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ADSTRACT 

ABSTRACT 

Theoretical and experimental investigations of the 
static and dynamic behaviour of thin-walled structures are 
carried out with the ultimate aim of improving prediction 
procedures for various aeroelastic phenomena. The dynamic 
stiffness matrix approach is used for structural 
idealization, while strip theory and Theodorsen's function 
C(k) are used for the aerodynamic idealization. 

The dynamic 

composite beam with 
with an axial load 
centroid, has been 
carried out using 
Special cases, that 
been identified and 

stiffness matrix for a thin-walled 
geometric and material coupling together 
(compressive or tensile) applied at the 
developed. An exact analysis was then 
the derived dynamic stiffness matrix. 
are derivatives of the general case have 
discussed. 

A three stage program was developed to compute various 
static and dynamic properties of thin-walled closed or open 
section composite beams. In the first stage, equivalent 
elastic constants (overall laminate moduli) were evaluated 
for a given stacking sequence and material properties. In 
the second stage, various sectional properties were 
computed. When the outputs from these two stages were 
combined, valuable data on sectional rigidities, mass per 
unit length, polar mass moment of inertia, and shear centre 
location from the centroid were obtained. In the third stage 
of the program, all these properties were used to compute 
the natural frequencies and normal mode shapes of 
thin-walled composite structures. These programs can be used 
individually as well as in a combined manner. 

An experimental investigation of composite thin plates 
with varying degrees of bending-torsion coupling was 
conducted. Flexural and torsional rigidities, natural 
frequencies, normal mode shapes and flutter speed and 
frequency were experimentally determined. The results 
obtained were in close agreement with the theoretical 
predictions. 

Various open composite sections were experimentally 
studied for their static and dynamic properties. The results 
demanded a more refined investigation of the theory. In 
addition to the experimental study of composite open 
sections, a parametric study of uncoupled and coupled 
frequencies of such sections with common boundary conditions 
was also conducted. 

Thin-walled closed aerofoil shaped cantilevered 
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ABSTRACT 

structures were tested to establish flexural and torsional 
rigidities, shear centre, and the polar-mass-moment of 
inertia. Natural frequencies and normal mode shapes were 
also determined. The aeroelastic behaviour of these sections 
was investigated to establish divergence and flutter 
characteristics. 

Comparisons of the experimental results with 
theoretical predictions of flutter speed and frequency were 
in general satisfactory and the results provided an insight 
into the aeroelastic behaviour of thin-walled composite 
beams. The results are discussed and commented on. 
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NOTATIONS 

NOTATIONS 

A Area 

A.. Extensional stiffness L4 

a0 Lift-curve slope value 

B`ý Coupling stiffness 

b Semi-chord length 

C(k) Theodorsen's function 

c (i) Chord length 

(ii) Speed. of sound 

(iii) Distance from root to the application of load 

ct Coefficient of lift 

c Coefficient of pitching moment 
m 

cß Control surface chord 

Dtv Bending stiffness 

E (i) Young's modulus of elasticity 

(ii) Elastic forces (Structural) 

El, E2 Young's modulus of elasticity in the fibre and 

transverse directions 

Ex, Ey, Gxy Equivalent elastic constants 

EI Bending/flexural rigidity 

EI0 Bending rigidity near the root 

e Distance between the centroid and shear centre 

G Shear modulus of rigidity 

G! 
2 

Shear modulus of rigidity in the 12 - plane 

GJ Torsional rigidity 

h Vertical deflection (heave motion) 

I Inertial forces 

I Reference moment of inertia 
r 

K (i) KUssner kernel function 

(ii) Bending/torsion coupled rigidity 

Kx, Ky, Kxy Curvatures corresponding to moments Mx, My and Mxy 

Kh Stiffness of the support in bending 

L (i) Lift force 
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(ii) Lagrangian 

Length (span) 

M Pitching moment 

m Mass per unit length 

Mx, My Bending moments per unit length 

Mxy Twisting moment per unit length 

Nx, NY Normal forces per unit length in x and y 

directions 

Nxy shear force per unit length in xy plane 

P Axial force 

p Load 

QL Generalised forces corresponding to externally 

applied forces 

q Shear flow 

qb Basic shear flow 

q` Generalized coordinates 

r Radius of gyration 

S (i) Area of the lifting surface 

(ii) Shear force 

s Span of the lifting surface (wing) 

T Total kinetic energy of the system 

t (i) Time 

(ii) Thickness 

U Speed of the flow 

u Speed of air over the moving aerofoil 

V Potential or elastic strain energy of the system 

w Down-wash 

u, v, w Displacement components in x, y, z directions 

xa, C$ Distance of shear centre from the centroid 
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GREEK SYMBOLS 

a (i) Torsional deformation (pitching motion) 

(ii) Angle of attack of the aerofoil to the 

flow of air 

0 Angle of attack of the control surface 

6 Length of side walls in a multi-cell section 

Wagner's function 

0xi' t' ' 0Zi Generalized displacements 

Oh , 'Oa Generalized displacements of h and a 

C ,E Normal strains in x, y, and z directions 
y Z 

tE Shear centre location from a reference point 

yxy, yyz, yxz Shear strains in xy, yz, arid xz planes 

h Lame's-constant 

N Viscosity of the fluid 

Poisson's ratio 

p Density (air, composite material, etc. ) 

a Stress 

e (i) Ply orientation angle 

(ii) Angle of twist 

(i) Frequency of oscillation 

w (ii) Eigen value 

w0 Control Surface Frequency 

T Non-dimensional time 
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MATRICES 

(A] Aerodynamic matrix 

(F] Force matrix 

{K] Generalized stiffness matrix 

{K} Bending and twisting curvatures 

[Kfl Dynamic stiffness matrix 

{M} Bending and twisting moments 

IM) Generalized mass matrix 

{N} Inplane forces 

{q} Modal coordinates (column matrix) 

[QF] Generalized aerodynamic matrix 

IQA] Flutter matrix 
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GENERAL INTRODUCTION 

Historical Background 

In the early days, aeroplanes were designed by making 

use of materials that usually provide a rigid structure, 

but as the need for lighter weight and higher performance 

increased, composite materials were introduced. The usual 

design procedures have changed with these new materials 

yielding lighter and stronger structures. However, this 

has led to flexible structures which are more susceptible 

to aeroelastic problems, so that in modern aircraft design 

procedures, aeroelastic constraints play a vital role. 

Flutter, an aeroelastic phenomenon in which the 

external source of energy is the air stream, was known to 

aircraft engineers as early as 1916. It is not necessary 

for aircraft to be accelerated Intentionally beyond the 

flutter free air speed in order to experience flutter. For 

example an excessive air speed may result when a phugoid 

is experienced or an unwanted dive is made. A slight 

disturbance at this stage may set up dangerously diverging 

vibrations, often called self-excited oscillations or 

flutter, causing failure of the structure. Thus 

Investigation of flutter has become a %serious factor in 

the design process. 

In the early days, problems relating to flutter were 

overcome by means of mass balancing of the structure. The 

design of aircraft structures using conventional isotropic 

materials has been securely based on vast experimental 

experience, and further does not require anything- but 

straightforward theories such as the Engineer's bending 

theory, St. Venant theory or Bredt-Batho's theory. All 

design practice for low/medium speed aircraft has been 

based on such ideas. For various reasons, such as high 

specific strength and stiffness, the prospect of high 
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fatigue life and low maintenance cost, composite materials 

were first introduced in 70's in primary structures, 

particularly in helicopter blades where these properties 

were exploited. Initially fibre reinforced composite 

materials were introduced to simulate the behaviour of 

isotropic ones, so the analysis of early fibre reinforced 

composite structures was straightforward. Then the 

possibility of using the fibre reinforced composite 

materials in a more adventurous way brought a need for a 

new mechanics. 

Nowadays, new materials, particularly fibre 

reinforced composites, have given new dimensions to the 

flutter control problem. Due to the directional properties 

of fibre reinforced materials, the capability of achieving 

an improved design has been 
enhanced tremendously, and 

this whole exercise has been named as AEROELASTIC 

TAILORING. Lifting surfaces of an aircraft are prime 

subjects of this relatively new field, particularly when 

aspect ratios are high and the structure is comparatively 

more flexible. Several types of aeroelastic problems, both 

static and dynamic when coupled with composite materials 

such as fibre reinforced composites, make this an 

extremely fertile field for research. 

Various approximate and analytical techniques have 

been developed in this work for predicting aeroelastic 

behaviour of an aircraft. To maintain accurate predictions 

it is necessary to increase the complexity of the 

mathematical modelling of the structure. The work has been 

carried out in particular in the context of composite 

materials. 

The introduction of composite materials in the 

manufacture of lifting surfaces has renewed interest in 

thin-walled structures. These structures not only perform 
the job of retaining the profile but also act as main 
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bending and torsional members compared to wing-box 

structures with ribs often used in wings made of 

conventional materials. The unsymmetrical geometry of the 

cross section introduces the problem of elastic coupling 

due to non-coaxial elastic and centroidal axes. The 

complexity of the structure is enhanced by the material 

bending-torsion and extension/torsional coupling due to 

symmetric and anti-symmetric laminate stacking sequence. 

The novelty and little known behaviour of these structures 

made them very attractive candidates for research. 

Aims and Objectives 

Because we lack authority in the design of lighter 

thin-walled fibre composite structures compared with that 

which underpins the design of light alloy ones, the 

primary aim of the work reported here is to secure a 

comparable design base. This has been attempted by means 

of a series of technical tasks which are listed below. 

Each of these tasks has been confirmed by appropriate 

experiments . thus consolidating the theory before 

proceeding to the next tasks. 

(i) To assess the reliability of available means of 

estimating static and dynamic structural 

properties of composite structures, such as 

beams, plates, and thin-walled open and closed 

sections including wing sections. 

(ii) To develop a computer program to calculate 

static structural properties for composite 

structures. 

(iii) To develop an exact solution for free vibration 

analysis of thin-walled composite sections with 
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elästic and material bending-torsion coupling 

with an axial load present using a dynamic 

stiffness matrix approach. 

(iv) To develop a computer program to predict 

critical buckling loads, natural frequencies 

and normal mode shapes of composite thin-walled 

structures with elastic and material 

bending-torsion coupling and axial load. 

(v) To investigate the effect of the 

bending-torsion coupling stiffness of 

symmetrically laminated thin-walled structures 

on the predominantly bending and predominantly 

torsional natural frequencies and normal mode 

shapes. 

(vi) To develop a computer program to predict 

flutter speed and frequency of a composite 

lifting surface with the bending-torsion 

coupling stiffness. 

(vii) To investigate the effect of the 

bending-torsion coupling stiffness on the 

flutter speed and frequency of thin-walled 

composite structures. 

(viii) To carry out an experimental investigation 

into the static, dynamic, and aeroelastic 

characteristics of composite beam, plate, and 

thin-walled closed and open section structures 

including an aircraft wing. 

Brief Outlines and Layout of the work ` 

The prediction of aeroelastic properties depends upon 

static and dynamic characteristics of the structure. 
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Therefore, the Investigation was split into three main 

stages namely, static, dynamic, and aeroelastic. Each 

stage had two major aspects to be investigated: one 

theoretical and one experimental. An initial update of the 

present status of each stage of investigation was a common 

exercise that was strictly followed throughout the 

reported work. It was noticed that each stage proved to be 

an important research exercise in itself. 

The experimental investigation started with the 

establishment of the material properties. An initial 

parametric study with these material properties helped in 

making a choice of the feasible geometrical details of 

various structures to be investigated. Various computer 

programs were developed which helped in conducting these 

initial studies. 

" 
The test techniques were validated by conducting 

similar tests on structures made of conventional 

(isotropic) materials, prior to any test on composite 

structures. This practice helped in isolating the errors 

caused by the test setup, etc. 

In order to obtain reliable estimates of the 

structural static properties such as rigidities, etc., a 

summary of the available work was prepared. A programme of 

experimental investigation of static structural properties 

of various different types of structure was. conducted. 

The results were compared with the theoretical predictions 

and the reliability of available means of estimating 

static structural properties was evaluated. 

In the second stage of investigation, an exact 

solution for vibration analysis was obtained for 

thin-walled composite sections with both elastic and 

material coupling present. The evaluated dynamic stiffness 

matrix is used to analyse the structure statically and 

estimate its critical buckling load. It is also used in 
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dynamic analysis to investigate-the natural frequencies and 

mode shapes of the structure. In other degenerated cases 

such as with material coupling only, explicit equations 

were obtained. The advantage of these explicit equations 

over the numerical methods is appreciated due to a large 

saving in computer time. 

The composite structures already tested for their 

static structural properties in the first stage were 

further tested to establish their natural frequencies and 

mode shapes. Experimental results were compared with the 

theoretical predictions to assess the reliability of the 

theoretical model selected. 

In the final stage of experimental investigations, 

structures such as plates and thin-walled closed sections 

with aerodynamic profiles were tested in the wind tunnel 

to study their sub-critical and critical flutter 

behaviour. Experimental results were compared with 

computer program predictions for flutter speed and 

frequency. 

Each chapter of the thesis is self-contained and can 

be treated individually. After giving a brief introduction 

to the chapter contents, a historical review of the 

subject is presented. This is followed by the theoretical 

background. In reporting the experimental results 

validation of the test technique is first discussed, and 

then the tests performed on composite structures are 

described. The test results are corrobor$ted by discussion 

of results and conclusions. 

0 
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CHAPTER 1 

AEROELASTICITY 

1.1 INTRODUCTION I 
The design of aircraft often aims at lighter 

components, resulting in flexible structures prone to 

distortion due to loads. Aerodynamic loads are essentially 

due to the geometry of the lifting surface structures. If 

somehow these loads cause deformations in the structure and 

vary the geometry, they will give rise to totally different 

aerodynamic loads. These loads will produce further 

distortions in the shape of the lifting surface and so on. 

This interaction between aerodynamic, elastic and inertia 

forces is classified as the subject of AEROELASTICITY. 

Although the aircraft on many occasions is idealised 

to be rigid, its structural flexibility is fundamentally 

responsible for a variety of complicated aeroelastic 

phenomena. Aeroelastic effects are due to the mutual 

interaction of inertial, elastic (structural), and 

aerodynamic forces induced by static or dynamic disturbing 

forces. In the absence of external disturbing forces, one 

has to deal with aeroelastic stability problems, the most 

serious of which is the dynamic instability known as 

flutter. Aeroelastic phenomena are often restrictedito-the 

physical lifting surfaces of an aircraft, such as wings, 

stabilizers, controls, etc., because their mutual coupling 

via the relatively heavy and stiff fuselage may_ be 

comparatively small. 

The various aeroelastic phenomena can be classified by 

means of Collar's [i) well known triangle of forces, - shown 

in Figure (1.1). Three types of force, namely (i) 

aerodynamic, (ii) elastic, and (iii) inertial are placed at 

the vertices of a triangle. Then every aeroelastic 
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phenomenon can be located according to its relation, to the 

three vertices. Static aeroelastic phenomena due to 

interaction of aerodynamic and elastic forces (such as 

lifting surface divergence or control surface efficiency) 

lie outside the triangle on the upper left side, whereas 

dynamic aeroelastic phenomena (such as flutter, dynamic 

response and buffeting) lie within the triangle, since they 

involve all three kinds, of force. The interaction of 

elastic and inertial forces give rise to mechanical 

vibrations, being important for the analytical treatment of 

dynamic aeroelastic problems, whereas the interaction 

between aerodynamic and inertial forces will introduce 

rigid body dynamics. 

Static aeroelastic phenomena are associated with 

static structural deformations and steady-flow aerodynamic 

forces which are easy to predict by conventional 

steady-flow aerodynamics. However, the prediction of 

unsteady aerodynamic inputs for problems in high-frequency 

aircraft dynamics makes it complicated. 

1.2 FLUTTER 

Flutter is a closed loop structural vibration problem. 

Aeroelastic flutter is a self-excited type of vibration, 

where in a linear system the motion-induced unsteady air 

loads give rise to oscillatory amplitudes of increasing 

magnitude, as shown in Figure (1.2). Flutter is different 

from forced or resonant oscillations since the flutter 

occurs in the absence of any periodic external excitation. 

A lifting surface in flutter acts as an air-engine. which 

extracts energy from the air. Therefore, flutter may be 

defined as an oscillatory instability occurring in an 

aircraft in flight, where the structural flexibility plays 

an important role in the instability. I 
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1.3 A BRIEF HISTORY OF FLUTTER 

The history of flutter can be dated back to the early 

days of flight. The Wright Brothers in their historical 

flight made beneficial use of aeroelastic effects for roll 

control of their biplane by the use of wing warping in 

place of ailerons. They were also aware of the adverse 

aeroelastic effects of the loss of thrust of a propeller, 

due to twisting of the blades, by their experiments on the 

performance of thin propellers having broad blades. They 

noticed that the propeller tip under heavy thrust loads 

twisted to partially unload by itself (z). 

On December 8,1903, Prof. Samuel P. Langley failed 

for the second time, in an attempted launch of his powered 

flying machine. The collapse of the rear wing and tail 

seems to be a less certain cause of failure. Hill (a) 

suggested that insufficient wing-tip stiffness could have 

been resulted' in wing torsional divergence i. e. 

aeroelasticity might have played an important role in it. 

Collar in his survey papers (4.5) and Garrick and Reed [a] 

shared the same view with Hill's investigations. 

While investigating violent antisymmetrical torsional 

oscillations in the Handley-Page 0/400 biplane bomber 

during World War It Lanchester distinguished, between 

flutter and resonance and suggested an increase -in 

torsional stiffness as a remedy. A similar solution was 

suggested for the tail flutter experienced by the de 

Havilland DH-9 aircraft. 'Bairstow, and Fage (7) provided 

the analytical background for Lanchester's investigations. 

Bryan [e] derived dynamic equations of motion for the 

stability of rigid-body 'aircraft using small disturbance 

method. The aerodynamic derivatives by. Bairstow and Fage 

[7) were termed aerodynamic coefficients- of stability. The 

determinant of these coefficients gives a quartic 

polynomial for the determination of roots (i. e. eigenvalues 
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and eigenvectors) and predicts the stability of the system 

using Routh's criteria [o). 

In 1922, Baumhauer and Koning [so] introduced the 

technique of mass balance of the control surfaces to 

uncouple dynamic interaction between modes. This approach 

was adopted by Fokker III] in trouble shooting of 

mono-plane D-VIII and in the Initial study conducted by 

Blasius [!! ] on the Albatross which was followed by a 

detailed analysis of Reissner In 1926.1121. 

The technical word of FLUTTER was first introduced in 

the 1924-25 year book of British Aeronautical Research 

Committee (ARC). In 1925, the ARC Accident Investigation 

Subcommittee reported five incidences of flutter with 

similar reports from Holland and the U. S. A. [is]. In 1936, 

more than fifty cases of wing, rudder and elevator flutter 

were reported. 

The development of nonstationary aerofoil theory led 

to the progress of flutter analysis. In 1922, Birnbaum 

extended Ackerman's concept to nonstationary aerofoils on 

Prandtl's suggestions (4.15) to obtain numerical results 

for reduced frequency, k, up to 0.12. (Note that k=wUb 

where w is the circular frequency of sinusoidal motion, b 

is an arbitrary reference length and U Is the airspeed. ) In 

1929, Glauert [ld, t7] obtained results for k =' 0.5 using 

Wagner's method [se) and Kilssner (1o] used -Birnbaum's 

method to yield results for k=1.5. Finally, Theodorsen in 

1934 [zo), published an exact solution of a harmonically 

oscillating wing for an unlimited value of k. 
, 

Frazer and Duncan [21) and Perring [zz] used simple 

and scaled wind tunnel models to study,, and identify. 
", 
the 

phenomena of flutter which resulted . , 
in 

, 
design 

recommendations and indicated the need for measurements of 

aerodynamic derivatives. These tests also demonstrated the 

efficacy of the aeroelastically scaled models. for 
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prediction of critical flutter speed of a full scale 

prototype. The scaling laws for dynamic similarity between 

a model and a full-scale were developed by Wood and Lamb 

(23) in 1927. 

Similar to British progress in aeroelasticity, Zham 

and Bear [24), Newell, Younger and Greene [za) in the 

United States, analysed flutter by attributing the 

phenomenon to the wake of the main wing and suggested an 

increase in torsional rigidity and moving the mass centre 

forward. Wind tunnel flutter tests were carried out by 

Rauscher, Grady and MeVay [zd). 

Duncan and Collar [271 extended Glauert's theory to 

cater for wing translation and rotation obtaining results 

through numerical integration. Theodorsen gave a theory 

(201 for the two dimensional oscillating flat plate 

undergoing translation, rotation and aileron motions. The 

total lift developed was divided into circulatory and non- 

circulatory parts of the velocity potential. The trailing 

edge flow condition provided a relation between the two 

parts. The solution leads to a combination of Bessel (or 

Hankel) functions designated by C(k), commonly known as 

Theodorsen's (circulation) function, where k is the reduced 
frequency. Silverstein and Joyner (ze) experimentally 

confirmed the oscillating lift of an aerofoil in pitching 

motion. In the case of flutter stability, Theodorsen took a 

different course of action by defining eigenvalues to be 

complex quantities for a sinusoidal aerodynamics. For the 

flutter condition, both real and imaginary parts should 

% vanish simultaneously. 

Parametric studies of flutter calculations were 

conducted by Theodorsen and Garrick [zP) which provided a 

valuable insight in their individual behaviour. 

Burgers (so) applied Birnbaum's theory to -calculate 

the horizontal forces on a flapping wing and developed the 
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theory of the propulsive forces on a flat plate aerofoil 

including the effect of the suction force at the sharp 

leading edge. Garrick extended the analysis to include 

aileron motion (at) using the concept of aerodynamic energy 

as described in relation to Duncan's "flutter engine" [sz]. 

Garrick (as) found an analogy between oscillatory and 

indicial aerodynamics. In the case of a simple flat plate, 

the Fourier integral or Laplace transform establishes the 

relation between the indicial lift function of Wagner K! (s) 

and the frequency response function of Theodorsen C(k). 

Similarly, Von Kärmän 'and Sears [sa] developed the 

frequency response function known as Sear's gust function 

from the indicial lift function of Küssner (as). 

Walker and Farren [ad) found that the lift coefficient 

was greater than the usual maximum value for a static case, 

leading to a complex nonlinear hysteresis effect for an 

oscillating aerofoil, being a function of Reynold's number. 

This will occur in stall flutter and also in the case of 

high angle of attack buffeting. 

In 1933 Roxbee Cox [27) gave an empirical formula for 

flutter calculations based on wing torsional stiffness and 

Küssner Iss) in 1935 developed a similar expression based 

on reduced torsional frequency. Both attempts showed that 

the German approach of Küssner [as) and Theodorsen [zo] 

considered flutter as a sinusoidal motion expressed in 

terms of natural frequency. In contrast, the British 

approach along Bryan's stability theory (e] and Routh's 

discriminants [P] was based on stiffness, inertia, and 

damping coefficients which ignored a direct relationship 

between natural vibration modes and flutter. 

In 1935, Von Schlippe in Germany used the inflight 

resonance technique [as], to substitute actually flying the 

aircraft to critical flutter speed. Flutter speed would be 

an asymptote to the curve obtained by plotting resonant 
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damping against air speed. The estimated flutter speed can 

thus be deduced from the pre-critical flutter speed 

observations. However, Frazer and Jones too) cautioned that 

the damping may suddenly diminish for very small changes of 

air speed. This technique was in service successfully until 

1938 when a Junkers JU90 fluttered unexpectedly during the 

flight test and crashed. 

Bratt, Wight and Tilley [40) applied an electrical 

technique to measure the aerodynamic damping for pitching 

oscillations using a Wattmeter harmonic analyser. The 

electronic Wattmeter analysed the rectified and modulated 

output from the stress indicator and measured the damping 

coefficient directly. The Vector Method of vibration 

measurement developed by Kennedy and Pancu [41) along with 

the Wattmeter analyser played an important role in aircraft 

ground and flight resonance testing. 

Survey papers, NASA SP-285 and 415, published in 1975 

give an account of the contributions made by ground based 

and inflight digital computers, real time analysis and a 

variety of excitation methods (steady-state, transient, 

pulsed, and random) to make the tests possible and safe. 

Wasserman, and Mykytow (42) used polyvinyl-chloride 

wind tunnel models to match the all metal and fast 

aeroplane characteristics. Other examples are the 1/4-scale 

model of a PBM-1 seaplane tested in the NACH Propeller 

Research Tunnel by Nagel, Bergen, Miller and Hartman in 

1938 and the e-Vultee XP-54 tested in 1942, resulting in 

elevator flutter and in 1944, a complete aeroelastic model 

of a Junkers JU-288, tested in Germany. The designs of B-47 

and B-52 jet transports benefited from such model studies. 

In 1946 a special 4-ft wind tunnel was designed to 

provide flutter test research facility by running it at 

high subsonic Mach numbers, i. e. up to 0.8, at the Langley 

Laboratory in the United States of America. The tunnel test 
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medium can be air or a high density fluid such as Freon to 

achieve a considerably lower speed of sound (the density of 

Freon being four times than that of air, the speed of sound 

can thus be reduced to half when compared to its value in 

air). Later it was changed into a 2-ft slotted throat 

continuous flow transonic tunnel. Another 26-inch transonic 

blowdown tunnel was particularly useful in testing small 

wing and tail flutter test models. 

Flutter tests in the transonic region were conducted 

by means of dropping models from a high flying aircraft, 

ground-launched rocket propelled models, models mounted on 

aeroplane wings flying in a uniform transonic flow region, 

models and full-scale components mounted on rocket sleds 

capable of accelerating to transonic speeds. 

In 1938, Possio in Italy [sad applied the concept of 

acceleration potential introduced by Prandtl (44] to the 

two-dimensional nonstationary problem. The solution of 

Possio's integral equation measured the loading over a flat 

plate aerofoil 'for a known displacement i. e. for a given 

downwash. He also gave a numerical procedure to the'problem 

in a supersonic mainstream [45]. 

Lifting-line theory was developed by Cicala (1937) 

(4d), Jones (1940) [«], KUssner- (1943) 14eß and Reissner 

(1944) (-W by generalizing Prandtl's integral equation 

[44] (of induced drag and spanload distribution) for 

unsteady flows: The lifting-line and multiple lifting-line 

methods played a vital role until computational methods'for 

lifting-surface theory were developed by Jones 15o]-with 

indicial aerodynamic aspects. A substitute expression =for 

the Wagner function was given which was useful in 

applications to transfer functions. 

Küssner (s! ], provided the basis for a general lifting 

surface theory for finite wings, making use of Prandtl's 

acceleration potential and the effect of a uniform `Moving 
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doublet. The unknown aerodynamic- load distribution is 

related to the downwash by means of KUssner's kernel 

function K. In two dimensions, the integral reduces to the 

kernel of Possio's equation. In 1954, a general explicit 

expression for K was developed by Watkins, Runyan and 

Wollston [521. 

Numerical lifting surface methods, 
'initially developed 

by Falkner Iss] using the velocity potential were extended 

to oscillating flows by Jones [54) and Morino [ss). 

By World War II, the need for faster, all metal 

aeroplanes with a variety of performance requirements 

introduced new kinds of aeroelastic problems such as the 

tip-tank flutter and aileron buzz experienced in the case 

of P-80 aeroplane [sa), tiansonic flutter of thin wings of 

high speed aircraft, panel flutter at supersonic speeds and 

unique problems arising from battle-field damage, etc. 

A survey of flutter incidents during 1945-55 (s7) 

showed a total figure of 54 alone on US military aircraft 

which included transonic control-surface buzz and wing 

flutter. A fighter aeroplane was lost in a test flight in 

the 1950's due to flutter of a hydraulic line. In another 

incident panel flutter caused serious cockpit noise. In the 

1960's panel flutter on, the Saturn V Apollo launch vehicle 

ended in a costly investigation of the vehicle'[s7]. 

In 1941, Loring (se] outlined a general approach to 

flutter analysis making use of the examples given, by 

Frazer, Duncan and Collar in their book on matrices [so]. - 

Smilg and Wasserman (60] in 1942 : -prepared 

comprehensive tables for unsteady aerodynamic coefficients 

based on Theodorsen theory and made an addition to the work 

of Küssner and Schwarz (1940) on - control-surface 

aerodynamic balance. The procedure, commonly known<as. V-g 

method, adopted for flutter computation was based, on 

structural damping involving the parameter g- (damping 
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factor). The modal damping coefficient is plotted against 

the air speed. The flutter condition is achieved when one 

of the modal damping coefficients vanishes. 

Lappert [d&), Bell [oz), Winson [Qs) and Baird [da] 

introduced computers in flutter analysis in the fifties. 

MacNeal, McCann and Wilts [d5l, developed a flutter 

analysis technique on an analogue computer. Others used 

multi-degree of freedom flutter simulators and electrical 

analogies for flow solutions. 

A survey of aeroelasticity with reference to flutter 

shows that from 1936 to the late sixties ground vibration 

tests were used to measure the natural frequencies and 

normal mode shapes of the structure to-op]. A very simple 

two dimensional unsteady aerodynamic theory was used to 

predict the flutter speed (7010). The notable 

contributions made during that period were due to Loring 

[71) and Barton (721. Loring's work was based on 

generalized coordinates whereas Barton relied on a 

coefficient method. Sherman, Dipola and Frissel 1791 used a 

simplified version of the Routh-Hurwitz discriminant and 

Ruggiero (741 made a comparative investigation of various 

methods. These earlier works eventually led to the 

application of IBM machines to the solution of the flutter 

determinant for example, see Leppert Ica). 

A significant contribution to computer -aeroelastic 

analysis programmes was the development of NASTRAN ['ral. 

The structural Idealization used in NASTRAN is based on the 

finite element method and the program uses the vortex 

lattice theory in the aerodynamic idealization. 

The capacity of the finite element method . 
is 

indisputable-but its. huge memory size requirement-and high 

cost have attracted other means of solving structural 

engineering problems. The development of thin-walled 

structure theory has been a. great step in this direction. 
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CALFUN, a program for CAlculation of Flutter speed Using 

Normal modes has been developed by Banerjee (7d.?? ] and is 

based on Loring's work 171). The program can run even on a 

PC which clearly shows its advantage over its rival 

software in the market such as NASTRAN, etc. However, this 

does not make the well established packages like NASTRAN 

(which has detailed modelling capability) redundant. In the 

usual design procedure there are many phases and at the 

initial stage it is advisable to avoid costly programs like 

NASTRAN. However, it is ideal to analyse an aircraft wing 

using a relatively cheaper but sufficiently accurate 

computer program in the early stages of the design. The 

analysis can then be refined by repeating the exercise on 

an established finite element package. 

The introduction of composites, super critical wings, 

and active control techniques are the challenges that 

aeroelasticity has to face today. The last twenty years 

have been remarkable for the advent of finite element 

calculations and, more recently, for the development of 

optimization methods and proposals for new ground vibration 

test techniques. Composite materials are opening several 

new possibilities, but are raising difficult problems that 

are still under investigation. 

Progress in the field of aeroelasticity with special 

reference to flutter analysis can be divided into two 

branches. Firstly, optimised structures are designed using 

already known analysis procedures and composite materials 

to improve the performance of the aircraft by- passively 

controlling deformation in aerodynamically loaded lifting 

surfaces. 

Secondly, the analysis techniques are undergoing 

constant modification such as improved macromechanics for 

composite materials, structural elements to cater for more 

degrees of freedom and better aerodynamic codes based on 
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three-dimensional and unsteady aerodynamics. For example 

computational fluid dynamics has been recently employed in 

wing flutter analysis using generalized aerodynamic forces. 

A transonic small-disturbance computer code called CAP-TSD 

(7e) for flutter predicti6n has been developed which has 

the capability of the aeroelastic analysis of a complete 

aircraft configuration. The program can also predict steady 

and unsteady aerodynamic pressure distributions. 

The notable research work done on the subject of 

aeroelasticity in the late sixties has been reported by 

Fung (79], Scanlan and Rosenbaum [so], Bisplinghoff, Ashley 

and Halfman (az). A five-volume manual was prepared by the 

NATO Advisory Group for Aeronautical Research and 

Development under the editorship of Jones [ei]. Other 

useful books are by Duncan [ez] on the treatment of dynamic 

stability of aeroplanes and by Templeton (ea) on the 

explanation and avoidance of control surface flutter at 

subsonic speeds. An excellent monograph on the practical 

engineering aspect was given by Broadbent [ea). Other 

notable contributors in the field during this period are 

Abramson [es], Myklestad (ea], Freberg and Kemler [e7), Von 

KArmin and Biot Joel,, and the translation from Russian of 

Grossman's report [09]. More recent contributions to the 

subject of the aeroelastic behaviour of lifting surfaces 

are amongst others by Bisplinghoff and Ashley loo] and 

Dowell [oil. 

1.4. FLUTTER ANALYSIS USING GENERALIZED COORDINATES 

AND NORMAL MODES 

A complete flutter analysis using generalized 

coordinates and various techniques of solving the flutter 

determinant can be found in references I7p. so, oo, pt ]. A 

brief summary of flutter analysis using generalized 

coordinates and, normal modes will be presented here. 
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SUMMARY OF THE METHODS 

1. Determination of natural frequencies and normal mode 

shapes. 

2. Selection of modes (normal modes) for flutter analysis. 

3. Reduction of mass and stiffness matrices to diagonal 

form to give generalized mass and stiffness matrices 

respectively. 

4. Expression of the aerodynamic matrix in modal 

coordinates to give the generalized aerodynamic matrix. 

5. Formation of the flutter matrix by algebraically summing 

generalized mass, stiffness and aerodynamic matrices. 

6. Solution of the flutter determinant. 

THE AERODYNAMIC MATRIX IN MODAL COORDINATES (ASSUMPTIONS): 

(i) Lift and moments are linear functions of h and a. 

(ii) Airflow is two dimensional (infinite aspect ratio, 

the strip theory assumption). 

(iii) Aerodynamic coefficients are computed for a flat 

plate aerofoil at zero mean angle of attack. 

TORSION-BENDING AERODYNAMIC FORCES: 

The aerodynamic'lift and moment ofýthe wing induced by 

a bending deflection h (positive downward measured at the 

elastic axis) and a pitching rotation a (positive nose-up) 

about the elastic axis are given in terms of Theodorsen's 

function C(k) (zP) as follows : 

L_ k2 
6- 

- aha) + tka + 2C(k) [a + 
ibk 

+ (Z - ah)1ka] 

pnbU 

m@ 
(2 + ah) 2C(k) [a + 

ibk 
+ (Z - ah)lka] - kzah( 

h- 
aha) 

2 

- (z + ah)1ka +a (1.4. lb) 

where k-wUb= reduced frequency parameter 
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L= lift, positive upwards 

h= heave, positive downwards 

M= moment, positive nose-up 

a= angle of attack, positive leading edge up 

The lift and mQment given above can be expressed in 

matrix form as follows 

L= 
rA 

ii 
Aiz fhM 

iz 
Azz 1af 

where 

Ali = npU2 
[_k2ý 

2C(k)ik) 

Aiz = rrpU2b 
[(ahk2+ 

ik) + 2C(k) [1 + ik(2 - ah)) 

AZ! = npU2b 
[2c(k)1kc. 

2 
+ ah) - k2ah) 

A22 = npU2b2(2C(k)(Z + ah) 11 + ik (2 - ah)] 

2 

+ä+k2a2-2- ah)lkl 

Assuming only three modes for simplicity, the 

aerodynamic matrix in terms of generalized coordinates 

(gs, g2, q, ) can be derived as follows: 

f h(x, t) 1=Lt (x) hz(x) h9 (x) 1f q1(t) 

t 
(x, t) 

f! 
(x) a2 (x) aa (x) J q9(t) 

or expressed in summation signs 

h(x, t) = hi(x) qi(t) (1.4.4) 
a(x, t) = «i(t) qi(t) 

The generalized aerodynamic forces Qi corresponding to the 

generalized coordinates qj are found by calculating the 

virtual work done 6W by the airforces in varying qj to qj+ 

6q1 

oWj = 6gIf. 
(L(x)hi(x) 

+ M(x)ai(x)) dx (1.4.5) 

0 
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In matrix form 

dWi 
OC]i 

t 
h 

i a i 

q 

2 
= h2 a2 

rL] 

L 
.1 

dx (1.4.6) 

dWs 
h O1 dq s s 

s o 

Then substituting expression of 
rMl 

from equation (1.4.2) 

dWi t 
h Öq i i i 

Ö 
h a 

Aii r 
ll 

Al 
iz Ih1 

dx 
öq 

2 2 z A 
12 22 

LaJ 

öWs 
3qs ha O19 

o 

t 
i i AIL Aiz 

h (x) h (x) h (x) 
= h 

2 

h 

a 
2 Ail 

a 
22 ` 

A i 

a (x) 
1 

2 9 

a (x) a (x) 
2s 

9 9 
0 

r qi(t) l 
j q2(t) } 
ll qs(t) JJ 

QF OF OF q ii 12 is i 

= OF 
21 

OF 
22 

OF q 
29 2 

QF QF QF I 
91 32 s9 S. 

where 

QFjj = f0(Aiihihj + AZihjai + Ai2hiaý + A22aja, )dx 

[QF] = generalized aerodynamic matrix 

FORMATION AND SOLUTION OF FLUTTER DETERMINANT: 

The flutter matrix is formed by summing the 

generalized mass, stiffness and aerodynamic matrices. 

(QA) = [-w2 [M] + [K] - [QF]]{q} 
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where 

(DA) = flutter matrix 

[Ml = generalized mass matrix 

= I0]TIM) 101 

[K] = generalized stiffness matrix 

= [0)TIK] [¢l 

[QF] = generalized aerodynamic matrix and is complex 

(q) - generalized coordinate vector 

(0) = transpose of. [01 = 

FLUTTER DETERMINANT: 

I-c2(M) + (K) - (OF) = 
I 

This complex flutter determinant is a function of 

airspeed and frequency. At the flutter speed both the real 

and imaginary parts of the determinant, I'm and A_ 

respectively, must vanish. In the solution procedure used 

in this work, first an airspeed was chosen and the teal and 

the imaginary parts of the flutter determinant were 

calculated for a range -of frequency. The process was 

repeated for a range of airspeeds until both the real and 

the imaginary parts of the flutter determinant (hence the 

whole flutter. determinant) vanish completely. This method 

is often referred to as Theodorsen's method [zo). 

A direct solution procedure for computing the flutter 

speed and frequency can be applied to the aeroelastic 

analysis. Reference [as) provides a procedure to calculate 

the flutter speed and frequency of a finite element 

structural model and an unsteady aerodynamic model based on 

three-dimensional subsonic compressible lifting-surface 

theory. The efficiency of the iterative process of 

automatic search for the flutter speed and frequency is 

improved by the use of an approximated Jacobian matrix. 
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1.5 CONCLUSIONS 

This chapter presents a glimpse of the historical 

development of aeroelasticity and the problems experienced 

by the early research workers with special reference to 

aircraft flutter and how these problems were solved by the 

pioneers of aeroelasticityand their successors. The survey 

covers a period from the earlier days of flight to the late 

eighties. During this period, aeroelasticity has made 

considerable progress in overcoming adverse aeroelastic 

effects. The attitude that a statically designed aircraft 

may be considered perfectly safe without going into 

cumbersome aeroelastic analysis has changed. Nov 

aeroelastic considerations not only influence the 

performance of an aircraft but also play an important role 

in the overall design. 

The complex and iterative nature of the aeroelastic 

problems always posed an obstacle to earlier investigators. 

The introduction of computers and techniques such as finite 

element analysis methods has drastically reduced 

computation time and effort. Complicated and large 

structures can be modelled with a great number of degrees 

of freedom. Computer software that can handle symbolic 

computation has even made explicit analysis with a. high 

degree of complexity possible. 

The explicit methods now adopted are definitely faster 

techniques as compared to finite element analysis. In the 

former approach the cross-sectional properties are 

presented as a single block of information whereas in the 

finite element analysis the structure is divided into 

several elements both chordwise and spanwise. The highly 

iterative nature of the problem demands the need for 

explicit methods of computation to save labour and computer 

time. This is particularly true when high accuracies are 

required. 
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The introduction of unconventional materials in the 

manufacture of modern aeroplanes necessitates considerable 

investigation into the aeroelastic behaviour of aircraft 

structures made of these materials. The use of fibrous 

materials for achieving passive means of overcoming 

aeroelastic problems is still another fertile area of 

research. Active control technology in the suppression of 

flutter and divergence and in load alleviation also poses 

an important challenge. Other research areas such as 

helicopter and propeller aeroelasticity, where the basic 

phenomenon is no longer linear, provide opportunities for 

further research. The progress in this field depends on the 

derivation of relatively simple nonlinear models and on the 

proposal for new algorithms for the calculation of the 

coupling between flow and structure. 
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CHAPTER :2 
AEROELASTIC TAILORING 

2.1 INTRODUCTION 

Aeroelastic tailoring refers to a design process in 

which minimum weight is an objective. It also involves the 

use of structural deformation of a lifting surface to 

achieve aircraft performance which is usually not associated 

with structural design. Other objectives include maximizing 

the lift to drag ratio of a flexible surface, expanding the 

flight envelope, and improving the ride quality and aircraft 

manmuvrability. The effectiveness of aeroelastic tailoring 

depends on the creation of external aerodynamic loads within 

the desirable limits through controlled deformation. 

Therefore, in a way, similarity exists between active 

control and aeroelastic tailoring. The only difference is 

that aeroelastic tailoring is a passive means of achieving 

the required aerodynamic distribution. 

2.2 DEFINITION 

Aeroelastic tailoring is the embodiment of directional 

stiffness into an aircraft structural design to control 

aeroelastic deformation, static or dynamic, in such a 

fashion as to affect the aerodynamic and structural 

performance of the aircraft in a beneficial way. 

In other words, aeroelastic tailoring is a particular 

application in the general field of structural optimization 

under aeroelastic constraints. 

2.3 HISTORICAL REVIEW 

The earlier investigations such as Voigt (t),, Brown (z), 

and Hearmon (a) indicated the existence of elastic coupling 

between bending, and torsional degrees of freedom in 

materials such as crystalline substances and plywood. 
In 1949, Munk [4) suggested propellers containing 

diagonally disposed fibrous material based on this concept. 
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The purpose of this invention was to provide a fixed pitch 

propeller, the blade of which twisted elastically and 

favourably as the thrust varied. 

In 1953, a novel wing design, known as the 

AERO-ISOCLINIC wing, was incorporated into the design of the 

Short S. B. 4 or Sherpa prototype invented by Hill [5). The 

unique design feature of the wing allowed a constant 

spanwise angle of attack despite flexural distortions due to 

aerodynamic pressure distribution. 

The aeroelastic characteristics of the aero-isoclinic 

wing were achieved in part by placing the torsion-box well 

back in the wing (a). It satisfies the definition given of 

aeroelastic tailoring, wherein aircraft performance is the 

driving goal. 

In 1969, as part of a programme to improve transonic 

performance, General Dynamics submitted a proposal to the Air 

Force Flight Dynamics Laboratory to apply advanced 

filamentary composite materials to the design of a super- 

critical wing (7). The objective of the programme was -to 

provide the best wing shape (primarily twist distribution) 

at both cruise and a design manoeuvre condition. 

At General Dynamics, Waddoups, McCullers, and Naberhaus 

(64), had been pursuing the- application of advanced 

composites for design improvements other than the obvious 

weight" savings. Maske's -(a] work encouraged them 
. to-. show 

that the directional properties of composites can providera 

significant level of anisotropy to create coupling between 

bending and` twisting deformations in order -to produce the 

desired shape control for the super critical wing. At that 

time the name'"aeroelastic tailoring" [e] was coined. - - 
A contract (o) was given by AFFDL'to General Dynamics to 

prepare proposals for the development of a pilot computer 

programme for the aeroelastic and strength optimization of 

aircraft lifting surfaces using the unique properties of 

filamentary composite materials. - The most significant 
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development of this contract was the Wing Aeroelastic 

Synthesis Procedure (WASP), later simply called TSO [to]. It 

was a mathematical programming penalty method approach with 

the Davidson-Fletcher-Powell algorithm [i! ] for 

unconstrained minimization. 

The program was developed for the preliminary design of 

lifting surfaces. The structure was idealised as a simple 

plate model. The TSO is a powerful design tool with good 

aerodynamic representation and comprises various aeroelastic 

analysis procedures. The project was completed in 1972 with 

the theoretical background provided. by Dong [12], Young 

[is], Barton [saj, Waddoups [=s, 1d], and Ashton [17,1e] . 

Rockwell was selected in -1975 [to] to design and build a 

half-scale remotely piloted research vehicle of a Highly 

Manoeuvrable Advanced Technology (HIMAT) aircraft for NASA. 

In February 1978, the aeroelastically tailored wing aircraft 

was ready for flight tests [to). The wings were designed 

with a Jig shape (a jig is a type of frame, very accurately 

planned and constructed, used in aeroplane assembly) such 

that the aeroelastic deformation in cruising flight optimise 

the cruise, and the canards were'aeroelastically tailored to 

allow the desired 8-g manoeuvre to be sustained. 

The contributions made by AFFDL and General Dynamics 

were mainly due to exploitation of the high specific 

strength (ultimate tensile strength/density of the material) 

and specific stiffness (modulus/density) properties of 

composite materials. Figures (2.1) and (2.2) give a summary 

of these properties for Aluminium, Titanium, Steel` and 

composite materials with a 60% fibre volume fraction. x 
The forward swept wing aircraft X-29 is, one-of the most 

recent demonstrators of aeroelastic tailoring. The benefits 

of forward swept wings were known as early as 1935 [zo]., By 

the 1940's, designers made use of swept wings, both forwards 

and backwards to reduce transonic drag. A, swept forward wing 

involved the additional problem of divergence. The solution 
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to this was to stiffen the wing which resulted in a weight 

penalty. In 1974, Krone (21] showed that, with little or no 

weight penalty, tailored composite lifting surfaces were 

possible which avoided divergence in forward swept wing 

aircraft. Grumman further investigated forward sweep for 

improved transonic manoeuvering performance on the same 

lines (22]. The Defence Advanced Research Projects Agency 

(DARPA) in 1977, began verification of divergence avoidance 

with aeroelastically tailored composites along with 

performance evaluation of forward swept wing designs (29]. 

General Dynamics, Grumman, and Rockwell carried out these in 

depth studies under the technical direction. of AFFDL. In 

the end DARPA selected Grumman to design and build the X-29. 

In December 1984, the first flight took place. 

During the period 1971-1986, research studies in the 

field of aeroelastic tailoring were focused on two major 

issues: 

1. General studies of composite mechanics, in order to 

comprehend the phenomena, evaluate the theory and carry 

out parametric trend studies. 

2. Specific application of the technology to particular 

designs. 

Aeroelastic tailoring has reached this stage through 

developments in fibrous composite materials and mathematical 

programming methods. The former increased aircraft 

structural design options, while the latter, allowed the 

designer efficiently to use the numerous design variables. 

Tsai and Hahn (24] and others provided the theory of the 

mechanics that helped to predict and design structures using 

composite directional stiffness and strength characteristics 

with better stiffness-to-weight ratios. The work of Shirk and 

Griffin (25], demonstrated deformation control with laminate 

design. I. 
In order to comprehend the complexity of structural 

design with fibrous composites, a quotatidn from McCullers 
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[26] is appropriate: "Advantageous utilization of the 

anisotropic properties of composites requires consideration 

of additional design variables and use of complex behaviour 

and failure mode analysis techniques. Many metal design 

problems can be reduced to the determination of a single 

thickness for each member. A composite laminate, however, 

requires the determination of the number of plies and the 

orientation of each ply for the material(s) selected, which 

increases the magnitude and complexity of the design 

problem. Therefore, although optimization techniques are 

very useful in metal design problems, they are almost 

essential for the efficient design of composite structures. " 

Survey papers by Schmit [27], Ashley [2e], and Lansing 'et 

al. (2u] are useful contributions relating work done on 

optimization. 

There are usually two major levels of research effort. 

The first one make use of sophisticated numerical methods to 

perform the design work. The wing aeroelastic synthesis 

procedure (TSO) [! o], and the Flutter And Strength 

Optimization Procedure (FASTOP) [so] are excellent examples 

of this level of activity. 

The second level of research effort is less 

sophisticated but more academic and thereby enables one to 

understand the mysteries and consequences of the new 

technology as well as to assess the limits and problems 

associated with its application. This level of research 

concentrates on the mathematical modelling of structures. As 

a result problems have been analysed with various degrees of 

complexity- and their merits have been observed in detail. 

For example, many references proposed a beam-like model for 

the structural deformation of the wing, since the tailoring 

was focused on bending-twisting deformation coupling. While 

in others, more complicated models were used to observe the 

various aspects of aeroelastic tailoring. But in general, 

they all concentrated on stability of the aircraft in 

67 



CHAPTER :2 AEROELASTIC TAILORINO 

divergence and flutter, lateral control effectiveness, and 

load redistribution for unswept, gwept-back, and 

swept-forward wings. 

Ashton Cut), developed anisotropic plate theory, while 

Ashton and Love [92], in a series of experiments 

demonstrated the effect of laminated composite design on the 

natural frequencies, ultimate strength, and critical 

buckling load of rectangular boron-epoxy plates. This 

eventually contributed to the. development of TSO. 

Similarly, the effect of ply orientation of a 

symmetrical cross-ply laminate on flutter of a beam like 

wing was studied by Housner and Stein [99]. They 

demonstrated that flutter speed was dependent upon the 

bending and -torsional stiffnesses with variation in ply 

orientation. 

Bakthavatsalam (94] examined the effect on flutter 

speed of an aeroelastically tailored wing and tail surfaces 

of a wing-tail flutter model. 

McCullers et al (ss]. performed detailed experiments on 

anisotropic plates to obtain the static and ' dynamic 

responses of a wing structure by varying anisotropy, 

planform shape (i. e. leading-edge angle, taper ratio, and 

aspect ratio), curvature, shear modulus, and tapered cores. 

Shirk and Griffin (za], used TSO to design three similar 

wings to achieve different flutter and control reversal 

requirements. Their work also shows that how wings can be 

designed for minimum weight, maximum washin, and maximum 

washout characteristics as well as wing with a desired 

centre of pressure location either from a load relief 

standpoint or increased flexible lift requirements. 

Weisshaar [96-4o] moved the boundaries of the work done 

by Housner and Stein (au), by demonstrating the use of 

laminates with bending/torsional cross-coupling to increase 

the divergence speed of swept-forward wings. He also 

mentioned the effects of cross-coupling - on the spanwise 
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centre-of-pressure position and lateral control 

effectiveness of swept-back and swept-forward wings. 

Laminate design can also be used for increasing the aileron 

reversal dynamic pressures (41). 

Lerner and Markowitz (42] made use of a modified version 

of FASTOP in their initial studies on the X-29. The Air 

Force Flight Dynamics Laboratories, U. S. A., experimentally 

demonstrated the effect of ply rotation on the divergence 

speed. Sherrer et al [49] shoved how a simple rotation of a 

0±45° graphite-epoxy laminated wing can be used to increase 

the divergence speed with various angles of leading edge 

sweep. Schneider developed a routine for FASTOP to examine 

the effect of ply angle on divergence speed with variation 

of optimized wing weight and wing-box sweep (44]. 

Austin et al (4s) gave details of a stiffness model that 

can be used to describe a laminated box-beam with spars. 

Gimmestad [4a] used an identical model to study the effect 

of laminate design on load redistribution, flutter speed, 

and structural weight. 
Gimmestad (4a), Williams [4? ], and Gratke and Williams 

(4e] made use of a spar and rib stiffening arrangement to 

control directional stiffness and bending/twisting 

cross-coupling, based on Hill's aero-isoclinic wing approach 

[7]. This proved that aeroelastic'tailoring is not limited 

to composite materials. 

Dwyer and Rogers (40] and Rogers (tkp] made use' of 

coupling between centrifugal force and shearing strain in 

the plane of the blade cross-section to passively control 

the angle of attack of a propeller. An idealized thin-walled 

tube model was used to examine the variation ý -of 

stress-strain coupling and allowable stress with property 

axis and composite fibre orientation. 

At the Royal Aeronautical Establishment (RAE) Mansfield 

and Sobey [51) discussed an analytical model of an 

anisotropic, single cell tube that they used for tailoring 
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studies. This study indicated the use of extension-torsion 

coupling in the design of rotor blade. They also discussed 

the likely effects of laminate design upon structural 

dynamic properties of beam-like structures. 

Niblett (a: ), in addition to his-major work on flutter 

and divergence of laminated swept-forward wings, introduced 

the bending/twist "cross-coupling" concept and defined a 

non-dimensional parameter so as to distinguish tailoring 

studies from normal laminate problems. This non-dimensional 

parameter was also recognized by Austin et al. (. s) and 

Weisshaar (as], except that Weisshaar and Nrblett defined it 

as a bounded cross-flexibility parameter. 

The work of Weisshaar (s9), Weisshaar and Foist (541, 

Hollowell and Dugundji (ss], Crawley and Dugundji 15d), and 

Jensen et al. [s7) pointed out interesting facts about the 

assumption of chordwise rigidity. The chordwise bending mode 

can bring about substantial changes in natural frequencies 

and mode shapes of highly coupled laminates; eventually poor 

correlation will exist between theoretical and experimental 

flutter velocities. 

The stiffness predictions [se], based on a beam model 

(III) and on a plate model 124) show considerable 

disagreement. The differences may be negligible for slender 

metallic plates but are important with plated structures 

with off-axis plies. 

Lynch et al (se) used an improved version of TSO [to] 

analytically to study the amount of camber and twist 

achievable by aeroelastic tailoring. Furthermore, the effect 

of these orientations on roll effectiveness, C flutter speed, 

flexibility to rigidity ratio, and tip deflection were 

studied. The possibility of enhancing the performance 

benefits by increasing span or decreasing wing depth due to 

strength and stiffness characteristics of composites was 

also demonstrated. 
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Foist [do] and Weisshaar and Foist [54. ds) looked into 

the potential effects of boundary conditions (of the wing 

root) on flutter and divergence. During their investigation 

"body-freedom" flutter was found wherein the wing root is 

allowed the freedom to move with the fuselage. Hence 

inclusion of rigid-body modes in a comprehensive flutter 

analysis during the design process is an important factor. 

