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Abstract 

The focus of the work here was an empirical analysis of the 
aggregate independent demand behaviour for spare parts inventories, 

principally in the automotive industry. In particular, using the pioneering 
work of RG Brown (1959), who showed that inventory usage values are 
often lognormally distributed, we set out and developed models that go 
some considerable way to explaining the underlying stochastic basis for 
this phenomena, why it occurs and some limiting conditions. The 
justification for this approach was on the grounds that by providing a 
more fundamental understanding of the underlying stochastic processes 
that explain the emergent aggregate demand behaviour, a sound starting 
point would be provided for developing more sophisticated analytical 
ways to view an inventory range, as a total entity, for planning and control 
purposes. The analysis was based on extensive data collected from the 
DAF Trucks (GB) Ltd. spare parts systems spanning the period 1975 to 
1986, together with supporting studies from a number of other systems. 

The analysis showed that in the systems studied spare parts prices 
are lognormally distributed and this is most likely to be the result of a 
stochastic process known as the 'theory of breakage'. Analysis also showed 
that in the DAF Trucks case aggregate demand volumes in very short time 
periods are distributed as a combined Log Series /Negative Binomial 
distribution (LSD/NBD). The combined LSD/NBD model of aggregate 
demand volumes is itself fully explained by a stochastic model known as 
the Afwedson model, which in turn is derived from more elementary 
conditions based on the Poisson process. We then demonstrated that if 
these short period aggregate demand distributions are cumulated period 
by period they converge to a lognormal distribution as the stable long run 
model of aggregate demand volumes. As a result of the lognormality of 
prices and volumes the resultant inventory usage values are also 
lognormal. Furthermore from insight into the underlying factors that 
explain the lognormality we have identified the factors and variables that 
govern the values of the parameters of the particular lognormal models of 
usage values. - 

The research protocol used in this work incorporated the law 

verifying process know as 'retroduction' after work and discussions of 
Uji Ijiri and Herbert Simon (1977); and to a lesser extent we utilised 
simulation for validation and verification of the derived models. From 

the proven lognormality of demand volumes and usage values we have 
demonstrated that a number of related key inventory factors are also 
lognormal, in particular inventory- item turnover rates. Furthermore our 
conclusions show that some standard inventory performance measures, 
such as the inventory wide 'stock turnover rate' and the 'stock to sales' 
ratio, are poor measures to use in the case of highly skewed inventory 

variables. Finally we have suggested several potentially fruitful areas for 
developing improved methods of monitoring inventory performance in a 
variety of circumstances. 
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Principal Abbreviations Used 

LSD The Log Series distribution 
NBD The Negative Binomial distribution 

sp The Stuttering Poisson distribution 

Probability notations, 

P(x) or P(x) The probability function of the variate Y 
P(X> M) The probability that x exceeds a value m 
P(x=n) The probability that the variate x=n 

f(x) The probability density function of x 
F(x) or F(x) The distribution function of x or the cuniulative 

probability density function of x 
R(x) or R(x) 'I'lie reliability function of x defined as [1-F(x)] 
Z(x) or Z(x) The hazard function of x defined asf(x)IR(x) 
N(x) or N(x) Nonnal probability scale 

n=j 

Y, Xn 

n=1 Ibe sum of all x values from n=1 to n= 

n=j 

n Xn n=1 
The produCt of all x values from n=1 to n= 

NA normal distribution with meany and 

standard deviation , a. 
A (y, or) A lognormal function with location parameter 

y and shape parameter a 

x2 Chi Squared variate 

X and S2 Mean and variance of a sample 

y and a2 Mean and variance of a population 

MAD Mean Absolute Deviation 
RMAD Relative Mean Absolute Deviation 
EOQ Economic order Quantity 
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Cs, Stockout cost function 
Ch Holding cost function 
Co Ordering cost function 

Fss Safety stock factor 
Fcs Cycle stock factor 

ABC Inventory categorisation into groups ABC by 
turnover value 

Pi Price item i 

sj Sales of item i 

Ri Rate of return on item i 

Mi margin of item i as proportion of Pi 

Vhi Volume of stock held of item i 

Va i Annual volume sold of item i 

r The correlation coefficient 

R2 The coefficient of determination 

DW 'Me Durbin Watson test 

Dn The Durbin Watson test statistic 
SE The standard error of a sampling distribution 

z The normal ordinate where z= (Y - y) / SE 

4q Quantiles of order 'q' of the lognormal 

distribution 

Vq Quantiles of order 'q' of the normal distribution 

Page 20 



Chapter 1 

Introduction to the Research 

1.0 Origin of the research 

This research began with the author's interest in the application of 

certain areas of inventory theory to the practical problems of managing 
large independent spare parts demand inventories. In particular the 

author was very interested in achieving a more fundamental 

understanding of the seemingly universal applicability of the so called 
'ABC' analysis of inventory usage values; a technique also variously 

referred to as Usage Value or Pareto analysis. This methodology gives 

management the opportunity to see where the major investment in 

inventory occurs and in this context it is a valuable tool for 'Aggregate 

Inventory Management'. We use the term aggregate here to mean the 

concern with the characteristics, analysis, planning and control of an 

inventory range as a whole entity. It is the holistic view 
, 
of an inventory 

range that makes the Pareto methodology particularly valuable for 

planning, and control. This tried and trusted tool is widely used by 

managers, and in its basic form can be found in most texts covering the 

fundamentals of inventory theory and practice. Interest in this technique, 

as a tool for modelling aggregate inventories, led this author to the 

literature describing the use of the lognormal distribution as a statistical 

distribution that can be used to model inventory item usage values. 

It was R. G. Brown (1959) who first showed that usage values for 

an entire inventory range could very often be modelled by the 

lognormal distribution function. Brown also showed, by using the 

properties of this distribution, that aggregate inventory calculations such 

as investment in cycle stocks and safety stocks, could be determined by 

just a knowledge of the parameters of the particular lognormal 

distribution and the average usage value of the inventory range. Thislwas 

a valuable finding by Brown and it opened access to a powerful 
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methodology for aggregate analysis of inventories. It is particularly 

valuable in very large inventories, which may run to tens of thousands of 

items, for which the complete enumeration of some measure of interest 

might be both very time consuming and very expensive unless standard 

software procedures are available. Our early interest in this phenomena 

centred on questions such as 'why does the lognormal distribution fit 

inventory data in the way claimed, and why the lognormal as opposed to 

other highly skewed distributions; how truly universal is the process and 

what is its fundamental basis'. Much of the work in this thesis has been 

aimed at such questions, and with deducing the nature, of the genesis of 

such models as applied to large spare parts inventories. 

Commencing in 1979 and during the years that foRowed this author 

had the opportunity to examine many inventory management issues and 

problems with DAF Trucks (GB) Ltd., the wholly owned UK marketing 

and distribution subsidiary of DAF Trucks Holland. [ In June 1987 DAF 

BV (Holland) merged with Leyland Trucks with the Dutch company 

effectively taking a 60% share of the British truck company in the UK. 

DAF Trucks GB Ltd., the wholly owned DAF sales and marketing 

operation merged with the Leyland Trucks sales operation to become 

known as Leyland DAF (GB) Ltd. ]. The DAF UK sales company is from 

now on in this work referred to as DAF Trucks, or just DAF and this is 

the UK sales company before it merged with Leyland. No research was 

carried out on the company's inventory operations after the merger took 

effect. 

DAF sold and distributed a range of heavy commercial vehicles in 

the UK market together with a range of some 25,000 plus spare parts to 

support and service the vehicles sold. It was initially in the context of the 

DAF spare parts inventory investigations that this author took the 

opportunity to test out the claims of R. G. Brown that usage values are 

lognormally distributed, and that use of this statistical model could form 
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the basis of a sophisticated approach to setting 'aggregate inventory 

standards. Also the various researches quoted in the literature that related 

the lognormal distribution to inventory usage values were largely based 

on American studies and US data. Therefore it was considered important 

to validate the US work on the inventories of UK or European 

companies. Preliminary empirical and literature research in this area by 

the author also served to confirm a previously held view that most of the 

traditional methods to measure and monitor inventories in aggregate, 

such as inventory turnover ratio, inventory to sales ratios, and day sales in 

stock, are limited measures giving in effect only the picture for the 

average item. This does not seem to present a particular problem for 

inventories of modest 'Size, or where the' measure of interest is 

symmetrically distributed about the mean. We show here that for very 

large inventories these traditional measures of activity are really just the 

simple mean from highly skewed distributions, such as the lognormal. 

For example, we show in later chapters that the turnover ratios, item by 

item, are also lognormally distributed. Under such circumstances we 

argue that these simple average based ratios are of limited value in 

surnmarising the 'true' behaviour of the inventory as a whole entity in a 

manner of full value to management. This will be discussed in greater 

depth in later chapters. 

Much of the research by this author was pursued on the premise 

that seeking a more fundamental understanding of the nature of the 

lognormal distribution, as applied to large inventories, would lead to a 

better understanding of the aggregate demand behaviour for such items. 

It was felt the such knowledge and insights might also lead to improved 

methods of measuring aggregate inventory performance and behaviour 

for management planning and control. Allso we argue that whilst the 

analysis, planning and control of any individual inventory item is 

important, and can be performed with great sophistication using 

contemporary analytical techniques, it is the aggregate characteristics of 
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an entire inventory range that are of most importance to management. 

Furthermore we need to measure such characteristics in more effective 

ways than by recourse to simple average summary measures. 

Similar views have be made by several authors and Wharton (1975) 

has expressed it succinctly as follows - 

"Although inventory controlproblems can beformulated in 

terms of the characteristics of individual stock items, it is 

the aggregate characteristics of any proposed system which 

are of over-riding importance to management. This is 

perhaps fortunate in view of the difficulties experienced by 

OR scientists in defining objectives and estimating 

relevant costs parameters for individual items. 

Whilst the OR scientist may seek to optimise the 

individual characteristics, he usually works under the . 
constraint that management will be concerned about the 

aggregate characteristics. Those most likely to be, of , 
interest are average investment in cycle stock, expected 

number of orders1set ups per annum, average service 

level, and average investment in safety stock since. these 

determine rate of turnover and customer satisfaction. " 

We argue that if we can begin, to approach aggregate inventory 

management using new tools that will allow analysis, planning and 

control to be carried out to the same degree of sophistication now 

possible for single inventory items, then we will have made a great stride 

forward. 

The research reported here has made an important contribution in 

reaching a fundamental understanding of the stochastic nature of the 

genesis of spare parts demand. We show by theoretical development, 

empirical analysis, model testing and simulation that a stochastic scheme 
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can be developed that explains the observation of lognormality in spare 

parts demand volumes and usage values. The analysis, development and 

proof of the derived schema is entirely original and has not been reported 

previously. We also show those factors that govern the particular value 

of the parameters of the lognormal distribution for both demand volumes 

and usage values. So far the various discussions in the literature 

concerning the phenomena of lognormality of inventory usage values has 

been based entirely on empirical evidence of the statistical fit of such 

distributions. 

1.1 The focus of the research 

At the outset this author decided that the research would be focused 

on independent demand inventory items with special reference to spare 

parts in particular. Furthermore the emphasis was on the aggregate 

characteristics of the inventories held by individual companies for sales in 

their after markets, to reach a fundamental understanding of the 

aggregate behaviour of such inventories. The primary objective of this 

was to see if any lawlike relationships exist that govern or explain the 

underlying nature and characteristics of typical spare parts inventories, 

such as aggregate demand, as opposed to individual item characteristics. 

We initially postulated that if a model, such as the lognormal distribution, 

could be fitted to inventory usage values over the entire range of an 

inventory, then this would be strong evidence that more fundamental 

processes might well be at work. We additionally postulated that such 

processes will in turn govern the aggregate characteristics of an 

inventory as a whole entity, but are not evident from the nature of, the 

individual items in the inventory. 

The rational for this research focus was for several main reasons. 

First and probably foremost was because of the opportunity afforded to 
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the author by DAF Trucks (GB) to investigate the nature of the spare 

parts inventory maintained by the company. This gave the author access to 

a considerable amount of data generated from the various systems in 

operation at the GB headquarters. Some of the data sets extended back to 

1975, which provided a valuable opportunity to observe the nature and 

behaviour of the aggregate demand for inventory items effectively over 

some ten years of operation. Secondly, spare parts inventories are of 

fundamental importance to the profitability and competitive advantage of 

any company selling and distributing capital equipment. Hence it is a 

potentially valuable area for study in terms of improved operating 

decision rules and performance measures. In the DAF Trucks case 

maintaining an inventory of some E5 million at cost to support annual 

spare parts sales of some E20 million in 1986 at a 92% to 94% service 

level was paramount to their success and survival in the highly 

competitive heavy commercial vehicle market. Indeed DAF increased its 

share of the UK market for heavy commercial vehicles every year since 

the company started UK operations in 1972 until 1987 (when DAF and 

Leyland merged). It was the generally held view of DAF executives that 

a major part of the success had been due to the high level of service 

assured to potential truck operators from the HQ spare parts Operation 

and support to the dealer network. This success has been in the face of 

fierce and formidable competition from other truck companies such as 

Volvo, Saab, and Ford. 

1.2 The nature of spare parts inventories 
, 

Spare parts inventories for complex capital equipment often exhibit 

dramatic variations in their basic characteristics of price, demand, and 

item variety. It is the magnitude of these variations that mark out spare 

parts inventories as very different to many other independent demand 

inventories such as wholesale and retail food inventories, electrical goods, 
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clothes, books and newsprint, chemicals, and pharmaceuticals. If we 

consider in detail the component structure of capital items such as trucks, 

cars, tanks and aircraft, for example, we soon become aware that they are 

assembled from a bewildering array of component parts ranging from 

simple nuts and bolts to complex sub units such as gear boxes, engines and 

differential drive units. Additionally we can recognise major component 

groups such as electrical, mechanical, body components etc. Some parts 

exhibit gradual wear out patterns of demand whilst others are subject to 

random failure. Also the number of different components in an 

individual truck model can reach in excess of 8,000. In comparison the 

number of parts in a Boeing 747 or example will be many times this 

figure. The total number of items listed in the parts catalogue for 

potentially active items at DAF GB headquarters during 1986 was around 

25,000 part numbers, although only some 12,000 of these showed a 

positive demand in the preceding year. The parent company in Holland 

maintained a parts range in excess of 60,000 items to support an even 

larger truck model range. Caterpillar Tractors at Coventry have an 

inventory of spare parts well in excess of 65,000 items to support their 

range of earth moving equipment. In contrast the total number of items 

held at the Daventry warehouse of Ford of Great Britain exceeds one 

million parts, whereas a local Ford car dealer is likely to supply around 

120,000 parts. In 1984 Dan Air, the commercial airline company, held a 

stock of some 78,000 different consumable spares to keep their fleet of 

aircraft serviceable, together with a range of some 15,000 rotatable 

spares. The remarkable feature about these figures is that the numbers 

could have been significantly higher were it not for the fact that these 

companies generally had vigorous policies of variety reduction to keep 

item variety under some degree of control. 

The demands patterns for individual spare items typically range 

from very regular to highly erratic. Some are also slow moving whilst 

others are very fast moving. In the DAF inventory the range of variation 
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seen is very wide. Items such as fan belts, oil filters and tyres and gasket 

sets (classified as consumable or wear items by some authors) generally 

exhibit regular fast moving demand patterns. Whereas complex items 

such as gear boxes, engine units, differentials etc., (often classified as 

repair items) generally exhibit erratic slow moving demand patterns. 
Items such as body parts are usually subject to replacement through 

accident occurrences. Wing mirrors, for example, seem prone to 

breakage at a regular rate whilst other components in less prone positions 

show a more erratic or lumpy demand pattern. As will be shown in this 

work the one characteristic that seems common to all the observed 
demand behaviours for spare parts, whether for regular, erratic, slow or 
fast moving items, is that the underlying demand behaviour is Poisson in 

nature and demands for individual items can be generally modelled by 

various formulations of what we will refer to at this stage as modified 
Poisson models. This is a point that will be considered in depth in chapter 
five. 

The economic value of spare parts also typically exhibit very wide 

variation. The price of a component spare part will in general reflect the 

cost of the base materials plus the 'value added' increment to cover direct 

labour effort and appropriate overhead and profit margins. Therefore as 

items become larger and more complex in production requirement they 

tend to become proportionately more costly. In the DAF inventory the 

cost price range, is from one new pence for nuts and washers, to new 

engine units which cost in excess of E6,000 (at 1986 prices), with a vast 

number of items in the range E2 to E50. When prices are considered in 

conjunction with the demand volume we can compute usage values and 

we find these vary individually from pence to over E100,000 on an 

annual basis. When usage values are considered in terms of the typical 

ABC or Pareto curve we see another distinguishing feature of spares 

inventories. Inventory usage values are generally very concentrated such 

that the major part of the turnover in a period is concentrated in just a 
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that the major part of the turnover in a period is concentrated in just a 

small proportion of the item range. A typical ABC curve for the DAF 

inventory is shown in figure 1.1.. - 1: 

, The often quoted yardstick of 80% of the turnover being achieved 

by 20% of the items certainly does not hold for spare parts inventories 

for very complex equipments such as trucks or aircraft. In the DAF case 

the top 20% of items account for approximately 94%'of the turnover, 

whilst 80% of the total turnover is achieved by only 7% of the items. This 

high degree of concentration is due to several factors. The great range of 

parts prices, coupled with the great variation in the demand volume, and 

the existence of a very large number of very slow moving parts in the 

inventory range. 

Figure 1.1 
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Various authors have attempted to classify spare parts, but these 
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than the supplier. Such classifications involve a consideration of the 

nature of demand, whether random generated by failure processes or by 

continuous wear demand, the volume of demand, and usually a measure of 

value. These classifications are not considered here because they are not 

directly relevant to this research. The reader is referred to Mitchell 

(1962), and Tan (1984). 1 

In the context of the DAF data the following broad classes of spare 

parts items were identified,, after discussion with company management, 

and it is based on the nature of the process seen as most likely to cause a 

need for a replacement spare part. 

(a) continuous wear parts: 

Those items which are subject to continuous wear processes 

such as brake pads, oil filters, tyres etc. 

(b) accident failure parts: 

Items for which a demand occurs due to spasmodic random 

events of the accident failure type. Items such as body parts 

would be subject to this kind of demand. 

(c) wear out parts: 

This group would comprise items that exhibit a wear out pattern 

whereby they remain serviceable for long periods but then 

failure is accelerated during a so called wear out phase. The 

majority of mechanical moving parts fall in this category such as 

bearings, gear wheels, valves etc. The average time to failure of 

such parts can be estimated from reliability studies. 
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(d) random failure items: 

This group will comprise those items for which the failure pattern 

is completely random. The mean time to failure may be predictable 

but items in this group generally have constant failure rate 

probability. The group is typified by electrical components such as 

bulbs, fuses, relays and the like. 

(e) consumable repair items: 

The demand for items in this group generally depends on the 

demand for other items as they are typified by the myriad of nuts, 
bolts, brackets clips etc. that are replaced when repairs and 

servicing is undertaken to replace parts from the other groups. 

Items can also be further categorised into fast, moderate or slow movMg 

in demand volume terms, and high, moderate and low unit value. 

However, the above categorisation has no special value in this research 

other than to add further insight into the great diversity in the 

characteristics of typical spare parts inventories. 

1.3 Preliminary analysis and inferences 

In this section we present some of the preliminary observations and 
1- 

initial analysis of the DAF Trucks data. As indicated earlier the empirical 

research started with the objective of verifying the claims of R. G. Brown 

that inventory period usage values could be represented by the lognormal 

distribution and that the parameters of the fitted distribution could be used 

to set aggregate inventory standards. 'Me statistical nature and properties 

of the lognormal distribution are considered in some depth in chapter 

three so only an outline of this distribution is given here. It has a 
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probability density function as given by equation 1.1 below- 

(x) =1 exp[- 
1 

'llogý, x-pl' 
xa-ý-2-7r 2 (72 

1 

------------------ 
1.1 

It is a two parameter distribution where a is the shape parameter 

and p is the location parameter. If a lognormal variate Ix, is subjected 

to the logarithmic transformation 10ge X ý- Y then 'y' is normally 

distributed with mean g and standard deviation (Y. From this we then 

have a method for a first attempt to test if a particular set of data is likely 

to lognormally distributed because by taking the logarithms of the variate 

of interest we can check for normality of the transformed data. 

The data set initially analysed was usage values for the entire active 

inventory range for 1979 at the DAF UK headquarters; the 'distributor 

level. Fortunately the computer system in use at DAF at the time 

contained a programme that could produce an ABC listing of usage values 

in descending order of value. Although this document was not used on a 

regular basis by the Parts department personnel the system to produce it 

was run for the benefit of. the author's work. Fortunately ABC listings 

were also available in the company for earlier years, because no one had 

bothered to clean out an old cabinet where the reports had been gathering 

dust for several years. Because of the availability of these reports there 

was no need to resort to any sampling at this stage as an ABC listing 

contains a complete picture for all active items. A copy of part of the ABC 

report for 1979 is given in appendix seven. The data from this report was 

divided into equal logarithmic bands as follows and the frequency of the 

number of usage values falling in each band counted to give the results 

shown below in table 1.1. Figure 1.2 also shows the same data in 

histogram form. 
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table 1.1 

1979 Usage value data 

Usage value 
upperbound. 

loge Usage 

value 

frequency 

of items 
theoretical 
frequency 

difference 

442413.00 13 1 2 -1 
162754.00 12 0 8 -8 
59874.00 11 35 28 7 
22026.00 10 94 83 11 
8103.00 9 241 196 45 
2980.90 8 427 401 26 
1096.60 7 697 724 -27, ý 403.43 6 987 1052 -65 
148.41 5 1285 1371 -86 
54.60 4 1452 1439 13 
20.08 3 1344 1331 13 
7.39 2 1072 1022 50 
2.72 1 774 723 51 
1.00 0 461 408 53 
0.37 -1 171- 192 -21 
0.13 -2 50 

- 
80 -30 

0.05 -3 7 28 -21 
0.02 -4 2 8 -6 
0.01 -5 0 2 -2 

sum ------------- 9-100 ---------- --- --------- --------------- 9 --- 0-9--8--- [---- 15 
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figure 1.2 
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It can be seen from both table 1.1 and figure 1.2 that the empirical 

data of log usage value gives a remarkably symmetrical distribution 

which is characteristic of a normal curve. The theoretical frequencies in 

the table are those calculated for a theoretical normal curve with the same 

mean of 3.51 and standard deviation of 2.48 as the observed empirical 

distribution. The overall total deviation of the actual frequencies from the 

theoretical values is very small at 15 from 9100 items indicating a very 

close fit to the corresponding theoretical normal curve. The close 

correspondence between actual and theoretical frequencies can be readily 

seen from the histograms in figure 1.3. 
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Figure 1.3 
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Perhaps an even more impressive fit of the empirical data to a 

lognormal curve is to plot usage values on lognormal probability paper as 

shown on the next page. This is achieved by plotting cumulative item 

percentage against the usage value of the same item from the 1979 ABC 

listing. (See example pages in appendix seven). For example, the item that 

represents 1% of all items is the 91st. in the list with a usage value of 

f 11,046.21, whilst the 2% item is the 182nd. item in the list with a usage 

value of E5717.10 and so on. As can be readily seen the fit to the straight 

line is incredibly close throughout most of the entire range. Only in the 

extreme tails of the distribution does any significant departure from 

lognormality exist. This is the last 0.5% in the upper tail (large values) 

and the last 1% in the lower tail. 
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Lognormal probability graph paper effectively transforms the 

original data as shown in the following diagrams- 

Figure 1.4 
Lognormal transformation 

(a) 

f(X) 

R(x) 

loge x 

x) 

Y(X) 

(b) 

love x u 

(d) 

loge x 

In the above diagrams, from (a) through to (c), (a) represents the 

lognormal distribution, (b) is the transformation of x to loge x giving a 

normal form, (c) is the inverse distribution function Of loge x and in (d) 

N(x) is the normal probability ordinate plotted against loge x- 

When this author first plotted DAF 1979 usage value data on 

lognon-nal probability graph paper he was very surprised by the high 

degree of closeness of the degree of fit to a straight line that was obtained. 
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A similar degree of fit was also seen for each year from 1975 to 1979, 

and then subsequently for 1980 onwards. There is no doubt even without 

conducting any goodness of fit tests, such as the Chi Squared or 

Kohnogorov-Smirnov, that usage value data from the DAF spare parts 

system do indeed fit very closely to lognormal distribution, curves. The 

general issues relating to goodness of fit tests for such highly skewed 

distributions are considered in chapter two so we will not pursue any 
discussion at this stage. Suffice to say here it is a thorny issue and one that 

must be given serious consideration in research of the type reported in 

this work. 

The author also made a further important observation at an early 

stage in this research. If usage values are lognormally distributed, then 

the nature of the distribution of prices and volumes must also be 

considered. Because the usage value of an inventory- item is the product 

of its price (or cost) and the volume demanded in a chosen period. 

Analysis subsequently revealed that prices were lognormally distributed 

and so were demand volumes provided that the time period chosen was 

reasonably long (at least 9 months in the DAF situation). This 

subsequently turned out to be an important finding to the development of 

a model explaining the underlying processes at work. The phenomena of 

prices and volumes also being lognormal in nature is consistent with 

statistical theory because Aitchison and Brown [not R. G. Brown] (1957) 

have shown that if a variateý'xj' is lognormal and so is a separate variate 

1 X2' then the product 'xlx2' is also lognormally distributed with mean 

(y, +p2) and variance ( or 21 +a2 2), wherey, and p2 are the means of 

the individual variates, and Cy 2, and Cy 22 are the separate variances. This 

author was surprised to discover this finding had not been reported before 

in the context of inventory period usage values. Either it had not be 

recognised by previous authors, or alternatively they did not appreciate 

the significance of this finding. 
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The fact that usage volumes were only lognormal in form Ior 

periods longer than nine months, ý was discovered quite accidentally. 

When usage values for a particular three month period were determined 

during part of the general exploratory analysis the characteristic normal 

curve was not obtained when these usage values were subjected to the 

logarithmic transformation. Further examination showed that itwas the 

volume part of these usage values that failed to be lognormal giving a very 
irregular shaped distribution. It was subsequently noted that if the usage 

volume data was cumulated period by period (a period being four weeks) 

then the volume data gradually converged to a lognormal distribution and 

once lognormality was achieved it appeared to be the stable long run 

distribution of usage values. We also discovered that the aggregate 

distribution of demand volumes in very short time periods (four weeks) 

was clearly not lognormal, but such demands did show a remarkable 

degree of statistical regularity from period, to period that extended over a 

long time. This also proved to be a very important finding for the 

modelling work of chapter seven. 

1.4 The existence of lawlike relationships 

The very high degree of regularity shown, in the DAF inventory 

period usage values did answer the initial question posed in this research 

namely- can such variates be explained and modelled by - a- lognormal 

distribution curve. Clearly even the limited analytical evidence presented 

so far strongly supported this. 7be extent to which the data fitted the 

lognormal model also posed several questions. Could such regularity arise 

by chance or was some'fundame-ntal process. operating that could bring 

about such regularity? If some underlyingmechanism was controlling the 

form of the empirical distribution then what was the nature of this 

mechanism. However, as will be discussed in chapter two, before a 

particular statistical model can be accepted as the appropriate form to 
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explain the regularity seen in a particular system there should also be 

strong stochastic evidence to support the model. Such evidence could be of 

an empirical nature indicating some regular process following a 

consistent pattern or path over a period of time. Or it could be a 

theoretical process developed and proven from other fields of, enquiry 

and shown that the same model is obtained as the long run equilibrium 

state of the system. 

Given the very diverse nature of the data observed, for such 

regularity to have occurred as a chance event was seen as most 
improbable. As we have shown the inventory range in the DAF system 

comprised such diverse items as gear boxes, lorry cabs, oil filter 

elements, spark plugs, nuts and bolts, bulbs and fuses and so on. When the 

equally diverse unit price range and demand volumes were also 

considered then to find usage values with such statistical regularity and 

stability was really a staggering phenomena, and not one that could 

conceivably occur by chance. Furthermore the regularity seen was not 

confined to one data set. The same degree of behaviour of the system was 

observed every year at the DAF UK headquarters from 1975 to 1979 and 

then subsequently for the period 1980 to 1986. 

This consistency from year to year must also be considered against 

the changing economic and commercial circumstances of the period. 

Throughout the time considered, effectively 1975 to 1986 the truck 

market in the UK went through two major recessions with the knock on 

effect on global parts sales. This period was also marked by changing 

inflation rates which were comparatively low in the early 70's, rising to 

very high figures around 18% to 20% in the late 70's and early 80's. Then 

inflation fell back to levels around 4% to 5% in the mid 80's. The effect of 

this on parts prices was quite dramatic with general price increases every 

year, sometimes two during the high inflation periods. Also the sales for 

some parts were put under strong commercial pressures during the mid 
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80's as parts 'copy cat' manufacturers and distributors began to move into 

the market to offer price competitive alternatives to genuine DAF parts. 

The company response to this was to price certain parts more 

competitively; hence parts price movements have not been uniform 

throughout the parts range. Indeed some parts prices were decreased to 

combat competition. Also over the period 1976 to 1986 new truck 

models were introduced, which in turn increased the number of parts to 

be stocked. Additionally, many parts were superseded by new designs. In 

some cases one new part replacing several old ones because of design 

rationalisation programmes. Over the same period demand for some 

parts gradually declined; down to zero in some cases as old truck models 

became fewer in number and gradually declined from the active truck 

park in commercial use. Overall however, the active parts range within 

DAFs UK operations (parts with a positive demand in a one year period) 

gradually increased year by year from around 5,500 per annum in 1975 

to almost 12,000 per annum in 1986, whilst the total number of parts on 

the stock list grew to around 25,000. 

The 70's period brought forth the dramatic rise in fuel prices 

following the two major oil price increases of 1973 and 1978/79. The 

follow on recession in general trade after each oil price shock hit the UK 

commercial vehicle industry hard as fewer commercial goods in 

particular were transported by road haulage. Under such conditions many 

commercial vehicles would have been under utilised, whilst others would 

have been over utilised because of contractors attempting. to bid more 

competitively by spreading operating costs. This behaviour would almost 

certainly have had an effect on the maintenance practice and policy of the 

users. Also subjecting vehicles to heavier duty would have taken its toll on 

component failure rates and vehicle breakdown occurrence. It can be 

reasoned that these circumstances would bring about changes in the 

pattern of demand for many spare parts in the inventories of companies 

such as DAR Given the background of these changing macro economic 
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and commercial factors one fact shone through concerning the DAF 

inventory. The usage rates remained consistently lognormal in nature and 

perhaps more importantly we observed that the values of the parameters 

of the fitted distributions exhibited a remarkable degree of stability over 

the entire period studied. 

1.5 The need for theoretical development 

Clearly from the foregoing discussion the direct empirical 

evidence and background circumstances strongly indicated that some 

underlying stochastic process was regulating DAF inventory usage values, 

and it appeared to be a process that exerted a remarkable degree of 

stability. ý There were many questions that needed to be explored. Of 

prime importance was the question concerning the underlying stochastic 

process. What was the form and nature of this process and what could it 

tell us about the practical application of lognormal theory to inventory 

management issues? We also needed to know how stable the process 

might be over time, and if the lognormal distribution was the natural long 

run stable model of the system. Furthermore we needed to see if a 

stochastic model could be developed that would satisfactorily explain the 

nature and behaviour of the processes at work and the ultimate occurrence 

of the lognormal distribution? We also needed to know if a more 

fundamental understanding of the processes at work would enable us'to 

develop better tools for monitoring and controlling the behaviour of the 

DAF and similar inventory systems. The need to answer these foregoing 

questions ultimately formed the principal objectives we set for this 

research work. 

The method of attack to achieve these aims is discussed in some 

depth in the next chapter concerning research methodology. Suffice to 

say - at this stage the approach was broadly two pronged. First the 
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literature-was reviewed for processes that can lead to lognormal 

distributions as stable long run models of economic variates. The author 

regarded this as the 'top down' approach by starting with processes that 

can yield a lognormal model of a particular variate. Such evidence was 

drawn mainly from sources in the literature on economic models and 

from' theoretical statistics. The Literature on inventory theory and 

practice was of very little value in this area. The second main attack was 

from the stand point of examining the basic nature of demand processes 

for individual items, and to see if these could possibly be combined into 

models'of aggregate demand. We regarded this as the 'bottom up' 

approach and it was commenced by drawing on sources from the 

inventory literature, the buyer behaviour literature and the theoretical 

statistical literature. It subsequently transpired that certain stochastic 

processes explaining demand for individual items could be applied to the 

aggregate case. - The initial clues and validity for this were confirmed by 

evidence obtained from the Biometrics literature. The final stage was to 

explore ways in which the two approaches could be drawn together to 

give an overall model that explains the basic nature of the aggregate 

demand processes and the occurrence of the lognormality of usage values. 

1.6 The structure of the thesis 

This thesis is structured into five main sections. Ile first covers 

this introduction and a chapter concerning methodological issues. The 

second section covering chapters three, four and five presents much of the 

core theoretical material reviewed from the literature. The third section 

covers chapter six, that presents much of the empirical analysis for DAF 

trucks and chapter seven that presents the author's theoretical 

development of new models of aggregate demand. Section four is 

primarily about testing and validating the theory using empirical-data 

from the DAF system (chapter eight), simulation studies (chapter nine), 
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and empirical data from other spare parts systems (chapter ten). Section 

five covers some novel applications, a consideration of the concentration 

principle applied to certain economic variates, and finally interpretations 

and conclusions, and suggestions for further research. Because this thesis 

was multidisciplinary in nature we drew on concepts, ideas, theories and 

previous empirical work from a wide variety of sources and different 

fields of investigation. In consequence to bring all these divergent factors 

and aspects -together in a systematic framework there are-more sections 

and chapters concerned with reviewing and summarising the essential 

prior research work than might be found in many theses. 

In chapter two we consider aspects of the empirical approach to 

research and in particular we review some important aspects concerning 

the approach to the testing and verification Of so called 'extreme 

hypotheses'. We also make a critical examination of the standard methods 

used for the statistical goodness of fit tests. The chapter then presents the 

organising framework for the overall research process adopted in this 

work. 

Chapter three presents the underlying theory, history and 

properties of the lognormal distribution. We also summarise many of its 

applications in the broad field of business and economics. Chapter four 

reviews the important 'stochastic processes that are known to yield 

lognormal and similar functions in specified circumstances and some 

related controversies. 

In chapter five we lay down the essential foundations concerning 

the stochastic nature of recurrent event processes. In particular we review 

the nature of Poisson processes and various important modified Poisson 

process models that have been used in inventory modelling and consumer 

purchase research. By drawing on prior research work and our early 

understanding of the empirical nature of DAF inventory usage values we 
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develop our initial, working hypotheses in this chapter. 

