMa 
x dt ait aR + aRx dx 

x x 
H' ＫﾫｾＩＧＫＨｾｈｺＩＧ］＠ ddt (:!) ag a(f+U s ) dM 3 

x + dr 
+0 (£ ) 

a¢> a¢> 

H'= ｾＨ＠ ag )_ ag af 
y dt ait aR + aRy 

y y 
ＭＨｾＩＧＫﾫｍ＠ )'= ｾＨ｡ｾＩ＠ ag a(f+Us ) 

0(£3) + + 
x dt ｡ｾ＠ ｡ｾ＠ ｡ｾ＠

H'= ｾＨ＠ ag )_ ag af 
z dt ait aR + aRz z z 

H' = ｾＨ｡ｧＩ＠
ag + 

a(f+U s ) 

z dt a< a< ae:;, 

Boundary Conditions 

Vx 
af 

= au' 
Vx 

af 
= au' VZ,'N 

v = 
af 

y av' 
Vy 

af 
= av' 

Vz 
af 

= aw' 

Hx 
af 

= aR' x 

af 3 
ｾ＠ + e:;,My + ｾｈｺ＠ = a¢>' + 0(£ ) 

H = af 
y aR' y 

Notations -My + <Mx 
af + 0(e3

) = 
｡ｾＧ＠

Notations 

Hz 
af 

= aR' z 
Hz 

af 
= ae:;,' 

Notes: In CRFD, a) x is measured along the segment; 
b) Hx,My,Hz are moments in the sequential axis system; 
c) The strain energy function f is independent of u,v,w; and 
d) No gravity term is included. 

In CRFA, a) r is measured along the blade; 
b) ｾＬｍｹＬｈｺ＠ are moments in the pre-deformed axis system; and 
c) f is dependent on u,v,w only if curved blade is assumed. 

- H1 -



Appendix H2 - Components of Strain Tensor 

CRFA Strain Tensor Components 

2 2 v,2 1.',2 
Cll = (1) Ｋｾ＠ ),,'4>' + u' + - + - vV" - wW" + u(v'V" + w'W') 2 2 p p p p 

+ ＲｾＧｻ＠ 4>«-v' )eos" + Ｔ＾ＨｾＭｷＧ＠ )sin" - u(V;sin"-W;eos,,) + «-v')sin" - ＨｾＭｷＧＩ･ｯｳＢ＠ } 

+ ＲｾＢＧｻ＠ -¢«-v' )sin" + ﾢＨｾＭｷＧ＠ )sin" - u(V"eos,,-W"sin") + «-v' )eos" + ＨｾＭｷＧ＠ )sin" } . p p 

+ 21) { 4>' «-v' )sin" - ¢' ＨｾＭｷＧ＠ )eos" - <' (eos"-¢sin") - ｾＧＨｳｩｮＬＬＫﾢ･ｯｳＢＩ＠ + ﾢｖｾｳｬｮＢ＠ ¢w;eos,,} 

+ Ｒｾ＠ { 4>' «-v' )eos" + ﾢＧＨｾＭｷＧ＠ )sin" + <' (sin"+¢eos") ＭｾＧ＠ (eos"-¢sin") + ¢V;eosc + ¢W;sln" } + 0(c
4

) 

C12 ｾ＠ { ｾＨＭＴ＾Ｇ＠ - ｾ＼Ｇ＠ + ＼ｗｾ＠ - ｾｖｾＩ＠

1 2 1 2 
+ ｾ＠ «-v' )cos" + ｾ＠ ＨｾＭｷＧ＠ )sin" - Ｔ＾ｵＨｖｾｳｩｮＢ＠ - ｗｾ･ｯｳＢＩ＠ + ｵＨｖｾ･ｯｳＢ＠ + ｗｾｳｬｮＢＩ＠

+ ¢(t.-v')sln" - ﾢＨｾＭｷＧＩ｣ｯｳｃ＠ + «vV" + wW")eos" + ｾＨｶｖＢ＠ + w\.J")sin" p p p p 
ｗｾＨｷｖ［･ｯｳ｣＠ - ｶｖｾｳｩｮｃＩ＠ - u'(v'cos" + w'sinC) 

+ <2«-v')eos" + ｾＲＨｾＭｷＧＩｳｩｮＢ＠ + ｾｴＮＨｴＮＭｶＧＩｳｬｮＢ＠ + ｾＲＨｴＮＭｶＧ＠ )eosC - ｾｷＬ＼ＲｳｩｮＢ＠

13 13 } 4 - j< cos" - ｾ＠ sinC - (t.-v' )eosC - ＨｾＭｷＧＩｳｩｮＢ＠ + O(C ) 

C13 = ｾ＠ { 1)( ¢' + ｾ＼Ｇ＠ - ＼ｗｾ＠ + ｾｖ［Ｉ＠

1 2 1 2 - ｾ＠ (t.-v' )sin" + ｾ＠ ＨｾＭｷＧ＠ )eosC - 4>u(V;eosC + W;sinC) - u(V;sin" - ｗｾ･ｯｳＢＩ＠

+ 4>(t.-v' )eos" + ﾢＨｾＭｷＧ＠ )sin" - t.(vV; + ｷＧｗｾＩｳｩｮＢ＠ + ｾＨｶｖ［＠ + w'W;)cos" 
+ W'(wV"sin" - vV"cos") + u'(v'sln" - w'cos") p p p 

_ <2«_v' )sin" - ｾＲＨｾ｟ｗＧ＠ )eos" + ｾｴＮﾫＭｶＧ＠ )eos" - ｾＲﾫ｟ｶＧ＠ )sin" - ｾｷＬ＼Ｒ･ｯｳＢ＠

+ ｾＳｳｩｮＢ＠ - ｾＳ｣ｯｳＢ＠ t (t.-v' )s;nC - ＨｾＭｷＧ＠ )lOSO } + 0(c
4

) 

CRFD Strain Tensor Components 

,2 ,2 
2 2 ,v I.' 