Following the work of Niblett (sz], Weisshaar and Foist 

[54] developed a cross-coupling parameter w in terms of the 

bending, torsional, and bending/torsional cross-coupling 

stiffnesses used by Weisshaar (aa) which are EI, GJ, and K, 

respectively. In the case of beam analysis: 

WZ = 
K2 

<1c2.1) 
EI GJ 

The parameter y' is very 

studies, since it is bounded by 

there are three parameters instep 

Did D2d 

i Titýsa 2 D22Dad 

useful in the tailoring 

±1. In the case of plates, 

3d of one as given below: 

D 

_ 
iz v (2.2) 

D 
11Dzz 

and the above parameters must satisfy the relation [e4]: 

1-yZ-Z V 
2 

lip 
2 

where 

wi , w2 primary aeroelastic tailoring parameters that 

control coupling between bending and twisting 

curvatures 

and v= reduces to Poisson's ratio for isotropic structures 

Use of the stiffness cross-coupling parameter to 

examine the aeroelastic stability of beam-like structures 
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was studied in references [a! -esl. For instance, structural 

dynamic response and flutter is controlled through tailoring 

such that the normal mode shapes are changed by stiffness 

cross-coupling [dz]. Also, for example, it has been shown 

that a pure torsional mode at zero degree fibre orientation 

can change that to the second bending mode when the plies 

are oriented perpendicular to the reference axis [d21. The 

effects of cross-coupling stiffness on flutter and 

divergence speeds have been studied in reference [css]. A 

similar study was conducted by Austin et al. [4a] with 

different nondimensional parameters. The effect is similar 

to sweeping a wing while keeping the aspect ratio the same. 

The positive cross-coupling stiffness gives a wash-in 

characteristic and negative cross-coupling stiffness yields 

a wash-out characteristic similar to the effect experienced 

in swept forward and aft-sweep configurations respectively. 

The Transonic Aircraft Technology (TACT) programme 

demonstrated the application of aeroelastic tailoring with 

advanced composites by designing an ' aerodynamically 

efficient jig shaped wing for both cruise flight and high g 

manoeuvres where washout (incidence decreasing from root to 

tip) is an important characteristic I64. a5]. The design 

constraints were pivot and wing loads, flutter speed, and 

panel buckling. A parametric study [a4] demonstrated that 

material bending-twisting coupling has a comparatively 

greater effect than that of-box chord dimension in shape 

control. The twist of the composite wing was' found to be 

double of an aluminium wing and a reduction of 4% in pivot 

load was obtained. The flutter speed requirement was 

achieved without any weight penalty. These studies were 

later on confirmed on a 1/29. °scale model in the wind tunnel 

[aa] . 
In 1975, Grumman vas contracted by the Air Force Flight 

Dynamics Laboratory (AFFDL) to define the benefits of 
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applying composite material technology to an Advanced Design 

Composite Aircraft (ADCA) [sa. afl. It was, hoped that the 

aircraft would be smaller, lighter, and less costly than its 

metallic counterpart but capable of performing a supersonic 

penetration interdiction fighter mission at lower life cycle 

costs. As a result of the ADCA program, aeroelastic 

tailoring technology of the, wing and vertical stabilizer was 

developed [od). 

The important characteristics of the wing were mission 

performance, take-off gross weight, transonic manmuvre 

condition, and wing shape at supersonic cruise. A comparison 

of tailored and untailored aeroelastic wings for twist 

characteristics subject to minimum structural weight and 

strength at ultimate load constraints showed that the 

tailored design fulfilled supersonic cruise requirements 

with negligible improvements in transonic manoeuverability. 

The plies were rotated through fifteen degrees aft of 

the main load-carrying axis in the case of the fin which 

improved the flutter speed and increased effectiveness in 

generating yawing moments. The effectiveness of the fin can 

be utilised in two ways. Firstly, by maintaining the fin 

size, the lateral directional stability and rolling 

performance can be improved and lateral manoeuvre loads can 

be decreased. Also the response requirements of the control 

system may be relaxed. Secondly, without making any change 

in the lateral stability performance of the aircraft the fin 

size can be reduced. This in turn will reduce the fin weight 

and drag relating to the fin surface. 

General Dynamics also conducted further studies. through 

several contracts with the AFFDL. The first study [a7) 

resulted In the TSO program and a 3/8 scale component of a 

conceptual fighter wing with an.. ultimate objective of 

increasing the aerodynamic effectiveness by elastic camber 

and twist. A parametric study was conducted on ten minimum 
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weight graphite-epoxy skin designs with two different 

objectives, namely maximum static aeroelastic lift and 

maximum load relief. The design objective was to achieve 

maximum flexibility-to-rigidity lift ratio through camber 

and twist control while maintaining an uninterrupted 

tip-to-tip spanwise ply orientation. The materials used were 

graphite-epoxy for the skin with a full-depth aluminium 

honeycomb core, and fibre glass spars. The structure was 

analysed both by TSO and ,a finite element package with 

influence coefficient and vibration tests. The tests agreed 

both in static deflections and resonance frequencies with 

the predictions within 5% . The eventual output of this 

study was a build-up of confidence in the analytical 

procedures adopted in the design process (ddI. 

In a second study (aal, the TSO computer program code 

was improved to study performance benefits through shape 

control. The investigation concentrated on a low aspect 

ratio fighter wing and a high aspect ratio bomber wing. The 

findings were as follows: 

1. A composite wing should be aeroelastically tailored to 

provide acceptable aerodynamic characteristics with 

minimum weight, otherwise the weight penalty will result 

in an undesirable aerodynamic centre shift. 

2. Maximizing camber while obtaining high negative twist 

should be utilised to obtain the best drag polar break 

lift coefficient. 

3. The planform geometry can be improved by the weight 

saving feature of the composites. For example an 

extension in the wing span gives 5.8 % greater sustained 

turn rate than a wing with a usual leading-edge flap at 

Mach number 0.9 and a 2.3 % increase at Mach number 1.2. 

4. In the case of the bomber wing, a 13.6 % increase in 

ferrying range and 15.6 % increase in refuel altitude 

were achieved. 
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In a third contract [OC-? i], wind tunnel data for a 

tailored wing design were obtained, demonstrating the range 

of beneficial aeroelastic response attainable. For this 

study a wing/body-of-revolution/strake configuration was 

selected. The wing planform was the product of another 

research and development program on a similar planform of 

extended-span fighter wing, which provided good transonic 

manoeuverability without losing supersonic performance. 

The design study considered three aeroelastically 

tailored wings and a rigid steel wing [711. They are 

discussed briefly below : 

1. The first wing was designed to reduce drag at transonic 

manoeuvre conditions by aeroelastic camber and negative 

twist i. e. washout. The analysis indicated, that the 

flutter speed was unexpectedly higher than that of the 

F-16 metal wing, because the aeroelastically tailored 

wings have greater areas and aspect ratios and thinner 

aerofoil sections than the F-16 wing. 

2. The second wing was designed to increase lift-curve slope 

through positive twist i. e. washin and camber. The 

application is a fin, where in the case of conventional 

designs the effectiveness of the surface is lost due to 

aeroelastic effects. Hence the washin and washout 

capabilities of composite wings, gave the concept of 

deformation control in these fibrous materials. 

3. The third wing was an untailored design, having a 

balanced composite wing laminated with equal amounts of 

cross plies. 

4. The steel wing provided a conventional model data base. 

The datum was provided by the untailored design and'was 

compared with the tailored wings to establish the benefits 

of aeroelastic tailoring. 
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General Dynamics also worked on the preliminary design 

of the Wing/Inlet Composite Advanced Development (WICAD) 

program [72] to :' 

1. Provide a flight-worthy wing and winglet for the F-16 

2. Develop and demonstrate advanced composite conceptual 

design technology to manufacture low-cost, lightweight, 

and durable fighter wing and winglet structures. 

The study using TSO defined a wing skin with a 

laminate weighing 67.5% of an aluminum alloy skin, a 

flexible-to-rigid lift ratio of 1.116, and a flutter speed 

12.7% higher than the aluminium skin design. This programme 

of investigation was terminated after a period of only seven 

months preventing validation of the aeroelastically tailored 

design through ground or flight testing. 

HiMAT was the first modern, aeroelastically tailored 

remotely piloted research vehicle, designed and constructed 

by Rockwell for the NASA Dryden Flight Research Centre 

[79-7a). The outboard wing and the canard were 

"aeroelastically tailored in such a way that the aircraft was 

capable of performing a sustained 9-g'turn at Mach 0.9 at an 

altitude of 25,000 feet. This was an additional transonic 

manoeuvre requirement while maintaining the aircraft's 

subsonic cruise performance. The flight tests were carried 

out in 1979. 

The wing and canard were aeroelastically tailored by a 

two phase iterative process. First, a preliminary sizing was 

obtained by using the computer programs AC87 and AC89. These 

two computer codes initially developed by Rockwell 1741 were 

based on advanced composite beam theory. The results were 

verified later by. NASTRAN. The process was iterated until 

twist and strength requirements were satisfied. The HiMAT 

programme demonstrated the feasibility of using unbalanced, 
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graphite-epoxy laminates to control aeroelastic -twist, 

except results obtained at 110 % limit load at 8-g maneuver 

test conducted on wing and canard did not agree well with 

the analytical predictions. This was due to the nonlinear 

behaviour of composite properties in the transverse 

direction to the fibres. 

DARPA funded General Dynamics, Grumman, and Rockwell to 

prepare a feasibility study for a forward-swept wing, small 

fighter class aircraft flight demonstrator, the X-29 (77]. 

These studies followed experimental investigation by Grumman 

(70] and Rockwell [7fl] to assess the accuracy of predicting 

the wing divergence speed. Other aspects of these 

experiments were focused on the understanding of the static 

aeroelastic phenomena i. e. divergence of a fixed-root 

forward-swept wing, model design and fabrication processes 

for the simulation of aeroelastic properties and 

sub-critical divergence test techniques. Despite the 

different approaches adopted by the two companies the 

ultimate results were similar. 

Grumman used FASTOP and found that rotating a 

conventional [0, ±45,90°] laminate, so that the primary 

bending, plies are 9 degrees forward of the reference 

structural axis, added the desirable bending-torsional 

coupling necessary to minimize the wing washin tendencies. 

On the other hand, Rockwell used TSO to design with the 

cross plies oriented 30 degrees forward of and 51. degrees 

aft of the reference axis along with the primary bending 

plies oriented at 9 degrees forward of the reference axis. 

The models were tested in the NASA Langley Research Centre 

16-ft transonic dynamics tunnel., Experimental results showed 

that wing divergence could be avoided by the application of 

aeroelastic shape control possible due to tailoring of the 

advanced composites. 

Gimmestad (46] performed a study of. a cargo transport 
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aeroplane to show the effect of composites on the 

aeroelasticity of a high aspect ratio wing with an aft sweep 

of 35 degrees. Effects of flexibility, 
% 

anisotropy and. 

so-called "jig 'twisting" (jig twisting is a deformation 

introduced into the built shape of the wing such that the 

optimum span loading, and hence minimum drag is achieved in 

cruising flight) on a composite and a conventional aluminium 

alloy wing were explored. Gimmestad's conclusions were,: 

1. An explanation for aeroelastic effects and jig twisting 

in preliminary design for performance enhancement is 

essential. 

2. Anisotropy can have effects on the stability and control 

of the aircraft. 

3. The anisotropic effects witnessed in composites are also 

found in conventional materials but to a much lesser 

extent. 

In another study, Gimmestad [so] showed on a composite 

winglet of the KC-135 using TSO that it can be designed for 

substantially larger aeroelastic washout losses in order to 

reduce wing bending moments. 

In another study, TSO was used by Triplett [et] to 

re-design a wing for the fighter aircraft F-15 resulting in 

the saving of 55 lbs In weight and a reduction in drag with 

an improvement in the roll effectiveness. The other parts of 

the study covered the preliminary design of a tail plane, a 

prototype aircraft movable outer wing panel, and a 

conceptual aircraft wing. In, the case of the conceptual 

aircraft wing a3% weight saving was achieved, but with 4.6 

degrees of washout twist there was a weight penalty of 2.5%. 

Triplett [ez, ] also pointed out in another, study-that 

there can be no weight penalty while dealing with the 

problem of divergence in case of forward-swept wings. 
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However it was shown that the induced drag will increase 

with the forward-swept configuration. 

The work of Sensburg et al. [ea] on the Airbus A300 for 

gust load alleviation on an extended wing resulted in 1.7% 

increase in root bending moment with aeroelastic tailoring 

as compared to 7% with a conventional material. 

Schweiger et al. 1841 studied the potential of 

aeroelastic tailoring on a high aspect ratio glider to 

control wing/body flutter due to the interaction between the 

swept wing bending mode and the short period mode. 

The Lavi fighter developed by Grumman for Israel 

Aircraft Industries, has, utilised FASTOP to optimize the 

advanced - composite structures for improved control 

effectiveness of the wing elevons and the overall 

performance of the fin (es]. 

Librescu and Simovich [ad] formulated a simple 

algorithm that allows for the determination, in a closed 

form, of the divergence instability of advanced composite 

swept forward and aft-swept wing structures. The analysis 

includes the warping restraint effects and its influence on 

the static instability is discussed. Although in the case of 

metallic wings warping restraint has a stabilizing effect 

(more pronounced with small aspect ratio and diminishing 

effect with moderate aspect ratio wings), its effect is more 

complex in the case of composite wings. 

Another aspect of aeroelastic tailoring which -has 

rapidly attracted the attention of many researchers in the 

field, is the' development of optimization techniques. 

Aeroelastic tailoring is considered to be a particular 

application of the general field of structural optimization 

under aeroelastic constraints such as flutter and 

divergence, etc. Some excellent survey papers on'the subject 

can be seen in references 1ze, zo, 871 along with a 

comprehensive survey on aeroelastic tailoring- by Shirk, 
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Hertz, and Weisshaar [as]. 

At the Air Force Flight Dynamics Laboratory, the TSO 

[to] (aeroelastic Tailoring and Structural Optimization) was 

the first attempt to develop an optimization program with 

special reference to aeroelastic tailoring. Its scope of 

application and limitations have already been discussed in 

detail. Then FASTOP (29) (Flutter And Strength Optimization 

Program) appeared with finite element idealization of an 

aircraft wing but aeroelastic loads were not included in the 

optimization process. Other, similar approaches made in the 

area were COMBO [4s] and SWEEP [so] (Structural WEight 

Estimation Program). 

A very recent addition to aeroelastic 'optimization 

programmes is the development of the computer program ADOP 

too] (Aeroelastic Design Optimization Program) by McDonnell 

Douglas Corporation. This program resulted from considerable 

improvements and modification of an existing aeroelastic 

analysis program called ASTROS (oil (Automated STructural 

Optimization System). Although ADOP Is now capable of 

handling a complete, aircraft configuration with up to 

250,000 degrees of freedom it appears to be'a very expensive 

tool for performing design optimization. Such a programming 

tool inevitably makes extensive"use of computer time and is 

also beyond the scope of most designers. Thus the 

development of an aeroelastic computer program which is 

short, compact, completely self contained and portable is-of 

great value. " 

2.4 THE FUTURE OF AEROELASTIC TAILORING 

As has been pointed-out in 'the historical review the 

concept of aeroelastic tailoring existed well before' the 

introduction of composite materials, hence it will be very 

unjust to limit our attention to glass, carbon, and Kevlar 

reinforced fibre plastics, etc. A new category of materials 
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has already been introduced known as MMC i. e. the Metal 

Matrix Composite. A typical MMC may constitute boron fibres 

in aluminium matrix. The macromechanics of a generally 

orthotropic laminate. is equally applicable to structures 

made of MMC. The high temperature metal constituents and 

minimum degradation of properties due to environmental 

changes are distinguishing features of MMC which make it 

very popular in the aircraft industry. 

Aeroelastic tailoring has been concerned with the 

advanced filamentary composites and mathematical programming 

techniques, though procedures for the efficient utilization 

of advanced composite materials in aircraft. design have not 

yet been fully developed. The performance and durability of 

a particular design depends on the structural dynamic 

behaviour and flexibility of an aircraft. Hence these 

characteristics are expected to be taken into account in the 

development of aeroelastic tailoring strategies. It has been 

mentioned that directional. stiffness and the resulting 

aerodynamic coupling influence a number of areas of aircraft 

performance. Thus a comprehensive approach in the design 

procedure is required to fulfill all the requirements 

simultaneously. 

Large space structures represent another potential area 

of aeroelastic tailoring research. The repetitive lattice 

arrangement of a number of space structures forms an 

anisotropic design. The active control system of these space 

structures can be enhanced by achieving passive modal 

control through tailoring the orientation of the structural 

members. 

Aeroelastic tailoring is also playing an important role 

in the design procedures of aerospace structures and is 

becoming a component of such procedures. 
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CHAPTER 9 COMPOSITE 

CHAPTER :3 

COMPOSITES 

3.1 INTRODUCTION 

The orthotropic properties of composite materials, 

particularly the directional stiffness and strength 

characteristics provide new dimensions to the design of 

structures that are not possible when using conventional 

materials. These directional attributes can be incorporated 

in a structure by controlling the stacking sequence of the 

orthotropic layers. The high specific strength and specific 

stiffness (ratios of ultimate tensile strength and modulus 

respectively to the density) qualities of composites have 

special significance in designing aircraft structures. 

3.2 LAMINATE EQUIVALENT ELASTIC CONSTANTS 

The laminate macro-mechanics can be found in Tsai and 

Hahn [i], Jones (z) or in other standard texts on composite 

materials. Composites can be categorised into several 

different types depending upon ply thickness, fibre 

orientation and number of layers as shown in Figure (3.1). 

The general laminate constitutive, equations for 

load-deformation relationships as given in reference (21 are 

as follows : 

AAA c BB k 

x Al 12 Id x is 12 Id x 

N = A A A e + B B B k 
y 2d 12 22 y 26 12 22 y 

N AA A A B B B k 

xy _ 66 2d Id xxy. 66 Id 26 xy. 

and 
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Mx Bss B12 Bsa 
x 

_Dis Dsz Dsß kx 

BBB s° +DDDk (3.1b) 
y y sz 22 2e 9 12 22 245 

Mxy Bsa Bea B66 Yxy D16 D26 D66 kxy 

where 

Nx , NY 

N 
xy 

,s xy 
rxy 

Mx, My, Mxy 

kxý kyý kxy 

Atj 

8U 

Dzi 

= normal forces per unit length in x and y 

directions respectively 

= shear force per unit length 

= normal strains in x and y directions 

= shear strain 

=-moments per unit length 

= twist curvatures of the middle surface 

= extensional stiffness 

= coupling stiffness 

= bending stiffness 

In the case of symmetric laminates with multiple 

generally orthotropic layers; the coupling B matrix will 

vanish and equations (3.1a) and (3.1b) will uncouple to give 

the following load-deformation relationships. 

Nx AAA 
It 12 td x 

Ny = A12 A2z Ales eoy (3.2a) 

Nxy Ala A2a Aaa Yxy 

Mx 
It 

ßi2 Dia kx 

My = Dig D22 D26 ky (3.2b) 

Mxy Dia D2d D6d kxy 

The presence of some elements 

will cause coupling between various 

Aid" A2d, Did, and D2d will cause 

forces and shearing strain, she 

strains, normal moments and twist, 

normal curvatures respectively. 

in the A and D matrices 

deformations. For example 

coupling between normal 

acing force and normal 

and twisting moment and 
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3.2.1 EQUIVALENT ELASTIC CONSTANTS IN MEMBRANE MODE 

Let us assume that only a normal load Nx per unit length 

is applied along the x-axis and Ny, and N 
xy 

are absent. 

Re-arranging equation (3.2a) and substituting the above 

mentioned assumptions: 

Io -i ýAAA 
x it il Id 

Nx 

6 A12 Az 
z 

Aza 0 (3.3) 

Yxy Airs Azß A0 

therefore, 

ýX = A! 
1 

Nx (3.4) 

where A! = element of the inverted A-matrix 

and C=s° due to zero curvatures 
xx 

but =E -- xxx 

and a=p=p= 
Nx 

XAbtt 

where N=p 
xb 

N 
therefore, x=Ec 

txx 

or 

Nx = Ex sx t (3.5) 

Replacing eq. (3.5) in eq. (3.4), we get 

o* 
ýx = A! 

It 
Ex ex t 

Therefore, the equivalent Young's modulus in the x-direction 

of the laminate lay-up is given by 

E=1 (3.6) 
t, A11 
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The expression for Young's modulus in the y-direction can be 

obtained in a similar way. Thus 

Ey = 
1* 

(3.7) 
tA 

22 

G 
xy 

=1 (3.8) 
t A* 

da 

3.2.2 EQUIVALENT ELASTIC CONSTANTS IN A BENDING MODE 

Similarly from equation (3.2b) one can arrive at the 

following relationships for the equivalent elastic constants 

in the bending mode : 

E 
92* 

(3.9) 
xt D% 

E= 
12 

(3.10) 
YtD 

22 

12 
Gxy = 

ta2* 
(3.11) 

as 

3.3 LAMINATE - Computer Program 

Two computer programs, ane in BASIC and the other in 

FORTRAN (computer languages) were written to perform the 

composite analysis for a given lay-up (see Appendix (C)). The 

flow diagram for, both of the programs is shown in Figure 

(3.2) describing the general procedure adopted to analyse 
'the 

laminate. Both programs can handle up to five different 

materials and twenty plies in a particular laminate. 

The instructions to run the LAMINATE program are given in 

Appendix (H) along with an illustrative example. 
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3.4 PARAMETRIC STUDY ON PLY ORIENTATION OF A SINGLE LAYER 

T. 1UTUSTC % 

A parametric study of the effect of ply orientation on 

the laminate equivalent elastic constants of a single layer 

configuration was conducted. The subscripts 1 and 2 are 

adopted for the composite along the fibre and transverse to 

the fibre directions respectively whereas the subscripts x 

and y are used along the chord and spanwise directions of the 

laminate. If the y-axis is aligned with the composite fibre 

direction then the material elastic constants will be the 

same as the laminate equivalent elastic constants. However, 

when the fibres are oriented at an angle to the y-axis then 

the laminate equivalent elastic constants will vary in their 

magnitude as given by equations (3.6) to (3.11). 

A computer program based on existing laminate, theory 

[s, 2] was written (see Appendix (C)) and initially the effect 

of fibre orientation on the laminate equivalent elastic 

constants was studied with hypothetical laminate material 

properties. The ratio of Young's modulus along the fibres, E1 

to the shear modulus G was 'varied and the results were 

plotted as shown in Figure (3.3). The plots suggest that a 

higher El to a ratio will bring sharp changes in the laminate 

equivalent elastic constants as the ply orientation is 

changed from 00 to 45°. In the case of an El to G ratio of 2 

the changes are almost negligible. 

The calculations were then carried out for the typical 

composite materials. The elastic properties were based on 

fibres in epoxy resin matrix at a nominal 60% fibre volume 

fraction. The corresponding Et to 0 ratios are given below : 

1. Unidirectional E glass 10.0 

2. Woven E Glass 5.0 

3. Woven Glass (hand-lay-up) 14.0 

4. Unidirectional Kevlar 40.0 

5. Woven Kevlar 8.5 

97 



CHAPTER 8 COMPOSITES 

6. Unidirectional Xas Carbon 27.0 

7. Woven Xas 12.5 

8. Unidirectional H. M. Carbon 40.6 

9. Unidirectional Boron 37.0 

The laminate equivalent elastic constants were plotted 

against the ply orientation angle as shown in Figures (3.4) - 

(3.6). The study showed that the E/G ratio determines the 

sensitivity of the laminate equivalent elastic constants to 

the ply orientation. In the case of materials with higher 

ratios, change in ply orientation will produce greater 

effects on the laminate equivalent elastic constants as 

compared to materials with smaller ratios. These results 

provide a sensitivity analysis for optimization procedures. 

3.5 CONCLUSION 

A laminate can be designed to exhibit a desired set of 

deformations as shown in Figure (3.7). The plate bending 

stiffness matrix ID] plays a vital role as indicated. The 

bending and torsional deformations are elastically uncoupled 
if members in the third row and column of the D-matrix are 

absent. But if the. D-matrix is fully populated, then coupling 

will exist. The magnitudes and signs of D145 and Daa determine 

the direction and the extent of this coupling. A symmetric 

laminate subjected to bending moments or torques can display 

coupled transverse displacement and twist, while an 

antisymmetric laminate subjected to torque or normal loads in 

tension or compression can exhibit coupled deformations by 

twisting as well as longitudinal displacement. 

The ratio of Young's modulus to the shear modulusy (E/G) 

plays an important role in the variation of these properties 

when the orientations of the fibres are changed. Materials 

with larger ratios will give greater manceuvreability. This 

quality will eventually help in making the choice of the 

material for a particular application. 
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CHAPTER 4 STRUCTURAL PROPERTIES 

CHAPTER :4 

STRUCTURAL PROPERTIES OF COMPOSITE BEAMS AND PLATES 

4.1 INTRODUCTION 

The successful prediction of dynamic 

characteristics of a structure like an aircraft wing 

depends on adequate knowledge of the static structural 

properties such as bending and torsional stiffnesses, and 

the shear centre location. The mass per unit length and 

polar mass moment of inertia of the structure are also 

important parameters which influence the dynamic 

behaviour of the structure. For isotropic materials, 

theoretical models for the prediction of these properties 

and experimental procedures have already been established 

and in the past two decades considerable efforts have 

been made in obtaining estimates of structural properties 

of composite structures. A summary of some of these works 

is given in the next section. 

In the case of isotropic materials, the properties 

such as Young's modulus and shear modulus are independent 

of the cross-section of the structure and the loading 

conditions. But for composite materials, due to the 

fibrous nature of its make-up, the (material 

characteristics will vary with the orientation of the 

fibres, the stacking sequence of the plies, the 

cross-section of the structure, and the loading 

conditions. The cross-section of the structure and the 

loading conditions will affect the mode of deformation 

and eventually the stress-strain conditions in the 

structure, thus requiring a completely different set of 

equations to calculate the material properties. (The 

laminate equivalent-elastic constants 'based on membrane 

mode and bending mode deformations have been discussed In 

Chapter (3). ) 

100 



CHAPTER 4 STRUCTURAL PROPERTIES 

Once the material properties are evaluated then 

sectional characteristics can be investigated. For 

instance, the shear centre location for a cross-section 

is purely a sectional property depending on the geometry 

of the section. But in the case of composite materials 

the location of the shear centre is also influenced by 

the laminate' material properties which again depend on 

the laminate stacking sequence. 

4.2 REVIEW OF THE LITERATURE 

In the case of infinitely long beams made of 

conventional materials, effects of shear lag and shear 

deformation are small enough to be neglected and the 

bending stiffness will be simply the product of Young's 

modulus of elasticity and the second moment of the area 

of cross-section. But in the case of thin-walled beams, 

these effects cannot be ignored. Mansfield's analysis [s) 

of a thin-walled cylindrical rectangular cross-section 

with significant shear lag and shear deflection effects 

(see Appendix (A)) is a good example. 

Introduction of composite materials- in aircraft 

structures has added the material coupling stiffness term 

to the complexity of the problem. Housner and stein [z), 

provided the model for balanced ply i. e. symmetrical 

laminates. The bending änd torsional stiffnesses were 

assumed to arise solely from thin laminated composite 

cover-sheets forming the upper and lower surfaces of the 

wing. The equivalent bending and torsional stiffnesses of 

the resulting box beam were computed by using classical 

Euler-Bernoulli beam deformation assumptions (see 

Appendix (A)). 

The same structural idealization was used by 

Weisshaar [s, a] when he investigated the divergence 

behaviour of forward swept composite wings. He also 

conducted a systematic study of bending-twisting- and 
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extension-twisting stiffness coupling terms for linear 

displacements (9,4). 

Mansfield and Sobey Is) treated the composite thin 

cylindrical tube (beam) composed of an arbitrary lay-up 

of fibre composite plies. Expressions were derived for 

the coupled torsional, extensional and bending 

stiffnesses for linear displacements (see Appendix (B)). 

Libove (dl, presented more or less the same theory in 

later years and admitted that at the time of his 

investigations he was not aware of Mansfield and Sobey's 

contributions to the subject [s]. 

Hong and Chopra (7.9] developed a non-linear 

analysis for thin-walled composite beams undergoing 

transverse bending (flap and lag), torsion and axial 

deflections, based on nonlinear strain displacement 

relations of Hodges and Dowell (fl]. A simple analytical 

expression was given for the cross-sectional warping, 

while effects of transverse shear were neglected. Later 

extensive investigations of the behaviour of structural 

coupling terms due to ply orientations were made by 

Chandra, Stemple, and Chopra [to) and Smith and Chopra 

[aa). A direct analytical method for the prediction of 

the effective elastic stiffnesses and corresponding 

load-deformation behaviour of composite symmetric and 

anti-symmetric box-beam structures was developed (see 

Appendix (B)). 

The concept of the shear centre can be dated back 

as early as 1920 when Eggensschwyler and Maillart (a2] 

for the first time defined the concept of the shear 

centre and advocated the idea that the centroid is not 

the only characteristic point of the cross-section. In 

the case of thin-walled beams made of isotropic 

materials, a single point i. e. the shear centre can be 

located in the cross-section through which shear loads 

produce no twisting. This point is a geometric property 
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of the cross-section and is independent of the loading. 

In the case of thin-walled composite beams, the local 

rate of twist not only depends on the torque and the 

shear forces but also varies with the axial load applied 

and moments about chordwise and spanwise axes (a]. 

The estimation of structural properties of 

isotropic/conventional material structures will be 

discussed briefly in this Chapter. Composite structures 

with various cross-sections will be analysed for the 

estimation of structural properties by means of a variety 

of theoretical models which represent the actual 

structure. The procedures for the experimental 

determination of bending-torsion coupling stiffness for 

symmetric laminates and extension-torsion coupling 

stiffness for the antisymmetric laminates are evaluated. 

The effect of shear deformation on the resulting 

bending deformation is studied with special reference to 

composite structures. The effect of the warping inertia 

term I on open sections which causes substantial 

differences between the predicted and experimental 

results are also discussed. 

4.3 STRUCTURAL STIFFNESS 

The stiffness of a structure is its resistance to 

deformation as the structure comes in contact with an 

unbalanced system of forces and moments. It primarily 

depends on the material property and the geometry of the 

cross-section. Therefore, a desired magnitude of 

stiffness can be achieved by selecting from a range of 

materials and varying the geometrical parameters such as 

size and shape of the cross-section. In the case of 

composite materials the fibre orientation and the 

laminate stacking sequence gives a wide number of 

possibilities of achieving certain values of stiffness. 

In the case of thin-walled beams, bending or 
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bending stiffness EI, torsional stiffness GJ, extensional 

stiffness EA, and warping stiffness Er are often 

considered. In the case of composite materials the 

bending-torsion coupling stiffness Ka for symmetric 

laminates and the extension-torsion coupling stiffness KQ 

for antisymmetric laminates are further added to the 

above list of stiffnesses. The accurate determination of 

these stiffnesses ensures a correct prediction of natural 

frequencies of the structure. 

In the 
. case of isotropic materiäls the task of 

calculating the stiffnesses mainly involves the 

computation of the geometrical properties i. e. area of 

the section, second area moment, warping inertia term, 

etc. Once these properties are computed, the stiffnesses 

are then the product of the moduli of the materihl and 

the geometric properties of the section. But in the case 

of anisotropic materials like composites, the task is not 

straightforward and is two-fold. Firstly the laminate 

equivalent elastic constants are evaluated and secondly 

the sectional properties are determined. Another approach 

can be followed is that of the macro-mechanics of the 

composites, where the overall stiffness estimation can be 

obtained by developing the stiffness matrix that will 

relate the stresses to the strains. In the latter 

approach, material and sectional details both go into the 

analysis together. Both methods will be discussed after a 

brief account is given concerning isotropic materials. 

4.3.1 STIFFNESS ESTIMATION OF ISOTROPIC STRUCTURES 

In the case of conventional isotropic materials, the 

material moduli are independent of the cross-sectional 

details and the boundary conditions of the structure. The 

cross-sectional area, second area moment, warping 

inertia, and Saint Venant torsion constant for various 
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shapes are well known quantities. A comprehensive list of 

these properties can be found in reference [is]. The 

product of appropriate quantities such as Young's modulus 

of elasticity multiplied with the second area moment will 

give the bending or flexural stiffness and similarly, the 

Saint Venant torsion constant times the shear modulus of 

stiffness will give the measure of the torsional 

stiffness of the structure, etc. 

4.3.2 STIFFNESS ESTIMATION OF COMPOSITE STRUCTURES 

In the case of composite structures, the material 

moduli and cross-sectional details can both vary. The 

geometry along with the loading conditions will influence 

the procedures through which the moduli of the material 

are to be obtained. Thus, for example, at times, laminate 

equivalent elastic constants based on longitudinal modes 

may be required while in other cases laminate elastic 

constants based on bending modes will be desired. For 

some geometries it may be possible to compute laminate 

equivalent elastic constants and sectional properties 

separately and the product of both will give the 

stiffness; bbt in other cases it will be desirable to 

approach the problem in a unified manner i. e. the 

stiffnesses are computed directly. 

THEORY 

The right-handed Cartesian axes in the discussion to 

follow are assigned in such a way that x, y, and z- axes 

refers to the chordwise and spanwise (along the flexural 

axis of the structure) direction and that orthogonal to 

both x and y-axes respectively. The composite fibre axes 

1,2, and 3 refers to longitudinal, transverse and out of 

the plane of the lamina respectively. The macro-mechanics 

of composite materials assume that if the laminate is 
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specially orthotropic then the fibre axis 1 is along the 

x-axis of the structure. Thus in case of generally 

orthotropic laminates the fibre angle is measured from 

the x-axis as shown in Figure (4.1a). However, in this 

work the fibre axis is usually at an angle with the 

y-axis and in the case of specially orthotropic 

laminates, the fibres will be aligned with the y-axis. 

A summary of the theoretical prediction of bending, 

torsional, and bending/torsional material coupling 

stiffnesses will be discussed for various structural 

elements (in the order of their degree of complexity) as 

follows : 

C i3 BEAM ELEMENT : 

The moment-curvature and inplane stress-strain 

relations for the general case of a laminate are (given 

by equations (3.1a) and (3.1b) of Chapter (3)) as 

follows: 

fN=ABe (4.1) 
MBDK 

N 
X 

where N= 

INN 

y= 
inplane forces 

x y 

rM 

M= 
11Hy 

- bending and twisting moments 

xy 

K 
X 

K= KY = bending and twisting curvatures 

K 
xy 

where 

A; 
j, 

BL3, DU. = inplane, coupled and flexural 

moduli respectively 
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14 

For a symmetric laminate B., will vanish. Therefore, 

flexural and longitudinal modes will uncouple. If a beam 

as shown in Figure (4.1b) has bending moment Mx and an 

end torque Mxy but no chordwise bending moment MY, then 

the equation (4.1) will reduce to : 

M D D D K 
x ii 12 id x 

0 D D D K 
2! 22 2ö y 

M D D D K 
xy a d d xy 

or 
m D K+DK +DK 

x It x 12 y to xy 

0= D K +D K + D K 
21 x 22 y 2d xy 

M = DK +D + K D K 
xy x 0 y O xy 

The second equation will yield 

Ky =( D2* Kx + D2d D D22 

Therefore, 

Di 2e_ Die D2d 
Mx 

(D11 
DZZ 

) 
Kx + 

(Dia 
D22 3 Kxy 

and similarly 

__ 

ßs2 D2a 

__2 
2a MxY 

(D6_ 

X22 

, 
Kx + 

(D6d 

D22 
KxY 

Therefore, in matrix form 
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(4.3a) 

(4.3b) 

(4.3c) 

(4.4) 

(4.5) 

(4.6) 
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D2 DD 
_ IM i2 

_ 
CD 12 26 

K 
x Lit D ia D x 22 22 [ 

D D Z D 
M 12 20 1 ( 2ö 1 K 

xY 

(Did 

D J I 
a6 

D 
_ D J xY 

22 22 

or 

m KK K 
x It !a x (4.7) 

M K K K 
xy ia aa xy 

where K1! = corresponds to bending stiffness EI 

K, 
5d 

= corresponds to torsional stiffness GJ 

K1a = bending/torsional coupling stiffness K. 

Cii) THIN PLATE ELEMENT : 

A plate is a three dimensional sheet of elastic 

material which lies in a plane. Plates possess bending 

stiffness as a result of their thickness and the 

elasticity of the plate material. As the plate deflects, 

the mid-surface of the plate (half way between the top 

and bottom surfaces i. e. neutral surface) remains 

unstressed. At'all other points there is a biaxial state 

of stress. Normals to the mid-surface remain normal as 

the plate deflects. The stresses and strains are 

proportional- to the distance from they mid-surface. The 

maximum stresses and strains are thus at the surface of 

the plate. For an isotropic plate lying in the x-y plane, 

the normal strains (Ex and eY) and shear strain (c ) in 

the plane of the plate are 

a2 w 
e_-z 

x $X2 

6=-Z 
82w 

y2 
(4.8) 

8y 

6-2Z 
02V 

xy OX 8y 
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If the out-of-plane strains are absent, then 

E_=s=0 
xz yz zz 

where z is the distance perpendicular to the plate 

mid-surface and w is the transverse deflection of the 

plate mid-surface. These strains are associated with the 

following stresses for a homogeneous isbtropic material: 

a=E (E +v s) 
xx (1-v2 )x yE 

(4.9a) 
a= (c +vE) 

YY (1-v2) yx 

a 
xy 

=Gc 
xy 

a 
xz 

=a 
yz =a 

zz =0 (4.9b) 
" 

where E= Young's modulus 

G= shear modulus 

v= Poisson's ratio 

For anisotropic (composite) materials: 

axx Q11 Q_12 Q16 cxx 

ayy =Q 
2i 

Q22 Q2a j Icyy (4.10) 

axy QId Q26 QO ýxy 

where the first subscript refers to the normal to the 

face on which the stress acts; the second subscript is 

the direction of the stress. Thus in equation (4.10) axx 

and yY are the normal stresses and ax is the shear 
Y 

stress. These stresses are shown schematically in Figure 

(4.2). (Note that ZZ is ignored in the thin plate 

theory). 

M 

M" = bending moment , Mxy = twisting moment 
y 
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For an isotropic plate 

M=-r 
iza 

z dz = 
E h9 ezz 

+v 
ezz (4. lla) 

" J-h/2 "" 12 (1 - vz ) 
l8Xz eyz 

M=-f 
/za 

z dz =E 
h9 

(02z 
+ 

azz (4. llb) 
y 

-h. /2 yy 12 (1 - vz) ey2 8x2 

hiz 
M=-faz dz = 

E he 82 z (4. llc) 
"Y 

- hiz )c 12 (1 + v) 49x ay 

The integrals are taken through the thickness of the 

plate. However in case of an anisotropic (composite) 

plate : 

M D 
x It 

M = D 
y 21 

M A 
xy la 

where 

K=- 
a2y 

xx ; X2 

D D K 
12 id xx 

D D K 
22 24 yy 

D D K 
20 66 xy 

2 8 w K 
yy 2 

aY 

(4.12) 

K=-2 
a2w 

xy 8xey 

Re-arranging equation (4.12) : 

K b ß D M 
xx i2 iß 11 x 

K - XDD M 
yy 21 22 2d y 'K D D D M 
xy ia 2d ad xy. 

(4.13) 

In the absence of chordwise moment and torque, the 

following relation between spanwise curvature and bending 

moment is obtained : 

K= D* H (4.14) 
xx It x 

where D is the element of the inverse matrix. 
ii 
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Comparing equation (4.14) with the bending moment and 

curvature relationship for a beam made of isotropic 

material EI 
az=-H, 

an expression is obtained for 
8x 

the bending stiffness of the anisotropic plates 

EI =c/ Dii (9.15) 

where c is the chord of the plate. Note that moments in 

equation (4.13) are per unit width of the plate. 

Similarly, assuming the presence of only torsional load 

on the plate will give the following relation : 

0 Kxy = ßa6 Mxy (4.16) 

Further comparison with the similar relation in the case 

of isotropic materials T= GJ ; where T is the 

applied torque and '0 is the angle of twist, will gY 
give the following expression for the torsional stiffness 

of the plate : 

GJ =2c/ D66 (4: 17) 

Structural properties obtained in equations (4.15) 

and (4.17) are very useful when a plate due to its large 

aspect ratio can be idealized as a beam structure. These 

properties can then be entered in dynamic analyses which 

will be discussed in Chapters (7), (8) and (9) 

respectively. 

For composite symmetrically laminated plates, 

reference (so) suggests the following expressions for the 

estimation of bending, torsional, and bending/torsional 

stiffnesses. 
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K22 
It , 

K=2cD 
24 22 

K=4cD 
44 ad 

(9.18) 

where K22 = EI = Bending stiffness 

K24 K Bending/torsional coupling 

stiffness 
K= GJ = Torsional stiffness 44 

c= Chord length or width of the plate 

Cii i) THUN-WALLED BEAM ELEMENT : 

Thin-walled composite cylindrical structures can be 

divided into two major categories, namely symmetric and 

antisymmetric. In a symmetric configuration, the ply 

lay-ups on opposite sides are mirror images with respect 

to the mid-axis. But in case of the antisymmetric 

configuration, the ply lay-ups on opposite sides are in 

reverse order. 

For a symmetric laminate, the coupling moduli, Bij 

will vanish. Therefore, the bending and longitudinal 

modes of deformation will uncouple. 

Furthermore, thin-walled beams can be divided into 

closed sections and open sections. First the stiffness 

estimation for closed sections will be discussed. The 

discussion on open sections will follow. 

Ca) CLOSED SECTIONS s 

Cal) GENERAL, CASE WITH ARBITRARY CROSS SECTION 

A cylindrical tube subjected to torsion, bending and 

longitudinal tension using cylindrical coordinates as 

shown in Figure (4.5) and in the absence of 

circumferencial stresses and strains has been analysed by 
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Mansfield and Sobey (5) (see Appendix (B)). Equations 

(B. 1.4) to (B. 1.7) of Appendix (B) give relationships 

between the longitudinal tension, spanwise and chordwise 

bending moments and torque to their respective rate of 

deformations respectively. A global stiffness matrix can 

be obtained by writing these equations in a matrix form 

as follows : 

H1lds -ý H21ds 0 ý0 [xi 

0 -ý z H21ds £ z2Hilds 0 
Nye 

Mz 0x H21ds 0f x2Hl1ds 

IlKx 'Nil 02A0K 
yz 

(4.19) 

All *the terms in equation (4.19) are in the usual 

notation that have been defined in Appendix (B) (also see 

list of notation). Substitution of normal strains, 

curvatures and twist for the shear flow N in the 
ye 

structure will result in a fully populated stiffness 

matrix. A simplified stiffness matrix for a mirror-wise, 

symmetrically laminated composite tube is obtained as 

follows [s]. 

2 
zH ds Mx 2Hiids 

+ 
21 

H22ds 

m -2A 
z H21ds 

yý H22ds L 

zH ds 

-2A 
2i K 

H22ds 

(4.20) 

4 AZ do' 

Hz2ds 
dy 

Equation (4.20) give following expressions for the 

113 
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bending, torsional and coupled (bending/torsional) 

stiffnesses of a symmetrically laminated mirror-wise 

thin-walled composite tube. 

EI =ý z2 Hl1ds +zHz! 
ds 

(4.21) 
H22ds 

GJ =4 
AZ (4.22) 

HZZds 

ZH as 
K=- 2A 2 (4.23) 

f H22ds 

Equation (4.21) suggests that calculation of bending 

stiffness by means of multiplying the laminate equivalent 

elastic constant Ex (in the longitudinal direction) with 

the second area moment of the cross-section will give 

under estimated results when the fibres are at angles 

other than 0 and 45 degrees. The estimation of torsional 

stiffness will produce similar results with both 

techniques. 

Cat) BOX BEAM CROSS SECTION 

A similar analysis for the prediction of stiffnesses 

applicable to box-beam structures has been given by 

Chopra et al (P] (see Appendix (B)). The circumferencial 

strains are not assumed to be zero as compared with 

Mansfield and Sobey's approach [s]. The theory is 

initially developed for a box beam geometry but with a 

few substitutions the analysis can be adopted for any 

arbitrary cross-section. 

The x and y axes are aligned with the chordwise and 

spanwise (flexural axis) axes of the structure 

respectively. The deformed structure is represented by 

the orthogonal coordinate system , and » as shown in 

Figure (4.3a). 
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The stress-strain relationship for the top and bottom 

flanges of a box beam shown in Figure (4.3b) is given by 

the following expression :- 

Qit ý_! 
z 

Q_sß eL`ý 

er 
M7 

Qsz 0 
22 

0 
2d 

can (4.24) 

TZn Qid QZd Q YZ7i 

where Q= transformed reduced stiffness matrix of the kth 

lamina in the ý-Tj (or Z-K) plane. Since ahn =0 

equation (4.24) can be simplified by solving for c77» as 

shown below: 

a C1! 

a 

Tý 
Cid 

CId 

Cý r 

(4.25) 

where 

Q2 
12 

It 
Q22 

122d 
Cis aId 

Q22 

2 

26 
C 

dd 
Q22 

Similarly for left and right flanges with aCC = 0, the 

following relationship can be obtained : 

"Z eat 

TZ Cid cý ' 

(4.26) 
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A simplified linear analysis is presented for bending 

and torsion of thin-walled symmetric composite beams 

based on the coupled nonlinear analysis of Hong and 

Chopra (Pl for a composite helicopter rotor' blade 

subjected to flap bending, lag bending (i. e. chordwise 

bending), elastic twist, and axial deflections. 

IM1 EI 

T K 
PS 

Z d w K 
]PS Z dy 

dgb 
GJ 

dy 

(4.27) 

where 

Nu 

EI =Zff Cii) C2 a» de +ff iii c2 ai7 ae 

NU 

GJ =ff Caaý ý2 do dC +ff Caaý di dC 

N 

Kpe= 
Zff 

Ciao e di? dC 

1,2 
IC=i 

(4.28a) 

(4.28b) 

(4.28c) 

Subscripts 1,2 represent the top and bottom of the box 

and 3,4 represent the left and right sides of the 

laminated box beam. 

N= number of layers in laminate 1 or 2 

M= number of layers in laminate 3 or 4 

and 
»_-ý, ý and t=Z-x, -0 (4.29) 

c warping function =ß_ 
(c 

+ d) 
C» (4.30) 
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C b) OPEN SECTIONS 

In the case of open sections, laminate equivalent 

elastic constants in the bending mode are computed and 

the sectional constants are calculated assuming that the 

structure is made of isotropic material. The product of 

the elastic constants and appropriate cross-sectional 

constants will give flexural and torsional rigidity 

values. The last two unified approaches discussed are not 

applicable due to the reason that the analysis based on 

equations of equilibrium is valid only for open sections 

supporting shearing loads and not torsional loads. A 

complete analysis of the estimation of stiffnesses for 

open cross-sections is beyond the scope of this work even 

though some progress has been made. Tests carried out on 

open sections (reported in Chapter 5) gave large 

discrepancies between predictions and experimental 

results which clearly demand a more rigorous analysis of 

this subject. 

4.4 TORSIONAL RIGIDITY OF MULTI-CELL SECTIONS 

The torsional rigidity of a single cell structure 

made of isotropic material is given by the following 

expression (see Appendix B) 

GJ =Te (4.31) 

where J= torsion constant of the cross-section 

G= shear modulus of rigidity of the material. 

The computation of torsional rigidity of a structure 

mainly involves the effort of calculating the J value for 

the cross-section. For a circular cross-section, the 

torsion constant J is simply equal to the polar second 

moment of area about the centre. In the case of an open 

section of thickness t, the torsion constant J is given 

by Its): 
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3f 
t9 ds (4.32) 

0 

and for a single cell thin-walled closed section : 

J4 
ds 

(4.33) 

t 

In this section of the chapter,. an analysis to 

determine the torsional rigidity of multi-cell structures 

will be discussed. For the sake of brevity only the two 

cell section will be discussed in detail. This will be 

followed by an attempt to generalize the procedure to 

determine the torsional stiffness for a multi-cell 

structure with any number of cells. 

4.4.1 TWO CELLS 

Consider a two-cell section as shown in Figure 

(4.4a), subjected to a torque T about the shear centre. 

Assuming that the Bredt-Batho theory of torsion is 

applicable, the total torque is therefore the sum'of the 

individual torques from each cell, i. e. : 

T2 Aigi +2 AZgZ (4.34) 

where Ai and A. are cell areas of cell I and II 

respectively and q! and q2 are shear flows as shown in 

Figure (4.4). The shear flows in the walls of each cell 

are in equilibrium at any junction. The rate of twist in 

each cell is given by 

do 1fy- 
2AG q 

dt 
(9.35) 

The rate of twist in every cell must be equal. Thus 

äy )ia 

( de )Z° äy )o�ora« ( 4.36 ) 
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Hence using the right side of equation (4.35) 

1 
bI 

2A 2A t G qi 
(+ a 

bi 

-+. 
[ 

+t 
J a 

q_ gJl 
I ! 2z 4 ! z 

1 
G 2A 

bz (q2 

tý 
a 

bz 

_ 
)+t 

+ät 
C 

q? qi, 
2 7 4 

Substituting 6 
r 

t1 + -1 ls 
2 2 

6 a 
12 t 

4 

b b 
Ö z 1 a z 

t 20 t5 
ä 7 

the expression simplifies to 

q1 
rä10+ 

dsz+ 
A! 

61z1 = q2 
C61z+ 

A 
(dz0 + 612 ) (4.37) 

2 2 
J 

Now by considering the first and the last quantities in 

equation (4.36) 
de rde ( 
dy 

ýi 
` dy 

) 
overall 

which results after necessary substitution 

2) 
612 do 

2AIG qs 6to+ ( 9i- g 

and further simplification gives 

6 1- 6)q! - 612 q2 -2 Ai 
do 

=o (4.38) 
to 12 

Rewriting equations 

form : 
r2 

As 

A 
(6 +6t2+A! dsi) 

2 

`6 + dig 

10 

(4.34), (4.37) and (4.38) in matrix 

2A 
z 

0 q! T 

0 q2 = 0 

-2 A ae 0 
i dy 

Ai 

-( 
12 

+ 
A2 20+ 

a 
s2' 

-d 
12 
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or simply 

(e) [q) = [T] (4.39) 

Therefore, 

(ql = (el-! [T] 

or 

q e T 
i iz It to 

2 
12 ee 

21 22 29 
e O 

(4.40) 

do e* A* A* o lay at 92 99 

Therefore, 
äe= 

e9 T (4.41) 
l Y 

or GJ = 
de 

= 
1* 

(4.42) 

dy 
mss 

which comes out to be 

6 'A2 t6 A2+ 6 A2 
GJ = 

20 s 12 io 2 (4.43) 6 ++6 6 
12 20 10 20 10 12 

4.4.2 GENERAL EXPRESSION FOR MULTI-CELL STRUCTURES 

The application of Bredt-Batho's theory of torsion to 

n cells will give the following concise expressions 

T= 2A. g. (4.44) 
i=s 

( äy )ý_ ( äy )Z= ...... _(äy )., _ (äy )o�oratt (4.45) 

These equations will form (n + 1) number of simultaneous 

equations and their coefficients will give a matrix of 

order (n + 1). The reciprocal of the (11 +1), 1) element 

of the inverse matrix will be the torsional rigidity of 

the section. 

GJ =1 (4.46) 
A 
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4.5 SHEAR CENTRE 

The position of a shear centre is defined as that 

point in the cross-section through which shear loads 

produce no twisting. It may be shown by use of the 

reciprocal theorem that this point is also the centre of 

twist of sections subjected to torsion. 

The centre of twist is a point in a cross-section 

that remains stationary when a torque is applied to that 

section. If the supporting constraint of the beam is 

perfectly rigid, the flexural centre coincides with the 

centre of twist or the shear centre. 

4.5.1 CLOSED SECTIONS MADE OF ISOTROPIC MATERIALS 

General stress, strain and displacement relationships 

for an element (ds x öy x t) of a closed or open section 

are deduced by considering that the element is maintained 

in equilibrium by a system of direct and shear stresses 

as shown In the Figure (4.5). The direct stress ay is 

produced by bending moments or by bending action of shear 

loads. The shear stresses r. 
y, 

z 
ye 

are due to shear 

and/or torsion of a closed section or shear of an open 

section. The hoop stress a is usually zero but may be 

present in closed sections due to internal pressure. If t 

is assumed to be constant over the length ds then Ty= 

T=r. It is convenient to work in terms of shear flow 
y 

q, i. e. shear force per unit length. The theory for 

computation of a shear centre of a closed section is well 
known and is'given for convenience in Appendix (G. 3). 

For analysis on a computer, the section is divided 

into several small straight segments. The co-ordinates of 
the segments are entered along with the thickness and 

material properties such as the moduli of elasticity and 

rigidity. The thickness "t" in the equation refers to the 

direct stress carrying thickness of the skin. 
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X1, z; ........ ,n 

where xo, zo = initial node of the first segment 

x, 
n 

zn = last node of the last segment 

x., z{ = the end node of the t-th segment 

Computation of Ixx'Izz"Ixz is carried out as usual. 

The x. and z quantities as given in equations (G. 28) and 

(G. 30) (see Appendix G. 3) for shear flow in the section 

can be-expressed in terms of s as shown in Figure (4.6). 

Z= Zo f8 sin 0=Z; 
-i+ 

x= xo +s sin e- x`_! + 

zt - zt-1 
$ (4.47a) 

Substituting the above values of x and z in equations 

(G. 28) or (G. 30): 

t; 
Z z 

L L-1 
sds- qb 

sz 

Jt[ Zc- s 

xx 0 
ti 

sx 
ti Xi-i 

xi -Ls 
ds 

Izz li 

0 

a t 8 Z 
I 

t i-i 

xx 

x t X 8 + i j i-1 

zz 

I 
zf - z; 

-! salit 

tt 2 
C. 

t 
xL - xt-s 

sz 
; 

I(4.48) cL 20 

Therefore, -for each segment 

tz It + 
z; - z{_! 

qbi mIt t-: L tZ 

xx 
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S X- X12 1 
Xt+L 

It t-t tl2 
zz L 

or simply 

t. Z. ss 
ttzx 

qbi (z`+ zi-! ) +(x. + XL. 
-s) 

(4.49) 
2II 

xx zz 

There will be n values of qbi fot a cross-section. 

Then qo will be computed by adding the individual values 

of qbi for each segment. 

qst gbt'qst-s 

Nov the value of 4 gbds 

can be computed as follows : 

n 
tt 

qb ds =E f gb. ds 

i=i o 

(4.50) 

as given in equation'(G. 31) 

t 
i 

s -Z Z X -x z 
_- tZ 3+ 

i SZ 
- 

xt 
X 5 + 1 o s2 

) Jds 

I l 2 I i ý 
l 2 

xx i Z2 i 

0 

t 
2 

s Z z z S x-x 2 
+q + =t ,2 i z s+ s 

_ 
xt x s+2i s ds bs 

I z s l 2 2 I i l 2 
xx 2 Zz 2 

0 
t 

a 

3 z -z 2 
+ qbi+ qb2+ 3+ Z t 9 2 

1 
3 

2 9 
I l 2 

xx 

0 

X -X 2 

- 5+ 
xt 

[x 
a 2 d3 

........ ...... 
I 2 l 2 

zz a 

After further simplification : 
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f 
ds . 

