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ABSTRACT

This thesis considers the theoretical and experimental analysis of
thin-walled box spine-beam bridges. Existing methods available for the
analysis of spine-beam bridges have been reviewed, with special attention
being paid to thin-walled box beam theories. A new approach combining the
finite element technique and the thin-walled beamtheory, which is appropriate
for design purposes, has been proposed. This approach is specially suitable
for medium and long spans. It is intended to be a realistic and versatile
method to be used during the preliminary analysis and design stage, when a

full three-dimensional analysis is likely to be impracticél.

Special features related to the bending analysis of thin-walled
qembers and the warping torsion Lheory of open and closed section members
are summarized in the thesis. In addition, supplementary formulae for the
calculation of the stress distributions and the thin-walled section properties
are derived; The distortional effect on single-spined box beams subjected
to torsion has been extended to a general form based on the principles of

ordinary folded plate theory.

A family of special one-dimensional sub-parametric elements has been
developed. In addition to the usual truss and beam elements the family
includes a general thin-walled box beam element which may be curved in
space and may have a variable cross-section. Additional degrees of freedom
have been included to account for the warping and distortion effects which
occur in box beams. An inclined cable element with'catenary action is
included, and an approximate nonlineaf process for the analysis of cable-
stayed bridges has been correlated with tests on an actual bridge structure.
A finite element-grillage approach for the analysis of multibox structures
with deformable sections has also been developed. The complete family of

elements has been incorporated into a computer program called CUBAS.
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A supplementary program called PFRAN for calculating the distortional

properties and the influence values of the equivalent Vierendeel frame has

also been implemented.

The accuracy of the results obtained is demonstrated by comparison
with results obtained by other published methods. A series of model box
beams were tested to further substantiate the theoretical results. The
model dimensions were chosen to highlight both warping and cross—sectional
distortion effects. The degree of correlation obtained shows that the
theoretical developments proposed in this thesis may be applied successfully

to the analysis of box spine-beam bridges.
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NOTATION

Only the main symbols in the text are listed here. All other

symbols are defined as they first appear.

Asx» Asy

b, by

bt i » bpi

cross-sectional area

effective shear cross—-sectional areas in the x-direction

and the y-direction respectively
total breadth of the top flange of the whole cross—section
body force vector

top and bottom breadths between mid-lines of the side webs

respectively

top and bottom breadths between mid~lines of webs of the

ith cell respectively

breadth of cantilever slab

effective breadth between mid-lines of webs ¢
strain matrix

torsional warping bimoment

distortional warping bimoment

concentrated applied bimoment

distributed applied torsional warping bimoment
distributed applied distortional warping bimoment
transverse flexural rigidity of an individual plate

.
transverse flexural rigidities of the top and bottom slabs

and the side webs respectively
generalized elasticity matrix

displacement vector due to the open section shear flow qy
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Dg,i= -§ qu ds ith term in the displacement vector'{Dq}
it

™
I

Ik 5 Lyy

e
-
e )
A J
&>

J1, J2’ J3

Young's modulus of elasticity
conversion modulus of elasticity
equivalent modulus of elasticity of the inclined cable

eccentricities of the applied load relating to the shear

centre in the x-direction and the y-direction respectively

vertical ordinate of the twisting centre with reference to

the mid-line of the top flange
structure nodal force vector
element nodal force vector
applied force vector

shear-deformation factors in the x—-direction and the

y-direction respectively
flexibility influence coefficient matrix

flexibility coefficient integral along the
common wall between cell i1 and cell k

flexibility coefficient — contour integral along the
circumference of cell i

shear modulus of elasticity

element geometrical function vector
depth between mid-lines of top and bottom slabs
length of the web

moments of inertia of entire cross—section about the

centroidal x and y axes respectively

unit vectors in the global X, Y and Z directions respectively

Jacobian factor

Jacobian factors at the lst, 2nd and 3rd nodes of the

element respectively



My
mg
Mdb

D44
Mgy

de

IX

St. Venant torsional moment of inertia

Bredt torsional moment of inertia

total torsional moment of inertia

central second moment of area

torsional warping moment of inertia

distortional warping moment of inertia
distortional second moment of area
structure stiffness matrix

element stiffness matrix

tangent stiffness matrix

distortional frame stiffness of the box-section per unit

length

horizontal length of the inclined cable or the length of

span .

length of element

shape functions for mapping the element geometry
distortional moment

distributed‘distortional moment

transverse distortional bending moment per unit length

influence value of the transverse distortional bending

moment per unit length

distortional moment per unit length due to the horizontal

eccentric loading

additional distortional moment per unit length due to the

initial in-plan curvature
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My

My ext
My, ext
Mz, ext

my exts My,ext

mz,ext

m3H~

msv

distortional moment per unit length due to the vertical

eccentric loading

longitudinal bending moment per unit width of the plate due

to Poisson's ratio effect

transverse bending moment

St. Venant torsional moment.component
Bredt torsional moment component

primary torsional moment referred to the St. Venant shear

stresses and/or the Bredt shear stresses

secondary or flexural torsional moment resulting from the

warping shear stresses
total torsional moment

internal bending moments about the centroidal x and y axes

respectively

concentrated applied moment about the X axis
concentrated applied moment about the Y axis
concentrated applied moment about the Z axis

distributed applied bending moments about the x and y axes

respectively
distributed applied twisting moment

distributed applied twisting moment due to the horizontal

eccentric loading

N
distributed applied twisting moment due to the vertical

eccentric loading
shape functions for defining the displacement field

internal axial force
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Qx’ Qy
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XI

concentrated applied force vector

concentrated applied force components in the X, Y and Z

directions respectively

distributed applied force components in the x, y and z

directions respectively

shear flow

distributed force vector for an element
open section shear flow

statically indeterminate shear flow in longitudinal bending
total shear flow in longitudinal bending

Bredt's shear flow

Bredt's ﬁnit shear flow function

redundant torsional warping shear flow for a closed section

unit shear flow function in warping torsion for a closed

section

torsional warping shear flow

total shear flow in warping torsion
redundant distortional warping shear flow

unit shear flow function in distortion

distortional warping shear flow

transverse distortional shear force per unit length

influence value of the transverse distortional shear force

per unit length
internal shear forces in the x and y directions respectively

open section shear flow due to unit shear force (.%1 =1)
' vy
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open section shear flow due to unit shear force ( 31 =1)
I

radius of curvature
residual force vector

perpendicular distance from the centre of twist to the

tangent to the mid-line of wall at the point considered
curvilinear coordinate along mid-line of wall

sectorial statical moment of area for an open section
sectorial statical moment of area for a closed section

displacement vector of the flexibility equations for
determining the redundant torsional warping shear flow

i*™® term in the displacement vector {EI}

distortional statical moment of area
reduced distortional statical moment of area

displacement vector of the flexibility equations for

determining the redundant distortional warping shear flow

.t . . <
ith term in the displacement vector {Sj}

first moments of area about the centroidal x and y axes

respectively

sectorial products of inertia about the centroidal x and

y axes respectively

tensile force of the inclined cable along the chord

thickness of wall
thickness of cantilever slab

thickness of top slab

thickness of bottom slab
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thickness of web

thickness of diaphragm

vector of displacements at any point within a section
generalized displacement field in the local coordinate
system

translations of the centroid along the x, y and 'z directions
respectively

translations of the centroid along the X, Y and Z directions
respectively

displacement components of a point on the mid-line of wall,
in the generalized coordinate system (z, S)

displacement components of a point in the local Cartesian
coordinate system

displacements of the top-left cormer associated with the
Vierendeel frame analysis, in the x and y directions
respectively

displacements of the top-right corner associated with the
Vierendeel frame analysis, in the x and y directions
respectively

displacements of the top corner of the box-section
associated with distortion, in the x and y directions

respectively

displacements of the bottom corner of the box-section
associated with distortion, in the x and y directions

respectively

displacement tangential to the side web
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XIv

weight per unit length of the inclined cable
unit vectors in the local x, y and z directions respectively

vertical ordinate of the centroid with reference to the

mid-line of the top flange

vertical ordinate of the shear centre with reference to the

mid-line of the top flange

stiffening factor for the effective breadth ratio
cross—-sectional ratios associated with distortion
ratio (bb/bt)

ratio (-wp .3 /wn.' )

shear strain

distortional angle

influence distortional angle

vector of global nodal displacements
vector of global displacements and derivatives at any

point on the element axis

vector of global nodal displacements and derivatives for an

element

generalizea strain vector

normal component of strain in the z direction
transverse normal strain component

natural coordinate in the eta direction
distortional distribution factor

parameters for frame stiffness or transverse corner moments

respectively

rotations about the centroidal x and y axes respectively



03 total angle of twist

83.p primary angle of twist

03 s secondary angle of twist

> rate of twisting angle

A transformation matrix

g initial curvatu?e multiplication factor

I torsional warping shear parameter

v Poisson's ratio

g4 torsional stiffness reduction factor

n external potential energy

p weight density of the material

Py P strain gauge readings in the longitudinal and transverse
directions respectively

p generalized stress vector ‘

% transverse distortional bending stress

;db influence value of the transverse distortional bending stress

o; torsional warping stress

I distortional warping stress

Ulb longitudinal bending stress

o3 normal stress component in the z.direction

o normal stress component in the transverse direction

og radial component of the longitudinal bending stress

Ts shear stress in longitudinal bending

Ty St. Venant shear stress

g Bredt's shear stress
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{a}

torsional warping shear stress
total shear stress in warping torsion

distortional warping shear stress
angle of the top flange with respect to the inclined side
web

rotation of the web

rotations about the global X, Y and Z axes respectively

rate of distortion

rotations of the top and bottom flanges respectively

effective breadth ratio

unit torsional warping function or the normalized sectorial
coordinate for an open section

unit torsional warping function or the normalized reduced
sectorial coordinate for a closed section

unit distortional warping function

displacement vector of the flexibility equations for

determining the Bredt's shear flow function

. .th
twice the enclosed area of the 1 cell
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CHAPTER 1

INTRODUCTION AND REVIEW OF AVAILABLE ANALYTICAL METHODS

l.1 General remarks and presentation of the thesis

Many different deck arrangements are possible in bridge comstruction
and a logical classification system can be proposed as shown in Fig. 1.1
(67). Box spine-beams have been used in single or multiple cells together
with arrangements whereby several box beams are combined to form a complete

bridge deck.

The essential difference between spine-beam bridges and other bridge
superstructures is due mainly to differences in plan geometry. In practice,
spine-beam bridges may be defined as structural members whose breadth and
. depth are small in relation to their length and which are, therefore,
subjected mainly to longitudinal bending, transverse shear and torsion.
They are generally stiff members whose cross-séction consists of a hollow
box beam having'one or more cells, with or without cantilevers. Transverse
diaphragms are normally provided only over the supports. The tramsition
between the true spine type and the cellular slab is not always well
defined, although Swann (136) specified that for spine-beams in general the
total number of cells in the spine should be less than five. Typical cross-
sections of bridges of this type which have been built in practice are

shown in Fig. 1.2.

The.spines provide the main source of strength in single-spined or
multi-spined superstructures. The hollow box section of the spine contribute$
considerably to the torsional stiffness of the bridge and distributes the
transverse (lateral) load. Thus, the box section leads to a significantly

favourable pattern of flexural and shear stresses, when considered in



conjunction with its high longitudinal bending strength. This therefore
results in saving of materials, and reduced depth of construction. The
slender proportions and simple form of this type of bridge provide a
pleasant appearance and in addition, this bridge type is easy to erect and
maintain. These advantages explain the popular use of spine-beams in a
variety of modern steel and prestressed concrete bridge structures. Box
spine-beams are particularly advantageous to bridges having medium or long

spans and to bridges which are curved in plan.

Structural design of spine-beam bridges presents many difficulties
because of the complex nature of the interaction of individual elements.
A large amount of research effort has been devoted to spine-beam analysis,
and a considerable amount of literature has been published on the very wide
range of analytical methods available. The existing methods can be
* classified into three general categories which are called the thin-walled
beam theory, the folded plate method and the finite element method. Maisel
and Roll (82, 83) have made an extensive literature survey and have
reviewed almost all the methods developed hitherto. Many of these methods

are complex, somewhat academic and have limitations in the structural forms

they can idealize.

A three-dimensional finite element analysis can, of course, offer
the most comprehensive treatment. It can readily take into account a variety
of structural geometries, supports and loading conditions, and has made
po;sible the accurate assessment of structural effects. However, such.an
analysis involves very extensive computations which lead to expensive

computing costs and in some cases to voluminous computing output.

At the preliminary analysis and design stage it is likely to be
impractical to conduct a full three-dimensional analysis, since the bridge

geometries and loading conditions, etc., could be modified for instance.



It is, therefore, desirable at this stage to use a realistic but simplified
method of analysis which is both accurate and economic. Such a method

should indicate those areas which require a more accurate analysis.

As a result of the work presented in this thesis a finite beam
approach, with idealization only in the spanwise direction, developed on the
basis of thin-walled beam theory seems to fulfil the requirements discussed

above.
The objectives of the present project may be summarized as follows:

1) To develop a general beam theory for the global analysis of
box spine-beams. The scope of the development is limited to spine-beam
bridges with at least one vertical axis of symmetry. The beam may have a
variable cross-section and can be straight or curved in plan. Diaphragms
'can be specified at any node. The structure is treated in three-dimensional
space and longitudinal warping effects as well as transverse distortion
are taken into account. The effect of shear lag is included by adopting

an "effective breadth" concept.

2) To establish a family of special one-dimensional sub-parametric
elements and to present this analytical treatment in a form suitable for
computer analysis. This objective comprises the writing and testing of a
computer code. The purpose is to provide a program that can handle a
wide variety of bridge structures such as straight or curved box spine-beams,
multibox girders, articulated bridge decks and cable-stayed bridges. The |
associated program has been called CUBAS (City University Bridge Analysis

System)., v

3) To carry out a comprehensive experimental investigation on
different types of box beams, which can assess the appropriateness of the
formulation and the accuracy of the results. An understanding of the

structural action can also be obtained which would assist the development



of the theory.

Generally, it is hoped to provide designers with a practical
analysis to be used for the initial design process when a complete stress
analysis is unnecessary. The solution is sufficiently accurate for design

purposes.

An attempt has been made to present this thesis in a form compaéible
with the objectives of the project. 1In this chapter the peculiar structural
action of spine-beam construction is briefly described and existing
analytical methods leading to the present study,are reviewed. Basic

considerations and assumptions are established for further investigation.

In Chapter 2 a brief description of some special features related
to the bending analysis of thin-walled members is presented. Moreover, an
' analytical process based on the warping torsion theory is summarized and
supplementary formulae are developed. Following an ordinary folded plate
approach, the effect of cross-sectional deformation on single-spined box
beams subjected to torsion is investigated in Chapter 3. The method is
extended to curved beams and the interaction between bending, torsion and

distortion is discussed.

Based on the elastic theory described in Chapters 1 to 3, a complete
derivation of the one-dimensional finite element family is given in Chapter 4.
This provides the theoretical basis for the computer program described in

Appendix I.

The verification and applications of the present study are given
in Chapters 5 to 8. In Chapter 5, results from a few selected examples
are given, and in Chapter 8 an extensive series of model tests is
described. Chapter 6 further describes a finite element-grillage approach
which extends the method to the analysis of multi-box systems.

Applications to short span bridge structures such as the cellular



articulated bridge deck and to long span bridges such as the cable-stayed
bridge are presented in Chapters 6 and 7 respectively. In order to assess
accuracy, some of the examples and all of the tested models are calculated
by full three-dimensional finite element analysis using the LUSAS computer

program (79, 80).

Finally, in Chapter 9 the conclusions to which the present study
leads and proposals for future studies are given. In addition, to establish
the usefulness of the program CUBAS, its structure is briefly described in
Appendix I, and the format of the input data as well as a description of
the input parameters are included. Data input to a supplemental program
PFRAN for calculating the distortional sectional properties and sectional
property formulae for a trapezoidal single—cell box-section are presented

in Appendices II and III respectively.

1.2 Types of structural-action

In developing a simplified design method, it is necessary to know
that it does in fact give an adequate representation of the required
structural behaviour. Thus, it is worth indicating the range of types of
structural action possible before deriving the corresponding formulatioms.
In addition to assessing the load effects inherent in simple beam theory,
the following structural characteristics are shown to be peculiar to spine-
beam construction and may require special consideration under certain

circumstances:
1) Distortion or deformation of the cross-section due to torsional
¥
loading arises from transverse bending of the walls of the box beam, causing
a change of shape of the section. Resistance to distortion is provided

either by transverse diaphragms or by increasing the bending strength of

the walls of the box beam (see Fig. 1.3a).



2) Warping of the cross-section corresponds to out-of-plane or
axial displacements of points on the cross-section, causing plane sections
not to remain plane (see Fig. 1.3b). The longitudinal displacements caused
by torsion and distortion are termed torsional warping and distortional

warping respectively.

3) Shear lag is another form of warping resulting from shear
deformation in the planes of the flanges, and leads to a decrease away from

the webs, in the longitudinal bending stresses calculated by simple bending

theory.

4) Poisson's ratio effects are significant when transverse bending
stresses due to distortion of the cross-section can be of the same order as
the longitudinal stresses associated with longitudinal bending, torsional
‘and distortional warping. In such cases, the Poisson's ratio effect in
transverse bending can generate longitudinal bending.stresses in individual

component plates of the box Section which are by no means negligible.

5) Local effects in the slabs are induced by external loading

applied between the webs or on the side cantilever.

6) Transverse membrane stresses, which are constant through the

wall thickness, arise from differential shear stresses on cross-sections.

It is evident that a complex analysis will result if all the types
of ‘structural action in a box beam are considered. An approximate
analytical approach requires the structural actions to be simplified to an
acceptable degree of accuracy. Accordingly, the shear lag phenomenon can
be considered by adopting an 'effective breadth' conce;t, and the Poisson's

ratio effect is simulated by an empirical consideration based on

experimental investigations (83).



In accordance with the principles of the ordinary theory of
elasticity, the stresses arising from local bending may be calculated by
a one-way frame solution with consideration of the respective effective
lengths (see Fig. 1.4), independently of the global box beam analysis.
Alternatively the influence surfaces for plates (47, 46, 10l1) may be used.
Sawko and Mills (120) have proposed an analytical procedure for the
design of cantilever slabs of spine—beam bridges in which the slabs are
considered in.isolation. Numerical examples indicate how small the
transverse membrane stresses are. These stresses are constant through the
wall thickness, and are not considered in the present treatment nor are

they in the previous approaches given by other investigators (39, 42, 134,

135).

1.3 Review of analytical methods for thin-walled box spine-beam bridges

The analysis of box spine-beams has been a focus of attention for
many investigators in recent years, and various theories and analytical
methods have been developed. In this section a review of only the most

relevant approaches for the static analysis of box spine-beam bridges will

be described.

1.3.1 Analysis of box beams as thin-walled beams

In this method the actual thin-walled space structure is regarded as
a single beam. The first systematic study of the theory of thin-walled
beams was carried out by Vlasov (146).. In order to explain warping, Vlasov
divided a torsional moment into "pure' and 'flexural' components (152)
which correspond to the St. Venant shear stresses and torsional warping
shear stresses respectively. Vlasov introduced a new type of force termed

a '"bimoment' and defined additional functions of the properties of a section,



calling them the sectorial coordinate and the torsional warping moment

of ' inertia.

1

The analysis of such beams was later reformulated and generalized
by Benscoter (10), Kollbrunner, Basler and Hajden (56, 57, 58, 59), and
Heilig (42) for multicell boxes with arbitrary cross-—sectional shapes.
Dabrowski (22) has extended the theory to curved girders with thin-walled
cross-sections. He presented an extensive collection qf tables, together
with influence lines and diagrams of internal forces for curved, single-span,
two-span and three-span beams of constant section, arranged according to
stiffness parameters and angles of curvature. The straight beam was
treated as a limiting case and the tables are of use in the preliminary
analysis of curved bridges of steel, composite or reinforced concrete

construction.

In order to avoid the mathematical difficulties arising from solving
the differential equation, an analytiéal method for predicting the torsional
behaviour of thin-wailed continuous members subject to torsion was presented
by Khan and Tottenham (54). The method is based on a direct distribution
of bimoments in a manner analogous to that of the well-known moment

distribution method. The analysis is essentially a hand method which

produces values of redundant bimoments in a continuous structure.

Vlasov (146) drew the analogy between the differential equation
describing the response of a box beam to the distortional component of
the loading and that of a beam on an elastic foundation (BEF). Subseqdently,
Wright et al (150) and Billington (11) evolved the BEF method for
trapezoidal single Eei& boxes.” This method considers both the distortional
stiffness of the box walls and that of intermediate diaphragms or cross
bracing. The deformation of the cross-section of a box beam is analogous

to the deflection of a beam on an elastic foundation. Diaphragms in the



box beam, which prevent distortion but not warping, correspond to simple
unyielding supports for the beam and an end support condition, where

warping is prevented, is analogous to a built-in end support for the beam.

A diaphragm, which provides elastic restraint to distortion, is analogous

to an elastically yielding point support for a beam on an elastic foundation.
Non-dimensional curves are presented which provide the maximum distortional
stresses for boxes with regularly spaced interior diaphragms subjected to
concentrated loading at mid-panel or uniformly distribution loading. The
BEF method is also available for the analysis of box beams curved in plan

resulting from the work of Billington (11).

Wright (151) proposed a simple distribution method for both
multicell and multibox sections such that the distortional loading is found
for each cell which is then treated independently using the BEF method
‘for single cell boxes. This procedure has been shown to lead to very
conservative results in some cases. Billington (11) has further proposed
a grillage~BEF which forms the basis of a simplified method for the
analysis of multibox systems. The method is compared with finite element

analyses for a range of practical bridge structures.

Steinle (134, 135) derived the differential equation governing the
distortional behaviour of a rectangular single cell section box beam,
including the effect of shear deformation. The distortional stress
resultants are represented by the distortional mom;nt and the distortional
biﬁoment. Thus, the expressions for the distortional stresses are analogous
to those of warping torsiom theory. Dabrowski (21) investigated the
influence of shear deformation on the warping torsion of box beams with
deformable cross-sections. In his comprehensive treatment (22), derivation
of the differential equation for a trapezoidal single cell section box
beam curved in plan, subjected to distortional loading, and neglecting

the effect of shear deformation, was given. The equation includes additional
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terms representing distortional forces caused by longitudinal bending

moments,

More recently Kristek (62, 63) has provided an accurate elastic
solution based on a set of differential equations. The analysis of a box
girder with a deformable cross-section is carried out in two steps. The
first step includes the girder with an absolutely rigid cross-—section in
its own plane, and the second step covers the distortional effect of the
cross—section. The girder may have a variable cross-section (such as
variable height and thickness of webs), and the various parts of the
structure may be made of materials having different properties. The

static system may also be fairly complex (continuous beams, frameworks etc.).

Abdel-Samad et al (1) and recently Maisel (84) have extended the
generalized coordinate method developed by Vlasov (146) to account for
torsional, distortional and shear lag effects in straight, thin-walled,
box beams of uniform section. The position of an arbitrary point in the
middle plane of the walls is determined by a local rectangular system of
coordinates in which the z-axis and the beam axis are co—linear, the
n-axis is normal to the middle plane of the plate, and coordinate, S,
describes the distance on the middle plane from an initial generator.
According to the thin-walled beam theory developed by Vlasov (146), the
displacement components of a point.on the middle plane may be written as a

finite sum of products as follows
m .
u(z,S) = .21 Ui(z)¢i(S) (1.1)
1= .

In this decomposition the functions ¢, are the longitudinal generalized
coordinates, which are known and chosen in advance for each type of
cross-section, and the functions U;are unknown functions, which have to be
solved. The solution procedu}e presented for the generalized coordinate

method permits consideration of single cell or multicell sections with
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side cantilevers and arbitrary end and interior boundary conditions.

During the investigation of the analysis of truss bridges, Lie
(70, 71) has proposed a new approach as an extension of the theory of
thin-walled beams. A set of fourth order differential equations has been
established for the rectangular single cell section prismatic beam with
a vertical axis of symmetry, considering the interaction between bending,
torsion and distortion. In general, the solution indicates no centre of
twist for a cross—section with a deformable contour. The only exception
is the doubly-symmetric cross-section. The method has been extended by
Lie to a trapezoidal single cell section beam, in an unpublished

communication,

1.3.2 Analysis of box beams as folded plate structures

A box beam may be regarded as a spedial type of folded plate system
in that it is composed of an assembly of flat plate strips forming a
closed section. Methods of analyéis originally developed for folded plates
may thus be adapted for the analysis of box beams. In recent years much
research has been devoted to the analysis of folded plates and two main
methods have been established, these being the "Elasticity Method" and the

"Ordinary Method".

Of these two methods, the Elasticity Method, which was conceived
by Goldberg and Leve (36) for simply-supported prismatic shells, is the
more accurate and it has been applied to box beam analysis as a direct
stiffness approach by Scordelis (124, 125). More recently the method has
also been extended by Meyer and Scordelis (87, 88) to the analysis of

bridges curved in plan.

In this method, termed the "Folded Plate Method" by Scordelis, the

bending of each plate element normal to its piane is analysed by plate
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flexure theory, and its in-plane bending is amalysed by plane stress theory.
The external loads must be represented by Fourier Series. Although the
theory is exact, it is limited in that it can only be applied to box beams
with constant cross-sections and simply-supported ends. A combination of
the displacement (stiffness) method and a force (flexibility) method has
been extended by Scordelis to deal with the intermediate diaphragms and to
deal with girders spanning over intermediate supports, provi&ed that the'
extreme ends of such girders still remain simply-supported. In certain
cases difficulty can be experienced with concentrated loading conditions

because of the poor convergence of the harmonic series used in the analysis.

The Ordinary Method is an approximate technique which can be applied
in cases where the length/width ratio of the component plates exceeds 3.
Scordelis (126) has, in fact, successfully adapted the Ordinary Method,
which he termed the "Finite Segmental Method", to the analysis of single
span girders and continuous box girders. This method can be applied to
structures with arbitrary boundary conditions at the two ends, yet it is
restricted to the analysis of box girders containing uniform rectangular

plates under loads applied at the ridges only.

Johnson and Lee (52) developed the Ordinary Method for application
to the analysis of folded plates containing tapered elements, provided that
the taper is not excessive. Subsequently, the Nodal Section Method,
referring also to the Ordinary Method, was developed by Rockey and Evans
(169, 110) for the analysis of straight box girder bridges. It is assumed
in the Nodal Section Method that the bending action of each plate
perpendicular to its plane can be represented by considering a transverse
one-way slab strip, and the in-plane longitudinal bending action of an
individual plate is similar to that of a beam spanning between the end
diaphragms. The structure is then idealized by taking a number of

aribtrarily spaced nodal sections in the transverse direction, elastically
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supported by a system of interconnected plate beams which span longitudinally

between the supporting diaphragms. The Nodal Section Method can be used

for various support conditions, and can be applied to the analysis of
girders in which the geometry of the cross—section varies along the span.
Recently, Al-Rifaie and Evans (2, 3) have further extended the method to
enable it to deal with the analysis of single-cell, simply-supported, curved

girders.

1.3.3 Analysis of box beams using the finite element method

It is evident that the finite element method is the most powerful
and versatile tool for structural analysis, in which complex geometries
and difficult boundary conditions occur. Recent progress permits a full
three-dimensiénal analysis of a spine-beam bridge to be carried out. Plate
elements, flat shell or even semiloof ;hell elements are available for

use in the idealization of box structures.

v

According to the configuration of box spine—beam bridges, triangular,
rectangular‘or quadrilateral elements are usually used. The simplest
elements suitable for the analysis are triangular elements (85), although a
fine mesh division is necessary to obtain accurate results. The use of
rectangular finite elements has been discussed by Rockey and Evans (108)

and Zienkiewicz (154), and yields results of greater accuracy than those
obtained from the triangular elements. Both of these two types have at

each of the nodal points, two in-plane degrees of freedom u, v and three

out—of-plane degrees of freedom, w, 6y, 6y but not the in plane rotation 6z.
xs Uy P

* To achieve accurate results withheconomy it is advantageous to be
able to represent the beam action of the wall in the formulation. The
introduction of an additional in-plane rotation as a nodal variable has
thus been investigated by several authors. MacLeod (81) developed a

rectangular plane stress element with the two translations u, Vv, while the
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nodal rotation is taken alternatively as %E' and -~ %% around the
element, This element was used to analyse shear walls with openings.
Lim et al (75) developed a quadrilateral element with the nodal rotation
6, taken as v Sisodiya et al (129, 130) also developed an in-plane

ox °

. . v .
element with nodal variables u, v and I " Two element geometries were

formulated, a parallelogram and a quadrilateral. Moffat and Lim (94), and
Fam and Turkstra (33) have recently developed elements with u, v and g%

and €4 as nodal variables. These elements possess an accurate beam

response and can approximate the web beam action with a relatively coarse

mesh.

Scordelis (129, 125) used a rectangular in-plane element having
dov _ du ),

u, v and 6z as the degrees of freedom at each node, where 8z = }( 5% Ty
“and a rectangular plate bending element with w, 6x and 8y as the degrees
of freedom at each node. Sawko and Cope (118) used in-plane elements
alone to analyse multicell rectilinear box girder bridges. This method
does not account for out-of-plane, or bending, rotations at the nodes.

However, it can give fast solutions for bridges with narrow cells.

Lyons (80) has recently developed the ISOFLEX family of thin plate
flexure elements with a translation w and two rotations 68y = - g% and

9
= == as the "bending" nodal variables, and a family of extensional

O = 32
elements which includes nodal variables of u, v and 6; = g% . The

combination of these two types of elements has formed the extensional-flexural
elements or the so-called flat thin shell box elements (the ISOBOX elements,
Ref. 79 and Fig. 1.5). Variable thickness can be accommodated, and since

the elements are formulated in local element axes, directional material
properties can be defined.relative to the element orientation. The elements
are ﬁarticularly suitable for the analysis of shell boxes. Only a few high

aspect elements are required along the length of a structure and a single
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element over the depth of a weh provides accurate results even in the

vicinity of a support or a wheel load.

Irons (49) has developed a doubly curved shell element known as a
semiloof shell element, but for cellular structures the additional
computational expense associated with the double curvature would be
unwarranted since in general, cellular structures are an assemblage of

flat or almost flat plates.

In order to develop more accurate elements and reduce the computing
time for the analysis of straight and curved box girder bridges, Jirousek
et al (50) have presented a special macro—-element for practical applications.
The macro—-elements may be viewed as transverse slices of the bridge. Each
macro-element is formed using two types of special purpose elements: a
quified Ahmad's thick shell element and an assembly element. After the
assembly of the elements of the substructure has been completed, all
internal degrees of freedom are eliminated by the standard process of static
condensation. Thus only the deg;ees of freedom associated with nodes
appearing in the two transverse planes delimiting the slices are retained
for subsequent resolution in which each substructure is already viewed as
a single large element. The effect of preéttessing is properly taken

into account in the form of appropriate local loads considered at the

element level.

Although the conventional beam element has been extensively developed
with straight or curved shapes in three-dimensions (100, 51,92 , 95), it
is still characterized by an inability to represent distinctive features
with special reference to the anai}sis of box beams. Research effort has
been devoted by several investigators to extend the availability of one-

dimensional finite elements.

Krahula (60) and Krajeinovic (61) derived the stiffness matrix for
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a straight prismatic thin-walled element having an open section. In
addition to the two-component displacements £, n in the direction of the
principal axes x and y, and the angular displacements &', n’ and ¢ about
the x, vy and z directions respectively, the rate of the twisting angle

¢' was chosen so as to form another nodal variable corresponding to the
torsional warping. Similar elements with seven degrees of freedom at
each node,.{u, v, W, Ox, By, 6z, v} where v = ggz-, were proposed by
Chai Hong Yoo (14) to facilitate the stability analysis of thin-walled
assemblages. The generalized forces and displacements are shown in Fig. 1.5
and 1.6 referring to Refs. (61) and (14) respectively, in which the

normal force P; and the bending moments My and My are referred to as the
centre of gravity, while the torque Mz (T) and the transverse forces Qx and

Qy (V4 and Vy) are referred to the shear centre. The force corresponding

to the additional degree of freedom is the bimoment.

The shape functions for torsional behaviour, originally given by
Krahula and adopted by Krajeinovic and Chai Hong Yoo, were derived from
the exact solutions of the homogeneous equations. The shape functions

are in the form of hyperbolic functions:

1

Npg= D [(1 - chkf)chkz + shkishkz — kzshkf + (1 — chk® + kf&shkR)] ~

Ng7= ié;[(kzchkz - shkf)chkz + (chkf - 1 — k&shkf)shkz + kz(chkg - 1)

+ (shk2 — kgchk)]
1
Ngi3= 5’[(chkz - 1)chkz - shkfshkz + kzshkf + (1 - chkg)]
Npy= f% [(shkf - k&)chkz + (1 - chk2)shkz + k(chkf - 1)z + (k& - shk2)} |

where D = [k2shkf + z(1 - chk?)]

and k = J(GKT/EIG)

(1.2)
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Barsoum and Gallagher (8) used cubic polynomials in evaluating
the thin-walled beam stiffness matrix, whilst Ettouney and Kirby (27)

used quadratic expansions accounting for the restraining of warping.

Bazant and Nimeiri (9) and Zyl (156) have contributed a skew - ended
beam element for box beams curved or straight in space taking transverse
distortion and longitudinal warping into consideration. In conformity
with the method of separation of variables developed by Vlasov (146),
the box element used in this study has sixteen degrees of freedom. These
consist of the usual six degrees of freedom at each end, plus two new
degrees of freedom at each end. These latter two are the transverse
distortion mode and the longitudinal warping mode. The forces associated
with these two displacements are the longitudinal bimoments (59, 42) and
" the transverse bimoments (62). The basic distribution of unknown displacement
within the finite element are approximated by linear and quadratic forms.

The cross-section can consist of a single cell with sloping webs and
‘cantilevers and may be variable in depth and width along the span. Shear

lag effects are neglected in the analysis.

Mikkolo and Paavola (90) have presented a somewhat similar approach
for the analysis of a rectangular single-cell box girder with side
cantilevers. Interpolar or shape functions are represented by cubic
polynomials in each element as is commonly done in the finite element
solution of beam problems. It is observed that the known displacement
functions describing the deformation modes of the cross—section must be
chosen in advance for each type of cross-section. Thus, difficulties
exist in extending the method for more complicated or more general types

of cross—-section.

Lie (71) has presented a single cell straight beam element to

investigate the bending-torsional vibration, and the stability and stress



18

of truss bridges. The hending-torsional displacemeufs in the cross-
sectional plane are expressed in terms of the lateral and vertical
translations u(z) and v(z) of the "centre of the rigidities of shear”

of the box section and the rotations $(z) and Y(z) of the vertical and
horizontal sides of the cross-section about the x and y axes respectively
as shown in Fig. 1.8. In addition the continuity of the first
derivatives of these displacements must also be maintained. As a result
the degrees of freedom at each no&e are {u, u', v, v', ¢, ¢', ¥, ¥’}

All the displacement functions of the element are taken in the form of

cubic parabolas.

1.3.4 Some other methods of box beam analysis

Apart from the foregoing methods suitable for the analysis of box

beams, there exist other approaches which will be described briefly here.

1.3.4.1 Finite strip method

The finite strip method was developed by Cheung (16) as a hybrid
of the finite element procedure, and was extended to the analysis of
curved box beams. The method was also used by Scordelis and Meyer (87, 88)
for the analysis of both curved folded plate structures and curved box
beams. Loo and Cusens (77, 78) used a fifth order displacement interpolation

function to formulate a refined finite strip solution.

The finite strip analysis is based on the principle of dividing
the structure into a series of strips simply supported at their ends by
diaphragms, These diaphragms are considered to be infinitely rigid in
their own plane but perfectly flexible normal to their own plane. The
finite strips are assembled transversely by using finite element techniques,

yet the displacement components are in the form of Fourier series
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longitudinally, and the external loads are also resolved into the same

Fourier series for the corresponding displacement components.

The finite strip method has gained acceptance and is currently
being used in practical design for the reduction of computational costs.
However, due to the use of orthogonal functions the method is restricted

to the analysis of simply supported box beam bridges.

1.3.4.2 Space frame and grillage analyses for box beams

Many standard programs are already available for space frame and
grillage analyses. The box beam can be idealized as a space frame
using beam elements in three dimensions (Fig. 1.9). This method, as in
the finite element method, needs a considerable amount of computer time
and a multitude of input data. It does not, however, require the
development of new programs nor detailed knowledge concerning the
peculiarities of the behaviour of box beams, and can be used in the cases

of variable cross-sections and arbitrary groundplams.

Some authors have also presented a grillage approach as an
approximate process for the analysis of box beams. Lightfoot and Sawko
(72, 73, 113) were among the first to utilize computers in the analysis
of grillages related to structures such as slabs, beams and floors.
Goldstein et al (37) and Sawko and Willcock (114) developed grillage
analyses for bridge decks having varying sectional properties. The
grillage approach was also successfully employed for the analysis of
composite box girder bridges by Sawko and Mosley (121). Sawko (115)
has "also presented work on grillages consisting of members curved in plan
and interconnected by transverse diaphragms. West (148) has presented
recommendations for the grillage analysis of slab and pseudo-slab bridge

decks.
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Hambly and Pennells (41) have used grillage idealization to
analyse cellular bridge decks such as multi-cell boxes with vertical and
sloping webs and voided slabs. Detailed guidelines about the grillage
mesh and the evaluation of stiffness parameters, which lead to a
satisfactory representation of the structural behaviour of box beams,
were given by the authors. Some guidance was also given on the
interpretation of results for design calculations. Evansand Shanmugam
(30) proposed a somewhat similar grillage apfroach for the analysis of

cellular structures.

