
Springett, M.V. (1995). User modelling for evaluation of direct manipulation interfaces.

(Unpublished Doctoral thesis, City University London)

City Research Online

Original citation: Springett, M.V. (1995). User modelling for evaluation of direct manipulation

interfaces. (Unpublished Doctoral thesis, City University London)

Permanent City Research Online URL: http://openaccess.city.ac.uk/7776/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

User Modelling for Evaluation of Direct
Manipulation Interfaces

Mark Vincent Springett

Submitted for Examination of Doctor of Philosophy

Department of Business Computing,
City University,

London

July 1995

TABLE OF CONTENTS

Chapter 1- OVERVIEW 10

1.1. Introduction 10

1.2. Direct Manipulation Interfaces 10

13. Models in Design 11

1.4. Evaluation 11

1.5. Evaluation in Industry 12

1.6. Overview of the Thesis Approach 13

Chapter 2- REVIEW OF MODELING AND EVALUATION WORK 15

2.1. Introduction 15

2.2. The Direct Manipulation Metaphor 15

2.3. Models of the User 21

2.4. Evaluation Approaches 34

2.5. Summary 41

Chapter 3-A MODEL OF DIRECT MANIPULATION ACTION 42

3.1. Introduction 42

3.2. Theoretical structure of the Model 42

3.3. The Theory of Action Applied to DM 43

3.4. Description of the Model 45

3S. Display Knowledge Sources 48

3.6. Errors Linked to the Model 51

3.7. Investigations of the Model 55

3.8. Chapter Summary 56

Chapter 4-AS MY OF IN ERACFIVE BEHAVIOUR AND ERRORS 57

BY NOVICE USERS OF MACDRAW 1

4.1. Introduction 57

4.2 Methods 58

4.3. Data Analysis 62

4.4 Results 65

4.5. Analysis of User Errors 72

4.6. Studies of Expert Users 88

4.7. Studies of MacDraw II 89

4.7. Conclusions 91

4.8. Chapter Summary 92

Chapter 5- FURTHER MODEL OF AC 'ION DEVELOPMENT'S 92

5.1. Introduction 92

5.2. Revisions to the Model of Action 92

5.3. Models of Action Specification 108
5.4. Error Diagnosis in the Context of User Activity 114

S. S. Errors in the Recognise/Evaluate Change Phase 122

5.6. Dialogue Roles 124
5.7. Chapter Summary 136

Chapter 6- MODEL-BASED STUDY OF WORD PROCESSOR USERS 138

6.1. Study Objectives 138

6.2. Methods 1388

6.3. Data Analysis 142

6.4. User errors made in the Sessions 144

6.5. From Phenotypes To Genotypes 150

6.6. Secondary Causes 160

6.7. Analysis of Interference from Previous Package Use 162

6.8. Review of Methods Used in the Sessions 164

6.9. Discussion 165

6.10. Implications for Evaluation 166

6.11 Summary 168

CHAPIER 7-MODEL-BASED MMOD FOR NOVICE EVALUATORS 172

7.1. Using Modelling Knowledge for Evaluation 172

7.2. Model Elements For Evaluation 172

7.3. Designing an Evaluation Method for Novices 171
7.4. Profile of the Novice Evaluator 172
7.5. The Model Mismatch Analysis Evaluation Method 173
7.6. Preparing For the Session 185
7.7. From Diagnosis to Practical Solutions 188
7.8. Summary of Chapter 188

Chapter 8- COMPARATIVE TESTING OF THE MODEL BASED 191
METHOD FOR NOVICE EVALUATORS

8.1. Introduction 191
8.2. The Usability Checklist Method 191
8.3. Study Design 194
8.4. Results 195
8.5. Evaluator Performance 200
8.6. Analysis of Reference to Actual Errors in Method Analysis 204
8.7. Qualitative Analysis of Solutions 207
8.8. Further Analysis of MMA 211
8.9. Further Analysis of the Usability Checklist 213
8.10. Time taken by the Methods 217
8.11. Satisfaction Ratings by subjects 218
8.12. Conclusions 225

Chapter 9- SUMMARY OF OBJECIIVFS, DEVEWP V RM AND 227

FUTURE WORK

9.1. Review of overall aims 227
9.2. Developments and Contributions 228
9.3. Future work 240
9.4. Summary 245

References 245
Bibliography 261

Thesis Figures and Appendices

Figures

3.1. Model of action with direct manipulation interfaces

3.2. The model of DM action with associated knowledge sources

33. The model of DM action with associated error types

4.1. The MacDraw I interface with a pull-down menu displayed

4.2. The scenario used for protocol analysis of MacDraw

4.3. Time-line graph activity for subject B

4.4. Time-line graph activity for subject C

4.5. Network diagram illustrating pattern of activity for all subjects
Table 4.1. Frequency of error types by subject
Table 4.2. Frequency of errors ranked by design feature and error category
4.6. MacDraw I screen, showing the arrows menu and arrows on curved are

problem

4.7. User and system models for drawing a line with an arrow using MacDraw I

4.8. User and system models for drawing an arc with an avow using MacDraw I

4.9. User and system models for general drawing actions using MacDraw I

4.10. a. User and system models for the move operation
4.10. b. Partial user and system models for the multiple object (lasso) operation

5.1. Rasmussen's processing levels with related knowledge spaces
5.2. a. Model of knowledge-based action
5.2. b. Model of rule-based action

5.2. c. Model of skill-based action
53. Model of the cycle of remedial action
5.4. Knowledge space utilisation in search and specify operation mental acts
5.5. Dialogue roles linked to user mental acts
5.6. Locator and Feature Identifier problems in the MacDraw menus
5.7. Role failures linked to protocol evidence
6. l. a The task start-state presented to subjects
6.1. b. The task end-state presented to subjects

6.2. Error phenotypes linked to stages of an action

6.3. Errors by feature for each user subject

6.4. Error phenotypes observed in the ten sessions
6.5. The more frequent error phenotypes observed in the sessions
6.6. User expectations contrasted with the system model for the columnising task

6.7. Two subjects' task models for the columnising task, alongside their device

expectations and the system model

7.1. A four stage model of action with dialogue roles assigned
7.2. The activity/role sequence with associated mismatch types

73. Incident Record Sheet for use by evaluators
7.4. The mismatch types linked to typical protocol evidence
8.1. Entrs by task for MMA and UC subjects

8.2. Error phenotypes for MMA and UC user subjects
8.3. Errors occuring on more than one occasion in the ten sessions
M. Total solutions by each set of evaluators, with references to actual errors

by user subjects during the sessions

8.5. The number of independently observed errors, with the number of

references made in the analysis process by MMA and UC subjects
&6. a. Solution accuracy classifications for MIvIA subjects
&6. b. Solution accuracy classifications for UC subjects
8.7. Number of incidents analysed compared to the number of solutions

offered and actual observed errors for MMA subjects
8.8. Role citations linked to solution suggestions for MMA subjects
8 9. Total answers to UC sections 1-8

8.10 Sensitivity analysis, showing the number of occasions that three or more

subjects entered the same answer for checklist sections 1-8

8.11. Time taken for collaborative and post-user analysis
& 12a Satisfaction ratings by MMA evaluator subjects
8.12b. Satisfaction ratings by UC evaluator subjects
8.13a. Satisfaction ratings by MMA user subjects
8.13b. Satisfaction ratings by UC user subjects

Appendices

A. The Model Mismatch Analysis method, as presented to novice evaluator

subjects.
B. The Usability Checklist subject's instruction package, as presented to novice

evaluator subjects.

Acknowledgements

I would like to thank Professor Alistair Sutcliffe for his dedicated help and assistance

as my main supervisor. I would also like to thank Dr Gordon Rugg for his invaluable

contribution as my second supervisor. Thanks as well to Logica Cambridge for their

funding and support in the first three years, and to EPSERC for their funding, and

particularly Mr Ian Clowes for his contribution to the work. I thank my parents, Peter

and Brenda Springett for giving me the support necessary to persevere with the thesis

through difficult circumstances. I also thank Mrs Liz Bromley, Ms Karen Coates, Mr

Paul Collins, Mr Mark Dransfield, Mrs Anne Doubleday, Mr Peter Faraday, Dr

A. Simon Grant, Ms Angela Lucas, Dr Neil Maiden, Mr Gareth Martin, Mrs Wendy

Martin, Mrs Uma Patel, Mr Rod Rivers, Ms Michele Ryan, Ms Rachel Soper, Mr

Graham Stirling, Mrs Irene Stockdale, Mr Steve Woodcock and Dr Dan Wright for

various acts of help and support.

7

Declaration

The author grants the power of discretion to the university library to allow the thesis to

be copied in whole or in part without further reference to the author.

Abstract

This thesis applies models of user action to usability evaluation of direct manipulation
interfaces. In particular, the utility of a Model of Action for assisting novice

evaluators in usability tests is investigated. An initial model of user action is

proposed, based on the theory of action proposed by Norman (1986). This model
includes a description of knowledge sources used in interaction, error types and user

responses to errors. The model is used to interpret data on user behaviour and errors
in an empirical study of MacDraw I. This study used the Protocol Analysis technique

proposed by Ericsson and Simon (1984). Protocol evidence shows that the search

and specification stages of user action could usefully be treated as separate in terms of

user knowledge recruitment and the nature of system support. The Model of Action

is then expanded and modified to account for the empirical findings. The new model
distinguishes knowledge-based, rule-based and skill-based processing in Direct

Manipulation (DM) interaction, using the distinction drawn by Rasmussen (1986).
These processing levels are explicitly linked to types of presentation technique and
categories of user error. This is developed into a technique for determining system
causes of usability problems. A set of mental dialogue tokens (roles) are developed

to assist novice evaluators in the interpretation of error causes. Roles are linked to
types of user error in the cycle of action in a diagnostic model. This model forms the
basis of a budget method for use by novice evaluators, named Model Mismatch

Analysis (MMA). These developments are tested by a two-tier study of user

performance on Microsoft Word. The empirical evidence validated the taxonomy of

errors, and tests the utility of five retrospective data analysis techniques. A study of

novice evaluator performance is reported, comparing the MMA method to the
Usability Checklist proposed by Ravden and Johnson (1989). The MMA method is

shown to be the more efficient approach. To summarise, models of Direct

Manipulation action are shown to assist novice evaluators both in the diagnosis of

usability problems, and the selection of remedies.

9

Chapter 1- Overview

1.1. Introduction

The thesis brings together two related research aims. One is to give Direct

Manipulation design a firmer theoretical footing. This is approached by developing a

model of the user, and of interaction. Related to this is the development of methods

suitable for use by designers in industry. This is approached through the development

of a practical method of evaluation which can be used by members of the design

community. The project aims to package user modelling knowledge in a form that

supports swift evaluation by novice evaluators.

1.2. Direct Manipulation Interfaces

Direct Manipulation (DM) is a style of user-computer interaction in sharp contrast to

early user interfaces. It was the early interface styles (e. g. command languages) that
became the focus for Human-Computer Interaction (HCI) research. Early models of
computer use were targeted towards this type of system (e. g Card et al 1983, Payne

and Green 1986). In the late eighties the need for research to address other styles of
interface became apparent (Suchman 1987, Mayes et al 1988, Norman 1986,

Shneiderman 1987, Laurel 1988). In particular, the influence of display as cues for
interaction became a central theme. Models of users and of interaction were developed

to account for this (Norman 1986, Lewis 1988, Howes and Payne 1990, Tauber
1990).

The potential of DM interfaces is demonstrated by the success of Apple and Microsoft

Windows products. DM interfaces have characteristics which reflect a range of
modern interaction techniques. These include mouse input, windows, pop-up and pull
down menus, and the use of icons. DM has the added characteristic of direct action on
interface objects. This represents a fundamental change in the nature of user action
(Draper 1986, Hutchins et al 1986). The user's intentions are expressed directly on

objects rather than being mediated through an interface language. This affords the

possibility of creating highly interactive empowering technology for a large range of

user types. A number of difficult applications are made quick and easy using DM

systems. Whilst this style of interaction is less powerful in certain applications than

command-line systems such as Unix (e. g. text processing) it can make technology

extremely accessible. DM style interaction can broaden the use of sophisticated and

powerful technology, bringing considerable commercial benefits to organisations.

10

Whilst display-based interfaces and interaction has been the subject of focused

attention in recent literature (e. g. Payne 1991, Nielsen 1990), there are no detailed

models describing the dynamics of DM interaction. Further investigation of DM

interaction and user behaviour is therefore required.

1.3. Models in Design

The design of an interactive system necessarily embodies a model of the user (Carroll
1991). DM systems rely heavily on communicating concepts to the user by matching

representations to the user's model of concepts (Laurel 1988). Therefore, user
modelling is a key element of designing and evaluating DM systems. A number of

user models exist in the literature, but there are two shortfalls. The first is a marked

absence of meaningful links between formal models of users (and interaction) and

methods of design. Modelling typically takes aspects of users and makes precise
definitions (e. g. Payne and Green 1986). By contrast, design guidelines (e. g. Smith

and Mosier 1986) tend to be general rules of thumb. In addition, the user modelling
literature has yet to account for the specific nature of DM style interaction. Some high-

level accounts exist (Hutchins et al 1986, Shneiderman 1987), but these accounts
possess insufficient detail to effectively inform design.

1.4. Evaluation

Evaluation may be applied at various stages in the design process (Sutcliffe and
Springett 1992). Evaluation techniques may be used to test completed products
(summative evaluation). They may also be applied to early design artefacts, design

mock-ups or prototypes (formative evaluation) (e. g. Shackel 1986). Early user
models (e. g. Card et al 1983) were designed to make formal evaluations of interfaces.

More recent attempts have tried to apply user models to practical evaluation techniques
(Lewis et al 1990). However, these models could not give complete accounts of
interaction, or isolate usability problems. Field-orientated studies provide a

contrasting approach (e. g. Whiteside et al 1988). However, these provide data that

requires processing and interpretation. Also, this type of study may fail to capture
important details, even when a large volume of data is collected.

There is no current method which integrates practical analysis of real users with user

modelling knowledge. This is despite the fact that practical and theoretical research
(Suchman 1987, Mayes et al 1988) suggests that `modelling the user' must account for

11

how users respond to the display. In other words, an accurate model of action should
be an ̀ interaction' model, describing current and previous influences on user
behaviour. Therefore, user response to the display must either be accurately predicted,
or elicited during interaction.

1.5. Evaluation in Industry

Evaluation is acknowledged as an important part of the design process. Despite this,
industry's response to the need for evaluation is patchy. Some reports have suggested

that industry is reluctant to use evaluation techniques in design (Bellotti 1988). This is

reported as being partly due to the expertise required to use some methods, and partly

because of the amount of time and resources required to perform evaluation (Ronson et

al 1988). A number of contemporary methods require considerable expertise and

effort to apply (e. g. Card et al (1983), Keiras and Poison 1985). This renders them
largely inaccessible to the design community. Another problem is that industry tends

rely on field reports to test products, and formation of new product versions. The

viability of in-house evaluation may only be accepted if a tangible improvement to

current practice is offered.

The typical background of members of the design community does not include relevant

evaluation expertise. Higher education in Computer Science and related disciplines

may not include any HCI training. Recently, HCI modules have been integrated with
Computer Science in some universities. However, the background knowledge

required is unlike other branches of the discipline. Only some of the larger

organisations (e. g. British Telecom, IBM) have Human Factors professionals on their

payroll. Consequently, there is a need for methods in industry which can be used by

people who do not have HCI expertise.

At present there are no methods which both employ cognitive science models, and are

usable in the absence of an HCI/cognitive science expert. There are moves towards

such a development from the academic community (e. g. walkthrough methods (Lewis

et al 1990)), but this is still far from complete. User Modelling knowledge requires a

method that can bridge the gulf in expertise. Further investigation is required into the

content and format of such a method.

12

1.6. Overview of the Thesis Approach

The thesis investigates current contributions in the literature to the understanding of
display-based interaction, and approaches to modelling users. The less structured but

more paradigm specific literature on DM interaction is also investigated for leads about

critical and distinguishing factors in DM use. This is augmented by study of cognitive

science issues relevant to the usability of DM systems. These include models of

environmentally-based action, display-based learning, the use of metaphor and

analogy, and task-based memory.

Contemporary approaches to evaluation are investigated in order to establish an

appropriate format, both for conducting investigation within the thesis, and developing

an appropriate evaluation method. An approach employing Norman's (1986) theory of

action for interpretation of user data is described. This theory is developed into a

model of DM action, incorporating accounts of user error responses, and the type of

errors associated with the action cycle. The model is investigated empirically to

validate its overall claims about the nature of DM action, and to further elucidate and

refine its description of DM action.

The investigation of the model employs user-based studies of novice users performing

a task. Protocol Analysis (Ericsson and Simon 1984) is used to gather data. Also, the

suitability of the protocol analysis method for model-based evaluation is investigated.

A method for analysing mismatches between the user's model of the task and the

system model is introduced, based on the work of Keiras and Poison (1985).

Evidence from the empirical studies is used to expand the description of DM. The

description of mental processing levels described by Rasmussen (1993) is used to

distinguish between use of known procedures, learning from examples, and

guesswork in novice interaction. Error types associated with the cycle of action are

refined and applied to points in the cycle best representing the root cause of the

problem.

The model is developed into a prescriptive version, in which design problems can be

traced from user errors. The sequence of action is described in terms of abstract
interaction phases (activities and roles). These describe user needs at specific points in

the cycle of action. The phases are linked to types of design problem. This model is

linked to types of error phenotype (Hollnagel 1993). The phenotypes can be identified

and traced to causes using visual and verbal evidence from user studies. The model is

integrated with the York Manual technique (Monk et al 1991, Wright and Monk 1991),

itself a variant of Protocol Analysis (Ericsson and Simon 1984).

13

The method as a whole is tested for effectiveness, efficiency and usability in a

comparative, user-based study. Ten subjects acted as observers, monitoring novice
users performing a task on the Word 5.1, package. Ten subjects acted as evaluator

using an alternative, questionnaire-based method (Ravden and Johnson 1989). The

subjects were selected on the basis of having similar background and knowledge to the

target method users in industry. Performance of evaluators using the methods was
compared. The studies suggested that the approach is potentially useful in industry. It

compared favourably with the other tested method for effectiveness, efficiency and
usability. The study also raised some more general points about the format of

evaluation methods. The issues raised contribute to contemporary debate on the

usability of evaluation methods.

14

Chapter 2- Review of User

Modelling and Evaluation Work

2.1. Introduction

This chapter discusses the nuances of DM-style interaction, and the implications for

user-model and evaluation method development. The contrast between DM and more
traditional interfaces is described, with particular reference to the role of the display as

a determinent of user behaviour. The suitability of contemporary user models in this

context is then discussed. Similarly, contemporary evaluation approache are assessed
for their likely effectiveness and coverage when applied to DM interfaces. These

include methods derived from the established user models, and more recent methods

which are designed to address DM issues.

2.2. The Direct Manipulation Metaphor

2.2.1. Introduction

Direct Manipulation is a style of interaction that departs fundamentally from traditional
interaction design (Shneiderman 1982,1983). Most theoretical HCI developments had

been developed for, and through study of, command-style interaction, or heavily

constrained menu-style interaction. Therefore, the contrast between DM and other
interaction styles is of central interest. Contemporary user modelling and evaluation
approaches are reviewed with reference to this contrast.

2.2.2. The Qualitative Contrast

Shneiderman (1986) reports seven qualitative aspects of interaction on DM style
systems. All seven are reported as positive aspects of using the system, particularly
for users who would not be considered computer experts. These include mastery of
the system, confidence in their capacity to retain mastery, and ease in learning the

system originally and assimilating advance features. This is attributed to the visibility
of objects and actions of interest, the direct manipulation of objects of interest, rapid
performance, incrementation and reversal of actions.

15

The reported enthusiasm of DM users (e. g. Chin 1984, Jones 1990) contrasts with the

experience of users of command language-based interfaces. An example is the UNIX

operating system, which is an example of a `conversational style' interface, containing

a number of non-natural language commands. Norman (1981) describes the UNIX

interface as `counterintuitive, inconsistent, and difficult for people to learn'. They will

also have the prospect of deciphering coded system feedback, particularly after errors.
This accounts for the difficulty that many users face in using such systems. The

example, of moving files on a command-based system emphasises this point. The

user has first to be aware of a non-natural language term(s) meaning 'move'. The user

will also have to remember the coded names for the file and directories. The user will
have to construct a four- place predicate, on a screen with, perhaps, nothing on it

except a prompt and whatever s/he chooses to type. Only then will the operation take

place.

In the file-moving example there is a considerable gulf between the thoughts and goals
of the user and the description of the system which s/he is having to deal. This gulf is

both in terms of structure and appearance. Users are faced with the task of translating

their own representation of a task into the language of the interface. By contrast, DM

systems allow the user to feel in greater command of the dialogue, and in greater

control of the system.

The most well-known phrase describing the nature of DM is the principle of
WYSIWIG, or `what you see is what you get'. Hutchins et al (1986) describe `the

feeling of involvement directly with a world of objects rather than of communicating

with an intermediary'. The removal of the `intermediary' appears to be a key element.
Task performance involving familiar implements such as a pen and paper, or tools such

as hammers, planes and saws, allow the task performer to concentrate attention on the

task-goal. A letter-writer can concentrate on the subject matter of the letter. A DIY tool

user, can concentrate on the object that is being crafted. The tools are only the focus of

attention if they break or malfunction. The examples display a fundamental tenet of

cognitive science, namely the synthesis between human and environment. This

application of this principle is applied to HCI by what Nelson (1990) describes as the
`principle of virtuality'. This describes an interface that gives the user a sense of being

involved directly with a representation of the real-world. Rutkowski (1982) also
describes the synthesis of user and environment with the `principle of transparency'.
This describes the user as applying intellect directly to the task as ̀ the tool itself seems
to disappear' (Rutkowski 1981). Hutchins et al (1986) refer to this qualitative

phenomenon as ̀ direct engagement'.

16

Direct engagement at the interface may be seen as the situation where the user

(whatever his/her background) performs as an expert performs when presented with a
familiar task. Tasks and their associated sub-tasks and routines are recognised and

performed easily. The user is able to concentrate directly on the task that the interface is

mediating. The user is not conscious of the interface.

Direct manipulation should produce expert behaviour in the sort of users are commonly

referred to as computer naive. In other words, the novice should exhibit expert-like
behaviour. The user should be able to acquire skill quickly using declarative

knowledge, as described by Fitts and Posner (1967) and Johnson-Laird (1983). Work

by Carroll (1984) suggests that DM systems may facilitate inductive learning in which

the user can apply a minimal amount of declarative knowledge, with a small amount of

training. The novice user cannot call on 'device expertise' in computer system use.

Therefore the virtual world must, in some way, tap the task-performing ability formed

from users experience of other tasks. This implies that its appearance and
functionality, must represent real world task situations in a way that stimulates rapid

expertise.

2.2.3. Achieving the Qualitative Contrast

Theoretical work by Norman (1986,1989) further describes the nature of `direct

engagement', and the barrier that the medium may impose. Achieving direct

engagement can be thought in terms of bridging two gulfs, those of execution and

evaluation.

The gulf of execution can be illustrated by considering task execution in a typical

command based interface. The user may, for example, wish to move an account file

from one directory to another. This is a simply expressed desire and is easily

visualised as a real-world task. This will be something like two drawers visible in the
foreground, one with the relevant file in (instantly recognised as the relevant file). The

action is a simple lifting the file out of one drawer and into the other. It's equivalent in

a command-based system is somewhat less straightforward, as the earlier example
described.

In the above example there is a gulf between the thoughts and goals of the user and the

description of the system with which s/he is having to deal. This is true of both

structure and appearance. The user is faced with the task of translating their own

representation into the language of the interface.

17

The gulf of evaluation is also evident in this example. This is defined as the 'amount

of processing structure required to establish whether a goal has been achieved'. Again

this refers to the difference between the envisaged goal state as it is represented 'in the
head' and the interface representation. In command systems the results of user input

behaviour will often remain unclear.

2.2.4. Direct Engagement in a DM System

In a good DM system the gulfs of execution and evaluation will be closed (Norman

1986,1989). The 'move file' task, for example, can literally be the moving of a file.

The user can drag the file from one location and place it elsewhere. The user is,

therefore, performing the task that s/he had conceptualised. The task seems

straightforward and familiar, and is performed in the 'normal' way. The 'closure'

occurs because the design and the users model have been brought together. Evaluation
is similarly straightforward. The user simply observes the screen and assesses

whether the file has been manoeuvred successfully. There is nothing to confound the
feeling that the the task is performable and comprehensible. Five crucial user-centred
components of a good DM interface can be identified:

1. The appearance of the interface stimulates recognition, and recall of appropriate task
knowledge

2. The structure of the domain as it presented is consistent (though not necessarily
identical) with the users own conceptualisation

3. Sequences of actions are consistent with user expectations, and recognisable as

such, with the user knowing what action to perform by observing the screen

4. It is easy to recognise not only what actions are necessary but also how to perform
them

5. The screen representation supports the user's conceptualisation of the goal state,
and intermediary states towards it.

This, of course, is to be achieved in a virtual world of which the user may have little

direct experience. It is general knowledge and knowledge of previous tasks that is

enlisted. The interface resembles, or corresponds to what is in the user's memory,
formed in other domains. Therefore the way in which people use prior expertise in the

performance of new tasks is crucial to the user model, and will form the basis of direct

manipulation design.

18

The initial claim was that the direct manipulation metaphor contrasted with the

`conversation metaphor' (see Hutchins 1986) by which command-based dialogues

could be analysed. However, Brennan (1990) re-introduces the conversation

metaphor as a descriptor of direct manipulation dialogue. The crux of the argument

was that Direct Manipulation possesses the richness of human-human conversation,

unlike other types of interface. This is despite the absence of textual dialogue. The

first point is that meaning in conversations is often expressed though supplementary
dialogues such as gestures. Another related point is that dialogues, particularly where

tasks are involved, tend to involve artefacts which mediate the conversation. Phrases

such as ̀ put that there' are used along with appropriate gestures at relevant objects.

Another aspect of the conversation metaphor is the collaborative nature of dialogue.

Clark and Schaffer (1987,1989) refer to the `collaborative model' of conversation. In

this model, dialogue is viewed as a sequence of presentation and acceptance acts
between the participants. One participant presents a propositional statement. The other

responds with an indication of understanding or attitude, or by an appropriate action
(acceptance act). This may be a nod or a frown, or a more assertive verbal response.
The acceptance act may, in turn, serve as a presentation act for the other participant.
The `collaborative model' seems to reflect the description by Draper (1986) of
input/output couplings in DM dialogues. Draper describes DM as allowing the users to

operate upon output representations and use them as input back to the system.

The theme of dialogue as a set of conversation-style `turns' is further advanced by

Payne (1990,1991). Payne uses example dialogue sequence from MacDraw to

illustrate the principle. The sequence of actions required to open a new file is

described as a series of interactive turns. Each unit of interaction is composed of

`presentation and acceptance' dialogue acts. System responses to mouse movements

and button presses are, in the first instance, acceptances of user acts. They

simultaneously serve as presentation acts, cueing further response from the user.
Payne (1990) uses this metaphor to describe a parsing error in which the user fails to

interpret a system response to a mouse movement (on to a tool option). The user
interprets a shimmering option highlight as acceptance of a selection option. The

system has made an `acceptance' of an unconfirmed selection (the shimmering

presenting a cue for a mouse depression by the user). The user commences a drag

action, whilst the system reverts to the tool option that had been selected before the

current action. Therefore, the user starts a drag action with the wrong tool option

selected. This description of dialogue further elucidates the description by Draper

(1986) of `inter-referential' DM input and output.

19

2.2.5. Typical Components of a DM Interface

The space of possible DM interfaces is considerable. The nature of the design may

vary with the type of application, how the domain lends itself to representation by a

visual metaphor, and the scope of the domain to which it is applied. However, these

interfaces are typically defined as WIMP interfaces (windows, menus, icons,

pointers). These elements of a DM interfaces are now discussed in turn.

The use of windows at the interface allow users the equivalent of parallel applications

programs running simultaneously. As Dix et al (1992) puts it, `users can direct their

attention to the different windows as they switch from one thread of work to another'.
Users are able also to manipulate the size and shape of windows. The technique

allows more complex and fragmented elements of tasks to be supported. For example,

cut and paste facilities are supported by a `show clipboard' feature which allows the

user to see what has been cut (and will appear as the result of a paste). This is

achieved by displaying a small window which displays the content of the buffer.

The use of icons at the interface is a crucial component of non-textual dialogue. Icons

may, for example represent closed windows that are available to open, operations

available for selection, or changes of operational mode (such as changes in cursor

mode). They are typically divided into two design styles, pictorial and symbolic,

although other designs are possible. Examples of pictorial icons include the Macintosh

`wastebasket' icon representing the location of a delete buffer, and the `mailbox' icon

representing incoming messages on an e-mail package. Symbolic icons may be

directional symbols (e. g. fast forward buttons, or more abstract representations.
Pictorial icons are potentially able provide a direct representation between task concept

and device feature. Rogers (1989) claims that the degree of icon effectiveness is

dependent on the directness of the mapping between an icons physical form and its

referent. It is argued that the learnability of icons is dependent on the representation,

and that pictorial icons are likely to be more effective. However, Green and Barnard
(1990) suggest that wider issues of array design and positional strategy are also
important.

Menu operations are less direct than other DM operations in that they are selectable

options which cause a change in the system state (Paap and Roske Hofstraand 1988).

Menus found on typical DM packages tend to be pop-up or pull-down operated and
frequently use textual representations as identifiers. However, some menus are simply

given textual headers, and are represented iconically (e. g. Fill, Lines and Pen menus in

MacDraw). Other types of design may also be regarded as menus (although their
design contrasts considerably with the traditional notion). Palettes are used to make

20

the alteration of cursor modes easier and more visible. The principle of scanning from

a range and selecting an option is much the same.

Other techniques that may be employed include dialogue boxes and radio buttons.

Dialogue boxes are designed to show the user where to enter information. They are

presented to the user in a manner similar to form-filling interfaces such as those

described by Ogden and Boyle (1982) and Pakin and Wray (1982). Radio buttons

present the user with a limited range of options which can be selected using the

pointing device. Both examples are generally presented in sub-windows called in

response to command actions on menu or icon features.

2.2.6. Some Examples of Direct Manipulation Applications

Word processors that have a significant DM content are now commonplace. Examples
include Microsoft Word, EMACS and MacWrite. The advantages are both in

execution and evaluation. The user is able to manipulate the cursor using a mouse, and
call editing functions using the mouse. There are facilities for viewing pages of
documents, and the text is generally presented in the form in which it will print. The

results of action are immediately displayed on the page.

Draw packages such as Paint and MacDraw amply demonstrate two of the fundamental

aspects of DM interfaces. Objects are created and edited directly by the user. This may

include dragging a shape to alter its dimensions, or moving the positioning of various

shapes on-screen. These are performed by directly pointing to, and dragging the target

objects. This is a very direct operation on the objects of interest by the user. Also, the

user is continually tracking responses to input by watching the objects of interest alter

their locations and physical dimensions. This type of continuous cognitive feedback

was found to be highly effective and time-efficient in studies by Te'eni (1990).

The desktop metaphor is one of the best-known and applied DM examples (Smith et al
1982, Bewley et al 1983). Information retrieval systems using DM graphics have also
been reported. One example of the latter is the `Information Visualiser' (Card et al
1991). The LISA desktop package was found to be considerably more popular with

sample users than a form-filling interface (Carroll and Mazur 1986).

A number of contemporary video games employ DM interaction design. These include

`space invaders', and a many more sophisticated descendants. For example, computer

golf mimics the the wielding of a golf club with a spring-action input device. It also

mimics the variable conditions and constraints of real golf, including cross-winds and

green conditions.

21

Computer-aided learning has also applied DM techniques. One example is Interactive
Physics which demonstrates physics concepts on the screen in an interactive format.

For example, users are able to lift and drop objects to see how their behaviour is

affected by force, gravity and so on. A navy training simulator reported by Hollan et

al (1984) used gauges, dials and knobs which students could directly manipulate.
Another similar example is the Alternative Reality Kit (Smith 1987). Again the attempt
is to teach physics by simulation, with some buttons having mass velocity, and all

controls behaving as in the real-world. The technique is seen as an example of
learning by doing in a virtual domain.

2.3. Models of the User

2.3.1. Introduction

The history of user modelling research reflects the developmental history of user
interfaces. The original user-modelling attempted to comprehend the nature of

command-based interaction. Conversely, more recent work has reflected fundamental

differences in the nature of interaction, dependent on the type of dialogue that the

system offers. However, some aspects of earlier user modelling research remain

pertinent. The following sections describe, in loose chronological order, the

development of user modelling research and its move towards describing display-

based interaction.

2.3.2. Evaluative Models

In general, evaluation models do not posit well-developed theories about the nature of
task knowledge, and what this implies as design criteria. Nevertheless, this class of
models develops the notion of successful task performance dependent on a synthesis
of interface representations of task (specifically task structure in these cases).
The Keystroke Level Model (Card et al 1981) attempted to predict performance times
for sequences of user actions. The predictions are derived by giving parameters for

the capacity and processing speed of users' cognitive, perceptual and motor

processors. This analysis has some utility in analysing usability, and provides an
account of separate but interconnected mental processing. However, the model
assumes expert behaviour, and does not account for the possibility of user error

22

(whether user or system caused). As such it is unable to account for how interface or
task-design may cause errors.

The GOMS model (Card et al 1983) describes user behaviour as composed of four key

elements, namely goals, operators, methods and selection rules. The users
knowledge, in this interpretation, is the encoding of methods to achieve goals. Goals

decompose into methods, which are themselves composed of operators, and selection

rules for their use. This gives an `idealised' account of user behaviour. It allows the

user of the technique to input a task and decompose it into a fine-grained sequence of
individual operations, accounting for sub-tasks, as well as analysing the `keystroke'
level. The model, however, does not address display-based action, and its utility for

display-based interfaces is therefore limited. The analysis embodies the notion of

user's task models as deterministically planned. In other words, it does not allow for

the influence of situated action (see Suchman 1987). Neither does it account for errors
and their consequences.

The inadequacy of the GOMS model for DM is emphasised by reference both to

subsequent practical and theoretical developments. The practical study conducted by
Mayes et al (1988) provides evidence that users do not use deterministic planning on
display-based interfaces. They studied the recall performance of experienced users of
MacWrite. MacWrite is a display-based word processor which uses a number of

selectable menu-commands. It was found that the subjects could not remember the

names of a number of features that they routinely selected and used. Therefore, it is

unlikely that their performance could be based upon whole sets of internalised

information. The findings strongly suggested that the display was providing
information which determined task performance. Recognition seems therefore to be a

more significant catalyst for user action than recall. These findings are further backed

by the findings of Payne (1990). In a further study (O'Malley and Draper 1992) it was
found that, while details of the display's appearance were not retained, users did

internalise spatial information.

The experimental findings of Mayes et al (1988) is backed by other theoretical work.
Work by Payne (1990), and Norman (1988) among others reflect the need to see user's
models of systems as distributed between subject and artefact. Whilst it is clear that

some information is held in long-term memory, other information is `left in the

environment'. The major thrust of the theoretical developments is that knowledge (in

the context of DM interaction) is distributed rather than wholly stored in memory.
Therefore the GOMS model lacks a fundamental element. It lacks an account of how

the display influences the user.

23

The GOMS model does provide indicators as to how investigations of the user on DM

may proceed. The GOMS procedure works using selection rules, which influence the

user's application of methods on the device. Whilst it is clearly inappropriate to think

of these as determined without reference to the display (as the GOMS model suggests),
it may give some clue for future developments. The user must have some criteria for

selecting operations, and this may be the role of the display.

Cognitive Complexity Theory (CCT) (Keiras and Poison 1985) developed the notion

of GOMS as structured knowledge held in long-term memory, which is accessed in

task performance. The theory held that task complexity could be identified by breaking

it down in terms of the number of production rules (see Anderson 1983) that are

required in its performance. Users' operational knowledge is represented as a set of

productions. Device knowledge is captured in Generalised Transition Networks.

Complexity is measured by considering first the number of productions in the user's

notion of how to perform an individual task. Secondly, the number of rules required
in order to perform the task on the device is considered and compared to the user's
notion of how to perform an individual task.

As with GOMS, CCT provides no notion of how display factors influenced task

performance. The method assumes, in the case of each action sequence, that the user

can find needed features and perform needed actions. It is simply the number of those

actions that are considered. Knowles (1988) argues that the approach is diminished by

its failure to analyse qualitative aspects of complexity, such as the way that the domain

is represented.

CCT contributes an important notion to user modelling, that of structural matching
between user's task model and device task. The user brings to interaction a mental

model which will influence their attempts at performing tasks on the device. The

system design embodies a model of the user (the system model). Broadly, complexity
is measured by comparing the number of steps in the user's (device independent) task-

model to the number required to perform the task using the system. A design is at its

least complex when the number of steps taken to perform it matches the number of
typical task-steps.

2.3.3. Grammar Models

Task-Action Grammars (TAG) (Payne 1984, Payne and Green 1986) model user

memory for the interface language of computer systems. The method adds notions of

semantics in use of commands to earlier attempts at capturing syntactic structure of

command languages (e. g. Reisner 1981,1982). TAG builds on the claim made by

24

Johnson et al (1984) that there are task knowledge structures in long-term memory.
This is an important development as it supports consideration of how new tasks are
learned and performed using previous knowledge. This includes knowledge of tasks

with similar elements or features. There is a reference to task independent knowledge

of such things as pointing and typing, and fundamental knowledge about spatial

relations. TAG seeks to explain why some command languages are more consistent

and therefore easier to learn. The claims behind this approach provide useful insights

for the study of DM systems. One claim is that user uses the semantics of the task

world to capture structural resemblances between the task on the device and the user's

model of the task. TAG introduces the `known-item' function which accounts for the

pre-existing meanings of action elements. This describes the way in which

representations of meaningful labels for the user cut down the amount of learning of

the required. However, despite describing the knowledge required to map tasks onto

device actions, it fails to account for the role of the display.

Howes and Payne (1990) develop the TAG notation in order to describe the role of
displays. They describe a notation called D-TAG, which contains modifications to the

original notation. Whilst they focus primarily on menu-based systems, the description

is pertinent to DM interfaces. The `task-item function' is replaced by a function

describing the scanning and matching of display items to task features. This is called
the `display-item function'. It describes the way that the display is scanned for task-

relevant features. The user scans a set of candidate interface objects. The display

representation (e. g. menu name, icon) suggests a semantic definition of the object.

Each definition is compared to the users current task. The best match between a
display object and a relevant task feature prompts a selection by the user. For example,

if a pull-down menu is being scanned, the options on view are subjected to the

matching process. The chosen item is selected on the basis of its apparent semantic

attachment to the user's task.

The notion of scanning and matching of options to task-features is useful for the

modelling of DM interaction. This emphasises the notion of the display as an indicator

of how to approach novel tasks on the device. The principle may be extended to the
direct manipulation of objects. Whilst the scanning of options is less likely to be

relevant in such a context, the matching of task features to semantic information on the
device may serve as broad description of how users decide to act. The semantic
information on-screen may still be a set of options (i. e. the space of possible actions).
Also, the `display semantics' referred to will often be the feedback from previous

action. This accommodates the notion of `inter-referential input/output' described by

Draper (1986).

25

2.3.4. Prescriptive Techniques

Another class of modelling techniques were designed to inform the design process,

rather than to evaluate systems post-hoc. These models translate user modelling
knowledge into techniques for representing the domain in a user-orientated way.

Task Knowledge Structures (TKS) is the most notable attempt to establish the true

nature of task knowledge and performance, and to make design recommendations on

the basis of this knowledge (Johnson et al 1988). The actual design framework that

emerges is conditioned by the task from the users point of view. The theory is used in

the KAT knowledge capture method (Johnson and Johnson 1991, Johnson 1992).

This method attempts to elicit the structure of tasks, the relative importance of task

elements, how task knowledge is stored, when it is accessed, and how it is utilised.

TKS theory defines the approach as 'a summary representation of the different types of
knowledge that are recruited and used in task behaviour'. The belief is that task
knowledge is represented in long-term memory in conceptual or generic structures.
The structures have levels of decomposition, similar to that which occurs in GOMS

related models. The process is to identify the knowledge that is in a TKS, and to

establish the generic elements (and therefore the abstract structure of the task) as they

are represented to users. When this is established, and a completed model composed,
design recommendations (or a design model) are facilitated.

Generification is a crucial component of the process. An important feature of task

knowledge is the differentiation between structural entities and other incidental details.

This is similar to the claim of Schank (1982) that knowledge of repeatedly occurring

events are stored in long-term memory units (memory organisation packets). Memory

distinguishes between relatively incidental information related to tasks and typically

representative information. The notion of representative elements associated with

concepts is similar to that proposed by Rosch (1975), and Rosch et al (1976) for

natural categories. Further support comes from Galambos (1986) who found that

recognition of event types triggers the use of task-knowledge structures. In particular,
Galambos found that knowledge of the order and sequence of important events are

used in understanding and guiding predictions about new events. Structural entities are

seen as the essential components of the task as it is represented in long-term memory.
The structure of a task, with its spatially and temporally ordered elemental relations, is

held in long-term memory and applied in new situations. Gentner (1983) defines

analogical reasoning as comparing entities whose structural and relational properties
(rather than superficial features or incidental properties) are identical. Gentner cites the

analogy 'an atomic structure is like the solar system' by way of example. This refers

26

to the fact that, in both cases the relationship between a central body, and smaller

orbital bodies are abstractly the same. The relational structure in one domain is applied
in the other, and it is just this structure that the generification process captures. In

describing a domain task via a virtual world, a knowledge of the analogical structure,

and a suitable description in a commonly known domain can provide valuable

explanatory power. The distinction indicates to the designer the most economical way

of describing tasks, in terms of the number of necessary steps that have to be included.

TKS provides a useful analysis of task content. There is consideration of constraints

within tasks, which provide clues in how to assist navigation through task

performance. Users accessing of task structures implies that they will have

expectations about what will occur and when. Some behaviours are carried out

together, or in some cases one will generally follow another, and so on. TKS gleans
information about what these expectations are by finding the structure of the task, and

and the spatial and temporal relations that must hold. The design of constraints and

guides can proceed using this information.

User models of task-structures, and plan-based task performance is dealt with by

TKS. However, DM designers have to consider the use of metaphor and general

visual cues for task performance that is not plan-based. Users in this type of case will
be searching for'the next action' rather than any better-formed expectation. In such

cases the crucial information is not about abstract structure, but about how screen
images will cause certain types of behaviour. This need is not served by TKS.

TKS provides useful information about the structure and content of task knowledge,

and provides a useful elicitation methodology. However, this is not enough, on its

own, to facilitate good DM design. Logical knowledge must be translated into specific

physical interface features. There must be information on how objects and actions are

represented, and what stimuli cause their satisfactory use. Although TKS provides a
baseline analysis, it does not provide vital information which is necessary for the

production of the appropriate system image.

2.3.5. The Display-based Approach

The development of D-TAG (Howes and Payne 1990) reflects the role of
environmental prompting in user models. This development of TAG was the
integration of research into the nature of environmentally-based action with user-

modelling developments. Suchman (1987) describes environmentally-determined

action specifications as `situated actions'. This stresses the distinction between recall

and recognition in task performance. The user models described above emphasised

27

recall-based action, whereas DM and other display types appear to work by prompting

recognition. Furthermore, the experimental work of Mayes et al (1988), O'Malley and
Draper (1992) and Payne (1991) suggests that much of the information for task

performance is not stored in long-term memory. The user stores sufficient knowledge

for task performance and no more. Nickerson and Adams (1979) performed a study

on U. S. citizens knowledge of the features of common coins, finding that inessential

features were not remembered. O'Malley and Draper (1992) found the same trend

when testing subjects' recall of details of keys that they used and carried.

These findings described above help to characterise memory storage as minimalistic,

retaining just enough for performance. This emphasises the need for an ecologically-
based approach to HCL certainly where DM style interfaces are employed. The phrase
`Ecologically-based HCI' is used by Payne (1990,1991) to characterise HCI as

problem/resource driven. The thrust of this approach is that the essence of the user

models should be the interaction between user and environment. The user cannot be

understood without understanding the contribution that the environment makes to

problem solving and task-performance. This contrasts with the previous philosophy,

where task-models of the user are proposed first, and then applied to interaction (see

Carroll 1991).

Norman (1987,1989) describes a seven-stage model of action. This splits action into

goal formation (one stage), execution (three stages) and evaluation (three stages). The

claim is, broadly, that task-knowledge is of a general nature, similar to the claim of

Johnson et al (1988). The precise nature of a task is specified only when the

environment has been scanned. The attributes of the current environment show how

the generic task may be actually performed.

The approach of Norman (1986,1988) implies that there is a process of mapping
between the users' prior knowledge and the physical dimensions of whatever problem
is presented. In task-performance this is a mapping between (generic) knowledge

related to a task, and the dimensions of the current task as perceived in the

environment. This theme reflects previous work on interna /external task mappings by

Moran (1983). The theme is further advanced by the `Yoked State-Space Hypothesis'

(Payne 1987). This states that `the user of any device must construct and maintain two

separate state spaces, the goal space and the device space, and some semantic mapping
between them'. The device space is the environmental constraint or affordances that
determine what the user needs to do. The device space must be capable of representing

all the states in the goal space.

The yoked state-space model refers to the mapping between task and device space. It

28

can be surmised that the display must provide representations that map to

representations of the device space. This theme is taken up by Tauber (1990) in the

ETAG model (Extended Task Action Grammar). ETAG is a description of the user's

task language. It refers to the `user's virtual machine', a description of the knowledge

needed to understand the task-related work of the machine. The decomposition of

tasks (as represented in the user's task-space) are described in terms of the device's

descriptions of steps. Performing tasks on the device is seen as a process of mapping

the task to `conceptual objects and conceptual operations referred to on the system's

side of the task' (Tauber 1986).

Given that a DM system is rich in icons, names and object representations which effect

the selection of objects, ETAG refers to relevant criteria. Further elucidation is

required, however, of how the mapping of task and device space develops through the

experience of using the system. Shneiderman (1986) suggests that learning the
device-space is a process of exploration. Novice users tend to generate explanations
from implicit notions and implicit beliefs (Turkle 1984) and may make ad hoc

explanations for events during interaction (Mack et al 1984). This theme is developed

by Lewis (1988) who analyses the nature of learning by doing, a key theme in the use

of DM interfaces. In particular, Lewis focuses on the generalisation of procedures.
This embraces the theme of characterising the nature of a set from examples of that set.
This echoes work by Roth and Frisby (1976), Johnson et al (1988), Rosch

(1975,1976) and Winston (1982). Winston (1982) describes the generalisation of

procedures using evidence from previous examples. Lewis cites this as a key to

learning of system operations.

Lewis (1988) describes contemporary theories of procedural generalisation. In

particular, he discusses theories involving generalisation from a small number of

examples, or only one example. Explanation-based generalisation (Mitchell et al 1986)

describes generalisation as a proof, within a specified domain theory, that an example

belongs to a set. This allows generalisation from a single example. Explanation-based

learning (DeJong and Mooney 1986) describes the analysis of an example procedure as

embodied in a set of schemata that it instantiates. This allows for the explanation of

causal links between the operation and its consequences.

Structure-mapping theory (Gentner 1983) describes the use of analogical reasoning in

generalisation. It suggests that generalisation is made by recognition of both a

structure, and a class of cases for which it applies. For example, a two-place delete

procedure works for deletion of a file (type DELETE, type BROCCOLI). This

example prompts the confirmation of this procedure and its application to further

`delete-file' goals. A similar use of analogy is found in the PUPS system (Anderson

29

and Thompson 1986). However, PUPS introduces analysis of the roles that

procedural components play. This is introduced to explain how a component action
from a previous example may be re-applied. For example, `type BROCCOLI' has the

role of specifying the object appropriate for an operation. `type DELETE' has the role

of removing objects. PUPS can therefore satisfy the goal of printing the file

BROCCOLI by substituting `print ` for `delete' but retaining the order of steps.

The PUPS example assumes that nomination of the object is preceded in all cases by

specification of the operation type. PUPS gives a plausible description of how users

may generalise about procedures from examples. Furthermore, the generalisation

embodies a notion of interface consistency, echoing the theme described in Reisner

(1981) and Rubenstein and Hersch (1984). The suggestion is that users of a system

make generalisations which embody assumptions about identity of operators, roles of

operator types, and the consistency of their behaviour. This echoes the description of

memory and event generification found in Schank (1982) and applied by Johnson et al
(1988). Users recognise event (operation) types, separating the insignificant or
incidental (the actual commands or actions in a single example) from the generic type.

A further generalisation technique, described by Lewis (1986) contrasts with the rigid

sequencing of event types in structure-mapping and PUPS. In this model new

procedures are created from separately understood components, rather than by

modifying an example (PUPS) or retrieving common structures (structure-mapping).

The components are individual steps, the behaviour of which is known to the user.

Lewis refers to this as synthetic generalisation. Synthetic generalisation generalises

only from elements of examples that are understood, whereas PUPS carries forward

features that are not understood. This is referred to as superstitious, as opposed to

rationale, generalisation.

Lewis proceeds to describe empirical studies of users trying to learn fictitious systems.
The study shows that users may use both superstitious and rationalistic methods. The

study validates two heuristics which demonstrate how users may employ superstitious

methods. One is the `identity heuristic' where users connect pairs of actions and

responses that share elements. An example is the connection between the user

nominating a file called BROCCOLI for deletion, and the system's removal of the file

BROCCOLI. The other is the `loose-ends' heuristic. The claim here is that users will

connect an unexplained action to an unexplained result. If a user watches a
demonstration and can explain all but one user action, and all but one system action,

the two unexplained actions are assumed to have a causal connection. Lewis provides

empirical validation of these heuristics. In doing so he proves that rationalistic models

of human learning (explanation-based models) do not completely account for example-

30

based learning.

This has implications for research into display-based interfaces. The use of visual

metaphor, screen organisation strategies and feature presentation are likely to influence

the identity and generalisation of procedures. Therefore, support for user learning will
be more complex than in the simple command set described in Lewis's delete and print

examples. It seems that the `identity' heuristic may have a strong influence on novice

users' attempts to explore a DM interface. In DM the user may have to identify menu

options, icons or a variety of object states. Many of the execution and evaluation

actions in DM do not involve textual dialogue. Users are likely, in some sense, to try

to elicit designers' models during learning. Bullock et al (1982) refer to this as the

`mechanism principle'. The principle claims that causal attribution is more plausible if

there is a mechanism that could mediate the causal connection between two events.

Empirical study by Pazzani (1987) suggests that this strongly influences human

reasoning. A computer, particularly a DM package, offers the user a chance to infer

causal and procedural connections through implicit representation of dialogue.

The `mechanism principle' will also influence the use of the `loose ends' heuristic. In

an artefact (as opposed to a natural system) it may be assumed that some purpose is

attached to each action. Therefore, the user may link current system action to a prior

user action in explaining an unexpected system response. However, the limited

capacity of user memory for prior action casts doubt on the use of this heuristic. It

may be that a number of actions are simply forgotten, and not available when the user

subsequently looks for explanations.

2.3.6. Metaphor and Analogy

Mental model formation (Johnson-Laird 1983,1988), and in turn the learning and use

of systems, has increasingly been linked to the interpretation of display items at the

interface (Suchman 1987, Norman 1988). However, it is difficult to establish what

mental model of a system a user has (Wilson and Rutherford 1989). Some of the more

recent developments in user modelling have acknowledged the importance of display

factors in user performance and mental model formation (e. g. Karat and Bennett 1989,

Kellogg 1990). This links to the theme of binding the attributes and semantics of the

task-space to the device space. Similarly, there have been developments in

understanding how menu names work and how icons may effect recognition (Gittens

1986, Howes and Payne 1990). This section explores the wider context of how the

design influences users' mental models, and the binding of task-space and device-

space.

31

The use of metaphor has been been cited as a principle feature of DM interfaces (e. g.
Erickson 1990, Carroll et al 1991). A general system metaphor may be visible to the

user. However, a concrete metaphor will not necessarily be available to the designer

(Sutcliffe 1988). The term metaphor has a wide scope, allowing a number of
imprecise connections. A metaphor may work by having some superficial property

which binds a task concept to a device concept. It may also work in a similar manner

to structure-mapping theory (Gentner 1983), where structures are recognised.

Metaphors are generated and used spontaneously during learning (Carroll and Mack

1983,1984). However, there are contrasting approaches to understanding how they

are used. Carroll et al (1988) describe three approaches to understanding how

metaphor works. These are operational, structural and pragmatic approaches.
Operational analysis studies the behavioural effects of a metaphor. This may be used

to increase user understanding of a system, and also to enhance user confidence. For

example, Foss et al (1982) describe the use of office storage and retrieval as a

metaphor in a text editor. The metaphor was used both at the interface and in a brief

training package, in which the system was described as a set of tools for performing
`familiar' office tasks. The training package was shown to improve user performance
in empirical tests. This was partly attributed to the effect that this metaphor had on

user confidence and perception of the system as a tool.

Structural approaches to metaphor (e. g. Gentner 1983, Douglas and Moran 1983)

stress the structural correspondences between base and target domains. Primitives and

relations are described for both base and target domains, along with mappings between

them. This approach reflects the themes of mapping between the task and device

domain, described by Moran (1983), Payne (1991) and others. This approach allows

some useful related concepts to be described. These include `base specificity' which

refers to the extent that the metaphor structure is explicitly understood. This is a useful

concept in assessing the adequacy of a system metaphor's coverage of a domain. A

further concept is that of `clarity' which refers to the directness of individual

base/target correspondences (e. g. one to one, one to many).

