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ABSTRACT

This thesis considers the theoretical and experimental analysis of

thin-walled box spine-beam bridges. Existing methods available for the

analysis of spine-beam bridges have been reviewed, with special attention

being paid to thin-walled box beam theories. A new approach combining the

finite element technique and the thin-walled beamtheory, which is appropriate

for design purposes, has been proposed. This approach is specially suitable

for medium and long spans. It is intended to be a realistic and versatile

method to be used during the preliminary analysis and design stage, when a

full three-dimensional analysis is likely to be impractical.

Special features related tothebending analysis of thin-walled

members and the warping torsion theory of open and closed section members

are summarized in the thesis. In addition, supplementary formulae for the

calculation of the stress distributions and the thin-walled section properties

are derived. The distortional effect on single-spined box beams subjected

to torsion has been extended to a general form based on the principles of

ordinary folded plate theory.

A family of special one-dimensional sub-parametric elements has been

developed. In addition to the usual truss and beam elements the family

includes a general thin-walled box beam element which may be curved in

space and may have a variable cross-section. Additional degrees of freedom

ha're been included to account for the warping and distortion effects which

occur in box beams. An inclined cable element with catenary action is

included, and an approximate nonlinear process for the analysis of cable-

stayed bridges has been correlated with tests on an actual bridge structure.

A finite element-grillage approach for the analysis of multibox structures

with deformable sections has also been developed. The complete family of

elements has been incorporated into a computer program called CUBAS.
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A supplementary program called PFRAN for calculating the distortional

properties and the influence values of the equivalent Vierendeel frame has

also been implemented.

The accuracy of the results obtained is demonstrated by comparison

with results obtained by other published methods. A series of model box

beams were tested to • further substantiate the theoretical results. The

model dimensions were chosen to highlight both warping and cross-sectional

distortion effects. The degree of correlation obtained shows that the

theoretical developments proposed in this thesis may be applied successfully

to the analysis of box spine-beam bridges.
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NOTATION

Only the main symbols in the text are listed here. All other

symbols are defined as they first appear.

A
	

cross-sectional area

Asx, Asy	 effective shear cross-sectional areas in the x-direction

and the y-direction respectively

b
	

total breadth of the top flange of the whole cross-section

b
	

body force vector

b t, bb 	 top and bottom breadths between mid-lines of the side webs

respectively

bb	top and bottom breadths between mid-lines of webs of the

th cell respectively

b c	 breadth of cantilever slab

b e, I

B

B1

B

Bext

b1

b

Dt, Db, Dh

D

{D q1

effective breadth between mid-lines of webs

strain matrix

torsional warping bimoment

distortional warping bimoment

concentrated applied bimoment

distributed applied torsional warping bimoment

distributed applied distortional warping bimoment

transverse flexural rigidity of an individual plate

transverse flexural rigidities of the top and bottom slabs

and the side webs respectively

generalized elasticity matrix

displacement vector due to the open section shear flow
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Dqj= f 1bIds 1th term in the displacement vector (Dq}

E

E1 = E/l-\'2

E eq

ex, ey

ey

F

Fe

F

Fs, F5,y

If I

ds
ik = kT

=

G

Ge

Ii

h

Youngs modulus of elasticity

conversion modulus of elasticity

equivalent modulus of elasticity of the inclined cable

eccentricities of the applied load relating to the shear

centre in the x-direction and the y-direction respectively

vertical ordinate of the twisting centre with reference to

the mid-line of the top flange

structure nodal force vector

element nodal force vector

applied force vector

shear-deformation factors in the x-direction and the

y-direction respectively

flexibility influence coefficient matrix

flexibility coefficient - 	integral along the
common wall between cell i and cell k

flexibility coefficient —contour integral along the
circumference of cell i

shear modulus of elasticity

element geometrical function vector

depth between mid-lines of top and bottom slabs

length of the web

I , 1yy 	 moments of inertia of entire cross-section about the

centroidal x and y axes respectively

i, j, k 	 unit vectors in the global X, Y and Z directions respectively

J	 Jacobian factor

j i , j2, J 3	Jacobian factors at the 1st, 2nd and 3rd nodes of the

element respectively
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St. Venant torsional moment of inertia