One of the merits of the grillage approach is that the structural
behaviour of grids is more readily understood by bridge engineers and
many accessible computer programs are available. It is, however, a coarse
approximation of the true structure, and does not exactly express the

peculiarities of the behaviour of spine-beams.

1.3.4.3 Twisting analysis by the displacement method given by Richmond

Richmond (103) developed a method,. termed the equivalent beam
method by Maisel (83), which represents an approximate solution. This is
suitable for rapid design with reference to distortional effects., A
displacement solution for rectangular boxes with concentrated diaphragms
was also proposed. The box beam was thought of as a series of bays
between the diaphragms. The equilibrium conditions for an elementary
section of box surrounding a diaphragm were formulated in terms of the
displacements at the adjacent diaphragms, leading to a set of simulténeous

equations when applied to each diaphragm.

Dalton and Richmond (23) extended the displacement method to

include trapezoidal cross-sections, and the method was limited to boxes

.

of constant depth and width, with a vertical axis of symmetry. Richmond
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(104) also derived the more general differential equation for trapezoidal

boxes with continuous diaphragms subjected to both torsional and
distortional components of loading. He described its solution for
simplified boundary conditions and loading. Furthermore, Richmond (105)
introduced the matrix difference solution as a general numerical method

for a box beam with discrete diaphragms.

As a result of the above literature survey, it can be seen that an
analytical approach, which combines the finite element technique and the
thin-walled beam theory, is appropriate for the design of box spine-beam
bridges especially for medium and long spans. Incomplete attempts in
this direction by previous researchers are developed and extended in this
thesis to a relevant form, which results in low computing costs and ease of

usage, whilst retaining an acceptable degree of accuracy and versatility.

1.4 Coordinate systems and sign conventions

v

In this section an attempt is made to specify the coordinate
systems and the main sign conventions. In order to perform reliable
calculations it is necessary to derive the formulae throughout the thesis
in a form consistent with accepted axes and sign conventions. For enjhasis
some of the specifications 1i$ted here will be repeated at appropriate

positions in the following chapters.

All the structures considered are located in a Cartesian orthogonal
coordinate system XYZ, which is termed the general coordinate system. For
the analysis of bridge structures it is convenient to assume that the Y

x

axis is normal to the horizontal and is taken as positive downwards. The

loads and deflections due to gravity are then both positive quantities.

Two local coordinate systems are adopted in the formulation: the

right-handed orthogonal system of coordinates xyz (Fig. 1.10), and the
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curvilinear system S directed around the box cross-section (Fig. 1.11).

It is obvious that the stress resultants follow the same sign rules.
The positive directions of the internal stress resultants acting on a
positive cross-sectional face and of the applied loading are shown in
Fig. 1.14. The shear forces Qy and Qy and the axial force N3 are positive
when in the positive directions of the X, y and z axes respectively.
The bending moments My and My and the torsional moment My are positive
when their right-hand corkscrew vectors are in the positive directions
of the x, y and z axes respectively. However, the distortional moment My
is positive when in the negative sense of the twisting angle of 63.
In this thesis, the convention of Fig. 1.15 will be used to represent a
positive bimoment. It will be noted in Fig. 1.14 that the positive
directions of the externally applied loads acting on the beam elements shown,
afe the same as those of the resistive stress-resultants acting on the

positive face of the cross-section shown.

1.5 Basic assumptions and fundamental equations of elasticity

The usual assumptions associated with linear elastic small
displacement theory have been adopted, which can be generally statcd as
being that the structural material is homogeneous, isotropic and linearly
elastic, and that the actual deformations are small compared with the

structural dimensions.

Since this thesis is concerned mainly with the analysis of thin-walled
box spine-beams, the definition of a thin-walled beam can be referred to
the criteria given by Vlasov (146), Dabrowski (22), Kollbrunner and Basler
(56), which have been summarized by Maisel (83). Note that the criteria
are sometimes not strictly satisfied in practical bridge structures, but

thin-walled theory has nevertheless been used for them. Additional
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assumptions, which are mainly related to thin-walled structural behaviour,

have been considered in this approach, and are as follows:

(i) The dimensions of the cross—sections are significantly less
than the span lengths and less than the radii of curvature in the case of
curved members. The length/width ratio of the component plate should

normally exceed 3(29, 22).

(ii) The thicknesses of the walls are small compafed with the

dimensions of the cross—section.

(iii) Diaphragms are considered to be infinitely or finitely stiff
in their own plane, but perfectly flexible in the direction normal to the

plane.

(iv) Plane sections remain plane during pure bending deformation,
but not necessarily normal to the beam axis, thus allowing for shear

deformation.

(v) For warping torsion analysis, cross-sections are assumed to
remain undeformed in their own plane, but may rotate about the flexural

axis (locus of the shear centres) and be subject to longitudinal warping.

(vi) The in-plane longitudinal bending action of an individual
component plate is analysed using elementary beam theory, and the shear

deformation caused by distortion is neglected.

(vii) Transverse membrane strains and longitudinal bending strainms
of an individual plate are assumed to be zero. The bending action of the
¥

individual plate normal to its plane is represented by the flexural behaviour

of an equivalent transverse frame,

Assumption (i) is an essential condition for the applicability of

structural analysis by beam-type members and for the following assumptionms.



24

A differential element of side ds x dz and thickness t cut from the wall
is shown in Fig. 1.16. 1In accordance with assumption (ii) concerning the
small thickness of the wall, the direct and shear stresses normal to the
plate surface, and the resistive torsional moments of the plate may be
neglected. The stress system on the differential element is, therefore,
specified by plane stresses O35 Og and Ty5, and out-of-plane bending

moments LSS and my .

The equilibrium of the element in the z and S directions

respectively may be expressed, neglecting body forces, as follows:

3q + t 305 = 0 (1.3)
ds 9z

and
_8_1 + t 30'5 = 0 (1-4)
oz ds

The displacement of a point on the wall can be represented by three
components: two in-plane components u; and v,, and an axial component wy.
The three displacement components Ups Yy and w3 compose a right-handed

orthogonal system which is shown in Fig. 1.17.

The strain components are expressed in terms of the displacements

by the following equations

_ow
53 - 3;1' . (1.5)
Ju
e = t + _V_n_ (1-6)
s ds Rp
and Y. = ¥, 331 + EEL (1.7)
s 3 as 9z :

where €3 and eg are direct strains along the z axis and are tangential to
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. . 1
is the shear strain, and 75—

the mid-line of the wall respectively. R
n

Y35
is the curvature of the wall. It is obvious that for a straight wall

the curvature equals zero.

Hooke's law is expressed by the following equation,

031 [ 1 v 0 €3
E
Q05 p = -I—:—;; v 1 0} 4 Eg L (1.8)
T3g 0] 0] v Y.
L 3 2 3s

where E is Young's modulus of elasticity and v is Poisson's ratio.

The position of the x-y-z origin is taken to coincide with the
centroid of the cross-section. The z axis is orientated along the longitudinal
direction of the beam, and the x and y axes coincide with the principal axes
of the cross-section, in which the y axis is fixed as the vertical axis of
symmetry. The curvilinear coordinate S is taken as positive in the

anticlockwise direction, as shown in Fig. 1.11, which also indicates the

position of the origin for S.

For the sake of consistency we further specify the sign of the face
of a cross—-section. A positive cross-sectional face is one whose external
normal points in the positive direction of the z axis. A negative cross-
sectional face is one whose external normal points in the negative direction
of the z axis. All the calculations in this thesis are referred to the

positive faces of the cross—sections.

Displacement components-of a point on the cross-section in the
directions of the x, y and z axes are taken as positive when they lie in the
positive directions of these axes. They are denoted by uy, vy and wy

respectively, as shown in Fig. 1.12. Rotations 8x and 6y and the twisting
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angle 63 are also shown, and are positive when the corresponding
right-hand corkscrew vectors are in the positive directions of the x, y
and z axes respectively. The positive directions of distortionmal

displacements are given by Fig. 1.13 under torsional loading.

Resistive stresses caused by applied external loading exist in the
structural members. For a positive cross—sectional face, a normal stress
component is to be regarded as positive if it acts in the positive direction
of an axis; otherwise it is negative. For a negative cross-sectional
face, a stress component acting in the negative direction of an axis is
positive. Shear stresses acting on a cross—section and in the positive
direction of the curvilinear coordinate are positive, otherwise they are
negative. As an exception, the shear stresses acting upwards in the interior
walls separating neighbouring cells are negative, and are positive when
acéing downwards. The global transverse bending stressed due to distortion
are associated with deformed shapes of cross-section as shown in Fig. 1.13.
In this thesis, such stresses will be plotted in diagrams, where ordinates
are drawn on the tension face, thus obviating the need for signs in

these diagrams.

According to assumption (vii) and ignoring the effect of transverse
membrane stresses due to their insignificance, we can obtain the relation

between stresses and strains, which will be used throughout this thesis,

5 T H% (1.9)
Tys = GY;s

where s
Eq = E/1 -V (1.10)

is called the conversion modulus of elasticity, and




27

is the shear modulus.

Assumption (vii) also jmplies that the longitudinal bending moment
of the plate per unit width can he approximated by multiplying the

corresponding transverse bending moment per unit length by Poisson's ratio,

Dy = Vigp (1.12)

A compatibility condition often used in this approach, which indicates
the continuity of axial displacements, is expressed by the following
equation,

aw3
§. 3 4as = o (1.13)
I 3s
where, the subscript i indicates that the line integration is carried

around the ith cell. The equation must be satisfied for each cell of

the box section.

Finally, it should be pointed out that all measurements in this
thesis are based on SI (International System) units, i.e., the units for
length are metres or millimetres, and for force are newtons or kilonewtons.
All the .values adopted from other references,which were in other unit
systems, will remain in their previous form. However, converted values

(to SI units) will be listed as well.
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Fig. 1.2 Typical cross-sections for spine-beam bridges

(b) Warping of cross-section (c) Shear lag in
bending

1) Distortion or
deformation of
cross—-section

- Fig. 1.3 Types of structural action which may require special
consideration in box beam bridges
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Fig. 1.4 1Independent frame solution of the cross-section

Y, & 6 3 Nodal variables:
fu]l [ u]
3 X
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v
- X:UI ex \ ez Lﬁ-

8j = {Au} for midside nodes along
edge directions

Z,W,0z

Fig. 1.5 Flat thin shell box elements in three-dimensions
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Fig. 1.6 Generalized forces and displacements. (a) transverse forces and
bending moments; (b) torsion moments and bimoments; (c) moment

and bimoment.
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Generalized forces and displacements
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b/2

b/2

Fig. 1.8 Displacements in the box section plane

Fig. 1.9 Half-span of Jesmond Dene Bridge showing space frame

ideatlization
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Fig. 1.10 Coordinate axes x, y and z

rigin for curvilinear coordinate S
0T ; I
X

o ——1i H
il [| SN

| R |

Fig. 1.11 Curvilinear coordinate S, showing origin and positive directiouns

" Fig. 1.13 Positive directions of distortional displacement for twisting
loading on the cross-section
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Fig. 1.14 Positive directions of internal stress-resultants and
external loading

(a) Warping force group (b) Positive bimoment

-~

Fig. 1.15 Warping force group and bimoment
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Fig. 1.16 Stress system on a differential element



Fig. 1.17 Elementary frame showing displacement components
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CHAPTER 2

BENDING AND TORSION OF THIN-WALLED MEMBERS

2.1 Introduction

The bending analysis of thin-walled members presents no more
conceptual difficulties than those encountered in the investigation of the
bending of solid-section beams. However, the distribution and the method of
evaluation of the stress components, for example the evaluation of the shear
stresses and of the position of the shear centre of the section, are different
in the two analyses in some essential features. Moreover, in thin-walled
members, the in-plane shear deformation of the flange plates may have a
considerable influence on the distribution of longitudinal stresses within the
flanges. This phenomenon, often termed shear lag, results in the deflections
and the longitudinal stresses at the web-flange intersections of the section
being greater than those given by the elementary theory of bending. For the
sake of convenience, it is preferable in this chapter to present a brief

description of some special features related to the bending analysis of

thin-walled members.

In addition to bending action, bridge substructures are usually
subjected to torsional loads arising from the eccentricity of loading and/or
the in plan curvature of the bridge deck. The basic assumption in the
development of the torsional theory of thin-walled sections is that of plane
deformation being analogous to the pure bending case. It states that the
cross-section as a whole may rotate, but that the form of the cross-sectional
projection is not changed from its original shape. This assumption is valid
only when the beam has a sufficient transverse stiffening system along its

length.

The torsional shear deformation gives rise, in general, to non-planar

longitudinal displacements which we call warping of the cross-section. In
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pure torsion, only shear stresses exist and the longitudinal warping
displacements are constant along the member, i.e., the rate of twist along

the length of the member remains constant. In fact, axial restraints to

warping always exist due to the variation of the section stiffness, and due to

some support conditions or even non-uniformity of applied twisting moments
along the span. As a result, additional direct stresses and associated shear
stresses arise in the sections. This is called the axial constraint or
warping stress system. In this sense this torsional phenomenon is termed

specifically 'warping torsion' to be distinguished from 'pure torsion’.
1]

- i

The warping torsion theory of open and closed section members
proposed and developed by Vlasov (146), Benscoter (10), Heileg (42),
Kollbrunner and Hajden (57,58,59), Dabrowski (22) and Kristek (62) makes
possible the solution of the warping torsion problem within acceptable
accuracy. Accordingly, another main objective of this chapter is to
summarize these amnalytical processes and to develop supplementary formulae
whereby shear flows and warping forces in open and closed section bridge
girders with a vertical axis of symmetry can be incorporated in the further

development of the stiffness analysis presented in this thesis.

2.2 Direct and shear stress distribution due to bending

The derived procedure relating to the formulae for the evaluation of
the normal bending stresses will not be stated here, and only the final
expressions will be listed, since they are all well known. It is supposed
that the origin of the x and y axes coincide. with the centroid G of the
cross—sectioﬁ. The neutral axis passes through the centroid of the cross-
section and is inclined at some angle a to the x axis where a is considered
to be positive in é clockwise sense. The normal stress at any point in the
cross-section is expressed as,

o, p= ¢ MyDIxx = MxIxy g oo, MxIyy+ MyIxy § o (2.1)

3.b

Iulyy~ Ixy Inx Iyy = Ixy

¥
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where My and My are the internal bending moments about x and y axes
respectively. The definition of the sectional properties in the above

expression is given by

fA yz dAs

Iyx

Iyy fa x? dA, (2.2)
Ixy = J, xy dA,

which are the moments of inertia about the x and y axes and the product of

inertia respectively.

Eq. 2.1 is usually written in the more convenient form:

03b=£}"£y.x (203)
oI Iyy
where
ﬁx Mx + Mnyy/Iyy and ﬁy _ My+ MxIxy/Ixx (2.4)
1 -I;y/Ixnyy 1 - I;y/Ixnyy

Since the y axis is fixed as an axis of symmetry in the present

approach, then Ixy is zero and Gxy are principal axes. Eqs. 2.4 then reduces

to

My = My and ﬁy = My, (2.5)

and Eq. 2.3 becomes

M
o b=_MLy—_Y_.x (2.6)
3 Ixx Iyy .

The shear flow and direct stresses acting on an element of the wall

are related by Eq. 1.3, i.e.,

¥

s , . 3% . 2.7
9s 0z .

Differentiating Eq. 2.6 once, we have

803b - 3MX. —y— - aMy ) X . (2.8)

dz 0z Ixx 9z E;;
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0 g . e e aMx aMy .
From the equilibrium condition —= = Qy and 5——-= -Qx we can write
9z z
80'3)|J = Qy _y__ + QX .}_{__. (2.9)
Substitution of Eq. 2.9 into Eq. 2.7 gives
3
S8 - - Ell_. t-y - ELE_. tex , (2.10a)
as Ixx Lyy
or
%95 . _ Quetex - Qu-t- (2.10b)
55 Qy-t-x Qy ty |,
where
= X, qu=d (2.11)

Lyy Ixx :

For an open cross-section we may choose to make the open edge,
where the shear stress must be zero, coincide with the origin of
curvilinear coordinates S. Integrating Eq. 2.10(b) with respect to S from

the origin for S to any point round the cross-section, we obtain,

qs - axf:thS = 5yf:tyd5 = - axsy" f_lny (2.12)

1]

where Sy fgtde, and~Sy = fgtxds, (2.13)

are the first moments of area of the partial cross-section with respect to

the x and y axes respectively.

In contradistinction to the case of the open section the mathematical
difficulty in integration is attributable to the fact that the constants
of integration are unknown. Compatbility conditions of deformation mugt

then be introduced, since the problem is statically indetermindte.

For a single-spined box beam with n cells, there are n unknown

constant shear flows, i.e., the degree of static indeterminacy is increased
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by 1 with the addition of each closed cell. To resolve éhis difficulty,

the section is imagined as cut open at n reference points, one in each cell,
in order to convert the multi-cell beam into a single shear loaded open
section beam. While the basic or open section shear flow q, in the
resulting open section can be determined by the use of Eq. 2.12, contiguous
points on either side of the imaginary opening at the ith cell will be free
to move relative to each other. This relative motion cannot take place in
the actual closed section, since the continuity of deformation of the
section would then be broken at cut point i. The presence of the statically
indeterminate shear-flow q, at this point of the closed section ensures that
the contiguous points do not undergo any relative motion and, thus, the
continuity of the deformation is maintained. Once the distribution of shear
Flow (qb) in the imaginary open section is determined, a redundant shear flow
(qq) of uniform intensity throughout individual cells can be superposed on
it to obtain the actual shear flow (qs) in the closed section. Thus, the

formal expression for the shear flow developed in cell i is

v

ds,i = 90,i * 9p.i (2.14)

L 2

where q, ; is the constant shear flow at the ith cut required to close the
gap, and qp is the shear flow at any point in cell i which is given by

Eq. 2.12.

The ith

cell of the multi-cell section is shown in Fig. 2.1. The
shear forces Qyx and Qy are assumed to act through the shear centre (see
section 2.7). The curvilinear coordinates Sy, S7,...., and Sy of cells

1, 2,...., and n, respectively, are chosen to be positive in the anticlock-
wise direction, as shown in Fig. Z.i. The shear flows in the same direction .

are also positive,‘except in the webs where the downward flows are defined

as positive.

The total complementary potential energy per unit length of the member
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due to bending is
2
“c‘&’ dA+fTSdA
2E4 2G
2

- I, 9fb ga + z fm Mds S N Do i~ g1 ) gs
2E4 2Gt ! 2Gt

(2.15)

By the use of the principle of minimum complementary potential energy, which
states that Il must be a minimum with respect to each of the statically

indeterminate shear flow d,i» it follows that

am,

=0 (2.16)
39,

Thus, a set of simultaneous equations may be written in the form

dsy _ dSy 4 § db,1 dsy =
Qs §— 7 Qo2 la = §1—t'— 10
dSZ dsz ds; Qb2
“qq,4 ha— oz§ 90,3723 . + f c dS; =0 (2.17)
dSp dSn dp,n =
“9o,n-1 fn-1,n —0 onf ¥ §n < dSp =0

where use has been made of the fact that, in the common wall of the cross-—

section, qp; = ~qp,i+1 and dSj = =dSjs .
Eqs. 2.17 can be written in matrix form as
[f]{qo} = {Dq} (2.18)

The elements of the flexibility matrix [f] are called flexibility
influence coefficients which are the displacements due to the unit values of
the redundants. Therefore, [f] depends only on the properties of the

structure, and represents the flexibility of the released structure. The
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flexibility influence coefficients can be expressed as

fik = - ka %? Integral along the common wall
between cell i and cell k
(2.19)
£ij = §i %? Contour integral along the

circumference of cell i

The vector {Dq} is the displacement vector in the released structure

due to the shear flows q,. It is expressed as

{Dg} =1Dq1 , Dq,25 eeverevses Dq,n]T (2.20)
in which
D = - §, bl ds
= - ds , = - ds
= Qx §i ay,i & * Qy §i dyi & (2.21)

and where

‘_lxi

- fsi EXdS- = =Syji
o [ Y. (2.22)

= _ _ gsi - el
dy,i ]y tydsj Sx,i

The elements of the vector {q,} are the redundant flows which can be

obtained by solving Eq. 2.18

{a,} = [£17 {pq} (2.23)

Although the positions of the cuts can be arbitrary from a theoretical
poigt of view, their positions are quite importaﬁt from a numerical point of
view. In order to avoid an ill-conditioned system of equations, the cuts
are preferably located near the centres of either the upper or lower walls
of the cells. Generally, at these pointé, the final shear flows differ
only slightly from those of the determinate structure. The' resulting

equations of consistent deformation are, therefore, well conditioned.
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Let us suppose thg multi-cell cross-section, with side cantilevers
shown in Fig. 2.2, possesses n cells with two flanges parallel to the local
x axis and n+l webs which are not necessarily vertical to the flanges.

The resultant shear force acts through the shear centre. The values of open

section flow (ax) due to unit shear force (.25 =1 ) are expressed as

Yy

follows,

(‘_lx)1,1 = (ax)n+1,n+2 = bete (x5~ §be) = 4 b (by+ be) ¢t

(@)iis1 == 4 byj g (xi* xjyq+ Bg'—i ) (i=1,2,....,n)
(ax)m,m = § btitt,i (Xj+ Xjuq~ %!l ) ’ (i=1,2,....,n)
(‘_lx)i,n+i+z = (ax)i,in - (Ex)i,i (i=1,2,....,n+l)
(ax)nn¢2,nq,2 = (ax)hnq,z -h(J(xi+ %hcjcosai)thﬁ (i=1,2,....,n+1) (2.24)
(c-lx)n+3,2n+l. = (ax)nd,nd

@dneis2,2neis2 = @dnsint, 2nsis27bb,ict Fnaiag ™3P 1)t 5y (1=2,3,...0,0)
(00402, 200143 = @dnein,2meina * Qdneisz,neis2 (i-2,3,...-,n)
(qx)2n+3,3n+3 = (qx)2n+3,2n+3

v
—

where cosa; is the direction cosine between the vector i, n+i+2 and the

n
X axis, and bt = % bti = X{~ Xpey

The following expression is also available for checking the

result,
(4%)2n43,3043 = ~(9x)2n432n43 = (%) 2n42,3043 ~bp,n (K2nap —~ibppdthn  (2.25)

The following expressions relate to the calcylation of open section

flow (ay) due to unit shear force ( %l_ = 1),

XX
(ay)1‘1 = ‘(C_ly)n+|‘n+2 =-bctcys

(f_ly)i,m = 0.5 btj- tt,i Ve (i=1,2,....,n)
(Qydist,ist =0-5 by it ¥g (i=1,2,....,n)

@plineis2 = Q@yiist —@@ydii (i=1,2,....,0+1)
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@ydm,neisz = (@y)i,neis2 = HRcivtn,i (ih = ¥6) (i=1,2,....,n+1)
(;ly)n+i+2,n+io2 = (ay)i,n+i+2 = ht,i'th,i (3h - yg) (i=1,2,....,0+1)
@y ne3 net = (ay)ns3,n3 (2.26)
(ay)nd+21nn+2= (ay)nd+L2nd+2 - bbj-ftbj-1(h'yg) (i=2,3,....,0)
(ay)nﬂ+22n+ha= (ay)nﬂ+12nﬂ+2 + (Ey)noh},nd+2 (i=2,3,....,n)

(4y)2043,3ns3 = ~(dy)2ne3,2043
To check the result the following expression can be used,

(C_ly)zn+3,3n+3 = '(ay)2n+3,2n+3 = (qy)2n+2,3n+3 - bb,n' tb,n (h - YG) (2.27)

where y. is the vertical ordinate of the centroid from the top flange, and
the subscripts in Eqs. 2.24 to 2.27 represent the node number and the plate
number successively which identify the points considered, while the

* subscript 'm' represents the mid-point of the individual plate considered.

Once the distributions of ax and Ey have been determined the
displécement vector Dq may be obtained. For the sake of convenience we let
ax = Qx/Iyy = 1 and ay’= Qy/Ixx = 1, and separate the displacement vector

as the sum of the two vectors,

{Dg} = {Dgx} + {Dgy} (2.28)
where

= - ds

Dgx,i = §i Ax,i Tt (2.29a)

= - ds

Dgy,i =§, ayi T (2.29b)

Substitution of Eqs. 2.24 and 2.26 into Eq. 2,34 followed by

integration gives

3
- ,=_bti - .
Dgx,i _EZ— + [(qx)Ln;hz— ithj'hcj (xi‘*%lchosai)] Bii_

th,i

- [(q.): . 1 .
[(qx)lol,nolﬁ = ith,idhc,i»‘l (%41~ Fhejagcosaj,q )] he i

ty .
h,isl



+ [(qx)nH+L2wﬂ+3 =4 byt tpi (Xpajs2

(i=1’2,.o .o,n)

and,
D a h _y,
Dgy,i [(ay)i,neie2 “he,ittp i ( ria .__26 )1

_ _ ] ch _Ye
- [(qy)i’1,n+i“’3 hc.i+1 th,i+1 ( g —2_)]

+

(i=1,2,....,0)

he j
th,i

hC,i+1
this

- .
[@y)neisz,2nsis3 = $bpi tp (b = 7)1 B

th,i
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1 by .
- §bb,i)] b,i
th,i

(2.30a)

(2.30b)

After solving the n linearly-independent equations of consistent

deformation, we may obtain the n corrective flows at the hypothetical cuts.

‘The final shear flow can be interpreted as the algebraic sum of the shear

flows 9 in the open section and n corrective, constant shear flows q,

applied independently in each cell.

shear flows can be expressed as:

(5,5 )i,i = Qq [(ay)j,i *+ (Ax,o)i-1!]

(g dijist = Q [@@diing + (ax,q)ist]

(g,x dineisz = O [@x)i pain2 = @y 0)i-t + (Ax,q)i]
(q,x )n+i+2,n+i+2= 6x [(ax)n+i+2,n+i+2 "(ax,o i-1 * (ax.o)i]
@ Imisz,mioz™ U [ @neisz,aneies + @x 0
)

n+i+3,2n++3 * (q)(.t))il

(ag,x )n+i+3,2n+i+3= ax [(ax
and,

(ag,y i = Qy U@y *+ @y 0051

(ag,y Niat = QyL(aydijiar *+ (dy,odist!]

W,y Dipmicg = Q[ @ylipsisz = @yodi-t * (@y0)il
(s,y dm,misz = Qy [(@ydmpeisz = (Qy,0di-1 + (dy,0)i

(@5,y Ineiszneisz = Qy [@ydnsiszmeioz = (@y,0)i-1+ (@y,0)il
(25,9 Ineisg,2neis3= Qy [@ydnaisz,2mie3 + (@y,0)i!

@5,y drisd 2mies= Qy aydmisa2misat (y,0);)

(i=1,2,....,n)
(i=1,2,....,n)
(i=1,2,....,n)
(i=1,2,....,n)
(i=1,2,....,n)

(i=1,2,....,n)

(i=1,2,....,n)
(i=1.2,,...,n)
(i=1,2,....,n)
(i=1,2,....,n)
(i=1,2,....,n)
(i=1,2,....,n)

(i=1,2,....,n)

The formulae for calculating the actual

(2.31)

(2.32)

~
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in which,
(dy,0)0 = (dy,0)ne1 = (dy,0)0 = (ay,o)nd =0,

Ex o, and ay o are the redundant shear flows due to the shear forces
) )

Qy =1 and 6y = 1 respectively.

The resultant shear flows in the cross-section are given by

'superposition as follows:

95 = 49s,x * ds,y > (2.33a)
and the shear stresses in longitudinal loading
Ts = qg/t (2.33b)

2.3 Effects of shear lag

.

The planar assumption in the elementary theory of bending is invalid
in the case of thin-walled structures owing to the action of in-plane shear
strains in the flanges. Direct stresses are therefore redistributed in the
flanges with the pe;k values, at the web-flange intersections, being
greater than the stresses given by the elementary theory of bending. As
explained previously this phenomenon is known as shear lag, and is indicated

in Fig. 2.3. The action of shear strains in the flanges also results in the

deflections obtained, using the elementary theory, being underestimated.

The prediction of the shear lag effect has been reported in many
papers, such as the bar simulation method proposed by Evans and Taherian.
(31,138,32). The most convenient treatment associated with the present
approach is the concept of an effective breadth of each flange to replace
the actual breadth bi{to give the correct values of the maximum longitudinal
stresses and of the deflections. The effective breadth can be written as

(Fig. 2.3):

fb; O3.b ds , (2 34)
o8] sotivz .

be,i



47

and the effective breadth ratio which is the ratio of the effective breadth

of each flange to its actual breadth, as:

o = Dei (2.35)

Moffat and Dowling (93) initiated a parametric study of the effective
breadth ratio by the finite element method using the rectangular third order
extensional-flexural element. The results were incorporated in the Merrison
design rules (18) and in the present British Standard BS 5400 (13). It was
found by Moffatt and Dowling that the effective breadth factors can be
treated in the design rules as independent of the cross—sectional shape.

The total effective breadth of a flange associated with each web should be
taken as the sum of the effective breadths of the portions of flange
‘considered separately on each side of that web. Thus, the effective breadth
of each portion shall be taken as weibi or 0.85 Yocb for parts between webs

or for parts projecting beyond an outer web respectively (Fig. 2.4).

’

The most significant parameter influencing the effective breadth of a
flange is the breadth of each portion to length ratio (bj;/2L). The importance
of this parameter can be seen from Table 2.1, which gives effective breadth
ratios at the mid-span, quarter—span, and support sections for different
support conditions. Moffat and Dowling have devised effective breadth ratios
for simply-supported, cantilevered, propped-cantilevered and fixed-ended
box beams shown in Table 2.1 (93,18,13). 1In the case of an intermal span of
a coﬂtinuous girder, the values of Y, given for the fixed ended beams should
be used and, for end spans of continuous beams the values of Ve given for
the propped - cantilevered beams should be used. When adjacent spans, are of
unequal length, the value of Y, at the intermediate support may be taken as
the mean of the values obtained at the support for each span considered

separately,
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In order to account for the effect of the orthotropy of a steel
flange the stiffening factor a, which is defined as the ratio of the
cross-sectional area of the longitudinal stiffeners to the cross—sectional
area of the associated flange plate within a breadth b;, is also included
in the tables. Table 2.1 provides effective breadth ratios for flanges
having stiffening factors of O and 1, and it is recommended that other

values should be obtained by linear interpolation or extrapolation.

Since the present stiffness analysis approach is able to assemble the
stiffness matrix for varying sectional properties, the effective breadth
ratio can be evaluated at each nodal section, in order to account for the
fact that the effective bgeadth ratio varies along the span. The shear lag
rules state that the values of Y, along a beam is assumed to vary linearly

between the quoted values in Table 2.1.

The availability of effective breadth ratios described above enables
the peak stress at a web-flange junction (0ym ) to be calculated simply.
However, in the design of a bridge flange, it may often be necessary to
have an estimate of the longitudinal stresses in parts of the flange remote
from the web~flange junction. Such stresses (o3 ) may be estimated using

the following formula (Ref. 18 and Fig. 2.5):

2 (39— 1) X 2
=0 4E) +28 "2 {1 - 4¢3 N for parts bet bs,
O3.b zm l (bi) 5 (bi) or parts between webs
(2.36a)
2 3P 1 2
or O3.b = Oxm [(%:?) +—(l;—){1 - _(13::) }1 for projectionms,
(2.36b)

where oy, is the maximum stress at the web-flange intersection.

The validity of the treatment described in this section will be
investigated and its adequacy assessed from numerical examples and model

tests described in later chapters.
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2.4 Pure torsion of open and closed section members

Approximate expressions for shear stress distribution due to
St. Venant torsion and the rate of twist in a thin-walled, open section
member are based on those derived for a thin rectangular strip using the
well-known membrane analogy (142). The shear stress distribution across

the thickness of the section wall may be written as

1, = 26n 363.p , (2.37)

9z
where 63p is the twisting angle due to St. Venant torsion. The maximum

+ t
values of Ty occur on the surfaces of the wall where n = = 7 and are

=% e %0 (2.38)
9z

(Ty) max

The rate of twist EEQE is expressed in terms of the torsional
z
moment, the shear modulus G and the St. Venant torsional moment of inertia

Jy by the following relationship,

’

a0
Mr,y = GJ, 3.p (2.39)
0z
std u 3
where Jy =M —3 or J, = 3' IA t ds (2.40)

In Eq. 2.40 the second expression is used to calculate Jy if the
cross—section has a variable wall thickness. Values of u for a variety of
0peﬁ sections have been determined experimentally and quoted in Ref. 107.

In particular, many thin-walled sections can be considered as being composed
of several rectangular sections monol}thically connected together, It is
suggested that p could be chosen as unity without significant error. Thus,
the general formula for such a 'composite' member is

3
m 2.t
Jv =L 5 (length®) : (2.41)
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total number of component rectangles forming a cross-section,

where m

.th

L = length of each 1 component rectangle,

. .t
t. = thickness of each i h component rectangle.

The product GJy is known as the St. Venant torsional rigidity of the

member. Eqs. 2.37 and 2.38 may be rewritten in terms of the torsional

. 26
moment by substituting for Y from Eq. 2.39. Thus,

9z
M Mry't
T, = =™V on 5 (ty)max = - Y (2.42)
Jy Jy

For a closed section member having n cells shown in Fig. 2.6, the

shear stresses are usually given in terms of shear flows, i.e., shear stress
times the wall thickness. In Fig. 2.7 consideration of the equilibrium of

forces in the axial direction on a differential element taken from the

wall of the section shows that

(g + EEE ds)t+dz - 1ptdz =.3£EEEZ.=O (2.43)
9S aS

Integration of this equation yields q, = Tgt = a constant. It is seen that,
although the shear stress may differ from wall to .wall, it must have constant

values Qo ys 9 peeves 9 nalong the wall of each individual cell. These

’

are referred to as Bredt's shear flows, and the corresponding torsional

moment is Bredt's torsiomal moment.

Investigation of the axial equilibrium of forces on an element at a
junction of the walls reveals a further restriction on the shear flow. If
such an element is considered at junction i of the section, the free-body

diagrams shown in Fig. 2.8 require that

- - q° -
qB dz qB'i__1 dz 95-1,i dz =0

(2.44)
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This shows that the shear flow in an interior wall can be considered to have
been obtained by the algebraic superposition of the shear flows in the
component cells. The convention for the sign of the shear flow is that
adopted by Kollbruner and Basler (55). ) If the shear flow qa’i is
indicated around the ith cell in a sense which is equivalent to the

positive sense of rotation, i.e., a right-threaded screw rotation, then the

shear flow q ; is positive. The shear flow qRJ ; in the wall between

cells i-1 and i is positive when its direction is the same as 9, -
b4

It is apparent that we are not able to determine the shear stress
distribution by a straightforward consideration of the static equilibrium
of forces, since there are n unknown constant values of shear flow for a
multi-cell beam of n cells. Compatibility conditions must therefore be
used for solving the n unknown constants. Let up = Rt63¢ denote the
téngential displacement of a point on the cross-section, where Ry is the
distance from the twisting centre Eg, and 83,p is the angle of rotation of
the section in its plane (Fig.'2.9). Let wy,p denote the associated
longitudinal displacement in the z-direction (warping). Then the associated

shear strain at a point on the mid-line of the wall of the section is given
by

v o= dwy,p , Ut _ g (2.45)
3 3s 9z Gt;

The condition of continuity of the axial displacements is expressed

by the following equation

$. 2P as =0 (2.46)
b 9s x

which states that when proceeding around each individual cell, the initial
and final warping must be equal. Integrating Eq. 2.45 around each cell, and

substituting Eq. 2.46 into it and putting
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§1 Riyds = Q; twice the enclosed area of the ith cell, (2.47)

we obtain the following expression

96

§ Teds = ca 2P (2.48)
| 9z

Extending Eq. 2.48 for each cell, introducing the coefficients fy ,

£

i which have been expressed in Eq. 2.19, and considering that the

circulating shear flows, constant for each cell, oppose one another in the

intermediate webs, we may obtain a set of flexibility equations

[£1{qz} = {2} (2.49)
where
Qg = —%%lp— (2.50)
(R L
9z

is defined as the unit shear flow distribution function relating to pure

torsion.

The total torsional moment is shared by the shear stresses
distributed over the n cells and is therefore the sum of the individual

moments for each cell,

n
Mye = quB,i ths =i=21 qs,igl
- 6(x q,, .0)°%P (2.51)
=1 1 ! 9z
We may put
26 ’
Myg= GJg 3P , (2.52)
}4
and therefore
-— n -
Jg = § qgRds i21 9,i %> (2.53)

where Jg is referred to as the Bredt torsional moment of inertia (length‘).
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The shear flow of each cell is

_ - BBLp
qB,i G qB’i . R (2.54a)
_Mrs = (2.54b)
or qB'i 3, dg,i ’

- Q
= 2.55
qg dt » ( 2)
e
Q
Jg = —4t , (2.55b)
§
and
" M
PR . (2.55¢)

The St. Venant torsional rigidity of the component elements of the
cross—section may make a small contribution to the torsional characteristics
of the entire section. The assumption of a constant shear stress Ty
across the wall of a hollow cross-section is only an approximation. There
is a difference between the maximum and the average shear stress (Fig. 2.10).
If At is the difference, it may be considered to be the maximum shear
stress in an imaginary open cross-section having the same specific rotation
as the corresponding closed cross—section with the average shear stree Tg.
This leads to the following relation,

Mp,p =Mrpy +My,3g = Gy + Jg) E

0z

20 '
= GJg a_ﬂ . (2.56)
z

where MT,p is the total pure torsional moment,

and J; = Jy + Jg is the total torsional moment of inertia (lengthb).
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It is also clear that

Jy
MTJV = 3_ : MT'p
T
(2.57)
J
My T3 Mup

2.5 Deformation of cross-sections

For the moment we shall consider the deformation of cross—sections in
the case of pure torsion. For cross—sections assumed to be undeformed the
movement will be about a certain point in their own plane as for rigid bodies.
The tangential displacement of a point on the cross-section is given by

(Fig. 2.9)
ut = Rt ezlp (2.58)

where Ry is the perpendicular distance from the centre of twist to the
tangent to the mid-line of wall at the point considered, and 83p 1is the

v

twisting angle of the section in its plane in pure torsion.