The major part of the empirical analysis on DAF inventory data is 

presented in chapter six. From the work presented in this chapter we are 

able to demonstrate strong support for the working hypotheses of chapter 

five. Chapter seven develops much of the new theory and stochastic 

models that explain the underlying nature of lognormality of spare parts 

usage values and concludes with refined statements of our research 

hypotheses. Chapter eight applies the process of retroductive testing of the 

theoretical models of chapter seven, by applying them to DAF data. The 

results strongly support the acceptance of the hypotheses of chapter 

seven. The next chapters, nine (simulation) and ten (additional empirical 

studies) are concerned with validating the developed theory and 

hypotheses by providing additional supporting evidence. 

In chapter eleven we present a review of the literature on the 

concentration principle of economic variates with particular reference to 

inventory usage values. We then discuss the relationships which underpin 

the so called Pareto principle and provide essential background to the 

work in chapter twelve. The literature work in chapter eleven was not 

included with the literature work of the early chapters because it would 

have made them far to large and logically this subsequent review 

underpinned the novel development work presented in chapter twelve. 

Therefore we have broken with tradition somewhat in our overall 

structure. Although we used the classical route of 'introduction, literature 

review, empirical analysis, theory development and testing', we followed 

this process with sections concerned with novel applications and 

supporting literature reviews. The justification for this is that we have 

used the results and outputs from the research to highlight and develop a 

number of potentially valuable areas for extending the derived theory, 

and developing new inventory management applications. We hope that by 

this process we have laid a foundation for considerable additional work. 
I 
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Research Methodology and Methodological 

Considerations. 

2.0 The empirical approach 

In this chapter we consider some of the general characteristics of 

empirical research and discuss the views of several prominent authors 

regarding the law finding process. We then give consideration to some of 

the important issues relating to the use of goodness of fit tests in validating 

extreme hypotheses, especially those concerning highly skewed 

distributions. 

The research reported in this thesis was primarily empirically 

based and it has sought to advance the understanding of aggregate demand 

processes and the underlying nature of usage values for replacement spare 

parts inventory items. An empirical approach to research generally 

starts with an observation of the state of nature of a system, or of system 
behaviour, either as a result of direct observation, or indirectly through 

the collection and examination of data from the system. Initial interest 

might generally stem from the recognition that a particular system under 

study exhibits a phenomena that has some, as yet, unexplained regularity 
in terms of established theory and prior knowledge. Such behaviour 

might be the first clue to some underlying process at work governing the 

states or the behaviour of the system. Alternatively, the system may be 

seen to be behaving chaotically or randomly where regularity might 

otherwise be expected to exist, indicating the possible existence of some 

mechanism or process causing departure from regularity. Such 

observations may be the first clue that some previously held theory does 

not hold under the circumstances observed. 
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Using an empirical approach we set out to discover reasons and 

explanations for the observed system states or its long run behaviour, and 

eventually try to determine the existence of any underlying processes that 

explain the observations made. This would generally lead to a generalised 

statement of the states or processes observed and explained in terms of a 
lawlike relationship. The methodology should then attempt to try and 

reach some understanding of the boundary or convergence conditions for 

which the lawlike relationships hold. In this way the range of conditions 

can be specified over which any laws, and any derived decision rules, can 
be expected to apply. Ibis makes for valid transferability of the laws and 

any derived decision rules to alternative, but similar systems and for 

predicting possible outcomes of system behaviour. 

The establishment of boundary conditions involves determining 

just how far one can validly move, or extrapolate, from the particular to 

the more general case with the general law-like relationships still holding 

true. This whole procedure is generally referred to as the 'empirical - 
inductive' approach to basic research. To put this into perspective in the 

context of this research it would mean establishing that the lognormal 

distribution is the appropriate model to use to graduate period usage 

values in the DAF inventory system. Then establishing the range of 

conditions overlwhich the model applies e. g. time, range of items and 

level of inventory (dealer level, wholesale level and factory level). Finally 

we would need to verify to what extent the methodology can be applied to 

other spare parts systems, and eventually to test against non-spare parts 

inventory systems. Thus the process develops from the particular to the 

general. The general being expressed as a theory of a law like 

relationship. A process of retroduction is discussed later whereby a 

generalised expression or developed theory is then used to explain the 

observed empirical facts. 

We can also see the. general empirical approach to research as 
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gradually unfolding over four levels of investigation. 

(a) the observational-descriptive level. 

By chance, or positive search, the recognition of some, as yet, 

unexplained phenomena or behaviour followed by a clear 
description of the nature of the observations and the conditions 

under which they are observable. 

(b) the explanation level. 

To deduce by suitable analysis and explanation, using proven 

methodology, whether the data, system behaviour, or the system 

characteristics could have arisen by chance, or are most likely to be 

the result of some underlying process. Ilien to postulate possible 

processes or mechanisms or models that could generate the 

system characteristics under the conditions in which they were 

observed. 

(c) the interpretive level 

To formulate appropriate hypotheses to test models against the -. 

observed system with a view to selecting and developing a system 

model that can be used to interpret the behaviour of the system to 

achieve greater understanding of its characteristics. This procedure 

includes seeking alternative processes such as stochastic evidence 

which supports( and indeed suggests) the choice of particular 

models. 

(d) the predictive level 

Establishing the boundary conditions within which the phenomena 
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is known to operate and hold true, including the specification of 

conditions under which the underlying processes converge to stable 

conditions. Also to clearly establish how far the results and 

conditions of operation can be extended into alternative systems for 

predictive purposes, 

2.1 The evaluation of extreme hypotheses. 

The graduation of empirical data by a particular theoretical model 

and the acceptance (or rejection) of the model, as that which explains, the 

regularity in the data, is what some authors refer to as the testing of 

extreme hypotheses. (in particular see - Ijiri and Simon [1977, page 

109]). It is argued by Simon and others, eg. Hanson (1961), that 

acceptance or rejection of a particular model using the classical non 

parametric methods of statistics, such as the Chi Squared test or the 

Kolmogorov Smimov test, is basically unsound. Their argument is that 

the burden of proof in testing theories of this type rest on disproving the 

theory on the basis of significant deviations from the law. If the deviations 

are not significant then the law is not rejected, or disproved, but more 
importantly neither is it proved. Simon also argues that many situations 

may exist where a law holds yet aberrant deviations may show significant 
differences as tested by the classical approaches, especially in cases where 
large samples are examined due to the size of the deviations. Ijiri and 

Simon then go on to define the law-finding process as - 

(1) Finding simple generalisations that describe thefacts to 

some degree of approximation. 

(2) Finding limiting conditions tinder which the deviations 

of the facts from generalisations might be expected to 

decrease. 
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Explaining why the generalisation 'shouldfit thefacts. 

Taking the process to the third stage and explaining why the 

generalisations fit the facts is called RETRODUCTION by Ijiri and 

Simon (op cit), after work by Hanson (1961), and this is clearly regarded 

by them as an important part of the law establishing process. Retroduction 

can be regarded as the process of going from facts to generalisations, ie to 

the law like relationships, and back again. The facts suggest the form of 

the generalisation (the law), but the generalisation must explain the facts. 

In the case of testing extreme hypotheses, Ijiri and Simon put forward 

the following argument- and procedure for the law finding and testing 

process- 

"We have examined several aspects of the problem of testing 

theories, and particularly those important theories that take the 

form of extreme hypotheses. In part our argument has been 

aimed at a negative goal to show that when we look at realistic 

examples front natural and social science, statistical theory is not 

much help in telling us how theories are retroduced or tested. As 

an alternative to standard probabilistic and statistical accounts 

of these matters, we have proposed that we take into account 

a whole sequence of events: 

The enterprise generally starts with empirical data, rather 

than with a hypotheses out of the blue. 

(2) Striking features of the data (e. g. that they are linear on a 

log scale with slope of minus one) provide for a simple 

generalisation that summarises them - approximately. 
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(3) We seekfor limiting conditions that will improve the 

approximation by manipulating variables that appear to 

affect it s goodness. 

We construct simple mechanisms to explain the simple 

generalisations- showing that the latter can be deduced 

from theformer 

(5) The explanatory theories generally make predictions that 

go beyond the simple generalisations in a number of 

respects, and hence suggest new empirical observations 

and experiments that allow them to be testedfurther The 

very process that generates a theory (and particularly a 

simple generalisation) goes a long way towardpromising it 

some measure of validity. " 

2.2 A branching -converging process 

Almost by necessity an empirical -inductive approach is likely to be 

iterative in the sense that starting with a simple observation, the need to 

explain and interpret may lead to the search for further empirical 

evidence to support findings and further the understanding of the system. 

Furthermore such a procedure is likely to become a branching process, as 

each step is likely to reveal awareness of other branches of investigation 

that could, and should be pursued. Inevitably at some stage in the process a 

framework needs to be established within which a more structured 

programme can be pursued so that the research process will be refined 

and developed in a more systematic way. 

The actual research process following an inductive approach may 

well be largely exploratory in the early phases, with no set objectives 
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other than to achieve greater understanding of the observations and 

empirical facts in fairly broad terms. It may even be prudent to delay 

setting specific objectives until a later stage of the research when low level 

inferences and conclusions have been drawn. This was the procedure 

adopted in this research, and a more systematic approach was only 
formulated when a better understanding of the use and nature of the 

lognormal distribution curve as applied to inventories was achieved. In a 

comparatively new area of investigation such as that presented here it may 

be difficult to plan the process in detail at an early stage. Only when a 

comparatively large area of understanding has been mapped out in terms 

of empirical observation and analysis does it become really possible to 

establish particular research objectives. It might be argued that this 

approach could be regarded as unsystematic. However, we argue that it is 

sound and scientific because the development of specific research 

hypotheses is delayed until our empirical observational knowledge of 

particular areas is much better developed. Indeed the development of 

initial inferences and preliminary working hypotheses do give strong 

clues and direction to valuable areas of further investigation and hence 

what additional information to seek and how to examine such evidence 

once we have obtained it. 

Once it became clear that analysis of usage values in the DAF 

inventory system strongly indicated the likely existence of some 

underlying stochastic process then a much broader systematic search of 

the literature was undertaken. There was two main approaches to this 

search. First the literature was examined to see what had been reported in 

fields other than inventory theory on the application of lognormal 

models. Related to this was the search also for stochastic processes that can 

lead to lognormal, or very similar models. The second main approach was 

to examine demand processes at a fundamental level and ultimately to 

search for links between the basic demand for individual items and the 

aggregated demand for a whole inventory. In view of the fact that the 
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inventory literature provided very little insight into possible stochastic 

processes relating to aggregate economic variates, the author had to 

research widely in the fields of economics, econometrics, biometrics, 

operations research, applied statistics, market research and buyer 

behaviour literature. 

2.3 Judging plausible theories. 

The empirical distributions observed in this research for parts 

prices, period usage values and volumes (both short run and long term) 

were all seen to be highly skewed. We have seen earlier in this chapter 

Simon's reasons for not relying on standard statistical tests alone to judge 

the validity of such distributions. In addition to Simon's views there are 

other considerations that put the use of standard significance tests in 

question in the case of highly skewed distribution. Although it depends on 

the value of the parameters of a particular distribution the highly skewed 

distributions seen in economics and business data usually have very long 

tails in the upper region. This is especially true of the majority of 

lognormal distributions. As a result of this characteristic the frequency of 

values in the upper tail region will be very small. One of the requirements 

of the Chi Squared test is that the frequency in any cell must be equal to or 

greater than five. If such a test is applied to a highly skewed distribution 

then, to meet the cell frequency criteria, much of the fine structure in the 

long tail is lost. (Mis is not a problem with the Kolmogorov Smirnov test 

however as we discuss in section 2.4 below). Choosing an appropriate test 

to differentiate between competing candidates to fit highly skewed data 

is not a straightforward situation, so we discuss this problem in more 

detail later in this chapter. Suffice to say this issue additionally supports 

the view that evidence must be sought from other sources to support a 

particular model and the process of retroduction should be applied to the 

law testing process. 
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A further perspective concerning the testing of theories involving 

fitting empirical data to statistical models has been provided by Aitchison 

and Brown (1957 ). Their view is that there are at least two important 

reasons for seeking a more fundamental basis for explaining the apparent 
description of a set of empirical data than relying on standard statistical 

tests of significance. First, by providing such a basis a clearer insight may 
be obtained into the underlying natural or sociological process, which in 

turn may suggest wider application of the system. Then second a 
knowledge of the elementary assumptions from which the law of 
frequency may be derived will enable modifications to be applied to the 

law to meet the needs of new circumstances. These same authors then go 

on to argue that it may be more satisfactory to use a system of frequency 

curves for which there is a plausible basis for the genesis of a particular 
distribution than a system which is solely just more successful in 

graduating the sample observations of empirical data. 

Aitchison and Brown's point above, which effectively says that 

success in graduation alone is not a sufficient criteria in choosing. a 

particular distribution, can be seen in the right perspective when one 

looks at the nature of distributions such as the Weibull and the RS. In one 

sense these distributions can be regarded as synthetic distributions, 

mathematically contrived to fit a wide range of data. The Weibull 

distribution, attributed to Walodo Weibull, is a very flexible two 

parameter distribution whose density function is of the form as shown- 

(x) =c exp 
[b][ 

In this form V is the shape parameter, and 'b' is the scale parameter. A 

few of the great variety of -forms 
it can take for different values of 'c' 
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are shown in the diagram below. It can be seen that when V has the value 

of unity the distribution is exponential, when V is 1.8 it is very close to a 

gamma distribution and virtually 'normal' at V equal to 3.5. A value of 
"c') around 1.5 will give a form very much like a lognormal model. 

Figure 2.1 

Various Weibull distribution plots 

f(x) 

variate x 

If the distribution does not start at zero then a third parameter '8' 

locates the distribution on the horizontal axis. The RS distribution 

reported by Dudewicz, Ramberg and Tadikamalla (1974) is a four 

parameter distribution of even greater flexibility than the Weibull. 

Almost any regular data set of the types that occur naturally, or as a result 

of sociological or economic processes, can be graduated by RS 

distributions by appropriate choice of the parameters; yet the data 

graduated may well have been generated by a well established stochastic 

process that leads to a known distribution. For example, the Poisson 

process of events occurring over time leads to the Poisson distribution of 
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event occasions per unit time provided the time period is short. Any slight 

aberration in the system may well lead to a poor fit of the data to a Poisson 

model yet the underlying process may still be Poisson. Under such 

circumstances the RS distribution may well provide a better fit to the data 

than the Poisson itself, and yet provide no basis at all for application to the 
data other than a good statistical fit by traditional methods of judgment. 

From the preceding discussion we have attempted to show that 

goodness of fit alone is not sufficient when attempting to find a model 

which explains the occurrence of regularity in empirical data. Ibus, for 

example, even though DAF period usage values indicated a strong fit to a 

lognormal model it was considered essential to research at this level to 

find confirmatory evidence by alternative approaches such as simulation 

and retroduction. 

Whilst this author has taken careful heed of the critical views of 
Ijiri and Simon, regarding statistical tests, and those of Aitchison and 

Brown, regarding the need to seek stochastical support , the traditional 

statistical methods were not ditched completely. It was felt that they still 

have a part to play, if only at the early stage of exploration and testing 

providing one is aware of their limitations in use. In later chapters we use 

both the Chi Squared and the Kolmogorov Smirnov tests quite 

extensively, but only as a support to the law establishing process. We 

discuss some of the important issues concerning goodness of fit tests in 

section 2.4. 

The complete procedure we have adopted in this work is formulated 

and shown in figures 2.2 and 2.3 which follow. 
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Figure 2.2 

Outline of the empm**cal data testing process 
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From figure 2.2 we can see that the observed empirical data and 

distributions are characterised by comparison with theoretical 
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distribution models. (Comparison point 1 in figure 2.2). These theoretical 

distribution models may in turn suggest the kind of stochastic process 

models that should be examined and ultimately tested against the observed 

empirical processes. (Comparison point 2 in figure 2.2). Support for the 

theoretical distribution models in turn is found from theoretical 

stochastic processes that are known to generate the theoretical distribution 

models. We seek strong independent evidence from the same system of 

empirical data and observed processes that the favoured stochastic process 

model is very likely to be operating and the loop of the research process 

of figure 2.2 is closed by applying supporting/confirmatory tests to the 

data sets to test for the particular stochastic process (Comparison point 2 

again in figure 2.2). 'I'lierefore before a particular theoretical distribution 

can be fully accepted as the correct distribution to use, it must also be. 

shown that a stochastic process exists that can generate such a model. In 

turn both the theoretical distribution model and the stochastic process 

model must explain the facts observed. The most promising theoretical 

distributions and stochastic process models together form the underlying 
basis of the structure of the 'proposed system models'. By the process 

of 'retroduction' our proposed system models are used to explain the 

observed empirical facts (Comparison point 3 in figure 2.2). The input 

evidence for plausible stochastic process models and theoretical 

distribution models is drawn from empirical and theoretical woýk 

reported in the appropriate literature sources. 

A second major stage we have used in the verification and 

acceptance of our proposed system models is to use these models to 

generate simulated data. We then compare this simulated data against the 

theoretical distributions and the original empirical data. Ibis is shown 

diagrammatically below in figure 2.3 - 
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Figure 2.3 

Stochastic model validation scheme 
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As will be discussed in chapter four a stochastic process model that 

leads to the lognormal distribution is the Law of Proportionate Effect. 

Hence the strong indication from empirical evidence that usage values are 

lognormal leads one to examine this process. In turn the conditions under 

which this stochastic mechanism is known to operate may suggest other 

statistical distributions (eg Yule), which should be examined as potentially 

competing candidates to graduate the data. Furthermore independent tests 

can be applied to the original data sets to support or refute the existence of 
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the Law of Proportionate Effect. By the process of retroduction the 

lognonnal distribution can be used to explain the facts seen. 

2.4 Goodness of fit tests. 

Because the testing of different statistical models was an important 

part of the work in research reported in this thesis we consider here some 

of the considerations to the choice and limitations of the usual goodness of 
fit tests. 'Me work of two particular authors is considered in some detail 

because of their extensive consideration of the problems and issues in 

choosing goodness of fit tests for testing highly skewed statistical 

distributions. 

The classical statistical goodness of fit test is the Chi Squared and it 

is probably the most widely employed in standard statistical analysis. Yet 

its use poses a number of methodological problems that we address 

below. It is a non parametric test and the criterion value of X2 ( Chi 

Squared) is calculated from the following formula- 

X2 
0EE 12 

where 0 the observed data frequency 

E the theoretically expected frequency 

for a given statistical model. 

The value of X2 is statistically distributed as a Chi Squared distribution 

and the test gives an overall measure of departure of the observed values 

from those expected from particular models. Strictly speaking the 
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criterion'value is only asymptotically distributed as a Chi Squared 

distribution for large samples( Easton 1975), but the departures from this 

condition do not appear to be critical. One of the major criticisms of the 

test is its use as a goodness of fit test in the case of highly skewed 
distributions. In a lengthy appraisal of goodness of fit tests Quandt 

(1966) has put forward four reasons why the Chi Squared test is unsuited 

as a goodness of fit test for such situations. - 

(a) "The test criterion X2 is sensitive to the particular 

grouping selectedfor the observations and in the case of 

closely similar hypotheses the answer might depend on 

what grouping was chosen. 

(b) The test is not as powerful as it might be if its validity 

rested on the assumption of some specific alternative, 

hypothesis; but it is precisely this kind of situation that is 

encountered when we wish to choose between, say, the 

Pareto and the Lognormal distributions. 

(C) The, test can not be validly applied if the expected 
frequencies are very small. This however, is precisely the 

case when we are interested in distributions with very long 

right tails. 

(d) The value of X2 may be small, indicating a goodfit, but the 

fitted cumulative distribution and the sample cumulative 

may still show very significant systematic divergencefrom 

each other" 

Easton ( op cit) took up these points up and went on to say - 
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"The first point may be accommodated by investigating 

the sensitivity of the test to data groupings. The secondpoint is 

a general one common to all applications of this particular test. 

However, point (c) is a key criticism and one which alone would 

preclude the use of X2 tests in the case of highly skewed 

distributions with very long tails. " 

Cochran (1954), amongst others, suggests that the problem is 

easily overcome by combining cells so that the minimum number of 

frequencies in any given cell is five or more. So in the case of 

distributions with long tails some of the cells in the critical long region are 

combined to achieve frequencies equal to or greater than five in the 

combined cells. However, as already discussed, this process results in a 

loss in fine structure of the distribution being examined. The Chi Squared 

test creates a further problem; in the case of very large samples any 

departure fromthe theoretical values are likely to cause the rejection of 

the null hypothesis due to easily discernible variation. We have already 

discussed at length Ijiri and Simon's (op cit) skeptical view regarding the 

use of goodness of fit tests to verify extreme hypotheses. According to 

these same authors empirical data sets that are collected from natural or 

sociological or econometric systems will almost always contain a certain 

amount of noise, which the test statistic is likely to measure as significant 

departures from expected values in large sample analysis. 

The Kolmogorov Smirnov test is also a non parametric test 

frequently used in goodness of fit situations. 'I'his too is appraised at 

length by Quandt, although he is less critical of it compared to the Chi 

Squared test. Since it involves comparing cumulative distributions it 

cannot be excluded on the same grounds as the Chi Squared test, and 

Quandt points out that it has two particular advantages over the Chi 

Squared test, namely- 
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(a) It is not necessary to combine any observations to attain 

cell greater frequencies so this makes it a more powerful 

test. It is reactive to all the fine detail. 

(b) It can be usedfor very small samples when the Chi Squared 

maybe quite impractical because of small frequencies in 

given groups. 

Now given a sample of 'n' observations x 1, x2, x3, etc. to xn and 

empirical and theoretical distribution functions S(x) and F(x) 

respectively then the Kolmogorov Smimov test statistic is given by - 

max. [S(xi) - F(xi)] 

In this formulation D measures the distance between the empirical and 

theoretical cumulative distributions. 'Me distribution yielding the smallest 

D statistic for a given sample would be declared the best fit to the sample 

data. However, according to Quandt ( op. cit. ) his points (b) and (d) apply 

also to this test and in addition he says that it has not proved possible to 

calculate a table of of critical values for the case where the parameters of 

the distribution are estimated from the sample. It is clear from Quandt's 

work that although he believes the Kolmogorov Smirnov test to be moýe 

powerful than the Chi Squared there is little reason for believing that 

either method is appropriate for testing extreme hypotheses involving 

highly skewed distributions. However, we argue that these issues are not 

a major problem in the case of the lognormal distribution because it win 

transform to the symmetrical normal distribution by taking the loge 

values of the variate of interest. The only major concerns are then with 

the test being very sensitive to fine departure from normality and with the 

small number of frequencies in the extreme tails. 

To overcome some of the perceived problems of the Chi Squared 
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and Kohnogorov, Smimov tests Quandt proposed an alternative method 

in his 1966a paper which treats the sample points of the cumulative 
distribution as order statistics. If F(xl) and F(x2) are the values of the 

cumulative distribution then the critical sum 'S' is defined as - 

-2 

S= 
, 

[IF(xi) F( 
fori =1 ton+l 

The parameters of the fitted distribution are those which minimise S and 

the critical values for S, in probability terms, are obtained by sampling 

experiments. 

However, Easton (op cit) has criticised this approach on the following 

grounds- 

" There are two majorproblems involved in employing this test. 

Firstly sampling experiments have to be carried out to construct 

tables of critical values, for the appropriate range of values, for 

each distribution fitted. This would represent an enormous 

amount of computation for the size of the data in the current 

research ( author comment -Easton here refers to his own data 

sets). This is in itself not sufficient to reject the test. Secondly, 

the numerical minimisation technique is also rather suspect. 

Quandt comments that some of the results obtained in his 

research on size distributions offirms are inconsistent and he 

suggests that local, rather than global, minima may have been 

reached". 

Quandt further draws attention to two important attributes of 

goodness of fit tests. Namely the 'closeness of fit'as measured by S at the 

minimum, and the 'randomness of fit' which can be measured in several 

ways that Quandt demonstrated. The value of the randomness of fit can 
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be seen by examnuing the following table. 

Table 2.1 
Fitting models to Empirical data 

size observed 
frequency 

deviations 

model 1 
deviations 

model 2 
80 -5 6 

2 28 -3 -3 
3 13 -1 1 
4 8 

-1 0 
5 5 0 0 
6 3 0 -1 
7 2 1 1 
8 2 1 0 

-9 
1 0 1 

10 5 4 3 

total absolute I 16 16 

L- 
deviations 

From the above tabulation although both models give the same 

degree of 'closeness of fit' as measured by the total deviations, the 

'randomness of fit', is clearly quite different. The variations shown by 

model one are more systematic than those of model two. Such systematic 

variation is usually regarded as an indication of a wrong or poor fitting 

model. The more random variation shown by model two is a much more 

desirable attribute that is likely to arise mainly from random noise. Even 

in cases where the random noise is quite marked the model giving this 

might be regarded as a better choice than one where the closeness of fit is 

better, but where undesirable systematic variation is present. 

Easton (op. cit. ) suggested two goodness of fit measures in an 

attempt to overcome the short-comings of the standard measures. First he 

proposed using the mean absolute deviation defined by - 
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MAD = 
I: lo-el 

n 

where o= the observed frequencies 

e= the expected frequencies 

n= the number of cells in the tabulation. 

In this author's opinion this test will give problems of interpretation as it 

is not entirely clear what one is comparing, also the test statistic will vary 

considerably according to the number of cells chosen. Easton also 

proposed using a relative mean absolute deviation (RMAD) as the test 

statistic and defined this as - 

llo-el 
J: 

e 
RMAD = 

I- 
/- 

nn 

Additionally Easton'proposed a RMAD measure just for the tail of 

a distribution by, in general, leaving out the large first cell, which in the 

case of highly skewed distributions contains by far the greater proportion 

of frequencies. The justification for this approach is that in attempti . ng to 

discriminate between competing distributions that are highly skewed it is 

the differences in their tails that is critical. Easton's RMAD(tail) is based 

on the measured test statistic below- 

RMAD(tail) = 

11o 
- el 

for n=2 to m (m = number of cells) 
e 

It is claimed by Easton that these measures are an improvement 

over the classical tests. The concept of a test that focuses on differences 

Page 65 



Chapter 2 

solely in the tail region of highly skewed distributions has significant 

merit, and is an issue we will return to in later chapters particularly when 

we consider the Negative binomial and Stuttering Poisson distributions. 

2.5 Conclusions and Research Organising Framework 

We have examined a number of methodological issues in this 

chapter. Particularly important are the conclusions of both Ijiri and 

Simon, and Aitchison and Brown, that explaining regularity in empirical 

data is far more than just testing models by goodness of fit tests. Stochastic 

evidence must be assembled that goes some considerable way to 

explaining the facts observed in terms of process models. In turn the 

process models suggest likely theoretical distribution models that should 

be tested against the empirical data before they can be accepted as the 

correct models to use. This is the process called retroduction by Simon. 

We have considered some important aspects of the two principal 

non parametric methods of testing data and considered the criticisms of 

various authors. In the light of such criticisms these methods have been 

used in later chapters with a clearer knowledge of their limitations. As a 

result goodness of fit tests have played only one part in the wider process 

of developing and testing models against the various empirical data used 

in this work. We have relied heavily on the processes of retroduction, and 

to a lesser extent on simulation, to provide evidence that the models 

developed in this research explain the empirical facts observed. Finally 

we have examined empirical data from other spares systems and tested 

such data against the models developed in this thesis. Using figures 2.2 and 

2.3 we are now able to present the complete organising framework for the 

research process adopted in this work as shown in figure 2.4 below. We 

start the process in the next chapter by presenting a literature review of 

the essential background knowledge of the lognormal distribution. 
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Figure 2.4 

The Research Organising Framework 
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The-Lognormal Distribution, History, 

Occurrence and General Properties. 

3.0 Introduction. 

In this chapter we begin the process of setting the necessary 
background development and theory of the lognormal distribution. We 

also examine the range of applications to which th 
,e 

distribution has been 

put in various business and economics fields of study and enquiry. A 

review is given of the rather unique properties of the distribution and we 

show how these can be used to set aggregate inventory standards based on 

the pioneering work of Robert Goodell Brown. 

3.1 Early History 

The historical development of the lognormal distribution is 

confused, but according to Aitchison and Brown (1957) the origin of the 

development of a definitive theory is probably attributed to McAlister 

(1879), who apparently based his work on a suggestion by Galton (1879). 

Galton himself had apparently derived his ideas based on the so called 
'Weber Fechner Law' relating responses to stimuli, which asserts that the 

response is proportional to the logarithm of the stimulus, Weber (1834). 

Pearson (1895) evolved his system of curves, which in 

contemporary statistical theory forms the basis for classifying theoretical 

statistical distributions, including highly skewed distributions. In 1903 

Kapteyn published a text on the use of skewed frequency curves in biology 

and statistics in which he laid down the foundation for an extensive 

system of frequency curves. According to Aitchison and Brown (Op. cit. ) 

Kapteyn apparently firmly established the genesis and existence of the 

lognormal distribution in this work. Kapteyn also developed a machine 
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for generating samples from lognormal populations. There then followed 

heated exchanges between Pearson and Kapteyn, because according to 

Aitchison and Brown (Op. cit. ), Pearson had a general mistrust of the 

transformation techniques used by Kapteyn. This exchange is now 

regarded as a classic debate in the early history of the development of the 

theory of the lognormal distribution. In 1917 Wickersell independently 

developed a theory of the genesis of the lognormal similar to that of 

Kapteyn and he used the method of moments for parameter estimation 

purposes. Since that time, and up to the milestone publication of 

Aitchison and Brown (1957), the lognormal function has been used in the 

analysis and modelling of a wide variety of naturally occurring 

phenomena, and many empirical distributions have been shown to fit the 

lognormal very well. Aitchison and Brown (Op. cit. ) have compiled 
'a 

detailed listing of work and discussions of the use of the lognormal 

distribution in areas such as biology, astronomy, sociology and 

economics. Since 1957 the lognormal has been found to have utility in a 

wide variety of technological and economic situations. 

3.2 The general properties of the lognormal distribution. 

If we consider a positive variate X such that 0<X> oo and 

Y ý-- loge X, then the variate X is lognormally distributed if Y is normally 

distributed. Aitchison and Brown (1957). [Note: we use capitals for 

variates concerned with populations eg X, and lower cases for sample 

variates eg Y is consistent with the work of Aitchison and Brown]. 

The lognonnal distribution has a probability density function given 

by - 

a2 

(109,1 
X exp 

------- 3.1 a [2-; r 2 
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where a is the shape parameter of the distribution and 
ju 

is its location 

parameter. a and It are also the standard deviation and mean respectively 

of the transformed distribution, that is 109ex. The distribution has 

moments of any order. If the jth moment about the origin is denoted by 

Ai then - 

,i. xid(x) flo 

Ile mean a of the distribution is given by the first moment about 

the origin -I 

eju +1/2a2 

--------------------------- 3.2 

and from this it foHows that the variance p2 is given by- 

e ju+112a 
2 

(ecr 
2 

--------------------- 3.3 

As the shape parameter a of the distribution approaches 0 the lognormal 

density function approaches the normal density function, and as the 

parameter a increases in value the lognormal function becomes 

progressively more skewed as shown below - 
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Figure 3.1 

Three different lognormal distributions 
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The interpretation of the location parametery is straightforward 

as it is the logarithm of the geometric mean of Y. The shape parameter 

cr is of much greater significance and value to this research because of its 

relationship with the proportion of value accruing to a given proportion 

of items. 

The property of the lognormal distribution that is of special value 

in inventory management is that if a variable 'x' is lognormally 

distributed then any power of Y, say xk is also lognormally distributed 

with the same standard deviation, Aitchison and Brown (1957). 

Furthermore the average of any power of V, say again Xk , is given by 

the function : 

Xk f (x)d(x) = Ik e 
k(k-1)(a 

2 
/2) 

0 -------------- 3.4 
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In the case of inventories the average value of x could represent 

inventory usage values or sales in a particular inventory. Thus it can be 

seen from 3.4 above that the average of the kth power (ie '7') is equal 

to the average value of Y raised to the same power 'k ' times the factor - 

e 
k(k_l)(a2l2) 

that just involves the power 'k ' and the shape parameter a of the 

lognormal distribution. It is the formulation 3.4 above that enables 

valuable aggregate inventory standards to be set and it was R. G. Brown in 

1959 who first recognised this and its significant value in inventory 

management. This is shown in a later section of this chapter. 

Because of the importance of function 3.4 above the proof, with 

minor modifications, as given by R. G. Brown (1959, page 199, ) is given 

here - 
First let Xk =e 

kInx 

Substitute this relationship in the distribution function for the lognonnal 

distribution 3.1 then we can write - 

(x)d(x) =I exp 
(In X_ ý1)2 dx 

x (T -12-ir 

12 

(72 
-1 

From which we can write 

exp- 
-2 oýk In x+ In 

2x-2,4 InX_M2 
dx 

2 C2 
011 
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By completing the square in the exponent part of the formula the result 

can be reduced to - 

I 

then 
explyk+ 

2 

]f 
f'(x)dx 

------------ 3.5 

00 

0 

where f (x) is another lognormal distribution with the same standard 

deviation a and new mean given by- 

It'= y+ k a2 ------------------ 3.6 

Now since the sum of the probabilities must equal zero then - 

00 
f '(x) dx =1 

and, therefore xkI=e 
pk+(k2a2l2) 

Now since the average value of x is - 

X=e 
U+a2 /2 

and 
k=e ku+ka2l2 

now if we write 
-Xk 

e 
ku+ka2 

e 
k(k-1)(a2 /2) 

22 

xke 
k(k-1)(a 12)+ku+ka 

from which it then foRows that - 

-k k(k-1)(cr 
2 

/2) 

=. T e 

------------------ 3.7 
- 

------------------ 3.8 

------------------ 3.9- 
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which is function 3.4 as already given above. Also from this relationship 

we can find the variance of the usage values because we can write- 

Variance (x) =X2 (e 
a2_ 

1) 
-------------- 3.10 

This in turn arises out of functions 3.2 and 3.3 and therefore the 

standard deviation crx of the observed usage values is related to the 

standard deviation of the logarithms of x, ie a by the relationship - 

ax =X - 1) 
--------------- 3.11 

ýiýei) 

Ibus if the distribution of say period usage values can be shown to 

fit a lognon-nal function then the entire population can be estimated from 

just a knowledge of the mean of the population and the shape parameter 

(a ) of the appropriate lognormal function. This is demonstrated in 

section 3.5. 