Bredt torsional moment of inertia

total torsional moment of inertia

central second moment of area

torsional warping moment of inertia

distortional warping moment of inertia

distortional second moment of area

K ,	 structure stiffness matrix

Ke	element stiffness matrix

1(1	 tangent stiffness matrix

- - k d = E 1 J d	distortional frame stiffness of the box-section per unit

length

L	 horizontal length of the inclined cable or the length of

span

2.	 length of element

N	 shape functions for mapping the element geometry

Md	 distortional moment

distributed distortional moment

mdb	 transverse distortional bending moment per unit length

db	
influence value of the transverse distortional bending

moment per unit length

mdH	 distortional moment per unit length due to the horizontal

eccentric loading

additional distortional moment per unit length due to the

initial in-plan curvature



x

mdV	 distortional moment per unit length due to the vertical

eccentric loading

mtb	 longitudinal bending moment per unit width of the plate due

to pj5fl5 ratio effect

ms
	 transverse bending moment

MT,V
	 St. Venant torsional moment component

N1 B
	 Bredt torsional moment component

MTP

I

- MT

Mx, My

Mx ext

Ny ext

Mzext

ni x ext, niy ext

m,ext

mH

N3

primary torsional moment referred to the St. Venant shear

stresses and/or the Bredt shear stresses

secondary or flexural torsional moment resulting from the

warping shear stresses

total torsional moment

internal bending moments about the centroidal x and y axes

respectively

concentrated applied moment about the X axis

concentrated applied moment about the Y axis

concentrated applied moment about the Z axis

distributed applied bending moments about the x and y axes

respectively

distributed applied twisting moment

distributed applied twisting moment due to the horizontal

eccentric loading

distributed applied twisting moment due to the vertical

eccentric loading

shape functions for defining the displacement field

internal axial force
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P
	

concentrated applied force vector

Px, Py, Pz
	concentrated applied force components in the X, Y and Z

directions respectively

px, Py, P
	

distributed applied force components in the x, y and z

directions respectively

q	 shear flow

qe	 distributed force vector for an element

open section shear flow

q 0	statically indeterminate shear flow in longitudinal bending

total shear flow in longitudinal bending

Bredt's shear flow

q8	 Bredt's unit shear flow function

qO	 redundant torsional warping shear flow for a closed section

unit shear flow function in warping torsion for a closed

section

q1

q1

110

-Lu

q11

q db

Q

11 = -s'lx	y

torsional warping shear flow

total shear flow in warping torsion

redundant distortional warping shear flow

unit shear flow function in distortion

distortional warping shear flow

transverse distortional shear force per unit length

influence value of the transverse distortional shear force

per unit length

internal shear forces in the x and y directions respectively

open section shear flow due to unit shear force C	= 1)

Iyy
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= -sx

R

p.

Rt

S

SI

{s1 I

-	IIi =	jI 
SL

SI

SI'

sllI

nhi= I u--

Sx, Sy

5(JX' SWy

T

t

tt

tb

open section shear flow due to unit shear force ( 1. = 1)
'xx

radius of curvature

residual force vector

perpendicular distance from the centre of twist to the

tangent to the mid-line of wall at the point considered

curvilinear coordinate along mid-line of wall

sectorial statical moment of area for an open section

sectorial statical moment of area for a closed section

displacement vector of the flexibility equations for

determining the redundant torsional warping shear flow

.th	.	 —
i - term in the displacement vector {s1}

distortional statical moment of area

reduced distortional statical moment of area

displacement vector of the flexibility equations for

determining the redundant distortional warping shear flow

1th term in the displacement vector

first moments of area about the centroidal x and y axes

respectively

sectorial products of inertia about the centroidal x and

y axes respectively

tensile force of the inclined cable along the chord

thickness of wall

thickness of cantilever slab

thickness of top slab

thickness of bottom slab



xiii:

t h	 thickness of web

tp	 thickness of diaphragm

u	 vector of displacements at any point within a section

u	 generalized displacement field in the local coordinate

sys tern

u, v, w 	 translations of the centroid along the x, y and z directions

respectively

U, V, W	 translations of the centroid along the X, Y and Z directions

respectively

Ut, v, w	displacement components of a point on the mid-line of wall,

in the generalized coordinate system (z, S)

- U,( Vy, w	displacement components of a point in the local Cartesian

coordinate system

U1 ,  V1	 displacements of the top-left corner associated with the

Vierendeel frame analysis, in the x and y directions

respectively

u 2 , v 2	displacements of the top-right corner associated with the

Vierendeel frame analysis, in the x and y directions

respectively

u t, vt	 displacements of the top corner of the box-section

associated with distortion, in the x and y directions

respectively

Ub, Vb	 displacements of trte bottom corner of the box-section

associated with distortion, in the x and y directions

respectively

vh	 displacement tangential to the side web
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Wg