For an open section member we may derive the axial warping displacement

expressing by using Wagner's assumption (147), which shows that

Y dwsy L% -0 (2.59)
3s 3s 09z

where Wyy denotes the axial or warping displacement in an open section

member,

Substituting Eq. 2.58 in Eq. 2.59 and integrating once we obtain

¥

96
=Wje ~ L: Rtds . _ 3:P

Wayv
D 32

0
S L (2.60)

9z

in which the unit torsional warping function for an open section
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wy = Wy o * /5 Ryds (2.61)

is equal to twice the value of the area shaded in Fig, 2.11 and is also

called the sectorial coordinate (in length?).

For a closed section, the warping displacement can be assumed to
have the same basic transverse distribution as in the St. Venant torsion
of an open section, i.e., the unit warping function is still defined as

the negative warping per unit rate of the ange of twist,

~ 08
wgp = U 3.p (2.62)
9z

When we come to the shear strain at the mid~line of the section

instead of using Wagner's assumption, we note that the shear strain can be

equal to that obtained from the Bredt formula,

P - 9 _ 3¥zp , %9t (2.63)
s T G T T -

Substituting Eqs. 2.54a , 2.58 and 2.62 in Eq. 2.63, and after

98
cancelling the common factor 3.p » the result becomes
9z

%1 4 ry =98 (2.64)
9s t

Integrating Eq. 2.64 once we obtain

wy = wr,o + fo (Rt <+ )ds (length®) (2.65a)

where w;is the unit torsional warping function for a closed section and is

also called the reduced sectorial coordinate.

In particular, for an open section, in which 58 = 0, we obtain

-~

Wp =wp=wp, + /5 Ryds (2.65b)
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It is then obvious that we may have the same form of expression
both for closed sections and open sections, except that it is necessary to
use the reduced sectorial coordinate wy instead of the sectorial

coordinate wg.

For the determination of the sign of the sectorial coordinate the
following remarks can be seen to apply. If we regard the differential
element of the mid-line ds as a vector, whose direction is the same as that
of the integration, and if this vector causes a right hand screw rotation
about the pole, then the increment R{ds is taken as positive (Fig. 2.11).
The shear flow distribution function HB is also regarded as a vector. If
the directional semnse of EB agrees with the sense of integration then the

increment guds is positive.

Furthermore, since axial restraints to warping always exist, the
torsional behaviour of a member actually appears in the form of warping
torsion. The influences of secondary shear stresses or warping shear
stresses associated with the longitudinal warping stresses have to be taken
into account in the warping torsion of closed section members. The total
angle of twist with respect to the centre of twist can then be split into

two components, namely the primary angle of twist 83 p which varies linearly,

and the secondary angle of twist 03,5 »

83 = O5.p * 035 (2.66)

Therefore, the twist per unit léngth in warping torsion is no longer equal to

the change in the angle of twist as in the case of pure torsion.

By analogy with the assumption made by Benscoter (10) it is further
assumed that the warping displacements vary over the cross-section in the
same way as in pure torsion. Thus, the distribution of wy;at the cross-

section is still proportional to @y, but the relationship is defined not by
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the primary twist per unit length, but by the rate of the entire warpiﬁg

torsional rotation. Hence, we may write finally

90

= -0, =4 2.6
/

2.6 State of stress system of warping torsion

The torsional warping stresses are given by the following
expression,

2
6. =Eq 5.t _ _Eq B, 293 (2.68)
p =B Bt _Eq 8 —
0z 0z

where Eq = E/1-V* is the conversion modulus of elasticity.

Since the torsional warping stresses arise from the restraint on
warping, this stress distribution must be self-equilibrating and must have a
zero longitudinal force resultant and a zero moment resultant. To represent
the global behaviour of the warping stresses a new type of 'force' which may

be called the torsional warping bimoment is introduced

By = IA 01‘31 dA (force x 1ength2) (2.69)

In contrast with a bending moment which may be represented by a force pair,

a bimoment may be represented by an equilibrium moment pair.
By defining a new type of geometric property of the cross-section,

Jy = 5, ai dA (length®) ‘ (2.70)

which is known as the torsional warping moment of inertia, we obtain from
Eqs. 2.68, 2.69 and 2.70

3265

9z

BI = - E{JI (2.71)

o~
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Substitution of Eq. 2.71 into Eq. 2.68 then gives

o; = 191 (2.72)

To obtain an expression for the associated torsional warping shear
stresses a differential element is cut out of the beam such that two planes
dz apart lie perpendicular to the axis of the beam, and planes ds apart are
parallel to the beam axis and perpendicular to the mid-line of the cross-—
section. The equilibrium condition for all forces acting on this element

in the z direction gives the expression for torsional warping shear flow,

q; = q? - fﬁ £ %% gs
0z
S ~ 8363
9z
3
~ 0903
= q + E S —_—
I 171 523
’
= a7 _ _El_. §I (force/length) (2.73)
J1

The integral expression in Eq. 2.73 represents another cross-
sectional function called the sectorial statical moment of area in warping

torsion

S;=fg @y dA  (length®) (2.74)

, - 3 . . i
and By 1is the first derivative of the bimoment.

For an open section member, if the integration is started from the

contour edge point, where qf = 0, we obtain

3 ’
9" 6 B

ay = By S5; 33 = - 15 o (2.75)
oz J1

where

S;= fwpdA  (length®) (2.76)
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It is apparent that the distribution of shear flow q, is a particular
problem for closed sections. The difference between Eq. 2.73 and that for
open sections Eq. 2.75, lies in the presence of the term qg , which

cannot be determined from the equilibrium condition.

A way out of this difficulty, similar to one which we have already
used, is obtained by cutting each cell of the given section to form an
imaginary open section. The compatibility condition, which requires the

uniqueness or periodicity of the function for normal displacement, should

then be used for solving for the n unknown constants:

§. 23t ds =0

I 3s

. ow 3 3 .
Since 3t -t - 9% . .P 1 . 9yt

Yeg © — = Yz t Y —_— 2.77)
ds 3 3z s i 9z ’
and from Eq. 2.48 we have
p aut

§i (st -_t)ds =0 ’ . (2.78)

0z
we can state the condition that the warping shear strain along each closed

portion of the mid-line of the cross—section must be equal to zero

1 =

§i Yis ds =0, (2.79a)
or

§i 1;ds = §i %;. ds = 0 (2.79b)

By setting up condition Eq. 2.79b for each cell separately, and
putting

[+]
- _ Q5 o J
q;,i ’-LL,—I- (Length®) . (2.80a)
B
I

as the unit shear flow functiom in warping torsiom, i.e.,

’/
0 = BI -0

qI:i 3-}--(11'; , (2.80b)
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and

- ~ ds
51, = §, ST (Length*), (2.80c)

we obtain a set of flexibility equations

[£] {q; 3 = {5} (2.80)

/
where the flexibility coefficient matrix [f] is expressed as in Eq. 2.19.

It may be noted that the coefficient matrices in the systems of
equations (2.18), (2.49) and (2.80) are the same. This is to be expected
since they all represent the relative warping at the cuts due to unit

redundant flows, regardless of the type of loading.

The total torsional moment with respect to the centre of twist is
My = My p + M7,
= M,y + My g+ Mg (2.81)

where My p is the primary torsional moment referred to tﬁe St. Venant
shear stresses and/or the Bredt shear stresses,
Mr,y is the St. Venant torsional moment component,
My,g is the Bredt torsional moment component,
and Mr,; is the secondary or flexural torsional moment resulted from

warping shear stresses.

We now try to find the relationship between the bimoment and the

flexural torsional moment. For reasons of equilibrium, the warping shear

q . . . . . .
stresses El are associated with the longitudinal warping stresses according

to the expression,

o0

I q
—t+ 981
22 9s

(2.82)

=0

On multiplying equilibrium condition (2.82) by alds and integrating

over the whole cross—-section, we obtain
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r 18 e ¢ s, Mglas =0 (2.83a)
A3z A ds
or
By + 5 %) §,ds = 0 (2.83b)
as

Using the integration by parts the integral in the above expression
can be transformed into
dwy

ds ’
Ias

—":Aq

so that we finally have

, S T
By =/ q;_1ds (2.84)
ds
Substitution of Eq. 2.65 into Eq. 2.84 gives -
By = fLyqRyds = fiap95
- My, (2.85)

i.e., the secondary or flexural torsional moment M; , equals the first

derivative of the bimoment Bf.

The torsional warping shear flow is then expressed as

My g -0 M a
=_T - M1 S (2.86)
Rl kP

By superposition with Bredt's shear flow we can finally obtain the
total shear flow on the external wall of the section,

= MT,B aa,i + MT:I ao . - MT;I § (2-878)

— 95,i T 2=

/ qT,i
B I Jr

where the subscript i shows the number of the cell bounded by this mid-line.

For points lying on the interior wall of the section the shear flow

can be considered to have been obtained by the algebraic superposition of
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the shear flows in the cells lying on either side of the mid-line

separating them,

M - - n
T (- g%y - M1 g (2.87b)

On thé open portions of the section the shear flow is

M .
I &

_nl Sy (2.87¢)
Ji

For an open section member the shear flow is

M
Ll g (2.88)
Jr

al S A
where Jy Sy wy dA and Sy = fo wydA.

In particular, for a single cell cross-section we will have

"¢ a ds
M M $S,— _M A 2.89
q;= _T.B + TI. dIt I8, ( )
f Ji -95—ts— Ji

The maximum shear stresses caused by torsion in the cross—section may

be expressed as

>

(TT)max= i MT'V -t + MT'B . q_B + MT'I . _q_l - MT:I - _l[_ (2.90)
Jv JB t JI t JI t

2.7 Shear centre and twisting centre

‘We have introduced the term 'shear centre' or 'flexural centre' and
the term 'twisting centre' or 'the centre of twist' in previous sections.

o .
More d?tailed consideration is given to them in this section.

The shear centre of a cross-section may be defined as the point in
the cross—section through which shear loads must act to produce no twisting.
In contrast to the definition of shear centre, we define the centre of twist

as the point about which the section twists in the case of torsion without
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bending. It may be shown by use of the reciprocal theorem that the shear
centre must be identical with the centre of twist of the section subjected
to torsion. We can see, therefore, that there is a two-fold physical

significance attached to each of these centres.

According to the definition we can now locate the shear centre.
Let My denote the moment about a longitudinal axis through an arbitrary point
due to the open section or determinate shear flow 9y Referring to the
Bredt-Batho formula, the torque developed by a constant shear flow (q,)j
about some point is (q,);®;, where Q;is twice the enclosed area of cell i.
Thus the total moment developed by the flows q, is i%l(qo)iﬂi. It follows

that the requirement of equilibrium of moments about a longitudinal axis is

satisfied provided
n
Q. eg + Myt i§1(q°)ini =0 (2.91)

from which the distance eg, which indicates the position of the shear centre,

can be determined.

For the section under consideration shown in Fig. 2.2 which possesses
a vertical axis of symmetry, the shear centre must lie on the local y axis
at some distance from the top flange. If we apply shear load Qy = 1 through
the shear centre, we may estimate the distribution of shear flows q} and q,
produced by Qy following the pfocess described in section 2.2. Equating
thereafter the moments about the mid-point of the top flange we have

o 4

,' Ys =~ Mp- i§1 (ay 07 9 (2.92)

where y, is the coordinate of the shear centre referred to the mid-point of

the top flange in the cross-section, and

QI = (bt,i + bb,i )h ’ (2.93)
Ay o)j S @y o) (2.94)
’ Lyy %ot :

®
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The moment due to the determinate shear flow q, can be expressed as

1k i,
Mb=———{'z th [Z(QX)

1
Iy st i, neie2 = O5jF g ey €08 -ty ;]

3
2

n - b : 1
+i§1 [(qx)n+i+2,2n+i+3 . Ah.bb,i - __t;_:_’_ 'h'tb,i (xn+i+2-’3' bb'i )1} (2.95)

n+l

where k = = when the cell number n is even, and k = —= when n is an odd

=0

number.

If we pose the problem as alternatively locating the twisting centre,
it is necessary to establish the geometric relations for the sectorial
coordinates &I' If the start of integration of Eq. 2.65 is chosen to be at
a point where the warping displacement is assumed to be zero, the expression

for sectorial coordinates may be written as

~

Wy

SJE®Ry-_B) ds (2.96a)
t

or
s .
wy = foths (2.96b)
They are then called the normalized sectorial coordinates, and the integral

origin is called the principal origin of integration.

Since the unit warping function arises as a basic distribution of
normal stresses with warping restraint, the sectorial coordinates must

satisfy the following three conditions

f, widA =0 or [, wpdA =0 (2.97a)
S, wy.x dA =0 [adg. x dA = 0 (2.97b)
Sy w;.y dA =0 Jybg- ydA =0 (2.97¢)

Eq. 2.97(a) might be used to determine the principal origin of
integration where the warping displacement is zero. According to the definition

Eqs. 2.97(b) and 2.97(c) could be used for determining the location of the
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centre of twist. TFor this purpose the relationship between the sectorial
coordinapes, whiqh are referred to two different poles A and B, is now
determined (Fig. 2.12). Note that the local coordinate axes X, y pass
through the centroid of the section, and if it is assumed that point A is
locatéd at the-centre of twist of the section, point B represents an

arbitrary pole of the sectorial coordinates.

Using Green's integral theorem, we may obtain the differential areas

(d®;)s and (dy)g in the forms of

by, = (x - ady - (v - ay)dx

Q.
£>
-
[«
!

= (x = bx)dy - (y - by)dx

Noting that ey= ay— by, and Ey = ay - by, we have
iy - dlijg = = eydy + eydx.

Integration of this equation with respect to S gives

GIA = &IB - ey *+ Ey~x +c, (2.98)

Hence substituting Eq. 2.98 into Eqs. 2.97(b) and 2.97(c) respectively

we have, after integration,

anIB'x dA - EX'[AxydA + ;yfnxsz + C IAX dA =

l
o

(2.99)

1
o

and Sy 8.y dA - By [,y dA + Eyf, xydA + ¢ [,y dA =

Since the axes x, y pass through the centroid of the section we have

fxdA = fydA=0
/

and, because from the equations
JyxtdA = Iyy, LyPdA = I, JfyxydA = Iyy,
Jywig ox dA = (S;y)g, Jawpg -y dA = (S,4)5,

Eqs. 2.99 become

I
o

(Spx dp— exlyx * eylyy = (2.100)

I
o

(Suyde= exTxy * Sylyy
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~ ~
Sex and S,y are specified as the sectorial products of inertia.

The solution of these two simultaneous equations gives the following

two formulae:

and

i.e.,

and

= o GuxdeTyy~ Guylslny
x -~

ey = Ixy

<, = (Swyds Ixx - (Swx)s Ixy

ey
2
I Iyy ~ Ixy
ay = by + SwxdsIyy = (Spyd Ixy
Ixnyy - ]'.;y
ay = by - (Spyds Ixx = (Swx)p Ixy

IxxIyy = Ixy

Substituting Eq. 2.98 into Eq. 2.97(a) we obtain

1 -
c =—KwaIBdA

(2.101a)

(2.101b)

(2.102a)

(2.102b)

" (2.103)

In the case where axes X, y coincide with the principal axes of a

section, we have Ixy = O and hence formulae (2.101) are simplified into

formulae (2.104) as follows:

and

<. = (Swx)s

X
Ixx
‘éy - - (Swy)g
” Iyy .

(2.104)

For a uni-symmetrical section with y as the axis of symmetry the

initial pole can be advantageously located on the y axis. Then because of

the antisymmetry of the wy diagram, it follows that

and

ex=c=0 ,

-— 1 ~
y Iyy A

(Swy)s
Lyy

(2.105)
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The twisting centre and the principal radius, therefore, both lie
on the axis of symmetry, In particular, when a section has two axes of
symmetry, then its centre of twist lies at its centroid and its principal

radius lies on one of its axes of symmetry.

Bearing in mind that the shear centre and the twisting centre must
be identical with each other for the section under consideration shown in

Fig. 2.2, and choosing the integral origin at the mid-point of the top

flange, we have
ey = V¥s (2.106)

Thus, the position of the shear centre and of the centre of twist can be
located either by Eq. 2.92 or by Eq. 2.105. Numerical examples have shown
that identical results are obtained from both equations. In practice, however,

it is more convenient to use Eq. 2.105.

2.8 Basic differential equation for warping torsion

We consider now a differential element cut out of a beam subjected

to a continuously distributed twisting moment mj ext. From the equilibrium

condition, we obtain

M1+ mygq = 0 (2.107)

Since the total internal torsional moment is equal to the sum of the
primary torsional moment and the secondary or flexural torsional moment,

from Egqs. 2.56 and 2.85 we have

My =M;p * My
303,p 3% 63
=6y == Bydq

3 (2.108)
9z 0z .
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From the generally valid relation

i R 1 ,
3s 9z

we obtain by Eqs. 2.67 and 2.58

o =c(-21.%% rO%p) (2.109)
T +
9s 9z 9z

Substitution of Eq. 2.96(a) in Eq. 2.109 gives

96
= 06 3.P
G[- (R B ) 738 +Ry 7 .
B (= (Rt t ) 0z t oz ]

Using the equilibrium condition Jf; TyR{dA = My , we have

Mr =G[-(f Ri dA - § qgRyds) _33 + 99,p JRydA ] (2.110)
92 oz .

Note that the integral § refers only to the closed part, whereas the integral

/h'should extend over the entire cross—sectional area.

Using Eq. 2.53 and putting
2 (A
Jc = J, Ri dA (length™) (2.111)

which is called the central second moment of area, we have

06
My = G [(Jg - Jo) B+ 3, 28R (2.112)
0z oz

We then finally obtain the connection between the total twist and the

primary twist as follows:

36 M a6
3P =@ -my) o+ by i, (2.113)
9z GJg 9z
in which the coefficient
J
ng=1-8 (2.114)

Je

is called the warping shear parameter.
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Substituting Eq. 2.113 in Eq. 2.108 and letting Jy = Jj for

cross-sections in which the closed portions are not small, we then obtain

3
M. = - 1 EsJ 908 4 @J 9% (2.115)
T 1v1 3 T .
‘.It oz 0z

Differentiating Eq. 2.115 and substituting it in Eq. 2.108, we

obtain the general differential equation for warping torsion

4 2
L g B0 4ga 20 = myen (2.116)

Ut aZ‘* azz

In particular, for open section members Jg = 0, and thus pt = 1

accordingly
3
36 a6 .
My = - EJ; 2+ 61—, (2.117)
523 oz
4 2
~ep 2%+ 652 0% =g ' (2.118)
3z* 3z .

2.9 Calculation of sectional properties in bending and warping torsion

To calculate the normal and shear stresses due to bending and warping
torsion in a thin-walled cross-section, with at least a vertical axis of
symmetry to the flange (Fig. 2.2), the following geometrical variables

relating to the cross-section are required:

- the vertical coordinate of the centroid from the top flange (length), y,,

- the vertical coordinate of the shear centre or the centre of twist from
the top flange (length), ys(Ey),
- cross—sectional area (lengthz), A,

- first moment of area of the partial cross-section about the x-axis

(lengthd), Sx = fz ydA,
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~ first moment of area of the partial cross-section about the y-axis

(length3), Sy = /5 xdA,
y ]

~ moment of inertia of the cross—section with respect to the x—-axis

(length*), Tyy = J, y2da,

- moment of inertia of the cross-section with respect to the y-axis

(length®), Iyy = fyxZda,

- flexibility coefficients, £;; = §-—— or £, = =f; » in which the

i,k ¢t t

indices i and k relate to the cells lying on either side of the mid-line

separating them,

~ displacement vector due to unit shear force (length ), qu,— —§ Sy,i—+ ds
ds
anquy|——§Sx|t N

- twice the enclosed area of each cell (lengthz), Qj,

m <t
— the St. Venant torsional moment of inertia (lengthA), Jy =1 ﬂ';”

- the Bredt torsional moment of inertia for the closed portion of the section,

n -
(length*), Jg = Lod %,

7

- the total torsional moment of inertia in pure tension (1engthh), Jr= Jy+ Jg,

- the normalized sectorial coordinates (length?), 81= f:(Rt -8 )ds,
t

a2
~- the torsional warping moment of inertia (lengthé), Jp = J, wy dA,

~

. . s »
- the sectorial statical moment of area (1engthk), S; = fo mIdA,
— A d
- the values of SI,i= §i 81-7? (lengthL),

2
- the central second moment of area (lengthk), Jc = JpRy dA,

Jg

- the warping shear parameter, uy =1 - 5
C

The evaluation of some of the properties is a well known procedure,
and some of them have already been discussed in detail in previous sectionms.

In this section some supplementary formulae will be developed particularly
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for calculating the geometric quantities used in the analysis of warping

torsion.

We can see that in the course of determining these quantities, a
certain number of definite integrals must be found. Such definite integrals

can be expressed as follows (Fig. 2.13):
I = fi:f(x)y(x)dx = Qy(x¢) (2.119)

where y(x) is a linear function of the variable quantity x,
Q is the shaded area enclosed by the curve f(x) and a, € x < a,,

Xg 1s the coordinate of the centroid G.

In particular, we now consider a straight element j-k of the mid-line
of the section. Let its wall thickness by t; (Fig. 2.14). For this segzent,
let the ordinates n and n of two different diagrams be given, whose form is

linear. The integral

k _ k
Ijk=fjnﬂdF=tifj'ﬂnds

is then given by the expression

2. t:
Ty = S5 (500 4 = 2 _ (2.120a
jk 6 j( n, le) + "Ik( “k + nj)] )

or

_ it (2n. +n n - 2.120b
1) = I6' ITIJ(ZT]J + )+ nk(an+ nj)] ( )

Eq. 2.120 may be simplified when n = n to give

Lt 2 2
Ik =—5— () +n +mymp) (2.121)

In the case in which n is a curvilinear line sometimes it is
difficult to generate the position of the centroid. Thus it is advantageous
to use Simpson's integration method. If n is a parabolic curve and 1 = 1

we may use the following formula with sufficient accuracy
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k

- = &
Tjk =/j nds = _6'—(nj+4no+nk) (2.122)

where n, is the ordinate at the midpoint.

In order to determine the position of the shear centre and to obtain
the diagram of the reduced sectorial coordinates 81’ the intersection of the
y axis and the mid-line of the top flange B is chosen as the principal
integral origin. The sectorial coordinates &IB of individual characteristic
points (end nodes of the elements) can be calculated by the following

expressions:

rS k - - »
(mm)o == E: (Ts)m'i (xi-1 - X|) - (TB)m'k-}‘l'xk= -(mIB)n‘fZ

where, k = %-when n is an even number and k =-2%lwhen n is an odd number

(2.123)
(518)1 = (513)L4 + (Tgdp,i (xj-1- %) (=1,2,....,n+2)
(ala)n+i+2 = (alB)i+ xih - (?l)mJuhiTkJ (i=1,2,....,n+1)
It.should be noted that in the side cantilevers of the cross-section, both
terms of the integral (2.96a) are equal to zero, so that the value of the
sectorial coordinate is constant.
(Tadm,1 = (Tgdm,na2 = O
CTodm,ivg = dg,i/ty,j (i=1,2,....,n)
(?B)m,n+p2 = (ag,j - aglp1)/thj (i=1,2,....,n+1) (2.124)
(dm, nein3 = g,i/tp, | (i=1,2,....,n)

in which ae,o = HB‘n+1 = 0, and n is the total number of the cells.

Applying the numerical integration shown in Eq. 2.120, we obtain from
the diagram of w;y the quantity (§wy)3 as

~ 1 m
(Swy)g =g Z
I=

A -~ — /
, R;ti[(wls)j(ZXj + xk) + (wIB)k(2x|<+ xj)] - (2.125)

where m is the total number of plate elements in the section,

£;j is the length of the ith element and tj is its thickness.
Subscripts j and k indicate the number of the end nodes of the individual

elements.
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Using Eq. 2.105 we may obtain the coordinate ys of the shear centre,
The normalized reduced sectorial coordinates wy at individual nodes can then

be evaluated by the following expressions:

-

Wi,06 = X¥s ~ Eﬂ (TB)m,i(xi-1— Xi) - (TB)m,kﬂ’xk = T 01042
n . n+l .
where, k = 0 when n is an even number,and k = —E—-when n is an odd
number, ) (2.126)
Or,i = 010 =% = (gdmil (xioq= %)) (i=1,2,...,n+2)

Wy, nsjs2 = Wgj * h.xj+ yg (Xnaia2 — Xj )'(TB)m,mid ’hC,i (i=1,2,...,n+1)
Using the diagram of normalized sectorial coordinates w; we obtain

from Eq. 2.12. the value of Jjas

m Al a2 PN PN ’
Z=1 Q,i ti (“’I,j + Wk + “I,j . ml,k) (2.127)

2

In the same way as with open sections, we may calculate the §I
diagram from the &I diagram. It should be noticed that all the cuts are
located at the mid-points of the lower flange of the section (Fig. 2.15f).
The formulae for calculating the values of §I at characteristic points

are written as

(513,01 = Gz, mez = O

(SI)m,an43= 0 (i=1,2,...,n)
A~ 1 ~ “
(5, )n+i+2,2n+i+3 =g bb,i t b, i (3w1,n+i.;3 + 01, n+i+2 ) (i=1,2,...,n)
a 1 - -
(Sz)n+i+3,2n+i+3 = 'g bb,itb,i (3w1,ﬂ+i+3 + wI,n+i+2) (].-:1,2,...,]:1)

Gones,nez = G In+3,2n+4

(31)2n+3,2n+3_ = - (§1)2n+3,3n+3

§ . . - A A - .
CPninmig = @i gniss - (Sp)n+is2,2n+i42 (i=2,3,...,n)

S . o 1 A - .
Sz = Gopig,miv - § Be,i th,i Gogned2teni) (i=1,2,...,0+1)

(SI)Ln+i+2 =

PN _ 1 N N -
(SI)m,1 == 3 thC(3wI,O+ wI"]) = (SI)m'n-’-Z

a - 1 PN ~ .
(Spdnsisz,neiz2 ~ 5 Be,i th,i (@r,p4i42F 91,1 ) (i=1,2,...,n+1)
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A 1 ~ ~
(SI)1J - T3 bete (wy,o * wp,1)
Gpi,isr = Gpii + Gpi,nei
I’7,i+1 f i,i Ilhn+H2 (i=1,2,...,n+1)
(gl)m'iq." = (SI)i'i+1 - Ebt'i * tt;i (381'i + ;l;l' i+1 ) (i=1,2,ooc,n)

~ 1 A A
Gty ivt = i =3 P40 oti G *0p 4,4 ) (=1,2,...,n)
(2.128)

To be able to determine the unit warping shear flow function a; , it
is necessary to solve Eqs. 2.80. The coefficients are the same as those in
Eqs. 2.49, from which we shall obtaiq the unit Bredt's shear flow function
first. We here formulate the expressions for the free terms of

Eqs. 2.80,

- b . A ~ ad .
S1,i = 1) 1y * 4G Dm, it Gis,is1]
' 6 tti ) ’

¢ Poi 1GD iz 2meis3 * 461m, 2nsis3 ¥ (51)0vis3,2n4i43]

6 tb,i

v Poi (BDi, neisz* 4Gm,nsin2 * (S1)n+is2,neis2]
6 th,i

h . -~ ~ o . .
2Ll (s), £ 48D p neis3 * SO nsia3,neind]

6 th,is +1,n+i+3

(£=1,2,....,n) (2.129)

. . ... O . .
Note that in calculating the quantities q; , the sign convention
adopted for Bredt's shear flow is used. For each individual cell, the
positive directional sense is regarded as that which runs anticlockwise around

the cell.

Finally, when considering the shear strain effect we shall calculate
the central second moment of area J¢. The coordinates of the shear centre

in the local coordinate system of the cross~section may be obtained as

xE =0

S A A (2.130)
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The perpendicular distance from the shear centre to the individual element

can be expressed by the coordinates of the two end nodes and of the shear

centre,
Ry = %% * X *OXpy; T XYy < Xp¥g T X (2.131)
%
We then have
m t.(x.y + X YE - X1 Y5 XY )2
Je =.z1 277k k’E k') Tj7E ' (2.132)
i= 9
i

where, m is the total number of elements,
%; is the length of the ith element and t; is its thickness, and

the indices j and k are the number of the discrete nodes of the

individual elements.

To understand the above process more clearly we give now a numerical
example. The dimensions of the section and the subdivision of the section

are given in Fig. 2.15(a) and Fig. 2.15(b).

The flexibility equations (2.81) become:

- 3
5.6527 qg,q~ 2 dg 2 =5 2at,
-2 qB’1 + 5.8333 qB'2 -2 g 3 2 a tg

- 2.q, , +5.6527 q 4

N w

.o
rt
o

B,2

Solving, we obtain

9g,1 95,3

2

0.5105 a tq4

qy,2 = 0.6929 a tg

The unit warping shear stress function ?B according to Egs. 2.124

is shown in Fig. 2.15 (c), together with its directional sense.
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The diagram &IB calculated by Eqs. 2.123 is shown in Fig. 2.15(d).

After evaluating Iyy and the integrals (§wy)8by Eq. 2.125, we obtain

by Eq. 2.105 the position of the shear centre Es.

_ 6.2327

ys —m a = 0.4709 a

1

The coordinates of the shear centre about the Xy coordinate system
are

0

XE
Yg = 0.4709 a - 0.3109 a = 0.16 a

The &I diagram is then shown in Fig. 2.15(e). Using this diagram we

obtain by integration the value of J; as
ST
J; = 1.0414 x 10 a' t,

The §I diagram is shown in Fig. 2.15(f). Using this diagram we calculate

the values for the free terms of the system of equations (2.81)

10.2081 x 102 a"

Si1,1 =
Sy, = 10.5993 x 107 a"
S§;.3 =10.2081 x 16" a"

On solving the system of equations we obtain

- -2 3
474 = 3.2332 x 10 2 ¢,
- -2 3
q; 2 = 4.0341 x 10 a t,
- -2 3
q; 3 =3:2332x 10 atg

The a; diagram, with directions introduced, is shown in Fig. 2.15 (e).

Finally the §I - ag diagram is shown in Fig. 2.15(f).

Likewise we calculate the value of the central second moment of area

Jo = 3.46087 a tg



and the warping shear parameter

_2x1.5 x 0.5105°+ 2 x 0.6929

Nt=1
3.46087

= 0.1571

77
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Fig. 2.1 Redundant shear flow in the ith cell of an n-cell beam
subjected to shear

b

be bts bt,2 bt

@ | @ﬁ'ﬁ i Br i f— n+

oly II! Yo O(i\' m
N, “I” i
Y [
nJ@ n+1+2 2 2m+2 2n+3
bl bb.2 byt bs,n

Fig. 2.2 Cell reference numbers

Typical non-uniform flange stress
distribution due to shear lag

Stress distribution obtained %
from beam theory

Fig. 2.3 Shear lag effects in flange plate
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Fig., 2.4 Bridge cross—sections showing effective breadths of flange-

Fig. 2.5 Distribution of longitudinal flange stresses with allowance

associated with each web

mid-point' between webs or free edge of flange
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Table 2.1 Effective breadth ratios (¥,) for use in design of box girders

Table 2.1 (a) Effective breadth ratios Y, for simply-supported girders

Effective
breadth ratio

PP

e

Point loading at mid—span*

Loading Uniformly distributed load

c%ggnﬂged Mid-span [Quarter-span Suggg:t- Mid-span [Quarter—span Suzﬁg:t—

bi/ 0 1 0 1 0 1 0 1 0 1 0 1

Ofl‘ bch/L
0 l.0 1.0 |1.0 |1l.0 |1l.0 (1.0 |1.0 |1.0 (1.0 |1l.0 (1.0 | 1.0
0.02{0.99|0.99|0.99| 0.98}| 0.93(0.89} 0.92|0.90|1.0 ;1.0 |1l.0 | 1.0
0.05|0.98| 0.97}0.98| 0.96 | 0.84}|0.77 | 0.80|0.75}| 1.0 (1.0 |1.0 | 1.0
0.10{0.95| 0.89 | 0.93| 0.86 | 0.70 | 0.60| 0.67 | 0.60 | 1.0 | 0.99 | 1.0 | 0.99
0.200.81|0.67 | 0.77 | 0.62 [ 0.52 | 0.38 | 0.49 | 0.40 | 0.98 | 0.84 | 0.98 ] 0.84
0.40 | 0.5010.35|0.46 | 0.32 [ 0.32 | 0.22 | 0.30 | 0.23 | 0.63 | 0.44 } 0.63 | 0.44
0.60 [ 0.29 | 0.22 | 0.28 | 0.20|0.22 | 0.15} 0.19 [ 0.14 | 0.36 | 0.26 | 0.36 | 0.26
0.80 | 0.20|0.16 {0.19 ] 0.15|0.16 | 0.11| 0.14| 0.10 | 0.23 | 0.18 | 0.23 | 0.18
1.00{0.16 {0.12 | 0.15} 0.11 | 0.12 } 0.09 | 0.12 | 0.08 | 0.19 | 0.14 | 0.19 ) 0.14

*To be used

for wheel loads

Table 2.1 (b) Effective breadth ratios Yp for cantilevered girders

or axle loads

PNNY

only for point loads or reactions of significant magnitude; not

Effective
breadth ratio

u
we

ve

%*
Point loading at free end

Loading Uniformly distributed load
Section . Quarter point . Quarter point
considered Fixed end nearfmeé)end Free end Fixed end near fixed end Free end
b2 1
&bgﬁ 0 1 0 1 0 1 0 1 0 1 0
0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.02 |0.91 }0.88 1.0 |1.0 |0.97 |0.94|0.96|0.95}|1.0 |1.0 (1.0 | 1.0
0.05 |0.82 |0.76 |1.0 |1.0 |0.92 |0.86{0.91]0.88 1.0 |[1.0 [1.0 | 1.0
0.10 1 0.68 }0.61 |[1.0 1.0 0.84 |0.77 | 0.80 | 0.75 1.0 0.99 | 1.0 0.99
0.20 |0.52 | 0.44 |1.0 |[1.0 [0.70 |0.60|0.67 [0.60 |0.84]|0.72 |1.0 [0.85
0.40 {0.35]0.28 |0.88 (0.75|0.52 [0.38]0.49 | 0.40 [0.74 | 0.51 1.0 {0.70
0.60 {0.27 | 0,22 |0.64 | 0.50 | 0.40 | 0.29 {0.38{0.31}10.60}0.43|0.85]/0.61
0.80 {0.21 | 0.17 |0.49 [0.3510.32 [(0.22 1 0.30 [ 0.23 | 0.47 [ 0.36 [0.70 | 0.54
1.00 (0.18 | 0.14 |0.38 | 0,27 |0.27 |0.18 | 0.24 | 0.18 |0.36 | 0.26 |0.54 ] 0.40

*To be used

only

for wheel loads

for point loads or
or axle loads

reactions of significant magnitude; not
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contd.