(TJ Ｋｾ＠ ) ｒｾｒｾ＠ + u + 2 + 2 

+ Ｒｔｊｒｾｻ＠ Rx(Rz-v' Ｉ･ｯｳｾ＠ - ｒｸＨｒｹＫｷＧＩｳｩｾ＠ + (Rz-v' Ｉｳｩｾ＠ + (Ry+w' Ｉ･ｯｳｾｽ＠

+ Ｒｾｾｻ＠ -Rx(Rz-V' Ｉｳｩｾ＠ - Rx(Ry+w' Ｉ｣ｯｳｾ＠ + ＨｾＭｶＧ＠ Ｉ｣ｯｳｾ＠ - (Ry+w' Ｉｳｩｾ＠ } 

+ 2TJ { ｒｾＨｒｺＭｶＧ＠ Ｉｳｩｾ＠ + ｒｾＨｒｹＫｷＧ＠ Ｉ｣ｯｳｾ＠ - ｒｾＨ･ｯｳｾＭｒｸｳｩｾＩ＠ + ｒ［ＨｳｩｾＫｒｸ･ｯｳｾＩ＠ } 

+ Ｒｾ＠ { ｒｾＨｾＭｖＧ＠ Ｉ｣ｯｳｾ＠ - ｒｾＨｒｹＫｷＧ＠ Ｉｳｩｾ＠ + ｒｾＨｳｩｾＫｒｸ･ｯｳｾＩ＠ + ｒ［Ｈ｣ｯｳｾＭｒｸｳｩｾＩ＠ } 

C12 = ｾ＠ ｾＨＭｒｾ＠ + ｒｹｒｾＩ＠

+ ｾＨｾＭｖＧ＠ Ｉ｣ｯｳｾ＠ - ｾＨｒｹＫｷＧ＠ Ｉｳｬｾ＠

+ Rx(Rz-v' Ｉｳｩｾ＠ + Rx(Ry+w' Ｉ｣ｯｳｾ＠ - u' ＨｶＧ･ｯｳｾ＠ + ｷＧｳｩｾＩ＠
1 2 ') coR ｾＲＬ＠ inR 

+ R!(Rz-V' Ｉ｣ｯｳｾ＠ - ｾＨｒｹＫｷＧ＠ Ｉｳｩｾ＠ - ｾＨｾＭｶＧ＠ Ｉｳｬｾ＠ + ｾＨｾＭｶ＠ ｣ｯ｟ｾ＠ - ｔｾｗ＠ s ＮＭｾ＠

_ ｾ｣ｯｳｾ＠ + ｾｓｬｾ＠ - (Rz-v' Ｉ｣ｯｳｾ＠ + (Ry+w' Ｉｳｩｾ＠ } + O(e') 

£13 ｾ＠ ｔｊＨｒｾ＠ - ｒｹｒｾＩ＠

_ ｾＨｒｺＭｖＧ＠ Ｉｳｩｾ＠ - ｾＨｒｹＫｷＧ＠ Ｉ･ｯｳｾ＠

+ Rx(Rz-v' Ｉ｣ｯｳｾ＠ - Rx(Ry+w' Ｉｳｩｾ＠ + u' ＨｶＧｳｩｾ＠ - ｷＧ｣ｯｳｾＩ＠

R!(Rz-V' Ｉｳｩｾ＠ - ｾＨｒｹＫｷＧ＠ Ｉ｣ｯｳｾ＠ - ｾＨｾＭｶＧ＠ Ｉ･ｯｳｾ＠ + ｾＨｒｺＭｖＧ＠ Ｉｳｬｾ＠ - ｾｷＧ｣ｯｾ＠

+ ｾｓｬｾ＠ + ｾ｣ｯｳｾ＠ + ＨｾＭｶＧ＠ Ｉｳｬｾ＠ + (Ry+w' Ｉ･ｯｳｾ＠ } + O(e') 
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Appendix H3 - Curved Segment Consideration 

Consider the blade is made up of a number of straight segments, where 

the posi tion vector of the kink at the root of the dth segment is 

defined as I.ci={X s ' Ys,Zs}T in the H/XYZ-axis system. Note that any 

point on the segment can be defined by L, measured along the segment 

from the root as shown below; 

z 

H' 

y 

"s' d 

dlh segment 

Curved Segment 

x 

Curved vs Straight Segment 

The orientation of the dth straight segment is achieved by sequential 

rotations, ｾｐ､ＧＭｾｐ､＠ about the local ((d-1)th segment) axis system. The 

local slopes can be expressed in terms of all the previous 

transformations using the Heaviside function as a summation series 

V' = 
dVp 

= ｾｰ＠ = L H(r-rd) ｯｾｐ､＠P dr 
d 

W' 
dWp 

= ｾｰ＠ = L H(r-rd) ｯｾｐ､＠= dr p 
d 

{ = 0 if r < rd 
where the Heaviside function is defined as H(r-rd) = 1 if r ｾ＠ rd 

Subsequently, the local coordinates and curvatures can be defined by 

integrating and differentiating the slopes respectively. 

For the local coordinates, 

r r 

Vp = ｊｶｾ＠ dr = JE H(r-rd) ｯｾｐ､＠ dr = L (r-rd) H(r-rd) ｯｾｐ､＠

0 o d d 

r r 

W = ｊｷｾ＠ dr = JL H(r-rd) ｯｾｐ､＠ dr = L (r-rd) H(r-rd) ｯｾｐ､＠
P 

0 o d d 

and the local curvatures, 
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dV' 
V" = P = 

P dr 

where the Delta function is defined as ｯＨｲＭｲ､Ｉ］ｾ＠ H(r-r) = ｲｾｲ､＠
[ ] { 

0 if 
dr d = 1 l"f r=rd 

Consider a matrix transformation whenever there is a discontinuity in 
the 

and 
orientation of the undeformed elastic axis" 

ｾＭ］ｻｘ､ＭＧｙ､ＭＬｚ､｟ｽ＠ represent the coordinate of a point being 
expressed in the dth and (d-l )th t segmen coordinate respectively" L:t+ 
and ｾ｟＠ are related via 