Pragmatic approaches to metaphor recognise fallibility and incompleteness in mappings
between base and target. Recognising such `imperfections' as incomplete or imprecise

correspondence between base and target, the pragmatist may exploit advantages that

are afforded. For example, Smith (1987) used a customisable `law of gravity' in the
ARK tutoring system. This maverick feature was presented alongside more literal

domain/device mappings. The use of composite metaphors has been found to help

users generate more varied explanations of system behaviour (Williams et al 1983).

32

Mountford (1990) describes the use of various metaphors in Macintosh applications.
She cites the correspondence of appearance and behaviour of interface objects to real-

world counterparts as key factors in system usability. However, there is less

understanding of the range of utility that metaphor concepts provide. Lakoff and
Johnson (1980) claim that metaphors do not imply a complete mapping of every

concrete detail of one object or system onto another. Halsasz and Moran (1982) argue
against the use of baseltarget analogy for detailed reasoning about systems, limiting the

role of metaphor to conveying individual points. A further complication is that

metaphor may influence interaction at different levels. A metaphor embodied in a

single icon may influence only interaction with that single feature. However, the

general system metaphor (e. g. the desktop) is likely to have a wider influence.

Whilst virtual representations of domain objects are important interactive catalysts,

there is dispute and debate about their actual and ideal function. Nelson (1990)

criticises the fact that metaphors tend to overgeneralise. For example, the wastebasket
is a well-known feature of the desktop metaphor. The functionality of the feature is

either deletion (which requires an extra step) or storage in a remote buffer. The

metaphor, however, strongly suggests that the feature is purely for `waste disposal'.

This is held as an example of how a function may be given an inappropriate or limiting

representation in order to fit a general metaphor. He points out that a high-level

metaphor can be comprehended at a number of different levels. There may be a level at

which it fits the device space well. However, further extension of the metaphor may

well diverge from the target system functionality. The problem of metaphor coverage

raises further questions about the nature of its function. The wastebasket example

appears to suggest that metaphor indicates functional identity. It is possible to think of

other metaphors (e. g. lasso) that make a clear statement about how to operate the

feature. Also, as Lewis (1988) shows, users tend to respond to perceived group

resemblance between objects and functions. User perception of domain objects as
`group members' may be triggered by interface metaphors, influencing user beliefs

about their identity and operation.

2.3.7. Conclusions from Study of User Models

The theme addressed by contemporary user models is matching system functions and

user knowledge held in long-term memory. In the first instance, models have placed

emphasis on complete structures in memory which are recruited and used in task-

performance. However, as Howes and Payne (1990) observe, these models are

unable to characterise display-based interaction. Display-based interaction demands a

more `ecological' approach to user models. Task knowledge held in long-term

memory is better seen as information used to interpret prompts and signals from the

33

display. In other words, task-knowledge must be understood as smaller chunks of
knowledge, which are recruited when prompted by display features.

An understanding of the synthesis of display factors and task-knowledge is crucial to
future models. They must account for how display information and techniques are

used to guide user behaviour. Understanding of analogical reasoning behaviour by

users and how concepts are represented in memory are also key issues. Lewis (1988)

suggests that user abstraction of system knowledge is a key element of learning.

However, more diverse sets of operations than those he describes typify DM

interaction. A more precise account is required of how metaphor affects user
behaviour at various levels.

2.4. Evaluation Approaches

2.4.1. Introduction

This section studies and compares contemporary evaluation techniques. No current
techniques are specifically directed at DM techniques. However, some are motivated
by theoretical and empirical work on display-based interfaces. One important

distinction is between formative and summative evaluation. Formative evaluation

refers to methods which influence the design process prior to the finished product's

completion. Summative evaluation refers to evaluation of the finished product, with a

view to validation or iteration. It can be argued that the distinction is blurred, given the

availability of prototyping tools and techniques such as storyboarding (Young and
Barnard 1987, Clark 1991) although some methods are clearly intended to influence

design at a much earlier stage than others. The following study discusses a range of

evaluation approaches. The crucial contrasts are between the nature of the techniques'

application, and the theoretical thrust behind these approaches.

2.4.2. Evaluation Models

A number of the user models discussed earlier were intended for use in formative

evaluation (e. g. Reisner 1981, Card et al 1983, Payne and Green 1986). Their validity

and relevance as models will not be discussed here. The tools are intended to yield

objective measures of complexity, based on models for the user. This section

concentrates on their utility as evaluation tools. The complexity of model-based

evaluation demands considerable expertise. For example, Keiras and Poison (1985)

use production system notations of the type described by Newell and Simon (1972) to

34

describe users' task knowledge. Their formal device representations use transition

networks similar to those used in psycholinguistics by Woods (1970) and Jacob
(1982). In both cases, any user of the method would need a strong background
knowledge of the relevant academic literature.

The utility of the class of models described above is diminished in three ways. The
first is that expertise is required for its use. Hence, the problem of models acceptance
by the design community remains. This problem is documented in the literature

(Bennett et al 1987, Knowles 1988). Some attempts have been made to enhance the

usability of such methods (e. g. Keiras 1988). Also, formal analysis of complex
interfaces requires considerable time and effort. Bellotti (1990) cites this as a major

obstacle to the acceptance of such methods. The third problem is related to the analysis
of the models above. For a number of systems, particularly DM style systems, the

methods do not address the complete problem of end-usability. The role of the display,

and its potential for causing errors, is not considered by these methods. They are not
equipped to diagnose display-based problems. Therefore, testing and iteration are still
required after these methods have been used.

2.4.3. Taxonomic Studies

Ravden and Johnson (1989) describe the Usability Checklist approach for summative

evaluation. The checklist is composed of ten sections of criteria-based questions, and

a further section inviting written comments on aspects of the system. The method is

designed to be usable by a considerable range of people, without fundamental

modification. In particular, it may involve representative end-users in the evaluation, a

need pointed to by Gould and Lewis (1985). The method poses a set of questions
based on standard usability principles. The user is asked to try using the system, and
fill in the checklist post-hoc. The method has the advantage of providing a list. of
criteria that the user may not be aware of, and potentially eliciting richer feedback than

a straightforward commentary on the session, or written account of experiences.

Some potential problems exist with the checklist approach. There is an exhaustive list

of questions, but some are based on criteria which may be obscure to the user, or lack

a common definition. An example is the concept of consistency. Work by Reisner
(1990) and Grudin (1989) suggests that the meaning of the term in the context of the

user interface is far from clear.

Booth (1990), and Booth and Gray (1990) use a taxonomy to interpret user errors.
Four types of error are described, referred to as the ECM scheme. These are object-
concept mismatches, operation-concept mismatches, object-symbol mismatches and

35

operation-symbol mismatches. The term `objects' refers to anything from a package to

a single icon. The operation is an action which is performed on object(s) within the

system. A concept is an object or operation whether represented mentally (by the user)

or physically (by the system). A symbol is any representation of a concept (e. g. word,
icon, figure, shape) employed by either user or system to represent a concept.

Critical incidents are first examined by identifying the object and operation. The next

action is to link both to a concept and symbol. The final stage is to describe the

position of the mismatched element within the dialogue failure. This final stage
investigates the role that the element played in the dialogue failure. Booth and Gray

(1991) point out that the user's view of task and system must be elicited in order to

identify concepts and symbols.

The ECM taxonomy has the problem of multiple classification. It is possible to

classify an error in contrasting ways dependent on the perspective that is adopted when

considering the problem. An example from the Apple Macintosh is reported by Jones

(1989). The disk icon (representing an inserted disk) failed to disappear after the disk

was ejected. This could be classified as an operation-concept mismatch because the

concept of the operation is mismatched with the user's representation. On the other
hand, the icon could be placed in the wastebasket thus removing it. This would

classify it as an operation-symbol mismatch, given that the operation is possible, but

not in a form that the user recognises.

Whilst Booth and Gray (1990) regard multiple classification as a problem, it may be

argued that it could be an advantage. The diagnosis described is motivated towards

design improvement. Multiple options represent a range of possible redesign options,

all of which may be worth considering. As Booth and Gray (1990) claim, the method

`enables and directs creative thinking'.

2.4.4. User Studies

Techniques for summative evaluation involve direct observation of users performing
tasks at the interface. Ericsson and Simon (1980,1983) use think aloud protocols to

elicit user intentions, attitudes and interpretations of the system. Users are video-

recorded performing tasks at the interface continuously verbalising their thoughts and

actions. They may also be interviewed post-hoc for clarification. This technique has

the advantage of linking user beliefs and knowledge-states to overt behaviours. For

example, error studies using this method elicit user assumptions that may have

contributed to an incorrect choice.

36

A major drawback of protocol analysis is that a single evaluation session generates vast

amounts of data. Most of the data will have to be gathered from retrospective analysis
of recorded material. It has been claimed that the phase of data extraction is extremely

time-consuming to analyse (Maguire and Sweeney 1989). However, Virzi (1990,

1992) found that a fairly small number of subjects could provide sufficient data to

pinpoint the most important usability problems in a system.

Maguire and Sweeney (1989) propose an alternative method of monitoring users using

the `Human Interaction Monitoring System' (HEMS). The HIMS system records all

the input and output actions in the interactive sequence. The system also provides

video and audio facilities. Critical events in a session such as errors and requests for

help can be marked. HIMS reduces the risk of human error in analysis of user input,

as interactions are logged automatically. It also reduces the transcription and analysis

phase of the evaluation.

A problem with the monitoring approach is selecting data that is of interest. Maguire

and Sweeney (1989) surveyed evaluation professionals finding that the aims of

evaluation sessions may limit the amount of data capture required. They were typically
interested in error numbers and frequency, time taken to complete tasks, and the range

of functions used. However, acquiring richer accounts of user behaviour may be

difficult. Maguire and Sweeney (1989) point to the problem of tracking mouse use.
Not all mouse use is detectable by checking system input. For example, the cursor

stops at the end of the page, even if the user continues to drag the mouse. Another

problem is the difficulty of interpreting higher order actions and user intentions from

low-level events of the type that this approach captures.

The Co-operative Evaluation technique (Wright and Monk 1989, Wright et al 1989,

Monk et al 1991) modifies the protocol analysis technique to include intervention by

the evaluator during the session. The method is partly motivated by work on
`Contextual Enquiry' by Whiteside, Bennett and Holtzblatt (1988). Users are invited

to perform task verbalising continuously. The evaluator may intervene to ask for

explanation and clarifications of what they are doing, and their attitude to the system.
The technique is less `natural' than pure protocols, with the inherent risk that the

evaluator may inadvertently lead the user subject.

37

2.4.5. Criteria-Based Design Walkthroughs

2.4.5.1. Heuristic Evaluation

This method, described by Nielsen and Molich (1990), uses selected dialogue design

heuristics to assist groups of evaluators. Evaluation teams are made familiar with
heuristics such as 'speak the users language' and 'use simple and natural dialogue'.

They are then invited to analyse an interface in the light of the list of heuristics

provided. Nielsen justifies the approach by describing usability problems with the

Macintosh interface (Nielsen 1990). In this study he produces convincing examples of

design errors which can usefully be interpreted using the heuristics described.

The practical advantages of Heuristic Evaluation are considerable. The `workload' in

terms of paperwork, form-filling and participatory manpower are relatively light

Nielsen (1992). This method is also reported as being cost-efficient, as analysis can
be completed within a day. However, Nielsen (1992) concedes that at least one

member of the evaluation team should be a human factors specialist. This individual

may not be available to a team.

A problem with using Heuristic Evaluation for DM is that it may be difficult to pinpoint
features that are error prone during use. This point is illustrated using an example user

error taken from Payne (1991). In this example the user selects a palette option with

the pointer (causing the option to shimmer), but fails to release the mouse button after

moving it to the option. This causes the previously selected option to remain current,

while the user proceeds to the next action.

So, having made an error, the heuristic 'provide good error messages' becomes

relevant to the palette error scenario. How would the system tell the user what the user

has done wrong? Evidence of an error is there, as the tool icon shimmers but does not
become still until the mouse button is lifted. Similarly, the user's 'error' results in the

highlight returning to the previously selected option. So, in that sense, the heuristic

has not been infringed. DM and other display based systems tend to avoid using error

messages. Indeed errors in such systems are merely schisms between device actions

and user objectives, and not identifiable by the system. In system terms the user is still

performing 'legal' operations. Therefore, Heuristic Evaluation, at least with the
heuristics presented, is prone to misrepresent some serious errors if applied to DM

interfaces. This is partly due the absence of further diagnostic guidance to establish

underlying error causality. However, this does not rule out the possibility of

proposing a set of heuristics directed towards the specific problems of DM design.

38

2.4.5.2. Claims Extraction

This approach is proposed by Carroll and Kellogg (1989) as an alternative to cognitive

theory as a tool for evaluation. Existing interfaces are analysed and lessons (claims)

extracted for subsequent application to new versions or new products. Claims

extraction as an approach emphasises a crucial element of evaluation needed for DM.

This is the emphasis on qualitative analysis of artefacts in use (Kellogg 1990). In this

approach the artefact's (as opposed to the designer's) implicit model is analysed in

language which reflects 'a view of the psychological dynamics of its real usage

situations, expressed in terms of its design and the tasks it supports'.

It is suggested by Carroll (1990) that Claims Analysis is a substitute for cognitive

theory. However, the extraction of claims involves analysis of a range of cognitive

science issues, such as memory capacity and user learning strategies. Therefore, it is

likely that 'claims' may be best identified in the light of appropriately applied cognitive
theory, a view supported by Poison et al (1992).

2.4.5.3. Cognitive Walkthroughs

Cognitive walkthroughs are a development from 'design walkthroughs' used by

software engineering teams (Yourdon 1989). Most of the work in this area has

focused on specifications of 'walk-up-and-use interfaces' (e. g. Lewis et al 1990,

Poison et al 1992). Lewis et al 1990 base the walkthrough structure on the CE+ model

of exploratory learning (Poison and Lewis 1990). The model claims that user problem

solving is based on the similarity between user expectations of an action's

consequences with their current goal. The technique provides a particularly precise

stepthrough evaluation of each component in an interactive sequence. The

walkthrough structure is annotated with a theory based list of questions for the

evaluator. In this sense the assertion of Poison et al (1992) that it can set an agenda for

claims extraction seems to be a plausible one. The theory of action proposed by

Norman (1986) provides a sequential structure for criteria-based questions about the
design.

The emphasis on cognitive theory by Poison et al (1992) means that the technique may

not be portable between types of interface. The method was designed to deal with

walk-up-and-use interfaces. Many DM designs are not walk-up-and-use, requiring

some training in manipulation techniques and system concepts. Therefore, the

potential application of this technique is conditional on its modification to handle such

39

systems. The walkthough technique attempts to give an estimate the user's model of a

task, partly based on sound theory. The structural element of the walkthrough based

on the work of Norman (1986) is an abstract description of an interactive sequence.
However, some of the user's knowledge, such as representations of task concepts or

symbols, is harder to estimate. Also, DM systems typically afford alternative paths to

achieve goals, something that would be hard to cover in scenario-based walkthroughs.
The theoretical developments in Chapter 3 address these issues.

2.4.6. Summary of Evaluation Approaches

A key problem with using models to account for diverse designs, and knowledge

states is that the scope of predictive models is clearly limited (see Simon 1988). They

are unable to account for diverse factors, such as states of user knowledge, and their
interpretation of display features. This is linked to the second problem, that these

models are difficult to use. The more recent focus on methods that are geared to

participation of user subjects addresses the first problem. This is is also addressed by

methods such as Heuristic Evaluation and Cognitive Walkthroughs which attempt to

make design criteria usable and accessible, whilst providing an underlying theoretical

platform.

The utility of Norman's (1986) theory of action is demonstrated by Poison et al
(1992). The theory provides an abstract account of display-based action sequences

which is portable between types of display-based interface. By contrast, Nielsen

(1992) and Ravden and Johnson (1989) emphasise adherence to usability principles

rather than using models. These two approaches may not be mutually exclusive. It is

conceivable that a method could pinpoint the relevance of certain principles at certain

times. To some extent, the cognitive walkthrough uses this approach.

A further class of methods, including that described by Wright and Monk (1991),

emphasise the need to elicit representative accounts of users' models. DM interfaces

are rich in functionality, interactive techniques and cues. This increases the difficulty

in accurately estimating user responses to a design. The elicitation of user protocols
during actual sessions addresses this need.

A problem facing each type of method is a lack of diagnostic support for display-based

problems. Heuristic Evaluation classifies problems without specifically guiding the

selection of design alterations. Checklists (e. g. Ravden and Johnson 1989) provide
lists of key principles, but the ease and utility of linking a list of principles to design

particulars during evaluation requires further investigation. Cognitive Walkthroughs

have the advantage of facilitating envisionment of the interface-in-use, but give no

40

further assistance in suggesting design alternatives. User-based studies, whilst
collecting data which can give good insights into the user's interpretation of the

system, do not provide detailed diagnostic support to help generate design

improvements.

2.5. Summary

This chapter has explored attempts at modelling users, and the influence that the
display has had on this type of research. Display-based dialogues, particularly DM
dialogues, need dedicated models of their own, given the specific nature of

communication in a graphical medium. This need is recognised by, among others,
Norman (1991), Howes and Payne (1990), and Payne (1991). An emergent theme in

this work is the need to model human cognition in terms of its interaction with its

environment. Whilst early work seems difficult to apply, the modelling of event

sequences (Norman 1986,1988) and of learning from displays (Lewis 1988) seems to
afford a theoretical platform from which models can be built. This thinking is reflected
in some of the more recent advances in evaluation techniques. Cognitive
Walkthroughs (Poison et al 1990) are the clearest example of user models applied in

participatory evaluation. However, the utility of current walkthroughs for DM is in

some doubt.

The knowledge required for evaluation includes details of what a typical user's model

actually consists of. Whilst theory work provides some guidelines, a more complete

picture is more likely to be yielded by studying users. The verbal protocol techniques
(Ericsson and Simon 1983, Wright and Monk 1991) present an opportunity to collect
such data. However, these techniques stop short of providing a theoretical

underpinning for the appropriate capture and use of relevant data. Potentially data
from evaluation sessions could be augmented by theoretical models to provide a richer
analysis of system usability.

41

Chapter 3-A Model of Direct

Manipulation Action

3.1. Introduction

This Chapter describes a model of action developed from the literature survey. - The

model describes a number of alternative action paths that a user may take when

performing tasks on a DM interface. The model embodies some assumptions that are

tested in the empirical study reported in Chapter 4. In particular, the model asserts that

action can broadly be characterised as opportunistic and display-led, rather than based

on deterministic planning.

3.2. Theoretical structure of the Model

This model is based on a theory of action proposed by Norman (1986). Norman

describes action in terms of the environment's influence on behaviour. It divides the

process of action into seven stages. These stages are components of a three stage

model incorporating goal formation, action and evaluation. These are now described

using Norman's own example, that of switching on a light.

Norman describes a situation in which he is sitting in a chair reading, and realises he

needs more light. The imperative `get more light' becomes the goal statement. At this

point he has not specified how, or by what means he will get more light

The next phase is forming an intention. In this case the intention is to push the button

on his lamp. This in turn is translated into a more precise set of operations such as
deciding whether he needs to get up from the chair to reach the lamp, or whether there

are obstacles to avoid. This is referred to as specifying an action. This is followed by

actually executing the action.

Having executed the action he now assesses whether the goal has been achieved. This

involves three stages. Perceiving the state of the world is the first stage. This is

checking that a perceptible state-change has occurred. The next stage is interpreting

the state of the world. This is deciding whether you understand what has happened

and why. The final stage is evaluating the outcome, comparing what has happened

with what you wanted to happen (the initial goal).

42

3.3. The Theory of Action Applied to DM

To illustrate the relevance of the theory to DM, the theory is used to describe a delete

action from the Apple Macintosh. The deletion of files on the Macintosh is performed
as follows. The file is selected by a single click on the icon representing the closed
file. The user then drags the file (keeping the mouse button pressed) and releases the
button when the icon is over another icon, representing a remote `delete' buffer. The

user must then select a menu option in order to remove the file from the buffer,

completing the deletion. The next section describes the sequence in terms of Norman's

theory.

A user's goal is to delete a file. The user will be aware that this involves an act of
removing or erasing a target item. This can be thought of as the intention. In fact, the

user may also have some experience of deletion on some computer packages. This, in
itself, is not enough information, but it will guide the user's interpretation of what is
found when the environment (the interface) is scanned. The user will therefore expect
that the operation will involve specifying the item and performing the delete action,
whether this be by command or button selection. The specifics of what is needed must
therefore be communicated by the interface. So the user scans, looking for an
indication. In our hypothetical example the user finds the `file' represented in the form

of an icon. From this the user knows that the file can be selected using a pointer. So

one stage of specification is complete. The user then has to look for an operator which
will perform the deletion action. On scanning the interface further, the user observes

an icon depicting a wastebasket. The user is aware that, as it is a non-static icon like

the file, the file can be moved `inside' it, using the pointer. The fact that it is depicted

as a wastebasket suggests to the user that this is the correct procedure (pick up the
item, take it to the wastebasket, drop it in). So the specification stage is completed

with a `drag and drop' pointer movement. The user duly performs the action,
observing that the wastebasket changes colour to indicate that the item is in the correct
position. The user releases the pointer, and the wastebasket bulges. The user, on
observing this, realises that deletion is not yet complete, and the file has been sent to a
buffer. Hence, there is an addition to action specification. The user reasons that there
must be an extra action before the goal is satisfied. A further scan of the interface

reveals a menu option called `empty wastebasket'. By selecting this the user will
finally delete the file. The user selects the option. On selection, the wastebasket
ceases to bulge. The user sees this feedback and interprets this as a successful
deletion. The example demonstrates the nature of DM interaction. It can be split into

the three phases of specification, execution and evaluation. We can now describe the

43

three phases further:

Specification - The user may know how the action is performed in general terms, but

needs to consider how the task is to be performed at the interface. Therefore the user
must scan the interface for an indication of what can be done. This involves the
selection of features and inferring the correct feature. The user scans the interface for a

relevant feature. On selecting the feature the user reasons about the required
manipulations. Typically, DM interfaces only give visual prompts, rather than specific
instructions, on how to perform operations.

Execution - Execution refers to the physical user actions on the system.

Evaluation - The user compares the visible system response to input with the original

goal. The user is relying on the interface to give a clear and comprehensive indication

of the effects of an action. This involves perceiving information evidencing the state
change, and comprehending the image in terms of the current task.

The model follows Norman's approach and assumes that much DM interaction will be

environmentally determined. Therefore, what the user sees, and how the user
interprets cues, are important influences on the course of interaction. Extra evidence in

support of this approach is provided by Mayes et al (1988) in a study of MacWrite

users' memory performance. Mayes et al. (1988) found that users' uncued memory of

the system image, even from highly experienced users, was remarkably poor. Users

were unable to remember information that was vital to their performance of tasks.

This suggests that users' action may be determined primarily by environmental cues

rather than well formed memory schema and task-action plans. This implies that an
important design issue is how to support action in terms of interface metaphor,
feedback and visual cues. The user recognises familiar visual signals, and is able to

retrieve procedures only under this stimulus.

The findings of the Mayes et al (1988) study are further elucidated by studies of
O'Malley and Draper (1990). These involved asking users to describe the

characteristics of keys that they carried with them on key-rings. The study
consistently found that they knew just enough information for distinguishing between

keys. This would include colour, size and shape. Further details were only encoded
if two keys appeared similar and further committal to memory as required. This

emphasises the principle of minimal encoding. Long-term memory retains as much as
is required for task performance and no more. Given this, and given the findings in

Mayes et al, the role of the interface as an element of distributed memory becomes of
crucial interest.

44

The model of action uses both the theory of Norman (1986) and the implications of

Mayes et al (1988) as theoretical foundations. The model builds upon Norman's

theory of action to create a description of interaction in terms of cue recognition, action

and evaluation of the resulting system state. It also reflects the range of responses that

users make to the visual feedback when an action is performed, including when the

feedback is unexpected or unsatisfactory. Exit paths (which may occur at most points
in the cycle) are also shown. The model is essentially descriptive although it does

have some prescriptive power in that specific types of errors are associated with

particular steps during interaction.

3.4. Description of the Model

3.4.1. Overview

The model consists of alternative paths by which users may specify actions to be

performed. The path that the user takes is dependent on whether the user is able to

recognise familiar features and therefore perform action. If the user cannot recognise a
familiar (and relevant) feature, the need for a recognition based guess is implied. The

model then describes a number of paths related to the evaluation phase of action. The

path that the user takes in this phase is dependent on whether or not the action .
produced expected results, satisfactory results, or interpretable results. The sections
below detail the stages of the model, including the theoretical underpinning of each

stage and the nature of the alternative paths. The model is shown in Figure 3.1.

45

user menial or
FO ýý task goal CRýý physical action
ýýE EXPECTANC

Information necessary
for or resulting tom

action

goal
objects/

functions

known exit
FORMULATE ex actatfons

GOAL SEARCH FOR
CANDIDATE

failed search
FEATURES

known
feature no familiar

feature

TRY no target
FEATURE feature GUESS
ACTION

user + TRY

action no FEATURE
than

no
change user

ISE action REC(DW
suggested

+ EVALUATE
future fssdbac CHANGE
action o. k.

repair
TEST

slip repair/ action EXPLANATION

undo

mmsdiatsly not

useful expected hypothesis- action

RECTIFY
or repair

known
EFL ror

ADO CITE
ATTEMP

FEATURE CANDIDATE
INTERPRET

CE EXPLANA-
nsw partially TIONS
fsatu

of
understood

nderstood
(JESS

_- 'ý 1

FEATURE solution FORMULATE)
OAL

ý

useful known ºG te.
feature r

.r r"

TRY FEATURE)
cont inue

ABANDON task
ýýr" ACTION

DECIDE
not useful

EXIT. Give

up Task
USEFULN

Figure 3.1: Model of Action with Direct Manipulation Interfaces

46

3.4.2. The Goal Formation Phase

The goal formation phase is described both for the initial task-goal and subsequent

task-goals. The node `formulate purpose' implies the selection of the first task-goal.
The step `formulate goal' refers to the subsequent formation of goals as interaction

progresses. The formation of goals will be influenced by the way interaction has

progressed prior to it. This is further discussed in later sections of the model
description.

3.4.3. The Execution Phase

The node `formulate goal' leads either straight to `search for candidate features' when

a familiar task is involved, or `create expectancy of features' where relatively novel

tasks are to be attempted. The `Create expectancy of features' step predicts that users
form a partial model of the objects and functions drawn from knowledge of the
domain, task and device. Clearly several partial models may be formed depending on
the user's experience. During interaction goals are assumed to be formed for the next
intended action. Such short range goal formation is not explicitly modelled. Action is

generally assumed to be triggered from the environment following Suchman's (1987)

view, although more conscious mental activity is represented as a separate step
`formulate goal'.

The `search for candidate features' node is operationalised by the users scanning the

screen for an appropriate cue with which to start the task. Depending on the user's

prior knowledge and design of interface cues for action, the necessary feature may, or

may not, be recognised. Where a feature is known, the user can directly embark on

task-action, represented by the `try feature action' node. However, where the user is

not sure the user goes to feature exploration, represented by the `guess and try feature'

node. If an explicit cue for action is not found the user may experiment with likely

candidates (or in extreme cases give up).

3.4.4. Evaluation

Whether a known feature or a guessed feature is being used, the user will rely on
system feedback to interpret the success of the action (Recognise and Evaluate
Change). If the feedback is as anticipated, the user can formulate a new short range
goal and proceed to the next action, possibly with a search if the candidate feature is

not immediately apparent. If feedback mismatches with user's expectations then an
error may have occurred. Error-states may be recognised and immediately corrected

47

("Rectify error") or further assessment of the system state may be necessary
("Attempt to interpret change").

3.4.5. Response to Unsatisfactory Action

When assessment of an unexpected effect is necessary, the user may be able to

generate a candidate explanation for the error, and will take the necessary remedial

action (Test explanation). When the solution is not apparent, the user may decide to

experiment, possibly several times in search of a solution (Guess feature).

Experimentation may suggest a candidate explanation for the initial problem, or the

user may give up the task-action being attempted (Abandon action).

Abandon action may be followed by the same task-action being attempted with a
different system feature, (Try Feature/action) or the user may move on to another part

of the task and formulate a new goal. In extreme cases the user may give up

completely leaving the task incomplete. Another possibility is that the user finds a
feature that is not useful for the current goal, but does appear to be useful for some
future action (Decide usefulness). This feature may be added to the user's model of

the system (Add feature). If a user, for example, reshapes an object accidentally

whilst performing an unrelated task, it may be remembered and utilised later on.

3.5. Display Knowledge Sources

3.5.1. Introduction

Phases of the model were linked to relevant sources of user knowledge. This was
done to describe the influence of particular interface features on user behaviour. The

influence of a particular design element is dependent on the phase of the action cycle,

and the state of the user's system knowledge. Five types of display knowledge-

sources are described. These are shown in figure 3.2.

3.5.2. System Metaphor

The influence of the system metaphor links `create expectancy of features' to `search

for candidate features'. The system metaphor may provide an indication of the next

possible action, and guide search. Typical DM packages include screen areas such as
feature menus and palettes, and an operation space (e. g. the MacDraw draw-space).

The organisation of the screen and its visual presentation may provide an indication of

where to search. As Mountford (1990) describes, the correspondence of the visual

48

image to real-world concepts is key to the process.

3.5.3. Cue Semantics

This knowledge-source is specifically associated with the `no familiar feature' path in

the model. The semantic properties of an image or a textual cue provides interpretable

evidence of a feature's identity. The user will scan for features that are relevant to the

current goal. This is described by Young et al (1990) as a scan for items which match

to the user's goal. Icons and menu options are scanned and matched to concepts from

the task-space. The user will select a feature for exploratory action if the semantic

connection appears sufficiently strong.

3.5.4. Cue Recognition

This refers to knowledge employed when a familiar feature is used. The feature acts

as a cue to device memory. The user recognises the feature's relevance to the current

task having previously used it. The study reported by O'Malley and Draper (1992)

suggests that the user may need to scan and find the feature despite its previous use.
Recognition of the cue may act as a prompt, reminding the user of the feature's

operation. Other information, such as other features with which it associated, may

also be prompted.

3.5.5. System Feedback

The result of the action is matched to the user's goal. Feedback serves as an indicator

of user progress in the current task. The user looks for evidence of goal satisfaction.

Feedback may reference the task space by showing a metaphor-based image (e. g. the

`message' icon moves to the `mailbox'). However, feedback may also simply confirm

the action using a system convention (e. g. a selected option becoming shaded).

49

FORMULATE
teak goal CREAK

I KNOWLEDGE
RCES

PURpt76E
SOURCES

goal
objects/
functions

METAPHO
known exit

FORMULATE x eetations

GOAL SEARCH FOR

failed search
CANDIDATE

known
FEATURES

UERECOGNITIO featur
no (ems ar SEMANTICS

feature

TRY no target
FEATURE feature

GUESS
ACTION

+ TRY user
action FEATURE

user
action FEEDBACK

suggested
RISE

future lead ac
+ EVALUATE

action o, k.
CHANGE

repair
TEST

slip action EXPLANATION

mmediatsty not

useful expected hypothesis- action

RECTIFY known
for repair

ERROR or
ADD CREATE

FEATURE ATTEMP CANDIDATE
INTERPRET
CHANGE EXPLANA-

now partially TIONS
fsatur

of
understood

nd stood
GUESS

FEEDBACK FEATURE
solution FORMULATE

useful knoown
GOAL

feature 1.
-

contlnu.
TRY FEATURE

ABANDON task ý`
1f . 00.

DECIDE ACTION
USEFULNESS not useful EXIT- Give

up Task

Figure 3.2: The Model of DM Action With Associated Knowledge

Sources

50

3.6. Errors Linked to the Model

3.6.1. Introduction

Five error types were linked to the model. These errors describe ways in which the

design may fail to support user behaviour. This serves as a taxonomy of system led

dialogue breakdowns. The types reflect stages in the model of action. Figure 3.3.

shows the error types linked to stages in the action cycle. The error types are
described along with their motivation from the model.

3.6.2. Misleading Cues

Norman (1986) emphasises the phase of scanning the environment for an indication of

how a goal is translated into a detailed intention to act. The environment is scanned for

cues which indicate what can be done, and what needs to be done. The DM user is,

therefore reliant on receiving appropriate information from the environment. In the

model this is linked to the phase ̀ search for candidate features'. The user is searching
for display items which indicate the appropriate mapping between task-space and
device-space. The poor design of cues may, therefore, trigger an incorrect action and

the use of an incorrect feature.

3.6.3. Ambiguous Feedback

This refers to post-action cues from the environment. The user requires confirmation

that an action has had the desired effect. Again, the user is entirely reliant on the

display to provide this information. On a DM system this will rarely be explicit

messages. The system will simply display a state-change, leaving the user to interpret

that change. The type of error referred to here is the misrepresentation of state-

changes. The crucial role of feedback is described by Draper (1986), and Hutchins et

al (1986). Both cite the directness of feedback as a key to rapid learning and direct

engagement. Equally, poorly designed feedback may either disrupt direct engagement.
Also, it may misinform the specification of subsequent action. The user may be

prompted to act incorrectly as a result of misleading feedback, as feedback cues

-subsequent action.

51

3.6.4. Hidden Functionality

This category refers to elements of the design that are invisible to the user. Given that
interaction is display-based rather than relying on explicit messages, the system must
demonstrate the nature of the system state and system utilities. For example, the

problem of modes referred to by Monk (1986) is that incomprehensible changes are

made to the system state. The mode changes may often be traceable to a user action.
However, the user will not be informed about the link between the change and the

action that caused it. This is an evaluation problem referred to by Lewis (1988).

Other examples may be features that the user is unable to find, or is simply unaware

of. The limitations of metaphor described by Lakoff and Johnson (1990) suggest that

signposting some system functionality may be difficult.

3.6.5. Inappropriate Functionality

Inappropriate functionality describes situations where the functionality does not behave

as the user expects or needs, even though the broad interpretation of the cues are
correct. This category emphasises the principle of interface features as tools.
Norman's (1986) Theory of Action describes the recognition of tools or affordances in

the environment. This must also imply assumptions about what these items do and the

scope of their utility. This applies both to tools and the more general ̀ utilities' of the
interface. For example word-processors and drawing packages have virtual `paper'

for writing and drawing upon. These are designed to demonstrate their utility through

metaphor suggestion. The user anticipates that certain features will support a level of

task performance. The functionality may be described as inappropriate if, for

example, a tab-setting facility does not allow the user to achieve required settings. The

feature exists but is not powerful enough for specific user needs.

3.6.6. Expectancy of an Impossible Action

This refers to errors where an action is in the user's model but is not supported by the

system. The role of the system both in generating and supporting user action is

examined by this category. It refers to situations in which the user is given the false

impression that an action is possible, through their general expectations of the system,

or experience of use. Lewis (1988) describes the system learning in terms of

expectations generated by generalisations. User's memory of previous examples (the

same or similar features) is a key component of system learning. Also, users'

comprehension of the system metaphor will generate expectations. The metaphor

provides a notion of system scope by effecting a mapping to the user's model of the
domain. The user may reason incorrectly about potential functionality if the metaphor

52

is misleading.

53

71-

FORMULATE ULATE user ms^w or
PURPOSE

took goal CREATE phial action

EXPECTAN

FEATURES Information necessary
for or resulting fom
action

goal
objects/
functions

known
"xlt

FORMULATE Lions

GOAL SEARCH FOR

failed search CANDIDATE
FEATURES

known
feature no farniiiar

feature

TRY no target
FEATURE feature

GUESS if MSC - Misleading cue
ACTION

user + TRY EANP - Expectancy of an

action FEATURE
PI action that Is not possible

HF - Hidden functionality

user IF - Inappropriate functionality

ECOGNISE Ibn AMF - Ambiguous/missing feedback
Uggesited

+ EVALUATE 04F future feedbac
CHANGE

action o. k.

repair TEST

epp action EXPLANATION

rnmediatey not
useful expected hypothesis- action

RECTIFY for repair

ERROR
known

ADD
ný

CREATE
ATTEMPT

CANDIDATE FEATURE
OINTERPRET

new CHANGE
partially

EXPLANA"

feature
t

understood
TIONS

understood
GUESS

` FEATURE
solutionP FORMULATE

useful not f GOAL

feature known

coMfnw t TRY FEATUREt

ABANDON task
i

DECIDE ACTION

USEFULNESS EXIT- Give
not useful up Task

Figure 3.3: The Model of DM Action and Associated Error Types

54

3.6.7. Summary

The model describes action with both known and novel features, and the interface's

support for search, execution and evaluation. The model assumes that the display is a
key component of decision making at every stage. Users may be capable of retrieving
known features of the interface from memory, but require the system image to prompt
this. Where the needed features are not known the user will scan for cues to decide
how and with what action can proceed. The user is also reliant on the system image to

evaluate the action and specify the next action. The model accounts for the learning of
new features with the parallel `add feature' node.

3.7. Investigations of the Model

The model can be empirically investigated on three counts. One is to validate the

overall premise of the model that action is display-led rather than the result of
deterministic planning. This would demonstrate that interaction with DM is
fundamentally distinct from command line systems, as claimed by Mayes et al (1988)

and Payne (1990) among others. In command-line interfaces, sequences of task-
action commands are stored and retrieved by users. If the display-led theory is valid,
the DM user will perform tasks competently showing skilled behaviour without
detailed memory schema for device procedures.

The model can also be investigated to further describe the stages of action, and the

dynamics of dialogue. DM interfaces are typically rich in functionality and bear a

variety of interactive techniques. The model can be used to investigate links between

dialogue techniques and user responses. The alternative paths of action may bear
further decomposition. Also, the nature of the reasoning that users employ may be

investigated further. Accounts of user behaviour, such as those offered by Lewis
(1988) and Young et al (1990) require examination for their appropriateness and
coverage of DM interaction.

The model proposes types of error linked to phases of the model. These are an
important component of the model as they seek to classify error types. In particular
they refer to system-led errors. The error types serve as a taxonomy of system-led
dialogue breakdowns. Empirical studies can demonstrate whether the coverage
provided by this taxonomy is accurate. Also, the appropriateness of the 'boundaries'

of the error types may be examined. A problem with taxonomies is that they may not
be orthogonal. Empirical evidence may be used to assess whether the error types have

the right level of granularity. Whether they account for all the useful distinctions

between error types may also be investigated.

55

3.8. Chapter Summary

In this chapter a model of DM interaction has been described along with its theoretical

motivation from the literature. The model provides a description of interaction in a
display-led environment. User memory is accounted for as distributed between user

and system, with the system image providing cues to memory, as well as indications

of novel feature utility. The cycle of DM is described for both known and novel

actions. A description of alternative responses to errors is also provided.

The next chapter describes an empirical investigation of the model. This investigation

validates the premises of the model, and also provides further examination of the

description of critical interaction phases. The study will also investigate further the

nature of errors, error responses, and learning on DM systems.

56

Chapter 4-A Study of Interactive

Behaviour and Errors by Novice

Users of MacDraw 1

4.1. Introduction

This Chapter empirically tests claims made in the model of action. It reports the study

of a typical group of novice users on a DM interface. User behaviour patterns are

studied, along with error behaviour and user verbal reporting of reasoning and
interface interpretation. The study had three broad objectives. These were:

" The validation of the basic model of action concepts: The model contains several

possible interaction paths, and behaviour patterns associated with errors. It also

assumes that the interaction relies more on environmentally-cued action than on

planned task-action sequences. Therefore, evidence was needed that the behaviours

described in the model reflect the nature of interaction. This was studied quantatively
by observing and categorising user behaviour. In particular, evidence for the

opportunistic nature of user action should be a relative lack of planning, and

considerable searching and feature exploration. Evidence against the model would be

a high frequency of deterministic planning.

" Investigation of Model Granularity Through Study of Users' Problems: Users

verbalise problems with reference to expectations, search strategies and interpretation

of screen information. These are used to consider the coverage provided by the error

categories described in Chapter 3, and in turn, the coverage of critical points in the

cycle by the model.

"A deeper analysis of the influence of both signals given by the interface, and users'

task-models held in and activated from long-term memory: The subjects were asked

to verbalise their reasoning for decisions. This was analysed for evidence of the

influences behind behaviours leading to errors. In particular, the knowledge sources

that influenced user behaviour were recorded and analysed. Where critical incidents

were located, the users' models of tasks were compared to the system model

expressed in the actual design. This was done to elicit mismatches between system

command sequences and users' expectations.

57

4.2 Methods

4.2.1. The MacDraw I Package

Empirical data on user interaction with MacDrawTM were collected. A screen dump of

the main screen is shown in (Figure 4.1). MacDraw I was chosen because it is a

relatively 'pure' direct manipulation package, relying on the use of metaphor, visual

cues and feedback. The basic task activities involved are straightforward writing and
drawing tasks. The manipulations involved reduce to four basic operations, namely

select, drag, drop and type. These four basic manipulations cover a rich variety of
functionality. The options for creating objects are visible in an iconic array (the

palette) on the left of the draw space. The menu bar contains a number of commands
for operating both on selected objects and on the draw space. Also, shapes and lines

can be directly modified using select drag and drop options. Therefore, the range of

possible dialogue types and dialogue breakdowns is sufficiently broad to test the

validity of the model, and investigate possible modifications.

I-

58

File Edit Style Font Arrange Fill Lines Pen 10: 36 em cý
Show Rule s r ed
Custom Rulers...

�Nermal Size
..

Reduce to Fit

Q
Reduce :... ' ;.................
Enlarge

. ..;... :... Turn Grid Off :... :... :....:....:...
Hide Ruler lines

,
Q,

Show Size

......
Hide Page Breaks .
Drawing Size...

:........:........:........:........:........:..................

:... :... :... :... :... :...
........

i........

...,..

Figure 4.1. The MacDraw I Interface, With
a Pull-down Menu Displayed

59

Another motivation behind the choice of MacDraw I was that it afforded the

opportunity to perform a follow-up study investigating the effect of design iterations in

a later version. The next version of the package (MacDraw II) was available, and

contained some interesting contrasts from its predecessor in functionality and

presentation. This study is reported in Section 4.6.

4.2.2. Subject Group

Eight MSc students (6 male, 2 female) took part, all of whom had substantial
computer experience. Four of the subjects had never used windows or graphics
before, while four (C, D, E, F) had some experience of DM-graphics and window
systems. One of the latter group (F) had experience with graphics packages and
MacDraw (which he had used twice). The subjects were considered suitable as they

were all competent computer users who had no substantial experience with Draw

packages. This enabled analysis of the effect of external world knowledge on task

performance.

4.2.3. Prior Training

Subjects were given a brief explanation of the basic functions, and then had 10

minutes to explore the system. This ensured that they had familiarity with the basic

manipulations and high-level operational principles of the package. After this they

were presented with a paper sketch of a data flow diagram and asked to reproduce it in

a 30 minute session.

4.2.4. Scenario Design

The scenario approach of presenting a sketch to be reproduced was preferred to a

comprehensive list of written instructions. The motivation for this was to allow as

much leeway as possible for subjects to order sub-tasks and select their own

approach. The scenario contained circles, square boxes, three-sided boxes straight
and curved lines with arrows, and text. Each item was present on the diagram at least

twice, affording observation of learning, memory of feature use, and possible repeated
errors. The scenario is shown in (Figure 4.2.)

.

60

Query Reader I. d. s
Reader

bad i. d.
Invalid

reader
ew

reader

Bad I. d.
Give Check message

messages: reader
overdues Overdue I. d.

books
Overdue
messages

Enquiries k
readers

Reader

Enquiries
heck an

explain on
reserve

Reason Issue

Answer
Bad

utstanding debtors

Check Bad
loan- readers
bar

Explain

Figure 4.2. The scenario used for Protocol Analysis of MacDraw

61

4.2.5. Concurrent Verbal Protocols

Subjects were asked to provide verbal protocols on their thoughts and actions,
following the procedures of Ericsson and Simon (1984). Sessions were video
recorded and user verbalisations were subsequently transcribed. Errors and problems
with interaction were noted by the observer during the session. On completion of the

experiment users were questioned about the problems that they had experienced and

their model of the system, and asked to explain their problems when 'breakdowns' in

interaction had occurred. The procedure was similar to the York Manual approach
(Wright and Monk 1989) except that questioning by the observer was reserved until

the end of the evaluation session because we did not want to disrupt the flow of
interaction and we were interested in the compounding effects of errors which may
have been alleviated by observer intervention.

4.3. Data Analysis

4.3.1 Interaction Model Categories

The data were analysed to give a summary of interaction for each subject. The

following activity categories were used to describe steps in each session. The

categories were motivated by the model described in Chapter 3. The following list

describes the categories detected from the protocol data.

" Task Action - Any user action that results in constructive performance of the task,

and is not declared as exploratory by the user.

" Planning - Where subjects expressed a task strategy, e. g. intention statements
beyond the next observed action.

" Feature Search - Scanning of the screen by the subjects possibly accompanied by

verbal statements of search for cues.

" Feature Explore - User action declared as trying out a system feature, either for task-

action or repair action.

" Repair Action - Action to rectify errors, where the user has a strong belief about

what is required (i. e. not exploratory). Repairs may not be preceded by error
diagnosis if the reason for an error is immediately apparent.

62

" Error Diagnosis - Verbalisation of reasoning about an error and associated action.
Users must specifically express that an error has been made.

The categories correspond to stages in the model of action, and in turn, to Theory of
Action stages proposed by Norman (1986). The Search/explore categories were
added, drawing on concepts in the theory of exploratory learning proposed by Lewis
(1988).

4.3.2. Model-based Error Categories

The error categories linked to nodes in the model of action, were used to categorise

user problems. Protocols were analysed in combination with the observer's notes of

users' problems and errors. Problems which resulted in errors (breakdowns in the
Wright et al (1989) definition) were placed into six categories (the five described in the

model, along with the extra category `slip' described below). The initial category
definitions were validated by a pilot protocol involving two MSc students at City

University who had no previous Macintosh experience. The six types of error were:

1. Slips

Minor errors which could be ascribed to failure in attention rather than mistaken
intentionality by the user, following the distinction made by Reason (1986). Slips

were lexical -keystroke errors which were usually immediately corrected by the user.

2. Misleading Cue:
When an interface feature or state change in a feature (e. g. icons, messages and

menus) gives misleading information resulting in the user making an incorrect

inference about the effect of a system action or the nature of a system state.

3. Expectancy of an action that is not possible:
When users attempt to find an action which is not supported by the interface. This type

of error is typically a result of a model mismatch between user and system. An action
is present in the user's model of the task but absent in the system model.

4. Hidden Functionality:

In this error condition, the system does provide the functionality desired by the user;
however, the cues provided by the system are insufficient to enable the user's
discovery of the functionality. Alternatively, the user may discover hidden, but

undesired functionality by accident or random exploration.

63

5. Inappropriate functionality:

In some cases the system's operation makes sense to the user, but the feature does not
quite do what the user requires. The user has to make some compromise and accept
degraded functionality.

6. Missing/Ambiguous feedback
Feedback after an action is either absent or ambiguous, thereby leading the user into

making erroneous inferences about the system state and effect of actions.

The categories were used as heuristic classifications, to help define the nature of the

errors made in the sessions.

4.3.3. Goal-Tree Analysis

Along with the direct categorisation of errors, further analysis was conducted using a

variation on the goal-tree analysis used by Keiras and Poison (1985). Model-based

analysis of errors started with analysis of each breakdown supplemented with data
from retrospective questions about the incident. The procedures of CCT for

constructing user and system models are elaborate and time consuming. As we wished
to produce an economical method, a simplified version for deriving the user's model
from questions about goals and the user's expression of anticipated actions was

adopted. The subjects were asked to repeat the task manually (i. e. without the

computer) and the sequence of operations was noted. A preliminary goal tree was

constructed from this analysis and then validated by asking subjects to `walk through'

the model and confirm that it was a typical representation of their intentionality.

Individual subjects' models were aggregated to form a canonical model. The system

model was constructed from analysis of the interface command structure by asking an

expert user to complete the task with MacDraw and noting the sequence of actions. As

with the User model a preliminary goal tree was constructed and then validated by an
independent expert who was asked to assess the reasonableness of the interpretation.

User and system models were then interpreted for each breakdown which had been

classified as an error.

64

4.4 Results

4.4.1. Analysis of Users' Activity

The first analysis was a 'time line' view of each session using the activity categories.
The resulting diagrams illustrate the subjects' activity which was composed of task

actions interleaved with error diagnosis and repair and, less frequently, planning and
feature search/exploration. Two sessions are shown in (Figures 4.3 and 4.4.). Figure

4.4. includes annotations denoting the accidental discovery of a feature (D) and the

exiting of a task due to the subject's inability to work out the procedure (E). The

sessions exhibited considerable inter-individual differences, however some common

trends were apparent.

65

gi:

FEATURE
SEARCH

TASK

ACTION

FEATURE
EXPLORE

ERROR
DIAGNOSIS

REPAIR

Figure 4.3 TIMELINE GRAPH ACTIVITY POR SUBJECT 8

PLAN

FEATURE
SEARCH

TASK
ACTION

FEATURE
EXPLORE

ERROR
DIAGNOSIS

REPAIR

E"E%R

D" DISCOVER FEATURE

66

Figure 4.4 TIMEirUE GRAPH OF ACTNRY FOR SUBJECT C

Task -action was punctuated by errors and exploratory action throughout all sessions.
The most common pattern was task action, error diagnosis and repair. Planning,

feature search and feature explore were infrequent; however two individuals (D and
E) did show considerable feature exploration during the first 10 minutes. No

correlation was apparent between subjects' experience and error rates. Subject C (fig

4.4) planned regularly throughout the task. Task-action was followed by error
diagnosis and repair early in the sequence although errors decreased as the session

progressed. Subject B (fig 4.3) shows less planning than subject C, possibly
indicative of a more event driven approach. This individual searched and explored
features, however, the predominant pattern was task action alternating with errors.

This pattern continued throughout the session.

Individual differences in prior knowledge may be reflected in the patterns. For

example, Subject C who had used other drawing packages spent most of the first eight

minutes of his session in an error/repair cycle, and then had a relatively trouble free

session. This may have been caused by previous knowledge interfering with system

operation. Once the new device model had been acquired interaction became relatively

error free.

To summarise activity patterns, transitions between the categories were analysed by

counting the frequencies Task Action was followed by Error Diagnosis, Repairs, etc.
The resulting frequencies were converted into a network diagram to illustrate the

pattern for all subjects. The network (see fig 4.5) shows frequent interactions

between the Task-action, Error diagnosis and Repair activities. Task-action is central to

the main cycle of interaction and error correction. Feature Explore is associated with
Repair and Error diagnosis less frequently, suggesting an alternative trial and error

style of interaction. Feature search is linked to task-action so discovery of new
features appears to occur in normal action rather than in error correction activity. The

overall pattern agrees with the interactive sequence predicted by the model, and
furthermore the analysis shows which sequences are more frequent than others.

67

68

The termination of a task-action sequence was associated with the subjects' perception
that they could not work out the needed procedure or when they found that the system
functionality was inadequate. One example is the freehand draw. Part of the task was
to connect two circles with a curved line. All subjects decided against using this

option when they saw its limitations, i. e. the fact that it is impossible to draw a neat
line.

Twenty five occurrences of Feature search were recorded. Seventy-two per cent of

searches were not associated with errors. Of these, the subject's search was directed

on 13 occasions, i. e. their action or verbalisations suggested a target for their search.
All these searches attained their objectives. The 6 other searches had no obvious target

and only one was successful. Error connected searches (28%) were all non directed

with a 50% success rate. In 12 cases the subjects searched menus for cues without
knowing what feature they were searching for. Of these, 6 were in direct response to

errors. The other 6 were cases when subjects had expressed a new goal and desired

task functionality was not apparent.

Feature explore was observed 75 times. Most feature exploration followed discovery

of errors (55%). Other Feature explorations were simple checks of functionality (35%)

and testing to extend knowledge about a feature's functionality. On six occasions

subjects either checked what a feature would do in a specific situation, or tried out new

actions. Accidental discovery of new features only occurred three times. Subject A,

while attempting to duplicate using the Copy menu option, noticed Duplicate in the

same menu during Feature Explore. The same subject discovered the lasso function

after an error in trying to move objects, while Subject B pressed the Escape key in a

repair action and found that it deleted selected objects.

4.4.2. Exploration and Feature Discovery

The incidence of transitions to feature search from normal task-action was relatively
low. This was despite the fact that the scenario required the use of at least three and
possibly more palette options. This may partly be explained by the visual salience of
the palette which allowed the user to scan so swiftly that search was not observed or
verbalised. Another contributory factor may have been that subjects had quickly
become familiar with the concept of the palette very early in the session. The nine

examples of feature explore leading to task action were all cases of users looking for

options at the lower end of the palette. This region of the palette contains variations on
the basic shape and line drawing facilities. They declared that they were not sure

about the presence of the features, but confident of the appropriate operations once the

69

features had been found.

Feature discovery through accidents or errors only occurred once. On this occasion

the subject forgot to select an option before dragging and accidentally lassoed a circle

and text. Four other subjects dragged the lasso by accident, therefore seeing the `hand

and rope' cue, but did not express any understanding.

4.4.3. Model Coverage of User Behaviour

The Chapter 3 model predicted that deterministic planning would not be a significant
influence on user action. Of nineteen declarations of planning, four were made right

at the beginning of sessions. Subject C declared

`I know what its like drawing circles where you can't fit the text, so i'll do the

contents of the circles before I draw them'.