Table 2.1 Effective breadth ratios (¥,) for use in design of box girders

Table 2.1(c) Effective breadth ratios Y, for propp cantilevered girders

l

= =
K L]
I 1
Effective Y4 p
breadth ratio e Yo
. *
Loading . Uniformly distributed load Point loading at mid-span
Section . Quarter-span . Quarter-span
considered | Fixed-end |.qp fixed[iend Propped-end | Fixed-end neurrf‘-f,'zeﬁ‘fend Propped-end
b/~
O%bc/L 0 1 0 1 0 1 0 1 0 1 0 1
0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.02 | 0.81 |0.74| 1.0 1.0 0.901 0.8 |0.75 | 0.67 | 1.0 1.0 | 0.97 | 0.97
0.05 | 0.62 | 0.54 | 1.0 1.0 0.79|0.70] 0.51 ] 0.42 | 1.0 1.0 0.94 | 0.91
0.10 | 0.451]10.38] 1.0 1.0 0.63]10.52]0.32|0.26] 1.0 1.0 | 0.90]0.86
0.20 | 0.2710.21|0.92]0.76 | 0.44 | 0.32}0.16 | 0.13| 1.0 1.0 | 0.831]0.71
0.40 | 0.13|0.10| 0.46 | 0.35|0.24|0.16 | 0.08 | 0.07 | 0.63 | 0.48 | 0.48 | 0.32
0.60 0.10 | 0.07 | 0.24 { 0.20|0.16 | 0,11 | 0.07 | 0.05] 0.31 | 0.26 | 0.26 | 0.19
0.80 0.09!0.06|0.20]0.16 | 0.11 | 0.08] 0.06 | 0.04 | 0.24}0.19 | 0.16 | 0.13
1.00 | 0.09!0.06] 0.19|0.15]0.08 0.07] 0.05|0.04|0.23(0.190.130.11

*To be used only for point loads or reactions of significant magnitude; not
for wheel loads or axle loads

Table 2.1(d) Effective breadth ratios dkfor fixed—ended girders

¢
?m' j
l L N
I ]
Effective g P
breadth ratio e e
Loading Uniformly distributed load Point loading at mid—span*
Section . Support- s _ Support-
considered | Mid-span Ruarter-span onds Mid-span Quarter—span ends
bi/%L ¢ 0 1 0 1 0 1 0 1 0 1 0 1
orbe/L
0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | 1.0
0.02 | 0.9910.97{0.94|0.91(0.77 | 0.71| 0.84| 0.82] 1.0 0.97 { 0.8410.82
0.05 | 0.96 | 0.91}0.8 }0.76 | 0.58| 0.50| 0.67 [ 0.64| 1.0 | 0.89|0.67 | 0.64
0.10 | 0.86 | 0.72 | 0.68 | 0.55}0.41|0.32| 0.49| 0.41( 1.0 [ 0.81{0.49 | 0.41
0.20 | 0.58|0.40{ 0.42 [ 0.31 ] 0.24|0.17 | 0.30| 0.21| 0.70| 0.52 ] 0.30 | 0.21
0.40 | 0.24 {0.18|0.2110.14]0.12|0.08| 0.14| 0.11( 0.28| 0,19 | 0,14 0.11
0.60 | 0.16 | 0.12| 0.12 [ 0.10{0.10| 0.06 | 0.08 | 0.06 [ 0.14 | 0.12 | 0.08 | 0.06
0.80 | 0.14 |0.10| 0.10 | 0.08 1| 0.08 | 0.05| 0.05| 0.04 | 0.08 | 0.06 |{ 0.05 [ 0.04
1.00 | 0.13 | 0.09) 0.09 | 0.07 | 0.07 | 0.05 | 0.04 ] 0.03| 0.05| 0.03 | 0.04 | 0.03

*To be used only for point loads or reactions of significant magnitude; not
for wheel loads or axle loads
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Fig. 2.6 Multi-cell beam subjected to a Bredt torsional
moment My g

Fig. 2.7 Differential element subjected to Bredt's shear
stresses

i

Fig. 2.8 Equilibrium of Bredt's shear flows at any junction
of a multi-cell box beam
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Fig. 2.10 Shear stress distribution due to pure torsion, considering
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Fig. 2.11 Sectorial coordinate of an open section

83



bx

G(centroid)

dy

dx

/
0., by

Fig. 2.12 Geometric relation for sectorial coordinates
referred to different poles

f(x)

]

: )’(X)

y(xc)

7%

Fig.

2.13 Integral represented by area and centroid

Fig. 2.14 Curvilinear integral along a straight element

84



85

0.5t

0-3109a

3 @a'@

b —
N

' O)

®
m @ Nodes N=9
® ol * F Elements M=12

Cells n=3
ly
6 7 D) 8 @ 9
(b) Subdivision of the cross—section
0.5105 0.6929 0.5105
imunmamnumeua TR uenansnausonon
o -
2 3 = i
D S < é? a
hal
{ IR TSR
0.4254 05774 0.4254
(c) Distribution of the shear stress function Tg
2
N ]
o S 8 L M
i — '
I =
e ]
9 a + .
S £ Wig
£ a?
: g
WLL l"l_l T

(d) Distribution of sectorial coordinates &IB Fig. 2.15




Fig. 2.15 Contd.

0
1.506

Es

—
-0.242

0.2756

6l
|
!

—0-2756 ) Eil'z

[ . . . . . ’
(e) Distribution of normalized sectorial coordinates &I )

i13.8945

-10.1288
4183

0.4709a

Il 14062 — m
s | | |
15\ 0!
NG -0.8238
T
-1.0638
0.4 3860 et e =

0.3378 —0. 7260 ]

(f) Distribution of the sectorial statical moment of area §1

[
£.0341 32332

3.23
e T T T I
"?:_, o~E > _ﬁ_—
5 = 2 2y 10%ato
: ! g
; - ——t— ——
(LT
3.2332 L. 0341 3.2332

(g) Diagram of the unit warping shear flow function qi

- |
LIS 2 i
il e
LT ] : 'l
. Bhewt | 97 -5
\Ro} : —_——a
AND | / 10263t

) T
™ T 2691447601 4. 0341

| 11ATREIAN

(h) Diagram of (qf - 51)

Fig. 2.15 Three-cell trapezoidal section beam



87

CHAPTER 3

THE EFFECT OF CROSS-SECTIONAL DEFORMATION ON
SINGLE-SPINED BOX BEAMS SUBJECTED TO TORSION

3.1 Introduction

Thin-walled box spine-beams can be divided, according to their
behaviour under torsion, into types with an infinitely rigid cross—section
in their own plane and types with finite cross—sectional rigidity. Cross-—
sectional deformation of a single-spined box beam can be avoided by a
sufficient number of stiff diaphragms or cross bracings. However, this
measure not only increases the weight of material, but it also complicates
the construction process in several ways. Moreover, it is also often required
that free space be maintained inside the box. As a result, apart from -
support diaphragms which transmit the shear from the webs to the bearings,
box beams are often designed with few intermediate diaphragms, or even

without diaphragms. Stiffening may, in fact, be provided by an elastic

bracing system on its own.

On the other hand, resistance of the cross—section to distortion also
results from the longitudinal and transverse flexural stiffness of the component
plates of the box. The transverse flexural stiffness provides the frame
action of the box. The thicknesses of the walls of a box, however, or the
transverse stiffening in the case of a steel box is normally not sufficient

to prevent cross—sectional deformation when the box is subjected to torsion. .

The state of stress of a deformed box Beam (Fig. 3.1) is quite
different from that of an undeformed beam, the analysis of which has been
described. It must be realized that distortion of the cross—section is the
main source of warping stresses and may form a significant addition to the
ordinary bending stresses resulting from the symmetrical loading compomnent.

Moreover, the additional transverse bending stresses due to distortion of
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the cross-section may be of the same order of magnitude as the longitudinal
bending stresses, and are important in design practice. It is therefore
essential to take account of distortional behaviour in the analysis of box

beams in addition to considering bending and torsional effects.

The objective of this Chapter is to discuss the basic problems related
to distortional effects under torsion. It will be considered that a box
spine-beam is only a particular type of folded plate structure, which
consists of a number of element plates that are stiffly interconnected
together along their longitudinal edges and are arranged so as to form a
closed section (Fig. 3.2). The theory presented in this section is accordingly
based on the assumptions which are adopted in the ordinary folded plate

analysis (29).

In contrast with box beams of rigid cross-section, the analysis of
which has been described, the behaviour of deformable box beams is much more
complicated. It is therefore intended only to deal with a bridge-girder type
beam, the cross—section of which is symmetrical about the vertical axis, but
for which the thicknesses of flanges and webs and the heights of webs may
change. Furthermore, simplification also results in the neglect of shear
deformation in the distortional warping analysis. A related study by
Steinle (134) shows that neglecting the shear deformation can lead to an
overestimate of maximum distortional warping stresses, and that the difference
due to neglecting the shear deformation is localized near the point of
application of the concentrated loading. Steinle and Dabrowski (21) reccommend
that the overestimate of distortional warping stresses should be accepted
in practical design because of the simpler calculation involved when shear

deformation is neglected.

Reference should be made to Chapter 1 with regard to coordinate systems

and sign conventions. Index II will be used for those quantities which are
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introduced in the distortional analysis, and which correspond to quantities

in warping torsion. It is intended that the concepts described in this
chapter will give a clear view of the effects of box beam and diaphragm
proportions on the longitudinal warping and transverse flexural stresses
induced by deformation of the cross-section. The content of this chapter
is part of the theoretical basis involved in the later stiffness analysis

procedure described in Chapter 4.

3.2 Distortional component of eccentric loading

External loads between the webs or on the side cantilevers of a box
beam are transferred by flexure of the deck to the webs., Flexure of the deck
would induce transverse bending stresses in the webs and consequently in the
b;ttom flange of the girder. In design practice the stresses in the deck ‘
froﬁ this local bending effect may be calculated independently of the overall
box beam analysis. Thus, for the global analysis of a box spine-beam, the

loads not acting at webs can be approximated by statically equivalent loads

applied at side webs.

Now let us consider a single—spined box beam with a trapezoidal
periphery (Fig. 3.3a). The eccentric distributed loads p, and Py acting along
the x and y axes respectively on the box beam, can be replaced by shear loads
acting through the shear centre with distributed twisting moments Mgy =~ Pyey
and Mzy = Pyey (Fig. 3.3b,c). 1In practical analyses of box beams of

deformable cross—section, it is often convenient further to separate the

effects of torsion from the deformation of the cross—section.

The basic advantage of resolving the torsional loads into torsional
and distortional components is that wherever the exact loading system may act

we can always represent it as the sum:

Exact loading system = Statically equivalent loading system (corresponding
+ ' to torsion)
Self-equilibrating loading system (corresponding to
distortion),
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where the statically equivalent loading system is in equilibrium with the
external loads and satisfies the internal equilibrium conditions. The self-
equilibrating loading system which has zero resultants, is compatible with

the corresponding deformation pattern.

Accordingly, the antisymmetric pairs of loads resulting from the
vertical and horizontal eccentric loading may be split into two groups of
co-planar forces, consisting of the pure torsional load and a section-deforming
load acting along the perimeter of the trapezoid, shown respectively in
Figs. 3.4 and 3.5. The equivalent pure torsional forces may be obtaimed by
integrating a constant shear flow given by the simple Bredt-Batho formula,

q = m3/Q, where Q denotes twice the value of the entire area enclosed within
the perimeter of the trapezoid. Consequently, they are in equilibrium with

the external twisting moments my, and msy respectively.

The section-deforming loads as shown in Fig. 3.4c and Fig. 3.5c can

then be obtained from the following equilibrium conditions

(SCA + Sc,Z)Sin¢ = m;v/bt

St,1 7 St,2 7 2(S¢,q *+ S¢2)c0s¢ = 0 (3.1)
Sp,1 = Sp,2 =0
and,
St * Stz = (S¢q 7 Scp)cost = mg/h
gbA + §b,2 - (§cﬂ - §CJ2)cos¢ = msn/h (3.2)

Sc,1 = Sc,2 =0

Thus, we may obtain the vertical distortional component as

2
S = bb . m3v
L2 T T
by . >
! Q bt b !

n
n
N
I
©
g‘l
I
vl:
o In
(4]
—+
N
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and the horizontal distortional component as

- b _ bt °
b,2 a 3H E; t.2

- h _h. 3

S =10 Wy, =¢85
h‘z Q i bb :

These two groups of distortional forces are self-equilibrating since
the resultants of the forces adjacent to the box corners are equal and
diametrically opposed to each other (Fig. 3.6). Thesé resultants act along
the diagonals of the box producing racking of the cross-section, and are

evaluated from the following expressions

_ Yan®+ (by + by ) i+ (by + by by o

5, - St ) . (3.5)
4by, 49 bt
and,
Z 2 2
S by v b)Y g /At + (by + by) (3.6)
d t,2 4Q 3"

4by,

The vertical and horizontal components of the diagonal resultants are

expressed as

Sv - —h_‘ St 2 = hobb . mgv = bb . mgy
2b, ° 22 by 2(by +by) by
(3.7)
by + b b mzy
L t4b . St =4_b e
b t
and,
= h = h 1
(3.8)
- by + by = by + b 1
= _t b = 2t =
s, =t~ b 5 _ - Mgy = — m
H 4, G2 49 Mo gy
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It can be seen from Fig. 3.6 that the distortional diagonai resultants
which arise from a positive twisting load due to the horizontal eccentric
loading, are in the opposite sense to the distortional diagonal resultants
due to the vertical distortional component. Thus the positive horizontal
twisting load accompanied by the positive vertical twisting load together

reduce the distortional effect, but increase the twisting effect.

Each of the four distortional forces acting along the sides of a
trapezoid or acting along the diagonals of the trapezoid together, are
defined as a generalized distortional force. It should be noted that the
term generalized force is used to denote a group of forces that are defined
in direction and relative magnitude. Thereafter, the group can be specified

by a single number. Note also that each of these two groups of distortional

forces provide equal and opposite couples of magnitude my, = ;%“‘mSV and
1
Mgy =~ %'mEH respectively. We can then define the distortional moment as
1 ,b
mg = mgy *mgy =5 (2 mgy - my ) (3.9)

by

to represent the generalized distortional force. In the case of a rectangular

cross—section with by = by, then

: 1
my =75 (mgzy = mz) (3.10)

The effect on distortion of sloping the webs is clear from Eq. 3.9
in that the deformation of the cross—section reduces as the slope increases.
This is because the bottom flange is shorter and hence, more stiff. On the

other hand, the torsional shear stresses are increased.

We should now consider the effect of loads applied at the cantilever
portion of the cross-section as shown in Fig. 3.7a. If a thick flange is
used almost all the cantilever fixed moment is taken by the flange. The

cantilevers can be equivalent to the mechanism shown in Fig. 3.7c. The
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distortional loading and transverse moments on the walls of the box

increase in the same proportion as the torsional load increases, so that

the distortional moment is

_ P by,
m = Y . . e
dv > bt p 4

(3.11)

On the other hand if thick webs are used almost all the fixed moment
is taken by the webs which are equivalent to the mechanism shown in Fig. 3.7d.

The distortional moment can then be calculated as

b
m, =P (% - (3.12)
dv 2 2 X

In fact the cantilevers are part of the frame of the whole box and the
cantilever fixed moment is taken partly by the web and partly by the top
flange. If we specify the ratio of the distributed moment in the top flange
to the applied fixed moment as the distribution factor L, , the distortional
moment due to the vertical eccentric load acting at the cantilever portionm,

can be expressed as

- Py DB} b
Ty T —2! [q(ex = by) + ;i"‘ Zgby — (1 = zg)by ]
b
= .%}.[.gi ey — (1 + F% Y - Z4)by ] (3.13a)
t
oxr
Mgy = Péy- [udex -1+ ad)(l -Cd) bx] {(3.13b)

where ay = bp /bt is the ratio of the width of the bottom flange to the top

flange.

It is apparent from Eq. 3.13 that when g = 1 or L 0 we may obtain
the same results as in Eq. 3.11 and Eq. 3.12 respectively. If the bottom
corners of the box are assumed supported horizontally and vertically, the

distribution factor Z4 due to a unit fixed moment can be obtained from the

analysis of a frame formed from a unit slice of the box beam.
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3.3 Deformation of single~spined box beam

A single-spined box beam with a deformable cross-section is deformed
under torsion into the shape shown in Fig. 3.8. The corner points of the
cross—section are horizontally and vertically displaced by the components
;t’ Gb and ;t’ ;b respectively. The displacements Gt and ;t are generally
not identical with Gb and ;B respectively because of the effect of the

different stiffness exerted by the upper and lower flanges.

The relationship between the displacements ;t’ Gb, v and ;b
characterizing the deformation of the cross—-section, will be fixed using

the condition that the compatibility of the cross—section is preserved.

. The tangent displacement to the side webs may be expressed in two ways,
i.e.,
;h = Gtsin¢ + Gtcos¢ (3.14)
or
;h = ;bsin¢ - Gbcos¢ (3.15)

where ¢ is the angle of the top flange with respect to the inclined side web.

By comparing these two equations we have

;tsin¢ + Etcos¢ = Gbsin¢ - Gbcos¢ s

and consequently

vy =vp ¢ 2t U (3.16)
tgo

It can be seen from Eq. 3.16 that the displacement components are

interrelated. It can also be seen that for a rectangular cross—section ;b

must equal ;t'

The rotationangle for the side web can be expressed as
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_ (Gtsin¢ - ;tcos¢) + (;Bcos¢-+ Gbsin¢)

¢3 - hc

=-(Et+-ab)-sinf¢~+'(;5- ;t)'sin¢cos¢
h (3.17)

Substituting Eq. 3.16 into Eq. 3.17 we have

Gt+ﬁb
h

b = (3.18)

Hence all the rotation angles of the webs due to deformation of the
cross—-section are identical with each other and have the magnitude calculated

by Eq. 3.18.

The shape of the cross-sectional deformation shown in Fig. 3.8
indicates that the upper and lower flanges rotate by angles wslt and ¢s,b/
respectively, which are not generally identical with each other, These
horizontal rotation angles can be expressed with relation to the vertical

translations of the corner points as

and
2%
Vs = b (3.20)
J bb
Substitution of Eq. 3.16 and Eq. 3.18 into Eq. 3.20 gives
v -ELwH + 2h (3.21)

Thus, we are now able to define the distortional angle as the
characteristic quantity for representing the cross-sectional deformation.
It is given by the rotation of the top flange of the cross-section related to
the inclined side web and can be expressed as

Y, = V t ¢y =
d it 3 by 5

(3.22)
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Substituting Eq. 3.14 into Eq. 3.22 we then obtain

Lol — ol

Y =. M + ...2_. ( vh - GtCOt¢) (3‘23)
d h by  sing

where Gt’ Gb and ;h are the tangent displacements to the sides of the box

associated with distortion.

Corresponding to the definition of the generalized distortional moment,
the unit value of a distortional angle will be provisionally defined as the
generalized distortional displacement which represents the group of
distortional displacements producing a unit quantity of work when operated

on by a unit generalized distortional force.

It can be seen that if cross—sectional deformation is not constant -
along the beam, it causes not only the motions in the plane of the cross-section,
but also out-of-plane displacements of the cross-section. These additional
wa%ping displacements are called distortional warping displacements, and

are associated with in-plane bending of flanges and webs.

The component of displacement in the plane of the cross—section which
is directed along the tangent ds to the mid-line of the walls will be
denoted by ut(5,§), and the warping displacement (i.e., that in the z-direction)
by wﬂg,s). In the torsion theory of thin-walled beams, the tangent
displacement uy is found directly from the product of the twisting radius
and the rotation of the whole cross-section. However, in the present case
the term is found from the displacement of the cross—section associated
with distortion. In other words, “t(313) may be expressed as the product
of a distribution function Vg(S) of the tangential displacement and the

measure of distortion Y4 expressed in Eq. 3.23 and shown in Fig. 3.8, i.e.

uy g = V5(8) vy (2) (3.24)
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To develop an approximate theory neglecting sﬁéat deformation, it may
be assumed that the in-plane motioﬂ is accompanied by sufficient out-of-plane
displacement (warping) to annul the average shear strains in the plate which
form the cross—section. This can be expressed as

Mpds d _ o ' (3.25)
2z 9s

After substituting Eq. 3.24 into Eq. 3.25 and integrating it we obtain

. s
wi,d =W Ty (z) fo Vs(S)ds (3.26)

Since the origin of the curvilinear coordinate S lies on the vertical
axis of symmetry of the cross-section, and the distribution of the

longitudinal displacement is antisymmetric about this axis, we have Wz o= 0.

Thus, we finally obtain

vig == vy (@) £] Vs(8)ds
= - 0y(8) y] (2) (3.27)
where
wy(8) = f3 Vs(S)ds (3.28)

indicates the distribution of the longitudinal displacement and is defined

as the unit distortional warping function and has dimensions of L*.

It thereby becomes possible to follow the analogy between the section
properties and functions which have been considered here with the
corresponding quantities in warping torsion. This will be shown in detail

in the following sectioms.

3.4 Distribution of normal and shear stresses over the cross-section

The warping displacements are not, in general, constant along the axis

of the box beam. Longitudinal stresses thus arise from the constraint of
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warping. If, in turn, these warping stresses vary along the beam, shear
stresses are required by considerations of longitudinal equilibrium. These
shear stresses in the planes of the plates also change from section to

section,

Differentiating Eq. 3.27 once we can have

2

9
sy - sd = - 0 (S) : Zd , (3.29)
‘ a3 z

and the distortional warping stresses are then given by

aZ
o. =g, ¥id =-E,0(s) Y (3.30)
i 1 1I 2
9z 9z

Since the distortional forces are in a self-equilibrating system, the
warping normal stresses Oy must also form a system in equilibrium as in
warping torsion; they produce no normal force Nz, no bending moments My and

My, and the conditions
onndA = foxdA = .&onydA = 0 (3.31)

should be satisfied. To represent the resultant of the distortional warping
stresses we may define, by means of the analogy to the warping torsion, the

distortional bimoment as

By = J/, opwdA (3.32)

which has dimensions of FL®.

By substituting Eq. 3.30 into Eq. 3.32 we have

2 v4 (3.33)

3 z?

=
]

I = EJp

where

Jy

S, vy dA (3.34)

and is called the distortional warping moment of inertia.



99

From Eqs. 3.30 and 3.33 we may finally obtain

o. = Plu. = fou

;= Loy . (3.35)
J]I

It is apparent that this expression is analogous to the normal stress

formulation in warping torsion theory.

For the section with a vertical axis of symmetry shown in Fig. 3.9a
the warping stress pattetrn has a linear variation across each element plate
as shown in Fig. 3.9b, which is based on the plane assumption of ordinary
folded plate theory. Because of the antisymmetry of the diagram of Wrs

the conditions .& wydA = 0 and & wyy dA = O are satisfied.

From the linear variation of wy we may define

o = 2mi = X (i=0,1,2,....n+2) (3.36a)
Wy g X4
w . X . .

Ap = _I,mi42 = Tneis2 (1=1,2,....,n+1) (3.36b)
mnln+3 xn+3

B = - “I,n3 (3.36¢)
“r,1

and

wn,nﬂ+2 _ wn,nﬂ+2 . wn,n+3 = -XiB

b, T Wy,14 Wy ne3 Wy 4 )

(i=1,2,....,n+1) (3.364d)

where x,4, KyeeoresXy 5 are the x coordinates related to the local

coordinate system.

:

Thus, the ratio of wy at the two ends of individual webs can be

obtained as

w . _ow . w W _ — ;1
I,n+is2 = “mn+i+2 | Ym,n+3 %11 o A; (=B)( 'o—ti)
O, i W, n+3 “, 1 o
= -8B A'
.

! (3.37)
= B\”i
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where
¥, = ..._>‘_i_ = ~ Xn+is2 A .;E_t_ . Xn+is2
|
(i=1,2,....,n+l) (3.38)

In order to establish equations of equilibrium and hence the
relationships between interior forces, free body diagrams of web and flange
elements are considered (Fig. 3.10). Normal stresses in the elements in the
longitudinal direction may be replaced by bending'moments M(z) and normal
forces N(z); shear stresses on the planes of elements being replaced by
shear forces Q(z). Interior forces g, a, n between the individual webs and
flanges in their axes of contact, and transverse moments per unit width mgp,
represent transverse flexural distortion stresses. Actually interior force

g is neglected in the present approach.

We may now obtain the ratio B from the condition J, o X dA = 0:

1) The moment with respect to the y axis of symmetry due to the normal

stresses at the upper flange is

M.t= 3

[o(2x5+ x¢) + ag(2x3+ %))

Dby i i
i1 6

' [aj(2x+ x;,0) + i, (2xjyq+ X)) - (3.39)

2) The moment with respect to the y axis of symmetry due to the normal

stresses at the lower flange is

n . . ) ) '
M, = _3.21 bbA6tb,l [ A (2%p4jap + Xnsis3 ) * Mia1 (2Xnsia3t Xpaje2)]
=
= —B ﬁb (3.403.)
where
- n b . t .
b i§1 —EL'?M [Ai(zxn'ri-rZ + Xn+i+3 )+ A (an+i+3 * Xpais2 )] (3.40b)
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3) The moment with respect to the y axis of symmetry due to the

normal stresses at the webs

nl bty

T T Lo 2%+ xp,5,2) ~ A B(2Xngi,2% %))
1=
= Hp,1 = B My (3.41a)
where
;Ih1 = n-g .lmi__ U-i (2Xi+ Xn+i+2) (3.41}))
: i=1 6
and
M = “E' hejthj A'(zxn+i+2; x{) (3.410)
h,2 i=1 ——_6_ !

From the equilibrium condition My + My + My = 0, we then obtain

g = My + Mp g (3.42)
Ry + ﬁh,z
For the single cell section shown in Fig. 3.11 we have from Egs. 3.39.
to 3.42

b
3.2 b
g = Yo by ty + 2h by + 5 )

(3.43)
2 by
In particular, for a single cell rectangular section with by = by and
he = h , from Eq. 3.43 we can obtain the following formulae which have

been shown in (135):

*
o= 2ot (3.44)
az + 3
where
t
ot = o lr)ll—t
h
" by ty
% 7 hotp (3.45)
b
and A, = —
| by -



102

We will now continue using the ordinary folded plate analysis process

to set out the relation between normal warping stresses and displacements.

In order to arrive at a general solution, the individual plates are first

considered separately, as a result of which the compatibility condition

along

an edge is established.

As we have defined them, the displacements tangential to the side web

plates are designated by ;h' The horizontal displacement of the upper flange

plate is designated by Gt’ while the horizontal displacement of the

lower flange plate in the opposite direction is ;b' We may express the

displacements Gt’ Gb and ;h in terms of fj = By/Jp, neglecting the

effect of shear deformation.

where

thus

Hence, we have, for the side web plate

- M
Vh=_Mh=_wh.__h
BT EqIn Wy
1 .3
hZ
=  C
— 2 My

We will now express My in terms of fjy

_ _upq - __ ()
Mh = - 1.1 I,n+3 £ Wy = - _( m]L1 f]I Wh
2 2

Substituting Eq. 3.47 into Eq. 3.46b we obtain

) _ ]_+B ]
Yh T En “mt B

- (3.46a)

(3.46b)

(3.47)

(3.48)
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Similar relations may also be derived for ;t and Gb. Summarising,

we have
Goatmt, I g
-1 —m- 2
ut —._n1_1—.——.f]1 (349)
E; by .
T X ML
E1 bb

Differentiating the geometrical relation Eq. 3.23 twice and

substituting Eqs. 3.49 into it, we then have

- - -

Yy = up oty 2 (_h ~ uy cotg)

h bt sin¢
Sl 2 g otmt Aeotd e Bogy 2 gy “rt 2 ae)g
Eth bt " Eq by Esh by Eyhcsing by

= %nt fx  [2bby - 4h bycote + 2b} B + 2b;by (1+8)]

2

=21 fr [2bgby - 20b- by)by + 2b} B + 2byby + 2bybyB ]
Eih by by

=201 TX_ [2b} + 2b} B + 2byb, + 2bybyB ]
E1h bt bb

_ 2(by+ by ) (Bby+ b))
Eqh b} by

14 Ex (3.50)

Substitution of the above expression into Eq. 3.30 gives

/

_ _ 2(bg* by) (Bby+ by) wl, £ (3.51)

Op,1 -
hb} by

From Eq. 3.35 we have

Opq = £ 0p (3.52)
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By comparison of Eq. 3.51 with Eq. 3.52 we finally obtain

ht? by,

. - 2
A 2(b;+ b_) (Bby+ by) (length’ ) (3.53)

By using Simpson's integration method, the distortional moment of

inertia J; is evaluated as

2b.t N b,. £, -
JII/wlzI,1 _% (0‘2 + a? + aoa.l) +iZ1 it o B S I (az, + aiz41 + 4_'x,i(1i+JI )
= 3

D by ity 2 2,
' i§1 ”b_%il— (ah,i + apisd + apj @pjag )
n . .
P3Pty v e)
j=1 3
. n .t
= EEE;E__ (a: + a% + @50y) +i§1bil tt i (a? + d?+1 + 050, )
sz ity 2 2
+ I P ob,t Tht (X + A1+ A54551)
i=1 3
n+1 . ,
A B AR CHES SV RS (3.54)
1= 3

For a single cell rectangular section, from Eqs. 3.53 and 3.54 we can

obtain
op g = - BB (3.55)
! 4(1+8)
and
1 .3 '
5, bWty 3+20f *af) +afef | (3.56)
I 48 6 + (ag + ap)

where, ag and a;are shown in expressions (3.45).

The associated in-plane shear stresses caused by the constraint of

warping are determined from the condition of equilibrium

t-iﬂL dzds + t ks dzds =0 (3.57a)
9z 9s
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or
90 -9
e 21 v 91 - (3.57b)
9z 9s
Substituting Eq. 3.35 into Eq. 3.57b and integrating we obtain
B'
=q® - 1S (3.58)
qy q — "1
I
where
s
Sy = f: w dA = fo wt ds (1engthA) (3.59)

is called the distortional statical moment of area.

The constant of integration in Eq. 3.58 is determined from the

compatibility condition

sﬁi Y;IS ds =0 (3.60a)

or

¢, ds = & %} ds =0 (3.60hb)

By establishing the compatibility condition (3.60b) for each cell

separately, and putting
- 0
ap: = widr (length®) (3.61a)

as the unit distortional shear flow function,

1.€.,
B, ~o
o - l1 .
9y i 3 I3 : (3.61b)

and defining
< ds b
SHJ = ¢i SI c (length™)
we may obtain a set of flexibility equations

L£] '{&; } = {5;} : (3.62)

where the flexibility coefficient matrix [f) is expressed as in Eqs. 2.19.
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¢ [N ” <

-0 -
g,1 1,1
-0 -
q S

-0 4 _ T,2 Crm oy L | TR2

fap 1= | By =¢ (3.63)
-5 ="
an'n \Sn'n.

" After solving the set of flexibility equations (3.62), by superposition

we can finally obtain the total shear flow on the walls of the section

a, - e S (3.64)
Iy
where
-~ _ -9 _
Sy = d3 - Sy . (3.65)

is called the reduced distortional statical moment of area.

It should be borne in mind that for points lying on the interior
walls of the section the unit shear flow function is obtained by the
algebraic superposition of the constant shear flows in the cells lying on

either side of the midline separating them, i.e.,

~0 -0

. } )
Ay dig,i = 9p1 7 9gid (3.66)

On the open portions of the section the unit shear flow function equals

Zero.

For a general single-spined box beam shown in Fig. 3.9a, we may
calculate the Sy diagram from the wy diagram (Fig. 3.9b). Noting that all
the imaginary cuts are located at the mid-points of the bottom flange of
the section (see Figs. 3.11d and 3.12d). The formulae for calculating the

values of Sy at characteristic points are written as

(Sn)o,1 = (Sn)n+2,n+i =0

(Sn)m'2n+i+3 =0 (i=l,2,....,n)
1 .

Sydnsisz,aneisa =73 Pb,i to,i Gop, neiez * op,neis3 ) (151,2,....,0)
1 .

(sn)n+i+3,2mi+3 3 by th.i (3“’n,n+i+3 + wypnsis2 ) (1=1,2,....,0)



107

(Syns3 N3 T (Sn)n+3,2n+4

(Spome3,2ne3 - = = pdonss 3ne3

(S]I)n+i+2,n+i+2 = (Sn)n+i+2,2n+i+3 - (Sn)n+i+2,2n+i+2 (i=2,3,....,n)

1 . -
(Snxmn4+2 = (Sn)nH+Ln+h2 - §'hﬁfh.i(3wn,nﬂ+2 + mnj) (i=1,2,....,0+1)

1 .
Gp)i,nvisz = Gpusiszmeiez ™ 5 Bith,i @popaisy  *+ ogg) 1250000041

Spng = - % bete Guy o+ 1) = (S 1 ,

(Sp)iq = =3 betelog, + vyq )

()i a1 = Gpdii * Spinsisz (i=1,2,....,0}1)
Gpdnist = Gplijur = %'btﬁ ty j Goy i+ ogjeg ) (i=1,2,....,m)
G, inr = Gpiiug - % by,i tt,i O * g i) (i=1,2,....,mn)

(3.67)

where n is the total number of cells in the section. For the above indices,
the first subscript represents the node number, and the second represents
the element number, while the subscript m indicates the mid-point of the

individual elements.

The expressions for the free terms of Eqs. 3.62 can be written as

- b N ) .
o _6—111-:';—'- [(Sn)i,i-ﬂ + 4(Sn)m,i+1 + (Spdisy,ist ]
. b . 4
+ ol (G hsisz,2neis3 * 46Pm,2n4is3 F (Spdnsis3,2n4i43 ]
6 t,; d
oobd
he; '
' 62hli (1) vz * 46z Gpdnsisz,neis2}

h. .
- B%dil [(Sn)htnﬁ+3 + 4(Sn»mnﬂ+3 + (Sn)nﬁ+3,qﬁ+3]
- (ld=1, 2,.440...m) (3.68)
The sign convention adopted here is the same as that described in

Chapter 2.

We give now two numerical examples to illustrate the calculation of

sectional properties and the distribution of warping stresses.
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Example 3.1 Single-cell box beam with trapezoidal section

The dimensions of the cross—section and the subdivision of the section

are given in Fig. 3.1la and Fig. 3.11b:

(a) Unit distortional warping function wy
The cross—sectional parameters are calculated as follows:

ao = 2, u1 = ]., az = —'1, (13 = —2

0.7a

g = 23. al, to *+ 2 x 0.7159a x 0.5 tyo(a+ )
0.7%a%+ 1.2 to* 2 x 0.7159a x 0.5 t4(0.7a + )
= 6.2
abd= -6.2
ab2= 6-2

The value of the unit distortional warping function at the upper

corner point is

0.7a x a? x 0.7a =-2.0887 x 10°2% a2
2(a + 0.7a)(6.2a + 0.7a’)

mn‘1 = -

The diagram of wy is shown in Fig. 3.1llc.

(b) Distortional warping moment of inertia I

By integrating the diagram of wy we may obtain

% x 0.5a t,(0.041774%+ 0.020887%+ 0.041774 x 0.020887)a’ = 0.001018 a5t,
3 x at (00208872 )" ) = 0.000145 a5t
% x 0.7159a x 0.5 t4(0.0208872+ 0.12949942~ 0.020887 x 0.1294994)a"= 0.003461},
%x 0.7a x 1.2 t,(0.12949942 ) a* = 0.004696 a5to

J;= 0.00932 dte
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A -

(c) Reduced distortional statical moment of area SII' = q; - 55

Using Eqs. 3.67 we first calculate the values of §:

(S]I)O,1 = (Sn)3‘3 =0

(Sgdn,g = 0

(S, ¢ = = 5 X 0.72 x 1.26,(3 x 0.1294994 - 0.1294994)a*= -2,7195 x 16°4 to

1 -

(Sp)i g = - g X 0.7a x 1.2£0(-3 x 0.1294994 + 0.1294994)a" = -2.7195 x 10%a%t,
-2 3

(Sy)y 4 = —2.7195 x 10 &' ¢,

-2
(Sids.s = 2.7195 x 10 a’t, /

(S 4 = ~0.027195a" €, %x0.7159ax0.5t:° (3x0.1294994-0.020887)a> = -4.3643x107a" £,
(Sp), , = ~0.0271952° to—%x0.7159ax0.5t°(0.1294994-0.020887)az= -4.6634x107a’ £,

(S5 = 4.3643 x 10°a' ¢,

(5), 5 = 4-6634 x 107 €,

=-—=x 0.5a x t,(-3 x 0. - 0.020 a = 0.9138 x -2a3ta -
S, 213 0.5 o (=3 x 0.041774 20887)a’ 9138 x 10

1 =2 3
(Sp),y = = 5 X 0.5 X t,(-0.041774 - 0.20887)a> = 1.5665 x 10°a t,

(Sp),,, = 1.5665 x 10°a’t, - 4.6634 x 10°a’t, = ~3.0969 x 10°a’t,

~Z 3
(Sp)m,z = ~0.030969 a’t,— = a t, (-3 x 0.020887 + 0.020887) = ~2.5747 x 10°a te

8
(Sp),, = ~3.0969 x 10°a’ t,
(5;), ; = -3.0969 x 10°a’t, + 4.6634 x 1072 t, = 1.5665 x 10°a t,

(Sp)n,s = 0-9138 x 10°a’ ¢,

For a single cell box the constant shear flow can be obtained from

-~ _ § ﬁ ds
q]I = t
ds
T
in which

¢ 51 ds = 2 (-0.030969-4x0.025747-0.030969)a’ to + _2:72  (-2x0.027195)4’ to
t 6ty 6x1.2t,

¢ 2x0.715%92 (5 046634-4x0.043643-0.027195)a% to

6xo.5to
= -0.1513 a*
ds _ a 2x0.7159a 0.7a -
¢ T T 5 + ———O.Stq + T 20 4,.44693a/1,
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Thus, we have

-0 _ ~0.1513a%
q —_—

.= =0.034023 a’t,

Sa
4,44693 E:

Finally, the S; = a; - SII diagram with arrows showing the direction

is given in Fig. 3.11f,

Example 3.2 Three—cell box beam with trapézoidal section

The dimensions of the cross-section are shown in Fig. 3.12a. To use
the formulae derived we subdivide the section into individual plate elements

interconnected at discrete nodes (see Fig. 3.12b).

The calculation is carried out as follows:

(a) Unit distortional warping function Wg

Using Eqs. 3.36 and 3.38 we calculate the cross-sectional parameters first:

2.5 _ _0.5
ao = _]TTS- = 1.6667, (11 = 1, (12 = _]j = 0.3333,
a3 =-0.3333, o5 = -1, o5 = -1.6667
Apo=1, Ay = 0.5, A3 = -0.5, A, = -1
11)1 = —]_’ 1])2 = _1.5, lps = ""1-5, \bl; = -1.
My = EEQ [1.6667(2 X 2.5a + 1.5a)+(2 x 1.5a + 2.5a)]
3 .

ato _
+ o [(3 x 1.5a + 0.5a)+0.3333(2 x 0.5a + 1.5a)¥ 5 17%0-3333(2x0.5a70.5a)]
3 , .