S 2 
? S 

= - t y 
i o I 2 

xx 

y -Z 3 S 2 X - X 
l O 8 x 6 1 O 

+ t - X + 

I 1 0 C 6 I 2 ý 
1 ZZ 1 

1 

3 
s 

6 

0 

s-t 

Sz 

z 
s2 + 

Z2 Zi 
s3 + 

9x 

x 
s2 + 

x2 Xi 
23 

qb] 
2 2I 12 42 6 IZZ 12 C2 

1 

-) 
6 

qS+qS_t 

SZ 

Z 
S2 + 

Z3- Z2 
s3 

bl 3 b2 33I226 

xx 3 

cýi q dc . Jv 

t 
3 

S 2 X X 3 

+ x 

I 
x 

2 

s 

2 

3 2 

f 

s 

6 
zz 3 

0 

_- t 
i 

S 
z 

I 
xx 

Z 
ý 

2 G 
1 

2 
+z 

1- 

.G 1 

z 0 
3 C 
1 

6 
+ 

S 
x 

I 
zz 

X 

2 ý1 

2 
+ 

- R 
1Z 

RO 

1 

3 ýi 

6 

.t 
Z 

Sz 

I 
xx 

Z 
1 

S 

2 
} 

ZZ- Z1 

.e 2 

2 

63 

Sx 

I 
zz 

X 

tZ2 

12 
+ 

X2- X 

2 

3 

1 

6 

_t 3 

Sz 

I 
xx 

z 
2 

2 

2 
+ 

Z3- z 
21 

3 

3 ý3 

6 

- 

+ 

Sx 

X 

Izz 2 

2 

3+ 

? 

{ x3_ X2 

ý3 

3 

6 

....... a qb1( ý2 tý3+... týn)+ qb2( Z3+t4+... +ýný.......... 

In a generalized and simplified form, 

t2 

0 
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t, i2 Ss 
gbas - 

`` 
iz 

(z`- 2 zL-i) + -" 
(x 2x 

6 
t-i) 

+ 

xx zz 
t=i 

Tt 

qbiý 
ýl 

- lk (4.51) 
k 

Therefore, 

n 
1 tit; sz 

q°O 
n6I 

Zi- 2Zi-s) 
Itt 

xx zz ds =Et, i=1 
i=t 

ni 

+ qbi ( 

ili kGltk) 
(4.52) 

Nov the exact values for qs. can be computed from 

equation (4.50) by including the value for qSO obtained 

from equation (4.52). 
4 

Then equating the moments due to the internal shear 

flows about a reference point ( for example, the centre 

of gravity) to the moment of applied shear load (dummy) 

about the same point gives the following expression. 

('tL 
Sx ZE + Sz t$= EJ PL gds 

ol 
N (' t 
E Pi J 9bL+ qsi. 

-1) 
ds 

0 
t. 

(' 
Sz 

tzs+z 

zi-! 
s2 

=LE 
=l 

I 
Pi, J-1L L-1 Z. Z 

o xx 

Sx 
ti X{-! s+ 

XL xt 
s sZ }]+] 9st-s ds 

I 1.2 
zz L 
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N 
2 

, Z. 
8 

Z, 1 
pi - i ý- . 

Z 
-s i=l I . t 2 l6 

xx L 

2 
ii x; - X" li 

x t 
, x. + q t, + 

si-s I L-i 2 L l 6 
xx 

N t. t? s - s 
= E, pL 

%i 
-z (Zi+ 2 ZL-i) - 

x (x +2 xL-i) + qsi-it 
t=i 6 I I 

xx zz 

........ (4.53) 

In case of one axis of symmetry, then 

= S= 0 and S since I=0 
xxzz xz 

Therefore, 

N t{ iZ SZ 
SZ ý`ý _{ E PL 

61 
(z 

L+ 
2zi-ý + qst-1t 

=j 

1 

xx 

-(4.54) 

SZ will be canceled out on both sides of the equation to 

give 

Htl 
ZE: =iEp- (z+ 2z 

i) 
+qZ. (4.55) 

. =s 
`6I` -t st-i 

xx 

4.5.2 OPEN SECTIONS MADE OF ISOTROPIC MATERIALS 

Shear centre computation for open sections is quite 

similar to that for closed sections. Equation (G. 28) (see 

Appendix G. 3)" refers to open sections where qo represents 

the open section shear or basic shear, also denoted as 

qb. Expressing x and z in terms of s will give an 

expression similar to (4.48) and, after simplification, 

equation (4.49). 
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For an open section, quo = 0. Therefore, qsi= qb,. 

Equating the moments of the internal shears about a 

reference point ( for example the centre of gravity) to 

the moment of applied shear load (dummy) about the same 

point gives an expression similar to equation (4.53). The 

rest of the analysis follows the same pattern as that 

which has been discussed concerning a closed section. The 

final expression for calculating the shear centre for the 

open section is identical to equation (4.55) as shown 

below. 

rr ttt; 
eit _ (z+ 2 zi-i) + qsi-tl (4.56) 

t=! 6I 
xx 

4.5.3 CLOSED SECTIONS MADE OF COMPOSITE MATERIALS 

The rate of twist 
äy, 

in uniform thin-walled 

elastic beams in the case of uniform torsion as suggested 

by Bredt [a] is given by the expression 

dye 
a1q. _ ds (4.57) 

dy 
. 

2A 
f 

Gt 

In order to generalize Bradt's method for combined 

bending and torsion, several longitudinal cuts are 

assumed so that the' structure is considered as an open 

section. The basic shear flow is computed using equation 

(G. 30) (see Appendix-G. 3) on which an unknown correction 

shear flow to compensate for the cuts is superimposed. 

This correction shear flow is determined by equation 

(G. 31) which is an equation of static equivalence; where 

external loads acting on the cross-section must have the 

same moment about a" longitudinal axis as the 

cross-section shear flows. In the case of a multi-cell 

structure, the above equation is supplemented by 

equations of compatible rates of twist of the cells. 
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The method described has the following shortcomings 

when applied to the combined bending and torsion case: 

1. The strains implied by these are not necessarily 

compatible, though the stresses obtained may 

satisfy equilibrium. 

2. The method assumes that the shape of the 

cross-section remains preservedp hence neglecting 

Poisson's ratio effects. 
3. Moreover it is assumed that the cross-sectional 

normal stresses are calculated by the Engineer's 

theory of bending (a or its generalization 

in the case of unsymmetrical bending), and 

therefore, it is possible to ignore shear lag and 

bending stresses caused by torsion. 

4. The assumption in the method that the walls of the 

cross-section are isotropic or at least specially 

orthotropic; that is, one of the axes of the 

fibres in a composite material lies parallel to 

the longitudinal axis of the structure. 

Hence the method is inappropriate for stubby beams with 

non-compact cross-sections. 
For a cylindrical tube subjected to torsion, bending, 

and longitudinal tension, cylindrical coordinates as 

shown in Figure (4.7a) can be used. In the absence of 

circumferencial stresses and strains in the structure 

i. e. N0 -0& eý e 0, equation (A. 24) (see Appendix A) 

will reduce to : 

Ny I. [ Asi A! 
a y (4.58) 

Nye 
is 

Aaa Yyo 

or 
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Ait 

A 

y 

y. is 

or 

N 
Y 

rye 

or simply 

-'L * 
A N A 

ia y ll 
] f 

A N A 
a9 yo ia 

STRUCTURAL PROPERTIES 

A 
sa y (4.59) 

AN 
99 y. 

A 
ss 

_ 
CH 

- i2 A ý 
li v 

*2 
N 

* is ye H= - A 
22 as 

A 
si 

1 

= CH s * A 
ss 

A 
sa 

__ 
CH l 

sz *J 

ss 

-H s 
i2 y (4.60) 

HN 
22 yo 

Ny I=[ Hsi 

ryo Hiz 

General stress, strain and displacement relationships 

for an element (ds x öy x t) of a closed or open tube are 

deduced from considering that the element is maintained 

in equilibrium by the following system of direct and 

shear stresses as shown in Figure (4.7b). 

av Direct stress, produced by bending moments 

or by bending action of shear loads. 

T=v and T= Shear stresses, due to shear and/or torsion 

of a closed tube or shear of an open tube. 

(If t is assumed to be constant over the 

length ös then r 
vO 

=z 
ov 

=T). 

a= Hoop stress, usually absent but may be 
" 

present in closed tubes due to internal 

pressure. 

q Shear flow =Tt 

For equilibrium of the element in the y and s 

directions and neglecting body forces and hoop stresses, 
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equations (G. 20) and (G. 21) are obtained. Substitution of 

No =at will give the following expressions : 

aq ON 

+y=0 (4.61) 
as ay 

89 

=0 (4.62) 
eY 

The second expression suggests that the shear flow in 

the y-direction is constant or that the shear flow q only 

depends on s. The integration of the first equation will 

give 

ON 

9(s) = qo -Jr'1 ds (4.63) 

o` 

In the case of the classical theory for thin-walled 

beams made of isotropic materials, the cross-sectional 

normal stress is assumed to vary linearly with x and z. 

The longitudinal strain ey in this case is assumed to be 

a linear function of x and z. 

e= e- zKx-xKz (4,64) 
yo 

where e(y) = mean axial strain in the structure 
KX(y) = curvature öf the structure in the xz plane 

KZ(y) = curvature of the structure in the yz plane 

Substituting equation (4.64) into (4.60) : 

Ny = H!! (-- 
0-z 

Kx -x Kz) - H12 q (4.65) 

Differentiating with respect to y and taking into account 

equation (4.62) gives : 

ON 
y=H (sý- z K& -xK0) (4.66) 

ii oXZ 

130 



CHAPTER 4 STRUCTURAL PROPERTIES 

where the primes denote differentiation with respect to 

y. Substituting equation (4.66) Into (4.63) gives 

q(s) =qo -J 
(Hi! 

(co-zK: - xK; )) ds 

0 

90 co f H!! ds + Kx fz H1ds + KZ fx H1ids (4.67) 

000 

Let 
a 

ai (s) =fH! 
1 

ds 

0 

a 
a2 (s) =fz H11 ds 

(4.68) 
0 
0 

a9(s) =fx Hi, ds 

0 

and substituting equation (4.64) and (4.67) into (4.60) 

gives 
a 

IV y 
ye 

= H12 (so- z Kx -xK)+H qo co fHsi ds 

a, a 

+ Kx fz H1i ds + KZ fx H1! ds (4.69) 

00 

The resultant tensile load P after substituting 

the expression for Ny from equation (4.65) is :- 

Ny ds =f 
(H!! 

(co- z Kx -x Kz) - H! 
2 

q) ds 

_0£ H1! ds - Kx 
fz 

Hiids - Kz 
fx 

Hiids -fH 12 
qds 

Similarly the bending moment about x-axis : 

Mx =-z Ny dis 

(4.70) 
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=-cazH+K ®z2 Hitds + Kz 
c 

xz Hitds 

+cýzH,. gds (4.71) 

and the chordwise moment about the z-axis 

Mx =-cx Ny ds 

co 
cx 

H11ds + Kx 
fxz 

Hl, ds + Kz 
£ 

x2 Hsids 

+fxH, 
2q 

ds (4-72) 

In matrix form 

ý! 
i ds 
!! 

-ý z H ds 
1l 

-ý x ds H 
!! 

or 

-fzHII dis -fx H1! ds co P+f H12 q dB 

z2 Hssds 
f 

xz Hiids Kx = Mx- 
fzH, 

2q 
ds 

f xz Hilds 
f 

x2 H1ids KZ MZ- x Hl2q ds 

{F} [b] {u} - 
Let 4 

Qs = Hie q ds 

QZ =fz Hie q ds 

Qa =x 
!2q 

aii a}2 

or Kx a21 a22 

1Kz aai a92 

where 
ij 

is. the inverse o 

ds J 

asa p+ Qi 

aZa Mx- QZ 

aaa Mz Qa 

f the btj matrix 

(4.73) 

(4.74) 

(4.75) 
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Since H and M, c, K, and K are linear functions of 
xzoxz 

y, differentiation with respect to y gives 

aaa0 
o It i2 is 

Kx als a22 a29 Vx 
(4.76) 

KaaaV 
z 

[8i 

92 99 z 

Equation (4.76) indicates that e 
Of 

, 
Kx, and K2 are 

independent of y. Finally the resultant torque about the 

y-axis : 

Ts p(s) g(s) ds (4.77) 

where p(s) = perpendicular distance from the origin 

to the tangent at the point defined by 

s. 

A2 p(s)ds = cross-sectional area of the tube 

Substituting equation (4.67) in (4.77) will give: 

13 

Ta p(8) 
(q 

- Eo f H!! ds + Kx f2 Hiids + K: fx Hiidslds 
00oJ 

Solving for q 
0 

2A, T+ so ý p(s) f H1lds ds - Kx ý p(s) 90 =C --- 
[ 

0 

z H!! ds ds - KZ p(s) fx H1lds ds (4.78) 
00 

Let 

a4(s) =f p(s)f Hilds ds =f p(s) ai(s) ds (4.79a)-. 
- 

0 

a5(s) =f p(s) fz H1lds ds =f p(s) a2(s) ds (4.79b) 

0 
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ad(s) _ p(s) fx HItds ds =f 
_p(s) 

a9(s) ds (4.79c) 

0 

As £, Kx, and Kz are independent, of y, the following 

statments"can be deduced. 

1. q(s) and qo are independent of y as shown in equation 

(4.62) 

2. q(s) and qo depend on H!, but do not depend on H! 
2 

or 
H22. 

3. This dependence on H11 is on the function and not on 

the amplitude. 

Integrals Q!, QZ, and a31 will be evaluated : 

Qs f H£Zds -i a1(s)HiZda f a2(s)H12ds f a0(s)H12ds 
90 

0 

z HI, da -§ z ai(s)Hl2ds z a2(s)Hl2ds fz as(s)Hj2da , 
Kx 

Qa fx". Hl2da -§ x a! (s) Riads fx a2 (s) H12ds fx as (s) H£Z da K= 

or 

(p} - Cc] (u) (4.80) 

{( 

i 

(k 

t 
ý P' 

The rate of "tvist in"a single cell of a thin-walled-beam, 

according to the classical theory, is related to the- 

shear strains, in the walls of the cell by the formula: 

äy - 
2A ýr (s) ds (4.81) 

The rate of twist is independent of the material and Is 

based on geometric considerations. Substitution of 

equation (4.69) in (4.81) gives: 
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d_v 1 
IH 

(s zK-xK)+Hq 60 -y 2A 12 0xxu00 

f Hssds +. Kx fz Hit da + Kz f' x Hssds ds 

o" o0 

or 

dw 

a1_ 
dy 2A c 

co 
ctt + Kx czt + Kz cat + qo dt 

+ eo dz + Kx ds + Kz d4 
1 

(4.82) 

where 

ctt =f Ht: ds ', cz 
t=fz 

Hlzds , ca 
t=fx 

Hizds 

d! HZYds d2 =- ai (s) H. ds 

da a, (s) Huds , 
d4 s as(s) H. ds 

2 

(4.83) 

The rate of twist äy 
is generally a linear function 

of y because so Kx, Kz are linear functions of y, 

whereas qo, co, Kx, Kr are constants. The average rate of 

twist over-. the 
. 
length L will be as. follows : 

WIL) - w(O) 1- 
I. AC 6o Ctt+ Kx C21 Kz Cat+ 9o at 

- co dZ + Kx da + Kz d (4.105) 

where co, Kx K: are average values of so, Kx, K= and 

obtained by replacing M. e Mx = Mx (L/2) and M= = Mz = 

M= (L/2) into. equation (4.73). 
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In another approach, the rate of twist can be 

computed by combining equations (4.75) and (4.80), 

eliminating £, K, and K using equation (4.82), q 
ox, z, o 

using (4.78), and s Kx, and Kz using equation (4.76) 

10 
d= 21 (ST 

+ (SAR + DR CR As Cs) As uz 
dy 

v 
x 

11 P 

+ CR As -Mx (4.85) 

-M Z' 

where 

AS = (a) matrix of equation (4.75) 

Cs = (c) matrix of equation (4.80) without first column 

AR = (a4 - as - aa) 

CR = (- cIt c2! c9! I 

D = [a d a ) 
R 2 a 4 

S= 
2 

(d -C A c A S am 

T 
= C (c C c ) 

C 21 

The average rate of twist over the span vill be 

0 
w(L) L w(O) 

_ 
2A (ST 

+ (SAR + DR - CR As Cs ) As Vz 

V 
x 

p 

+ CR As -Mx (4.86) 

-M z 

In the case of thin-walled beams made of conventional 

isotropic materials, the rate of twist depends upon the 
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torque T and the shear forces VX and Vz such that these 

quantities themselves are independent of y. This makes 

the shear centre a geometric property of the 

cross-section. But structures made of composite materials 

show dependence on P, Mx, and MZ as well. Since Mx and 

Mz vary along the span of the structure a shear centre 

in the usual sense does not exist. If the shear centre is 

redefined as that point through which a cross-sectional 

shear must pass so that the average rate of twist is zero 

when P, Mx, and Mz do not exist, only then can the shear 

centre be considered as a cross-sectional property. 

4.6 CENTRE OF GRAVITY 

The general principle for locating the centroid of an 

area is based on the method of determining the resultants 

of parallel force systems. In the case of a wing section 

made of glass fibYB reinforced plastic, filled with 

polyurethene expanded foam, the scheme for computing the 

centroid is found to be relatively complicated. Two 

separate centroidal positions for a thin walled section 

and a solid foam section are computed. Application of the 

second condition of equilibrium then results in the exact 

position of the centre of gravity for both skin and foam. 

_ 

Aakin akin 'akin 
+ 

Aerolid öolid Xaolid 

X= 

mass per unit length of the wing (skin + roam) 

_ 

Ackin ökin Ynkin 
+ 

Aoolid öotid Yoolid 

2= 

mass per unit length of the wing (skin + foam) 

(4.87) 
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4.7 MASS PER UNIT LENGTH 

In the case of structures made of isotropic 

(conventional) materials, the density of the material is 

a constant quantity. Thus accurate predictions of mass 

per unit length for a particular structure is possible. 

But in the case of composite materials, the density 

depends upon the vplume fraction of the fibre and the 

resin. (Manufacturing techniques play an important role 

in controlling the volume fraction of the constituent 

materials). 

4.8 POLAR MASS MOMENT OF INERTIA 

For an aerofoil section filled with foam the total 

polar mass moment of inertia will be the sum of the polar 

mass moment of inertia of the skin and that of the foam, 

as shown below. 

2 

I ' 
ki 

+ 1 i Xa + As 
k 

(4.8 8) 
in .k 

s n xx 
skin 

zz 
skt 

n 

l 
2 

I 
I 

b P + 
CI 

x 
Iz 

J 
+ As 

ub 
Xa (4.89) 

P 
sub 

su x 
sub 

zUb 

I I I 
+ I L (4.90 ) 

P total P skLn P ub 

where 
I 

xx 
= second moment of area along the x-axis 

Izz = second moment of area along the z-axis 

Aok«= area of the thin skin 

Asub = area subtended by the closed curve (profile of 

the aerofoil) 

Xa = distance between the centre of gravity and the 

shear centre of the section 

PskLn= density of the material of thin skin (GFRP) 

pfoam = density of the foam filled in the wing section 
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4.9 COMPUTER PROGRAM 

The development of computer codes for the theory 

discussed above was based on both BASIC and FORTRAN 

languages. The programmes have several versions that can 

run both on BBC and IBM compatible micro- or 

mini-computers as well as on a mainframe computer. The 

program consists of several subroutines that can be 

called by a main interface program. These subroutines 

have been written in such a way that the interface 

program can be structured to achieve any other desirable 

objective. The source codes for these subroutines as well 

as main interface programs are given in Appendix (C). A 

summary of the input and output parameters of these 

subroutines Is given in Appendix (I ). 

These subroutines were combined in various ways to 

predict structural properties for a range of 

cross-sections with the capability to analyse structures 

made of conventional as well as composite materials. 

4.9.1 SECTION 

An interface program SECTION was written to predict 

static structural properties for isotropic structures. A 

flow chart for this program is given in Figure (4.8). 

Material properties such as Young's modulus of elasticity 

and shear modulus of rigidity together with wall 

thickness and cross-sectional details of the structure 

are entered as input into the program. The program can 

then predict the bending and torsional stiffness of the 

cross-section, mass, per unit length,, location of the 

centroid and the shear centre and the polar mass moment 

of inertia. An illustrative example with a sample run is 

given in Appendix (I ). 
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4.9.2 KSTIF 

A similar program KSTIF was developed to cater for 

sections made of composite materials. The program 

basically utilises the LAMINATE program discussed in 

Chapter (3) and SECTION as described in section (4.9.1) 

above. The program first evaluates the material 

equivalent elastic moduli and then computes the 

geometrical properties. In addition to bending and 

torsional stiffnesses, the coupled bending/torsion 

stiffness due to ply orientation is also evaluated. The 

program flow chart is shown in Figure (4.9). An 

illustrative example is given in Appendix (I 

4.10 EFFECT OF PLY ORIENTATION ON THE STIFFNESSES 

The effect of ply orientation on the stiffnesses of a 

structure was studied. The cross-section of the structure 

chosen was an aerofoil shape. This parametric study was 

initially conducted on a single layer skin which can be 

extended to several layers. -The computer program 

KSTIF. FOR was tailored in such a way that the ply 

orientation was automatically varied from zero to forty 

five degrees and various stiffnesses were computed. These 

stiffnesses were plotted against ply orientation and are 

shown in Figure (4.10). Finally the bending, torsional, 

and bending-torsional coupled stiffnesses were grouped 

together to obtain a dimensionless quantity 0 given by : 

96 = 
KZ (4.91) 

EI GJ 

The nondimensional quantity 0 was plotted against the ply 

orientation as shown in Figure (4.11). The effect of ply 

orientation on the moduli has already been discussed in 

Chapter (3) and it was found that by rotating the plies 

(ply angle is positive when rotated. counter clock-wise) 
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Young's modulus of elasticity decreases while the shear 

modulus of rigidity increases. Hence a reduction of 

bending stiffness and an increase in the magnitude of 

torsional stiffness were found as anticipated. The 

interesting behaviour is. that, of the bending-torsional 

coupled stiffness, which reaches its maximum value when 

the ply angle is twenty two and a half degrees and 

disappears at forty five degrees. Similar behaviour was 

shown by the non-dimensional quantity 0 when plotted 

against the ply orientation, see Figure (4.11). 

4.11 CONCLUSIONS 

Stiffness estimation of composite structures include 

evaluation of the laminate equivalent elastic constants 

and computation of the cross-sectional constants. The 

structure can be idealised as a solid beam, thin-walled 

beam or a large aspect ratio thin plate element. A 

suitable procedure of stiffness estimation is presented. 

A general expression for the torsional stiffness of a 

multi-cell structure is derived which can be easily 

adopted for any number of cells. 

The effect of ply orientation on the stiffnesses has 

been demonstrated. Bending stiffness decreased when the 

plies are at angles other than along the fibre direction 

and torsional stiffness increased as expected. In the 

case of woven materials this behaviour was exhibited for 

orientations'up to 45° and then it reversed. In the case 

of unidirectional materials the bending stiffness reached 

a minimum at 90° and the torsional stiffness a maximum at 

that orientation. Bending-torsion coupled stiffness 

increased until 221 . It then vanished at 45°, where the 

bending stiffness was a minimum and the torsional 

stiffness was a maximum. 
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Figure 4.1(a) Orientation of axes for plate structure 
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Figure 4.1(b) Orientation of axes for beam structure 
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FIG. 4.8 FLOW CHART FOR COMPUTER, PROGRAM "SECTION" 
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CHAPTER :5 

STATIC STRUCTURAL PROPERTIES 

5.1 INTRODUCTION 

Experimental investigations of the static structural 

properties such as bending, torsional, bending-torsional. 

coupling stiffnesses, mass distribution, polar mass 

moment of inertia, shear centre and centroid were carried 

out on beam and plate structures made of isotropic and 

anisotropic (composite) materials. In the case of 

composite structures, material tests were performed on 

standard specimens 
, 

to establish their properties. 

Experiments on structures made of conventional 

(isotropic) materials were of dual purpose. First, these 

tests helped to validate the procedures adopted and 

components used in the experimental setup. Secondly, 

these tests served as a standard to compare results 

obtained from composite structures. 

5.2 EXPERIMENTAL TECHNIQUES 

A general description of experimental procedures 

adopted is first discussed. In order to determine 

bending, torsional, and bending-torsional coupled 

stiffnesses accurate measurement of transverse deflection 

and twist of the structure is vital. Several different 

techniques were employed to measure these displacements. 

5.2.1 MECHANICAL 

Simple dial gauges were used to measure the bending 

and torsional deflections of the loaded structures. Dial 

gauges are easy to use and do not require any additional 

equipment except stands with magnetic and relatively 

sturdy bases. The possible source of error due to the 
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common problem of stiction in dial gauges is overcome by 

using a spring loaded plunger. But some of the structures 

were so flexible that their stiffnesses were not greater 

than the stiffness of the spring used in the dial gauge. 

Therefore, part of the forces were absorbed in overcoming 

the stiffness of the spring resulting in an under 

estimated dial gauge reading and, hence, over estimated 

stiffnesses of the structure. Thus other techniques were 

used that could measure deflections remotely. 

5.2.2 OPTICAL 

An optical technique is a very familiar method for 

measuring deflections remotely. The deflection on the 

specimen is measured by the reflected back spot light or 

a laser beam focused on the mirrors attached to the test 

structure. In the set-up for this work, a cross-wire is 

observed on a scale (foot ruler) through the reflected 

rays from mirrors on the specimen by means of a 

telescope. The deflections are measured at more than one 

location in order to avoid end effects. 

5.2.3 ELECTRICAL 

Strain gauges were also used to measure the surface 

strains and subsequently the readings were decoded in 

terms of slope of the deflected beam and the angular 

deflection of, the twisted structure. In the case of 

composite structures the size of the strain gauges has 

been of some concern. The non-homogeneous texture of 

composites require larger strain gauges so that the 

strains can be representative of the structure rather 

than local due to the fibres. 

5.2.4 ACCELEROMETERS 

Linear servo accelerometers that are originally used 
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in measurement of linear accelerations can be adopted to 

measure angular deflections. A brief description of 

linear servo accelerometers is given in Appendix (D). The 

mechanism and the circuit diagram of a linear servo 

accelerometer are shown in Figures (5.1) and (5.2). 

5.3 EXPERIMENTAL PROCEDURE 

In case of thin-walled open and closed section 

structures, the non-coll-inearity of the elastic axis (the 

locus of shear centres) and the centroidal axis made it 

necessary to 'establish the shear centre prior to the 

determination of the bending or torsional stiffnesses. 

(This was done to avoid elastic coupling which can occur 

if the transverse load is not applied at the shear 

centre. ) But in the case of plate structures due to the 

collinearity of both the mass and elastic axes, this 

particular sequence was not essential. The tests were 

carried out in the following sequence in order to obtain 

maximum data from each specimen. 

1. Manufacture of specimen 

2. Specimen cut and trimmed to required dimensions 

3. Various dimensions and weight are measured 

4. Determination of the centre of gravity 
5. Determination of polar mass moment of inertia 

6. Root the specimen in Woods metal 
7. Determination of the shear centre 

8. Determination of the bending rigidity 

9. Determination of the torsional rigidity 

10. Evaluating the bending-torsional coupling rigidity 

A variety of materials has been used in 

manufacturing various structures. Steps two and three are 

self explanatory. The centre of gravity of the structure 
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was found by supporting the structure spanwise on a sharp 

edge. The rest of the steps will be discussed separately 

in detail as follows. 

5.4 MASS MOMENT OF INERTIA % 

An important structural property, the mass moment of 

inertia was found by two slightly different methods. The 

results obtained by the two methods were found to be in 

close agreement. 

METHOD 1: A very simple method was used to find the 

mass moment of inertia of -the structure. Two small holes 

were drilled on either end of the structure and the 

specimen was suspended spanwise from a horizontal bracket 

as shown in Figure (5.3a). Then it was given a swing and 

the time for ten to fifteen oscillations was recorded. 

Thus the structure was treated as a compound pendulum as 

shown in Figure (5.3b). The time period of oscillation 

was then measured. The theory of the compound pendulum 

can be found in standard texts [! ). Using the equation of 

motion of the compound pendulum for small oscillations, 

an expression for the determination of polar mass moment 

of inertia was obtained as follows 

2 

I=mgrT+m (a2 -2a r) (5.1) 
P° 4 112 

where I= mass moment of inertia about the shear centre Po 

I= mass moment of inertia about centre of 
9 

gravity 

T= time period = 1/f 

f= frequency of oscillation 

m= mass per unit length 

g= acceleration due to gravity 
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r= distance between pivot point and centre of 

mass 

a= distance between pivot point and shear centre 

METHOD 2: In the second method a mild steel rod of 

half an inch diameter was bolted to a horizontal wall 

bracket as shown in' Figure (5.4). The other end of the 

bar was welded to a disc. A fixture was attached to the 

disc to hold the structure. The torsional rigidity of the 

bar was established experimentally. The mass moment of 

inertia of the disc was determined by twisting the disc 

and measuring the time period of oscillation of the disc 

on the rod in torsion. Then the test structure was 

attached to the fixture and the new time period of 

oscillations was recorded. The mass moment of inertia of 

the structure was determined using following expression 

[1i . 

MOMENT OF INERTIA GJ {T2 2ý 
OF THE STRUCTURE - 

4tr 21- 
To (5.2) 

where 

To = time period of the oscillating disc 

T= time period of the oscillating disc with structure 

GJ = torsional rigidity of the rod 

t= length of the rod 

5.5 SHEAR CENTRE 

The structure was rooted in Woods metal to form a 

cantilevered end condition. A light wooden attachment as 

shown in Figure (5.5) was made to fit the free end for 

the application of load on various structures. The 

cantilevered structure was firmly gripped in_ a vice on 

a L-shaped sturdy base specially made for this purpose. 
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The load was applied at different locations along the 

chord of the structure while torsional deflections of the 

structure were recorded using the various techniques 

mentioned earlier. The torsional deflections of the 

structure were measured near the root as veil as near the 

tip. Then load positions were plotted against the 

difference between the two torsional deflections of the 

structure. The location for zero twist will be the shear 

centre for the cross-section of the structure. 

5.6 STIFFNESS ESTIMATION 

In the case of structures made of conventional 

(isotropic) - materials, separate 
tests for the 

determination of bending rigidity and torsional rigidity 

can be conducted. Even elastically coupled structures can 

be carefully loaded at the shear centre to obtain 

transverse deflections when subjected to transverse 

bending loads and torsional displacements when twisted. 

But for structures made of composite (anisotropic) 

materials this is not generally possible. The presence of 

material coupling requires the measurement of transverse 

and torsional deflections simultaneously when subjected 

to a transverse bending load or a torque. The results are 

treated together to evaluate bending, torsional, and 

bending-torsional coupled rigidities. The experimental 

set up is shown in Photographs (5.1), (5.2), (5.3). The 

displacements were measured by means of the various 

techniques mentioned above. 

5.6.1 BENDING STIFFNESS OF ISOTROPIC STRUCTURES 

When the structure is subjected to a transverse 

loading at the elastic axis, transverse deflection 

results due to bending moment and the distortion of the 

cross-section is produced by the variation of shear 
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stress over the depth of the beam. 

Three sets of techniques were used in the 

determination of bending' rigidity. The mathematical 

expressions pertaining to each type of technique are as 

follows : 

5.6.1.1 DIAL GAUGES 

Dial gauges were placed on the elastic axis along 

the span to measure the deflections due to the load 

applied at the tip of the wing. Using the Engineer's 

bending theory the deflection at various locations due to 

bending caused by a concentrated load at the tip of a 

cantilevered beam is given by the following expression 

(2]. 

2 

öB = (3t-y) (5.3) 
6 EI 

and deflection due to shear 

aPy 
sAG 

(5.4) 

therefore, total deflection is the sum of both 6H and 6s 

PGy 
(5.5) 6=6+ 6s =6 EI 

(3 l-y)+ ct 
A 

Hence the bending. stiffness: 

EI=z 
(3 l- y) (5.6) 
T- Cl y 

6 
{P 

AG 

where 

P= load applied at the tip (at the shear centre in to 

produce pure bending in the structure). 

y= dial gauge location to calibrate the deflection 

t= length of the wing 

a= shear coefficient 
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Deflections along the flexural axis (locus of the 

shear centres) were measured by a series of dial gauges 

with accuracy up to 0.01mm. These deflections were 

plotted against the loads (see Figure (5.7) for these 

plots from a typical test structure). The results for the 

experiments are discussed in sections (5.7) and (5.8). 

5.6.1.2 STRAIN GAUGES 

In the case of strain gauges, surface strains are 

measured when the structure is transversely loaded. The 

bending moment will cause stresses which will be tensile 

on the concave side and compressive on the convex side. 

Their magnitude will be maximum at the free surface of 

the structure. Strains developed due to these stresses 

are recorded by strain gauges. The bending rigidity of 

the structure can be determined by the following 

expression [a]. 

EI C h(c-y) 
(5.7) 

where 

EI = bending stiffness 
P= 

slope of the load p to the surface strain e 

h= thickness of the beam 

c= distance from root to the application of load 

y= distance from root to the strain gauge 

5.6.1.3 LINEAR SERVO ACCELEROMETER 

A linear servo accelerometer measures the angular 

twist. It can be used in the case of bending rigidity 

determination to measure the slope of the deflected 

structure. If the load is applied at any point along the 

span other than at the tip, there will be two different 

types of slopes of the deformed structure. Therefore, the 

bending rigidity of the structure can be determined by 
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two sets of equations depending upon the location where 

the slope has been measured. In the case where the slope 

is measured between the root and the point of application 

of load, the bending rigidity is calculated by the 

following expression, (s). 

EI =e 
22 [1 

- 
(c -Zy)2 

J1 (5.8) 

c 

In the case of the slope being measured at a location 

beyond the point of application of load, the following 

expression will be suitable (a). 

2 

(5.9) EI =02 

where 
P 
e= slope of the load plotted against deflection 

y= distance from root to the servo accelerometer 

5.6.2 TORSIONAL STIFFNESS 

A similar arrangement was made for measuring the 

torsional rigidity of the structures, (see Figure (5.6)). 

Angular deflections at two different locations were 

measured by optical and linear servo accelerometer 

techniques. The torque applied is proportional to the 

rate of twist with the torsional rigidity as the 

proportionality constant. 

T= GJ 
de 

= GJ 
0 (5.10) 

where 

ea angle of twist over a length t 

GJ - torsional rigidity 

T= applied torque 

But applied torque on the structure is the product of 

load applied (P) and the moment arm (r) as shown in 
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Figure (5.6). The angular deflection in the structure 

using the optical technique will be : 

Qd 2R 

where 

(5.11) 

6= distance deflected in the telescope sight 

R= distance between the scales and the mirrors on 

the structure. 

Therefore, 

GJ =2lrR (5.12) 

where 

= slope of the load plotted against the deflection. 

(Results are discussed in sections (5.7) and (5.8)). 

5.6.3 FLEXURAL, TORSIONAL, AND MATERIAL COUPLING 

RIGIDITIES OF COMPOSITE (ANISOTROPIC) STRUCTURES 

The expressions pertaining to transverse. deflection 

and twisting of the thin-walled beams due to transverse 

loading or torque (B. 2.1) to (B. 2.4) given by Chopra (4) 

(see in Appendix (B)) gave the following four equations : 

EI =0.5 
h) 

e(21y-y2) 
+KA. t IF -'j 

s 
(5.13a) 

` 

GJ =Kfh) (5.13b) 

pi ys JB 

EI -Krhj (5.13c) 
ps z 

GJ 
t V' JTy 

Kpo1 
wh 

Iz (5.13d) 

where 

P= transverse loading 

T- torque applied 

h and w= transverse and torsional deflections 
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h 1H= 
slope of the load to the deflection during 

bending rigidity test 

C 
1H= 

slope of the deflection (transverse) to the 

twisting of the structure during bending test 

IWJT slope of the torque to the twist during torsional 

rigidity test 
w 

slope of the deflection (transverse) to the twist 
T 

during torsional rigidity test 

K= 
P" 

bending=torsional material coupling present in 

the symmetric laminates. 

Comparing equations (5.13b) and (5. L3c), a useful 

relation is obtained : 

Ch 
jH 

='Ch 
,T 

(5.14) 

- KZ 
'0 

( 

where = p° 
EI GJ 

which is a very important non-dimensional parameter and 

is a measure of bending-torsional coupling due to the 

stacking sequence of the composite material. 

Comparing the expressions for EI and GJ obtained 

from the two types of loading, explicit expressions for 

EI, GJ, and Kpo are derived as follows: 

C V' JT h JB 

[+JT 
y(-'2h-)Blh 

,T 
-2 (2 1- y) 

EI =- 

ChJB lh J1. Ih 'B lh JT 

(5.15a) 

GJ =- 

Cw )T Ch 

JT 
y 

mH 
(h JT 

y (2 t - ) 
h 2 y 

H 
2 2 

EHJ Ef) 
fl T 

(5.15b) 
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TC 

JTU1JB(-w)=ý7 
hJB OT 

2 (Z _]r 
` ((1 

f 

p. 
W 

2_ 
w222 

C-ii CKJT Efi 
H 

()T 
(5.15c) 

These expressions suggest that two kinds of 

measurements are required on the structure. The 

transverse and torsional deflections of the structure are 

measured when subjected to pure transverse loading and 

then to pure torque. Each type of loading will yield 

ratios between loading and corresponding deflection (i. e. 

transverse loading to the transverse deflection and 

torque to the twisting deformation), and the ratio of 

transverse and twisting deformation due to 

bending-torsional coupling of the material. Substituting 

these results in the above expressions will give the 

experimental measure of the flexural, torsional, and 

material coupling rigidities. 

5.7 VALIDATION OF THE TEST TECHNIQUES 

Tests were carried out on various structures made of 

conventional materials such as aluminium alloy in order 

to validate the test procedures adopted. The relative 

merits of various deflection measurement techniques were 

also assessed during these experiments. 

The results are summarized in Tables (5.1) - (5.3). 

Material properties for aluminium alloy is given in 

Appendix (J). Tests carried out on three different 

specimens, a prismatic beam, a thin plate, and a 

thin-walled closed section with cantilevered end 

conditions are discussed in detail as follows : 
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5.7.1 BEAM ELEMENT 

A bending rigidity test was performed on a 

cantilevered aluminium alloy prismatic beam with 

dimensions (25.7 mm x 9.8 mm). The results are given in 

Table (5.1). The test using strain gauges gave better 

results as compared to the linear servo accelerometers. 

5.7.2 PLATE ELEMENT 

A cantilevered thin aluminium alloy plate with 

dimensions (300 x 75 x 0.71 mm) was tested to establish 

its bending rigidity and torsional rigidity. The optical 

method was used to record the deflections due to the very 

flexible nature of the specimen. The results are given in 

Table (5.2). In both the bending and torsional rigidity 

tests, the experimentally observed figures were higher 

than the theoretical estimates. The error can be 

attributed to the end conditions and the method of 

application of the load. But the overall error levels 

were within engineering accuracy limits. 

5.7.3 THIN-WALLED CLOSED SECTION 

The torsional rigidity of a cantilevered aluminium 

thin-walled closed square section beam with dimensions of 

(50.8 x 1.35 mm) was determined using dial gauges and 

linear servo accelerometers. The results are summarized 

in Table (5.3). The method using an accelerometer as a 

torsional deflection measuring device gave better results 

compared with the dial gauges. 

5.8 STRUCTURAL PROPERTIES OF COMPOSITE SECTIONS 

5.8.1 FABRICATION OF SECTIONS 

5.8.1.1 OPEN SECTIONS 

Two piece metal moulds were made for the open 

sections. The prepreg GFRP sheets were cut to size with 
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the help of a template. The moulds were degreased and 

thoroughly cleaned. Then anti-stick spray was sprayed 

over the surfaces. The moulds were preheated to about 

60°C in an oven. The layers of composite material were 

carefully placed on top of each otheis. Air gaps were 

eliminated by means of a roller. Then the laid up 

material was cured according to the prescribed 

temperature and pressure as mentioned below. Tee-sections 

were prepared by joining two angle sections by means of 

epoxy glue. 

5.8.1.2 CLOSED SECTIONS 

The closed sections were made by a hand-lay-up 

technique. A wooden former was used to create the desired 

profile. Woven glass fibre cloth was cut to size. Then 

the cloth was flattened over wax paper sheets on a flat 

surface. The catalyst was added to the unsaturated 

polyester. After thorough mixing, it was spread over the 

cloth. When the resin reached the jelly state, another 

wax sheet was placed over the cloth and air bubbles were 

squeezed out. The laminate between the two wax paper 

sheets was later on wrapped around the wooden former to 

give it a profile. A moderate pressure was applied to 

keep the surface smooth and flat. After curing, both the 

top and bottom wax sheets were removed and the trailing 

edge was glued. Finally after curing it was trimmed to 

desired size. 

5.8.2 PLATE STRUCTURES 

Three composite plates with a lay-up sequence of 
(os) 

, 
(30°)0, (±45°, 0), were made from fibredux C920 

unidirectional prepreg carbon fibre composite material. 

Fibredux C920 is a high toughness, general. purpose epoxy 

prepreg with the fast curing capability of 60 minutes at 
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a temperature of 1250 C or 5 minutes at a temperature of 

160° C and at a pressure of 300 KN/m2 (i). A brief 

account of its material properties are given in Appendix 

(J). The plates were properly trimmed and were weighed. 

The span, chord and thickness dimensions were measured. 

Bending and torsional rigidity tests were carried out 

using a test rig as shown in Photograph (5.8). 

There were six plies in each composite plate with 

dimensions as given in Table (5.4). The flexural moduli 

(laminate D-matrix) were caculated using the LAMINATE 

program and are tabulated in Table (5.5). Structural 

properties such as mass per unit length and the polar 

moment of inertia are presented in Table (5.6). The 

structural bending, torsional, and bending-torsional 

coupled rigidities are given in Table (5.7). 

Results plotted in Figure (5.8) show good agreement 

between theoretical predictions and experimental results 

for flexural rigidity and coupled bending-torsional 

rigidity tests. The theoretical estimation of torsional 

rigidity for the zero degree case is well below the 

experimental figure. This is due to the reason that all 

the fibres are aligned with the longitudinal axis of the 

plate and in a torsional rigidity test the matrix resin 

will be primarily responsible for contributing to the 

torsional rigidity. However, the material property shear 

modulus of rigidity was established using a 45° laminated 

plate where the contribution of fibres was dominant as 

compared with resin. 

5.8.3 THIN-WALLED OPEN SECTIONS 

Three types of thin-walled open sections made of 

Fibredux 916G woven glass fibre prepreg composite were 

tested. Fibredux 916G is an epoxy prepreg with good 

adhesion to honeycomb and fire retarding capability with 
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good environmental resistance. A brief account of the 

material properties are given in Appendix (J). A cure 

cycle of 60 minutes at 1200 C or 30 minutes at 1300 C at 

a moderate pressure is recommended. 

The choice of laminate lay-up was made in such a way 

that a decrease in bending stiffness and an increase in 

torsional stiffness was exhibited in the absence of 

coupled (bending-torsional) stiffness. This was necessary 

to avoid complications due to bending-torsional coupled 

stiffness of the structure. 

(i) ANGLE SECTION 

Four angle sections of zero degrees, 102]2 and three 

of [*10°]z, [120°]Z and [±45°]Z each were made with 

sectional details as given in Table (5.8). Structural 

parameters such as mass per unit length and polar mass 

moment of inertia are tabulated in Table (5.9). 

Experimental results of flexural and torsional rigidities 

are compared with theoretical predictions in Table 

(5.10). 

(ii) TEE SECTION 

Four sections were prepared for zero degree lay-ups 

only. The sectional details are given in Table (5.11) and 

structural parameters such as mass per unit length and 

polar mass moment of inertia are given in Table (5.12). 

Structural rigidities are compared with the experimental 

results in Table (5.13). 

(iii) CHANNEL SECTION 

Four specially 

specimens and other 

symmetrically laminas 

(±20032, (±3003 and 

orthotropic zero degree lay-up 

four generally orthotropic but 

: ed channel sections of [±10°)z, 

[±45°12 lay-ups were manufactured. 
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The sectional details of these sections are given in 

Table (5.14). Structural parameters such as mass per unit 

length, polar mass moment of inertia, and shear centre 

locations along with structural rigidities are tabulated 

in Table (5.15). 

Tests performed on composite thin-walled open 

sections yielded large disagreements between the 

predicted stiffnesses and the experimental results. There 

are several reasons for these errors. Effects of 

non-collinearity between the centroidal and elastic axes 

and warping already present even in sections made of 

isotropic materials makes the investigation complicated 

enough. In the case of composite materials, the 

bending-torsional coupling effect adds to this 

complexity. The three cross-sections discussed above 

appear in their order of complexity as follows. 

In the case of bending rigidity tests, the 

percentage error for sections with a zero degree lay-up 

remained within engineering accuracy limits. But in the 

case of lay-ups other than zero degrees, the error 

increased. During the tests it was observed that when the 

load was applied at the shear centre (experimentally 

established in advance), the cross-section lost its shape 

near the mid-span and deviated from the closed space 

rigid diaphragm 
. 

(CRSRD) assumption used in the 

development of the Engineer's bending theory. The other 

reason can be the effect of shear deformation which was 

ignored and which can be important for composite 

sections. 

5.8.4 THIN-WALLED CLOSED SECTIONS 

Thin-walled closed section composite beam structures 

were manufactured and tested for various static 

structural characteristics. The shape of the 
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cross-section was that of a NACA 0012 aerofoil with the 

ultimate aim to investigate aeroelastic behaviour of 

composite-lifting-surfaces. It was anticipated that these 

composite aerofoil shape sections would exhibit flutter 

in the wind tunnels at the City University. The wind 

tunnel speed and space limitations influenced the choice 

of material, number of layers, and ply orientation. A 

parametric study revealed that a single ply with zero 

degree ply orientation would be flexible enough to 

exhibit flutter within the available wind tunnel speed 

and space limits. Therefore, main attention was paid to a 

single ply with zero degree ply orientation structures. 

Later on, four other wings with 10,20,30, and 45 

degrees ply orientation were manufactured and tested to 

observe the effect of ply orientation on stiffnesses and 

natural frequencies. 

During bending rigidity tests some of the structures 

suffered from the Brazier-load-effect due to thin walls 

and some of the specimens were damaged during the test. 

Polystyrene or Polyurethene expanded foam filled sections 

were made to stop kinking or possible buckling of these 

structures. This increased the bending and torsional 

rigidities of the structure. The flutter speeds also 

increased due to the higher rigidities. The tests 

provided valuable experimental data about the static and 

dynamic properties of thin-walled closed section 

composite structures. 

Hand laid up woven glass reinforced plastic was also 

used to`prepare a specimen. The material properties for 

this are given in Appendix (J). 

The dimensional details of thin-walled composite 

closed sections are given in Table (5.16). Structural 

parameters such as mass per unit length, location of the 

centroid, distance of the shear centre from the centroid 

161 



CHAPTER 5 STATIC STRUCTURAL PROPERTIES 

and polar mass moment of inertia with respect to the 

shear centre of these sections are compared with the 

experimental results in Tables (5.17) and (5.18). 

Flexural and torsional rigidities of zero degree ply 

lay-up wings . are compared with theoreticäl predictions in 

Table (5.19). Results for structures with other 

orientations having coupled flexural/torsional rigidities 

are compared in Table (5.20). 

5.9 DISCUSSION OF RESULTS AND CONCLUSIONS 

The experimental investigation of the static 

structural characteristics of structures made of 

isotropic or anisotropic (i. e. composite materials) was 

carried out with appreciably good results when compared 

with the theory. The tests covered thin-walled open and 

closed section beams and plates. 

Experiments performed on composite plates showed 
large differences between theoretical predictions and 

experimental results in the torsional rigidity tests at 

zero degree lay-up. This can be attributed to an 

under-estimated value for the shear modulus of rigidity 

of the material. The results for other lay-ups agreed 

very well for the torsional rigidity test. In the case of 

the bending rigidity testing, the results were within 

engineering accuracy limits for the zero degree case but 

large errors were encountered for other lay-ups. One 

possible explanation is that the end conditions 

suppressed the chordwise curvature, affecting the twist 

deformation due to the Did term of the compliance matrix. 

This effect will be zero in the case of the zero degree 

laminate but can be significant for the other lay-ups. 

In the case of thin-walled open section structures, 

the disagreement between theoretical predictions and 

experimental results increased as the complexity of the 
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section increased. The effect of warping was found to be 

playing an important role as expected. These types of 

section require an improved mathematical model for 

further study. 

Closed sections produced good results from torsional 

rigidity tests but in the case of flexural rigidity 

determination due to lack of control of the fibre volume 

fraction, large differences were encountered. A 

correction to this factor improved the overall status. 

A summary of the percentage errors found between 

theoretical estimations and experimental results for 

different structures using a variety of measurement 

devices is given in Tables (5.21) - (5.24). 
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Dimension : Width 25.7 mm , Thickness 9.8 mm 

Theoretically predicted bending rigidity : 141.1003 N-m2 

Experimental results (N-m2) Difference 

Using Strain gauges 137.68 2.42 % 

Using Linear servo acc. 130.58 7.46 % 

TABLE : 5.1 Flexural rigidity results for prismatic bar 

Dimension : Len th 300 mm Width 25.7 mm Thickness 9.8 mm 

Rigidity Test 
Theoretical 

(N-ms) 

Experimental 

(N-mz) 
?. ' error 

Bending 0: 1541 0.16226 -5.29 

Torsional 0.2357 0.23767 -0.84 

TABLE : 5.2 Rigidity test results for plate structure 

Width = Hei ht - 50.8 mm Thickness = 1.35 mm 

Torsional Theoretical Experimental (N-r2) 
Rigidity 
Test (N-m2) Dial Linear Servo 

gauges Accelerometer 

Results 33 3105 4406 11 
4778 47 . . 

. % difference 35.01 7.79 

TABLE : 5.3 Torsional rigidity results for square section 

Lay-up Thickness Ply Thick Chord Length Are. 
(mm) (mm) (mm) (mm) (mm ) 

(0s)ß 0.803 0.13383 73.5 291.0 59.0205 

(1301 0.801 0.1335 74.0 291.0 59.274 

(=95/0] 0.804 0.1340 75.0 291.0 60.300 

TABLE 5.4 Dimensions of composite plates 
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La -u 
Flexural Moduli ... D-matrix (Nm) Ra tios 

y p D D D D D D D /D D /D 
is sz is 22 Zd dd Id ! Id d 

i (0 4.2251 0.0960 0.0 0.343 0.0 0.242 0.0 0.0 
a 

(1301 2.6128 0.7355 0.5828 0.671 0.227 0.879 0.2230 0.6622 
+ 

(! 45/01 1.549 0.928 0.436 1.404 0.436 1.074 0.2815 0.406 
a 

TABLE 5.5 Flexural moduli (D-matrix) of composite plates 

Lay-up Mass / length (K /m) Moment of inertia 
T eo. Ex p. % diff. Theoretical (K -m) 

i (0 0.0897 0.0860 3.23 40.39 * 10 a 
s n 

30] [ 0.09010 0.0859 4.66 41.119 * 10 6 
0 + 

I'-45/0] 0.09166 0.0906 1.16 42.97 * 10 
s 

TABLE 5.6 Mass per unit length and moment of inertia 

of composite plates 

Ply orientation 
10 ) + 30) 

( r+ 
45 0) 

3 ; , ` a s Y 

Theory 0.31275 0.19334 0.1162 
Flexural 

Rigidity 
Experiment 

0.3043 0.1582 0.0972 

%. Error 2.78 18.18 16.35 

Torsion Theory 0.07103 0.26048 0.32212 

Rigidity Experiment 0.1749 0.2435 0.3239 

% Error -59.39 6.52 -0.55 

Coupled 
Theory 0.0 0.033596 0.06545 

Bending/ 
Torsion 

Experiment 0.0 0.0284 0.0593 

Rigidity $ Error 0.0 15.36 9.40 

TABLE 5.7 Rigidities of composite plates 
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Sp. No. 1234 5 6 7 

Orient. ZERODEGREE 10° 20° 45° 

SECTIONAL DETAILS 

a (mm) 30.00 31.00 31.50 31.00 30.00 31.00 31.00 

b (mm) 30.00 31.00 31.00 31.50 30.00 31.00 31.00 

h (mm) 42.00 ' 44.00 44.50 45.00 44.00 44.00 44.00 

t'X (mm) 0.907 0.953 0.838 0.990 1.070 1.074 1.163 

tb(mm) 0.921 0.909 0.946 0.993 1.071 1.074 1.163 

Z (mm) 590.0 591.0 591.0 591.0 596.0 596.0 596.0 

TABLE 5.8 Dimensions of composite thin-walled angle sections 

14 

Sp. No. 1 2 3 4 5 6 7 

Orient. Z EROD EGREE 100 20° 450 

STRUCTURAL PROPERTIES 

Mass per unit length - m (Kg/m) 

Theory 0.083 0.087 0.084 0.094 0.097 0.101 0.109 

Exper. 0.0801 0.0844 0.0808 0.0909 0.0946 0.0979 0.1051 

% Dif. 2.41 2.99 3.81 3.30 2.47 3.07 3.58 

Mass Moment of Inertia - I 
P" 

(Kg-m) * 10 

Theory 24.89 27.87 27.34 30.60 29.10 32.35 34.92 

TABLE 5.9 Structural parameters of composite angle sections 
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3. No. 1234 5 6 7 

Orient. ZE R-0 DEGREE 100 20° 45° 

Flexural Rigidity - EI (N-m2) 

Theory 197.16 215.67 213.3 237.0 243.55 228.08 212.80 

Exper. 172.99 -188.96 170.58 207.31 183.60 164.30 134.40 

Dif. 12.26 12.39 20.01 12.54 24.62 27.96 36.84 

Torsional Rigid t- GJ (N-m2) 

Theory 0.1069 0.1169 0.104 0.142 0.183 0.2035 0.3353 

Exper. 0.1002 0.1178 0.1005 0.1347 0.1788 0.2034 0.3233 

% Dif. 6.27 - 0.77 2.92 5.21 2.30 0.05 3.58 

TABLE 5.10 Structural rigidities of composite angle sections 

Ply 
Anq 

3pe 
No. 