The parameter cT is also the standard deviation of the logarithms of 

Y and hence it is a measure of the dispersion of the variate 109ex- In 

inventory applications some authors seem to prefer to measure the 

dispersion by the so called STANDARD RATIO designated as p. [ In 

particular, see Brown (1959), Schary and Howard (1970, page 32), and 

Bestwick and Lockyer (1982, page 122). ] p is related directly to (a) by 

the relationship - 

LOge P ": 6 ---------------------- 3.12 

The major and perhaps only merit of the standard ratio (p ) is that it can 
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be readily determined directly from the slope of a graphical plot of data 

on lognormal graph paper and hence it provides a quick way of 

determining the value of cT . 
However, there-are more efficient ways of 

measuring this parameter and for use in inventory calculations a more 

accurate value of a is required than that given by graphical measures. 

The lognormal distribution has a number of valuable reproductive 

properties as reviewed by Aitchsion and Brown. We give here just a few 

that are directly useful to aspects of the work in later chapters. 

If a variate Y is lognormal with parameter (y 
, or 2) then the 

variate a xP is also lognormal with parameters 

(a +p y, p 2ar 2) providing a and P are constants. 

(ii) -'If'a 
variate 'x 'is lognormal with parameters ( y, a2) then 

l1x is lognormal with parameters (-, u, cy2). 

If x1 and x2 are independent lognormal variates with 

,U1, 
C21 )and (U 2 

2, a2 2) then the product parameters ( 

XlX2 is lognon-nal with parameters (U 1+. u 2, a 21 + a2 2) 

(iv) From (iii) above it follows that if the product of two 

independent variates x1 and X2 is lognonnal then xI and X2 

are each both also lognonnal, accept for the special case 

where one of the variates is a constant, then the other is 

lognormal 

3.3 
, 
The Three-Parameter Distribution. 

The lognormal distribution can be extended by the introduction of a 
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third parameter. It may be that a simple displacement of Y, say xi = (x - 

, r), is lognormally distributed and not the variant itself. The range of x is 

then seen as (r<x< oo) , where the distribution is displ aced along the 

(x P axis by the value of r as shown in the diagram'below : 

I Figure 3.2 

0.025 

0.020- 

f(x) 

0.015- 

0.010- 

00 
.0 

OLý 

A three parameter 
lognormal distribution 

Variate x displacement r 

The two parameter distribution is then the special case for which 'T 

= 0. Since the parameter, r, defines a lower bound to the range'of x it is 

usually termed the threshold of the distribution. 

In certain circumstances the value of c can be found on 'a &iori' 

grounds, in which case it may not be considered an unknown and 

therefore does not need to be estimated. Should this be the case x-, r 'may 

be considered in place of x; when a value of x is then given the 

corresponding value of xi is immediately known. xi has all the 

properties of the two parameter distribution of x and no new theory 

arises. 
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If however, r is an unknown the estimation procedures developed 

for the two parameter case are not directly applicable to the distribution 

of x-v. Since the frequency curve of (x - r) is that of x displaced by r 

, the location parameters are, therefore, each increased by 'r , the mean 

being at a +, r where a is defined by equation 3.2. The median is at 

x=r+ eg and the mode at x=r+ eY - 6. The moments about r 

are: - 

(x -, Z)k = exp[k g+ 112k 2er 2] 

So that the moments about the mean and hence the standard deviation 

remain unchanged. 

3.4 Truncated and Censored Distributions 

It is possible to consider data that is truncated at some particular 

value such that the remaining data can be treated as lognormal. Aitchison 

and Brown(op cit) give the appropriate methods for testing, such 

situations and for parameter estimation. Censored data is treated similarly 

where the occurrence of particular values is not possible or are not 

available. We will not consider the tools for testing and parameter 

estimation here as they are not used in this work. However, Aitchison and 

Brown also discuss a special case of censored data which they refer to as 

'The Distribution of Counts'. (Aitchison and Brown op. cit. -page 92). 

This is of significant value to our work because it can be used to model 

discrete data by a lognormal function; or what we have referred to in 

chapter six and other places in this work as an integer lognormal form. 

The general fonn of such censored distributions are as given below : 
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r+l 

Or f 
dA(x: 

2) 

r 

ln(r+l) 

Or= f 
dN(y: p, 

Inr 

According to Aitchison and Brown such distributions occur in 

experiments on counts of insects, for example aphids on leaves; and other 

cases such as spores on culture plates. In chapter six in this work we 

consider some discrete demand volume data that behaves in all respects as 

if drawn from lognormal populations, and therefore the validity of 

accepting discrete data as lognormal is very important. Aitchison and 

Brown then go on to say that- 

"The number of zeros in the distribution [the distribution of 

counts] appears as the part of the normal distribution in the range 

(-w, 0). The treatment suggested by Thompson(1951) is to 

consider the variate Y where 

P(Y< or= y) ý=N(y: y, a 

and to estimate the parameters y and afrom the transformed 

sample. The transformation in this case is- 

Y"10ge(r+0 

and the problem really concerns a normal distribution, censored 

at the origin for which the censored portion appears as a discýete 

probability mass at the origin". 
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3.5 Some application of the lognormal distribution. 

Iý This section briefly reviews some of the applications of the 

distribution as give in the literature. It is not a comprehensive survey of 

all known applications, this would be far too widespread and voluminous. 
The review has been limited to selected areas of the business and 

management literature to show the range and flexibility of the function 

and the value it has as a statistical distribution. 

3.5 (a) industrial applications 

In the work published by R. G. Brown (1959) and (1963), as 

mentioned in chapter one , 
it was demonstrated that finished goods 

inventories (specifically spare parts) when measured by their period 

usage values can be modelled by lognormal functions. Brown (1959) has 

also shown, by using the relevant parameters of the fitted lognormal 

curves and some of the properties of the lognormal distribution, how 

valuable aggregate inventory standards can be calculated. [This valuable 

finding will be discussed in more depth later in this chapter] - 

In a study of service times in a variety of systems Horvath (1959) 

noted that the service times at a tool crib and in a library could be 

satisfactorily modelled by the lognormal distribution. This work is of 

interest because it was time intervals between events that were shown to be 

lognormal distributed and not the events themselves. 

Bovaird and Zagor (1961) have modelled equipment downtimes in 

complex electronic systems and they found that lognormal models 

provided a good fit to the empirical data they analysed. Furthermore they 

used measurements of the parameters of the particular lognormal models 

to predict the likely downtime distributions to be expected in new 
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equipments. 

More recently Nickerson (1973) et al. have discussed the use of 

lognormal functions- in a paper concerned with the design of fishing 

trawlers, although certain aspects of the work and methodology has been 

criticised by Coleman and Saipes (1977) as being unsound. Husband and 

Schofield (1976) have used the lognormal distribution with good success 

to model pay'structures in chemical and engineering companies, although 

on what grounds they chose the lognormal was not made clear. 

ý 3.5 (b) income distributions 

The early classical approach to the modelling of, - income 

distributions followed the pioneering work of Vilfredo Pareto (1897) 

using his now classic Pareto curves. Developed somewhat later, but 

parallelling Pareto's work, several authors have used lognormal 

functions to model and describe income distributions in a variety of social 

and economic groups and communities. In particular, Kapteyn (1916), 

Kapteyn and Van Uven (1916) and Gibrat (1931), and more recently 

Aitchison and Brown (1954), Lyndal (1959) and Thatcher (1968). 

According to Easton (1974) the generally accepted position with regard 

to modelling income distributions is that while the lognormal distribution 

has been shown to provide a good overall fit to empirical income 

distribution data the Pareto distribution (of the first kind) provides a 

better fit in the upper tail of most empirical distributions seen. 

3.5 (c) the sizes of firms 

There is now an extensive literature on the distribution of sizes of 

business organisations. A number of authors have claimed that empirical 

data on firm sizes can be modelled by lognormal functions under 

specified circumstances. In particular Hart and Prais ( 1956), Simon and 
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Bonini (1958), Nelson (1963), Pashignan. (1966), Quandt (1966), 

Silberman (1967) and Ijiri and Simon (1977). The general view appears 

to be that the lognormal distribution can provide a description of the size 

of enterprises provided the so called 'Law of Proportionate Effect' 

governs the growth rate of the firms, and that entries and exits to the 

industry remain constant. These points are considered in more detail in 

chapter four which is concerned with the Law of Proportionate Effect and 
its importance to the genesis of lognormal functions. 

Easton (1975) has modelled the industrial purchase size of 

distributions of industrial organisations for a number of industries and 

he found that the lognormal distribution provides a good fit to single 

period purchase decisions. The fit was not good and was deemed failed 

however, for multiple periods. Easton (op. cit. ) made a very careful 

comparisons in his work between the lognormal and the Yule, Pareto, 

Gamma and Negative Binomial distributions and he concluded that both 

on statistical and stochastic grounds that the lognormal was the 

appropriate one to use. It was in fact after reviewing Easton's work that 

this author was first made aware of the possible use of the so called 

Poisson Gamma model in this current work and also lead this author into 

the literature on consumer purchase theory. 

3.5 (d) purchase theory 

In a market research study Lawrence (1980) has shown that the 

lognormal distribution is a satisfactory model to represent purchasing trip 

frequencies in consumer goods markets. In particular his study was on 

dentifrice purchasing in US markets. The research reported was also 

claimed to be part of a larger research which postulates that the time 

between successive purchasing events is lognormally distributed at the 

individual purchaser level. The same author also, interestingly, 

acknowledged that the use of the lognormal in his study conflicts with the 
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wealth of modelling work in consumer repeat purchasing studies using the 

Poisson Gamma model (to be discussed in Chapter five). However, 

Lawrence's empirical work is very convincing in terms of the degree of 

fit between empirical data and the theoretical frequencies of the 

lognormal distribution although this work is rather light in terms of 

stochastic support. Lawrence also justified the use of the lognormal, 

distribution as a continuous distribution to describe discrete events, by 

using the distribution of counts theory. 

3.5 (e) financial theory 

Hilliard and Clayton (1982), in an essentially theoretical study of 

the financial returns from a portfolio of investments, assumed that the 

lognormal distribution of returns was the appropriate model to use based 

on empirical work of Breiman (1961). However, a suitable argument 

using fundamental stochastic grounds was not presented in their work. 

3.5 (f) inventory theory 

The use of the lognon-nal distribution in inventory theory has been 

reported in two main areas, (i) as a model of demand distribution in 

successive time periods and (ii) as a means of setting aggregate inventory 

standards based on the original and milestone work of R. G. brown 

(1959). 

In the first case it has been demonstrated by Holt, Modigliani, Muth 

and Simon (1960) that the sales rates of a number of selected finished 

product items in successive time periods can be modelled by lognormal 

distributions. In the mainly consumer product examples quoted by these 

authors the lognormal was reported to be a marginally better fit than the 

gamma distribution and much superior to the Poisson distribution. 'Mese 

latter two distributions are often the models of first choice to represent 
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sales rates in many product fields. It is of interest to note that the use of 

the lognormal distribution in the work quoted by Simon and, Muth was 

primarily justified on goodness of fit grounds, 'yet is was Simon, who 

subsequently in later work [eg 1jiri and Simon 1977) ] was so critical of 

relying'on goodness of fit tests alone to justify the use of a model to 

graduate empirical data. Lewis (1975) has briefly discussed the value of 
'the use-of the lognormal distribution instead of the normal distribution in 

modelling inventory demands during replenishment lead times'. 

Tadikamalla (1964) has also discussed and shown in his work that the 

lognormal can prove to be a satisfactory model of lead time demand. 

A perusal of the inventory theory literature will show however, 

that many different skewed distributions have been proposed and used to 

model demand in successive time periods. A factor that has to be 

considered is whether the lead time itself is regarded as fixed or variable. 

In turn the exponential, Poisson and various modified Poisson models, 

especially the so called 'Stuttering Poisson', model have been proposed 

and used for the fixed lead time case by many authors. For variable lead 

times the gamma, Negative binomial, Weibull, as well as the lognormal, 

are all examples of distributions that have been suggested and reported by 

various authors. Lewis(op cit) has discussed the fact that as one generally 

moves from the retail level through the wholesale level and back through 

the distribution channel towards the manufacturers, then period inventory 

demands tend to become progressively more skewed from normal 

through Poisson to exponential in form. What we can conclude from the 

foregoing discussion is that given the wide diversity and behaviour of 

industrial distribution channels and the variety of products that flow 

through them it is not difficult to see the opportunity to specify many 

different functions to model item demands. Tadikamalla (op. cit. ) has also 

pointed out that the lognormal, Weibull and gamma distributions for 

example, can look very much alike when their means and variances are 

the same. Hence the conclusion is that depending on one's choice a case can 
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be made for one or the other. However, as we have already discussed in 

chapter two, empirical evidence and goodness of fit alone are not 

sufficient grounds to make a strong case for a particular model. 

More recentlY Bagchi (1987) has attempted a classification of 

functions, that include the lognormal, to model lead time demands and he 

has come up with a novel system of compound distributions for the lumpy 

demand variable lead time case. In particular Bagchi showed that three 

variables must be considered, the 'Order Intensity'( the number of orders 

placed at each demand occasion), the 'Order Rate' (often Poisson in 

independent demand cases), and the lead time variability. 7111e particular 

combination of distributions used for each of these variables will 

deten-nine the overall lead time distribution of demand. For example, the 

'Lognormal Poisson Gamma model' (LPG in Bagchis' terminology) 

would have lognormal order size, Poisson order rate and a gamma lead 

time. Suffice to say that among the many skewed distributions that have 

been considered in modelling item sales demands the lognormal is one 

that has found favour with some authors. 

3.6 The use of the lognormal distribution to set aggregate 

inventory standards. 

The value of the lognormal distribution to set aggregate inventory 

standards rests primarily on equation 3.4 previously given ie 

k 
=yk e 

k(k-1)(a 2 /2) 

Although the underlying theory of this was given by Aitchison and Brown 

(1957) it was, as already discussed, R. G. Brown (1959) who made the 

intuitive leap to recognise how to make use of this theory in the context of 
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inventory calculations to determine aggregate inventory standards. As 

previously stated according to the above function the average value of the 

k th power -of a lognormal variate Y is equal to the average value of 'Y 

raised to the same power k times the function 3.4 already given ý- 

exp[k(k-1)(cy 2/2). This was an extremely valuable phenomena in 

inventory analysis applications because many inventory calculations 

involve the use of power functions. The classical economic order quantity 

model and its many variations all Involve power functions and can, in 

most cases, be reduced to the simple form- 

EOQ = c(UV)' -------------------------- 3.13 

where c= constant 

0.5 

UV = the usage value of each item. 

Thus if the usage values are lognormally distributed across an 

inventory range, then by just knowing the average value of the usage 

values and the shape parameter of the fitted lognormal distribution, as 

will be shown below, the total investment in cycle stock can be calculated 

for the entire range. 

It is not the intention in this thesis to review aspects of inventory 

control theory such as the many models that have been researched and 

developed to control inventories. The literature is extremely rich in a 

variety of models and decision systems relating to many different 

operating circumstances. Amongst the texts which provide excellent 

starting points for research into modelling procedures are Hadley and 

Whitin (1963), Peterson and Silver (1979) and Lewis (1981). We will 

consider here only elementary models as an illustration of the use of the 

properties of the lognormal distribution. 
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3.6 (a) calculation of aggregate cycle stocks 

Economic order models are still extensively reported in the 

literature on statistical inventory theory and they form the basis of 

reorder calculations in most of todays inventory control computer 

programmes. 7hus in most systems under statistical inventory control the 

cycle stocks are proportional to the order size as calculated by an EOQ 

formulation. In the simple case of a reorder level policy with 

replenishment lot sizes given by the most basic of all EOQ model the 

average cycle stock will be 1/2 the EOQ. 

Thus from - 

EOQ = -ýF(-W ,, 
R / ChP) -------------- 3.14 

where R= annual item demand 

CO = the cost per order 
Ch = the holding cost as a fraction of P 

P= the item price 

Then the average investment in cycle stock volume (AICS ) will be given 

by - 

EOQ = 1/ 2-ý(-W,, R/ ChP) 

Inventory fluctuations for the majority of items in an independent demand 

inventory situation will be as shown in the diagram below - 
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Figure 3.3 

Stock l6vd 

Time 

Now from equation 3.11 above, the value of the EOQ lot size will be- 

EOQvalue = P, F(2CoR -IC,, P) 

or EOQvalue = PV(-2C,, RP / Ch p2) 

and EOQvalue = -ý(--W ,, 
S / Ch) 

where RP =S the usage value so we can write - 

EOQvalue = ý(W,, / Cj, )-, ýFS 

Now S is the period sales rate or usage value and this fonnulation is 

exactly equivalent to equation 3.13 above with the constant V being equal 

to 4(2CO ICh )- 
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Assume now that the 'S' values for an entire inventory range of 'n' 

items are lognormally distributed with shape parameter a, and that the 

value of the average sales value is y. Then from this information the 

value for the investment in cycle stock for the whole range of 'n' items can 

be calculated from equation 3.4 ie :- 

xk =Xk e 
k(k-1)(a2 /2) 

Then by substitution we have that average investment in cycle stock 

WCS) over 'n' items is given by- 

AICS =1/ 2[n(VY, -IC, )(ýý)] 

By replacing 
SO. 5 by 90-5 

and using equation 3.4 we can write - 

AICS =1/2[n (Nr2- -C,, l Ch )][90,5(e k(k-1)112a' 

----------- 3.15 

Once we have the average value of S, with k equal to 0.5 
, then all 

we need specify here is the number of items 'n' to determine the AICS, 

because the values of the constants a, Co and Ch 
, are all known. The 

AICS will then have been calculated without recourse to a complete 

enumeration of all items in the inventory range. If W runs to tens of 

thousands of items, which it often does in spare parts systems ( sometimes 

even hundreds of thousands), then a considerable amount of computation 

time is saved. A similar procedure can be used to calculate investments in 

safety stock, because as will be discussed below, such calculations can also 

be based on power functions. Hence total stock investments can then be 

determined. 
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3.6 (b) -- calculation of aggregate safety stocks 

It has been shown by many authors that the dispersion of demand 

(usually measured as the standard deviation) in a time period T can be 

related to the actual level of demand by a formulation of the type shown 

below [see for example Holt et. al. (1960), Brown (1963), Hadley and 

Whitin (1963), Schary and Howard(1970) and Peterson and Silver 

(1979). ] [We also demonstrate this relationship with DAF data in 

appendix three]. 

a,,, = Y-u 

where crs. t= the standard deviation of demand of Sin period t 

9= the average sales rate, or usage values. 

a, and y. are empirically derived constants. 

The empirical constants are normally estimated by regression analysis of 

many pairs of or s. t and 9 values. 

In many simple reorder level systems the safety stock is often set to 

equal a multiple of the dispersion of the period demand (usually the 

standard deviation). Hence using the lognonnal properties it is possible to 

calculate the total investment in safety stock for an inventory of 'n' items 

based on calculations just for the average item. Thus using equation 3.4 

for the calculation of the total investment in safety stock (TISS) we have - 

TISS =n 
[(sf 

)a (Y)" (eýl W -1)1/2 c2 )] 
----------- 3.16 

where sf is the safety stock factor (ie the number of standard 

deviations to give the appropriate service level required from the 

system). 
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give us the overall investment in stock based on a system following a 

simple reorder level / EOQ approach. The same principles and basis 

formula can be applied to many, of the more sophisticated method of 

controlling independent demand inventory items; it only remains for the 

analysts and management scientists to make the applications. 

3.6 (c) application to sub groups of inventory 

The same principles shown above can be applied to sub groups of an 

inventory range. For example, inventory managers will often prefer to 

set differential service or investment levels for inventory sub groups 

related perhaps to an ABC type categorisation. All one need do is 

determine the number of items in the appropriate sub group of the 

inventory range, and the average sales rate for that sub group and then 

apply the lognormal function to each sub group separately. 

For example let us consider the situation where the cycle stocks of 

the 'A' class group in an ABC classification are under control by use of 

an EOQ model to cover shortage costs eg- 

EOQ 
[LRC, 

cl 

where R =annual demand 

C 
S=setupcost(=Co) 

Ci= holding cost/itern/unit time 

C 2"": shortage cost/item/unit time 

(see Wild (197 1) for the derivation of this fonnula) 
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Now the value of this formulation will be- 

C C cl 
EOQ =P 

L2R ýC, [St 
+C2] 

Cl 

Where P= unit price of item i 

hence we can write the fon-nula as- 

EOQ = Pj[ 
P2c, 

II 

cl 

Where Ci= holding cost fraction (ie C, =P *C j) 
Thus 

EOQ = 
sc Flýýcis11 

-1 C, 

EOQ = (S)0*5 
c 

F[-" 

cci 
S 
111 

,1 

where as before S= RP 

Now if 'n' is the entire inventory range and 0.2n is the top 20% of 

items (ie A class items based on a usage value ranking), then, if we 

calculate the average value of S for this fraction we have the information 

necessary to carry out aggregate calculations for cycle stocks in the same 

manner as before, but now for the top 20% of items, by use of the 

formulation- 
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k(k-1)1/2Cr2 )], 

F[ýCs 

I 
+C2] 

AICS = 1/ 2(0.2n)[90*5(e 
Ci 

i 
cl 

i 3.6 (d) accuracy of the lognormal methods 

- One of the great attractions of using the properties of the 

lognormal distribution to measure aggregate inventory standards is that it 

can be extremely accurate, providing the underlying variate which the 

calculations are based upon is truly lognormally distributed. Wharton 

(1975) demonstrated in his paper that providing usage values are 

lognormal, then aggregate inventory calculations to within 2% to 4% of 

the true values calculated by complete enumerations are quite feasible, 

even using data where there is some departure from lognormality in the 

extreme tails of the distribution. When the data is a very close fit 

throughout the distribution then an accuracy to less than 1% error can be 

achieved. This makes the use of the lognormal distribution valuable and 

efficient for a large variety of inventory calculations where answers 

could otherwise only be obtained by complete enumeration. The latter 

could be extremely tedious and time consuming in cases where the 

inventory is very large and it would almost certainly require special 

programming. Furthermore, Wharton also showed that because of the 

highly skewed nature of lognormal variates, aggregate calculations based 

on various sampling methods can yield errors larger than 10% of the true 

population value. Ibis was a valuable observation and on this basis alone 

one could justify the use of the lognormal methods for aggregate 

calculations where the variate of interest can be proven lognormal. 
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3.7 Literature applications of lognormal functions in 

ý inventory control. I 

,. The use of the properties of the lognormal distribution are not 

limited to setting aggregate investment levels, a variety of other valuable 

relationships and calculations are possible. However, only a 

comparatively small number of authors have published work on the use of 

the, lognormal distribution of usage values in inventory control 

applications. Of these only Brown (1967), Heron (1968), (1970), (1974), 

(1976), (1978) and (in Wild 1981 ed. ), and Schary and Howard (1970) 

and (197 1) have really extended the applications beyond the use in setting 

simple aggregate inventory standards. Even amongst these authors -the 

proposed applications and various inventory norms that have been 

developed use only the basic theory of the lognormal as applied to usage 

rates. Very little by way of further basic theory has been advanced. We 

consider some of the more valuable developments in the following 

sections. 

Heron (1974) has shown how cost factors for reorder costs, cycle 

stock carrying cost, safety stock carrying cost and stockout costs can be 

formulated in terms of power functions of the sales rates for the purpose 

of aggregate calculations. Heron also provides a comparison of the use of 

such calculations and shows that in practice the results are very close to 

those obtained by more conventional calculation means. From a retail 

chain store study Heron (1976) has shown that an excellent lognormal 

relation existed between annual sales per store and store ranking by sales 

with a lognon-nal shape parameter (a ) of 0.98. The annual material 

handling cost (Cj) per store was estimated from eight stores and expressed 

as a function of annual dollar sales (S j). This gave an expression of the 

form: - 

Ci = 26,800 + 0.094(Si )0.82 
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from which it was possible, using the lognormal properties, to estimate 

annual handling costs for all 125 stores in the chain. In the same article 

Heron demonstrated aggregate trade off analyses of investments against 

service levels; and he showed how profitability analysis on items in a 

product line could be performed in aggregate by developing an equation 

of R j, the expected return on a product (i) in terms of (S j) the annual 

sales rate of item Q). 

Schary and Howard (1970) made a very clear presentation of the 

way various aggregate inventory calculations can be detennined and' they 

developed a method of recalculating aggregate investments in inventory 

after dropping slow moving items from the range. To achieve this they 

presented a valuable formula (without proof) for recalculating the 

standard ratio given the proportion (a ) of items remaining after the 

range reduction: - 

ýýp 
(loglo a-1) 

where p is the 'old' standard ratio and loge P ý-- 6 

These same authors tabulate values of the new standard ratio given (a ) 

the old standard ratio and (P ) the proportion (a - 1) of items dropped 

from an inventory range. 

In a follow on paper Howard and Schary (1971) extended the idea 

of dropping slow moving items (from a retail inventory) and showed the 

conditions under which it is possible to optimise savings in inventory costs 

against the reductions in gross margin for eliminated slow moving lines. 

This was tabulated and presented graphically for various standard ratios 

and gross product margins. In the same article the authors then went on to 

discuss characteristics of distribution channels in terms of lognormal 
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characteristics at retail and wholesale levels in a distribution chain. They 

concluded from their study that the differences that may be observed in 

the standard ratio of retailers to those for their wholesalers is due to the 

retailers reluctance to stock or hold on to slow moving items - hence this 

results in a smaller standard ratio at the retail level. We can deduce from 

this that the phenomena can be expected to be observed throughout the 

whole channel from retailer through wholesaler to manufacturers and the 

authors concluded that: 

!f The change in the value of the standard ratio over the channel 

therefore demonstrates an important characteristic of current 

logistics channel systems, the tendency to shift slower-moving 

items backwards in the distribution channel towaids the source 
I 

of production' . 

This author believes that in their second paper Schary and Howard 

(197 1) only just began to explore what is potentially a very fruitful area 

of application of the lognormal theory. By building on their work a 

whole range of problems and issues relating to inventory item and 

investment decisions in a variety of distribution channel networks become 

amenable to aggregate analysis instead of relying on sampling estimates or 

by using the complete enumeration approach, item by item. In chapter 12 

we give some new and potentially valuable areas of application of the 

theory. 

Of the remaining authors, other than R. G. Brown, nothing has 

really been added, in terms of advancing the applications of the 

lognormal distribution in the inventory field. In a largely theoretical and 

methodological based paper Wharton (op cit), as we previously discussed, 

showed that estimating aggregate inventory measures using the properties 

of the lognormal distribution is extremely efficient statistically. 

Wharton showed by example that even with a sample of data where there 
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was noticeable departure from lognormality in the tails of the empirical 

distribution use of the lognormal properties gave a result within 2% of the 

value obtained by a complete enumeration. This compared very 
favourably with aggregate values obtained by two frequency grouping 

methods on the same data which were in error by 11 % and 4%. 

Brown's paper of 1963, which is largely concerned with a detailed 

discussions of how to apply lognormal theory to setting aggregate 

measures for cycle stocks and safety stocks, does show how turnover rates 

must rise slowly for identical inventory policies for business with 

different levels of gross sales. To demonstrate this Brown calculates the 

total investment in inventory for five different levels of gross sales using 

the same cyclic and safety stock policies in each case and he found the 

following result: 

Table 3.1 

Gross sales versus tumover ratio 

Gross Sales 
(millions) 

Tumover 

ratio 
6 2.16 
7 2.30 
8 2.43 
9 2.53 
10 2.64 

Whilst such comparatively small changes in turnover are not likely 

to be too alarming to practising management it does show that turnover 

values are clearly related to the absolute level of the gross sales. 

Articles and publications by Schary and Howard (op cit), Gargiulo 

(1969), Wachter (1975), Van Hees and Monhemius (1972), Peterson and 
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Silver (1979), Christopher (1972) 
, essentially all deal with the basic 

theory of computing aggregate inventory standards'and with showing 

how to apply the method in practice. Basically they are all restatements of 

the earlier works of either R. G. Brown or Heron, but applied to different 

inventories. 

3.8 Conclusions 

We have shown in this chapter from various literature sources that 

the lognormal distribution has had wide application in business and 

economics. The particular unique mathematical properties of this 

distribution make it a valuable one to use in various applications. In 

particular the ability to use it in setting various aggregate calculations 

make it a valuable tool in many inventory issues without the need to do 

complete enumerations or develop special programmes. . 

As will be shown and demonstrated in later parts of this work the 

distribution and its parameters can give a deeper insight into, the 

fundamental nature of spare parts inventories in terms of the nature of 

aggregate demands, how demand patterns build up and the effects they 

cause through distribution channels. 
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Stochastic Processes and the Genesis of the 
Lognormal Distribution. 

4.0 Introduction 

In this chapter the author presents the core theoretical framework 

upon which plausible mechanisms for the genesis of the lognormal 

distribution -are discussed and evaluated. A'review of 'the literature 

showed that the only areas where the lognormal distribution has received 

any significant discussion in terms of its genesis is mainly in a 

consideration of the growth and distribution of economic variates such as 

firm sizes and incomes in the economic and applied statistics literature. As 

was briefly mentioned in the previous chapter, it is the so called 'Law of 

Proportionate Effect' that seems to be the generally accepted stochastic 

mechanism that gives rise to this distribution. There are however, some 

methodological problems to be resolved in the application of this process 

to- spare parts inventory systems. These issues will also be explored in 

some depth in this chapter. 

The Law of Proportionate Effect is examined in some-depth here 

because of its central importance in generating lognormal distributions. 

Furthermore, as we shall see, variates that are undergoing growth 

processes, that are governed by this law, do not necessarily always lead to 

lognormal functions. Depending on a number of assumptions concerning 

the structure of the systems studied other highly skewed distributions can 

be obtained as the equilibrium distributions of the variate concerned. 

Hence it is important to examine these conditions so that we can make the 

best judgment about the processes and the equilibrium distributions 

attained in the empirical work in this research. 

There is one other documented process in the literature that can 

lead to lognormality and it is known as the "Meory of Breakage'. We will 

examine this process also, to see how far it is applicable to the systems 
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researched by this author. 

4.1 The nature of stochastic processes 

Before we consider the nature of those stochastic processes of 

particular relevance to this research we will briefly consider the general 

meaning of the term stochastic process. According to Bartholomew 

(1967) 

?'A stochastic process is one which, develops in time 

according to probabilistic laws". 

The word stochastic in fact means random and systems that behave 

randomly or stochastically lead to uncertain outcomes. However, ýby 
knowing something of the nature of the variables (system variables) 

involved in the system we can make attempts to predict outcomes of 

system behaviour, or the equilibrium state of nature that it might reach. 

The Poisson process (discussed in depth in the next chapter) is an 

example of a stochastic process of significant importance to many 

management systems. In a single server queuing system, for example, the 

system variables are, the arrival rate to the system, its reciprocal- the 

mean time between arrivals, and the service rate. If the time between 

arrivals is distributed as a negative exponential distribution with a mean 

ly ', then the process is simple Poisson. In stochastic terms by knowing 

just this fact enables us to predict under stable conditions (ju remaining 

constant) the arrival pattern to the system and the likelihood of queues and 

the extent of queuing in the system. Furthermore if we know the nature of 

the service rate then we can predict exits from the system and the volume 

of work in the system at given points in time. 'Ibis simple model is well 

documented and classical queuing theory provides explicit formulas to 

solve most of the problems associated with such systems. Additional 
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information about the behaviour and states of the system can be predicted 
if we know the extent and direction of change of any of the system 

variables, - e. g. that the system moves to a new equilibrium state, or 

perhaps begins to become unstable with the passage of time and continued 

operation of the system. 

Most stochastic systems can be seen as operating through time and 

are time dependent. This is certainly true of most of those of interest to 

management and we can see that they involve the interaction of a number 

of random variables, as in the Poisson process, which will lead to 

stochastic outcomes. It should be noted in passing here that a stochastic 

process may have an important spatial dimension as well. This is certainly 

so in some fields of ecology and biometrics as we shall see in the next 

chapter. Our general problem in stochastic model building and analysis is 

to define systems and the system variables in such a way as to enable 

tractable solutions and meaningful predictions to be made from the 

systems. The literature on stochastic systems is already large and one has 

only to, peruse texts such those by Bartholomew (1967), [Stochastic 

Models for Social Processes], and Grassman (1981), [Stochastic Systems 

for Management] to appreciate the diversity and range of concepts and 

theory that has been developed. No attempt is made here to give a review 

of the broad theory, only those areas that are directly relevant to this 

research are considered in this chapter and the one that follows. 

4.2 The Law of Proportionate Effect 

Aitchison and Brown (1957) have drawn attention to the fact that 

whenever the Law of Proportionate Effect governs a statistical variable 

then that variable is very likely to be lognormally distributed. That is a 

variate defined in terms of the product of a number of elementary variates 

tends to lognormally distributed. This, according to Aitchison and 
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Brown, forms the groundwork on which all the existing theories of the 

genesis of the lognormal distribution are based. It arises out of the 

original work and theory of Kapteyn (1916), and later work by Gibrat 

(1931) and Kalecki (1945). 

The Law of Proportionate Effect holds whenever the change in a 

variate at any step in a process is a random proportion of the previous 

value of the variate and does not depend on any other factor. Tbis, 

according to Ijiri and Simon (1977) is known as the Gibrat assumption. 

Ijiri and Simon have in fact challenged the work of Aitchison and Brown 

as, in effect, being incomplete. They maintain that depending on the 

assumptions regarding the boundary conditions, in respect of entries and 

exits to the system, the lognormal, Yule or even the Pareto distribution 

may be, obtained as the equilibrium distribution. '111is point will be 

returned to at a later stage in this chapter. 

Aitchison and Brown (1957, page 22) define the law more 

explicitly as follows- 

"A variate subject to a change process is said to obey the Law 

of Proportionate Effect if the change in the variate at any step 

in the process is a random proportion of the previous value of 

the variate ". 

Thus using the methodology of Aitchison and Brown we can formulate 

the process and say that at the jth step :- 

(xj )- (xj-l )= Ej (xj-l ) 

Where xi is the value attained by the variate at step j, and xj_j being the 

value of the variate at the previous step. The randomising set of elements 

F-j are mutually independent-, and also independent of the set (xj). Tbus- 
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. (xj) - (xi-1) 
-E (xi-, ) 

so that 

(xj )- (xj-l 

Ej 
(xi-I ) 

If we consider the effect at each stage of the process to be very sman. then 

we can write the process as - 

(xj)-(xj-l) x"dx 
=f 

x= 
(log, x� - log, XO) (xi-1) X() 

VyUch then gives- 

lOge Xn '«"2 
lOge XO + £l + £2 - ------ En 

------------ 4.1 
, 

'Men, according to Aitchison and Brown (1957), by the additive form of 

the central limit theorem loge xn is asymptotically normally distributed 

and hence xn is lognormally distributed. 