6.9445 alty

|l

axl.2to [ 2x0.5(2x0.5a-0.5a)]

fiy = 2:32x1:28 [(2xa + 0.52)+0.5(2x0.5a+a)] + —¢

3

0.8 azto
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ﬁh1 0.5)/5_3.)(0.5110 (2x1.5a.+a) + axO;Sto x 0.3333(2x0.5a+0.5a)
'
3

0.8287 alt,

- 0.5/5a x 0.5to (2xa+1.5a) + EE%LEEQ x 0.5(2x0.5a+0.5a)
2 0.0voa x 0.0%0
3

0.7772 a’te

 6.9445 + 0.8287 = 4 93
0.8 + 0.7772

p 9 -4.93, 0p2= -2.465, @p 3= 2.465, ay, 4 = 4.93

B g = = a(3a)x 2a - -1.0721 x 16742
L1 2(3a + 2a)(4.93 x 3a + 2a)

Thus the diagram of w; can be shown as in Fig. 3.12c.

(b) Distortional warping moment of inertia Jy

By integrating the diagram of wy we obtain the distortional warping moment

of 1nertia

Jp = 0.38455 a’t,

~ -0

(c) Reduced distortional statical moment of area SI =qp -~ SE

By using Eqs. 3.67 the diagram of the distortional statical moment of area

Sy is presented in Fig. 3.12d.

In accordance with Eq. 3.68 we may further calculate the free terms

of Eqs. 3.62., The set of flexibility equations may then be set:

5.6527 5;1 -2 531

- 0.1438 a3t,

- 1.1715 a’t,

]

- ~0 —o
-2 q;’1 +5.8333 q -2 qp 3

-2 53,2 +5.6527 qp 3 = ~ 0.1438 adt,
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Solving, we obtain

-0.12471 a3te

]

-0 = -0
1 = 90,3

-0
dy,2

1l

-0.28819 aJt,

A 0 . . . . . . .
The Sp =gqy - Sy diagram with arrows showing the direction introduced is

given in Fig. 3.12f.

3.5 Resistanceof cross-section to distortion

It has already been shown that the distortion of the cross—sectional
shape of a box beam is, in general not uniform along the axis of the beam.
Longitudinal warping stresses and associated shear stresses arise from

" constraint to warping.

Considering as a free body an element of the girder in the form of
a Elosed frame of unit length (Fig. 3.13), the gradient of the in-plane
shear and distortional loading subject the plate element to transverse
flexure. The pattern of deformation is similar to that of a Vierendeel
frame having an elevation identical to the cross—section of the box beam.
Thus the frame action of the cross—-section caused by the flexural stiffness
of the walls results in another partial resistance to deformation, which

adds to the resistance caused by the constraint of warping.

From the general equilibrium condition shown in Eq. 3.57b, we may have

; 3o wp dA + S Sar wy ds =0 (3.69)
A 3z A 3s
i.e.,
I _ aq
By = -J L uyp ds (3.70)
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And integration by parts of the integral on the right gives ' -

Bn = f q, — dS (3'71)

Substituting Eq. 3.28 and Eq. 3.24 into Eq. 3.71 we then obtain

B, = JyagY4 g ds (3.72)

—_—_— 1

Y4 (z)
From the principal of virtual work and the definition of the

distortional moment, 1t is clear that we have
By = My (force x length) (3.73)

This means that the interier distortional moment is identical to the first

derivative of the distortional bimoment Bre -

Now, the resistance of the cross—section to deformation due to frame
action is examined. We define the effective frame stiffness of the
section per unit length as the resisting component which is required to
correspond to a unit distortional angle. This is determined with the aid

of the following energy equation.

The internal energy per unit length is given by the general

expression %-kd Yg , while the external energy in terms of the distortional

. . . 1
angle and the distortional moment is equal to E'Mde'

Hence

7 50 - 7 My 74 ’
so that

Ky =By = D:_: (3.74)
where

kd(force) is termed distortional frame stiffness of the section per

unit length,

J4 which has units of 1> is defined as the distortional second moment
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of area and is equal to 1/E1 times frame stiffness.

Physically the distortional frame stiffness can be evaluated by

analysis of a frame with the shape and dimensions of a unit length of the

box beam, The frame is constrained horizontally and vertically at the

lower corner points as shown in Fig. 3.14, and is loaded by diagonal forces

with unit horizontal components, i.e.,

ighore

web as

Thus,

SH =1

2

Jit? + (by + by )
bt + bb

84 = (3.75)

The deformed shape of the frame slice is shown in Fig. 3.15. If we

the axial deformation of the individual plate elements, we will have

u1cos¢ - vjsin¢ = V?Sin¢ - ujcos¢p =0 (3.76)

The rotation angle for the left side web can be expressed as

v = u1sin¢ + vy cos¢ (3.77)
h he

Substitution of Eq. 3.76 into Eq. 3.77 gives

i u1sin2¢ + vy singcos¢ _ u1(sin2¢ + cos?¢)

hesing h

Yhi

(3.78)

D‘l_{:

Similarly we can write down the rotation angle for the right side

Yhe © (3.79)

")

u, + u
= = = 1 2 (3.80)
YTh T YM T Yhy 7 oh
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We use Eq. 3,80 instead of Eq. 3.78 or Eq. 3;79, since in using-
the computer stiffness method for plane frames, axial deformation is also

included.

The horizontal rotation angle may be written as

= 3.81
Yy 5 (3.81)
Thus the total distortional angle can be expressed as
_ __uq +uy Vo) = vy
Y& Tt <7 *
2h bt
= = bt (U1 + u2) + 2h (V'Z - ) (3.82)

Zhbt

Since the corresponding distortional moment is My = 2h, from Eq. 3.74 we -

can calculate the frame stiffness

4nl by

kd=
—bt(u1 + u2)+2h(v2 - v1)

(force) (3.83)

and the distortional second moment of area is

2
Jq = 4h"by (length?) (3.84)

Eq I—bt(u1 + u2)+2h(v2 - v1)]

where u4y, U, and vy, vy are the horizontal and vertical displacements
respectively at the upper corner points of the section, and the sign

convention follows the local coordinate system shown in Fig. 3.15.

In particular, for a single—cell box beam if we ignore axial and
shear deformations, and assume that the effect of the slope angle of the
side web with respect to the flange is insignificant we may analyse the
frame slice directly by the influence coefficient method neglecting the

vertical displacements of the upper corner points (see Fig. 3.16).
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Releasing the frame at the mid-point of the upper flange,'from the
conditions of symmetry and antisymmetry, it is evident that we can clarify

the redundants as

X1=O

]
o

X9

Placing a pair of unit loads at the released position gives the ﬁ3
diagram (Fig. 3.17a). The bending moment diagram due to external forces is

shown in Fig. 3.17b.

The influence coefficients can be calculated as

-2
- M3
633 - fA —E' dS
N R T IR R DL
12D4 12Dy, 6D,
2
N [ (by + 2by)h.he , h.by
3p 6 Dh Db

From the compatibility condition

oy X4 T A3P =0

33 73

we therefore obtain

Dy Dy , 12
20 5 [(by + by he 5%+ b}, ]

Xy = (3.85)

Dy .3 . Dy 3 2 2 y DiDy

where Di, Dy and Dy, are the transverse flexural rigidity of the top and

bottom flanges and side webs respectively.

The horizontal displacement at the junction of the upper flange and

the side web is

2
8, =h_l’_b_[2,£‘_‘3.+2h]— h [(bt+2bh)hc+l—)Il bﬁ] X3
6Dh bb Db 12Dh Db
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We then finally obtain the frame stiffness of the section per -

unit length as

2
kg = B o= 20 24Dy (3.86)
where
2 D,D
_ 2 b:: by + zhcbf Dy & thbbb% Dy 4 3b€ h, _’t_z_b.
M = % Dh Dp Dh (3.87)
3 D --DsD
Do b} + L b3 4+ 2n_ % + byb, + b2 ) —Lb
D D, © S S A I Y
h h h
For a rectangular section with by = b, =b .and he = h, we may obtain
(135)
2_2_ +3 Ip*t Iy | B
h
I (3.88)

Ib * It + 6.jL.Ith

4
Iy, b Ip

where I, Iy and Ip are the plate moments of inertia per unit length of the

top flange, the bottom flange and webs respectively.

A frame analysis using the influence coefficient method produces,
however, for complicated cross-sections a procedure rather too complex. It
is more convenient to use the computer stiffness method for plane frames.

A supplemental program, PRFRAN, to the main analytical program has been

written based on the theory of plane frames (see Appendix II) for calculating
the frame stiffness at discrete cross-sections. To operate this program the
input consists of local coordinates of the junctions of the individual plate
elements located on the section considered, the cross—sectional area and the

transverse flexural rigidity of the plate elements.

The transverse flexural rigidity of an individual plate element is

denoted by D. For an unstiffened thin plate
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p = B |
L 12(1-v?) (3.89)

in which v = Poisscn's ratio.

For transversely stiffened plates, D may be evaluated as described in
the American Institute of Steel Construction (AISC) Orthotropic Plate Deck
Bridge Manual (25). An approximate expression for the effective width of

plate acting with one transverse stiffener is suggested by Wright et al

(150) as
d tanh(s.6 )

in which (for Eq. 3.90 only) d = the stiffener spacing, d, = the effective
width of plate, and a = the span of the plate in the transverse direction.
Eq. 3.90 is obtained by fitting curves given in the AISC Manual and assuming
that the plate bends with a line of inflection at midspan. Transverse
flexural rigidity is obtained by computing the moment of inertia of the

stiffner acting with the width of the plate, d, and using D =E1I/d.

For a nonhomogeneous section, such as a steel box beam with a composite
reinforced concrete deck, it is assumed that the thickness t and the rigidity

D are appropriately transformed by the use of some notional Young's modulus E.

3.6 Calculation of transverse bending stresses and the properties of
diaphragms

After analysing the frame of unit length loaded by diagonal forces
with unit horizontal components, using the computer stiffness method, we may
obtain the end moments and the shear forces of the individual plate elements.
They may be used as the influence quantities of the transverse interior forces
per unit length at the section considered and are denoted by adb and adb

-respectively. We can then obtain the transverse distortional bending moments
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and distortional shear forces per unit length at the'junctions of individual
plate elements by using the following expressions
= - Y,
mgy = Wy . 4

-
d (3.91)

- Y4
Qg = Qg + =%
db db Ty
where ;d is the influence distortional angle calculated from Eq. 3.82 in the
Vierendeel frame loaded by diagonal forces with unit horizontal components...

Yy is the actual distortional angle at the section considered.

The sign convention is that adopted in the conventional displacement
method. It states that the end moments are considered positive if they are
clockwise, and the shear force at one end of a plate element is positive when

it rotates clockwise relative to the other end (see Appendix II).

For a single cell box beam we can obtain the corner moments of the

top and bottom slabs from a frame analysis as

E, T,y
mgb = 14 (1 4 ny) (3.92a)
and
EqJgy
msb = 4% (1 - ) (3.92b)
where
_ 2 Dy _D, .3 2, DDy
n, = , h (3.93)
Db 3 Dy .3 2 2 DyD
253 + L b, + 2h (b} + byb, + b3 ) —toh

For a single-cell rectangular section with by = b, =b and he = h,

we have the following expression which has been given in (134)

I
1 - TE
t

—— (3.94)
1+ E£_+ 6 — - b
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The transverse bending moment diagram for a single~cell box beam is given
in Fig. 3.18, DNote that the moments are plotted on the tensile sides of

the plates.

So far we have considered only the transverse distortional bending
stresses O 4 due to the antisymmetrical component of load. In fact, the
multicell box beam is another instance for which the symmetrical component
of load also produces transverse stresses Ogy z - Thus, the final influence
values from the computer frame analyses should be obtained by superposition

of these two loading cases
Ogh = Ogp,1 * Odb.2 : (3.95)

where EdbA and Edmz are the influence values of the transverse distortioqal
bending stresses due to antisymmetrical and symmetrical components of load
respectively. This may be illustrated from the numerical example in

Fig. 3.19 (see also in Chapter 8), where it can be seen that the stress
Ogp,2 due to the symmetrical component is a significant proportion of the
total stress. By increasing the number of cells the stresses oy, are

increased, yet the deflections and warping stresses are not significantly

changed.

The transverse stresses due to the distortion of the cross-section can
be of the same order as the longitudinal stresses associated with
longitudinal bending and torsional and distortional warping. In such a case,
the Poisson's ratio effect in transverse bending can generate 1ongitudina1'
stresses which are not negligible in comparison with the longitudinal
bending stresses and torsional and distortional warping stresses. As an
approximation we may obtain the longitudinal bending moments of the plates
per unit width by multiplying the transverse bending moments by Poisson's
ratio, 1l.e.,

My = Vg, (3.96)
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The approximation can be confirmed by model tests (see References 83, -134

and Chapter 8).

Although it is desirable not to use intermediate diaphragms in box
bridge girders, it is apparent that additional longitudinal warping stresses
and transverse bending stresses due to deformation of the cross-sectioms,
reduce the advantages anticipated from the high torsional ;tiffness of the
box beam. A proper provision of diaphragms is preferable in bridge girders.
Thus, diaphragms are sometimes not only located at supports, but also

along the span at regular spacings. According to the different construction

forms there are three types of diaphragms (Fig. 3.20):

1) Plate diaphragms
2) Braced frame - diagonal cross bracing, V-type bracing or
inverted V-type bracing,

3) Ring stiffening.

A diaphragm is a planar figure having membrane and plate bending
stiffness, connected to the box beam (either in the cornmers only or along its
whole perimeter). 1In fact the out—of-plane stiffness of a diaphragm is
negligible compared with the warping resistﬁnce of the plates composing the
box beam. Thus, in an analysis of box beams, the diaphragm is usually
assumed to be rigid in its own plane and absolutely flexible in a direction
perpendicular go that plane. Therefore, the effect of diaphragm properties
on box beams is determined only by evaluating the corresponding transverse.
distortional stiffness., This is defined as the distortional moment that

will produce a unit transverse distortion of the diaphragm.

The transverse bracing system can be regarded as a stiff jointed frame
composed of perimeter plate elements of unit length and stiffned by
braces. Although Wright et al. (150) and Billington (11) have given a list

of formulae for calculating the distortional stiffness of transverse bracing
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systems, it is still convenient to follow the computer frame analysis

process described in the preceding section.

The distortional stiffness due to ring stiffening can be calculated
from the same frame analysis process when the transverse flexural rigidity
D of an individual plate element is replaced by the EI of the relevant
stiffener plus the associated effective width of plate which may be

calculated from Eq. 3.90.

For a plate diaphragm of uniform thickness tp, the unit length can
be thought of as the idealized thickness of the diaphragm. Since the
flexural stiffness about the axis normal to the plate is assumed to be
infinite, the diaphragm stiffness can be found from an analysis of an en@—
loaded tapered cantilever with span h considering shear strain only.
Deaoting'By yy the deflection due to shear, we obtain for any cross—section

the following expression for the slope (141).

dy, _ W (3.97)
dx GA

in which V/A is the average shear stress, G is the modulus in shear and a

is a numerical factor by which the average shear stress must be multiplied

in order to obtain the shear stress at the centroid of the cross—section.

In the case considered we adopt o = 1 (107). Using Simpson's integration

method we obtain

h 1 8 1
= —_ — -+ e
Vit i At TR A
2 2
. h(by + 10btby + by ) - (3.98)
6Gt,by by (by+ by)

So that the transverse distortional stiffness is

h  _ .6thbtbb(bt +.by)h
4 by + 10 byb, + bj

(3.99)

kd = E1Jd =
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For a rectangular section with by = b, =b , we obtain -

(3.100)

It should be noted that diaphragms are assumed to be located at

longitudinal discrete nodes only. Therefore, the diaphragm stiffnesses

{

are easy to include in the stiffness matrix.

3.7 Single~spined box beams curved in plan

Considering a single-spined box beam curved in plan, it is assumed
that the cross-sectional dimensions are small in relation to the radius of
curvature. Numerical resQIts based on the finite element method and the BEF
analogy (15) show that in a curved box beam the transverse distortional ’
stresses due to the antisymmetrical component of the load, are similar to
those in an equivalent straight box beam with a span equal to the developed
length of the centre line of the curved box beam. In accordance with this

structural behaviour, the transverse frame analysis at nodal sections for

curved box beams can be simplified.

At each nodal section, a one-way frame having a unit arc dimension
in the longitudinal direction is taken, as shown in Fig. 3.21. This unit
dimension is measured at the mid-width of the box beam. The dimensions of
a typical frame are shown in Fig. 3.22., It can be seen that the longitudinal
dimension of the frame is 1 + 0.5-% at the outer edgg of the beam, and
1 -0.5 %-at the inner edge, where b is the width of the flange in the

radial direction and R is the radius of curvature of the beam measured to

the centre of the flange.

To simplify the transverse frame analysis, the real frame shown in

Fig. 3.22 is replaced by an equivalent frame shown in TFig. 3.23, where the

plate elements having curved web plates are replaced by equivalent flat
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rectangular members. The individual plates are then considered to have a
width equal to the average of the outer and inner edge dimensions of the
plate. The width of the equivalent web plates, for instance, in a multicell

boxbeam as shown in Fig. 3.9 is determined by

X ¥ Enyivez (i=1,2,....,0+1) (3.101)

2R

b = 1-

where n is the total number of cells,

x. and x

i n+isz are the local x-coordinates of the end nodes of the

web plate elements respectively.
The equivalent frame may then be analysed by the plane frame program. For
a box beam having a radius of curvature of a practical magnitude, the
simplified procedure can be adopted with little loss of accuracy but with

a substantial saving in computational effort.

Additional distortional forces occur in boxbeams curved in plan
due to the radial component of the longitudinal bending stresses. The
radial component, 0p, of the longitudinal bending stress, Os,b » for unit
length of the box is given by

o = _%3b : (3.102)
R

where R is the radius of curvature which is positive when the centre of

curvature is on the positive side of the x axis.

The system of radial forces shown in Fig. 3.24 can be replaced by an
horizontal force acting through the shear centre and a torsional moment.

Thus, the additional distortional moment per unit length can be expressed as

Myy - -
myg = 0.5 .fA X [y - (% ¥;)1 dA (3.103)

Lyex
where M, is the longitudinal bending moment about the x axis of a

positive section,
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Iy« 1is the moment of inertia of the entiré ¢ross—section about the
horizontal centroidal axis,

y 1s the coordinate of a point on the centroid of the walls, referred
to the neutral axis x of bending of the cross-section,

A is the vertical coordinate indicating the position of the centre

from the mid-line of the top flange, calculated by Eq..2.92 or Eq.2.105,
e is the vertical coordinate of the centroid from the top flange,

R is the radius of curvature.

It is preferable to use Simpson's integration method to evaluate the

integral in Eq. 3.103 for a general multicellular section shown in Fig. 3.9

Mx m 2 2. -
"R 2 D20p Y H TG0 =IOy )] KAy

12 I, R '~

(3.104)

where m is the total number of plate elements which form the cross—section,
yj and y, are the vertical coordinates of two end nodes of the ith

plate element,

Az, is the area per unit width of the ith plate element.

The longitudinal bending moments in statically—determinate box beams
are independent of the torsional moments. In the case of curved box beams
under statically-indeterminate conditions, the bending moments M, are not
given at the outset (and the equivalent distortional loading is not known in
advance) and are themselves affected by the cross—sectional deformation.
Generally, the distribution of bending and torsional moments in curved box
beams may be approximated, initially assuming non-deformable cross-sections,
by the use of the stiffness analysis program. The distortional loading is
then treated as the sum of the distortional component of the loading and
the additional distortional component of the radial forces given by Eq. 3.103.

The interaction between the bending and torsional moments influenced by



126

the deformation of the cross-section can then be included by a further

iterative procedure which will be discussed in later sections.

3.8 Basic differential equation for distortion

In order to implement the stiffness analysis procedure we here follow

an energy argument leading to the governing differential equation.

The strain energy corresponding to the distortional warping stresses

may be written as

= Ey 2
fv o €5 av = 7IV 55 dv

Nf =

u =

e A LTS | R ) 2

E?1 £ (v (2)1° dz (3.105)

The energy required to distort a frame formed by a length dz of the box

is
1
U, = 5 kg g (2) dz (3.106)
thus,
1 2 .
u, = 7 ﬂ ky vy (z) dz (3.107)
The potential energy of the external generalized distortional force
is
vV = - fl md(z) Yd(z) dz (3.108)
The total potential energy is given by
W = U=+V
= B syt @)z ¢ 2 T kv (2)Pdz - £ om,y,(2)dz (3.109)
I R 2 1 dtld 1 d'd )
or
W = J.'.F(Z, Yd, 'Yé’ Yclj‘ )dz (3.110)
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where ) -

. E -k
’ “ = 1 n 2 k 2
F(z, Yg» Ya» T4 ) == Jplyd ) + 7;.(76) - myvg (3.111)

According to the principle of the stationary value of the total
potential energy, we have

W = 0 (3.112)

The Euler-Lagrange equation is used to obtain the first variation of

the total potential energy, thus

oF ) oF 32 oF
—_— - — (—)) ¢ _.2_(_”. = 0 (3.113)
3Yd 3z 3Yd dz 3Yqg

Thus we obtain the basic differential equation as

qu
E, Jp d + kyvy = my (3.114a)
9z 4
or
BQY
-5—51 + 4T yy = D4 (3.114b)
z EyJp
where

4
Ag = ' d (3.115)
4E, Jg .

is called the distortional decay coefficient.

For a curved box beam Eq. 3.114b should include the effect due to
the radial component of the longitudinal bending stresses. It then takes

the form

4
M+ aAfyg = = (g Xx + my) (3.116)
az* EyJn R

where R 1is the radius of curvature, and

U4 is the initial curvature multiplication factor.
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From Eq. 3.103 we have ’ ' -

© 0.5

It can be seen that the basic differential equation for distortion is
identical in form to that for beams on elastic foundations. The physical
basis of the analogy is the fact that the transverse bending strength of
the box beam provides a continuous elastic support for the webs, which
therefore behave like beams on elastic foundations. Although an analytical
procedure based on the BEF analegy has been given (150, 11), a more efficient
finite element technique will be introduced in following chapter for the

solution of the differential equation.

3.9 Interaction between bending, torsion and distortion

We denote the centroid of the box section by G and take it as the
origin of the local x, y axes as shown in Fig. 3.25. The bending-torsional
characteristic displacements in the cross—sectional plane can be expressed
in terms of the lateral and vertical translations u(z) and v(z) of the
point G and the twisting angle 83 with respect to the shear centre and the
deformation of its contour, i.e., the distortional angle y;. The longitudinal
displacement ws(x, ¥, z) in the z direction consists of those due to bending,

torsion and distortion.

For a straight prismatic box beam the fundamental equaticns governing

the force-displacement relationships can be summarized as follows:

4

1 du
- — EBly — =p
uX Bz X
1 9%
Hy 9z (3.118)
4. 2
-l oga PO,y 25 = Ms, ext
My dz ' 9z
847
E,J 4+ ky vy = mg

oz
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for which uxand uy are the shear deformation parameters.

From the above equations it would seem that each of the bending,
torsional and distortional actions is independent of the others and can be
treated separately. However, strictly speaking this independence is valid
only for a straight prismatic boxbeam with bi-symmetrical cross-sections (70).
Apart from special cases such as curved boxbeams or multi-spined boxbeams,

there is some interaction between bending, torsion and distortion.

The interaction between distortion and bending-torsion is really a
difficult problem. Lie (70,71) tried to solve this problem, but his results
were limited to a single—cell prismatic boxbeam only. Since the main
advantage of the basic technique in this thesis is its simplicity, all
modifications have been governed by the need to retain this simplicity and,
consequently, the economy of the solution procedure. Considering this
special requirement, a numerical iterative procedure, which has been

suggested by Billington (11), is adopted here.

At first, we introduce the rotational angle of the top flange ¥;
and the rotational angle of the side web bz (Fig. 3.25). The relationship
between these two rotational angles and the twisting angle 63 and the

distortional angle y; can be expressed approximately as

1

n

wz - ¢3 (3.119a)

or
1 -1

From Eq. (3.119b) the distortional angle can be thought of as a
rotation of the flange which is additive to the twisting angle. An increase
in twist is equivalent to a decrease in torsional stiffness and the

influence of distortion is to reduce the effective torsional rigidity of the
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cross~section. Consequently, we may define the rotation ¢3 as the

effective twisting angle, and the torsional stiffness reduction factor is

given by

gy = 3 (3.120)
Y3

Substituting Eq. 3.120 into Eqs. 3.118 and assuming that the

torsional stiffness reduction factor is constant along the z axis, we have

1 . a*u
- L du -
iy 1YY oz * X
1 v
- — Eylx — = Py
Lly 9z
(3.121)
4 2
P
- % opy P Vieger 2V = mpen
ui 3z dz2
3%y, -
E,Jy 5—“1 + kyvy = my
Z

It is apparen£ that the third equaticn in this set of equations 1is identical
in form to the original torsional governing differential equation, but uses
reduced torsional rigidities instead of full torsiomal rigidities. This
mathematical analogy provides the basis for an iterative process which leads

to the modified solution considering the interaction between distortion and

bending-torsion.

The compatibility condition considered is that the effective twisting
angle should be equal to the sum of the half distortional angle ( %—Yd) and
the actual twisting angle 03 given by multiplying Yz by the torsional
stiffness reduction factor. The compatibility criterion can be expressed

by the following equation

Vst~ ¥3q =0 (3.122)

It is shown by numerical studies that the changes in torsional
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stiffness are not sensitive to the magnitude of torsional moments. Thus

in many cases no reduction is necessary in order to obtain accuracy

sufficient for design, and that in such cases an overestimate is made for

torsional moments and hence distortional stresses. In most cases two or

three successive reductions of the torsional stiffness are sufficient to

calculate the effects of distortion for the loading case considered.
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Fig. 3.1 Response of boxbeam of deformable cross-section to torsional
load

(b) Box spine-beams

Fig. 3.2 Typical folded plate and boxbeam cross-sections
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Fig. 3.14 Plane frame for assessing frame stiffness cf unit length

Fig. 3.15 Deformation of the plane frame
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Fig. 3.17 Bending moment diagrams of released structure
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(a) Plate diaphragm

(b) Diagonal cross bracing

(c) Inverted V-type bracing

(d) V-type bracing
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(e) Ring stiffening

Fig. 3.20 Different types of diaphragms
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Fig. 3.23 Simplified equivalent transverse frame



150

Fig. 3.25 Displacements in the cross-sectional plane

Fig. 3.24 Distortional forces due to bending moments in curved boxes



151

CHAPTER 4

A ONE DIMENSIONAL FINITE ELEMENT FAMILY

4,1 Introduction

Although a continuous structure is in reality three-dimensional, a
reduced one—-dimensional form has certain simplifying advantages in many
instances. However, the conventional truss or beam type elements are over-—
simplified to represent box spine-beam bridges. Thus, associated structural
effects such as warping and distortion should be included in the one-dimensional

element formulation.

The main objective of this chapter is to present a family of special
one-dimensional sub-parametric elements which may be used for global bridge
deck analysis; especially for the preliminary elastic analysis of a variety
of general box-type bridge decks, such as box spine-beams, multi-box girders
and articulated bridge decks. The available elements included in the family

can be specified as

- two—node truss elements;

- 1inclined cable elements with catenary action;
- two-node solid beam elements;

- three-node solid beam elements;

- thin-walled beam elements with rigid sectioms;

~ thin-walled box beam elements with deformable sections.

The thin-walled box beam element can be regarded as a general beam
élement in this family. In addition to the usual six degrees of freedom at
each node, represented by the three displacements and the three rotations,
three more degrees of freedem have been incorporated in the formulation, to
account for the warping and distortion effects which occur in box beams. The

additional degrees of freedom are designated as the rate of twisting angle,
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the distortional angle of the cross~section and the rate of the distortion.
The element formulation is available for structures with variable cross-

sections as well as with curved geometric shape.

Since all the other elements included in the family can be realized
as a reduced form of the general box beam element, it seems convenient to
include here only the procedure derived with respect to the thin-walled box

beam element. The other elements can then be obtained from the general form.

It should be noted that the additional degrees of freedom for the
general beam element cannot be transformed from one coordinate system to
another. These types of elements can only be used in cases where the assembly
of general beam elements forms a single continuous curvilinear or rectilinear
lines. As a result the global treatment of the additional degrees of freeéom
can then correspond with the local system. It is apparent that this

limitation can be complied with for most girder bridges.

A basis for constructing a finite element approximation is the
principle of minimum potential energy, which involves a displacement field u.
According to this principle the increment of the total potential energy due

to any admissible displacements requires

Al = 0, (4.1)
The total potential energy increment AN can be expressed as
Al = f, AeTDe v - vaefDeodV+fv AeTo,dV - f,Au"b AV - [, Au'S dA - IM'P (4.2)
where € is the strain tensor, €, is the initial strain tensor, o, is the vector
of initial residual stresses, D is the elasticity matrix, b is the vector of

body forces, § is the vector of surface tractions, P is the vector of

external concentrated forces, V is the volume and A is the surface area.
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After some manipulation we can finally obtain the general form of

the stiffness equation (80)
KG = F ) (4.3)

where K is defined as the stiffness matrix, 8 is the generalized nodal

displacement vector and F is the vector of nodal forces.

The theory presented in this chapter is the basis for the development
of the necessary programming for the linear elastic solution of bridge decks.
. The extension of the family to multi-box structures will be discussed in
Chapter 6, and the non-linear behaviour of the cable elements arising from
catenary action will be dealt with in Chapter 7. These analytical facilities
will all be incorporated into the program CUBAS, developed in this thesis

(see Appendix I).

4.2. Geometric definition

- 4.2.1 Geometric definition of a thin-walled box beam element

Consider a thin-walled box beam element with the variable cross-sections
of Fig. 4.1. The external edges of the element may be curved, yet the
sections of the element are generated by straight lines. The element sections
are specified to have at least one axis of symmetry with respect to their
widths, though this is not a necessary condition for the other type of elements

in the family.

The locus of centroids of the cross—sections is defined as the
element axis, and the cross-sections are assumed to be normal to this axis.
Although for a thin-walled box beam element the element axis may be distinct
from the flexural axis (line of shear centres), they are assumed to be parallel
to each other. We should bear in mind tﬂat the torsional characteristics

are actually related to the flexural axis of the element.
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The element has two nodes located on the.centrbids of the end sections
and an additional internal node located at the middle of the element axis.
Iwo coordinate schemes are used in the element forqulation: the Cartesian
orthogonal coordinate system x, y, z and the natural coordinate system
E, n, L. The origin of the normalized coordinate system £, n, §.lies at
the middle point of the element axis (Fig. 4.1). It is assumed that ¢
7aries between -1 and +1 on the respective faces of the element. The geometry
»f the element axis is then defined as a mapped image of a parent straight
alement. The length £ of the element is mapped to a length of 2 in the

mit system.

1.2,2 Definition of the local orthogonal coordinate system

The local coordinate system along the element axis is defined as

‘ollows (Fig. 4.2).

The origin of the coordinate system is located at the centroid of
‘he cross-section, and the orientation of the local axes is assumed to
roincide with the principal axes of the cross—section. The local z axis is
:angential to the element axis running from node 1 towards node 2, and for
itraight elements it coincides with the element axis., The local y axis
wormally represents the axis of symmetry with respect to the width. The

.ocal x axis can then be specified as forming a right—handed orthogonal system.

A suitable method for describing the orientation of the local y axis
s to give the global coordinates of two points that lie in one of the
rincipal axes of the section. In most cases the mid-points of the bottom
‘langes are specified by the geometrical and environmental requirements.
hus it is convenient to define the global coordinates of the centroid G
ind the mid~point of the bottom flange P, for specifying the orientation of

‘he local y axis. A unit vector in the local y direction is given by the
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- - -
vector difference of rp and rg

y = -r.p' - T, , (4.3a)
GPo
or § = cos(X.y) . i + cos(Y.y) . j + cos(Z.y) . ﬁ s (4.3b)

where i, j and k are unit vectors in the global X, Y, Z directions

respectively, and the direction cosines are given by

X, - X

cos (X.y) = P G
Jxp =~ X P+ (Yp = Y+ (Zp - 24)°
Y, - Y
cos(Y.y) = P 6 (4.4)
/(Xp = Kl + (Tp = Yl + (Zp - 2)
Z, - Z
cos(Z.y) = P &

/(Xp - Xg¥ + (Tp = Y+ (Zp = 25)°

The vector in the z direction can be defined as

ax.i+3Y,j+3Z.k (4.5)

z = — S —_ .
14 14 9z
From Eq. 4.5 a unit vector defined in the z direction is given by

i+ F 2
=9t %t o ’ (4.6)

] QL+ @y

N >
n

e

The local x is perpendicular to the local y and z, and forms a right

handed system, thus

}2 = ; x 2 , (4.78.)

or

[COS(YY)—— cos(Zy)——11+[cos(Zy)—— cos(Xy)aC]J+[cos(Xy)——- cos(Yy)——dk

X > & > + (B%y?

(4.7b)
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In most cases it is convenient for the analy;is of bridge structures
to fix the global Y axis as normal to the level plane, i.e., the XZ plane
is parallel to the levelling base, The global Z axis normally orientates
along the direction of the span. Three special orientations, which appear

mostly in practical bridge constructions, should be mentioned here:

1. The principal planes yz of the element are parallel to the

YZ plane.

In this case the local x axis is orientated following the global

X axis, and we have

x = i (4.8)
The unit vector along the local z axis is then given by )
Y & 9z ]
—_ + 2=
~ 3L oz k
z = (4.9)
oY 2 9Z 2
/252) + (ag)

The unit vector in the local y axis can be designated by the vector

product
y = 2 X X
Yy ¢ % Z ~ T
- Jx1 + —kxi
Y2 9Z.2
— + (—
G+ G

From the definition of the global axes it can be seen that

(4.11)

~>

»

]
I

e

Substitution of Eq. 4.11 into Eq. 4.10 gives
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2 T _ Ay
S R
T 2Z.2
Y2
jzggQ * GE (4.12)

2. The principal planes xz of the element are parallel to the

XZ plane.

The local y axis now orientates in the same direction as the global

which is defined as
y = ] (4.13)
The unit vector in the z direction is
a 0z ~
. gph otk '
z = % c (4.14)
0X.2 9Z 2
/‘3? t Gg
The unit vector in the local x axis is given by
X = -2z x y
g g
= 2 : (4.15)
oX.2 9Z .2
— + (—
&+ &

3. The principal planes yz of the element are parallel to the XY

plane.

The local x axis 1s now defined as:

x = k (4.16)
The unit vector in the local z direction is given by
z = 9% 4 (4.17)
9X,2 Y, 2
6% + &
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The unit vector in the local y axis can be obtained by the vector

product
y = z x x
3Y ~ X
I T 11 (4.18)
& &y |

For these three special cases, after specifying the position of the
centroid, there is then no need to define another reference point located
at the middle of the bottom flange. This will certainly be advantageous for

the analysis.

4.3 Displacement field and degrees of freedom

4.3.1 Displacement field due to axial loading and bending

The classical thin-beam theory based on the Bernoulli-Euler
assumption, in which normals to the neutral axis before deformation remain
straight and normal to the neutral axis after deformation, excludes any
shear deformations. However, the transverse shear deformation may be
important in caseg of thick beams and beams of sandwich construction. Thus,
it is preferable to develop an element formulation which can be used to
analyse either thin beams or beams in which transverse shear deformation

effects are not negligible.

In shear deformation, certain warping of the section occurs, and
this effect is shown in Fig. 4.4. The modified plane assumption, which
states that the cross—sections of the beam remain piane after deformation but
not necessarily normal to the element axis, should now be adopted. Rotations

8x and Oy can thus be considered as average rotations and a correction will

be made subsequently to allow for non-~uniform shear distribution. In
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Fig. 4.4 the angle ¢, denotes the average shear deformation and for both

the x and y directions,

oWz
ol e
= (4.19)
owW;
] A ]
Y ax by ’

where dw/dy or 3w/9x is the slope of the neutral axis and ¢ is an extra
rotation due to the transverse shear effects. For avoiding the difficulties
which arise in satisfying the C,~ continuity requirement and having the
ability to reproduce shear deformations, independent translations and
rotations are used. The result is that only C,— continuity is required of

the shape functions.

As the strains in the direction normal to the beam axis are
assumed to be negligible, and according with the plane assumption (Fig. 4.3)
the displacement throughout the element can be uniquely defined by the
three translations u, v, w on the beam axis and the two rotatioms 6,, 8y

about the x and y axes respectively. This can be written in matrix form

as
uy u
u= vy = v (4.20)
Wy w - xe, + yOx

4.3.2 Displacement field due to warping torsion and distortion

Since the type of element to be considered is that in which the
walls are thin, it is convenient to describe the state of torsional and
distortional displacements using the generalized coordinate system (z,S).

The three displacement components of a point on the wallare shown as the
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tangential displacement uj, the normal displacement'vn and the axial
displacement W The displacements u; and v, are in the plane of the cross-
section under consideration, and Wy is normal to the section. The

positive direction of the tangential displacement component uy is identical
to the positive direction of the curvilinear coordinate S. The positive
direction of the axial displacement component follows the positive

direction of the z axis. The three displacement components ug, Vv, and wy

comprise a right—handed orthogonal system which is shown in Fig. 4.5.

Following the warping torsion theory and the distortion theory
described in the preceding chapters, the three displacement components can
be related to the twisting angle and the distortional angle of the

cross~section as

l.lt = Rtez + VS (S)Yd
Vi = 0'65 + Vn (S)Yd

~ aY,
Wz = = (DI _—393 - OJI[ -—i

or in matrix notation

i [ 03 )
ut R.-t 0 Vs 0 6,
u= SVpp = 0 0 Vn 0 < 5 > (4.21)
a Yd
W-a' 0 —~Wwjy 0 —mn ,
L Yg J

where 03 is the angle of twist, 9% is the rate of twist,
Yq is the distortional angle, Yé is the rate of distortion,
Rt is the perpendicular distance from the sﬁear centre to the
tangent to the mid-line of the wall,

Vs(S) is the distribution function of the tangential displacement

in distortion,
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V,(S) is the distribution function of the normal displacement in

distortion,

wy is the unit torsional warping function,and

wy is the unit distortional warping function.