Subject C used knowledge of pen and paper drawing to decide on task ordering.

Subjects A and G declared that they would draw all the shapes prior to lines and text,

as they felt that placing objects appropriately would be difficult. Other examples of

planning tended to come at clear break points in the task, such as the point where all

shape-drawing was complete.

Some frequently observed user behaviour had not been explicitly predicted by the

model. The model assumes that first time use is linked to guessing of action ('no

familiar feature' therefore `guess and try action'). However, there were a number of

cases where the use of a novel feature involved actions expressed as familiar by

subjects (i. e. feature search --> task action) .
The following extract is taken from

Subject A's session. Subject A wishes to ensure all the drawn circles are the same size

as one he has already drawn.

Physical - Goes to Layout menu, scans. To Arrange menu. Scans.

Mental - I'm trying to copy to ensure they're the same size. Mind you, I

can see another way of doing it.

Physical - Goes to Edit

menu ...

Mental - It seems to me that if you go to the copy part of the menu.... this
is what I call copying ------------- I've suddenly realised there's a

70

duplicate as well. I'll see what it does.

Physical - Goes to circle, selects. Goes to Edit menu, selects Duplicate

(new circle appears).

Whilst Subject A had used a novel feature, he was confident about the operation of the
feature. Examples of strong user expectations about the operation of novel features

was also frequent in use of novel palette options. This suggests that the link between

novel feature use and `guess action' is not a necessary one, as suggested in the model.
Similarly, some account should be made of exploratory action on known features.

This also is not accounted for in the model. For example, subjects who knew the

operation for moving objects attempted to modify it for a rotation of an object.

A distinction can be made between types of user response to errors. Some subjects

responded to errors by selecting alternative means of achieving an action. This course

of action is not explicitly referred to by the model. For example, two subjects who

were unable to use the arc and freehand facilities opted to use the diagonal line feature

to draw `curved' lines.

4.4.4. Summary of Model Analysis

The proposed model of interaction was supported by empirical data, although explicit

system exploration was infrequent. This was despite the fact that a number of novel

features were used. This suggests that exploratory learning cannot be characterised as

simply piecemeal discovery and learning of features. High-level learning of metaphor

concepts seems to create strong expectations about the presence of certain features

within the system, and about procedures for their use. This would explain why a
large amount of novel feature use was not reported as exploratory by the subjects.

The basic premise, that action is opportunistic rather than the result of deterministic

planning, seems to be borne out by the lack of declared plans. All subjects expressed

a heuristic strategy for ordering the task early in the sessions. Typical heuristic

strategies were to put shapes before text and lines last (5 subjects). This was cited by

those subjects as the best way ensure that the objects were properly laid out. There

were another eleven cases of planning. However none of these eleven declarations

involved device specific declarations of action. The evidence was that user plans

amount to general task orderings as opposed to precise procedures. More specific
device operations must, therefore, be event or context driven. There is little to suggest
that users' knowledge of the task space generates detailed expectations about device

operations.

71

The model based analysis demonstrates a number of cases where exploratory and

normal task action result in errors being diagnosed and repair action being performed.
However, the nature of those errors, and in turn the adequacy of the level of

granularity expressed in the model requires further examination. The model attempts

to flag critical points and behaviours in the cycle of action. To have the desired level

of explanatory power, those critical points must be linked to the points of interest for

evaluators, namely types of interaction breakdown. Therefore, the need for addition

and modification to nodes in the model will be conditioned by analysis of errors linked

to those nodes. If the recorded errors within categories are diverse, a division of the

model into extra stages will become necessary to account for this diversity.

4.5. Analysis of User Errors

4.5.1. Frequency of Errors Within Categories

A total of 132 errors were observed, 28 % of which were "slips', i. e. minor errors

which were immediately corrected. Slips were caused by failure of attention and
motor-perceptual coordination (e. g. keystroke errors, mouse button problems) and as

such could not be attributed to design features of MacDraw software. Model based

analysis of slips was superfluous as the causality of the problem was immediately

apparent to the user and observer. The other 95 errors were counted as mistakes in

which some interpretation of a problem was necessary.

The most frequent error-types were misleading cues (23%), impossible actions (27%)

and missing/ambiguous feedback (22%) -see Table 4.1. The distribution of errors

among the subjects was reasonably even, apart from subject A who accounted for

48% of the hidden functionality errors. These errors were associated either with
attempts to draw arrow-heads on lines or with problems in using the grid-alignment
feature. Other high error scores, from subject H (impossible actions) and subject F
(misleading cues), were also associated with the arrows feature. Inappropriate
functionality was the least frequent error-type being shown by four subjects with the
free-hand draw, arcs and flip/rotate functions. Although errors were reasonably evenly
distributed among the subjects and by error-type, the association with design features

showed considerable differences, as can be seen in Table 4.2.

72

ABG D-
.:

E
FIG

H TOTAL

Misleading cues

Expectancy of
an action that
is not possible

Hidden
functionality

Inappropriate
functionality

Missing/
ambiguous
feedback

Total

2 2 - 4 7 2 4 1 22

3 2 3 2 2 5 1 8 26

9 2 - 1 1 - 2 6 21

- - - 3 1 3 2 - 9

2 3 3 4 1 2 1 1 17

16 9 6 14 12 12 10 16 95

Subjects with
some experience

Table 4.1. Frequency of error-types by subject

73

Arrows 47 18 (MC)[7] 16(IA)[7] 13(HF)[21

Palette Selection 12 7 (FB)[4] 5(IA)[2]

Drawn Objects 10 5 (HF)[5] 3(FB)[2] 2(IA)[2]

Text 6 3 (IA)[3] 3(FB)[3]

Freehand draw 4 4 (IF)[3]
Cursor 3 2 (FB)[2] 1(HF)

Arc 2 2 (IF)[2]
Flip operator 2 2 (IF)[1]

Grid 2 1 (HF) 1(FB)
Layered Window 2 1 (MC) 1(IF)

Polygon 1 1 (FB)
Palette Default 1 1 (MC)

Copy 1 1 (MC)
Duplicate 1 1 (MC)
Rotate 1 1 (IF)

Total 95

MC Misleading Cue

IA Expectancy of an Impossible Action

HF Hidden Functionality

IF Inappropriate functionality

FB Missing of ambiguous feedback

[-] No. of subjects who made error

Table 4.2. Frequency of errors ranked by design feature and error

category

The arrows function accounted for 49% of all errors, followed by palette selection and

misinterpretation of objects' state. In more detail the errors by category and design

feature were as follows:

74

Misleading cues
The arrows feature accounted for 82% of errors in this category by misleading users
into expecting that the arrow selection denoted left or right arrow direction (see Figure

4.6), when in fact direction was determined by the start or end point of a drawn line.

Seven out of the eight subjects experienced this error and four subjects had repeated

errors with this feature.

File Edit Style Font Layout Arrange Fill Pen

Untitled

....... ,..,

....
s--º

.

Figure 4.6. MacDraw I Screen, showing the arrows menu and arrows on curved are problem

Impossible actions
A variation on the arrows problem caused 50% of these errors in which users tried to
draw an arrow on a curved arc or polygon line, an action not supported by the system.

75

All subjects encountered this problem and one persisted in trying to solve it without

success. Other errors in this class were attempts to repeat drawing the same object

when reselection from the palette was necessary (20%), and attempts to place text
diagonally.

Hidden functionality
Most errors in this category (62%) also implicated the arrows feature. Users selected
the arrows option but did not realise that this set a default for line drawing. When they

subsequently attempted to draw lines, considerable confusion was caused by the

unexpected appearance of an arrow.

Inappropriate Functionality

These errors were infrequent and did not cause a complete breakdown in interaction as

users completed the action, although they were dissatisfied with the result. Subject F

reported a problem with the flip and rotate functions which did not produce the type

of rotation required. Three subjects verbalised problems with the freehand draw
function which produced irregular lines unless the mouse was used carefully.

Missing/Ambiguous feedback
There were two main causes of the 17 feedback related errors. A first problem was
inadequate feedback on object selection, accounting for 41% of errors in this

category, all of which involved the palette selector highlight. The errors occurred

when subjects selected a palette option (causing the icon to highlight) but did not
immediately release the mouse button which resulted in the previous option remaining

selected. The option highlighting appears to be insufficient to make users aware of the

error. The first problem occurred when three subjects who had written text in a circle
reported errors when it appeared to obscure the circle's edge and a related problem

when on three occasions, subjects dragged circles over written text and were
mystified when the text disappeared.

4.5.2. Errors, Repair and User Behaviour

All slips, i. e. simple failures of attention or motor coordination (see Reason 1986),

were successfully repaired immediately or within a short time of being recognised by

the user. The system feedback was adequate in the case of slips (e. g. selecting the

wrong palette object) for the user to quickly interpret the problem. Of the remaining
95 mistakes, only five were successfully repaired with the subjects verbally
demonstrating understanding of their causation (4 Feedback, 1 Hidden functionality).
Ten errors were fatal in the sense that part of the task had to be abandoned and work
thrown away. Abandoned actions were caused by one hidden functionality error

76

(lasso), four inappropriate functionality problems (freehand draw, curved arc) and
five impossible actions when subjects attempted to place arrows on arcs and rotate °r

text. In the remaining errors (76%) subjects continued the task sub-optimally with

another operation.

Subjects often hypothesised that failed actions implied a system constraint, when, in

fact, the action was possible. For instance, two subjects who placed a circle over text

(thus blanking the text) remarked that 'it won't let me to do if and 'it looks like you

can't have it'. In some cases errors were compounded, for example Subject H, while

unsuccessfully trying to place an arrow on an arc, inadvertently set the arrow-line
default. Subsequently he encountered problems with unexpected arrows when
drawing lines.

On 25% occasions when a problem was encountered, the subjects verbalised a
hypothesis about what went wrong and tested their hypotheses by system exploration.
Problems were solved infrequently (5 times); one example was subject C who tried

unsuccessfully to place an arrowhead on a very small line. He reasoned that the line

was simply to small to bear an arrow, experimented with a slightly longer line, and

was proved correct. In most cases, however, the subjects' hypotheses were

unsuccessful and provided no explanation.

After a minority of errors (18%) no strong explanatory hypothesis was verbalised and

the subjects took experimental action with several features. They engaged in

apparently random interaction or sequential search, exemplified by Subject C who

went through several menu options looking for an operation to place text in front of a

circle. After the majority of errors (57%) the subjects verbalised an explanation for

the problem but did not appear to attempt to solve it either by reasoning or guesswork.
Overall, complete error recovery was poor even though the subjects showed some

understanding of the error causality. Most preferred to try alternative actions to

complete the task.

4.5.3. Model-based Analysis of Error Causality

To understand why errors occurred in more depth, a separate analysis was conducted,
based on the goal-tree analysis of Keiras and Polson (1985). System and user models

of interaction were compared for the more frequent errors and for errors which were

reported by several subjects. It is important to note that the system models represented

the most typical action path for a task. However, an important attribute of DM systems
is the flexibility of interaction and many different system models are possible. Indeed

many errors were circumvented by the user following another action path.

77

4.5.3.1. Arrows on lines

Use of the arrows feature caused problems in two situations, selection of the direction

of arrows and placing an arrow on a curved line. The user and system models for the

arrows feature are illustrated in Figure 4.7. There is a considerable discrepancy

between the two models which is accounted for by selecting the arrowhead direction

before drawing the line. The user's model (for novice users) has no selection step as

arrows are drawn as a feature at the end of a line. Problems caused by not selecting

arrows were recoverable, although some users took some time to learn that they had to

select the arrows option then draw the line.

78

User Model

Draw
arrow
line

Position Draw
line

start

Draw to 1/ Add
end Jl arrow

Key

Goal tree hierarchies

System Model

Draw
line +
& -row

elect Select raw Arrow Line
e

line

Position Drag
start to end

bdb
and.. both sub goals
performed

or iteration-
repeated sub goal

Figure 4.7. User and System models for drawing a line with an arrow
using MacDraw I

79

4.5.3.2. Arrows on curved lines
The user and system models show even more disparity in this case, as illustrated in

figure 4.8. The system imposes an artificial restriction that arrows can only be drawn

on straight lines. Hence curved lines (and other palette options such as the polygon)

can not be selected with the arrows as a sub-option. Recovery from this error was
difficult for nearly all users and impossible for two, who never discovered the solution

of drawing a small straight line bearing an arrow on the end of a curved arc. This error

was classified as missing functionality and is illustrated clearly by model mismatch

analysis. However, this error also involved visual aspects of the interface. Users

naturally expected to be able to draw arrows on a curved line, and stated that their

expectation was reinforced by the system model which did allow arrows on straight
lines. Users attempted to draw arrows on curved lines by selecting an arrow option

then selecting the curved line (or less frequently the polygon) in the belief that

allocation of the arrows attribute would be implemented by the system. In MacDraw II

this design problem is still present and in follow-up experiments the same errors were

observed.

80

User Model
System Model.

Draw
Draw

arrow line +
-arc arrow

Draw Draw Add Position
arc

art arc arrow

aw to Add Select raw Select Select Draw
end arrow arc Arc A1roline arrow

type

Position Drag
start to end Position Drag

start to end

Figure 4.8. User and System models for drawing an arc with an arrow using MacDraw I

4.5.3.3. Autopositioning shapes: The Grid feature.
The grid feature automatically positions shapes and lines accordingly to a set of system

coordinates rather than the absolute position shown by the cursor. The grid option

also influences moving shapes which 'jump' in small steps between preset coordinates

rather than moving incrementally under direct cursor control. Even though the Grid

option is explicit in the Layout menu, this feature gave users problems in a variety of

contexts. The user - system model clash is caused by an additional action of

autopositioning by the system (see figure 4.9). The problem was manifest when

subjects wanted precise positioning of objects. The system confounded their attempts
by 'jumping' object positions during move operations. This error was classified as
hidden functionality as the system performed an action which was neither expected by

the user nor overtly cued. Understanding the whole problem involved cues as well as

actions. The successful solution to the problem required that the subjects find and then

81

correctly interpret the grid option on the layout menu. However, the cue `Turn Grid

off' did not trigger further investigation.

Sywm Model duigrvam

Drvs, Draw Add Dnw
ac °'RJe PolY6w M[t

seleü Select Oboe Draw to stint n$ Select aloe seit Poswoe Eoter
opUOs uc slut end 1-boe to

Polyton
h V- text am text

Adjust
e

Dnw
pope

Dow sled dms ýb AdryW Wate
statt body shos postwa bat

Usr Made[
drag select
to and end

OoOner
dugnn

Adjust Prow
Po0WOs

D- Drn Dnw Add
cvcL poly6oe t. "

Pontius Draw to
st"

raw
wd eucun

Dnw port Wnte

not
°dý tut

FIR 4.9 User end System models for oend drawing aalst using MacDraw I

4.5.3.4. General Object Creation
The system models in figure 4.10 illustrate another frequently reported user problem

with selection and defaults (critical incidents), although these did not always lead to

errors (complete breakdown). The system model dictates that the user has to reselect
the palette operation each time a new shape is drawn. Furthermore, feedback for

option selection was inadequate leading to many errors when users were unaware of
the system state. This frustrated several users who expected their first selection to
become a default, allowing them to use the same object several times. In this case an

82

interesting design dilemma is posed. If a system model assumed this default then it

could clash with a user model in which single instances of many different shapes were
to be drawn, and hence an explicit select is required. An optimal design solution may

not be possible, as this feature illustrates the problem of a design model having to
satisfy multiple user models.

4.5.3.5. Moving overlapping shapes
These problems were not caused by any model mismatch even though the user and

system models do not show a complete correspondence (see figure 4.11 a). Instead the

problem is entirely a matter of feedback. When users drag a shape over another one,
their expectation is that the first (moved) shape will still be visible inside or

underneath the second. The feedback during the dragging suggests that the shape is

transparent (the text and ruler lines are visible underneath). However, on releasing the

mouse-button the shape becomes 'solid', obscuring the object underneath.

Another example of this was selection of multiple objects (see figure 4.1 lb). Subjects

tried unsuccessfully to select several objects by serial points, unaware that a group

objects (lasso) facility existed. Some subjects saw the hand-icon cue and didn't

understand it. Others never saw the cue as it only became visible by holding the

mouse button down on unoccupied drawing space and then moving the cursor with

mouse-button down to open the lasso.

4.5.3.6. Summary of Mismatch Analysis
The analysis suggest that there may be two levels of design problem that lead to user

errors. The first is clearly a problem of the cognitive design of task-action sequences.
The influence of users' task models on expectations dictates that steps in the device

model must, wherever possible, link to equivalent steps in the user's model.
However, the degree to which this is possible is likely to vary from task to task. It is

inevitable that the structure of some tasks on the device will not resemble domain-task

structures. For example, the concept of a plotting restriction or grid is unlikely to

figure in a typical user's domain model. Mismatch analysis demonstrates that the

success of this depends on the presentation of task steps.

A number of the errors reported in the study could not be traced to task-design as

such, but rather to the presentation of those steps. In other words, some errors can

only be adequately explained with reference to visual aspects of the design. In a

number of cases the designer (or whoever is responsible for making improvements)

has to judge whether the optimal design change involves altering a step, or altering a

presentational aspect of the interface. The `Grid' problem shows this potential

83

dilemma. It is arguable that the `structure' of interaction can beneficially be altered by

having the autogrid as an option rather than a default. It may also be argued that if the

cue was altered from `Turn Grid Off' to something more comprehensible, usability

problems may also be avoided. The study of MacDraw II in Section 4.6., below,

provides further practical examples of these issues.

4.5.4. Further Analysis of Error Classifications

The categories used for describing errors were analysed to investigate possible sub-

categories. Individual examples of categorised errors were re-examined for common

characteristics. It was found that most categories could be sub-divided. The

following list gives examples of the errors assigned to those categories.

4.5.4.1. Misleading Cue Errors
Examples in this category could be divided into two classes. One involves the user

simply linking a feature to the wrong task The examples of this error type showed

cues which caused incorrect assumptions about their relevance to tasks. For example,
Subject H reasoned that the cursor default at the top of the palette was 'the arrow

section' and was part of the arrow selection procedure for lines. The cursor default

was intended to (and does) resemble the on-screen cursor. However it also resembles

the arrow menu cue and arrowed line-ends (Figure 4.7. shows the palette with the

cursor default shaded).

A second type of cue problem is where the user makes a correct assumption in linking

the feature with the type of task, but is misled about the specific effects of the feature.

The `arrow menu' example, reported above, comes into this category. The menu is

iconic, showing a line with an arrow on the right, and one on the left. The subjects

who made this error were misled by the assumption that directionality was indicated

by the cue.

84

user model system model

Change
location Change

location

Select Move
Move Place

object object Select
object object object

Move
Move

(a) User and system model for the move operation

user model system model

ula another ulti another Deselect object object
operatio operation

eraao
operation

Select Select Define

object lassos select

(b) Partial User and system models for the multiple object (lassoe) operation

Figure 4.10

85

4.5.4.2. Expectancy/Impossible action errors:
The examples that were found can be broadly split into two types, namely task/device

mismatches and unsupported assumptions from previous actions. In the former cases
subjects were compromised by device constraints. For example, there were 5 cases of
subjects attempting to draw a second shape without reselecting the necessary palette
option. The subjects involved complained that the system was doing something that

they hadn't asked it to do. The real-world user model involves no equivalent
reselection action.

The 16 instances of subjects attempting to add an arrow to an arc line, an action that

the system does not allow, demonstrating the second type. Subjects` comments

strongly suggested that they had reapplied knowledge of other arrow utilities. The arc
is grouped on the same palette as the line options for which the arrow facility can be

used, and is functionally similar in all other aspects.

4.5.4.3. Hidden Functionality Errors
One type of hidden functionality is exemplified by the grid problem reported in Section

4.5.3. This is the problem of cues not being recognised by the user. When two

subjects were asked retrospectively to identify the feature they both guessed that it

would remove the graph lines that were visible on the screen. Neither could connect
the cue name to the correct functionality.

Another example of this was the selection of multiple objects. Others never saw the

cue as it only became visible by accident (i. e. when the cursor is dragged with no

option or object selected). Crucially, this was compounded by the fact that the

subjects did not expect such functionality to be activated in that way. Three subjects

admitted that they would look in the menu for such utilities. This seems to present a

separate problem from simply cueing functionality. Users also require cues for the

selection of search locations.

The other type of hidden functionality error contrast with the previous two examples.
This was where a feature was accidentally activated without the subject being given

any indication of what s/he had done. The 13 errors (between 2 subjects) associated

with arrow default settings were an example of this. The subjects performed what
they saw as straightforward arrow selection procedures, not realising that they were

setting a default. The only indication that the default has been set comes on a
subsequent occasion when a line is drawn. Subjects are left to deduce from memory
how the default came to be set in such a way. The only two subjects who stumbled

86

upon this problem could not work it out even after experimenting with the feature.
This type of problem is described as a mode error by Monk (1986).

4.5.4.4. Inappropriate Functionality Errors
These errors can be divided into two categories. One is the inexact matching between

cue and task. For example, Subject F had a problem with the flip and rotate functions.

He admitted that the type of rotation he had in mind was different from the available

effect. The features in question all indicated their function to an extent, but left users
to guess about their precise effects.

The second example is simply where the demands on user manipulation skills are too

great. For example, all subjects who tried to use the freehand draw option conceded

that it was too awkward to use accurately.

4.5.4.5. Missing/Ambiguous feedback errors
We identified 3 elements that made up the 17 feedback related errors. The first is the

straightforward failure to adhere to the WYSIWYG principle. An example of this

occurred when 3 subjects who had written text in a circle reported errors when it

appeared to blank out the circle's edge.

A second problem was a discrepancy between continuous feedback in mid-action, and

post-action feedback. The best examples of this were the 3 occasions when subjects
dragged circles over written text. The feedback during the dragging suggests that the

shape is hollow (the text and ruler lines are visible underneath). However, on

releasing the mouse-button the shape becomes 'solid', obscuring the object
underneath.

A third problem was false confirmation, the illusion that an action has been

successfully completed, accounting for 8 of the 17 errors in this category. Seven of

these involved the palette selector highlight. The errors occurred when subjects

selected a palette option (causing the highlight to move to that option) but did not
immediately release the mouse button. This caused the previously selected option to

remain current, with the highlight returning to that option. Although the selected

option is shaded, this feedback seems to be insufficient to make users aware of the

error. Subjects admitted that they had mistakenly believed that the highlight had

confirmed a successful reselection.

4.5.5. Summary of Category Analysis

Whilst all mode errors fitted easily into the categories, it is clear that the categories'

87

diagnostic power is limited. The analysis shows a considerable diversity of examples,

suggesting that a more precise set of critical points in the action cycle can usefully be

described. For example, a misleading cue may cause incorrect identification of a
feature, but also (as in the freehand and arc examples) effect inaccurate expectations

about the feature's operation. Also, hidden functionality errors sometimes refer to the

problem of locating features. However, in other examples the problem is one of

secondary state changes, or hidden mode changes. In these cases the system has

changed mode resulting in known user actions producing different effects when

subsequently used, undermining example-based learning. The examples of

expectation of impossible action errors also suggest a range of mismatch types which
designers may usefully investigate to find the optimal alterations to a design.

4.6. Studies of Expert Users

4,6.1. Methods

A follow-up study was conducted using two highly experienced subjects (Subjects J

and K). Both subjects had used MacDraw regularly for between two and three years.
Subject J had constructed a number of data-flow diagrams, similar to the scenario

task. Subject K had not drawn diagrams in the particular style of the scenario, but had

experience of similar drawing tasks. The experiment. l conditions (time, scenario,

data analysis) were the same as for the novice subjects.

4.6.2. Motivation

The motivation for studying experts was to identify fundamental contrasts between

novice and expert users. The Model of Action describes action across the spectrum of

user types. Therefore, expert user behaviour should (if the model is accurate)

resemble the description of behaviour described in the model.

4.6.3. Results

Subject J completed the task in fourteen minutes, and Subject K completed it in 19

minutes. Both Subjects J and K spent most of the session in task-action, with only

occasional feature search (Subject K scanning for arc and datastore drawing options).
They were able to perform long sequences of task action, adjusting the sequence of

operations to suit specific needs. For example, Subject J was able to anticipate at each

stage whether the `grid' should be turned on or off. Subject K used the `Duplicate'
facility extensively, creating all the required shapes prior to arranging them. Subject J

88

did not report any feature search. Subject K only found it necessary to search for arc
drawing facilities.

The two subjects made a total of three errors between them. Subject J experienced
difficulties plotting with accuracy having forgotten to select the feature ̀turn grid on'.
Subject K moved a composite object (a three-line ̀datastore' and text) expecting it to
move as one. He also experienced problems using the arc feature (he claimed not to
be familiar with the feature).

4.6.4. Summary of Expert Study

The marked absence of search actions suggests the use of compiled knowledge. This
is also evident in the long sequences of unbroken task-action, and the anticipation of

steps. In particular, both subjects were able to anticipate and go to features which

were not immediately visible (e. g. menu options). This is fundamentally different to

the Chapter 3 model, which explicitly states that all action includes a search phase.

4.7. Studies of MacDraw II

4.7.1. Motivation

We investigated MacDraw II to contrast aspects of the interface design with MacDraw
I. There were three reasons for looking at this. The first reason was to see which
problematic parts of the interface design had been changed. The second was to assess
the effectiveness of those changes, given the flaws that had been uncovered. The third

was to look at the effect of other functionality that had also been added.

4.7.2. Methods

The investigation involved inspection of the MacDraw II interface and a pilot
evaluation with two subjects. The inspection involved a simple scan of functionality,

listing the changes that had been made, and whether these corresponded to features

that caused problems in the original study.

The pilot evaluation involved the same procedure and scenario as for the MacDraw I

study, in order to direct users to the same task-action behaviour. The sessions were
recorded and analysed for use of specific features, and error behaviour, rather than
for a full analysis of user behaviour.

89

4.7.3. Results

Twenty one design problems had been identified with MacDraw I. Of these 12

remained unaltered in the updated package and only 4 problems had clearly been

rectified.

4.7.3.1. Altered Design Features
The menu for arrow selection uses linguistic rather than iconic cues to provide a clear
description of the functionality. The palette is now selected as soon as the user places

the cursor on an option, removing the ambiguous feedback present in the previous

version. The text feature has no ghost border to obscure other shapes.

In three other design features there is some doubt as to whether the changes will

solve usability problems e. g.:

Arc- The user is given more (mid-action) visual information about the angle being

plotted. Lines appear on the screen showing the X and Y co-ordinates of the arc.
However, the user is given no extra help in anticipating or controlling automatic

repositioning.

Arrow default Selection- The arrow selections are denoted by a marker next to the

selected option. However, this feedback is not visible when the menu disappears from

view.

Grid menu- The Turn Grid Off menu option has been renamed Turn Autogrid Off.

The name refers to a system function which may not be immediately apparent to the

user.

4.7.3.2. Other New Features in MacDraw II

Some design features which did not create problems for our MacDraw I users have

been changed in MacDraw II, without delivering any apparent improvement. The on-

screen zoom facility is denoted by a mountain-like icon, a'mini metaphor' which

neither subject managed to discover despite both expressing the need to look at the

screen in finer detail.

The grid in MacDraw II causes even more exaggerated repositioning than MacDraw I.

Subjects complained that placement was particularly difficult.

90

4.6.4. Summary of MacDraw II Study

The evidence from the study suggests that there are considerable problems in

satisfactorily improving interface features even after problems are reported. The fact

that a feature is identified as troublesome is simply a step in the process. Further
investigation of the true nature of usability problems is necessary to avoid wrong or
inadequate alterations. Some of the changes seemed to cause greater problems than
before, suggesting the need for assessing the effects of changes to design features in

advance of new versions being produced.

4.7. Conclusions

In this chapter we have looked both at the validity of the model-based approach, and at

the possibility of refining the descriptions within it. Further to this we have

considered how model-based techniques can make explicit the real nature of errors in

terms of the user's strategies and reasoning, and the interface's influence on that

reasoning.

The model of Action's basic description seems sound when used to describe patterns

of interaction observed in the sessions. However, the model's utility for evaluation can

only be fully exploited if it more explicitly describes critical interaction points.

While the error categories gave some preliminary guidance towards error causality,

model comparison was required for more complete understanding. Whilst the' data

suggests that the proposed categories comfortably contain the user errors that would
be of concern to evaluators and designers, their diagnostic power is limited. The

weakness of the categories used is that they fail, in some cases, to provide a

sufficiently accurate level of diagnosis, which pinpoints the root cause of a problem.
Therefore a further analysis of the critical points in interaction is necessary, in order to

account for the diversity of interaction problems, and yield recommendations for

design improvements.

However, mismatch between models in terms of user or system actions is only part of
the story. In direct manipulation interfaces the perceptual aspects of interaction and the

role of metaphors have to be taken into account. Users' problems need to be

considered from different viewpoints:

91

(i) Users' problems which may result in an error or just degraded functionality;

attributed to a mismatch of actions between the system model and user's model.

(ii) Users are unable to predict machine operation from cues, metaphors and feedback,

even though they may understand the system model.

(iii) The potential for error/problem recovery afforded by the system; and users' ability
to interpret the system state from feedback and metaphor and then find appropriate,

remedial actions.

Errors may be minimised by task analysis and user modelling to ensure that actions are
designed in the system model which correspond with users' expectations. Thorough

task analysis may help specification of actions, but successful design in DM systems

also requires careful attention to metaphors, cue and feedback, all issues implicated in

the detail of interface design. Mismatch analysis in this context requires analysis of
how task model nodes are represented. This is required as the interface has to effect

mappings to a range of task elements including action object, goal state and the

enabling state for the next action. Some mismatches, such as confusion over feature

identity from cues, may be described as failure of interface items to effect meaningful

mappings to task model elements. Helping users' understanding of system operation
by metaphor and explicit cues appears to be a vital component of successful design,

although current state of the art guidelines (e. g. Smith and Mosier 1986, Browne

1988, Laurel 1990) can only provide a partial guidance.

4.8. Chapter Summary

This chapter has tested claims made by the model of action, through empirical study of

user behaviour, and errors. The model provides a broad description of user
behaviour. However, descriptions of expert behaviour and the effect of the display on

novice user behaviour require more detailed descriptions. Also, there is scope for a

more detailed description of error types. The following Chapter proposes a modified
model of interaction accounting for user knowledge levels as well as sources of user
knowledge. A further taxonomy of errors is also proposed.

92 A

Chapter 5- Further Model of
Action Developments

5.1. Introduction

This Chapter develops the model of the action cycle, and proposes an approach for its

use in evaluation. The model described in Chapter 3 is split into three sections,
describing three levels of mental processing by users, using definitions proposed by

Rasmussen (1993). These levels are defined by the knowledge-spaces that are

recruited from by users. Examples are provided demonstrating that search and

operation specifying mental acts are distinct steps in the action cycle, and may require
different types of system support. Error types observed in the Chapter 4 study are

linked to stages in the models. These are described as system failures to fulfil roles in

the dialogue (i. e. support for specific user mental acts). The latter section of the

chapter describes ways in which dialogue role failures may be pinpointed using data

from user-based studies.

5.2. Revisions to the Model of Action

5.2.1. Introduction

The following sections describe the elaboration of the Model of Action in the light of

the Chapter 4 study. Examples from the studies show the need for models of DM

action which can distinguish between levels of expertise. The model of action shown
in Figure 3.1. assumes that search, trying a feature, and evaluation, provides a generic
description of user action. It describes paths of action where a known feature is

found, or where the user has to guess the utility of a novel feature. However, the

Chapter 4 study suggests that a more precise account of action is required, as mental

activity will be determined by the user's knowledge of the task and device.

5.2.2. Expert Users

The two expert user sessions described in Chapter 4 showed a relative lack of feature

search. Most interactive sequences were performed automatically by the experts,

using compiled knowledge of the system. The reports from both expert subjects

suggested that a detailed `search for candidate features' was not required for most

92

actions. For example, Subject J was able to declare in advance whether the grid would
or would not be required for various phases of the task. The selection of point sizes
for various items was also achieved without prior experimentation. This contrasts

with the trial and error approach of the novice subjects.

The expert subjects, whilst tracking the system response continuously, rarely paused
during task sequences. This suggests that they use compiled procedures, dispensing

with the need to closely monitor every state-change. The experts' rich models of the

system made them less dependent on feedback as a source of information for

subsequent action. For example, Subject K grouped and repeatedly duplicated the first

circled text item that he had created. He declared that the text could be rapidly edited

after duplication. Novice subjects only used the `duplicate' feature for shapes, none of

which were edited further.

5.2.3. Partial Device and Task Knowledge

Evidence from the study in Chapter 4 suggested that novices users' knowledge was

variable in nature. The study showed a strong emphasis on synthesis-based

generalisations, as described by Lewis (1988). In Chapter 2, Lewis's view of

abstraction was described for generalisation of operational sequences. However, the

learning of extended operation sequences using abstraction was not explicitly

modelled. The studies showed that MacDraw contains a number of features that

operate in a similar but contrasting way. These features are presented in a way which
induces abstraction by users (e. g. grouping palette options). The two subjects who

tried the polygon feature had both used line and shape drawing facilities. The task

facing these users was to infer that extra drag/release and double-click operations were

required. Both users were able to work out that the extra drag and release actions were

needed. However, both reported errors before learning the double-click action with
the polygon.

The sessions suggested that the mapping of task space to device space described by

Moran (1983) and Payne (1991) requires a more detailed description to account for

partial knowledge and learning. Subjects C and F, for example, had knowledge of the

Macintosh (Subject F having used MacDraw), although they still needed to discover

much of the system. The package has similar Edit, Font and Style menus to other

applications that these subjects had used. The eighteen errors they made were
exclusively with features unique to MacDraw (e. g. the Arc), while common features

such as ̀ cut and paste' and other editing facilities were used without error. Subject D

used the `cut and paste' facilities declaring that he knew the feature from a different

package. This subject (unlike C and F) had no experience with Macintosh software,

93

but he was able to port across operational knowledge from the previously used

package.

5.2.4. Interaction Level Models

The model of action, described in Chapter 3 was reassessed in the light of the findings

described above. This reassessment utilised distinctions drawn by Rasmussen (1986)

to describe levels of user action. Rasmussen describes three types of user action;

skill-based, rule-based, and knowledge-based. In skill-based interaction the user

automatically performs tasks without conscious planning. This is expert behaviour,

where device-task procedures have been practised and internalised. In rule-based
interaction, the user has fragments of operational knowledge and rules for selecting

and applying those operations. In knowledge-based processing the user is calling on

external knowledge sources, and reasoning with general, device-independent,

knowledge.

Typical DM interaction (for novice and expert users) is likely to be a mixture of all

three types. To emphasise how the processing types combine, it is useful to describe

the device-space knowledge of an experienced package user. The experienced user

will know the majority of device procedures and features well enough for skill-based
interaction. However, this user's knowledge of the device-space is unlikely to be

complete. When the user finds and experiments with a previously unused feature,

rule-based processing will apply. The user will examine the novel feature and select an

operation. Also, the user may recognise a similar feature which is known from

another system, and retrieve the operation. However, if the system response

confounds expectations, the user may be forced to reason from first principles (i. e.
knowledge-based processing) rather than from more structured device knowledge.

So, even for the highly experienced user, a combination of three types of processing is

likely.

The novice user is also likely to use a mixture of the three processing types, but in

different proportions to the expert. Some procedures may be internalised rapidly. For

example, subjects in the chapter 4 study were asked to create several shapes and move

them into a pattern of drawn shapes. It is arguable that, having drawn some shapes,

their grasp of the manipulation sequence is sufficiently automatic to be described as

skill-based. However, in novel situations, the subjects reasoned about new features to

support selection of procedures (explored in greater detail below). As with expert

users, novices resort to knowledge-based processing when system feedback is not

understood.

94

Figure 5.1. briefly summarises the knowledge spaces that are utilised in the three types

of processing. Knowledge-based processing is used when more specific device

knowledge is not available to the user. Rule-based processing may use experience of
the current package (e. g. how palette features are operated). The current package may
include features which are common across an operating environment with which the

user is familiar. Knowledge of packages with a similar look and feel (e. g. knowledge

of other WIMP interfaces) may also be used. The user may also apply operational
knowledge of a feature specific metaphor (such as cut and paste) from a previously

used package. The skill-based user is able to recognise a familiar task and perform a
sequence of operations. The processing levels apply both to the device operations and
the external task. For example, users of a statistics package (e. g. Macintosh

Statworks) will import their skill and experience in operating on statistical data from

the external task.

Processing Level Knowledge Spaces

Knowledge-based
General Knowledge
Task domain knowledge

Partial knowledge of current package
Knowledge of other device packages

Rule-based
Features from other packages
Interaction style, look and feel

Skill-based
Automated task-procedure
Compiled device/package knowledge

Figure 5.1. Rasmussen's Knowledge Levels with Related
Knowledge Spaces

The processing levels proposed by Rasmussen (1986) concentrate solely on how

operations are specified. There is no account of how the display influences search and
feature selection. Therefore Rasmussen's account only partly embraces the stages of

95

mental processing described by Norman (1986). Norman's theory refers to searching

the environment, and recognising affordances and constraints. Rule-based action may

result from search guided by metaphor interpretation or merely guesswork. Metaphor

in the large tends to assist knowledge-based processing by suggesting general

principles and heuristics influencing search and general operations. However, feature

level metaphors are more likely to be action metaphors, stimulating the recruitment of

operation rules. Rasmussen does not accommodate metaphors in his model of

reasoning, and hence cannot give a complete account of the factors influencing user
behaviour at the three levels.

The models to be described distinguish between two types of learning and rules. One

is procedural attachment learning, where features of a certain type are bound with

operations (if < feature. x > then operation is <Al.... An >). In knowledge-based

processing the user needs to interpret an action metaphor, deriving rules by mapping
between task-space and device space. In rule-based processing, the user will use

procedural attachment rules which are already established. These may be rules for

known operations already performed (e. g. knowledge of the `cut and paste' procedure
from general computer experience). Also, the user may apply a known rule to operate

a novel feature (e. g. < feature recognised = palette option > therefore < apply known

palette operation>). There is a distinction between general and specific rules of

operation. General rules apply across operations. For example, rules for operating

pull-down menus apply to a large number of differing types of menu. Some features,

however, will have specific rules of operation. These may be seperate from general

rules (e. g. the lasso) or a specialisation of a general rule (e. g. the extra mouse

operations needed for the MacDraw polygon palette option).

The second type is locational feature learning which binds display areas to types of
features, thereby guiding search (if < recognition criteria > then contains < feature. x

>). A user with no prior knowledge of the system must interpret the visual image for

familiar features and groupings (knowledge-based search). A user with some

experience will have criteria for guiding feature search (rule-based level).

The following sections demonstrate the need to account for the complete process from

goal formation, through search to the specification of operations. Similar notations to

the Model of Action in figure 3.1. are used. The processing levels are distinguished by

the way in which operations are derived in accordance with Rasmussen's account.
However, the models also show the influence of multiple knowledge-spaces on user
behaviour.

96

5.2.5. Model of Knowledge-Based Action

Knowledge-based processing relies on task/domain knowledge or general knowledge.

The task-domain consists of two relevant types of knowledge. One is knowledge of
typical objects and actions, which provides heuristics and principles to guide

exploratory action on the device. The other is wider knowledge of object classes and
structures in the domain. General knowledge refers to everything which is not

necessarily associated with a particular task. Therefore, a general operational
metaphor will often prompt use of general knowledge.

A sequential model of knowledge-based action is shown in figure 5.2. a. The user

searches the interface for feature cues ('scan interface'). In the absence of known

features or groupings, the user must interpret the visual metaphor or scan for cues.
The user may find a feature which is visible on-screen or possible feature locations

(e. g. menus). The user may be familiar with the domain that is represented by the

system. MacDraw, for example, shows a pen and paper metaphor which appears
familiar to the user. This may prompt the user to import general knowledge to guide

search and feature interpretation.

The user recruits knowledge of how the domain is organised, to inform search of the
interface. For example, types of utility or tool may be grouped together in the users

model of the task-domain (see Reisner 1990). The user's model of the task-domain

consists of classes of objects and criteria linking them together. So, for example, if a
kitchen is a domain, the objects within it may be partitioned into groups according to
function (e. g. crockery items, cutlery items, cooking utensils). The user may scan,
find a feature cluster or group identifier, and focus search in that location.

Some tasks may not be interpretable in terms of a device-independent task-domain. A

package may be `empowering technology' rather than enhancing familiar tasks. In

these cases the user has to learn new tasks, rather than translate existing task
knowledge. Also, metaphor-based systems are likely to include some functionality

which is not interpretable with reference to the task-space. The MacDraw `autogrid'

for example is a device concept with no equivalent in the novice user's task-model.

Also, the design may employ a secondary metaphor. For example, a `human body'

metaphor has been used to represent the device domain in visual programming

environments (Kilgour 1989). The user may, therefore, need to import knowledge

about the secondary metaphor from the task domain.

The model describes the user searching without knowledge of where the feature is

likely to be. The user relies on metaphor suggestions either in choice of location

97

(`guess location') or by spotting a salient feature on the screen (e. g. the wastebasket
icon). Having selected a feature, the user has the task of selecting the operation
(`guess action'). The user may be able to infer the appropriate operation from the cue

and general knowledge (e. g. the Wastebasket). In other words, principles may be

imported from the metaphor for device operation, as the user is aware that items for

disposal generally require carrying to the bin and placing inside. The user may be
familiar with a range of basic manipulations (e. g. how to drag and drop) which can be

mapped to these general principles. Otherwise, the user has to simply experiment.

The satisfactory completion of the action leads to `confirm operation' and provides
information which may be used in subsequent feature exploration `add rule'. This

transorms part of the overall knowledge-space from the knowledge-based level to the

rule-based level. The operation may provide an example from which generalisable

system knowledge can be gained. This may be a generalisable rule for applying device

operations, similar to that described by Lewis (1988). For example, a user who has

performed a font changing task, has knowledge of the operation sequence [select text
item - select font]. This knowledge can be recruited in subsequent operations by

abstracting the rule [rule = select text - select operation]. Also, knowledge about

operations on non-text objects is generated by generalisation [rule = select {_ item) -
operation].

The `font' example above may also yield knowledge which assists in further search

tasks. The action may contribute to spatial learning, and knowledge of where utilities

are located. The user will have gained some knowledge of the pull-down menus,

which will constrain subsequent search. For example, MacDraw I has point

changing facilities located in the Font menu. The user may remember this for

subsequent interaction. Metaphor interpretation and guesswork (knowledge-based

search) is thus replaced by actual system knowledge (rule-based search) as device

learning proceeds.

98

formulate
external
task-knowledge

goal

bjects/

ctions
Rule based
knowledge

Scan
interface

interpret tructural

structural 4elaphor

metaphor

I
Nothing

guess
found

location

Match: display
bjed/task object

rule available
for subsequent

0

Mental/
action

select
physical act

feature

C. Knowledge
source

Add rule operation
not clear

Guess
action

Import metaphor/
generalisable general knowledge
example

Execute
Procedural

Action
metaphor and

principles

match change

confirm
to task goal Go to

operation
remedial

Recognise
cycle

evaluate
not expected age
expected

Figure 5.2. a. Model of knowledge-based action

99

5.2.6. Model of Rule-Based Action

Figure 5.2. b. describes rule-based action. The model describes paths by which rule-
based processing may come about. Specifically, it includes all paths of mental action

which lead to the direct selection of operational rules. Whereas knowledge-based

processing requires the translation of general heuristics of principles to device

operation rules, rule-based processing applies known operational rules directly. Some

of the paths in the model show knowledge recruitment that is associated with
knowledge-based rather than rule-based processing. Specifically, locational rules
derived from metaphor interpretation or guesswork, may reveal features which prompt

the recruitment of known rules of operation.

The user searches for familiar features or groupings ('scan interface'). The user may
have knowledge of particular areas or clusters, with which certain feature types are

associated. Therefore the user will be able to apply this knowledge to the current

search task. However, it is possible that the user will not be able to select a strong

candidate location, having only partial knowledge of the interface. This may prompt
the user to use knowledge-based processing, selecting and experimenting with an

unknown feature (`go to knowledge-based level'). Also, the user may resort to
knowledge-based search, trying to interpret the visual metaphor ('guess location').

This may also lead to the knowledge-based level if no familiar feature is found

Search based on imported knowledge of the task-space may lead to rule-based action,
if a familiar feature is found ('find familiar feature'). For example, a user may find

familiar `cut and paste' features during a random menu search. The user may know

this feature from previously used packages. If the visual metaphor fails to direct

search, the user may try a random search of the interface. The user may find a feature

on the screen, during the initial scan. This is represented by the arrow linking `scan

interface' to `select feature', and marked by `match feature to task'.

The node `go to familiar/recognised location' describes two types of knowledge

recruitment by the user. One is recognition of an area as being linked to a certain type

of feature (`goto familiar location'). The user may, for example, have seen that point

size options are located in the MacDraw I Font menu, having entered it for font

options. In this case, direct system knowledge is used. In another example, a Word

Processor user may have used utilities for customising the interface and setting

preferences, and therefore know where such facilities are located. This may help the

user in subsequent search for a feature to customising tab settings. The user may

abstract the needed facility to a type (i. e. tab setting is a kind of `system set-up'

100

utility). This matches with knowledge of where such features tend to be situated,
gained from the previously used features.

The alternative type of knowledge recruitment describes search of new areas of the
interface. The visual metaphor may act as a cue suggesting the location of certain
feature types ('goto recognised location'). The user may direct search knowing neither
if a suitable feature is available, nor how such a feature would be operated. In this

sense the search is knowledge-based. However, the user may find a feature which
bears familiar presentational aspects suggesting operations (e. g. menu type, dialogue

box) and apply known operational rules.

The user uses abstracted system knowledge as a rule in applying a known operation to

a new feature (retrieve and modify operation). The 'recognise/evaluate change'
includes a path back to `retrieve and modify known operation'. In such cases a

general rule has been applied, but an additional rule is needed to complete a particular

action. This accounts for features, such as the MacDraw polygon, which may only

reveal the need for a modified `palette operation' as the user performs and monitors the

action. Otherwise, a successful action contributes to (generalisable) system
knowledge ('confirm operation - add feature').

101

formulate Task

goal
knowled e

feature bjects/
found atone

recognition/

Recognise link search rules

to area/clus ter scan go to
interface knowledge-

no
No obvious based level

feature link

found no
o to feature

familiar/ match featur found Guess
recognised o task

Location

ocation
select

no feature Find familar

Device , eture feature
found

rules Similar to
known feature

extend current go to
ule-base

retrieve + knowledge-

modify based level

Operational operation
rules

Apply known rule
of operation

further Execute
Add rule operation Action

needed

generahsabie match change
example to goal Go to

remedial
cycle

confirm Recognise
operation evaluate not

expected change expected

Interpretation
rules

Figure 5.2. b. Model of rule-based action

102

5.2.7. Model of Skill-Based Action

A sequential model of skill-based processing is shown in Figure 5.2. C. Skill-based

action contains relatively few phases, as search and action are automatic. The user

selects the necessary operations automatically when the goal is formed. The phases
`goto feature' and `execute action' are also automatic. This represents ̀ direct

engagement' as described by Hollan et al (1986). The user does not have to devote

any working memory or concious processing to the device operation. The phase
`recognise/evaluate change' simply refers to tracking of task progress. The user is not
directly checking that the device has been operated correctly, but using compiled
knowledge.

Skill-based users automatically recognise the circumstances in which internalised

procedures can be used. The system image triggers automatic hand and eye movement

('goto recognised feature') and performance of action. The user goes to `retrieve

operation', with the feature acting as a cue to the knowledge store of operational
information.

The `recognise/evaluate change' node is linked to the 'goto recognised feature'. This

describes the way in which skill-based users chunk sequences of familiar actions

together in rapid sequence. The `correct slip' node refers to fact that skill-based action
includes the automatic correcting of slips. There is no learning pathway in the skill-
based model. Knowledge is already compiled, and no extra knowledge is acquired.

103

formulate
goal

bjects/ Compiled procedures/
Ctions reco nition criteria

end of Goo

procedure recognised
feature

within known

procedure action

retrieve
operation

rectify
slip

Execute
Action

slip Go to

remedial
cycle

Recognise/ not

evaluate expected
change

Figure 5.2. c. Model of skill-based action

104

5.2.8. Model of the Remedial Cycle

This section describes a model of the remedial cycle, which accounts for the effects
of errors on processing levels. The remedial cycle expands on the `error cycle'
element of the Figure 3.1. model. The model is shown in figure 5.3. The description

of feature discovery through accidents or errors remains unaltered from the original
model of action. The studies produced examples of either accidental discovery (e. g.
menu options close to the used feature) or manipulation errors producing
comprehensible feedback (e. g. Subject A dragging without selecting and finding the
lasso feature as a result). In these cases, the features were often immediately useful
and prompted the next action, whereas in others, the discovery was internalised for
later use. The contrast between errors that contribute to learning, and those which

cause dialogue breakdowns is a crucial distinction. The former has been cited as a
desirable component of DM interfaces (Shneiderman 1986).

The major modification is an expanded account of users' response to unsatisfactory

system responses, particularly where feedback is not fully understood. Unexpected

responses are potentially large influences on the development of the user's model of
the system. The user will attempt to reason about the output, and this may affect the

acquisition and use of rules. The user may either internalise information about novel
features and procedures, or review rules that are already held.

The node `change rule' refers to cases where the feedback prompts the user to use a
different operation for the task. The circumstances in which this may happen vary.
One situation involves the user trying to find a quick, efficient way of performing the

action, already knowing another slower way of performing it. This is an example of
the distinction between optimising and satisficing, drawn by Simon (1973). For

example, the user may try duplication or group resizing to cut down effort, but can

revert to creating individual objects, or resizing if the action fails. Also, the feedback

may demonstrate the nature of an error. For example, two subjects failed to double-

click after using the polygon option. A further line was produced as they dragged the

cursor from the item to the palette, indicating that the system had not confirmed
completion. Both responded by performing the correct action.

The node `modify specification of action' refers to cases where the user believes that

attempted action sequence was only partially correct .
For example, the user may re-

order a sequence of actions (e. g. line draw select, arrow option select, drag line)

retaining most of the assumptions that formed the original specification. Also, if a
feature does not perform to the expected standard, users may accept degraded

105

functionality, modify their expectations and redo the action.

The node `exploratory action/test assumption' refers to action which is not intended as
task action, but is intended to test and validate assumptions resulting from analysis of a
failed action. The user may attempt to test a feature which had contributed to

assumptions about the current action. For example, in the Chapter 4 study, subject H

tested the operation for adding arrows to lines by experimenting with the `diagonal

line' option (the arrow feature having failed to work for arcs). He claimed that he

expected the arrow option to work for arcs as it had for diagonal lines. This is an

example of abstraction-based reasoning (Lewis 1988) proving unsuccessful.

The `guess feature' node involves the user resorting to knowledge-based rather than

rule-based processing. The user does not try to generate a hypothesis about the nature

of the problem or the correct action. The user may resort to general knowledge, or

simply try action in the hope of discovering something hitherto unknown by trial and

error learning.

The node `add constraint' refers to the effect that a failed action may have on the user's

model of the system. The user may interpret the failure of an action as evidence of a

system constraint, rather than taking exploratory action. An example of this is

provided by the two subjects who obscured text by dragging a new shape over it. As a

result, both assumed that it was impossible to place shapes over text items leaving the

text visible .
In both cases the assumed constraint caused a rethink in the overall

ordering of drawing tasks.

106

metaphor

T
feedback

kil Formulate
ry feature

J Recognise

Goal + evaluate
change

Attempt
mir new action

formulate slip action

goal
mmediately not

us eful
xpecled ED

Rectify known

;

error error
Add understood

Feature Attempt to partially
interpret

new change
teatur feature

of
nderstood not useful

Guess
feature

Change
useful soluti n rule
feature not know

Decide

usefulness

add
constraint

Genera. $yacem

metaphor

error
interpretation

�_,, __
heuristics

repair

specification
of action i

/ nband«,
I

cceptable(`` aclýon
Iternative

operation

Vicera knowledge

of device

functionality

not useful Formulate
goal

Abandon continue
Try feature

action task

EXIT- Give
up Task

Figure 5.3 Model of the Cycle of Remedial Action

107

5.2.9. Discussion of Models

The process-level models demonstrate the need to account for the influence of multiple
knowledge spaces on user action. Rasmussen (1986) only accounts for the point in

the action cycle where operations are specified. This corresponds to the `try action'

and `guess and try action' nodes from the original model in Figure 3.1. The model of

rule-based action has the equivalent node `retrieve and modify operation'. This

describes users either generalising knowledge of the system, or porting across
knowledge from the operating system or similar packages and features. The rule-
based model has the equivalent node ̀ retrieve operation'. The phase in the action cycle

only partially accounts for the mental activity between the formation of a goal and the

execution of an action. A full account must also explain how features are searched for

and found. Skill-based action is distinct from other processing levels in that sufficient
knowledge of feature location, identity and operation is available to the user at the

point when intentions are formed.

The model divides the rule-based level into specific rule sets. The empirical study in

Chapter 4 shows that users employ distinct rules for recognition, the specification of

operations and the interpretation of feedback. This implies that distinct interface

features may support use of each rule set. Also, the model extends the account of

processing levels by Rasmussen (1986), by showing that the processing levels

interact. Therefore, many user actions cannot simply be described with reference to a

single processing level.

The model of the remedial cycle shows how unexpected or unsatisfactory feedback

may cause users to reference different knowledge spaces, and use different processing
levels. In particular, users may need to use knowledge-based processing after rule-
based processing fails.