Furthermore following from (xj)-(xj-, ) = ej(xj-, ) by rearranging 

and taking logs we obtain - 

, 
(Xj-, ) log, (Xi loge (1 + Ei + loge 
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This implies that the law of proportionate effect can be tested by 

regressing 10gelt against logext-1 to give a straight line of slope unity. 

In fact Easton (1977 ), Singh and Whittington (1974), and Ijiri and Simon 

(1977) all refer to the regression of loge (xj) against 10ge (xi. 1) as a test 

for the above form of the law. This was the approach used by this author 

in chapter eight. 

43 A Random Walk Approach 

The Law of Proportionate Effect can be approached in a more 

heuristic way as shown by Aitchison and Brown from the original work 

of Kalecki ( 1945 ) and Gibrat( 1931 )- 

Given that 
(xj )- (xj-l )= -cj (xj-l ) 

so 
(xj) = (1 + ej)(xj-, ) 

and therefore for W stages in the process 

Xn = X, (1 + EIM + £2)(1 + £3) (1 

For small time intervals and hence small values of c. we can say j 

that- 

lOge Xn --2 
lOge Xo +EI +E2 - ---------- en 

------- 4.2 

Thus the log of the variate at any time or step 'n' is therefore the 
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outcome of the addition of many small independent random, variables 

acting on the log of the initial size. Ibis is equivalent to a random walk 

process on a logarithmic scale. If the randomising elements Ej are 

identically distributed with mean y and variance a2 then by the central 

limit theorem the sum of the elements F-j over 'n' growth stages are 

normally distributed with mean ny and variance na2. As 'n' tends to oo 

the distribution Of loge xn will be normally distributed with mean ny, and 

variance na2, and hence xn will be lognormally distributed. 

According to Easton (1975), both Kapteyn (1916) and Gibrat 

(1931) regard this log random walk just as fundamental as the simple 

random walk process. Furthermore, according to Kapteyn (1916) many 

naturally occurring variates could be envisaged where the proportionate 

size change would depend only on the immediately previous value. 

There is however, a major drawback with the above reasoning, 

because according to Kalecki (op cit) the process becomes dissipative. As 

('n' the number of growth stages approaches oo so too does the variance of 

the process variate. Aitchison and Brown (op cit. ) have also drawn 

attention to the fact that continuous application of the general form of the 

Law of Proportionate Effect will lead to an equilibrium distribution with 

increasing variance. This may not prove a major problem in a field of 

enquiry such as the study of the growth of biological species where 

growth is terminated at some stage by natural forces. However, it does 

present problems in economic and social systems. Aitchison and Brown 

have pointed out that in the case of the distribution of earnings for 

example it would mean that the concentration of total income would 

reside with progressively fewer wage earners. This is of course contrary 

to general experience, because although we know that wealth is 

disproportionately distributed in most societies there are social and 

economic limits to its ultimate level or degree of concentration. When 

applied to the distribution of firm sizes it would mean increasing 
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industrial concentration with the largest firms becoming increasingly 

larger with the passage of time. Other forces do play their part in 

restraining growth such as political controls and market dynamics. 

4.4 Stabilisation of the Equilibrium Distributions. 

To make sense of the observed facts concerning the growth and 

statistical distribution of certain economic variates in terms of the Law of 

Proportionate Effect we must consider the possibility of stabilisation 

conditions in the process. Stabilisation can be considered as a result of 

constraining economic forces or other factors that bring about convergent 

conditions. 

Hart and Prais (1956) have considered this problem in their work 

on the growth of firms. They concluded that a simple lognormal model 

can be used to explain the growth of firm by monetary sizes. Furthermore 

they conclude that the variance of the transformed distribution changes 

over time according to the equation- 

V(Xt+l) = 
p2V(XI) + C2 

---------------- 4.3 

where the variances at two dates t and t+1 are given by V(xt) and V(xt+, ) 

and the residual variance by a 2. Thus when firms grow by a random 

proportion of their monetary size the relative dispersion of the 

distribution will tend to increase over time only if the coefficient of the 

above equation is greater than one. If the coefficient is less than or equal 

to one then the variance will not be dissipative. Whilst this is not, in itself, 

an explanation of stabilisation it does indicate that Hart and Prais have 

observed industry conditions where stabilisation has occurred and they 

have quantified this. For example, Hart (1957) has shown that the growth 

process can be interpreted in economic terms in the theory of the 
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optimum firm size. From studies of empirical data from the brewing 

industry he has shown that the stochastic growth process is not always 
dissipative provided the regression coefficient is below unity. 

In the same paper Hart has drawn attention to the question of entries 

and exits to the system of firm sizes and the effect of this on the variance 

of the equilibrium distribution. In general his, conclusion is that new 

entries to the system will decrease the variance whilst exits will increase 

it. This same author has further shown that a change in the total variance 

of the logarithm of firm sizes, as the number of firms in the system 

increases, depends on the mean and variance of the births which are 

related to the mean and variance of the total number of firms as follows- 

222 
a =Wlal +W2ai +TWIW2(XI +X2)2 

---------- 4'. 4 

In this equation a 21 and xI refer to the variance and the mean of 

the logarithms of the sizes of the surviving firms, whilst w, refer to their 

proportion in the total number of surviving firms plus births (new firms). 

Similarly a2 2, X2 and ýv 2 refer to the births. Clearly from Hart's work 

the rates of entry and exit to the system of the variate under study has a 

direct effect on the variance of the equilibrium distribution of that 

variate. 

Aitchison and Brown have approached this ýproblem of increasing 

variance in a somewhat more heuristic way concerning the variance of 

incomes. Their explanation which follows, counters earlier criticisms to 

the Law of Proportionate Effect as the process of income growth. Their 

modification to the process is seen from the quote- 

"In attempting to explain incomes we may first think of a 

completely homogeneous group of wage earners each with a 

claim to an equal share. We then take into account that the 
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group is not homogeneous, each earner possessing to a 

different extent attributes and talents which influence the 

magnitude of his claim. The outcome of these many different 

effects acting in accordance with the Law of Proportionate 

Effect is again to produce a lognormal distribution of 

incomes. At other points in time the distribution of incomes 

may be thought to arise in a similar way. The reason for the 

stability of the variance is then sought in the distribution of 

the attributes and talents in relation to the evaluation of 

these by contemporary society. Secular changes in this 

evolution may lead to a drift in the value of the variance". 

There is no indication from this explanation whether any drift that 

may occur in the value of the variance is an increase or, a decrease. One 

can deduce however, that secular changes which favour the minority 

already in the high earner group will increase the variance of the process. 

Likewise such changes which favour a disadvantaged majority will 

decrease the variance. What is clear however, is that plausible heuristic 

reasons can be put forward that go some way to explaining the underlying 

stability seen in practice and yet still allows the system to be interpreted in 

terms of the Law of Proportionate Effect. 

In even earlier work than that of Hart, or Aitchison and Brown, 

Kalecki (1945) has put forward arguments to show that the variance can 

be siabilised or even decrease over time. He has shown that the increasing 

variance assumption of the basic law is unrealistic for economic reasons 

because no tendency exists for the variance to continually increase, and he 

then goes on to use income issues as the example. Furthermore, he asserts 

that to a great extent, the changes in the variance of a lognormally 

distributed variate generated as a result of stochastic economic pressures, 

is governed largely by economic forces. 

In a more quantitative approach to this issue Kalecki goes on to 
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show that the Gibrat assumption can be modified to admit two important 

cases both of which can lead to the lognormal distribution as the 

equilibrium state of the system observed. Firstly a case where the variance 

is assumed to remain constant, and secondly the more general case where 

the variance of log x changes through time. According to Kalecki this 

second case may happen in three ways-, 

(a) The second moment increases merely under the 

influence of random shocks- the dissipative approach. 

The change isfully determined by economicforces. 

(C) The influences of economic forces acting upon the 

second moment is not so rigid as to prevent it from being 

influenced by random shocks. 

In the case where the variance Of loge xi is assumed constant it 

CC implies a negative correlation between loge xj and loge('+ j) where j 
belongs to the set of randomising elements from- 

--v 

loge Xn --': 
loge XO + loge (1 + 81 )+ loge (1 + 

'02 
) ---------- loge (1 + 

'on) 

From which Kalecki provides us with'the following formulation of the 

correlation-, 

yj = -ayi + Zi 

where " yj = log,, (1 + Ej) and Yj = log,, xj 

This is on the assumption that the regression Of 10ge(l + . 6j) on yj is 

linear and that Zj is independent of Y j. 1. The new stochastic generating 
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equation then becomes - 

- 1-a- z. 
xj = (xj-, ) ,e, 

where the regression coefficient a is given by - 
I 

a=ly 
2/ 

2yw Y2 

For a detailed proof of this development the reader is referred to 

Kalecki's original paper ( 1945). What is important for our research, 

from this original work by Kalecki, is not the particular formulations 

above and others developed by Kalecki, but the fact that it can be shown 

that the Law of Proportionate Effect does not necessarily lead to a 

dissipative process with increasing variance. 

From all the foregoing discussions we can conclude that good 

arguments exist to allow stabilising conditions and the stable equilibrium 

distributions that we show in chapter six are clearly fully consistent with 

established theory. 

4.5 The form of the Equilibrium Distribution 

So far in this thesis we have shown from the wealth of work in the 

econometrics literature'that the Law of Proportionate Effect is the most 

likely candidate to explain the convergence of a variate to lognormality. 

Indeed, apart from the Theory of Breakage- itself a special case of the 

law, there appears, as yet, no other convincing mechanism. However, we 

must now consider the question of the final form or nature of the 

equilibrium distribution of a variate undergoing a growth process 

governed by the Law of Proportionate Effect. 
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As we have already mentioned in this chapter according to 

Aitchison and Brown (1957) whenever the Law of proportionate Effect 

governs a variate then the distribution of that variate is very likely to be 

lognormal. They have not however, discussed any alternative 

distributions that may come about as a result of the operation of this law. 

Their work has been criticised by Simon and Bonini (1958) and Ijiri and 

Simon (1977, see page 143 in particular). The criticism generally hinges 

on the boundary conditions of the system considered. Ijiri and Simon 

assert that by introducing some simple variations into the assumptions of 

the stochastic model of firm size growth, but retaining the Law of 

Proportionate Effect as the central feature then various skewed 

distributions are obtained. They say: 

Of ---we can generate the lognormal, the Pareto, the 

Yule and the Log Series distributions" 

Iley also go on to say - 

"If we assume a random walk offirms already in the system 

at the beginning of the time interval under consideration, with 

zero mean change in size, we obtain the lognormal distribution. 

If we assume a random walk, but with a steady introduction of 

newfirmsfrom below [author comment - they mean new small 

businesses] we obtain the Yule distribution". 

Hence these authors assert two conditions for the achievement of 

lognormality under the assumption of the operation of the Law of 

Proportionate Effect- 

(a) AR items in the system must A start the growth process at 

the same time. 

(b) There must be a constant size of the system, i. e. no entries 

or exits. 
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In their extensive treatment of the Yule distribution, Ijiri and Simon 

(op cit) develop stochastic processes that utilise the Law of proportionate 

Effect and with the assumption of a steady increase of new firms they 

obtain the Yule distribution as the long run distribution of the process 

variate Qe firm sizes). It would seem from this same work (especially 

chapters 10 and 11) concerning the size, growth and distribution of firm 

sizes, that with the additional effect of serial correlation in growth rates, 

and combined with the effects of mergers, acquisitions and dissolutions, 

that the Pareto distribution is the most likely candidate for the equilibrium 

distribution of firm sizes. At no point in the same literature source do they 

give any conditions that can lead to the Log Series distribution as the 

equilibrium function of a variate undergoing growth based on the 

assumption of the Law of Proportionate Effect. 

4.6 The Theory of Breakage 

The other process that can lead to lognormality of a variate is the 

so called 'theory of breakage' we mentioned in the previous section. An 

examination of this theory was found to be marginally useful in this 

research when the form of parts price distributions were considered 

This is discussed in chapter six. For the moment we confine ourselves to 

the theoretical foundations of the theory. Ilie development of this is based 

on the empirical, work of Kolmogoroff (1941) whereby items 

undergoing a physical breakage process are often found to be 

lognormally distributed. In consequence as pointed out by Aitchison and 

Brown (1957) the theory has, not surprisingly, found application in 

research on particle size statistics. We present the theory here in the 

form given by Aitchison and Brown(1957, page 26). 

"Suppose there is a set of elements each of which has some 
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positive measure - the dimension of the element. Let the 

elements be subjected to a sequence of independent breakage 

operations. If at the fth breakage Gj(x: u) describes the 

distribution of elements arisingfrom elements of dimension 'u 

prior to the breakage, then the Law of Proportionate Effect is 

equivalent to the statement that G (x: u) depends only on the 

ratio xlu , thus we may write - 

G, (x: u) = Hj 
(XU) 

Then , 

F (x) =f Hj (ii)dFj-, (u) 
u 

IfXj and Tj are the variates associated with the 

distribution functions Fj(x) and Hj(t) then - 

n 

X. = T-X- so that Xn = X0 11 Tj 

j=l 

From this development Aitchison and Brown (op cit., page 27) then 

conclude that the final distribution tends to lognormally distributed. 

The literature contains very few applications of this theory to 

business situations. Horvath (1959) is one of the few and he presents a 

simple case where the theory of breakage is considered to be the 

underlying explanation of the lognormality of service times in a tool crib 

application. According to Aitchison and Brown the central idea behind 

the principle is a theory of classification. They go on to say - 
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"It is a curiousfact that when a large number of items is 

classified on some homogeneity principle the variate 

defined as the number of items in each class is often 

approximately lognormal. " 

Several examples are quoted where these authors have observed the 

phenomena none of which have interest here. However, it is possible to see 

the application of the theory to the distribution of prices of physical items 

such as spare parts. We consider this issue in the next section. 

4.7 Inferences and Conclusions from the Law of 

Proportionate Effect 

We have seen earlier in this chapter that the Law of Proportionate 

Effect is a stochastic process that can result in a variate becoming 

lognormally distributed after 'n' growth stages. As we have shown 

Aitchison, and Brown (op cit) have discussed the possibility that the 

lognormal distribution can, in some cases, be seen as the result of a 

process which is known as the Ibeory of Breakage, which itself is really 

a special case of the Law of Proportionate Effect. 

When, we consider the Law of Proportionate Effect as the 

mechanism to explain lognormality of inventory usage. values we must 

take into account the fact that a usage value is the product of item 

cost(price) and volume demanded in a particular period. These two 

component parts must be considered separately in order to reach a clearer 

overall view as to just what is affecting the usage value distribution. 

Firstly, if we consider demand volumes we can readily see these 

developing as growth processes in the following way. If we progressively 

extend the time period from a point time, or epoch, to a large finite 
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period, then the quantity demanded per period will obviously increase 

also, from something close to zero at the epoch to whatever has 

accumulated at the time the process is considered terminated. It then 

remains for us to see what evidence exists to suggest that such growth, 

when considered in aggregate, conforms to the Law of Proportionate 

Effect. In the paper by Singh and Whittington (1974), and the text by Ijiri 

and Simon (1977) methods of testing such growth processes against the 

Law of Proportionate Effect are given, and we use these in chapter eight 

where we tested for the law against empirical data. This was an important 

part of theory validation based on our models developed in chapter seven. 

The question of the distribution of prices presents a bigger problem 

because it is not easy to envisage growth processes associated with this 

variable. At the factory level the prices are already fixed and in general 

they are marked up at each distribution level thereafter by proportionate 

increments until the final retail price is reached. The 'Ibeory of Breakage 

briefly discussed earlier would seem to have some value here to explain 

lognormality in the prices. We can consider a physical analogy to the 

breakage processes in rock ores. If the total population of parts in a truck 

are all laid out before us in their smallest divisible siZe we will see 

hundreds of very small components and only a very small number of very 

large components such as an engine block or crankshaft. If we start with 

the very largest components and commence grouping by some 

classification scheme, such as weight or size, and progressively work 

through the whole range, then, if the theory of breakage applies, we are 

very likely'to find the distribution of the number of items in each class 

forming a lognormal distribution. Furthermore because component cost 

is very likely to be strongly correlated with size (and weight), costs are 

also very likely'to be lognormally distributed. Whilst we can appreciate 

the general logic to this principle we can also see its imperfections. A 

rough machined bolt costing pence may have the same size and weight as a 

precision machined needle valve costing several pounds in -value! An 
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alternative classification scheme could be based on the proportion of time 

it takes to manufacture a component and group on the basis of equal 

increments of production time. Unfortunately whatever scheme we 

envisage there are no easy ways to test such propositions in analytical 

terms. The limited literature on the Theory of Breakage provides no 
direct methods of testing the process in mathematical terms. Hence at this 

stage we are largely left with the classical tests and the analytical form of 

the actual distribution found. This problem will be considered again at a 

later stage. II 

Returning now to the distribution of volumes we have another 

methodological problem to resolve. As we have discussed according to 

Aitchison and Brown (op cit) whenever the Law of Proportionate Effect 

rules a variable then that variable is most likely to be lognormally 

distributed. However, as mentioned already , this is in conflict with some 

of the views expressed by Ijiri and Simon (op cit). In the systems 

considered by them entries and exits are an integral part of the process 

and this they have argued leads to the Yule distribution. In the case of the 

DAF spares system there has always been a steady increase in the number 

of new parts to the system as well as a steady, but smaller, number of 

departures through obsolescence and rationalisation activities. 

Furthermore Ijiri and Simon have made the point strongly that if the Law 

of Proportionate Effect is to yield the lognormal distribution all the items 

in the system must all start the growth process at the same time. If we 

consider again the DAF inventory if new spare parts are continually being 

added into the system this should violate the conditions for lognormality. 

But this is contrary to the extensive empirical evidence assembled by this 

author and presented in chapter six, where lognormal forms are clearly 

the final and stable long run distributions obtained. 

For some while this author was in some difficulty in reconciling the 

facts observed in the DAF Trucks data in relation to the Law of 
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Proportionate Effect given the views and theory of Ijiri and Simon. The 

usage values and volumes were both clearly close fits to lognormal 

distributions and yet the stochastical literature [particularly that according 

to Ijiri and Simon (op cit)] indicated it should be the Yule distribution that 

should be obtained, if indeed the Law of Proportionate Effect was 

operating. The question of distribution differentiation had to be 

considered at this stage. In general it can often be'difficult to differentiate 

between highly skewed distributions of the type considered in this work 

and it is often only in the extreme upper tail of such distributions that 

significant departures from one another are usually seen. However, in the 

DAF data, preliminary analysis showed that the Yule and the Pareto 

distributions were very poor fits to the data observed. This was tested by 

plotting item size, (either as volume or usage value) on log log graph 

paper against size rank order, according to the method shown by Ijiri and 

Simon (op. cit. ). If either the Yule or Pareto distributions were valid 

considerations then an approximate straight I line should have been 

obtained. In all cases attempted marked curves of the type shown in 

chapter six [ section 6.2 (d) ] were obtained. It is only in the extreme upper 

tail that a fit to a Yule plot is obtained. Given the large size of the samples 

tested in this way (n>100) it could be confidently reasoned that the Yule 

and the Pareto were unlikely to provide a satisfactory description of our 

empirical usage value and usage volume distributions. 

, However, when it was realised in most cases of- the analysis 

undertaken on usage values and usage volumes by this author that the data 

was effectively being treated as a closed system, then the observations 

could be- reconciled with the theory. For example, in parts of the analysis 

(treated in detail in chapter six) the monthly demand volumes of 200 

randomly selected parts were cumulated over successive months to show a 

convergence to lognon-nality. By preselecting 200 at the outset and 

keeping this number constant the system was closed to entries of new 

parts, although not effectively to exits of very slow moving members of 
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the system. As the exit of parts in general from the parts range in total was 

very small, for all practical purposes the analysis was on a closed system. 

Hence once this was realised it was not too surprising to find the 

lognormal as the equilibrium distribution. In other cases of analysis on 

whole parts range data (from ABC printouts comprising anything from 

around 7000 items in the 1970's data to around 11,000 in the '80s data), 

the rate of new entries and exits, although positive were very small in 

relation to the total size of the system. Also in time terms the periods were 

comparatively short, just one calendar year. Hence, again the system, for 

practical purposes, could be regarded as a near closed systems. It can be 

concluded that although the lognormal distribution does indeed seem to be 

the final stable distribution it may not however, be the final form if we 

examined the data over several years. In this case we may find the Yule 

distribution emerging. From an inventory management viewpoint 

however, this would have no value at all and would not lead to any 

practical applications. We are confident that the lognormal distribution is 

a satisfactory representation of inventory usage values over time periods 

of value to practical inventory and logistics issues. 

We also need to give careful consideration to the fact that the 

systems studied by Ijiri and Simon would have been very limited in size in 

terms of the individual members of the systems, ie firms in an industry, 

and entries and exits may well have been large in comparison to the 

number of members of the system. In the case of our spare parts systems 

the number of individuals was very large and entries and exists (on a per 

annum basis) were very small in comparison. Hence we must be very 

careful how far we translate findings from one system to another with 

such a variation in size and structure. 
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Stochastic Process Models of Independent, 

Demands 

5.0 Introduction 

The stochastic modeRing approach of chapter four was based on 

what this author chose toregard as the, top down approach. That is start 

with the assumption that usage values in aggregate are lognormal. In this 

way the research rested on finding and verifying process models that are 

known to yield lognormal distributions and testing them against the data 

and circumstances that give rise to lognormal distributions in the systems 

studied in this research. As discussed in the previous chapter, the Law of 

Proportionate Effect is a very good candidate to explain a stochastic 

growth process that leads to lognormality. However, the law does not 

provide an explanation of the the origin of the process, nor does it offer 

any insight into the observed regularity in aggregate demand for very 

short time periods. 

This chapter explores and reviews stochastic process models for 

independent demand items with particular reference to the Poisson 

process, spare parts systems and cases where the value of demand variance 

exceeds the mean. We make no attempt at a complete review of all the 

literature concerned with recurrent event processes and stochastic 

models of compound demand processes. 'Ibis literature is already 

extraordinarily large, and a great deal of the contemporary work in the 

inventory area owes much to the pioneering works of Arrow, Karlin and 

Scarf (1958), and Hadley and Whitin (1963), in particular. Any reader 

interested in following some of the early stochastic developments would 

find it of value to start with these sources. 

Our concern here is to summarise only those models and concepts 

from single item demand-theory that have proved useful as a step 
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towards our objective of developing models for aggregate inventory 

demands. We show here the particular importance of the Poisson process 

to the development of a scheme that ultimately leads to a lognormal 

distribution of aggregate demands for spare parts: this was the bottom up 

approach. In chapter seven we then draw together the work of this 

chapter, that of chapter four and the empirical work of chapter six to 

show how we can move from a consideration of individual items to many 
items in aggregate in one overall stochastic scheme. The first clue that 

this might be a viable line of research came frorn the work of Easton 

(1975 and 1980), who attempted to model aggregate industrial buyer 

behaviour using the lognormal distribution., 
.ý 

Although only partially successful in his endeavour Easton 

nevertheless showed that it might be possible to start with elementary 

assumptions about demand processes, in his case at the level of the 

individual industrial buyer, and build up to a more complex aggregate 

case of many industrial buyers over an entire industry. Easton also 

considered in some depth the possible use of the so called Poisson Gamma 

model, which has been used extensively to model 'consumer' buyer 

behaviour. With this model the demand at the level of the 
. 
individual 

consumer for frequently purchased items consumer items is assumed to be 

Poisson. When buyer behaviour is aggregated over many consumers 

using a gamma distribution of purchasing rates the Negative Binomial 

distribution is obtained -the so called Poisson Gamma model. The 

pioneering work with this model was carried out by Andrew Ehrenberg 

(1959) and since then it has been used extensively to model consumer 

purchases for individual consumer items. In Easton's investigation its use 

was not successful in modelling the purchase b ehaviour across individual 

industrial firms, but the insights he gave to more complex systems have 

proved helpful to this work. 
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We postulated that starting from similar elementary assumptions to 

Easton a fruitful line -could be developed that might yield a mechanism to 

explain the regularity seen for parts aggregate demand. This approach 

was encouraged by the wealth of information in the literature of both an 

empirical and theoretical nature to support the view that demands for 

spare parts at the level of individual items are almost always Poisson in 

nature. We also'note and demonstrate that the validity for using a 

Poisson process in this research has a much stronger basis than the 

modelling work of Ehrenberg et. al. in the consumer purchase field. 

We start by first considering the simple Poisson process and then 

see what important modifications have been proposed and used in various 

fields of inquiry. Finally consideration is given to theoretical and 

empirical evidence that supports the use of certain modified Poisson 

process mo esm spare parts systems. 

An . important note to the reader must be given at this stage. We 

consider here only Poisson process functions that model demand in fixed 

intervals of time. Our concern is not with independent demands in 

variable lead times, that is necessary if one is considering lead time 

demand for the purpose of setting safety stocks and reorder levels. Hence 

a lack of a detailed consideration of variable lead time models must not be 

considered an omission in this work. Our concern is ultimately with 

aggregate demand behaviour in fixed time intervals and not inventory 

control models for individual items. The variability in a re-supply lead 

time is a factor introduced by the supply channel and it must of course be 

considered in inventory control system design. Many models have been 

developed and presented in the literature to take into account the three 

principal variables that need to be considered in such a problem, namely 

the order rate per unit time, the order intensity (ie the actual amount 

ordered) and the lead time distribution itself. The reader interested in this 

area is referred to the schema for classifying such modelling approaches 
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by Bagchi (1987) and the text by Silver et al. (1979). We give no further 

direct consideration to this issue. 

5.1 The Simple Poisson Process 

A Poisson process with rate A is a process in which the state 

variable x is Poisson distributed with parameter A as - 

P(X) = 
Axe-)' 

XI 

The rate A is usually obtained by estimating the expected number 

of Poisson events per unit of time period. For example, if the number of 

arrivals to a tollgate is on the average 5 per hour then the Poisson rate is 5 

and the probability of observing any other value i in a time period of, one 

hour is - 
. -5 

P(x 
(5)'e 

i! 

In a Poisson process with rate A the time between two Poisson 

events is exponentially distributed with expectation l/A (wherey=l/A). 

Conversely, if we have a string of independent events, such as arrivals, 

and if the times between consecutive events are exponentially distributed 

with expectation u, then the process is Poisson with rate I/P or A. A 

further characterisation of the Poisson distribution that is of concern with 

aspects of methodology in this work is that the mean and variance of the 

Poisson distribution are always equal numerically. 

- According to Jewell (1960), Haight (1967), and others, a necessaZý 

and sufficient characterisation of the Poisson process is that the 

probability distribution of the distance between successive events (the 
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interevent distribution) is negative exponential. 'Me Poisson process can 
be regarded as a maximum disorder process and events that occur by such 

a process are as random as possible, Jewell (1960), Haight ( 1967) and 
Grassman (1981). A Poisson sequence can be envisaged as follows in 

figure 5.1: 

Figure 5.1 
Simple Poisson Process 

Interevent spacing 

**** 

Poisson events 

Random origin 
Poisson sequence in time or space 

The occurrence of a sequence of Poisson events may be in terms of 

time or space, or both, and Poisson events are independent outcomes'. In 

most economic and management systems a simple Poisson can be'regarded 

as a stochastic process in which the Poisson sequence occurs in time. -For 

example, the arrival of customers to a supermarket checkout when the 

system is lightly loaded is mostly likely to be a simple Poisson process. 

Each arrival is random and completely independent of any other arrivals 

and. we would expect to find the distribution of inter-arrival times to be 

distributed'as a negative exponential function. - However, when such, a 

system becomes heavily loaded the build up of queues at check outs can 

influence the behaviour of other shoppers, who may delay their arrival at 

the check out points. -Under these circumstances the simple Poisson 

process would begin to break down and more complex stochastic 

processes would take place. An excellent study of a variety of complex 

stochastically derived operational systems is presented in the classic text 

by Morse ( 1957) together with methods of analysis and solution. 
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-In terms ý of inventory theory the demands at the retail and 

wholesale levels of an inventory echelon are usually independent and if 

the interevent spacing between successive demands is exponential then the 

process is, Poisson and the counting distribution of the number of 

demands expected in a unit interval of time will follow a Poisson 

distribution. However, as noted by Morse (1957), Jewell (1960), and 

Sherbrooke (1968), amongst others, many operational situations occur 

where the inputs are Poisson in character yet the variance of the process is 

much greater than that predicted by the simple Poisson process. In 

inventory terms for example this means we can often observe that the 

variance'of demand in any period is greater than the value of the demand 

mean for the same period. 'Ibis characteristic generally results in a highly 

skewed distribution of the number of inputs per unit time to the 

operational system. As a result of the wide spread occurrence of this 

phenomena the literature on inventory theory is rich in the variety of 

skewed distributions that have been put forward from time to time to 

model various demand processes Of individual ý items in such 

circumstances. The issues and the various approaches to solve the 

associated demand estimation problems for skewed demand situations in 

both fixed and variable periods has been addressed by many authors 

including Morse (op. cit. ), Galliher, Morse and Simmond (1959), Jewell 

(1960), Adelson ( 1966), Feeney and Sherbrook (1966), Gallagher 

(1969), Bott (1977), Ward (1978), Nahmias and Demmy (1982), Mitchell 

et. al. (1983), and Bagchi(1983 and 1987), amongst others. A common 

view of these authors is that demand can be represented by so called 

compound Poisson models, that we consider in the next section. The 

obvious generalisation of the simple Poisson Process is a compounding 

process in which the interevent spacing between some of the Poisson 

events is reduced to zero and multiple Poisson events can and do occur 

simultaneously. 

Gallagher D. J. (1969) refers to the simultaneous occurrence of 

Page 123 



Chapter 5 

multiple Poisson events as the 'Stuttering of events' and to the process as 

the Stuttering Poisson process. Strictly speaking the term Stuttering 

Poisson distribution is confined to a particular member of a general 

class of compound Poisson distributions as will be discussed shortly in 

this chapter. According to Morse (op. cit. ) and Jewell (1960) 

compounding in a Poisson process always increases the variance of the 

process and results in a compound Poisson distribution as the counting 

distribution of events in fixed time intervals. 

5.2 Modified Poisson Processes 

We can now fonnally consider the development of two important 

extensions to the simple Poisson process. In the first, as already stated, the 

spacing between Pois*Son events is allowed to become zero so that two or 

more Poisson events can occur together. In the second the Poisson rate 

parameter (A) itself is regarded as a variable and distributed according to 

a statistical distribution; a process regarded and termed Poisson mixing 
by some authors. The first situation can be depicted as shown in figure 

5.2- 

Figure 5.2 

Compound Poisson Process 

Interevent spacing 

Multiple Poisson. events 

Random origin 
Poisson sequence in time or space 
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According to Haight (op. cit. ) there is some confusion over the 

precise meaning of the terms Poisson compounding and Poisson mixing 

in the literature on statistical theory. However, we have chosen here to use 

the term Poisson compounding when a discrete magnitude is applied to the 

number of events occurring on each Poisson occasion, and Poisson 

mixing when a continuous magnitude ( or distribution ) is applied to the 

Poisson rate parameter (A ). Ibis is consistent, with the terminology of 

Haight (Op. cit. ) in his definitive study of the Poisson distribution and 

with the majority of authors, who discuss such distributions in the context 

of inventory theory. 

5.2 (a) Poisson compounding. 

When a Poisson process is compounded this gives rise to a counting 

distribution of the number of events occurring in a unit time with a 

variance and coefficient of variation much greater than that predicted by 

the simple Poisson process. The compounding and the increase in the 

variance are due to the simultaneous occurrence of two or more events 

and furthermore the number of events occurring on each occasion are 

themselves statistically distributed. It should be noted however, that if the 

concern is solely with the number of occasions when a Poisson event took 

place, rather than with the actual value of the events themselves, then the 

process defined in this way reduces to a simple Poisson process, even 

though compounding may be taking place. Hence this is a Poisson process 

of demand occasions and not demand quantity in the same time unit. This 

distinction between Poisson demand occasion (or demand incidence) and 

Poisson demand quantity is important and is an issue we will return to in 

later sections and chapters. 

In theory a great many discrete statistical distributions could be 

used to model the distribution of the number of events occurring on each 
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Poisson occasion in a compound Poisson process. However, it would seem 

from Haight's work (op. cit. ) that only a few distributions are considered 

important in applied statistics. We consider five here that would cover the 

majority of operational situations likely to be encountered in practice. 

Following the notation used by Bott(1977), and Johnson and Kotz (1969) 

we first consider three possibilities. If the number of compounding 

events follow a Binomial distribution, the resulting overall compound 

distribution is the Poisson Binomial; if the events follow a Negative 

Binomial we have a Poisson Pascal compound distribution; and if the 

number of events follow a Poisson distribution then we have a Poisson 

Poisson (or Neyman Type A) distribution. 'Ibe choice between these three 

in any particular operational situation would depend on the variance to 

mean ratio of the distribution of the compounding events themselves. It 

the ratio is less than one then the Binomial model is the preferred choice 

with the Poisson Binomial being the model to use as the overall 

compounded demand model. If the ratio is equal to one then the Poisson is 

the choice, and if the ratio is greater than one then the Negative Binomial 

is the choice, and the overall compounding model would be the Poisson 

Pascal. Bott gives the probability density functions for each of these three 

models, which we reproduce below. 

Poisson Binomial - 

P(d = k, r, p) = 
(r k r-k 

k 
)p 

q 

for r=1,2,3, etc 'N 
0<p<1 

0,1,2, etc. 

Poisson Poisson- 

P(d = k, p 
ep 

k! 

fork ='O, 1,2, etc. 
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Poisson Pascal - 

P(d = k, r, p) r+k-I prq 
k 

k) 

for r=1,2,3, etc 

0<p<1 

k=0,1,2, etc. 

Mitchell Rappold and Faulkner (1983) discuss the use of the 

constant Poisson model in the context of aircraft supplies to several air 

force bases. An underlying assumption behind this model is that the 

compounding is fixed at the mean rate of the compounding events. We 

see no particular merits of this model, other than simplification, and 

Mitchell et al (op cit) themselves then go on to show in the same paper that 

the Stuttering Poisson distribution (that we discuss below) provided better 

overall results. 

In those situations where the variance of the quantity of 

compounding events is potentially large, then the Log Series distribution 

and the Geometric distribution seem to offer significant utility as the 

compounding model of demand events. We now consider the two 

particular overall compound distributions that arise from these situations, 

because of their value in the theoretical development in this research and 

particularly where demand is lumpy. If the number of events occurring at 

each Poisson occurrence are distributed as Fisher's Log Series 

distribution then the unconditional distribution of events occurring in a 

unit time period is the Negative Binomial distribution (NBD) and the 

process has become known as the Afwedson process in the literature after 

its originator, Afwedson (1955). 'Ibis process has received attention from 

many, authors amongst the most prominent being Philipson (1957), 

Thyrion (1960) and Haight (op. cit. ). The compounded version of the 
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NBD gives rise to the distribution in an integer form as shown : 

P(X) 
- 

(k+x-l)! px 
(k-l)! x! q 

k+x 

------------------------ 5.1 

where p= q-1 and, both p, k>0 for x=0,1,2,3, etc. 