(mm) (mm) 

th 

(mm) 

tb 

(mm) 

m 

(9m) 
t 

(mm) 
f 

(mm) 

1 64.0 32.0 1.955 0.901 130.5 588.0 568.0 

2 64.0 32.0 1.894 0.931 129.5 587.0 567.0 

3 63.0 32.0 1.806 0.971 130.5 591.0 571.0 

4 64.0 32.0 1.904 0.998 130.5 590.0 570.0 

TABLE 5.11 Dimensions of composite thin-walled Tee sections 

Sp. STURCTURAL PROPERTIES 

N 
Mass / length Mass Moment of Inertia 

d - o. Theo. Ex p. %f (Theo. ) K -m * 10 

1 0.170 0.2219 -30.5 57.89 

2 0.169 0.2206 -30.5 57.88 

3 0.168 0.2208 -31.4 56.37 

4 0.176 0.2212 -25.7 60.10 

TABLE 5.12 Structural parameters of composite Tee sections 
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Spec 

No 

Flexural Rigidity 

(N-m2) 

Torsional Rigidity 

(N-rZ) 
. Theo. Ex p. % dif Theo. Ex p. % dif 

1. 463.0 344.11 25.7 0.667 0.946 -41.8 

2. 478.4 342.69 28.4 0.628 0.960 -52.9 

3. 475.8 340.46 28.4 0.574 0.870 -51.6 

4. 512.8 328.17 36.0 0.664 1.038 -56.3 

TABLE 5.13 Structural rigidities of composite Tee sections 

Sp-No. . No. 1234 5 6 7 8 

Orten. ZERODEGREE 100 20° 30° 45° 

SECTIONAL DETAILS 

h (mm) 36.00 36.00 36.00 36.00 36.00 36.00 35.00 35.00 

b (mm) 31.00 32.00 32.00 32.00 30.00 30.00 30.00 30.00 

th(mm) 0.818 0.851 0.829 0.7917 0.820 0.790 0.801 0.800 

tb(mm) 1.646 1.588 1.513 1.584 1.380 1.520 1.550 1.720 

Z (mm) 552.0 563.0 572.0 516.5 569.0 569.0 569.0 569.0 

TABLE 5.14 Dimensions of composite thin-walled Channel sections 
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3 . No. 1234 5 6 7 8 

Orien. ZER0DEGREE 100 20° 30° 45° 

Mass er unit length -m (K /m) 

Theory 0.185 0.187 0.179 0.183 0.158 0.169 0.171 0.185 

Exper. 0.1791 0.1879 0.1841 0.1844 0.1565 0.1650 0.1702 0.1800 

% Dif. 3.18 -0.49 -2.85 -0.77 0.94 2.36 0.46 2.70 

Mass Moment of Inertia - Ipo (Kg-m) * 10-4 

Theory 1.667 1.767 1.691 1.739 1.338 1.432 1.437 1.563 

Shear Centre - Xa (m) 

Theory 0.0228 0.0237 0.0237 0.0237 0.0219 0.0219 0.0220 0.0220 

Exper. 0.0230 0.0232 0.0234 0.0233 0.0210 0.0224 0.0215 0.0224 

% Dif. -0.88 2.10 1.26 1.68 4.10 -2.29 2.27 -1.82 
Flexural/Bendin Rigidity - EI (N-m2) 

Theory 852.3 852.1 813.5 844.7 690.2 704.8 622.8 636.0 

Exper. 578.3 584.9 553.5 742.0 377.14 353.17 302.46 251.79 

% Dif. 32.15 31.56 31.96 12.16 45.36 49.89 51.43 60.41 

Torsional Rig idit - GJ (N-a2) 

Theory 0.691 0.650 0.565 0.635 0.434 0.627 0.756 1.120 

Exper. 0.9985 0.7803 0.9858 1.1867 0.828 1.0082 1.1442 1.189 

% Dif. -44.5 -20.1 -74.5 -86.8 -90.8 -60.7 -51.4 - 6.16 

TABLE 5.15 Structural rigidities of composite Channel sections 
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Spc. 

No. 

C 

(mm) 

tSkin 

(mm) 

Aaren 

(mmZ) 

Asolid 

(mm2) (mm) 

wsktn 

(gm) 

wtotal 

. (gm) 

1. 114.0 0.548 128.782 1187.09 990.0 175.0 175.0 

1A. 114.0 0.548 128.782 1187.09 585.0 175.0 175.0 

2. 114.0 0.580 136.218 1189.17 955.0 207.4 312.4 

3. 123.0 0.561 142.175 1279.50 853.0 226.7 290.0 

3A. 115.0 0.561 134.851 1246.00 805.0 252.4 315.7 

4. 117.0 0.576 140.146 1420.43 895.0 153.5 258.0 

6. 130.0 0.541 146.017 1422.60 865.0 160.0 263.0 

7. 118.0 0.473 114.169 1118.50 917.0 143.0 157.7 

10 0 114.0 0.565 131.822 1114.00 969.0 169.0 169.0 

20° 114.0 0.546 127.389 1114.00 956.0 164.0 164.0 

30° 114.0 0.560 130.656 1114.00 960.0 167.0 167.0 

45° 114.0 0.551 128.556 1114.00 970.0 171.0 171.0 

TABLE 5.16 Dimensions of thin-walled closed sections 

Spc. Centro id (mm) Shear Centre ( mm) 

No. Theo. Ex p. % diff Theo. Ex p. % diff 

1. 55.817 58.00 - 3.91 -31.30 -38.00 -21.76 

1A. 55.817 58.00 - 3.91 -32.22 -38.00 -17.94 

2. 51.795 52.40 - 1.17 -32.22 -14.61 54.66 

3. 54.965 55.10 - 0.25 -37.61 - 2.10 94.42 

3A. 54.965 55.10 - 0.25 -28.21 -28.22 - 0.04 

4. 51.709 55.50 - 7.33 -27.10 -20.50 24.35 

6. 55.870 55.50 0.66 -34.37 -23.58 31.39 

7. 56.136 56.00 0.24 -25.07 -29.49 -17.63 

10° 56.200 56.30 - 0.18 -28.22 -33.85 -19.95 
20° 56.200 56.30 - 0.18 -28.22 -33.37 -18.25 

30° 56.200 56.50 - 0.53 -28.22 -32.13 -13.86 

45 ° 56.200 56.00 0.361 -28.22 -33.19i -17.611 

TABLE 5.17 Location of centroid and shear centre 
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Spc. mass / length (K /m) Mass moment inerti a (K m 

No. Theo. Ex p. % diff Theo. Exp. % diff 

1. 0.177 0.1767 - 0.13 0.000378 0.000461 -21.76 

1A. 0.177 0.1767 - 0.13 0.000461 0.0007 -51.98 
2. 0.335 0.3271 2.35 0.000415 0.000339 18.32 

3. 0.354 0.340 3.96 0.000414 0.0006 -44.93 

3A. 0.339 0.3922 -15.68 0.000611 0.000628 - 2.90 

4. 0.288 0.2883 - 0.09 0.000527 0.000564 - 6.95 

6. 0.304 0.3041 - 1.51 0.000482 0.000076 84.34 

7. 0.178 0.172 3.37 0.00032 0.000547 -70.99 

10° 0.170 0.174 - 2.35 0.000331 0.000498 -50.45 

20° 0.165 0.172 - 3.64 0.000319 0.000512 -60.50 
30° 0.169 0.174 - 2.96 0.000327 0.000468 -43.12 

45° 0.166 0.176 - 6.02 0.000322 0.000504 -56.52 

TABLE 5.18 Mass per unit length and polar mass moment of 

inertia of composite thin-walled closed sections 

4 

Sp. 
Flexural Rigidity 

(N-m2) 
Torsional Rigidity 

(N-m 2) 

No. Theo. Ex p. % diff Theo. Ex p. % diff 

1. 64.64 ---- ---- 17.658 18.794 - 6.43 

1A. 64.64 30.05 53.51 17.658 18.794 - 6.43 

2. 64.43 69.66 - 4.52 40.025 41.874 - 4.62 

3. 74.20 70.85 4.52 48.095 51.240 - 6.54 

3A. 74.20 70.85 9.52 48.095 51.240 - 6.54 

4. 99.69 86.30 13.43 39.285 37.489 4.57 

6. 90.98 82.11 9.75 50.450 48.080 4.70 

7. 55.19 52.16 5.49 30.109 28.161 6.47 

TABLE 5.19 Flexural and torsional rigidity of zero degree 

lay-up thin-walled wing structures 
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Ply 
Flexural Rigidity 

2 
Torsional Rigidity 

2 
Coupled Rigidity 

Z ) (N_M (N-m ) (N-m ) 
Ang. 

Theo. Ex p. % diff Theo. Ex p. % Siff Theo. Ex p. * % diff 

10 0 50.80 48.10 5.32 20.18 17.034 15.59 11.19 11.915 - 6.46 

20° 38.56 33.92 12.03 31.04 24.104 22.35 17.54 19.326 -10.21 

30° 27.92 25.78 7.67 51.30, 53.984, - 5.23 18.45 17.477 5.29 

45 ° 17.38 16.98 2.30 74.641 78.1671 - 4.73 0.0 0.0 0.0 

TABLE 5.20 Flexural, torsional and coupled rigidities of 

generally orthotropic thin-walled. wing structures 

MATERIAL : ISOTROPIC (ALUMINUM) 

STRUCTURE TEST DEVICE % Error 

Beam 
Bendi Strain Gaug 2.42 

(Pris. Bar) 
ng 

L. S. A. 7.46 

Plate Bending 
O ti l 

5.29 

Torsion 
p ca 

- 0.84 

Thin-walled 
T i 

Dial Gauge 35.01 

Closed sec. 
ors on 

L. S. A. 7.79 

TABLE 5.21 Error levels encountered in tests carried out 

on Aluminium structures 

MATERIAL : COMPOSITE FIBREDUX C920 

TEST 
PL Y ORIENTA TION 

0 30 45 

BENDING 2.78 18.18 16.35 

TORSION -59.39 6.52 - 0.55 

BEND/TOR. 
COUPLED 0.0 15.36 9.40 

TABLE 5.22 Error levels encountered in tests carried out 

on Composite plates 
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MATERIAL : ANISOTROPIC (COMPOSITES) FIBREDUX 916 G 

PLY 
PER CENTAGE ERROR S 

ANGLE 
TEST 

ANGLE SEC. TEE SEC. CHANNEL SEC 

Bending 14.30 29.63 26.96 

0 Torsion 3.41 -50.65 -56.48 

Bending 24.62 ---- 45.36 

10 Torsion 2.30 ---- -90.80 

Bending, 27.96 ---- 49.89 

20 Torsion 0.05 ---- -60.70 

Bending ---- ---- 51.43 

30 Torsion ---- ---- -51.40 
Bending 36.84 ---- 60.41 

45 Torsion 3.58 ---- - 6.16 

TABLE 5.23 Error levels encountered in tests carried out 

on composite thin-walled open sections using 

linear servo accelerometers 

MATERIAL : ANISOTROPIC (COMPOSITES) GFRP 

PLY 
TEST (Percentage errors) 

ANGLE BENDING TORSION BEND/TOR. 

0 36.45 - 1.42 

10 5.32 15.59 - 6.46 

20 12.03 22.35 - 10.21 

30 7.67 - 5.23 5.29 

45 2.30 - 4.73 --- 

TABLE 5.24 Error levels encountered in tests carried out 

on composite thin-walled closed sections using 

linear servo accelerometers 
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5.3(a) Schematic diagram 

5.3(b) Free body diagram 

rZL 

of G. \ 

14 

Figure 5.3 Polar mass moment of inertia test set up no. 1 
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Fig 

STATIC STRUCTURAL PROPERTIES 

Figure 5.5 Loading arrangement for locating the shear centre 

11) 
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FIG. 5.6 Torsional Rigidity Test set-up 
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P 5.1 Bending test of aluminium prismatic bar 

P 5.2 Torsion test of aluminium closed square section 
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P 5.3 Torsion test set up for aluminium and composite plates 

P 5.4 Torsion test set up for composite thin-walled wings 
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P 5.5 Chord wise moving load for shear centre determination 

P 5.6 Bending rigidity test set up for composite thin-walled wings 
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CHAPTER :6 

DYNAMICS OF THIN-WALLED COMPOSITE STRUCTURES 

6.1 INTRODUCTION 

Dynamics refers to the study of relationships between 

forces and motion. The vibratory motion or simply natural 

vibration 'is an important kind of dynamic behaviour of a 

structure in which the system oscillates about a certain 

equilibrium position. The analysis and prediction of the 

dynamic behaviour of physical systems plays an important 

role in modern day engineering. 

A summary of the structural elements that are used in 

structural idealization is presented with special reference 

to thin-walled composite beams. Choice of the dynamic 

stiffness matrix method Is made after a brief description 

of various other discrete and approximate methods. The 

dynamic stiffness matrix is evaluated for the general case 

of a thin-walled anisotropic beam with non-collinear 

elastic and centroidal axes in the process of an axial load 

acting through the centroid. The degenerate cases of 

material coupling with and without the axial load are also 

discussed. Explicit stiffness expressions for the case of 

material coupling only are evaluated. Finally, computer 

programs to determine natural frequencies and mode shapes 

are described with a sample data file and result file. 

6.2 STRUCTURAL IDEALIZATION 

Due to the complexity of physical systems, structural 

parts are usually, idealized as several individual 

components. Their physical properties which govern the 

dynamic behaviour of the system are sometimes determined 

experimentally. These characteristics help to construct a 
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mathematical model representing an idealization of the 

actual physical system. These mathematical models can be 

categorized as : 

1. discrete-parameter systems, or lumped systems 
2. distributed-parameter systems, or continuous 

systems 

The former can be described by ordinary differential 

equations, whereas the latter is generally governed by 

partial differential equations and is comparatively 

difficult to analyse. 

Furthermore, the components of a structure can be 

idealized as a bar, beam, plate, or a shell element. These 

idealized structures are then described by mathematical 

models. A summary of these mathematical models with their 

governing differential equation of motion is given below 

(in the order' of complexity) 

6.2.1 BAR ELEMENT 
22 

c2 
v_ a v= 0 (6.2.1) 

8y2 at2 

where 

c2E = 
P 

E modulus of elasticity 

p= density of the material 

v= displacement in the y direction 

6.2.2 BEAM ELEMENT 

(i) EULER BEAM (Euler-Bernoulli Beam) 

a2h 1EI ö2h 1+m O2h 

J0 
(6.2.2) 

8y2 49y2 at2 

where h is the transverse deflection 
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In the case of an external force per unit length f(y, t), 

the governing differential equation of motion will be : 

222 
8h (EI 8h) 

+m 
ah= 

f(Yºt) (6.2.3) 
dy 

2 
8y2 J atz 

If the effect of rotary inertia is included we get 

2224 
eh (EI ýh J+ 

ma 
h_ 

PIeh=0 (6.2.4) 
eye aye 8t2 äyZat2 

and with both rotary inertia and shear deformation 

ah IEI a2h )+m aZh Ii 
+E) 

04h 
+ ß°2I 84h 

=0 
`_PI eye eye at 2 Ký GJ Ay2at2 KG 8t~ 

(6.2.5) 

In the case of torsional vibration the differential 

equation is given by 

- GJ 
02w 

-m r2 
g2'ß 

=0 (6.2.6) 
dy2 8t2 

(ii) AXIALLY LOADED TIMOSIIENKO BEAM 

The differential equation of motion for a beam with shear 

deformation, rotary inertia, and axial load is given by : - 

EI 
04h 

- 
[_mJ_i 84h EI ö2 ö2h 

+ P- 
ay4 , t2 By2at2 K GA ay2 l at2 

- 
r°, I a2 rP 

-m 
82 

2J=0 
(6.2.7) 

hK 

GA at 2` at 

(iii) BENDING - TORSION COUPLED BEAM 

A beam with non-collinear elastic and centroidal axes has 

differential equations of motion as follows : 

422 

EI 
h+ 

m8 
h- 

meaW0 (6.2.8) 
ßy4 8t2 atz 

zz 
GJ 

aw+m 
e0h rz 

4W 
=0 (6.2.9) 

dy2 dt2 8t2 
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(iv) GENERALLY ORTHOTROPIC (COMPOSITE) THIN-WALLED BEAMS 

These are beams with elastic and material coupling : 

4922 

EI 
h+ 

K w+ 
mgh-meg 

w= 0 
8y4 8y9 8tZ 8t2 

K8 
9h+ 

GJ 
82w+ 

m2ehm r2 
a w= 0 

äyß 0y2 at2 at2 

where 

V= Torsional deformation 

EI = Bending/flexural rigidity 

GJ = Torsional rigidity 

m= Mass per unit length 

I= Polar mass moment of Inertia 

r= Radius of gyration 

P= Axial load 

K= Shear deformation constant 

e= Distance between the shear centre and centroid 

K= Material bending/torsional coupling term. 

DYNAMICS OF STRUCTURES 

(6.2.10) 

(6.2.11) 

6.2.3 PLATE ELEMENT (anisotropic) 

a44 
w2 to 

I D` 

Jh 
h 

8y si 

2D S a 
1a B y 0 

D a 
It 8y 

(6.2.12) 

2 

_ 

Dia 
83h 148 Dc 

ä4W 2m cl2 
Dgya 

D £2) 0y` 8y2 `48D 
dd 

(6.2.13) 

where 

Co = circular frequency 

Dll, D.., and D., = members of the D- matrix. 
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6.3 COUPLED VIBRATIONS 

If a beam does not vibrate in a plane of symmetry, 

then the flexural vibrations will usually be coupled with 

torsional vibrations. This is due to the primary reason 

that the elastic axis is not coincident with the inertial 

axis. Although explicit dynamic stiffness expressions for 

the determination of uncoupled fundamental frequencies in 

bending and torsion are available in the literature, they 

are not applicable to the coupled vibrations. Frequent use 

of bending-torsion coupled beam elements have urged 

researchers to develop explicit and accurate means for the 

determination of coupled bending-torsion fundamental 

natural frequencies and mode shapes. Aircraft wings and 

other control surfaces with high aspect ratios generally 

fall under this category and are usually referred to as 

some form of VLASOV BEAM [i). The coupled bending-torsion 

differential equations of motion are given in equations 

(6.2.8) and (6.2.9). In addition to the elastic coupling, 

structures made of generally orthotropic materials such as 

composites also display coupling between bending and 

torsional modes of vibration arising from the material 

properties. This aspect of dynamics of structures is 

discussed in this chapter. 

6.4 SOLUTION TECHNIQUES 

Exact modal solutions have been produced (a-s] for 

simple boundary conditions. Approximate solutions making 

use of discretization by either the lumped-mass method (a] 

or by assumed deformation shapes have been attempted. For 

the latter case, the Rayleigh-Ritz method [d.? ], the 

Galerkin method [e. 0], and the finite element method (so] 

have been investigated. Additional- works based on 

approximate methods are by Engelbrecht [i1] and Stacey 

(! z). These solution techniques are summarised in a block 
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diagram, Figure (6.1). 

Most of the afore-mentioned methods are applicable to 

single-span beams (i. e. beams supported only at the ends), 

except the lumped-mass method [a]. An accurate method 

called the dynamic stiffness matrix approach [! a-ts] has 

been developed for vibration analysis of complex and 

multi-span structures. The dynamic stiffness matrix method 

is based on a single, frequency-dependent matrix, 

containing mass and stiffness properties of the element 

together. The method gives accurate results due to the 

application of exact member theory. The major advantage of 

this method is that it can be used for the determination of 

an unlimited number of frequencies. A single element can 

successfully determine any number of natural frequencies 

for a structure whereas in other approximate methods such 

as the Finite Element method, the number of elements chosen 

for the analysis puts severe limitations on the number of 

natural frequencies which can be determined with reasonable 

accuracy. A number of computer programs [id. 1? ] based on 

the dynamic stiffness approach are available. 

6.4.1 THE DYNAMIC STIFFNESS MATRIX METHOD 

The dynamic stiffness matrix method is an accurate 

method using a single, frequency-dependent matrix called 

the dynamic stiffness matrix which includes both the mass 

and stiffness properties of the structure. Predictably, the 

use of exact member theory in the dynamic stiffness matrix 

approach gives accurate results. The governing differential 

equation of motion of the structure is directly solved to 

obtain the dynamic stiffness matrix. Thus the assumptions 

made, being within the limits of the differential equation, 

are less severe than required for assumed mode or lumped 

mass methods. A brief outline of the method as applied to 

the case of an elastically coupled structure is presented 
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below : 
1. The differential equations of motion of the system 

are obtained by any suitable method. For example, in 

the case of an elastically coupled structure with 

non-collinear elastic and inertial axes two partial 

differential equations are formed. 

2. The system of partial differential equations is 

solved as simultaneous differential equations. 

3. The possible solutions will have n unknown 

coefficients where n corresponds to the degree of 

the differential equation. In order to solve this 

equation, n boundary conditions are required. 

4. Substitution of the boundary conditions at both ends 

of the element will yield a matrix of order nxn 

relating deformations to the unknown coefficients 

mentioned in step 3. 

5. Displacement equations are substituted into force 

and moment equations. Replacement of the boundary 

conditions at either end of the element will give 

another matrix of order nxn which relates forces 

and moments to the unknown constants. 

6. The matrix of step 4 is inverted and multiplied with 

the matrix of step 5 which gives the dynamic 

stiffness matrix of order nxn. The resulting 

dynamic stiffness matrix relates the forces and 

displacements at the ends of the member. 

6.5 THIN-WALLED COMPOSITE BEAMS 

It has been mentioned in Chapter (4) that the 

thin-walled composite beams can be divided into two main 

categories, namely symmetric and antisymmetric. In a 

symmetric configuration, the ply lay-up is symmetrical 

about the mid-plane whereas In the case of an antisymmetric 

configuration, the ply lay-up is not symmetrical about the 
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14 

mid-plane. 

The symmetric lay-up beams can result in 

bending-twisting structural couplings as shown below (also 

see equation (4.7) of Chapter (4)). 

xi s id x (6.5.1) 
{M} K K) 

Mxy = Kid Kdd Kxy 

where KIt corresponds to flexural stiffness EI 

Kdd corresponds to torsional stiffness GJ 

K! 
4 

corresponds to bending/torsional coupling 

stiffness K 

The above equation can be written as 

M EI Kw 
0]01_ (6.5.2) 

T Ký GJ 

to 

where 

M= bending moment = Mx 

T= torque = Mxy 

EI = effective bending stiffness 

GJ = effective torsional stiffness 

Ko = bending-twisting structural coupling 

.. 
2 

w 
dzz 

= bending curvature = Kx 

= 
245 

= twist derivative =K 
dz "y 

The antisymmetric lay-up beams can produce 

extension-twisting coupling [is) such that the twist and 

axial force are given by 

T1[ GJ Ka "_ 
(6.5.3) 

PK EA u 
11 

,1 a 

where 

P= axial force 
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Ka= extension/twisting structural coupling 

I du 
u== axial deflection derivative 

dz 

The flexibility matrix for the symmetrically laminated 

cylindrical tube subjected to bending, torsion, and 

longitudinal tension is given by (also see equation (4.28) 

of Chapter (4)). 

s=FP 
o si 

K=FM 
z 3311 z (6.5.4) 

Kk F2 FM 
2 24 x 

zFFM 
24 44 y 

The common feature of equations (6.5.1) to (6.5.4) is 

that the stiffness matrices describe the relationship 

between coupled bending-torsion and extension-torsion 

forces and their respective deformations. 

6.6 EQUATIONS OF MOTION FOR THIN-WALLED CYLINDRICAL TUBES 

WITH ASYMMETRIC FIBRE LAY-UP 

A thin-walled cylindrical beam with bending in only 

one plane e. g. an aircraft wing with no chordwise bending 

and torsion about the shear centre has been analysed by 

Mansfield and Sobey (to). A similar approach is considered 

here. An axial load is also allowed to act through the 

shear centre. The theory is briefly summarised as follows. 

The relation between bending moment and torque is 

given by (see equation (6.5.4)) 

Kx 

_ 

F22 F24 Mx 

z F24 F44 MY 
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which can be rearranged by inverting the square matrix to 

give 
Mx 

= 

K22 K24 Kx 
(6.6.2) 

MKKT 
y 24 44 

The strain energy in the beam of length t is given by: 

t 

y 
1J 492h ]2+ 02h OW 

U K22 
aye 

2 K24 
ayz OY 

+ K44 
OY 

0 

(6 . 
6.3) 

The work done by a tensile load is given by (mote that P 

can be negative when compressive) 

t 

W=- 
2PJ1C gh , zdy 

(6.6.4) 
OY 

0 

Therefore, the total potential energy is : 

P. E. =U-W 

It zzzW21 eh 2ýd 
Y =2J 

fK22 gy2 ,+2 
K24 

Oy2 

OW 
+ K44 

ay 
+2pC 

OY 

,J 

0 

or 

t 

=2J 
{22( 

Kßz2 
, z+ 

2 K24 
äz2 'ý + K44( -'v 

lZ- 2 
P( 

Oh )z}dy 

0YYYYJ`Y 

(6.6.5) 

If a point (x, z) in the beam moves to the coordinates 

(-zW, h+xW) for a given displacement h and rotation w, the 

time differentials will be 

C_ Z 
8w Oh +X awl 

at at at J 

Thus, the kinetic energy of the system is 
t 

Ta _ý 
ff 

P 
(XZ 

+ ZZJ 
at 

,Zt2xC 

at ` at J+` 

at JZ JdAdY 

O 
A 
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Substituting the following relationships in the above 

expression 

m= ff p dA 

m r2 = 
ff 

p (x2 + z2) dA 

me= ff px dA 

= mass per unit length 

= mass polar moment of inertia 

the expression simplifies to 

T= 
2Jm 

r2 
rZ C 

et ät 

[)21 
dY 

o` 
(6.6.6) 

The Lagrangian L is then given by: 

L=U-W-T 

i 
L2J 

ýK22 (2_! 11+ 
X2 

2 K24 
822 

+ %4 
2- 

P 
8h 12 

0YYY`YJ`YJ 

Ll )2 
-m 

rr ä 1z+ 
2eC 

aah 

IE )tJ 

at 
+ r2 

at J2J} 
dY 

(6.6.7) 

Using Hamilton's principle, the above will yield the 

following equations of motion : 

24922 

P 
aye 

+ K22 
äY4 

+ K24 
Oya 

+m 
ate 

+me 
ate 

=0 (6.6.8 ) 

and 

2 

- K24 
a9 eK 

44 
aZ+meaZ+m 

r2'Z =0 (6.6.9) 
ey 8yT at tt 
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6.7 VIBRATION OF AXIALLY LOADED BEAMS WITH GEOMETRIC AND 

MATERIAL COUPLING 

The vibration of axially loaded thin-walled composite 

beams with geometrical and material bending/torsional 

coupling is considered first. The dynamic stiffness matrix 

based on the equations of motion obtained in the previous 

section will be developed. The natural frequencies and mode 

shapes of the structure can be computed. 

Substituting EI = K22 , GJ = K41 ,&K= K24 In 

the equations of motion (6.6.8) and (6.6.9) : 

a` h a9 ' a2 h a2 Z 
492 EI +K+Pr-ew 

ý+ 
m 

ah- 
mea=0 

49y4 ay9 ay2 ay2 at2 at2 

(6.7.1a) 

89h 02W 82h 2 a2y, ' 82h 8Z 
K+ GJ -Pq+r J+ me 

LI=0 

8ya 6y2 0y2 ay2 at2 
aat2 

(6.7.1b) 

The expressions for shear force, bending moment and torque 

are as follows : 

Shear force : 

S= 
gy 

(- Ph- Mx) +Pe 
gy 

(6.7.2) 

Bending moment: 

M EI 
ýZh 

+K tIV 
x dyz Cy 

(6.7.3) 

Torque: 

T= GJ 
Ow 

+K 
2Z 

+p 
ýe oh 

- r2 
) 

(6.7.4) 

49y ey ay ey 
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it 

Let h=H sin (w t) and V= 4' sin (w t) 

and -- , so that 
d_ 

_1 
dh 

_1 
dh 

-t dy -' dy -td 

Substituting these relationships in the equation (6.7.1a) 

and simplifying: 

D4H + EiDeW+ 
EiZ(DZH 

- eDZº1) - 
[m214)H 

E+ I 
rMW 

EIýJe 
'P =0 

Defining the following non-dimensional quantities 

Pl2 - Kl -= rmw211 
P 

EI .K EI 'a LEI J 

The above differential equation becomes 

D~ H+K D9 +P (D2 H-e D2 W) -aH+ae=0 

(6.7.5a) 

Similarly equation (6.7.1b) will yield 

D2W +KDaH- P(- e DZ H+ r2 D2W) -beH+b r2 =0 

(6.7.5b) 

where 

P = 
P 

K= 
K 

GJ t GJ 

b 
2 

[ GJ ) 
, Ia= m ZZ 

Rearranging equations (6.7.5a)_ and (6.7.5b) 

(D4 +P D2 - a) H+ 
(KD9_P 

e D2 +eal w= 0 

(6.7.6a) 

CK D9 +Pe D2 -b e) H+ 
[D2_r2D2+r2)W0 

(6.7.6b) 
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Let 

L1= 
1D4 

+P D2 

L9= K D9 +Pe DZ -b el , 

L2= 
r 

KD9 -Pe D2 +ea 

L4= 
(D2 

-P r2 D2 +b r2 
J 

The above pair of differential equations can be written as 

L1 H+ LZ W=0 (6.7.7a) 

L9 H+ L4 W=0 (6.7.7b) 

Multiplying equation (6.7.7a) by L. and (6.7.7b) by L2 and 

subtracting the first equation from the second will give 

(LIL4 - L2L9) H=0 (6.7.8) 

Substituting corresponding quantities of Li, L2, L9 & L4 in 

the equation (6.7.8) and simplifying the end expression, we 

get 

(D6+ a D4+ b D2+ C) H=0 (6.7.9) 

where 

+b r2 +PP (e2 -r 
2) 

a= 
A 

b= 

[_; 

_: e2_r2 )-a, 

A 

C=ab 
(e2 - r2) 1-P rz - 

K2 C 
EI GJ 

, 

A 

The solution of equation (6.7.9) can be obtained by 

substituting 

H ePt 
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The equation will be 

p6+ a p4+ b p2+ c=0 (6.7.10) 

Substituting X= p2 

>1 9+ 
a X2+ bX+c0 (6.7.11) 

Let ?=x-a 
3 

(x - -3) 
9+ 

a (x -3 )Z+ b (x -3)+c=0 

After simplification we get 

9 

x9+ (- 
3+ 

b) x+( 
27 

a9- 
3b + c) =0 

Similarly 

aq= 
32 -b and r= 3b 27 a9- c 

The above cubic equation becomes 

x9- qx-r=0 (6.7.12) 

If 27 r2- 4 q2 <0 

then all the three roots of the equation are real (20] as 

follows: 

i/2 

xi =2 (q/3) cos (0/3) (6.7.13a) 

i/2 

x2 =2 (q/3) cos 
((rr-o)/3) (6.7.13b) 

x9 =2 (q/3) 
1/2 

J 

cos 
((rr+o)/3)(6.7.13c) 

where 
9/2 

cos(O) _ (3/q) (r/2) 

since 

x= x-3 
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Therefore the roots a, t3 and y will be 

4x2 
=2 (q/3) cos (¢/3) -3 (6.7.14a) 

i/2 

ß2 =2 (q/3) cos 
((n_c)/3)) 

+3 (6.7.14b) 

t/2 
y2 =2 (q/3) cos 

r(n+q5)/3)1 
+3 (6.7.14c) 

Assuming a solution for real roots a, (3 and y we have 

H(Z) = AIcosh(af) + A2sinh(a«) + A9cos((3f) + A4sin((if) + 

A5cos(yt) + A6sin(rC) 

(6.7.15a) 

Simil arly 

, F(Z) = Bicosh(at) + B2sinh(af) + B9cos((3t) + B4sin(iR) + 

B5cos(yZ) + B6s In () 

(6.7.15b) 

and the slope of the flexural axis of the beam is 

e( ) ý- 
OH 1 

ý- 
(ctArsinh(afl 

+ aA2cosh(ae) - 

A9s in (fir) + /? AAcos((3) - rA5sin(yt) + rAdcos(yt 

(6.7.16) 

For simplicity the following symbols will represent the 

corresponding quantities wherever they appear in the text. 

Cho = cosh (oat) 

Sha = sinh (oat) 

Ca = cos (at ) 

Sc, = sin (c* ) 

Chß = cosh ((fir ) 

Shy = sinh ((3ý) 

Cß = cos (p ) 

Sß = sin ((3r ) 

Ch = cosh (Y) 
Y 

S = sinh (Y ) 
)" 

= cos C (Y) 
Y 

= sin S (Y) 
r 
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Substitution of the higher derivatives of H and in 

to equation (6.7.5a) yields ': 

[*'ACha 
+ a4A2Sha + (34A9C(3 + (4A4Sß + r4A5Cy + r4Aßsy] 

+K 
1a9BISha 

+ a9B2Cha + ß9B9 Sß (9B4C + y9B, Sy- y9B6C 

+P 
Echa 

+ a2A2Sha - 13ZASCI - 1? 
2A4S, 

3 - y2A5Cy -r A6Sy 

- eP 
razB1Cha 

+ a2B2Shp - (3ZBgCn - (3ZB4S(I - y2B5Cy - y2BdSy1 

-a 
[ALChýx 

+ AZSha + A9Cß + A4Sß + A5C?, + Ads? 
] 

+ ea 
[B, 

Cha + B2Sha + B13 Cß + B4S17 +B5CY+ B6SYl =0 

Gathering terms with similar coefficients 

+ Ict 4A K a9 + B P a2A eP a2B - a A+ ea B ] C 
I 2 I I ha 

+ 
[ot'A+ 

K a9 + B P a2A - eP a2B - a + A ea B 1 S 
1 2 2 2 2 ha 

+ 
[P4A 

_ K f9 B - P + 172A eP 1? 
2B 

- a + A ea B 
] 

C 
9 4 a 9 9 9 ß 

+ 
[t34A 

+ K (39 - B P + (32 A eP - ß2B a + A ea B 
1 

s 
4 9 4 4 4 4 

+ 
[rA 

_ K y9 B - P + '2A eP y2B - a + A ea B 
1 

C 
, a , . , 5 r 

+ 
[rA+ 

K y9 B - P 2,2A + eP y2 B - a + A ea B 
] 

=0 s 
5 , 6 a a r 

Let 

Ka= K as Pa! = a4+ P a2 -a, Pte= ea-ep a2 

4 K(3 K (39 , Pfiff = ß- P (3Z -a, Pte ea+eP (3z 
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Ky= K y9 , P?, 
1 

= y4- P yZ -a, Py2= ea+ep y2 

P 
PP P(3i 

P= 
Pyi 

kaa 
K2 P2 

kp= 
K2 - P2 

ky 
K2 - P2 

a aZ 19 ßz y yz 

Equating coefficients of cosh, sinh, cos and sin of a, 13 

and y on both sides, the relations between A1_a and 

B1_awere found using the, symbolic computing package DERIVE 

[27) . 

B! = Pka (A! POLZ - A2 Ka) B2 = Pka (A2 P02 - Ai Ka ) 

B9 =- Pkß (A9 Pß2 + A4 Ký) , B4 =- Pkß (A4 P- As K(3) 

B5 =- PkY (A5 P?, 
Z 

+ Ad KY) , Bd =- Pk?, (Aa PYZ - A5 Ký, ) 

Therefore, equation (6.7.15) can be written as follows: 

`PV) 
frkc* 

(AA PCt2 - A2 Ka)) Cha+ 
(Pkot 

(A2 pCt2 - As %) 
) 

Shot 

+ A4 Kt? Ct3 - 
frkp 

(A4 P- A9 Kß)) St3 - 
frkI 

(A9 P t32 32 

_ 
(Pk2, 

(A5 P212 + Ad K,, )) C2, - 
frk,, 

(Ad P212 _ A5 K2, )) S2, 

or in an alternate form'as 

`I'(C )= 
[Pka 

(Paz Cha K(X Sha) 
) 

Ai + 
frkcI 

(Pam Shot- K Ch ), A 
a a 2 

- 
(P 

kt? 
(Pth CP - KßSt? A9 - 

f(P02 
S0 + KßCP ))A4 

frky 
('Y2 Cy - Krs ) (P 

,2S 
+ 

) 
Ao _ 

frk 
J 

K C )) Ad 
y Y r Y Y 

(6.8.17) 

Let the boundary conditions be such that H1, ei 

represent the vertical defl ection, slope, and twist at y= 
0 or t=0 and H2, e2,2 represent vertical deflection, 

slope and twist at y =t or =1 respectively. 
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Therefore, in r 

slope and twist for 

expressed as follows: 

DYNAMICS OF STRUCTURES 

natrix form tranverse displacement, 

an element on both ends can be 

1 

N 

N !C 

" 
a c " 

a 
) 

). 
a 

.00 
> 

ö 
4 

hM 
a 

- 

ä i 

ü 

M _ N 

4L 
* 

- y 

`oJ I � 
1 

r=l 

Q 
° 

It. 
X 

1O N IV {a 

a 
Y I 41 

u 

a 
1 d 

OL 
a 
m 

A '--. 

u js 

ö s 
U 

o ac ä s Ad 
ýy o lö 

1d 

1 
w öY ý'+ II 

'_1 
ö 

6 

ä ä 
Y 

yö 
`dJ 

12 
ä u 

.1O oý 
c 

N 

oö 
ö 
Y 

e 

Q 
Vö 

IL V ö r' u 

N 

1.11 

V 
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or simply 

{U} = (B}(A) (6.7.18) 

Now the expressions for shear force, bending moment and 

torque as given in equation (6.7.2) are evaluated as 

follows : 

3 
ýY 

(- P h- Mx) +PeY 

_-P 
ah 

- 
8Mx 

+Pe 
OW 

gY gY dY 

where Mx is given by equation (6.7.3). 

2 
yj) 

+Pe 
gy 

S=-P 
gy - 

ýy (E 
I 

8y 

Z+Ký 

ay J 

_- 
8h 

- EI 
19h 

+K 
°2y' 

+Pe 
gw 

dy 
gy9 49yz 

ey 

Oh 
_ 

EI 89 h+K 02}ß 
+Pe 

Ow 

t aZ l8 at a t2 at 2t at 

After substitution of the derivatives of h and w and 

necessary simplification we get : 

92 

S= P O1 S-EIS-KP °1 (P C ý- ha t9 ha ka l2 a2 ha 

- Ka aha) +Pe Pka Z- (Paz sha Ka Cha)} Ai 

f92 
+-P Cha EI 

l9 
Cha -K KP 

t2 
Pa2 Sha 

- Ka Cha) +Pe Pka 
Z 

(Paz Cha Ka Sha)} Az 

r9 
+ {+ PS- EI 

ßs-KP2 
(P C-K S) 

l ý- (3 to (3 k(3 l2 
ßZ ßi 
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A9 +PePZ (Pß2 Sß + Kß 91 

2 

+ 
ý- 

PßC+ EI 
ß8 

C-KPß (P S+K C) ý- ß 
l9 

ß kß 2 ßZ ßß 

4 
Pe Pkß (P132 Cß A 

92 
YZ (Pr2 Cr - Kr SIV EI Y SY -K Pky 

It 

+Pe Pkr 1 (PYZ Sr + Kr Cr)r As 

(92 
E IYC 

Y-K 
PkY - (PY2 Sr + K?, Cr) 

lt 
It 

2 

-Pe Pk. 
- 

L (P?, 
2 

C?, - K}, S7, ) ?A 

(6.7.19) 

and 

M= EI 
a2h 

+K 
OW 

x aye ay 

_ 
EI 82h 

.+ 
8y_ 

Z2 8e 2l 8Z 

( 
EI 

2 

-O1 + C K Pk a (P 
Sh 

l 
K Ch )} A 

2 ha a C(2 a a aJ i 

+ EI 
2 

+ sho K Pka 
(PU2 

Cha Ka Sha) 
} 

A2 
12 t t 

+ý - EI + C K P 
[p 

S +K C 
) lA 

22 ý kß z 2 ß 1 ß 9 

+ý - EI 
ý2 

Sß - K Pkf 
(pt? 

2 
C0 - K0 Sý A4 

+ EI 
2 

i 
+ C K Pk 

(P 
S + SK 

C 
J }A 

, 2 Y y Y2 Y Y Y t 

ý 2 
- K P l ( 

C - KS) 
1A 

kt, y2 l 6. 

(6.7.20) 

. 
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and finally the torque from equation (6.7.4) is given by 

T= GJ 4LtE +K 
2h 

+P 
(e 49h r2 

aw 

ay 8y2 ey ay 

_ 
GJ OW 

+K 
02h 

+Pe 
Oh 

- 
r2 1 

le l2 at 2ll8l8J 

2 {K2 
Cha +Pez Shot + Pka (GJ -P r2) 

It 

(Paz Sha Ka Cha) 
} 

Ai 

2 
) 

{K 

t2 
Shot +Pet Cha + Pka 

Z 
(GJ -P r2 

(P02 Cha - K« Sh(X } AZ 

2 
Cß-Pe SP + Pkß 17 (GJ -P r2 )z 

It 

(Poz s, + Kß C0) 
} 

A9 

2 
+- K 

ý2 
Sß +Pe C0 - Pkß (GJ -P rz) 

It It 

(P C- K13 Sß) } A4 

zJ 
+ý-K 

lZ 
CY -Pei Sy + Pk?, i (GJ -P r2 ) 

(Pr2 Sr +K' Cr) } A5 

+ 
ý- l2 

J 

K 
2 

Sr +Pei CY - Pk?, i (GJ -P r2 ) 

(P 
Y2 

CY - Kr Sr) } Aa 

(6.7.2,1) 

Adopting the following boundary conditions, 

y= 0 or =0 ,3= -S , I 
M 

x 
= -M , xi 

and H= 
y 

-M 
yi 

y= t or = 1 ,S= S2, Mx = MxZ, and My = My2 
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and after substituting these boundary conditions in 

equations (6.7.19) - (6.7.21) we get the following set of 

equations in the matrix form. 

S D D D D D D A 
IL ts 12 13 14 i5 td i 

M D X X D D A 
1 21 22 29 24 25 26 2 

T D D D D d A 
1 at 92 as 94 as ad e 

S D D D D D D A 
2 41 42 49 44 45 4d 4 

M D ß D X ý ý A 
2 ai a2 ag 54 55 5d 5 

T D D D D D D A 
2 j 1 di 6 d2 da d4 ds dd d 

or 

{F} _ [D}{A} (6.7.22) 

where 

D! - -K Pka 
a2 

2 
Pý -P e Pka 

a 
Ka) 

D =- t2 

rP a 
-7- 

a 
- EI a+ 

9 
K P 

ka 

z 
aK+PePa P) 

za ka t az ` t t J 

r ß 
DLa =- -K 

1 
Pkß Pß2 +P 

2 
e Pk(3 K0) 

. t 

D! 
4 

=- 
r- 

P + EI 
9- 

K Pkt -if2 + Kß -Pe Pkß 
__ 

P1kJ 

't 

Dis _- 
rK 

Pk 
2 

+P P e Pk 
- ZK 

) 

r YZ Z2 t . Y 

D! 
a 

=- 
rP 

-ý 

9 

+ EI l- K P 
kr 

2 
i Kr -PepiP 2 kr re) 

D21 
(EI a2 

2 

a 
-KP K 

t t 

=- D KP a P 
22 l ka at 

D29 - 
r- 

EI 
z Z2 

+K Pkt 
l 

Kp 
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D24 = - 
r- 

K Pkf PtIz) 

D = - 
(- 

E 

2 

Ii +KP i K 
2t5 2 ky YJ 

D = - 
r- 

K P Y P 
26 ky rz l 

D = - 
(K 2 

- Pka O1 (GJ - 
a P r2 ) Ka 

) 

ei 2 t It 

D = - 
IP 

e 
a + Pk a (GJ -P r2) Pa2) 

92 t a t 

D93 = --K 

2 
ý2 

+ Pkß 
ß 

(GJ -P r2) Kul 
t L J 

D = - 

(P 

e -P (GJ -P r2) P 
3 94 k( 2 ( 

D = - 
r- 

K 
2 

i +P y (GJ -P r2) K 
1 

35 2 ky Y 

D = - 
rP 

e Pk l (GJ -P r2) P 
) 

96 y Y2 

D= -Pa L S 
9 

- EI aS 
-K P 

k 

2 
O1 (P C-KS 

h 4! hot 9 ha a a l2 a2 ha a 

+Pe Pk 
t 

(Paz S 
ha 

Ka Cha 
a 

D= -Pa l C 
h 

9 

- EI °t c 
9 ha -K P 

ka 

2 
a (P S-KC) 

2 a2 ha a hot 42 a l 1 

+PePa 
ka -ý- (Paz Cho Ka Sha) 

9, 
D=P 

f3 
S- EI S-KP2 (P c-K 

49 t %3 
t9 

ii k( 
t2 

02 13 13 

+Pe Pkt 
13 ( P132 S' +. K 

ßC) 

D44= -P C1 + EI Cý -K Pkt 
ß 

(PAZ S1 +K Cß) 
t2 

-Pe Pkp (PPZ Cß K1 SP) 
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92 
D4 

s= 
PY S- EI Yg S- KPY 

kY Z 
(PY2 CY - KY Sr ) 

tL 

+Pe Pky r (PY2 SY + KY CY 

92 

D46= -PC?, + EI YC-K PkY Y2 tPY2 S?, + KY C) 
t9Yt 

-Pe Pk' -ý- (PY2 CY - KY SY 

2r 
D 

ss 
= EI °1 

2C ha 
+KP 

ka 
a IPaz S 

ha -KaC ha ` 
It 

2 

D52 = EI 
lz 

Sha +K Pka ¬ (Pa2 
Cha Ka Sha) 

2 
D59 ECý+K Pkt 

(Pß2 
Sß + Kß Cß 

D54 E-KP` 
kt t 

(pt32 
Ct? - Kp Sp 

) 

13 

2 

D55 =- EI Y2 CY +K Pky l 1PY2 
sr + KY CY 

J 

2 
D56 =- EI i2 S7 -K Pkt, i 1PY2 

CY KY SY 

2 

Das K a2 Cha +Pe O1 Sha + Pka 21 (GJ -P r2 ) 

It It It 

(Paz Sha Ka Cha) 

2 

DK a2 Sha +Pe O1 Cha + Pka °1 (GJ -P r2 ) 
(52 

=tlt 

(P 
a2 

Cha Ka Shad 

D69 =-K 
ýZ 

Cý -Pe Sý + Pkt 
_ 

(GJ -P r2 ) 

(P(3Z Sß + Kß C0) 

2 
D64 S+Pe C0 - Pkt (GJ -P r2 ) 
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( Pt Cß - Kt 3ß ) 

2 

D_ K i2 CY -Pe SY + PkY 
I 

(GJ -P r2 ) 

(Prz Sr + Kr Cr) 

2 
i Ddd -K 

l2 S+Pe CY - Pky (GJ -P r2 ) 

(Prz Cr - Kr S3) 

Finally equation (6.7.18) is substituted in equation 

(6.7.22) which leads to the determination of the dynamic 

stiffness matrix. 

{F} = [D]{U}[B] != [K]{U} 
»»»»» 

where [K) = [DI(B)-1 = Dynamic stiffness matrix 

6.8 VIBRATION OF BEAMS WITH GEOMETRIC AND MATERIAL COUPLING 

The generalized case discussed in section (6.7) has 

several degenerated cases. The derivations of dynamic 

stiffness matrices of these cases are discussed in detail 

in Appendix (K). Final results in the form of equations of 

motion along with B and D matrices are presented in this 

section. Both of these matrices are then used in obtaining 

the dynamic stiffness matrix, as described in the previous 

section. 

EQUATIONS OF"MOTION 
,a 

az 
EI 

h 
+K 

gw+meh 
-me 

aw 
0 (6.8.1) 

ey4 dya atZ atZ 

8222 

Kgh+ GJ 
8y2 

8W+me 

ate 

8h-I 

°i at 2 
w= 0 

dy 3 
(6.8.2) 
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The B- matrix is : - 

101010 

000 

eä Ka9 - KaKa9 eä Kß9 KßKß9 ea KY9 KYKY9 

%X ýa 

, 

Cß Sß CY SY 

a 
Z- a 

ac 
--Z- ha _ßß -- Sß ý- Cß -YY SY 

t 
CY 

Ka9p Ka9p2 Kß9 Kß9m4 KYsm5 
r9 

bi 
d 

(6.8.3) 

where 

E. ta =ea Cha Ka aha 

p2 =eä S 
ha 

KC 
a ha 

p9 =ea Cß - K1 S() 

P4 =ea S+ K Cß 

N5 =eä C7 - K7 SY 

Na =ea S7 + Kr CY 

The D- matrix is : - 
S! Ds! D12 Dis D14 D£5 DId At 

M! D21 D22 D29 D24 D25 D2a hA2 
T! 

at 
D92 D99 D94 D35 ý9a Aa 

S2 D41 D42 D49 D44 D45 D4a A4 

M2 D51 D52 D59 D54 D55 D5d A5 

T2 Dos Dal 
as 

Dd4 Dd5 Dad A6 

(6.8.4) 
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where 

2 

D KK eä) 1! a9 9 l J 

9 2 
°t °` D =- - EI +KK K 

1 
12 l s ý 2 a 1 t t . 

2 ( ß 
D =- + KK eä1 

1n l t3. 2 J t 
2 

i! D 
[+ 

_+ EI_ KK K 
14 ßi 2 ý J 

2 
r 

D + KK ea is l Y3 2 J t 

9 z 
D =- 

r+ 
EI c + KK K 

id 9 T9 
i2 

rJ 

2 
a 

D =- 
( 

- EI KK 
l 

K 
21 2 ai aJ l t 

O1 D =- 
I+ 

KK ea1 22 aa t J 
2 

r 13 D =- - EI 
It 

- KK K 
23 2 f33 ßJ 

r ß D =- + KK eat 24 l fj3 J t 
2 

D =- 
r- 

EI l 
- KK K 

1 
25 2 ?, 9 r Z 

Y D =- 
(+ 

KK ea) 2a Ya J t 

z r °, O1 D =- - GJ K K + K 
al ag « 2 t t 

a D =- 
[ý 

c3K e a 92 ai 
It 

z 
D =- 

r- 
GJ K 

ß 
K - K 

ß 
33 l 03 ß 2 J t t. 

D =- + GJ K ea) 94 ß9 J t 
2 

D =- 
r- 

GJ KY K- K Y1 
35 l y9 y 2 l l J 
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D96 =- 
[+cJK 

Y9 
Ye 

a) 
tJ 
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D = - EI 
9 

a 
sinh(a) -KK 

2 
°1 _ re 

a cosh(a) -K 
l 

sinh(a) 
4t 9 t a9 z t l a J 

D =- EI 
9 

a 
cosh(a) -KK 

2 
a re 

a sinh(a) -K cosh(a)1 
42 9 t a9 2 t ` a J 

D49 =- EI 
9 ý' 

sin ((3) -K Kß9 
L 

2 

r- 
e a- cos((3) + Kßsin((3)J 

1. J 

D44 =+ EI 
9' 

s cos ((3) -KK ß3 

2 
22 r- 

e a- sin(r3) - Kßcos((3)) 
It ` J 

D =- EI 
9 

i 
sin Cr) -KK 

2 
r- 

e a- cos(') + K sin(Y)) 
45 9 Y9 zz l y 

D =+ EI 
9 

Y 
cos (Y) -KK 

2 
Y 

-e a_ sin(y) - K cos(Y) 
, 

4d 9 t Y9 2 t Y 

D = EI 
2 

a 
cosh(a) +KK O1 re 

a_ sinh(a) cosh(a) -K 51 2 t a9 t ` a J 

D = EI 
2 

a 
sinh(a) +KK a [e 

a cosh(a) sinh(a)ý -K 52 2 t a9 t ` a 

D53 = - EI 
z 

z 
cos ((3) +K Ký9 

(- 
e a- tin(r3) - Kýcos((3)) 

2 

D54 =- EI 
2 t? 

2 
sin ((3) +K Kt33 

re 
a- cos(r3) - Ksin((3)) 

1 

D =- EI 
2 

i 
cos (Y) +KK i C- 

eä sin(Y) - cos(r)) K 
55 z Y9 Y 

2 r 
D =- EI ` sin Cr) +KK ` Iea cos(y) - K sin(r)J 

56 2 t y9 t l y 

D = GJ K 
re 

sinh(a) - K cosh(a) I+K ý 
cosh(a) 

ai ai a J 2 

D = GJ K 
r 
le cosh(a) - K sinh(a) 

)+K 
2 

C 
sinh(a) 

62 C a 2 

D69 = GJ K(39 
2 r- 

ea 
t 

sin((3) -K Pcos((3) 
)-K 

J 

02 
cos (r3) 

, 

D GJ Kßg 
rea 

cos((3) - KPsin((3) 
J-K z 02 

sin ((3) 
J 

D = GJ K l (- 
e a- sin(y) -K cos(y) 

)-K 2 

cos Cr) 
65 Y9 y iz 
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2 

D6d = GJ Ky9 ire 
a_ cos(y) - Kysin(y)J -K 

i2 
sin (y) 

Finally the- dynamic stiffness matrix is obtained by 

multiplying B and D matrices. 

[K] _ [D][S] 1 (6.8.5) 

6.9 VIBRATION OF BEAMS WITR MATERIAL COUPLING 

In section (6.8), the case of geometric and material 

coupling was analysed. Explicit expressions for the 

dynamic stiffness matrix with geometric coupling only has 

been derived by Banerjee (zo). In this section, final 

results will be presented in the form of equations of 

motion along with B and D matrices for thin-walled 

composite beams with 'material bending-torsion coupling 

only (see Appendix (K) for detail derivations). Doubly 

symmetrical sections and plates are good examples of such 

structures where material coupling can exist due to the 

laminate stacking sequence. The governing differential 

equations (6.8.1) and (6.8.2) are then reduce to the 

following forms. 