ｾＭ = ｔｾ＠ T(3 L:t+ 
Pd Pd 

or 

= 

cos(3Pd 0 -sin(3Pd 

o 1 0 
sinJ3Pd 0 cos(3Pd 

ｃｏｓｾｐ､｣ｯｳＨＳｐ､＠ Ｍｳｩｮｾｐ､＠ Ｍ｣ｯｓｾｐ､ｳｩｮＨＳｐ､＠

= ｳｩｮｾｐ､｣ｯｳＨＳｐ､＠ ｃｏｓｾｐ､＠ Ｍｳｩｮｾｐ､ｳｩｮＨＳｐ､＠ . Yd+ 

sin(3Pd o 

To O(e
2
), for small ｾｐ､ＬＨＳｐ､Ｇ＠

= 

o 

For a continuous curved beam, consider there are fini te but large 

number of straight segments of which the orientation of the dth segment 

is achieved by ordered rotations, ｯｾｐ､Ｇ＠ -o(3Pd about the (d-l )th axis 

system such that the above relationship holds for each transformation 

as follows, 

1-.!. (0(,,2 +0{32 ) 
2 Pd Pd -0(" Pd -0{3 Pd 

xd_ 
1 

xd+ 
3 

Yd- = o("Pd 1-.;0(,,2 -o("Pd°{3Pd Yd+ + o(c ) 
2 Pd 

Zd_ 
Ｑ｟ｾｻＳＲ＠

Zd+ 

o{3Pd 0 2 Pd 
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.!. (0t;,2 +0(32 ) 
2 Pd Pd Ot;,Pd o(3Pd 

xd+ xd+ 
= Yd+ -ot;, ｾＲ＠ ot;,Pd o(3Pd 

3 
2 t;,Pd 

. Yd+ + 0(£ ) Pd 
Zd+ zd+ 

-0(3 0 ｾＨＳＲ＠Pd 2 Pd 

Then 

xd+ xd_ xd+ 

Yd+ = Yd- + [A] • Yd+ + 0(£3) 

Zd+ Zd_ Zd+ 

.!. (0t;,2 +0(32 ) 
2 Pd Pd ot;,Pd o(3Pd 

where [A] = 

o 

Now consider a point along the blade, of which its posi tion can be 

determined by integrating from the tip to the root using the all the 

segment transformations, ie. if R={X,Y,Z}T is the position vector of 

the point defined in the general curved segment notation then, 

Xd_ 

= Yd-
Zd_ 

r {X/L 
+ I ｾＺｲ＠

Xd+ 
+ [A] . Yd+ 

zd+ 
rrr + I ｾＺ＠ r + 

0(£3) 

which may be expressed in terms of the Heaviside and Delta functions as 

= 

x (d-O + 

Y (d-O + 

Z (d-O + 

Xd+ 
+ H(r-rd) [A]' Yd+ 

Zd+ 

r {XI} 
+ [ ｾＺ＠ (l-6(r-rd ) )dr + 0«:') 

and including all the kinks, 

where 

X d + 

= L H(r-rd) [A]' Yd+ 

d zd+ 

r {XI} 
+ [ ｾＺ＠ ＨＱＭｾ＠

3 
o(r-rd)}dr + 0(£ ) 

the last term, representing the straight segment contribution, 

written as 

Xs 

= [ ｻｾＺｽ＠Ys {l-L o(r-rd)} dr 

Zs d 

- US -
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Hence, 

{n = 

Xs xd+ 
Ys + L H(r-rd) [A] Yd+ + 0(£3) 

Zs d zd+ 

and the corresponding slopes become, 

ｻｾＺｽ＠ = 

X' xd+ S 

Y' + L o(r-rd) [A] Yd+ + 0(£3) s 
Z' d Zd+ s 

Since L 1 2 J:...(.!.V/2 ) ° (r-r d )Z(oC:Pd) = or 2 P , 
d 

in the limit, = J:... (.!.VI 2) ar 2 P 

= V/V" P P 
etc. Therefore, 

ｻｾＺｽ＠
X' V'V"+W'W" V" W" 

ｻｾｽＫ＠
s P P P P P P 

= Y' + -V" V'V" V"W" 0(£3) s P P P P P 
Z' -W" 0 W'W" s P P P 

Using this relationship, the variables valid for the straight segments 

are related to those of curved segment via 

Slopes & Curvatures 

ｻｾＱ］ｻｾＺｽ＠
0 oC:Pd o(3Pd 

Ｎｻｾｽ＠ +0(c
3

) 

u'-vV"-wW" P P 3 
Lo(r-rd) -0C: 0 0 = v'+uV" +0(£ ) Pd P 

d -0(3 0 0 w'+uW" 
Pd P 

H' 

={-r} 
0 o<:Pd o(3Pd .{+} + 0(c

3
)-

＼ＯｊＧＫＨＳｖＭ＼Ｚｗｾ＠
x 3 

H' - Lo(r-rd) -0<: 0 0 -(3'+</JV" +0(£ ) 
y Pd P 

H' d -0(3 0 0 ｃＺＧＫ＼Ｏｊｗｾ＠
z Pd 

s 

Shear & Moment Derivatives 

0 o<:Pd o{3Pd 
2 

V' V' Vx 
ｖｾＫｏＨﾣ＠ ) 

x x 3 3 
V' V' -Lo(r-rd) -oc: 0 0 . Vy +0 (£ ) - V'+V"V +0(£ ) = Pd 

Y y y p x 
V' V' d -0(3 0 0 Vz 3 

z z Pd V'+W"V +0(£ ) 
s z P x 

I 0 oC:Pd o{3Pd M'-V"M -W"M 
Mx Mx Mx x P Y P z 

3 3 
My My -Lo(r-rd) -0<: 0 0 . My +0(£ ) - M' +0(£ ) 