4.3.3 Degrees of freedom

We know that the displacement field of an element can be related to
the relevant displacement parameters on the element axis. Thus, the

generalized displacement field in the local coordinate system is expressed

as (Fig. 4.6)

{u} = [u v w 65 6y 63 v Y4 ¢d]T (4.22)
90 9
where v = __3 and ‘Pd = —Yq-
0z ' Iz

The total number of unknown displacements of a free joint with

respect to the global coordinate system, i.e. the degrees of freedom, amount
to nine

{8} =(u Vv w & & 0 B v Y31 (4.23)

where U, V and W are the translations along the global X, Y and X axes
respectively, and ¢, 9y and ®; are the rotations about the global X, Y and
Z axes respectively (Fig. 4.7). Hence, the total number of degrees of

freedom for a thin-walled box beam element is twenty-seven, nine at each of

the three nodes.

For a thin-walled beam element with a rigid cross—section the number
of unknown displacements at a node are reduced to seven, and the total
number of degrees of freedom of the element is twenty-one,

f@} = (u v w 6 68 085 v] (4.24a)
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and (5} = (U V W & o & ] (4.24b)

For a solid beam, since we ignore the warping freedom and since
deformation of the cross—section is not permitted according to the rigid

section assumption, there are only six unknown displacements at each node:

(@ =[u v w & 8 0657 (4.25a)

W oo Oy 8] (4.25b)

]
Lo |
(=)
<

and {E}

The truss element is defined as a fairly slender element with
frictionless pin joints. Only one uknown displacement exists at a node in
the local system, whereas the movement of a free node in the global

coordinate system is defined by three translations

{u} {w} (4.26a)

(v v Wi (4.26b)

aﬁd {E}

Thus, the total number of degrees of freedom for a truss element is six.

4.4 Strain components and stress resultants

4.4.1 Strains and stress resultants due to axial loading and bending

The strains in the case of bending at a point in the element domain

can be expressed as

PR ST
ox 3z
b J dwz vy i
=q = >
€, =9 Yyz f el (4.27)
‘egle > .aﬁ. 4
o0z

b . . . .
where'&z, Y;S and €5 pare the shear strains and axial strain respectively.
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Substitution of Eq; 4,20 in Eq. 4.27 gives

c b . _ u -
x3 %t 52
_dub L v 3 (4.28
€, = 9§ Yy3 O + 32 (4.28)
dw _ _ 96y , . 96x
R LEE O PR A e

Eq. 4.28 can be written as

e,=|0 1 0o o0 O €y (4.29)
0 o 1 'y x
where
ou N
-0y + —
y 02
ov
ex + 3z
€= w (4.30)
j o0z 4
9 0x
0z
~ 90y
L 0z -

Thus, Eq. 4.29 gives the strains at any point in terms of the displacement

of a point on the element axis.

The corresponding stress components at a point in the element domaln

can be obtained in the linear—elastic case as

b b
sz ] sz
b _ b
Oz'b Es'b

where the elasticity matrix is given by
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G (0] 0
D, = 0O G O (4.32)
0 0 E
E E
in which Ey = 17 and G = 2 (1+v)

Substituting Eq. 4.29 and Eq. 4.32 into the integral expansion of

Eq. 4.2, we obtain

T +/2 ~T -
S, bey, Dygydv = f-l'/Z Aey o) dz (4.33)
where Eb = l-jb Eb (4.34)
and
(1 0 0
01 0 G 0 O 1 00 0 O
Bb= f, |o o1 0 G O 01 0 0O dA
0 0 xj
[ ¢ 0 0 0 0 ]
0 G 0o ©0 0
0 0 Evy Ey Exy
2
) o E,x  Eyjxy E;x |

Integrating over the region A and since the x and y axes are the

principal axes of the cross—section, this gives

JE,x dA =0, [ EydA=0, [Exyda=0, In=/yada

and Iyy = fA xsz. Hence we obtain
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o 6GA 0 0 O
p,= |0 o EA 0 o (4.36a)

0 0 0 EjLy O

0 0 0 0 E:]Iyy_

where A is the cross—sectional area and Ixx, lLyy are the moments of inertia

with respect to the x and y axes respectively.

In order to account more accurately for the shear strain energy due
to non-uniform shear distribution, an effective shear cross-sectional area

should be introduced (100). Thus, Eq. 4.36(a) can be further developed in

the form
[ GAsx O 0 0 o |
0 GAgy O 0 0
D= | 0 0 EA O O . (4.36b)
0 0 0 EqIyx O
o 0 0 0 Eqly |

where Agy and Agsy represent the beam effective shear cross—sectional areas

in the x-direction and the y-direction respectively.

The effective shear areas can be expressed as

Agy = F_s_); . A
and (4.37)
1
Asy = Fs_'y‘ « A

where Fg is defined as the shear—deformation factor, which depends on the

form of the cross-section (107). For a rectangular section, Fg= gy for

. . . 10 - . . .
a solid circular section, Fg= 5 for a thin-walled hollow circular section,
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Fs= 2, and for an I or box section having flanges and webs of uniform

thickness,
2 2 ' 2
3(b - D
Fg = [(1+ (D2 31 )D, (52_-1)] 4Dz (4.38)
2D3 ty 107
where D, = distance from neutral axis to the nearest surface of the flange,
D, = distance from neutral axis to extreme fiber,
t, = thickness of web (or webs in box beams)
t, = width of flange
r = radius of gyration of section with respect to the neutral axis.

If the I or box beam has flanges of nonuniform thickness, it may be replaced
by an "equivalent" section whose flanges, having uniform thickness, have

the same width and area as those of the actual sections. Approximate
results may be obtained for I or box beams taking the effective shear area

as the cross—-sectional area of the web plates only (3Q).

The stress vector 0, represents the conventional stress resultants

for a beam, i.e., shear forces, axial force and bending moments (Fig. 4.6)

- T

o, = [Qy Qy Nz M, My] (4.39)

The generalized strain vector €, represents the shear strains, the axial

strain and the curvatures.

4.4.2 Strains and stress resultants due to warping torsion

From the specification of the displacement field described in
4.3.2, the strains due to torsion at a point in the element domain can be

expressed as (see also Chapter 2):

t 305
Et = = 2 (4- 40)
A 9 63
€

3.1 iy
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Eq. 4.40 can be written as

é; 0
Et= . Et’ ‘ (4.41)
0 Wy

where the generalized strain vector due to torsion is

il
- 0z ’
- (4.42)

For the present we may neglect the strain energy due to the secondary
shear stresses associated with the normal warping stresses, and we consider
only the primary torsional shear strain. We can see later that a warping
shear parameter might be used for considering approximately the effects of
secondary shear stresses. Thus, the function ¢; may be given as

2y, for the St, Venant part of the shear strain

6. =9 = (4.43)
I Eﬁ for the Bredt part of the shear strain
t
where A is the normal coordinate to the mid-line of the wall,
EB is the unit Bredt shear flow function,
t 1is the thickness of the wall.
The corresponding stress components are given by
t t
T3s V35 :
o = =Dy (4. 44)
9.t €3,t .
where the elasticity matrix
G 0o :
(4.45)

Dt =
0 E
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Substitution of Eq. 4.41 and Eq. 4.45 into the strain energy

expression gives
f, begDpeydv = g, da (4.46)

where the generalized stress vector is

- == (4.47)

_ ¢, O G 0 o, O
Dt = fA -~ N dA
0w 0 E 0 o
Go; O
=, 2 (4.48)
0 E1 LUI

Integrating the terms in the matrix over the whole region A we have

a2
and

2 _ q, 2
f, G¢T dA = S, G (_tﬁ) dA + J, 4Gy> da (4.50)

From the compatibility condition shown in Eq. 2.46 we obtain

I 4, dwy dA_ 45 (4.51)
35t

The total Bredt torsional moment is evaluated as

M, S\ agRyds (4.52)

B

Substitution of Eqs. 2.54(a), 2.64 and 4.51 into Eq. 4.52 gives

alternatively the Bredt torsional moment as

90
Mrg = G. /(28 )yan. 23R (4.53)
t 0z

From the definition of the Bredt torsional moment of inertia, we
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then have

B Y dA ‘ (4.54)

t

f=3!

In addition, the second integral on the right hand side of Eq. 4.50

can be expressed as ,

24y - 3 4 tp . Ly, |
[ybyy da = D ge . 2(3) 3 LAt Jy (4.55)
Thus, we have
5,67 dA = G(Iy +Jy) = Gy (4.56)

Hence, we can write the generalized torsional elasticity matrix as

-~

_ ¢l 0
D} = ) (4.57)

where J; is the total torsional moment of inertia, and J; is the torsional

warping moment of inertia.

Note that in the case of a thin-walled closed section beam the
deformational influence due to the warping shear stresses must not be
neglected. The generalized elasticity matrix has now to be modified in
such a way that the vector product Eq. 4.46 gives the same internal work
in the manner of the governing differential equation listed in Chapter 2.

Thus, we finally obtain the generalized torsional elasticity matrix as

¢l O
Bt = (4.58)
- N
0 - E1JI
Mt

in which the coefficient Hy is known as the warping shear parameter, and

is expressed as in Eq. 2.114,
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It is obvious that the generalized stress vector represents the
torsional stress resultants, which are the torsional moment and the torsional
bimoment (Fig. 4.6)

- 1 T
op = (Mp Bl (4.59)

The generalized strain vector Et indicates the rate of the twisting angle,
and the second derivative of the twisting angle. It can be seen that if

the rate of twist is constant only pure torsion appears.

4.4.3 Strains and stress resultants due to distortion

It is convenient to express the generalized distortional strains
and stresses in the manner described in Chapter 3. The strain energy

increment due to distortion includes two parts:

1) the strain energy increments due to the intermnal work done by

the distortional warping stresses

2 2
3y Y
T _ +/2 _ d 2 d
’rVAEz,dE1€3,d av = f-l/zA( §) N Equwy dA (- 322 ) dz |
_ +[/2A Bsz
= b — ) Bpdz | (4.60)
VA

2) the strain energy increment associated with the transverse frame
action of the box, i.e., due to the internal work done by the transverse

bending stresses

T &2
Iy Begy Eqegp &V = Lahvg Eydy vy dz

Sty My dz (4.61)

where Y4 is the distortional angle, My is the generalized distortional

moment, and By is the distortional bimoment.
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We may rewrite the above expression in matrix notation as -
T _ 2, =T =
f, beg Dyeq dV = I pbe4 o4 dz (4.62)

where the generalized distortional strain vector is

ed = [Yd _a 2-d ] , (4.63)
z

and the generalized elasticity matrix is

_ E4J4 (0] .
Dy = (4.64)

0 EqJg
in which Jg is the distortional second moment of area, and J; is the

distortional warping moment of inertia.

‘The generalized stress vector 0y represents the distortional stress

resultants, i.e., the distortional moment and the distortional bimoment

(Fig. 4.6)

6y = [Mg Bl ‘ (4.65)

4.4.4 Generalized stress-strain relation

To conclude the derivations, the constitutive relation of linear

elasticity is of the form

¢ = D € (4.66)

where the generalized stress vector (Fig. 4.6) is

S = [Q Q Ny M, M, MT—ul—BI My Byl (4.67)

b4
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and the generalized elasticity matrix is

GAgy O 0 0 0 0 0 0 0
0 GAsy O 0 0 0 0 0 0
o 0 EA O© 0 0 0 o o0
0o o0 0 EILy O o 0 0 0
- 0 o0 0 0 EqIyy O 0 0 0
D = (4.68)
0 o 0 0 0 G O 0 0
1
o o 0 0 0 0 =EJ; O 0
8
o o0 0 0 0 0 0 EJy O
o o0 0 0 0 0 0 0 EJ
The generalized strain vector is .
Oy + 3u |
y 9z
ov
ex"l‘ 'a—z'
3w
9z .
96y
0z
e =9 -9 > (4.69)
9z
903
9z
329;
3z?
Yd.
_‘3sz -
| 93 2?

4.5 Transformation of nodal displacements

For the purpose of assembling the element stiffness which will be
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shown in further sections, it is necessary to transform the nodal

displacements relative to the

respect to the global system.

Referring to Fig. 4.7,

local coordinate system to displacements with

let the resultant vector of translation

components of any point on the element axis be 4 and the resultant vector

of rotation components of the section be ¢. These can be given in terms of

global components as

d = Ui

]

The translation components u,

~

By 1

+V

A

J +wk

+ 9,5 + 4,k

6*, By, 03 with respect to the local x,

by scalar products as

o = 3
v = d
v = 3

<> M

N>

ex=$'}‘;
Oy = $ : §
63 = ¢ * 2

After substituting from Eq. 4.70

=
~<
[

~ A

where , 1 * x,

axis relative to the global

of the y axis, and i- 2, 3 * z and k

He > ped

~

j

cx+Vj e -x+Wk"*
Y +V3i Y +Wk -

A l.\ ~ A
cz+V3y-z+Wk:
.X+¢Yj¢x+¢z'§.

~ A~ -~ e
Tyt dgd oty F gk e
-z + ¢Yj ©z 4 ¢,k ¢
. ; and ﬁ .

(4.70)

Vv, W, and the rotation compcnents

¥, X axes respectively can be obtained

(4.71)

into Eq. 4.71, we can have

< > M

N>

(4.72)

>

N> <2

_

x are the direction cosines of the local x

~ ~

coordinate system; 1 ° y, j ° y and k * y those

* z those of the local z axis.
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According to the single continuous assumption, the warping
displacement mode and the transverse distortion mode should be transformed

with unity (156).

Hence, the local displacement field u can be expressed in terms of

the global displacement field
a = )3 (4.73)
where X is termed the transformation matrix.

The transformation matrices A for different types of elements are

expressed respectively as:

1. The truss element

~ A A A

>

A = [{1i-°z j Tz ks z] (4.74a)
2. The solid beam element
[i-x  jx  kex 0 0 0 ]
A A A A A A
1y iy key 0] 0 0
A A A A A A
i-z joz kez 0] 0 0
X = A A A A A A . (4'74]3)
0 0] 0 isx  jex kx|
0 0 0 ivy 5y key
0 0 0 itz jez k4z |

3. The thin-walled beam element with rigid section

i-x j*x - k'x O 0 0 0

iy iy ky 0o o0 o0 o0

iz vz kz 0 0 ©0 o0

A = 0 0 O i*x 3j°x k'x O (4.740)

n -~ A N A A

0 0] 0O i<y jy ky O
? A ? A A A

0 0] 0 ixz j*z kez O

0 0 0 0 0o 0 1J




4, The thin-walled box beam element

r« A A
ix 3

5 3
13§
0 0
v | 0 o
0 0
0 0
0 0
L 0 0o

The direction

-2

r; = cosXy
3-; = cosYy
f(;' = C'OSZy
1'; = cosXx =
§-£ = cos¥x
Q'; = CcoSZXx
{'; = cosXz
3-2 = cosYz
£'£ = cosZlz
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=§%/J<§ Y (Ve (Y

9L
_ EE{ ) / X 2 oY 2 3z 2
=3z /// ('gz ) f ('SE ) + ( P13 )

_az/ X 2 oY 2 3Z 2
=3z (ﬁ)*‘(ﬁ)‘*('ﬁ)

1
x kkx 0 ©0 o O 0 O
y k-y 0] 0] 0 0 0 Y
z k-'z 0] 0 0 0 0 0
0 if; 32; ﬁt; o 0 0
-~ A A A -~ A /
0 iy jww ky O 0 0 (4.74d)
0 itz jez ﬁ:; 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 Y
0o 0 0 0 0 0 1
cosines are given by the following expressions: _
=(Xp~ X)/{(%p-%xF + (Yp= Y + (zp- 2F
=(Yp- Y)/J&p"x)z + (Yp- Y)Y + (Zp- zy
~(zp- 2/ {KpXP+ (1= YF + (zp- 2F
(c Yéé—cosz )/1/(3Xz _al)z_’_(_ai)z
osYy 37 Y3 3C az
= (cosZy — X cosXy )//34 oX 2 ~§X ) + (_ﬁé f
T Bc (a7 9z
. (4.75)
oY 39X 2 oY 2 9Z 2
= (cosXy FIa cosYy =~ 8; )//g& 3C )+ ( 3T )

In the case where the principal planes yz of the element are parallel

to the YZ plane, the

direction cosines are simplified to
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.

®n?
I

.
»®N >
]

=

>
>

A A

ivy =

He>
.
N >
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°Z oY 2
3—;//<a—;>

(4.76)

oY Y 2
E/Jw—u

When the principal planes xz

plane, we may

Hed> Lo

. .

<y <
]

express the direction

A A A A
jex = jez

of the element are parallel to the XZ

cosines as

3z X 2
a—c//(i)"

2z p

( Y ) (4.77)

BX//C[BX 2
9T oL

When the principal planes yz

plane,

faakd
"o
n

e
R4
]

ey
L]
“ >
i}

fa

Co
>

>
.
N >

A A

the direction cosines are

22 2
3z

of the element are parallel to the XY

(4.78)

+
~~
o

4.6 Sub-parametric formulation

We now follow the standard displacement method which is given in

Reference 155 to establish the relevant sub-parametric formulae.

4.6.1 Shape functions for mapping the element geometry

It has been shown that the normalized coordinates can be distorted
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to a new, curvilinear set when plotted in a Cartesian space (155)'. Hence
a most convenient method of mapping the geometrical shape of the
one-dimensional element is to use the interpolation function with natural
coordinate . Thus, for each element, we have

¢ = Mgt (4.79)

where G represents the geometrical function of the element, ¢® lists the nodal -
values of the geometrical function, and M is the geometrical shape function

given in terms of the natural coordinates.

A special form of transformation, referred to as hierarchical mapping
is adopted here (80). The hierarchical shape functions are defined in terms

of the natural coordinate [ as

M

P =3+ gy) for i=1 and 2
(4.80)

M; 1-z%) for i=3

where Lo = ¢ ?;i

The hierarchical shape functions take account 9f the variables
specifying the departure from linearity. Thus, the same shape functions
apply for the geometrical mapping of i)oth the straight elements defined by
two end-nodes only, and the curvilinear elements defined by two end-nodes

as well as a mid-node.

Using the hierarchical mapping defined by Eq. 4.80 the global
coordinates and the characteristic sectional properties of any point on the
element axix may be given in terms of the corresponding nodal values

as
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r X M; X
Y M; Y
z M; 0 Z
Asy M; Asy
Asy M; , Asy
A M; A |
3 S
¢ Iy f=i§1 M; i
Tyy M; Ly
J; M, k4
Jq /11:£ O M, It
Jq M, J4
I M; n
(4.81)

From the definition of hierarchical shape functions, when the mid-node

is required the corresponding nodal values represent the departures from

Ay

linearity, i.e.,

( X ( AX
Y AY
Z AZ
Ag AAsy
Agy DAgy
< A r p—— J ~AA
Txx ATy r (4.82)
Iyy ATy i
J; AJy
JI/“t AJI/ut
Jg AJy
B | Ay 3
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The departures are calculated simply as

. ~ - -~ - ~ - -

AX X X X

AY Y Y Y

AZ z z z

Mgy Agx Asy Asx

Mgy Asy Asy Asy
< AA T = < A > -1 9 A L—% < A > (4.83)

Y Iyy Iyx Iyx

Alyy Iyy Iyy Iyy

Yy Jp J; Iy

AJy [uy Iy Iy Jp /uy I /wy

AJg Jd Jd I :
LT T T T T N S I (R S B

It is apparent that for a straight element and for linearly-varying
geometrical properties, all the departures are equal to zero.

T

4.6.2 Shape functions for defining the displacement field

The displacement field in the global coordinate system can be
expressed in terms of a set of discrete nodal displacements §° by the use of

suitable shape functions N

§ = N&° (4.84)

Since only C, continuity is required for the analysis of axial loading
and bending, Lagrange polynomials of the second order, in dimensionless form,
are adopted. The shape functions for any point on the beam axis are defined
in natural coordinates ¢ as

2

=
u

N

~
Y

+ Cq) for i=1 and 2
(4.85)

=
1

1 -1z,) for i=3

=
o
a3

o
Y
o

n

LT .
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It has already been established that the poténtial energy functional
due to warping torsion and distortion contains second derivatives of the
unknown functions, and the physical problem is characterized by fourth order
differential equations. Continuity conditioﬁs between elements have now to
be imposed not only on the unknown quantities themselves but also on their

derivatives. This is the so-called Cq-continuity problem (155).

When the displacement function and its sloﬁe are prescribed at the

nodes, the general interpolation function can be expressed as
= - of = = of = = of
£ o= Ngfy + Np Qg i+ Npnfp + Np (55 D2+ N3qfy + Ny (57 )3 (4.86)

where f; is the value of the unknown function at node i and ( gé')i is its

first derivative.

In order to differentiate the interpolation function with respect to
the Cartesian coordinate z, it is necessary to use the rule of partial

differentiation. For a one-dimensional problem the derivative is replaced

by .
where the Jacobian factor J can be expressed, from the definition of the
z axis, as
J = %Z— =/(§—};)2+(g—§)2+(§%)2 (4.88)

Differentiating Eq. 4.86 once we obtain
%= J—1[8N11 £y o+ oMy  3f 3+ N7 £+ Ny ( f )+ N34 £+ Ny  3f ))
14 14 3z 14 14 9z 14 oz 3z

(4.89)

Since three discrete nodes are specified in each box beam element,
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a fifth order polynomial expression would be appropfiate

ITI = A1 + AZ C+ A3Cz + AL}CB + A5§4 + A6Cs y ‘ (4.90)
and -
M ay + 28380+ 3,8 + bAe® + 5A,LS

Yz (4.91)

Noting that ﬁi1 = 1 and %C_iz=1 at node i but is zero at other mnodes,

we can obtain the shape functions as '
- 2 2 3
F= - sc - 2te 5)
Np=72°a -0 =)
= z 2 3
N21=-§T(4+5C"2C"3C)
- 5, 2 ) (4.92)
Nyp= 778 (L +) (2-1)

- 2
Ny = (1 -¢?)
= 2
Ny = J3z(1 "Cz)

wvhere J,, J; and J3 are the Jacobian factors at the three nodes of the element.

4.6.3 Displacement field

The global displacement at any point on the beam axis in terms of the

nodal values are given by

- 1r
v N, O 0 0 0 0 0 0 o ||vu
v o N 0 0 0 0 0 0 o |V
W 0 0o N 0 0 0 0 0 oflw
8y o o o N, O o Nfiaa o o ||
St ' N NS S
=1 9 =i§1 0 0 0 0 Njq 0 Nj(jz) O 0 oy (
o, o o o 0 0 Ny Ngkz) o o || e
Bb—Tu,':_“ Bﬁu,? A Bﬁu," ~ Bﬁiz
v 0 0 0 3z \IZ) 3z \J Z) 32 \k.'Z) 32 0 0 o
Yy @ 0 0. 0 0 0 Ny Nl Y
Nyt BNp
tde 0 0 0 0 0 0 o 5.l | Y .
h 1

 4.93)
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Substitution of Eqs. 4.93 and 4.74 into Eq. 4.73 gives

u Njix Njjx mMkx o0 0 0 ) ollu
v Niiy M3y mky o 0 0 0 0 ol|lv
W Niz miz mEkz o o 0 0 0 o o |lw
0y 0 0 0  Nyix Nix Nikx 0o o o ||
a=190p= il o 0 0 miy Ny mky o o 0 | 3y
i=1
6 0 0 0 Nz NMjz mkz o o o || o
3Ni2r  ONjtsA BNitan .
% 0 0 0 g 12 3, 3% 3 kz Np O 0 B
Yy o o0 o o 0 o 0 Ny Npl|v
3&” 85&
wdj 0 0 0 0 0 0 o = =-llul
. . - J i
(4.94)
Reducing the unnecessary high order terms we can finally obtain
- — — - - —=g
u = [N N N318 = N3 (4.95)

where the displacement shape function matrix N is of the order 9 x 27, and its -

submatrices are expressed as

N ix N jx Mkx o 0 0 0 0 0
miy Ny mky o 0 0 0 0 0
Nz Njz NkZ o 0 0 0 0 0
AN AA I\\A
0 0 0 Njix Njjx Nkx O 0 0
N - 0 0 o Niy Ni¥y Nky o 0 0 (4.96)

0 0 0 Nn 1z Nn j'Z Nn kz le 0 0

" 3N a8 BNita~ ONiupA  ONi 0 0
O 0 0 gz iz ogokz e
0 0 0 0 0 0 0 N Nio
o o o o 0 o o0 oNu - 8Ng

9z 9z
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With displacements known at all points within the element the 'strains'

at any point can be determined. From Eq. 4.69 the strains can be written

in matrix notation as

e = L u

where L is a suitable linear operator

9
57, 0 0 0 -1 0]
0
0 3z 0 1 0 0
Z
0 2 0
0] 3z 0
0 -2‘ 0
0 0 3z 0
L = 0 0 0 o - Ji- 0
0z
9
0 0 0 0 0] 3z
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Using Eq. 4.95, the above Eq. 4.97 can be approximated as

§ = B§C

where the strain matrix

B = LN= (B B B3l

(4.97)

(4.98)

(4.99)

(4.100)

is of the order 9 x 27, and its submatrices are obtained by the multiplication

of matrices
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.aNl AA BNIJ' AN BN' A A AA ~ A 0 -
sz X Bz 4X 3z KX -Njiy -N 3y Nky O 0
Ni A
5N 2+~ 9N; aa  BNj o aa an an 0
-a—z—-l- 1y 3’;“ Jy 32 ky NI X NI X NI kx 0 0
ANj4n BNjas ANjfL 0 0 0 0 0
1z J 3
9z 0z z
aNgr BNige BMige 0 0
0 0 0 52 I'x 37 J 3z
- s AA . A A
B, = - 3N 2~ - 93N -9
! 0 0 0 E‘ I 3z Jy 3z y 0 0 0
Bi\]-'q ':"‘ Bﬁil ’.‘”\‘ 9Nt £ 3Nz o}
0 0 0 52 Y2 3z JZ Tz X% gz
2~ 2= 2= N
- ONji o~ _ONiss _ONips ONi2 0 0
0 0 0 Agr L2 gzt 322 kz =373
0 0 0 0 0 4] 0 Niy Njp
3Nn s
i Nj
0 0 0 0 0 0] 527 o
L J
(i=1, 2, 3) (4.101)

The derivatives of the shape functions with respect to Cartesian

coordinates z are related by

LT o) (4.102)
3z 4
2’ N, st o, 42 AN
and e B (4.103)
az* o 0z ¢
-1 _ // % 2 Y 2 ﬂ 2 .
where J. 1 ( Ya + 3z ) + ( 5% ) (4.104?
and
-1 2 2 2 i El
3 _ (X ,¥X 3y Y 232 32 X 2. Y 92 2.3
TR T T T TR T ToR S T (ac)+(ac)](4_105)

We can now obtain the derivatives of the shape functions with respect



to natural coordinates ¢ directly from Eqs.

and

o,
°C
aN,
14

% 8z - 157 - 82 + 15¢°)
%(zc - 3¢ - 42+ 52%)
% (8¢ + 157"~ 82 - 152%)
WA 2 3 4
_Z_(-zz; - 30+ 47 + 5C)
-4t + 470

J3 (L - 62 + 5¢*)

4,85 and 4.92
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(4.106)

(4.107)

(4.108)
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and

3N 1
M = = (8- 30z - 242°+ 60°)
3z? 4
2-
9 M2 _ J1(2 - 6z - 1287+ 202°)
agz 4
”e
3N = L (g + 30z - 242%- 602%)
ag” *
2= 3 (4.109)
SNy = 2(-2 - 6z + 1287+ 200 )
o> 4
-
INY = -4+ 12¢%
3’
aN 3
N3 = Jg3(-12¢ + 207°)
ag*
From Eqs. 4.80 and 4.81 we can obtain
3L
Y = (Y, - Yy) - 2z AY (4.110)
Y3
2 = $(29 - Zy) - 2C AZ
14
Substituting from Eq. 4.110 into Eq. 4.88 we have
3 2 2 2
Jp = b (R Xy+ 4AXY + (Yp= Y+ LAY) + (Zy= Zy+ 4AZ)
I = %/(xz- Xy~ 40XF + (Y= Yy= 40T + (Zy= 24~ 4AZ) (4.111)
2, 2

5y e 4G % - 1t e (g 2y

in which
B = Y3- Y+ Y,) (4.112)

Az = Z3- %(Z1+ Zz)
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4.7 Element stiffness matrix and equivalent nodal forces

The virtual increment of the displacement field can be approximated

ra = NASE ' (4.113)

Accordingly the increment in strains is given as
- - —e
Ae = BAS§ (4.114)

Ignoring the initial strain and initial stress system, Eq. 4.1 becomes

+/2 17—

[, /,0€ D €dz - J, MF AV = (4.115)

where F is the applied force vector.

Substitution of Eqs. 4.99, 4.113 and 4.114 into Eq. 4.115 gives

o1 o _ T
8%y _fl/ B DB dz 8¢ - (A8 Lol NF av = 0 (4.116)

Since the virtual displacement AsE is arbitrary, Eq. 4.116 can be

written as
K, §°% = F® (4.117)

where K€ is the element stiffness matrix and is expressed, on substituting

for dz from Eq. 4.88, by

e . M-T- o A eTe o
K® = IVZBDde = [,JBDBd (4.118)

The element'stiffness matrix of the box beam element is of the order
27 x 27. Subsequently it.follows the dimensions of 21 x 21, 18 x 18, 12 x 12
and 6 x 6 for the thin-walled beam element, the three-node solid beam
element, the two-node beam element and the two-node truss element
respectively. The integration of the stiffness coefficient is carried out

exclusively by the Gauss—Legendre quadrature. Thus, Eq. 4.118 can be

evaluated numerically by
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n -T— - X 2 B_Y_Z 02 2 (4119)
e _ . _— Yo )
K —151 Hl(BDB/(BC)+(aC)+(3C))§

where H; is the weight coefficient and n is the number of sampling points

(155).

It can be seen that exact integration of the element stiffness should
be facilitated by three-point Gaussian quadrature for the axial and bending
contribution, and six-point quadrature for the torsional and distortional
contribution. We know that the Bernoulli-Euler hypothesis has been
modified here to include shear deformations. The rotations due to bending
are then interpretated as shear strains. A great excess of shear strain is
therefore stored by the element. This problem can be overcome by using
the reduced integraticn method (45, 80, 153).. Thus, the two—-point
integration procedﬁre which exactly integrates the bending contribution, but
dﬁderintegrates the shear contribution, is used instead of three-point
integration. This greatly improves the element performance and yields

accurate results for both thick and thin beam situations.

As shown in Eq. 4.116 the general form of the consistent nodal loads

is written as

F¢ = f NF dv (4.120)

We consider here only the solutions due to gravity loads, uniformly

distributed loads and the point loads (Fig. 4.8)

T L A L (4.121)

The consistent force vector due to gravity loads can be expressed as

W
" =, W boa dz (4.122a)

where p is the specific weight of the material of the element, and A is the

cross-sectional area which varies following Eq. 4.81.



189

Since we have fixed the global Y axis normal to the level plane, we

may express the body force vector as

AR s.2 P T
b = [jx jvy iz 0 0 Jex(yg—vy) 0 -3-jux(y-y) 0] (4.123)

A A A A A A

where j*x, j*'y and j‘z are the direction cosines of the Y axis relative

¢
to the local x, y and z axes respectively, y, indicates the position of the
centroid measured from the top flange, and y; is the position of the shear

centre evaluated by Eq. 2.105.
The consistent force vector due to distributed forces is written as

Vy_
F>F = SIRT g8 a2

2
n
- (W q® X ¢ Y 2 3z 2 4124
OB () Cp Y+ () ), ((4124)
where the distributed forcevector is (Fig. 4.8)
= : T
q® = [Py Py P Myoxt Myext sext Pt ®d Ppl (4.125)

The distributed components per unit length are all related to the local
coordinate system of the cross—section, and are assumed to be constant

along the element.

The statically equivalent nodal forces due to the applied concentrated

forces can be expressed as
{F}Y" = z AP 4 (4.126)

Any point load applied on an element is specified in terms of its
global components. The point of application of the concentrated load is
defined by the natural coordinate f and the local coordinates x and y.

The concentrated force vector is then (Fig. 4.8)

- - = = = ~ T
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The components of the force vector in Eq. 4.127 are calculated by

the following expressions:

e
>
]

Py (i-x)g + By(Gx)p + Py (k)

Py = Py (i';’)z + Py (3';'); + Py (12';’){

P; = Px(i-;); + PY(E';); + Pz(ﬁ';)z

My = Mx,ext({';t); + Mv,ext(.fl:";;)g + Mz,ext(lz';){ + E;’ Yy (4.128)
ﬁy = Mx,ext(i'-;’)z + Mv.ext(g';'); + Mz,ext(lz‘;')z + 1;5'X

Mz = Myext(i-z); + Myext(3-z); + Mzext (k'g); + f’)' -x = Py (y-v +¥5 )
- b - —

Mg = %[ﬁ-PyX+Px(Y‘Ys+ ¥e))l 5 Ix s by/2 , or

- b = b -

Mg = %[bi.Pyx - 1 +‘5‘,‘:‘>(1'Cd)bx + Px(y—ys-!-yG)],IXl >bt /2,

4

vhere by = x - bt/2 (x > 0), or by = X + b}/2 (x < 0) ,
and Ty is the distribution factor which can be obtained from the analysis

of a frame formed from a unit slice of the box beam.

4.8 Boundary conditions

Using the basic equilibrium and compatibility conditions, we can
finally obtain the well known stiffness equation as shown in Eq. 4.3. The
structure stiffness matrix is formed from the assembly of the individual
elements of the structure. However, without substitution of a minimum
number of prescribed displacements, or boundary conditions, the complex
stiffness matrix K is singular. The minimum number of prescribed
displacement components should be equal to the maximum degrees of freedom

of a typical free joint in the system.

For some conventional support conditions used in bridge construction

the following holds true:

1. If the beam is fixed at the support, no deformation arises in

the support cross—section, and therefore the following may be written
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u = v = w =0 U=V=W=O}
it
8 = 8y = 05 = 0 o = & = &7 = O
% = 0 (4.129)
Yd=o
by = O

2. If the support cross—section is connected by a pinned support and
is braced by a rigid diaphragm, and yet is free to warp, then the independent

boundary conditions are

u = v = w = 0 === U =V = W = 0
95_0
Yd=0

3. If the cross—section is supported by a linear roller which is
orientated perpendicularly to the longitudinal axis, and also is braced by
a rigid diaphragm, but is free to warp, the boundary conditions may be

adjusted to

u = v = 0
93=0
Yd=0

4, 1If the free end cross section of a cantilever is braced by a
diaphragm to resist its transverse deformation only, yet is free to warp,

only one boundary condition applies and that is

Yy = 0 (4.132)

From the above conditions, it is obvious that in some cases such as
curved bridges or structures with inclined supports the imposed restrictions
at the boundaries are in the local xyz directions. Tt would be very unlikely
that the orientation of a single glecbal coordinate system would comply with

this requirement. Thus, further modification of the structures stiffness
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equation should be made for dealing with the boundary conditions.

The complete stiffness matrix of a skeletal structure prior to the

introduction of the boundary conditions would have the following pattern:

~ R 3

Kyt Ky Ky Kyp [ 6 Fy
l-(21 l,(22"”' : -+ - Kop (.52 !?2
: Cipeo=1 7 (4.133)
Ki Kjp -+ Kjj - o Kin || 9§ F
Kn1 Knpo-- Knl ‘Knn 8n Fn

If the prescribed displacements in the directions of the local frame

‘s .th , .
are specified at the i  joint of the structure, from Eq. 4.73 we have

- - - ~

) y —_
LSTRE STAR SO DA F1
K21 Rpp == vt orer o 82 £ ‘
. * _1 -: .
Ki1 Kij(Aj)-- - Kin u; F;
1 < P
Kpj- -+ Kpi(Aj)--- - Knn Sn | n

Since the premultiplication of the ith row on both sides by 1j would
not disturb the equality, and noticing that in orthogonal coordinate systems,

A\.N = I, Eq. 4.134 finally becomes

K Kz KgAK | |8 B

!(21 KZZ' . ‘ 89 ?2 .
AiKip AiKigo KgAK | 4 AiFj

: . CT : Z .

Kn1... ......Kn-lli.......Knn Gn L FnJ

. . . .th .
where A; is the transformation matrix at the 1 node and is related to the

element specifying the local coordinate system.
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Now, the boundary conditions specified by the local coordinate .
system can be introduced to ﬁq. 4.135 by simply erasing the corresponding
rows and columns. If there is more than one node at which the local
boundary conditions are defined, the above procedure must then be repeated

for each of these nodes.

1
In certain cases, alternative treatment for boundary conditions may

be the use of appropriate springs at support nodes. Note tﬁat the spring
support stiffnesses are given in a local coordinate system which can
produce large off-diagonal terms when the transformation to the global
system is done. These terms can influence the solution accuracy of the

equilibrium equations. Thus, it is still preferable to use the technique

indicated in Eq. 4.135.