EQUATIONS OF MOTION 

492 
EI 

öh+Ka w+ 
ma 

h= 
0 

8y4 8ya et2 
(6.9.1) 

922 

K8h+ GJ 'a w-Ia w= 0 (6.9.2) 
aya 8y2 °` ate 
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The B- matrix is :- 

0 

ß 
Z- 

K(3 K. 

sp 

co 

K(3C13 

1 0 1 

0 l 0 

0 K 0 
a 

Cha 

a 
-7- Sha 

Kasha 

sha 

Z- Cha 

KhaCha 

cp 

--z-S(3 

- KßSß 

The D- matrix is :- 

0 
a7 

K0 
am 

Kat 0 

- Kaosha KasCha 

KamCha 

KatCha 

Kamsha 

Ka sha 

0 Kß0 

Kßm 0 

Kpt 0 

- K(IaS( K(313 Cß 

- KßmC(3 KßmSß 

- KptC0 - Kßt3(3 

10 

0Y 

0 KY 

C? Sr 

-Z-sr . ICY 

- K?, SY KrCr 

(6.9.3) 

0 KYa 

K0 
yrn 

Krt 0 

- K?, 
o 

S?, K?, 
o 

- KYTMºCY KYm SY 

- Kr 
t 

CY 

IrtS 

(6.9.4) 

Finally the dynamic stiffness matrix will be computed by 

multiplying the D matrix with the inverse of the B"matrix. 

(K) = [DIIBI-1 (6.9.5) 
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6.10 COMPUTATION OF THE DYNAMIC STIFFNESS MATRIX 

The dynamic stiffness matrix was computed by numerical 

techniques as well as by an analytical approach. Based on 

these methods, two FORTRAN subroutines were developed. The 

block of information common to both subroutines was the 

input of structural properties such as bending, torsional, 

and bending-torsional coupled stiffnesses, mass per unit 

length, polar mass moment of inertia, distance between the 

centroid and the shear centre, span of the structure, 

axial load applied, and frequency for which the matrix is 

desired. In the numerical approach, the B and D matrices 

were formed with the help of these structural parameters 

as discussed in sections (6.7), (6.8), and (6.9). 

Inversion of the B matrix was performed in two ways. A 

matrix inversion subroutine based on the Gauss elimination 

method was written to make the program self contained. 

However, the inversion subroutine based on this Gauss 

elimination method failed when the analysis for a box-beam 

structure or a plate structure was performed. (This was 

due to the fact that a diagonal term B99 was zero when 

geometric coupling did not exist). In such cases, a very 

small but not zero elastic coupling can be assumed (i. e. 

the value for B93) and the above mentioned inversion 

subroutine is carried out. The other alternative was to 

use the NAG routine F01AAF (28], which is not based on the 

Gauss elimination method. Subsequently, the D matrix was 

multiplied by the inverted B matrix to obtain the dynamic 

stiffness matrix. 

In the analytical approach, algebraic expressions of B 

and D matrices were symbolically processed by using REDUCE 

(2P] (a symbolic computer package on the main-frame 

computer, for symbolic analysis of algebraic expressions). 

Explicit expressions for the dynamic stiffness matrix were 

thus obtained. The output obtained from REDUCE can be 

195 



CHAPTER :d DYNAMICS OF STRUCTURES 

further processed by GENTRAN (a package for obtaining a 

computer code in the FORTRAN language for analytical 

expressions). The output of REDUCE for the analytical 

expressions covered several hundred pages. Attempts were 

made to collect and condense various terms resulting in 

compact expressions for various elements of the dynamic 

stiffness matrix. The symmetric nature of the dynamic 

stiffness matrix reduces the labour to finding only 21 

elements instead of 36. In the case of elastically coupled 

bending-torsional beams, this figure further reduces to 12 

(20 ). In the case of materially coupled structures, 

elements of the dynamic stiffness matrix were studied for 

a range of frequencies, as shown in Figure (6.2). A 

careful examination of these graphs indicated the need for 

only 13 independent quantities to define the stiffness 

elements. 

6.11 DYNAMIC STIFFNESS MATRIX : EXPLICIT EXPRESSIONS 

FOR SYMMETRICALLY LAMINATED COMPOSITE STRUCTURES 

WITH MATERIAL BENDING-TORSIONAL COUPLING 

Explicit expressions for the dynamic stiffness matrix 

of elastically coupled structure have already been 

evaluated by"Baneriee (Zo). Similar explicit expressions 

are presented here for materially bending-torsion coupled 

structures. The dynamic stiffness matrix obtained is a6x 

6 matrix containing 36 elements. Due to symmetry, 21 

elements are needed of which 13 elements are independent 

of each other. The elements of dynamic stiffness matrix are 

defined as follows : 

K 2 
'K = K a 

ss A sz A sa A 

=4 K K ý 
iK = 

d 
i4 15 sa 
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K22 
QKa 29 A 

K24 =-K0K 

so 
K25 =e 2d °n 

is 12 Kea =A K94 =A K9 - K2d 

Is Kad A 

K44 =K K45 - K12 , K4d =- is 

a K55 K22 
as - 29 

Kd = K9s (6 . 
11.1) 

where 

Sha 
f 
aZrýl+ 2 yýZyýal - Sß 

(p2+ 
2w w9, S?, 

[z+ 
2 viIV/2 

+2 
IXI fy 

Sy (2 Z w) - vil 
J 

-Z 
ra 

Shaw - veJ 

-a 
(j3 

sß (2 cos- w) - v2)) (6. '11.2 ) 

and 0! to 0 
!e 

are defined by the following expressions : 

*s = a2 Sha 95 
s+ 

of Sha Es w 

+ps, 962+ß3ß zZ (c-2) 

+ y2 S?, gb 
H+y 

Sr ZH (w -2 wZ ) 

+ Cha f2! + Cß 0+C?, 0-2e(6.11.3 )2 
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CKaa 
i Kß, Kyo °ra 

+a pt + (3 p2 +y Pa 

+ Ka z1+ K(3 zz+ Ky za 

+ T! i (C 9, - 1) 

+ zz Ez (ChaCy - 1) 

+ Ta ea (ChaCý - 1)) (6.11.9) 

[z 
Sha Qi + (3z Sý3 Qz + y2 Sy Qs 

+aP Ky V+ay K(3 Vz +ßY Ka Va 

-aE! + (3 Ez +y Ea 
1(6.11.5 

) 

[«Z s hOl 
(KP. 6H + K? '062 + «shal (e2+ e) w 48 

+ßZ Sß 
(KC2269 

+ K. di, +(3 Sß (e + E9) (w -2 w3 ) 

+ Y2 sY 
(Kc(. 

62 + Kt3aÖ 
J+-S 

(ei+ eZ) (w -22) 

-2 
(Kawz; 

+ K(IOwaW; + KYowww2) 

+ vi (Ei + c2) + v2 (e + s9) + v9 (EZ + E9)ý (6.11.6) 

05 =-t[a Cha (K(39,69+ KY 6Z) + Ka C 
ha 

(K(39W9+ Kvsw2 ) 

+(i Cp (Ka969+ KY 6K 
ý Cý (Kaowa+ Krow! ) 

+y Cr (KCte6Z+ K(39 d1) -K CY (Kcteyi2+ Kßow ) 

-Ka1+Cha{s2( z-w) +ea( ä-w)} 

+ K13 x2+ C(3 
{s! 

(i- ws) + ca (- wa+ w) 
J 

198 



CHAPTER :d DYNAMICS OF STRUCTURES 

+ Ký, x8+ Crib! (- (a 
2+ 

w9) + -- 2(- 
(a 

2+ 
w)1.! 

(6.11.7) 

11 
a 

Ftz 
Sha 

(K 

r 
(CYKP. - sue) + K, 

3 
(C 

Y"- 
cd)) 

+ ý1 Sß 
(KY 

(CyKae c. 
6) 

Ka (ChaKyo- Cd) 
) 

+ yZ S2, 
(K, 

3 
Cd 

0 
Ea) Ka (ChaKß"- c5 iJ 

C 
ha 

(K(30 
p+ K2, 

oW2J 
ßCß 

1Kgw3+Krwi)_rCy (KCWW2+ 
K%?. lp1, 

a+a 

(3 KY 
r2 

hi y) 
1(C(3- Cy )1 

+ay Kß 
f 

ý9 (Chi Ct? )+ s1(Cß Cr)) 

+ (3 y Ka 
C+ 

c2 (C 
hi 

Cy) + ca (Cha C(3) 
) 

-a xi+ p x2+ y x3] (6.11.8) 

0? =t 
Isr 

J 
(fi6- 

Kp\P 
j+ 

3ha32 
(Yß2- 

KYw2) + 3ßJa 
frot_ 

KYw! 
J 

- (Kam+ Kam) (S 
ha 

Cß i+ S17 Cha i`) 

+ (Kam+ KYm) (3r Cha as ) 

+ Cha 
fan r3 

X (Kam+ KOm )+2 (K 
ftm- 

KYm) 
)2 

+=C3X (Kam+ K/) -2 (K 
o- 

KYm)) 

+ z'3 X2 (- 2 Kam- Kým- Krm) } 

- c0 
{08 

(Kam+ 3K 
flm- 

2 Krm) +Z (Kam+ 3K-2 KrM ) 
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+ Ta (KP- KYM)} (6.11.9) 

fa = a2 shasß Cr ýKßm- Krm) ýKß KYD 

Sß SY Cha(Kam+ Krm) (Kot- KY) 

+ y2 Sr St? Cha(Kam+ Kam) (Kct- K(3 )% 

+a 13 Kr 
[cha C- 

X'2 (Kam- KO+ 2 Krm) +2 (K Kym) 
) 

PM- 

- Cß (Kam+ Kü) +, C2, (Kam- K 
(? m+ 

2 K)] 

+ar Kß 
[cha ( 

>, 
s 

(Kam+ 2 Kp- K?, 
m) 

-2 (K(M- K?, m 
) 

+ C13 (Kam+ 2 K(912- Kvm) - Cr (Kam+ K?. 
m 

), 

+ (3 y Ka 
[Cha C 

X2 (2 Kam+ Kßm+ K, 
-m) 

- (Ce- CY) (KP- Krm)1 (6.11.10) 

ip 
pt 

[K. 
+ Kp ) 

+ (K1- Krm ) 

+ +K Krm ) 

Cß 3r fr 
sha62 

fr 8(3 
s 

K19 SYWi- Shaa1+ Sßa2 

K2'Sh(XW2) 

KYS13 W+ Sr ael 

+ 
{w9 C 

Kam (X1- 3X- X3) fie) +2K?, 
m 

(XZ- Xs ) 

+ 
{W2 C 

Kam (X 
t- 

3 XZ X9 + Kü (X, - X2- 3 Xe) -2 Krm 

- r9 
r2 

KamX2 -Kp. X- X3) + Krm (X + X2+ xe )11 

. 
l JJ(6.11.11) 
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to 
aZ aha (K Kren) (Kr 

/7 
K(3 

r) 

+ (32 
13 

(Kam+ Kym) (KYSha- Ka S 
y) 

+ y2 S 
,, 

(Kam+ K 
fývn) 

(K0S 
hct- 

KaS 
(7) 

+a (3 K?, 
{ 

Kam(Xi_ xZ- Xa) - KP (X1- X2+ X9) -2 KV 
MX 

-ay Kß 
{ 

Kam (X 
t- 

X2- X3) -2 KüX9 + Kym (Xi- xZ+ X9 ) 

- f3 y Ka 
( 

2 KamXZ - Kp (X1- X-X) 
33 

+ Kym(X +x 
z- 

X3)} 

+a 
{s 

0 Vie (Kam+ Kam) + S?, W2 (Kam+ Kym )1 

13 
{a'a 

(Kam+ Kam) - Sr wt (K - Kym) } 

y 
{Shawn 

(Kam+ Kym) + Sß Wt (K 
, 3m- 

Kym)1 (6.11.12) 

f! 
1 

=ä Sha(K17 Sr Cß - Kr S 

-( sß (Kä S Ch(x- Ky ShaCy) (Cl- (e) 

+ rz Sy (Ka sß Cha Kß ShaC(3) 
e 

+a (3 Kr 
ýCha (2 

Ci(, 
Z+ 

1) - C9X2J - C0Ca- Cy(2 Cl- Ca) 

+ay K(3 
{Cha (- ci(X + 2) - CSx21 - CI(KI+ c 

9) + C(r! - c9)} 2+1? 

y Ka 
Icha 

(-C1+ 2 19). x2 - C0C1+ Cy 

-a Cha 
[5p'19 

C9 - Sr W2 (C1- Ca)) 

+ 17 co 
(S, 

P3 ca - sr Ws c 
l) 

+y Cr 
(ShCtW2 

(- t1+ ca) + Sp yi! 
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X12 -- 
ra 

3ha (Cý CY) ý! (wa- 2 w2- TH ) 

+R Sý (Chi C?, ) (Cl- C9) (3 ä- 2o-TS) 

+Y SY (Chi Cß) C9 (Ta- w9) 

+ Cha 
ýKa 

(v1+ zZ) 
1v2) 

- CP 
rýav! 

ýlv91 

- CY 
ýCav2 

-1 (vZ- v9i11 (6.11.19) 

r1 
0! 

9 
=- Sha 

(K13 
3Y- K?, Sß) C) 

+ ßz sß 
C(K« 

Sy+ Kr S«) (C1- Ca)) 

+ yz S?, 
(c* 

Sß- Kß S(X) Cg) 

+« (3 Ky 2 ri X! +. ýa (X + Xz X3)) 

+«yK 
(it 

(X >z+ X3) ca (Xs Xz Xa 

+ßy Ka 
(ý+ 

X- X3) -2Ce Xzl 

+« 
(S, 

3 waCa+ Syw (Ca-C1)J 

+ß 
CSh«wa 

jr. + Sy w2 C1) 

-y 
(S 

W2 (Ca- C1) + sß yýj Cl) (6.11.15) 
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Where 

a, ß, y roots of 

are given 

(K2)). 

For other quantities 

Kam, Kßm, Kym and Kat 

the auxiliary equation (x. 2.12) and 

by expression (K. 2.14) (see Appendix 

such as Ka, K171 Kr, Kao, Kß8, Kr 

K13t, K., see Appendix (K2). 

Sha = sieh (a) S17 = sin ((3) Sy = sin (y) 

Cha = cosh (a) 
, C13 = cos ((3) , Cy = cos Cr) 

'p= a Shot Ka . Spý W9 =Y Sr Kr 

KK 
?, 

w2= (i Ka Ky w9 =y Ka K 

di = Shot K2 , 62 = S13 K2 , ý 69 = Sr K2 

Ft! = a2 Sha Kß K?, , N2 =P2 S19 Ka K?, 
.0 

/19= Y2 S?. Ka K17 

C1 = Ka. Sha c2 = Kt? 
oSI , Z9 = KYeSY 

Cha ' C4 = Ka C , c5 =K I cd = K C 
. s ß [ Ye Y 

n= 
! 

6 :J+ Lr 
2! 9 

:!, n 
22 

= Cl v-E :ý 
!! a , a 

0=6v-Ci! 
a! 229 

Zt° CP t9 + Cr c2 ip 
e2°NX+ Cy c1 i, 

Z9= 
hat2 (3 

E! 

vi =aß6H0v? = of y62, v9 = i3 ?. 61 

a! = ýi 69+ y 62 

aZ =a 6a- y6- 

a9= a62- f36- 

Kß 

K 
a 

K 
a 

v/9 -KY W2 

W9+ K, W1 

W2+ Kß w! 
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6.12 APPLICATION OF THE DYNAMIC STIFFNESS MATRIX 

The dynamic stiffness matrix developed in the 

previous sections can be utilized to solve free natural 

vibration problems of structures. A global dynamic 

stiffness matrix Kf of the final structure is formed by 
14 

assembling the dynamic stiffness matrices of the 

individual members in the usual way. Natural frequencies 

of the structure are then determined by two independent 

methods as follows: 

6.12.1 FREQUENCY-DETERMINANT PLOT TECHNIQUE 

The Frequency-Determinant plot is a relatively easy 

and quick method for finding the natural frequencies of 

the structure. In this method, the value of the 

determinant of the dynamic stiffness matrix is calculated 

at each step by varying w (frequency parameter). The value 

of the determinant is then plotted against the frequency. 

At a natural frequency of the structure the value of the 

determinant goes to zero. 

There are however, numerous disadvantages in such a 

procedure. First, any natural frequencies corresponding to 

a constrained system with both ends clamped are not 

covered by this method. Second, structures having very 

close natural frequencies would require the step size for 

w to be very small indeed. Finally, the value of the 

determinant may change sign not only by passing through 

zero but also via infinity. 

The inversion of the B matrix, makes the determinant 

plot a discontinuous curve. When the value of the 

determinant changes sign by passing through the zero, the 

corresponding value of w will be the natural frequency of 

the structure. In this case, the curve changes'* sign via 

infinity, the point generated by joining these two curves 

is a pole and, does not represent a natural frequency. 
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6.12.2 WITTRICK - WILLIAMS ALGORITHM 

The determinant of the dynamic stiffness matrix {K} 

is a highly irregular function of w and any trial and 

error method, which involves computing JKJ and observing 

when it changes sign, may miss some roots. In order to 

solve this problem, an algorithm based on a theorem due to 

Lord Rayleigh [z] was suggested by Wittrick and Williams 

The Wittrick-Williams algorithm is briefly described 

as follows. 

It has been established that j, the number of 

eigenvalues present in a range of frequency from zero to 

ca* as the circular frequency of the structure w is 

increased, is given by the expression : 

j= Jo +s{K f} 

where 

i 

(6.12.1) 

= number of natural frequencies of the structure 

exceeded by the trial frequency w 

JO = number of natural 

trial frequency w* 

upon the structure 

nodal displacements 

=2i m 

frequencies exceeded by the 

if constraints were imposed 

so as to suppress all the 

number of natural frequencies of a component 

member with its ends clamped, which have been 

exceeded by w* 

Kt the overall dynamic stiffness matrix 

(depending on the circular frequency of the 

structure w) evaluated at w= w*. 
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s{ Kr }= number of negative elements on the 

leading diagonal of KA 

KA = upper triangular matrix obtained by the 

application of Gauss elimination to Kr 

The algorithm can be applied to systems with an 

infinite number of degrees of freedom, for which there is 

no comparable approach. The algorithm has been 

demonstrated in computer programs called BUNVIS (29] and 

CALFUN (za). The same routine has been modified and 

combined with the subroutines DMCSN. FO,, DMCSE. FOR, and 

DMMECA. FOR in this. work to develop VMECAS. FOR, for 

computation of the natural frequencies of structures with 

material and elastic coupling as well as an axial load at 

the centroid. 

6.13 DEVELOPMENT OF COMPUTER PROGRAMS 

Computer programs based on the theory discussed in 

sections (6.7) to (6.9) and section (6.11) were developed. 

A list of these programs along with brief description of 

each is given below. 

1. DMCSN. FOR : Dynamic stiffness matrix for 

materially coupled structures 

(Numerical approach) 
2. DMCSE. FOR Dynamic stiffness matrix for 

materially coupled structures 

(Exact approach) 

3. DMCS. FOR Dynamic stiffness matrix for 

materially coupled st ructures (a 

combination of DMCSN. FOR and 

DMCSE. FOR pr ograms) 

4. DMMECA. FOR : Dynamic stiffness matrix for 
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materially and elastically coupled 

structures with axial load 1 

5. VMECAS. FOR Vibration of materially and 

elastically coupled with axially 

loaded structures 

The common input statement of these programs consists 

of the following data as variables : 

EI = Flexural or bending stiffness 

GJ = Torsional stiffness 

m= Mass per unit length 

I Polar mass moment of inertia per unit length 

about an axis through the shear centre 

x or e= Distance between the centroid and shear centre 

(set to zero if not elastically coupled structure) 

t= Length of the structure 

w= Circular frequency 

K= Bending-torsional coupled stiffness 

(set to zero if not materially coupled structure) 

P= Axial load applied at the centroid 

(set to zero if not present) 

(For example data files and result files of these 

programs, see Appendix (. G )). 

6.14 VALIDATION OF COMPUTER PROG 

The validation of computer program VMECAS. FOR was the 

next stage. Hollowell and Dugunji's [zs] work on composite 

plates was selected to- predict natural frequencies and 

mode shapes. Their work included comparison of theoretical 

predictions with experimental results. The authors [253 

used a plate element in the structural idealization to 

predict natural frequencies and mode shapes. However, the 
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program VMECAS. FOR developed in this work uses beam 

element idealization. Plate structures can be idealized as 

beams when their aspect ratio exceeds a certain limit. A 

parametric study was therefore conducted to establish a 

figure for the aspect ratio at which a plate can be 

successfully idealized as a beam element. The material 

properties, thickness, and chord length of the plate were 

kept constant as given in Reference (251 and only the 

length of the structure was varied to obtain structures 

with different aspect ratios. 

6.14.1 EFFECT OF ASPECT RATIO ON THE ACCURACY OF FREQUENCY 

AND MODE SHAPES OF A PLATE STRUCTURE 

MATERIAL : Aluminium alloy 

Young's Modulus of Elasticity = 68.9 GPa 

Poisson's ratio = 0.3 

Density = 2770.0 Kg/m9 

DIMENSIONS 

Chord length = 76.0 mm 

Thickness = 1.0 mm 

END CONDITIONS : CANTILEVERED 

Flexural stiffness " EI = 0.436367 N m2 

Torsional stiffness GJ = 0.62826 N mZ 

Mass per unit length m=0.21052 Kg/m 

Polar mass moment of inertia Ipo = 1.01347 * 10-4 Kg-m 

ASPECT RATIO :1 to 5 in steps of 0.5 

Length : 76 mm to 380 mm 

(length increased in steps of 38 mm) 

Sources of analysis : 

1. LUSAS :A finite element package (see Appendix (L)) 

Element used : QSL8 - thin shell element 

Description :A quadrilateral shell element for the 

analysis of shell structures with 

arbitrary geometry including multiple 
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junctions. The element can accommodate 

generally curved shell geometry with 

varying thicknesses and anisotropic 

materials may be specified. The 

formulation takes account of both 

membrane (in-plane) and flexural 

(out-of-plane) deformations and as 

required by thin shell theory, shearing 

deformations are excluded. 

2. VMECAS. FOR : Program based on thin-walled composite 

beam element idealization. 

Natural frequencies and mode shapes were calculated 

using LUSAS and VMECA3 programs. The estimated natural 

frequencies along with the percentage difference between 

the results obtained by the two programs are tabulated for 

plates of aspect ratio 1.0 to 5.0 in Tables (6.1) to 

(6.5). 

The results were further studied in the light of 

their normal mode shapes.. The percentage difference 

between the results of the two estimates were plotted 

against the aspect ratio for natural frequencies with 

similar mode shapes as shown in Figure (6.3). For the 

first and second bending frequencies the difference is 

less than two percent for an aspect ratio of three. 

However, for the first and second torsional frequencies, 

the difference is about twelve percent for an aspect ratio 

of three. These large differences for the torsional modes 

can be attributed to the invalid assumption of having no 

chordwise bending. Moreover the structure exhibits 

combined spanwise and chordwise bending or spanwise 

bending accompanied with torsion. These complex modes are 

not calculated by the VMECAS. FOR program. 
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Therefore, for plate structures with aspect ratios 

greater than three, the VMECAS. FOR program will be able to 

predict bending frequencies within two percent accuracy 

whereas the torsional frequencies are likely to suffer 

from a difference of twelve percent as compared to 

predictions made by a finite element package. 

6.14.2 COMPOSITE PLATES OF REFERENCE (za) 

Orthotropic engineering constants for Hercules 

AS1/3501-6 uni-directional Graphite/Epoxy with 

approximately 60% fibre volume fraction are tabulated in 

Table (6.6) as per Reference [zs], along with sectional 

parameters. The in-plane, on-axis lamina modulus 

components Q.. were obtained from the orthotropic 

engineering constants. Flexural moduli for six different 

laminates were found by the LAMINATE program . These 

results were identical to Reference [25] and are shown in 

Table (6.7). 

Hollowell and Dugunji (zs] employed the Rayleigh-Ritz 

energy method to predict natural frequencies and mode 

shapes for these plates (see Appendix (E)). In the case of 

a cantilevered uniform rectangular plate, the governing 

equations are 

4L 
doof 2l- w- ta mr1 w+ 2 e= 0 (6.14.1) 

l D, Dis 

z 

- 

Dia 
_"ýý +( 

Di 
i= 

wZ(m 
CZZ21 

WO- A- J 0= 0 
2 Dý 

48 Dadl2 �48 D66 

(6.19.2) 

These two ordinary differential equations are coupled 

by the bending-twisting stiffness factor Did. For the 

plates under discussion the stiffness ratios D16/D1! and 
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Did/Ddd are negligibly small as shown in Table (6.7) and 

can be ignored. 

This results in uncoupled bending and torsional 

equations and gives relatively simple expressions for 

computation of natural frequencies as follows: 

wne = (knp/ý) is/m (6.14.3) 

(a 
na' 

( KnT/12) -/4-8 666R 
2/p (6.14.4) 

where 

kMH = nth eigenvalue of the equation, subject to the 

boundary conditions on w% 

KnT = eigenvalne being function of (3 that can be 

obtained from Figures (2 & 3) or from Table 2 

of Reference (Za). Its value approaches that 

for a long thin bar as the warping stiffness 

goes to zero. 

n=1,2,3,..... 

Natural frequencies -were calculated by equations 

(6.14.3) and (6.14.4). In addition, natural frequencies 

and mode shapes for these plates were computed by CALFUN 

[24], LUSAS®, and VMECAS programs. The CALFUN computer 

program is briefly described in the following paragraphs 

whereas the other two programs LUSAS and VMECAS have 

already been discussed in a previous section. 

CALFUN (24], a program for CAculation of Flutter 

speed Using Normal modes, is based on a Vlasov beam 

idealization. However, the program does not account for 

warping stiffness, rotary inertia, and material coupling 

and assumes that chordwise deformations do not exist. 

The normal input to CALFUN includes bending rigidity 

(EI), torsional rigidity (GJ), mass per unit length (m), 

polar mass moment of inertia per unit length about the 
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elastic axis distance between the elastic axis and 

the centroid (xa), and the beam length. CALFUN computes 

natural frequencies and mode shapes for an aircraft wing. 

In Reference (za), bending, torsional and coupled 

bending-torsional stiffnesses were not given. The plate 

stiffnesses were estimated using equation (4.18) of 

Chapter (4) as given below : 

EI = D1! c, GJ =4 Dad c, K=2 DAd c 

(6.14.5) 

P40, - 
the centroid (xa), and the beam length. CALFUN computes 

natural frequencies and mode shapes for an aircraft wing. 

In Reference (za), bending, torsional and coupled 

bending-torsional stiffnesses were not given. The plate 

stiffnesses were estimated using equation (4.18) of 

Chapter (4) as given below : 

where 

D!!, Dia and Ddd = elements of D matrix 

c= chord length or width of the plate 

These rigidities are given in Table (6.8). 

A finite element package called LUSAS was used to 

establish natural frequencies of these orthotropic plates. 

These predictions are compared with test results and are 

tabulated in Tables (6.9a), (6.9b), and (6.9c). 

Theoretical and experimental results shown in Tables 

(6.9a, b, c) are plotted against a non-dimensional quantity 

wC EI GJ 
, 

in Figure (6.4). The percentage differences 

between experimental results and theoretical estimation 

using different schemes of calculation are also plotted 

against w in Figure (6.5). 

These plots reveal that large differences between 

experimental results and theoretical predictions will be 

encountered if the effect of material coupling is ignored 

as is the case in CALFUN and LUSAS. In Figure (6.6) 

results are compared only with VMECAS predictions. Good 

agreement exists for the first and second bending 

frequencies but in the case of the first torsional 

frequency, the deviation may be attributed to the fact 

that chordwise bending is ignored in the beam element 
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idealization. This fact is further investigated in the 

following paragraphs. Moreover, the normalised mode shapes 

of these materially coupled plates have been compared with 

corresponding mode shapes for assumed uncoupled plates in 

Figures (6.7) to (6.12). In the absence of material 

coupling, modes are either bending or torsional but in the 

presence of material coupling, modes can be identified as 

predominantly bending or predominantly torsional. That 

means for each frequency both kinds of mode are present, 

except that one type of mode can be relatively predominant 

In its amplitude as compared to the other. 

Results published by Chuh Mei (so] and Garland (za] 

are selected to see how successfully frequencies and mode 

shapes can be predicted for thin-walled structures made of 

isotropic materials. Results for three channel sections 

are given in Table (6.10). 

6.15 CONCLUSIONS 

Dynamic stiffness matrices for thin-walled composite 

sections have been developed for three cases as follows: 

1. Elastically and materially coupled beams with an 

axial load 

2. Materially coupled beams with an axial load such 

as plates or doubly symmetrical sections 

3. Materially coupled thin-walled beams 

Explicit expressions for the dynamic stiffness matrix 

of the materially coupled case have been evaluated. This 

results in a substantial saving in computer time. 

Computer programs have been developed to calculate 

these dynamic stiffness matrices from basic structural 

data. These programs have been combined with an 
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established algorithm [19] to predict the natural 

frequencies and mode shapes for elastically and materially 

coupled beams with an axial load. 

A comparative study between CALFUN and VMECAS 

predictions with M. I. T.. results revealed the importance of 

the material coupling term in the accuratte computation of 

natural frequencies and mode shapes. As long as we are 

dealing with simple lay-ups, CALFUN is capable of 

accurately predicting the natural frequencies and mode 

shapes but as the layer sequence becomes more complex, a 

significant difference between theoretical predictigns and 

experimental results appears. This suggests that analysing 

structures made of composite materials require inclusion 

of anisotropic characteristics in the program. 

A parametric study of effect of aspect ratio on the 

accuracy of prediction of natural frequencies using beam 

element idealization has also been presented. It is found 

that for plate structures with aspect ratio greater than 

three, beam model idealization can predict frequencies 

within measurement accuracy. 

215 



CHAPTER :d 

REFERENCES 

DYNAMICS OF STRUCTURES 

1. Vlasov, V. Z., "Thin Walled Elastic Rods, " Moscow 

(1940), 2nd edition (1959). English translation published 

for U. S. Science Foundation Israel Program for 

Scientific Translations, Jerusalem (1961). 

2. Lord Rayleigh 1977 Theory of Sound (2 vols. ). N. Y.; 

Dover Publications, Second edt., 1945 reissue. 

3. Goland, M., "The Flutter of a Uniform Cantilevered 

Wing, " Journal of Applied Mechanics, Vol. 12, 

A-197-A-208,1945. 

4. Goland, M. and Luke, Y. L., "The Flutter of a Uniform 

Wing with Tip Weights, " Journal of Applied Mechanics, 

Vol. 15, pp. 13-20,1948. 

5. Timoshenko, S. P. and Young, D. H., Vibration Problems 

in Engineering, Van Kostrand, third edition, New York, 

1955, pp. 329-331 and 407-411. 

G. Hurty, W. C. and Rubinstein, M. F., Dynamics of 

Structures, Prentice-Hall, Englewood Cliffs, New Jersey, 

1964, pp. 161-166 and 222-225. 

7. Bisplinghoff, R. L., Ashley, H., and Halfman, R. L., 

Aeroelasticity, Addison-Wesley, Reading, Massachusetts, 

1955, pp. 105-206,114 and 555-563. 

8. Fung, Y. C., An Introduction to the Theory of 

Aeroelasticity, Dover Publication, Nev York, 1955,1969 

revised publication, pp. 52-55 and 198-201. 

9. Rao, J. S. and Carnegie, W., "Solution of the equations 

216 



CHAPTER :d DYNAMICS OY STRUCTURES 

of motion of Coupled-bending bending torsion vibrations 

of turbine blades by the method of Ritz-Galerkin, " 

International Journal of Mechanical Science, Vol. 12, 

1970, pp. 875-882. 

10. Mel, C., "Coupled Vibrations of Thin-walled Beams of 

Open Section Using the Finite Element Method, " 

International Journal of Mechanical Science, Vol. 12, 

1970, pp. 883-8.91. 

11. Angelbrecht, "Coupled free vibration of a swept 

wing, " Journal of Aeronautical Sciences Vol. 18,1951", 

pp. 329-338. 

12. Stacey, J. A., "The Development of a Finite Element 

Aeroelastic Calculation Package and its Application to 

the Cranfield Aerobatic Aircraft-Al, " M. Sc. Thesis, 

College of Aeronautics, Cranfield of Institute of 

Technology, 1976. 

13. Williams, F. W. and Wittrick, W. H., "Efficient 

calculation of natural frequencies of certain marine 

structures, " Int. J. Hech. 3ci., Vol. 15,1973, pp. 

833-843. 

14. Williams, F. W., "Computation of natural frequencies 

and initial buckling stresses of prismatic plate 

assemblies, " J. Sound Vib., Vol. 21,1972, pp. 87-106. 

15. Banerjee, J. R. and Williams, F. W., "Exact 

Bernoulli-Euler dynamic stiffness matrix for a range of 

tapered beams, " Int. J. numer. methods eng., Vol. 21, 

1985, pp. 2289-2302. 

16. Anderson, M. S., Stroud, W. J., Durling, B. J., and 

217 



CHAPTER :d DYNAMICS OF STRUCTURES 

Hennessy, K. W., "PASCO : Structural panel analysis and 

sizing code user manual, u NASA Technical Memo 80182, 

1980. 

17. Anderson, M. S., Williams, F. W., Banerjee, J. R., 

Durling, B. J., Herstrom, C. L., Kennedy, D., and Warnaar, 

D. B., "User manual for BUNVIS-RG: An exact buckling and 

vibration program for lattice structures, with repetitive 

geometry and substructuring options, " NASA Technical Memo 

87669,1986. 

18. Chandra, R., Stemple, A. D., and Chopra, I., 

"Thin-Walled Composite Beams Under Bending, Torsional, 

and Extentional Loads, " Journal of Aircraft, Vol. 27, No. 

7, July 1990. 

19. Mansfield, E. H. and Sobey, A. J., "The Fibre Composite 

Helicopter Blade, Part 1: Stiffness Properties, Part 2: 

Prospects for Aeroelastic Tailoring, " Aeronautical 

Quarterly, May 1979. 

20. Banerjee, J. R., "Coupled Bending-Torsional Dynamic 

Stiffness Matrix for Beam Elements, " Int. J. for Num. 

methods in Eng., Vol. 28, pp. 1283-1298,1989. 

21. Wittrick, W. H. and Williams, F. W., "A general 

algorithm for computing natural frequencies of elastic 

structures, " Quarterly Journal of Mechanics and Applied 

Mathematics, Vol. 24, pp. 263-284,1971. 

22. Williams, F. W. and Wittrick, W. N., "Exact buckling 

and frequency calculations surveyed, " J. Struct. Eng. 

ASCE, Vol. 109, pp. 169-187,1983. 

23. Banerjee, J. R. and Williams, F. W., "User's guide to 

218 



CHAPTER :d DYNAMICS OF STRUCTURES 

the computer program BUNVIS (BUckling of Natural 

VIbrations of Space frames)", Departmental Report No. 5, 

Department of Civil Engineering and Building Technology, 

UMIST, 1982. 

24. Banerjee, J. R., "Use and capability of CALFUN :A 

PROGRAM FOR CALCULATION OF FLUTTER SPEED USING NORMAL 

MODES, " Proceedings Int. AMSE Conf. "Modeling & 

Simulation", Athens, June 27-29,1984. 

25. Hollowell, S. J. and Dugundii, J., "Aeroelastic 

Flutter and Divergence of Stiffness Coupled, 

Graphite/Epoxy Cantilevered Plates, " Journal of Aircraft, 

Vol. 21, pp. 69-76, Jan. 1984. 

26. Garland, C. F., "The Normal Modes of Vibrations of 

Beams having Noncollinear Elastic and Mass Axes, " 

Presented at the Annual meeting, Philadelphia, Pa., 

December 4-8,1939, of the American Society of Mechanical 

Engineers. 

27. DERIVE, A Mathematical Assistant, Version 1.63, 

Copyright (c) 1988 by Soft Warehouse, Inc. Honolulu, 

Hawaii, U. S. A. 

28. NAG Fortran Library Manual - Mark 13, NAG Ltd., 

Wilkinson House, Jordan Hill Road, Oxford, United 

Kingdom, OX2 8DR. 

29. Hearn, A. C., "REDUCE User's Manual, " The Rand 

Corporation, Santa Monica, CA 90406-2138, U. S. A., Version 

3.3, July 1987. 

219 



CHAPTER :6 DYNAMICS OF STRUCTURES 

As ect Ratio 
1.0 ` 1.5 

p 
LUSAS VMECAS % Diff. LUSAS VMECAS % Diff. 

First Bending 143.861 139.484 3.04 63.660 61.993 2.62 

First Torsion 351.278 258.994 26.27 213.995 172.662 19.31 

Second Bending 871.194 874.126 -0.34 391.866 388.504 0.8G 

TABLE 6.1 Natural frequencies for plates (A. R. 1.0 & 1.5) 

As tR ti 
2.0 2.5 

pec a o 
LUSA VMECAS 

(Hz) 
% Diff. LUSH VMECAS % Diff. 

First Bending 35.688 34.870 2.29 22.774 22.318 2.00 

First Torsion 152.955 139.490 15.34 118.864 103.597 12.84 

Second Bending 221.268 218.530 1.24 141.839 139.861 1.39 

TABLE 6.2 Natural frequencies for plates (A. R. 2.0 & 2.5) 

As ect Ratio 
3.0 3.5 

p 
LUSAS VMECAS % Diff. LUSAS VMECAS % Diff. 

First Bending 15.777 15.498 1.77 11.569 11.386 1.58 

First Torsion 97.182 86.331 11.17 82.193 73.999 9.97 

Second Bending -. 98.534 97.126 1.43 72.374 71.358 1.40 

TABLE 6.3 Natural frequencies for plates (A. R. 3.0 & 3.5) 
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4.0 4.5 
Aspect Ratio 

LUSAS 

- 
CHz) 

VMECAS 

. _, _ 
CHza 

% Diff. LUSAS 
(Nz)_ 

VMECp S 
(Hzý. 

% Diff. 

First Bending 8.843 8.718 1.42 6.979 6.888 1.30 

First Torsion 71.215 64.748 9.08 62.880 57.554 8.47 

Second Bending 55.382 54.633 1.35 43.731 43.167 1.29 

TABLE 6.4 Natural frequencies for plates (A. R. 4.0 & 4.5) 

5.0 
Aspect Ratio 

LUSAý VMECAS _ Diff. 

First Bending 5.646 5.579 1.18 

First Torsion 56.210 51.799 7.85 

Second Bending 35.400 34.965 1.23 

TABLE G. 5 Natural frequencies for plates (A. R. 5.0) 

MATERTM, PROPERTIES 
Out-of-Plane loading 

EL= 98.0 x 10P N/ml 

E 7.9 x 10" N/m1 

lt= 
0.28 

GLt= 5. G x 10P N/m2 

Ply thickness = 0.134 x 10-9m 
Density = 1520.0 Kg/m 

SECTIONAL PROPERTIES 

Total length = 0.33 m 
Effective length = 0.305 m 

Chord length = 0.07G m 
Aspect Ratio =4 

DYNAMICS OF STRUCTURES 

TABLE 6. G Material and sectional properties of composite 

plates as given in reference [zs], VI. 60Z (aPPYOX) 
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i 

Sj 

Flexural Moduli. 
... 

D-matrix (Nm) Stiffness Ratios 
No. Lay-up 

Dii D12 pia D22 pza Dßa Did/ Dii Did/ Dac 

0.0 0.0 
1 [0 /90] 4.125 0.09G 0.0 0.49 0.0 0.243 

2 

2 [±45/01 1.55 0.928 0.437 1.404 0.437 1.075 
0.28 0.40; 

0.61 0.88 
3 (45 /01 1.55 0.928 0.946 1.404 0.946 1.075 

2s 14 

4 [-45 /0) 1.55 0'. 928 -. 946 1.404 -. 946 1.075 -0.61 -0.88 
2 

0.43G 1.36 
5 (30 /0] 2.704 0.72 1.18 0.666 0.459 0.866 

2 

-0.436 -1.36 6 [-30/0] 2.704 0.72 -1.18 0.666 -. 459 0.866 
20 

- ---- 
TABLE 6.7 Flexural moduli for composite plates 

Lay-up [0 
2 

/901 
e 

[±45/01 
s 

(45 
x , 

/01 
c+ 

(-45 
2 

/01 
e 

(30 
2 

/01 
® 

(-30 /0] 
za 

21 0.3135 0.1178 0.1178 0.1.178 0.2055 0.2055 

CJ 0.074 0.327 0.327 0.327 0.263 0.263 

K 0.0 0.06642 0.14379 -0.143792 0.17936 -0.17936 

TABLE G. 8 Flexural, torsional, and coupled bending/torsional 

rigidities of composite plates 

.. ý 
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CHAPTER :6 DYNAMICS OF STRUCTURES 

Lay-up [02/90]ß [-45/01. 

_1 

1452/01. 
1[-452/018 1[302/018 

[-302/0]n 

FIRST BENDING FREQUENCY (Hz) 

Ex er. 11.10 6.1 4.8 4.8 6.0 6.0 

THEORETICAL PREDICTI ONS WITH PERCENTAG E DIFFERENCES 
Ref. zm 10.70 5.7 4.6 4.6 6.0 6.0 

% dif. -3.74 -7.02 -4.35 - 4.35 0.0 0.0 

CALFUN 11.025 6.775 6.775 6.775 8.95 8.95 
% dif. -0.68 9.96 29.15 29.15 32.96 32.96 

LUSAS 9.405 7.690 7.380 7.380 7.999 7.999 
di f. -18.02 20.68 34.96 34.96 24.99 24.99 

VMECAS 11.052 6.3705 4.5972 4.5998 5.6585 5.6636 

% dif. - 0.43 4.25 - 4.41 - 4.35 - 6.04 - 5.94 

TABLE 6.9a First bending frequency of composite plates 

Lay-up [0 /901 [±45/O]. 
1 

[45 
2/0). 

1 
1-45 

2/0 
1o [302/0]0 [-302/0] 

SECOND BENDING FREQUENCY ( Hz) 

Ex er. 69.0 38.0 30.0 30.0 36.0 36.0 

THEORETICAL PREDICTI ONS WITH PERCENTAGE DIFFERENCES 

Ref. 25 67.0 37.0 32.0 32.0 41.0 41.0 

% dif. -2.99 -2.71 6.25 6.25 12.20 12.20 

CALFUN 69.095 42.46 42.46 42.46 56.08 56.08 

% dif. 0.13 10.50 29.34 29.34 35.80 35.80 

LUSAS 58.74 48.15 45.83 45.83 46.48 46.48 

% dif. -17.47 21.07 34.54 34.54 22.54 22.54 

VMECAS 69.259 39.774 28.376 28.391 34.095 34.117 

% dif. 0.37 4.46 =5.72 - 5.67 - 5.59 - 5.52 

TABLE 6.9b Second bending frequency of composite plates 

Lay-up 102/901.1 1145/01 [452/0]0 [-452/0]0 (302/0]0 [-302/0]S 

FIRST TORSIOANL FREQUENCY (Hz) 

Ex er. 42.0 77.0 51.0 51.0 58.0 58.0 
THEORETICAL PREDICTI ONS WITH PERCENTAGE DIFFERENCES 

Ref. 25 39.0 69.0 55.0 55.0 60.0 60.0 
% dif. -7.69 -11.59 7.27 7.27 3.33 3.33 

CALFUN 33.302 70.08 70.08 70.08 62.87 62.87 
% dif. -26.12 - 9.88 27.22 27.22 7.74 7.74 

LUSAS 38.47 64.69 46.14 46.14 49.95 49.95 
% dif. - 9.18 -19.03 -10.54 -10.54 -16.12 -16.12 
VMECAS 33.325 70.239 70.039 70.034 64.301 64.290 

% dif. -26.03 - 9.63 27.18 27.18 9.80 9.78 

TABLE 6.9c First torsional frequency of composite plates 
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REFERENCE CHUH MEI [1o] GARLAND [26) 

MATERIAL PROPERTIES 
Aluminium cold-rolled 

Material alloy steel 

Modulus of Elasticity E (Cpa) 69.0 207.0 

Modulus of Rigidity G (Cpa) 26.0 80.0 

Poisson's ratio 0.3 0.3 

Density P (Kg/m9) 2720.0 7843.0 

SECTIONAL PROPERTIES 

Section channel 

b (mm) 19.05 25.4 25.4 

h (mm) 12.7 12.7 12.7 

t (mm) 0.635 0.635 0.635 

t (m) 1.016 1.016 1.016 

STATIC PROPERTIES 

Flexural stiffness 

EI (N_M2) 74.848 97.304 291.912 

Torsional stiffness 

GJ (N_M2) 0.11273 0.140912 0.43357 

mass per unit lengt 

m/1 (K /m) 0.08774 0.109677 0.316249 

Polar mass moment of 

inertia I (Kg-m) 2.809; 10-5 6.386*10 5 1.8414 * 10-4 
P0 

Dist. bet. C. of G. 

and shear centre 15.7098 21.87407 21.874 
x (mm) 

a 

FREQUENCY (Hz) FIRST MODE 

Theory (Ref. ) 12.8667 11.333 11.87 

Finite element 12.633 11.433 ---- 

Experimental 12.4167 10.667 11.833 

CALFUN/VMECAS 11.855 9.926 11.932 

LUSAS 12.8195 11.4652 ------ 

TABLE 6.10 Natural frequencies of thin-walled open sections 

made of isotropic materials 
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Figure 6.3 Effect of aspect ratio on the accuracy of 

calculation of natural frequencies of a plate 

structure using beam element idealization. 
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CHAPTER 7 MODAL ANALYSIS 

CHAPTER :7 

MODAL ANALYSIS OF COMPOSITE STRUCTURES 

7.1 INTRODUCTION 

Experimental observations pertaining to vibration 

and dynamics of a structure are usually made for two 

major reasons. 

a. To determine the nature and extent of vibration 

response levels. 

b. To verify theoretical models and predictions. 

This chapter covers modal analysis performed on 

composite structures to verify a theoretical model and 

predictions based on it. Three types of structure, thin 

plate, thin-walled open section, and thin-walled closed 

section structures with cantilevered end conditions as 

discussed in Chapter 5 were tested. Theories concerning 

prediction of natural frequencies and mode shapes of 

these structures have already been discussed in Chapter 

(6). A brief historical review and application of modal 

testing will be followed by theory and measurement 

procedures. Validation of the testing technique is 

discussed before presenting the results on composite 

structures. A number of figures for power spectral 

density, frequency response and Bode plots are given for 

each case. The layout of the work in this chapter is 

shown in Figure (7.1). 

7.2 MODAL ANALYSIS 

Modal analysis or modal testing is the thorough 

integration of the theoretical basis of vibration, 

accurate measurement of vibration, and a realistic and 
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detailed data analysis. The philosophy of modal analysis 

or testing is described in Figure (7.2). 

The usual trend in vibration studies is that systems 

each with a single-degree-of-freedom are used as 

building blocks to develop confidence and later on the 

knowledge is extended to multi-degree-freedom systems 

(see Figures (7.3)-(7.4)). The three major aspects of 

the measurement process that demand particular attention 

for the acquisition of high-quality data are shown in 

Figure (7.5). 

The idea of modal testing was developed from 

'Resonance Testing' and 'Mechanical Impedance Methods'. 

In 1947 Kennedy and Pancu [! l described methods for the 

accurate determination of natural frequencies and 

damping levels of aircraft structures. Bishop and 

Gladwell in 1963 (2) described the theory of resonance 
testing. Salter [9] proposed interpretation of measured 
data in a relatively non-analytical approach. Salter's 

method provided considerable understanding of the 

physical meaning of the vibration of the structure. By 

the 1970s, the introduction of transducers, electronics 

and digital analysers gave birth to the modern day modal 

testing procedures. There has been a considerable amount 

of work in this field since then. A bibliography can be 

found in Reference (4) and [s). A notable contribution 

in book form has been made by Ewins [a) in the recent 

years. 

7.3 EXPERIMENTAL PROCEDURE 

Experiments were carried out on isotropic and 

composite structures with clamped-free (cantilevered) 

end conditions. Three different means of excitation were 

used as follows : 
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1. Electrodynamic or moving coil type shaker 

2. Transient input by a hammer blow 

3. Releasing the structure from a deformed position 

A brief description of the apparatus used'in each method 

of excitation will be discussed in the following 

paragraphs. 

7.3.1 ELECTRODYNAMIC OR MOVING COIL TYPE SHAKER/VIBRATOR 

Probably the most easily manoeuvrable type of 

excitation is the electrodynamic or moving coil type. It 

is driven, via a power amplifier, by an oscillator, 

which has continuously variable frequency and amplitudes 

ranges for both square and sinusoidal wave forms. 

The vibrator selected for the vibration testing was 

the model 200 series, supplied by Ling Dynamics Systems 

Limited. These vibrators are miniature units for use in 

small scale vibration testing or as non-seismic 

pick-ups. They can be driven by any suitable 

oscillator/amplifier combination but in particular the 

Ling Dynamic Systems TPO 25 is recommended for this 

purpose. It has a light weight armature construction (an 

epoxy resin bonded coil wound on a laminated former). 

The top and bottom laminated spiders, vibrator body. and 

a trunnion mounting, form the main parts of this model. 

The presence of a permanent magnet in the 200 series 

vibrators eliminates the requirement for a field power 

supply. 

The electrodynamic shaker was connected to the 

structure with a thin stainless steel rod as shown in 

Photograph (7.1). 
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7.3.2 HAMMER OR IMPACTOR EXCITATION 

Another popular method of excitation is through use 

of an impactor or hammer. It is a relatively simple means 

of a exciting the structure Into vibration. The equipment 

consists of an impactor, with a set of different tips and 

heads which serve to extend the frequency and force level 

ranges for testing a variety of different structure. 

A Kistler Type 9722 instrumented hammer was used, 

which incorporates a quartz force sensor. The hammer 

produces an analogue voltage which is proportional to the 

transient force transferred to the test object. 

The motion of the structure is measured by means of 

accelerometers. The signals from the force transducer and 

accelerometers are compared by spectrum analyser to 

determine various dynamic characteristics such as 

compliance and mechanical impedance. 

7.3.3 TRANSDUCERS TO MEASURE FORCE AND RESPONSE 

The motion response of the structure can be in the 

form of displacement, velocity, or acceleration. Some of 

the structures had strain gauges for measuring static 

structural properties, therefore, a potentiometric 

circuit was used to record the dynamic strain. At a later 

date piezoelectric transducers were chosen to detect 

force and acceleration after giving due consideration to 

the following problems : 

(a) interference of the device with the structure and 

(b) adequate performance for the range of frequency 

and amplitude of the test. 

The advantages and disadvantages of both methods are 

summarised as follows : 
,a 
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ADVANTAGES 

STRAIN GAUGE 

1. Light weight 

2. Any voltage amplifier 

can be used 

ACCELEROMETER 

1. A single device can 

suffice for all the 

structure 
2. Easy to install 

3. Short experiment 

preparation time 

DISADVANTAGES 

1. Expensive to make 

2. Delicate 

3. Required on every 

structure 

1. May not be light 

enough to suit 

2. Requires a charge 

amplifier 

7.3.4 SIGNAL PROCESSING 

The mobility parameters were obtained by applying 

the following types of excitations to the structure. 

(i) SINUSOIDAL EXCITATION % 

The structure' was harmonically excited and the 

resulting harmonic response was measured. The frequency 

range was covered either by increasing the excitation 

frequency in small increments or sweeping throughout the 

range slowly but continuously, allowing quasi-steady 

conditions to be achieved. 

(ii) TRANSIENT EXCITATION 

A transient or impulsive (nonperiodic) excitation 

was also applied to the structure, hence, reducing labour 

involved in modal testing. 

A fast Fourier transform spectrum analyser was used 

to process the time domain signal into the frequency 

domain. Frequency information was extracted from the 

response of the structure using statistical techniques as 
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described in Reference [a]. 

7.4 VALIDATION OF THE TEST TECHNIQUES USING STRUCTURES 

MADE OF CONVENTIONAL MATERIALS 

In order to validate the test techniques adopted for 

the modal testing, structures made of conventional 

materials were tested to obtain their natural frequencies 

and mode shapes. The static structural properties of 

these structures were experimentally established and had 

been discussed in Chapter 5. The computer program VMECAS 

was generally used to predict the natural frequencies and 

mode shapes of these structures. The results are as 

follows : 

7.4.1 BEAM ELEMENT 

A cantilevered aluminium prismatic bar structure was 

tested with a length of 765 mm. The lowest three natural 

frequencies were predominantly of bending modes. Hence, 

only the bending stiffness of the structure was 

established experimentally as discussed in Table (5.1). 

The static structural properties of the structure were as 

follows: 

Bending rigidity EI (N_M2) 141.10 

Torsional rigidity 
xx 

GJ (N_M2) 162.427 

Mass per unit length m/t (Kg/m) 0.680022 

Polar mass moment of inertia I (Kg-m) 4.287 * 10-5 
Po 

Experimental results for the natural frequencies of 

the structure were compared with the theoretical 

predictions as shown in Table (7.1). The first natural 

frequency was estimated within 9% of the experimental 
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value but for higher frequencies the discrepancies 

increased. The test was repeated for a shorter length of 

the same specimen. This time the free length was 637 mm. 

The first experimental frequency was found to be 19.0 Hz 

as compared to the theoretical prediction of 19.87 Hz 

with 4.4 % error. 

The Bode plot and power spectral density (PSD) plot 

of the acceleration for the aluminium beam of 765.0 mm 

length are shown in Figures (7.8a, b). Figure (7.9a, b) 

shows the PSD of acceleration and plots of real and 

imaginary parts vs frequency for a beam of reduced length 

637.0 mm. The theoretical normal mode shapes for the 

prismatic bar are given in Figure (7.10). Qualitative 

agreement was found between these theoretical predictions 

and the observed mode shapes when the structure was 

sinusoidally excited near the resonant frequencies. 

The errors were expected due to following reasons: 

1. Low resolution of the spectrum analyser 
2. Flexible cantilevered end condition 

3. Added mass of the exciter and transducer 

In order to isolate the effect of end conditions on 

the experimental investigation of natural frequencies, a 

steel prismatic bar with free-free end conditions was 

tested. The agreement between theoretical and 

experimental results was found to be very good as shown 

in Table (7.2). 

The dimensions and static structural properties of 

the steel prismatic bar were as follows : 

b (mm) = 38.2 ,h 
(mm) = 9.6 ,t (mm) = 1290.0 

Bending rigidity EIxx (N_M2) 582.997 

Mass per unit length mit (Kg/m) 2.868 
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7.4.2 PLATE STRUCTURE 

An aluminium plate of 300mm x 75mm x 0.71 mm 

dimensions was tested. Structural parameters such as mass 

per unit length (spanwise) and polar mass moment of 

Inertia used in estimating the natural frequencies are 

tabulated In Table (7.3) and an account of plate 

stiffnesses are given in Table (5.2). 