Pd Y 

Mz Mz -0<: 0 0 Mz 
M' 

d 
z Pd 

s 
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In summary, the deflections and slopes, moments and shears, and their 

spatial derivatives for the two systems are related viz, 

Blade displacements, slopes and curvatures 

u' u/-VV"-WW" u U p P 

V Vi V/+UV" V P 
W W 3 

Wi W/+UW" 
+ 0(c3

) + O(c ) and p 
Rx = R' = 4> X Ｔ＾ＧＫＨＳｖｾ｟＼ｗｾ＠
Ry -Wi R' _(3'+4>V" Y Vi P Rz R' 

＼ＧＫＴ＾ｗｾ＠z s s 

Blade forces, moments and derivatives, 

Vx Vx V' V' x x 
Vy Vy V' 

Y 
V'+V"V 

Y P x 
Vz Vz 3 V' V/+W"V 

3 and z z p x + O(c ) = + O(c ) = M' -V"M -W"M Mx Mx M' 
X X P Y P z 

My My M' y M' y 
Mz Mz M' M' z z s s 
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Appendix H4: Equations of Motion for the CRFD System 

The information contained in Pages H8 to H20 is commercially 
confidential and is removed from this dissertation. Any query 
regarding the content should be referred to the author, Kr W Y F Chan, 
Box 231, Aerodynamics Department, GKN Westland Helicopters Limited, 
Yeovil, Somerset, England. 
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:= 
N .... 

Appendix H6: Coefficients of Generalised Coordinates 
The orthogonalisation process described in Section 3.5.3 allows the forcing functions for all the system modes to be 
identified with reduced algebra. It can also be used to obtain the Lagrangian Equation using effectively a reversed 
Hamiltonian Principle. This is carried out by evaluating all the coefficients, associated with each of the ｧ･ｮ･ｲ｡ｬｩｓｾ＠
coordinates, which are given by Eqns.G14 in Appendix G. Because the modes are linearised, the non-linear modal terms wil 
subsequently result on the RHS as forcing functions. In order to gain insight, it is necessary to identify these ter 
analytically. We adopt the following treatment. 

I 
• I 

Consider for the real modes system, ego the torsion 
the variation of twist ｯｾ＠ =Loqtt1 (Eqn.G15d), then 

coefficient ＨｃｾＩ＠ is defined by the product of torsion forcing ＨｆｾＩ＠ ｡ｮｾ＠

R R 

｣ｾ＠ = I{ ｯｾＧｆｾ＠ }ctr = LOqtI tt'{ ｾｾ＠
d ag a(f+Us ) dM a af 

} dr ､ｴＨ｡ｾＩ＠ ｡ｾ＠ + dr + ｡ｲＨ｡ｾＧＩ＠

o 0 l . } \ 
'f 

'f 

Direct Indirect 

ie. 
｡ｆｾ＠

ｆｾ＠ consists of both direct (mainly external) ｆｾｬ＠ and indirect (internal) ar2 (ie. ｆｾＲＭＺＡＧＩ＠ terms. By evaluating ｆｾ＠

for the aeroelastic and dynamic (linearised) systems independently, then upon subtraction, all the residual terms can be 
identified. The identification of the direct terms is normally straightforward but this is not the case for the non-linear 

terms which appear in both the direct and indirect terms. One can evaluate the indirect term :r(:!') as indicated, then 

they can be treated exactly as those direct terms. Alternatively, we can integrate the indirect term by parts, 

R [ r R R a af af, af , af 
Itt'{ ｡ｲＨ｡ｾＧＩ＠ } dr = ｴｴＧ｡ｾＧ＠ - Itt Ｇ｡ｾＧ＠ dr = - ｊｴｬＧ｡ｾＧ＠ dr 
o 0 0 0 

Thus, the torsion coefficient becomes, 

R R 8g d 8g 

I I I ｆｾ＠ = - - -(-. ) 

｣ｾ＠ = LOqi ｴｩＧｆｾ＠ dr = LOql { ｴｩＧｆｾｬＭ ti ＧｆｾＲｽ｣ｴｲ＠ where 1 ｡ｾ＠ dt ｡ｾ＠
o 0 F - af 

ｾＲＭ ｡ｾＧ＠

aCf+Us ) 

｡ｾ＠
+ 

dM 
dr 



::z:: 
N 
N 

Fu 

I
Fy 

o = ｌｏｱｬｪｻｕｬＧｖｬＧｗｬＮｴｬＧｾｉＧｾｉｽＮｩＺＺ＠ dr 

i o 
F{3 

F< 

Fu 1 
Fy 

R t' = LOQlJ{ {U 1'Yl,w 1,t1,{31'<1}- F
W1 

. ｾＱ＠
1 0 F 

(31 

F<l 

{' , , t' {3' <'} - Ui'Yi'W i , i' i' i 

where F = ag ｾＨ｡ｧＩ＠
a(f+Us ) 

+ dA = -V' u1 au dt au au dr x 

F = ag ｾＨ｡ｧＩ＠
a(f+Us ) 

dD = -V' Y1 ay dt av av dr y 

F = ag ｾＨ｡ｧＩ＠
a(f+Us ) 

+ dL = -V' . 
w1 aw dt ｡ｾ＠ aw dr z ' 

FU 2 
Fy 2 

ＺｗＲｾ＠ }Ir 
ｾＲ＠

F{32 

F<2 

af 
Fu = 8' = Vx 2 U 

af 
Fv2= av' = Vy 

af 
Fw = - = V 2 aw' Z 

ag ｾＨ｡ｧＩ＠
a(f+Us ) 

+ dM = -{(M'+«M )'+((3M )'} af 
ｆｾｬ］＠ ｡ｾ＠ dt ｡ｾ＠ ｡ｾ＠ dr x y Z ｆｾＲ］＠ ｡ｾＧ＠ = Mx + <My + (3Mz 

ag ｾＨ｡ｧＩ＠
a(f+Us ) 

= ＭｻＭｍｾＫﾫｍｸＩＧｽ＠
af 

F(31= a{3 dt ｡ｾ＠ a(3 F{32= a(3' = -My + <Mx 

ag ｾＨ｡ｧＩ＠
a(f+Us ) 

= -M' . af 
F<:l= a< dt ai: a< Z ' F <2 = a< ' = Mz ' 

These expressions are in fact those given in Appendix HS except there is no secondary load path contribution and there is 
sign change required for the direct forcing terms. 