When k is not integral the factorials in the above formula become gamma 
functions to give a 'gamma' version of the distribution as win be seen in a 

later section when we consider a 'mixing' approach to the development of 

the NBD model. 

If the number of events at each Poisson occasion are distributed as a 

Geometric distribution then the unconditional distribution of the number 

of. events occurring in a unit time period is the Stuttering Poisson 

distribution. This statistical distribution has been used by a number of 

authors in the context of inventory theory and it seems particularly 

relevant in cases of very lumpy or spasmodic demand processes. Ward 

(1978) characterises the Stuttering Poisson distribution in the following 

form : 

P)A t J=M 

n 
Ejpj-'R,, 

-j -------------------- 5.2 j=l 

where Rn is the probability that 'n' units will be demanded in a time 

interval of length t with Poisson rate parameter A and distribution 

parameter p. 

Both the NBD and the Stuttering Poisson distributions have found 

application in inventory theory and in particular Bagchi's recent paper 

(1987) discusses both distributions in the context of lead time demand 

models for slow moving independent demand inventory items. 
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5.2 (b) Poisson compounding and lumpy demand 

processes 

Ward (op. cit. ) discussed the -common observation in spares and 

supplies type inventories that individual item demand patterns are often 

'lumpy' and very erratic. From discussions in Ward's paper, and from this 

author's own observations of spare parts - inventories, periods of high 

demand are often followed by periods of low or zero demand, and 

sometimes periods of low demand are often punctuated by random 

demand spikes - thus giving lumpy demand behaviour. This can be 

especially true of slower moving items, although for very slow moving 

parts compounding is not likely to be a phenomena observed to any 

marked degree. Demand variation that is skewed need not necessarily be 

very 'lumpy', but lumpiness in demand always leads to a highly skewed 

distribution. It would also seem that compounding of demands by 

highly skewed compounding models, such as the LSD, will impart 

'lumpiness' to the process. 

The inventory control problems and the associated analytical 

solutions for very lumpy' demand patterns under a variety of 

circumstances have been discussed by a number of authors; in particular 

Galliher, Morse and Simmond (1959), Mitchell (1962), Feeney and 

Sherbrook (1966), Sherbrook (1968), Adelson (1966), Gallagher (1969), 

Silver (1970 andý71), Silver, Ho and Deemer(1971), Ward (1978) and 

more recently Mitchell et al. (1983) and Bagchi (1983 and 1987). A 

general view shared by most, of these authors is that whilst in many 

independent demand inventory situations the demands can be regarded as 

derived from a Poisson process, in the case of very lumpy demands the 

simple Poisson process, and the Poisson distribution do not provide an 

adequate description of the processes observed. These authors are in 

general agreement that the variation of demand and the coefficient of 
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variation are often much greater than that predicted from a simple 

Poisson process. InAhese cases it is appropriate compound Poisson 

distributions that are put forward as the most promising models. In 

particular the Stuttering Poisson distribution is a favoured model to fit 

and explain the demand character frequently observed. Van Hees and 
Monhemius (1972) discuss a relationship between spare parts demand and 

the variance of demand. From limited data they show for very low 

demand volumes the simple Poisson model is adequate, but for 

progressively higher demand volumes the variance increases markedly 

away from the mean, with increasing values of the variance to mean 

ratio. The valid assumption of simple Poisson demand for slow moving 

spare parts is'also behind the work of Mitchell (1962) at the National Coal 

Board. 'Feeney and Sherbrook (op. cit. ) describe how a Poisson compound 

process can be applied to aircraft spare parts inventory systems and say 

One of the reasons we are interested in generalising 

the assumptions of Poisson demand to distributions with 

a larger variance is that our demand data usually produces 

variances that exceed the mean. Furthermore the physical 

model of customers who can order several units appears 

to be a reasonable description of many supply processes". 

In the simple Poisson process the mean demand is equal to the 

variance of demand, whereas in most lumpy demand situations the 

variance is much greater than the mean even though the demand process is 

Poisson in character in other respects. Feeney and Sherbrooke ( op. cit. ) 

go on to give four possible explanations for the high variance of demand 

observed in the demand for aircraft spares: 

Sympathetic replacement or undetected malfunctions 

-a maintenance man discovers a defective item on 

one aircraft and, as a result, inspects that item on 

other aircraft, replacing incipient failures. 
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(2) Initial wear-out - some components like vacuum tubes 

may have a high probability offailure shortly after 

installation. 

Damage during installation - maintenance personnel may 

damage some parts like windshields during installation. 

(4) Flying programmes are usually correlated between 

aircraft. 

Therefore although the demand for spare parts can arise by a 

process that is Poisson in character the random failure of one part can 

cause the sympathetic replacement (and hence demand) of other parts of 

the same type in the same type or sometimes other but similar equipment, 

or cause the replacement of all parts of the same type in the same 

equipment. The result is to effectively compound the Poisson demand 

process. This author has noted, from commercial vehicle spares demand 

processes, the occurrence of a 'cluster demand' effect with certain parts 

and this gives rise to compounding of demands. For example, an engine is 

stripped down to replace a burnt out exhaust valve and whilst the 

equipment is stripped the opportunity is taken to replace all the exhaust, 

and inlet valves, which are showing signs of wear although technically 

speaking not failed parts at the time. This phenomena has also been 

referred to by Van Hees and Monhemius (1972) page 287. It is also very 

likely to add to the observed 'lumpiness' of spares parts demand seen in 

many systems. 

5.2 (c) the Stuttering Poisson distribution. 

As discussed earlier when the distribution of Poisson events at each 

Poisson occasion is geometric'the counting distribution of item demands 
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in a unit time period can be described by the Stuttering Poisson 

distribution. It is a two parameter distribution with an order arrival rate 

of A orders per unit time. The, average numbers of orders arriving in the 

time interval At is A At. Each order is for one or more units, the actual 

amount being given by the geometric distribution with the second 

parameterp. I 

Ward (1978) gives the following properties of a stuttering Poisson 

distribution of demand over an interval of time of length At. 

(1) meanp=AAt/(l-p) 

variance (v) At (1 +p)l( 1 _p)2 

(3) coefficient of variation (c 1-p 1/2 

(4) ratio of variance to mean c2/rn = (1 +p )Al -p) 

Where A> 0 and 0 <p <1 

'Me average order size is II(I-p ) units and the probability Rn that n units 

will be demanded in the time interval At is given by equation 5.2 as 

previously shown - 

P)At 
J=M 

R,, yw jp J- R,, 
-j n j=l 

This is a recurrence formula for generating such distributions and 

is given by Ward (op cit) after the original work of Adelson (1966). 

Given a time series of demand history accumulated over a sequence of 
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equal time intervals of length T the parameters of the Stuttering Poisson 

distribution can be estimated from the mean (. u ) and variance (v) of the 

observations as demonstrated by Ward (op cit)., In the-same paper Ward 

showed how reorder points can be determined in the lumpy demand case 

using the Stuttering Poisson distribution and he demonstrated improved 

results using this distribution over the normal distribution with empirical 

data. 

Clearly both the Negative Binomial distribution, via the Afwedson 

process, and the Stuttering Poisson distribution are examples of 

compound distribution that can be used to model the purchase quantities 

of 'lumpy' demand items, although the Stuttering Poisson appears to be 

the more favoured distribution in operational situations. The difference 

between the two models is only through the form of the compounding 

model used ie Geometric and Log series. Given that the LSD has a greater 

degree of variance than a corresponding Geometric then it could be 

argued that the NBD might be a better model in cases of extreme 

lumpiness in demand. Ilie degree to which one or the other fits empirical 

data is however, only one of the criteria that should be considered, 

additional theoretical support should be found to indicate the underlying 

process at work. In a detailed comparison of these two models Sherbrooke 

( 1968) attempted to find conditions where the two models produce 

identical results. He concluded that it depends on the application under 

consideration, but by using a variance to mean ratio 'q' he found that in 

one application when 'q' was <3 the two models give almost identical 

results, but gradually diverge when 'q' is > 3. In chapter ten we show 

some operational data, from a car spares system, where the NBD and the 

Stuttering Poisson give very close results; and in appendix one we show 

results which indicate the closeness of the Stuttering Poisson and the NBD 

to model DAF period demands for selected spare parts. The Stuttering 

Poisson does have one unusual property discussed below that could mark 

it out as a favoured compoiýnding distribution is particular circumstances. 
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The figure 5.3 below shows three example Stuttering Poisson 

distributions produced from this author's own computer developed 

model for generating probability density functions from such 

distributions. What can'be clearly seen are the variety of shapes the 

distribution is capable of assuming including the somewhat unusual 

property (for theoretical probability models) of being bimodel. This 

phenomena was also show by Sherbrooke (1968) in his limited 

tabulations. Although it was only a side issue in our work we did in fact 

cover a greater range of values sP variance to mean values than 

Sherbrooke. 
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5.2 (d) Poisson mixing 

Whereas a discrete magnitude is associated with'each point in 

Poisson compounding, in a Poisson mixing process a continuous 

magnitude is associated with the Poisson rate parameter (A ) which is 

statistically distributed over the range 0 -ý oo with a distribution 

function u(x) [ after Haight's terminology (1967). ] The resulting mixed 

Poisson distribution ; rx from Haight has the general form :- 

7rx f 
p., (A)dU(A) x=0,1,2, etc 

-------- 5.3 
0 

Haight refers to the distribution U(A) as the mixing distribution 

[i. e. it is the distribution of the Poisson rate parameter (A ) and the 

resulting distribution ; rx is called the mixed distribution]. Haight (1967) 

reviews a number of examples of Poisson mixing, but only the so called 

Tolya Process' is considered here because of its extensive application 

reported in the literature on consumer buying theory and practice. The 

other examples of mixed distributions given by Haight seem to be of more 

theoretical interest as far as can be judged from their lack of reported use 

in the operational inventory and consumer purchase literatures. 

In the Polya process the mixing distribution U(A ) is a Pearson type 

III (or Gamma) distribution and the resulting unconditional mixed 

distribution 7rx is the Negative Binomial distribution (NBD) as 

previously given, but obtained (in theory at least) by a'-different 

mechanism. Because of the way the NBD is obtained by this particular 

process i. e. gamma mixing of a Poisson process, it is extensively referred 

to, in the consumer behaviour literature in particular, as the 'Poisson 

Gamma model' (see Ehrenberg 1959 and 1972, in particular). ' In its 
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continuous (gamma' function) form the NBD has the following 

probability density function - 

P(r) = (1 + a)-k . 
F(k + r) ar 

- r(k + r)r(k) (1 + a) ---------- 5.4 

For the probability of 'r 'occurrences in a unit time period with 

exponent 'k ' and mean ak. F(x) is the gamma function of x. 

The NBD is a positively skewed distribution with variance is given 

by m (I+m A ), where mA is sometimes replaced by a. The best 

estimate of the mean 'm' is simply the observed mean from sample data: 

this is the unbiased maximum likelihood estimator. The exponent 'k, 
I 

can 

be determined by equating the observed variance to m (I+m Ik ), although 

according to Ehrenberg (1972, p. 58) this can give large effors. 

5.2 (e) concurrent Poisson compounding and mixing 

Conceptually it can be reasoned that there could be- many demand 

situations where different consumers for a particular item will exhibit 

different demand rates (i. e. variable rate parameter) and also compound 

their purchase quantities giving rise to a Poisson process comprising both 

compounded and mixed Poisson events. However, no references to such a 

proces. s has been observed in any of the literature examined. As far as the 

management literature is concerned the general position appears to be that 

those authors concerned with consumer purchase theory discuss and use 

Poisson mixing models particularly the Poisson Gamma, whereas those 

authors coming more from an operational inventory position tend to 

favour the use of compounding models. There are a few exceptions to this 

however, as will be discussed later in this chapter. The only models that 

begins to approach concurrent compounding and mixing are those 

reported by Bagchi(1987) and Nahmias and Demmy (1982). In both cases 

the authors consider what is effectively compounding and mixing in a 
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sequential fashion to develop novel models of lead time demand with, in 

each case, the lead time variable providing the mixing equation. 

From an analytical point of view Poisson mixing and compounding 

could be expected to coexist in many inventory systems, particularly those 

of a spare parts variety. There is the question however of the form of the 

distribution so obtained. If we consider an underlying Poisson process 

with gamma mixing we obtain an NBD (in its gamma form). What then if 

we consider the possibility of compounding occurring at each NBD 

occasion. Do we still have an overall NBD, but with increased variance, 

or is a new distribution obtained ? Conversely if we obtain the NBD by 

compounding and then admit the possibility of the gamma mixing of the 

Poisson rate parameter do we still retain, the NBD as the overall 

distribution ? Ibis is an issue we return to at a later stage in this work. 

5.2 (f) non Poisson compounding 

It can be envisaged that in some systems the interevent distribution 

of the time between demands might be more regular than those described 

by the exponential distribution. In particular the Erlang distribution has 

been suggested by Jewell (1960 ) and Galliher, Morse and Simmond 

(1959) for use in situations where the interevent distribution is more 

regular than the negative exponential. Such a distribution might be 

appropriate to situations where there is a degree of regularity in ordering, 

as for example between retailer and distributor, or distributor and a 

factory level, due to a regular inventory restocking effect. 

Tbe Erlang distribution of order 'r 'is of the form- 

r-1 -xlp 
(x) 

u'IF(r) ------------------ 5.5 

for a process with rateju where r is a positive integer and specifies 
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the order of the distribution. When r=1 the distribution reduces to 

the exponential distribution. 

If the interevent distribution follows such a distribution with r 

greater than unity, say 2,3, etc., then, without compounding, the process 

would yield a demand stream with a variance less than the mean. If 

however, compounding is present, then the variance will increase and 

could give rise to a situation where the variance exceeds the mean'. Hence 

it is possible to envisage a process where demand ordering is more 

regular than that described by an negative exponential interevent 

distribution, but where the variance is still greater than the mean as a 

result of significant compounding of demandAndeed Jewell discusses 

such a possibility and makes reference to a 'Stuttering'Erlang Process', 

but he provides no analytical derivation. Such a process would however, 

not be a Poisson in form and although theoretically interesting has not 

been applied to our work here. 

5.3 The Poisson Gamma Model 

We now turn our attention to a more detailed consideration of this 

important stochastic model. The underlying assumption for the Poisson 

Gamma model is that events occur as random draws from a Poisson 

process wi mean rate u. In the simple process where u is constant the 

occurrence of events is'given by the simple Poisson distribution. If the 

model is extended, as will be shown, to assume that this Poisson rate 

parameter y is itself a variable and takes the form of a Gamma 

distribution then, through a Poisson mixing process, the unconditional 

distribution of Poisson events that is obtained is the Negative Binomial 

distribution in its gamma form as shown previously by equation 5.3 : 
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P(r) = (1 + a)-k ._ 
I(k + r) ar 

- r(k + r)]F(k) (1 + a) 

As we indicated earlier this Poisson Gamma model has been used 

extensively in the field of buyer behaviour research and has been 

discussed at length by Massey, Montgomery and Morrison (1970), 

Ehrenberg (1972) and to a lesser extent by Graham (1974) and Easton 

(1980). Goodhardt, et al (1984) provided an extensive list of references 

which report the use of the NBD model, and variants mainly the Dirchlet 

model, in the consumer purchase research. The references cited by both 

Massey and Ehrenberg are extensive and demonstrate the wealth of 

modelling work, that has been reported following the pioneering work in 

this field by Ehrenberg (1959). According to Massey (op. cit. ) Ehrenberg 

is credited as being the first author to develop an explicit model of 

heterogeneous buyer behaviour, which has since become known as the 

Poisson-Gamma model. It is strictly speaking just anegative binomial 

distribution, but referring to it as the Poisson Ganu-na model gives us the 

process by which is has been derived. It should be distinguished of course 

from the Afwedson process whereby the Negative Binomial distribution 

is obtained by a compounding process of Poisson events using the Log 

Series distribution. 

Iffie attainment of the NBD model by a mixing process is best 

developed and most easily appreciated by reference to consumer purchase 
theory based on the work of Ehrenberg. The starting assumptions were: - 

(1) Purchases of a given consumer at successive points in time 

can be regarded as independent drawingsfrom a Poisson 

distribution with mean rate A, i. e. - 

P(r) = 
e-)'Ar 

r! --------------------------- 5.6 
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for r=O, 1,2, et 

- (2) The average rate ofpurchasing of different consumers in 

long run differ, their distribution being gamma with 

exponent k and mean m and the consumer has a 

mean purchasing rate A, in the long run, hence: 

U(A) _ 
e-"IaAk-1 

k 
arM --------------------- 5.7 

where a= ni Ik and IF(k ) is the gamma function of k 

The function u(A ) represents the distribution of A over many 

consumers. 'Ilius applying equation 5.7 as the mixing distribution on the 

process equation 5.6 we can derive the unconditional mixed Poisson 

distribution 7rx of equation 5.2, or P(r) for the probability of r purchases- 

00 CA 
IkAk-l 

CA W 
7rx fk 

--dA 
0a 

17 (k) r. 1 -------------- 5.8 

- '' This - can be integrated and then simplified -, to give the 

unconditional Negative Binomial distribution previously shown by 

equation 5.3. 

P(r) = 
(1 + a)-k 

r(k + r) 

r(k + r)r(k) (1 + a) 

an Zacks (1969, p. 153) in a largely theoretical paper on a Bayesi 

approach to setting stock levels gives a detailed theoretical proof that this 

mixing process leads to a Negative Binomial Distribution. 
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The NBD model has also been developed and depicted in a useful 

graphical way by Easton (1975) -, and is shown in tabular form as 

follows- 

-ý, Figure 5.4 

Poisson Gamma Model, 

C 
Periods 

L n, ib ti Di t onsumer ong run o r u s 
1 2 3 4 5 n average horizontally 

1 

A rjI I 
A 

X2 
A 

X3 --- ----- 
AA Poisson 

x 
B, 

---- ------ - 
AB Poisson 

B 

C xI -X3C . ..... 
Ac' Poisson 

C 

XD ---- ----- ---- 
D 

E 

F 

Mem 
172 - -1 

X4 
An 

vertical 
distrib'n 

D NBD INBD NBD Gamma 

We use this form of the Poisson Gamma model in chapter seven to 

assist with our approach to aggregate model building and we return to it 

at that stage. 
i 
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5.4 Application of the Poisson Gamma Model 

The fact that Poisson events with Gamma - mixing lead to an 

unconditional Negative Binomial Distribution is now well known, in 

several fields. In accident statistics several authors have used it to model 

accident proneness or have referred to its use in that context, Arbous and 

Kerrick (1951), Bates and Neyman (1952), Edwards and Gurland (1961) 

and Bhattacharya and Holla (1965). Also it has had reported use in 

ecology by Quenouille (1949) and in O. R. (See Ehrenberg (1972) and 

Grahn (1969, P. 73). 

However, the most widely used and reported use of this model and 

derivations from it is in the field of consumer buyer ýbehaviour. In 

particular, Andrew Ehrenberg and Gerald Goodhardt between 1959 and 

1972 published nearly fifty papers in the field of consumer purchasing 

many of which refer to the methodology and results of applying the 

Poisson-Gamma model, and derivations, to various consumer purchases. 

Ehrenberg (1972) gives a comprehensive listing of these references and 

many more by other authors. The text by Massey et al, (1970) also 

contains an extensive reference listing to publications in the consumer 

purchase field. The Poisson Gamma model as applied in consumer 

purchase research can clearly be regard as a major milestone in both the 

theoretical and applied developments in this field of enquiry. It has 

however, also found application in related fields which are relevant to the 

research by this author. 

As previously mentioned Easton (op cit) has discussed the model in 

his work on patterns of industrial buying. Haber and Sitgreaves (1970) 

have developed the same model using a Bayesian approach and then used it 

to estimate usage rates for submarine spares in single periods. They 

assumed that the variation in Poisson demand rates for given parts from 

different sources could be regarded as Gamma distributed. Hollier (1980) 
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has also indicated the validity of the Poisson Gamma model in the context 

of spare parts in a paper devoted to the problem of estimating the all time 

requirement of vehicle spare parts. In both the Haber and Sitgreaves, and 

Hollier papers the development and use of the model was in terms of the 

expected frequency of purchase incidence or purchase occasion for a 

single item type in a single period. In both cases although the concern was 

operational inventory issues the model was formulated in terms of mixing 

with the Poisson rate parameter considered to be gamma distributed. It 

must also be noted that in the application of the model to consumer buying 

theory, the model is developed explicitly for and interpreted in terms of 

single product types over a range of consumers during single periods. 

Hence the Poisson Gamma model can be classified as a sinp-le product 

single 12eriod model. Furthermore, as has been discussed by Ehrenberg 

(1959 & 1972) amongst others, it is a model of stationery purchase 

behaviour. 'Mat is to say no sales trend should exist for the period being 

analysed. Hence the analysis period must be kept short, or alternatively, 

successive analysis periods should be treated independently and the 

assumption of stationarity should be applied to each' separately. Massey 

(1970) points out that there is a further methodological problem in 

consumer purchase theory relating to the analysis period. If the period is 

too short then purchase event feedback is an important consideration. 

That is purchases made in one time period influence the decision whether 

to buy or not in the next period. However, this is not a problem in the 

context of the work here because when a spare part fails in service it must, 

in general, be replaced irrespective of whether the failure occurred after 

three hours or three months. This assumes of course an operational 

policy that requires the equipment concerned be kept in a fully 

operational condition. 

Taylor (1961) has shown how the NBD distribution can be applied 

to the problem of setting stock levels for individual aircraft spares at 

British Airways. He developed the model by first assuming and 
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subsequently verifying for his data that demand for spares was simple 

Poisson and that the resupply lead time could be considered to be 

distributed as a Gamma distribution. He then went on to formulate a NBD 

model for the resupply time demand with variable lead times by a mixing 

process, although he does not discuss mixing as such. This is an 
interesting and valuable development because this approach clearly leads 

to a model of purchase (or demand) quantity , whereas Ehrenberg's 

development of the NBD model was in terms of purchase occasions 
independent of quantity. However, in the case of Ehrenberg's consumer 

purchase studies the work was in the context of such consumer products as 

toothpaste, detergents, and breakfast cereals and similar fast moving 

consumer products and fixed intervals of time. The problem of 

considering a unit quantity of purchase in such merchandise areas is 

clearly evident with the multiplicity of pack sizes available. In the case of 

spare parts however, this problem does not exist to anything like the same 

degree. A spare part as defined by most, if not all, original equipment 

manufacturers (OEM's) is a discrete item of unit quantity. and coded and 

catalogued as such. Some consumable spare items may well be carded in 

units of 10 or a dozen for example, but they are generally very small in 

number compared to the size of most spare parts ranges. Other spare 

parts such as engines, axles etc. will be aggregates of simpler spare units 

but again they will be coded and catalogued accordingly. It can be argued 

that for many spare part demands at the retail level, purchase occasion is 

very-likely to equate with a purchase quantity of unity. At the distributor 

level restocking decisions from the dealers will create multiple order 

quantities for many items and hence significantly compound demand for 

those items as a result. I 

. -Taylor's 
formulation of the NBD may then be considered in a way 

which is consistent with Ehrenberg's approach. By considering the 

variable resupply lead time to be Gamma distributed, the Poisson mean 

rate of demand will also be a variable quantity proportional to the lead 
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time variation and it too will then be Gamma 'distributed. This is 

effectively equivalent to the Poisson mixing and we can regard Taylor's 

model as a Poisson gamma model of quantity. Interestingly Taylor 

makes no reference to demand models in fixed time intervals nor does he 

discuss the possibility of compounding, which, from evidence discussed 

earlier in this work, one would expect it to occur in the systems studied by 

Taylor. 

5.5 Modifications to the NBD Model 

'A number of modifications to the basic Poisson Gamma model have 

been proposed by various authors. In particular, Herniter (1971), 

Chatfield and Goodhardt (1 973), 'Jeuland et al(l 980) - and Morrison and 

Schmittlein (1981) have all considered situations where purchases are 

more regular than that assumed by a negative exponential interpurchase 

distribution. 'In these cases, they' considered the Erlang family Of 

distributions of order two or more to model interpurchase times and this 

resulted in what has become known as a 'Condensed Poisson Gamma' 

model. However, according to Chatfield and Goodhardt (op cit) the 

results'of such formulations and use'on consumer purchase data only 

gave marginal improvements at best over the basic NBD model, and Dunn 

(1983) has concluded that the NBD must be considered as a very robust 

model of purchase incidence. Lawrence (1980) has suggested theuse of 

the lognormal distribution as an alternative mixing distribution- to the 

gamma distribution of consumer purchase rates and claims success on his 

chosen data sets (toothpaste purchases) using this approach. More recently 

Sichell (1982) has developed a much more flexible version of the Poisson 

Gamma model which he named the Inverse Gaussion Poisson model 

(IPG). In this approach demand at the level of the single buyer is 

assumed to be Poisson, but Sichell uses the Inverse Gaussian distribution 

as the mixing distribution of A, the Poisson rate parameter, on the Poisson 
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process. This results in a fearsome looking distribution of the form : 

f(x ), = 
'2(1 -ý 

0)1/2 / a0 Xl-l 
e-[(11 

0-1)-1];. -(a20/4y) 

- 

2K�[a(1- 0)1121 

- 

Where -oo< Y<oo 

and 0: 5 0<1 

and a ý: 0 

Ky (Z ) is a modified Bessel function of the second kind of order 

y and argument Z. The flexibility, of this distribution is seen by the 

variety of forms it can take. If y>0 and if we then let a --> oo then it 

becomes the Gamma (Pearson type IIII) distribution. If <0 and we let 

0-. then it becomes a Pearson type V distribution. 

In the same paper SicheR then demonstrates an improved fit of this 

model, to several consumer products groups, over the Negative Binomial 

model, and according to Sichell's work it seems to offer substantial 

advantages due to the greater flexibility of the Inverse Gaussian 

distribution over the gamma distribution. However, the model has not, so 
far, been reported widely in the literature. 

Other modifications to the basic Poisson Gamma model have been 

proposed by various authors, such as Goodhardt's Beta Binomial model to 

account for repeat purchase in multiple periods, (see Ehrenberg, 1972). 

More recently the generalised Dirichlet model has found favour with 

consumer purchase researchers to take into account broader. purchasing 

conditions such as consumer brand choice and store choice. In particular 

Goodhardt, Ehrenberg and Chatfield (1984), showed that the NBD is 

just a special case of the Dirichlet model. And Morrison, Schmittlein and 

Colombo (1987) have extended the basic NBD model via the Dirichlet to 

non stationary conditions. However, neither the Beta Binomial or 
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Dirichlet models have any direct application to the work in this thesis. 

5.6 Support for Poisson and Gamma Processes 

In this section we will now consider what evidence exists, both 

theoretical and empirical, which supports and justifies the use of Poisson 

process in the development of both compound distributions and Poisson 

Gamma type models. We also examine the Gamma assumption behind the 

Poisson mixing processes. 

The Poisson Gamma model, and all Poisson compound models, 

start with the basic assumption that demands at the consumer level are 

Poisson generated. In the extensive literature on the application of 

Poisson - Gamma models, especially in the consumer purchase field, the 

argument for a Poisson process is on the basis that consumer demands are 

independent and that the customer base is generally large. This is 

providing, as pointed out by Ehrenberg (1972), that the analysis period is 

not so short that purchase event feedback becomes a problem. The 

assumption of independence seems somewhat shallow in the context of 

consumer purchasing, but the success with which the Poisson - Gamma 

model has been applied to consumer purchase field would seem to justify 

it. In the context of this research the underlying assumption that demands 

generated for spare parts items are Poisson can bý justified and supported 

by a considerable amount of evidence. 

5.6 (a) from failure models of complex sy'stems 

The literature on reliability theory, failure processes and renewal 

theory is extensive and a review here would not be appropriate. However, 

some consideration to basic theory is justified together with a 

consideration of some of the papers that refer to spares inventory issues. 
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It is generally accepted by a number of authors who have published 

in the field of reliability and maintenance, and also by practising 

Operations Managers, that the classical 'bath tub' curve of figure 5.5 

represents a reasonable model of the failure rate observed in many 

complex equipment situations, for example Trusscott (1970), Caplen 

(1972), Bestwick and Lockyer (1982), and Nahmias (1989) amongst 

others. 

Run in 

phase 

Failure 
Rate Z(t) 

Figure 5.5 

BATH TUB CURVE 

Wear out 
phase 

Useful life 

phase 

4 

Operating Time 

'Mis diagram shows the now weU known three phases of operating 

life for complex systems. The 'run in phase' is characterised by a high, 

but rapidly reducing failure rate due to run-in and early random failures. 

The 'useful life' phase is characterised by a low and near constant random 

failure rate; and the 'wear out' phase is characterised by an increasing 

failure rate due to wear out and age deterioration and random failures. 

For complex equipment, which may be assembled from hundreds, or 

even thousands, of parts and components, the bath tub curve represents 

the aggregated failure pattern of all components and parts. Individual 

component types may exhibit very complex failure patterns, but when 
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considered 'in situ' with other component parts the aggregated picture is 

often not complex due to levelling or smoothing effects. 

The useful life phase of the bath tub curve is characterised by a 

constant failure rate and this condition is applicable to complex systems 

over quite long periods of operating life, (provided they are repair ed on 

failure and are regularly maintained), Bazovsky (1961). Under these 

circumstances the exponential failure rate equation can be shown to apply, 

and the failure density is given by the function : 

f (t) = Ile 
At 

where A the constant failure rate, and t= the operating 

period. I 
f 

From this equation the reliability function R(t) is readily derived as given 

by Barlow (1967), Truscott (1970). 

R(t) = e-lt 

and the associated failure rate Z(t) given by - 

Z(t) = f(t)IR(t) 
ýi 

CA t 
Z(t) 7-- 7; L -, 

e ; Lt 

The fonn of each of these expressions for the useful life phase are as 

shown: - 
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, figure 5.6 

Equipment Failure Modes 

f(t Z(t) 

tt 

? (t) 

Hence, uring the 'normal operating life' of equipment the 

negative exponential failure rate mode' is widely considered to be fully 

justified to model the time between failures and the prime condition of the 

simple Poisson process is satisfied. We can therefore expect replacement 

demands occasions in unit periods to'be Poisson distributed. The actual 

amount'demanded could be simple or compound Poisson, this will 

depend on the nature of the parts being replaced. 

5.6 (b) wear out failure modes 

Whilst the simple exponential failure equation adequately describes 

the useful life phase it is not an adequate description'of the failure pattern 
in short intervals when complex equipment moves into its 'wear out' 

phase. In such regions of a 'life curve' the normal and sometimes 

lognormal distributions are used to model the failure density. The 

associated plots of f(t), Z(t) and R(t) for the wear out phase are given in 

figure 5.7 (from Truscott 1970). 
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figure 5.7 

Wear out failure modes 

f(t 

t 

Z(t) R(t) 

tt 

If however, we consider long intervals of time then, even in a wear 

out region, if parts are replaced on failure, in complex systems, there is a 

strong tendency for the frequency of failure to converge to an exponential 

form, -Truscott (1970) and Barlow (1967). Barlow (page 19) in 

particular quotes: 

to consider a system consisting of many components, each subject 

to an individual pattern of malfunction and replacement, and all 

parts making up thefailure pattern of the equipment as a whole. 

Under reasonably general conditions the distribution of the time 

between equipment failures tends to be exponential as the 

complexity and the time of operation increases". 

Barlow then goes on to develop this analytically from. first 

principles and shows the convergence to exponential failure frequency 

over a given period for a large number of components in the system. 

Truscott (1970) reaches the same result by a simple practical illustration 

shown as in figure 5.8 that follows: 
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figure 5.8 
Exponential Failure Decay 

Overall exponential decay 

f(t) 

I st generation 

3rd generation 
4th generation etc 

Operating Life 

It can be seen from the above diagram that because of the phased 

introduction of second, third etc., component generations the variance- 

about the mean life of each generation increases markedly with each 

successive generation. Under these circumstances the overall exponential 

convergence can be readily seen. 

Menzler (1953) writes 

"A study of the statistics of bus equipment confirms 

that in normal circumstances the failures are to all 

intents and purposes independent occurrences". 

That is they satisfy one of the basic conditions of a Poisson process. Davies 

(see Kendrick 1960) presented a considerable amount of failure data 

including that from manufactured products such as vacuum tubes, bus 

engines and his data was compared with normal and exponential theories 

of failure and in his Conclusions Davies writes: - 

2nd generation 
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"The exponential theory offailure appears to describe 

most of the systems examined here. Those systems that exhibit 

reasonable agreement with this failure theory are characterised 

by a predominance of human errors as the cause, or a careful and 

well developed operating techniquefor minimising failures. 

Systems which are subject to a wide range of environmental 

conditions also appear to follow the exponential failure law". 

The general conclusion from the foregoing is that provided we are 

concerned with complex equipment comprising a large number of parts 

and components subject to replacement on failure then the exponential 

distribution is a satisfactory model of the failure frequency of all three 

phases of the life curve of the equipment. This also includes the 'run-in' 

phase because according to Truscott (1970), Caplen (1972) and Barlow 

(1967), although the failure frequency is generally regarded as hyper- 

exponential in this region it will quickly converge to the exponential 

form mainly because the period of 'run in' is often very short compared 

to the whole life of typical equipment. Hence the overall interevent 

distribution between one failure and the next can, in most failure modes 
for complex equipment, be regarded as exponential and the primary 

requirement for a Poisson process is satisfied throughout the major part 

of the complete operating life. 

S. 6 (c) support from inventory theory 

The literature on inventory theory contains a large number of 

publications which refer to the demand processes of spare parts as being 

adequately modelled by a Poisson - exponential process. Pitt (1946) is 

accredited as being the first author to give an exact solution of a steady 
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state probability of reorder levels for spare parts and demand was 

assumed to'beýa captive Poisson. Karush (1957), Garrett (1958), Takacs 

(1956) and Karlin and Scarf (1958) have published early papers and all 
have either, stated, or implied, that spare parts demand processes are 

Poisson in character. 

-- 
Several authors already quoted earlier in, this chapter have 

published, inventory papers related to spare-parts. Galliher, Morse and 

Simmond (1959) in a study concerned, in part; with military equipment 

spares, concluded that the demand generation process was Poisson, but the 

demand itself in unit time periods consisted of bunches or bursts of 

demand. They further concluded that whilst the incidence (or occasion) 

of bursts could be regarded as Poisson the quantity demanded per unit 

time was compounded as a Stuttering Poisson distributiom In a similar 

paper by Feeney and Sherbrooke (1966) on establishing reorder levels for 

(s-1, S) inventory policies of aircraft spare parts they found demand 

arrivals to be Poisson distributed, but. the quantity demanded per period 

was described by a compound Poisson distribution. 