Experimental results for natural frequencies of the 

aluminium plate are compared with, the theoretical 

predictions in Table (7.4). The large discrepancies in 

bending frequencies suggest that bending rigidity has 

been overestimated. During the bending rigidity test It 

was observed that the plate deformed considerably within 

a very small range of loads. It is possible that whilst 

experiencing large deflections the structure deviated 

from the small deflection theory used in computing the 

bending stiffnesses. The added mass of the accelerometer 

can also result in a lower frequency as compared to the 

theoretical prediction when the additional mass is 

neglected. 

Bode plots for the determination of mode shapes, 

using the magnitudes of the frequency response function 

for each modal frequency, are given in Figure (7.11). The 

calculated normal mode shapes are compared with the 

experimentally established ones in Figure (7.12). The 

modulus of acceleration response for the aluminium plate 

structure is plotted against frequency in Figure (7.13). 

7.4.3 THIN-WALLED OPEN SECTION 

An aluminium channel section was fabricated. Natural 

frequencies are given in Table (7.5) and normal mode 

shapes were estimated using the following structural 

data: 
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Dimensions of the channel section 

Width of the flanges b 

Height of the web h 

Thickness of web-and flanges t 

Effective length t 

Static structural properties 

Bending rigidity EIxx 

Torsional rigidity GJ 

Mass per unit length m/t 

Polar mass moment of inertia Ip40, 

Shear centre from centroid x 
a 

(mm) = 46.0 

(mm) = 35.0 

(mm) - 0.702 

(mm) = 559.0 

(N-m2) 1535.577 

(N-r2) 0.388096 

(Kg/r) 0.239385 

(Kg-m) 4.457 *, 10-4 

(m) 0.03707 

The modulus of acceleration response for the 

aluminium channel section is plotted against frequency in 

Figure (7.14). 

7.4.4'DISCUSSION OF RESULTS 

The validation programme for the test techniques 

using structures made of conventional materials such as 

steel and aluminium helped to establish the accuracy of 

the test techniques and the reliability of the equipment, 

and isolated various sources of errors. It was noticed 

that a rigid cantilevered end condition was necessary to 

obtain better agreement between theoretical and 

experimental results. Other effects like warping of the 

structure will also produce differences between the 

predicted and experimental results if the effect is not 

included in the theoretical model. 

These results provided the possible sources of 

errors to be found when testing composite structures with 

similar boundary conditions. Therefore, the errors 

associated with the test technique can' be isolated from 

the errors found in'testing composite structures. 
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7.5 COMPOSITE PLATE STRUCTURE 

The composite plates discussed in Chapter (5) were 

further tested to establish their natural frequencies and 

mode shapes. The dimensions of these composite plates are 

given in Table (5.4). Structural rigidities and other 

parameters are tabulated in Tables (5.5) and (5.6). 

Experimental' results of natural frequencies are compared 

with the two sets of theoretical predictions based on 

theoretical and experimental static structural properties 

in Tables (7.6), (7.7), and (7.8) respectively. 

The Bode plot and PSD plot for the acceleration and 

the modulus of acceleration response plot for plates with 

(Os)a, [t30°)a, and [±45°/0) stacking sequence are shown 

in Figures (7.15) and (7.16) respectively. Theoretical 

normal mode shapes are shown in Figure (7.17). 

7.5.1 DISCUSSION OF RESULTS 

The magnitude, of the first natural frequency 

decreases as the ply orientation is changed from zero to 

45 degrees. The dominantly bending mode shape 

characterized with the first natural frequency explains 

the reason for this behaviour. The bending stiffness of 

the structure decreases with increase in the ply 

orientation, therefore, the magnitude of the dominantly 

bending mode frequency decreases. The coupled mode shapes 

for plates with (130°) and (±45°/0) 
o 

stacking sequence 

are due to the presence of coupled bending-torsion 

stiffness parameter. 

The normal mode shape for the_ second natural 

frequency is an uncoupled torsional mode for the [Os)o 

case but a considerable degree of coupling between 

bending and torsional modes exists for composite plates 

with stacking sequence of (±30°)_ and t±45°/0)_. The 

magnitude of the frequency initially increases as the ply 
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orientation is changed from zero degree but later returns 

to its initial value for (±45°/0) plate. This behaviour 

is similar to the trend exhibited by the coupled 

bending-torsion stiffness for a composite structure as 

explained in Chapter (5). 

The third natural frequency is a second bending mode 

for the zero degree case. In the other two cases, an 

uncoupled first torsional mode is displayed. The 

magnitude of the natural frequency follows the trend 

similar to the second natural frequency except that it 

acquires a lower value for the (±45°/0)0 case as 

compared to the zero degree case. 

The differences between theoretical predictions and 

experimental results are summarized in Table (7.9). The 

superscript 1 refers to predictions of natural frequency 

using theoretical structural properties and superscript 2 

represents the theoretical predictions based on 

experimental results of the structural static properties. 

The overall image of the experimental results improves 

after taking into account effects due to end conditions, 

additional mass of the accelerometer and deviation from 

the theoretical model adopted for prediction. The 

improved results showed an increase in the percentage 

difference between the theoretical predictions and 

experimental results with an increase in the magnitude of 

the coupled bending-torsion stiffness of the structure. 

The effect of ply orientation on the percentage error 

in the prediction of natural frequencies based on both 

theoretical and experimental structural properties is 

shown in Figure (7.18). For each frequency three curves 

can be seen. The two long dashed curves are fitted to the 

individual percentage error data produced by comparing 

the experimental and the two theoretical predictions of 

natural frequencies based on theoretical and experimental 
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structural data. The solid line is an overall curve 

fitted to both the percentage error data produced by 

comparing the two sets of theoretical predictions and the 

experimental results. 

For the first natural frequency the percentage error 

falls from 18% for aluminium and composite plates with 

ply lay-ups of 00 and 450 fibre orientations to a minimum 

average of 5% as the fibre orientation increases to 22°. 

This is due to the magnitude of the bending-torsion 

coupling which is either zero or negligibly small for 

both (0aI and (±45/0) 
. 

cases. 

For the second natural frequency considerable 

disagreement exists for the zero degree case. This 

discrepancy can be attributed to the underestimated 

torsional stiffness of the plate. 

In the case of the third natural frequency the error 

increases with the increasing degree of ply orientation 

and returns back to about 5% at 45°. The study of the 

normal mode shapes shows that the third frequency 

represents a predominantly torsional mode. 

7.6 THIN-WALLED OPEN SECTION COMPOSITE STRUCTURES 

Three types of open thin-walled structures, namely 

tee, angle, and channel-sections were fabricated and 

tested for their structural properties as mentioned 

earlier in' section (5.8.3). Their cross-sectional and 

static structural details were given in Tables (5.8) to 

(5.15). Natural frequencies and normal mode shapes for 

these structures were determined and are discussed in the 

following sub-sections. 

7.6.1 ANGLE SECTION 

The predicted natural frequencies and normal mode 

shapes were based on theoretical and experimental 
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structural properties. These results are given in Tables 

(7.10) to (7.16) for four zero degree specimens and three 

of 10,20, and 45 degrees. 

A representative Bode plot and power spectral density 

plot of acceleration response is shown in Figure (7.19). 

The frequency range is narrowed down to establish the 

frequency more accurately. 

A representative plot of normal mode shapes for the 

first five natural frequencies is given, in Figure (7.20). 

7.6.2 TEE SECTION 

Four specially orthotropic tee-sections of zero 

degree glass/epoxy structures were fabricated and tested 

for their structural properties as mentioned in Chapter 

(5). The sectional and structural characteristics are 

given in Tables (5.11) to (5.13). Natural frequencies and 

mode shapes are predicted based on these findings. 

Experimental results are compared with the two sets of 

predictions based on theoretical and structural 

characteristics of the section in Tables (7.17) to 

(7.20). Typical normal mode shapes for the first five 

frequencies of the zero degree lay-up tee section are 

given in Figure (7.21). Bode plot and power spectral 

density plot of acceleration response for a 

representative section are given in Figure (7.22). 

7.6.3 CHANNEL SECTION 

Four specially orthotropic i. e. zero degree lay-up 

channel sections and four generally orthotropic by 

symmetrically laminated channel sections of 10,20,30, 

and 45 degrees were, fabricated and tested for their 

static and dynamic structural characteristics. The 

sectional and static structural properties are given in 

Tables (5.14) and (5.15) in Chapter (5). 
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The theoretical predictions of natural frequencies 

are compared with the experimental results in Tables 

(7.21) to (7.28). Figure (7.23) shows the Bode plot and 

power spectral density plot of acceleration response for 

a typical channel section. 

7.6.4 DISCUSSION OF RESULTS 

Preliminary examination of results obtained for open 

section composite structures give a very confusing 

picture. The error levels reduced with the higher order 

frequencies. This pattern of results was opposite to the 

test performed on an aluminium open section (channel 

section). 

The natural frequencies were for predominantly 

torsional modes due to very low torsional rigidity, 

characteristic of open sections. Torsional mode 

frequencies are Influenced by the torsional rigidity, 

mass per unit length and polar mass moment of inertia 

about the elastic axis. The former two quantities were 

experimentally established, whereas, the polar mass 

moment of inertia was theoretically calculated. An 

increase in polar mass moment of inertia, IPo will 

reduce the magnitude of torsional mode frequencies of 

open sections and vice versa. A closer examination of the 

composite open sections showed segregation of matrix 

material near the bends. The computation of polar mass 

moment of inertia used average wall thicknesses and did 

not account for the bulge near the bends. A higher value 

of polar mass moment of inertia reversed the trend of 

errors. 

Another possible source of error was the theoretical 

model. Open' sections are free to warp. The theoretical 

model used in predicting natural frequencies and normal 

mode shapes did not account for the --strain energy 
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characterized with warping of the cross-section. The 

effect of this additional degree of deformation has 

already been observed in the prediction of structural 

rigidities in Chapter (5). 

The error levels increased for other ply orientations 

similar to results obtained for composite plates. 

7.7 THIN-WALLED CLOSED SECTION COMPOSITE STRUCTURES 

Structural rigidities and other parameters such as 

mass per unit length, location of the centre of gravity, 

shear centre and polar mass moment of inertia for 

thin-walled closed section composite structures were 

experimentally. found and compared with the theoretical 

predictions in Tables (5.17) to (5.20). These structures 

were further dynamically tested to establish their 

natural frequencies and mode shapes. Experimental results 

for zero degree ply orientation cases are compared with 

theoretical predictions in Tables (7.29) to (7.34). 

Representative results of dynamic tests for these 

structures are given in Figures (7.24) and (7.25). These 

also include results obtained through an, ultra-violet 

recorder. 

In order to establish the mode shapes, the magnitude 

of the frequency response function and phase plots were 

obtained when the structure was struck with the hammer 

(impactor) at different locations spanwise and chordwise. 

For a representative case these measurements are given in 

Table (7.35). Mode shapes were determined by plotting the' 

amplitude responses with the help of phase information 

for the respective natural frequencies. 

Theoretical predictions about the normal mode shapes 

revealed their coupled bending and torsional deformations 

due to geometric and material coupling present in the 

structure. The relatively small chord made it difficult 
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to obtain enough information about the torsional modes by 

this method. The structure was excited using an 

electrodynamic shaker at resonant frequency and torsional 

modes were observed in stroboscopic light. 

These experimental mode shapes are compared with 

theoretical results in Figure (7.26) and were found in 

good agreement with theoretical predictions. 

The wings discussed above were of zero degree lay-up. 

In the case of other orientations the modulus of 

elasticity decreased and the shear modulus increased, 

resulting in lower bending rigidity and higher torsional 

rigidity. This led to a decrease in the bending mode 

frequency and an increase in the torsional mode frequency 

for structures without bending-torsion coupling rigidity. 

In a parametric study discussed in Chapter (4), it 

was observed that bending-torsional coupling rigidity 
0 

increased to a maximum at 221. from zero and returned 
z 

to zero at 45°. Material coupling rigidity, K, reduces 

the bending mode frequency to a minimum and increases the 

torsional mode frequency to a maximum at maximum K. It is 

also observed that in the presence of material coupling 

the bending mode frequency acquires a lower magnitude and 

the torsional mode frequency a greater value compared 

with the materially uncoupled case. 

Therefore, four wings similar to W-DMS-7 with 100, 

200,300, and 450 ply lay-up were manufactured and 
tested. Structural rigidities were established and are 

given in Table (5.20). Experimental results for natural 

frequencies are compared with the theoretical predictions 

in Tables (7.36) to (7.39). 

7.7.1 DISCUSSION OF RESULTS 

Experimental investigation of natural frequencies and 

normal mode shapes for closed section composite 
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thin-walled structures produced good agreement for the 

first two to three normal modes in the majority of the 

wings tested. An over estimated figure for the higher 

normal modes was the general trend displayed by all the 

specimens. In some cases inaccurate estimation of static 

structural properties resulted in large discrepancies 

between the theoretical predictions and experimental 

results. 

The presence of elastic coupling due to 

non-collinearity of the elastic and centroidal axes and 

material bending-torsion coupling produced coupled mode 

shapes. The structure exhibited transverse deformations 

along with torsional displacements. Predominantly bending 

and torsional mode frequencies were observed when the 

structure was continuously excited with an electrodynamic 

shaker. In the case of predominantly torsional mode 

frequencies cross-sectional deformations were observed. 

The deformed cross-sectional geometry violated the Closed 

Space Rigid Diaphragm (CSRD) assumption and led to the 

possibility of another mode of vibration known as 

ovalisation. The deviation from the CSRD assumption and 

the presence of another mode of vibration can account for 

discrepancies between the theoretical predictions' and 

experimental results. In most of the cases the mode 

shapes agreed with, the theoretical predictions for the 

number of frequencies observed. 

The first normal mode shape was found to be 

predominantly bending and the next two predominantly 

torsional in all the cases. The presence of coupled 

bending-torsion rigidity further increased the difference 

between the first bending mode and first torsional mode 

frequencies. 
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7.8 CONCLUSIONS 

Tests with satisfactory results were performed on 

structures made of conventional materials such as 

aluminium and steel to validate the testing technique and 

to calibrate the equipment used. 

Test were performed on three composite graphite fibre 

reinforced plastic plates. In the evaluation of 

fundamental frequencies, the validity of applying a 

beam-element idealization to various composite lay-ups 

was confirmed for ' low flexural coupling ratios Dia/DIt 

and 

Composite thin-walled open sections with three 

different cross-sections were tested. Large discrepancies 

were found between theoretical predictions and 

experimental results. The investigation demanded a better 

theoretical model. 

Natural frequencies and normal mode shapes for six 

wings of zero degree ply lay-up and four of 10,20,30, 

and 45 degrees ply lay-up were established. The error 

levels remained within 10 % for wings with specially 

orthotropic ply lay-ups. In the case of generally 

orthotropic ply lay-ups, deviations from theoretical 

predictions followed similar trends to those observed for 

composite plate structures. 
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FREQUENCY 
(Hz) 

THEORETICAL 
(VMECAS) EXPERIMENTAL % DIFFERENCE 

FIRST MODE 13.77 15.0 - 8.9 

SECOND MODE 86.32 103.5 - 19.9 

THIRD MODE 241.69 149.0 38.4 

TABLE 7.1 Natural frequencies of a cantilevered aluminium 

prismatic bar with a free length of 765 mm. 

FREQUENCY 
(Hz) 

THEORETICAL EXPERIMENTAL % DIFFERENCE 

FIRST MODE 30.50 30.5 0.0 

SECOND MODE 84.09 84.0 0.1 

THIRD MODE 164.85 165.0 - 0.1 

TABLE 7.2 Natural frequencies of a steel prismatic bar 

with free-free end conditions 

PARAMETER UNITS THEORETICAL EXPERIMENTAL % DIFFERENCE 

Mass per unit Kg/m 0.143775 0.1397 2.83 
length m/t 

Polar mass mome- K -m 6.74 * 10-5 
-nt of inertia 

TABLE 7.3 Structural parameters of an aluminium plate 

FREQUENCY (HZ) 
MODES THEORETICAL BASED ON 

EXPERIMENTAL 
% DIFF. 

THEORY EXPERIMENT (Ex p. ) 

FIRST BENDING 6.437 6.7009 5.6 16.43 

SECOND BENDING 40.3405 41.994 36.0 14.27. 

FIRST TORSION 49.2798 49.485 48.0 3.00 

THIRD BENDING 112.954 117.584 ------ ---- 

TABLE 7.4 Natural frequencies of an aluminium plate 
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FREQUENCY THEORETIC AL 
EXPERIMENTAL tF EN E %D 

(Hz) VMECAS LUSAS 7u 
_AS 

FIRST MODE 39.483 48.247 42.5 - 7.64 

SECOND MODE 92.336 137.01 97.5 - 5.59 

THIRD MODE 145.120 137: 01 146.0 - 0.61 

FOURTH MODE 171.520 178.19 161.0 6.13 

FIFTH MODE 197.910 195.58 196.0 0.97 

TABLE 7.5 Natural frequencies of an aluminium channel section 

FREQUENCY (Hz) EXP. 
PREDICTIONS BASED ON 

THEORY % DIFF. EXP. % DIFF. 

1st. BENDING 10.00 12.3389 18.96 12.373 19.18 

1st. TORSION 38.06 36.027 - 5.64 56.533 32.68 

2nd. BENDING 78.00 77.324 - 0.87 77.541 - 0.59 

TABLE 7.6 Natural frequencies of composite plate 10 
H]. 

FREQUENCY (Hz) EXP. 
PREDICTIONS BASED ON 

THEORY % DIFF. EXP. % DIFF. 

1st. Mode 8.00 8.9239 10.35. 8.3144 3.78 

2nd. Mode 48.00 55.027 12.77 51.44 6.69 

3rd. Mode 83.00 69.258 -19.84 66.769 -24.31 

TABLE 7.7 Natural frequencies of composite plate (130]. 

FREQUENCY (Hz) EXP. 
PREDICTIONS BASED ON 

THEORY % DIFF. EXP. % DIFF. 

1st. Mode 5.44 6.9979 22.26 6.4482 15.64 

2nd. Mode 37.50 43.676 14.14 40.281 6.90 

3rd. Mode 70.70 74.574 5.19 74.725 5.39 

TABLE 7.8 Natural frequencies of composite plate (±45°/0la 
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PLY OREINTATION Aluminium [0 1 
3a 

[130] 
+a 

[145/0] 
a 

EXPERI. 5.60 10.00 8.00 5.44 

FIRST 
THEORY 6.437 12.338 8.9239 6.9979 

MODE % DIFF. 13.00 18.96 10.35 22.26 

THEORY2 6.7009 12.373 8.3144 6.4482 

% DIFF. 16.43 19.18 3.78 15.64 

EXPERI. 36.00 38.06 48.00 37.50 

SECOND 
THEORY1 40.3405 36.027 55.027 43.676 

MODE % DIFF. 10.76 -5.64 12.77 14.14 

THEORY2 41.994 56.533 51.44 40.281 

% DIFF. 14.27 32.68 6.69 6.90 

EXPERI. 48.00 78.00 68.59 70.70 

THIRD THEORY1 49.2798 77.324 69.258 74.574 

MODE `k DIFF. 2.60 - 0.87 - 19.84 5.19 

THEORY2 49.485 77.541 66'. 769 74.725 

% DIFF. 3.00 - 0.59 - 24.31 5.39 

TABLE 7.9 'Percentage difference in plate vibration tests 

FREQUENCY (Hz) EXP. 
PREDICTIONS BASED ON 

THEORY % DIFF. EXP. % DIFF. 

1st. TORSION 22.0 27.12 18.88 26.26 16.22 

2nd. TORSION 77.0 79.67 3.35 77.02 0.03 

3rd. TORSION 131.0 138.53 5.46 134.05 2.30 

TABLE 7.10 Natural frequencies of angle section No. 1 
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FREQUENCY (Hz) EXP. 
PREDICTIONS BASED ON 

THEORY % DIFF. EXP. % DIFF. 

1st. TORSION 23.0 26.80 14.18 26.83 14.28 

2nd. TORSION 75.5 79.16 
. 

4. G2 78.67 4.03 

3rd. TORSION 131.0 136.74 4.20 137.12 4.46 

TABLE 7.11 Natural frequencies of angle section No. 2 

FREQUENCY (Hz) EXP. 
PREDICTIONS BASED ON 

THEORY % DIFF. EXP. % DIFF. 

1st. TORSION 22.0 25.59 14.03 25.09 12.32 

2nd. TORSION 73.0 75.89 3.81 73.89 1.20 

3rd. TORSION 129.0 130.25 0.96 129.92 - 0.84 

TABLE 7.12 Natural frequencies of angle section No. 3 

FREQUENCY (Hz) EXP. 
PREDICTIONS BASED ON 

THEORY % DIFF. EXP. % DIFF. 

1st. TORSION 22.0 28.12 21.76 27.37 19.62 

2nd. TORSION 72.0 82.63 12.86 80.10 10.11 

3rd. TORSION 126.0 143.68 12.31 139.91 9.94 

TABLE 7.13 Natural frequencies of angle section No. 4 

FREQUENCY (Hz) EXP. 
PREDICTIONS BASED ON 

THEORY % DIFF. EXP. % DIFF. 

1st. TORSION 29.0 32.15 9.80 31.50 7.94 

2nd. TORSION 89.0 91.05 2.25 84.33 - 5.54 

3rd. TORSION 182.0 1G5.55 - 9.94. 163.39 -11.39 

TABLE 7.14 Natural frequencies of angle section No. 5 
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FREQUENCY (Hz) EXP. 
PREDICTIONS RASED ON 

THEORY % DIFF. EXP. % DIFF. 

1st. TORSION 30.0 32.09 6.51 31.68 5.30 

2nd. TORSION 85.5 88.23 3.09 79.44 - 7.63 

3rd. TORSION 190.0 165.50 -14.80 165.12 -15.07 

TABLE 7.15 Natural frequencies of angle section No. 6 

FREQUENCY (F{z) EXP. 
PREDICTIONS BASED ON 

THEORY % DIFF. EXP. % DIFF. 

1st. TORSION 32.0 38.41 16.68 36.40 12.08 

2nd. TORSION 83.5 89.03 6.21 74.79 -11.65 

3rd. TORSION 192.0 203.46 5.63 198.74 3.39 

TABLE 7.16 Natural frequencies of angle section No. 7 

FREQUENCY (Hz) EXP. 
PREDICTIONS BASED ON 

THEORY % DIFF. EXP. % DIFF. 

lzt. TORSION 38.0 45.42 1.6.34 48.77 22.08 

2nd. TORSION 123.0 106.34 -15. G7 94.50 -30.16 

3rd. TORSION 149.56 145.23 - 2.98 169.85 11.95 

4th TORSION 210.0 234.08 10.59 275.43 23.76 

5th TORSION 302.5 330.05 8.35 390.89 22.61 

TABLE 7.17 Natural frequencies of tee section No. 1 
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FREQUENCY (Hz) 

1st. TORSION 

EXP. 

38.0 

PREDICTIONS BASED ON 
THEORY `k DIFF. EXP. % DIFF. 

44.54 14.68 49.73 23.59 

2nd. TORSION 87.0 105.70 17.69 91.33 4.74 

3rd. TORSION 122.0 140.85 13.38 107.78 -13.19 

4th TORSION 205.0 228.62 10.33 278.56 2G. 41 

5th TORSION 287.5 320.99 10.43 394.81 27.18 

TABLE 7.18 Natural frequencies of tee section No. 2 

FREQUENCY'(liz) EXP. 
PREDICTIONS BASED ON 

THEORY % DIFF. EXP. % DIFF. 

1st. TORSION 38.0 45.42 16.34 48.77 22.08 

2nd. TORSION 123.0 106.34 -15.67 94.50 -30.16 

3rd. TORSION 149.56 145.23 - 2.98 169.85 11.95 

4th TORSION 210.0 234.88 10.59 275.43 23.76 

5th TORSION 302.5 330.05 8.35 390.89 22.61 

TABLE 7.19 Natural frequencies of tee section No. 3 

FREQUENCY (Nz) 

1st. TORSION 

EXP. 

38.0 

PREDICTIONS` BASED ON 
THEORY `k DIFF. EXP. % DIFF. 

45.42 16.34 48.77 22.08 

2nd. TORSION 123.0 106.34 -15.67 94.50 -30.16 

3rd. TORSION 149.56 145.23 - 2.98 169.85 11.95 

4th TORSION 210.0 234.88 10.59 275.43 23.76 

5th TORSION 302.5 330.05 8.35 390.89 22.61 

TABLE 7.20 Natural frequencies of tee section No. 4 
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FREQUENCY (110 1: X1' 
PREI) I CT I ON! BASED ON 

THEORY ;: DTFF. rX1'. - DIFF. 

1st. TORSION 38.5 28.73 -34.01 34.01 -13.20 

2nd. TORSION 73.0 86.11 15.23 101.22 27.88 

3rd. TORSION 111.0 145.23 23.57 166.64 33.39 

6th TORSION 164.0 194.79 15.81` 176.50 7.08 

TABLE 7.21 Natural frequencies of channel section No. 1 

FREQUENCY (Hz) EXP. 
PREDICTIONS BASED ON 

THEORY % DIFF. EXP. % DIFF. 

1st. TORSION 27.0 26.56 1.66 28.81 6.28 

2nd. TORSION 50.0 79.60 37.19 86.05 41.89 

3rd. TORSION 136.0 154.18 - 1.36 145.95 6.82 

4th TORSION 164.0 185.43 11.56 158.59 - 3.41 

TABLE 7.22 Natural frequencies of channel section No. 2 

FREQUENCY (llz) EXP. 
PREDICTIONS BASED ON 

THEORY DIFF. EXP. ö DIFF. 

1st. TORSION 27.0 24.93 - 8.30 32.21 16.18 

2nd. TORSION 53.0 74.75 29.10 95.73 44.64 

3rd. TORSION 156.0 125.90 - 23.91 156.69 0.44 

4th TORSION 160.0 175.06 8.60 167.66 4.57 

TABLE 7.23 Natural frequencies of channel section No. 3 

FREQUENCY (Hz) EXP. 
PREDICTIONS BASED ON 

THEORY % DIFF. EXP. % DIFF. 

1st. TORSION 28.0 28.91 3.51 39.02 28.24 

2nd. TORSION 52.0 86.70 440.02 116.56 55.39 

3rd. TORSION 104.0 145.83 28.68 197.77 47.41 

4th TORSION 160.0 203.66 215.16 

TABU; 7.24 Natural frequencies of channel section No. 4 
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FREQUENCY (Hz) THEORY EXPT. % DIFF. 

1st. TORSION 24.709 33.0 -33.55 

2nd. TORSION 74.071 97.0 -30.96 

3rd. TORSION 124.71 134.5 - 7.85 

4th TORSION 172.23 172.0 0.13 

TABLE 7.25 Natural frequencies of channel section No. 5 

FREQUENCY (Hz) THEORY EXPT. % DIFF. 

1st. TORSION 28.556 35.0 -22.60 

2nd. TORSION 85.490 100.5 -17.56 

3rd. TORSION 144.58 141.5 2.13 

4th TORSION 175.01 183.0 - 4.57 

TABLE 7.26 Natural frequencies of channel section No. 6 

FREQUENCY (Ilz) THEORY EXPT. % DIFF. 

1.; t. TORSION 31.075 36.5 -1.7.46 

2nd. TORSION 92.788 100.0 - 7.77 

3rd. TORSION 157.38 135.0 14.22 

4th TORSION 169.30 194.0 -14.59 

TABLE 7.27 Natural frequencies, of channel section No. 7 

FREQUENCY (liz) THEORY EXPT. % DIFF. 

1st. TORSION 35.862 35.0 2.40 

2nd. TORSION 106.28 94.5 11.08 

3rd. TORSION 166.36 131.0 21.26 

4th 
. 
TORSION 185.86 189.0 1.69 

TABLE 7.28 Natural frequencies of channel section No. 8 



CHAPTER ? MODAL ANALYSIS 

NORMAL 
MODE 

FREQUENCIES (Hz) tfroo= 585 mm 

NUMBER THEORETICAL EXPERIMENTAL % DIFF. 

FIRST 20.977 19.5 7.04 

SECOND 85.69 84.0 1.97 

THIRD 129.33 150.0 -15.98 

FOURTH 247.66 192.0 22.47 

TABLE 7.29 Natural frequencies for composite wing W-DMS-1A 

NORMAL 
MODE 

FREQUENCIES (Hz) trroo= 850 mm 

NUMBER THEORETICAL EXPERIMENTAL % DIFF. 

FIRST' 11.29 11.0 2.57 

SECOND 70.12 66.0 5.88 

THIRD 116.67 122.0 - 4.57 

FOURTH 194.23 176.0 9.38 

FIFTH 350.43 315.0 10.09 

TABLE 7.30 Natural frequencies for composite wing W-DMS-2 

NORMAL 
MODE 

FREQUENCIES (Hz) tfreo= 800 mm 

NUMBER THEORETICAL EXPERIMENTAL % DIFF. 

FIRST 12.621 12.0 4.92 

SECOND 79.070 68.0 14.00 

THIRD 91.464 117.0 -27.92 

FOURTH 221.340 136.0 38.56 

TABLE 7.31 Natural frequencies for composite wing W-DMS-3 
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NORMAL 
MODE 

FREQUENCIES (Hz) lrroA= 698 mm 

NUMBER THEORETICAL EXPERIMENTAL % DIFF. 

FIRST 15.356 17.5 -13.96 

SECOND 92.324 96.0 - 3.98 

THIRD 148.358 162.0 --9.20 

FOURTH 247.318 240.0 2.96 
14 

TABLE 7.32 Natural frequencies for composite wing W-DMS-3A 

NORMAL 
MODE 

FREQUENCIES (Hz) lýroo= 796 mm 

NUMBER THEORETICAL EXPERIMENTAL % DIFF. 

FIRST 15.224 14.5 4.76 

SECOND 86.360 81.0 6.21 

THIRD -100.134 131.0 -30.82 

FOURTH 239.351 212.0 11.43 

FIFTH 296.408 375.0 -26.52 

TABLE 7.33 Natural frequencies for composite wing W-DMS-4 

NORMAL 
MODE 

FREQUENCIES (Hz) lýroo= 797 mm 

NUMBER THEORETICAL EXPERIMENTAL % DIFF. 

FIRST 15.248 14.0 8.19 

SECOND 79.883 70.0 12.37 

THIRD 98.448 92.0 6.55 

FOURTH 223.495 150.0 32.88 

TABLE 7.34 Natural frequencies for composite wing W-DMS-7 
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Location of FREQUENCY -- (Hz) 

the hit as 
t f 

1st 2nd 3rd 4th 
percen age o 
beam length 17.5 96.0 162.0 240.0 

Amp. 1.369 5.781 1.304 10.170 
0 

Phs. -169 71 - 29 - 80 

25 
Amp. 5.485 31.43 4.872 30.42 

Phs. -178 41 - 37 - 90 

50 Amp. 17.57 53.06 1.61 5.184 

Phs. -170 42 90 19 

Amp. 29.87 22.25 3.537 35.52 
75 

Phs. -169 45 161 70 

00 
Amp. 38.83 0.18 0.7365 30.85 

1 
Phs. - 45 

ý-98 

148 - 145 

TABLE 7.35 Amplitude and phase for the first five 

frequencies of wing W-DMS-3A 

NORMAL 
MODE 

FREQUENCIES (Hz) lrroý= 800 mm 

NUMBER THEORETICAL EXPERIMENTAL % DIFF. 

FIRST 14.618 14.0 4.23 

SECOND 80.127 64.0 20.13 

THIRD 110.820 96.0 13.37 

FOURTH 211.800 170.0 19.74 

TABLE 7.36 Natural frequencies for composite wing with 100 

ply tay_U. p 

NORMAL 
E 

FREQUENCIES (Hz) t= 800 mm 
f roo MOD 

NUMBER THEORETICAL EXPERIMENTAL % DIFF. 

FIRST 11.970 9.5 20.64 

SECOND 71.755 54.5 24.05 

THIRD 128.440 89.5 30.32 

FOURTH 192.370 141.0 26.70 

TABLE 7.37 Natural frequencies for composite wing with 200 

ply Lm-up 
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NORMAL FREQUENCIES (Hz) trroo= 800 mm 
MODE 

NUMBER THEORETICAL EXPERIMENTAL % DIFF. 

FIRST 10.291 10.0 ` 2.83 

SECOND 63.494 59.5 6.29 

THIRD 160.290 135.0 15.78 

FOURTH 174.500 162.5 6.88 

TABLE 7.38 Natural frequencies 

Ply 1ny-up 

for composite wing with 300 

NORMAL 
DE 

FREQUENCIES (Hz) lfroo= 800 mm 
MO 

NUMBER THEORETICAL EXPERIMENTAL % DIFF. 

FIRST 8.941 8.5 4.93 

SECOND 55.799 53.5 4.12 

THIRD 155.020 147.5 4.85 

FOURTH 196.710 159.0 19.17 

TABLE 7.39 Natural frequencies for composite wing with 450 

ply Uj _ up 
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Figure 7.1 : Lay-out of Chapter 7 
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Figure 7.2 Philosophy of Modal Testing 



CHAPTER 7 MODAL ANALYSIS 

SDOF SYSTEM 

I 

Free Vibration Analysis 
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SPATIAL MODEL 
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Figure 7.7 Routes to vibration analysis 
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Figure 7.13 Modulus of acceleration response vs frequency 
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SCALE FACTOR 370 E-3, FREQ flAX 108 

io Q. o 30 ti" 50 6o 14 $0 10 ! 
FREQUENCY (H L 

Figure 7.16(a) Modulus of acceleration response vs frequency 

plot for composite plate of (0 case 
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plot for composite plate of [±45°/0)o case 
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CHAPTER 8 AEROELASTIC INVESTIGATION .. 

CHAPTER :8 

AEROELASTIC INVESTIGATION 
OF 

METALLIC AND COMPOSITE STRUCTURES 

8.1 INTRODUCTION 

Aeroelastic investigation of metallic and composite 

thin plate like structures is discussed with particular 

reference to the phenomenon of flutter. A literature 

review of the subject provided the basis for the 

experimental work. Flutter characteristics of a complete 

wing are predicted by a computer program called CALFUN-C. 

Flutter testing techniques and factors influencing choice 

of wind-tunnel. model are explained before discussing the 

test results. The testing technique was validated using a 

thin, plate-like aluminium wing. Experimental results for 

composite wings are. found to be in good agreement with 

theoretical predictions. Theoretical and experimental 

results are also presented for cases of divergence speeds. 

8.2 LITERATURE REVIEW 

Aeroelastic tailoring, which exploits the anisotropic 

character of advanced composites, has received 

considerable attention since Kron Jr. (! ] concluded that 

forward-swept wings without divergence or weight penalties 

may be possible through certain lay-up sequences and- 

material combinations. Analytical designs were suggested 

by Weisshaar (z, e] based on Kron's conclusions. He 

suggested that the bending-torsion stiffness coupling 

could be useful to overcome divergence in forward-swept 

wings. Sherrer et al. (a) performed wind tunnel tests on 

simple plate like models of a forward-swept wing as a 

verification of Weisshaar's conclusions. In addition to 
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this, he also showed that the prevailing analytical 

techniques for prediction of divergence dynamic pressures 

were adequate for the majority of the test conditions. 

Wilkinson and Rauch (s] of Grumman Aircraft and Ellis et 

al. (a] of Rockwell North American Aircraft provided 

additional information on specific forward-swept wing 

model designs, (more exhaustive discussion on these 

efforts can be found in Ref. [7] ), whereas Weisshaar et 

al. (e] explored the inclusion of rigid body freedoms. 

Hollowell and Dugundji [Q] provided useful 

experimental data on aeroelastic tailoring of 

graphite/epoxy cantilevered plates. The effect of 

bending-torsion stiffness coupling on divergence and 

flutter velocities of unswept lifting surfaces in 

incompressible flow was described. Furthermore, 

Landsberger and Dugundii [to] analytically and 

experimentally investigated the aeroelastic deflections, 

divergence and flutter behaviour of both unswept and 
. 
30° 

forward-swept rectangular, graphite/epoxy, cantilevered 

plate-type wings, with various amounts of bending-torsion 

stiffness coupling. 

8.3 COMPUTER PROGRAM CALFUN-C 

In the light of the current literature survey, a 

theoretical and experimental programme of investigation 

was prepared. The first step necessary was to predict the 

static structural properties of composite plates used in 

reference (a]. To confirm these predictions there were two 

options. First, to calculate natural frequencies and mode 

shapes based on these predictions and compare them with 

the published results. Secondly, to manufacture similar 

plates and experimentally test them. Later on the second 

option was modified and a different type of laminate 

stacking sequence was selected. In this way the second 
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option became second stage of the investigation. 

A computer program called CALFUN which is a self- 

contained program for calculation öf flutter speed using 

normal modes (ii] was available as a source of 

predictions. The program utilizes the minimum amount of 

data and predicts the flutter speed and the associated 

mode shape of a high aspect ratio slender wing aircraft 

using normal modes and unsteady aerodynamics in two 

dimensional flow. 

A comparative study between CALFUN and M. I. T. results 

revealed useful facts about the use of CALFUN. As long as 

we are dealing with simple lay-ups the program is capable 

of accurately predicting the frequencies and flutter 

characteristics. As the layer sequence becomes more 

complex, a significant drift appears which requires 

inclusion of anisotropic characteristics in the program 

for analysing the composite structures. CALFUN was 

modified to account for composite wing flutter analysis by 

including VMECAS as a subroutine. The modified version is 

called CALFUN-C and it can analyse composite wings with 

material coupling terms; it can also handle an axial load 

passing through centroid (approach includes aeroelastic 

behaviour of a. helicopter rotor blade). 

In order to validate the applicability of the program, 

the relatively simple approach would have been to compare 

the results with the already published data of reference 

(n). The available experimental results were backed by the 

Rayleigh-Ritz energy method applied to the plate 

structural element. The material properties were directly 

transformed into flexural moduli per unit length which 

were subsequently used as the main structural parameters 

to control the dynamic and aeroelastic behaviour of the 

structure. Obviously this was an adequate approach, 

keeping in view the simple geometrical nature of the plate 
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structures. However, in our scheme of analysis the 

expected inputs are flexural, torsional and 

bending-torsion coupling, stiffnesses that will influence 

the behaviour of the structure along with other properties 

such as mass per unit length, polar mass moment of inertia 

per unit length, etc. The derivation of structural 

properties of these plates has already been discussed in 

Chapter (5). Natural frequencies and normal mode shapes of 

these plates have been covered in Chapter (6). CALFUN and 

CALFUN-C computer programs were used to predict flutter 

speeds and, flutter. frequencies for 'these plates. The 

results obtained are compared with the theoretical and 

experimental results given in references [o, io) as shown 

in Tables (8.1) and (8.2). 

The percentage differences shown in Tables (8.1) and 

(8.2) are based on comparisons between CALFUN and CALFUN-C 

and reference [o). The experimental values are taken from 

reference (P). A flutter test was not 
_possible 

on the 

plate with (±45°/0)S lay-up due to the maximum wind tunnel 

speed limitation. In the case of the (-45Z/0) and 

[-302/0)., plates divergence was experienced because the 

divergence speed was less than that of the flutter. 

Comparison of these percentage differences not only 

demonstrates the capability of the computer program 

CALFUN-C, but also shows the need for inclusion of 

material coupling term K in any aeroelastic computations. 

Otherwise the predicted flutter speed may be dangerously 

overestimated. 

8.4 FLUTTER TESTING 

8.4.1 FLIGHT FLUTTER TESTING 

Due to the catastrophic nature of the flutter and 

difficulties inherent in the instrumentation and test 
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procedure a direct confirmation of the predicted flutter 

speed and frequency had not been possible in general. 

However, under the supervision of experienced personnel 

well acquainted with relatively modern techniques, flight 

flutter testing has contributed a lot to flight safety 

measures. During a flight flutter experiment an aircraft 

may fly near the critical speed range without 

expeariencing flutter provided it is not disturbed by gust 

or turbulence in the air. In such circumstances the test 

becomes extremely dangerous. 

There are many methods of flight flutter testing. Two 

of the well known methods that have been used with some 

success are discussed as follows: 

1. During a flight flutter test, the lifting surface 

is excited by means of an electrodynamic shaker and 

the peak response is measured as a function of air 

speed. The resonant frequency is determined by 

varying the shaker frequency at each air speed. As 

the flutter speed is approached a modal damping 

decreases so the flutter speed can be extrapolated. 

Nowadays, flight flutter testing based on this 

method has become more reliable due to the use of 

modern equipment giving better performance in the 

region of resonant frequencies. 

2. In another flight flutter testing technique the 

modal rates of decay are determined after the 

structure has been deflected by either gust or 

rapid deflection of the control surface or by other 

means as a function of air speed. As the critical 

flutter speed is approached one of the rates of 

decay diminishes. Thus a plot of modal rates of 

decay versus airspeed can help extrapolate critical 

flutter speed. 
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1. 

Both these methods have the primary objective of 

determining flutter speed by extrapolating from test 

results determined at sub-critical flutter speeds. 

However, the approach adopted for these two methods have 

two basic shortcomings. * First, the actual flutter speed 

may be approached rather suddenly and hence not safely; 

second, the critical speed determined by extrapolating 

from test results represents a single item to compare 

against a single calculated item. It would be of practical 

value if correlation could be demonstrated between damped 

sub-critical oscillations obtained by test and predicted 

decay or damping determined by some theory. In the 

following section one method of correlating theory and 

experiment at sub-critical speeds is given. 

8.4.2 CORRELATION OF THEORY AND TEST AT SUBCRITICAL SPEEDS 

The typical flutter stability determinant, evaluated 

for a given flutter parameter 1/k i. e. the reciprocal of 

the reduced frequency k, and set equal to zero, results. in 

a polynomial, the, complex roots of which have the 

following form [25) : 

ZX+ tY = (1 + ig) 
r 4) 

w°t1 

2 
(8.4.1) 

where g= damping coefficient required for flutter at 

the frequency w 

ä= torsional mode frequency (Hz) 

(c*)2 
Xw 

and the critical flutter velocity is given by: 

V (m/s) - 5.291 * 10-4 ä br 
1/k (8.4.2) 

where 
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b= reference semichord in metres r 

1/k dimensionless flutter parameter 

=v/bw r 

gY/X 

In investigating a particular flutter mode, the 

damping coefficient g versus v/ä is plotted using a given 

set of 1/k values to present the flutter characteristics 

of the aeroplane in question. It is assumed that the 

motion of the system is neither damped nor diverging, but 

simple harmonic. The motion below the critical flutter 

speed is assumed to be damped. In this case the harmonic 
iAO 

motion eat has to be modified by a typical damping 

factor e-Xt so that it can be represented by the 

following expression : 

elw1t e-Xt R eicwl+ 
X )t (8.4.3) 

This is similar to the case when a complex value is 

assigned to the flutter frequency i. e. : 

to =w+LX 
1 

(8.4.4) 

This is applicable if the elements of the determinant 

are equally treated under the assumption. Each element of 

the flutter stability determinant is formed by the 

combination of aerodynamic and mechanical terms. As far as 

the mechanical and noncirculatory aerodynamic terms are 

concerned, the assignment of a complex &) is no problem. 

However, in the circulatory aerodynamic terms, the 

Theodorsen function C(k) = F(1/k) + IG(1/k) is developed 

on the assumption that the aerofoil motion is harmonic 

i. e. w is real. For such terms the assumption of a damped 
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oscillatory motion is incorrect. However, the presence of 

aerofoil oscillations (even though with a damped motion) 

assures that the approximation of C(k) based on harmonic 

hypothesis is correct (20]. 

The two unknowns chosen in the solution of the flutter 

determinant are g and w (see equation (8.4.1)). The choice 

of g is arbitrary and this choice can be replaced with 

several other physical parameters such as frequency ratio, 

etc. If now the frequency w= (w1 + 1X) is allowed to be 

complex i. e. damped motion is assumed, then the frequency 

wi and the rate of decay X may be chosen as the 

unknowns. The actual value gQ is replaced for g, which 

is obtained from the ground vibration test. The 

characteristic flutter stability polynomial will then have 

the form as follows [zs): 

Z= (1 +l g) 
w Cwot 12 

w2 
_ (1 +tga 

1) 

((C)+ 
0X), 

(8.4.5) 

Therefore, 

1+ (wi +t X) =w 
iga 

1+ lg 2 

+ ig 
1+ lg /2 

1 

w il + (1/2) (ga- g) + gag / 4} 

ti 
l 

1+ g2/ 4 

w 
ý1 

+2 (ga - g)] (8.4.6) 

Since usually g and ga are less than 0.1, 

w 
a 

w-w= 

and 
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to 
=2 (4Q . 4) =a (g g) (8.4.7) 

2 -� X 

The oscillatory frequency w! can be predicted with 

these approximations and this should follow a mechanical 

disturbance of the aerofoil at any speed until the 

critical flutter speed is achieved. The decay component X 

which is proportional to the logarithmic decrement of the 

damped oscillatory motion is expected to be below the 

critical flutter speed. 

8.4.3 SUMMARY 

The following' steps are followed in the vectorial 

analysis of flight flutter test results. 

1. Obtain the usual characteristic roots, Z=X+ tY for 

a given 1/k. 

2. Compute g=Y/X 

3. Compute v=5.291 * '10-4 ä br 
l 

4. Compute the flutter frequency which is the frequency 

chosen for the frequency of damped oscillation 

w 
a W=W 

5. Obtain the g from ground vibration test. 
a 

w 
6. Calculate X= O° (go- g) 

21 

7. Plot g against V/ä, which is the standard format 

for the g-v curve. 

8. Plot X against v. 

9. Plot ± e-Xt as the envelope of a sinusoidal wave of 

frequency i. 
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The predicted decay characteristics for the 

subcritical flutter speed of the lifting surface (plots of 

steps 7 to 9) are compared with test results over a range 

of velocities. 

A more rigorous analysis on similar lines can be found 

in reference (12]. 

8.4.4 TEST PROCEDURE 

The test is carried out in the following manner : 

1. Records of the oscillatory characteristics of a 

lifting surface by giving a force impulse at a 

given air speed vt are taken. 

2. The oscillatory frequency w is obtained from the 

test records. 

3. The damping ratio xt is determined from the 

logarithmic decrement of the test oscillations 

A. 
ýt - 2n 

logo 
A(8.4.8 

) 

where A. = maximum amplitude of the ith wave 

(Test measurements are taken after the forcing 

function is removed) 

4. A is plotted against vL. 

8.4.5 COMPARISON OF FLIGHT FLUTTER TEST METHODS 

Goland and Luke [is] have also discussed theoretically 

the question of oscillation modes of a wing at 

sub-critical flutter speeds. Their method [as] is based on 

a better approximation of Wagner's lift growth function. 

This is achieved by a complete decay study, independent of 

the flutter analysis. But the advantage of above mentioned 

technique is that it utilizes the results already obtained 

fA 
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in the usual flutter analysis. Their results indicate that 

resonance testing, as compared with the study of decaying 

transients, gives safer results in flight flutter testing. 

The reasoning behind this lies in the specific results 

which they obtained on their theoretical examples. These 

results showed that the rate of decay of the flight mode 

(which was later to develop into the critical mode at 

flutter) actually increased with air speed until 85, % of 

the flutter . speed and then rapidly decreased to zero at 

the critical flutter speed. 

8.5 FLUTTER MODEL 

8.5.1 MODEL DESIGN 

An aircraft wing deflects under its own weight and 

also under aerodynamic loadings when the aircraft is in 

flight. The aerodynamic loading changes as the wing 

deforms, leading to further deformation of the wing. It is 

the interaction of the elastic forces of the wing with 

aerodynamic. and inertia forces that leads to the 

oscillatory phenomenon known as flutter. Failure can occur 

very soon after the onset of flutter, hence the study of 

this aeroelastic problem is very important. 

Wind tunnel models are used to help in the analysis of 

wing flutter for both conventional and unconventional 

designs. 

Flutter models are built to establish flutter speed 

and frequency in the wind tunnel with probably two 

different objectives In mind. The most common one is to 

scale a full size aircraft and establish the flutter 

characteristics so as to achieve confidence in the already 

designed structure. Secondly the use of advanced types of 

computing techniques based on complex theoretical models 

have necessitated wind tunnel flutter tests. Thus 
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fabricated, a. flutter model with reasonable structural 

characteristics subjected to the wind tunnel tests 

strengthens the resear, cher's belief in the theoretical 

model. In other words the process of 'successful flutter 

prediction involves choice of a theoretical model for 

structural properties, aerodynamic theory for aerodynamic 

derivatives and validation of the eventual programme by 

wind tunnel flutter tests and flight flutter tests. 

(i) FIRST CATEGORY 

In the first category. of flutter models, the model is 

designed to represent the full scale wing by using certain 

scale relationships discussed in section (8.5.2); the full 

scale aeroelastic characteristics are then derived, using 

the same relationships, from the model characteristics. 

There are several design alternatives to make a 

flutter model representing a full scale wing. The most 

obvious method is the one in which the full scale 

structure is simply scaled down and reproduced. This model 

can be prepared from the same material as the aircraft 

wing or from other different materials. It is appreciated 

that the model will have the required scaled stiffness by 

virtue of the fact that its structure is similar to that 

of the aircraft wing. Since the model is very much smaller 

than the full scale wing, all the material thicknesses 

would also have to be similarly scaled down. This 

condition generally makes it impractical to use the same 

material as used in the aircraft wing for the manufacture 

of the model. In order to obtain a material thickness that 

can be used, a material with much reduced Young's modulus 

of elasticity E, will have to be used. The above mentioned 

model will be difficult to manufacture and hence it will 

be very costly. Furthermore, the situation is different if 

the model is used for high speed tests. In contrast when 
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this is the case, only the above method of construction is 

suitable [14) . 

(11) SECOND CATEGORY 

The second category of flutter models (that was of 

prime interest in this work) is built on the same lines, 

except that the motives are slightly different. Besides 

other restraints discussed above under the sub-heading of 

similarity parameters, the construction of flutter model 

is greatly influenced by the theoretical model to be 

adopted for flutter prediction. An accurate flutter 

prediction depends upon the theoretical model representing 

the structural and aerodynamic aspects. of the model. The 

main core of the lifting surface may be representing a 

prismatic beam, a thin plate, a box beam or even an 

arbitrary shape thin walled structure that not only 

provides the, basic stiffnesses but also the aerodynamic 

profile. Since the theoretical details for each of these 

idealized elements are quite different from each other it 

is necessary to identify the structural details of the 

main core. This will not only affect the static structural 

properties but also the natural frequencies and the normal 

mode shapes, resulting in an unrealistic aerodynamic 

distribution on the deformed surface. Furthermore the 

aspect ratio, . nature and degree of sweep, etc., demands 

more complex aerodynamic theories to predict the 

aerodynamic distribution on the lifting surface. Thus in 

this category of flutter testing, the models have to 

comply with the theoretical model chosen for prediction of 

flutter characteristics. 

The wing model to be designed and built is for use in 

the return circuit, open jet wind tunnel T3 at The City 

University. It is a low speed wind tunnel that can run at 

a maximum speed of 56.0 m/s. 
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8.5.2 SIMILARITY PARAMETERS 

The properties of an aircraft wing that are to be 

represented by a model may be listed as: 

a) Linear dimension 

b) Aerodynamic shape 

c) Distribution of stiffness 

d) Distribution of mass 

e) Distribution of inertia 

f) Structural damping 

14 

The properties of the testing media are: 

g) Density, viscosity and ratio of specific heats 

h) Velocity 

i) Mach number 

and the static external forces may be regarded as: 

j) Type of support 

k) Acceleration due to gravity 

Having decided on the design of the model, it is 

necessary to scale down the aircraft wing data in order to 

represent the wing by the model. Similarity parameters for 

the case where the aircraft structure is simulated by a 

different type of structure in the model are discussed in 

Reference (i53. 

The proper scaling of model characteristics is 

important in constructing flutter models. Since the model 

geometric scale ratio changes other parameters, it is 

usually fixed by a consideration of wind tunnel 

limitations. 
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1. The maximum model span should not exceed 80 % of 

the tunnel width in order to avoid excessive 

blocking or wall interference. This gives the ratio 
b 

[id]. The subscripts M and A refers to model b 
w 

and full scale aircraft respectively whereas the 

quantity b can be any linear dimension for example 

wing span. 

2. Other parameters such as model scale stiffness, 

mass distribution, bending, torsional, and coupled 

bending-torsion stiffnesses should be duplicated. 

3. The mass or weight ratio should be : 

Cm ffpb2) M=1 (8.5.1) 
m 

rffp-; z) A 

2 
mm pm bu 

(8.5.2) 
mA b PA 

A 

where m= mass per unit length 

Pu = wind tunnel operating density 

PA = flight density of full-scale aircraft 

Then the total mass or weight ratio will be : 
9 

Mý pm bu 
(8.5.3) 

b pA 
A 

4. The frequency ratio should be : 
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V 
bw 

Vm=1 
or 

IbJ Cbw 
I (8.5.4) 

bu w 

5. The velocity ratio should be 

Vu bu 
(8.5.5) 

Vw bw 

6. The static moment scale ratio should be : 

SM pm bx 4 

(8: 5.6) 
3A PA bA 

7. The weight moment of inertia ratio should be : 

Ix px bý 
(8.5.7) 

Iw PA bw 

8. The stiffness ratio should be : 

214 

Model stiffness 
"U Vu bm 

Aeroplane stiffness r PA VA bA 
(8.5.8) 

The similarity parameters given above may not be 

satisfied simultaneously but these ratios provide the 

guide lines for the wind tunnel flutter model design. Once 

the model is ready, it is given a vibration test to 

establish true frequencies. 

8.6 PLATE LIKE FLUTTER MODELS 

The requirement of thin wings for faster aeroplanes 

justifies the aeroelastic analysis of thin plate-like 

structures (the investigation of which could have been 
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otherwise misunderstood, for just academic interest). It 

has been already mentioned in Chapter (6) that a special 

degenerated case of a thin-walled beam is a doubly 

symmetrical structure with no elastic coupling behaviour. 

Box-beams and plates (for aspect ratios greater than 3.5) 

are some examples. Hencevit was hoped that the program for 

aeroelastic analysis based on thin-walled beam elements 

can be safely applied to thin-plate like lifting surfaces 

made of conventional (isotropic) or composite (generally 

orthotropic) materials. 

An aluminium and three composite plates were prepared. 

Polystyrene foam fairings were glued to these plates to 

generate the aerodynamic effects. 

The structural and modal properties of these thin 

plate-like wings were established as discussed in Chapter 

(5) and (7). 