== IV 
W 

expressions for the modal inertia (II) and modal stiffness ＨａｾＩ＠ for the real modes system to be obtalnea oy ｊＮｊＮｬｬｾ｣ＱＱＮｌｾＮｌｕＶ＠ .... 

dynamic terms. Let us consider the torsion degree of freedom in more detail. For illustrative purposes only, the analys 
will be restricted to a symmetrical section blade without centre offset terms or control system springs, we have (with 
retained) , 

dM 2 2 2 2 2 .... 2 2 
F<I>l= dr - ron (km2-km1) (sini}cosi} + <l>cos2i}) - m(km2+km1) (i}+<I» + (EI 22-EI 11 ) (VII -wll )sini}cosoO - v"w"cos200] 

FA. = (EI +E1 )00' [u'+-(v' +w' )] + GJ(A.'+w'v ll
) M 1 2 2 } 

ｾＲ＠ ar 11 22 2 ｾ＠

R 

:. The torsion coefficient C<I>=[oqlS{ tl ·F<I>I- ti"F<I>2 } dr for the aeroelastic system from Appendix HS is 
o 

R 

J{ dM 2 2 2 2 2 .... 2 2 
(C<I» A = [oql dr t 1 - ron (km2-km1) t 1 sinoOcosoO - m (km2+kml)( 00+<1» t 1 + (EI 22-EI 11 )[ (v" -wll 

) sinoOcosoO - v"w" cos200] t 1 

o 

- ti·{ (E III + E I 22 ) 00' [u' Ｋｾ＠ ( v' 2 +w' 2) ] + GJ(<I>'+w'v")} }dr 
.. .. .... 

Express in terms of the modal components, ie. 
modal contribution only, then (C</»A becomes 

<I>=</>N where </>N=[q J t J ' V"=VO+VN h "-" II t were vN-L.,qJv J .... e c. 

R 

J{ dM 2 2 2 2 2···· 
(C</»A = [oql drt1 - ron (km2-km1)t1[sinoOcosoO + (</>O+</>N)cosZoO] - m(km2+km1) (00+</>N)t1 

o 
2 2 2 2 . + (El -EI )t [(v" -wIt + Zv"v"-Zw"w" + v" -wIt )cosoOsln-o - (v"w" + v"w"+v" " 22 11 1 0 0 0 NON N N 0 0 0 NNW 0 + vNwN)cosZoO] 

ie. ()N contains til 

t ' {(El El ) '[ I 1(,2 ,2) 'Z" Z" ,2 ,2] G (' '" - 1" 11+ 22 -0 U O+2 Vo +WO + U N+ VoV N+ WOWN + VN +WN + J </>o+WOVo + A.'+W'v"+W'V" + W'V")} }dr ｾｎ＠ 0 N NON N 

The corresponding expression for the dynamic system from Appendix H4, after linear ising, is 
R 

J{ dMo 222 . 22·· 
(C</»o = [oql dr tl - mQ (km2-kml)tl[SlnoOmcosoOm + (</>O+</>N)cOSZoOm] - m(km2+km1)</>Nt l 

o 

+ (El -El )t [(v,,2_w,,2 + Zv"v"-Zw"w")sin6 cos6 - (v"W" + v"w"+v"w")cosZA 
] } 22 11 1 0 0 0 NON m mOO 0 N N 0 vm 

- t'.{ (El +El )6' [u,+!(v,2+w,2) + u'+Zv'v'+2w'w'] + GJ(A.'+w'v" + A.'+W'V"+w'V")} }ctr 1 11 22 0 ZOO NON 0 N ｾ＠ 0 0 0 ｾ＠ NON N 0 



== N ... 

ＨｃｾＩａＭＨｃｾＩｄ＠ = ｌｏｱｬＧｦｾｩ＠

R 

= LOqlJ{ (dM_ dMa dr dr )t 1 

° \ J 

2 2" m(km2+km1 )f}t 1 
\ J ... 

+ (EI 22-EI 11 ) [(VN2-wN2)cOSf}msinf}m - vNwNCos2f}m]t1 
\ J ... .. , 

Cyclic inertia Non-linear (1) Applied 

- ti'{ ＨｅｉｬｬＫｅｉＲＲＩｦｽＧｾＨｖｎＲＫｗｎＲＩ＠ + GJwNvN } 

\ 
¥ 

Non-linear (2) 
f} 

- [ mQ2 Ｈｫｭｾ＠ ＭｫｭｾＩｴ＠ I [ S in1'lcos1'I + 4>cosZ1'Il + (E I 22-EI 11 ) t I [ (v,,2 -w" 
2 

) cos1'ls i n1'l + v"w" cosZ1'I 1 ] } dr 

itm 
\ } • 

Pitch Perturbation 

Thus the residual term ｦｾｬＧ＠ containing typically the applied, cyclic inertia, non-linear correction and pitch perturbatic 

terms, remains on the RHS as modal forcings for the particular (ith) mode. We could also employ ＨｆｾＩａ＠ to obtain the moda 
inertia and modal stiffness expressions as below; 

ＨｃｾＩａ＠ = ＨｃｾＩｄ＠ + ｌｯｱｬｦｾｬ＠

= LOql{ ＨｃｾＩｳｳ＠ - ｌｱｪｉｾｬｪ＠ - ｌｱｪｓｾｬｪ＠ + ｦｾｬ＠ } 

where 
R 

ＨｃｾＩ＠ S5 = J{ dM 
drOtl - ｭｮＲＨｫｭｾＭｫｭｩＩｴｬＨｳｩｮｩｴｭ｣ｯｳｾｭＫｾｯ｣ｯｳＲｾｭＩ＠ + ＨｅｉＲＲＭｅｬｬｬＩｴｩ｛ＨｖｯＲ｟ｷｯＲＩｳｩｮｾｭ｣ｯｳｾｭ＠ - ｶｯｷｏ｣ｯｳＲｾｭ｝＠