5.3. Models of Action Specification

5.3.1. Introduction

In the Theory of Action described by Norman (1986), one stage links the forming of
intentions to the execution of action, namely the `specification of action'. The

specification stage of Norman's theory is further analysed in this section. This section

108

decomposes the specification of action, separating search activities and the

specification of operations. The importance of separating search and recognition
mental acts from the actual specification of operations is described. Broadly, the
interface should support each mental activity. Search, feature recognition and

operation specification may be supported by separate aspects of the design. In turn, a
dialogue breakdown may be traced to a failure to support a particular mental activity

and, therefore, a specific element of the design.

5.3.2. Search and the Specification of Operations

The knowledge-spaces described in Figure 5.1 apply not only to the specification of

operations, but also to search. It is conceivable that different processing types may be

used at different points in the action cycle. Knowledge-based search may be used to

find features, followed by rule-based specification of operations. It also conceivable
that rule-based search may locate a feature, but the user has to guess or reason about
how it is operated. The factors that influence a search may be quite different from

those which prompt action once a feature is selected. A model of the knowledge that

users may recruit must account for the link between knowledge spaces and specific

mental tasks. Search is usefully seen as a separate processing sub-system, distinct

from the specification of operations.

Figure 5.4. distinguishes between the utilisation of knowledge-spaces for search tasks

and the specification of operations. The `specify operation' sub-system only describes

how the user decides to operate a feature, and not the preceding search. Each
knowledge-space (cited in Figure 5.1.) has a contrasting use. Knowledge of the task
domain may initially be used to comprehend the spatial metaphor (directing search) or
in the recognition of features. Task-domain knowledge may also contribute to

specifying operations by facilitating the import (and translation) of operational rules
from the task-domain to the device. Similarly, general knowledge may simply inform

search (e. g. comprehension of group headers), or choice of operations. Affordances
(Norman 1988, Gaver 1991) such as sliders or scroll-bars are designed to provide an
indication of possible operations.

109

Knowledge-Based Processing Rule-Based Processing

Partial knowledge
Knowledge of similar

t Binding of feature type device packages
to known locations Recognition of familia

features/locations

Task domain L
eature knowledge

knowledue from other packages
reasoning about new Recognition of familiar
metaphor/feature cues feature representation/ ,

search ,
General knowledge Interaction style,

look and feel
Recognition of possible import of search rules

Task-domain Knowledge of similar
knowledge device packages

reasoning about Hove Specify import familiar operation/
operations/import operation generalisation of rule base

operations

7

Partial knowledge

1'I'.
of current package

General knowledge , Generalisation of known

Brations
Recognition of ,: possible affordances

z Interaction style, Feature knowledge
took and feel from other acka es
import operational Imported operational J

rule/base rule ',

wSsaww;, <<a,,..
ý,
ocar.: -, . «ýn'ý ,. .,, , >k`asz,.. x«, a:. ixaz ýkza,;. ýwt"., ä». w. Y;

üwý

Knowledge Space 7-
Mental Act

Knowledge Utilisation

Figure 5.4: Knowledge Space Utillsation In Search and
Specify Operation Mental Acts

110

Knowledge-spaces associated with rule-based processing may also influence either
subsystem. Partial knowledge of the current package may include knowledge of
where types of utility are located. However, this does not necessarily imply that a
feature, if located, will be operable as the user may have to interpret the feature cue
(using task-domain or general knowledge). Also, the user may select a search location

using experience of the current package, but find a feature cue which resembles a
known feature from a previously used package (prompting use of imported rather than

abstracted rules).

The following sections contain detailed examples illustrating the influence of different

processing levels and knowledge-spaces for particular actions. Four contrasting DM
dialogue scenarios are described. These include a brief description of the user's

relevant system knowledge, and the current state of interaction. The scenarios
describe what the user needs to know, find, recognise, and interpret in each case.

5.3.3. Deletion Using The Wastebasket

The wastebasket example demonstrates the separation of search from specifying

operations. Two hypothetical users, with contrasting experience, are described. The

two users wish to create disk space by removing some files. User I has experience

with the operation of dragging and dropping files into directories (but has no
experience of the wastebasket). User 2 has no experience of either.

Both users recruit general knowledge in identifying the wastebasket icon. The

wastebasket icon suggests a utility for disposing of unwanted items. However, the
two users recruit from contrasting knowledge-spaces to specify operations. User 1 is

able to recruit abstracted knowledge of how files are moved, having placed files into
directories (rule: select file - drag to directory - release button). The rule of operation
is used with `directory' substituted by `delete buffer'. User 2, by contrast, must
translate general operational heuristics or principles from the task-domain to the device

domain. The action of throwing an item into the wastebasket maps to dragging and
dropping of device objects.

5.3.4. Draw Eraser

This scenario is of a user who is trying the Microsoft Paintbrush package for the first

time. The user is already familiar with MacDraw. The two packages have a similar
look and feel. A palette is located to the left of the draw-space, and a menu-bar runs
horizontally above it. The basic manipulations are broadly similar. The user, however

will not be familiar with some of the icons displayed on the palette. The user wants to

111

create a composite object, involving several line and shape objects. The familiar look

and feel enables the user to recruit general rules of operation from the MacDraw rule-
base. For example, a range of palette icons are recognisable as equivalent to the
MacDraw icons. Therefore, search and the specification of operations are heavily
influenced by knowledge of MacDraw.

However, there are some differences between the two packages, which affect some
tasks. An example arises when the user wants to delete component items from the

object, including part of a line. The user has seen the `pencil rubber' icon on the

palette (a feature with no equivalent on MacDraw). Therefore, the user has to translate
known principles or heuristics from the domain to specify operations. The cue

expresses an `erase' metaphor, which binds to the rubbing out of pencil drawings.

The user is prompted to try similar actions with the mouse, thus learning a new utility.

5.3.5. Editing Drawn Objects on a Document

In this example, the user wants to move a labelled box. After forming the goal the

user distinguishes the two entities (i. e. the text item and the shape item) which form

the `labelled box'. In order to optimally perform the action, the user must match

moving a composite object with the lasso action. This does not involve a selecting

action in a conventional sense, but the placing of the cursor in a neutral area of the

screen and dragging to enter lasso mode. The cue is a `hand' which appears if the

mouse button is pressed on an object-free region of the draw-space. On dragging, the

hand becomes base node for a feint line which expands and contracts according to

where it is dragged. Subject A in the Chapter 4 study found this feature by noticing
feedback from an accidental action. The feedback showed several drawn objects with
the familiar `handle' dots (showing that they were selected) around their edges. This

is an example of an interpretation rule being employed. Subject A was able to use
knowledge of the package to comprehend the feedback, having seen selection
`handles' for single objects. The feedback thus became a cue for the next action.

5.3.6. Selecting from Menus

Menus are an example of a two-phase search. The user has first to select a search
location. The second phase is the scanning of that location for an appropriate feature.

In this example the user has knowledge of MacWrite. The user's goal is to create an
identical object to one that is already drawn. As it is a complex composite object the

user wishes to make a copy automatically. The user sees an Edit menu. The user is

able to link this familiar cue to the type of utility that is needed (Copy and Paste

facilities are located on the MacWrite Edit menu). The user pulls the menu down and

112

scans. The Copy and Paste options are seen, and are assumed by the user to be

similar to the MacWrite equivalent. However, the user also sees a Duplicate feature.
The user recognises the cue as relevant to the current goal by matching the term to the

task-action. Therefore, a different knowledge-space is used for feature selection than
for the original search. The user uses knowledge of operational rules to operate the
feature.

This example shows that the guiding of search and prediction of feature operation can
be separate for some actions. The visual metaphor may indicate where types of feature

are likely to be. Recognition of the feature itself may result from a different
knowledge space. In turn, recognition of a function does not imply knowledge of its

operation. The user recruits knowledge of how to perform a menu operation on

specific objects.

5.3.7. Summary of Scenarios

The scenarios demonstrate variations both in knowledge-spaces that are used, and
$ays in which they are utilised. The Wastebasket scenario demonstrates a feature cue

prompting contrasting knowledge recruitment by a complete novice and a novice with

some package knowledge. The two users were able to infer the necessary operations
by different means. The user in the `Eraser' scenario needed to comprehend the
`eraser' metaphor to learn the mouse and pointer equivalent of `rubbing out'. These

examples show that different knowledge-spaces may be accessed for search than for

specifying operations.

The Lasso scenario shows a contrast with those described above, in that there is no
search as such, but simply recognition of feedback, to facilitate trial and error learning.

Both recognition of a feature and an operation are made clear by evaluation of the

system state. This contrasts with the `duplicate' scenario, in which a location was

selected using device knowledge, and a feature recognised using scanning and
matching to the task-space. The user subsequently employs a known rule to operate
the feature.

5.3.8. Implications for Evaluation

This section describes the knowledge-spaces that influence user behaviour. The

system metaphor and individual feature representations may prompt the use of
different knowledge-spaces dependent on the users' experience of both task and
device. This has implications for the evaluation of dialogue design. If a package is to
be usable for a wide range of users, the design must support both knowledge-based

113

and rule-based processing. This applies both to high-level organisation and the design

of individual functions.

Knowledge-spaces may be used in locating (selecting where to search for a feature),

recognising an object (feature selection), and working out the necessary action
(specifying the operation). Visual aspects of the interface may have a role in

supporting one or more of these mental activities. Therefore, evaluation should

pinpoint a dialogue design problem as a failure to support one of these activities. It is

useful to analyse critical incidents both by analysing the users knowledge recruitment
in response to environmental cues, and by the role that the interface has in supporting a

mental activity. This requires unpacking the `specifying an action' stage in Norman's

(1986) theory of action. This stage may usefully be seen as a process of locating

features, identifying features, and specifying operations. These are considered

separately because a different element of the design may be responsible for a critical
incident. The study of MacDraw II in Section 4.6. suggested difficulties in accurately
diagnosing a dialogue design problem.

5.4. Error Diagnosis in the Context of User Activity

5.4.1. Overview

In the original model in Chapter 3, error types are attached to points in the cycle where

user behaviour is caused to change from normal task action. In this section error types

are traced to their source. This uses the distinction between the observed effect of an

erroneous action (an observed or reported error) and the root cause of the problem
described by Hollnagel (1993). In Hollnagel's analysis, observed user errors are
described as phenotypes. All phenotypes are connected to, but distinct from,

genotypes. Genotypes are defined as `the functional characteristics of the human

cognitive system that are assumed to be a contributing cause of the erroneous actions'.

The phenotype/genotype distinction helps to clarify the process of evaluation using

error analysis. Error-based evaluation has three basic phases, namely error discovery,

error diagnosis, and solution specification. In an evaluation process (e. g. protocol

analysis) the phenotype is the `discovered' error observed and/or reported in an
evaluation session. Diagnosis is the process of determining the genotype, and solution

specification is the result of analysis of one or more genotypes. More specifically,
solution specification is conducted from a work context, determining the system's (or a

system feature's) contribution to a genotype, and how (if at all) a design modification
may remove the problem. Also, it is possible that identical phenotypes observed from

114

different users may have differing root causes. One user may fail to operate a feature

correctly because the feature metaphor is inadequate. Another user may have the same

overt problem as a result of generalisations made from previous interaction with the

package.

The amount of analysis required to connect phenotype and genotype may vary. In

some cases, the genotype is clearly observable (e. g. the user has a problem

continuously monitoring responses to dragging actions, because the cursor is not

moving in the expected direction). In other cases, the genotype is a more distant

cause, rooted in a previous action with a feature or the user's understanding of a key

system concept or term. Examples of `distanced' causes of user errors are described

by Carroll et al (1993).

The following sections link genotypes diagnosed in the Chapter 4 study to stages of

the Models of Action described in Section 5.2. Errors linked to types of processing

are described, linking phenotype to user genotype. Some are illustrated with sample

protocol extracts from the Chapter 4 study to demonstrate the link between phenotype

and genotype.

5.4.2. Knowledge-Based Processing Errors

5.4.2.1. Guess Location Phase
Two types of error are associated with the mental act of guessing a feature location.

These are the inability to select a search location, and the incorrect selection of a
location. Knowledge-based search relies on the visual image to give the user an

indication of how the screen is organised. In the absence of such assistance the user

may search locations (randomly or in an arbitrary sequence) or give up. The genotype

may be described as metaphor or structural layout failure, in that the user is given no

navigational assistance.

The user may reason about the search location from the visual metaphor, or read menu

names. The phenotype is the user reasoning in error that the feature is in a certain

place. The genotype is either confusion over the meaning of a section name or

representation, or the presence of a feature in an inappropriate location. The following

extract is of Subject E searching for a facility to change text point sizes, to fit a text

item into a drawn shape. The extract is divided into physical (actions) and verbal
(utterances).

Verbal - I'll try to make this (text) smaller

115

Physical - Goes to Layout Menu, scans

Verbal - That's no use

Physical - Goes to Edit menu, scans. Goes to Layout menu, scans again,
to Arrange menu, scans.

Verbal - That's no help, I'll have to make the circles bigger. It's going to
be a tight fit.

Subject E had to alter the diagram because he could not find the point changing
facilities. He looked in (apparently) appropriate menus (Edit, Layout, Arrange), using

the header names to help (point options are at the lower end of the `Font' menu).

5.4.2.2. Select Feature
Two errors associated with recognition are failure to recognise a feature and the

incorrect selection of a feature. In the former case, the phenotype is the user passing

over a needed or useful feature. Broadly, the genotype is the cue failing to alert the

user to the feature's utility. This may be because the user cannot connect the feature

representation to the current goal.

There may be a problem of prominence or visibility, with the user scanning and not

noticing an item is there at all. The feature cue may be too small to see, or not cued at

all (e. g. the lasso).

The phenotype associated with incorrect feature selection is the user reporting failure

of an action, and incorrectly identifying a feature. The genotype is the cue incorrectly

suggesting a link between the feature and the current task-goal.

Erroneous choice of features may be linked to interface support for the location of
features. For example, the names of utilities in a menu may not be distinct outside the

context of the group header. This is illustrated by an example transcript of subject C

searching for facilities to reduce the size of a line object.

Verbal - I'm going to have to be a bit careful how I use the rest of the

space on this. I'm slightly running out. I've only considered putting it

down as I want it to look it would be a pain putting lines in and then
deleting them. I presume you can't squash lines

..........................
I

don't know

116

Physical - Goes to Arrange menu, Goes to Layout menu

Verbal - No, I can't see anything. wait a minute
'reduce to fit'

....... I'll try that

Subject C incorrectly matched the goal of reducing a line to fit a space with the `reduce

to fit' cue. This demonstrates the way in which a bogus match can result from

ambiguous cueing. It should be noted that he was clearly unaware of the general
function of the menu, which offers options on the viewing and function setting of the
draw space.

5.4.2.3. Guess Operation

Two error types are associated with the `guess operation' phase. These are
insufficient knowledge of needed operations, and finding that functionality is

inappropriate. The user may not be able to work out how to operate a feature. For

example, s/he may not realise that certain steps are required, because they do not map
to the task-space. For example, Subject A found that he could not plot a point with

precision. The following passage is taken from Subject A's session in the Chapter 4

study.

Physical - User selects palette default. User moves cursor to text within a

circle. Moves the first line a small distance. Repeats for two more lines'.

Verbal -I should be able to move and position it. Its jumping about a bit.

I'm surprised that such a powerful package does not let you do it

accurately

Physical - Selects palette text option. Moves the cursor to a (drawn)

square. Moves cursor again and clicks to confirm location.

Verbal -I press the mouse there to indicate that 1 want it there. It, flashes
below the right place

Physical
- Moves cursor slightly higher and confirms location

Verbal - and then at the right, top, or left of the mouse. I find

that very confusing. It means I have to learn it before I can use it

effectively

117

Unknown to him is that the default state of the package is an invisible plotting
restriction (or 'grid'). This principle is missed because it is unexpected and counter to
the `drawing' metaphor. Subject A remained unaware of the `Turn Grid Off' feature.

He was unable to recognise the feature when shown the menu cue in a post-session
test. He admitted that it had not occurred to him that such an option may have existed.

This error is an example of a failure to support the natural actions. The user's
estimation of the optimal sequence of operations is drawn from knowledge of pen and
paper drawing. The user has no concept of a grid, and is therefore unable to specify
operations satisfactorily or interpret the system response accurately.

The user may find that a feature is simply incapable of operating as desired. The

phenotype is the user expressing a problem with the way that a feature has behaved,

despite having identified the feature correctly. The genotype is the feature failing to

support the precise goal. This is usually because the feature is too restricted. For

example, the cut and paste facility may be operated to move an integrated text and
shape item. However, the system may not allow the simultaneous moving of both text

and shapes. The feature has been correctly recognised, but its scope of operation is

too limited. The following transcript is of Subject D trying the Freehand Draw option
from the MacDraw palette. He trying to draw a line connecting two objects whilst
avoiding an obstructing object between them.

Physical - selects Freehand palette option, draws line - deletes - repeats

action - deletes

Verbal - It's a bit of a bummer this thing, because you have to press and at
the same time have very good poise to draw lines. I wouldn't recommend
it. but I don't have much choice because there is no other choice. Of

course if I don't have to follow this thing I can use straight lines, although
its not as good.

Physical - Selects Freehand palette option, draws line - deletes - repeats
action - deletes

Verbal - So it looks like 1 have to use straight lines, because I don't think

thing is actually a connection. it looks like it is just something to scribble
with.

Subject D identified the feature correctly as a freehand drawing option. However, the
feature is not capable of matching the performance of a pencil in terms of accuracy and

118

neatness. Subject D had assumed that the feature would support skilled drawing.

5.4.3. Rule-based Processing Errors

5.4.3.1. Goto Familiar Location
The user will have rules for governing search, linking areas of the screen with types of
feature. The user may go to a location to look for a feature, but not find the feature.

The genotype is the failure of the user to predict the feature location using experience

of feature search. For example, the `show clipboard' feature on MacDraw is located in

the File menu, although the Cut, Copy, and Paste options are in the Edit menu. The

following extract describes Subject D searching for a `clipboard' facility to check the

contents of the buffer.

Verbal -I don't know if all of it copied. I'll look at the clipboard.

Physical - Goes to Edit Menu, scans.

Verbal - It's not here. Why isn't it here. It should be. Every system I

use lets you look to see what you copy
I'll just do

it and hope it's o. k.

Subject D admitted that he had searched for the clipboard, and had given up after
looking in the Edit menu ('show clipboard' is in the File menu). He had assumed that

the feature would be clustered with these relevant options. It retrospective interviews

he cited experience of the Edit menu on MacWrite, where the clipboard feature is

clustered with Cut, Copy and Paste options.

5.4.3.2. Retrieve/Modify Operation
This refers to the mistaken use of abstraction-based reasoning. The phenotype
typically involves the user expressing expectations from previous system actions,

often about the behaviour of features that appear similar. These expectations are

confounded when action is attempted. The genotype is the user making abstractions

and generalisations on the basis of visual or conceptual associations between features,

and those differing from the system model. In other words, the user misapplies

general rules, having been cued to do so by the system. The following transcript

sample describes a particularly serious error of this nature from Subject H. He has

selected other drawing facilities from the palette, and has experience of adding arrows
to lines.

119

Verbal -I will now attempt to do one of these curvy lines

Physical - Selects arc palette option - draws arc - goes to lines menu

Verbal - I'll put the arrow head on it

Physical - Selects arrow option (no response)

Verbal -I don't know why it didn't do it.

Physical - Selects arrow again

Verbal - do I have to set it onto a line?

Physical - Reselects drawn arc

Verbal -I think I've selected which lines 1 want to put the arrows on,
that's what the dots are. It should put arrows on there

............. oh well, I don't understand this one. I put on the arrows

thing- so it should give me an arrow. I identify the the line I want to put it

on, and Igo to the arrows..... it should draw it, but it doesn't. What do

Ido if I can't do it?......... I'll try something else.

Physical - Selects diagonal line palette option, draws line, goes to lines

menu, selects arrow (arrow appears)

Verbal - ah right! so you identify the arrows you want and then draw the
line.

Physical - Selects arc, goes to lines menu, selects arrow option (no

response)

Verbal -I drew it once before- it's not working now

The system has failed to support abstraction-based generalisation by the user. The

user has applied a known operational rule to a new feature, assuming that it is a feature

of the same type. Therefore the user assumes that the same operations can be applied.

Another error affecting rule-based specification is hidden effects of a previous action.
The phenotype will typically be the user expressing strong expectations about the

120

result of an action, and some bewilderment at the result. The genotypes are the effects
feedback perception mismatches from a previous action. This genotype is also linked

to mode errors, described by Norman (1988) and Monk (1986). In the example
below, Subject A has set a default without realising. The default automatically adds

arrows to any drawn line. He had been drawing arrowed lines by selecting a palette

option followed by an arrow option from the lines menu, and lastly dragging the line.

By selecting the line option before drawing the line, he has selected a default arrow

which is activated for all subsequent horizontal and vertical lines. He is trying to

create a datastore (i. e. three sides of a rectangle) using the horizontal lines option. It is

around ten minutes since he last drew a line.

Physical - selects horizontal line menu option - draws line

Verbal - It's, in fact, still drawing those arrows. I'll have to reselect. It's

not exactly playing fair

Physical - Goes to lines menu - selects ̀ no arrow' option - selects
horizontal line menu option - draws line (arrow appears)

Verbal - Its gone back to the arrow Now why has it done that? That is

totally baffling to me. Why on earth have I got an arrow on that.

The user has no knowledge that a default is set. Therefore the user has made incorrect

assumptions about the state of the machine in specifying the action. The default has

been set, but the user was unaware that this has been done. This will be further

discussed in the section below on feedback.

5.4.4. Skill-Based Errors

The problems of search, recognition and specifying operations do not apply to skill-
based action. Skill-based action uses compiled procedures rather than recruitment and

use of knowledge. Therefore, associated errors are likely to be those associated with
the tight cycle of skilled performance and continuous monitoring of progress. In

highly interactive systems the user may become able to perform manipulations
extremely swiftly. This may lead to problems if the user becomes sufficiently fast that

the dialogue becomes restrictive. Another danger is that indistinct cues may trigger the

wrong skilled procedure. Also, with frequent use, monitoring of system responses

may become less precise, or even stop altogether. Therefore the user may perform
sequences too quickly for the system to validate the input. Of the eight incidents
involving subjects failing to confirm a palette selection prior to commencing drawing,

121

seven were made by two subjects. The errors all occurred towards the end of the

session when subjects began making the error after using the palette on numerous

occasions for repeated operations.

5.4.5. Summary of Errors

The examples demonstrate a diversity in error types between processing levels.

However, a number of design problems are similar or common across processing
types. For example, problems with interpreting the spatial metaphor may prevent the

user from effective searching (knowledge-based processing error) or lead to a more

experienced user selecting the wrong search location and missing a feature (rule-based

processing error). In both cases the mental act of locating features was not adequately

supported by the system.

System genotypes can be traced by eliciting the user's interpretation of the interface,

and the knowledge-space that the user employs for a particular mental act. As shown
in Sections 5.3. and 5.4. users may recruit from different knowledge-spaces for

different mental acts within a single action. Each mental act is system led, in that the

user is relying on signals from the interface. Therefore system support for each user

mental act is a potential source of an error.

The error types described above deal specifically with mental acts involved in the

specification of action. The following section adds the remaining stages of action
including recognising and evaluating changes. Recognising change is simply noticing
that a change has occurred. Evaluating change is the act of interpreting and

comprehending the change. There are also problems associated with the initial

formation of goals. Also, errors may be associated with the actual physical input

actions. These are discussed in the following section.

5.5. Errors in the Recognise/Evaluate Change Phase

5.5.1. Recognition of Changes

The errors discussed here are problems in noticing that changes have occurred. The

phenotype is the user expressing that an action appears not to have had an effect. The

user may have inadvertently activated a feature, and the phenotype is a subsequent

reaction to unexpected system behaviour. If a change is not indicated with feedback,

the user may specify action with an incorrect model of the system-state. Equally, a
delay may cause confusion, as the user will rapidly proceed to the next action, failing

122

to notice. Similarly, feedback may be too inconspicuous, brief or indistinguishable to

alert the user.

5.5.2. Evaluation of Changes

This refers to the accuracy of the system image after an action has been performed.
The phenotype will typically be the user believing that there is a problem, even though

the correct procedure has been followed to achieve a goal. The genotype is the system
failing to give an accurate visual indication of a state change. For example, a delete

action may seem not to have worked because an image of the deleted item (or a

remnant of it) remains on the screen.

Another problem is failure to interpret feedback in task terms. A change may occur as

a result of an action which fails to indicate the system state. The phenotype is the user

recognising but misinterpreting a change. The genotype is a failure to match system

output to user goals. For example, the object selection action in MacDraw produces
`handles' on lines or shapes. This represents a state where moving, reshaping and

resizing are possible through direct manipulation of the object. However, the

representation is arbitrary, and may not be understood by the user. The user may

misinterpret feedback, and be prompted to perform a wrong or unnecessary action.
For example, placing text objects on existing shapes (in MacDraw I) may result in the

potentially misleading appearence of a partially deleted shape. The user may be

prompted by this to delete one or both objects unnecessarily.

5.5.3. Formulate Goal

The declaration of a user goal implies the need for system support. The user declaring

a goal which is beyond the scope of the system is therefore evidence of a system error.
The phenotype is the user searching in vain for suitable features.

5.5.4. Execute Action

The `execute' action phase places physical demands on the user. The user may find

that an action is simply too difficult to perform. The phenotype is the user

experiencing difficulty performing with a feature to a sufficient level of satisfaction.
For example, the user may need to perform dragging or pointing actions with extreme
accuracy and find the system does not assist the user's physical capacities sufficiently.
The genotype is a failure of the system to adequately assist the user's (limited)

manipulation skills with support functionality.

123

Another problem with execution of action is unnatural response to user input. The

phenotype is the user finding that a feature responds in an awkward way to user input.

For example, some scroll-bars allow the user to click and drag, but scroll the text at a

considerably faster rate than the pointer moves. The user is unable to track the

scrolling action. The genotype is the failure of the system to support the user's motor

skills. It is possible, with practice, to master the operation. However, learning of such
skills should not be necessary. Manipulation and the device response on-screen

should co-ordinate in a natural way.

5.5.5. Discussion

The examples show the need to analysis the deep causes of critical incidents. The

phenotype is the user indicating a problem. The feature and task involved may be

indicated both by observation of action and by verbalisation. Also, the user may give

an indication of the mental act that was the source of the problem. In other words,

system failure to support a particular mental act may be seen as a failure to play the

relevant role in the dialogue. The user relies on the interface to support mental acts, so

system support for a particular mental act may be thought of as a particular dialogue

role. This is discussed in more detail in the next section. Along with features and

roles, the sources of users' reasoning is indicated. This is further contributory
evidence indicating why a role failure has occurred, and the design attribute that may

require attention.

5.6. Dialogue Roles

5.6.1. Introduction

Diagnosis by interpretation of user errors may pinpoint a feature involved in an
erroneous action, without pinpointing the actual problem that it actually caused, or
indicating how designers may rectify the the problem. Accurate diagnosis requires
analysis of the role that a particular system feature plays in the user problem, a point
made by Booth and Gray (1990). This implies the need to understand the role that a
design feature should have played in the dialogue (i. e. the mental or physical act that

required support). Serious user errors may often result from remote or high-level

causes rather than the feature `implicated' by the phenotype (see Carroll et al 1993).

The approach described in this section is to define an abstract set of roles which are
common across a range of task-actions. These correspond to user mental acts in the

cycle of action. Figure 5.5. shows dialogue roles linked to knowledge-based, rule-
based and skill-based mental acts. The sequence of Dialogue Roles is now described

124

with reference to types of role failure.

125

System SupportRoles User Mental Acts

formula
Goal Support

oal

goto familiar/
recognised

location

locator guess
iocation

goto
recognised
feature

Feature
Identifier

select
feature

retrieve
Operation operation
specifier Guess

action
retrieve an
modify

eration

Execution
support

Execute
action

Feedback

Perception ecognise
change

Feedback Evaluate
Comprehension hangs

Figure 5.5: Dialogue roles linked to user mental acts

126

5.6.2. Dialogue Roles and User Mental Acts

5.6.2.1. Goal Support
The user reasons about the domain, what is desired and what is likely to be achievable
with the device. The dialogue role here is simply supporting the goal by providing
appropriate support for the task. The associated role failure is the absence of
functionality with which to achieve the goal.

5.6.2.2. Locator

Some actions require two phases of search, including the initial selection of a search
location (e. g. search within menus). The dialogue role implied here is the Locator.
The locator role refers to the information which informs a user where to search for a
feature. For knowledge-based processing this means support for the `guess location'

mental act. This may be the adequate visibility of an area, a comprehensible system
metaphor and/or semantically relevant labelling of areas and menus. For rule-based
processing (goto familiar/recognised area) the requirement is broadly similar, but with
particular emphasis on the placing of supporting and and advanced features. The rule-
based user is likely to have a strong model of the spatial layout gained from previous
interaction, and be less inclined to perform a general search. Therefore, features

which are inappropriately placed may not be found.

Role failures associated with locators may be a failure of the visual and logical layout

to allow the user to identify locations. The inadequate naming of menu bars to assist
scanning is another example. Also, the inappropriate location of a feature may cause
the user to search in the wrong place. It is possible that a user may select the wrong
feature because a cue is understood in the wrong context. Whilst this may also be a
feature identification problem (see below) it may be, for example, a failure to label
feature grouping adequately. Also, the user may select an `obvious' location, but the
feature may be elsewhere. Figure 5.6. shows examples of Locator problems found on
the MacDraw menu bar.

5.6.2.3. Feature Identifier
The user scans for a feature which has characteristics matching the user's goal.
This may be seen as matching a device representation with some element of the task
model. This can be illustrated using a description of novice DM users trying to
identify a menu option, from Young et al (1990).

'...... the novice has to proceed by seeking inspiration, as it were, from the
information present on the display. The user will have to ponder the
candidate items in turn, and ask of each "given what I know about the task,

127

can I see any plausible connection with this word, strong enough to make
me want to consider selecting iff

To be a little more specific, the user is searching for a mapping between task concept
and device feature. The success of the cue is gauged by the strength and
distinctiveness of this connection. This may be a metaphor suggesting a task concept
(knowledge-based), or a familiar name, such as a feature which is familiar from

previously-used packages (rule-based processing). A similar process applies to the
scanning of other interface objects, such as metaphorical representations of domain

objects. In these cases, the user simply scans a candidate location rather than a range
of possible options. The role implied is that of the `feature identifier'. The role is to

provide a semantically relevant token, which is clear and distinct to the user. The

representation must cause the user to connect the feature with a current goal.

The role failures associated with this role are lack of cue meaning (i. e. lack of semantic
attachment between feature representation and task model concept) lack of cue
salience, and misleading cues. In the former case a cue may refer to a system rather
than a task concept, or simply not be a commonly recognised expression. Also, there

may be ambiguity, where a user makes a false connection and selects the wrong
feature. Some feature Identifier problems are shown in Figure 5.6.

128

Edit Style

New %N
Open... 8C0

Close
Saue 86S
Saue Rs...
Revert

Print One
Page Setup...
Print...

Show Clipboard

Quit NO

Style Font

Cut 86N
Copy NC

Paste NU
Clear

Duplicate 8¬D

Select fill NR

Reshape

Smooth
linsmool

Rorraha (r)rners...

Ar

Rthens
fluant Garde
Bookman
Cairo
Chicago
Courier
Dingbatsl
Dingbats2

�Geneua
Heluetica
Keycaps

D po6o4
99)

94
U0
Ba
Q3ß
90
Times
Venice
Zapf Chancery
Zapf Dingbots

" Rrrange F

Show Rulers
Custom Rulers...

�Normal Size
Reduce to Fit
Reduce
Enlarge

Turn Grid Off
Hide Ruler Lines

Show Size
Hide Page Breaks
Drawing Size...

Figure 5.6: Locator and Feature Identfier Problems In the MacDraw

menus. The Show Clipboard feature is In the File menu, separated from

the Cut, Copy and Paste options (Locator). The Font menu also has point
changing options, not referred to by the menu header (Locator). The
Layout menu shows the 'Reduce to Fit' option which subjects tried to use
to alter text and object size (Feature Identifier). Also, the feature 'Turn
Grid Off'was scanned but not recognised or understood by subjects (Feature
Identifier).

129

5.6.2.4. Operation Specifier
This phase describes the user's reasoning about the device operation. This type of

activity is particularly dependent on the nature of the user's prior knowledge. A user

may recognise the selected feature as being of the same type as one previously used
(`retrieve and modify operation') and apply a known rule. However, the process may
involve knowledge-based processing. The user may use knowledge of the metaphor

to imply necessary operations ('guess action'), or simply guess.

The relevant dialogue role is the `operation specifier'. This refers to system support
for the selection of appropriate operations. The nature of the operation specifier role

varies with the type of processing that the user is employing. Where the mental act is

`retrieve operation' and a feature and operation are re-used (skill-based processing),

the role implies consistent operation of the feature. So if a feature operation changes

when the system is in a different mode, that difference should be clear to the user.
Where the mental act is `retrieve and modify operation', and generalised operational
knowledge (rule-based processing) is used, the role implies consistency of operation

across features. This includes grouping features in a way that cues similar operations,

and communicating any operational contrasts. Where the mental act is `guess

operation' and the user is reasoning using their model of the task (knowledge-based

processing), the sequence of device operations should be predictable.

Role failures, for re-used features and procedures, tend to be mode changes or other

system state changes effecting the feature that the user has not been made aware of. In

the case of analogy with other features being used, role failures are the result of
inconsistencies in the way that features operate (e. g. method of activation, legality of

operations). In the case of reasoning using the task model, unexpected extra or

omitted steps are likely to cause problems.

5.6.2.5. Execution Support
Execution refers to the physical act of operating the device. The execution role.
involves support for the users physical skills. This is `natural' system responses
which minimise the need for the user to learn device-specific skills.

An example of an execution support role failure is found with some scroll-bar
facilities. The system begins by moving at a comparable speed to the user's mouse

action. However, the scroll may suddenly accelerate, making it harder for the user to

control. This could be considered an unnatural system response.

130

Another potential problem is that the needed action may be too difficult to perform.
For example, the accuracy of a required drag/drop action may be beyond the skill of a
user. The user may not be able to see or reliably move the mouse with the needed
accuracy. The designer should either design manipulations to be within the normal
ability range of individuals (e. g. constrained drawing options for dragging straight
lines), or add support options (e. g. a zoom for unusually precise plotting actions).
The absence of sufficient support may be considered a design error. Also, the

adequacy of a feature for the user's specific needs may be a problem. For example, a
rotate feature for drawn objects may be needed for a number of rotation angles. If it is

found to be restricted to 90 or 180 degrees, users may find this inappropriate to their
specific needs.

5.6.2.6. Feedback Perception
The user, if the action is novel, may feel the need to study feedback closely.
However, this activity is often a brief scan, or particularly with familiar actions, a
continuous tight sequence of automatically performed actions (characteristic of direct

engagement).

In a number of DM interactions, actually providing a signal which draws the user's
attention to a situation may be difficult. This is particularly so because even novice
users actually perform device actions extremely swiftly. Where actions are repeated,
the temporal gap between one atomic action and the next may be negligible. In this

example, the Feedback Perception role is to provide confirmation which enables swift
progress to the next atomic action.

Feedback perception role failures refer to feedback which is absent (not provided),
delayed, obscure or too brief. Related to this is the problem of secondary or remote
effects of an action. The user may confirm an action unaware that a secondary effect
has occurred. The manifestations of this change may only be visible when a
subsequent action is performed, lessening the likelihood of the user being able to

comprehend the system state.

5.6.2.7. Understanding Feedback
The user matches the system state to expectations and goals. An important

consideration for evaluation is the user's perception of progress towards completion.
This is particularly the case where a user action has a duration, as is the case with
dragging actions. An error described by Sutcliffe and Springett (1992) emphasises
this point:

131

`When users drag a shape over another one, their expectation is that the first (moved)

shape will still be visible inside or underneath the second. The feedback during the

dragging suggests that the shape is transparent (the text and ruler lines are visible
underneath). However, on releasing the mouse-button the shape becomes 'solid',

obscuring the object underneath. Even when action is specified and is being

performed, feedback from the interface should provide the user with information

which determines the next mouse movement, or a modification of intended actions'.

The feedback should allow the user to reference the state change in terms of his/her

notion of the goal-state. This is particularly pertinent were user action has remote

consequences, such as the printing of a document or updating files which are not open

on-screen. In using device independent knowledge in the formulation of action, users

also create expectations about the appearance of the post-operation state.

Feedback comprehension role failures are failures to reflect the true effects of the

action, and/or failure to reference user goals. The interface presents an image of the

end-state of an action which is open to misinterpretation.

5.6.3. Using Roles in Critical Incident Analysis

5.6.3.1. Introduction

The previous sections in this chapter refer to the need to establish genotypes from the

analysis of phenotypes or critical incidents. This section describes the way in which

pinpointing system failure to fulfil a role (i. e. failure to support a particular mental act)

contributes to this process. The failure of the system to fulfil a role will henceforth be

referred to as a role failure.

When a phenotype is observed, the evaluator has the physical evidence of a user

struggling with a task. This may be augmented by a verbal description from protocol

analysis, giving an indication of the user's expectations, reasoning, and interpretation

of the interface. At this point the evaluator has some notion of the cause of the

problem. A particular task and feature will be implicated in the critical incident. This

may be a user unable to proceed, having difficulty in performance, or expressing
dissatisfaction with the result of an action. In all cases (except where the user is at a

complete loss) the user will be able to express an intention. The user should be able to

express their interpretation of general and feature level metaphors, and their reasoning
behind search and operation specification. This information can help pinpoint the role
failure in the current action.

132

The raw evidence of a phenotype will show the evaluator that a user finds a particular
task difficult or confusing. However, this leaves the question of appropriate design

changes open. Identifying the problematic aspect of a feature (or design concept) is

the crucial step. Earlier in this chapter, the varying contributions of visual metaphor,
feature cues and general operational principles were described. Each single

contribution represents a potential role failure. The following sections describe ways
in which phenotypes from observation and protocol analysis may be examined to

pinpoint role failures. Phenotypes are are distinguished by whether they occur before
during or after a user action. Figure 5.7. shows the link between phenotypes,

supporting evidence augmenting phenotypes, and types of role failure. The left-hand

shaded area shows the supplementary protocol evidence that can assist deeper

analysis. These are linked to the right-hand column which show the types of role
failure implied by the evidence.

133

Ifa Empirical Evidence 1. Failed search
Q. Role Failure

A. Us of decfar e" ý�ý, ý Not possible on system Goal Support
unsatisfied goal

unknawa
L

nonýy
.
Idsntlfled

ocator: Lack of locating information

ocator". Misleading Information
Cörrectly identi! {ed

feature at e*P, er Locator. Feature sub-optimally

located

I
.
Festure not Scanned 00 1. not

found
fei

Feature Lack of cue meaning
identifier: or

Insufficient visibility

2. Difficulty with
execution

A. Feature used to
Executtan Unnatural response to

no support functionality
support: Input Lack of support for

full potential ý exist difficult action

support functionality See IB, C
B. Feature not used exists but undiscovered

to full potential

support functionality exists Operation failure to support the user

3. Dissatisfaction with

result

A. Incorrect featureý location Incorrectly Identified locator. misleading visual metaphor,
selected group name

correct location, wrong option Feature
identifier: Confusion between cues

B. Account of user has performed same action operation hidden effects of
procedure "before specifier: previous action
incorrect

user refers 'similar' action

pe rformed before operation failure to support
speclfier: reasoninp from prior action

user describes expectations based
Operation failure to reference user on task knowledge
specifier: goals/failure to reflect

true effects of the action

Account of user ignorant of nature of state-charge
Understand
feedback: failure to support the user

procedure correatý view of the task

User misinterprets visible evidence Perceive feedback absent/delayed'
of system state feedback: brietlobsure

Figure 5.7: Role Failures Linked to Protocol Evidence

134

5.6.3.2. Failed Search
The user may fail to find a feature although reporting the goal, the needed utility and

the extent of the reasoning behind the search (if any search has been attempted). The

evaluator can infer whether there is a `goal support' role failure, by simply assessing if

the needed functionality is provided by the system. If it is not, there is evidence for

adding such functionality.

The user may search for a feature, scan it, but not select it. This suggests that the cue
is either not sufficiently visible, or does not have characteristics that effect recognition
(feature identifier failure). This provides evidence for the need to alter the cue. Also,

the user may describe the type of feature that they are looking for. This may provide

an indication of what the new feature representation should refer to.

The user may fail to direct search for a feature, scanning features randomly, or simply
declaring frustration at the absence of a feature. This suggests that the visual layout of

the system is not understood, as the user is unable to link a feature type to a location.

Also, the user may declare a strong belief that a feature is in a particular location, when
it is, in fact, elsewhere. This may provide an indication of the way in which the user
interprets the spatial metaphor. In turn it provides evidence in favour of altering the

grouping of features or the location of a particular feature.

5.6.3.3. Difficulty in Performance
The user may encounter problems in performing an action. The user may either
describe what was expected (e. g. the cursor should move the other way') or difficulty

whilst the action is performed. The evaluator should judge whether any of the existing
facilities on the system could help the user. If they exist, but the user is unaware of
them, that suggests the problem lies in the specification stage. The user may have no
idea that, for example, a supporting feature exists on the system. This suggests a
failure of the `operation specifier'. The user may have scanned the interface for the
feature and failed to find it. This could be a locator role failure (if the user has not

gone to an appropriate location) or a feature identifier role failure (if the user has seen
but not recognised the feature).

5.6.3.4. Dissatisfaction with the Result of an Action
Ideally, the user will provide both an interpretation of the system feedback and an

expression of the goal and prior expectations. The user may indicate a
misunderstanding of the system state. This may be a mistaken belief that the goal is

not satisfied, or a mistaken belief that the action has not contributed to the satisfaction

135

of the goal. The user's description of what happens may show that feedback has either
not been noticed or has not been understood. In the latter case the problem may
simply be that the feedback fails to reflect the task state adequately. However, it may
also reveal a specify operation role failure. The user may have mistakenly believed that
the actions already performed were sufficient to satisfy the goal, revealing ignorance
that further user actions are necessary.

The user's account of expectations may also reveal the incorrect choice of a feature
(failure of the feature identifier role). Also, the user may express expectations based

on previous interaction which have not been supported. This would be a `Specify
Operation' role failure, defined as a failure to support assumptions from previous
action. Also, the user may express ignorance of the result of a previous action. This

would suggest the possibility of a problem with the design of feedback in the previous

action. A change in the system state may be unknown to the user, whose protestations
may suggest the belief that the feature seems inconsistent.

5.6.4. Summary of Roles

The diversity of evaluation causalities is a potential problem for novice evaluators.
Analysis using roles can prompt evaluators to scan a range of possible genotypes, and
check the validity of their `intuitive' problem diagnosis. In turn, it can be used to

guide evaluators to the cause of an error, including causes that lead back to prior
interaction or high-level problems. Analysing roles allows evaluators to pinpoint not

only features, but properties of features and their contribution to dialogue. Also, the

analysis allows the contribution of both feature level concepts and higher level

metaphor concepts to be assessed.

Analysis of role-failures is dependent on eliciting appropriate data from user-based
evaluation sessions. User accounts of the influences on their decision making, and
their interpretation of system appearance and behaviour, are crucial data. This practical
necessity is addressed in the following chapter.

5.7. Chapter Summary

This chapter has moved towards the utilisation of models of action in practical
evaluation. The first sections describe the useful distinctions that can be made between

processing levels, and the different knowledge-spaces that users employ. It is shown
that different knowledge-spaces may be used in location of features, recognition and
specification. Therefore, it is useful to treat them as separate mental acts, requiring

136

distinct system support. Each mental act is a potential source of an error phenotype.
The original premise from the Chapter 3 model is that these mental acts are system-led.
Therefore, user mental acts imply dialogue support requirements. Role failures are
therefore described as failures to support a particular mental act.

An approach to analysing protocol data using dialogue roles is described. Protocol
data can yield sufficient evidence to account for mental acts, the knowledge-space

used, and the aspect of the interface that prompted it. The following Chapter describes

a further empirical study in which the model's description of error types is examined.

137

Chapter 6- Model-Based Study of
Word Processor Users

6.1. Study Objectives

The study had two main objectives. These are

" Testing the power of the model of errors in analysing errors: The model provides a
description of how errors occur, characterising user's problems as mismatches
between user and system. The study collected a sample of errors from a different type

of package to the first study. Given that the model was developed from the study of a

draw package, its generalisability as a descriptor of interaction problems required

validation on a contrasting type of DM package.

" Study of comparable evaluation methods' performance: This independent study
based on the sessions is reported in Chapter 8. The ten sessions reported here were

also used to test the MMA method's performance in detecting and diagnosing errors
(the MMA method is described in Chapter 7. A further ten sessions were performed,

and used to test a (contrasting) method, the Usability Checklist evaluation method

(Ravden and Johnson 1989).

Along with the two major objectives, the effects of previous word processor
experience on user performance was studied. The Chapter 4 study selected subjects

who had little or no experience on the type of package that they were using. The next

study involved users who had experience of other packages for the same task domain

as the evaluated package. The intention was to observe examples of the transfer

problem, and assess if the model of errors can be effective in this context, with or

without modification.

6.2. Methods

6.2.1. Word Version 5.1 for the Macintosh

Word 5.1 is a word processing package which uses direct manipulation interaction and
is rich in functionality. The editing facilities involve direct selecting and pointing
actions. These actions are augmented with a number of functions which can be

138

activated using menu or icon selection options. The package does not have a standard
help facility, but an optional package can be loaded. It was decided that the help

package would not be loaded to ensure that the basic system design was tested. The
iconic ̀ toolbar' option was loaded to test alternative cues.

6.2.2. User Subject Group

Ten user subjects, all undergraduate students, took part in the study. All the subjects
had some experience of using word processors, but none had used any version of the
Word package prior to the session. The subjects had only used WordStar, the standard
package used in the University department from which they were recruited, or
WordPerfect.

6.2.3. The Task

As with the first study, subjects were given an explanation of the basic functions of the

package, and ten minutes to explore the system. They were then asked to perform

some basic text-editing tasks using the package. They were given two `task sheets',
one showing the current state of a document, the other showing the intended end state.
They were asked to transform the document from its current state to the intended end-
state (Figures 6.1. A. and 6.1. B.).

The scenario consisted of a one-page text document which, broadly presented six
distinct tasks to the user. These were as follows:

" The centring of the title

" The reformatting of the opening paragraph with bullet points

" The addition of two lines of new text, and an asterisk

" Changing the font of the document, and of individual items to bold and italic

6 Moving a block of text

" Reformatting two short paragraph as a pair of columns

The results were analysed using a combination of the observations during the session,
and retrospective analysis of the video data.

139

Technological Innovation

Changes in technology are taking place at a rapid rate in many areas and with
these changes an increase in productivity is expected. In many cases,
technological innovation has resulted in increased labour output, a reduction in
costs and a reduction in the price of the product or service. In many cases high
technology requires an increase in capital investment and an increase in
employees' skills. The operator often becomes a manager directing and
controlling complex machines and processes. With the coming of the computer,
which is often an integral part of the machine, the operator may only need to
take action when unusual conditions occurs or when a changeover in the product
or process takes place.

Well-known examples are the dial telephone, which reduces the need for the
telephone operator, hybrid seeds, fertiliser, and farm machinery. Electronic
technology has produced phenomenal gains. Since the 1950s the speed of
computer computations has increased 10,000 times.

Individual Productivity
The productivity of the individual employee can be measured in a different way.
If 100 employees produce 3000 units of a single product in one day, the average
output might be stated as units per person per day. In this analysis we have no
record of a crucial factor, that of time study. For example, the standard time taken
to assemble a bench grinder is 2.00 minutes per unit and if the operator assembles
275 grinders during the day, the output is 500 standard minutes (275 x 2.00
550). If the operator works an 8-hour day or 480 minutes, the input would be 480
minutes. The operator's performance index would be 114.6 percent.

Staff Originated in the 1980s May undertake broad spectrum of work Report to
line managers and supervisors Widely used

line Introduced in the 1930s and 1940s Growing rapidly Study their own
problems Recognition given for outstanding achievements

The average productivity index of a department or of a plant would be the total
standard minutes or standard hours produced by all employees divided by the
actual minutes or hours worked multiplied by 100. This assumes that all of the
operations are covered by time standards. Thus a performance index can be used
company wide as a labour productivity index This form of performance
measurement has been used regularly for many years and its use is growing.

Figure 6.1. A. The Task Start-State Presented to Subjects

140

Technological Innovation
Changes in technology am taking place at a rapid rate in many areas and with fliese ages an inaease in
productivity is expected. In many cases, technological innovation has resulted in

0 iravased W)our ouq3ut

"a reduction in costs

0a reduction in the price of the product or service.

In many cases high technology requires an increase in capital investment and an increase in employees' skills.
The oPeatnr often becomes a manager diieding and controlling complex machines and processes. With the

.

to take coming of the
when unusual auditions

is
action occurs or when a changeover in the product or process takes place

Well-known examples are the dial telephone, which reduces the need for the telephone operator, hybrid seeds.
fertiliser, and farm machinery. Electronic technology has produced phenomenal gains. Note: Since the 1950s

the speed of computer computations has increased 10,000 times. The price of the hand-held calculator has been

reduced from $1500 to less than $10 in a single decade.

Individual Productivity
The average productivity, index of a depmvneut or of a plant would be the total standard minutes a standard
hours produced by all employees divided by the actual minutes cr hour's worked multiplied by 100@. This

assumes that all of the operations are covered by time standards.
Staff Line

Originated in the 1980s Introduced in the 1930s and 19iOs

Widelyused madly

May uncles a ce Study their own problems
broad spectruan of work

Report to line managers Recognition given fc% ootsta kling achievements
and sýervisas

Figure 6.1. B. The Task End-State Presented to Subjects

141

They were given thirty minutes in which to perform the task. They were asked to

provide a continuous verbal commentary on their thoughts and actions, following the

protocol analysis procedure of Ericsson and Simon (1984). The instruction sheet

asked the subjects to ensure that they reported incidents when they were unsure what
to do, had difficulty with an action or had difficulties interpreting the result of an
action. A second ̀ evaluator' subject was briefed to prompt explanations and
clarifications of difficulties observed, or expressed by the user. The technique, like the

study in Chapter 4, was similar to the `York Manual' approach (Wright and Monk
1989). Unlike the Chapter 4 study, however, the evaluator was asked to intervene at

critical points during the session. This alteration to the approach was made in order to

accommodate the testing of an evaluation strategy, which is reported in Chapter 8.

The subjects were asked to provide a continuous verbal commentary, describing their

thoughts and actions. They were accompanied by an evaluator, who was briefed to

ask for clarification of critical incidents, during the session (see chapter 8). The
intervention technique was similar to that described in Wright and Monk (1989). The

sessions were video-recorded and user verbalisations transcribed. As in the Chapter 4

study, the subjects were asked for further descriptions of the errors observed during

the sessions. This was done first by the accompanying evaluator, and separately by an
independent observer.

6.3. Data Analysis

6.3.1. Error Phenotypes

The observed errors were classified according to the surface characteristics of the error
incident. The analysis used and extended the concept of error phenotypes described
by Hollnagel (1993). The original definition of phenotypes is overt observed
behaviour of the type described by Wright and Monk (1989). The extended definition

of phenotypes uses verbal protocol evidence. The phenotype categories broadly reflect
the sequence of an action, reflecting points in the cycle where users declare problems.
The classification was done both to provide a neutral analysis of incidents, and to

study the nature of links between phenotypes and genotypes. Four error phenotype
classes were observed. They were linked to the sequence described in the model of

action. The category `reject feature' was added to describe occasions when users
aborted after inspecting a feature. Unlike the error categories used in the Chapter 4

study, they simply describe phenotypes rather than an attempt at diagnosis. The

categories are linked to stages in the cycle of action (Fig 6.2.) and listed below:

142

Observed user Ideal Result Associated
Activity Error Phenotype

Search
Find candidate Fail to find
feature feature

Proceed to task
Reject

Explore action
feature

Accident/
Try Action Perform manipulation

Manipulation difficulty

Evaluate Satisfactory/ Unsatisfactory
Result proceed result

Figure 6.2: Error Phenotypes Linked to Stages of

an Action

Failure to Find Features: Subjects declared a goal and scanned the interface for

features. Instances of subjects scanning but giving up without trying a feature.

Rejection of a Feature: Cases of subjects declaring a goal, selecting and inspecting a

feature (declaring experimentation), then rejecting it as irrelevant to the goal.

Unsatisfactory Result: Cases where a subject performs a task-action, but expresses
dissatisfaction with the result.

143

Accidents/Manipulation Problems: Difficulties with manipulations, or declared ̀slips'

of the type described by Reason (1986).

6.3.2. Genotype Analysis

The error phenotypes were analysed and placed in the most appropriate genotype

category. The Genotype Categories used were the set of roles failures described in

Chapter 5. Also, and extra category `non-error' was created. These are cases where

the error does not appear to imply the need for a design change. Some user errors may

merely be examples of the subjects learning about the interface.

6.4. User errors made in the Sessions

6.4.1. Overview

No subject completed the whole task within thirty minutes. Subject 8 thought the task

was complete with two minutes to spare, but had left out the task of centring the title.

The ten subjects made a total of eighty-seven errors between them. There were some
individual differences in performance, although errors were fairly evenly spread

amongst subjects (see Figure 6.3.).