The sub-critical flutter speed behaviour was observed 

by obtaining Bode plots at frequent intervals of wind 

tunnel speed. These plates were flexible enough to sustain 

vibrations with large amplitudes without suffering plastic 

deformations, thus providing considerable ease in doing the 

experiment and recording the necessary data. A video film 

was prepared to record the event. 

8.6.1 ALUMINIUM PLATE LIKE AEROELASTIC MODEL 

Experimental aeroelastic investigations were made on 

similar lines to those mentioned in Reference (fl]. Two 

objectives were set forth. Firstly, to acquire a feel for 

the phenomenon and secondly to validate the experimental 

technique. Moreover the accuracy of CALFUN was also 

investigated in predicting flutter speed and frequency of 

thin plate-like wings. 

The dimensional details of the aluminium plate-like 

wing are given in Table (8.3) with various structural 
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properties tabulated in Table (8.4). 

The dynamic and aeroelastic test results are given in 

Table (8.5). 

The aeroelastic predictions showed that in the unswept 

configuration the wing would suffer from divergence prior 

to flutter. Therefore, this wing was studied for 10° and 

20 0 sweep angles. Sweeping backwards cured the problem of 

divergence, and the results given in Table (8.6) were 

obtained. 

It was observed that for conventional materials 

(isotropic), the results are reasonably within engineering 

accuracy. A parametric' * study showed that, at moderate 

sweep angles (up to 25° sweep back) the magnitude of 

flutter speed initially drops and then sharply increases 

with sweep angle. The magnitude of this drop in flutter 

speed greatly depends on the ratio of rigidities. This 

will be more obvious, on comparing the possible drop in 

the case of various lay-ups of composite plates. 

Power spectral density plots of acceleration response 

for an aluminum wing with 100 sweep angle at various 

sub-critical flutter speeds are shown in Figure (8.1). An 

obvious and singular peak of flutter frequency appeared on 

approaching the critical flutter speed as explained. 

8.6.2 COMPOSITE PLATE LIKE AEROELASTIC MODELS 

Three graphite/epoxy composite plates with [0)d, 

[130°) and (±45°/0) ply lay-up sequence were tested. 

The dimensional details for composite plates are given in 

Table (5.4). The various structural parameters and 

structural rigidities are given in Tables (5.6) and (5.7) 

respectively. Results of natural frequencies are given in 

Tables (7.6) to (7.8). Flutter test results are compared 

with theoretical predictions in Tables (8.7) and (8.8). 
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8.6.3 DISCUSSION OF RESULTS 

Power spectral density plots for composite [OQ), 

[130°) and [±45°/0),; cases with 0°and 20°swept back 

configurations at sub-critical speeds are shown in Figures 

(8.2) to (8.5). The appearance of a singular peak at the 

flutter frequency and the disappearance of the 

neighbouring first bending mode and first torsional mode 

frequencies are clearly exhibited by these plots. 

Turbulence present in. the wind tunnel gives enough 

excitation to the wing so that the accelerometer, signal is 

picked up for further analysis. It also presents the 

problem of noise in the signal and can be seen in the 

plots. It was noted in earlier flutter, tests conducted. by 

other investigators that it was necessary to externally 

excite the structure at the critical flutter speed to 

initiate the flutter. 'The tests reported here did not 

require any such initial excitation and may be due to the 

presence of some degree of turbulence in the wind tunnel. 

The effect of ply orientation on the flutter speed and 

frequency predictions in, terms of percentage differences 

between theoretical and experimental results is plotted in 

Figures (8.6) and (8.7). The probable reasons for the 

discrepancies are discussed as follows : 

1. It was observed that the flutter speed is not a 

single discrete value but in fact is a critical 

band of velocities. It has a lower and an upper 

limit. With increasing airspeed, flutter may not be 

triggered when reached at the lower flutter speed 

limit. But as the speed is lowered from the upper 

limit gradually the lower limit can be established. 

All this requires a very fine control on the 

airspeed. During the experiment it was observed 

that precise control over the wind tunnel speed was 

not possible. Therefore, it was difficult to 
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precisely locate the lower limit of the critical 

flutter speed. 

2. The computer program predicted the flutter speed 

and frequency by -using strip theory to model the 

aerodynamic distribution. This theory assumes a 

value of 2n for the lift-curve slope of the wing. 

The finite aspect ratio and deviation from the 

actual profile result in a lower value, and provide 

a valid source of error. 

3. An error in the estimation of structural properties 

will give rise to wrong natural frequencies and 

normal mode shapes. The aerodynamic distribution is 

calculated corresponding to these mode shapes. 

Therefore, flutter calculations will directly 

suffer from these structural properties 

estimations. ' 

4. It was pointed out both in Chapter (6) and (7) that 

ignoring chordwise deformations may have been the 

cause of the poor estimation of the torsional 

modes. This effect may also produce errors in the 

flutter calculations. However, results for the 200 

swept configuration are within engineering 

accuracy. 

The effect of ply orientation on flutter speed and 

frequency observed in Tables (8.1) and (8.2) is 

graphically shown in Figures (8.8) and (8.9). These plots 

clearly demonstrate the need and success of CALFUN-C 

computer program. The predictions of flutter speed and 

frequency can be very misleading, if the material coupling 

term is ignored in the calculations. 

8.7 CONCLUSIONS 

The validity of using generally orthotropic Vlasov 

beam model for composite plate-like wings in the flutter 

14 
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predictions is confirmed. Furthermore, the validity of 

strip theory in flutter calculations is also confirmed for 

the wings tested. Various reasons are discussed for the 

probable sources of discrepancies between experimental 

results and theoretical predictions. 

The flutter tests conducted has been recorded on a VHS 

format video tape. The film contains a short description 

of the testing facility and covers short clips of the 

various tests performed on aluminium and composite 

plate-like wings. 
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Flutter Spee d (m/s ) 
THEORETICAL EXP. % age difference 

No. Lay-up CALFUN CALFUN-C Ref. 9 
Ref. 9 (1) (2) (3) 

(1) (2) (3) 

1 /90] [0 17.6 21.0 25.0 -42.05 -19.05 2 0 

2 ( 45/0] 39.5 37.25 39.0 >32.0 --- --- --- 

3 [452/0] 39.5 31.00 27.8 28.0 29.11 9.68 - 3.70 

Div. 
4 [-452/0] 39.5 42.75 27.8 12.5 --- --- --- 

5 e [30 /010 35.0 26.50 27.8 27.0 22.86 - 1.89 2.88 

e 
Div. 

6 /0]0 (-30 35.0 43.00 30.0 11.7 --- --- --- 

TABLE 8.1 Flutter speeds of composite plates 

(see Tables (6.6)-(6.9) for dimensions, 

static and dynamic details) 

Flutter Frequency (Hz) 
THEORETICAL EXP. % age difference 

No. Lay-up CALFUN CALFUN-C Ref. 9 
Ref. 9 (1) (2) (3) 

(1) (2) (3) 

1 
0 

(0 /90°3 21.5 25.0 29.0 -34.90 -16.00 
2 

2 [±45/0] 41.5 34.22 39.0 --- --- --- --- 

3 [452/0] 41.5 25.47 28.0 24.0 42.20 5.77 14.29 
0 

4 [-45z/0] 41.5 35.30 27.0 Div. --- --- --- 
ß 

5 (30 /0]a 36.0 27.57 31.0 28.0 22.20 - 1.55 9.68 

6 [-34t /0]e 36.0 35.59 29.0 
, 

Div. --- --- --- 

TABLE 8.2 Flutter frequencies of composite plates 
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MATERIAL : ALUMINIUM 

Span = 300 mm 

Chord length = 75 mm 

Thickness = 0.71 mm 

Cross sectional area = 53.25 x 10-d m 
2 

TABLE 8.3 Dimensions of aluminium plate-like wing 

PARAMETER UNITS THEORETICAL EXPERIMENTAL % DIF. 

Mass per Kg/m 0.143775 0.1397 2.83 

unit length '. 

Bending Nm2 0.1541 0.16226 -5.29 
rigidity EI 

Torsional Nm2 0.2357 0.23767 -0.84 
rigidity GJ 

Polar moment Kg-m 6.74 x 10-ý ---- ---- 
of inertial 

i 

P 

TABLE 8.4 Structural parameters of aluminium plate-like wing 

NORMAL 
E NITS 

THEORETICAL PREDICTIONS 
USING CALFUN 

EXP t MOD 
SHAPE 

U 
cat 9 CL 

t 
C1r. d 
C11- 

me$äyä2d 
. DIFF. 

First Bending Hz 6.437 6.7009 5.54 17.32 

Second Bending Hz 40.3405 41.994 36.122 13.98 

First Torsion Hz 49.2798 49.485 48.199 2.60 

Third Bending Hz 112.954 117.584 ------ ----- 
Second Torsion Hz 147.840 148.456 ------ ----- 

Divergence 
Speed m/s 34.546 34.690 39.91 -14.32 

Flutter Speed m/s "33.60 33.40 
D db f i 

Flutter Freq. Hz 26.66 27.30 
verge e ore 
flutter 

TABLE 8.5 Dynamic and aeroelastic results of aluminium plate-like"winc 
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Sweep FLUTTER SPEED (m/s) FLUTTER FREQUENCY (Hz) 

back THEO. 
EXPT. % DIFF. THEO. 

EXPT. % DIFF. 
(CALFUN) (CALFUN) 

Unswe t 33.40 Diverged 27.30 

10° 32.26 38.87 

- 

26.26 29.0 -10.43 

20° 30.95 27.80 24.35 22.75 6.57 

TABLE 8.6 Flutter test results for aluminium plate-like wing 

with unswept and swept configurations 

La - 
Sweep F lutter Speed (m/s) 

y up Angle Ex p. Theo. 1 % diff Theo. 2 % diff 

00 33.80 18.25 -85.21 29.50 =14.58 
to l 

a e 20° 32.83 30.30 - 8.35 32.37 - 1.43 

0° 41.59 33.50 -24.15 32.00 -30.00 
( 30] 

20° 38.52 35.80 - 7.60 35.20 - 9.44 

0° 48.06 38.50 -24.83 39.00 -23.23 
(±45/0] 

w 20° 40.06 39.40 - 1.68 39.44 - 1.55 

TABLE 8.7 Flutter speed of composite thin plate-like wings 

La -u 
Sweep F lutter Frequency (Hz) 

y p Angle Exp. Theo. l % diff Theo. 2 % diff 

0° 38.74 23.40 -65.56 34.30 -12.95 
[0] 

20 0 38.50 36.29 - 6.09 38.04 - 1.21 

0° 38.67 37.40 - 3.40 37.50 - 3.12 
_0 L±30] 

a 20 0 41.70 39.47 - 5.65 39.65 - 5.17 

0° 61.91 37.45 -65.31 47.27 -30.97 
(±45°/0 ] 

20° 35.00 37.56 6.82 36.17 3.24 

TABLE 8.8 Flutter frequency of composite thin plate-like wings 
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CHAPTER :9 

AEROELASTIC INVESTIGATION OF THIN-WALLED CLOSED SECTION 

COMPOSITE WING STRUCTURES 

9.1 INTRODUCTION 

The lack of published information on aeroelastic 

testing of thin-walled closed section composite wings 

(with or without spars and ribs) led to the selection of 

this topic. Thin-walled closed section composite wing 

structures were manufactured from glass fibre reinforced 

plastic and unsaturated isophathalic resin using the 

hand-lay-up technique. The dimensional details of the 

wings were estimated using the maximum wind tunnel speed 

and dimensions of the working section as independent 

parameters. The lift-curve slope value for the wings was 

determined experimentally. Aeroelastic investigation of 

these composite wings included study of sub-critical 

speed behaviour, stall flutter, and determination of 

divergence speed. The results showed good agreement 

between experimental results and theoretical predictions. 

9.2 MATERIAL 

Glass fibre reinforced plastic, chemically known as 

calcium-alumina borosilicate glass with an alkali content 

of less than one percent, (commonly known as 'E - glass') 

and unsaturated isophathalic resin was used in 

manufacturing thin-walled closed section composite wings. 

The main feature that helped in the selection of this 

material was its ease in manufacturing intricate shapes 

due to room temperature curing cycle, (preferably about 

18°- 20 0 C). The requirement of a flexible structure with 

low Young's modulus of elasticity was another reason to 

choose this material. The hand-lay-up technique was found 
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suitable and relatively economical. However, this may 

have the problem of inconsistency in maintaining the 

relative volume fraction of fibre and, resin during the 

manufacture. The complexity of the problem was reduced by 

using woven cloth. 

9.2.1 MATERIAL PROPERTIES 

The material properties were experimentally 

established by performing tensile tests on a specially 

orthotropic specimen to, obtain E! and E2 (Young's moduli 

along and across the fibre directions), and the Poisson's 

ratios P12, vzi' The tensile test was conducted on a 45° 

laminated specimen to determine the shear modulus G12. 

A plate of 4 plies with symmetric lay-up was prepared 

and strips of various suitable dimensions were cut along 

the fibre direction and at 45-degrees. Aluminium grip 

pads were glued to the specimen. Strain gauges of half 

inch length were found suitable to cover a large number 

of fibres and to give a representative measure of strain 

produced in the specimen. The experimentally established 

material properties are given in appendix (J). 

9.3 THIN-WALLED COMPOSITE WINGS 

9.3 1 CONSTRUCTION OF WINGS 

The cross-sectional profile of the closed thin-walled 

structure was selected to be an aerofoil shape. A wooden 

wing of about 100mm chord length of'NACA 0012 profile was 

readily available in the department, which was used as a 

core or wooden former. Woven cloth was cut to size 

(usually a piece of 950 X 250 mm of GFRP woven cloth). 

The cloth was laid on a wax sheet of paper over a flat 

surface. The cloth was marked with a centre line. In the 

case of wings other than zero degree lay up, the sheet 
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was cut into two halves. A suitable quantity of 

unsaturated isophathalic resin was mixed with the 

accelerator. The resin: was gently spread over the GFRP 

cloth and was left for a while to polymerize. Another 

sheet of wax paper was placed over it and was placed 

under a flat surface, with moderate pressure for some 

time. While the resin was still in a Jelly state, the 

leading edge of the wooden wing core was aligned with the 

centre line of the cloth (in the case of other than zero 

degree ply lay up, a lap joint of the two pieces of cloth 

was made at the leading edge). Then the semi-cured cloth 

was wrapped around the former and was left for full cure 

with a moderate pressure to retain the desired shape. The 

trailing edges were glued with Redox 410 glue and the 

wing was trimmed to desired sizes of chord and span. 

In early experiments, Brazier-load effect was 

experienced i. e. kinking of the thin walls occurred as 

the structure was transversely loaded. This problem was 

solved by filling Polyurethene expanded foam into the 

cavity of the wing. This technique proved successful 

because the section no longer collapsed on transverse 

loading and retained its geometry on being twisted for 

torsional rigidity and shear centre tests. In other 

cases, an F-board (honey-comb) spar was longitudinally 

glued to the skin to improve the structural bending 

rigidity, see Photographs (9.1) and (9.2). 

9.3.2 SECTIONAL DETAILS 

The trimmed wing with its final size was given*a code 

number. It was then weighed and various dimensions such 

as chord and span lengths were measured (see Table 

(5.16)). The thickness of the skin varied considerably 

which is typical of the hand-lay-up technique. Therefore, 

several measurements of the thickness of the skin were 
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made at various locations in order. to obtain a good 

average. 

Impressions of the profile resulting on both sides of 

the wing were taken on paper. The contour was divided 

into several small straight segments. The co-ordinates of 

these segments were then measured from the chord line. 

Some of the wings were, filled with foam and tested. 

Structural. rigidities and other parameters such as 

mass per unit length, location of the centre of gravity, 

shear centre and polar mass moment of inertia for these 

sections were experimentally found and compared with the 

theoretical predictions as shown in Tables (5.17) - 

(5.20). Finally tests were carried out for dynamic 

behaviour. Results for natural frequencies and normal 

mode shapes are given in Tables (7.29) to (7.39). 

9.4 EFFECT OF MATERIAL COUPLING ON FLUTTER SPEED 

The flutter speed is sensitive to the difference 

between the frequencies of the two coupled modes causing 

the flutter (the influence of material coupling on 

bending and torsional frequency has been discussed in 

Chapter (7.7)). In light of the above, two distinct 

situations may arise, namely the torsional mode frequency 

being greater than the bending mode frequency and the 

bending mode frequency being greater than the torsional 

mode frequency. In the former case omission of material 

coupling from the theoretical model gives a conservative 

estimate of the flutter speed due to overestimated 

bending and underestimated torsional mode frequencies. 

However, for structures with a bending frequency greater 

than the torsional frequency, omission of material 

coupling rigidity will dangerously over-estimate the 

critical flutter speed. 

These facts were important in designing the composite 
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wings for wind-tunnel flutter tests because of the 

practical limitations ` on tunnel speed. Theoretical 

analysis showed that material coupling increased the 

flutter speed with ply orientation because the first 

torsional mode frequency was greater than the first 

bending mode frequency. Consequently, the lowest design 

flutter speed was achieved using zero degree ply 

orientation (see Chapter (8) for details). 

In an attempt to understand the aeroelastic behaviour 

of these thin-walled closed sections (i. e. composite 

wings) only two areas, namely, flutter (binary i. e. 

bending-torsion flutter. ) and divergence were studied 

intensively. The presence of material bending-torsion 

coupling similar to elastic coupling, (due to non-coaxial 

centroidal and elastic axes, ) which plays an important 

role in changing the aeroelastic characteristics of a 

lifting surface was also accounted for. 

Experimental investigation of the aeroelastic 

behaviour of thin-walled composite wings was thus carried 

out with the following results. 

9.5 EXPERIMENTAL RESULTS 

9.5.1 WING WW-DMS-1 

During determination of flexural rigidity, the 

composite wing specimen suffered from the Brazier load 

effect. The lover skin of the, wing collapsed inwardly 

near the root resulting in permanent damage. Therefore, 

it was not possible to conduct any dynamic tests to 

establish the natural frequencies and the mode shapes. 

The flutter speed of, the specimen was estimated to be 

72.0 m/s based on available static structural properties 

which was above the maximum attainable speed of the 

wind-tunnel. 
14 
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9.5.2 WING W-DMS-lA 

The damaged portion near the root was removed, the 

wing was re-rooted and the structure was tested again to 

determine its bending rigidity. The estimated flutter 

speed increased to 80.0, m/s due to a decrease in aspect 

ratio. In the light of these results the task was divided 

into three stages. 

1. To manufacture at least two more similar 

structures in order to obtain an average of the 

structural properties. 

2. The flutter speed can be reduced by minimizing the 

difference between the predominantly bending mode 

and predominantly torsional mode frequencies. This 

can be achieved by increasing the bending rigidity 

and polar mass moment of inertia, and by 

decreasing the mass per unit length and torsional 

rigidity. Thus the wing section was filled with 

polyurethene expanded foam which increased the 

bending rigidity, polar mass moment of inertia as 

well as torsional rigidity and mass per unit 

length. 

3. The third possibility was to mechanically 

destabilize the wing by opening its trailing edge 

in an attempt to reduce the torsional rigidity and 

increase the distance between the centroide and 

the shear centre. This will also increase the 

value of the polar moment of inertia. 

9.5.3 WING W-DMS-1B 

The structural properties obtained after splitting 

the trailing edge of the wing are as follows : 

GJ = 0.01725 N-m2, Xa. = 135.4 mm , Ipo= 0.00344455 kg-m 

The sharp decrease in torsional rigidity required an 
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estimation of divergence speed using equation (9.1) prior 

to flutter testing. 

Vd nZ GJ 
eC 

(9.1) 

2 p(ec)ZsZ 
C 

aa1 
where 

Pair = 1.225 kg/m9 1 

s= span or length of the wing = 0.585 m 
ec 

lift-curve-slope value =2 it (assumed) 

ec = distance between. the aerodynamic centre and the 

shear centre = 0.1081 m 

The predicted divergence speed was 1.66 m/s. The wing 

lost its shape because of the erratic flapping of the two 

surfaces. A double sided adhesive tape was used to keep 

the trailing edges together. The new shear centre was 

8.5mm behind the aerodynamic centre. The divergence speed 

was calculated to be 21.15 m/s, ignoring any increase in 

the torsional rigidtiy, as compared to, the experimental 

value of 24.0 m/s with a difference of 13.5% , probably 

due to a nominal increase in torsional rigidity. 

9.5.4 WING W-DMS-2 

The next wing was filled with a light and hard core 

foam (expanded polyurethene) to stop the local kinking 

due to the Brazier-load-effect and to retain the shape 

during bending or torsion of the structure. The flutter 

check list suggested an increase in bending rigidity and 

decrease in torsional rigidity to reduce the flutter 

speed by decreasing the difference between the bending 

and torsional mode frequencies. The bending rigidity 

improved but at the expense of added torsional stiffness, 

mass per unit length and polar mass moment of inertia. 

These changes were contrary to each other. 
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TORSIONAL RIGIDITY ESTIMATIONS OF FOAM FILLED WINGS 

The prediction of various properties of a foam filled 

section was made by assuming linear summation of the 

contributions made by the two materials. For example in 

case of bending, it was assumed that the total resistance 

offered in deflecting the structure to the applied load 

will be the sum of bending stiffness of the skin section 

plus the bending stiffness of the foam section. Similarly 

in the case of torsion the structure is assumed to be 

acting like a pair of helical springs with two different 

stiffnesses wound one over another. In the case of an 

applied torque, the -skin section first offers the 

resistance and then the foam packed inside it contributes 

to the torsional rigidity. Table (9.1) compares the 

torsional rigidity of a skin section with that of a foam 

filled section. 

The estimated flutter speed and frequency were 106 

m/s and 74.48 Hz respectively, still beyond the wind 

tunnel airspeed limit. The results of the static and 

dynamic tests were in close agreement with the 

theoretical predictions. 

9.5.5 WING W-DM3-3 

An extended flap-like trailing edge was produced when 

both the top and bottom skins were glued together. The 

extended flap was removed to increase the aspect ratio 

(approximately 14) and to reduce the mass per unit length 

of the wing. The flutter speed and frequency were 

estimated to be 107 m/s and 50.45 Hz respectively. A wind 

tunnel test was conducted to study the sub-critical 

flutter behaviour of the wing. The large amplitude 

flapping motion damaged the tip of the wing where, it was 

restrained by a fishing line to avoid any possible 

divergence. The removal of damaged tip reduced the aspect 
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ratio and increased the flutter speed to 152 m/s. 

9.5.6 WING W-DMS-4 

Another wing identical to W-DMS-3 was constructed 

with an estimated flutter speed of 100.0 m/s and flutter 

frequency of 59.68 Hz. The possibility of putting a steel 

strip of (3.3 mm diameter) near the trailing edge was 

considered to move the centroid to its extreme position 

near the trailing edge with an increase in the elastic 

coupling. This reduced the flutter speed to 96.3 m/s. 

That still did not solve the problem. So it was further 

used in determining. the,. lift-curve slope value. 

LIFT-CURVE SLOPE VALUE 

CALFUN (computer program used for the prediction of 

flutter speed and frequency) utilizes strip theory to 

calculate the aerodynamic distribution over the wing. 

Strip theory assumes a lift-curve slope value of 2n for 

an infinite wing in incompressible flow conditions 

(see Appendix (F) for theory). The finite aspect ratio 

and profile resulting from the hand-lay-up technique will 

result in a lower lift-curve slope value. An experiment 

was set up to determine the lift-curve slope value for 

the composite wings (see Photographs (9.3) and (9.4)). 

The lift-curve slope value for the three dimensional 

composite wing was estimated using a computer program as 

given in Appendix (C). 

The test was carried out at three different speeds 

15.59,21.78 and 24.20 m/s and their Reynolds numbers were 

1.249*105 
, 

1.745*10 and 1.939*105 respectively. The 

coefficient of lift was plotted against the angle of 

attack for each run as shown in Figure (9.1). The 

experimental results are compared with the theoretical 

predictions in Table (9.2). 
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The value of the lift-curve slope given in reference 

[! ) is for steady conditions and does not necessarily 

correspond to the slope obtained in transient conditions 

when the boundary layer; hats insufficient time to fully 

develop at each lift coefficient. The presence of some 

degree of turbulence in the wind tunnel can be one of the 

many reasons for this large error. 

The inexact profile of the wing and surface roughness 

alter the aerodynamic distribution and the coefficient of 

lift corresponding to a certain angle of incidence, 

giving a smaller lift-curve slope value. 

The scale effect is negligible for a wing thickness 

to chord ratio less than 12% . During construction the 

eventual thickness sometimes exceeded this figure, 

resulting in a smaller value of the lift-curve slope. 

9.5.7 WING W-DMS-7 

The wing was filled with polystyrene foam, usually 

used as packing material. It was selected due to its low 

density (approximately 27.32 kg/m9 found experimentally). 

The wing was split at the elastic axis on the lower 

side as the leading edge faces the oncoming wind. The 

torsional rigidity reduced to a small value of 0.011391 

N-m=. The divergence speed was predicted to be 7.88 m/s. 

The tip of the wing was loosely held with a fishing line 

for safety reasons. The wind tunnel speed was gradually 

increased. The wing experienced stall flutter (stall 

flutter is defined as flutter of a lifting surface in 

which the aerofoil sections are in stalled flow during at 

least part of each cycle of oscillation) before the 

predicted divergence speed of 9.0 m/s. 

9.5.8 WING W-DMS-12 

A wing similar to- W-DMS-7 was constructed with. a 
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spar, placed inside the hollow wing along the elastic 

axis. An initial investigation into the dynamic behaviour 

of the wing revealed a well distinguished single peak for 

the first frequency of 10.5 Hz. Two peaks of 58.5 Hz, and 

63.0 Hz gave the indication of a second frequency in that 

range. The peak for the third frequency was very flat and 

unclear as shown in Figure (9.2). 

The wing was held in a specially built fixture in the 

wind tunnel. The airspeed was gradually increased and by 

means of an accelerometer attached to the wing the 

magnitude of the frequency response function was recorded 

at different speeds as shown in Figure (9.3). As the 

airspeed was increased the second. frequency, which was a 

torsional mode, disappeared. The third frequency peak was 

now well distinguished at 123 Hz. As the speed was 

further increased, the amplitude of first frequency 

decreased and another frequency at about 190 Hz appeared. 

But soon a single peak appeared at 20 m/s airspeed of 

approximately 120 Hz. A further increase in airspeed 

increased the magnitude. of this single peak. The airspeed 

was increased to its maximum safe limit of 44.6 m/s 

without 'experiencing flutter. The limitations of the 

spectrum analyser made it difficult to obtain a 

quantitative measure with enough resolution to represent 

these quantities in a graphical form. 

The wing exhibited . sub-critical flutter behaviour 

similar to the flutter tests conducted on aluminium and 

composite plates as shown in Chapter (8). The modal 

damping of predominantly bending and torsional mode 

frequencies increased with increase in airspeed except in 

the case of flutter the damping ratio of the dynamic 

aeroelastic mode passed through zero. The magnitude of 

the frequency response function for the flutter frequency 

was initially reduced and then remained constant for the 
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rest of the experiment. The wind tunnel speed limitations 

made it difficult to observe total lose of modal damping 

characteristic of the critical flutter speed. 

The glued trailing edge produced a cambered airfoil 

instead of the NACA 0012. Therefore, high lift forces 

were developed and the wing showed tip divergence within 

the elastic range of the material. It was highly 

dangerous due to strength limitations of the structure. 

9.5.9 WINGS WITH GENERALLY ORTHOTROPIC LAY-UP 

Wings with a generally orthotropic lay-up had high 

flutter speeds as discussed in section (9.4). These wings 

were constructed to study their static and dynamic 

behaviour. The theoretical estimates of flutter speed and 

frequency for 10°, 20°, 30°, and 45 0 
ply lay-up is given 

in Table (9.4). 

9.6 CONCLUSIONS 

The aeroelastic behaviour of thin-walled closed 

section composite wings with elastic bending-torsion 

coupling was investigated. The wind tunnel speed 

limitations did not allow the performance of a binary 

(bending-torsion) flutter test. 'However, a stall flutter 

test was carried out successfully. Other aeroelastic 

phenomena such as divergence and sub-critical flutter 

tests on composite wings were also carried out. 

Divergence tests yielded good agreement between 

experimental results and theoretical predictions. 
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Without foam : 

GJ (Theo. ) 

GJ (Exp. ) 

Percent diff. 

GJ (Exp. ) 

Percent diff. 

With foam : 

G for the foam 

GJ (Theo. ) 

GJ (Exp. ) 

Percent diff. 

17.17 N m2 

21.474 N m2 

25 % 

Z 20.93 Nm 

22 % 

0.275 GPa 

40.025 N m2 

41.874 N m2 

- 4.6 % 

(with two mirrors)) 

(with one mirror )I 

Table 9.1 Torsional rigidity test summary for foam 

filled wings 

Lift-curve slope value per degree (per radian) % diff 

Theoretical (strip theory) 0.10966 (6.283) 

Experimental value for 

NACA 0012 (see Ref. [! ]) 
0.105 (6.016) 4.25 

Average experimental value 0.082978 (4.754) 24.33 

Table 9.2. Lift-curve slope value for a composite wing 

FLUTTER 
WING NUMBER 

1 1A 2 3 3A 4 7 

SPEED m/s 72.0 80.0 106.0 107.0 152.0 100. -0 80.0 

FREQUENCYHZ 59.83 67.80 74.48 50.45 102.65 59.68 62.39 

Table 9.3 Summary of the estimated flutter speed and 

frequency for composite wings with zero degree lay up 
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FLUTTER 
WING LAY-UP IN DEGREES 
10 20 30 45 

SPEED m/s 75.0 96.0 
( 
122.0 146.0 

FREQUENCYHZ 66.05 74.00 101.22 123.35 

Table 9.4 Summary of the estimated flutter speed and 

frequency for composite wings with generally 

orthotropic lay-up 
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Figure 9.1 Lift-curve slope for wing W-DMS-4 
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p. 9.2 Brazier-Load effect (found during bending rigidity test) 
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CHAPTER 10 PRINCIPAL CONCLUSIONS .. 

CHAPTER : 10 

10.1 PRINCIPAL CONCLUSIONS 

An investigation into the static, dynamic, and 

aeroelastic behaviour of thin-walled composite structures 

with application to aircraft wings has been carried out 

with the following general conclusions : - 

A survey of the work done by the pioneers of 

aeroelasticity. and their successors from the earlier days 

to the late eighties has been presented. Their efforts 

have helped a lot to make accurate predictions and 

eliminate adverse aeroelastic effects especially in the 

case of aircraft flutter. 

The difficulties faced by the earlier investigators 

were greatly reduced by the introduction of computer 

techniques such as finite element analysis, etc. Symbolic 

computing facil. ities have made it possible to obtain 

explicit and exact closed form solutions for many 

aeroelastic problems. 

A laminate can be designed to exhibit a desired set 

of deformations, in' which the plate bending stiffness 

matrix ED] plays a vital role. The bending and torsional 

deformations are elastically uncoupled if members in the 

third row and column of the (D) matrix are absent. 

However, in the case of a fully populated D-matrix-(which 

occurs with a general arbitrary fibre lay-up) bending and 

torsional deformations are. coupled together. The magnitude 

and sign of Did and D 
dd 

determines the direction and the 

extent of this coupling. Symmetrically laid-up laminates 

subjected to bending moments or torques can display 

coupled transverse displacement and twist, while 

antisymmetrically laid-up laminates subjected to torque or 

normal loads (tension or compression) can exhibit coupled 
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deformations by twisting as well as longitudinal 

displacement. Quantitative analysis has been carried out 

in detail to predict such behaviour of laminated composite 

beams and plates. 

The ratio of Young's modulus in the fibre direction 

to the shear modulus (E/G), plays an important role in 

establishing these properties when the orientation of the 

fibres are changed. As the ply orientation varies, 

materials with larger (E/G) ratios will produce greater 

changes in the laminate equivalent elastic moduli, This 

quality will eventually help in making choice of the 

material for a particular application. 

A suitable procedure, of stiffness estimation for 

composite structures with various types of cross-sectional 

details is presented. 

A general expression for the torsional rigidity of 

multi-cell structure is derived which can be easily 

adopted for any number of cells. 

The effect of ply orientation on the stiffnesses has 

been demonstrated. Flexural rigidity is reduced when the 

plies are at angles other than its principal (or fibre) 

axis whereas the torsional rigidity is Increased as 

expected. This trend followed up to 45° ply angle with the 

principal or fibre axis and then the trend reversed. 

Flexural/torsional coupled rigidity increased until the 

ply angle was 22 °. It then vanished at 45°, where bending 

rigidity was at a minimum and torsional rigidity was at a 

maximum. 

The experimental investigation of static 

characteristics of structures made of isotropic or 

anisotropic (i. e. composite materials) was carried out 

with satisfactorily good results when compared with their 

theoretical values. The tests covered beams, plates, 

thin-walled open and closed section composite and metal 
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structures. 

Experiments performed on composite plates shoved 
large discrepancies in torsional rigidity tests for zero 

degree lay-ups. This was possibly due to the difference in 

material property between results obtained through the 

tests carried out on the specimen with 450 lay-up and the 

original structure with all the fibres along the span. The 

results for other lay-ups agreed very veil for the 

torsional rigidity test. In the case of a bending rigidity 

test, the results were within normal engineering accuracy 

limits for the zero degree case but large errors were 

encountered for other lay-ups. One possible explanation is 

that the end fittings suppressed the chordwise curvature, 

affecting the twist deformation due to the D! 
a 

term of the 

compliance matrix. This effect will be zero in the case of 

zero degree laminate but can be significant for other 

lay-ups. 

In the case of thin-walled open section structures, 

the agreement between theoretical predictions and 

experimental results got worse as the complexity of the 

section increased. The effect of warping was found to be 

playing an important role as expected. This type of 

section requires an improved mathematical model for 

further study. 

Closed sections produced good results for torsional 

rigidity tests but in the case of flexural rigidity tests, 

large differences were encountered. This was probably due 

to lack of control on the volume fraction. A correction to 

this factor improved the overall status. 

Dynamic stiffness matrices for axially loaded 

thin-walled composite sections with elastic and material 

coupling (bending-torsional) were developed. The following 

degenerated cases were also investigated : 
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1. Materially coupled beams along with an axial load 

(e. g. plates or -doubly symmetrical sections such 

as box beam) 

2. Materially coupled thin-walled beams 

3. Explicit expressions for dynamic stiffness matrix 

for the materially coupled case 

Computer programs have been developed to calculate 

the dynamic stiffness matrices from basic structural data. 

These programs were then combined with the codes of an 

established algorithm to compute the natural frequencies 

and mode shapes for such beams. % 

The effect of material coupling (bending-torsional) 

on the natural frequencies and normal mode shapes was 

studied, and the results were compared with the 

predictions obtained when not accounting for the coupling 

effect. 

A parametric study on the effect of aspect ratio on 

the accurate prediction of. natural frequencies using beam 

element idealization has also been presented. It is found 

that for plate structures with aspect ratios greater than 

three, beam model idealization can predict frequencies 

within measurement accuracy. 

Tests with satisfactory results were performed on 

structures made of , conventional materials such as 

aluminium and steel to validate the testing technique and 

to calibrate the equipment used. 

Tests were performed on three composite graphite fibre 

reinforced plastic plates. In the evaluation of 

fundamental frequencies, the validity of applying a 

beam-element idealization to various composite lay-ups was 

confirmed for low flexural coupling ratio's involving the 

terms D1a/D! 
1 

and D1a/Ddd . 
Composite thin-walled open sections with three 
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different cross-sections were tested. Large discrepancies 

were found between ý'ýtheoretical predictions and 

experimental results. The Investigation prompted the need 

for a better theoretical model. 

Natural frequencies and mode shapes for six zero 

degree ply lay-up wings and four with 10,20,30, and 45 

degrees ply lay-ups were established. The average 

difference between theoretical predictions and 

experimental results remained within 10% for wings with 

specially orthotropic ply lay-ups. In the case of 

generally orthotropic ply lay-ups, deviation from 

theoretical predictions followed similar trends as 

observed for composite plate structures. 

The validity of using a generally orthotropic 

Vlasov's beam model for composite plate flutter 

predictions is confirmed. Furthermore, the validity of 

"Strip Theory" for high aspect ratio wings in flutter 

calculations is also confirmed for the wings tested. 

Various reasons are discussed which may be the probable 

sources of discrepancies between experimental results and 

theoretical predictions. 

The aeroelastic behaviour of thin-walled closed 

section composite wings with elastic bending-torsion 

coupling was investigated., The wind tunnel speed 

limitations did not allow the performance of a binary 

(bending-torsion) flutter test. However, a stall flutter 

test was carried out successfully. Other aeroelastic 

phenomena such as divergence and sub-critical flutter 

tests on composite wings were also carried out with 

satisfactory results. The lift-curve slope values for 

these wings were also established experimentally. 

10.2 FURTHER WORK 

The investigation discussed in this thesis has shown 
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that interesting areas for further research should 
include: 

(i) The development of a. formulation for estimating the 

static structural =properties such as bending, 

torsional, and bending/torsional coupled rigidities of 

thin-walled open section composite structures. 

(ii) The development of, a computer program to interface 

the various analysis programs developed during this 

work, i. e. optimizing a composite structure for 

minimum weight with static, dynamic and aeroelastic 

constraints. 

(iii) The subroutine already developed for the dynamic 

analysis of composite structures can be incorporated 

into computer programs that can investigate the 

response analysis of an aircraft to gusts and 

turbulence. In this way the aeroelastic tailoring 

concept can be extended to produce passive structures 

to counter these undesirable effects. 

(iv) At the moment aerodynamic tailoring and active 

control are being investigated independently. Efforts 

should be made to merge them into one design tool in 

future. 

(v) The introduction of non-conventional materials in the 

manufacture of modern aeroplanes needs a lot of 

investigation into the aeroelastic behaviour of 

structures made of these materials. The use of fibrous 

materials in acquiring passive means of overcoming 

aeroelastic problems is still another fertile area of 

research. The progress in the field of passive control 
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technology in suppression of flutter depends on the 

derivation of relatively simple nonlinear models and 

on the proposal for new algorithms for the calculation 

of the coupling between flow and structure . 

(vi) Large space structures represent another potential 

area of aeroelastic tailoring research. The repetitive 

lattice arrangement of a number of space structures 

form an anisotropic design. The passive control system 

of these space structuies can be enhanced by achieving 

passive modal control through tailoring the 

orientations of the structural members. 
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APPENDIX :A 

A. 1 MANSFIELD THIN-WALLED RECTANGULAR CROSS-SECTION [t] 

The effective flexural rigidity EI for cylindrical 

rectangular cross-section with significant shear lag and 

shear deflection is given by : 

Z 
(F +Fht 

a) 
W+6v wz 

EIoi[octivo -Eh1++ FQ 
(A. 1.1) 

ht wý 

"v 

A. 2 HOUSNER AND STEIN BOX BEAM MODEL 1J 

The equivalent bending and torsional stiffnesses of 

b., box beam with thin laminated composite balanced ply 

cover sheets forming the upper and lower surfaces of the 

wing are given as follows : 

EI = EI 
0- 

(ß22 )2/ A22 

where 

GJ = GJ0 - (B9s) 2/ A22 

K=K- BB 
0 zzss 

I Azs 

j' 
EIj bL 12 Qzz(t) ßt 

J 
" t=i 

GJ 
o= 

b[4 Q66(t) rat 
Lt=i 

Ko =b[20 2d(t) 
ýt 

J 
t=i 

(t) Azz= b[ 
22 

ti, 
J 

t=1 

(A. 2.1) 

(A. 2.2) 

(A. 2.3) 

(A. 2.4) 

(A. 2.5) 

(A. 2.6) 

(A. 2.7) 
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N- 

B22 br 
22(1) 

b4 (A. 2.8) 

B99= 2b[ Qza(t) 6,1 
, 

(A. 2.9) 

L=i 

Classical Euler-Bernoulli beam deformation assumptions 

were used in the analysis. 

1. Mansfield, E. H., "Flexural Vibrations of a Thin-Walled 

Cylinder of Rectangular Cross Section, " R. A. E. The 

Aeronautical Quarterly, November 1958. 

2. Housner, J. M. and Stein, M., "Flutter Analysis of 

Swept-Wing Subsonic Aircraft with Parameter Studies of 

Composite Wings, " NASA TN 6-7539, September 1974. 
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APPENDIX :B 

B. 1 THIN-WALLED CONTOUR ANALYSIS [i] 

Mansfield and Sobey [1], analysed the composite 

thin-walled cylindrical tube composed of an arbitrary 

lay-up of fibre composite plies. Expressions were derived 

for the coupled torsional, extensional and flexural 

stiffnesses for linear displacements. 

For a mirror-wise cylindrical tube subjected to 

torsion, bending and longitudinal tension using 

cylindrical coordinates and in the absence of 

circumferencial stresses and strains in the structure i. e. - 

Ns= 0 and Ea= 0, equations (3. la, b) of Chapter (3): 

Y= 
Asp Ass Cy 

Nya As9 Ass Yya 

or 

AA -i A* A 
Y_ 11 19 y= !i i9 y 1.2) 

-* 

yu 

[A 

19 
Ass Nya Ais 

as 
Nyo 

or 
* 

H=1_ 
rH 

__ 

Ais 

NC ti A, l iz A* 
Yii1! y 

(B. 1.3) 
* *Z 

[ryjs ýH 
= 

A13. 
H=A- 

A13 Ny6 

12 A zz as A* 
si it 

and the resultant tensile load P in the cylinder is : 

P co f Hit ds -N Yo 
f H21 ds (B. 1.4) 

Similarly the bending moment about the x-axis is : 

Mx = KX f z2 His ds - Nyo fz Hz! ds 

14 

(B. 1.5) 
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and the chordwise moment about the z-axis is : 

Mz = Kz ý x2 H11 ds +N 
ye 

ýx H2! ds (B. 1.6) 

Finally the resultant torque about the y-axis is : 

My =2 Ny 
ofpds 

(B. 1.7) 

where A=p ds = cross sectional area of the tube 

p= perpendicular distance from the origin to 

the tangent at s. 
Combining equations (B. 1.4) to (B. 1.7) in a matrix form: 

ýo F1i 00 Fsa 

K0F0FM 
x 22 24 x 

_ (B. 1.8) 

KZ 00 F9 FM 
9s 34 Z 

T 
F14 F. F94 F44 

My 

where 

F=1 
!i 

Hiids 

F_1 
22 

f z2 Hsids 

F __ 
1 

as 

x2 Hssds 

Hzids 

' Fia Fas 

2 Af H1lds 

F. = 
24 

F= 
42 

F94 F48 

fz HZids 

2 Af z2 Hitds 

-ý x HZlds 

2 Aý x2 Hiids 

1 
44 

H 
22 

ds + 
H2lds 

2+ lf 
x H21ds 

2+ 
z H21ds 

2 

F2 
9Aý 

H11ds ý x2 H! 
ids 

f z2 Hi1ds , 

(B. 1.9) 
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Equation (B. 1.8) gives the flexibility matrix for the 

general cylindrical tube subjected to bending, torsion, 

and longitudinal tenpion. For mirror-wise tubes equation 

(B. 1.8) uncouples to give the stiffness matrix for a 

symmetrically laminated thin-walled structure with 

bending-torsional coupling. 

£= F- P 
o is 

Kz = Fa3 Mz 

Kx F22 Fla 11 Mx 

'r 

[F24 

F4* H 

B. 2 COMPOSITE BOX BEAM (z] 

Hong and Chopra (z) developed a nonlinear analysis 

for thin-walled composite beams undergoing transverse 

bending (flap and lag) and torsion and axial deflections 

based on the nonlinear strain displacement relations of 

Hodges and Dowell (a). A simple analytical expression was 

given for the cross-section warping, while effects of 

transverse shear were neglected. Extensive investigations 

in the behaviour of structural coupling terms due to ply 

orientations were made. 

In the case of a uniform cantilevered symmetric 

thin-walled beam subjected to tip load P, the transverse 

deflection and twist in the structure is given by : 

hP 
(2 l x- x 

2) 
(B. 2.1) 

B 2(EI - Kp°/ GJ) 

_P 
(2 lx- x2) K /GJ (B. 2.2) WB 

2(EI - K2 / GJ) P° 
P° 
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In the case of a uniform cantilevered symmetric 

thin-walled beam subjected to a tip torsional load T, ' the 

transverse deflection and twist in the structure is given 

by : 

_Tx U 
T 

(GJ - K2 / EI) 
pa 

WT 0 
Tx 

n /r. i 
pa 

(GJ - KZ / EI) 
pa 

J J* A. JI 

(B. 2.4) 

The subscripts a and T denote the transverse and 

torsional deflections due to bending and torsional loads 

respectively. 

STIFFNESS COEFFICIENTS : EI, GJ, K 
Pe 

N ![ 

EI ff Cii' 2 di7 dC +Zff E' L) r2 do dC 

k_1 
1.2 

tai 
9,4 (B. 2.5) 

N 1[ 

GJ = ff C, 'C2 dodC + ff )n ends 
k=i 1'2 t=i 8'4 (B. 2.6) 

N 

K_rr Cký 
CC 

dý dC (B. 2.7) 
Pe JJ i6 

k=i 
1.2 

where 1 and 2 represent top and bottom of the box and 3, 

4 represent the left and right sides of the laminated box 

beam. 

Cii = 
It 

Q12 ý, Q22 (B. 2.8) 

Ci6 Qid Qi2 Q26 / 422 (B. 2.9) 

/ 
22 

(B . 2.10 ) C 
d1k5 

= Qý - 2ä 
2 

where 

Q= stiffness matrix of the kth lamina in x--o or x-C plan 

N and M= number of plies in laminate 1 or 2 and 3 or 4 
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APPENDIX sC 

COMPUTER PROGRAMS 

A floppy disc is provided containing the following 

computer programs written in FORTRAN language. 

1. CONTENT. DOC 

2. SECTION. FOR 

3. KSTIF. FOR 

4. DMCS. FOR = (DMCSE. FOR + DMCSN. FOR) 

5. DMMECA. FOR 

6. VMECAS. FOR 

7. LIFCUR. FOR 

The 'CONTENT. DOC' file explains further about the 

compilation requirements of these Fortran files. Each 

program is supported by a data file and a result file. 

t 

14 
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APPENDIX : D. 

LINEAR SERVO ACCELEROMETER 

Servo accelerometers are DC-operated closed-loop force 

balance transducers for the measurement of acceleration. 

They are more, stable 
, 

and accurate than open-loop 

accelerometers by several orders of magnitude. In 

closed-loop force balance accelerometers, undesirable 

characteristics such as sensitivity to supply voltage, 

nonlinearity in the acceleration-to-position pickoff, and 

high thermal coefficients of scale factor and zero shift 

are negligible. 

Typical applications, of servo accelerometers are in 

high- reliability guidance systems, monitoring and 

controlling decelerations in mass transit systems and to 

check slopes and gradients. For the last twenty years, 

high reliability for such critical applications has been a 

significant feature of these inertial devices. 

The A200 series "linear servo accelerometer measures 

vector acceleration with high accuracy using the 

closed-loop torque balance principle. The pendulous mass 

(A) as shown in Figure (5.1), develops a torque 

proportional to the product of its mass unbalance and the 

applied acceleration [1). The movement of mass (A) is 

detected by the position sgnsor (B) whose output signal is 

applied to an electronic amplifier. The output current 

from the servo amplifier is applied to torque motor (C), 

which then develops a torque exactly equal to, but 

directly opposed to, the initial torque from the pendulous 

mass (A). Thus mass (A) stops moving, assuming a position 

minutely differing from its zero 'g' position. The current 

through the torque motor is accurately proportional to 

input acceleration, and when passed through a stable 

resistor (Ro), an accurately proportional output voltage 

291 



APPENDIX D 

is developed. The system is damped by. means of a phase 

advancing network within the integrated thick film module. 

The A200 series servo operation can be checked for proper 

servo operation (self-test) by applying an independent 

current input to the torque motor. By adjusting the 

parameters of the servo amplifier and related electronic 

networks, the operating characteristics of a servo 

accelerometer can be changed or modified to suit a 

particular application. This same flexibility gives rise 

to a variety of optional features in some models. 

The device was set up according to the circuit diagram 

shown in Figure (5.2). A steady + 15 volts DC supply was 

plugged into a common junction box. The output voltage was 

measured by a digital volt meter. When the servo 

accelerometer is placed on an absolutell horizontal flat 

surface, the output voltage is zero. For a+ 90 degrees 

tilt angle the maximum output is +5 volts. Due to the 

availability of very accurate digital volt meters with 

high resolutions, it is possible to measure even a 

hundredth of a degree. An additional advantage is the 

extreme light weight of the device. 

1. Schaevitz, "Linear and Angular Servo Accelerometers", 

Technical bulletin 4501E. - 
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APPENDIX :E 

COMPOSITE PLATE VIBRATION (i] 

The Rayleigh-Ritz, energy method (due to its 

simplicity and relative ease of application) was employed 

to analyse free vibrations, flutter and divergence by 

approximating plate deflections. The wing was considered 

as a rectangular cantilevered flat plate with uniform 

thickness. A five term deflection equation was chosen to 

approximate the plate deflection for the first and second 

bending, first and second torsion and first chordwise 

vibration modes [i]. Jensen et al. [z, s] showed that the 

last two terms were 'important to obtain accurate 

approximations for the first three vibration modes. 

Therefore, in terms of generalized coordinates, the 

deflection equation is 

5 

w=1 YL(x, Y) 9. (t) (E. 1) 

where w= lateral deflection 

yt(x, y) = the- non-dimensional deflection or mode shape 

of the ith mode and can be written as 

= 4i(x) W, (Y) 

q5 = single-dimension mode shape In x direction 

w= single-dimension mode shape in y direction 

The mode shapes assumed were as follows 

¢! (x) = first cantilever beam mode 

ýz(x) second cantilever beam mode 

09(x) = sin (nx/zl) 44(x) = sin (snx/zl) 

W! (y) =1; w2(y) =1 

wa(Y) = Y/c W4(y) = y/c 
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[4(y/c)2-4/3) 

and 

q; (t) = generalized displacement of the ith mode, such 

that all of , 
the modes satisfy the geometric 

boundary conditions for a cantilevered plate. 

It has the units of length and is a function 

of time. 

In the case of a symmetric anisotropic laminated 

plate, the strain energy is [4] 

l C/2 r2222 
U-2 J0 J 

C. -2 L 
D!! I 2) +2 Die (ex2) ( 

'y2) 
+ D22I 

a2ZJ2+ 
4 Dim 

a2ZJ a 
2ý' 

+4 D26 

1. 

ý221 

` 

aZv 

J dy 8x axe; ay Sxey 

22 

+4D, 
5,5 

(-! ) ]dy 
dx (E. 2) 

ax ey 

Taking the partial derivative of the deflection equation 

(E. 1), we can write equation (E. 2) in summation notation 

as follows 

55 
V s ZEEK.. q, q (E. 3) 

La! ý=i 

where 

kLj = element of a symmetri c5x 5 matrix 

= 
fl 

C"12 
D 

gZ 2 `) C ', g2 
+D 

C 2 
` CZ 2'l 

1! 
0 _c#2 8X Ox 

z ZZ J dy 
Z 

gY 

2+4D ý ýY il aZY 
'ý 
1+D { CgYz C ý 

+ 
CaZ Y } C a'" 

ý 8yJ != ` 8x OyJ J l =J 8y ZJ 8y ZJ 8x 

2D { 
rd 2 3)f C C gs ) C zJ} + 2D id L7 J Y Y 26 

ýýey2ý 

8xyý 
+ laaxyý l ay=ý 

}dydx 
(E. 9) 
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The kinetic energy for the plate is 
t cý2 2 

T=Zffm8t) dy dx (E. 5) 
0 -ciz 

`tJ 

where m= pats 

= mass per unit area 

pa = density of the graphite/epoxy 

to = total plate thickness 

Rewriting in summation notation 

TZEE Mid qt qj (E. 6) 
i=i j=i 

where M.. = is an element of 5x5 matrix 
1. j 

t C/ 2 

=ff yt m yi dy dx (E. 7) 
O -C/2 

Similarly the variation in external work can be written as 

l c/2 
oWo =ff Ap. öw dy dx (E. 8) 

o c/2 

where 

Gpz = distributed lateral load per unit area 

The above expression in summation notation can be written 

as follows: 

5 

6W4k =E Qi 6gi (E. 9) 
i=1 

where 

Q. = generalized force 
t c/2 

=f f tlpz yi dy dx (E. 10) 
0 "-c/2 

Lagrange's equation provides the relationship between work 

and energy, and is a statement of Hamilton's energy 

principle. This is in fact the basis of the Rayleigh-Ritz 

method. 

d az' 
_ 

OT 
+ 

aU 
_ ßL (E. 11) 

dt 
C 

ögý 
) 

6qt 8qt 
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Substituting the respective quantities in the Lagrange's 

equation, five equations of motion are obtained. In matrix 

form these can be expressed as 

(M]q + (K1q =Q (i, i = 1,2,...., 5) (E. 12) 

where (M] = diagonal mass matrix 

(K) - symmetric stiffness matrix 

Their details can be seen in ref. (o). 

In order to observe the function of coupling D-matrix 

terms we go back to Hamiltons's principle and assume a 

solution 

v(t) =v sin wt (E. 13) 

and suitable substitutions yield 

örr1LD az~z+, 
2Df 

8zwý 82 wý +DI 
azwz J 

JJs 2) tz `z2221,2J ax ay dy 

+4D! 
Q 

ýa ZZI ra 2v ý+4 
DZQ 

r gZZI r ýw 

ex J` exey l a]' Jl 

22 

+4Draw- wem w21 dA =0 
öxay J 

(E114) 

In the case of a uniform rectangular plate clamped at x=0, 

the governing equations are 

Z 
rra Z l 

w- w + w m 
D 

1! 

e=0 
Dii 

(E. 15) 

22 D! 
d _I.. 

C D! 
1 2C 

2D 
f 

48D t2 
9 -' ew 

48D 
6=0 (E. 16) 

. 50) 

These two ordinary differential equations are coupled 

by the bending-twisting stiffness factor Dad. In the case 

of negligibly small stiffness ratios Dia/D11 and D! 
a/Daai, 

they can be ignored. This results in uncoupled bending and 
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torsion equations and eventually yields relatively simple 

solutions I 

w- wZ m 
,2 

w0 (E. 17) 
D 

!i 

which is identical to the equation of transverse vibration 

of a bar 

.... 
v- wZ p0A t''/ EIw=0 (E. 18) 

Comparing equations (E. 17) and (E. 18). shovs that 

p0A / EI 7m/D! 1 
(E. 19) 

Therefore, 

EI =P 
OA 

DLL/ m= QA Di1/ Pat = D! 
i 

c (E. 20) 

since A=c to 

resulting in the following expression for natural bending 

frequencies, 

wnH (knH/I) (A = 1o, 2,3,.... ) (E. 21) 

where k"m = nth eigenvalue of the equation, subject to 

the boundary conditions on 

The second equation (E. 16) is reduced to : 

12 
2Z2 

C Ds! 
.... .. 2C 

ae- 

e- w °ý 
98D 

0 (E. 22) 
98D 

Equation. (E. 22) still contains terms that represent 

warping stiffness, St. Venant torsion stiffness (4Dddc = 

GJ for an isotropic plate) and the torsional polar inertia 

about y=0 respectively. 