° 
- ti'{ ＨｅｬｬｬＫｅｉＲＲＩｾｾ｛ｕｏＫｾＨｖＰＲＫｗｯＲＩ｝＠ + ｇｊＨｾｯＫｗｯｶｾＩ＠ } dr 

R 

J 2 2 
ｉｾｬｪ］＠ m(km2+km1 )t j t l dr 

° 



S'1J= J{ ＭｭｮＲＨｫｭｾＭｫｭｾＩｴｬｴｊｃｏｓＲｾｭ＠ + ＨｅＱＲＲＭｅＱｬｬＩｴｬ｛ＨＲｶｯｶｪＭＲｷｯｷｪＩｳｩｮｾｭ｣ｯｳｾｭ＠ - ＨｶｯｷｪＫｶｪｷｏＩ｣ｯｓＲｾｭ｝ｴｬ＠
o 

- ti'{ ＨｅＱｬＱＫｅＱＲＲＩｾＧ＠ (uj+2vovj+2wowj) + GJ(tj+wovj+wjvo )} }ctr 

where (C,)S8 is 
condition; 1A. 

'f'l J 

the expression for the steady state condition given in the modes with (C,)88=0 ie. the equilibrh 
is the modal inertia; and SA. is the modal stiffness from torsion consideration only t which fn 

'f'l J 
orthogonalitYt 

1A. = 0 
'f'l J 

= 1A. . 
'f'l t 

SA. = 0 
'f'l J 

2 

= A'1 1'1 

if ｨｾｪ＠

if i=j where A'l is the torsion frequency. 

By summing all the degrees of freedom ie. Eqn.G14t the total coefficient of the generalised coordinates becomes 

ｾ＠ 0 = [Oql{ - [qJ1lj - [qJSlj + f 1 } 

:. 11jqj + ｓｬｪｱｾＭＭ］ｮＭ［Ｎｾ＠ 1 

Slj = 0 where 11 J = 0 

= 11 
2 

= Al I 1 

for all oQl. 

if i*j 

if i=j 

and ｉｬＬｓｬＨ］ａｾｉｬＩ＠ are the modal inertia and stiffness for the system mode concerned, provided by CRFD. The modal [orcin 
f l , consistent with CRFA assumption, is defined in Appendix I. 



Appendix I: RHS Forcing Vector for The CRFA System 

The information contained in Pages 11 to 15 is commercially 
confidential and is removed from this dissertation. Any query 
regarding the content should be referred to the author, Mr W Y F Chan, 
Box 231, Aerodynamics Department, GKN Westland Helicopters Limited, 
Yeovil, Somerset, England. 
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Appendix J: Blade structural Load Equations for The CRFA System 

The information contained in Pages Jl to Jl0 is commercially 
confidential and is removed from this dissertation. Any query 
regarding the content should be referred to the author, Mr W Y F Chan, 
Box 231, Aerodynamics Department, GKN Westland Helicopters Limited, 
Yeovil, Somerset, England. 
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Appendix K - Chebyshev Polynomial Integration Technique 

K1 - Formulation of Hinge Bending Moment using 

Modal Summation and Force Integration Methods 

Consider first that the mode response coefficient qi is determined by 

solving the response equation which, for a pure flapping blade in the 

absence of structural damping, is given by:-

RG 

= _1_ J dL Wi dr 
ｾｬｉ＠ dr 

i e 

RG 

(Kl) 

where 
. a 

( ) - al/J and J ()dr denotes the trapezoidal integration is to be 

e 

carried out from the blade root e to the tip using the aerodynamic 

radial stations, RG. The interval, typically 25, is defined from the 

blade root cut-out to the tip with zero aerodynamic loading inboard of 

the root cut-out. 

The boundary condition, characterised by the hinge bending moment, for 

an articulated rotor is derived as follows depending on the type of 

formulation. Consider only the pr imary forces: appl ied, inert ia and 

centrifugal forces, acting on the blade, 

Q 

FLAPPING 
HINGE 

ｉﾷｾＭＭｾ＠

8L 

8r 

"'; w' , 

.. 
mw 

w 

Primary Blade Forces 

Then the formulation, 

(1) By Force Integration Method 

r 

The hinge bending moment based on Force Integration is obtained by 

directly integrating all the loadings acting on the blade, ie 

RF 

M ( e) = J { F - I - w' VX } d r 
FI 

e 

- Kl -

(K2) 



where RF is the dynamic output radial interval defined from the blade 

(F) , root to tip, and the integrated applied 

centrifugal (Vx ) forces at radius r are defined as 
inertia (I) and 

RF RF RF 

F = J dL dr; 
dr I = J ｭｑＲｾ＠ dr; 

r r r 
RFRF RFRF 

:. MFI (e) = J ｊｾ［＠ drdr - J J ｭｑＲｾ＠ drdr -
e r e r 

Let the flap deflection be expressed in 
N 

ｷＨｾＬｲＩ＠ = ｛ｱｩＨｾＩｷｩＨｲＩ＠
i=1 
N 

RF RF 

J Wi J mQ2r drdr 

e r 
modal summation 

N 

.. ｷＨｾＬｲＩ＠ = ｛ｱｩＨｾＩｷｩＨｲＩ＠

i=1 
Wi ＨｾＬｲＩ＠ = [q1 ＨｾＩ＠ ｷｾ＠ (r) 

i=1 
and Eqn.K3 becomes 

RFRF N RFRF N RF RF 

MFI(el = f ｦｾ［＠ drdr - rl L q, f f mw, drdr - rl L q, f wi f mr drdr 
e r 1=1 e r 1=1 e r 

Integrating by parts and applying the boundary condition, 

RF N N 

= f { ( ｾ［＠ - mQ2 L q,w,) (r-el - mQ2r L q,w, } dr 

e 1=1 1=1 

Substituting ql from Eqn.K1, 

He 
JdL w1dr RF N dr 

- ａｾｱＬｽ＠ ) (r-el -

N 

MFI (e)= J { ( dL _ fill L w,{ e mQ2r L ql WI dr Q2I 
e 1=1 1 1=1 

N He 

RF [ WI J ｾ［＠ w1dr N 

(K3) 