4.9 Internal forces at the ends of the individual elements

The solution of Eq. 4.3 yields the displacement field § at the nodes
of the structure. Although the internal forces can be related to the

discrete nodal displacements by combining Eqs. 4.66 and 4.99
- - - -@
(1] = D B 6 1 (41 136)

it is advantageous to use the following formulae for recovering the internal

forces at the respective faces of each element:

o = Az=—1 { [ K121 K;az K1e3 ] 5 - F? } (4.137a)
and

- e e - e -

O7=41 = Az=a1 { [Kyy Ky K§3 ] 8 -Fy } i (4.137b)
where K% , Kﬁz~~'-~-Kg3 are the submatrices of the element stiffness matrix,

the subscript numbers 1, 2 and 3 indicate the end-nodes and the mid-node
of the element respectively, and Ff s Fg are the equivalent nodal forces

produced by the external forces applied on the element considered.
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The secondary or flexural torsional moment due to the warping shear

stresses can be calculated from

oMNig §.5 N .7

3
Mp,p= My - “tGJTi§1[a—— S
- VA VA

and the primary torsional moment is

Mrp= My - My

My ~ »
a1} k-z
9z

o
Oy
aN; J¢V>
219 s, (4.138)
9z
>

Y

(4.139)
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Fig. 4.1 Thin-walled box beam element with three nodes

Fig. 4.2 Definition of local coordinate system

—— v . 3
G
)
eX - . . ) G V 3
X
y
G |
/™
Yx

Fig. 4.3 Positive 6y and oy (right-hand screw rule)
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Actual deformation

Assumed deformaﬁon\v

/ -
/

Neutral axis

(a) Thin beam theory (b) Thick beam theory

Fig. 4.4 Cross-sectional deformation of beam

S / Ut

/1

Fig. 4.5 Displacement field in generalized coordinate system
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Fig. 4.7 Translations and Rotations in Global System

Fig. 4.8 Applied forces (bimoments and distortional moments

are not shown)
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CHAPTER 5

NUMERICAL EXAMPLES AND APPLICATIONS

5.1 Introduction

The objectives of this Chapter are first to demonstrate the
reliability of the present analytical method relative to other methods or

experimental studies and secondly to show its versatility.

A number of initial problems were analysed to check the theory as well
as the computational procedure, CUBAS, and some of the results are reported
herein. A subsequent series of applications of the analysis to cases of
different types of box beam was investigated to establish the‘ validity and
generality of the proposed formulation. The influence of the number of -
diaphragms between supports on the warping stresses aﬁd transverse

distortional bending stresses was also investigated.

5.2 Numerical examples

5.2.1 A deep cantilever beam

The first problem to be considered was a relatively deep beam, Fig. 5.1.
It was subjected to both uniformly distributec\l and concentrated loads. The
beam was idealized either with two-node beam elements or with three-node
beam elements for various discretizations. The deflections and bending
moments are plotted for both loading cases (Figs. 5.1 and 5.2). The results
agree very closely with the Engineer's theory of bending (141). Tip
displacement results for several discretizations are also presented in
Table 5.1. It can be seen that the three-node beam element results are
.vastly superior to the two-node beam elements especially for the case of

concentrated load.
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5.2.2 L-type cantilever load

The structure in Fig. 5.3 was analysed with a 4 element mesh using
three-node beam elements and was subjected to both uniformly distributed
and concentrated loads. The variations of displacements, bending moments
and torsions are plotted in Figs. 5.3, 5.4, 5.5 and 5.6. These results
demonstrate that the bending moments in the beam BC have been accurately
transferred to torsion. The tip displacements in both loading cases include

three components which can be calculated individually as follows:

Bending displacements,

3 .
§g = 2 x sz = 0.28294146 (for concentrated load),
3BTy
Py2® | Bye* 5 47573777 stri
§p = 2x Y+ 1 = 2. (for distributed 1ocad),

8EIy  3EIxy -

Shear displacements,

PYR.

8s = ZELYTﬂf = 0.00589463 (for concentrated load),
2

5s = 25, PYY = 0.05894628 (for distributed load),
Y oGA

Torsional displacements,

8y = gl&l 0.53051524 (for concentrated load),
GJy
2

§ = MB% = 2.65257618 (for distributed load).
GJr

Thus, their sums equal 0.81935 and 5.18726 respectively, which are identical

to the computer solutions presented.

5.2.3 A4 semi-circular beam

The structure was subjected .to a concentrated load and was idealized
with a 4 element mesh using three-node beam elements. The variations of

deflections, bending moments and torsions are plotted in Fig. 5.7. These
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results demonstrate that the three-node beam elements can accurately

accommodate very large curvatures, and the additional deflection due to shear
" which plays a significant part in the total deflection for this particular

case,

5.2.4 Dome structure

The dome structure shown in Fig. 5.8 was analysed using the three-node
beam element. Since the structure is axi~symmetric, only one beam was
analysed. A 4 element mesh was used to model the curve. The results are
shown in Fig. 5.9, which correlate very closely with the. solutions obtained

using semiloof beam elements (95).

5.3 Application to the analysis of single-~spined box beams

5.3,1 A simply-supported box beam subjected to an eccentric live point load

To verify the validity of the inclusion of warping and distortion
effects in the element formulation, a simply-supported box beam example
given by Maisel and Roll (83) was considered first. The span L is 30 m and .
the diaphragms are located only at the ends where there is full torsional
and distortional restraint. The diaphragms are assumed to offer no .
resistaﬁce to warping. At midspan there is a live point load of 1000 kN over
one web as an approximate idealization of one bogie of an HB vehicle.
Thin-walled box beam elements were used with an 8 element mesh to analyse
the beam. Fig. 5.10 shows the geometry and loading, and Fig. 5.11 gives

~the bending moment, shear force and torsional moment diagrams due to live load.

Torsional warping as well as distortional warping effects are shown in
Figs. 5.12 and 5.13 respectively. The torsional warping theory of
Kollbrunner, Hajdin and Heilig (59, 57, 42), and the distortional warping

theory based on the beam-on—elastic-foundation analogy, neglecting shear
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deformation, (135, 134, 150), were used to obtain the solutions of Eq.-2.116
and Eq. 3.114 for comparison. The results agree very closely with the

results of finite element method.

5.3.2 A fixed-ended box beam subjected to an eccentric live point load

As a second example, consider the beam and loading 'pr'eviously
illustrated in Fig. 5.10, with the end conditions changed to fixed-ends,
i.e., full restraint of bending, torsion and distortion. The live load
torsional warping effects are shown in Fig. 5.14, and the distortion along
the beam of internal stress resultants due to cross-sectional deformation
is shown in Fig. 5.15. As in the case of the simply-supported beam, the

finite element results are very close to the differential equation solutionms.

As shown in Figs. 5.12 and 5.14, the total internal resistive torsiomal
moment of a box beam is made up of a combination of St. Venant and Bredt
shear stresses and torsional warping shear stresses., Note that the sum of
their magnitudes remains constant at Mzext/2along each half span. In addition,
the torsional warping stresses are highly localized in the longitudinal
direction, as indicated in Figs. 5.12 and 5.14. However, the distortiomnal
warping stresses, shown in Figs. 5.13 and 5.15, are less localized
longitudinally provided only magnitude is considered and the reversal of

the sign of the solutions is ignored.

5.3.3 Simply-supported box beam example given by Vlasov

The third example examined is a simply-supported box beam considered
initially by Vlasov (146). The span of the beam is 10 m, the depth 1200 mm
and the width 700 mm. The wall thickness is 10 mm for vertical plates and
16 mm for horizontal plates. Poisson's ratio is assumed to be zero. The

beam is loaded by a uniformly distributed load of 100 kg/m (981 N/m) applied

in the plane of one of the vertical plates. Only one thin-walled box beam
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element was used for each half of the beam. The maximum stresses; for the
cases of symmetrical and antisymmetrical load are shown in Figs. 5.16(a) and
5.16(b) respectively. Fig. 5.16(c) shows the composition of the stresses.
Mikkola and Paavola in Ref. 90 have analysed.the same problem using a

special type of finite element with a twenty-element mesh. Both Vlasov's

and Mikkola's results are shown in parentheses for comparison.

5.3.4 Simply-supported box beam example given by Kristek

Another simply-supported box beam with a span of 262.47 ft (80.05 m),
discussed by Kristek (63), is further considered. Mikkola and Paavola

have also provided results for the same beam (90).

The cross—section and the uniformly distributed loading are shown in
Fig. 5.17(a). The Young's modulus is taken as 4500 kip/sq.in (31.05 kN/mm’),
and Poisson's ratio as 0.15. The example was solved by the method described
in this thesis using two box beam elements for each half of the beam whereas
10 elements were necessary in Mikkola's and Paavola's method in Ref. 90.
The deformed shape of the cross-section at midspan is shown in Fig. 5.17(b).
Figs. 5.17(c) a;ld Fig. 5.17(d) show the longitudinal warping stresses and
transverse bending moment diagrams at midspan respectively. The results
from Ref. 63 and Ref. 90 are also given in parentheses in each figure. The
agreement between the results obtained by the different methods is quite

satisfactory.

5.3.5 Sawko and Cope's simply-supported box girder model

A simply-supported box girder model with cantilever slabs, fabricated
from perspex sheets, was tested by Sawko and Cope (20, 118, 119). The span
of the model was 60 in. (1524 mm) and the cross-section was as showm in
Fig. 5.18. An asymmetrical point load of 224 1b (0.9968 kN) producing

torsional effects applied at midspan above the web was considered. The same
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problem has also been considered or referred to in Refs. 50, 85 and 90.
\
Since these existing results vary considerably, it is difficult to make a

satisfactory comparison. Thus, we here recalculate this problem by using,

for further comparison, the LUSAS finite element system (79, 80).

The finite elements chosen in the LUSAS system are the flat thin shell
box elements (SHI6) each with six nodes, taking account of both membrane
(in-plane) and flexural (out—-of-plane) deformations. In order to ensure
that the boundary conditions are the same for the pr;zsent study four node
thin shell box elements (SHI4) are also employed as the diaphragms resisting
torsional and distortional deformations of the cross—sections at the end

supports. The finite element idealization of the model is shown in Fig. 5.19

in which 84 elements are used.

Eight thin-walled box beam elements were used for the whole beam in
the pr.esent study. Mikkola and Paavola (90) however, calculated the same

box girder using a thirty element mesh. In order to consider the shear lag

effect, effective breadth ratios are used from Table 2.1 (93, 13, 18).

Fig. 5,20 displays the deformed shape of the cross-section at midspan.
Good agreement between the present results anci the LUSAS results is evident.
The longitudinal membrane stresses are shown in E;ig. 5.21(a), and the
longitudinal warping stresses and the transverse bending stresses at the
outer ;urface at midspan are shown in Fig. 5.21(b) and Fig. _5.21(c)
respectively. A close.agreemz.ant for practical engineering purposes is
evident between the results obtained from the box beam eiements and from

the LUSAS program.

5.3,6 Tapered box girder models given by Kristek

The box girder analyses and experiments carried out by Kristek (62)
to illustrate the two steps in his elastic procedure, were selected as a

further example to verify the present work.
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Kristek did the experiments on tapered celluloid box girdef models
with fixed ends. The models are shown in Figs. 5.22 and 5.23. The span
of the first model is 24 in. (610 mm), and the width is 1.6 in. (40.6 mm),
while the depth varied parabolically from 3.2 in. (81.3 mm) to 7.2 in.
(182.9 mm). The second beam had a span of 48 in. (1220 mm), a width of 4 in.
(102 mm), and a depth which varied parabolically from 4.7 in. (119 mm) at
the supports to 3.2 in. (81.3 mm) at midspan. The wall thicknesses were
constant at 0.12 in. (3.05 mm) throughout both models. The modulus of

elasticity was 500,000 psi (3.45 kN/mm?) and Poisson's ratio was 0.33.

In the first step of Kristek's analysis, the box was assumed to
have no transverse distortion. The stiffness of the cross-section for the
first model was ensured by means of diagonal cross braces at regular intervals.
The girder was loaded at both ends by couples, the value of which was

125 in.~1b (14.13 m—N) and the ends were fixed to prevent warping.

In the present study an analysis was carried out using 15 thin-walled
beam elements. The variation of the longitudinal warping stresses in one
of the corners is plotted in Fig. 5.24 together with results obtained by

Kristek (62).

The second step of Kristek's method consisted of analysing the box
girder for transverse distortion. The girder was loaded by a pair of
distributed loads along the diagonal of the box. The load had a constant
vertical component of 0.716 1b/in. (125 N/m) and its horizontal component
varied parabolically from 0.609 1b/in. (106.5 N/m) at the supports to

0.895 1b/in. (156.6 N/m) at midspan.

Three elements for each half of the beam were used in the present
solution. BaZant and El1 Nimeire (9) also used the same models as illustrative
examples. The vertical deflections at the corner point for all the

comparable methods are given in Table 5.2, together with Kristek's experimental
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results., Graphical comparisons are also shown in Flg 5.25. Agreement

was found to be good.

5.3.7 A double~cell box beam under twisting loads

The distortional and torsional behaviour of a box beam with a
trapezoidal double~cell cross-section has been demonstrated by the analysis
of a simply-supported prestressed concrete bridge given by Richmond (104, 106).
The span of the box beam is 200 ft (61 m) and the trapezoidal cross section is
shown in Fig, 5.26(a). Twisting loads of 40 kips (178 kN) are applied at
midspan. The modulus of electricity is 3 x 10 kip/sq.in. (20.7 kN/mmz)

for G/E = §.

Eight thin-walled box beam elements were used for the present analysis.
Finite element analysis by means of the LUSAS program was also carried out
for comparison. Figs. 5.26(b), 5.26(c) and 5.26(d) show the solution of the
example compared with the stresses and deflections of a finite element
solution using thin shell elements. It can be seen that fairly good results

are given by the present study compared with the finite shell element analysis.

5.3.8 A two-span 3-cell box-bridge given by Scordelis and Davis

Fig. 5.27(a) shows a two-span three—cell box-bridge with no overhangs
but with rigid diaphragms provided at all support sections. The cross-
section of the 3-cell structure is depicted in Fig. 5.27(b). A 1000 1b
(4450 N) line force, concentrated over 1 ft (305 mm) longitudinally anc.l
applied over one exterior web at the centre of each span, comprised the

loading. The material properties are also indicated in Fig. 5.27.

The bridge was first analysed by Scordelis and Davis (126) to study
the efficiency of the computer programs which they had developed using the

folded plate theory compared with the finite element and finite segment
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approaches. The two span box bridge has also been analysed by Loo and

Cusens using the program COSBOB based on the finite strip approach(77).For the
present method, separate computer analyses were performed again by the

finite element method with either a thin-walled box beam element mesh or

a thin shell element mesh. Results by the LUSAS program are considered

exact for purposes of comparison in order to assess the relative accuracy

of the present method. Longitudinal symmetry of loading permitted treatment
of only one fixed-simple span by the two methods. The concentrated line

load is simulated by a narrow patch load. Eight box beam elements were used
for the present study, while-a total number of 140 shell elements were used

for the LUSAS analysis.

Vertical deflections at the top of the loaded web are shown in Fig. 5.28.
The vertical deflections are generally the least sensitive of the results
obtained and the present approach produced deflections comparing favourably

with those of the finite shell element analysis.

The longitudinal distribution of longitudinal in-plane stresses near
the box corner is plotted in Fig. 5.29 for each of the two analyses. A typical
plot of the transverse slab moments is shown in Fig. 5.30. Although the
breadth of the box-bridge in relation to its length is not suitable for
approximating the substructure as a single-spined beam, the figures indicate
general agreement among results for the two methods except in the vicinity of
the concentrated load. The thin-walled beam solution appears to underestimate

the stresses under the applied load.

5.3.9 A simply-supported single-box girder bridge curved in plan

As a final example, this box-bridge illustrates the versatility of
the present theory for describing the structural behaviour of box beams

including those of curved spine~beam bridges. The curved box-bridge was
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initially presented by Meyer to illustrate the validity of the curved strip
theory and of the computer program CURSTR (87). By means of the program
CURSTR it is possible to analyse prismatic folded plate structures curved

in plane and simply-supported along their straight radial edges.

The dimensions of the curved box girder are shown in Fig. 5.31(a). The
modulus of elasticity is 432 x 10 kip/sq.ft (20.69 kN/mm>), and the
Poisson's ratio is 0.15. The girder is subjected to a single concentrated

1 kip (4.45 kN) load at midspan over the outer web.

The present analysis was carried out by using box beam elements with an
eight element mesh. The state of stress in the curved single-box girder
bridge is plotted in Fig. 5.31(b) and Fig. 5.31(c) together with the values
obtained by computer programs LUSAS and CURSTR respectively. It can be ;een
that fairly good results are given by the present study. The only significant
difference in transverse moments is in the region of the local disturbance
at point loads. The difference in transverse bending moments between the
present study and the finite element solution is due to local plate bending

of the cantilever.

5.4 * Box beam diaphragms

In the present analysis of box beams, the diaphragm is assumed to be
rigid in its own plane and absolutely flexible normal to that plane. Thus,
the diaphragm prevents the deformation of shape of the cross-section in which

it is placed, but does not induce any bimoment effects.

Diaphragms may be classified according to their position into support

diaphragms and intermediate ones. Accordingly, they have a somewhat different

effect on the behaviour of the box beam.

The support diaphragms prevent deformation of the cross—sectional shape
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at supports, and consequently reduce significantly t'he transverse
distortional bending stresses and the longitudinal normal stresses which are
caused by torsion accompanied by a deformation of the cross—sectional shape.
The intermediate diaphragms also reduce the deformability of the cross-
sectional shape, but their influence manifests itself differently both with
regard to longitudinal warping stresses and also to transverse distortional

bending stresses.

An analysis based on the box beam given by.K;:istek (Example 5.3.4) was
carried out with different numbers of rigid diaphragms located between end
supports. The relative values of the longitudinal warping stresses and
transvers;a distortional bending stresses vary in accordance with the number
of intermediate diaphragms in the curve shown in Fig. 5.32. All values in
the diagram refer to the values for the girder which is provided with rigid
support diagrams only and is used as the datum for comparison. The transverse
distortional bending stresses as well as the warping stresses decrease

rapidly with an increasing number of rigid diaphragms between supports.

Actually, on the basis of the calculations for many practical and
possible cases of box beams with different numbers of intermediate diaphragms,
carried out by Kristek, there are four different types of curves showing
the influence of the number of diaphragms between supports on the warping

stresses and transverse distortional bending stresses (Ref. 63 and Fig. 5.33).

The type of curve in each case depends on the length of the box beam
and on the dimensions of the cross-section. For a symmetrical rectangular
cross-section Kristek gave the following formula for determining a critical
distance of transverse rigid diaphragms, for which the warping stresses are

maximum (63),

Lee = 0.844 J[bzt b (ht, + bttt)(-l:—;*'%t‘)] (5.1)
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On the basis of the known value of L it is possible to decide
vhich type of behaviour (see Fig. 5.32) a box beam under consideration

exhibits. The following approximate rules may be obtained (63):

n

Fig. 5.32(a) corresponds to L Ler s
Fig. 5.32(b) corresponds to Lep< L < 2L,

2Lce,

R

Fig. 5.32(c) corresponds to L

Fig. 5.32(d) corresponds to 2L < L < 3Ly

5.5 Conclusion

The various applications successfully presented in this chapter
demonstrate that the general one-dimensional finite element system has been
implemented correctly. The results have been compared with analytical ’
solutions or with other types of elements such as flat thin shell elements.
Good agreement generally exists between the results obtained. The thin-walled
box beam element together with a transverse frame analysis give an economical
approach for the analysis of straight or curved single-spined box beams
with variable cross—sections and different boundary conditions having
sufficient accuracy for preliminary design purposes. Additional vertification

for the present approach, using model test results, will be presented in

Chapter 8.
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Fig. 5.1 A deep cantilever beam subjected to concentrated load
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Fig. 5.2 A deep cantilever beam subjected to uniformly distributed load
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Fig. 5.3 Deflections of an L-type frame subjected to concentrated load
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Fig. 5.5 Deflections of an L-type frame subjected to uniformly
distributed load
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diagrams due to live load
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Fig. 5.16 Results for example from Ref. 146:

(a) Longitudinal stresses due to symmetrical load at mid—span;

(b) Longitudinal warping stresses due to antisymmetric
load at midspan;

(¢) The total longitudinal stresses at midspan.

Values in parentheses are from Ref. 146 and Ref. 90 (1kg=9.81N)
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Fig. 5.17 Results for example from Ref.63: (a) Cross-section and loading;
(b) Shape and displacement of the deformed cross-section

at midspan; (c) Longitudinal warping stresses in the cross-
section at midspan; (d) Transverse bending moments at midspan.
Values in parentheses are from Refs. 63 and 90 respectively.
(1 in. = 25.4 mm; 1 1bf = &4.45N; 1 kip = 4.45 kN).
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Table 5.2 Deflections of nodal edges of tapered box girder
compared with results from Refs. 9, 62 and 90.

Distance from Measured Computed Computed Computed
support, in Present | deflections | deflections | deflections | deflections
inches method | from Ref.62| from Ref.62 ) from Ref.9 from Ref.90

(1) (2) (3) (%) (5) (6)

0 0 0 0 0 0

4 0.0799 0.075 0.068 0.074 0.0734

8 0.2716 0.351 0.332 0.348 0.3476

12 0.5027 0.556 0.541 0.550 0.5511

16 0.7105 0.741 0.739 0.740 0.7402

20 0.8508 0.859 0.869 0.859 0.8600

24 0.9000 0.907 0.916 0.907 0.9073

- . . -2
Deflections are in inches x 10

Note: 1 in. = 25.4 mm

53
————— Kristek ,measured{62)
100 1 e———o Kristek,computed(62)
8———a Present solution
501 N
<
d‘ 3 7
¢ o
a
v o =
L I
+= Y IE——
Y100 o '|
0 5 10 15 20 B Zlad

Fig. 5.24 Comparison of Longitudinal Warping Stresses along Span from
Present Solution with Kristek's First Step Analysis and Test Data
(1 in. = 25.4 mm; 1 1bf./sq.in. = 6.9 kN/m?)
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£ 81 48" |

£ — '
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2

c 4

2

e Computed ,Kristek(62)

£ 7

U

Q
P — —— . T v . T 1 .
0 5 10 15 20 25 Z{in)

Fig. 5.25 Comparison of Vertical Deflection in Second Step of Kristek's
Analysis
(1 in. = 25.4 mm)
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3,. . 10ft.
E=3x10" kip/sq.in.

(20.7KN/mm?)
G/E=1/2

(a) Cross—-section and loading

-1.581 -3.435 -3.554 LUSAS solution
-1.553 -2.986 -3.410 Present solution

(b) Deflections at midspan (10_2in.)

0.6849 LUSAS solution
0.4193 Present solution

(c) Transverse bending moments at midspan (kip.in./in.)

., 2.35%107% LUSAS solution
2-70x10 % Present salution

-4.82x1072
™ _4,.85%1072

(d) Warping stresses at midspan (kip /in® )

Fig. 5.26 A double cell boxbeam under twisting loads .
(1 in. = 25.4 mm; 1 ft. = 0.305 m; 1 kip/in® = 6.9 N/mm )



231

1000 (bf 1000 tbf
diaphragm @
L
- oy — l:—-—1' | - i
| 1
S v | 30° R v
= i — ) 1
(a) Bridge elevation and loading position
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(b) Typical transverse section
t4=0-5417ft
0001bf t 10001bf
! t,=0-4583ft
2 tp=0-6667ft R
1 I [ 1 i 2 T‘[
N I TR R N R B . m
4
| 60’ 9.3333 93333 | _ 9.3333
a 8@7"-6"

E=432x10° bf/F12(20.69KN/mm?)
=015

(c) Three-dimensional finite element model

Fig. 5.27 Two-span continuous box bridge
(1 ft. = 0.305 m; 1 1bf. = 4.45 N)
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Jain.
! 4.5,
} 10ft
y R=250ft. E=432000kip/sq.ft.
8,=22.92° (20.69KN/mm?)
=015

(a) Cross—-section and loading

-0.664
+7(~0.559,-0.646)

-0-305
i
|
N
)
——
:ﬁ-osue

(-0360,-0345)

(-0.387,-0.379)
{-0-370,-0.370)

% I _
3 ‘ 2
) =
=& — 0o
5% 0.720 g
e (0784,0.770) at=

(b) Longitudinal normal stresses at midspan (kip/sq.ft.)

= g
3 s
o S
S, o
~ .3 - g\f
SENTTY S5
o2 ST 4
| —
AN
0.0088 ' [0.088
(0:0100,0-0096) \\l\\ (~0-0107,-0-0099)

(¢) Transverse bending moments at midspan(k-ft/ft)

Fig. 5.31 A single-cell curved box girder example (The values in
parentheses are from LUSAS program and CURSTR program

respectively)
(1 ft. = 0.305 m; 1 kip/sq.ft. = 47.9 kN/m*)
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— \Warping stress
————Transverse distortional bending stress

n Number of diaphragms between supports

20

Fig. 5.31 Influence of the number of diaphragms between supports
on the state of stresses in the box beam given by Kristek (63).

—— Warping stress

----— Transverse distortional bending stress
[ Number of diaphragms between supports

Fig, 5.32 1Influence of the number of diaphragms between supports on
the warping stress and transverse distortional bending stresses
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CHAPTER 6

A FINITE ELEMENT - GRILLAGE APPROACH TO THE ANALYSIS OF
MULTIBOX BRIDGE STRUCTURES

6.1 General

The box-section forming the spine provides the main source of strength
in 2 single-spined box beam bridge. However, as may be expected there is
a limit to the breadth over which the strength of a single spine may be
economically effective. In practical bridge construction, the full width
required may then be provided by multi-spined or twin superstructures. The
term 'twin' is used to denote two nearly identical superstructures side by
side, placed on common piers or with each of the pair having an independent
system of piers. The twin superstructures may be completely independent
but the halves are often jecined by simple precast elements spanning between
the two. In some cases, the gap between is filled with in-situ concrete
although transverse flexural continuity is not assumed in the analysis.
By contrast, the multi-spined superstructure is obviously beneficial under
uevenly distributed live loading since it reduces both the bending moment
on individual spines and the difference in deflections between neighbouring
spines, As a result, a multi-spined superstructure should be generally

adopted in preference to twin single piers.

Swann has stated (136), as a general rule for concrete box spine—beam
bridges, that single—spined structures are suited to decks of breadth less
than about 18 m and multi-spined or twin superstructures are suited to
decks of breadth greater than this, Fig. 6.1. A survey of 173 concrete
box spine-beam bridges given by Swann shows that of the total, 53 are single-
spined having a single cell, 59 are single spined having multicells, and

the remainder, 61, are multi-spined with a number of twin structures.
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A substantial number of multi-spined steel box-bridges have also
been constructed. A similar survey of data obtained from 62 steel box-bridges
compiled for the Merrison Committee Parametric Studies report (35) reveals

that 15 were single cell, 4 were multicells and 43 were multi~spined.

In addition, the use of composite box girder bridge decks has gained
in popularity in the small to medium span range. A composite box girder
bridge deck consists of a number of pre-fabricated steel boxes or precast-—
prestressed boxes with anin-situ composite concrete slab, Fig. 6.2. The
concrete slab acts as the transverse distributing medium in the bridge
' deck. The torsion rigidty of the component boxes obviates the necessity of
using intermediate diaphragms. It can be seen that composite box girder
bridges can be placed in the same category as that of multi-spined 5ox beams,

which are basically composed of several box girders connected by a continuous

top flange only.

Furthermore, short and medium span bridge decks are often erected by
laying out precast—prestressed hollow box beams side by side and connecting
them with in-situ concrete fill, Fig. 6.3. Since the joints will have
very small and uncertain transverse bending stiffnesses and torsional
stiffness it is often assumed in design that the joints act as pure shear

keys, and the bridge deck as an articulated plate bridge.

In general we can use the term multibox structures to designate
mlti~spined box beams, or composite box girder bridge decks, or even

articulated cellular bridge decks, having cross—sections with several

separate boxes.

An analytical approach in the form of a one-dimensional discrete
system with reference to single-spined superstructures, has been presented
in previous chapters. It is clear that for the method to be of general use

to the designer, it must also be applicable to multibox structures. At
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first sight this type of superstructure seems unlikely to be idealized

by a one-dimensional discrete system. However, an interconnected grillage
of beams (37, 73, 114, 115, 116, 121, 148, 41, 30) can, with care, be

made to yield an adequate representation of structures which clearly

behave in a three—dimensional mode. This measure of flexibility, combined
with economy in computing, input preparation and interpretation time, makes

grillage analysis a popular and widely used method in the bridge design

offices,

In this chapter a'method based on a finite element-grillage approach,
using the general one-dimensional finite element system derived for the
analysis of multibox structures, is proposed. Guidance is given on the
geometric layout of grillage beams to represent the actual structure, and
on the establishment of equivalent element properties, An iterative
procedure proposed initially by Billington (11) is incorporated into the
computer program to account for distortional effects in a deformable

multibox structure. Modification of the stiffness matrix due to the effect

of shear keys is also formulated.

The method is used to investigate a typical twin-box structure, and
also to investigate the load distribution of some articulated cellular
bridge decks. Validation is proved by comparison with three-dimensional

finite element results or with other analytical solutions.

6.2 Grillage idealization of multi-spined box beams

As a first step in a grillage analysis, the actual continuum structure
must be idealized as a two-dimensional arrangement composed of discrete
one-dimensional elements. The interaction between longitudinal and
transverse force system takes place at nodal points. Restraints may be
applied at any joint and elements framing into a joint can be at any angle.

It should be borne in mind at all stages of calculation that the grillage
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idealization is not a direct representation of the real physical structure;
nevertheless, it can be made, with care, to reflect an adequate

distribution of displacements and internal forces within the structure.

Logically, the longitudinal grillage members should be placed
coincident with the physical boxes, i.e., single equivalent elements along
individual spine axes. Thus, internal forces in the grillage members
directly represent those in the spines of the structure. This idealization
leads to a higher degree of accuracy than one where the members are placed
coincident with the longitudinal webs in the deck (30, 41). It also
considerably reduces the total number of longitudinal elements. Additional
longitudinal members of low stiffness are sometimes located along the
edg es of deck cantilevers or along the midline of the slab between

neighbouring boxes to assist load description.

In order to provide a representationof the transverse bending action,
transverse grillage members, intersecting the longitudinal members, must
be used, There will invariably be transverse diaphragms at the supports and
there may be diaphragms within the spans. Obviously, transverse grillage
members must be incorporated along the line of each diaphragm in a structure.
In bridge construction, the spacing of the transverse diaphragms may be
considerably greater than that of the distance between boxes. In such a
case, additional transverse elements placed between the transverse diaphragms,

are needed to reflect the load-sharing characteristiecs of the deck.

Experience shows that very close spacing of transverse elements
permits a detailed study of the structure, but is expensive and does not
necessarily make the characteristic behaviour of the grillage any closer to
that of the actual structure. On the other hand, very wide spacing results
in inaccuracy of load transference and excessively large discontinuities

in internal forces at the joints. Some guidance given by West (148) is that
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transverse element should be placed at intervals not exceeding twice the

spacing of longitudinal elements. For the present analysis of multi-spined

box beams, it is preferable to stipulate that the spacing should not exceed
twice the breadth between the outer webs of neighbouring box-spines. It
is also recommended that normally the spacing of transverse grillage

elements should be not less than this breadth or not less than the spacing

of longitudinal elements.

Notice that the fictitious transverse medium between the box~spines
consists only of the deck slab itself. However, across the width of the
box additional stiffening is present due to the frame action of the box cells.
Different grillage elements with high stiffness are tken used across tThe
width of the box so that the transverse grillage elements, which represent

the slab between individual boxes, have the correct span and stiffness

properties.

Although the one-dimensional discrete system will invariably change
the even internal force system of a real three-dimensional structure s.o that
it is abrupt and centred on nodal points, the accuracy of the grillage
method, within accepable limits, may be justified by physical reasons.
First of all, in a thin-walled structure the use of an effective width of
top slab for calculating the flexural section property evades‘ problems
which would otherwise arise from incompatibility of the iongitudinal bending.
Secondly, since the connecting slab between boxes does not increase the total
torsional stiffness appreciably, the discontinuity of the warping restraint
vithin the top plate is not expected to cause significant error in the
solution., Thirdly, the load-sharing capacity between individual spines
depends mainly on the transverse bending action of the top slab and of the

diaphragms, and this action can be represented adequately by the transverse

interconnected elements.
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As an example, a finite element-grillage discretization for a

twin-box beam is shown in Fig. 6.4. The idealization consists of a single

line of longitudinal elements along the centre line of each box with
transverse elements to represent the boxes and top slab as well as the

support diaphragms. Three-node beam elements are used to simulate the

transverse action of the boxes, with the mid-nodes of these elements

coincident with the box axes. Cantilevered transverse slab members can also

be used beyond the outer half of the box, though they are not very necessary

in the calculations.

The computer program presented in this thesis permits the application
of point loads and distributed loads on the elements. Since the grillage
approach is expected only to prcduce a global response to the structural
action, it implies that external loads are always statically distributed

to longitudinal elements so that deck distortion and local bending of

transverse elements are not confused.

In accordance with this principle, when the applied loads locate
yithin the width of the individual box spines, they are considered as
eccentric loads acting directly at corresponding longitudinal elements,
Whilst for loads applied on the connecting slab between neighbouring box
spines or on the side cantilevers, it is sufficiently accurate to replace

the loads by statically equivalent loads distributed to pairs of neighbouring

longitudinal grillage elements.

6.3 Determination of grillage element properties

Grillage element properties depend upon the positioning of the

elements, Fig. 6.4 shows the division of the deck into longitudinal beams
b cuts through the slab midway between adjacent spines. By splitting the
deck in this way, the longitudinal grillage elements coincide with the

individual box-spines. Thus, the sectional properties for these longitudinal
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equivalents are calculated from a complete box with its associated top

slab, and obviously no computational difficulties need be anticipated using

the formulae derived in previous chapters.

It should be borne in mind that shear lag has a significant effect

on distribution of bending stresses. This can be estimated by considering

the flange to have a reduced 'effective width' over which the stress is

uniform, as is outlined in Chapter 2. Using the full effective width of

the flange and assuming that it can act with the webs, the beam stiffness

can then be established.

In most cases of multi-spined box beam bridges, at any cross—section
of a bridge, the lengitudinal grillage elements will have the same sectional
properties with vertical axes of symmetry. Consequently, the individual

horizontal neutral axes will appear at the same level as the neutral axis

of the deck as a whole. However, in some cases the sectional sizes of the

side cantilevers will be slightly different from the half intervals.
Thus, by cutting the deck along the slab midway between neighbouring spines,

the side box~spines will be unsymmetrical and the level of neutral axes

will vary across the width of the deck. For simplification it is assumed

that the neutral axes of all longitudinal elements are coincident with

that of the gross cross—section. Moreover, the side box—-spines are also

treated as having cross-sections with vertical axes of symmetry for

evaluating the warping properties. Numerical experience has shown that

calculated results are close to a three—dimensional finite element analysis.

Within the net spacing of the neighbouring box-spines the transverse

medium consists only of the deck slab itself. No difficulties are experienced

in calculating the sectional properties. When a transverse grillage element

represents a diaphragm as well as some width of the top and bottom slabs,

the inertia and shear stiffness should include that of the diaphragm.
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The width of slab considered to act with the diaphragm should be the

flange width reduced by shear lag, as given in Chapter 2. The remainder

of the slabs are attributed to neighbouring transverse grillage members,

vhich have very low shear stiffness to allow for distortion.

The determination of the equivalent stiffness for the transverse

grillage elements is not immediately obvious. The structural action of the

medium is somewhat complex since no through diaphragms are present.
Transverse distribution of loading is achieved by the distortion of cell

valls as in a Vierendeel girder. For simulating this 'frame' type of action

it is convenient to analyse a frame with the shape and dimensions of a

unit length of the deck. This can be done by using the plane frame

computer program PFRAN (Appendix II).

Fig. 6.5(a) shows a slice of half of an individual box-spine. Under
the action of a unit pure bending moment the webs remain undistorted and

flexure is achieved by extension of the top flange and compression of the

bottom flange. The equivalent moment of inertia of a transverse grillage

element is therefore calculated as

2
Iyw = _Pt (per unit length) (6.1)

8E1GB

where 8g is the bending deflection in the direction of the local y axis

at the corner node above the outer web of the box-spine.

For assessing an effective cross-sectional area which results in
shear deflections approximating to those of Vierendeel, the frame is
constrained as in Fig. 6.5(b), so that it cannot rotate, and is subjected
to a unit distortional shear force S. By equating the shear stiffness

8/ to O.SASYG/bt the equivalent shear area of the grillage element can

be determined as

Asy Tooe (per unit length) (6.2)
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where 8g is the shear deflection at the corner node in the local
y-direction.

The torsional inertia of a fictitious transverse element within the

neighbouring outer webs represents the resistance of the top slab to
torque and is calculated by

3 (6.3)

Jr = % t (per unit length)

where t is the thickness of the top slab.

The torsional stiffness of a transverse grillage member across the

box-spine arises from the opposed shears in the top and boté¢om slabs

represented by that member. The torsion constant is the same as two layers

vithin a solid slab giving (41)

2n’
£ (per unit length) (6.4)

l =
T

vhere ty and ty are the thicknesses of the top and bottom flange respectively,

and h is the depth of the cross-section.