Substitute R= t/c and ß RZ 
48D 

dd 
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where ß represents the influence of warping stiffness and 
depends upon the aspect`ratio and ratio of bending to 

torsion stiffness 

K2 = V2P 
l4 

R2 

T 48D 
da 

so the equation becomes 

0 0ýý 
ýý- 

0 
ý- 

KT 0= 0 (E. 2 3) 

Finally. the frequencies are given by the expression 

wnr =( KTr/l? ) 48D06R2/P (E. 24) 

where Knr. is the nth eigenvalue and is a function of 

as described in reference [s]. The value of 

ß approaches that for a long thin bar as the 

warping stiffness (1 goes to zero. 

This can be compared with the expression for the torsional 

frequencies of a prismatic bar made of isotropic material, 

wý Kn -VIGJIZZI 
P 

(E. 25) 

The natural frequencies for composite plates were 

predicted using equations (E. 21) and (E. 25). 
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APPENDIX sF 

LIFT-CURVE SLOPE 

THEORY 

The lift-curve slope of an infinite wing in an 
incompressible flow condition is equal to 

. 
2n per radian 

and is denoted by a0. If' the compressibility effects are 

expressed in terms of Mach number M, then for an aerofoil 

section with subsonic speed (M<1), the change in 

lift-curve slope value is'given by Glauert's formula Ii). 

ao -1 ao (for 2-dimensional wing section) (F. l) 

1-MZ 

The effect of finite span is then approximated by the 

following expression 
. 

_ 
ao ao 

a1+ (F. 2) 
1+a0 

n AR 
Al 

MZ + ao 
f 

+AR 

where 

AR = aspect ratio 

b2 
S 

b= wing-span from tip to tip 

S= wing area - 

The above expression is valid for an unswept, 

subsonic wing with moderate aspect ratio (AR) and 

symmetric loading, where r is Glauert's correction factor 

for nonelliptic plan form wings. 

In the case of small aspect ratio, equation (F. 2) 

gives 

a" = 
a° 

(F. 3) 
j 

14 

1+C 

rr ARý 
+ a° 

(17+AR) 
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In the case of swept wings : 

(ao). 
v,, pt= 

aocos A (incompressible, infinite span) (F. 4) 
4 

where ao is the lift-curve slope of the airfoil section 

normal to the leading edge. 

For subsonic, infinite span : 

" 
(`ý0) 

" v"pt 
a0 

"v. pt 

1-MZcos2A 

(F. 5) 

For finite aspect ratio-and symmetric loading : 

(a 

(a0)wv. 
pt )SvOpt (F. 3) 

2T -+f 
(a0) 

s voptl + (a 
0) ovow 

ýtr+AR) 

rr AR J 

If wing is tapered, the sweep angle A should be 

measured along the quarter chord line. 

1. Glauert, H., The E1Qients of Aerofoil and Airscrew 

'Theory, Cambridge University Press, "London, 1926. 
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APPENDIX :G% 

G. 1 FLEXURAL OR 
_BENDING 

RIGIDITY 

When a thin walled unsymmetrical. section like an 

arbitrary profile of an aerofoil is -subjected to a 

transverse loading both horizontal and vertical components 

of deflection occur. For the -vertical component of 

deflection 

dz 

dz 
EI 

y xx 

For a cantilevered beam with a concentrated load P at the 

tip, the bending moment is given by : 

Mx =-P(1-Y) (G. 2) 

Therefore, 

EI 
dZZ 

-P(1-y) (G. 3) 
dy 

EI 
dz 

=P( 1y=---) +A (G. 4) 
dy 

ze 
EI z=P(1ý- -6 )+Ay, + B (G. 5) 

where the boundary conditions are, 

at y=0; 
dz 

=0.. A=0 (G. 6a) 
dy 

at y- 0; z= 0 mº B= 0 (G. 6b) 

Therefore, 
2 

EI z=P-6 (31-y) (G. 7) 

EI = -6 (31-y)(Z) (G. 8) 

G. 2 TORSION OF-BEAMS 

In 1784, *Coulomb [i] developed the exact solution for 

the torsional problem of a circular shaft by assuming that 

the cross-sections of the bar remain. plane and rotate 

without any distortion during twist.. Later on Navier 
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applied the same theory' to noncircular cross-sections by 

making same assumptions and came up with erroneous 

results, in 1864 (2). - 

Saint-Venant proposed corrections in solving the 

problem of torsion. of bars with couples . applied at the 

ends (a), by employing a semi-inverse method. Initially, 

he made certain assumptions to the deformation of the 

twisted bar and showed that these can satisfy equilibrium 

equations : 
dax 

+ 
arxy 

+ 
ýr"T 

+X=o. (G .9a) ax ay dz 

gay 
+ 

Or"y 
+ 

aryl 
+Y=o (G .9b) ay OR az ", 

8oz arxz aryz 

ez + OR + gy +z-o (c. 9c) 

with the boundary conditions 

of 
x 
l+r 

xym+"r xz 
n (G. 10a) 

Yay m+ T 
yz 

n+ T 
xy 

t (G. 10b) 

O' 
z 

n+ T 
xz 

t+ T 
yz 

m (G. 10c) 

The assumptions are checked by the uniqueness of the 

solution of the elasticity equations. This provides an 

exact solution of. the torsion. problem, provided the 

torques on the ends are.. applied . as shear stresses in 

exactly the same way as-desired by the solution itself. 

When a uniform bar of any cross-section is twisted by 

couples applied at the ends, Saint-Venant assumed that the 

deformation in the twisted shaft is due-to : 

1. Rotation of the cross-section as in the case of a 

circular section and 

2. Warping of the cross-section, which is the same for 

all the sections, 

The displacements corresponding to. rotation . of 

cross-section are 

303 



APPENDIX .a 

u= -e .yi V= e .x (G. 11) 
zz 

where 

ez= angle of rotation, at a distance z from the 

origin 

The warping of the cross-section is defined by a 

function yý 

V=0 W(X, Y) (G. 12) 

Components of strain can be computed by substituting 

the assumed displacements in the displacement strain 

relations. This will give 

ex = cy = sz yxy =o (G. 13a) 

yxz = aR- +-y) (G : 13 b) 
Oz Ox- 

yyz = 
0, 

+ 'Ov A( 
OV, 

+X (G. 13c) 
Oz Oy 

The. corresponding stress components will be 

ox = ay = az = Txy =o (G. 14a) 

zxz=Ge 
--y) (G. 14b) 

1ryz Ge 
OW 

+x. ) (G. 14c) 

In accordance with the assumptions laid down 

regarding displacements corresponding to -rotation and 

warping of the cross-section, the normal stresses acting 

between the longitudinal fibres.. of the shaft or in the 

longitudinal direction of those fibres, will not exist. 

Moreover, there will be. no distortion in the planes of 

cross-sections, as Ex, ey and yxy are zero. Therefore, at 

each point pure shear defined by Txz and Tyz exists. Next 

we have to determine the function v(x, y), due to warping 

of the cross-section, such that the equations of 

equilibrium are satisfied. 

Substituting the above mentioned stress components in 

the equations of equilibrium and neglecting the body 
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forces, we come to the conclusion that the function w must 

satisfy the following equation 
22 

+0 (G. 15) 
Ox dy 

The accuracy of the, Saint-Venant theory is that of 

the order of the Engineer's bending theory. Basically what 

the theory says is that solid 
sections 

resist torque by 

offering a shear stress distribution. This concept may be 

equally valid for thin-walled closed sections, but in the 

case of a concentrated, torque or a built-in end a 

substantial amount of axial constraint stress-system may 

also contribute to the overall torsional stiffness. In 

general, the angle of twist of a uniform bar of length t 

with unconstrained ends under a torque T is 

e=Gý (G. 16) 

where 

J= torsion constant of the cross-section 

GJ = torsional stiffness/rigidity of the bar 

G. 3 SHEAR CENTRE OF A CLOSED SECTION 

General Stress, strain and displacement relationships 

for an element ( 6s * 6y * t- ) of a closed or open tube 

are deduced from considering that the element is 

maintained in equilibrium by a system of direct and shear 

stresses. The direct stress d is produced by bending 
y 

moments or by bending action of shear loads. The shear 

stresses z 
.y, 

r 
ye 

are due to shear and/or torsion of a 

closed tube or shear of an open tube. The hoop stress a 

is usually zero but may be present in closed tubes due to 

internal pressure. If t is assumed to be constant over the 

length 6s then T=T=T. But it is convenient to work 
ye "y 4 

in terms of shear flew q, i. e. shear force per unit length 

q=7t (G. 17) 
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which is regarded as being positive in the direction of 
increasing s. 

For equilibrium of the element in the y-direction and 

neglecting body forces, we have 

aq ea 

" +t'= 0 (0.18) 
ös dy 

Similarly. for equilibrium in the a direction 

8q 8a 

+t0= 0 (0.19) 
öy ös . 

Hoop stresses for the present investigation are absent. So 

we are left with the followin g expressions. 
a9 as 

+ty= 0 (G. 20) 
Os ay 

aq 

=0 (0.21) 
8 

The second expression above suggests that the shear 

flow in the y-direction is constant. The direct stresses 

are obtained with reasonable accuracy from the Engineer's 

theory. of bending-as-follows : 

MI-MI - HI MI 
xz OF arz xx x 

Jx+( )z 
(G. 22 ) 

a l- 
II -IJ xx zz xz xx zz xz 

or in a more concise form: 

M M 

a= x z+ zx (G. 23) 
y I I 

xx zz 
where 

Mx - M: Ix Izz Hz MxIxz/ I 
Ma x ý xx (G. 24) 

x1- 1a/ /I I z 1- IX /I i 
xx zz Z xx zz 

Consequently, 

as 3 3 
Y= zz +x x (G. 25) 

dy I I 
xx zz 
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for a beam with a cross-section that is%uniform along its 

length. The value for. oy'is entered into expression (G. 20) 

and is integrated over the-. limits zero to s. 

3. '3 aq 
ds =- I= 

ftz ds - I'-` 
ftx ds (G. 26) 

o ä8 xx o ZZ o 

where 

Qa 
S z 

3z Ixz/ Ixx 

_ 
ý2 a 

yx 
1- I Z/ I I' 

rx 
1- I Z/ II 

xz xx zz xz xx zz 

Choosing an origin for s where the shear flow has the 

unknown value qSo and integrating equation (G. 26) gives 

s 

q= =- Iz 
ftz ds - 

'y ftx ds + qSo (0.27) 

xx 0 zz 0 

In the case of open tubes, g,,,, -will 
be, zero, because 

we can take-the origin-fors at-the open edge of the tube. 

Then q=o when s=o and. equation (G. 27) becomes. 

ss 
go _- Iz 

ftz ds - Ix 
f t. x ds (G. 28) 

xx o ZZ o 

which represents the basic shear, qb for an open tube. 

Comparing. equations (0.27) and (G. 28) : 

9ý = qb +' 9ý0 (G. 29 ) 

We obtain qb by supposing that the closed tube 

section is cut at some convenient point thereby producing 

an open tube. The shear floe distribution along this open 

tube-is given by 

S. S 
qb - I2 

ftz ds - I'` 
ftx ds (G. 30) 

xx o zz o 
and 

e qe da 
9 da 

q: - 
ct 

--b 
no 1iG. 

31 i 
da § da 

Gt 
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APPENDIX . ".. N' 

USER INSTRUCTIONS FOR LAMINATE PROGRAM 

Input to the program is made-in the following manner. 

1. The material data in the form of Ei, E2, G12, and vie are 

entered for different materials. 

2. Laminate data in the form of total number of plies and 

their individual thickness, orientation and material 

number are entered. 

3. Load data in the form of normal loads, moments, etc. are 

entered. The program can cater for the temperature changes. 

The flow diagram of the, analysis is given in Figure (3.1) 

and the results are printed in the following manner. 

1. Q- matrix corresponding to the material. 

2. Q- matrix corresponding to ply. 

3. A, B, and D- matrices corresponding to over all laminate. 

4. A, B, and D- inverse matrices. 

5. Overall modulie are computed for the. given laminate 

AN EXAMPLE RUN OF THE LAMINATE PROGRAM 

************* DATA FILE ************* 

1 

150.0 8.0 5.0 0.333 

1 

8 

0.25 45.0 1 

0.25 -45.0 1 

0.25 90.0 1 

0.25 0.0 1" 

0.25 90.0 1 

0.25 -45.0 1 

0.25 45.0 1 
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************* . 
RESULT FILE ************* 

PROGRAMME : LAMINAT. F 

OBJECTIVE : TO ANALYSE SYM. & ANTI-SYM. LAMINATES 

EQUIVALENT ELASTIC CONSTANTS CALCULATION 

INPUT : El, E2, G12, PR12 

NUMBER"OF PLIES 

PLY THICKNESS, PLY ORIENTATION 

TOTAL NUMBER OF MATERIALS 

El E2 " G12 PR12 

----------- (GPa)--------------- 

150.00000 8.00000 5.00000 0.33300 

O MATRIX (GPa) 

150.09239 2. G7985 0.00000 

2.67985 8.04759 0.00000 

0.00000 0.00000 5.00000 

NUMBER OF LAMIANTES 

1 

NUMBER OF PLIES 

8 

PLY NO. MATERIAL PLY THICK. PLY ORIENTATION 

NO (deg. ) 

(Enter only material, ply thickness and orientation) 

11 0.25000 45.00000 

21 0.25000 -45.00000 
31 0.25000 90.00000 

41 0.25000 0.00000 

51 0.25000 0.00000 

61 0.25000 90.00000 

71 0.25000 -45.00000 
81 0.25000 45.00000 

Q BAR MA TRIX MEMBERS (CPa) 

0111 QB12 01313 Q1322 QB23 01333 

46.07492 36.07492 35.71120 46.07492 35.71120 38.39507 

46.07492 36.07492 -35.71120 46.07492 -35.71120 38.39507 

8.04759 2.67985 0.00000 ' 150.89239 0.00000 5.00000 
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150.89239 2. G7985 0.00000 8.04759 0.00000 

150.89239 2.67985 0.00000 8.04759 0.00000 

8.04759 2.67985 0.00000 150.89239 0.00000 

46.07492 36.07492 - 35.713.20 46.07492 -35.73.120 

46.0-7492 36.07492 35.71120 46.07492 35.71120 

A MATRIX (MN/m) 

125.54491 20.71731 "0.00000 

43.75477 120.54491 0.00000 

18.03746 23.03746 24.19754 

B MATRIX 

83.67380 25.38698 11.15975 

74.05283 227.41030 11.15975 

47.32560 59.82560 28.79470 

D MATRIX (Nm) 

32.87521 12.97712 5.57987 

28.02327 38.05301 5.57987 

16.87602 20.62602 13.84718 

A INVERSE M ATRIX ( m/GN) 

8.47278 -1.45616 0.00000 

-3.07541 8.82421 0.00000 

-3.38786 -7., 31570 41.32652 

11 - INVERS MATRIX 

15.44836 -0.16648 -5.92269 

-4.21423 4.94200 -0.28206 

-10.63446 -9.99417 45.04887 

D- INVERSE MATRIX (1/KNm) 

43.96467 -6.89686 -14.93688 

-31.37220 38.54447 -2.89014 

-6.85085 -49.00835 94.72596 

EX EY G XY 

-------- (GPa) - 

-----------MEMBRANE MO DE 

59.01253 56.66227 ' 12.09877 

BENDING MODE 

34.1.1831. 38.91609 15.83515 

5.00000 

5.00000 

5.00000 

38.39507 

38.39507 
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APPENDIX :I 

LIST OF SUBROUTINES USED IN COMPUTER PROGRAMS : 

SECTION & KSITF 

SUBROUTINE INPUT DESCRIPTION 

INPSEG NSEG, NT, ICORE, E, G, T, X, Y, To enter material and 

RHOFIB RHOFOAM geometric properties 

SKINCG NSEG, E, T, X, Y, SKXB, SKYB, To calculate the cent. 

ASKIN, AL of gravity for skin 

SOLIDCG NSEG, X, Y, SOXB, SOYB, To calculate the cent. 

ASOLID of gravity for foam 

ALLCG RHOFIB, RHOFOAM, ASKIN, To calculate the over- 

ASOLID, SKXB, SKYB, SOXB, -all centre of gravity 

SOYB, AMALL, AXB, AYB 

MSKIN RHOFIB, ASKIN, AMSKIN To calculate m/t 

of skin structure 

MSOLID RHOFOAM, ASOLID, AMSOLID To calculate m/t 

of packed foam 

MALL RHOFIB, RHOFOAM, ASKIN, To calculate overall 

ASOLID AMALL mass per unit length 

SKINIXY NSEG, E, T, X, Y, AL, ÄXB, AYB, To calculate second 

SKIXX, SKIYY, SKIXY, moment of inertia and 

SKEIXX, SKEIYY, SKEIXY stiffness of the skin 

SOLIDIXY NSEG, E, T, X, Y, AL, AXB, AYB, To calculate second 

SOIXX, SOIYY, SOIXY, moment of inertia and 

SOEIXX SOEIYY SOEIXY stiff. of p acked foam 

PARAM NSEG, AL, G, T, DELTA, PARA Calculate parametric 

length of the section 

GJSKIN ASOLID, DELTA, GJ Calculate the tors. 

rigidity of the sec. 

SHRCENT NSEG, NT, X, Y, T, AL, AXB, AYB To calculate the shear 

SKIXX, SKIYY, SKIXY, ES centre of the skin sec 

YDSVALUE NSEG, X, Y, AL, YDS, Y2DS Calculate first & 2nd- 

moment of inertia, 

311 



APPENDIX I 

These subroutines were combined in various ways to 

predict structural properties of a range of cross sections 

with the capability to analyse structures made of 

conventional as well as composite materials. 

EXAMPLE RUN 

PROGRAM : SECTION 

DATE : 16 JAN. 1990 

NAME OF THE DATA FILE : W-DNS-7 

MATERIAL PROPERTIES : 

E GPa 18.620 

G GPa 1.338 

DENSITY OF GLASS FIBRE Kg/ma 1291.873 

DENSITY OF FOAM Kg/me 27.320 

GEOMETRICAL PROPERTIES 

CHORD LENGTH (mm) 118.0 

RESUL TS 

TOTAL SKIN AREA (mm2) 120.711 

TOTAL SOLID AR EA (mm2) 1121.000 

TOTAL PARMETER (mm) 241.422 

LOCATION OF C. G. FOR SKIN ON LY (mm) 58.210 0.028 

LOCATION OF C. G. FOR FOAM ON LY (mm) 46.127 0.050 

LOCATION OF C. G. FOR OVERALL SEC. (mm) 56.227 0.032 

DIST. BETWEEN C. G. AND SHEAR CENTRE (mm) - 31.445 

MASS PER UNIT LENGTH (SKIN) (Kg/m) 0.156 

MASS PER UNIT LENGTH (FOAM) (Kg/m) 0.031 

MASS PER UNIT LENGTH (ALL) (Kg/m) 0.187 

SECOND MOMENT OF AREA (SKIN) ABOUT X-AXIS (mm4) 3444.286 

SECOND MOMENT OF AREA (SKIN) ABOUT Y-AXIS (mm4) 144419.701 

SECOND MOMENT OF AREA (SKIN) ABOUT XY-AXIS (mm4) 692.992 

SECOND MOMENT OF AREA (FOAM) ABOUT X-AXIS (mm4) 14570.478 

SECOND MOMENT OF AREA (FOAM) ABOUT Y-AXIS (mm') 856927.574 
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SECOND MOMENT OF AREA (FOAM) 

SECOND MOMENT OF AREA (ALL) 

SECOND MOMENT OF AREA (ALL) 

SECOND MOMENT OF AREA (ALL) 

POLAR MASS MOMENT OF INERTIA 

EI (N m2) 64.133 

EIz (N m2) 2689.095 

EIxz (N m2) 12.904 

GJ (N m2) 13.925 

ABOUT XY-AXIS (mm4) 151502.312 

ABOUT X-AXIS (mm4) 18014.765 

ABOUT Y-AXIS (mm4) 1001347.274 

ABOUT XY-AXIS (mm4) 150809.321 

(Kg-m) 3.99308E-4 

EXAMPLE RUN 

PROGRAM : KSTIF. FOR 

SUBROUTINE : LAMINAT. F 

OBJECTIVE : TO ANALYSE SYM. & ANTI-SYM. LAMINATES 

INPUT : El, E2, G12, PR12 

NUMBER OF PLIES 

PLY THICKNESS, PLY ORIENTATION 

El E2 G12 PR12 

2.35000E+01 2.35000E+01 4.00000E+00 1.30000E-01 

NUMBER OF LAMIANTES 

1 

NUMBER OF PLIES. 

4 

PLY NO. PLY THICKNESS PLY ORIENTATION 

1 3.80000E-01 2.00000E+01 

2 3.80000E-01 -2.00000E+01 

3 3.80000E-01 -2.00000E+01 

4 3.80000E-01 2.00000E+01 

0 MATRIX (GPa) * 
2.39040E+01 3.10752E+00 0.00000E+00 

3.10752E+00 2.39040E+01 0.00000E+00 

0.00000E+00 0.00000E+00 4.00000E+00 

0 BAR MATRIX FOR PLY NO. 1 
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2.12604E+01 5.75111E+00 3.15051E+00 

5.75111E+00 2.12604E+01 -3.15051E+00 
3.15051E+00 -3.15051E+00 6.64359E+00 

Q BAR MATRIX FOR PLY NO. 2 

2.12604E+01 5.75111E+00 -3.15051E+00 

5.75111E+00 2.12604E+01:, 3.15051E+00 

-3.15051E+00 3.15051E+00 6.64359E+00 

Q BAR MATRIX FOR PLY NO. 3 

2.12604E+01 5.75111E+00 -3.15051E+00 

5.75111E+00 2.12604E+01 3.15051E+00 

-3.15051E+00 3.15051E+00 6.64359E+00 

Q BAR MATRIX FOR PLY NO. 4 

2.12604E+01 5.75111E+00 3.15051E+00 

5.75111E+00 2.12604E+01 -3.15051E+00 

3.15051E+00 -3.15051E+00 6.64359E+00 

A MATRIX (MN/m) 

3.23158E+01 8.74169E+00 0.00000E+00 

8.74169E+00 3.23158E+01 0.00000E+00 

0.00000E+00 0.00000E+00 1.00983E+01 

B MATRIX 

NOT PRESENT DUE TO SYMMETRIC LAY-UP 

D MATRIX (Nm) 

6.22187E+00 1.68307E+00 6.91500E-01 

1.68307E+00 6.22187E+00 -6.91500E-01 

6.91500E-01 -6.91500E-01 1.99925E+00 

A- INVERSE MATRIX (m/GN) 

3.33878E+01 -9.03167E+00 0.00000E+00 

-9.03167E+00 3.33878E+'01 0.00000E+00 

0.00000E+00 0.00000E+00 9.90269E+01 

B- INVERSE MATRIX 

NOT PRESENT DUE TO SYMMETRIC LAY-UP 

D- INVERSE MATRIX 

1.86803E+02 -6.02992E+01 -8.78851E+01 

-6.02992E+01 1.86803E+02 8.78851E+01 

-8.78851E+01 8.78851E+01 5.76852E+02 
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EX EZ GXZ 

1.97047E+01 1.97047E+01 6.64359E+00 

H11 H21 H22 

2.99511E-02 0.0 9.90269E+01 

SUBROUTINE : SECTION. F 

ENTER NUMBER OF SKIN SEGMENTS 

4 

ENTER NUMBER OF SEGMENTS ABOVE THE LINE OF SYMME TRY 

2 

ENTER DENSITY FOR FIBRE AND FOAM (Kg/ma) 

(If it is not foam filled then just put it zero) 

1800.0 0.0 

EG Thickness X- coord Y-coord 

-------- (N m2) ------ (mm) (mm) (mm) 

19.7046588 6.643594 1.52 15.00 8.00 

19.7046588 6.643594 1.52 0.00 0.00 

19.7046588 6.643594 1.52 15.00 -8.00 
19.7046588 6.643594 1.52 9.00 0.00 

CENTRE OF GRAVITY :X- coord Z- coord (mm) 

9.16667 0.00 

MASS PER UNIT LENGTH (Kg/m) : 0.147744 

AREA OF THE SECTION (mm )2 : 82.08 

SECOND AREA MOMENT (mm4) :II I 
xx zz xz 

1.751040 1.4478 00 0.00 

BENDING RIGIDITY TORSIONAL RIGIDITY (N m2) 

34.5036 21.112 

THE SHEAR CENTRE (mm) 

-32.90 

YDS Y2DS (mm4) 

216.00 1152.00 

EIX EIZ GJ (N m2)* 

34.5036 28.5284 21.112 

K22 K24 K44 

34.5036 0.00 21.112 
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APPENDIX J 

MATERIAL PROPERTIES 

ALUMINIUM 

Modulus of Elasticity 68.9 GPa 

Shear modulus of rigidity 26.5 GPa 

Poisson's ratio 0.3 

Density 2700.0 Kg/m'3 

V1BREDUX C920 UNIDIRP. CTIONAL PREPREG CARBON FIBRE COMPOSITE 

PROPERTY UNITS C920 

Pt CPa 98.00 

Et CPa 7.90 

GZt GPa 
. 
5.60 

. vzl --- 0.28 

p Kg/m3 1520 

MATERIAL : 916C WOVEN CLASS FIBRE REINFORCED PLASTIC 

PROPERTY UNITS 916C 

E GPa 23.50 

Eý CPa 23.50 

C GPa 7.00 

--- 0.13 

P Kg/nn { 1410.00 

MATERIAL WOVEN GLASS REINFORCED PLASTIC, 

PROPERTY UNITS WOVEN-CRP 

B CPaa 18.63 

Et GP. a 18.63 

C CPI 1.376 

výý 0.13 
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-APPENDIX :K 

DYNAMIC STIFFNESS MATRICES OF DEGENERATED CASES 

K. 1 VIBRATION OF BEAMS WITH GEOMETRIC AND MATERIALICOUPL"ING 

In case of a thin-walled symmetrically laminated 

composite beam with the elastic axis not coinciding with 

the centroidal axis and no axial load applied, the 

equations of motion (6.6.8) and (6.6.9) are reduced to 

the following expressions. 

4922 

EI 
0h 

+K 
aW+m ah 

-me 
aw 

-0 (K. 1.1) 
OY 

4 OH at 
2 

at 
2 

8222 

K+ GJ +megh-I0 w= 0 (K. 1.2) 
H gy2 at2 Qt at2 dly 

and the shear force: 

S=- EI h#00 -KV (K. 1.3 ) 

bending moment: 

H= EI h+ KW (K. 1.4) 

torque: 

T= GJ +K h"" (K. 1.5) 

Let 

hH sin (w t) , 

dh 
=1 

dh 
dy Z- d 

w= 'F sin (w t) 

dt 1 (K. 1.6) 
dy -7- 

, etc. 

Substituting relations (K. 1.6) into (K. 1.1), and 

simplifying gives: 

D4H +K Dsý- H+9e'=0 (K. 1.7) 
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where 

mcý2e C 
EI 

, 

KK a EI 

Similarly from equation (K. 1.2): 

K D3H + . 
D2T -beH+6 r2 4'= 0 

where 

2l 

Ia= m rZ 

Rearranging equations . (K. 1.7) and (K. 1.8) 

(D4-al Ht 
[i 

D8+ e) 4' 0 

Let 

CKDa -bel H+ 
(D2 

+br21 ýY=0 

Li= 
(D4 

-ä 

Le= 
(R 

D9 -9 eJ 

(K. 1.8) 

KK 

Z GJ 

(K. 1.9) 

(x. 1.10) 

9 L = 
rK 

D + e) 
Z 

2 L a 
(D,, 

+ b r 
) 

i 

Equations (K. 1.9) and (K. 1.10). give : 

Li H+ L2 W=0x L4 "r 

Ls H+ L4 Ws0"x L2 "º 

Subtracting the first expression 

substituting corresponding. values. 

[(D4_ 
a- 

) (D2+ 
b rZ) -fK D8 +ä e) 

LAL4H+ LILA Y! =0 

L8L2H+ LALZ s0 

from the second and 

Df. LLL2" & . Ls : 

CK DH e 
)l'H 

:0 
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Let 

b rz öae, 

Therefore, 

Z K 
_ 

Cl , 
EI GJ 

a b a A 

(Do+ a D4+ b D2+ c) Ha0 

Let H- ept 

The auxiliary equation can be 

pa+a p4+ b p2+ c=0 

Substituting X= p2 

xs+aX2+bX+c-0 

C-äb 
(r2- e2 ) 

a 

It 

(K. 1.11) 

(K. 1.12) 

(x. 1.13) 

Let Aax-a 
3 

(x -3 )s+ a (x -3 )Z+ b (x -3)+c=0 

After simplification we get 

x8+ (- 
s 

3+ b) xf ( 
27 as 

ab + c) = 0. 
,.. 

Let 
2 

3- b 

ab 2a 
3 _ 27 a c 

Therefore, 

x8- q x-r= 0 

If 27 r2- 4 qz < 0 

then all the three roots of the equation are real as 
follows: 
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i/2 

xs =2 (q/3) cos (0/3) 

1 !, 2 

x2 =2 (q/3) cos (n-O)/3)) 

siz 
xa =2 (q/3) cos 

((iT+O)/3)ý 

where 
9/x 

cos(O) - (3/q) (r/2) 

Since 

x-3 

,. 
therefore, the roots a, ß and y will be 

a2 =2 (q/3) cos (9b/3) -3 

/32 2 (q/3) cos 
[(n_/3)) 

+3 (K. 1.14) 

Y2 2 (9/3)' cos. 
ý(n+¢)/3), 

+3 

Assuming a'solution for real roots a, (I and y we have 

H(t) = Alcosh(a«) + A2sinh(at) + A9cos(M) + A4sin(M). + 

A5cos(rc) + Adsin(r ) (K. 1.15) 

Similarly 

INC) = Bcosh(at) +, Bxsinh(at) + Bcos((g) + B`sin(M) + 

Bscos(rt) + Bdsin(yC) 
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and the slope-of the deflected structure is 

O(C) =I 
OH 

7r 
(a8inh(c*n 

+ aAZcos h (a«) - (3Aas in (j3C) + (3A4 

cos(M) yAasin(rt) + YAdcos(r )J (K. 1.17) 

Let 

3box = sieh (c*) Cha = cosh (a') 

3ß = sin (ßt` ), Cß = Cos (p` ) 

Sr = sin (re) CY = Cos (re ) 

Substituting the higher derivatives of both H and 4Y into 

equation (K. 1.7) and-equating coefficients of cosh, sinh, 

cos and sin of a, (F and y to zero, the relations between 

Aim and B! 
_ 

were found using DERIVE (a package to handle 

symbolic. computation). 

ý( ) 
[K(e 

C-K8+K 
(e 

S-KClA 
ha a. ht x) as l ha a ha Js 

+ Kr. 
(e 

Cß - Ka Si 
)A1+ 

Kßs 
fe. ä3+ Ka Cri 

) 
A4 

+ Kas 
`eäCr- 

Ka 3r 
) 

Aa+ KYs 
r 
eg 8?, + Ka CY 

, 
A6 

J 

where 

K- K as K K Z 
a as a 

K= K p3 , K= a ex- Kß 

K =K YH =a e2- ,K K 
2, Y! Y 

K 
-a KaZ a-a8, K= as 

aa K 
ccs 

K02 =a ß4 1 Kfia 
K%3s 

4 
Ky_ 

KyZ= a-Y, KYs°. 
K 

ys 

Assuming. the following-boundary conditions : 

HwHtý. eaer at =0 or y 0. 
., 

Ha HZ, Oa2Wat2 at =1 or y° t 
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Therefore, In-matrix form-ve-have 

H 1 0 1 0 10 

e 0 0 0 

*I eä Kas Kä 
as 

ea KR3 K 
las ea KYa KYKYa 

H2 = Ca sa C/3 
, 

S CY Sr 

i s a 
ý- % -P 3 ý- s 

P 
C 

3 _YY ý- C s 
a 1 ( Y r 

z Karp Kas/1= K19sPs Kßep4 KYaPs KYsPd 

. 

(6.8.3) 

where 

lit =ea Cha - Ka 3NA 

NZ =ea aha - Ka Chet 

C - K17 817 

p4 ea Sß + KP Cß 

Na eä CY K9 

Na eaSY +KC 

or, simply 

{U} = [B)(A) (K. 1.19) 

Nov , the_"expressions. ¬or . shear force , bending -moment and 

torque are evaluated. 

The shear. force. "of equation "(K. l. 3) 
. 
becomes : 

S=- EI- h-Kw 

IIA A 

2 

A 
s 

A 
4 

A 
a 

A 
45 
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= EI 
F 9 

°t 
sinh(a) 

+ 
1 

EI 
9 

O1 
cosh(a) 

s t 

+ 
F 

EI sin (ß) 
Z3 L 

r e 
+ + EI Cos (ß) 

L t 

+ EI r 
sin (Y) 

+ 
r+ 

EI Y 
cos (r) 

L s 

-K K 
2 

re ä cosh(a) 
l 

-K K 
2 

°1 re 
a . sinh(a) 

cm 2 Z 

-K K e ä cos ((3) 

-K K 
tz 

e a sin(d) 

-K K 
2 

Y re 
cos (Y ) 

2 t 1. 

-K K 
2 

re ä sin(y) 
ya 

- Ks1nh(a))1A1 

- Kacosh(a) 
1]A2 

+ Kpsin(P))]AH 

c. os (ß))]A* -K1?. 
1 

+ Krsin(r))JA5 

- Krcos(Y)., 
JAa 

(K. 1.20) 

The bending..: moment. as given . in . equation (K. 1.4) .. becomes : 

Ms EI h 
.. 

+K 
.. 

yv 

_ 

f 

EI °1 
cosh(a) 

L ZZ. 

+ 
f 

EI ct 
sinh(a) 

L t 
2 

+ 
[ 

EI. cos (ß) 

+ 
ý 

EI sin ((3) 

+ 
1 

EI Y 
cos (r) 

2 t 

+ 
f 

EI sin Cr) 

+ K K a (le 
sinh(a) - cosh(a)A K 

a 
,JJ 

+ K 
. 
Kcts a" (e ä cosh(a) - Kasinh(a) 

1]A2 

t .7 

+ K K 
(e ä sin(r3) - Kßcos(ß)+, 

3 J 

+ K K 
re 

cos() - Kßsin(r3i11A 
t ` 4 JJ 

+ K K, 
9 

Y (e ä sin(y) - KCos(y)A 

+ K Kra Y re 

` 
a cos(') - Ksin(. -)ý 

IAQ 

t J 

(K. 1.21) 

and finally. torque.. from . equation . (K. 1.5) . becomes : 

T'a GJ W+ Kh 

-[GJ Kc 
(e e sinh(ct) - Kacosh(a)) 

a 
+K °°- 

cosh(a)]A! 
t .J 

+[GJ K a re ä cosh(es) - sinh(a)) K 
i 

+Ka sinh(a)]A 
1. cm ` a Z t 2 J 
[ 5 

+ GJ Krm 
( 

eä sin(r3) - Kßcos((3)) -K cos (ß)]A$ 

+[GJ K 
fig - "r ea cos(ß) - Ktsin((3)) -K sin (t? )AA 

L tt l e J 
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+[GJ Kra r(eä 
sin(') - K. cos(r)) -K 

Y2 
cos (7)]A5 

Lt lz J 
z J 

GJ KYs ea cos(r) - Krsin(r)l1- K Yz 
sin (Y)lAQ 

tlJt .1 
(K. 1.22) 

Assuming-the followtng"boundary conditions, 

3= -3: Mx = '-Mxi 
NZ = -MsA at ý. =0 or y=0 

S- 3z Mx - Mxz ' Hz Mzz at 1 or 
,y=t 

Therefore, expressions for- the. shear-force,. -banding 

moment-.. and . torque can . 
be expressed in 

. matrix form as 

follows : 

Ss 
it 

Dsz Dan Dia Dis Dta 
i' 

Mt D2 Dzz Dzs D24 Dz5 Dza A2 

T Ds! Dsz Das Dsa Dsa Dsd As 

sz Das D42 Das D44 D45 Daa A4 

Mz Das Dsz Das Daa D55 Dsa A5 

TZ Das D02 Das D64 Das Daa Aa 

or 

{FY - (DI(A). (K. 1.23) 

where 

DAs =--K Kas 

Zea 

Ct 
2 D! 

z 
=-I EI O1s +K KM °az Ka 

ttJ 

Dis 
(+KKp_e) 

" 

D(+EI_L3 +KKKý 

. 'et 

D! 
s - 

f+ 
K 'K 

z 

sYeä 
z 

DAd -f+ EI is +KK i= KY 
1 

324 



APPENDIX K 

D = -( EI 
2 

a 
-K K 

a 
K 

1 

2i t2 ai a 

D = - 
r+ 

KK ae ä1 
22 l ai t J 

D29 = - 
[- 

El 
2 

2-K _ti. Kßa K 
t t 

D24 = - 
r+ 

1 
KK 

ß3 e äJ 

. t 

D = - 
r- 

EI 
2 

-K 
Y K YK 1 1 

25 2 t Y3 t Y 

D = - 
r+ 

KK Ye 
at 

26 Y9 t J 

D = -r- GJ K O1 K+ K 
z l a 

9i l ai t a 2 J t 

D = -r+ GJ K 01 
ea 

) 

92 l ai t J 

D33 = _- 
l 

GJ Kp3 
(3 

Kp - K 
2 

ý2 

J t 

D94 = - 
[+ 

CJ Kßa ea 
) 

J t 

D = -r- GJ K - K K 
2 

Y 1 

AS YD t 
Y 

t2 J 

D = - 
(+ 

GJ K Y 
ea 

1 

96 l Y3 t . J 
. 

D = - EI 
3 

a 
sinh(a) -K K 

2 
a r 

le a_ cosh(a) 
) 

sinh(a) -K 
41 Zý ai 2 t l a 

.1 

D = - EI 
9 

°t 
cosh(a) -K K 

2 
a re 

a_ sinh(a) cosh(a)1 -K 
42 9 t ai z t ` a J 

D = - EI 

9 
09 

z in (0) -K K 

2 

-ßz 
r- 

e a cos(r3) + Ksin((3)) 
49 t t l J 

D = + EI 
ý 

a 
cos (r3) -K K 

2 ý2 r- 
e a sin«3) - Kcos«3» 

44 t t ` J 

D = - EI 
9 

sin (Y) -K K 
2 

Y r- 
e a cos (r) + Ksin(Y) 

45 t " Y9 z t 

D = + EI 

3 

7 
cos (Y) -K K 

2 

Y ý- 
e sin(Y) -K cos(Y), 

46 t Y3 2 t Y 

D = EI 

2 
a 

cosh(a) +K K a r_ 
Ie a sinh(a) -K cosh(a)1 

51 2 t a9 t ` a J 

D = EI 
2 

O1 
sinh(a) +K K a le 

a cosh(a) -K 
sinh(a) 1 

52 
" 

2 t a9 t a J 
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Dss - EI cos (r3) +KKea sin(ß) - Kßcos(%3)) 

EI sin (ß) +KKrea cos(ß) - K13sin(3)) 

2 
Dss e- EI cos (r) 

.+KK?, H 
e a- sin(r) - Krcos(r)) 

2_ 

Dso =- EI Bin (r) +K Krs yea 
cos(r) - Krsin(r)) 

l= tl 

Dt = GJ Kas 
{e 

a sinh"(a) - Kacosh. (. a)) +K 41 
cosh(a) 

at' lz 
2 

D«12 = . GJ Kc 
(e 

a_ cosh(a) - Kasinh(a)) +K sinh(: a) 
Z z2 

DM = GJ K 19 reä 
sin. ( j3) - K13cos (ß), 

,-K 
cos ((3) 

PS Z 
le 

D°4 = GJ Kßfea, *cos((3) - Kßsin((3)) -K sin (ß) 
t` lZ 

2 
DM = GJ K" ire 

a_ sin(Y) - KYcos(Y)) -Ky cos (Y) 

2 
D936 = GJ Kr3 e a- cos(Y) - Krsin(r)) -K s-in (r) 

3ubstitutinglequation,.. (K.: 1.18). "in. equatIon (K. 1.23) gives 

{Aj - (B} ! {U} 

{g} ID) [Bl 1{U} 

(K)(U} (K. 1.24) 

where 

(K) - (D)(B) the dynamic stiffness matrix'' 

K. 2 VIBRATION OF BEAMS WITH MATERIAL COUPLING.; 

""I*n" -secttion"" - (K. 1), ''. 'structures vith,. -geometric. 'and 

material coupling were analyzed. Symmetrically laminated 

composite., beams vi. th, doubly. symmetrical cross. sections' 

and plates .. present.,. structures - with 
, 

material 

bending/toratonal coupling only. . 
In. the case, -of such 

structures, 4 
the. governing diffexent. ial " . equations ... 

(K. 1.1) 

. 
7. 'and 

. (K.. 1.2 
.. are " reduced. to. Ahe-fallowing. expressions. 
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4892 

EI 
8h+K s+ 

mý 
i= 

0 (K. 2.1) 
et. 

922 
Kh , +..., QT 

8Z 
Ia 'a Z. 

ý. 0 (K. 2.2) 
aY aY at 

For this . special . case... with aater. ial.. coupling.. only. , 
the 

expressions... for.,. shear"; . force, bending . moment pi-and..... torgue, 

'are,. g, i. ven., aa"4oI-lows, : -. 
Shear... force..: I. 

no to 

g. "a. - . 
EI, h-K y' (K. 2.3) 

: ''Rsud, i. ng, noaent : 

M= EI h+ KV (K. 2.4), 

"'Torque : 

T= GJ w+Kh (K. 2.5) 

Letting 

h- Hain (cat) 4. sin (w t) 

-- ., 
äy 

(K. 2.6 ) 

dh 
a .1 

dh 
etc. 

Substituting zelatione.. (K. 2.. 6) 

siapl"Ifying.. gives: 

D4H+ D94"ý HU 

where 

2 

es( EI 

KKt 
EI 

Sia"ilarly. from -taquation. "(K. 2.2) : 

D9H + D='P +6 r= Yt a0 

into (K. 2.1) and 

(K. 2.. 7) 

(K. 2.8) 
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where 

ba 
r(42 

, Ia= n r2 , 
K= K 

t GJ 

"Rearranginq.: e. quations (K. 2.. 7) and (K. 2.8) 

(Dý 
- 

ä) H+rK D3 
)4-0 

(K. 2.9) 

CKD3) H+. 
(DZ 

+brYT=0 (K. 2.10) 

Let 

L! = 
(D4. 

_) L2 
(iD3) 

Ls= 
(K 

D3 .), L4= D2 +b r2) 

Equat, ions. (K. 2.9) 
. and". (K. 2.10) give : 

Li ", H, +: LZ 4Y =0 x" . 
LA w- L= L4 H LZ L4 %F =0 

" Lý 
.H+ 

L4 W=-0"x LZ sº ." Ls LZ H+ L4 LZ 40 

Subtracting. the... first,: expresai. on"". from. . the second: 

:. (L1L4" - , LZLs) H -.. 0 

, 
ßy., substituting. -corresponding -values .. of,.. L1, Lý, L2 & Ls : 

l "ý l6l 
[[D4T 

a) 
(DK+ 

b r=J - 
(K 

D3 J(K D3 JH-0 
Let 

K 
w 

(1 
- EI GJ) 

br2 -ý -äbzi aOb=, C '` 

Therefore 

(D°+ a D4+ b D2+ c) H=0 (K. 2.11) 
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Let H= ept 

The auxiliary equation will be 

p°+ a p4+. b. p. + c0 (K. 2.12) 

Substituting \I pY 

X3+ a X2+ b X+ c= 0 (K. 2.13) 

Let X=x-a 

(x -3 )s+a (x-- -)Z+b (x 
3) +c 0 

After simplification we get 

=0 x'+ (- ----r + b) x+ (-- as- 
b+ 

C) 

Let q. =3-b 

ab 2a 
r -ý--- -a-c 

Therefore 

xs- qx-r=0 

if .. 2 7r2 -4- 
2<0 

then all the three roots of the equat-i. on, are zeal as 

follovs : 

1/2 

x! 2 (q/3) cos (0/3) 

i/2 

x2 =2 (q/3) cos 

1e2 

xs =2 (q/3) cos 
((n+#)/3)) 
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where 

9/2 » 

Cos (ý). a (3/q) (r/2) 

Since 

x- 
a 
3 

so. the roots a, - (3, and r -will 
be 

2 (q/3) cost (0/3) -- aZ 
!/ 

ß2 a2 (q/3) cos 
((u_)/3)) 

+3 (K. 2.14) 

t/2 
YZ =2 (q/3) cos 

((n+#)/3)) 
+3 

Assuming., a solution for 
. real. roots a, (3 and. y, the, 

amplitudes, of. bendtng.... deElect Ion. 
.. and, .. 

torsi. onal rotation 

are given by; 

H (C) = AiCoah (OL) + Als inh-(a«) + Ascos (j3 )+ Aas in (() + 

Ascos(rC) + Aasin(yc) 
. 

(K. 2.15) 

Similarly 

41(Z) 8=cosh-(at) + B2sinh(a*) + Bscos(f) "+ B4sin(() + 

Bcos(Y )+ Bdsin(r ) (K. 2.16) 

and :. the . slope of., the. -deflected structure is 

e( )al 
(ciA 

sinh(ci )+ aA=cosh(cC) - 13Aasin(P ) 

+ (iA4cos(pr) - YAssin(r )+ rAacos(fl )) (K. 2.17) 

Let 

Sl, 
a - sinh (a) cosh (aý`) 

Sß = sin ((3) , C1 = cos - (ßr ) 

3Y = sin (Yt) 0 CY = Coss (re) 

330 



ArrWDSX :"K, 

Substituting the derivatives of both H and 0 In.. equation 

(K. 2.7) and equating coefficients of cosh, . sinh, cos and'' 

sin. -. of-. a,. (3,. and. " r ". ta -. zero,. the .. relations... betweeq� Ai_dand..., 

B! 
_d 

are found as follows : 

B: = Ka AZ , B2 = Ka As 

Bs Kß A4 , B4 - K13 As 

Ba=KY Ad ' B43 =- KY A5 

where 

ä- a4 a- ßa - Ys K Kýa 1C?, n 
aK 

as K ßs KY 

Therefore, the expression . for. " torsional rotation in 

" "equation (K . 2... 16) 
. can . 

be wr. 1"tten.. =as 

*(ý`) = KaA13hý + KaA=Cha 
, .-_K sS0 

+K 
fA4C f, 

1- 
KYAs3+ 

KßA-Ct, (K. 2.18) 

Assuming "the""follavLnq-boundary conditions : 

H=H!, " e e, _ at =0 or y=0 

HH2T at 1 or y- t 

-We have. in. aatrix for* 

le 

%p 
A 

H -. - Z 

2 

Z 
.. 

i V v i V 

At: 
-7Z- 

0 Ka 0 Kß .0 K?, 

C 
bot 

gna, 
. 

C17 Cr sY 

Cha 1" "(3 
Cj3 - 'sY, -Z- CY 

, 

Yýi/1 KwnCº. n -. Kn3R ' KaCR - K, 
ý; 

S,, ' KyCy 

C 

K, 

A 

A 
8 

A 
4 

Aa 

" 
Ao 

... ..... .... .... #. 91 . (, 1"""" 
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or-.. sLaply,. in-""matrLx " notation 

(U) -. (B1{A) (K. 2.19) 

Nov the expressions.. for. 
",: shear. force, bending moment.. and 

t+ozque, ="are evaluated. On. -subs ti"tut"ing. the expressions for 

h and -p ... 
i, n equation (K. 2.3) we, get.. the foýloving 

expression for the shear. . 
force :. 

NI 11 

S.. a -. EI h-KP 

- KOS A=- K C1Ai - KSßAs+; K CtIA - Ký, 
SSVA5+ ha OUS (As 4 

K, C? Ad (K. 2.20) 

where 
A 2 [EI a +K K iJ °t K 
s Z " 

a t t a. 

f 1 ß Ký EI 
L 

+K Kß 
Z J 

= K 
l l . l 

a 2 

K = 
rEI 

+K K l i 
K 

ra J, z 
i 

The bending 
. soment" as""given" in": equation (K. 2.4)-. becomes : 

H- EI h+Kw 

=KC Aii K ShaA=- KCsK SoA4- K?, 
mC?, 

Aý- 

where 

KrmSA/A'K (K. 2; 21) 

Kam- [EI +KKa 
lz t 

K 
[EI_+KKJL. ] 

fihn 
a 

Ký, 
M 

K 
ý, t 

and.: finallyrthe, torque. ¬rom.. equation (K. 2. SY becomes 

T- GJ pº+Kh 

-K 
CtL 

C As+ KS A2- K CRAB- K(kS A4- K2, 
tCYA5 

- K?, 
t 
SYAd (K. 2.22) 
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where 
s 

K GJ.. 
a Ott Lt Z' 

I. 

K 
LGJ" 

KK'1 .ý 
tZ 

K. 
Y 

+K Krt 
[GJ' 

t l2 

Assuming ., the !. fol LoWLng-, boundary conditions, 

.3 -31,, Mx -H , M= -M=! at 0, . or y0.; 

3 .820 Mx ' Mxz ' Mx Mzz at ý` 1 or yal 

Therefore,. ".. we have. the shear force, 

"bending. omoment . and. torque.,, expressed ". is 
.. 

the, Ratz. ix . form as 

., 
follows : 

I -Ka" K 
f? " 

0.. Kre 
I 

Mi K0 -K 0 -Kr 0 at. 

Kat 0 -Kpt 0' -KYt 

-K 8 -K C -K $KC -K 3KC 
a" ha a" ha. ;i3, " 

fý.. on 'ý'. Y".. Y, ' Y, " Y 

z 
KC «K 3-K C rK, ,8 

-K C -K aaa ha ani ha: ßßn Ri.. ß 
.r 

Y^ý ? rý:, 

" Ya r 
Tz KatCha KatBhä""-KCý = -KIh9 -KYCYp -KYtS A4 

or.. simply 

{p} [DIW (K. 2.23) 

But (A) _ [Ws(U) 

therefore 

{F} a ID] [BI t(U) 

IK1{U} 

where.. (K) (D)IBI is the required ... 
dynamic 

stiffness matrix 
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APPENDIX :L 

LUSAS :"" FINITE, ELEMENT. -COMPUTER PROGRAM 

14 

LUSIYS.. Ei).. in. a... 
*-genera l.. pur pose.... engineering -ana4Y&i15, %. '- 

system which .. ý "i. naozporates. . 
facilsities 

... 
for ""--linear, "" -and 

nonlinear,, static. anal"ysis,.. step., by.. step. dynamic.., analysis, 

eigenvalue . extr. "action. .a . 
linear. 

" 
buckling., and.. steady .. and 

:! '.; tDansient field b4sed- on 

the finite element displacement .,, method of. analysis and 

contains a comprehensi"ve" -range., of ... elements.... and solution 

procedures for the.. analysis of-. most types of engineering 

structure. The.. element. . Library -includes. elements fox the 

-', 
"analysis. 

-of .. membrane 

structures,. plates, . 
thick.. and thin shells, axisywaetr. ic 

. '. solids. and, general. sol4 ds.. " . 8evexa, l".. types of-te&eaeat -May .. be 

used. -to, -idealise. d. if. ferent, , parts ""of a structure providing 
hodal,,, f, reedoms. -lima tch. ". 

The system... contains. a, wide. -range... of both. . 
linear " and 

"nonlinear.,, aater, ial""types"... (consti"tu. tive.. "aodels) -which -cover 

most. engineering ., materials.. " The-". " support.. node. conditions 

may,; be.,. elther'"; restrained... aoapletel"y-on free. --They .. can also 

be restrained-with a. -prescribed 
displacement or restrained 

by, -means of a spring... . The load types available are 

similarly -wide ranging. and -include, point, loads,, constant 

body forces, centrifugal .. forces, surface - pressures, 

temperature.. and,. uni. forwly., d'istributed . loads. 

The. elgenvalue extraction, solution procedure adopted 

is the.. subspace.. "iteraiion" method ... which.., incorporates the'''. 

existing frontal solution algorithm. ..., This allows large 

... :j:; problems ,. to,,. be.,.. solved Le, ff. iciently. -on an,, e. went-by-element 

basis.. without .. 
the. need. to,. reduce - the.. problem, size. 

, "''. 
'. The",,. etandard"relgen, npr"oblea. ""aay. be, expressed as 

(L. l) K'0 =A0 
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'where.. ,. K ..,, 
is', the---global a 3ti, f. fnessonatrix 

X is the vector-of eigenvalues 

' is - the vector, of. corresponding, e. i, genvectorz , 
In vibration " ana"lyais.. the . standard. --eigen -problew. may 

be. ' e. xpreaaed as 

K,, #, =XH (L. "2) 

where H 
.,. 

4e. the,... globa1., mass matrix 

X are. the vibration frequencies (rad/sec), 

squared, 
w 

is the eigenvector 

The nass matrices. "for each element".. are consistent 

 ass. matrices, . although... 1uaped masses.. may. ".. be " 
input as an 

option-6-. Ln-genexal: the . eleaent' mass matt ices. are ;. formed, as, 

M Ne p (L., 3) 

pi-4s, bhe, density 

N is the element. -shape 
functiori 

To-, "eval"uate"-the. faccuracy. of. the ", soluti. on,.. error norms 

on . each . eigenvalue. are output... The. Sturm " sequence check-As 

also available - to ensure that the. lowest n eigenvalues 

". have . been. 
" found 

. 
In order -to compute the natural- frequencies of-the 

structure, the, following formula, should be applied to the 

... eigenvalues.... output.,. fiom LUSAS. 

f (Hz) R (L. 4) 

w 
where X (output eigenvalues, ).. 

1. LUSAS, Finite. Element.. Analysis., Ltd..., 25 -Holborn 

. "Vdsduct,,.:. London,. EClA-. 2BP", ýU. K.,. 

335 