(K4) 

} dr 

J{ ( dL _ mQ2 1=1 e 
) (r-e) + mQ2 L q, ｛ａｾＨｲＭ･ｬＭｲ｝ｷＬｽ＠ dr = dr Q2I 

1 e 1=1 

(KS) 

(2) By Modal Summation Method 

The hinge bending moment based on Modal Summation is obtained by 

summing the products of modal bending moment Ml output directly from 

CRFD with the modal responses calculated using Eqn.Kl, 

N N RH 

MHs(e) = [ ql Ml (e) = [ ql J ｭｑＲ｛ａｾＨｲＭ･ＩＭｲ｝ｷｬ＠ dr (K6) 

1=1 1=1 e 

- K2 -



where RH is the dynamic integrated radial interval, typically 500. 

is noted from Eqns.K5 and K6 that MFr(e) and MHS(e) are related via 
RF RH N 

MFI(e) = MHS(e) + { f -f } mQ2 L q,[ .. ｾＨｲＭ･ＩＭｲ｝ｷＬ＠ dr 

e e 1=1 

N RG 

L wi J ｾ［＠ widr 

It 

_ mn2 _1=_l __ e ___ _ 

0
2
1 

) (r-e) dr (K7) 
1 

in Eqn.K7, then the second 

He 

integrand vanishes only if J mw w dr-O for 11 ':t.' . 1 j - a 1 J Ie. the inertia 
e 

orthogonality is valid over the He stations. In general, this can be 

true only if RG=RH. On the proviso that He=RH' Eqn.K7 becomes:-

RF RH N 

MFI (e) = MHS(e) + { f -f } mQ2 L q, ｛ａｾＨｲＭ･＠ )-r ]w, dr (K8) 

e e 1=1 

Even in this case, MFr(e)=O, if and only if, 

RF N RH 

either f mQ2 L q, ｛ａｾＨｲＭ･＠ )-r ]w, dr = 0, since by defini tion, J (. . )dr=O 
1=1 e 

In general, the hinge boundary condi tions can only be satisfied if 

RG=RF=RH. Since RH is by far the largest array of spanwise integration 

points, it has been shown analytically that correct boundary conditions 

can be assured only if all integrations are evaluated over RH stations. 

K2 - Treatment of Non-Linear Torsion-flap-Lag forcing Terms 

for the C.P.I. Technique [3.49] 

Re-expression of Torsion-flap-Lag forcing Terms 

The response equation for a single blade, in the absence of damping. 

but with the torsion-flap-lag forcing is defined as 

ｱＬＫａｾｱＬ＠ = ｾｊ＠ {f i - ＨｅｉＲＭｅｬＱＩｴｬ｛ｖｎｗｎｃｏｓＲｾｭ＠ + ＨｗｎＲ｟ｖｎＲＩｓｬｮｾｭ｣ｯｳｾｭｬｽ＠ dr 
o 110 

(K9) 

- K3 -



where Fl· represents all other modal forcings and ｷＢＭｾｱ＠ w" and ｶＢＭｾｱ＠ v" N-L J J N-L J J. 

Based on simplified theory and symmetrical section, the coupled flap 

and lag modal moment expressions are given by, to O(c) accuracy, 

Mz ］ｅｉＲ｣ｯｳｾｭｃｶｎ｣ｯｳｾｭＫｷｎｳｩｮｾｭＩ＠ - ｅｉｬｳｩｮｾｭｃｷｎ｣ｯｳｾｭＭｶｎｳｩｮｾｭＩ＠ +OCc2
) CKIO) 

m 

My ］ｅｉＲｳｩｮｾｭｃｶｎ｣ｯｳｾｭＫｷｎｳｩｮｾｭＩ＠ + ｅｉｬ｣ｯｳｾｭｃｷｎ｣ｯｳｾｭＭｶｎｳｩｮｾｭＩ＠ +OCc
2

) (Kll) 
m 

Therefore, 

MZmWN-MYmVN = CEI 2-EI 1 ) [v"w" ｣ｯｳＲｾ＠ + C w,,2 _v,,2) ｳｩｮｾ＠ ｣ｯｳｾ｝＠ +0 (c
3

) (K12) N N m N N m m 

Substituting into Eqn.Kll yields 

R 

.. 2 I J {F - t [M w" + M v"] } dr qi+Alqi = -2- 1 1 Zm N Ym N (K13) 

Q liD 

From Eqns.KIO & KII, 

wii = ｍｺｭＨｅｾＲ＠ ｅｾｉＩ＠ sinilmcosilm ｅｾ［ｉＲ＠ (EI2COs2ilm+EIlsin2ilm) 

vii = ｍｙｭＨｅｾＲ＠ - ｅｾｉＩｓｩｮｩｬｭｃｏｓｩｬｭ＠ + ｅｾ［ｉＲ＠ (EI2sin2ilm+EI1COs2ilm) 

.. - (Mz", wii +MYm v,P = - [E ｾ＠ 2 - E ｾ＠ 1) (-MYm S inilm +Mz", COSilm) (-Mym cosilm -Mz", S i nilm) 

2 
.. qi + A1qi 

= 0;1 .f { F. +t. ｛ｅｾＲ＠ ＭｅｾｉＩ＠ (-Mym sinilm+Mz", COSilm) (-MYm cosilm -Mz", Sinilm) }ctr 

= 0;1. f{ ｆＮＫｴＧ｛ｅｩＲＭｅｾｉＩｍＱｍＲ＠ } dr (K14) 

where Eqn.K14 is the well-known torsion equation given by, for example, 

[KI]. The torsion moment expression, 

M' = - dM + w"M + v"M + mQ2 ＨＨｫｭＲｬＫｫｭＲＲＩｾ＠
xdef dr Z Y 

R R R 

J dMd J( w"M + v"M ) dr + J 2( 2 2 ｾ＠ 2 2-] dr 
M = dr r mQ (km l ＫｫｭＲＩｾ＠ + ＨｫｭＲＭｫｭｬＩｾ＠.. 

xdef Z Y 

r r r 

R 

[( E i 2 - E ｾ＠ 1) (-MyS i ｮｾ＠ + ｍｺｃｏｓｾＩ＠Ｈｍｹｃｏｓｾ＠ - ｍｺｓｩｮｾＩ＠ dr 
J 

dM 
= .:::;:.:dr -

dr 
r 

R 

J 2( 2 2':': + mQ ｃｫｭｬＫｫｭＲＩｾ＠

r 

where the underlined terms are due to torsion-flap-lag coupling. 