144

Subjects
Task 1 2 3 4 5 6 7 8 9 10 Total

centre 1 5 1 1 1 1 1 11

bullet 2 2 1 3 2 2 2 2 3 2 21

move 2 2 1 2 2 1 3 13

change 2 2 3 1 1 2 11

columns 1 3 2 4 1 2 3 3 3 22

scan 1 1

enter 1 1 1
1 a

repair 3 1
a

total 8 13 6 9 9 7 8 7 10 10 87

Figure 6.3: Errors by task for each user subject

The errors were first classified by the task that the subject was attempting when an
error was made (Figure 6.3.). The column task (22 errors) and the bullet task (21

errors) proved to be the most consistently troublesome. The columnising task
involved six cases of subjects selecting text, and then the Column icon on the tool bar.

The necessary step of creating a page-break was missed by these subjects. There were

also five cases of subjects failing to find appropriate facilities for performing the

columnising task. The other errors were a consequence of subjects' inability to find a
way of using the columns feature satisfactorily. Another three subjects experienced
difficulty aligning the text into columns manually. The word-wrap feature made it
difficult for them to align columns.

145

The bullet task caused a similar range of problems. The system provides both a bullet

icon and a menu option. However, five subjects failed to find the features. There

were also five subjects who had difficulty with the placement and indentation of
bullets. The feature makes an automatic indent when the placement command is made

by the user.

6.4.2. Error Phenotypes

The observed errors were assigned into Phenotype categories as described in section
6.3.1. above. Figure 6.4. shows the totals for each section. The totals show the

most common phenotype (52%) to be an unsatisfactory result of a task-action. All of

the ten subjects made between three and six errors of this type. Next most common

problem was inability to find features, which accounted for 24% of all errors made.

Rejected features accounted for 15% of all errors. There were eight examples of

accidents and manipulation difficulties (11% of the total). The more frequent errors

are shown in Figure 6.5. Some phenotypes in the Accident/Manipulation and

Unsatisfactory Result categories refer to operations rather than specific features.

These are cases where the users' reports of the error refer to a problem with a general

operation rather than an individual feature (e. g. difficulty operating menus).

Phenotype 1 2 3 4 5 6 7 6 9 10 Tot

Unable to find
3 2 2 1 2 1 3 3 21

features 3 1

Rejected Feature 2 1 0 1 3 1 2 1 1 1
13

Accidents/
0 5 0 i 0 t 0 1 0 0 8

manipulations
Unsatisfactory
result 3 4 4 6 4 4 4 4 6 6 45

Totals 1
8 13 6 g

-1
9 7 8 7 10 10 87

Figure 6.4: Error phenotypes observed In the ten sessions

146

Error Error
phenotype No. of No. of phenotyp phenotype No. of No. of phenotyp

subs instances category subs instances category

Menu failure
to operate after 8 11 Change Case icon 3 3 FF
command

Centre 7 7 Auto-text position/
3 3

return

Column icon 6 6 LR
Creation of gap for

pasted text 2 2 Iq

Bullets
5

5
FE Paragraph menu 2 2

FF

Select and move Draw Package icon 2 by carriage return
5 5 LFI 2

Bullets
(auto indent/placement) 4 5 Page Break 2 2 FF

Accidental option
Columns 4 4 F selection 2 2 MAN

when scanning menu

Double icon select 4 4
Bold 2 2 ýp

menu

FF = Failure to find features UR = Unsatisfactory result

RF Rejected feature MAN = Manipulation Difficulties

Figure 6.5: The more frequent error phenotypes observed In the

sessions

147

6.4.3. Failure to Find Features

The twenty-one cases of subjects failing to find features were mainly confined to three

tasks. Seven subjects were unable to find facilities for moving the title of the
document to the centre. Centring can be performed by selecting the appropriate text,

and adjusting the settings on a ruler bar which is located immediately above the
document. All users were observed searching the menus and the icon bar for the
feature. Five subjects failed to find facilities for adding bullet points to the text. Word
5.1. has a facility for selecting and placing bullets. This is operable both from the

menu and the icon bar. The menu option is called `bullet'. The icon has three square
dots accompanied by horizontal lines. There is also a symbol menu bearing an
appropriate option (which can be operated in a similar way). The icon is visible on the

screen.

Four subjects failed to find a suitable feature for creating columns. This included

subject 3 who, having tried and failed to use the columns icon, searched
unsuccessfully for an alternative feature. Two subjects described facilities for selecting
and moving text, but did not find the cut and paste facilities.

6.4.4. Rejected Features

The thirteen errors in this category were spread amongst eight features. The `change

case' icon was erroneously selected on three occasions. This is represented by three
images of the letter `B'. This was misinterpreted by two subjects as representing the
`bullet' feature. Another subject thought that it represented the `bold' feature. The
`paragraph' menu was erroneously selected by two subjects. Subject one was
performing the bullet task, and Subject 2 was looking to move text. The draw icon,

which brings up a draw package similar to MacDraw, was also selected by two
subjects. Subject five expected it to assist with column creation. Subject six expected
it to help with the bullet addition task.

6.4.5. Accidents/Manipulation difficulties

Subject 2 experienced some considerable difficulty with text select feature (4 errors).
Three of the other four errors in this category involved difficulty in controlling pull-
down menus. Subject 6 accidentally selected the undo feature while searching for

pasting facilities. This resulted in a further error when she subsequently pasted the
wrong text.

148

6.4.6. Unsatisfactory Result

There were eleven examples of subjects finding that menu options did not respond.
Ten of these involved subjects failing to select a target item before selecting a menu
item or icon. For example, four subjects tried to change the whole of the text font by

selecting the `Times' menu option, without selecting any text.

Six error incidents involved subjects attempting the wrong procedure for using the

column icon. The six subjects who used the feature all selected text first, and then the
icon. They expected the selection of the icon to turn the selected text into two columns.
None of them discovered the correct procedure for the task. None of them were
aware that the procedure involved isolating the text with a page break.

The unintentional deletion of text using select and return occurred on five occasions.
The subjects selected a section of the text, and then pressed carriage return on the
keyboard. The selected text disappeared unexpectedly, leaving the subjects with either

a retrieval or retyping task. All subjects who made this error admitted that they

expected the text to be moved as a block rather than be removed.

Four errors in this category involved the `cut and paste' facilities. Subjects were

asked to move a paragraph to a new position. Two subjects created a gap for text to be

pasted into. The gap that they created remained after the paste was performed.
One subject performed a cut, by selecting the target text, moving the cursor to the
desired location, and selecting `cut' from the menu. The subject was not aware that

the paste facility was needed to complete the action. A further subject pasted the
wrong text after an inadvertent undo.

There were four instances of subjects expressing dissatisfaction with the behaviour of
the bullet feature. The feature automatically places a bullet in a selected location,

automatically indenting the text. Four subjects complained that the feature did not
afford sufficient user control. Three subjects had problems with the word-wrap
feature. All three expressed frustration with the feature when trying to manually

arrange text in columns. Two subjects made errors with the `bold' menu feature. The

subjects altered an asterisk to bold type, continuing to enter text next to it. The

subjects expressed annoyance when the feature continued to produce bold text.

149

6.5. From Phenotypes To Genotypes

6.5.1, Overview

The phenotypes were further analysed to investigate three points of interest. These

were:

" The distance between Phenotype and Genotype
The descriptions demonstrate the amount of analysis required to establish a genotype
from the surface characteristics of an incident.

" Criteria for distinguishing a system error from a user error (including error severity)
Not every user problem may be considered a system error. Criteria for establishing
the system's failure include the number of subjects who made the error against the

number who tried and succeeded. Also, the effects of an error are taken into account.
The error study in Chapter 4 did not account for the phenomenon of learning through
trial and error. However, this has been cited by Shneiderman (1987), Sutcliffe (1988)

and others as a desirable feature of DM interfaces. If an error is made by a user, but

that user is able to recover and perform the action satisfactorily, this serves as evidence
against there being a design problem.

9 Causal connections between individual errors
Some incidents revealed more than one problem with the design (e. g. a primary and
secondary cause). Also, some user errors are the remote effect of a previous system

error. It is crucial that the diagnosis phase deals with this.

6.5.2. Analysis and Categorisation

The protocol data collected often required a clarificatory analysis with the user.

For example, the evidence for feature identify problems was very similar to locators,

with further investigation frequently necessary. The analysis used evidence from the

session, and retrospective questioning involving `constrained search' tests. The
Constrained Search tests were tried in cases where subjects had been unable to find

relevant features. The tests involved pointing to a screen area such as a menu or icon

array, and asking the user `which one of these is the necessary feature for this task'
(pointing to the task sheets). Feature identification was deemed the likely problem if
they still failed to identify. Otherwise, the problem was deemed to be the lack of visual
assistance in constraining search.

150

Another technique used was to ask subjects why they had chosen a subsequently
rejected feature ('motivation analysis'). This served as a prompt revealing either a
misapprehension of screen layout, or the absence of spatial information to help search
and identification. This was done to establish whether the interface had prompted an
incorrect choice, or simply failed to provide any assistance in search and feature

selection.

The goal-tree analysis used in the Chapter 4 study was used for some of the
`unsatisfactory result' and `Manipulation' phenotypes. The subjects were first asked
to describe their expectations of how a task could be performed. The sequence
described was then compared to the actual task-action sequence on the device. The

analysis examined cueing and presentation issues, along with task structure. The

user's account of prior expectations and system model representation were compared
both for resemblance as task structure, and for naming and description of steps. This

elicited the influence of prior system knowledge or domain knowledge. In doing so it

captured the reasoning behind erroneous assumptions. The analysis also reveals cases
(such as Subject H using the palette default to make arrows in Chapter 4) where an
inappropriate feature is selected but not rejected by the subject.

A supplementary analysis similar to that used in section 4.3.3. was conducted for

selected ̀ unsatisfactory result' errors. Subjects who made the relevant errors were

asked to perform a manual equivalent of the device-task. This analysis was targeted
towards errors where the user had expressed an incorrect model of the task, revealing

abstraction-based generalisation as a source. This revealed the difference between the

user's device independent task-model, the task-model that the user expressed during

the session, and the system model. In particular, this was used to study problems
using the `column' icon (see Section 6.5.5.).

The phenotype `accident/manipulation difficulty' was counted as an execution problem
only if further study of the procedures employed and the visual feedback failed to

reveal problems.

Subjects were prompted for their beliefs about the initial system state when an action

commenced (system state analysis'). Subjects comments about failed action may
reveal a misinterpretation of the system state prior to the action. The incident was
therefore linked to the action where the relevant system state change occurred. The

videotape of the incident was then re-run and the user asked if they were aware that the

change had occurred. If the user was unaware that the change had occurred at all, the

error is classified as a Perceive Feedback problem. If the user is prompted to act by a

misinterpretation of a state-change, this was deemed an Understand Feedback

151

problem.

The following sections describe the incidents that were assigned to each category. The

more frequent examples are summarised in figure 6.4. above. Incident types (e. g.
four cases of failure to find columns = one example of a type) were assigned to

genotype categories as a result of the analyses described above. The 'incident type'

refers to observed incidents over the ten sessions. For example one incident may have

been observed in six sessions. A description of the techniques employed to establish

genotypes are provided alongside the incident types that were analysed.

6.5.3. Locators

There were six incident types where the clear primary was locator problems. Three of

these were `unable to find feature' phenotypes, and three were `reject feature'

phenotypes. The seven cases of subjects failing to find centring facilities were deemed

to be locator problems. All the subjects who had this problem were observed

searching menu and icon features, without, apparently, noticing the ruler bar. The

subjects later had the ruler bar pointed out to them. Five said they did not know it was

there, and the other two said they did, but did. not realise what it represented.

The four failures to find column making facilities revealed Locator problems. The

four subjects who did not find the column icon were given a `constrained search' test.

This involved the independent observer pointing to the appropriate icon bar, and telling

the user that one was the Column icon. All guessed successfully, suggesting that the

design of the actual icon was adequate.

Locator problems also emerged from failed actions. In these cases, the root problem

was misguided search. Two examples of subjects selecting and rejecting the Draw

package icon were classed as Locator problems. Both subjects were asked to provide

a rationale for their selection. One subject was looking for an alternative way of

making columns after failing to use the Column icon. He admitted that the choice was
largely random, although the shapes on the cue suggested that the feature may provide
for reconfiguration of text blocks. The other subject was looking for the `bullet'

facilities. This subject also admitted that the search was not directed, but saw the cue

and thought it may offer symbols to add to text. Subject 8 tried the justify icon for

columns, and Subject 5 the `New Document' icon, and gave a similar explanation.

6.5.4. Feature Identifiers

There were six incident types which were classified as Feature Identifier problems.

152

Two of these were from `failure to find feature' phenotypes, three from `reject feature'

phenotypes, and one from an ̀ unsatisfactory result' phenotype. Six subjects failed to
find Bullet creating facilities despite scanning over both the icon and the menu option
named ̀bullet'. All the six subjects claimed that ̀ bullet' was not a familiar term. The
icon was recognised by four subjects in a ̀ constrained search' test. Also, three
subjects had recognised and used the bullet icon. This suggested that the icon was
more effective than the menu option name, though still not ideal. The icon was also
rejected by two subjects. Another subject recognised the feature, but rejected it
because the icon shows square dots, whereas the task-sheet showed round bullets (the
feature produces round bullets).

Three subjects failed to find facilities for moving text. All three claimed that they had
been looking for a function called `move'. They were directed to the appropriate menu

and asked if any feature on it could be the one. One subject suggested that `copy' may
be the appropriate option, but the other two felt unable to offer a suggestion. One

subject failed to remove the symbol window after calling it. The window is removed
using a standard Macintosh icon, the small box in the top-left corner of the window.
The subject did not know about this feature when asked.

Three subjects selected the change-case icon for the wrong task-action. Two subjects
(who knew the term `bullet') thought the feature would give them bullets, and one
thought the text would change to bold. The two who expected the `bullet' feature

assumed that letter B in the icon represented it. The other subject pointed out that the
front B looks like it is in bold type, strongly suggesting relevance to changing the type
to bold. The examples suggested the feature was ambiguously cued, and therefore a
`feature identifier' problem.

Two subjects selected the `paragraph' menu option for the `bullet' task. One said that
he expected to have to specify the dimensions of the amended format, and that
`paragraph' seemed a likely feature for doing this. The other simply claimed that there
was little indication of what to do, and he had scanned and selected ̀ paragraph' in

speculation. This subject was shown the correct procedure and asked if this operation
had been contemplated. He responded by admitting that he was not expecting such a

straightforward procedure. This was classified here as it was felt that the `paragraph'
feature had `drawn in' the subjects and created bogus expectations. Another subject
used `copy' rather than `cut', for the text moving task. This suggested that the terms
for similar but distinct operations may be sub-optimal. The subject seemed ignorant of
the cut/paste metaphor, a common Macintosh feature.

Five subjects had selected a block of text followed by the return key. This removed

153

the text from the screen. Had the text not been removed, this may not have been

sufficiently severe to be called a system error. The subjects could have learnt that the

procedure was wrong without major difficulties. The problem was seen as the
discrepancy between the `return' label on the key, and the feature's behaviour. The

subjects were given no indication that it worked as a delete under certain
circumstances.

6.5.5. Specify Operation

Nine incident types were classified as ̀ specify operation' problems. Eight were
`unsatisfactory result' phenotypes and one was a manipulation problem. Six subjects
selected the column icon for a selected area of text. When questioned retrospectively
they described their prior expectations. This is shown alongside the system model in

Figure 6.6. They all felt that the task appeared to be a straightforward example of the
`select text - select feature' procedure used across a range of tasks. Three subjects

attempted to reverse an action by pressing an icon a second time. One subject tried to

undo selection of the `new document icon' by reselecting the icon and two tried the

same operation to reverse bullet placement actions. Conversely, Subject 3 undid a
completed font changing task by pressing an option twice. He admitted later that he

was trying to continue, whereas the others admitted trying to reverse an action. All
four subjects stated that they had expected all the icons to operate in the same way,
having generalised a rule from previous option selection.

154

Users Expectations System Mode

rsor to

start of tex

select (select
text ,/ section-brea

Cursor to
end of text

select

column
select

section-brea

Arrange highlight
Text text

select
column

Arrange
Text

Figure 6.6: User expectations contrasted with the
system model for the columnising task

155

Users' models of the columnising task were further investigated. A goal-tree analysis

was performed, similar to those conducted in the Chapter 4 study. Two subjects were

asked to specify their device independent task-model. They were asked to describe

how they would manually edit a paper mock-up of the task. Their descriptions both

involved a sequence which was closer to the system model than to their expectations of
device behaviour, declared during the session. This is shown in Figure 6.7. The

system model reflected the order of steps in the device-independent models.
However, the system model did not match the expectations the users held from their
knowledge of previously selected icons and menu options.

The column icon suggests that use of metaphor in design may interfere with user
learning. As discussed in Chapter 5, metaphor may suggest operational rules, where
the user does not know the rules. Also, metaphor may assist the selection of rules

where it is unclear which rules the user should apply. However, the subjects who
tried the column action were prompted by the system to apply known operational rules
for using icon operations on specific text areas. The fact that the sequence of

operations resembled the device-independent task rather than `standard' device

operations made the column feature baffling to users.

Two subjects did not take the necessary steps to perform cut and paste for moving
text. They described their surprise at no menu being produced when they performed
their actions (one simply selected ̀ paste', the other `cut'). Both expected a system

response, although neither were specific about the expected response. It was

classified as a `specify operation' problem on the grounds that the `cut and paste'

metaphor appeared to be ineffective. The procedure contains two menu selections,

unlike the majority of operations. Therefore, the user must comprehend the link

between the concept `cut' and the concept ̀ paste' in order to work out the procedure.
These subjects had failed to do so. Both claimed that they had expected system
feedback indicating further steps.

156

User Task Model Users' Expectations System Model
(device independent) (in the presence of

the device) rsor to
start of tex

Isolate text
select
text

select
section-brea

Specify
rsor to

column select end of text
location column

elect
section-brea

separate
text items Arrange

ext highlight
text

Place text
items select

olumn i

Arrange
Text

Figure 6.7. Two subjects' task models for the

columnising task, alongside their
device expectations and the system

model

157

Five subjects had difficulties with bullet placement. Again a goal-tree analysis was

performed for each subject. The subjects had anticipated having to create margins for

bullets. Also, the placement was not accurate enough for two subjects, who found

that the sequence [select paragraph-select bullet] resulted in a bullet placed one line

above the paragraph. All five subjects found this action difficult to edit or reverse.
Four of the subjects attempted manual editing as an initial response, therefore

removing the option of using the `undo' feature. A goal-tree analysis revealed a

significant contrast with other examples, namely a user model more detailed than the

system model. This was the result of the subjects expecting, and wishing, to perform

subsequent editing on the bulleted paragraphs. In other words, the feature automated
too much, and did not allow enough user control.

Two subjects had difficulties with the procedure for changing from plain text to bold.

The task involved adding a symbol in bold, with plain text entered next to it.

Afterwards the subjects said that they expected the change to bold to operate only on
the selected area. However, the change affected subsequent text, despite the fact that
both subjects had entered the item in plain text.

Two subjects had problems with cursor placement. They tried to move the cursor to

the right-hand side of the screen. The system did not allow them to plot freely with the

cursor. The cursor cannot be placed directly on areas to the right of a carriage return.
This was counted as an operation specifier problem. The subjects' model of the page

metaphor had no such restriction, and task-action was specified on the basis of this

assumption.

Three subjects had difficulty holding and scanning pull-down menus. Further

analysis revealed that this was a result of them expecting the menus to remain visible

until deselected. One subject accidentally selected ̀ undo' without realising, which

undid a cutting action. The others accidentally selected redundant options (that did not

work without `select'). This occurred because the subjects released the mouse button,

believing the menu would remain.

6.5.6. Execution

The study found no clear cases of execution failures, although there were eight

recorded `manipulation' phenotypes. However, all manipulation phenotypes were

primarily classified as either non-role failures, or Specify Operation problems.

158

6.5.7. Perceive Feedback

One `unsatisfactory result' phenotype was placed in this category. Subject 10,
believing the selection of the `new document' icon to have erased the text, searched
the tool bars for facilities to reverse the action. The selection of the icon had brought

up a new document over the existing one. The screen gave the appearance of a total
deletion, apart from the document header at the top of the screen. This was not noticed
by the subject, who panicked believing that the text had been erased.

Subject six pasted the wrong text after inadvertently undoing a cutting action.
Retrospective questioning revealed that she was unaware that she had previously
altered the clipboard status accidentally.

6.5.8. Understand Feedback

One `unsatisfactory result' phenotype was classified as an understand feedback

problem. Subject eight had opened and then closed the draw package (which appears
as a sub-window), and was confused by a large cursor which remained on the text
document after the draw package closed. The subject balked at this, and paused for a

substantial time. He eventually tried to remove the cursor by selecting it as an area,
and pressing the delete key.

6.5.9. Non-Role Failures

Eight error types were not considered to be problems with the design. In some cases
the design had caused difficulty, but independent analysis suggested that the design

could not be usefully changed. Nine of these were from `unsatisfactory result'
phenotypes, one from `reject features', and one manipulation difficulty.

The ten cases of failing to select text before an action were spread over eight subjects.
No subject made the error more than twice and all eight subjects subsequently
performed successfully. The alteration of the font from Helvetica to Times could have
been performed with the `select all' feature, but the subjects performed a manual
select. None of them searched for a `select all' feature.

Two subjects inserted a page-break as the first action in the Bullet placement task.
Both said afterwards that they expected to have to insert a break in order to select the

relevant text block. One subject realised soon that the manual area select could do the
job. The other remained confused about what to do, abandoning the task. However,

this subject learned the manual select and applied it (albeit with some difficulty) for

159

other tasks. Both errors were made early in the session and were recovered from.

Two subjects created a gap in the text before pasting cut text. When asked they

claimed that they thought the gap was needed for the text to fit. Both revealed that they
had later understood the principle of operation. Both saw the after-effect of the cut.
The independent analysis concluded that the feedback was comprehensible and
generalisable. Therefore, the error could be described as system learning.

One subject mistook the `ghost' cursor for the actual cursor and typed in the wrong
place. This was not considered a design problem. The only alternative was to have
the cursor move with the mouse at all times. This was considered likely to cause
greater problems. Another subject tried to select two areas of text consecutively, an
action that the system does not allow. The system showed clearly what the restriction
on selecting action was (i. e. select and operate on single areas).

One subject selected the wrong item from the symbol menu. However, the subject
immediately saw the problem returned and rectified the error. Further examination of
the menu by the independent analysis failed to observe a problem with the cueing. The

error was assumed to be a loss of concentration by the subject.

6.6. Secondary Causes

6.6.1. Introduction

The problems described above were assigned to their primary genotype causes.
However, some errors appeared to provide evidence of more than one design flaw.
This phenomenon is now discussed using examples from the sessions.

6.6.2. Locators/Feature Identifiers

Locators, along with aiding navigation, provide contextual information which assists
feature identification. The evaluator is faced with task of deciding if there is a problem
with one or both of the roles, from similar phenotypes. Therefore, poor locating
information may contribute to a `feature identifier' failure. The problem that subjects
had with the change-case icon demonstrates this point. The change-case icon shows
two large letter `B's and another in lower case (which is smaller and relatively hard to
see). This was mistaken for the `Bold' feature, and for the `Bullet' feature. Subjects

who made this misinterpretation associated the 'B' with their tasks. In the `bold'
example, this was compounded by the fact that the letter `B's on the icon look like they

160

are in bold type. The cue design is clearly a problem. However, this is compounded
by the absence of a group identifier. Had the partitioning of feature types been clearer,
the subjects would have had a further clue as to the feature's identity (e. g. a clearly
labelled icon cluster). This example demonstrates that a single phenotype may provide

evidence both of a general problem with locating features, and poor cueing of a

particular feature.

6.6.3. Feature Identifiers/Operation Specifiers

An example of this dual classification was two sets of error genotypes referring to a

single feature. For example, the cut and paste facilities spawned `Feature Identifier'

and `Operation Specifier' genotypes. The evidence of design problems from these two

examples appears to be complementary. The subjects who failed to recognise the

feature were looking for a `move' function. Similarly, the subjects who selected a

single function (`cut' or `paste') had not expected the procedure to be as it was, with

two option selections. They had not comprehended the cut-paste metaphor.

6.6.4. Operation Specifiers/Feedback

The column-making feature was described as a problem with the specification of

operations. However, the feature shows a secondary problem of feedback support.
When the icon is selected, the whole text becomes one narrow column on the left-hand

side of the document. Therefore the user has caused a state-change, but one that is

neither desired nor comprehensible. The feedback failed to inform the user about the

current state of the task or the correct action that would have been required.

6.6.5. Conclusions from Genotype Analysis

The phenotype/genotype distance may be wider than is apparent during the sessions.
Examination of incorrect feature choices or failures to find features may indicate high-

level or feature specific problems. The true nature of these problems may only be

established using retrospective questioning and model elicitation. A number of these

errors were classified using analytic techniques such as `constrained search' tests.

The goal-tree analysis revealed the lack of detailed expectations in a number of cases.
Subjects seemed to anticipate that device feedback would indicate further actions. The

subjects showed a notable reliance on menu or icon led specification.

Error frequency amongst subjects is potentially misleading statistical evidence of a

system error. The most frequent recorded error over the ten sessions was failure to

select text prior to an operation. However, this was not seen a system error, because

161

subjects appeared to learn. A simple statistical analysis would wrongly suggest an
important design problem.

Error sequences, such as the `new document' selection problem, are self-evidently
clear from the phenotypes. The `new document' example shows first an incorrect

feature selection (the icon) then two incorrect procedures (reverse by reselecting the
icon, use of document search facilities). Three error phenotypes are recorded from

this sequence. Concurrent protocols also reveal that the two incorrect procedures
imply a feedback problem (namely, that the text appeared to have been deleted). The

evidence presents a number of alternatives for redesign. These include improving the

cue, making the feedback clearer, and standardising the effects of a second selection of

the icon.

More distanced error pairings (e. g. accidental menu selection--pasting wrong text)

may be established by tracing the subject's view of the interaction `history'. Such a

view can be gleaned from references to the state of interaction prior to the latter of the

two errors. In the `wrong text' example the subject revealed ignorance of the previous

accidental selection. The space of design issues includes questions such as ̀ is the

menu manipulation awkward? ', `is the procedure optimal? ', and `is the feedback on

the clipboard status adequate? '. The evaluator is left to consider redesign options
based on these findings.

The help given to the evaluator on the nature of redesign varies with the type of error
discovered. Subjects usually declared a name of the feature they were searching for,

hinting at an optimal name for textual cues. This information may contribute to

redesign. It may harder to suggest the redesign of icons using formative advice from

evaluation sessions. Subjects' accounts of `specify operation' mismatches give an
indication of alternative designs. However, two problems emerge. One is that

subjects may not have well-formed expectations in some cases. Also, a sample of 6-

10 subjects may not have models that concur.

6.7. Analysis of Interference from Previous Package Use

6.6.1. Introduction

A further study was conducted to examine the influence of previously used word
processors on the performance of subjects. References made by subjects, either

concurrently or when cross-examined, to packages used before, were isolated and
analysed. These were used to establish clues to interference effects. Subjects had

162

experience with broadly two word processors, namely WordPerfect and WordStar. It

was found that a total of ten error types were probably influenced by interference

effects, including two that had been classified `non-role errors'. These are now
examined for their effects on subjects' behaviour at various points in the cycle of
action.

6.7.2. Examples of Errors

The subjects who failed to find cut and paste facilities admitted that they were
searching for a feature called `move'. They were both subjects who had substantial
experience of using WordPerfect prior to the session. The equivalent task in
WordPerfect can be performed using a command called `move'. The subjects
responses suggested that the strong association between the task and the term `move'
had made the problem harder. Other subjects, including three who had not used
WordPerfect did find the features. This suggests that naming, and the association of
particular names to tasks may interfere with feature search.

The problems with `cut and paste' procedures experienced by subjects who were
WordPerfect users suggest that expectations of task-structure may be influenced also.
The two subjects selected one command on the menu, and were then lost for what to
do next. Both said that they had expected more to happen as a result of their actions.
The WordPerfect `move' function was cited by one of the subjects (this feature of
WordPerfect performs text moving tasks with fewer user operations than `cut and
paste')

Three recorded problems with the performance of menu pulling and scanning were
deemed to be transfer-influenced. The subjects had all used the menus for scanning
and selection prior to the incidents. However, they had tried to hold the menus by

going to the top option and depressing the mouse-button. This is the correct procedure
on Microsoft Windows. On the Macintosh it results in the top option being selected,
rather than the menu remaining in view. Subject six selected ̀ undo' in this way, and
subsequently pasted the wrong text. This shows that internalised procedural skills
may interfere in user performance on similar, but operationally different, devices.
This is a problem similar to pilots or drivers changing from one cockpit design to
another, where automated procedures may be inappropriately retrieved.

6.7.3. Other Transfer Evidence

Interviews with the subjects, revealed other possible transfer effects. Those that had
incorrectly selected ̀ page break' or `paragraph' suggested that they were used to

163

selection of text and screen areas using commands. This is despite the fact that they
had been shown the operations during the training sessions. Four other subjects
admitted to initially searching commands rather than utilising mouse operations. They

referred to the early period of the session, saying that the absence of familiar options
forced them to try unfamiliar manipulations. This suggests that the learning and
internalisation of basic procedures may be slightly retarded by interference.

It seems that the WordStar package caused less interference than WordPerfect. This

may be because there is a clearer contrast between the style of WordStar interaction and
Word. The observed problems that WordPerfect users had tended to be where there

was a closer resemblance in interaction style and command names.

6.7.4. Conclusions From Transfer Effect Study

Whilst the study allows only tentative conclusions to be drawn, some points are

raised. A command-based word processor may cause relatively little interference by

comparison with one that bears a physical and operational resemblance to the target

system. This is despite the fact that the more command-based interfaces require the

user to learn and retain device knowledge. Most of the observed problems seemed to
be misleading memory and action triggers. These seemed largely in areas where
familiar tasks had some characteristic which was similar between packages.

6.8. Review of Methods Used in the Sessions

6.8.1. The Constrained Search Test

These tests proved a valuable source of information. It was clear that locating features

was a general problem. It would have been difficult, therefore, to assess the merits of
individual feature representations without such a test. The tests afforded the chance to

separate individual features cue problems from more general problems with the visual
layout.

The difficulty with this technique is selecting a suitable area in which to constrain the

search. The search was constrained to one or other icon bar in most of the examples.
However, in other examples it may be less easy to avoid over or under constraining
the search space.

6.8.2. Motivation Analysis

The success of asking users to reason about (erroneous) feature selection was

164

relatively limited, although it is useful for spotting ambiguities in the naming of
features. Often the user offered little information of substance in response to these

questions. This suggested that subjects simply speculated in choosing features.

6.8.3. Goal-tree Analysis

The advantage of using this analysis in concurrent and retrospective analysis was
clear. The capturing of assumptions made from generalised system knowledge is
facilitated, as a number of examples (e. g. Columns) demonstrate. Also, the frequent

lack of detailed expectations declared by subjects highlights the system-led nature of
the dialogue. In cases where subjects look for the interface to give cues in response to

each action, the user will not have well-formed expectations.

6.8.4. System-State Analysis

This analysis gleans useful information about more distant causes of overt errors.
These errors are caused by a hidden result of a previous action. The user's declaration

of the system state at the point of a critical incident reveals ignorance of a necessary
state change. However, the analysis is hard to reliably use retrospectively, unless

video playback facilities are available.

6.8.5. Summary of Techniques

Assessment of the techniques' effectiveness should take into account the inherent

difficulties in pinpointing causes. The goal-tree analysis successfully indicates the state
of user models at critical points. The sources of current decisions can be linked to
display-led strategies for action. The boundary between locator and feature identifier

mismatches is unclear. It may be difficult to use the information gathered as more than

evidence to support inspired guessing about the real design problem. However, the
distinction represents a useful `diagnosis space' for the evaluator to explore. It could
be argued that the true genotype in these cases may never be fully established. It is

simply a matter of finding an appropriate solution to a design problem.

6.9. Discussion

The use of the role mismatch model to describe errors seems effective in augmenting

analysis of user studies. However, the model requires a battery of investigative

techniques to establish probable genotypes for design improvements. Evidence for the

nature of improvements to textual feature cues comes from the subjects' citation of
what they are looking for. Similarly, misleading iconic representations may be

pinpointed by subjects' verbalised interpretations. Failed search requires follow-up

analysis to establish whether the design of the feature cue and/or higher level

contextual information require attention.

Some of the Operation Specifier examples suggest that users' device independent

model of tasks may not significantly influence their expectations (particularly where a
partial device rule-base has been established). The `column' example, illustrated in

Figure 6.7., suggests that users understand, even expect that steps in familiar tasks

may be ordered differently on the device. This is strong evidence that action on DM

systems is situated, and that the `rule-base' compiled by users may be a stronger
influence on behaviour than their device-independent model of the current task
(although their device independent model may contribute to the learning of rules).

The claim of the model of action, that procedures are specified only after feature

selection, may be further elucidated. The users task-model seems does not seem to

create strong expectations about sequences and their ordering. Also, some tasks may
simply be unfamiliar to users. The examples appear to suggest that feature types are
bound to device operations by users, causing them to anticipate a novel ordering of
sub-tasks. The `column' feature design fails, not by introducing an extra step beyond

the user model, but because it makes access to the task too difficult. The subjects
searched for a matching between [task-token (make columns)], and [device token

{ icon-menu option }]. This typical rule-based behaviour was not supported.

6.10. Implications for Evaluation

Empirical findings were analysed further, to establish implications for the theory and
practice of usability evaluation.

The analysis shows that DM packages, particularly ones where the locator problem is

serious, require deep analysis to pinpoint poor visual cueing. The problems with
feature selection usually required application of constrained search tests or questioning
on subjects rationale for (mistaken) choices. The study demonstrated that high-level

spatial metaphor and feature clustering contributes more than simply navigational aids.
Many of the feature representations in Word are potentially ambiguous. Much of the
ambiguity seems to be a problem of context. A number of cases show feature

representations bearing seemingly `natural' names or images. However, a number of
these features were either not found by users or selected incorrectly, suggesting the

166

need for redesign.

It may be possible to investigate search and feature identification, to assist preliminary

evaluation. Subjects could be shown the interface and asked to identify screen areas,
feature groupings and individual features. Furthermore, this could be done using

paper-based scenarios or rapid visual prototypes, bringing evaluation forward in the
design process.

The analysis of `operation specifier' problems reveals a more varied set of possible

mismatches than hitherto anticipated. The problems with auto-placement and auto-
indent for bullets exemplify the danger of over-automation in DM task-design.
Subjects found the feature too constraining, and anticipated the precise nature of the

user goal too rigidly. The subjects wanted and expected to be able to perform

manipulations themselves. This was demonstrable in goal-tree analysis as a model

with too few steps (and too crudely defined steps) reiterates Payne's (1991) emphasis

on conversation-style dialogue. The interface should respond to a user action, and in

doing so offer affordances for further action. However, a feature which goes beyond

the scope of the request implied by a user action, is potentially problematic. This is

compounded by a further problem which was exemplified by the subjects' immediate

responses. Subjects responded to the unexpected system behaviour by trying manual

edits. By the time they had discovered that the system would not respond, they had

also lost the option of reversing the placement action, which was available only as an
undo for the immediately preceding action.

The problem operating the `Column' feature was also interesting. The subjects

expected to use the standard icon operation on text, even though this did not match
their device-independent task-model. This contradicts the proposition that the task-

model structure is the dominant influence on user expectations. The subjects'
behaviour suggests that recognition of types of operational principles may supersede

prior task-knowledge. The subjects' expectations of the columnising sequence [select

text-select columns] suggest that they generalised known operations for using iconic

features to operate on text.

The nature of task design seems strongly linked different knowledge resources that the

user is required to use. With this in mind, it is conceivable that some benchmark

evaluation could be performed prior to user testing. The design of individual tasks

could be examined to establish the demands that are placed on the user. In the case of
Word, the majority of command-based operations involve the selection of an area (a
location or a string) and the selection of the relevant feature. Therefore, it can be

surmised that the user must know the operation, and be able to match the feature to the

167

task. This describes operations such as the changing of fonts for sections of text. A

task-design that has more than one selection action requires more of the user. For

example, the user confronted by the columnising task cannot access this standard
[select text--select option] operation. In these circumstances, the user must be aware
that an unusual task-step is required, and must be able to search and recognise a

suitable feature. The user cannot use known rules, but must use knowledge from the
task-domain. Evaluation must decide whether it is likely that the user can do this (the

finding in the study was that it is not at all likely).

The Cut and Paste procedure also places demands on the user to comprehend a
metaphor, rather than accessing a `standard' sequence. The user must be aware, from

comprehension of the `cut and paste' metaphor, that two commands are required, and

recognise features bearing relevant cue labels. Alternatively, the user must be able to

interpret the feedback from the initial action, to know what else is required. The

feedback on Word (and numerous packages where this is used) is far from explicit.
This suggests that there is a trade-off between naturalness (of the metaphor) and less

natural but more economic task-design.

6.11 Summary

In this chapter the diagnostic power of the model of errors has been tested for its

coherence extent and limits. The model was unable to provide single specific
diagnoses for all incidents. This was partly due to the revelation of multiple problems
by some phenotype incidents. However, the need for follow-up analysis of some
incidents is suggested. The model categories are shown to be capable of linking

phenotypes to one or more diagnosis, leaving open the precise details of optimal
redesign. The next two chapters will test the more practical aspects of using the model
in user-based evaluation. Chapter 7 describes the development of a practical
evaluation method. Chapter 8 will investigate whether the method is comprehensible to

non-HCI experts and is helpful in the conception of worthwhile design alterations.

168

CHAPTER 7--Model-Based
Method for Novice Evaluators

7.1. Using Modelling Knowledge for Evaluation

This chapter describes an evaluation method developed from the studies of DM
dialogues in Chapters 4 and 5. First we consider the knowledge gained from the

studies and model developments that have been made. Then we consider what this
implies for the evaluation of DM interface usability for novice users. The intention is

to help guide evaluators to the potentially problematic areas of design. Criteria for

choosing evaluation approaches on the basis of our findings will then be discussed.

7.2. Model Elements For Evaluation

7.2.1. Overview

As has been described earlier in this and previous work, evaluation of highly
interactive DM interfaces involves analysis of the multiple elements that influence

single interaction incidents. The aim of usability evaluation involves three distinct

objectives. These are:

" the recognition of individual errors (phenotypes)

" the diagnosis of those errors (genotypes)

" making accurate prescriptions for their rectification.

In the case of DM interfaces there is evidence both from the Chapter 4 study and from

previous literature (Wright and Monk 1989, Payne 1991) not only of the need for
improvements in design, but also of a complex and diverse set of problems facing

evaluators and designers. We now summarise elements that condition the approach to

evaluation.

7.2.2. Errors in the Context of User Activity

The description of errors and of critical incidents is, in essence, the story of interactive

sequences. Diagnosis of a critical incident requires knowledge of the user's overall

169

model of the system and the current task. The need to see incidents in the context of
interaction as a whole is particularly crucial in the case of DM evaluation.

Diagnosis of dialogue breakdowns involves close attention to the point in an interactive

cycle where the breakdown occurs. This dynamic task context is necessary for

understanding what the requirements of the interface are and why they have failed. In

particular, it involves comprehending the influence of the system and interface design

on the user's current thinking.

7.2.3. Internal and External Knowledge Synthesis

The environmentally-based nature of DM interaction (see Young et al 1990, Payne
1991) implies the contribution of both knowledge and reasoning strategies acquired

prior to current action. The nature of their synthesis with environmental information is

therefore the key to understanding and diagnosing incidents. Experimental and

theoretical research points to the fact that users proceed by specifying action through a

combination of retrieved knowledge and environmental cues. It is commonly accepted
that functionally rich DM affords varying paths to user goals. Therefore, the method

must provide good coverage of individual features and individual tasks.

The Chapter 4 study suggested that the majority of error types can be diagnosed by

considering the history of the interactive dialogue, in particular from the point where
an individual task goal is formed. This includes accounts of prior knowledge, prior
interaction and errors with distanced effects. The studies also suggest that the first

account of an error, and a snap diagnosis may not produce a diagnosis for solution.
For example, MacDraw users having trouble with accurate plotting due to the 'grid'

restriction merely claimed they found it awkward. Further analysis suggested two

possible causes of these errors. One was that the use of the grid as a default was
unintuitive, given the users' understanding of the drawing metaphor. The other called
into question the labelling of a menu option which afforded the altering of the default.

7.2.4. The User's Knowledge

As the Chapter 4 studies demonstrated, the structure of the user's model is a crucial

element of interaction in metaphor-based interfaces. The analysis reported shows the
barrier to smooth interaction and user competence that is caused by mismatches
between device operations and the representation of the task that is held by the user. In

particular, those studies show the potential for serious errors caused by differences
between the user's notion of a task's structure and the system's actual structure for an

operation (see also Keiras and Poison 1985). Chapter 5 also described how the

170

content of users' models of tasks affect understanding and expectations. In particular,
the understanding of graphical images on icons is closely dependent on semantic
binding with the task-space.

Diagnosis of errors requires awareness of how the user comprehends the system. Our

studies suggest that user's overall model of the domain, and model of particular tasks
is critical to performance. Therefore, an evaluation method must include some way of

eliciting the models of task and device that the typical user would be likely to possess.

7.3. Designing an Evaluation Method for Novices

7.3.1. Synopsis

This section discusses the characteristics of a method to bridge the gap between

expertise and the novice evaluator. The aim is a `tool for thought' which teaches the

novice how to perform evaluation. The practical problems involved in designing an

efficient method require consideration along with the theory and focus of the model.

7.3.2. The Method/Evaluator Interface

The terminology and concepts of evaluation will not be familiar to the novice. Also,

the novice will not have gained experience with which to interpret concepts. Therefore

the method must provide ways of interpreting designs using model concepts without

unnecessary jargon or verbose theoretical baggage.

7.3.3 Task Realism

The evaluator will need a realistic sample of user action on a system in order to provide
an accurate analysis. This is because the system should be used in a way which

reflects
a real working situation. Therefore, a scenario-based approach is likely to be most

suitable. This also gives the evaluator the opportunity to design sequences of task-

action that are likely to be typical of the system's use. The scenarios are, ideally,

drawn from real working practices.

171

7.4. Profile of the Novice Evaluator

7,4.1. Introduction

The method is intended to be of use to non-expert evaluators. The requirements of the

evaluator are therefore defined by their knowledge of relevant concepts. Another

critical issue is the synthesis of the method's instruction and the evaluator's skills and
abilities. Two issues are raised here. A method must be appropriate, not only to give

evaluators adequate help in evaluation, but also to meet with their approval. The

evaluator may not use a method if it is time-consuming, unnecessarily detailed or

conceptually difficult, or if their is a large amount of redundant output. All these
factors require close attention in a method's design. The following analysis gives a

generic description of `novice evaluators' and their requirements.

7.4.2. Limitations to the Evaluator's Knowledge

The target group will be computer literate and have some working experience of the
design process. However, they will not have more than passing acquaintance with
Human-Computer Interaction theory or practice (and probably no experience at all).
Therefore, in order to have a working knowledge sufficient to proceed, the method
must communicate the model in a swift, easily digestible format, either avoiding or
explaining technical terminology, and cognitive science concepts.

Another assumption is that the evaluator will be experienced in computing, so
computer science terminology will routinely be part of their language. This may make
it harder for the evaluator to `empathise' with the novice user of the evaluated package.
For example, the evaluator must distinguish between a system concept and a task

concept. Given also that the evaluator may, in a real world system, have contributed to

the design, focusing the evaluator on the `language of the user' must be a key aim.

7.4.3. Evaluator's Working Objectives

The place in the `market' that the method is designed to occupy is the `budget' end,
where expert evaluators are not available and there is a need to perform evaluation

quickly. Therefore a method must be efficient in terms of return on resource/effort
consumed. This implies swift tuition in model concepts. Along with this is the

problem that time and resources for evaluation are likely to be limited. Therefore, the

efficiency of the approach is a key factor.

172

7.4.4. Skill Enhancement

The evaluators, despite their lack of HCI training or experience, may have an (albeit

untrained) eye for usability issues and interface problems, born out of substantial
experience of computer use. The evaluator may also have strong opinions on certain
aspects of usability. The method should ideally make the evaluator feel that these
untrained opinions and insights are being enhanced rather than ignored in favour a
mechanical or pedantic procedure.

We can also consider how much skill the naive evaluator may naturally have in, for

example, interpreting observed errors. The evaluator may already have a degree of
competence in the three evaluation stages (discover, diagnose and repair). For

example, a technique which allows observation of real users reporting problems, will

make it fairly easy for the evaluator to discover design errors. However, as the studies
of MacDraw II suggest, more problems lie in appropriate diagnosis and repair. For

example, the user's incorrect selection of a feature may be traceable back to the
interpretation of a prior state change, or knowledge of a basic concept. Such critical
threads (Carroll et al 1993) may not be directly expressed in verbal protocols or field

reports. The users involved will simply give a report of their dissatisfaction or their

own (often naive) interpretation of the suspected interface bug. This data requires
greater interpretation if it is to be of use. The evaluator requires assistance in the

analysis of problems, but should be permitted space for interpretation. The evaluator
needs to consider a range of possible diagnoses to specify a solution which addresses
the root cause of the problem.

7.5. The Model-Mismatch Analysis Evaluation Method

7,5.1. Introduction

The evaluation method proposed is the Model-Mismatch Analysis method (MMA).
The following description discusses the method's approach to the theoretical and
practical issues involved in evaluation. The principles behind the method may be

placed into modified formats, varying with use requirements and circumstances (see

chapter 9). The description that follows describes the elements that are required in a

practical evaluation session using the method.

7.5.2. Crucial Elements of the Method

The selected method involves scenario-based co-operative evaluation, using user

173

subjects performing tasks using the package. The user gives a concurrent protocol
commentary on their thoughts and actions. The evaluator observes, intervening at
critical points for clarification. The user is then given a retrospective interview at the

end of the session. Finally, the evaluator studies the data, and recommends design

changes if required.

A scenario-based approach is used to ensure that the user subject will explore the

system in a way which reflects its real usage in a working environment. Whiteside et al
(1988) express doubts about this approach, preferring undirected exploration.
However, evidence from the study in Chapter 4 suggests that a whole-task scenario

allows considerable scope for system exploration, whilst ensuring that user subjects

are providing ecologically relevant evidence throughout the session.

Another advantage of the approach is that concurrent protocols are easily the most

accurate account of users' models of the interface and the current task. This is

preferred to eliciting users' models independently, prior to the session by, for example,
interviewing them (although the method involves eliciting users' previous task and

computing experience). In such an interview the `user' would give an account of
device independent task-knowledge. However, this would give no sense of how the

user comprehends and restructures tasks with iconic domain and feature

representations. By eliciting the user's model `on-line', the approach can gauge the

whole range of influences on user behaviour (with device-independent domain and
task knowledge as integrated elements). Another advantage is that, when errors are

made, users provide accounts of their reasoning, and may reveal misinterpretations
that have origins beyond the scope of the current action. This allows analysis of

underlying causes, or critical threads (see Carroll et al 1993).

Retrospective questioning refers users directly to their experiences of the system.
Subjects are asked to give accounts of their understanding of problematic features

(allowing for learning from errors) as well as clarifying accounts of their behaviour

elicited at the time of the incident. This approach helps users to give accurate reports

of their reasoning and behaviour, rather than `idealised' reflections, an inherent

problem with self-reporting (see Stevenson et al 1988).

The method consists of three broad phases, namely the tutoring of the evaluator,

preparation for a session, and the procedure for conducting a session. Each element

will be discussed in more detail below. The evaluator is provided with a booklet

which explains the nature of a DM style interface in general terms, in accordance with

established theory (e. g. Shneiderman 1987, Norman 1986). The evaluator is then

presented with an explanation of model concepts. This is followed by an explanation

174

of the procedure for conducting evaluation sessions using the model.

7.5.3. Relationship Between the Final Model and the Initial Model

In Chapter 5 the three-level model of user behaviour was described, which
incorporated accounts of knowledge use and error types. This initial model provided a
comprehensive account of how knowledge use and errors may vary in character
depending on the user's experience (both of current interaction and previous packages
and devices) and the type of mental act that the user is attempting to perform. User

mental acts are described at different levels of interaction after Rasmussen (1986). For

example, rule-based search consists of scanning for familiar locations and features. In

contrast, knowledge-based search involves the recruitment of task-domain or general
knowledge. Figure 5.5. links these diverse user mental acts to the concept of roles.
Roles are tokens representing phases in the cycle of an action, and provide a unified
description of mental acts and implicit information needs at all levels of processing.

The Chapter 5 models describe user behaviour and knowledge recruitment at different

levels of processing. However, the cycle of action has broad similarities across levels

of processing. Roles can be described as abstract tokens representing the sequence of

mental acts that compose an action cycle. More specifically, they represent the mental

acts that the system should support in display-led interaction. The final model uses the

concept of roles to describe the cycle of action. This limits the diagnostic search space
for evaluators, and emphasises the concept of the display as an important facet of user

cognition. In user-based evaluation, role analysis is the exercise of identifying the

point in a dialogue where the user and system models diverge. In turn, roles identify

baseline criteria for redesign or remedy. By abstracting the `phase' of the action cycle

where a breakdown occurred, evaluators can establish criteria for the redesign of
interface features and rating of possible solutions.

Figure 7.1. a. shows how the concepts described in Chapter 5 relate to the model

which is presented to evaluator subjects in the method booklet (shown in Appendix

A). The diagram shows the sequence of roles on the left-hand side. Roles are linked

to types of mismatch, shown in the next column. These in turn link to mental acts
from Figures 5.2. a. b. c. with the associated user processing levels for each mental act
described on the far right-hand side. The link between roles and mismatches

expresses the divergent nature of user problems associated with each phase of an

action. Each mismatch maps to the mental act with which it is associated. The

mismatches/mental acts are identified with one or more processing levels, as shown in

the far right-hand column of Figure 7.1. a.

175

ROLE MISMATCH TYPEIMENTAL ACT PROCESSING LEVEL

Goal fonns0on Goy not
achwvabla

FonnAata Goal All

for each

action 1
Oats RwoynsW Rul. -0assd

Misleading Informed loation 1
Lo°ats 1
Feature rosufficiont l o^ puss Location kravA age-baud

inicirnalor,

1

Confusion between aws Soto recognised Rule-based
Idanbty feature

Fatum
p aNael NaLrs

In cue IurovAsdg. baud

cony aawmpoona ntnavs and nasty skill-based
from poor actions operation

Specify
Action slurs to support users g.. " u action ýwsdge based

Pew of the tack
1

ddan Effects of prior
retrieve action Rula-0asW

son

Unnatural nepon
Execute to user input

axsata aeon All

Lads of support far
P

d, SIoulf ad1on

to be noticed I

Perceive rwognsa change All Feedback I
Absent or deayad

Understand Failure to reflect 1
Feedback true allsatt of the actl \

evaluate charge All

Fallure to reference

user goals

Figure 7.1. a. Links Between Final Modi Concepts and Concepts from

the Model Described In Figures 5.2. a. b. e.

1 76

The alternative mismatch types for each role represent problem types associated with

particular processing levels. The `specify action' role refers to all three levels. This is

shown by the three types of associated mismatch which link to mental acts from the

respective models. The `locate feature' and `identify feature' roles refer only to the

rule-based and knowledge-based levels. This reflects the absence of feature search at

the skill-based level. The execute and perceive/understand feedback roles cover all

processing levels. For example, execution problems may impair interaction at any
level. A novice at the `knowledge-based' level may give up on a feature if it is

awkward to use, and the same manipulation may also slow `skill-based' interaction.

Roles link mismatch types from different processing levels. For example, the `specify

action' role links the hidden effects of a prior action (rule-based) and failure to support

the user's view of the task (knowledge-based) as occurring at equivalent phases in the

action cycle. Broadly, Norman's (1986) position is that search or simply recognition

of environmental cues precedes the specification of operations at all levels. Even at the

skill-based level, action is first triggered by recognition of a familiar task-state,

although recognition leads to the use of automated procedures. Whilst the models in

figures 5.2. a. b. c. implicitly retain this assertion, the three processing-level models do

not explicitly emphasise the broad commonality in the sequence across levels.
Previous work (e. g. Polson et al 1992) demonstrates the utility of emphasising a
common sequence of user mental acts to evaluators. Therefore, the final model uses a

common sequence (roles) as a pivotal concept.

The descriptions in the final method use the sequence of roles and mismatch types,

along with criteria for identifying examples. Explicit references to the processing level

models are not made in the materials presented to study subjects. However, the

mismatch types linked to roles correspond one-to-one with mental acts described in

either 5.2a. b. or c. and are therefore defined by their associated processing level.

There are two reasons for only making implicit reference to processing levels in the
final model and the study materials. The first reason is that evaluators, under any

circumstances, will have much to learn when introduced to the approach and the
learning burden should be minimised where possible. The theoretical model is too

complex to present to evaluators in the initial stages. The sequence of roles truncates

the baseline knowledge required by evaluators (i. e. a description of the display-led

action sequence). Another related issue is the possibility of mismatch examples that

are exceptions to the general descriptions in the initial model. For example, it is

possible that `confusion between cues', which is described as a problem at the rule-

117

based level, could be caused by a poorly designed feature metaphor prompting the user
to incorrectly access general knowledge in feature identification.

The second reason is that detailed analysis of the skill-based level may not be

necessary in user-based studies. Most user-based evaluation is conducted with novice

users. Given this, the errors found are likely to be either at the knowledge-based or
rule-based levels. Therefore, the critical focal point will be at these levels. The model
in Figure 5.2. c. would largely be redundant. Given that awareness of the theory of
skill-based learning may mean substantial extra learning for novice evaluators, it is

worthwhile removing it for their initial exposure to the method. However, they may
use the Chapter 5 model for sophisticated analysis as they become more experienced.