In Taylor's (1961) paper, devoted to establishing the lead time 

demand for aircraft spare parts, he concluded that the demand processes 

he studied satisfied the requirements of a Poisson process. Additional 

papers by Sherbrooke (1966) and (1968), and Bartakke (1981) 

concluded that spare parts demand can be assumed Poisson in character. 

Ward (1978) in a study of an inventory of '30,000 spare parts (of 

unspecified type) and Haber & Sitgreaves (1970) in a study of 25,000 

submarine spares both concluded that spares demand processes were 

Poisson in nature. In Hollier's (1980) paper concerning the all time 

requirement of vehicle spares he proposed that the Poisson process was 

the appropriate theory to use. More recently Mitchell et al. (1983), in a 

study which was also based on aircraft spares, it was ýfound that from over 

6,000 order arrivals (demand incidence) into air force resupply bases that 
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the order incidence process was simple Poisson. Bagchi, et al, (1983) in a 

study of slow moving independent demand items concluded that Poisson 

unit demands are, appropriate given that the interval between demands is 

exponential; and Federgruen ( 1984) et. al. used compound Poisson 

distributions as the appropriate, models to represent the behaviour of 
independent demand incidence in multi-echelon inventory channels. In a 

more theoretical paper Bagchi (1987) concluded that the Poisson 

distribution is the appropriate model to represent demand occasion when 

demands are independent and completely random. Bagchi then used 

various models to represent the customer order distribution and the lead 

time. For example, his GPG model is Poisson order occasion (the order 

intensity), Gamma lead time and Geometric order size (the order rate). 

This author confidently concludes from the weight of reported 

evidence in the literature that failure rates and the follow on demand rates 

for spare parts are Poisson in character for wide range of spares types and 

the unit time demands are distributed as either simple, compound Poisson 

or mixed Poisson, or even composites of each. 

5.6 (d) support for the gamma assumption 

The second major assumption of the NBD model is that the 

consumers long run average rate of purchasing is gamma distributed. 

Intuitively it can be reasoned that consumers of the same product will 

have different purchase propensities and it would not be surprising to find 

that the variation can be sunimarised by a statistical distribution as flexible 

as the gamma. Ehrenberg 1959 & 1972 amongst other publications has 

shown that the result predicted by the NBD model are very close to those 

actually found for a very wide range of consumer products. Despite 

attempts by Sichell (1982), Graham (1969) and Chatfield and Goodhardt 

(1973) to improve the general NBD model, the robustness of this 
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distribution and its underlying assumptions hold up extremely well. 

Burgin (1975) in a detailed discussion of the use of the gamma 

distribution in inventory control shows the great flexibility of this model 

for different values of the parameter k. 

Figure 5.9 

Various Gamma Distributions 

f(t) 

Variate t 

Ehrenberg (1959) drew attention to the fact that it is the 

appropriate distribution to use having the correct general form and 

always positively skewed. Ehrenberg and Goodhardt (1979) discuss the 

form of the appropriate distribution and justify the use of the, gamma 

distribution in purchase theory on the following grounds: 

"different consumers buy the brand independently of 

buying each of the other brands in the market and if. *- 

a consumers buying of the product is independent of how 

much of that consumers total product class purchases 

the brand accountsfor then it can be proved 
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mathematically that the difference consumer purchase 

probabilities are gamma distributed. " 

A detailed development of the proof behind the above reasoning is given 

by Goodhardt and Chatfield (1973). 

In the context of spare parts it can be reasoned from an intuitive 

position that users of equipment, such as commercial vehicles for which 

spare parts replacements are required from time to time, will demand 

identical spares at different rates. This will arise because of the different 

environments in which the parts are used. In turn, this occurs due to the 

many operational variables that have impact on the wear rate and ultimate 

failure of a part. For example, different rates of vehicle usage, different 

loads carried, different driver behaviour, service level policies ranging 

from strict maintenance scheduling to drive it to failure attitudes etc. 

These are all aspects that can significantly alter the life and hence demand 

rate of many identical parts from vehicle to vehicle and operator to 

operator. I 

In papers previously quoted, Hollier (1980) and Haber and 

Sitgreaves (1970) have supported the view that the gamma distribution is 

appropriate to use in the context of -spare parts as a model of variable 

demand rates over a range of consumers. Zacks (1969) using a more 

theoretical approach to inventory - problems supported the use of the 

gamma as the appropriate distribution, to use in the development of the 

NBD model. 

From the foregoing discussion, and the wealth of work in the 

consumer purchase and accident statistics fields, the underlying 

assumptions of a Poisson process with gamma mixing are well founded 

and supported by a considerable body of evidence. 
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5.7 Conclusion 

A review of the relevant literature has shown that for inventory 

items whose demand is derived independently from a large consumer 

population then the demand process is very likely Poisson. In the case of 

spare parts items evidence from failure processes and reliability theory 

give further support to an underlying Poisson process, but the demand 

variance is often greater than the mean implicating compound Poisson 

functions as demand models. It has been shown from the literature that 

both Poisson compounding, and mixing, increase the variance of the 

demand in unit periods of time, whilst the underlying Poisson process is 

still preserved. Several compound models have been considered that can 

be used in operational situations, but in the case of very lumpy spare parts 

demand systems the NBD and the Stuttering Poisson distributions have 

been proposed as models of the demand quantity per unit time. The NBD 

can also be derived by a mixing process, but as such it is strictly speaking 

a distribution model of purchase occasions or incidence. In those cases 

where no compounding of purchase size occurs then the NBD, derived 

by mixing, can then be regarded as a model of purchase quantity. 

The development of the NBD by mixing processes is somewhat 

confusing. We have seen from various authors that it can be developed 

from a mixing process by two approaches depending on the intentions and 

assumptions made by the respective authors. In one case the Poisson rate 

parameter is regarded as a Gamma variate and we are given an NBD of 

purchases in fixed intervals of time. This has been essentially the 

consumer purchase approach. In the other case the Poisson rate parameter 

is assumed constant and Gamma mixing is introduced by considering a 

Gamma resupply variable. This has essentially been the inventory theory 

approach using the NBD to model lead time demands. 
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Whilst NBD models have been discussed in the context of single 

item types there is some empirical and theoretical evidence we consider 

in some -detail in chapter seven that supports the view that similar 

processes may be applicable to certain classes of heterogeneous (or 

mixed) item populations. It is this finding that, provides a possible link 

between single item demand and aggregate item demand. Based on the 

considerations of this chapter and those of chapter four we can'now move 

to a more formalised statement of working hypotheses - 

(i) Demand occurrences of individual spare part inventory items are 

Poisson distributed. The overall demand quantities, in fixed 

intervals of time, are compounded to varying degrees from spare 

part to spare part. This compounding leads to fixed interval 

demand models that are most likely NBD or Stuttering Poisson. 

Where no compounding or mixing occurs then the simple Poisson 

model is sufficient to model fixed interval demand. 

Concurrent mixing and compounding can be expected in the , 

demand for some items and this will in all probability lead to an 

overall demand distribution with a variance value greater than that 

expected from either compounding or mixing alone., 

(iv) In the long run aggregate inventory item usage rates are 

lognormally distributed as the stable long run equilibrium 

distribution. The convergence of usage rates to lognormality is 

governed by the Law of Proportionate Effect. 

(v) Furthermore, as usage values are the product of item prices and 

item demand volumes, then these two factors are also lognormally 

distributed, providing that the period over which the demand is 

measured is sufficiently long for the process to have converged. 
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Empirical Data Analysis I 

6.0 Introduction 

, Ibis chapter contains most of the empirical data analysis relating to 

the DAF Trucks spare parts data, and therefore a brief outline of the 

company and the DAF spares environment is given as an introduction. 

DAF Trucks (GB)'limited, was until mid 1987, the whollY'owned 

subsidiary of the parent Dutch company DAF BV Eindhoven. The UK 

company commenced sales and marketing operations in 1971 to sell DAF 

built trucks of gross vehicle weight 14 tons and over in the UK market. 

The truck range consisted of some 15 basic models,, but considerable 

variation was possible around modular units, eg engine type, wheel 

configuration and rigid and tractor bodiei. 46- trucks were sold in 1972 

and by 1979 the annual sales of trucks had reached 2,110. After, a deep 

industry recession in 1980 and 1981, DAF sales reached 2,680 truck units 

in 1985. To support the sales of trucks and to sUpplyall necessary regional 

technical, marketing-and sales'support DAF developed a network of sole 

franchised regional dealers. 'Mese numbered some 22 in 1979 and by 

1985 they had increased to 30. In some areas the regional dealer also 

routed spare parts to local service dealers, who maintained small stocks of 

fast moving consumable items. 

't The number of spare parts lines stocked in the UK'rose steadily 

over the period 1975 to 1986, even though the Dutch parent company had 

a, vigorous programme of variety reduction and standardisation. 

Inevitably in a changing technical market truck modifications and new 

models increased the number of catalogued spare parts. In 1975 the active 

parts range in the UK was around 7,000; by 1986 this had risen to some 

12,000 items with over 25,000 part numbers listed. In Holland the parent 

company had a catalogue of over 60,000 part numbers. 'Mis large range 
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of spares supported a number models not exported to the UK; these were 

principally light commercial vehicles. 

6.1 Inventory Analysis 

In this section we -report 
the detailed analysis undertaken at DAF 

Trucks UK headquarters operation at Marlow, Buckinghamshire. As 

previously discussed in chapter one the initial analysis was focused on the 

aggregate properties of the entire parts inventory, and to see how far the 

lognormal distribution could be applied to this environment. We were 

anxious to validate, or refute, the claims of the mainly American studies 

which reported the validity of the lognormal distribution to model usage 

values of inventory items. Furthermore it was the intention to achieve a 

deeper understanding of the nature of the distribution in relation to spares 

inventory items, the meaning of the parameter values and ultimately to 

explain, if possible, by appropriate and testable theory the genesis of the 

lognormal distribution in this environment. The justification, for this was 

to reach an understanding of the validity of the theory, to appreciate the 

range of applicability and to see what, further insights into aggregate 

inventory -properties could be achieved. As will be seen in, the following 

sections the applicability of the lognormal distribution wasýproven valid 

and we show a deeper understanding of the nature of demand volumes and 

usage values. Also a better understanding of the stability of the processes 

at Work is also seen. The analysis in this chapter, together with the 

literature work from. the previous chapters, has provided a sound basis 

upon which the theory development of chapter seven has been based. ,. 

, 
The more detailed analysis and results here are generally based on 

1979,1983 
, and 1985 as example years. The corresponding results for all 

years over the period 1975 to 1985 are presented in a summarised form. 

In this way it is hoped that a more effective and economic presentation is 
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achieved. Even so the chapter is large due to the extensive analysis that 

was undertaken. 1979 was chosen because it was the first year that this 

author analysed in depth and it is'one of the middle years of the entire span 

of DAF data analysed. 1985 was chosen because it was the last set of fun 

year data to be analysed in depth. 1983 was a completely arbitrary choice. 
In the case of demand volumesfor our three example years we examined 

the forms of the distribution of demand volumes from one period (four 

weeks) upwards'to Show how such distributions change shape and 

converge to an integer form of the lognormal distribution as the stable 
long run model. We also present an analysis of usage values for a sample 

of DAF regional dealers based on 1980 data. We were'anxious to achieve 

a view of the processes at work at the dealer level and to examine, their 

value'and relationship to the distributor level in the system. 

6.2 Analysis of Usage Values 

In chapter one of this thesis we gave some preliminary results on 

the analysis of usage values by presenting the results for the whole year of 

1979 from the DAF inventory at Marlow. We now reconsider this data set 

below in some detail to verify the lognormality of usage values. In section 

6.5 we then consider the data for 1983 and 1985 for comparison. For the 

years 1975 to 1981 the analysis was based on computer generated ABC 

listings of annual parts sales by usage value. This enabled whole 

population data to be used for usage values. In 1979 when this author 

commenced the initial data collection and analysis by fortuitous 

circumstances the ABC listings for years 1975 to 1978 were available in 

the Parts department office, (gathering dust in an old filing cupboard). 

This was extremely fortunate otherwise the data for earlier years would 

not have been available. For an examination of parts prices and parts sales 

volume other company documents had to be used and data was extracted 

by sampling methods. In the majority of these cases sample sizes of 200 
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items were always selected. This was felt to be a reasonable compromise 

between the need to keep sampling errors down to the smallest values 

possible and the time needed to work through very large computer 

generated documents (some as large as 500 pages). The important 

sampling issues that had to be considered are discussed in appendix two 

together with criteria for determining sample sizes. 

6.2 (a) Graphical tests of lognormality 

By using the ABC print out of usage values for the whole year 1979 

the following histogram and data tabulation were constructed in classes of 

equal logarithmic value bands. The symmetry in the usage value data is 

evident from both the tabulated data and the histogram giving a 

characteristic 'normal' curve form. 

figure 6.1 
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table 6.1 

1979 Usage value data 

Usage value 
upper bound 

loge Usage 

value 

frequency 

of items 
theoretical 
frequ ncy 

difference 

442413.00 13 1 2 -1 
162754.00 12 0 8 -8 
59874.00 11 35 28 7 
22026.00 10 94 83 11 

8103.00 9 241 196- 45 
2980.90 8 427 401 26 
1096.60 7 697 724 -27 
403.43 6 987 1052 -65 
148.41 5 1285 1371 -86 
54.60 4 1452 1439 13 
20.08 3 1344 1331 ' 13 
7.39 2 1072 1022 50 
2.72 1 774 723 51 
1.00 0 461 408 53 
0.37 -1 171 192 -21 
0.13 -2 50 80 -30 
0.05 -3 7 28 -21 
0.02 -4 2 8 -6 
0.01 -5 0 2 -2 

SUMI 9100 1 9098 1 15 

The theoretical distribution in table 6.1 above was calculated from a 
distribution of N( 3.51,2.48), i. e. the same 'normal' parameter values as 

the empirical distribution. 

The data was plotted on lognormal graph paper to produce the 

remarkable straight line as was shown in chapter one, page 35a. Although 

the lognormal graphical presentation in chapter one, together with the 

histograms presented herej are entirely visual they do provide us with 

Page 165 



Chapter 6 

strong support to the validity of claiming the data to be lognormally 

distributed. It can be clearly seen from the graph'in chapter one that it is 

only in the extreme tails of the empirical distribution that any significant 
deviations occur from a theoretical normal curve. It is argued that data 

fitting a straight line as good as this over the whole percentage range, and 

well into the one percentage point of each tail on lognormal graph paper, 

must be regarded as lognormally distributed. Professor Gerald 

Goodhardt' has pointed out (private communication, 1984) that one 

should not be too surprised to find such a very high degree of regularity 

with social science data of this type, given the large effective size of the 

data set (9,100 in the case of 1979), provided the model is the appropriate 

one to use. Even so the degree of fit is so close that a critical reader might 

conclude that the data had been corrupted in some way. Figure 6.2 gives a 

direct visual comparison between the theoretical and actual frequencies. 

I 

Professor Goodhardt has published widely and extensively in the field of consumer 

behaviour and has vast experience of modelling work with highly skewed distributions in 

social science data. 
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To enable any follow on researchers to validate the data or conduct 

any additional analysis the critical first ten pages from the relevant DAF 

computer ABC print out is given in appendix seven. (A copy of the entire 

print out may be obtained at nominal charge by contacting the author at 

City University, London. ) 

6.2 (b) Goodness of fit tests 

A Chi Squared test was detennined comparing the 1979 data with 

the corresponding theoretical normal distribution ( ie same parameter 

values), the results were as follows, 

Chi Squared statistic = Y- (0 - E)2 /E 

Observed Chi Squared = 82.65 

The degrees of freedom V =19 -1- 2= 16 

Criterion test value of Chi Square = 26.3 at the 5% level 

Criterion test value of Chi Square = 32.0 at the I% level 
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It can be seen from the above results that based on this classical 

goodness of fit test alone one would reject the null hypothesis, namely that 

the data is from a normal distribution, and accept the alternative that the 
data is not normal in form. However, as discussed in chapter two there are 

a number of methodological problems associated with the Chi squared test 

one of them being that the test will almost always reject the null hypothesis 

when the analysis is based on very large samples. This is because the 

procedure can detect or react to) the fine departure, or noise, from the 

theoretical curve even in very good fit situations. T'he Kolmogorov - 
Smirnov test based, as it is, on cumulative distribution comparisons, is 

generally considered a fairer test in these situations. As discussed in 

chapter two according to Kendall (1979), this test is generally much more 

sensitive and accurate than the Chi Squared as a goodness of fit test. If Fo 

represents the cumulative observed distribution (as a proportion) and Fe 

the expected cumulative distribution (also as a proportion) then the 

Kolmogorov test statistic Dn for sample size 'n' is computed as follows- 

Dn = Max IFo 
- Fel 

If the maximum observed value of Dn exceeds the tabulated critical value 

of Dn at the chosen level of significance, then the null hypothesis is 

rejected and the observed distribution is assumed to be non-normal. 
Conversely if he observed Dn value is less than the critical value then the 

null hypothesis is accepted. Although of course it is not proven as correct 

either; only that we can not disprove it on the given evidence. 
IýI 

The critical values of Dn are given by Kendall 
-(1979) and for 

sample sizes greater than 35 the 1% and 5% levels of significance can be 

calculated, as follows- 

At the 5% level, Dn = 1.36/qn 

and at the 1% level Dn = 1.63/qn 
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Therefore for a population of size 9,100 the significant values are 0.0142 

and 0.017 respectively. The appropriate tabulation for the 1979 

distribution is shown below - 

table 6.2 

Chi Squared test on 1979 Usage values 

log usage 

value 

Curn. frequency 

observed (Fo) 
Cum frequency 

theoretical (Fe) 
difference 

ABS(Fo-Fe) 
13 0.0001 0.0020 
12 0.0001 0.0011 
11 0.0039 0.0042 
10 0.0143 0.0133 
9 0.0408 0.0349 

8 0.0877 0.0790 0.0087 
7 0.1646 0.1585 
6 0.2727 0.2742 
5 0.4141 0.4248 
4 0.5735 0.5829 

3 0.7212 0.7292 

2 0.8390 0.8415 
1 0.9240 0.9209 

0 0.9747 0.9658 

-1 0.9935 0.9870 

-2 0.9990 0.9958 

-3 0.9997 0.9988 

-4 0.9999 0.9990 

The maximum difference between the observed and expected 

cumulative frequency distributions from the table above was 0.0108, 

which is less than both critical values of Dn at 0.0142 and 0.017 

respectively. Hence the observed distribution satisfies the Kolmogorov - 
Smirnov test for normality and therefore the conclusion based on this test 

is that there is a very high probability that usage values are lognormal. 
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6.2 (c) Regression test for lognormality 

It is possible to perform a regression test on the cumulative period 

usage data as explained and shown in detail in appendix four. In-essence 

this means regressing N(x) against 109ex after the data has been subjected 

to the following transformation shown in figure 6.3 below. (It is a very 

similar transformation to the transformation shown in figure 1.4 on page 
36 in chapter one; the only difference being the inverse distribution 

function R(x) was used in figure 1.4 instead of the distribution function) 

figure 6.3 

Lognormal transformations 

(a) 

f(X) 

F(x) 
N(X) 

(b) 

logo 

loge x loge x 

In the above diagrams (a) to (d) N(x) is the normal probability 

ordinate of the transformed values of x and 109ex is simply the natural 

logarithm of the period usage values. For a theoretical lognormal 
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distribution N(x) will linearly regress perfectly with 109ex- In our case 

there will be some noise in the data, that will be shown by the goodness of 

the fit of the regression line as measured by the coefficient of 

determination and the scatter of the regression residuals. Also the Durbin 

Watson test will give us the opportunity to measure any autocorrelation in 

the residuals. All considered the regression test for normality in the 

transformed data is probably the býst and most sophisticated of the an the 

tests we have available to determine lognormality. 

The result of regressing N(x) against 109ex for 1979 gave the following 

values 

Coffelation coefficient = 0.998 

Coefficient of Deten-nination = 99.6% 

Standard error = 0.151 

Durbin Watson statistic = 1.475 

Statistically the correlation coefficient and the coefficient . 
of 

determination are highly significant values and the coefficient -of 
determination shows that greater than 99t7c! of the variation in loge X can 

be explained by the variation in the normal ordinate. The Durbin Watson 

statistic at 1.475 falls in the inconclusive regions for a sample of the size 

taken. As a general rule, if the Durbin Watson statistic is between 1.5 and 

2.5 then no autocorrelation exists (although it is sample size dependent). If 

the statisticjs between 1.0 and 1.5, or between 2.5 and 3.0 the result is 

inconclusive. If the statistic is above 3 or below 1 then autocorrelation is 

present. A graphical plot of N (x) against loge x for 1979 is shown below 

in figure 6.4. 
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figure 6.4 
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We have a very strong case at this stage to regard the usage value 

data as being drawn from a lognormal population. 'Ille graphical and 

regression tests used are very powerful in determining normal forms and 

this strongly supports the assertion that period usage values based on 

annual data are lognormally distributed. The failure of the Chi Squared 

test was only to be expected, in fact the closeness of the actual Chi Squared 

statistic given the size of the sample is in itself confirmatory evidence that 

we have a distribution very close to a normal curve. With such large 

samples a Chi Squared test would require an almost perfect fit between the 

empirical data'and the theoretical distribution to provide a positive result, 

at the usual levels of significance for such statistical tests. Given the prior 

evidence from this work on the Law of Proportionate Effect and the 

wealth of supporting work quoted in the literature on the occurrence of 

lognormality in spares environments for most purposes the usage values 

of the DAF data can be regarded as drawn from lognon-nal populations. 

Following the general approach of Herbert Simon to this kind of data 

fitting problem (see Ijiri and Simon 1977 in particular) we should in fact 

be surprised to find that the data fits as remarkable close, as it does, given 
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all the economic and technical factors that could potentially disturb the 

underlying processes at work. From Simon's view, if the process of 

retroduction is applied and a stochastic process can support the existence 

of the model which in turn can explain the stochastic process then we could 

accept a degree of data fit far more inferior to what has been shown here. 

Hence, even without strong stochastic evidence to support the existence of 

lognormality, the data looks very convincing as a sample drawn from an 

underlying lognormal population. 

6.2 (d) Comparison with the Yule and Pareto 

distributions. 

In view of Simon's work on the Yule distribution and the possible 

genesis of this distribution by a modified version of the Law of 

Proportionate Effect (as discussed in chapter four ) it was considered 

necessary to test the DAF usage value data against both the Yule and the 

Pareto distributions. 'Me Yule distribution is somewhat difficult to handle 

analytically and there are difficulties in estimating its parameters. 

Furthermore the only source in which it is given any substantial modem 

treatment is Ijiri and Simon (1977). In fact according to Easton (1974), it 

is only Simon who has given this distribution any major consideration in 

contemporary modelling work on economic variates. [Note: in making 

this comment Easton was referring to Simon's earlier work of (1955) on 

the Yule distribution, which then appeared in his definitive text of 1977, 

joint authored with Uji Ijiril. Hence the source books for applied work 

using this distribution are very limited. Fortunately Ijiri and Simon give a 

graphical test that can be applied to empirical data to see it can be 

summarised by the Yule distribution. A similar graphical procedure can 

be applied to the Pareto distribution. For the Yule distribution the 

procedure involves ordering the data set from the largest to the smallest 

data element (usage values here) then plotting the size of each element 
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against its rank order on log - log graph paper. The largest element is 

given rank 1 the next rank 2 etc. If the data is Yule distributed this process 

will give a straight line on log log graph paper. 

'Me Yule distribution has the density function - 

AB(i, p + 1) 

where A' is a normalising constant 

and p is the characteristic parameter 

for element i 

In this form B is the complete Beta function with pararneterr given by - 

B(i, p + 1) =f T'-'(1 - T)P dT 

The slope of the straight line from a Yule plot is given by P which is 

related to the distribution characteristic parameter p by the following 

formula - 

p= 
[(1 

-- 1]i 

The results of an attempted Yule plot is given on the following graph. It 

can be seen that the data does not fall anywhere near a straight line, 

although there is a high degree of regularity in the plot. The convexity in 

Yule plots is referred to by Ijiri and Simon (1977) in the context of data 

that does not provide good Yule fits, but was data where a Yule fit might 

otherwise have been expected to exist. However, the convexity in the Yule 

plots we obtained in this work was far more marked than those shown by 

Simon. 
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Figure 6.5 
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In our analysis we also have to 'give consideration to the fact that the 

Yule distribution is a discrete distribution and hence its use to model 

continuous data would present some difficulty with interpretation. 

Furthermore it has no modal value after unity and it is always reverse T 

shaped from the left. Our Usage value data is always unimodel, which is of 

course a characteristic of all lognormal distributions. We concluded from 

these foregoing facts that the evidence here for a Yule distribution is not at 

all strong, certainly so for periods up to one year. 

A Pareto distribution can be checked against the same data by a plot 

on log log graph paper. In this case it is F(t) which is plotted against T by 

effective transformation of the following cumulative form of the Pareto 

distribution- 

F(t) = Kt -a 

then log, F(t) = (log, K) - a(log, t) 

The result of an attempted Pareto plot for the DAF usage value data 
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a markedly convex plot that could pot be regarded as Pareto in form. 

Furthermore like the Yule, this integer form of the Pareto distribution is 

reverse J shaped from the left and therefore it ignores the unimodal nature 

of our usage value data. Both the Yule and the Pareto graphical plots 

should be contrasted with the high degree of fit obtained using the same 

data set on lognormal graph paper, shown in chapter one, and the 

lognormal, regression line, given in figure 6.4 
. 
One might be tempted. to 

say, 'no contest'. 

The attempted Pareto plot is shown below in figure 6.6, where as 

with our Yule plot, the graph produced a markedly convex line not at all 

very convincing as a Pareto plot. 

Figure 6.6 
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At this stage we must therefore conclude that whilst the data under 

consideration here has in all probability come from a process driven by 

the Law of Proportionate Effect, which can lead to the Lognormal, Yule 

or Pareto distributions, little evidence exists to support either of the latter 

two as far as usage values are concerned. All the years of DAF usage 

value data examined produced similar markedly curved Yule and Pareto 
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plots. Given the wealth of evidence so far for the lognonnal distribution 

no further considerations were given to the either the Yule or the Pareto 

in the context of usage values. 

6.2 (e), short period usage - values 

In view of the preceding results we also tested the proposition that 

usage values might be also lognormal in a short time durations such as 

one period (4 weeks in DAF terms). This could only be achieved by 

resorting to sampling, so single period demands for 200 randomly 

selected parts were obtained, from a demand history print out, and each 

part was multiplied by the relevant price of that part to give a sample of 

200 usage values. The prices were obtained from the master price file. 

The tabulation of the sample is as follows- 

table 6.3 

Short Period Usage Values 

log UsAge 
Value 

frequency of 
items 

theoretical 
frequency 

di erence 

10 _ 0 0 0 
9 2 1 1 
8 0 3 -3 
7 7 6 1 
6 20 14 6 

5 27 25 2 

4 28 33 -5 
3 30 36 -6 
2 36 33 3 

1 30 24 6 

0 10 14 -4 

-1 8 6 2 

-2 
1 3 -2 

-3 1 1 0 

-4 0 0 0 

The fit seen in table 6.4 is not good by the standards of most of the 
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goodness of fit tests we have used in this thesis. In terms of 'closeness' of 

fit the match between the theoretical and empirical distribution is poor, 

whilst the 'randomness' of fit is quite good, ie there are no runs of positive 

or negative differences. The actual Chi Squared value is very'large at 381 

compared with the theoretical XO. 05 and x0.01 values of 18.307 and 23.209 

respectively. Interestingly the difference between the two distributions did 

not fail the Kolmorgorov Smirnov test. However, there is also stochastic 

evidence, to be discussed later in this work, that the distribution of the 

short term usage values should not be lognormal because the volume 

distribution for such a short period is not lognormal. The real test of the 

use of the lognormal distribution for such short period usage values is how 

accurate any aggregate estimates will be that are based on such a 

distribution. 

6.3 Analysis of Period Volumes 

In this section we show in some detail the phenomena of the 

convergence to a lognormal form when demand volumes are cumulated 

over progressively longer time periods. 

6.3 (a) convergence to lognormality 

It was mentioned in the first chapter that according to the basic 

theory of lognormal distributions that if two independent variates 'A' and 

V are both lognormally distributed then the product 'AB' is also 

lognon-nally distributed. Furthermore according to Aitchison and Brown 

(1957) ifA'is lognormal as A(y 1, C21) and'B'is A(Y 2, C7 2 
2) then the 

distribution of 'AB' i's A( y I+ P 2, a2l + a2 2)- The converse of this is 

also true, that is if 'A' and 'B' are both lognormally distributed then the 

product'AB' is lognormal. The consequence of this is that if period usage 
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values are lognormal then so to should be the separate components of price 

and volume. Early exploratory analysis revealed this to be true for prices, 

but it was only true for volumes provided the period considered was 

sufficiently long. The preliminary considerations of chapter one indicated 

that aggregate demand volumes for a sample of 200 randomly selected 

items from the first period 1979 (a four week duration) gave an empirical 

distribution that was far from lognormal in form. This distribution is 

shown below together with its logarithmic form. It can be seen that the 

logarithmic distribution does not give the characteristic normal shape it 

would if the original data were lognormal. Furthermore the early analysis 

strongly indicated that this empirical distribution could be fitted very well 

to a Log Series distribution. (Tbe detailed analysis and testing of short 

period aggregate demand volumes are presented chapter eight). 
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Figure 6.7 
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In marked contrast to the above first period distribution, when the 

demand volumes for the same 200 items were examined for one calendar 
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year (13 periods) a completely different empirical distribution was seen. 

This is shown below in its logarithmic form where it can be seen that the 

characteristic normal distribution shape is obtained. 

Figure 6.8 
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This distribution gave significant Chi Squared and Kotmogorov 

Smirnov test statistics at both the 1% and 5% levels of significance, 

compared to a theoretical normal distribution with the same parameter 

values ( mean 5.575, standard deviation 1.789). When N (x) was regressed 

against logex for this data we obtained a regression test result with a 

coefficient of determination greater than 99% with a Durbin Watson 

statistic of 1.550 indicating a very high degree of fit to a lognormal line. 

Clearly by extending the period for measuring demand volume the 

aggregate distribution of volumes changes form substantially. 'Me graph 

of the regression test is given below in figure 6.9 
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Figure 6.9 
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To demonstrate what was happening between period one of 

1979 and period 13 the empirical distributions of the logarithm of demand 

for the 200 items were examined every three periods. The results are 

shown graphically below together with the distribution for 26 periods (i. e. 

the whole of 1979 and, 1 980). The 26 period distribution was included to 

see how stable this convergence process was'over a long time period. 
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Figure 6.10 
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Figure 6.10 (continued) 
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It can be clearly seen from the above graphs that in a period as 
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short as four weeks the logarithm of demands is not 'normal' in form. As 

we consider progressively longer time periods, as shown above, it can be 

observed that the distribution does begin to take on a characteristic 

normal form. After nine periods the distribution begins to take on a 

symmetrical form. After one year (13 periods ) the distribution passes all 

the standard tests for a normal distribution and the high degree of 

symmetry is evident. After a period of two years (26 periods) the normal 

curve form is still retained as seen in the diagram below. In fact any period 

13 months and longer gives a normal distribution and it can concluded 

that this is the stable long run equilibrium distribution of the system as far 

as demand volumes are concerned. 

Figure 6.11 
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From an inventory management point of view the question that 

arises here is at what stage does the distribution of volumes become 

normal. It can be seen that up to three periods (three months) it is certainly 

not normal, whereas from nine periods onwards the distribution 

becomes very symmetrical and non-nal in form. Around periods six to 
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nine we have a grey area where the demand volumes first begin to 

approach a normal curve form. Clearly this issue is related to the'accuracy 

required of the typical aggregate inventory calculations and it will be 

discussed in a later section. Our concern here has been to show this unique 
finding that the distribution of demand volumes change in the way shown 

and that the long run stable distribution is a integer form of the lognon-nal 

distribution. 

Clearly an interesting phenomena exists in the data examined, 

namely a distribution of demand volumes that is reverse T shaped in very 

short time periods and which gradually converges to an integer version 

of a lognormal distribution as the time period is extended. The validity of 

the lognormal distribution as the stable long run form for usage values is 

well validated earlier in this chapter. Additionally, as will be demonstrated 

in this chapter parts prices are also lognormal; so theory would predict 

that demand volumes should also follow a lognormal form as well. 

However, there still remains some uncertainty as to the form and nature 

of the single period distribution; so our attention now turns to a more 

rigorous approach to this issue. 

6.3 (b) The form of single period demands 
. 

As was shown earlier in this chapter, based on period one of 1979, 

single period volumes appear very much like Log Series distributions. 

'Ibis is now tested more formally against the corresponding theoretical 

LSD and other potentially competing distributions using period one as the 

example empirical distribution. 

As can be seen from figure 6.3 the distribution is highly skewed and 

reverse T shaped. - 
It was easy to show that this distribution was not 
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lognormal because a histogram of the logarithms of the demands did not 

produce the characteristic shape of the normal distribution (again see 

figure 6.3). Also it was possible to show that it was a true reverse T 

shaped distribution by examination of the data in the first cell (that is the 

values 1 to 10 ) This is shown in figure 6.7 below where it can be seen that 

the distribution has no modal value after the value one and the frequencies 

rapidly decline with each value thereafter. We can confidently characterise 

the distribution as highly skewed and true reverse T. shaped for all 

positive mteger values 

figure 6.12 
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The next question that needed to be addressed was could a 

theoretical distribution fully explain the shape and, more importantly, the 

occurrence of such a distribution. Certainly prior exploratory analysis 

seemed to strongly favour the LSD, but other possibilities had to be 

examined. Any theoretical distribution to be a candidate must be a 
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discrete distribution, reverse T shape for all positive values, or be capable 

of taking this form with appropriate values of its parameters. Ibe prime 

candidates'from the various common theoretical distributions, were the 

lognormal, binomial, Poisson, geometric, negative binomial and the log 

series distributions. A number of other distributions are capable of taking 

an extreme reverse T shape form such as the exponential, hyper- 

exponential, and the gamma distribution. However, these are continuous 

distributions and whilst it may prove possible to- graduate the shape of the 

empirical distribution they would present problems of interpretation of 

the origin of discrete data. 

The binomial was quickly eliminated because such distributions 

have a variance less than the mean. The Poisson was eliminated for a 

similar reason because for Poisson distributions the mean equals the 

variance, also both distributions are not true reverse T shaped. The mean 

and variance of the empirical distribution of figure 6.3 were 16.813 and 

398.27 respectively. The lognormal was eliminated because it has a modal 

value greater than unity. Also, as shown previously, when the distribution 

of the logarithms were examined no normal curve form was obtained. 