6.4 An iterative process for assessing distortional effects

Economic considerations dictate that the use of thin walls and the
elinination of intermediate diaphragms may lead to significant deformability
of the box-section. Thus it has been necessary to consider the distortion
of the transverse cross—sections. With regard to the structural action

arising from deformation of the cross-sections, the grillage assemblage
has no adequate mechanism with which to represent directly the distortional
effects. Additional deflections of the box corners which result from

deformation have been simulated by using an equivalent shear area of the

transverse grillage member calculated to produce the same displacements as
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the box when subjected to shear forces. However, the top flange, which
comnects the individual boxes and completes the entire cross-section,

rotates not only through the pure twisting angle but also through an addition
of half of the distortional angle (Fig. 3.25). The rotation of the top

flange can then be regarded as equivalent to the effective torsional angle

of the cross—section. This has a significant effect on the stress

distribution in the deformable multi-spined superstructure.

For assessing the rotational angle, which results from deformation,
additional to the pure twisting angle, the reduced torsional stiffness
referred to as the effective torsional stiffness of the box-section, can
be used in the analysis. This structural treatment leads to an iterative
procedure utilising the proposed grillage approach with reduced torsional”
stiffness for the longitudinal box beam elements to make allowance for
deformation of the cross—section. Thus, compatibility of deformations and

continuity of rotation are ensured between adjacent elements.

The following iterative procedure, which yields the final solution,
is convenient for programming:
Step 1 Carry out a grillage analysis of the multi-spined structure
assuming that the longitudinal elements have the full

torsional stiffness as given in Chapter 2.

Step 2 Carry out a distortional analysis of each box-spine with

distortional loading associated with the member end forces

given by Step 1.

S\t‘ﬂ’i At key sections compare the sum of twisting angle and half
of the distortional angle with the effective torsional angle

given by the grillage analysis.



247

Step 4 Calculate the new torsional stiffness equal to the full
torsional stiffness multiplied by the reduction factor &

which is given by

£q i (Wg); (6.5)
Ed,i (‘P;)i"‘ %(Yd)

Edis1™
i

where wé is the effective torsional angle and the subscript

i indicates the iterative circulation.

Step 5 Carry out a further grillage analysis with the new reduced

torsional stiffness.

Step 6 Carry out a distortional analysis of each box-spine with

distortional loading associated with the member end forces

given by Step 5.

Step 7 Repeat Steps 3 to 6 until the following compatibility

criterion is obtained at Step 3

The above iterative analysis yields the correct aistribution of
displacements and internal forces, and experience has shown that the iterative
process converges very quickly. Thus we may specify in the program that
normally after four circulations the iteration will be stopped and the
output accepted. This measure will decrease relatively the computing time

and still provide sufficient accuracy for design purposes.

Since the continuous structure is idealized by discrete, skeletal
grillage elements, the distribution of the internal forces for the
longitudinal elements has discontinuities at the joints due to interaction
vith the transverse elements. Where all the elements meeting at a joint are

physical beams, there will be a genuine step in the diagram of stress
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resulténts at this point and the actual output of ’Values from the program
should be used. If any of the transverse grillage beams are hypothetical
and represent sections of slab, the 'true'diagram of the internal forces
can be assumed for the purpose of design to pass through the average value
of the internal forces on the two sides of each joint. Note that the

distribution of bimoments and distortional moments are not affected by the

transverse grillage elements.

The transverse bending moments of the top and bottom slabs within the
box-spines are derived from the distortion of the cross—section proportioned
to the plane frame analysis. The transverse bending moments of the top slabs
betveen the box—-spines are obtained directly from the grillage analysis.

The local effects occurring in the top slab are evaluated indpendently and

are added to the moments from distortion.

6.5 Numerical example of a composite twin-box beam

A simply-supported composite twin-box beam discussed by Billington
(11) is used to verify the validity of the proposed finite element-grillage
approach. The dimensions of the twin-box structure are shown in Fig. 6.6.
The cross-section consists of two open—topped steel boxes with a composite
reinforced concrete deck. The four webs are equally spaced at 8 ft. (2440 rm)
centres and a concentrated load of 1000 LBF (4.45 kN) is applied above an
outer web at midspan. The modulus of elasticity for the steel is 3.0 x 107
Ib/sq.in. (207 kN/mmZ), and for the concrete is 40 x 106 1b/sq.in. (27.6 kN/mmz).
Poisson's ratio is taken as 0.30 for steel, and 0.20 for concrete. The

modular ratio for calculating the sectional properties referred to bending is

E _ 2
mg = st X 1 _\)f_o = 7.912 (6.7)
Eco 1 = vst

ad the modular ratio for calculating the sectional properties referred to

torsion is
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Est 4 1%V = 6.923 (6.8)

1+\)St

m, =
Eco
The idealization used for the grillage analysis is shown in Fig. 6.8
and consists of a single line of longitudinal elements along the centre
line of each box with transverse elements to represent the boxes and the
gslab., Three-node beam elements with high stiffness evaluated from a
transverse frame analysis are used across the width of the box to simulate

the transverse action. The sectional properties of each element are given

in Table 6.1. The final iteration for the grillage analysis gave the values

of GJ;/17.38 for the loaded box and GJy/18.60 for the unloaded box.

The three-dimensional finite element analysis was performed using

the LUSAS program for comparison. The mesh selected for the analysis

consisted of rectangular flat thin shell box elements (Fig.6.7). Billington
also carried out a three-dimensional finite element 'shell' analysis using

the ICSAS (Imperial College Structural Analysis System) program.

The deformable shape of the cross—section at midspan obtained from
the grillage analysis together with the results calculated by LUSAS is
plotted in Fig. 6.9. Agreement between the grillage analysis and the FE

results are found to be good. Fig. 6.10 shows a comparison of the

longitudinal stresses with the FE results, and the transverse flexural
distortion stresses for the load case with the corresponding FE results

are given in Fig. 6.11. The stress results indicate that the grillage

approach with an iterative process gives results of sufficient accuracy for

design purposes.

6.6 Analysis of articulated cellular bridge decks

An articulated deck is a pseudo~slab form of construction. The deck

1s formed of precast prestressed beams each of which has incorporated in it
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some transverse shear steel, at the time of casting. Transverse continuity
is then obtained by making concrete joints between the beams. The deck
will distribute load almost entirely by shear, since it will have very

little bending stiffness and torsional stiffness at the joints.

The articulated bridge deck can be analysed by orthotropic plate
theory formulated by Guyon and Massonet and developed by other investigators
such as Spindel (132). Kristek (63, 64) has also presented a solution
based on elasticity, for structures composed of box beams connected by
hinges. Since existing analytical methods lack the ability to deal with
skew supports and continuity, and the full three-dimensional finite element
analysis requires too much computing time, Sawko and Swaminadhan (122, 137)
developed a rectangular quasi-slab element which is specified as a six-node
grillage element. The element has a single degree of freedom at each node
including vertical displacements at the four corners of each element and

two rotations along the longitudinal centre line. The derivation of the

element stiffness matrix is based on both the finite element and grillage

concepts.

In fact the grillage approach proposed in this Chapter is also
applicable, without any difficulties, to the analysis af articulated byidge
decks with stiff as well as deformable cross-sections and to skew and
continuous spans. As described in previous sections, the distortional

effects can be simulated by a shear area analogy obtained from transverse

Vierendeel frame analysis. The only modification necessary for the transverse
elemental stiffness is the releasing of the member end moments which will be

zero at the positions of shear keys.

The analytical procedure is similar to the static condensation process
described in Ref. 155. We use the threernode beam elements to represent
the component boxes transversely in which the mid-node is always coincident

vith the box axis and the width of each element is equal to the centre to
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centre distance of the shear keys between the beams. The sequence of the

1.1

degrees of freedom is rearranged and the subscript 'r' is used to denote

the released degrees of freedom and 'f' the remaining degrees of freedom

of the element i. The equilibrium equations for the element i can be

written in terms of released and remained displacements as

where
_ T
Gf = [uq’ Vis Wys Uz, V2, Wa, U3, V3, w3 ]
and

T
6[‘ [9X1 ’ eyi ’ 651, exzs eyz, 632, Bx3 > 9y3 ’ 653]

Solving for &; in terms of & from the released condition

S¢
(kpf kppl

Il
o

Sp
we have
— —1 .
§p == kpp * kpf Of
Substituting from Eq. 6.11 for &, in Eq. 6.9 gives

-1 A
(kg = kerker ke 148¢} = {ff = kfp ke £p)

or

[kff - R ] {Gf} = {ff - kfl‘k;:‘ fl" ]'

where R is the released matrix which is given by

1

[R] = kgkpp kpg

Eq. 6.15 can be written as

(kgl {8¢)} = {£g)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)
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where

gl
and

-
f£e = ke ko, £r (6.19)

{5}

Only kg and fg are then transformed to the global coordinate system

and added to the structure stiffness matrix and load vector.

The formulae derived have been incorporated into the computer program
CUBAS. The degree of accuracy of the present method is tested by comparing
the results obtained by the computer program CUBAS with the methods of
Svaminadhan (122, 137) and Kristek (64) on a right bridge deck for point load.
The geometry of the deck and the mesh arrangement are shown in Fig. 6.12.
Figs. 6.13 to 6.15 show the deflections, moments and torsion diagrams for
deformable cross sections. It can be seen that in all cases the agreement

betveen the different approaches is very good.

The present method can deal with fixed and continuous support
conditions without difficulty. A single 18 metre span was analysed with
three different sets of end conditions as shown in Fig. 6.16, and referred
to as simple-simple, simple—fixed and fixed-fixed. These various end
conditions will give a range of results intended to demonstrate the versatility

of the finite element-grillage method for amalysing continuous decks. The

mesh arrangement used is shown in Fig. 6.17.

Table 6.2 shows the midspan deflections for the various support
conditions under central and eccentric point loading. The mid span moments
are given in Tables 6.3 and 6.4. Results obtained by Swaminadhan (137)
are also listed in the tables with parentheses. Again excellent agreement
betveen the two methods is apparent. It can also be seen from these tables
that the total moment predicted at a section by the analysis differs from

the theoretical total moment (shown at the bottom of Tables 6.3 and 6.4)
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by less than 1.0%. These observations for the three types of edge conditions
appear to confirm the validity of the approach for the analysis of

continuous structures.

Swaminadhan also used his method to investigate a skew articulated
pridge deck model (137). Although no comparable results are shown here
petween the two methods, it follows that the present method would be able

to predict the behaviour of a skew articulated bridge deck with the same

- degree of accuracy.
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(a) Bending deformation mode
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FE shell analysis (1bf/sq.in.)

10001tbf
019 (0-0) -0-77(-0.8) -1-83(-1.6) -3.38(-2.8)
{2...%:76.50:."0. 2.9 6. 0 ® 0¥ o..9%5: 0 0 R R I R Y IR T |
3.59{2.3) 16-26(12.5) 26261267 61.01{571)
FE-Grillage analysis (1bf/sq.in.) 10001bf
-0.66 -051 -2.29 -3.56
R A P S R Y W W e By B S T A T TSP AT PO A R I I H

FAE] 13.08 31-24 73.96

Fig. 6.10 Comparison of longitudinal stresses in twin—-box beam
example for a concentrated load applied above an outer

. . . O
web at midspan (Values in parentheses are given by Billington')

n
(1 in. = 25.4 mm, 1 1bf = 4.45 N, 1 1bf/sq.in. = 6.9 kN/m’)
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FE shell analysis (1bf/sq.in.) 1000(bf
y
| R AR A T A AT R R A R R R IR R T I XS |
28.2 -29.-4 42.3 -55.5
{38.0) {-38.0) (52.0! (-52.0)
=225 22.9 - 344 42.5
(-31.0) 457 15.9 (31.0) (-42.0)-7239 25.6 (42.0)
(-21.0) (21.0) {-29.0) {29.0)
FE~Grillage analysis (1bf/sq.in.) 1000(bf
| R AN R R A N A T R R S I N R RN INTAS)
481 -481 61.8 -61.8
-383 38.3 - 492 49.2
-26.2 262 -34.2 342
Fig., 6,11 Comparison of transverse distortional bending stresses

in twin-box beam example for a concentrated load applied
above an outer web at midspan (Values in parentheses

are given by Billingtonﬁ)

(1 in. = 25.4 mm, 1 1bf. = 4.45 N, 1bf/sq.in. = 6.9 kN/m’)
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Fig. 6.13 Deflections at Midspan for Right Bridge Deck with
Eight Cells
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{} Load position (1800KN)

—— Present study

a Sawko& Swaminadhan

o Kristek

Fig. 6.14 Moments at Midspan for Right Bridge Deck with

Eight Cells
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Il Load position (1800KN)

—— Present study

2 3 4Y32 6 71 8 4 Sawko & Swaminadhan
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Fig. 6.15 Torsion near Midspan on Section 'XX' for Right
Bridge Deck with Eight Cells
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Fig. 6.16 Loading and End Support Conditions
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beans | 2 3 4 5 6 7 8 9
Sipports:
PE- | 22.72 | 23.89 | 26.34 | 30.35 | 33.28 | 30.35 | 26.34 | 23.89 | 22.72
SWIE |(22.63)](23.84) [ (26.35) |(30.42) |(32.90) | (30.42) [(26.35) | (23.84) (22.63)
smpee- | 8.40 9,38 | 11.49 | 15.12 | 17.88 | 15.12 | 11.49 9.38 8.40
FIEED (8.60)| (9.60)(11.77)|(15.51)|(17.83)](15.51){(11.77)| (9.60)| (8.60)
FIiED- 3.85 4.67 6.50 9.82 | 12.43 9.82 6.50 4.67 3.85
FIIED (4.04)| (4.88)] (6.77)|(10.21)((12.40)|(10.21)| (6.77)| (4.88)| (4.04)
(a) Midspan Vertical Deflections (mm) for Central Loading
Beams
1 2 3 4 5 6 7 8 9
ipports
plE- | 48.84 | 41.17 33.21 | 27.23 | 22,72 } 19.38 | 17.02 15.52 14.79
apiE | (48.72)] (41.43) [(33.32){(27.22)[(22.63) [(19.25) |(16.87) |(15.35) [ (14.61)
oelE- | 29.33 | 22.54 15.95 11.48 8.40 6.30 4.91 4,07 3.67
mE [ (29.56)( (23.10) [ (16.30) | (11.75)| (8.60)| (6.46)| (5.04) | (4.18) (3.77)
m- | 21.26 15.11 9.49 6.02 3.85 2.50 1.67 i.21 1.00
mm | (21.53)] (15.67)| (9.86)] (6.28)] (4.04)| (2.64)| (1.79)] (1.30)| (1.08)

(b) Midspan Vertical Deflections (mm) for Eccentric Loading

Table 6.2 Midspan Vertical Deflectioﬁs
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CHAPTER 7

STATIC ANALYSIS OF CABLE~STAYED BRIDGES

7.1 Introductory remarks

As a practical application of the one-dimensional finite element
fanily to the analysis of bridge decks, in this chapter we will discuss the
static analysis of cable-stayed bridges. Despite the fact that the concept
and practical application of cable-stayed systems have been attractive to
engineers and builders for centuries (98), a successful implementation has
been realized only recently, with the introduction of high-strength steels,
progress in structural analysis and model studies, and the development of
electronic computers. Ever since the first modern cable-stayed bridge,
the Str8msund Bridge, was completed in Sweden in 1955, the number of
applications of this type of bridge has grown rapidly. This indicates its

competitiveness in medium and long span bridge construction.

The cable-stayed bridge cor;sists of a stiffened girder at deck levei,
rigidly supported on abutments and piers and elastically supported at
intermediate points by inclined cables. The cables are suspended from towers
located at interior supports. In contrast with conventional suspension
bridges, the essential feature of this type of bridge is that the reactions
fron the cables are transferred directly to the bridge deck (Fig. 7.1). Thus,
the deck in a cable-stayed bridge is subjected to the combined effects of

both axial forces and bending moments,

The cable-stayed bridge is a highly statically indeterminate space
structure which is difficult and tedious to analyse. Most of the existing
malytical methods approximate the real structure to a two—-dimensional plane
frame, This approach is relevant only to the single-plane system in which

torsional forces acting on the deck would have to be superimposed on the
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girder, 1If the bridge girder is suspended along its edges, the additiomnal
torsional resistance provided by the stayed cables is rather significant.

In spite of its complexity, an analysis taking into account the three-

dimensional space action is then necessary.

The complexity of the analysis is caused not only by the necessity of
considering the space action, but also by the fact that the cable-stayed
bridge displays a nonlinear structural behaviour. The nonlinearity is due to

large displacements, bending moment-axial force interaction and the catenary

action of the inclined cables. The structural problem is then a geometrically

nonlinear problem together with the non-linear material of the cables. 1In
addition, the creep of the concrete and the relaxation of the cable may also
induce nonlinearity in the analysis. For a nonlinear structure, the
principle of superposition does not apply and consequently, it is not possible
to determine stresses and displacements by superposition of influence lines

as in the case of linear bridge systems. The analysis of a cable-stayed

bridge should be carried out by loading the system with its full dead and

and live loads.

The objective of this chapter is to apply the one-dimensional finite
element family developed in this thesis to a plane or spatial frame model of
the cable-stayed structure combining it with a Newton-Raphson iterative
scheme, Firstly, a review of different structural forms which can be used

for the cables, the decks and the towers, is made. The existing methods of

analysis are then briefly introduced. A detailed derivation of an equivalent

modulus of elasticity of the inclined cable,considering the catemary action,
is given. A stiffness analysis based on the one-dimensional finite element °
system and on the Newton-Raphson algorithm has then been devised. Finally,

a numerical example and a practical construction are investigated to confirm

the validity of the present study.
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7.2 Geometric configuration of cable-stayed bridges

The cable-stayed bridge has a large variety of different geometrical
configurations. The variety is shown in the span arrangements, the types
and geometric configurations of the cables, the superstructure types, the
tover configurations and placement etc. The combination of these different
features lends itself to versatility in relation to the environmental

requirements and the optimisation of design.

It is not the object of this thesis to attempt to present an extensive
study of all aspects of the structural features involved in design, but for
the sake of understanding the following analytical process, a general

description concerning possible structural forms is made.

7.2.1 Span arrangements

The span arrangements of cable-stayed bridges can be categorized as
of three basic types: two spans, symmetrical or asymmetrical, Fig. 7.2;

three spans, Fig. 7.3; or multiple spans, Fig. 7.4.

A partial survey of existing bridges (97) indicates that, for the
two-span asymmetrical bridge structure, the length of the longer span ranges
from 0.60 - 0.70 of the total length. In three-span structures the ratio of
centre span length is of the order of 0.55. An investigation of bridges with
mltiple spans indicates that the spans are normally of equal length, with
the exception of the flanking spans which are adjusted to connect with the

approach span or abutments.

To avoid high longitudinal bending moments in the towers and to use a
system which brings mainly vertical loads to the foundation, Leonhardt (69)
Proposed two alternative multispan cable-stayed bridge structures shown in

Fig. 7.5.
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7.2.2 Stay geometry

There are two basic arrangements for the positions of cables in space,
viz. the single-plane system and the two-plane system (Fig. 7.6). For very

wide bridges with combined railway and highway traffic 3 or 4 cable planes

might be chosen.

The single—plane arrangement consists of one vertical plane of cables
normally located on the longitudinal centre line of the structure. A
variation of this arrangement occurs when the vertical plane of the cables

is positioned laterally from the longitudinal centre line of the structure.

In the two-plane system the cables may lie in two vertical or oblique
planes. The latter is recommended for very long spans where the tower has

to be very high and needs the lateral stiffness given by the triangular frame

effect.

According to the various longitudinal cable arrangements, there are
four basic systems that are normally used (Fig. 7.7): 1. The radiating or
converging system where all the cables are spaced along the girder and
are attached at a common point on the tov;er; 2. The harp system where the
cables are parallel to each othetr and are spaced along the girder and the
tower; 3. The fan system where the cables are spaced along the girder and
the tower but are not parallel to each other; 4. The star system where the
cables are spaced along the tower and converged at a common point on the

girder, Within the four basic systems a number of variations are available.

A tabular summary of the various arrangements is presented in
Fig. 7.8. A recent tendency is for a large number of stays to be used with
spacings at the deck anchorage of only 8 to 15m. The beam girder then behaves
mainly as the compressive chord member of a cantilever structure suspended

from the towers by inclined stay cables (69).



276

7.2,3 Superstructure types

Basically there are two types of girder: the stiffening truss and
the solid web type. In practice, the stiffening truss is seldom used. Cross-
sections of solid web steel girders are shown in Fig. 7.9a. Of these the

box girder type with an orthotropic deck is most widely used.

In recent years a number of cable-stayed bridges have also been built
with reinforced or prestressed concrete girders. These bridges are economical,
possess high stiffness and exhibit relatively small deflections. The damping
effect of these monolithic structures is very high and vibrations are
relatively small. Typical cross-sections of this system are shown in

Fig. 7.9b.

The proportion of the girder depth to the length of span varies from
1:40 to 1:100. In multi-stay—-cable systems, the depth of the longitudinal
girder is almost independent of the main span and should be chosen to be
small, Furthermore, if the girder is suspended along its edges, a simple
concrete slab or an orthotropic steel plate with massive edge ribs or

hollow edge girders is sufficient (Fig. 7.10).

7.2.4 Tower types

Cable-stayed bridge towers are designed to suit the site and design
conditions, as well as for aesthetic considerations and to suit cable
geometry, The various possible types of tower construction are illustrated

in Fig. 7.12, which shows that they may take the form of

1. Single towers (Fig. 7.1la and b),

2, Twin towers (Fig. 7.11d),

3. Rectangular or trapezoidal portal frames (Fig. 7.11le),
4. A-shaped frames (Fig, 7.11f),

5. Diamond-shaped towers (Fig. 7.1lg),

6. Inverted Y-shaped tower (Fig. 7.1lc).
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The height of the towers influences the necessary amount of cable
steel and the longitudinal compressive forces in the bridge deck. Tower
height normally rises to about 0.2L up to 0.25L, where L is the length of

the span.

7.3 Brief review of some of the existing analytical methods

Various analytical methods have been devised, based on computer
gpplications, to consider the linear and nonlinear behaviour of cable~stayed
bridge systems. Most papers published on the static behaviour of cable-
stayed bridges related only to the simplified idealization of a two-dimensional

plane frame structure.

The transfer matrix method, also referred to as the reduction method,
vhich was developed in Germany,has been applied to the analysis of cable-
stayeél bridges by Tang (139). An iterative process which treats all nonlinear
terns as imaginary external loads, considers both the nonlinear behaviour

of girders and towers as well as the special force-deformation relationships

of the cables and is suitable for computer programming.

Trotsky and Lazar (143) used a flexibility approach to obtain
analytical data for comparison with experimental results. Lazar (65) also
proposed the standard stiffness method for carrying out a two-dimensional
frame analysis. The general computer programs employed, e.g. FRAN, STRESS,
STRUDL, are adjusted through methods (19, 86, 91, 112) which take into
account the nonlinearity due to large displacements, axial force-bending
moment interaction and cable catenary action. When the Southern Crossing
bridge across San Francisco Bay was being designed in 1972, a"space frame

idealization was proposed by Baron and Lien (7).

A mixed force-displacement method was developed by Stafford Smith

(131). As one of the exceptions to consider the space behaviour of cable-
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stayed birdges, Smith extended his approach to the analysis of double-plane

cable-stayed bridges and treated the deck as a plate.

An attempt was made by Goschy (38,40) to give an analytical method
for a twisted cable-stayed bridge. The approach is based on the theory of
thin-walled structures, developed by Vlasov (146). The structure is

considered as a three-dimensional system consisting of a stiffening girder

supported by inclined cables.

Kajita and Cheung (53) studied the linear analysis of a double plane
cable-stayed bridge by the finite element method, in which the bridge deck
vas divided into a number of shell elements and the whole structure treated
as a three dimensional system. A computer program has been developed which
can deal with various saddle types for the cables and also various types

of connections between the tower and the deck.

7.4 Behaviour of catenary-stayed cables

The actual shape of a perfectly flexible cable hanging freely under
its own weight and tensioned at both ends is a kind of curve known as the
catenary. The end displacement of the cable under an axial load depends
not only on the cross—-sectional area and the modulus of elasticity of the
cable but to a certain extent on the cable sag. As a result, the cable
does not behave linearly and it is necessary to adopt a corrective

technique to account for the nonlinear effect.

To facilitate the analysis of cable-stayed bridges, all cables are
assumed to be straight members and are represented geometrically by their
chord. The tension forces calculated are also assumed to act along the chord
lines, For small sag ratios the error is within acceptable limits for

design purposes. In addition, cables are also assumed to remain in tension.
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This assumption is reasonable because all the cables must be relatively

highly stressed under dead load in order to act as effective supports for

the bridge girder.

For representing the nonlinear effect due to the change of sag
several methods have been proposed by various authors who suggest the use of
an equivalent modulus of elasticity for the cable (26, 39, 145). The basic
principle in the analysis for the cable tension force is that the behaviour
of the straight substitute member with an equivalent modulus of elasticity
is nearly identical to that of the catenary curved cable. The most popular
proposal uses an expression for the equivalent modulus of elasticity given

by Ernst (26):

Eeq B zE 3
1 +[(pL)" /12 03 lE (7.1)
where Eeq = equivalent modulus of elasticity,
E = modulus of elasticity of the cable material,
p = specific weight of the cable, '
L = horizontal length of the cable,
g = tensile stress in the cable.

For protection against corrosion, the cables are normally wrapped
vith glass fibre tissue drenched in polyethylene or polyurethane. An
alternative proposition is to coat the cable by a prestressed concrete tube
after erection. As a result, the cables are no longer perfectly flexible
and a certain bending stiffness may exist. The stiffened cables are termed
semi-stiffened cables (128). We here devise a more general formula for the
evaluation of the equivalent modulus of elasticity invol\;ing not only the

tensile stiffness but also the bending stiffness due to the coating.

Let us now consider an inclined cable with hinged ends subjected to

uwiformly distributed load (Fig. 7.12). The simple beam moment of the cable
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under load component q4 is given by

. .
Mg = -EI j—;_’- (7.2)
Z

From the basic principles of static equilibrium the cable moment

can be determined by

Mg = M¢ + Mq (7.3)
where My = = T-v (7.4a)
and Mg = 2_:12: (2-2) (7.49)

Substitution of Eqs. 7.3 and 7.4 into Eq. 7.2 gives the basic

differential equation for the cable,

2
.f‘_‘i afv = A (2 - 22) (7.5)
dz* 2EI

were af = T/EI, ' (7.6)

’

and T is the tensile force of the cable along the chord.

By solving this second order nonhomogeneous linear equation with

constant coefficients we have

L

G = 2)
v =_q_]_. 1 - 1 cha 2 -1y - .9_1_(22-22.) a.n
T c:tc2 ch E_C_g‘. 2T
2

The cable length 1is
l dv 2
S f, ‘/1+(dz) dz (7.8a)
ad by using the curtailed form of Taylor's series expansion, we may write

s = g +§f:(%‘zf)zdz (7.8b)
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Differentiating Eq. 7.7 once and substituting into Eq. 7.8(b),

the cable length can then be expressed as

S = o+ §¢ q%z )2 L S5shac® = 30,2 - 2a.8%cha f + i] (7.9)

(1 + chact) - (22) 12

The differentiation of Eq. 7.9 yields

2 - - 1 bact - 15
s = {1 + E— [i . SShacz 3&(2 Zaclactl(!cf. I +— o+ % C 3 }dl -
T (1 + chact)(a L) 24 (xc2)
Gt (1, Sshack - 30k - 20 gchack 1 dack =154 000
3 12 (1 + chact) (act) 4 (acn)
where G = q4& = pAfcosB¢ = wglcosBc= wgL (7.11)

According to Hooke's law, the elongation of the cable due to the

change of the tensile force T is approximated by

s s (7.12)
dT EA

where A is the sectional area of the cable.

The axial deformation of the chord due to the change of the tensile

force T may be expressed similarly by using the apparent modulus of

elasticity,
a . _2 (7.13)
dT Eeq.A

Substituting Eqs. 7.12 and 7.13 into Eq. 7.10, using the chord length
3 the length of the cable, and assuming e = 0, we finally obtain an

expression for the equivalent modulus of elasticity in the form

= E (7.14)

1+ (wgL)* AE [.L _ 3a.2 - 35/4l
T? 12 (ac2)?
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If we substitute I = O into Eq. 7.14, we may obtain directly the
well known Ernst formula for the flexible cable

E

: ; (7.15)
1+ [(wgl) A E/12T]

Eeq =

where L is the horizontal component of the chord length, and Wy is the

weight per unit length of the cable.

Since the stiffness of the cable-stayed bridge depends largely upon
the tensile stiffness of the stayed cables, the utilization of semi-stiffened
cables will improve the structural behaviour of the whole bridge to some
extent. However, there are difficulties in actual construction, so it
is still seldom used practically. It is also apparent both from Eq. 7.14
and 7.15 that the analysis becomes an iterative process requiring several
determinations of cable stresses and the corresponding equivalent moduli of
elasticity until a convergence of the values is achieved.

’

7.5 Stiffness method of analysis with approximate nonlinear considerations

Since cable-stayed bridges are generally large and important .
structures used for long spans, many alternative structural forms need to be
compared and many load cases have to be considered. It does not seem a
realistic solution to use the three~dimensional finite element plate or
shell analysis (53) for design purposes. Although the cable-stayed system
in modern bridge engineering has a large variety of geometrical
configurations as shown in Figs. 7.2 - 7.12, a linear statical analysis can
be carried out without any difficulties by using the present one-dimensional
finite element family. The structure can be modelled as either a plane
frame or as a spatial frame according to the accuracy required. By choosing

relevant types of elements available in the family of elements, deformations

due to shear, distortion and warping of the girder section can be considered.
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The difficulties arising in the statical analysis of cable-stayed
bridges are those associated with particular considerations of nonlinear
features. As stated in previous sections, the cable-stayed system is so
flexible that the deflections both from the deck and from the towers change
significantly the orientation of the stayed cables and consequently the
horizontal and vertical components of the cable forces. These changes
introduce, in the deck, new axial forces and bending moments which cannot
be deduced through any conventional linear analytical method. Accordingly,
bending moment—axial force interaction also needs to be taken into account
in the analysis. Thus, the problem is that of a structure with large
displacements; this transforms it into a geometrically non-linear problem.
In addition, because of the sag change, the cables do not behave linearly.
Thus some of the elements of the structure have a non—linear behaviour which

cannot be related directly to the deflections of the deck and the towers.

For these reasons, the structural problem becomes a geometrically nonlinear

problem with a non-linear material.

Whether the displacements (or strains) are large or small, equilibrium
conditions between internal and external forces have to be satisfied.
Following the minimum potential energy process, the nonlinear equilibrium

equations become (149, 155)

R(S) = fl 3odz~-F = 0 (7.16)

whére R represents the sum of external and internal generalized forces, in
which the integration is carried out over the whole length & of the element,

the strain matrix B is defined from the general definition of strain as

de = Bd§ (7.17)

the stress resultants ¢ are written in terms of the elasticity matrix D

™l

and the strain vector as

0 = De (7.18)
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and F is a vector of equivalent nodal forces due to the external forces.

The solution for the nonlinear equations (7.16) is based on the Newton-~
Raphson method involving a series of solutions to linear incremental
equilibrium equations (Fig. 7.13). If an initial estimation of the total
displacements is §; for which f-{(Si) # 0, then the value of R for an increment
A; in §; is given by Taylor's series expansion of R about §; ignoring
third and succeeding terms as follows:

ﬁ.(&i + A8;) = R(Gi) "’MAsi + teneens

as;

which can be written as
R(§; + A8;) = R(8;) + K{A§ (7.19)

where K; is called the tangent stiffness matrix evaluated at § = ;.

It can be seen that problems involving geometric nonlinearity arise
both from non-linear strain—-displacement relations, and from finite changes
in geometry. Assuming that the curvature is small, the large deformation

strain (Green-Lagrange strain) is defined in terms of the displacements as

~ 7 r 7
Ju w y.
By + P ( 5z ) ( 3% )
ow ow
v bl el
ow qu .2 v 2 3w 2
— —_— + —_— _—
oz FCS )+ (5 ) + (55)
a0
Iz 0
_ a8 0
E =4 9z P + J B (7.20&)
363 .
z o
3%e
—azz, 0
Yd 0
a!
-2 0
9z*
J “
or
c=€,+¢

L (7.20b)
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Furthermore, a particle p on the beam axis in an initial undeformed

position is identified by the Lagrangian coordinates:

T

x} =[x, Y, 2] (7.21)

and the same particle is identified in the final deformed position p by the

Eulerian coordinates:

x} = (X, Y, z1, . (7.22)

where a bar above an item () denotes reference to the deformed position of
the element. A bar omitted signifies reference to the initial undeformed
position. Coordinates are with respect to fixed Cartesian axes, i.e., the

global coordinate system.

If the displacements u of the particle p in deforming to p’ are given

a function of (X} or {)_(} by

eX) = uX) = (U, V, W] (7.23)
then the final coordinates are given by
X} = {X} + {u} (2.2

It can be seen that the cable~stayed superstructure mainly performs
8 a truss system, and that the bending moments in the stiffening girder
depend largely on the magnitude of deflection of the stiffening girder at
the locations of cable attachments., The deformations of the system change
the angle of inclination of the cable with respect to the chord of the®
girder and consequently lead to the redistribution of the stresses in the
girder. This means that for a’ cable-stayed bridge the 'change in geometry'
effect is more important than the relative magnitudes of the linear and
wn-linear strain-displacement terms. Hence, as an approximation we may

ignore the non~linear portion in the Green-Lagrange strain vector, i.e.,

E = £, ‘ (7.25)
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Thus the tangential stiffness matrix is equivalent to the conventional
stiffness matrix which is used in any small displacement-small strain
analysis, but is also a function of the current value of the displacements.

It can then be expressed as (155)
KT = Ko(si) (7.26)

in which K, represents the usual, small displacements stiffness matrix.

As tested designs indicate, the change of stresses, considering the
influence of deformations on cable-stayed systems, does not exceed a few
percent (34). The error produced by neglecting the whole nonlinear behaviour
of the cable-stayed bridge may increase however, according to Wintergerst,

w to 12,47 (65). The relatively small influence of the deformation of the
vhole system on the magnitudes of the computed forces in the members of the
structure, justifies the application of an approximate method of analysis.
Tang (139) and Lazar (65) have adopted a similar approach in their analytical

processes, ‘

Moreover, all the two;node elements in the present family are assumed
to remain straight after deformation, which is reasonable only when the axial
force is small in comparison with the Euler load (112). Thus, it is
advantageous to use the three-node elements for the idealization of cable-
stayed bridges. Since the bowed shape of the element after deformation can
be mapped by the changed coordinates of the three nodes, the interaction
bet;ceen bending moment and axial force can be approximately considered,

From Eqs 7.19 and 7.26 the linearized approximation for the relation
between the residual force vector R;and the resulting increment in.nodal !

displacements A8;, necessary to achieve equilibrium, is

A

i = KNSR (1.27)

from which a new approximation to the total displacements is obtained as,
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Sivg = & + 88 (7.28a)

-1
or 8, = & + K, (§)) R, (7.28b)
(7.29)

vhere Ry = F = Ko(si)-si

is the residual load vector.

Thus we only need to solve at each step a linear system of equations

defined by the tangential stiffness matrix, K,, computed on the deformed
structure. In order to find a complete equilibrium path, Rjis applied as a
series of incremental loads. The residual load vectorhas two terms: The
first one is formed by the external loads currently applied on the structure,
and the second one is the sum at each node of the end forces of all the
elements which are connected to this node. These forces have to be projected
over the global coordinate directions and to do this, the current orientation

of each element has to be considered. Iterations continue within a load

increment until R satisfies a given convergence criterion.

' The non-linearity in the response of cable stays does not affect the
malytical method which has just been described. The only difficulty is

in evaluating the cable tension at each iteration. The well-known Ernst
fornula Eq. 7.15 or Eq. 7.14, which determines the equivalent cable modulus
due to the sag effect, can be used to compute at any moment the tangent
stiffness of the cable, However, Eqs. 7.14 and 7.15 are based on a constant
value of force or stress, i.e., a zero force or stress increment. They
tannot give an accurate value of cable tension after each iteration which

is vhat is needed to compute the nodal forces to be used in Eq. 7.28. The
table tension can bé determined through an independent iterative procedure

¥

shich has been described in Fig. 7.14, using the secant modulus in each

iteration which can be expressed by (97):

E
Eeq = GgLy T+ TORE (7.30)

1 +1
26 T T3
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In this equation E is the cable material modulus, L is the horizontal
projected length of the cable, g is the weight per unit length of the cable,
A the cross-sectional area of the cable and T; and T;,q are the cable
tensions corresponding to two consecutive steps in the Newton~Raphson

process.

The problem which arises in computing the secant modulus is that Tj,
is not known. A first estimate of cable tension, Ti1+1 , can be determined
by using the tangent modulus corresponding to a cable tension equal to Tj.
Once TL1 is known, the secant modulus corresponding to the interval T;»

T1i+1 is determined according to Eq. 7.29 and a new estimation of cable

tension, Tizﬂ » is computed. This process is repeated until satisfactory
convergence is reached. Convergence is obtained quickly and three iterations

are usually sufficient in most cases.

In addition, cable-stayed bridges are structures in which initial
stresses are very important and have to be considered when a non-linear
analysis is to be performed. The initial stresses are usually known, since
they are introduced during the erecting stages, It is possible to adjust
the axial forces in the cables to assign the erected dead load stresses to
compensate for extreme live load stresses and to achieve more effective use
of material. For example, the cable tension can be defined in such a way

that each cable supports the dead weight of its corresponding girder length.

In order to apply the Newton-Raphson iteration to analyse the response’
of the complete bridge structure to any live load, the compl