7.5.4. Explanation of the Model

In Chapter 5, a model was described in which the central means of analysis was a
sequence of dialogue roles that interface must fulfil for competent interaction to

proceed. The initial model that is presented to the evaluator is designed to introduce

the notion of action as a sequence of mental acts associated with the observable

physical acts. The model outlines action at a three-stage level of granularity
(specification, performance and evaluation) with nodes describing the roles linked to

appropriate places in the cycle. This model is shown in figure 7.1. b. The theory is
introduced by describing user mental and physical activities within the cycle of action,

and associating them with roles.

Some alterations were made to the presentation and terminology of model concepts.
The motivation for the changes was to make key concepts simpler to learn and
understand for novices. Mental activities in the cycle correspond one to one with the

roles. This is expressed in Figure 7. Lb. by naming roles in a way that gives them a

common token with activities. Therefore, the `locator' role, for example, is referred to

as `locate feature'. Also, the `operation specifier' role is referred to as ̀ specify

action'. A further terminology change is the replacement of `role failure' with the term
`mismatch'. This is to express the nature of the technique by which role failures are

established (the comparison of user expectations and the system model).

The concept of mismatches is then introduced with full descriptions and examples.
Mismatches are described along with their association to dialogue roles. These are

augmented with practical examples of mismatches. Each mismatch type is attached to

an appropriate activity/role in a flow-diagram which is shown in figure 7.2. The

accompanying text describes the nature of associated mismatches. Brief examples of

178

each type of mismatch are then offered along with advice on how to identify each
mismatch from protocol evidence. A full example of the Introductory booklet is

provided in Appendix A. Below is a description of the advice on identifying error
types along with an explanation in each case.

179

Goal Formatton

Goal formation

Deciding how one

can . ehleve a goal faatun not
v;. tae

Locate

Feature

feature
already
known

Identify

Feature

Specify

Action

Exeeutlny

Execute

Assessing the Result of an Aotlon

Perceive

Feedback

Understand
Feedback

Figure 7.1. b: A Four Stage Modal of Action With Dialogue Roles Assigned

180

ROLE MISMATCH TYPE

Goal formation Goal not
achievable

Locate
Misleading information

Feature
Insufficient locating

information

Confusion between cues Identify
Feature

Lack of meaning
In cue

Unsupported assumption
from prior actions

Specify Failure to Support the
Action Users View of the Task

Hidden Effects of prior
action

Unnatural response
Execute to user input

Lack of support for
difficult action

Too brief or obscure
to be noticed

Perceive
Feedback Absent or delayed

Fallure to reflect
true effects of the action

Understand
Failure to reference Feedback
user goals

Figure 7.2. The Activity/role ssqu. nc" with associated mismatch types

181

7.5.4.1. Goal Formation Mismatches
These may be identified by the user declaring a task-goal that is not, in fact, supported
by the interface. This is distinct from a problem that was more prevalent in the
Chapter 4 study, namely goals that were possible, but not by the expected means. A

user also may express disappointment with the effects of an action, despite correctly
identifying and operating the feature, and correctly interpreting the result. These are
cases where the feature fails to support the specific goal that the user had in mind,
despite being relevant to the task type. For example, a user may wish to use a four-

column format for a text document, and find that the system facility for columnising
text only supports a three-column format.

7.5.4.2. Locate Feature Mismatches
The main indicators of a Locate Feature problem tend to cause the user to re-specify
action or formulate a new goal, without actually performing an intended action. In

these examples the user will search in the wrong place for a feature, perhaps naming
an area of the interface, declare difficulty in deciding where to search, or express
disappointment with failed search. This links both to knowledge-based and rule-based
search. The user may not be able to interpret the system metaphor. Also, the user may

expect a feature to be in a particular location (e. g. the Show Clipboard feature in the
MacDraw Edit menu) and abandon search when the feature is not found.

However, in some cases the user may proceed with an action before the error emerges.
The Locate Feature mismatch may lead to an erroneous feature selection. If the user's
account of feature choice indicates an ignorance of the `group identity' for example, of
a menu, this is likely to be a Locate feature mismatch. This is illustrated by the
example in Chapter 5, of Subject C selecting `Reduce to Fit' for point size reduction.
The feature was in a menu dedicated to general default setting and viewing options.
Subject C interpreted the cue without this contextual knowledge.

7.5.4.3. Identify Feature Mismatches
The user may select a feature incorrectly (or verbally misidentifies a feature). In this

case the error emerges once the action has been performed (or may be indicated in the

user's verbal declaration of expectations prior to action). This is similar to some
Locate Feature mismatches. The crucial difference is that the feature representation
itself (rather than confusion over group headings or clustering) that is the problem.
The distinction is useful because it points to alternative options for redesign.

However, some Identify Feature mismatches are detectable by the user declaring the

need for a feature, searching for and scanning the feature, but failing to recognise its

182

cue. This refers to the problem of cue discriminability, described in Chapter 5.

7.5.4.4. Specify Action Mismatches
This category covers three types of mismatch. These will be described in turn.

" Unsupported assumptions from prior actions: The user may make generalisations
from previous actions, making assumptions about the effect of actions and the legality

of operations. This could be as a result of the features being cued similarly, located

together, or being (to the user) part of a homogeneous group. This refers to the failure

of the system to support rule-based specification of operations ('retrieve and modify
operations'). Some operations may involve extra operations, or a different ordering of

operations, and therefore confound the example-based generalisation.

" Failure to Support the User's View of the Task: This mismatch type refers principally
to support for knowledge-based specification. The user may specify, by importing

heuristics from the task-space to the device-space, an incorrect or suboptimal sequence
of actions. This often involves missing out steps, or applying the wrong operations.
This can be explained as a mismatch between the task in the user's model and the task

on the device. The user may reveal this problem by stating assumptions drawn from

the task-domain or general knowledge. The user may also indicate this problem by
describing the system state, or the intended actions, without reference to a key step or

concept.

" Hidden effects of prior action: This error tends to effect users performance on
features used before. The user may have (unknowingly) altered some aspect of the

system state which makes a feature behave differently. As a result a used feature
behaves differently, with the user reporting inconsistent behaviour.

7.5.4.5. Execution Mismatches
These mismatches refer specifically to physical manipulations. For example, a user
may express frustration when a drag action intended to stretch an object causes it to

contract.
Also, there may be actions that, by nature, tax the user's manipulation skills. For

example, the user will find drawing a straight line difficult without extra support (a

ruler in the case of pen and paper drawing). Dissatisfaction expressed at the

performance of a feature may be traced to this lack of support for difficult action.

7.5.4.6. Perceive Feedback Mismatches
These problems may only emerge in the action specification stage of a subsequent

action. The user may miss feedback information, and make erroneous assumptions

183

which affect further actions. As will be discussed below, some of these mismatches
could also be classified as Action Specification problems, because they represent a
mismatch between the end state of action that the user expects, and the actual state.
The automatic default setting problem described in Chapter 4 comes into this category.
The errors may only be clear to the evaluator after the user has responded to
subsequent action where a hidden state change has taken effect. Therefore the method
alerts the evaluator to the connection between ̀Perceive Feedback' mismatches and
`Hidden Effects of Prior Action' mismatches in subsequent action.

The other indication of Perceive Feedback mismatches is the user directly complaining
that there is a lack of information about the effects of the action.

7.5.4.7. Understand Feedback Mismatches
These are often cases of the user mistakenly believing that there is a problem as a result
of an action where, in fact, there is not. In these cases the user will express incorrect

assumptions drawn from the feedback, or confusion at the apparent result of an action.
Here, like some Perceive Feedback mismatches, the user's incorrect assumption may
only cause tangible problems when subsequent action is specified and attempted.

7.5.5. The Category Assignment Problem

A potential difficulty with this approach, and one that is common with most
taxonomies, is the possibility of an incident fitting more than one category. One of the

potential problems faced by the evaluator is deciding between candidate categories.
Even with the advice provided, the evaluator may be left with value judgments to

make, before selecting the design element that should be altered. This is particularly
true in the case of errors where a task has been attempted without a necessary feature
being used. The device inevitably restructures tasks in some cases. It may be argued
in such cases that a feature cue is inadequate, or that the structure of the task is not
appropriate. Therefore, the method stresses that ultimately the evaluator must make a
judgment, choosing between alternative assignments. The provision of a
comprehensive set of if-then rules for diagnosis and solutions is beyond the scope of
this approach. Therefore the instruction booklet emphasises the importance of the

evaluator's intuition and judgment. The principle that is encouraged is that the

evaluator should consider which of a range of possible design changes would have the

most beneficial effect.

184

7.5.7. Solutions

The method supplies only minimal advice on the choice of solutions. The user is

simply given a brief general summary of the sequence from incident recognition
through pinpointing of cause to solution formulation. The evaluator is provided with a
table to brief them on the typical protocol evidence types associated with mismatch
types (shown in figure 7.4.). The evaluator is encouraged to contemplate possible

rectification of errors, rather than given procedural rules necessarily linking genotypes
to redesign options. This is favoured for two reasons. The first is that diagnosis and

solution formulation are sometimes interleaved. The nature of a mismatch may

ultimately be pinpointed when the effectiveness of the potential solution is

contemplated. Another consideration is that design changes may .
It is a useful

exercise for the evaluator to consider such effects when deciding between solutions (or

if any change is desirable at all). However, the links described in Figure 5.5 may be

used as an aid to decision-making. This chart offers both a diagnosis aid and an

indication of which dialogue technique (e. g. visual metaphor, support for abstraction-
based generalisation) is implicated by a critical incident.

7.6. Preparing For the Session

7.6.1. Scenario Selection

The favoured scenario consists of a visually displayed task on a paper sheet, showing

the start and end state of a task. This is intended to minimise the amount of explicit
instructions that the user is given. This approach is favoured to giving the user a

sequence of small atomic tasks (e. g. edit an item within a table, move the largest text
item). The `whole task' approach allows the user scope to perform a high-level

matching between task and device space, which is something that any new user would
be faced with. Thus the user is free to order sub-tasks in a natural way, allowing

evaluation of sequences of task-action. This, in turn, is more likely to reveal serious

errors which can be traced beyond a single sequence of task-action, such as problems

associated with the overall system metaphor or the delayed effects of misleading
feedback.

The scenario must be representative of typical tasks that the system would be required

to support. This may not be a trivial task with the more specialised packages.
Consulting members of the target user group to validate scenario design is advised in

such cases.

185

It is possible that the other main objective of scenario design, testing the range of
functionality offered by the system, may conflict with the ̀ typical tasks' objective.
Typical tasks may leave some of the more advanced or specialised functionality

untouched. The more specialised functionality may require a scenario that is too
demanding of a novice user subject, particularly in a timed experimental session. This

could be overcome by giving a second scenario to the user at the end of the main
session. Alternatively, the evaluator could ̀ walk through' more complex task

scenarios with the user, asking questions such as ̀ which feature would you use for

this action'.

7.6.2. Preparation of a Training Schedule

The user subject will need to be given basic training in high-level system principles

and manipulations. Typical or standard feature operations can be used to demonstrate

basic principles. The user is then given time to explore the system (in advance of

seeing the scenario). This is both necessary and useful to the evaluation. The

necessity is that the user must be acquainted with the basic manipulations to allow

concentration on dialogue problems. The guidelines provided, for example, by Apple.

are that their products need only a brief demonstration-based tutoring session to set up
learning by exploration. This also has the advantage of exposing inconsistency errors

such as `wrong assumptions from prior actions'.

7.6.3. Selecting Representative Users

The user subjects recruited for the sessions should broadly be representative of the

target user group. The crucial factors are educational background, familiarity (or not)

with the operating platform, general computer experience, experience of the domain

and nature of work experience. Ideally, the users should be a sample of the target user

group, although there may be practical problems such as availability.

7.6.4. The Session

The user is given a set of instructions as illustrated in Appendix Y. The user is asked

to perform the task providing a continuous verbal protocol, similar to the method
described by Ericsson and Simon (1983). The evaluator reads the task instructions to

the user, along with the requirements for providing a verbal protocol. The protocol

may be audiotaped to ensure accuracy. It is also good practice to reassure the user that

the package is being tested rather than the user. The evaluator is advised to study the

user's behaviour, intervening only when the the user expresses a problem with

specifying and performing an action, or with the result of an action. The evaluator

186

records the concurrent user account of the incident on an `incident record sheet', an

example of which is shown in figure 7.3. Where facilities are available it is useful to

make a video recording of the session. A recording of the incident can be played to the

user after the session, to help them remember the incident.

The sheet records information which allows the evaluator to infer the user's model of
the task. The information may be volunteered by the user naturally in protocol form.

The evaluator is advised to intervene and ask the user to clarify their account of their

expectations, and the problem as they see it.

Description of Incident

tries to put arrow an arc line using menu option.
claims 'it worked before' having done it for straight lines

(can onlg be done bg constructing a line from
arc 6 straight lines, adding an arrow)

Repeats of same problem II ý-*ý I
-ýý

List any alterations/corrections?

Figure 7.3. Incident Record Sheet for use by Evaluators

The form also contains sections to help the evaluator gauge the severity of the

problem. There is a set of boxes in which the evaluator can record the number of
times that the user repeats an error. A frequently repeated error may turn out to be a

serious design problem for all classes of user. " Also, the evaluator is instructed to

record supplementary information about the user's response to the error. So if an error
is dealt with easily, there may be less cause for reviewing the design than when a

protracted error and repair cycle is observed.

When the session is complete, the evaluator may follow-up by asking the user

clarificatory questions about the session, updating the Incident Record Sheet where
appropriate. After the user leaves, the evaluator analyses the critical incidents,

187

specifying the features that could usefully be changed and the nature of those changes.

7.7. From Diagnosis to Practical Solutions

The method is intended for use in industry. Therefore some attention has to be payed
to the real-world problems that may be faced. One problem is that there may be
insufficient time to make significant changes to a developed system. The second is

that equipment such as video and playback facilities may not be available to evaluators.

One of the major issues in evaluation is the role that it plays in the design process.
Evaluation of the finished product may come too late for changes to be made.
However, the method may work equally effectively on prototypes, leaving scope for

major changes to be made where necessary. However, the evaluation may still be

useful at a late stage, even though changes may be difficult. The exercise is that of

pinpointing areas of the designed where user mental activities are not properly

supported. This demarcation of the problem-space can inform the design of help

facilities, manuals and user training. It shows where there is a shortfall in system

support. This reflects the theme of supporting user information requirements,
described by Hartson et al (1990) and Mayo and Hartson (1993). For example, the

analysis will expose parts of the system that are difficult to learn using example-based

generalisation. These areas could therefore be given special attention in a training

programme.

Real-world organisations may find it difficult to acquire video/playback facilities to use
in evaluation. This may make analysis of incidents a harder, For example, the

evaluator would not be able to check that all error incidents had been recorded.,
However, the method does support the concurrent collection and subsequent analysis
of data. This is the format in which it is tested in Chapter 8, where video playbacks

are not available to evaluators.

7.8. Summary of Chapter

This chapter has described a practical, model-based evaluation method. The method

employs the model of dialogue roles linked to mismatch types as a theoretical base.

This model serves as an aid to diagnosis by helping the evaluator to interpret critical
incidents. Practical advice on conducting user-based evaluation sessions is provided,
incorporating a concurrent intervention technique, and a strategy for retrospective

analysis.

The following chapter tests the effectiveness and efficiency of the method in practical

188

evaluation sessions. The method is compared to a commercially established method,
the Usability Checklist (Ravden and Johnson 1989). Novice evaluator subjects are
given the task of using one or approach to produce design solutions.

189

Mismatch Type Evidence Type

03,11 formation
Goal not
achievable

User expresses a goal which cannot
be achieved by any means

Locate Features

Misleading information
User goes to a search location, reasoning about
the likelyhood of it containing a desired feature.
Desired feature is In a different location.

Insufficient locating
information User unable to find a desired feature, engaging

in random or undirected search

Identify Features
User tries an Irrelevant or suboptimal

Confusion between cues - p. feature. misidentifying the feature

Lack of meaning User expresses a goal Implying the need for
In cue a particular feature, scans and passes over

a needed feature

specify Action

Unsupported Assumptions
User attempts wrong operation (or operations)

from i
declaring expectations based on previous

pr or action action, or use of another feature

Failure to support the User describes expectations as to how

user's VIt3W of the task
a task can be performed which reveals
Ignorance of a crucial system concept

or a necessary component action

Hidden Effects of prior
User describes expectations which reveal

e caused n h f
action

g a Ignorance o a mods or state c
by a previous action

User describes expectations which Include
Inappropriate Functionality -1 t correct feature Identification. but Is unable

to achieve the current goal using the feature

Execute action
Unnatural response

User activates Input device. Cursor responds b
in a manner counter to expectations (e. g. scroll

to user input moving faster than the mouse action)

User finds a manipulation Is beyond horizons
Lack of support for of physical skill (e. g. drawing straight line
difficult action freehand). System fails to provide feature to

overcome prob

Perceive Feedback
Too brief or obscure

User causes a state-change, but expresses or

to be noticed
demonstrates Ignorance of the change. often by

specifying subsegent action without reference to
the change

Absent or delayed

Understand feedback
Failure to reflect User Interprets the *croon Image Incorrectly
true effects of the action

Failure to reference User acknowledges a change has occured. but
User goals p Is unable to confirm that an action Is satisfactory

Figure 7.4. The mismatch types linked to typical protocol evidence

190

Chapter 8-- Comparative Testing

of the Model-Based Method for

Novice Evaluators

8.1. Introduction

This chapter describes a comparative study in which the method described in Chapter

7 was tested against an established method. This method derived from the model of

action is named Model Matching Analysis (MMA). The established method is the

Usability Checklist Evaluation Method (Ravden and Johnson 1989). The chapter

starts with a description of the Usability Checklist approach. The contrast between

this approach and the approach taken in the Chapter 7 method is then discussed. The

ten sessions reported in the Chapter 6 study were also used to study the performance

of novice evaluators using the MMA method. Ten additional sessions were

conducted. These were used to study the performance of novice evaluators using the

Usability Checklist method. This chapter begins with a description of its design,

along with a description of the experimental sessions, carried out by independent,

video-assisted analysis. The two sets of evaluation output are then compared for

effectiveness, efficiency and user satisfaction.

8.2. The Usability Checklist Method

8.2.1. Principles

The Usability Checklist (UC) is a highly structured way of recording subjects'
experiences of a system by answering a series of questions. The method's authors

claim that it is a flexible approach that can be used with or without scenarios, and by a

variety of subject types. Among the permutations is evaluation conducted by a

supervising evaluator who monitors a novice user. It is the user who completes the

checklist for subsequent interpretation by the evaluator. It is the method's utility for

this format that was tested, although other aspects of its overall utility and suitability

were subject to examination.

The main body of the checklist consists of nine sections based on key principles of

usability. These principles are accompanied by lists of between approximately 10 and

191

15 relevant questions. The subject examines the system, either by performing a task

or random exploration, making freeform notes as required. Each question is

accompanied by tick-boxes to be filled in by a user subject. For example, the
following question appears in the ̀ Explicitness' section:

`Is it clear why the system is organised and structured as it is? '

This is followed by four tick-boxes [always, most of the time, some of the time,

never]. Next to these is a box in which the subject can add comments if appropriate.
The user has the option of putting `don't know or `not applicable' in the comment box

where appropriate. At the end of each section are summary questions, eg:

`Are there any comments (good or bad) you wish to make regarding the above
issues? '

and

`Overall, how would you rate the system in terms of (explicitness)? '

which is followed by another row of tick boxes [very satisfactory, moderately
satisfactory, neutral, moderately unsatisfactory, very unsatisfactory].

Section 10 of the checklist allows the user to express whether a range of usability

problem types have been encountered. This section has a similar format to sections 1-

9, except the check-boxes are [no problems, minor problems, major problems].
Section I1 allows the subject to report best and worst aspects, along with other

general points about the system. The responses provided by the subject provide the

evaluation data output.

8.2.2. The Checklist Method in a Split Role Format

This section describes a session where the roles in a checklist are split into observer

and user. The evaluator will have a comprehensive description of the usability

principles which form the first nine sections of the checklist. Section 9 was left out,
in accordance with the authors' recommendations that irrelevant sections should be

removed. The section referred to help facilities, which were not provided by the

tested version of the package. The checklist is accompanied by a detailed explanation

of the procedure for briefing the user and conducting the session. Each checklist has a

corresponding definition supplied. The user can ask for a definition of a question.

192

The user's role is to provide opinions and reactions in the checklist format to be

passed on to the observer. The observer then reads through the checklist interpreting

the responses that the user has provided. The observer then assesses the implications

for the design. The observer also watches the session, and may merge the findings of
the user with his/her own observations.

8.2.3. Contrasts Between the Methods

8.2.3.1. Evaluators Role During the Session
To remove ambiguities, the observer in a Usability Checklist session will henceforth
be referred to as `the evaluator' although Ravden and Johnson (1989) sometimes refer
to the actual user as the evaluator. The subject performing the actual task in these

sessions will be called `the user'. The Usability Checklist method does not ask the

evaluator to play an interactive part in the test session. The evaluator simply observes
the process, and calls a halt to the session at the appointed time. By contrast, the
Model-Based method advises the evaluator to use a criteria-based intervention

technique to clarify user accounts of critical incidents.

8.2.3.2. The User's Role During the Session
The user in the MMA session has to provide a continuous verbal protocol during the

session, and is particularly directed towards expressing expectations of the current

action, and reactions to the results of search and action. This may be augmented by

clarification questions from the evaluator, as stated above. By contrast, the Usability

Checklist user performs without verbal feedback, and is asked to make notes (where

appropriate) on his/her experiences as they are performing the task. A pen and paper
is provided to facilitate note-taking.

8.2.3.3. Evaluator's Role After the Session
The Usability Checklist evaluator's first duty after the session is to act as a `talking

glossary', explaining terminology and concepts in usability checklist questions when

requested by the user. The evaluator does not question the user directly. The

evaluator then reviews the checklist for information supporting design

recommendations.

The Model-Based evaluator asks retrospective questions about the critical incidents
found in the session, and is far more responsible, therefore, for setting the issue

agenda (although this should be guided by the critical incidents generated in the

193

session). The evaluator then checks the account of the incidents against the

role/mismatch model provided (figure 7.2) to help clarify the root cause of the

problem that the user reported.

8.2.3.4. The User's Role after the Session
The Usability Checklist user has a total of 161 checklist questions to address. The

user also has the option of filling in prose sections describing experiences. The MMA

method user is not required to give any written accounts of the session, nor complete
any written questionnaires. The user is simply interviewed by the evaluator.

8.3. Study Design

The task for the user subjects was as described in Chapter 6, using the scenario
described in Figures 6.1

.a and b. The ten sessions described in Chapter 6 were each

examined by an evaluator subject, testing the Model Matching Analysis(MMA)

method. Ten more user subjects were recruited for the Usability Checklist(UC)

sessions. The subjects will henceforth be referred to by their group number along

with the acronym for the method tested in their session, and their role in the session
(user/evaluator). So user MMA5 is the user subject in session 5 testing the MMA

method. Evaluator UC3 is the evaluator subject in session 3 testing the Usability

Checklist.

8.3.1. Recruitment for the Study

As stated in Chapter 6, the 10 sessions used for interaction and error analysis were
also used as sample sessions using the MMA method. Another ten sessions were held

using the same scenario and conditions. Twenty students at City University were
given the role of the Evaluator. All were students on computer based courses with
between 2.5 and 4.5 years computing experience. Ten of the subjects (five using each

method) had done a single-term course in Human-Computer Interaction. The other

ten had no HCI experience.

The user group were recruited from the School of Social Sciences at City University.
The user group all had less than two years experience of using word processing

packages. None had ever used any version of Microsoft Word.

194

8.3.2. Training for Evaluators

Each evaluator was presented with a copy of the method they were to use and a set of
instructions for conducting the session. The materials were given to them one day

before the session was scheduled in order to standardise the time spent studying them.
Appendix A shows The MMA method package. Appendix B shows the prepared
instructions for the Usability Checklist package. These were presented along with
Sections 2,3, and 4 of the UC method book by Ravden and Johnson (1989).

8.3.3. The Sessions

The evaluators were asked to study the method, and any questions they had were

resolved. The evaluators were responsible for briefing the users about the session by

reading standard sets of instructions to user subjects at appropriate points. However,

training of users, and supervision of the training period was conducted by an
independent observer who was present at each of the twenty sessions. This was done

to ensure that the training of user subjects was consistent.

The procedure for the sessions was as described in Chapter 6. Both sessions were

timed at 30 minutes. There was no time limit on the retrospective analysis with the

user, as the time taken to complete this phase was being investigated. The evaluators

were asked to analyse the data and make design recommendations before leaving the

room. Again, the time taken for the final analysis phase was scrutinised. Both user

and evaluator subjects were given retrospective questionnaires eliciting their attitudes

to the method and the task.

8.4. Results

The first analysis studied the actual performance of user subjects in the sessions. As

the ten MMA sessions are reported in Chapter 6, the account here is relatively brief.

8.4.1. Actual errors made during sessions

The sessions were independently analysed on video to establish the number and nature

of the actual errors that were made during the session. This was augmented by

retrospective questions to the user subjects, conducted independently of the methods.
The errors were classified according to the task that the user was attempting at the

time. The scenario contained 6 distinct tasks. Along with these were scanning and

repair, included as separate categories.

195

The twenty sessions produced a total of 186 errors. Of these errors, 99 occurred in
the UC sessions and 87 in the MMA sessions. A t-test was conducted on these totals,
and found the difference was not significant at P=0.162. Figure 8.1. shows the
totals per task category. The ̀ columns' and ̀ bullet' tasks were the most problematic
for both groups of subjects.

MMA Subjects UC Subjects
123456789 10 T123456789 10 T O/T

columns 1 3 2 4 1 2 3 3 3 22 1 4 3 1 3 4 4 2 3 25 47

bullet 2 2 1 3 2 2 2 2 3 2 21 4 1 1 3 3 1 1 1 4 19 40

change 2 1 1 2 11 1 2 1 1 2 3 3 1 16 27

move 2 2 1 2 2 1 3 13
2 2 1 1 1 1 9 22

centre 1 5 1 1 1 1 1 11 3 3 1 1 8 19

repair 3 1 4 2 1 3 1 2 1 10 13

enter 1 1 1 1 41 1 1 1 1 1 1 7 12

scan
1 1 1 2 2 6

total 8 1 6 9 9 7 8 71 101 1 87 1 9 9 11 10 12 11 81 101 991 188

Figure 8.1: Errors by Task for MMA and UC Subjects

196

Ten errors by the UC subjects were failed attempts at repair, compared to only three
for MMA subjects. Also, five errors were made during scanning which was not
overtly part of a declared task.

The errors by UC subjects were classified using the phenotype categories described in
Chapter 6. These are shown in figure 8.2. They show a relatively low incidence of
failure to find features. There were no significant differences between the MMA and
UC subjects (P = 0.483, Mann-Whitney U test).

RAMA uaer II(uaara Tntala

Phenotype 1 2 3 4 5 6 7 8 1 1 2 3 5
16 1

0 MA UC overal

Reject Feature 2 1 0 1 3 1 2 1 1 1 2 4 2 1 3 13 25 38

Unable to find
features 3 3 2 1 2 1 2 1 3 3 1 2 0

[

0 2 21 10 31

Unsatisfactory

result
3 4 4 6 4 4 4 4 6 6 4 6 6 7 5 4 56 101

Accidents/
0 5 0 1 0 1 0 1 0 0 0 0 1 0 0 8 8 16

9 9 7 0 1 71 12 9 1 87 99 186

Figure 8.2: Error phenotypes for MMA and UC user subjects

8.4.2. Analysis of Individual Errors for UC subjects

The individual errors made in the ten UC sessions were analysed further. Figure 8.3.

shows all the errors that were made more than once in the ten sessions. The

phenotype classification for each error is listed. The most common error (twelve
instances) was failure to select, although only three subjects made the error more than
once. The column icon was tried by six subjects, all of whom tried to make the
feature work for a selected area. They found that Word ignored the selection, and

197

turned the entire text into a single, narrow column.

Five incidents involved indent for the `bullet' feature. This feature is operated by

selecting an icon, or from a menu. An indent is automatically created along with the
bullet. The users did not expect this, and had difficulty dealing with it. Three

subjects suspended the bullet placement task as a result of the feedback, and did not
return to it. Five subjects also had difficulty editing manually created columns. The

automatic carriage return feature proved troublesome for five subjects who tried to edit
text within columns after their initial creation. Five subjects also experienced
difficulties having altered an item to bold text and continued typing beyond it. They
found unexpectedly that the new text being entered also came out bold.

The New Document icon caused four subjects serious problems. When the new
document opened over the task document they believed that the text had been deleted
(three of the four subjects admitted to believing this had happened). The error led to

considerable delays in the task performance of all four subjects, and some secondary
errors. One subject brought up another new document by attempting to reverse the

selection. Two subjects searched the menus and selected ̀ find' facilities.

Three subjects tried to select and move text using Carriage Return (resulting deletion

of the selected text). The selection of incorrect features in general did not focus on
any particular features, the twenty-five observed errors covering fourteen incorrectly

selected features.

198

Error Desorl tlon subs natane" Classlfloatlon

Fallure to Select 9 12 Unsatisfactory Result
Before Action

Column icon 6 6 Unsatisfactory Result

Bullets
(auto Indsnt/plaoement) 5 6 Unsatisfactory Result

Auto-text position/
return 5 5 Unsatisfactory Result

Bold
5 5 Unsatisfactory Result

menu

New Document icon 4 4 Reject Feature

Select and move 3 3 Reject procedure
by carriage return

Bullets 3 3 Unable to find features

Paragraph menu 3 3 Reject Feature

Screen View icon 3 3 Reject Feature

se of search or 1110
after selection of new 2 3 Unsatisfactory Result
document' Icon

Centring 2 2
facilities Unable to find features

Column making 2 2
facilities Unable to find feature'

Double select of areas 2 2 Unsatisfactory Result

Draw Package icon 2 2 Reject Feature

Style menu 2 2 Reject Feature

Symbol menu scroll 2 2
Unsatisfactory Result

Difficulty using'text 2 2

select Manipulation difficulties

cci en a double 2 2
paste Manipulation difficulties

Justify Icon 1 2 Reject Feature

Figure 8.3: Errors occuring on more than one

occassion in the tan UC sessions

199

8.5. Evaluator Performance

The study compared the performance of the two methods in diagnosing design

problems and generating change suggestions.

8.5.1. Solutions offered by Evaluators

The design changes offered by each set of evaluators were analysed along with the

stated reasons behind their suggestions. The solutions were independently analysed

to classify the type of design change that was suggested. Five categories were used to

represent distinct types of solution.

Improve Feature Cueing: This refers to the design of feature and action cues. This

could refer to a specific feature, or a general recommendation (e. g. ' improve icon

designs').

Alter Functionality (features): This includes adding a new feature, removing an

existing feature, or altering a procedure for feature use.

Alter Functionality (general): This refers to more general principles of operation, such

as how menus are operated, and cursor behaviour.

Alter Visual Layout: This refers to the visual metaphor of the system, including icon

groupings, page metaphor, and menu organisation.

Help: Refers to any solution advocating the addition of help facilities, or referring to

`adding help'.

Figure 8.4 shows the number of solutions of each type proposed by MMA and UC

evaluators. The number of instances of each solution is shown alongside the number

of subjects. Nineteen of the the MMA subjects' solutions proposed that the
functionality of a particular feature be altered, compared to four from UC subjects.
There were eight suggestions of adding help facilities from MMA subjects, compared

to twenty-three from UC subjects. These scores were significant at the 1% level (x2 =

17). There were relatively few proposals to alter general operations, five by MMA

subjects and two by UC subjects. The same applied to visual layout, with five

suggestions from MMA subjects and four from UC subjects. The largest contrast

was for the suggestion of adding help facilities.

200

Typo of otal Direct probable generic
references

Possible

references

NO +scern e aDI
reference

utions SOI references
solution

Improve feature

F

0 1
cueing 12 9 8 1 17 8 0 9

Alter functionality
5 2 0 1

(features) 19 4 14 3 0 1

Alter functionality
5 2 4 1 2 0 1 0 0 1 (general operations)

Alter visual
layout 5 4 0 0 14 8 3 10 0 1

Help
8 23 1 4 11 30 6 58 0 0

Unclear 0 3 0 0 0 0 0 7 0 2

total 49 45 27 9 49 46 11 84 0 6

Figure 8.4. Total solutions by each set of evaluators, with references to

actual errors made by users subjects during the sessions

8.5.2. Sources of Solution Suggestions

The set of suggestions given by each evaluator were examined for their resemblance to

events in the actual sessions. The right-hand columns in Figure 8.4. show the results

of this study. If a solution clearly referenced a specific error incident it was classified

as `direct reference'. If more than one incident was referred to, or a probable but non-

explicit reference was made to an error, each error is scored under 'Probable/generic

reference'. If a solution does not make any reference to an error but could be deemed

relevant, it is entered as `possible reference'. Otherwise, the solution is entered under
4 no discernible reference'.

201

8.5.3. References to Actual Errors by MMA Solutions

Twenty-seven of the solutions offered by MMA subjects referred directly to
independently observed errors (see Figure 8.4). Of the twelve suggestions for feature

cueing improvement, 67% referred directly to a single incident. Of the nineteen
solutions in the ̀ alter functionality for a feature' category, 74% referred directly to

single incidents. Four out of five solutions suggesting altering general functionality

referred to a single incident.

Seventeen incidents were probably or generically referred to by `improve feature

cueing' suggestions. Secondary effects of failure to find the correct feature, or

selection of an incorrect feature, contributed to this total. The other substantial scores
here were fourteen generic references (in five suggestions) for the general ̀ alter spatial
layout' category, and eight references from two `help' suggestions. The spatial layout

total consisted mainly of search problems, referred to in general terms by the

evaluator. There were ten instances of errors with a `possible' fink to a suggestion.
Six of these were in the category `help'.

8.5.4. References to Actual Observed Errors by UC Solutions

A relatively small number of UC evaluators' suggestions (20%) referred to incidents

directly. One of these directly cited an entry in Section 11 of the checklist, which asks
for textual replies to questions such as ̀ what was the worst aspect of the system for

the user'. Probable and generic references were also sparse, apart from references by

`help' suggestions which accounted for thirty out of forty-six references (65%).

Entries in the help section tended to be, for example, cases where solutions referred to

`numerous problems finding menu options'.

There were eighty-four possible references made. This compared to eleven by MMA

subjects. Fifty-six of these were possibly referred to by `help' suggestions (67%). A

number of the ̀ help' suggestions made reference to the menu or icon bar, thus

rendering any error involving either as potentially relevant (assuming there was no

further reference or focus). Of the others, nine were in the `improve feature cueing'

category, and ten in the category `alter visual layout'. The inter-method difference in

number of direct, probable and possible references was significant at the I% level (x2

= 45.72).

202

Six of the solutions offered by UC subjects made no discernible reference to any of
the independently observed errors. Of these, three suggestions made clear references
to comments or suggestions made in the user subject's checklist answers. The

checklist invites users to comment on any aspect of the interface covered in the
questions. Also, question 11.4 explicitly asks if there were any ̀ irksome' aspects of
the system, that did not directly cause problems for the user.

8.5.5. Discussion

The high incidence of MMA solutions directly referencing an incident (55%) was not
unexpected as the method specifically encourages analysis of user difficulties, and the

redesign of features which caused problems. This is borne out by the fact that 67% of
`Improve feature cueing' suggestions and 74% of `alter feature functionality'

suggestions referred directly to incidents. The five `alter visual layout' suggestions
were more general references, reflecting the high incidence of failure to find features
by MMA user subjects. The 17 `probable/generic' references by the `improve feature

cueing' suggestions seems also to reflect the number of secondary errors made as a
result of failure to find features.

The UC totals show that 51% of solutions offered by UC evaluators were in the `help'

category. These also were the main contributors to the large total of `possible

references' to errors. This reflects the coverage of the help solutions, typical of which
was evaluator UC8 with `offer extra explanation of icons on request'. Several similar

suggestions of adding general help for both the icon and menu bar contributed to the
total. Also, very few suggestions (nine) referred to single incidents. Again, this

shows a tendency by UC evaluators to make general rather than specific design

suggestions.
.

A possible reason behind the UC subjects preference for `help' is the lack of checklist
reference to individual task features. The evaluators may not have had sufficient data
to characterise particular design problems accurately. There is also the possibility that
the boundary between user and system error may blurred for UC evaluators. The
MMA method provides criteria for identifying a design problem from a user error. If a
user error is identified as a problem with a feature, the design of that feature is part of
the `solution space' in the mind of the evaluator. This echoes Booth and Grey (1991)

who discuss evaluation methods' role in enabling and directing creative thinking. The

results suggest that the UC is less successful in diagnosing user errors as problems
with the design.

203

8.6. Analysis of Reference to Actual Errors in Method

Analysis

The observed error phenotypes were compared to the retrospective analysis
documents for each method. This was conducted to test the extent and accuracy of

coverage. The MMA errors were compared to the incident records that were taken and

verified post hoc. The UC solutions were compared to subjects' checklist entries.
The scores for direct references (MMA 47/12 UC), probable references (MMA 29/75

UC) and possible references (MMA 7/365 UC) were significant at the 1% level (X2 =

5504).

8.6.1. References to Observed errors in MMA analysis

The MMA method made a total of forty-seven direct references out of eighty-seven
errors (51 %). Twenty-six of the remaining errors were in the `probable/generic'

category (30%). Of these, nine were made in the incorrect procedure section. Ten

errors were not referred to at all (9%).

204

Instances Direct
Probable/ Possible

Errors

without
of errors reference

generic
reference

reference reference
Phenot e yp

MMA UC MVº W MMA ! JO M IC MMA IC

Unable to find 21 10 13 3 6 18 1 61 1 2
features

Reject
13 25 5 3 5 32 1 112 2 3

feature

Manipulation
8 8 2 0 4 2 2 10 0 3

difficulties

Unsatisfactory
45 56 27 6 16 23 3 182 7 13

result

Total 87 99 47 12 29 75 7 365 10 21

Figure 8.5: The number of independently observed
errors, with the number of references made in the

analysis process by MMA and UC subjects

8.6.2. References to Errors in Usability Checklists

The scores for usability checklists could be defined by the type of entry that was

made. The scores for `direct references' were entirely accounted for by textual

responses either in Section 11 (which asks for textual descriptions) or by checklist

205

answers augmented by comments. These also contributed substantially to the section
`probable/generic reference. Other scores in this section were found by linking
`never' entries for certain checklist questions to particular errors. Clusters of related
questions given ̀ never' or `sometimes' answers by a subject were also marked in this
section. Any response other than ̀ always' to a relevant checklist question counted as
a ̀ possible' reference (assuming it had not contributed to the first two totals).

Twelve of the ninety-nine errors were referred to directly. However, seventy-five of
error references were in the `probable-generic reference' category. The majority of
these were accounted for by textual responses, although some were relatively clear
references in checklist ticks. For example, user subject UC5 gave a series of `some of
the time' and `never' responses to questions in the `Informative Feedback' section.
This was referenced in one of evaluator subject UC5's suggestions, although it was
not clearly linked to a particular error.

The checklist yielded a total of three hundred and sixty-five possible references to
errors. Of these, certain questions were particularly prominent. For example,
question 3.14 in the `Compatibility' section reads ̀ does the sequence of activities
required to complete a task follow what the user would expect? '. Any entry in the
`most of the time', `some of the time' or `never' categories would link to any
problems in finding features or working out operations that have been independently

observed in the session.

8.6.3. Discussion

The MMA scores for `errors without reference' and `possible reference' were higher
than anticipated. The MMA method recommends that all observed error incidents are
recorded, even if the evaluator eventually decides that a change suggestion is not
required. One cause seems to be the `lifespan' of an incident. The two cases of MMA

user subjects having problems with the typeprint defaults in the `style' menu were not
recorded. These incidents were rectified within a few seconds. The evaluators' may
have assumed that this meant they were trivial errors. Also, the speed with which
such incident occurred meant that it would have been relatively difficult for the

evaluator to spot and record.

The relatively low incidence of direct references to errors by UC subjects seems to
reflect the checklist's greater emphasis on principles and usability concepts, rather than

206

detailed retrospective analysis of the sessions. The number of possible references in

the ten sessions is remarkably high (365). This figure reflects the number of
principles and concepts in the checklist that could be deemed relevant to particular

errors. This suggests that it is somewhat hard for evaluators to interpret checklist
entries that have no accompanying comments. Each checklist entry in the `never',

`most of the time' or `some of the time' checklist boxes may be relevant to an incident.
For example, Checklist question 2.10 asks ̀ is the method of selecting options
consistent throughout the system? '. A single inconsistent procedure would cause a
user to consider making an entry under `most of the time'.

The checklist seems to have a problem of vagueness. The large total for possible

references to errors represents a considerable multi-classification problem. This may
be linked to the issues raised in Chapters 2 and 5 about the focus of usability

principles. The distribution of possible user references in the checklist suggests a
difficulty in expressing issues through reference to usability principles from which the

checklist questions are compiled. Also, the repeated possible references may have had

the effect of blurring the focus of the evaluator, making important issues hard to

recognise.

8.7. Qualitative Analysis of Solutions

The quality of the two sets of solution suggestions was put under further scrutiny.
The objective of both methods is assumed, in the current context, to be the generation
of design improvements. Therefore, a point of interest is the explicitness of the
design suggestions generated by each method. The following section describes a
quality analysis based on the explicitness of the solutions.

8.7.1. Investigation of Solution Explicitness

The solutions offered by the two sets of evaluator subjects were examined by an
independent judge for their explicitness in addressing issues and recommending
changes. Figures 8.6A and 8.6B show the results for each evaluator subject for

MMA and UC respectively. The analysis used five categories. These were:

" Solution Specified -- This refers to suggestions which give a clear explanation of
how the design should be altered. An example is the solution provided by Evaluator
MMA5, `remove the New Document icon'.

207

" Guideline -- This describes cases where a suggested solution stops short of giving
explicit advice. An example is subject MMA5 suggesting making ̀ the icon for bullets

clearer'. Another example is provided by evaluator UC3, suggesting making ̀ the

table option more obviously for columns'. In both cases the nature of the needed
change is made explicit, but the designer is not given explicit advice on what a new
design should be.

" Issue Flagged -- This category describes suggestions which are clear about a need,
but without a clear suggestion of the nature of any change. Evaluator UC3 provides
an example, `the insertion of bullet points could be made easier'.

" Vague -- Some solutions failed to clearly define the issue being dealt with. An

example of this is provided by evaluator MMA10, `high level tools should be more
visible or clearly accessible'. The subject failed to make clear which tools he had in

mind, or how they could be altered.

" Wrong -- Refers to any solution which embodies incorrect assumptions about the

current design.

208

Subjects with WCI knowledge (E) Novice Subjects (N)

Solution

class
gublac

1 2 3 4 5 6 7 8 9 10 E N total

Solution
1 1 4 1 2 3 2 1 4 9 10 19

Specified

Guideline 2 1 2 1 2 1 3 3 1 1 8 9 17

Issue
1 3 1 1 1 2 4 5 9

flagged

Vague 1 1 2 2 2 4

Wrong 0 0 0

Total 4 6 6 3 4 5 5 5 6 5 23 26 49

Figure 8.6A: Solution accuracy classifications for MMA subjects

209

Subjects with HCI knowledge (E) Navies Subjects (N)

solution
class

Subject
1 2 3 4 5 6 7 8 9 10 E N total

Solution
2 1 1 1 4 1 5

Specified

Guideline 2 2 1 1 5 2 1 5 9 14

Issue
1 2 1 5 1 4 1 9 6 15

flagged

Vague 1 2 1 2 4 3 7 10

Wrong 1 1 0 1

Total 3 4 5 4 6 2 5 4 6 6 22 23 45

Figure 8.6B: Solution accuracy classifications for UC evaluator
subjects

There was no significant difference in the number of solutions proposed between

experienced and novice subjects (P = 0.60, ANOVA) or between MMA and UC

subjects (P = 0.48, ANOVA).

8.7.2. Solution Quality Ratings for MMA Evaluators

The MMA subjects all produced at least one specified solution, with the exception of

evaluator MMA10. All subjects produced at least one guideline. The group without

any HCI experience (subjects 6-10) managed ten of the nineteen specifications. Of the

nineteen specified solutions, fifteen were in the `alter functionality (features)

category'. Three were in `alter functionality (general)', and one in the ̀ alter feature

cue' category. Eight `improve feature cueing' suggestions were classed as
`guidelines'.

210

8.7.3. Solution Quality Ratings for UC Evaluators

The UC evaluators produced only five specific solutions. Fourteen guidelines were
offered and a further fifteen suggestions flagged issues. All but one of the specified
solutions were offered by the HCI experienced group, the exception being being

evaluator UC6 who offered ̀ include an undo icon'. The inexperienced group
produced a higher overall total in the ̀ guideline' category than the experienced
subjects (9/5). This is largely accounted for by evaluator UC7 who produced 5

guidelines (four `help' one ̀ visual layout'). The number of `vague' suggestions was
higher for inexperienced subjects, with evaluator UCIO the major contributor.

8.8. Further Analysis of MMA

8.8.1. Coverage and Redundancy

A further analysis of the MMA evaluators' coverage was conducted. The number of
solutions offered was compared to the number of entries on the `Incident Record

Sheets' used for concurrent and retrospective analysis of incidents. The total incidents

analysed for each subject are shown in figure 8.7 along with the totals for

independently observed ̀ actual' errors. The table includes an incident in MMA

session 6 which makes two separate references to an incident recorded once in the
independent survey. A total of seventy-one incidents were analysed in the ten

sessions. None of the subjects made a solution suggestion for all incidents. Subject

seven made a joint reference to two incidents in a solution suggestion. There was no
significant difference between experienced and novices in the number of incidents

analysed (P=0.84, ANOVA), in number of solutions offered (P = 0.37, ANOVA) or
in the number of actual errors (P = 0.66, ANOVA).

211

Subs with Hf II . xpsrisncs (E) NCI vices (N)

1 2 3 4 5 6 7 8 9 10 E N Total
Incidents Analyse 8 10 6 5 7 8 6 6 7 8 36 35 71
otutions Offered 4 6 6 3 4 5 5 5 6 5 23 26 49
Actual Errors -7- 13 6 9 9 7 8 7 10 10 45 42 87

Ngure 5.7: Number of incidents analysed compared to the number
of solutions offered and actual observed errors for

MMA sessions

8.8.2. Comprehension of Model Concepts

The subjects were asked to add reasons for their solutions. In particular, they were
asked to cite relevant role mismatches. Their responses are shown in figure 8.8

below. Two out of ten evaluators failed to offer any citations. Those that were
offered were analysed for their accuracy in characterising the problems that the

solution addressed. From forty citations, thirty-three were selected as accurate
descriptions of cited design problems. There were no significant differences between

experienced and novice subjects in the number of solutions offered (P = 0.37,

ANOVA) the number of role citations (P = 1.0, ANOVA) or in the number of accurate

citations (P = 0.69, ANOVA). Five of the seven inaccuracies were offered by

evaluator MMA2. He classified the problems relating to all his six suggestions as
`lack of support for difficult action'. This is a sub-category of the `execution support'
role. Five of his six solutions referred to problems either finding features or working

out how to use them. These should have been classified amongst the locator, feature
identifier or operation specifier roles.

Subjects with HCI knowledge (E) Novice Subjects (N)

1 2 3 4 5 6 7 8 9 10 E N Total

olutions Offered 4 6 6 3 4 5 5 5 6 5 23 26 41)
Role citations 4 6 6 0 4 4 5 5 6 0 20 20 40

Accurate citations 4 1 6 0 4 4 5 5 4 0 15 16 33

Figure 8.8: Role citations linked to solution suggestions for MMA

subjects

212

8.8.3. Discussion

The incidence of subjects recording incidents but not providing solution may be

explained in two ways. First, the subjects are asked to record user errors, and
provide solutions to system errors. For example, evaluator MMA6 wrote `not a
system error' next to three incidents. Subject MMA2 wrote `one gets used to it'

against two errors. Also, whilst a feature may cause some errors, it may still be the
best design option available. This may be illustrated with reference to the example of
cursor placement. The cursor can be moved with the mouse by placing a marker and
selecting. User MMA4 mistook the markers position for the actual cursor position,
and typed in the wrong place. Evaluator MMA4 consequently recommended that `the

cursor should always move with the mouse'. Given that the pointer is often moved to
the scroll-bar or menus, there must be some doubt that such a change would be an
improvement.

The high incidence of correct citations suggests that most evaluators' comprehension
of the concept of roles and mismatches was satisfactory (although evaluators MMA4

and MMA10 were unable to provide citations). The majority of evaluators were able
to accurately reference the appropriate role.

8.9. Further Analysis of the Usability Checklist

The checklist was examined further to assess its suitability for evaluation. Two major
themes were examined. One was the suitability of the checklist for testing design
features. The other was the suitability of the checklist itself for evaluation using a
sample of user subjects.

8.9.1. Checklist Section Entries

The table in figure 8.9. shows the total number of checklist answers in each of the

eight `criteria-based' checklist sections. A total of 1154 checklist boxes were filled-in
by the ten subjects. Of these, 119 entries (16%) were in the affirmative section
`always'. This implied that they were completely satisfied with the system's
performance for the issue raised by that question. However, the majority of entries
(51 %) were in the Most of the Time' or `Some of the Time' boxes. This presented a
problem of focus to the evaluators. An average of 58 answers per subject were in

these sections, and not accompanied by comments. Each of these answers required
attention, given that the answers implied that the system was less than perfect for the

cited aspect. A total of 12% of checklist entries were in the `not applicable' column.
Along with this were 124 cases (11%) of user subjects conceding that they did not

213

know how to reply. There were 83 instances of subjects requiring explanations of

questions during the sessions.

Total Answers for Checklist Categ%es

section Always
Most of the
Time

Some of the
Time Never

Not

applicable

Don't
kne)w Total

1 33 48 36 13 19 11 160

2 62 31 13 1 14 8 129

3 22 50 52 5 17 14 160

4 15 52 53 34 21 5 180

5 4 43 39 23 7 12 128

6 33 37 8 12 12 110

7
23 30 16 15 29 34 147

8 23 32 22 19 16 28 140

total 190 319 268 118 135 124 1154

% 16 28 23 10 12 11

Figure 8.9. Total answers to UC sections 1.8

Further analysis was conducted to establish the degree of consensus between subjects

214

on the checklist questions that they answered. Figure 8.10. shows the results of a
sensitivity analysis of answers given to sections 1-8 of the checklist by UC user
subjects. The figure records all incidences of a box being ticked by three or more
subjects for a particular question. The analysis showed that none of the questions
were given the same response by all ten subjects. Majority consensus was rare, with
a typical distribution of three or less per tick-box.

One of the more surprising results was the lack of consensus on entries in the `not

applicable' boxes. This may partly be explained by the varying experiences of users
in interpreting their respective sessions. However, a problem with some seems to be

varying interpretation and comprehension of questions. For example, two subjects

answered ̀ not applicable' to question 2.3 which asks `are icons, symbols, graphical
representations and other pictorial information used consistently throughout the

system? '. The subjects ticked the `not applicable' box for question 5.11, which asks
`where a metaphor is used (e. g. the desk-top metaphor in office applications), is this

made explicit? '. User UC1 added the comment `I did not notice a metaphor'. Five
hundred and eighty-seven (51 %) of the entries were in the `Most of the time' or `some

of the time' boxes. Only six of these entries were augmented with comments. This

made the interpretive task of evaluators harder as, particularly in the `most of the time'

examples, the entries may well have referred to several features or incidents.

215

section Always

Most of
he tim

Some of
he tim Never

Not
Iicable

Don't
know

Total

10 0 0 0 0 0 0 0

9 1 0 0 0 1 0 2

8 2 3 0 0 0 0 5

7 1 1 1 0 2 0 5

6 4 5 6 1 0 1 17

5 5 12 9 1 1 3 31

4 6 12 12 2 3 5 38

3 8 32 21 4 10 8 83

otal 27 65 47 8 17 17 181

Figure 8.10: Sensitivity analysis, showing the number of
occassions that three or more subjects entered the same
answer for checklist sections 1-8

8.9.2. Discussion

The major problem for the UC method seems to be a poor focus. The checklist

appears to have two major design problems. One is that numerous questions give

scope for a number of possible references, but do not constrain the subject to make

specific reference to problems. The sensitivity analysis in figure 8.10. suggests that

the analysis may not constrain the subjects sufficiently. Another problem seems to be

comprehension of questions. The problem of not understanding questions is dealt

with in the split-role format by the evaluator providing definitions. However, there

216

were also cases of subjects making highly questionable assertions about the relevance
(or otherwise) of some questions. The two cited examples of subjects declaring a

question `not applicable' demonstrate this problem. The subjects clearly felt that they

understood what the question was referring to, but their responses suggested that they
did not. These were clear cases, but there is potential for more hidden cases. For

example, a user may be asked a question, think the concept is relevant (but

misinterpret it) and make an entry in a tick-box. The evaluator would be unaware that

the question had been misunderstood unless an entry in the accompanying comment
box suggested so.

8.10. Time taken by the Methods

Along with investigations of methods' effectiveness, the time taken to perform

evaluation sessions was also measured. The results are shown in figure 8.11 below.