The LSD, geometric and the NBD distributions were all attractive because 

of their connection with Poisson compounding and Poisson mixing 

processes. The NB D however, can be regarded as a special case of the LSD 

and also it includes zero values and it may have a modal value greater than 

unity. The consideration of this distribution as a candidate to explain the 

regularity observed is considered in more detail at a later stage. Thus of 

the common discrete theoretical distributions we are left with the LSD 

and the, Geometric. The hypergeometric was ultimately rejected because 

no stochastic evidence could be found to support its use. 

Page 188 



Chapter 6 

6.3 (c) Fitting LSD and geometric distributions. 

Ile Log Series distribution is a discrete distribution, highly skewed 

and true reverse T shaped with the following probability density 

function- 

P(X) = 
-qx 

xln(l - q) -------------- 6.1 

Where 'q' is the parameter of the distribution ranging between 0 

and 1, and x, the variate, is a positive integer for all values >1- 

The mean (w) of the distribution is given from- 

-q w= [(1- q)ln(1 
- 

q] 

This expression cannot be solved directly for q, however, Ehrenberg 

(1972, page 159) has developed an approximation forq'given by- 

1.4) 

1.15) 

This gives 'q ' to an accuracy of 2% for the range 2<w< 20. Hence to 

calculate theoretical frequencies for an LSD we simple use the mean of the 

empirical distribution to calculate 'q' and then use the probability density 

function to determine the probability of any value Y. With a mean of 

16.813 for the empirical distribution we obtained a value for'q' of 0.985. 

For the geometric distribution we use the following probability density 

function- 
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f(x) P(l - P)X-l 

where P= 1/ mean 

Hence to determine P we equate the mean of the empirical distribution to 

P in the above equation. Thus with a mean of 16.813 we obtained a 

geometric parameter of 0.059. Using these procedures we obtained the 

appropriate theoretical frequencies of 'the LSD and geometric 

distributions as shown in the following table - 

Table 6.4 

Testing Short Period Demand Volumes 

Value range 
cell mid pt. 

Actual 
distributior LSD Difference Geometric Difference 

5 110 112 2 87 -27 
15 35 32 -3 47 -12 
25 16 17 1 26 -10 
35 10 10 0 14 -4 
45 7 7 0 8 -1 
55 3 5 2 4 -1 
65 4 4 0 2 2 
75 3 3 0 1 2 
85 2 2 0 1 1 

95 3 1 -2 1 
_2 F 1193 1193 F, 0 

It can'be seen from the above table that the LSD provides a very 

close fit to the distribution throughout the entire range, whereas the 

geometric distribution provides a very poor fit in the lower value range. 

Quite clearly just on visual inspection alone the LSD meets the criteria of 

goodness of fit to the empirical data. The geometric distribution can be 

rejected because the fit is so poor, that even with good stochastical 

support, its use in the context here would be very dubious. We can 

conclude at this stage that the aggregate distribution of demand for a 
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period as short as one month is very likely to be a LSD. However, as 

further support we use the Kolmogorov Smimov test to test the empirical 

distribution against the LSD. The tabulation for this is shown below- 

Table 6.5 

Kolmogorov Smirnov Test of Short period Demand Volumes 

Value Range 

cell mid pt. 

Actual 
Distribution 

Proportion LSD Proportion Difference 

- 
5 110 0.570 112 0.580 -0.010 

15 35 0.751 32 0.746 0.005 
25 16 0.834 17 0.834 0.000 

35 10 0.886 10 0.886 0.000 
45 7 0.992 7 0.922 0.000 

55 3 0.938 5 0.948 -0.010 
65 4 0.959 4 0.969 -0.010 
75 3 0.974 3 0.984 -0.010 
85 2 0.984 2- 0.995 -0.010 

3 1.000 1 1.000 0.000 
Sum 193 Sum 193 

The largest Kolmogorov Smimov test statistic value ( Dn) given 

from the above tabulation was 0.010 which compares with the theoretical 

Dn values of 0.0978 and 0.0120 at the 1% and 5% levels of gignificance 

respectively. As shown in section 6.2(b) the theoretical Dn values were 

calculated from- 

Dn 5% = 1.3614193 and Dn 1% = 1.63/4193 

Hence we can regard the result as significant at both significance levels and 

we can not prove that the empirical distribution is not LSD. To add 

further weight to the conclusion that the empirical distribution is most 

likely LSD we have examined the first cell, value by value, and fitted these 
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to a LSD distribution using the same procedures shown above for 

calculating theoretical frequencies. The tabulation is shown in table 6.6 :- 

Table 6.6 

First Cell, First Period Volume 1979 

Value 
Actual 
Frequency 

neoretical 
Frequency 

Difference 

1 42 49 -7 
2 19 21 - -2 
3 14 14 0 
4 10 8 2 
5 6 5 1 
6 6 4 2 
7 3 3 0 
8 6 2 4 
9 2 2 0 

10 2 1 1 

The very close correspondence between the two distributions can be 

readily seen from the above tabulation and figure 6.13 below : -. 
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Figure 6.13 
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6.3 (d) Testing volumes against the Yule distribution 

Our last stage of analysis on 1979 demand volumes was to examine 

the possibility that volumes might be Yule distributed. We selected a 

random sample of part numbers and ranked the annual demand volume 
for each part then plotted the rank against the size of each element. The 

result was as shown in the following graph- 
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Figure 6.14 
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In view of the success in graduating demand volumes with 

lognormal curves and the very poor fit to a straight line in the above graph 

it was concluded that the evidence for a Yule distribution was very weak. 

Hence we were not encouraged to search any further for a fit of Yule 

distributions to our empirical data. 

6.4 Analysis of Price Distributions 

Ile other factor of concern in considering usage values of spare 

parts is the price of each item and the form of distribution of prices for 

the inventory range. Given that usage values have been shown to be 

lognormally distributed and that demand volumes are of a lognormal 

form (provided we consider a time period of at least nine months), then 

we could take it that prices too must be lognormal, which the theory says 

they must be. However, to verify the theory this section considers the 

analysis of prices and their. distribution. We are also concerned here with 
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the parameters of the price distribution'so that when considered jointly 

with the parameters values of demand volumes we can see their respective 

contribution to the parameters of the parent usage values over the period 

1975 to 1985. 

6.4 (a) Data capture considerations 

As with demand volumes the onlyý feasible way to examine the 

distribution of prices was on a sampling basis. From the DAF computer 

system various programmes were available that generated reports 

containing parts price data e. g. - ABC reports by volume and by value, 

Stock detail reports (stock status - in stock, on order-etc), stock valuation 

reports, and master parts, price lists. The prices -appearing, on- - all such 

reports were taken from the master price file, hence it did not matter 

which document was used to extract price information provided the 

samples were always randomly selected. Two protocols were possible in 

selecting item prices. Either the same part numbers as used for parts 

demand volume analysis could be used for consistency, or parts numbers 

could be selected at random independently of the volume data. In fact as it 

turned out it did not matter either way, the results were the same within 

sampling error. However, it was considered a fairer test if the two sets of 

data for volumes and prices were independently sampled. In this way any 

sampling bias inadvertently introduced in any one set would not be carried 

over in a second set of data. The price data used was also based on cost 

price to the company i. e. that paid by DAF (GB) to the parent company in 

Holland (called landed cost price by DAF GB). In this way any related 

aggregate inventory calculations using lognormal theory, such as 

investment in cycle and safety stocks, would be based on cost price to the 

company at Marlow. There was no evidence from within the company that 

prices were arranged in Holland to reflect any profit leakage policies back 

to the parent organisation (i. e. paying excessive amounts for certain parts, 

although one could not be absolutely sure). As far as was made known to 
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this author the prices were consistent in that a fixed percentage was added 

to all part numbers by the parent company. Hence it was assumed that 

landed cost price for any DAF spare part reflects a fair and consistent 

value for that part. , 

' 6.4 (b) Price distributions 

A simple random sample of 200 part numbers from the stock detail 

report of 1979 gave the following 10ge distribution of prices- 

Table 6.7 

1979 Price Distribution 

loge price 
cell mid pt. 

Frequency Theoretical 
Frequencv 

Difference 

-5.5 0 1 

-4.5 2 2 0 

-3.5 7 6 - 1 

-2.5 17 14 3 

-1.5 21 24 -3 
-0.5 31 34 -3 
0.5 45 38 7 
1.5 31 34 -3 
2.5 19 24 -5 
3.5 19 14 5 
4.5 6 6 0 

5.5 1 2 -1 
6.5 1 1 0 

L 
-------- n=200 n=200 1=0 

*'Ibe theoretical frequencies were calculated for a normal 

distribution with the same mean and standard deviation as the 

empirical distribution. (ie mean loge X *= 
0.495, and standard 

deviation loge x=2.085). 

A Chi Squared test on this data gave a highly significant result with 
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an observed Chi Squared value of 7.33 against theoretical values at the 1% 

and 5% levels of significance of 19.67 and 24.725 respectively at 11 

degrees of freedom. A Kolmogorov-Smimov test on this same set of 

values gave an observed maximum Dn value at 0.02 compared with 1% 

and 5% critical values of Dn at 0.1152 and 0.0962 respectively. The actual 

and theoretical frequencies are shown in the following histogram where 

the close correspondence between them can be seen. 

A regression test of N(x) (the normal ordinate) against 109ex gave a 

highly significant result with a correlation coefficient of 0.999 with 

coefficient of determination at 0.997. The Durbin Watson test gave a DW 

statistic of 2.45 which is just on the acceptable limit for no autocorrelation 

between regression residuals. However, the actual size of the residuals is 

extremely small, hence the DW test in this cases should not be given too 

much weight. Given that this price distribution test was carried out on a 

random sample of 200 price elements the very high degree of correlation 

obtained was really quite staggering. 

Page 197 



Chapter 6 

u 

0 

I) 

Figure 6.15 

Loge Price values 

Theoretical Prices (loge values) 

Page 198 



Chapter 6 

Figure 6.16 
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From the foregoing evidence, particularly the Kolmogorov - 
Smirnov and regression tests, we can be quite confident in regarding the 

distribution of prices to be lognonnaRy distributed. 

6.5 Data sets for 1983 and 1985 

The following data sets and analysis are for the years as stated above 

with the analysis presented in a more compact form than the previous 

section. Unlike the data for 1979 the analysis for all data sets for 1983 and 

1985 were based on sample data because the convenient ABC listings 

were not available to the author for these periods. The company had 

during the period 1982-1983 switched from an IBM system 34 to an IBM 

system 38 and some standard routines were not converted to run on' the 

larger mini system. The ABC listing routine was one of them because it 

was not in regular use by management. However, this author had free 

access to the demand history files, master price files and stock detail 
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reports (the current stock status reports). In general data analysis was 

based on sample sizes of 200 selected by a simple random number process 
r-- 

- 

from the appropriate reports and listings. 

6.5 (a) Period'usage values 

Period usage values were obtained for approximately 200 parts for 

each of the two years by sampling from the parts demand history file then 

applying the appropriate part price from either the master price file or 

stock detail report. The usage value distribution for 1983 follows - 

Table 6.8' 

1983 Usage Value Distribution ' 

Usage value 
Cell mid pt. 

loge Usage 

value 

Frequency 

of items 
Theoretica 
fre 

=uenc 
Difference 

E98,715.77 11.5 1 1 0 

E36,315.50 10.5 2 2 0 

; E13,359.72 9.5 5 3 2 

E4,914.00 8.5 10 6 4 

E1,808.00 7.5 16 13 3 

E665.14 6.5 18 20 -2 
E244.69 5.5 29 28 1 

E90.02 4.5 43 31 12 

E33.11 3.5 28 31 -3 
E12.18 2.5 20 26 -6 
; E4.48 1.5 12 16 -4 
E1.65 0.5 7 11 -4 
EO. 61 -0.5 

3 5 -2 
0.22 -1.5 2 2 0 

n= 196 n=195 

The mean and standard deviation of the empirical distribution were 

used to calculate the corresponding theoretical frequencies in the above 

table. 

The differences in the above table between the actual and theoretical 
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frequencies gave an actual Chi Squared value of 15.71 compared to 

theoretical Chi Squared values of 16-91 and 23.309 at the 1% and 5% 

levels of significance respectively (for 12-1-2 degrees of freedom). Fhe 

distribution also passed the Kolmogorov Smirnov test at both I% and 5% 

levels of significance respectively. The typical 'normal curve' symmetry 

of the data is clearly seen by the following histogram. (Although the 

distribution is somewhat more peaked in the model cell than a 

corresponding theoretical distribution it is nevertheless well within 

sampling error). 

It is of interest to note here that in this case the sample passed the 

Chi Squared test, whereas the 1979 usage value distribution based on 

9,100 items did not, despite the fact that is was far more symmetrical and 

normal in form than the above distribution for 1983. This comparison 

demonstrates how over-sensitive the Chi Squared test can be to small 

deviations in very large samples. 

Figure 6.17 
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A regression test of N(x) against lOgex for this same price distribution 

gave the following results- 

0.999 

R2=0.998 

Standard error = 0.067 

Durbin Watson test result = 1.254 

The corresponding usage value analysis for 1985 gave the following 

tabulation and histogram- 

Table 6.9 

1985 Usage Values 

Usage value 
Cell mid pt. 

Joge Usage 

value 

Frequency 

of items 
Theoretical 
frequency 

Difference 

E98,715.77 11.5 1 1 0 
E36,315.50 10.5 3 3 0 
E13,359.72 9.5 4 6 -2 
E4,914.00 8.5 12 12 0 
E1,808.00 7.5 22 21 1 

E665.14 6.5 32 30 2 
E244.69 5.5 36 34 2 
E90.02 4.5 35 32 3 
E33.11 3.5 22 27 -5 
E12.18 2.5 16 17 -1 
E4.48 1.5 8 10 -2 
E1.65 0.5 4 4 0 
EO. 61 -0.5 4 2 2 
EO. 22 -1.5 1 1 0 

n=200 n=200 
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Figure 6.18 
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In this case we obtained an actual Chi Squared of 3.697 compared 

with theoretical values at I% and 5% levels of significance respectively at 

16.91 and 23.309. A regression test gave - 

r=0.999 

R2=0.997 

Standard error =0.091 

DW test= 1.148 

6.5 (b) Period volumes 

The single period aggregate volumes for any selected period during 

1983 and 1985 show the the same characteristic reverse T shape 

distribution as for the 1979 data. A single period selected at random from 
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both 1983 and 1985 showed the following histogram forrns- 

figure 6.19 
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The 5th period of 1983 was compared with a theoretical log series 
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distribution with the same parameter value (q = 0.987) as shown below- 

Table-6.10 

1983 Single Period Demand Volume 

CeH upper 
bound_ 

Theoretical 
Frequenc 

5th period 
frequ ncy 

Difference 

10 124 121 3 
20 24 24 0 
30 12 12 0 
40 7 5 2 
50 5 5 0 
60 3 2 1 
70 3 2 1 
80 2-- 3 -1 
90 1 2- -1, 
100 1 2 -1 
110 1 2 -1 
120 1 2 -1 
130 1 1 0 
140 1 1 0 
150 0 1 -1 

n=186 n=185 1= I 

This test gave significant Kolmogorov Smimov tests at both the 1% and 

5% levels respectively. 

II 

As with the 1979 demand volume data when the natural logarithmic 

forms of these single period volumes were cumulated over successive 

periods the same gradual convergence to a highly symmetrical 

distribution was obtained, that proved to be lognormal in form. The 

process is shown graphically in the following diagrams- 
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figure 6.20 continued 
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The comparison of the corresponding theoretical normal 

distribution with the empirical distribution after 15 periods is shown 
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below- 

Table 6.11 

1983 Whole Year Demand Volumes 

loge value 
range 

Actual 
distribution 

Theoretical 
distribution 

Difference 

0 0 1 -1 
1 5 3 2 

2 12 9 3 

3 19 18 1 
4 29 30 -1 
5 31 38 -7 
6 38 38 0 

7 34 30 4 

8 20 18 2 

9 8 9 -1 
10 3 3 0 

11 1 1 0 

n=200 n=198 1=2 

This analysis gave an actual Chi Squared value of 6.26 which is 

statistically significant at both the 1% and 5% levels. Hence based on this 

test we.. have no reason to reject the null hypothesis that the empirical 

distribution is from a normal population. 

A similar pattern of convergence was also seen for the 1985 demand 

volumes as shown in the following histograms 
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Figure 6.21 
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figure 6.21 (continued) 
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The actual and corresponding theoretical frequencies for the 13 period 
demand volume histogram are given in table 6.12' 

Table 6.12 

1985 Whole Year Demand Volumes 

loge value 
range 

Actual 
distribution 

Theoretical 
distribution 

Difference 

0 0 1 -1 
1 5 5 0 
2 18 12 6 
3 26 25 1 
4 30 36 -6 
5 42 44 -2 
6 38 35 3 
7 26 24 2 
8 11 11 0 
9 2 4 -2 
10 1 1 0 

1 0 1 

n=200 n=198 1=2 

A comparison of the above theoretical and empirical frequencies 

gave an actual Chi Squared value of 5.58 at 9-1-2 degrees of freedom 

compared to theoretical Chi Squared values of 12.592 and 16.812 1% and 

5% levels of significance respectively. A regression test on this same 1985 

demand volume data gave the following results- 
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Figure 6.22 
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6.5 (c) Distribution of Prices for 1983 and 1985 

The corresponding prices for a 200 item sample taken from the 

1983 and 1985 stock detail reports are tabulated below with the 

corresponding theoretical frequencies. The data is also shown in 

histogram form. 
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table 6.13 -, 
1983 Price Distribution 

loge value 
range 

Actual 
distribution 

Theoretical 
distribution Difference 

-5 0 1 -1 
-4 2 3 -1 
-3 8 7 1 

-2 18 15 3 

-1 21 24 -3 
0 28 34 -6 
1 44 38 6 
2 36 34 

,2 3 25 24 _ 1 
4 17 15 2 
5 7 7 0 
6 0 3 -3 
7 1 1 

n=206 n=206 Y, -2 

The actual value of Chi Squared value from the above tabulation 

was 11.22 compared with the theoretical values Chi Squared values at 

0.01 and 0.05 levels of significance of 16.91 and 21.67 respectively. The 

regression of N(x) against loge I for the same data gave - 

0.998 

R2=99.6% 

SE =0.090 

DW test = 1.934 
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Figure 6.23 
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The corresponding tests for 1985 gave the following results :- 
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Table 6.14 

1985 Price Distribution 

loge value 

range 

Actual 
distribution 

Theoretical 

distribution 
Difference 

-5 0 1, -1 
-4 2 3 -1 
-3 3 6 -3 

13 13 0 

23 20 3 

0 32 29 3 

1 39 34 5 

2 30 34 -4 
3 31 29 2 

4 26 20 6 

5 7 13 -5 
6 4 6 -2 
7 1 3 -2 
8 0 1 -1 

n=211 n=212 

The actual Chi Squared value was 12.06 which is a significant value 

at both 0.01 and 0.05 levels of significance. The regression Of lOgex 

against N (x) gave the correlation coefficient at 0.99 and R2 at 98 %. 

Tbus based on the Chi squared test, the transformation to the highly 

symmetrical log form and the regression tests we have very strong 

evidence (without stochastical support) to regard the price distributions of 

1983 and 1985 as lognormal. It would be very difficult to conclude that 

they are any other form given the evidence here and the additional 

evidence from 1979. It would appear then that prices are lognormal and 

they remain so as the stable long run model of this variable of parts usage 

values. 
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6.6 Eleven year summary of usage values 

In table 6.15 below we give a summary of the parameters of the 

lognormal distribution of usage values for the period 1975 to 1985, 

together with the growth in the number of parts in the active parts range in 

each year. ie n was the total number of parts with a demand of one or more 

in the year shown. The parameter p is related directly to a by the 

relationship p= e'cý 

Table 6.15 

Eleven Year Usage Value Distribution Parameters 

Year 1975 1976 1977 1978 1979 1980 

a 2.491 2.485 2.215 2.338 2.480 2.501 
/I 

,, 
2.564 2.904 3.105 3.310 3.510 3.897 

p 12.070 11.680 9.160 10.360 11.940 12.190 
n 7,111 7,695 7,836 8,547 9,100 7,853 

Year 1981 1982 1983 1984 1985 
2.395 2.277 2.313 

4.690 4.825 5.203 
p 10.968 9.747 10.105 

n 9,250 
. 

9,870 
, 

10,627 
, 

11,250 
, 

11,625 

* in the table above indicates data not collected and measured. - 

For` the period 1975 until 1980 the parameters above were 

calculated from whole population data using ABC listings of the complete 

years parts sales. From 1983 onwards the parameters were determined 

from sample data from various company sources. Stock detail reports and 

price files for price data 
, and parts demand history files for sales volume 
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data. ( samples sizes were always 200 in each case). Hence these estimates 

are subect to sampling error which can be quantified at a given confidence 

level by use of the standard error of the sampling distribution of cy for 

large samples-as shown in the next section. 

6.7 Dealer Level Usage Values. 

Naturally, given the fact that usage values ( likewise volumes and 

prices) are clearly lognormal at the wholesale (distributor) level in the 

DAF distribution system it was considered important to see the form of 

the usage value distributions at the dealer level. In 1980 DAF had 24 

dealers covering the entire UK sales and marketing operation including 

Northern Eireland. Five dealers were chosen as a representative sample 

and from each was gathered a random sample of of 200 parts usage values. 

The dealers and their geographical area were - 

Moreys Southern Counties. 

Northem Commercials Humberside and North Yorkshire. 

Harris Commercials Essex region and East London 

Midland DAF Trucks Birmingham and Midland region 

North West TrucksNorth Lancs. and Cumbria 

Each was a fairly typical exclusive DAF dealerships wholly concerned 

with the sales and marketing of the entire DAF Trucks UK range of 

commercial vehicles for a designated geographical area. Each was also a 

fully equipped service dealer trained and competent to provide the 

complete range of after sales service with spares stockholding and parts 

marketing. About 60% of the full active parts range was normally carried 

in stock in each dealership (based largely on sales volume terms). All five 

dealers had computerised stock control procedures in house running a 
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DAF developed stock control system called 'Autoparts' -a basic review 

period replenishment system. About 60% of all stock replenishments 

were made routinely on a phased two week order cycle with a different set 

of dealers placing orders at Marlow each week. 'Me remainder of orders 

were telephoned in to the Parts department as 'dealer out of stock' or 'non 

stock' item order requests. A portion of -these orders were further 

characierised as VOR orders (which literally meant that a customers 

vehicle was off the road pending repairs). VOR orders were executed 

immediately from the DAF HQ with the object of next day delivery to the 

dealer. 

The results of the analysis of the five samples of dealer usage values gave 

lognormal distributions of usage rates with the parameter values as shown 

in table 6.16 :- 

Table 6.16 

loge usage values distributions 

Dealer mu y sigma a 

Harris 2.458 2.166 

Northern Commercials 2.928 2.316 

Moreys 2.899 2.210 

Midland 2.765 2.304 

North West Trucks 2.278 2.288 

The most striking feature of this data is the very close similarity 

between all the standard deviations of the normal distribution Of loge parts 

usage values. Furthermore each sample produced the characteristic 

normal curve of the loge values. The histograms for Moreys ( the best in 

terms of symmetry), ' Northern Commercials, and Harris ( the worst in 

terms of shape) are shown below. All three are very significant as normal 

distributions based on Chi Squared and Kolmogorov Smirnov test criteria. 
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Figure 6.25 
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Figure 6.25 (continued) 

Loge Usage Values 

All three distributions above gave statistically significant test values 

at both 0.01 and 0.05 levels of significance, using both the Chi Squared test 

and the Kolmogorov Smimov tests. We can be confident that at the dealer 

level usage rates are lognon-nal. Prices certainly are lognormal; because 

they are distributor (wholesale) level prices with a standard markup ( 50% 

approximately), and the distributor prices have already been shown to be 

lognormal. Hence from the foregoing tests on usage values, and lognormal 

theory, it follows that dealer level volumes must also be lognormal, 

(although this was not tested directly). Our concern with the dealer level 

was also with the question, were these local usage value distributions 

effectively from the same population, or did they display some significant 

differences. Certainly the means of the loge distributions should be 

statistically different. They depend on the level of sales by the particular 

dealer. Variances, however, as will be discussed later, should reflect 

some characteristics of the local market as they measure the balance 
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or proportion of demand volumes across the range of items. 

To compare the variances we turn to the standard statistical tests. 

The classical test for comparing sample variances relies on the use of the 

T' variance ratio distribution. However, this distribution does not help us 

much here in examining for significant differences between thesp dealer 

variances due to the large size of the samples taken. The standard test ie - 

Ho C2, = a2 2 

against the alternative 

Hi C2, #a2 2 

gives us an F(actual) of 1.143 against a tabulated value of FO. 05 of unity 

for the dealer variances giving the largest difference between two 

variance values. The problem however, is that the tabulated F values at all 

levels of significance for a sample as large as 200 give F at unity. Hence 

strictly speaking the null hypothesis should be rejected with an F actual at 

1.143. However, we have taken it here, given the large size of the sample, 

that F(actual) is sufficiently close to one for the test to be inconclusive. As 

a way round this problem we can make use of the confidence intervals of 

the sample standard deviations 's ' as estimates of the underlying parent 

population standard deviation a. From statistical theory it is known that 

provided the parent population is approximately normally distributed, 

then the 'sampling distribution' of 's ' for large samples is normally 

distributed with mean s and standard deviation s /42n. Hence we can 

assert with a probability of (1-a ) that - 

(T cy 
S- Za/2 -< (7< S+Za12 - T2: 

n- 
75-n 

which leads to - 
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ss 

+ 
Za/2 Za/2 

-2n V-2n 

Where za /2 is the standard norinal deviate at significance 

level a. 

Thus for a sample standard deviation of 2.166 (the smallest of the five 

dealers) and a sample size of 200 we have the following 95% confidence 

intervals around the underlying parent population standard deviation- 

1.97 <a<2.401 

For, a sample standard deviation of 2.316 ( the largest value of the five 

dealers) we obtain the following confidence intervals - 

2.109 <a<2.567 

Hence we can see at once there is substantial overlap between these 

confidence intervals. If we call the largest standard deviation SL then there 

is only a probability of 0.025 that the true value Of SL win be smaller than 

2.109 and the same probability that it will be larger than 2.567. The other 

three dealer standard deviations fall between the two extremes of 's' at 

2.116 and 2.316 - all well within both confidence bands above. Hence we 

can conclude that there is a very high probability that all five dealer 

standard deviations are from the same underlying parent population, or 

certainly from local spare parts markets exhibiting very similar 

characteristics. 
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6.8 Conclusions 

This long chapter has presented much of the empirical analysis 

undertaken at DAF Trucks UK Headquarters. In effect the work was 

spread over the period 1979 until 1985 and into the early part of 1986. It 

necessitated many visits to the company and a -great deal of time 

consuming data collection and analysis was carried out. Much of the work 

was conducted on an iterative basis as the search for and acquisition of 

appropriate theory often suggested the lines of attack on the analysis of 

empirical data. - Because of the extended time involved inevitably some 

repetition occurred in the analysis and few blind alleys were pursued 

before a consistent and reliable path of investigation emerged. From this 

work we are now able to summarise some strong conclusions that go a 

long way to proving the initial hypotheses of this research. In the next 

chapter we use this empirical analysis and the theory of chapters four and 

five to develop the new theory of chapter seven. Subsequent chapters 

concentrate on validating the theory. 

(a) The usage values of DAF spare parts do indeed fit very closely to a 

lognormal distribution provided the timeperiod for the 

measurement is at least nine months. After one year usage values fit 

a lognormal distribution to a very high degree as measured and 

tested by a variety of measures. Furthermore annual usage values at 

the company HQ were consistently lognormal over the period 1975 

until 1986. 

(b) We have also shown that prices are lognormal, and so are 

demand volumes provided the period is around one year or 

longer. Limited investigations strongly indicate that an equivalent 

picture exists at the dealer level, ie. demand volumes, usage values 

and item prices consistently fit a lognormal distribution. 
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From these two sets of conclusions we can confidently accept the working 

hypotheses four (in part) and five of chapter five page 160 as most likely 

correct. 

(c) For short time periods the aggregate distribution of demand 

volumes is not lognormal and strong evidence exists to show that it 

is the Log Series distribution that models these short period 

aggregate demand volumes extremely well. , 

(d) Work from chapter five strongly suggests that at the level of 

individual items the demand is Poisson in character, although 

demand variances are, in most cases, much greater than the mean 

level of demand supporting the view that Poisson compounding, and 

possibly Poisson mixing, is taking place. 

(e) We have shown empirically that single period aggregate demands 

(possible LSD distributed) when subjected to period by period 

summation do converge to an integer form of the lognormal 

distribution, and this remains the stable long run model of 

aggregate item demand volumes. The work of chapter four 

suggests that this process is driven by the so called Law of 

Proportionate Effect. 

Over the period of analysis (1975 to 1985) the shape parameters of 

the fitted usage value lognonnal distributions seem very stable, 

varying by only small amounts from year to year. This suggests that 

very stable processes are at work controlling the form of the 

process models despite the great complexity in the inventory range 

at DAR The location parametery shows a very steady drift 

from year to year, because this reflects the gradual increase in 

prices over the period. 
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If we reconsider our research scheme model of chapter two we can 

now assert that the demand volumes, prices and usage values have all been 

proved lognormal and our comparison point 1 in the model (reproduced 

again below) has been fully evoked. Also the very existence of the 

lognormal distribution for prices, volumes and usage values strongly 

supports the view that the underlying process that governs the 

convergence to this distribution is the Law of Proportionate Effect. We 

however leave the empirical testing of this law (comparison point 2) until 

chapter eight. In the next chapter we consider additional theory that 

together with our empirical work so far then forms the basis for the 

development of several new models. 

Outline of the empirical data testing process 

system 
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I 

observed I 

vrocesses 

comparisons 2 
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The Dev elopment of Theory; Towards an 

Aggregate Model of Period Usage Values 

7.01 Introduction 

In chapters four and five we approached the problem of 

explaining the lognormality of period usage values from two standpoints. 

First by starting with the assumption that such variates, in aggregate, are 
lognormal it was shown that lognormality can be achieved by a growth 

process over time that is explained by the Law of Proportionate Effect. 

This was the top down approach. However, as was discussed in chapter 

four, whilstthe Law of Proportionate Effect provides evidence for 

growth it falls short in a number of respects to explain the starting point 

of such growth processes. It gives us a plausible mechanism for how the 

process operates, but provides no insight into its origin. Ile second 

standpoint has been to examine the nature of Poisson demand processes 

for individual items and to explore similar models that provide a plausible 

explanation of the underlying aggregate demand processes at work in 

short time periods. This was the bottom up approach. 

This chapter now examines the possible mechanisms at work that 

could provide links between demands of individual inventory items to 

the aggregate demands of a whole range of inventory items; ie we connect 

the theoretical considerations of chapter four with the groundwork in 

chapter five. In particular we develop a theoretical scheme which shows 

that 
, 
the Afwedson process can be applied to aggregate demand volumes 

in short time periods to explain the patterns observed in the empirical 

data. A necessary requirement of this scheme appears to be that the 

underlying demand process must be Poisson in character and that by 

application of the Law of Proportionate Effect through successive time 

periods the process will yield the Lognormal distribution as the long run 

stable distribution of the system. We start the model development process 
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in this chapter by a detailed examination of the Log Series distribution. 

This particular statistical model has proved to be of central importance 

and value in this research. We first consider its properties and use in 

modelling individual consumer products, then examine its particular 

relationship with the NBD and the use of the combined LSD/NBD model 
in fields where it has been applied to heterogeneous populations. This is 

equivalent to our search for aggregate models of parts demand, and we 

are able to show that the Poisson Gamma model and the Afwedson process 

model of the NBD can be applied to certain kinds of heterogeneous 

populations of item types. 

7.1 Properties and Development of the LSD 

We saw from the empirical work of the previous chapter that the 

aggregate distribution of demand volumes for the DAF data in very short 

time periods was certainly not lognormal. It was true reverse T shaped 

for all values positive integers and for any single demand period 

examined. Furthermore empirical investigations showed that it was the 

Log Series distribution that seemed to be the most likely candidate to 

explain the form of this single period aggregate data. It met the general 

requirement of goodness of fit criteria exceedingly well. However, 

before it can be accepted as a strong candidate to model the data the 

methodology of this research requires that there should be strong 

stochastical evidence to support its use. We will now examine this 

distribution in more detail and consider two stochastic processes that can 

explain its occurrence. 

7.1 (a) basic properties and use of the LSD 

The Log Series distribution is a discrete distribution, highly skewed 

and reverse T shaped with the following probability density function- 
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P(X) =- 
-qx 

xln(l-q) -------------- 7.1 

Where parameter q is between 0 and 1, 

x is a positive integer for all values = to &>1 

'Me mean (w) of the distribution is given from- 

-q 

q)(In(l - q] 

'Mis expression cannot be solved directly for q, but Ehrenberg 

(1972, page 159) has developed an approximation for q given by: 

1.4) 

1.15) 

which gives q to an accuracy of 2% for the range 2<w< 20. 

Nahmias and Demmy (1982, page 668) give a recursive method for 

determining q given the sample mean and they show this to very 

accurate, but it is rather laborious to use in practice. In the work here we 

use the more straightforward approach suggested by Ehrenberg'as our 

values of w were generally within the range 10 to 20. 

The variance of the LSD is given by: 

2 
=-qf 

(1 + q) / In(l - q) 

(1 - q)2 In(l - q) 
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This formula can simplified according to a method suggested by 

Ehrenberg ( op. cit. page 161) by the substitution : 

a=q 1(1-q) 

then a2=w(l+a-w). 

The origin of the LSD appears from the literature to be attributed to 

the work of R. A. Fisher (1943) from statistical work on animal ecology. 

Some important results and implications from Fisher's work will be 

considered in a later section. 

The current author's attention was first drawn to the LSD after 

reviewing Ehrenberg's (1972) text that we have quoted several times in 

earlier chapters. In this work he discussed at some length the use of the 

LSD as a distribution useful in modelling consumer purchases in 

particular circumstances. Ehrenberg also discussed the close relationship 

between the NBD and the LSD in the case of so called'lightly purchased' 

items (see page 60 in particular). A necessary part of the formation of 

Ehrenberg's Poisson Gamma approach to the NBD model, is that the 

consumer group of purchasers of a product should include, for the period 

considered, a group of non-buyers (who may however be buyers in a 

subsequent period). It was shown by Ehrenberg that in those cases where 

the proportion (P ) of these non-buyers in a period, is large compared to 

the buyers, then, if the non buyers are excluded from the group, the 

distribution of buyers can be modelled very closely by the LSD. For this 

reason the LSD model has been referred to as a model for lightly 

purchased items in terms of consumer purchases. Generally the LSD has 

been shown by Ehrenberg to accurately model consumer purchase 

behaviour when the proportion of non-buyers is less than or equal to 0.2. 