- K4 -



Application of the CPl technique 

The relevant non-linear term in the modal response equation is; 

MNL = [t, [Ei2 -Ei,) (-MYm sint}m+Mz,. COSt}m) (-MYm cost}m -Mz,. sint}m) dr (K151 

where El 1 ,E12 and 'Om are discontinuous and t1,M
Ym 

and ｍｾ＠ are 

continuous functions. Therefore, re-arranging Eqn.K15 into products of 

discontinuous and continuous functions, one gets 

MNL= ｛ｴＧｍｾｭ＠ ((Ei2 - ｅｾＬｬｳｬｮｴｽｭ｣ｯｳｴｽｭ｝､ｲ＠ - ｛ｴＧｍｾ｛ＨｅｩＲ＠ - Ei,lsint}mcost}m]dr 

r 
[

1 1 2 .2] (E1
2 

- El
1

)(cOS ｾｭＭ SIn ｾｭＩ＠ dr 

and the structural loads can be treated in the same way. 

Reference 

Kl. Hansford R E & Simons I A 

"Torsion-flap-Lag Coupling on Helicopter Rotor Blades" 

Journal of AHS, Vol.18, No.4, October 1973 

- KS -

(K16) 


	336425_0001
	336425_0002
	336425_0003
	336425_0004
	336425_0005
	336425_0006
	336425_0007
	336425_0008
	336425_0009
	336425_0010
	336425_0011
	336425_0012
	336425_0013
	336425_0014
	336425_0015
	336425_0016
	336425_0017
	336425_0018
	336425_0019
	336425_0020
	336425_0021
	336425_0022
	336425_0023
	336425_0024
	336425_0025
	336425_0026
	336425_0027
	336425_0028
	336425_0029
	336425_0030
	336425_0031
	336425_0032
	336425_0033
	336425_0034
	336425_0035
	336425_0036
	336425_0037
	336425_0038
	336425_0039
	336425_0040
	336425_0041
	336425_0042
	336425_0043
	336425_0044
	336425_0045
	336425_0046
	336425_0047
	336425_0048
	336425_0049
	336425_0050
	336425_0051
	336425_0052
	336425_0053
	336425_0054
	336425_0055
	336425_0056
	336425_0057
	336425_0058
	336425_0059
	336425_0060
	336425_0061
	336425_0062
	336425_0063
	336425_0064
	336425_0065
	336425_0066
	336425_0067
	336425_0068
	336425_0069
	336425_0070
	336425_0071
	336425_0072
	336425_0073
	336425_0074
	336425_0075
	336425_0076
	336425_0077
	336425_0078
	336425_0079
	336425_0080
	336425_0081
	336425_0082
	336425_0083
	336425_0084
	336425_0085
	336425_0086
	336425_0087
	336425_0088
	336425_0089
	336425_0090
	336425_0091
	336425_0092
	336425_0093
	336425_0094
	336425_0095
	336425_0096
	336425_0097
	336425_0098
	336425_0099
	336425_0100
	336425_0101
	336425_0102
	336425_0103
	336425_0104
	336425_0105
	336425_0106
	336425_0107
	336425_0108
	336425_0109
	336425_0110
	336425_0111
	336425_0112
	336425_0113
	336425_0114
	336425_0115
	336425_0116
	336425_0117
	336425_0118
	336425_0119
	336425_0120
	336425_0121
	336425_0122
	336425_0123
	336425_0124
	336425_0125
	336425_0126
	336425_0127
	336425_0128
	336425_0129
	336425_0130
	336425_0131
	336425_0132
	336425_0133
	336425_0134
	336425_0135
	336425_0136
	336425_0137
	336425_0138
	336425_0139
	336425_0140
	336425_0141
	336425_0142
	336425_0143
	336425_0144
	336425_0145
	336425_0146
	336425_0147
	336425_0148
	336425_0149
	336425_0150
	336425_0151
	336425_0152
	336425_0153
	336425_0154
	336425_0155
	336425_0156
	336425_0157
	336425_0158
	336425_0159
	336425_0160
	336425_0161
	336425_0162
	336425_0163
	336425_0164
	336425_0165
	336425_0166
	336425_0167
	336425_0168
	336425_0169
	336425_0170
	336425_0171
	336425_0172
	336425_0173
	336425_0174
	336425_0175
	336425_0176
	336425_0177
	336425_0178
	336425_0179
	336425_0180
	336425_0181
	336425_0182
	336425_0183
	336425_0184
	336425_0185
	336425_0186
	336425_0187
	336425_0188
	336425_0189
	336425_0190
	336425_0191
	336425_0192
	336425_0193
	336425_0194
	336425_0195
	336425_0196
	336425_0197
	336425_0198
	336425_0199
	336425_0200
	336425_0201
	336425_0202
	336425_0203
	336425_0204
	336425_0205
	336425_0206
	336425_0207
	336425_0208
	336425_0209
	336425_0210
	336425_0211
	336425_0212
	336425_0213
	336425_0214
	336425_0215
	336425_0216
	336425_0217
	336425_0218
	336425_0219
	336425_0220
	336425_0221
	336425_0222
	336425_0223
	336425_0224
	336425_0225
	336425_0226
	336425_0227
	336425_0228
	336425_0229
	336425_0230