MMA Subjects UC Subjects Totals

Il 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 AMP
Analysis

with user 7 5 8 11 6 7 8 2 3 5 41 40 5 44 44 42 43 5 4 46 62 448

Analysis

post-user 14 23 30 f7 19 29 25 2 20 16 19 35 22 48 3 7 1 29 1 20 221 241

Total 21 28 38. 28 25 36 33 30 23 21 60 5 77 92 78 49 5 82 6 66 1 284 6891

Figure 8.11: Time taken for user collaborative, and post-user analysis

There was no significant difference in the time taken for post-user analysis (P = 0.48,

ANOVA). However, there was a significant difference beween MMA and UC

subjects in time taken for analysis with users (P < 0.001, ANOVA). The MMA

retrospective analysis averaged 6.2. minutes. This was shorter than anticipated. Only

evaluator MMA3 asked the user to retrace task-steps for all recorded incidents (by

pointing to screen areas). The most popular approach was simply to ask for

clarification of what was on the sheet. It is possible that the relatively low incidence

of specified cue alterations by MMA evaluators is related to an underutilisation of this

phase. Most user subjects' evaluators failed to consult them about possible alternative

cue expressions.

The UC users took an average of 45 minutes to complete the checklist. Several

217

complained about the size of the checklist, seven seven doing so before starting.
Those that complained admitted afterwards that they had initially overestimated the
likely completion time, while two suggested that the sheer volume of the questionnaire
had probably diminished their concentration.

The overall inter-method difference for the post-user analysis was not significant. The

individual differences within each subject group were, however, sizable. Evaluator

MMA3 took over twice as long as evaluator MMAI (producing two more solutions).
In the UC sessions, there was a difference of twenty-eight minutes between evaluator
UC2 (who produced four solutions) and subject UC2 (who produced two).

8.11. Satisfaction Ratings by subjects

Questionnaires were presented to evaluator and user subjects from both groups. They

were asked about the task scenario and package, as well as relevant aspects of the

method that they used.

8.11.1. Evaluator Questionnaire

The evaluators were asked seven questions referring to aspects of the methods that

they used. Their responses are shown in figures 8.12A and 8.12B. They were asked

to state a value between one and seven for each question, with seven as the most
positive rating and one the most negative rating. The subjects were also invited to add

comments to their ratings if they wished. The average rating was calculated for each
method. Overall, there was no significant difference between either experienced or

novice subjects (P = 0.63, ANOVA) or between MMA and UC subjects (P = 0.16,

ANOVA).

The MMA method scored 4.9 for ease of use and the UC method 4.6. Four of the
MMA and three of the UC evaluators referred to their method as well explained and

easy to comprehend. Only subject UC2 complained that the terminology of the

checklist was `verbose'. The same subject also expressed difficulty in interpreting

checklist results. Whilst the contrast between average ratings for experienced and

novice subjects was not significant for MMA subjects (0.2) the UC novices average
rating was 1.2 higher than the experienced subjects.

Both methods scored 4.9. for helpfulness. Two MMA subjects (MMA2 and MMA8)

218

referred to the methods role in `focusing' their thinking. Subject UC6 made similar

reference to the UC method as `giving a good picture of what was important'. The

split in rating level between experienced and non-experienced evaluators was only 0.2

for UC subjects, but 1.0 for MMA subjects.

The next question `did the method intrude on your own way of conducting the

evaluation? ' produced an average of 5.3 for MMA subjects and 4.8 for UC subjects.

Subject UC10 expressed frustration that he could not interact more with the subject

during the session.

Evaluator's Review: Aspects of thMethod Used

E1 E2 E3 E4 E5 N6 N7 N8 N9 N10 EN OV.

How easy to use did 4 7 4 5 5 6 5 5 3 5 5.0 4.8 4.9
you find the method?

Did you find the
2 4 ,4

4.4 4.9
method helpful? 5 7 5 5 5 6 5 5

Did the method intrude
on o f 6 7 3 2 5.4 5.3

y ur own way o 4 7 3 5 7 6 5
conducting the evaluation?

Did you feel that the
4 7 6 5 4 5 5 3 "4 ,4

4.9
procedures and instructions in 5 5
the method 0

How easy was it to
5 7 7 6 6 6 5 5 4 4 6.2 4.8 5,

comprehend the terms and
0

Were you generally satisfied 5 7 6 6 5 6 5 5 5 3 5.8 4.8 5.3
with the method?

Did you find generally that
5 6 6

]
5 4 5 6 5 $ 8 6 5.2

the materials given to you 7
Worg. 0

- - - - -

Figure 8.12a: Satisfaction Ratings by MMA Evaluator Subjects

219

Evaluator's Review: Aspects of thMethod Used

E1 E2 E3 E4 E5 N6 N7 Ne N9 N1 EN OV.

How easy to use did
3 1 5 6 5 6 3 5 6 6 4. 5.2 4.6

you find the method?

Did you find
4 5 5 5 5 7 4 5 4 5 4.8

.0
4.9

method hel me elpful? h

Did the method intrude
on your own way of 5 4 3 4 6 6 5 6 5 3 4. 5.4 5.0
conducting the evaluation?

Did you feel that the
3 4 3 5 5 6 2 6 3 4 4 4 2 4 1 pr procedures and instructions in . . .

How easy was it to
comprehend the terms and 3 4 3 6 6 6 2 3 4 5 4. 4.0 4.2

0

Were you generally satisfied 4 4 5 6 5 6 4 4 4 4 4.8
.6

4.7
with the method?

Did you find generally that
4 5 5 6 6 5 3 6 2 3 5. 3.8 4.5 the materials given to you

-Were rpatiamp?

Figure 8.12b: Satisfaction Ratings by UC Evaluator Subjects

The MMA method scored 4.9 on average, against 4.1 for the UC method, for clarity

of procedures and instructions. There was a 1.0 contrast between experienced and

novice MMA subjects (4.2i5.2.). However, none of the inexperienced subjects

offered specific criticism on this point. The UC novice subjects rated the method 0.2

higher on average than the experienced subjects (4.2/4.0).

The MMA method scored 5.5 on average, against 4.2 for the UC method, for the

question `How easy was it to understand the terms and concepts in the method'.
Again, there was a large difference in the rating between experienced and novice

subjects for the MMA method, the average being 6.2 for experienced subjects and 4.8

for novice subjects. Subject UC7 was critical of the way in which the method

introduced and described large numbers of concepts, saying it was `a lot to digest'.

For the readability of materials question, the experienced/ novice differences were
large in the case of both methods. Subjects UC9 and UC10 both referred to the bulk

of terms and concept descriptions in the accompanying literature.

220

8.11.2. User Questionnaire

The users in all twenty sessions were given attitude questionnaires with the same 1-7

rating scheme. Both sets were asked seven questions. However, not all the questions
were identical for users of both methods. In some cases the methods' approach
differed significantly enough to make differently worded questions necessary (e. g.
how the period of system use is conducted). The UC method asks the user to take

notes where required. The MMA method involves the evaluator prompting the user
for descriptions and asking clarification questions. The questions in this phase were
tailored to the particular method. The retrospective phase in the MMA method
consists of a question and answer session referring to the user's experience of the

system, whereas UC users complete the checklist at this point. Therefore MMA

subjects are asked about their memory of events when asked, and the UC users about

terms and concepts. Both sets were asked if this phase of the session referred (or

allowed them to refer) to the important issues.

There were no significant overall differences betwenn ZMMA and UC subjects'
answers (P = 0.085, ANOVA). Both sets of users found the package difficult to use
(MMA3.2, UC 4.0). Satisfaction with the instructions rated 4.9 for MMA subjects

and 4.7 for UC subjects. However, subjects UC7 and UC9 complained that the

scenario had misled them, particularly on the status of the lower paragraphs (which

where below the screen at the beginning of the task).

221

User's Review

El E2 E3 E4 E5 E6 E7 E8 E9 E10 Average

How easy to use did 2 3 3 3 3 4 3 5 3 3 3.2

you find the package?

Did you find the 4 5 5 5 5 6 4 7 4 4 4.9
Instructions clear?

How easy did you 2 2 3 2 3 5 4 6 3 3 3.3
find the task?

How realistic did you 1 5 4 4 7 6 6 5 5 6 4.9
feel the task was?

Did you find the evaluator's
6 7 6 6 7 7 7 6

questions to you during the 3 5 7
session were distracting?

Were you generally able to
7 6 6 7 7 4 7 5.7

remember things about the 6 5 4

session when asked?
Did the questions asked after

5 6 6 7 6 6 7 6 6.2
the session generally referred 6 6

the important roblems?

Figure 8.13a: Satisfaction Ratings by MMA User suDlecis

222

User's Review

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Average

How easy to use did 4 2 3 4 4 5 4 6 5 3 4.0

you find the package?

Did you find the 7 4 6 5 7 4 2 5 2 5 4.7
Instructions clear?

How easy did you
find the task? 4 3 3 2 5 4 3 6 3 3 3.6

How realistic did you 7 4 7 7 6 4 7 5 6 7 6,0 feel the task was?

Did you in a note-taking
during the session 7 7 7 7 7 7 7 7
distracted you?

as it easy to comprehend
the terms and concepts in the 1 2 4 5 5 3 4 2 1 4 3.1
analysis method?
Did the questions asked after
the session generally referred

[the lrnnortant_nroh(Prns?
3 5 4 2 7 3 5 3 2 4 3.8

Figure 8.13b: Satisfaction Ratings by UC User Subjects

For the question `how easy did you find the task' most subjects expressed that they

found it hard. Subject UC2 claimed that she felt `on trial' and was embarrassed about

the difficulties encountered. All but two of the subjects rated the task four or above

for realism. Subject MMA1 and subject UC4 did not offer explanations of their

respective ratings of one and two. Nine of the ten MMA subjects were satisfied or

relatively satisfied that the interactive protocol did not distract them from the task.

Subject MMA1 felt, however, that questions had deflected him from searching for

features which were found later.

The UC subjects universally claimed that note-taking was not a distraction, but most

reported that they had not taken any notes during the session. Only three out of ten

subjects submitted notes at the end of the session. These subjects had only offered
brief one word comments which were not comprehensible. Subjects UC2, UC6,

and UC8 all claimed that concentrating on the task and scribbling notes were
incompatible (and that their scores referred to the fact that they chose not to take notes,

and therefore weren't distracted). Subject UC5 claimed that the notes would be no

223

use as a memory aid for a session of 30 minutes, and that it was not obvious whether
anything in particular was worth noting.

Four of the ten MMA subjects claimed they had no problem remembering incidents
from the session when asked. The other six rated between four and six. No explicit
criticisms of the memory demands were offered.

The average rating of the UC for comprehensibility of terms and concepts was 3.1.
Subject UC1 said that `there is too much jargon to take in'. Subject UC2 claimed she
`hadn't a clue what most of it was asking'. Subject UC6 claimed that `some of the
questions made no sense at all......... you can't tell if they are applicable or not.

All the MMA subjects rated the after-session debriefing at five or above for relevance
to the important issues, with an average of 6.2. Subject MMA9 claimed ̀ they got
straight to the point and allowed me to say what I thought'. However, subject MMA4

claimed ̀ there were general points I wanted to make which the questions did not ask'.

The Usability Checklist scored an average of 3.8 for relevance to the important issues.
Subject UC1 claimed `you can write what you want eventually, but it is not clear what
a lot of the questions are asking'. Subject UC8 claimed `I knew what I wanted to say,
but I did not know what to put for a lot of questions'. Subject UC6 said `I'd have
been happier just filling in the end sections or writing a couple of paragraphs myself'.
Subjects UC3 and UC4 both felt that the best part of the checklist was section 11,

where written answers were directly requested. Subject UC5 gave a rating of 7,

adding `I think the questions are very relevant but I wasn't good enough to do them
justice'.

8.11.3. Summary

A theme that emerges from both the evaluator and user questionnaires is the problem
of terms and concepts in the UC method. Six of the ten evaluator subjects, including
three with some HCI experience marked the UC method 4 or below for ease of
understanding. Also, the users expressed considerable problems, despite the fact that
the evaluators offered definitions of checklist questions on request.

Another problem for the UC method seems to be relevance to what the user believes to
be the important issues. In particular, the detailed questions in sections 1-8 were
criticised. This may partly be explained as being a consequence of the problem of
terminology.

224

8.12 Conclusions

The MMA method scored impressively for effectiveness, efficiency and usability. The

effectiveness was demonstrated by the significant difference for the number of

suggestions generated. The evaluators identification rate, and production of solution
suggestions were highly encouraging. The method users produced a good number of

specific recommendations. This suggests that the method contributes to evaluator

understanding of incidents. It also suggests that the method is effective in alerting the

evaluator to the space of possible design alternatives, encouraging and directing

creative thought.

The MMA method scored comparatively well for precision of solutions. This appears

to result from the stronger links between observed errors and solution suggestions.
The method scores well both for analysis of critical incidents, and references to those
incidents in solutions. The MMA method's emphasis on diagnosis rather than

classification seems to be effective. This may be due to the fact that relevant error data

is captured in detail and analysed. The UC method does not provide the means to

such a diagnosis. Critical incident data may be translated into checklist ticks or

comments, which may stress particular aspects of it. A single incident may simply be

referred to in a checklist as an example of a general trend. This seems to diminish its

utility for detailed diagnosis of design failings.

The MMA method also did comparatively well for time taken. The post-analysis
session with the user did not take as long as expected, but appeared to produce useful
data. Evaluators seemed able to generate solutions reasonably rapidly. The method
was designed to avoid wasting time through excessive form-filling, a problem referred
to by Wharton et al (1992) in their analysis of Cognitive Walkthroughs. The use of a
single form for recording observations, user's responses to interventions, and post
hoc analysis, seems to be effective.

The UC method, whilst generating a number of issues and design suggestions, appear
to suffer from a lack of focus. The solutions produced were, overall, less specific and
less directed towards redesign of features. The studies showed that the large

questionnaire tended to make the treatment of critical incidents rather fragmented and
imprecise. This may be linked to evidence of evaluator frustration and annoyance at
the restriction placed on them by the format.

Presenting user subjects with a large number of human factors concepts is a

questionable approach. Users are faced with the task of applying and interpreting

225

usability criteria, something that has been shown to be difficult even for those with an
HCI background (Grudin 1989, Nielsen 1992). Also, asking user subjects to
interpret sessions in this format appears to make it harder for them to express their

experiences. To allow them to express their personal view of the system seems to be
both more acceptable, and capable of yielding more valuable data. The statistics for

time taken also suggest that the checklist is an inefficient way of eliciting the user's
post hoc view of the system.

The MMA method met with the approval of most evaluator and user subjects. The
balance between direction and creative thinking seemed to be acceptable to evaluators.
The user subjects seemed happy with the task of recounting experiences with the

system. They were able to remember key incidents and describe their experiences in

the necessary way. The feeling of control, and enhancement of (rather than intrusion

upon) the evaluators' own approach is also important. This may make the method

more acceptable to the design community.

226

Chapter 9- Summary of
Objectives, Developments and
Future Work

9.1. Review of overall aims

This thesis had two major objectives. These were to give DM interaction modelling a
firmer theoretical footing, and to utilise that theory in developing an accessible

evaluation method. This section give an overview of the developments made during

the project. The following sections discuss the project's contribution to particular

research themes. Section 9.3. will discuss possible further work that can build upon

the project's developments.

The Model of Action applied the Theory of Action proposed by Norman (1986) to DM

interaction. Although Lewis et al (1990) and Poison et al (1992) have applied this

theory to walk-up-and-use interfaces, no attempt had been made to apply it to DM

evaluation. The Model of Action linked stages in the cycle of action to types of
knowledge recruitment. The model was also used to generate an error taxonomy. This

was used to categorise incidents in the subsequent empirical study of MacDraw.

The study of MacDraw combined protocol analysis (Ericsson and Simon 1983) with a

model-based data analysis. The three phenomena described in the model (the sequence

of user behaviour, knowledge sources, error types) were further investigated. User

behaviour was checked for conformance to the cycle of action described in the model.
This demonstrated the need for further elaboration of the model. The studies showed

that the original account of action specification could usefully be elaborated. Also,

this analysis demonstrated the need to separate accounts of expert and novice
interaction. The analysis also demonstrated the need for a richer account of the way in

which knowledge is recruited by users. This also implied that the error taxonomy

proposed in Chapter 3 required expansion to explain breakdowns associated with
different types of user activity and knowledge.

Further theoretical work applied concepts drawn from the work on exploratory
learning by Lewis (1988) and levels of mental process (Rasmussen 1993) to the DM

model. The three levels of processing described by Rasmussen used to distinguish

between expert interaction, and sources used in novice learning and interaction. The

account of processing levels is elaborated, distinguishing knowledge recruitment for

227

search and recognition from knowledge recruitment for specifying operations. This

provides a rich account of the way in which the system metaphor, and interface

organisation effect recruitment from a range of knowledge-spaces. This also accounts
for the influence of previous experience of other systems and packages on user,
behaviour.

The model was modified in the light of the theoretical developments, and used as the
basis for an evaluation method. The approach was a variation on the work of Ericsson

and Simon (1983) and Wright and Monk (1991). A sequence of abstract interaction

types linked to potential usability problems was presented to experimental evaluation
subjects. The MMA method guided the collection of relevant data from users in co-

operative evaluation. The comparison of the method to Checklist evaluation raised
further issues on the emergent theme of evaluation method usability. The MMA

method scored well for efficiency, accuracy and relevance of data, and produced more

precise solutions. Issues such as locus of control and enhancement of natural

evaluator skills were raised.

The analysis of Microsoft Word introduced an evaluative technique developed from the

work of Hollnagel (1993). The concept of error phenotypes is modified to incorporate

model-based classification. Phenotypes are separated into problems before, during

and after an action. Model-based analysis of user intentions, knowledge recruitment

and interpretation of the interface is used to establish genotypes, and an agenda for

design improvements.

9.2. Developments and Contributions

9.2.1. Contributions to Basic Research

The model of action synthesises work on the action cycle by Norman (1986), a
description of processing levels by Rasmussen (1986), and the error

phenotype/genotype distinction proposed by Hollnagel (1983). The model provides a

rich account of the action cycle, which can account for both internal and external
influences on user behaviour. It describes a hybrid user model, incorporating users'
knowledge of the task-space, along with their interpretation of system rules and

principles gained during interaction. Distinct reasoning levels are described with

reference to the content of user's models. This knowledge can be employed in the
interpretation of user problem phenotypes.

228

The Model of Action develops the Theory of Action proposed by Norman (1986) to
describe display-based action. The model is elaborated to account for mental acts
involved in feature search and recognition, identifying critical steps in DM dialogues.
This accommodates the claim that search for features and specification of operations
may be seen as distinct mental acts. This distinction is not made explicit in Norman's
Theory of Action. The model includes a description of user responses to errors. This
develops a theme which is not addressed by established information processing
models, such as the Model Human Processor proposed by Card et al (1983).

Rasmussen's (1986) three layer description of reasoning is applied in the model,
distinguishing novice, intermediate and expert interaction. The levels are linked to
knowledge-spaces utilised in interaction. Knowledge recruitment from the task-space
is separated from generalised knowledge of the system. Knowledge-based

processing is described as interaction prompted by the user interpreting the system
image in terms of concepts from the task-domain. In particular, knowledge-based

processing involves the interpretation of on-screen metaphors and affordances using
heuristics and principles from general task and domain knowledge. The model
unpacks the role of metaphor in DM designs. The knowledge-based level
distinguishes between the the interpretation of spatial and organisational metaphor (for

search), metaphor in feature identification, and action metaphor cueing operations.

The model of rule-based processing applies the work of Lewis (1988) on example-
based learning to explain the role of spatial and episodic feature memory in system
learning. The account of example-based learning is expanded to include operational
knowledge acquired from interaction with other packages, familiar features from

previously used packages, and packages with a similar look and feel. Use of novel
features is described in terms of a set of possible sequences of mental acts. Rule types

employed by users are distinguished by the mental acts with which they are associated
(i. e. general rules, recognition rules, operational rules, interpretation rules). These

mental acts may require distinct types of system support, with the user recruiting from
different knowledge-spaces for each act. Skill-based interaction is described as the

automatic triggering and use of compiled procedures in interaction. This level of
processing is likely to feature in most interactive sessions as users learn and repeatedly
apply basic rules of operation.

The model incorporates themes of internal/external task mapping described by Moran
(1983) and Payne (1991). The influence of task-space knowledge on system
metaphor interpretation, feature recognition, and choice of operations is described.
The model treats these three uses of external knowledge as separate, affecting distinct

aspects of user performance. In doing so, it provides an account of schema extension

229

in learning, with particular reference to the role of task/domain knowledge. This

aspect of the work also addresses issues about the nature and extent of metaphor
influence on user behaviour, a theme discussed by Laurel (1988) and others. The

model uses notions both of example-based learning within the system, and the
influence of the device independent task-model. The empirical studies suggest that this
hybrid account may be required for an adequate interpretation of user behaviour in
interactive sessions.

The use of metaphor is distinguished by the type of external knowledge recruited, and

the user mental acts that it supports. The role of system metaphor in the large is spatial

and organisational. This links to navigation, and selection of search locations by

novices. It subsequently has a role in supporting rule-based search in which the user
links areas to types of feature. Also, users assign operation types to distinct feature

groupings. In this sense metaphor establishes examples from which generalisations

may be made, providing an initial semantic link between task-space and device-space.

A distinction is drawn between system metaphor and individual feature metaphors.
Feature-level metaphor may have solely a `feature identifier' role, or present an action

metaphor to the user. The latter is effective where the general system metaphor is

unable to express needed operations, or where there is no mapping between task-space

and device-space for a particular function.

9.2.2. The MMA Method as a Contribution to Evaluation Techniques

Various taxonomies have been used in contemporary evaluation approaches. Booth
(1990) uses a four element taxonomy for the classification of errors. Nielsen (1993)

and Ravden and Johnson (1989) use taxonomies of usability principles. These

methods are now compared to the MMA model described in the thesis.

Booth (1990) uses the concept of user-system mismatches, with the evaluator

prompted to identify either an object or operation (on objects) that is problematic.
Having distinguished this element, the evaluator is prompted to identify either a

concept mismatch (a mental or computational representation of an object or operation),

or a symbol mismatch (a token representing an object or operation). The taxonomy is

used in a similar way to MMA, with incidents analysed to find the root cause of a
dialogue failure. However, the taxonomy is relatively limited. No distinction is made
between user problems prior to an action, and problems interpreting the result of

action. MMA, by contrast, is explicit in linking its taxonomy to the cycle of
interaction.

Nielsen (1992) uses selected usability principles and guidelines as a taxonomy for

230

Heuristic Evaluation. The selected heuristics, it is claimed, broadly cover the range of

possible usability problems. Nielsen (1990) selects a number of examples which
clearly fit the cited heuristic categories. However, the strength of evaluation must

surely be its completeness in identifying and remedying design errors. Indeed
Nielsen's further studies (Nielsen 1992) show that Heuristic Evaluation can be far

from complete in trapping errors, although further testing(Nielsen and Phillips 1993)

showed the approach is a comparatively efficient way of conducting evaluation.
Evaluators are given categories with which to search the system. Therefore, they may
find problems which seem superficially to fit one or more category. However, deeper

analysis of the system is left to their own inspiration, a problem that makes it difficult
for non-HCI experts to use (see Dutt et al 1994).

A further problem with Heuristic Evaluation was discussed in Chapter 2. It may be

unclear how to interpret errors in terms of the taxonomy. Consistency, for example, is

a term that potentially bears diverse definitions and interpretations (see Grudin 1989,
Reisner 1990). The MMA method addresses both of these problems. The MMA

method acknowledges the fact the the surface appearance of a design problem may
give only a clue as to the deeper problem. Also, the taxonomy is linked to the
elicitation of protocol evidence, rather than the interpretation of heuristics and
principles.

Existing dialogue principles fall into four categories when examined in terms of
canonical interaction models. These are principles that are relevant (e. g. provide
feedback), redundant principles (e. g. error messages where a system has none),
unfocussed principles and complimentary guidelines (e. g. avoid cluttered screens).
Some dialogue design principles seem redundant when examining DM systems. For

example, `provide good error messages' seems to be subsumed within `provide
feedback'. The provide feedback principle is shown to be more focused, as it

accurately refers to a component of the interaction cycle.

The problem of unfocussed principles is demonstrated by comparison with the model.
Some very general principles such as ̀ be consistent', `simple and natural dialogue'

and `speak the users language' touch upon diverse elements of design. The diverse

nature of action-cycle steps and dialogue types is not reflected in these principles,
although Nielsen (1993) attempts to redefine them for application to modern interaction

styles. The model-based analyses in the thesis suggest that linking usability principles
to the action cycle could provide better focus. Dutt et al (1994) report studies of

subjects using Nielsen's (1992) Heuristic Evaluation method. The study revealed
some problems understanding and applying some of the heuristics (principles). These
included the `consistency', `simple and natural dialogue' and speak the user's

231

language'. This concurs with the analysis in Chapter 2 of the thesis, that the focus of
these principles may be too broad or vague to assist novice evaluators. Dutt et al
(1994) also noted that some heuristics (e. g. minimise memory load, good error
messages) were largely redundant for pinpointing errors, a point also made in Chapter
2.

The Usability Checklist method (Ravden and Johnson 1989) attempts a comprehensive
taxonomy of usability issues, citing 161 aspects of usability. The Chapter 8 study
demonstrated that this approach adds complexity to evaluation, without overcoming
the problem of accurate classification. The study demonstrated that usability problems
may (potentially) be classified in terms of several principles. This is compounded by

the absence of criteria for determining the actual effect of a particular design element.
The cited criteria give only a vague hint to evaluators about error causes and
appropriate redesign.

The problems discussed above highlight some important weaknesses of taxonomies.
One is the fact that taxonomies, by their very nature, make strong claims about
coverage. An `ideal' taxonomy covers every single relevant phenomenon and example
in the domain with which it deals. Furthermore, it divides and categorises phenomena
according to the most significant concepts and descriptions. Small taxonomies may,
therefore, carry too broad a set of categories. Conversely, detailed taxonomies, of
which Ravden and Johnson (1989) provide an example, make so many distinctions
that accurate classification becomes difficult. Therefore, criteria for applying
taxonomies is required. The Model of the Action cycle provides such criteria. The

evaluator is given both a taxonomy, and techniques for assigning examples to
categories.

The cited problems of taxonomy focus, relevance and redundancy are addressed by the
MMA approach. The focus problem is dealt with by using category assignment within
the context of a model of action. Evaluators identify the relevant point in the action
cycle and the relevant interface element or feature. Therefore different manifestations
of the `consistency' problem are handled (e. g. consistency of representations,
consistency of feature behaviour). Similarly, the process avoids focus on redundant or
irrelevant categories, by helping evaluators to pinpoint relevant criteria. Also, the
method, because it pinpoints the nature of current usability problems, can be used in

harness with some of the specific usability principles which form part of the Usability
Checklist taxonomy. For example, once problems with salience or discriminability of
feature cues are isolated, more specific guidelines on use of presentation techniques
(e. g. ISO 9421, Part 2) may be applied.

232

The MMA method uses a Model of Action, linked to errors, to interpret user protocol
data. As discussed above, model-based analysis is required for the effective

application of usability criteria. Similarly, this type of analysis is needed to establish a

real understanding of user-based evaluation data. Methods such as protocol analysis
(Ericsson and Simon 1983) and the York Manual (Wright et al 1991) provide

guidelines for data collection from user studies, but do not provide criteria for their
interpretation. The Chapter 7 study shows that the distance between a perceived

problem (error phenotype) and the root cause of a problem (genotype) may be

considerable. This claim is backed by Carroll et al (1993) who make the distinction

between critical incidents and critical threads in describing distant error causes. The
MMA method provides guidelines for both data collection and interpretation.

The MMA Model of Action is used to focus attention on usability issues. In this sense

there is a similarity between the model and the Cognitive Walkthrough technique
(Lewis et al 1990). The Cognitive Walkthrough technique is a step-by-step evaluation

of a design. Whilst action sequences are a central part of this technique, the models
used may not be sufficiently detailed to capture the range of error types associated with
DM interfaces. The MMA method specifically uses roles, linked to stages of an
action, to focus usability questions. This allows for a more detailed analysis of

potential problems. For example, Poison et al (1992) describe a questionnaire for the

step of `choosing and executing an action'. This includes questions directing

evaluators to the availability of the action, the `action label', its link to to the goal, and
the possibility of wrong choices. This analysis does not explicitly distinguish between

locator problems and feature identifier problems. Also, the questionnaire implicitly

assumes that if users link a feature label to a goal, they will be able to perform an
action. However, the model analysis in Chapter 5 shows that a number of the cited
issues require a more detailed analysis to establish the real cause of a problem. It is

useful to trace causes of missed features either to the design of the feature (feature
identifier) or the visual metaphor that leads users to features (locator). Also,
identification of features does not necessarily imply that users can work out their

operation (operation specifier). The use of roles to analyse incidents in MMA
facilitates a more precise diagnosis of the causes of user problems. Whilst the

cognitive walkthrough (Lewis et al 1990, Poison et al 1992) is a useful tool for

predicting error phenotypes, it only partly provides help in establishing genotypes.

Another contemporary approach to evaluation is Claims Analysis (Carroll and
Campbell (1989), Carroll and Kellogg (1989)). This proposes the analysis and
refinement of existing designs, using claims (lessons) from their study to inform new
designs. It is claimed by Carroll (1990) that this technique replaces cognitive theory as
as support for evaluation and design. However, this claim is disputed by among

233

others Poison et al (1992), who argue that the interpretation of designs using cognitive
theory is necessary for Claims Analysis process.

The MMA method provides a technique for interpreting design problems as cognitive
claims. The success or failure of certain interface techniques may be assessed by

diagnosis of user problems. Menu names and icons embody claims that the user will
have equivalent representations of the task-space. A relatively complex feature

operation will also make claims about the user's ability to use abstraction-based
generalisation, or metaphor comprehension to work it out.

9.2,3. MMA as a Contribution to Practical Evaluation

The utility of user-based evaluation for DM interfaces has been illustrated by the

project. The method has the advantage of gathering information about how the display

effects user expectations. It also accounts for learnability of system functionality

through example-based learning.

The study in Chapter 8 suggests that evaluation techniques based on models are more

appropriate on several counts than structured human factors questionnaires. The

model-based method (MMA) scored favourably for effectiveness, efficiency and user
satisfaction. The effectiveness of the method was demonstrated by the greater number

of explicit solutions offered by the method. The time taken to produce the solutions

also compared favourably with the Usability Checklist. In particular, participants

expressed dissatisfaction at the length of time taken to fill in the usability checklist.
User satisfaction was also generally better for the MMA method.

The study raised a number of issues on the theme of method usability. The principle

of effectiveness in pinpointing user problems has been the crucial concern of previous
evaluation techniques (e. g. Karat et al 1992). This was extended to effectiveness in

producing design solutions. Hitherto, analysis had focused on identification and
diagnosis of usability problems (e. g. Jeffries et al 1991). The study showed that the
Usability Checklist method did not produce information that focused on individual
design problems. One the other hand, the MMA method was geared to interpretation

and comprehension of critical problems. This approach showed encouraging results

when used by experimental subjects. The method proved effective in helping

evaluators to navigate the space of possible solutions. This requirement for evaluation
methods is noted by Booth and Gray (1990).

The UC sessions in the Chapter 8 subject demonstrated the problem of linking analysis

of users' problems to design improvements. The UC evaluator subjects collected a

234

considerable volume of information. However, statistics showed that focus on issues,

and links to critical incidents were often vague. The study suggested that the usability
checklist prevented the user participant from expressing some of what they wanted to
say about the session. Also, the format was reported as restrictive by most of the
evaluator subjects. The problems experienced by the subjects demonstrate the problem
of collecting appropriately focused data.

The themes of efficiency and user satisfaction are tackled in other reports on evaluation
methods. Wharton et al (1992) report considerable difficulty in applying a Cognitive
Walkthrough to advanced, functionality rich systems. Not only was filling in the
forms found to be inefficient, but it also provoked complaints from users in

experimental sessions. In particular, the repetitive filling-in of forms was unpopular
with subjects. The MMA method limits form filling to gathering data on critical
incidents. In ten sessions the number of incidents was approximately nine per
session. This minimises the amount of note-taking that is required.

A number of reports on contemporary evaluation methods have emphasised issues of
method comprehension. One theme is the amount of expertise required to perform an
evaluation. Nielsen (1992) claimed that any Heuristic Evaluation team should consist
of one or more human factors experts. It is also claimed (Wharton et al 1992) that the
cognitive walkthrough method requires a Human Factors (or cognitive science) expert
in a small evaluation team. Therefore, these methods would only be of use in an
organisation if someone suitable is available. Otherwise, a consultant could be hired,

at considerable cost. The MMA method, however, was learned and used to good
effect without the personal involvement of a human factors expert. The use of `roles'

provided a common and relatively simple way of analysing a range of reported
problems.

Dutt et al (1994) cast doubt on the ability of Walkthrough methods and Heuristic
Evaluation to make effective redesign requirements. In particular, they point to the
lack of access to user goals and characteristics. The MMA method addresses this

problem by eliciting users' models of tasks as they are performing them. Dutt et al
(1994) recommend the use of task analysis methods (e. g. Diaper 1990, Johnson et al
1988, Johnson and Johnson 1991) to identify requirements for redesign. The MMA

method elicits user models at the point when the display is an influence. This may be

more effective than task analysis which examines device independent task-models.
Theoretical work by Lewis (1988) suggesting that users generalise procedures from

single examples was supported by evidence from the Chapter 4 and Chapter 7 studies.
The chapter 7 study showed an example (i. e. user expectations of the column-making
Operation) in which user's expectations were formed from example-based

235

generalisation, whereas the system model bore more resemblance to their device
independent models of the task. This demonstrates the need to elicit `situated user
models' which account for the influence of the current display and recent interaction,

as well as external task models.

The empirical studies described in Chapter 6 also propose and assess techniques for

analysis of user errors in co-operative sessions. The goal-tree analysis shows the

model the user holds is a synthesis of concepts from the task-space and the device

space. The analysis is capable of revealing not only the influence of task concepts, but

also inferences drawn from previous interaction. This method of eliciting user models
therefore provides information which is not provided by task analysis.

The goal-tree analysis derived from the work of Keiras and Poison (1985) was
successfully augmented with elicitation of the user's view of the system state. This

analysis reveals misconceptions such as failure to perceive or comprehend previous
state-changes, or confusion caused by the system metaphor. This questioning can
reveal distant causes of errors.

The `constrained search test' technique helps diagnosis of users' failure to find

features. The cause may not be clear from normal protocol data. If the user can
recognise a feature from an array, the cause of the problem is more likely to lie in
higher level aspects of design. Also, `motivation analysis' can help determine the

misconceptions behind an incorrect choice of feature.

The combination of techniques allows a rich description of users' models in the

presence of the device. This provides information which situates analysis of
individual task performance and feature use within the user's overall model of the

system, and beyond to their knowledge of other packages and knowledge of the
domain.

The method was designed for use by novice evaluators. The Chapter 8 study suggests
that it is suitable for novice use, although this study did not involve studying industrial

evaluation in context. The study suggests that it more accessible than other
contemporary methods, including Heuristic Evaluation (Nielsen 1992), and the
Cognitive Walkthrough (Poison et al 1990) which require the participation of experts.
The Chapter 8 study shows that the MMA method is capable of finding and diagnosing

errors. Unlike the methods cited above, MMA provides for analysis which produces
solutions. Other methods (e. g. Wright and Monk 1991) generate data without directly

assisting in its interpretation.

236

9.2.4. The Model-Based Approach and Contemporary Evaluation
Practice

This section compares the MMA method to approaches currently used in non-academic
organisations. Contemporary research developments, such as Heuristic Evaluation
(Nielsen 1993) and the Cognitive Walkthrough (Poison et al 1992) are not widely
employed in industrial evaluation settings. Enquiries conducted on evaluation practice
at Logica PLC and British Telecom PLC and with industrially-linked HCI experts
suggest that method acceptance industry is still rare. The state-of-the-art in academic
evaluation methods is not reflected in commercial practice.

Enquiries suggest that both detailed guidelines and empirical testing are used in
industry, though with little intersection between them. Guidelines include ISO

standards, e. g. ISO 9241 part 16 which cover DM style interfaces. These are similar
in content to traditional human factors principles, and the Usability Checklists by

Ravden and Johnson (1989). Another variant of this is the Style Guide. British
Telecom, for example developed their own Style Guide, citing conventions for the

appropriate look and feel of their own interface developments. Usability Metrics are
used to assess interface performance. Number of usability errors and performance
time are examples of the counts taken.

Formative methods such as GOMS (Card et at 1983) have had limited industrial

application, although GOMS analysis has successfully been applied to telephone toll

assistant services (Gray et at 1990). In this example the method demonstrated the
possibility of reducing performance time by refining task design.

Expert usability reviews of in-house developments are used by Logica PLC and
others. However, the nature of the expertise involved in such evaluation is diverse.
Some companies may have a resident HCI expert at their disposal, while other
organisations use expert designers and domain experts in early evaluation. Logica

uses this approach, and employ scenario-based user testing in later stages of the design

process. The expert reviews are not structured, and simply elicit expert opinions.

A number of organisations (e. g. Nat West PLC, British Telecom) have their own
usability laboratories. Usability tests involving users are widely employed, but there
is little evidence of structured methods being employed. Some organisations (e. g.
Lloyds Register of Shipping) use guidelines for user testing developed by internal
Human Factors professionals. However, there remains a marked absence of method-
based analysis of data generated from usability studies. Other user-based testing
includes the use of usability questionnaires (see Olphert 1986). Both experts and

237

potential users are invited to give a rating for selected aspects of a product's usability.
These rating are then totalled to establish the system's strengths and weaknesses. The
HURT project (see Olphert 1986) used user ratings, along with measures of error

rates and task completion scores to assess products.

An alternative approach used by DEC (see Whiteside et al 1988) is Contextual

Evaluation. This approach emphases the evaluation of products in the actual

workplace. It is claimed that usability laboratories provide a synthetic and therefore

misleading context, which may render any evaluation findings inaccurate or
incomplete. In particular, the users are performing tasks set by an experimenter.
Contextual Evaluation assesses users performing tasks relevant to their organisation

and career (Whiteside et al 1988). What is less clear, however, is the scope for actual

method use. Whiteside et al (1988) refer to a suite of performance monitoring,
benchmarking tests, surveys and questionnaires, but give little detail of these. The

finding and addressing of usability bugs by Whiteside et al (1988) appears largely

reliant on feedback from surveyed users.

Co-operative Evaluation has been successfully applied to industrial products evaluated
in context (Rowley 1994). Rowley (1994) describes this as bringing the usability
laboratory into the workplace. However, this method is primarily a procedure for data

capture and recording usability problems, and does not offer diagnostic advice. The

MUSIC project, which provides performance metrics for testing usability, also

addresses the issue of context (Maissal et al 1991). The MUSIC approach draws

conclusions about usability from gross statistical counts. Some contextual variables

cited by the authors are representativeness of users, of tasks and the naturalness of the

working environment. Questionnaires are used to establish the representativeness of

users.

The picture in industry suggests that there is scope for greater use of method in

industrial evaluation. Expert evaluation seems to be generally unstructured. There is

potential for use of diagnostic aids (which Heuristic Evaluation tries to address), as

well as methods for interpreting collated findings of a number of experts in one

product evaluation. Similarly, there is potential for augmenting guidelines with advice
for their interpretation and application to usability problems. Data from user-based

studies requires considerable interpretation, and could benefit from method-based

analysis. Generally spealing, the employment of evaluation approaches is dependent

on the physical and human resources that are available. Methods and techniques may
help to maximise the effectiveness of both. In the former case, methods can make
more efficient and effective use of laboratory facilities and usability data. In the latter

case, levels and types of evaluator expertise may be enhanced by appropriately targeted

238

methods. The following paragraphs relate the theory and techniques to contemporary

practice within organisations.

Expert evaluation is usually conducted without use of methods. Also, an `expert' in

this context could be an HCI expert, a design expert with appropriate experience for

the type of system being scrutinised, or a domain expert. The MMA models provide a
`tool for thought' which provides assistance both on initial investigation of products

and a clearer interpretation of redesign needs. The models emphasise a stepthrough

evaluation linked to the interaction structure of the system. The evaluator is primed to

consider interface design features, user's skill and knowledge types in the
interpretation of problems. However, the expert is still responsible for identifying

problematic features and suggesting solutions. Therefore, a tool for thought may

provide an acceptable level of help which improves the process without infringing the

expert's own way of conducting evaluations. Such a claim would require testing and

validation using experts.

Design and domain experts may lack a degree of relevant HCI knowledge. Therefore,

they may require assistance in sharpening and focusing their interpretation of

problems. Whilst they may be able to use their own knowledge and experience to

identify sub-optimal design, they may be less able to characterise the problem, or

reason from observed problems to an appropriate re-design. The MMA approach

encourages both the identification of a broad range of problems and their interpretation

in terms of user (domain) knowledge as well as more general HCI knowledge. Also,

it provides a format and technique which can be used to link problem characterisation
to descriptions of potential solutions.

The common use of user-based testing in industry was a major motivation for this

research and its development of model-based tools for interpretation. Reports suggest
that it is still common for `method' in these evaluations to simply mean instructions for

setting up and conducting the session. Typically, videoed protocol studies produce an

enormous amount of data which may be difficult to sift through and to interpret. This

is a problem for organisations as it is a burden on time and resources. Therefore, it is

helpful for methods to provide ways of focusing attention to cut analysis time, and to

extract meaningful conclusions from physical and verbal evidence. The MMA method

addresses both problems. The evaluators are encouraged to focus solely on critical
incidents, and be guided towards an in-depth coverage of usability problems.

The issue of contextual factors in evaluation was only partly addressed in the thesis.
For example, the design of scenarios deliberately mimicked typical tasks with such
tools. However, the laboratory setting prevents exploration of the work setting as a

239

factor. Nonetheless, some of the issues raised by the Contextual Evaluation approach
can be addressed using concepts from the MMA method. Complete interpretations of
user behaviour require knowledge of their educational and professional background,

the types of system they have used, and their objectives in using a system. The MMA

method stresses that these factors are taken into account when interpreting critical
incidents. The deep traces of error causes include establishing the state of user
knowledge, which includes prior computing knowledge and general work experience.

9.3. Future work

9.3.1. Formative Evaluation

The model was tested in a format for summative evaluation, using a working system.
However, the model has not been applied to real working environments, or subject to

the constraints and difficulties that such environments may pose. A survey of Human
Factors practice in industry by Dillon et al (1993) suggests that practical use of the

method may be difficult in some organisations. For example, 27% of organisations
reported that access to the user population was difficult. This would make model-
based user studies difficult to perform. In 51% of organisations evaluation was left to
the designer to perform. The authors also observe that interpretation of usability data

is heavily skill-dependent, a problem which the MMA method addresses. Therefore, it
is desirable to consider its possible application at different points in the design process.

The cycle of action on which the MMA method is based is similar to that which
underlies the cognitive walkthrough technique (Poison et al 1990). The Cognitive
Wallcthrough generates design questions in a continuous sequence which reflect paths
of user action. The model developed in the thesis affords a similar style of analysis.
The stages of the prescriptive model can provide basic format for a future walkthrough
technique.

For a model-based walkthrough to work for DM interfaces, two elements would need
to be present. These are identification of dialogue types and user task-model
information. Chapter 5 emphasises the need for distinguishing between dialogue

types, with particular regard to the type of mental strategy that is triggered by the
interface. Let us use the example of walking through a sequence including a palette
selection action. When the `specify operation' phase is examined, an estimation of the

user's previous interaction experience or trained knowledge must be made (some basic
training on interface functions can be assumed). The current feature may be examined

240

for its resemblance to the generalised knowledge of the palette that the user has. In

this case (unlike, for example, a scroll-bar) the user is able and likely to recruit
generalised knowledge of palette operations. This will prompt the user to try a similar
operation. The design can thus be checked for predictability of operation. In the
counter-example, the scroll-bar gives the user the task of working its use out without
the help of rule-based generalisation. Accordingly, assessment of learnability throws
greater emphasis onto adequacy of metaphor suggestion, and feedback for exploratory
action.

The second requirement is that a relevant assessment is generated of the external
knowledge that the user will bring to the task. This includes typical pictures of the
domain, of feature names, and of object behaviour and relations. The objective is to
collect canonical models of typical users' knowledge. Some elicitation methods have
been reported in the literature (see Diaper 1990). The user information needs ,
described by the model indicate the type of knowledge that would be in such a model.

Contemporary evaluation methods stress the need for user involvement rather than

exclusively relying on estimates of the target user. Another stated requirement is that

evaluation be integrated with design practice at an early stage (Dillon et al 1993,
Shackel 1991, Whiteside et al 1988). This is envisaged as involving simulations and
prototypes, along with user and task analysis. Usability walkthroughs have been

designed in order to support testing early in the design cycle (e. g. Lewis et al 1990,
Karat et al 1992).

The MMA method is aimed at evaluation of running systems or prototypes. However,

the user model on which it is based could be developed into a walkthrough format.
The set of criteria attached to activities and roles (described in chapters 5 and 6) may be

used to test factors such as predictability, learnability and feedback design on a
prototype.

The Model of Interaction is also pertinent to the wider theme of integrating system and

user models for formative use in design. Barnard and Harrison (1989) describe the

problem of reconciling formal descriptions of systems with psychological models of
users. The Model of Action encourages designers to understand user-system dialogues

as sequences of system supported mental acts. The model's description of the action
cycle could be used in an integrated description of a system which links system acts
with `likely' user responses. Such an approach could contribute to the integration of
human factors in the design process.

There is also further scope for using roles in developing object-orientated design.

241

Object-orientated user interface design involves phases of listing typical objects
associated with users, selecting which objects will be visible at the interface, and
describing object appearance and relations in terms of the system metaphor (Macaulay
1995). The model may contribute structure to description of objects and assist in

selection of their representation and operation at the interface. The model provides a
sequence of `properties' such as location, identity metaphor, operational metaphor and
interpretation metaphor which may be applied in this process.

The Role-based criteria in MMA could also be applied to the Heuristic Evaluation

approach. Studies by Jeffries et al (1991) Nielsen and Phillips (1993) and Dutt et al
(1994) suggest that Heuristic Evaluation has some advantages over more structured
usability walkthroughs. Particular advantages are cost, learnability and efficiency.
Therefore, Heuristic Evaluation may be useful for DM systems. However, the
findings of the project are that many of the principles selected by Nielsen and Molich
(1990) may lack sufficient focus to effectively assist problem identification. There is

nevertheless, potential for heuristic evaluation specifically targeted towards DM

systems. Heuristics could be targeted towards roles to assist evaluator focus. The
`provide feedback' heuristic, for example, is already targeted to the evaluation phase of
the action cycle. This is linked with visibility and accurate representation of the system
state-The analysis in chapter 5 links critical issues to other roles in the cycle of action.
These could be presented as heuristics linked to stages of an action, providing an
alternative evaluation format.

9.3.2. Evaluation of the Design Process

The theme of tracing errors to source is referred to by Carroll et al (1993). They use
an example of an error traced to the training materials given to a subject, and the
comprehension of a particular term. The MMA method traces a variety of design

problems using user errors as evidence, including assumptions from previous actions,
failure to understand names, and metaphor comprehension. If these causes are taken
further they may be traced to the parts of the design process from which they
originated. For example, an error of feature recognition could be traceable to
knowledge capture practice. The task analysis or requirements capture phase may
have failed to give accurate information about how task objects are represented.
Inappropriate functionality problems (e. g. where the scope of a feature's utility is
inadequate) may result from lack of detail in requirements capture.

Future work could link evaluation both to improvements in design and the design

242

process. Much recent attention has centred on the need to question and evaluate design

decisions (MacLean et al 1990). However, this work concentrates on questioning

particular design decisions, and providing techniques for this purpose. Evaluation

data could be used to expose weaknesses in design approaches by linking errors with

relevant parts of the development process. Also, it could address design practice

within organisations. Evaluation data is a useful benchmark test for design practice.
An organisation may have its own design practice, or combination of techniques which

are favoured as company practice. Alternatively, the approach may be ad hoc, decided

in design meetings as the design project commences. A summative evaluation of the

practices used would help to refine practice and eliminate mistakes in the process.
Product evaluation data of the sort collected by the MMA method could have a role in

this process. Design problems that are manifest in the product's use may help identify

flaws in the process that created them, setting an agenda for alterations. Future

extensions of the MMA method could include methods for helping organisations
identify flaws in the design process.

9.3.3. Application of the Model to other types of System

The model is designed specifically for use in evaluating DM interfaces. However, DM

dialogues may be seen as relatively rich display-based interfaces. The principles
behind the method are applicable to other display-interfaces which are not as reliant on

a DM component, or a visual metaphor. The description of the sequence of action is

valid for other types of system (e. g. Lewis et al 1990). Also, the notions of task-

performance, learning by examples, display-guided action, and providing feedback

apply to other types of system. For example, information retrieval tasks may be seen
in terms of matching task goals to the device-space, identifying features choosing

operations and generating further goals from feedback. The underlying principles in

the design are broadly similar to the systems that the project concentrates on. The

difference is that DM use a variety of visual interactive techniques. However, the

account of the sequence and interface roles is similar.

The model could be adapted for the evaluation of virtual reality interfaces. Virtual

reality facilitates more sophisticated interaction and a range of task support possibilities
beyond conventional interfaces. For example, `augmented reality' (Adam 1993)

allows a combination of real and virtual worlds. Therefore, the system image may

prompt direct action in the real world, as well as the virtual world. Also, users can

perform a real task whilst observing a system display of the desired task end-state.
Also, virtual reality may be immersive, with users wearing datagloves and headsets

(DeFanti et al 1993). They may also have images of themselves on-screen. This type

243

of system potentially allows a more direct transfer of task knowledge and skill than
DM, However, it is similar to DM in that the system uses literal domain -.
representations and virtual actions. The Model of Action therefore contains relevant
concepts which could be applied to such systems. Greater emphasis could be placed
on the transfer of manipulation skills, a central theme in virtual reality.

Some interface techniques have been developed to address problems in novice
interaction with DM interfaces. In particular, the problems of identifying features and
specifying their use have received attention. Demonstrational icons are an example of
this phenomenon (Baecker et al 1991). These icons give animated demonstrations of a
feature's utility when requested by users. Baecker et al (1991) found that they were
effective in helping to convey the meaning of a tool in cases where the static icon had

not been understood. The Word for Windows interface has an online explanation bar

at the bottom of the screen which gives textual explanations of menu options. Whilst
the potential utility of such features for enhancing user understanding is considerable,
there are potential problems with them. These techniques may themselves cause user
problems. The danger of confusion between cues is still present with demonstrational
icons. Also, it may be hard to convey the full range of a tools functionality.

A number of modern systems allow input and communication for multiple participants.
Video-conferencing, electronic meeting rooms allow multi-user dialogues and multi-,
user task environments (Weiser 1991, Preece 1993). These present problems that can
be comprehended in terms of the model. The model refers to user and system as
dialogue participants with the system playing information roles. Groupware alters the
nature of system output. The user has to be informed of state-changes that were
caused by other users. Therefore, the system must give rich feedback on the state of
the system and the causes of that state. A number of possible technologies and
techniques may be useful in this process. However, their utility may be judged using
similar criteria to other display-based dialogues. Therefore, the model could, by using
a wider account of system feedback, be modified to handle evaluation of groupware
interfaces.

CSCW provides for some potential developments in the design process. The process
of knowledge capture faces a number of practical difficulties (Berry and Broadbent
1986, Cullen et al 1987, Cullen and Bryman 1988). One problem is that it is time
consuming to go to a number of individuals in an organisation to collect information.
The practice is blighted by possible non-cooperation by individuals and organisations.
Therefore, a quick and reliable method of eliciting generic models of target users is
important. Collaborative prototyping using groupware may generate and evaluate
design options rapidly, with the direct input of representative users. The Model of

244

Action may be used in a step-by-step analysis of design options and requirements.
Conflicts of interest can be aired, compromised and resolved in such sessions.
Consensus on meaning and representation could also be reached in these sessions.

9.4. Summary

The aim of the project was to develop user modelling for DM evaluation. This was
approached by integrating models of user action with error classifications and an

account of user processing levels. The Theory of Action proposed by Norman (1986)

was specifically applied to DM in a model of user action. The Model of Action

expanded Norman's theory, accounting for separate search and specification phases.
The Model of Action was expanded further to account for user behaviour in response
to errors. The description of user processing levels by Rasmussen (1986) was applied
to user recruitment of knowledge under prompting from interface features. This
facilitated a rich description of the types of error that sub-optimal DM design may
cause. The linking of design errors to users problems utilised the phenotypelgenotype
distinction described by Hollnagel (1993).

The Model of Action provided the theoretical basis for the MMA evaluation method.
The method exploited the use of verbal reports as data, building upon the work of
Ericsson and Simon (1984) and Monk et al (1991). The method facilitated the

elicitation and analysis of concurrent user models (as opposed to their device
independent models). This addressed the complex relationship between external
knowledge and the example-based learning of systems. The method was aimed at
providing diagnostic aids for novice evaluators. The method aimed to give evaluators
a sense of `the solution space'. Empirical testing of the method suggested that the
method helped novice evaluators to achieve this. The study of Microsoft Word also
showed the potential of a suite of retrospective elicitation techniques for establishing
genotypes.

The findings of the studies suggest that user-based studies may be an efficient way of
providing accurate diagnosis and solution of design problems. The elicitation of
users' models was demonstrated to be more efficient and effective than the Usability
Checklist approach proposed by Ravden and Johnson (1989). Also, the use of
models in interpreting problems seemed effective in helping evaluators comprehend

245

design problems. The MMA approach provided both a method for efficient user

model elicitation, and facilitated the interpretation of user errors as evidence for

interface design problems.