In cases where 'fl ' is greater than 0.2 then the fit of the LSD to empirical 

data becomes progressively less efficient and the NBD model is then used 

in preference. Thus when considered in the light of consumer purchase 
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theory the LSD, like the NBD, is a distribution of purchase occasions for 

single item types and it can be regarded as a special case of the NBD 

model. 

A close relationship between the LSD and the NBD can also seen 
from the Afwedson process discussed in chapter five in connection with 
Poisson compound processes. It was seen that if the number of demands at 

each Poisson event is distributed as a Log Series distribution then the 

unconditional outcome is a Negative Binomial distribution of demands in 

a given period. However, formed in this way, by a compounding process, 

a model 
I 
of purchase quantity is obtained for single items. An NBD 

model derived this way by a compounding process has not received much 

attention in the literature, especially that concerned with inventory 

problems. The closely related Galliher process however, where 

geometrically distributed Poisson events lead to a Stuttering Poisson 

distribution of demand, has, in contrast, received much more attention in 

the inventory literature. 

From the foregoing discussion and our discussion of chapter five 

we can see the close interrelationship between the LSD and NBD models 

in consumer demands and the underlying Poisson process. Ibis can be 

either through Gamma mixing of lightly purchased item demands, as 

purchase occasions, or; aggregated across all consumers as an overall 
NBD model of demand quantity with individual demands being LSD 

distributed. One process (the former) is a mixing process, and the other is 

by compounding. 

We next make the assumption that we can consider similar processes 

taking place across may items in a family of products or items. And we 

reason that there is a connection between the Poisson generated demand 

for individual items and the aggregated demand for many items in a 

population in the same time period through Poisson compounding and 

mixing processes; and the important linkage appears to be the Log Series 
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distribution of R. A. Fisher (1943). It was the'chance finding of the early 

work of Fisher, [quoted by Ehrenberg 1972 and others] and that of 

Quenouille (1949), that lead this author to the view that similar processes 

might work in aggregate for many items in a parts range, given that the 

LSD appeared to be a very good model for short period aggregate 

demand volumes in DAF data. Additionally when we examined DAF 

demand volumes, including the zero demands, then the NDB was also seen 

to'provide a very good fit. 

Irwas not clear however, whether the linkage, if it exists, is by a 

mixing process or by a compounding process or indeed both. Support for 

this tentative hypothesis was sought from a variety of sources. 

7.1 (b) stochastic models of the LSD 

A stochastic process very similar to that used to develop the Poisson 

Gamma model can be formulated for the Log Series distribution as shown 

by Chatfield (1969). The primary difference between the formulation of 

the Poisson Gamma model and the process below is in the consideration of 

the consumer purchase rate distribution, which is assumed Gamma 

distributed in the NBD model. In the process leading to the LSD it is 

postulated that there is a group of never buyers of the brand as distinct 

from those people who have a positive long run rate of buying y>8, 

where 3 is the truncation value. Therefore in formulating the model a 

truncated Gamma distribution is used such that the consumers long run 

average rate of purchasing is Gamma distributed in the range 3<P> oo. 

Hence the frequency of any particular value of ju 
is given by the truncated 

Gamma distribution - 

(ce--ula 

------------------- 7.2. 
14 
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where ju 
>3, and 6 is very smaH ,a 

is a parameter of the distribution 

and c is a constant chosen so that - 

(ce- jula 

Applying equation 7.2 as the mixing distribution on the Poisson process 

equation previously given we can develop the LSD as shown by 

Ehrenberg (1972, page 170) 

0* e-lupr) P(r) = cj- 
r! 

(ellla)dp 

8 

P(r) = 
Ic / [r! (l +1/ a)r 

]lf 
e (I+lla)9 {(l +1/ a)p 1 r-1 d{(l +1/ a)p 1 

00 

8 

P(r) =- 
Ic / [r! (l +1/ a)r ]JIF(r) for r ý! 1 since 6 is very small 

hence 

P(r) C 
J(l +1/ ay rl 

P(r) 

P(r) = 
qPr-I (r 

with q=a 
r (1 + 

if I Pr =I for r ý: 1 we must have - 
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-q 
In(l - 

and hence the probability P(r) of r purchases being made in a given time 

period is 

P(r) = 
-qr for r >- 1 

r In(l - q) 

which is the the form of the Log Series distribution. 

In the application of this model and the NBD model to consumer 

purchases by Ehrenberg, Goodhardt, Chatfield et. al. the period of 

application was single time periods of between one week and one month. 

To justify this and to account for longer durations Ehrenberg (1959 and 

1972 ) made the following points- 

"It is of course not necessary to assume that 

consumers purchasing behaviour actually follows this 

stochastic model in the long run. As is also the case 
for the NBD model, it is only necessary to suppose 

that in any time period, or periods being analysed, 

the purchases behave as if they were a random 

sample firom the values generated by such a model. " 

Ile significance of this point is that in many product fields where 

the NBD and LSD theory applies in short time periods the long run 

equilibrium condition of the system may well be described by models 

other than the NBD or LSD and this does not negate the validity of the 

theory in short time periods. Furthermore it does remove the burden of 

the necessity to model the distribution of individual item demands in 
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successive time periods, which in the case of this research was a complex 

issue due to mixed, nature of the demand process of individual inventory 

items. (We do however, present some evidence in appendix one which 

suggests the, fon-n of such distributions). Hence we, have a stochastic 

mechanism that leads to the Log Series distribution by a truncated version 

of the Polya Toisson mixing' process. To relate this to our empirical 

observations of the previous chapter it means in effect that 

(1) The demands of individual items must be Poisson in nature 

(2) Mie individual Poisson demand rates - 
AI A2- 13 

---- 
A,, etc must be Gamma distributed 

within the range 3<y> oo. 

such that the overall distribution of aggregate demands will be LSD by the 

stochastic mechanism given above. Our problem so far is that the above 

mechanism has proven foundation based on the work from consumer 

purchase theory, but that was in terms of single item types. In our work 

we need to apply the same principles and the LSD to an aggregate 

population of heterogeneous items. 

The alternative stochastic model involving the LSD is through 

Poisson compounding by the Afwedson process that we considered in 

chapter five. This is shown schematically overleaf in figure 7.1: - 
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Figure 7.1 

Schematic illustration of the Afwedson process 
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If the order rate is Poisson with mean A and the order intensity is 

distributed as a Log Series distribution then the overall distribution of 

demands in fixed intervals of time is the Negative Binomial. Conversely if 

the overall distribution across many items is NBD and the underlying 
1. 

stochastic nature of the process occurrence is Poisson, then individual 

demands are LSD. Hence we now have two processes both of which lead 
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to the LSD (and the NBD), one by mixing and the other by compounding, 
but the important question is can such processes be applied to 
heterogeneous item systems. 

7.2 Evidence for the LSD in Heterogeneous Population. 

I 

In view of the paucity of evidence for an aggregated form of the 

LSD in the literature on inventory theory or consumer purchase theory 

the author had to scan the literature in a number of other fields. 

Interestingly it was in the area of Biometrics that the most fruitful 

evidence emerged. This was perhaps not so surprising given that much of 

the work in this field is concerned with such matters as the application of 

statistical methods to quantify and classify the occurrence and growth of 

heterogeneous species and populations, ie aggregates. In a paper by Jones 

and Mollison (1948) a relationship was discussed between the Poisson, 

Negative Binomial and the Log Series distributions from empirical 

analysis of bacterial colony counts. In this work it was found that such 

colony counts were Poisson distributed (in space) and that the number of 

bacteria per colony followed a Log Series distribution, and that bacterial 

counts across all colonies were distributed as a Negative Binomial 

distribution. Whilst it was not discussed as such by Jones and Mollison, 

their process was effectively a compounding mechanism and it is 

therefore analogous to the Afwedson process, but for heterogeneous 

populations. In fact it was seven years after the work of Jones and 

Mollison that Afwedson published his work on collective risk theory that 

was to lead to a process that eventually bore his name (Afwedson 1955). 

Hence Jones and Mollison could not, obviously, interpret the results of 

their empirical in terms of the compounding process named after 
Afwedson. It is possible to postulate a close analogy of the the Jones and 
Mollison findings with the spare parts system under study here. If the 

occurrence of demand for small clusters of spares is Poisson, (the 
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equivalent of the colonies), and if the number of demands across each item 

in a cluster is distributed as a LSD, then the distribution of demands 

across all items and all clusters should then be NBD if the analogy is valid. 

No proof of the relationship between the three distributions was 

given by Jones and Mollison, but in a paper by Quenouille (1949) in which 

he discussed their work he provided a mathematical proof of the 

relationship between the Poisson, LSD and NBD distributions. The proof 

as presented by QuenouiRe is given here- 

" Suppose the number of groups observed on any one occasion 

is distributed Poisson so that the probability of observing 'n' 

groups is- 

P(n groups) = 
e-mm n 

n 1. 

then the probability of observing Tindividuals in any sample 

is - 
a* 

P(s individuals) =IP (n groups) . (S individuals in 'n' groups) 
n=O 

Now the probability of observing Tindividuals in any one group 

is- 

axs 
S 

or the coefficient of tS in - 

-a log, (1 - xt) 

likewise the probability of observing 'S' individuals in V groups 
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is the coefficient of tS in - 

I- a log, (1 - xt)j 

thus we have - 

"e -M mnn P(s individuals) = coef. of t' in Y. [-aln(l -xt)] 
0 n! 

P(s individuals) = coef. of t' exp[-m -a mln(l - xt)] 

P(s individuals) = coef. of t" in (1 - xt)-"'e-' 

P(s individuals) = (1 - CC)am,, 
(am+ S- 1)! 

xs since G- x) =e (am - 1)! S! 

This is the same as the (s+1)th term in a Negative 

Binomial Distribution with parameter Y. Consequently 

the probability of the number of individuals in a random 

sample is NBD. Conversely the assumption of any two of 

the distributions holding leads to the thirdprovided the 

parameters of the LSD and the NBD are equal. " 

This author had some difficulty in following the obscure 

mathematical logic of this proof, however since the paper containing it 

was refereed and accepted for publication in the prestigious journal 

'Biometrics' and was not subsequently challenged at a later stage, its 

mathematical validity was assumed by this author to be correct; and 

meaningful to Biometricians. Also Quenouille was a respected author in 
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statistical circles. His work on the Poisson/LSD/NBD relationship has 

been cited by other researchers, for example Nahmias and Demmy 

(1982), in the context of single item compound demands. The important 

point for this research is that an accepted proof does exist that relates the 

three distributions in this way. Furthermore, according to Quenouille 

(op. cit. ), - for the proof to apply to a particular situation the parameters of 

the LSD and NBD must be the same. This means that one must be a special 

case of the other ie removing the zero demands from a Negative Binomial 

distribution will leave a distribution of the positive integers for all values 

of unity and greater, and this must be the Log Series distribution. We 

should note here that the LSD is not always a special case of the NBD. It is 

only so when the proportion of zero demands is very large in a 

given period., 

Further evidence of the relationship between the Poisson, NBD and 

the LSD in heterogeneous item systems came from Fisher's original work 

(1943) in an investigation of the frequency distribution of the number of 

different species of animals obtained in random samples. Fisher first 

derived the LSD by considering the distribution of species to be a Poisson 

process with mean W, and assumed that W was distributed across - the 

heterogeneous animal groups as a Gamma distribution of the type shown- 

P(M) 
p -k m 

k-I 

e-MIP 
(k - 1)! 

With this assumption Fisher then regarded the process as the 

superposition of a set of Poisson distributions which resulted in one 

overall distribution of animal species- the Negative Binomial as 

previously given. Developed in this way the process is effectively a 

Poisson-Gamma model with gamma mixing of the Poisson rate parameter 

to give the NBD. Hence it is exactly analogous to Ehrenberg's derivation 
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of the model of purchase occasions by gamma mixing of consumer 

purchase rates, but in this case applied to a mixed specie population. 

Fisher also showed that as the NBD parameter 'k' tended to zero the 

process gives rise to a distribution whose first term tended to become 

infinite. However, upon excluding this term as being in general 

unobservable in empirical data Fisher then obtained the Log Series 

distribution. This is also analogous to the work of Ehrenberg (1959 and 

1972) in which for lightly purchased items, ignoring the first term of his 

NBD model (i. e. the large group of non buyers in the period) he obtained 

LSD. 

The interesting features of the work of Fisher, and also that Jones 

and Mollison, is that they both end up with essentially the same overall 

model the LSD/NBD as applied to aggregate or heterogeneous 
-specie 

situations, but by different routes. A process that is closely related to the 

Afwedson compounding process in the case of the Jones and Mollison 

work, and a process which is clearly Poisson mixing in Fisher's work. 

In a paper by Anscombe (1950) essentially concerned with 

statistical theory, and published in Biometrika, he showed that as 'n' 

approaches infinity (n being the number of observations in a sample) and 

as 'k' approaches zero (k being the exponent parameter in an NBD) the 

associated LSD can be easily decomposed into the product of Poisson 

frequency functions. More explicitly Anscombe argued that the LSD as 

developed by R. A. Fisher was obtained by a limiting process from the 

Negative Binomial distribution by considering a sample of 'n' readings 

and letting 'n' tend to infinity and 'k' tend to zero and then neglecting the 

zero readings. Anscombe regarded the LSD as a multivariate distribution 

consisting of a set of independent Poisson distributions with mean values - 
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ax' ax' 
23 

where, a= -1 InO - x) 

etc to 

and x is a constant < 

-ax" 
n 

And according to Anscombe a sample comprised one reading from 

each Poisson distribution. Anscombe's work effectively started with the 

assumption of the interrelation of the three distributions and then 

provided additional support for the mechanism by which one distribution 

is formed from the other two. 

It is cleaffrom the foregoing discussions that in a number of fields 

of investigation that the Poisson, LSD and NBD distributions are closely 

related to each other through stochastic mechanisms. Indeed it now seems 

certain that a necessary condition for the occurrence and existence of the 

NBD is that the underlying process being considered must be Poisson; 

although this can be in time or space. Ehrenberg's work is now classic in 

the field of consumer purchase theory, but it has only been applied to 

single item , types or brands and to purchase occasions. Early work in the 

field of Biometrics has however, shown that similar models can be 

derived both empirically and theoretically and can be applied to multiple 

specie situations and for item quantities. Furthermore, in all the work so 

far considered there is general agreement, either because of explicit 

statements, or by inference, that the LSD can be regarded as a special case 

of the NBD and in those cases in particular where the first term of a NBD 

distribution is large (i. e. the number of zero readings) then the LSD is a 

good model of the remaining data. (ie all. values of x equal to and greater 

than one). 
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7.3 Inferences Regarding Heterogeneous Item, Demands 

In terms of the implications for the research here we can now draw 

some strong conclusions and inferences. The work and discussions, of 

previous chapters has shown the large body of evidence that indicates that 

the underlying demand process for spare parts is Poisson. Early empirical 

work by this author shows that the empirical distribution of demands 

across all spare part item types is very likely LSD in short time periods. 

Then, drawing from the work of various authors in the field of 

Biometrics theoretical evidence is available to support the validity of the 

use of the LSD in heterogeneous populations such as in spare parts 

environments. This being the case, then the overall distribution of short 

period demands for all spare types in aggregate should be distributed as a 

Negative Binomial distribution, when the zero demands for the period are 

also taken into account. We are not clear however, whether this is by 

mixing or by compounding, or indeed both. Hence if the LSD can be 

shown to converge to a lognormal distribution then, it can be argued, so 

to will the associated NBD also converge to lognormality. Before we now 

proceed to a more formal statement of a hypothesis some of the evidence 

in the literature relating to constraining conditions to the processes will 

now be considered. 

Firstly retuming to Anscombe's work we can draw some valuable 
interpretations. He sees the development of the LSD from a Poisson model 

as a limiting process of the mechanism that gives rise to t he NBD and 

which depends on two general conditions- 

(a) The parameter T (being the exponent parameter in the 

NBD model) must be very small, i. e. 'k' must approach 

zero. 

(b) 'n' the number of observations must be very large. That is 

V must begin to approach infinity. 
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If we consider the aggregate NBD as derived by the Polya process 

then the parameter 'k' in the NBD model is derived from the Gamma 

mixing distribution on the Poisson rate parameter. In fact W is the shape 

parameter of the Gamma distribution and as 'k' becomes smaller the 

Gamma shape becomes more and more skewed as shown by the following 

diagram- 

Figure 7.2 

f(t) 

Variate t 

When 'k' equals one the distribution becomes effectively a negative 

exponential distribution. When 'k' becomes 1/2 the form becomes more 

hyper-exponential in form. In the context of consumer purchase theory 

the condition of T being very small has been shown by Ehrenberg 

(1972) to be valid in those cases where consumer purchases can be 

modelled by the LSD in place of the NBD model. That is for the so called 

'lightly purchased' items. Thus it appears that the mixing distribution 

which models demand variation across the Poisson occasions must have a 

reverse T shaped profile of a negative exponential or hyper-exponential 

form. By way of comparison, in the Afwedson compounding process the 
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variability in demand volume at each Poisson occasion is described by the 

LSD which, although discrete and T shaped, is of an exponential or 

hyper-exponential form. Ibus the two processes may be closer in nature 

and form than has been previously recognised. 

Theýcondition of W approaching infinity seems somewhat more 

doubtful in the context of consumer purchase research, because although 

most of Ehrenberg's data sets were large, W was nevertheless measured 

in hundreds and the requirement for W to be very large does not seem to 

have been discussed directly in such research. However, in view of the 

richness and proof of the efficiency of -the NBD model in consumer 

purchasing one can only assume that data sets measured in hundreds are 

valid. In terms of the research reported here the requirement for W to be 

large does not present any problems, as all the data sets examined were 

very large and could, if required, be measured in thousands of items. The 

condition that 'k' should be small and approach zero is more complex. If, 

as - evidence now begins to suggest, a Poisson Gamma model can be 

applied in short time periods to multi specie situations, then the need for 

T, to be small implies that the demand variation across the range of 

customers for each item should be a Gamma distribution in an exponential 

or hyper-exponential form. Hence a large proportion of the demands 

should be very small and only a small proportion of the demands should 

be' relatively much larger. When considered in the aggregate situation this 

will result in a highly skewed range of demands across all products. It is 

like taking clusters of random numbers from an exponential distribution 

and computing the mean value of each cluster. Most of these means will 

be of very small value, only a few will be larger and very few will be 

very large. 71is is what was generally found across the wide variety of 

parts'in the DAF system. 
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7.4 Convergence Processes 

In chapter four we discussed the growth of variates over time and 

considered the possible mechanisms that can lead to lognormality as the 

long run stable distribution of a system. Having now established a 

plausible theoretical base for the likely mechanism and distribution of the 

aggregate distribution of demands in short time periods we will now 

reconsider the growth processes that might lead to lognormality. Whilst 

the literature provided no direct evidence that a summation of 

independent Log Series distributions could result in a Lognormal 

distribution the author sought indirect evidence to indicate the plausibility 

of such a process. The following discussion considers some empirical 

evidence that supports a linkage between the two main theoretical strands 

proposed so far, namely that both the Poisson Gamma and Afwedson 

processes can lead to a Log Series/NBD distribution of aggregate demand 

for short time periods. And as the demand period is extended the stable 

long run equilibrium distribution of aggregate demands is an integer 

lognormal distribution and this achieved by a stochastic growth process 

governed by the Law of Proportionate Effect. 

From the field of military logistics Hadden et al (1959) in a study of 

military equipment down times, showed that the sum of exponential 

distributions gradually converge to a lognormal distribution. 'Mis was 

demonstrated graphically by a decomposition of the lognormal 

distribution obtained into sums of exponential distributions. Apparently 

this is contrary to statistical theory because according to Cramer (1946) in 

general one would expect the sum of exponentials to give a Pearson type 

three distribution (a Gamma distribution). However, it must be borne in 

mind that with appropriate values of the parameters it is possible for the 

Gamma and Lognormal distributions to become very similar in form. 

Indeed as indicated in section 7.3 as 'k' the Gamma distribution 

parameter approaches unity the distribution approaches the exponential 
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distribution. When T= unity the two distributions -become identical. 

Furthermore whilst, empirical evidence seems to contradict statistical 

theory no rigorous proof of Cramer's statement was given. Hadden's 

work is particularly relevant to our developments because he showed that 

a,. continuous T shaped distribution - the exponential,, converged to a 

continuous lognormal distribution. Hence it can be reasoned that a 

discrete T shaped distribution of an exponential form; suchýas the LSD, 

could be expected to converge to the discrete distribution of counts form 

of the lognormal distribution. 'Ibis is exactly what our empirical analysis 

on DAF demand volume data has shown. The short period empirical data 

converged to'a discrete lognormal form. 

Bovaird and Zagor (1961) have also discussed the problem of 

equipment down times and state that- 

"There is a growing body of evidence that indicates that in 

general downtime distributions within various 

categories are either lognormal or exponential and 

the total downtime distribution is lognormal provided 

the equipment is sufficiently complex -otherwise it 

is exponential. " 

By sufficiently complex it is taken that these authors refer to the 

number and diversity of parts used in the equipment. This same 

phenomena has also been referred to by Barlow et. al. (1967). The 

empirical work of Hadden (1959) and Bovaird and Zagor (1961) give 

support to a proposition that lognormality is reached along two 

dimensions, a summation through time of a highly skewed distribution, 

and a space complexity dimension in terms of the diversity of items. It is 

interesting to note that the work of these authors is concerned with 

equipment failure processes which can confidently be assumed Poisson in 

terms of failure rates, and a resulting highly skewed distribution that can 

be summed to a lognormal distribution. 

Page 246 



Chapter 7 

7.5 Model Development 

As we have seen the favoured candidate for a statistical model of 
demand rates for individual items under both mixing (the Polya Process) 

and compounding (the Afwedson Process) processes is the Negative 

Binomial distribution. In the case of compounding the Stuttering Poisson 

is also a favoured candidate for period demand volumes in inventory 

applications. Whether the same models can be applied satisfactorily to 

those situations where both compounding and mixing occur 

simultaneously is not known. In all probability it has already been applied, 

possibly unknowingly, to such situations as for example in the work of 

Haber and Sitgreaves on submarine spares, and in Taylor's work on 

aircraft spares. These authors have not attempted to differentiate between 

mixing and compounding. However, in both research works demand for 

spare parts was formulated in a manner equivalent to a mixing process 

with the Poisson rate parameter A assumed distributed as a gamma variate 

over the lead time. Furthermore in both cases one would expect a degree 

of demand compounding to be taking place with some of the spare parts in 

use. 

It is now quite easy to envisage that in a spare parts environment, 

such as we have in the DAF Trucks situation, that at the level of individual 

items both compounding and mixing of demands is very likely to be 

taking place. Many of the demands, received at the distributor level, 

especially those for consumable and cheaper spare parts, are to replenish 

dealer retail stocks; hence these are orders for multiple items that give a 

compounded demand situation. For many other parts, that are ordered on 

a unit basis, the effect of different order rates from the various retailers 

will give a degree of mixing to the demand character. This mixing 

character will however will be much more marked at the retail level 

through the different demand rates of the very large ultimate end user 
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truck population. For very slow moving parts the process is very likely to 

be close to a simple Poisson process with no compounding and very little 

mixing evident in the demand process. For some spare parts, most likely 

the faster moving moderately priced items, we would expect to see a 

substantial degree of both compounding through inventory replenishment 

effects, and mixing through variable end user rates. Hence we would 

expect that an examination of the variance of demand of a range of 

different spare parts types will almost certainly reveal a large variation in 

that parameter. In general it was found across the DAF parts range that 

demand variances were indeed almost always much greater than the mean, 

except for very slow moving items in which cases the variance values 

were very close to the mean values. Indeed from limited analytical 

evidence on DAF data we were able to show that both the NBD and 

Stuttering Poisson distributions provide very good fits to fixed period 

demand for certain representative parts. (See appendix one). 

As a first step in developing a model of aggregate demand 

behaviour we consider the start of the process as beginning with a 

recurrent event process where single period demand occasions for 

individual items are simple Poisson. Iben, through varying degrees of 

both mixing and compounding of individual purchase behaviour, the 

process yields single period demand quantities that are distributed as 

either NBD, or the Stuttering Poisson distribution as shown in figure 7.3 

below. When no compounding exists and the level of mixing is small the 

the outcome will be a simple Poisson demand quantity. 

Page 248 



Chapter 7 

Figure 7.3 
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If we then consider this process occurring for a large population of 
V products we know that for short periods of time this leads to an 

aggregate distribution of demand quantities that are highly skewed and T 

shaped. We know from both theoretical evidence and empirical analysis 

discussed in this chapter that a strong -candidate to model the aggregate 

outcome in short time periods is the Log Series distribution. Hence given 

a Poisson demand occurrence outcome for all parts in aggregate 

combined with an LSD distribution of demand quantity in aggregate then 

we have strong evidence to suggest the operation of an aggregate form of 

the Afwedson process. Under these conditions the overall distribution of 

aggregate demand quantities should then also be the NBD. Now previous 

empirical- and literature evidence so far strongly supports the view that 

both the Poisson Gamma model and the Afwedson model can be applied to 
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the heterogeneous populations, ie the multiproduct or aggregate item 

demand case. So we now postulate that in single demand periods (defined 

as four weeks in the DAF case) the Afwedson model is an adequate 
description of the aggregate demand quantities. 

As a next step we formulate our model of the aggregate process in 

a manner similar to Easton's(1975) diagrammatic representation of the 

NBD demand occasions model we first showed in chapter five., A 

modified version of this model reformulated to suit our aggregate parts 

process is shown in figure 7.4 

Figure 7.4 
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* The horizontal distributions in figure 7.4 are likely to be predominantly 

NBD or Stuttering Poisson because each period expectation Y can be 

regarded as a demand generated from a Poisson occurrence model with 

either geometric or logarithmic compounding for each individual item. 

This overall model is intended to be a model of aggregate demand 

quantity for all items and for multiple time periods. However, to be a 

valid and comprehensive model, it should be capable of interpretation in 

terms of both demand quantity and demand occasion. Firstly we attempt 

to interpret the model in terms of the Afwedson process. Ibis model 

requires that for the period under consideration the aggregate occurrence 

of demand in fixed time intervals for all items considered together, 

irrespective of source or amount of the demand, should be Poisson. 

Secondly the quantities demanded from Poisson occurrence point to 

Poisson occurence point should be distributed as a Log Series distribution. 

Then when the zero demand occurrence points are taken into account this 

leads to an overall aggregate NBD distribution of demand quantity for the 

period. 'Ibis interpretation of the model only requires that the occurrence 

of demand for an individual item amongst all items be Poisson and this 

frees up any restriction on the particular nature of demand distribution 

through successive time periods for individual items. Hence these could 

be NBD, Stuttering Poisson, simple Poisson, or any other close cousin, 

but they must be Poisson in nature. 'Ibis will allow the possibility of true 

Poisson mixtures for individual item demand streams, ie cases where the 

period demand for a particular individual item might well be effectively 

comprised of converged demands of different behaviours. Some of which 

may be of a compounded nature, because of multiple customer 

requirements, whilst others may be simple Poisson or Poisson mixing in 

nature. This model formulation is not in conflict with a Poisson Gamma 

formulation of demand for individual items. The operation of one is not 

necessarily a condition for the other, neither does one preclude the 
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operation of the other; because the essential link is the Poisson 

occurrence of demand at the level of the individual item, which is likely to 

give a predominance of the Stuttering. Poisson demand quantity, and 

NBD of both demand occasion, through mixing, and demand quantity by 

compounding. 

To interpret the model in terms of a Polya process, ie by Gamma 

mixing, it requires that for each item in a short time period demand 

occasion should also be Poisson; and that the variation in the Poisson rate 

parameter across all items should followa Gamma distribution. This can 

only be tested however, by examination of the variation of the mean value 

of the Poisson-rate parameter over several successive periods. To satisfy 

and clarify the requirements of both aggregate Poisson compounding and 

aggregate Poisson mixing we need to refon-nulate the model in two parts, 

one as an 'aggregate demand occasion model', the other as an 

'aggregate demand quantity model' as shown in figures 7.5 and 7.6 

on pages 254 and 255. 

In figure 7.5 the individual demand streams are assumed to be 

simple Poisson or NBD by mixing of all demands for that individual item. 

The short period aggregate demand occasion across all parts is assumed 

simple Poisson, whilst the long run average aggregate demand occasion 

should be Gamma distributed. To test this model we need to examine the 

short run and long ran aggregate demand occasions to see if we obtain the 

Poisson and Gamma models respectively. 

In figure 7.6 the individual demand stream quantities are assumed 

to be most likely Poisson mixtures. By that we mean that demand for 

some parts might be simple Poisson others may well be compounded as 

either NBD or stuttering Poisson or indeed other unidentified Poisson 

models including a proper mixture of our various Poisson models. 

However these forms are not critical to our model develoPment. It is the 
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form of the aggregate vertical distribution that is important. We assume 

this to be the Afwedson LSD/NBD distribution. In the long run the 

cumulation of these short term distributions must converge to the 

lognormal if our model is to hold good and explain the lognormal form of 

long run demand quantities. 

7.6 Conclusions and hypotheses 

The evidence for a Poisson occurrence of demand for individual 

spare parts in systems of the type studied in this research is very strong, 

both from theoretical and empirical- evidence reported in the literature. 

However, the values of the demand variances, for the majority of parts 

studied individually in the DAF system, always exceeded the 

corresponding mean values, sometimes substantially. Thus whilst the 

underlying process for period demand quantity is almost certainly 

Poisson in nature the simple Poisson process does not provide an adequate 

description of the demand process in operation for majority of the spare 

parts examined. In all probability both Poisson mixing and Poisson 

compounding, to varying degrees, is taking place along individual 

demand streams from one time period to the next. As we have seen from 

the work of previous authors such as Ehrenberg, Jewell and Haight, 

Poisson mixing and compounding always increases the variance of 

demand. In our work here there is every reason to confidently assume 

that any mixing is by a Polya Process to yield a Negative Binomial 

distribution of demand occurrences for individual items in short time 

periods. In the case of faster moving items there is good evidence from 

the literature on spare parts demands to indicate that Poisson 

compounding is also operating. Such compounding of demands is very 

likely to be from either the Afwedson or the Galliher processes which 

lead respectively to the NBD and Stuttering Poisson distributions. We do 

not see these processes as being mutually exclusive. 
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Empirical and theoretical evidence suggests that the observed 

aggregate distribution-of demand quantities across all spare parts items in 

short time periods can be modelled by the Log Series distribution. 

Theoretical evidence also strongly supports the proposition that an 

aggregate form of the Afwedson process, as shown in figure 7.1 on page 
235, is in operation across aH parts in short time periods. When aggregate 
demand quantities are cumulated over successive time periods the 

observed aggregate distribution is seen to gradually converge to an 
integer form of the lognormal distribution as the stable long run 
distribution of aggregate demand quantity. As the LSD is a special case of 

the Negative Binomial distribution then the NBD itself may also be a 
distribution to model aggregate short term demand, and in turn be capable 

of summation to the same lognormal form. The summation or growth 

process through successive time periods would seem, from the work in 

chapter four, to be governed by the Law of Proportionate Effect. 

Our development so far assumes, indeed requires, that the 

underlying demand process in aggregate is Poisson in form. Hence 

demands from the dealers to the distributor should be Poisson and the 

interevent distribution between demand occasions should therefore be 

negative exponential. However, at DAF Trucks the demand for some 60% 

of the parts range occur in response to dealer stock replenishment 

decisions and under such circumstances this might suggest a demand 

occurrence interval more regular than the negative exponential 

distribution for such items. However, the variance of demand in the DAF 

case for the vast majority of parts was always greater than the mean; 

substantially so in most cases. Ordinarily an interevent distribution more 

regular than the exponential would result in a variance to mean ratio less 

than unity. The factor that could increase the ratio however under more 

regular ordering conditions, would be significant compounding. For 

example the possibility of a 'Stuttering Erlang' effect as we discussed in 

chapter five. We can however take some support from the quotation of 
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Ehrenberg given on page 233 in this chapter relating to his development 

of the LSD model of consumer purchases in very time periods. 

"It is of course not necessary to assume that consumers 

purchasing behaviour actuallyfollows this stochastic 

model in the long run. As is also the case for the NBD 

model, it is only necessary to suppose that in any time 

period, or periods being analysed, the purchases behave as 

if they were a random samplefrom the values generated by 

such a model. " 

Hence what really is important is to show that in any short period 

the aggregate demands do indeed behave as if they were drawn from an 

aggregate Afwedson model. We reconsider this issue again in chapter 

eight when our models are tested retroductively. 

Given the empirical evidence of chapter six, and the deductive 

reasoning of this chapter we can now reconsider our research hypotheses 

given at the end of chapter five in a much stronger form together with 

two additional hypotheses concerning the actual form of short period 

demand volumes. We know from the work of chapters five and six that 

annual usage values are composed of the product of item price and the 

quantity used or demanded in a particular period. Furthermore, we can 

say from the work of this chapter that item prices and item demand 

volumes are both lognormally distributed subject to certain constraints. 

Hence we now hypothesise that: 

(a) In the case of prices the inventory range must be large and 

complex in the sense that it must comprise many small value 

items in -addition to very high value items as typically found 

in spare parts inventories for complex capital equipment 

such as commercial vehicles, aircraft, tractors etc. In the case 
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of demand volumes the period must be comparatively long 

and it is a discrete form of the lognormal distribution that is 

attained as the stable long run distribution by the summation 

of short period demand volumes. 

(b) In comparatively short time periods the aggregate 

distribution of demand quantity its fully described'and 

modelled by the Log Series distribution of R. A. Fisher. Tbis 

distribution is itself a special case of the Negative Binomial 

distribution when the proportion of very low demands in the 

population is high. In the same time period the aggregate 

distribution of demand occasions is described by the simple 

Poisson process. 

(c) The underlying stochastic process that explains the 

occurrence of the Log Series distribution of aggregate 

inventory item demand quantity is the 'Afwedson Compound 

Poisson Process' as previously developed and discussed. 

(d) Ihe Log Series distribution of aggregate demand will, if 

cumulated over successive time periods, gradually converge 

to a distribution, which is discrete and has all the 

characteristics of the form of the lognormal distribution 

known as the distribution of counts. 

(e) The stochastic process that governs the convergence of 

demand volumes, and hence also of usage values, to the 

lognonnal distribution of counts is the the Law of 

Proportionate Effect. 

In the next chapter we turn to the process of testing the models we 

have developed in this chapter. 
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