246

References

Adam, J. (1993), ̀ Virtual Reality is for Real', IEE Spectrum, 30,10,22-29

Anderson, J. (1983), ̀ The Archietechture of Cognition', Harvard University Press

Anderson, J. and Thompson, R (1986), ̀Use of Analogy in a Production Systems
Architechture', Illinois Workshop on Similarity and Analogy, Champaign-Urbana,
Illinois

Baecker, R. Small, I. and Mander, R. (1991), `Bringing icons to Life', in proc.
CHI 91: Reaching Through Technology, Robertson, S. Olson, M. and Olson, J

(eds.) ACM Press, 1-6

Barnard, P. and Harrison, M. (1999), ' Integrating Cognitive and System Models in

Human-Computer Interaction' in People and Computers V, AG Sutcliffe and L

Macaulay (eds); Cambridge University Press, 87-103

Bennett, J. Lorch, D. Keiras, D. and Poison, P. (1987), ̀Developing a User Interface

Technology for Use in Industry', in Proc. Interact 87, Amsterdam: Elsevier Science

Publishers

Bellotti, V. (1988), Implications of Current Design Practice for the Use of HCI

Techniques, in: People and Computers IV, D. M. Jones and R. Winder (eds.),

Cambridge University Press, 13-34

Bellotti, V. (1990), `A Framework of Assessing the Suitability of HCI Techniques',

Proceedings Interact 90, D. Diaper et at (eds), Elsevier North-Holland, 213-218

Berry, D. and Broadbent, D. (1986), `Expert Systems and the Man-Machine Interface'

Expert Systems, 4,3,152-168

Bewley, W. Roberts, T. Schroit, D and Verplank, L. (1983), ̀Human Factors Testing
in the Design of Xerox's 8010'Star' Off ice Workstation', Proceedings CHI-83, A

Janda (ed), ACM press, 72-77.

Booth P. A. (1990), `ECM: A Scheme for Analysing Human-System errors',
Proceedings Interact 90, D. Diaper et al (eds), Elsevier North-Holland, 175-181.

Booth P. A and Gray J., (1990), `Errors and theory in human computer interaction',

247

Acta Psychologica, 78,69-97

Brennan S. E., (1990), ̀ Conversation as Direct Manipulation', in The Art of Human
Computer Interface Design, B. Laurel (ed) Addison Wesley, Reading MA

Browne, D. (1988), `Human Computer Interface Design Guidelines', Ablex, NY

Bullock, M. Gelmen, R. and Baillargeon, R. (1982), `The Development of Causal
Reasoning', In The Developmental Psychology of Time, Friedman, W. (ed.) New
York. Academic Press

Card, S. Moran T. and Newell A. (1981), The keystroke level model for user
performance time with interactive systems, CACM 23 (7), 396-410

Card S. Moran T., Newell A, (1983), The Psychology of Human-Computer
Interaction, Laurence Erlbaum Associates

Card, S. Robertson, S. and MacKinlay, J. (1991), The Information Visualiser. An
Information Workspace, proc. CHI 91: Reaching Through Technology, Robertson,
S. Olson, M. and Olson, J (eds.) ACM Press, 180-188

Carroll, J. M. (1984), `Minimalist Design for Active Users' in INTERACT 84 - The
First IFIP Conference on Human-Computer Interaction, B. Schackel, ed., Elsevier-

Science, 39-45

Carroll, J. M. (1990), 'Infinite Detail and Emulation in an Ontologically minimised
HCI'. Proc. CHI '90, New York: ACM, 321-327

Carroll, J. M. and Campbell, R. (1989), `Artifacts as Psychological Theories: the

Case of Human-Computer Interaction'. Behaviour and Information Technology, 8,

ACM press, 247-256

Carroll, JM and Kellog, WA (1989), `Artifact as Theory-nexus: Hermeneutics Meets

Theory-based Design', Proceedings CHI 89, Human Factors in Computer Systems,
ACM press, 7-14

Carroll, J. M. Koenemann-Belliveau, J. Rosson, M. and Singley, M. (1993), 'Critical
Incidents and Critical Threads in Usability Evaluation', in: Proc. People and
Computers viii, J. Alty et al (eds.), Cambridge University Press, 279-292

248

Carroll, J. M. and Mack, (1983), `Actively Learning to use a Word Processor', in

Cognitive Aspects of Skilled Typing, W. Cooper (ed), New York Springer Verlag

Carroll, J. M. and Mack, (1984), `Learning to use a Word Processor. By doing, by
Thinking, and by knowing', in Human Factors in Computing, Thomas, J. and
Schneider, M. (eds.), Norwood: Ablex

Carroll, J. M. Mack, R. L. and Kellogg, W. A. (1988), Interface Metaphors and User
Interface Design. In: Handbook of Human-Computer Interaction, M. Helander (ed.)
Elsevier North Holland, 67-81

Carroll, J. M. and Mazur, S. A. (1986), LisaLearning. IEEE Computer, 91(11), 35-49

Chin, C. (1984), `Lisa Software', Infoworld, Jan 16, p 27

Clark H. H. and Schaeffer E. F. (1987), `Collaborating on Contributions to
Conversation', Language and Cognitive Processes, 2,19-41

Clark H. H. and Schaeffer E. F. (1989), `Contributing to Discourse', Cognitive

Science, 13,259-294

Clark, L (1991), `The Use of Scenarios by User Interface Designers', in Proc.
People and Computers IV, Diaper, D. and Hammond, N. (eds.), Cambridge

University Press,

Cullen, J. Bryman, A. and Trimble, E. (1987), `Knowledge Acquisition for Expert

Systems', SERC project

Cullen, J. and Bryman, A. (1988), `The Knowledge Acquisition Bottleneck: Time for

Reassessment? ' in Expert Systems, 5(3)

Defanti, T. Sandin, D. and Cruz-Neira, C. (1993), 'A Room with a View', IEE

Spectrum, 30,10,30-33

Dix, A. Finlay, J. Abowd, G. and Beale, R. (1993), ̀Human-Computer Interaction'.

Englewood Cliffs, New Jersey, Prentice-Hall

De Jong, G and Mooney, R (1986), `Explanation-based Learning: An Alternative
View'. Machine Learning, 1,145-176

249

Dillon, A. Sweeney, M. and Maguire, M. (1993), `A Survey of Usability Engineering

Within the IT Industry - Current Practice and Needs', in: Proc. People and
Computers viii, J. Alty et al (eds.), Cambridge University Press, 81-94

Diaper, D. (1990), `Analysing Focused Interview Data with Task Analysis for

Knowledge Descriptions (TAKD)', Proceedings Interact 90, Diaper et al (eds),
Elsevier North-Holland, 277-282.

Dix A, Finlay J, Abowd G, and Beale J. (1992), `Human-Computer Interaction',
Eaglewood Cliffs, NJ: Prentice Hall

Douglas, S and Moran, T. (1983), `Learning Text-Editing Semantics by Analogy',
Proc. CHI-83, A Janda (ed), ACM press, 207-211

Draper, S. (1986), Display Managers as the Basis for Human-Machine

Communication, in: User Centred System Design New Perspectives on Human-

Computer Interaction
,
D. Norman & S. Draper ed Lawrence Ed baum Associates,

New Jersey

Dutt, A. Johnson, H. and Johnson, P. (1984), `Evaluating Evaluation Methods', in

Proc. People and Computers IX, Cockton, G. Draper, S. and Weir, G. Cambridge

University Press, 109-124

Erickson T. D., (1990), `Working With Interface Metaphors' in The Art of Human

Computer Interface Design, B. Laurel (ed), Addison Wesley, Reading MA, 65-74

Ericsson, K. A. Simon, H. A. (1980), Verbal Reports as Data,, in. Psychological

Review, 87, (3), 215-251

Ericsson, K. A. Simon H. A. (1984), `Protocol Analysis', MIT press

Fitts, P and Posner, M. (1967), `Human Performance', Belmont: Brooks Cole

Foss, D. Rosson, M. and Smith, P. (1982), `Reducing Manual Labour. An

Experimental Analysis of Learning Aids for a Text Editor', in Proc. Human Factors

in Computing Systems Conference, Gaithersberg, Maryland

Galambos, J. (1986), `Knowledge Structures for Common Activities', in Knowledge

Structures, Galambos, J. Abelson, R. and Black, J. (eds.) Laurence Erlbaum

Associates

250

Gayer, W. (1991), Technology Affordances, proc. CHI 91: Reaching Through
Technology, Robertson, S. Olson, M. and Olson, J (eds.) ACM Press, 79-84

Gentner, D. (1983), ̀Structure Mapping: A Theoretical Framework for Analogy',

Cognitive Science, 7,155-170

Gittens, D. (1986), ̀ Icon-based Human Computer Interaction'. International Journal

of Man-Machine Studies, 24,519-543

Gould, J. D. and Lewis, C. (1985), `Designing for Usability - Key Principles and

What Designers Think'. Communications of the ACM, 28,300-311

Gray, W. John, B. Stuart, R. and Lawrence, D. (1990), `GOMS Meets the Phone

Company: Analytic Modeling Applied to Real-World Problems', Proc. Interact 90,

Diaper et al (eds), Elsevier North-Holland, 29-34

Green, A. and Barnard, P. (1990), `Iconic Interfacing: The Role of Icon

Distinctiveness and Fixed or Variable Screen Locations', Proc. Interact 90, Diaper et al

(eds), Elsevier North-Holland, 457-462

Grudin, J. (1989), `The Case Against User Interface Consistency',

Communications of the ACM, 32 (10)

Halasz, F. and Moran, T. (1982), `Analogy Considered Harmful', in Proc. CHI `82

Human Factors in Computing Systems, New York, ACM Press, 383-6

Hartson, H. Siochi, A. and Hix, D. (1990), `The UAN: A User-Orientated Notation

for Direct Manipulation Interface Designs', ACM Transactions on Information

Systems, 8(3), 181-203

Hollan, J. D. Hutchins, E. James, D. and Norman, D. A. (1984), ̀STEAMER: An

interactive inspectable simulation-based training system', AI magazine, Summer 1984,

15-27

Hollnagel, E. (1993), `Human Reliability Analysis: Context and Control', Academic

Press

Howes, A. and Payne, S. (1990), `Display-based Competence: Towards User

Models for Menu-Driven Interfaces', International Journal of Man Machine Studies,

251

22,365-395.

Hutchins, E. L. (1986) ̀Metaphors for Interface Design'. Presented at Workshop on
Multimodal Design, Venaco, Corsica, France

Hutchins, E. L. Hollan, J. D. Norman, D. A. (1986), `Direct Manipulation Interfaces'.
in: User Centred System Design New Perspectives on Human-Computer Interaction,
D. Norman & S. Draper (eds.) Lawrence Erlbaum Associates, New Jersey, 31-62

Jacob, R. (1982), `Using Formal Specifications in the Design of a Human-Computer
Interface', Proceedings of a Conference on Human Fcators in Computing Systems,
Gaithersburg, Maryland

Jeffries, R. Miller, J. Wharton, C. and Uyeda, K. (1991), `User Interface Evaluation
in the Real World: A Comparison of Four Techniques', proc. CHI 91: Reaching
Through Technology, Robertson, S. Olson, M. and Olson, J (eds.) ACM Press,
119-124

Johnson, P. (1992), `Human-Computer Interaction: Psychology, Task Analysis and
Software Engineering'. London: McGraw-Hill

Johnson, H. and Johnson, P. (1991), `Task Knowledge Structures: Psychological
Basis and Integration into System Design', Acta Psychologica, 78,3-26

Johnson, P. Johnson, H, Waddington, R. and Shouls, A. (1988), `Task-related

Knowledge Structures: Analysis, Modelling and Application', in: People and
Computers N, D. M. Jones and R. Winder (eds.), Cambridge University Press, 35-

62

Johnson, P. Diaper, D. and Long, J. (1984), `Tasks, Skills and Knowledge-Based
Descriptions', in INTERACT 84 - The First IFIP Conference on Human-Computer

Interaction, B. Schackel (ed.), Elsevier-Science

Johnson-Laird, P. (1983), `Mental Models', Cambridge University Press

Johnson-Laird, P. (1988), `The Computer and the Mind', Cambridge MA, Harvard
University Press

Jones, M. (1990), `Mac-Thusiasm: Social Aspects of Microcomputer Use,
Proceedings Interact 90, Diaper et al (eds), Elsevier North-Holland, 193-198.

252

Karat, J. and Bennet, J. (1991), ̀ Using Scenarios in Design Meetings'. in Taking
Software Design Seriously (Karat, J., ed), London: Academic Press

Karat, C-M. Campbell, R. and Fiegal, T. (1992), ̀Comparison of Empirical Testing

and Walkthrough Methods in User Interface Evaluation', in: proc. CHI 92,
P. Bauersfield et al (eds.), 381-388

Kellogg, W (1990), `Qualitative Artifact Analysis', Proc. Interact 90, Diaper et al
(eds), Elsevier North-Holland, 193-198.

Kieras, D. E. (1988), ̀ Towards a Practical GOMS methodology for User Interface
Design', In: Handbook of Human-Computer Interaction, M. Helander (ed.) Elsevier
North Holland 135-156

Kieras, D. E. and Poison, P. A. (1985), `An Approach to the Formal Analysis of User
Complexity', International Journal of Man Machine Studies, 22,365-395.

Kilgour, A. (1989), 'Metaphorical Scaffolding for Interface Builders' Presented at
BCS/HCI Workshop on Visual Languages, October

Knowles, C. (1988), 'Can Cognitive Complexity Theory (CCT) Produce an Adequate

Measure of System Usability? ', in: People and Computers N, D. M. Jones and R.

Winder (eds.), Cambridge University Press, 291-307

Lakoff, G and Johnson, M (1980), ̀Metaphors we Live by', University of Chicago
Press

Laurel, B. (Ed.), (1990), The Art of Human Computer Interface Design, Addison

Wesley, Reading MA.

Lewis, C Poison, P Wharton, C and Reiman, J (1990), `Testing a Walkthrough

methodology for Theory-based Design of Walk-up-and-use Interfaces', Proc. CHI-

90, JR Chew and J Whiteside (eds), ACM press, 235-241.

Lewis, C. (1986), ̀A Model of Mental Model Construction'. Proc. CHI `86 Human
Factors in Computer Systems, New York ACM, 306-313

Lewis, C. (1988), Why and How to Learn Why: Analysis-Based Generalisation of
Procedures', Cognitive Science, 12,211-256

253

Macaulay, L. (1995), `Human-Computer Interaction for Software Designers',

International Thompson Computer Press

Mack, R. L. Lewis, C. and Carroll, J. M. (1984), ̀ Learning to use Word Processors:
Problems and Prospects', TOOLS. New York: ACM Press

MacLean, A. Bellotti, V. and Young, R. (1990), What Rationale is There in Design,

Proceedings Interact 90, Diaper et al (eds), Elsevier North-Holland, 207-212.

Maguire, M. and Sweeney, M. (1989), `System monitoring: Garbage generator or
Basis for comprehensive monitoring system', People and Computers V, AG

Sutcliffe and L Macaulay
375-395, Cambridge University Press

Maissel, J. Dillon, A. Maguire, M. Rengger. M. and Sweeney, M. (1991), `Context

Guideline Handbook', National Physical Laboratory, Teddington, UK, MUSiC

Project Deliverable IF2 2 2.

Mayes, J. T. Draper, S. W. MacGregor, A. and Oatley, K. (1988), `Information

Flow in a User Interface: The Effect of Experience and Context on the Recall of

MacWrite screens', in: People and Computers IV, D. M. Jones and R. Winder (eds.),

Cambridge University Press, pp 275-289

Mayo, K. and Hanson, R. (1993), `Synthesis-Orientated Situational Analysis in User

Interface Design' in Springer-Verlag Lecture Notes in Computing, 753

Mitchell, T. Keller, R. and Kedar-Cabelli, S. (1986), `Explanation-based
Generalisation: A Unifying View', Machine Learning, 1,47-80

Monk (1986), ̀Mode Errors: A User-Centred Analysis and Some Preventative

Measures Using Keying Contingent Sound', in International Journal of Man Machine

Studies, 24

Monk, A. Wright, P. Haber, J. and Davenport, L (1991), ̀ Improving Your Human-

Computer Interface', Prentice Hall

Moran, TP (1983), ̀Getting Into a System: External-Internal Task Mapping Analysis'
Proceedings CHI-83, A Janda (ed), ACM press, 45-49.

254

Mountford, J. (1990), ̀ Tools and Techniques for Creative Design' in The Art of
Human Computer Interface Design, B. Laurel (ed) Addison Wesley, Reading MA,
17-30

Nelson, T. (1990), ̀ The Right Way to Think About Software Design', in The Art of
Human Computer Interface Design, B. Laurel (ed) Addison Wesley, Reading MA,
235-243

Newell, A. and Simon, H. (1972), `Human Problem Solving'. Eaglewood Cliffs

N. J.: Prentice-Hall

Nielsen, J (1990), ̀Traditional Dialogue Design Applied to Modem User Interfaces',
i'ommunicthonsoh'1eÄL`161,33,109-11'8.

Nielsen, J (1992), 'Finding Usability Problems Through Heuristic Evaluation',

Proceedings CHI-92, P Bauersfeld et at (eds.), 373-380.

Nielsen, J and Molich R (1990), 'Heuristic Evaluation of User Interfaces',

Proceedings CHI-90, JR Chew and J Whiteside (eds.) 249-256, ACM press.

Nielsen, J and Phillips, V (1993), 'Estimating the Relative Usability of Two

Interfaces: Heuristic, Formal, and Empirical Methods Compared' Proc. INTERCHl

93, Ashlund, S. Mullet, K. Henderson, A. Hollnagel, E. and White,. 7(eds.) ACM

Press, 214-221

Norman, D. A. (1981), The Trouble With Unix', Datamation27,556-563

Norman, D. A. (1986), 'Cognitive Engineering', in: User Centred System Design:

New Perspectives on Human-Computer Interaction, D Norman &S Draper (eds.)

Lawrence Erlbaum Associates, New Jersey, 31-62

Norman, D. A. (1988), 'The Psychology of Everyday Things' New York: Basic

Books

Ogden, W. and Boyle, J. (1982), 'Evaluating Human-Computer Dialogue Styles:

Command vs. form/fill-in for Report Modification'
,

Proc. Hwnan Factors Society,

26 annual meeting, Santa Monica, CA, 542-545

O'Malley, C. and Draper, S. (1989), 'Representation and Interaction: Are Mental

Models All In The Mind', in Models in the Mind, Theory Perspectives and

255

Application, Rogers, Y. Rutherford, A. and Bibby, P. (eds.), London: Academic

Press, 73-92

Olphert, C. W. (1986), `Case Studies of Usability', in `Designing Usable IT Products'

HURT project, ETW `86 seminar, Loughborough UK, 1/10/1986

Pakin, S. and Wray, P. (1982), `Designing Screens for People to use Easily', Data

Management, July 1982,36-41

Paap, K. R. and Roske-Hofstrand, R. J. (1988), ̀ Design of Menus' In: Handbook of
Human-Computer Interaction, M. Helander (ed.) Elsevier North Holland, 205-233

Payne, S. J. (1984), `Task-action Grammers', in INTERACT `84 - First IFIP

Conference on Human-Computer Interaction, Shackel, B. (ed), Elsevier Science,

Amsterdam

Payne, S. J. (1987), `Complex Problem Spaces: Modelling the Knowledge Needed to

Use Interactive Systems', in Proc. Interact 87, Amsterdam: Elsevier Science
Publishers

Payne, SJ (1990), `Looking HCl in the I', Proceedings Interact 90, D. Diaper et ai
(eds), Elsevier North-Holland, 185-192.

Payne, SJ (1991), 'Interface Problems and Interface Resources', in Designing

Interaction, JM Carroll (ed), Cambridge University Press.

Payne, S. and Green, T. R. G. (1986), `Task action grammars: A Model of the Mental

Representation of Task Languages', Human Computer Interaction, 2,93-133

Pazzani, M. (1987), `Inducing Causal and Social Theories: A Prerequisite for

Explanation-based Learning', Proc. Fourth International Machine Learning

Workshop, Irvine CA, 230-241

Poison, P. and Lewis, C. (1990), Theory based design for easily learned interfaces.
In: Human-Computer interaction 5,191-220

Poison, P Lewis, C Reiman, J and Wharton, C (1992), "Cognitive Walkthroughs: a
Method for Theory-based Evaluation of User Interfaces", International Journal of
Man Machine Studies, Vol 36, pp 365-395.

256

Preece, J. Sharp, H. Benyon, D. Holland, S. and Carey, T. (1994), ̀ Human-
Computer Interaction', Addison Wesley

Rasmussen, J. (1986), `On Information Processing and Human-Machine Interaction:
An Approach to Cognitive Engineering', Amsterdam: Elsevier

Ravden S. and Johnson G. (1989), `Evaluating Usability of Human Computer
Interfaces', Ellis Horwood

Reason J. (1986), `Framework Models of Human Performance and Error. A

consumer guide', Mental Models, tasks and Errors, I Goodstein HB Andersen and S
E Olsen (eds.), Taylor and Francis, London

Reisner, P. (1981), `Formal Grammers and Human Factors Design of an Interactive
Graphics System', IEEE Trans. on Software Engineering, SE-7 (2), 229-240

Reisner, P. (1982), `Analytical Tools for Human Factors of Software', in End User

Systems and Their Human Factors, Blaser, A. and Zoeppri tz, M. (eds), Spri nger-
Verlag, Berlin, 94-121

Reisner, P. (1990), ̀What is Inconsistency? ', Proceedings Interact 90, D. Diaper et al
(eds), Elsevier North-Holland, 175-181.

Rogers, Y. (1989), ̀ Icon Design for the User Interface, International Review of
Ergonomics, 129-154

Rosch, E. (1975), `Cognitive Representations of Semantic Categories', Journal of
Experimental Psychology: General, 104 (3), 192-233.

Rosch, E. Mervis, C Gray, w. Johnson, D. and Boyes-Braem, P. (1976), ̀ Basic
Objects in Natural Categories', Cognitive psychology, 8,382-439

Roth, I. and Frisby, J. (1986), ̀ Perception and Representation', Open University
Press

Rowley, D. (1994), ̀ Usability Testing in the Field: Bringing the Laboratory to the
User', in Proc. CHI 94, Plaisant, C (ed.), ACM Press

Rubenstein R. and Hersch, H. (1984), `The Human Factor. Designing Computer
Systems for People', Burlington MA, Digital Press

257

Rutkowski, C. (1982), An Introduction to the Human Applications Standard
Computer Interface, Part 1: Theories and Principles, Byte

,7
(11), 291-310

Schank, It (1982), ̀ Dynamic Memory: A Theory of Reminding and Learning in
Computers and People', Cambridge University Press

B Shackel (1986), `Ergonomics in design for usability', People and Computers:
Designing for usability, MD Harrison and AF Monk (eds.) Cambridge University
Press

Shackel, B. (1991), ̀Usability - Concept, Framework, Definition Design And
Evaluation', in Human Factors for Informatics Usability, Shackel, B. and Richardson,
S. (eds.), Cambridge University Press, 21-37

Shneiderman, B. (1982), `The Future of Interactive Technology and the Emergence of
Direct Manipulation', Behaviour and Information Technology, 237-256

Shneiderman, B. (1983), Direct Manipulation: A Step Beyond Programming
Languages, IEEE Computer, 16(8), 57-69

Shneiderman, B. (1986), Designing the User Interface: Strategies for Effective Human
Computer Communication, Addison-Wesley

Simon, T. (1988), `Analysing the Scope of Cognitive Models in Human-Computer
Interaction: A Trade-off Approach', in: People and Computers IV, D. M. Jones and
R. Winder (eds.), Cambridge University Press, pp 79-93

Smith, D. Irby, C. Kimball, R. and Harslam, E. (1982), ̀ Designing the STAR User

Interface', Byte, 7(4), 242-82

Smith, R, (1987), `Experiences with the Alternate Reality Kit-an Example of the
Tension Between Literalism and Magic', inproc. CHI+GI' 87 Conference on
Human Factors in Computing Systems, Toronto, Canada, New York: ACM

Smith SL and Mosier J (1986), `Guidelines for Designing User Interface Software',
Mitre Corporation Report MIR-10096, Bedford, MA.

Stevenson, R. J. Manktelow, K. I. and Howard M. J. (1988), `Knowledge Elicitation:
Dissociating Conscious Reflections from Automatic Processes', in: People and

258

Computers IV, D. M. Jones and R. Winder (eds.), Cambridge University Press, 565-

579,

Suchman, L. (1987), `Plans and Situated Actions', Cambridge University Press.

Sutcliffe A. G. (1988), ̀ Human Computer Interface Design', Macmillan, London

Sutcliffe, AG and Springest, MV (1992), `From User's Problems to Design Errors:
Linking Evaluation to Improved Design Practice', Proc. People and Computers vii, A

Monk et al (eds), Cambridge University Press, 117-131.

Tauber, M. J. (1986), ̀ Top-Down Design of Human-Computer Interfaces', Vrsual
Languages (Chang et al eds.) New York: Plenum Press

Tauber, M. J. (1990), `E-TAG: Extended Task-Action Grammer. A Language for the
Description of the User's Task Language', Proc. Interact 90, D. Diaper et al (eds),
Elsevier North-Holland, 163-168.

Te'eni, D. (1990), `Direct Manipulation as a Source of Cognitive Feedback: a Human-

Computer Experiment with a Judgement Task', International Journal of Man Machine
Studies, 33,453-466.

Turkle, S. (1984), `The Second Self: Computers and the Human Spirit', London:

Granada

Virzi, R. (1990), `Streamlining the Design Process: Running Fewer Subjects'. Proc.
34th annual meeting of the Human Factors Society, 291-294

Virzi, R. (1992), `Refining the Test Phase of Usability Evaluation: How Many

Subjects are Enough? ', Human Factors, 34,457-468

Weiser, M. (1991), ̀ The Computer for the 21st Century', Scientific American,
September, 66-77

Wharton, C. Bradford, J. Jeffries, R. and Franzke M. (1992), ̀ Applying Cognitive
Walkthroughs to More Complex Interfaces: Experiences, Issues, and
Recommendations', in proc. CHJ 92, P. Bauersfield et al (eds.), pp 381-388

Whiteside, J. Bennett, J. and Holzblatt, K. (1988), `Usability Engineering, our
experience and evolutions'. in Handbook of Human Computer Interaction, M

259

Helander (ed.) Elsevier North Holland, 791-817

Williams, M. Hollan, J. and Stevens, A. (1983), `Human Reasoning About a Simple

Physical System', in Mental Models, Gentner, D. and Stevens, A. (eds.), Hillside:
Erlbaum

Wilson, J. and Rutherford, A. (1989), `Mental Models: Theory and Application',
Human Factors, 31,617-634

Winston, P. (1982), `Learning New Principles from Precedents and Exercises',
Artificial Intelligence, 19,321-350

Woods, W. (1970), `Transition Network Grammars for Natural Language Analysis'

Communications of the ACM, 13,591-606

Wright, P and Monk, AF (1989), `Evaluation for Design'. People and Computers
V., AG Sutcliffe and L Macaulay (eds); Cambridge University Press, 345-358.

Wright, P. Monk, A and Carey, T. (1989), `Cooperative Evaluation - The York

Manual Version 0.4. ' Dept of Psychology, University of York. UK

Wright, P and Monk, AF (1991), `A Cost-effective Evaluation Method for use by

Designers', International Journal of Man Machine Studies, 35 (6), 819-912.

Young, R and Barnard, P. (1987), `The use of Scenarios in Human-Computer

Interaction Research: Turbocharging the Tortoise of Cumulative Science', in proc.
CHI+GI `87: Human Factors in Computing Systems and Graphics Interfaces, Carroll,

J. and Tanner, P. eds. ACM Press 291-296.

Young, R. Howes, A. and Whittington, J. (1990), `A Knowledge Analysis of
Interactivity', Proceedings Interact 90, D. Diaper et al (eds), Elsevier North-Holland,

115-120

Yourdon, E (1989), ̀ Structural Walkthroughs', 4th edition, Englewood Cliffs, NJ:
Yourdon Press.

260

Bibliography

M. V. Springett (1992), The Utility of User Action Models For Direct Manipulation Design'

Proc. IFIP TC21WG2.7 Working Conference on Engineering for Hunan-Computer Interaction,
C. Unger and J. A. Larsen eds., Elsevier North-Holland.

A. G. Sutcliffe and M. V. Springett (1992), 'From User's Problems to Design Errors: Linking

Evaluation to Improving Design Practice' People and Computers vii, A. Monk, D. Diaper and
M. D. Harrison eds., Cambridge University Press.

M. Springett and A. S. Grant: (1992), `Interface Semantics and Users' Device Models:

Identifying Evaluation Issues for Direct Manipulation Design'. Proc. People and Computers

viii, J. Alty et al (eds.), Cambridge University Press, pp 249-266, [19931.

261

Appendix A

The MMA Method as
Subjects

Presented to

261A

Evaluation
Method

Introductory
Booklet

262

Introduction

This method helps you to perform usability evaluation of interfaces in collaboration
with an experimental user subject in a mock task-session. The method is a simple
process of analysing user problems, and suggesting design change in the light of that
analysis. It involves recording the problems that a user has with a particular action,
and comparing what they wanted or expected with what the system actually provides.
Here is a broad outline of the process, which is fully described in the method manual
booklet.

" Before the Session
You will be given a set of instructions and an experimental task. Read the instructions
to the user, and present the task.

" During the Session
The user will perform the task, verbalising continuously. You record any problems
that the user encounters, asking questions if necessary.

" With the user After the Session
You clarify the user's view of each problem incident (the user may re-examine the
screen at this point, if desired)

" After the User Leaves
i. You check the user's view of each incident against the actual design and presentation
of it, to pinpoint the cause of the problem.

ii. You recommend ways of solving the design problems implied by the problem
incidents.

A further diagnostic aid is available for use by more expert evaluators, although it is
not included in this Introdutory Booklet. This consists of a model of interaction which
goes into greater detail of user behaviour than the model presented to first time
evaluators in this booklet. The more detailed model provides an aid to deeper
diagnosis, accounting for differing levels of user expertise, and types of knowlege
recruited by the user. It is recommended that evaluators with a background in
Evaluation or Human-Computer Interaction refer to the more advanced model.

1. Understanding the Method For Interpreting User
Problems

The method provides criteria for interpreting the problems that the user encounters
when using the system. This is done by providing a basic description of the type of
activities that the user engages in within the course of a single action, the information
needs that the system must supply to support those activities, and ways that this can
fail. Reading this description will assist you in interpreting problem incidents that the
user reports during the session.

The four key elements of the session are:

1. What the user does, both mentally and physically during performance of each
action on the machine (activities)

263

2. What the system must provide to support this (roles)

3. How this can go wrong (mismatches)

4. How elements of design may be changed in order to remove the problem
(solutions)

Activities

There are four basic phases of activity within each user action. These are:

I. Deciding what one wants to do (the task-goal)

There is an important distinction between a `task-goal' and a `device-goal'. The task-
goal is what one wishes to achieve for ones own purposes, such as sending mail to a
friend. The device goal is the specific action(s) that it takes (such as a `send'
command on an e-mail system) to achieve a task-goal. It is likely that a single task-
goal will include more than a single action. For example, sending mail may involve
dragging a menu, selecting a command and typing the name of a file.

2. Deciding how it can be done

This is the phase of translating the task-goal to a device-goal or goals. The user must
decide if the task goal is possible, and what must be done to achieve it using the
system's facilities. The user may feel that previous actions or knowledge of the overall
system can tell them all they need to know. Also, the user's current task-goal may
include a sequence of actions that the user believes will go together. However,
especially for new or occasional users, the interface will need to provide specific hints
about what to do, and the features to use to do it. On the type of system we are
looking at, this is likely to be textual or pictorial cues representing features, or the
`familiar' appearance of ,

for example, a desktop on the screen.

3. Executing the action

The user performs a keyboard or mouse action. It is likely that some degree of skill is
required, particularly for the mouse actions, although these should be skills that are
easily within user capabilities.

4. Assessing the Result

This phase involves assessing the new state caused by the action. The user wants to
compare the change to what was desired. Also, the user will need to see if the next or
subsequent actions are possible. The visible result of the action is referred to as the
`feedback'.

Figure 1 shows a flow-diagram of the activity sequence within an action. Within the
four activity phase are seven specific activity types. The seven individual activities
correspond to interface `roles' described below.

264

Roles and Mismatches

This section describes the roles that the interface must play in providing the user with
sufficient information to proceed with action and satisfy goals. Each section also has a
description of the range of ways in which mismatches can occur.

Why roles?
Roles are basic types of support that the interface must provide for each action. The
roles correspond to component user activities within each action. The term roles is
used because it is a neutral term which recognises the variety of ways in which
information and knowledge requirements can be satisfied. For example, if the user is
using a new feature, but knows where features of that type are situated on the screen,
the role of locating a feature (described fully below) is fulfilled. If this type of
information is not known, the user relies on specific items such as dedicated screen
areas, menu headers, names and iconic symbols to help locate and identify features.

Why Mismatches?
Interaction on a display-based system may be seen as dialogue, similar to a
conversational dialogue in that its success depends on the two participants establishing
a mutual understanding. For example, if a participant in a conversation says `pick up
the third block from the left', that may mean from the left as the speaker looks or (from
the point of view of someone on the other side of the blocks) the third one from the
right. The hearer may pick up the correct block (a match) or there may be confusion
over whose left the speaker refers to (a mismatch). This is a useful metaphor for the
user/system dialogue. The continuous cycle of user search, interface signals, user
action, interface response, and further user action is prone to mismatches. For
example, the interface, by referring to a facility with the wrong name or icon, may
cause the user to choose the wrong action. Similarly, by producing a misleading
image as feedback to an action, the system may cause a mismatch by confusing them
about whether or not a goal has been satisfied. The problem of mismatches between
system and user is investigated using this evaluation method.

Detailed Descriptions of Roles and Mismatches

What follows is a description of each role that some aspect of the interface must fulfil
in order to support user action. They are linked to types of mismatch that can cause
role failures. Figure 2 shows types of mismatch associated with each role. These
mismatch types are described more fully in the following section.

Role for Supporting Goal Formation

The Goal Formation role refers simply to the provision of a needed function for a
particular action. The system must support the task goals that the user expects and
wants. For example, a text editor without a cut and paste facility would probably be
seen as incomplete by most users, even though it could function without one.

Rotes for Deciding How One Can Achieve a Goal

This phase has three component roles. These are locate feature, identify feature

265

and Specify action.

Locate Feature
The locate feature role becomes important where the user has a notion of what is
needed but it is not aware precisely of the required feature to use. The locate feature
role is the interface's role in constraining this search by indicating where the user
should look. For example, a menu header which can be seen by the user and matched
to the type of item that is is being looked for, would serve as good locating
information.

Mismatches associated with the Locate Feature role are:

" Insufficient locating information:
The user is searching for a feature in the wrong place, or does not know where to
search

" Misleading locating information
The user reasons that the feature is in a certain place, because the interface is giving a
misleading impression

Identify Feature
Along with locators to help search, the user will require feature identifiers. These are
typically names of menu items or icon arrays. The success of the identify feature
role depends on the user's ability to match what they express with what is required.
The user will have a mental picture (however vague) of what is required. The role of
the feature identifier is to effect recognition of the appropriate feature by matching,
using either text or an image, characteristics of what the user is looking for.

Mismatches associated with the Identify Feature role are:

" Lack of meaning
The user passes over a needed or useful feature because the cue does not alert the user
to the feature's utility

" Confusion between features
A feature's cue appears relevant to the current task-goal when it is not

Specify Action
The specify action role is the most complex role. This is the initial phase of
thinking about the goal, and an individual action within it, as an action on the system.
In a sense this involves a translation from a task (e. g. drawing or writing) that the user
may know, into the specifics of how it is done on the system. It is complex because

potential mismatches may be the result of previous actions or user interpretation of
high-level principles, and therefore be distanced from the overt problem that the user
encounters. The user may reason from previous interaction, general knowledge of the
task, assumptions about general system principles or knowledge of other systems.

Mismatches associated with the Specify Action role

There are three categories of mismatch here. These are:

" Failure to support the user's view of the task:
These can be observed when the user expresses frustration or confusion due to a

266

failure to comprehend, for example, the default settings or conventions. To take a
hypothetical case, a user of a draw package finds that they cannot plot a point with
precision. Unknown to them is that the default state of the package is an invisible
plotting restriction (or `grid'). This principle is missed by the user because it is
unexpected and counter to the `drawing' metaphor. In this example the default state
embodies a notion of the `drawing-on-paper' metaphor which does not match with the
user's notion. Similarly, a principle of operation, such as the procedure for selecting
colours or sizes may force errors if it is incomprehensible or counter to what the user
would naturally expect.

" Hidden effects of prior action:
These are the result of feedback perception mismatches from a previous action. If, for
example, the user has set a default without realising, in the course of using a feature,
the feature may behave differently next time, without the user realising why.

" Unsupported assumptions from prior action:
The user may express expectations from previous actions that led to an erroneous
action. For example, if a user has selected a type of line drawing facility from a menu,
and it cannot be operated on in the same way as a previously selected option, the user
may be confused or regard this as inconsistent.

Role for Executing

The Execution role consists of two principles. The first is that the response to an
input should seem `natural' to the user, for example, cursor movements
corresponding to the user's hand movements with the mouse. The second is that the
action should not place unreasonable demands on, for example steadiness of hand or
eye-tracking. Some actions are, by their nature, difficult. For example, drawing a
straight line is hard (hence the need for rulers), and seeing precisely where the
boundaries of an item are places demands on perceptual capacities. The system can
reasonably be expected to provide facilities to ease the difficulty (e. g. constrained line
drawing).

Mismatches associated with the Execution Role:

" Lack of support for difficult action
The user expresses difficulty in performing with a feature to a sufficient level of
satisfaction

" Unnatural input response
The user expresses that the behaviour of a feature is unexpectedly awkward

Roles for Assessing the Result of the Action

This is split into two roles, Perceive feedback and Comprehend feedback. The
interface must provide a perceptible indication of a state change, and this must be
comprehensible in terms of the user's goal.

267

Mismatches associated with the Perceive Feedback role:

" Absent/Delayed Feedback

Changes that are not indicated with feedback are likely not to be known by the user,
who will subsequently specify action with an incorrect model of some aspect of the
system-state. Equally, a delay may cause confusion, as the user will immediately
monitor for changes and proceed to the next action.

Brief/Obscure feedback

The designers may provide feedback which is too small, brief or indistinguishable to
alert the user.

Mismatches associated with Understand Feedback role:

" Failure to reflect changes in system-state
(e. g. secondary effects)

The system may fail to give an accurate visual indication of a state change. For
example, a delete action may seem not to have worked because an image of the deleted
item (or a remnant of it) remains on the screen.

" Failure to reference user goals

The user will relate the result of an action to the intended task-goal. If the change does
not clearly confirm progress, the user may become confused. An example would be a
`cut' facility without a facility for seeing precisely what has been cut (such as a
`clipboard' or buffer). The user would probably see that there has been a cut, but
could have trouble confirming that the intended items were cut and that they still exist
in a buffer.

2. Identification of Problems

You will be presented with a form describing the way in which role mismatches can be
identified during and after a session. The procedural instructions will describe the
process of identification in explicit detail. What follows is an outline description of
how types of incident and user reporting identify types of role mismatch. You will be
able to gain the data first by quizzing the user during or after the session. Examples of
each type of role mismatch in a mock-up Incident Record Sheet are presented with the
descriptions. The examples are taken from a real evaluation of a drawing package.
The items in brackets are notes referring to actual procedures and states, contrast with
the users' model. You do not need to write down this information on the Incident
Record Sheets if you feel this is unnecessary. What is important is to capture the
essence of the problem.

Goal Formation Mismatches

Simply identified by the user declaring a task-goal that is not, in fact, supported by the
interface.

268

Description of Incident

user tries to rotate a text Item
(can't be done)

Repeats of same problem --' II . ýý T-77
List any alterations/corrections?

realises It can't be done

In the example displayed above the user is clearly trying an impossible action.
Therefore, in the absence of any reason to the contrary, the evaluator reconunends
functionality to support such an action. The user repeated the error twice more
(recorded in the boxes provided), and reported after the session that he had finally
accepted it could not be done.

Locate Feature Mismatches

The user searches in the wrong place for a feature, perhaps naming an area of the
interface.

The user declares difficulty in deciding where to search, or disappointment with failed
search.

Description of Incident

can't find clipboard displag after cutting an Item

lacking in wrang menu

is of same

List any alterations/corrections?
found oventuallg in another menu

In this example, the user searched and failed to find the clipboard, not because the icon
was poor (as the eventual discovery suggests), but because the wrong menu was
assumed as the obvious location to took in. Therefore the evaluator specifies moving
the option to the same menu as the cut and paste options with which it is connected.

269

Identify Feature Mismatches

The user uses an irrelevant or suboptimal feature (or verbally misidentifies a feature).

The user finds but does not recognise a needed feature from its cue.

Description of Incident

wanted an arrow pointing left on a drawn line, picks
mann option with arrow facing left, arrow appears facing right

Repeats of same problem

List any alterations/corrections?

In this example the user is repeatedly trusting. a cue which depicts a left-pointing
arrow (an image of the goal-state). So the evaluator recommends that cue and function
be made to resemble each other (the option of altering feature or function is left open at
this stage, and the evaluator is therefore recommending rather than specifying a
solution).

Specify Action Mismatches

Usually identified by the user attempting an action which cannot be achieved, or
expressing confusion at the result of an action. The user may state a belief about how
a goal can be satisfied which has too few actions in it, or show ignorance of a
relevant principle, or the existence of supporting functionality (it is up to you to decide
whether a feature is not discovered because the locating and identifying information is
poor, or because the task is not designed in a way that is comprehensible to the user).
References to similarities with previous actions also indicate a problem. Expressions
of confusion over system behaviour also suggest this type of mismatch.

270

In this example the user is unable to plot a point with the required precision, and fails
to work out why this should be. In fact, the default state of the machine activates a
plotting restriction which has to be removed by selecting a menu option. The problem
is that the user has no idea that this is the case, expecting a `draw' package to allow
pen and paper style drawing. There is no reason to think that any user's notion of pen
and paper drawing tasks would include a plotting restriction. The evaluator therefore
specifies that the default state be changed with the restriction becoming a selectable
option.

Description of Incident

tries to put arrow on arc line using menu option.
claims it worked before' having done it for straight lines

(can onig be done bg constructing a line from

arc 6 straight lines, adding an armw)

Repeats of same problem i /' I
"ý -IIII

List any alterations/corrections?

This example shows a user who knows one operation (drawing an arrowed line)
,

extending it to another (an are line), reasoning from the similarity of the two objects
(the lines). The specified action is nested in a sequence that the user believes is
isomorphic with a known sequence. The `specify action' mismatch is demonstrated

when the user's expectations are compared to the more complicated actual procedure
where two lines need to be drawn. As with the previous example, the user's notion of
how to do it and the system's notion are critically different. The evaluator specifies
that the arrow option be made legal for arc as well as straight lines.

Execution Mismatches

User expresses difficulty with the actual manipulations.

User indicates that a facility is behaving strangely or counterintuitively during

performance of the action.

271

Description of Incident

chose 'select all' followed bg dragging of whole drawing, an intended stretch

causes a contraction, has to start again

of same

List any alterations/corrections?

user was truing to drag the whole diagram down

The user reports that a downward drag produced an upward cursor drag on the screen,
ruining the user's composition. The execution mismatch is the failure of the cursor to
move in the way that the mouse moved. The evaluator recommends the redesign of
this feature to a more natural response to input.

Perceive Feedback Mismatches

These problems may only emerge in the action specification stage of a subsequent
action. The user may miss feedback information, and make erroneous assumptions
which affect further actions. Also, the user may indicate may that there is a lack of
information about the effects of the action.

Description of Incident

draws wrang shape, blames selecting palette for deselecting

(fails to complete action)

L Repeats of same problem II ý'ý I
--'

III
--

I

List any alterations/corrections?

The user continually makes the error of failing to confirm a selection. By practising
this selection action after the session the evaluator notices that the difference between

an initial select and a confirmed select is hard to spot, and is probably not seen by the
user who carries on thinking the selecting action is complete. The recommended
solution is for clearer feedback to distinguish initial and confirmed palette option
selection.

Understand Feedback Mismatches

272

These are often cases of the user mistakenly believing that there is a problem as a result
of an action where, in fact, there is not.

The user expresses incorrect assumptions drawn from the feedback.

The user expresses confusion at the apparent result of an action, and is unable to
confirm progress.

Description of Incident

draws wrong shape, blames the selecting palette for
deselecting

(falls to complete selecting action)

is of same

List any alterations/corrections?

The user has not actually made an error here, but believes an error has been made.
The appearance on the screen is of an item being removed, whereas the attempted
action (placing a circle around an item) was successful. The evaluator therefore
specifies that the screen image of `filled-in' shapes should be altered to reflect the true

nature of the system state.

3. Recommending Solutions

There are four stages in the analysis of collected data. You will be asked to get as far
through these stages as you feel able to. The stages are:

" Identifying a problem (done during the session)

" Pinpointing the cause (investigated after the session)

" Recommending a Solution (stating in general terms the change that should be made)
or
" Specifying a Solution (giving specific advice, such as a new facility, default state or
menu name).

273

You may or may not feel able to specify a solution for all problems, but you are
encouraged to do so if you feel that you can. You will be asked to briefly explain the
reasoning behind your solution suggestions.

Examples of Completed Solution Sheets

Below are two examples of completed sections of a Change Suggestion Sheet. The
first illustrates a specified solution

Solution: Default state should not include an automatic plotting restriction. Restriction
as option onlg.

Reasons lint default confuses the user and makes
plotting awkward

This is the example from the first `Specify Action Mismatch' above. The evaluator is
clear about the precise change that should be made. A specific alteration is referred to.
A brief reference to the reason is also made, namely that users will have no idea why
they cannot plot points precisely.

The second example is of a less specific recommended solution.

Bring cues for arrows into line with the actual Solution: function of the options

Current design causes users to
Reasons: continually select the wrong option

This is the `Identify Feature Mismatch' example. The evaluator leaves open the
possibility of altering the feature's behaviour, the cue, or both. Again, a brief note
referring to the reasoning behind the solution suggestion is entered below the solution.

274

Method Manual
I. Preparing for the session

Please check that you have copies of the following documents

" The Instruction Sheet for the user

" Incident Record Sheets (to record incidents during the session, and clarify after the
session)

" Figure 2 from the `Method Theory' booklet (role/mismatch reference diagram)

" Design Alteration Sheets

You are also provided with a copy of the ̀ Advice on Recording and Analysing' section
from the ̀ Method Theory' booklet to use for reference.

2. When the User Arrives

1. Read the Instruction Sheet to them.

2. Present them with the task (the task sheet will be supplied).

3. Commence the session.

3. During the Session

" Observe the user, and listen for indications of problems

" Intervene with clarification questions if you need a clearer explanation

" Record problem descriptions on the Incident Record Sheet

With the User After the Session

" Conduct a clarification interview for each recorded incident. prompting the user by
reminding them what they said at the time of the incident. Record corrections (if
appropriate) or any alterations to the user's beliefs about how to do it, in the space
marked `any alterations/corrections? '. Duplicate errors can be recorded by ticking the
`repeats of same problem' boxes.

Ensure That You Are Clear About:
1; 11

-All

1. What they wanted to do
ý .ü

2. How they believed it would be achieved

aT5

3. What they found to be unsatisfactory/unexpected

4. Whether their view of how to do it has now changed

After the User Has Left

For each incident recorded:

" Compare the user's view of how to achieve the goal with the actual procedure for
achieving it (a manual is provided if you are unsure).

" Examine the cause of the problem in terms of role mismatches.

" Enter your diagnosis and recommendations/solutions on copies of the Design
Alteration Sheet (I incident per sheet).

Filling in the Design Alteration Sheet

Please include the following when filling in Design Alteration Sheets:

" The incident number (from the order in which they happened)

" Your specification/recommendation for improved design (if you feel that a finding
should lead to a change that would effect other actions and goals, such as the altering
of a default principle, please state this)

"A brief description of your reasons for the suggestion (one or two sentences at most)

276

Instructions to the User
1. When the user enters

Present the user with the User Description Sheet

2. When the user Description Sheet is Completed

Say -You will shortly be presented with a task-sheet. The task-sheet contains an end-
state of a text-editing task which you are asked to try to achieve. The file that you will
be editing has the same document in a different state. By checking the task-sheet you
will see the changes that you are asked to make. You are asked to perform this using
the package. Try to perform the task to the best of your ability, as if it were a real task
in a working environment. The session does have a time limit, but do not hurry.
Perform at what you would consider to be a normal speed for such a task. The
package is a Word Processing package, which also allows you to construct non-text
items such as diagrams and add them to the text.

Please describe what you are doing as you perform the task. In particular, describe
what you are intending to do next, and mention if you are having difficulties, or are
dissatisfied with something.

Please make it clear whether any dissatisfaction or difficulties that you may have are
with:

" Trying to decide what to do next

" Actually performing an action

" The result of an action that you have performed.

You may be asked to clarify some points when you report difficulties or
dissatisfaction. You may, for example be asked to describe the reasons behind your
decision-making. This does not imply that your reasoning or decision-making is
wrong, and it should not be allowed to influence your behaviour in the session (it is
important that your decision making is free from any such ̀ unnatural' influence).

Please turn the task-sheet over.

You are asked to double-click on the icon for the file `TASK' which is located near the
bottom of the screen. Enter the ̀ file' menu, and select the ̀ save as' option. Alter the
filename to your initial and surname. Then commence the task.

277

Appendix B

Materials given to Subjects using
UC Method

278

Introducti40 on
to the
Evaluation
Method

279

The Usability Checklist Evaluation Method
The accompanying documents describe the Checklist Evaluation Method. The
contents of the document are as follows:

"A description of your role in the evaluation session

"A description of your (user)evaluator's role

In the accompanying document package:

" Overview of the Method (Marked 2)

" Instructions for completing the checklist (marked 3)

" The checklist

" Full descriptions of each checklist question (marked 4)

" Observer Instructions for the Session

" The procedure for recording design suggestions

1. Your Role

In essence, your role is to supervise and monitor an evaluation session. You will be
monitoring the interaction behaviour of an ̀ evaluator' (a user) who will be trying
example tasks on Microsoft Word for the Apple Macintosh. You will be asked to brief
the evaluator before the session on what is required (the evaluators role is described
below). You will then watch the session, taking any observational notes that you feel
may be useful. Please do not communicate with the evaluator whilst the session is
taking place.

After the session you will present the evaluator with the evaluation checklist. You are
provided with detailed definitions of each checklist question, and should inform the
evaluator that you will to read definitions aloud on request. You may wish to monitor
the forms as they are completed to check for readability. You are, however, asked not
to `cross-examine' the evaluator.

The evaluator will leave after the checklist has been completed. You will then be asked
to examine the answers provided, and make design change suggestions on the sheets
provided. You will be asked to explain your motivation for the changes by citing the
source of the information that led you to the decision.

2. The role of the ̀ evaluator'

Your evaluator will know nothing about the package which is to be used. The
evaluator may declare other graphics, word-processor or computer experience before
commencing the task You will present the evaluator with a sheet detailing the task that

280

they will be performing. The evaluator will then attempt to perform the tasks, making
notes when points of interest emerge. You will present the evaluator with the
Checklist at the end of the session. The evaluator will complete the Checklist,
requesting definitions of the Checklist questions if required.

281

Observer Instructions for the
Session

This is the procedure for conducting the evaluation session.

1. Read the `Before the Session' section of the 'Instructions
to the User' sheet to the user

2. Present the task sheet to the user

3. Show user to the 'task' icon in the main directory

4. Observe the session, noting points of interest

5. When the session ends, read the `After Session
Instructions', and present the checklist. Read the
`Instructions for Completing the Checklist' section (marked 3)
of the materials provided.

6. Provide definitions of checklist questions on request.

(user leaves)

7. Use the completed checklist and your own observations to
make design change suggestions, using the 'Design Alteration
Sheets' (indicating the method's degree of influence on each
decision).

282

Instructions to the User
Prior to the Session

(to be read to the user)
You will shortly be presented with a task. You are asked to perform this task using the

package. Try to perform the task to the best of your ability, as if it were a real task in a
working environment. The session does have a time limit, but do not hurry. Perform

at what you would consider to be a normal speed for such a task. The package is a
Word Processing package, which also allows you to construct non-text items such as
diagrams and add them to the text.

You will be provided with a pen and paper. Please note anything that you feel would
be of interest in an evaluation of the package's usability during the session.

You will be given a questionnaire at the end of the session. This will ask you about

various aspects of the system you have used.

The first task is to go to the `task' icon, and enter the file with a double click. Alter the

name of the file to your initial and surname using the `Save As' option from the `File'

menu. The task sheet shows the end state that you want to achieve. The file that you

will open contains a document which you will need to edit in order to reach the end

state.

INSTRUCTIONS TO READ TO THE USER AFTER THE TASK
SESSION IS COMPLETE
Please fill in the checklist that is provided. Refer to your notes, or look again at the

package that you have just used, where you feel the need to. Please ask for definitions

of individual checklist questions if you are unsure. Write comments next to your

checklist answers if you feel that extra explanation of your answers would be of use,

or you feel particularly strongly about something.

(Read Section 3 `Instructions for Completing the Checklist' to

the user)

283