,	,

Xi , '1)1

- Yx3	s

6

6

weight per unit length of the inclined cable

unit vectors in the local x, y and z directions respectively

vertical ordinate of the centroid with reference to the

mid-line of the top flange

vertical ordinate of the shear centre with reference to the

mid-line of the top flange

stiffening factor for the effective breadth ratio

cross-sectional ratios associated with distortion

ratio (bb/bt)

ratio (-w 13 /(aff

shear strain

distortional angle

influence distortional angle

vector of global nodal displacements

vector of global displacements and derivatives at any

point on the element axis

vector of global nodal displacements and derivatives for an

element

generalizect strain vector

normal component of strain in the z direction

transverse normal strain component

C	 natural coordinate in the eta direction

Cd	 distortional distribution factor

n 1 n 2	 parameters for frame stiffness or transverse corner moments

respectively

,	
rotations about the centroidal x and y axes respectively



xv

03

o

o,s

V.

x

')

n

-	P

P3 'PS

ad b

adb

a'

ci

3 b

a3

TV

T6

total angle of twist

primary angle of twist

secondary angle of twist

rate of twisting angle

transformation matrix

initial curvature multiplication factor

torsional warping shear parameter

Poisson's ratio

torsional stiffness reduction factor

external potential energy

weight density of the material

strain gauge readings in the longitudinal and transverse

directions respectively

generalized stress vector

transverse distortional bending stress

influence value of the transverse' distortional bending stress

torsional warping stress

distortional warping stress

longitudinal bending stress

normal stress component in the z direction

normal stress component in the transverse direction

radial component of the longitudinal bending stress

shear stress in longitudinal bending

St. Venant shear stress

Bredt's shear stress



xv'

tI

IT

'

- WI

Wr

W11

n }

torsional warping shear stress

total shear stress in warping torsion

distortional warping shear stress

angle of the top flange with respect to the inclined side

web

rotation of the web

rotations about the global X, Y and Z axes respectively

rate of distortion

rotations of the top and bottom flanges respectively

effective breadth ratio

unit torsional warping function or the normalized sectorial

coordinate for an open section

unit torsional warping function or the normalized reduced

sectorial coordinate fore a closed section

unit distortional warping function

displacement vector of the flexibility equations for

determining the Bredt's shear flow function

twice the enclosed area of the .th cell

-V

a
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CHAPTER 1

INTRODUCTION AND REVIEW OF AVAILABLE ANALY TICAL METHODS

1.1 General remarks and presentation of the thesis

Many different deck arrangements are possible in bridge construction

and a logical classification system can be proposed as shown in Fig. 1.1

(67). Box spine-beams have been used' in single or multiple cells together

with arrangements whereby several box beams are combined to form a complete

bridge deck.

The essential difference between spine-beam bridges and other bridge

superstructures is due mainly to differences in plan geometry. In practice,

spine-beam bridges may be defined as structural members whose breadth and

depth are small in relation to their length and which are, therefore,

subjected mainly to longitudinal bending, transverse shear and torsion.

They are generally stiff members whose cross-section consists of a hollow

box beam having one or more cells, with or without cantilevers. Transverse

diaphragms are normally provided only over the supports. The transition

between the true spine type and the cellular slab is not always well

defined, although Swann (136) specified that for spine-beams in general the

total number of cells in the spine should be less than five. Typical cross-

sections of bridges of this type which have been built in practice are

shown in Fig. 1.2.

The spines provide the main source of strength in single-spined or

multi-spined superstructures. The hollow box section of the spine contribute

considerably to the torsional stiffness of the bridge and distributes the

transverse (lateral) load. Thus, the box section leads to a significantly

favourable pattern of flexural and shear stresses, when considered in
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conjunction with its high longitudinal bending strength. This therefore

results in saving of materials, and reduced depth of construction. The

slender proportions and simple form of this type of bridge provide a

pleasant appearance and in addition, this bridge type is easy to erect and

maintain. These advantages explain the popular use of spine-beams in a

variety of modern steel and prestressed concrete bridge structures. Box

spine-beams are particularly advantageous to bridges having medium or long

spans and to bridges which are curved in plan.

Structural design of spine-beam bridges presents many difficulties

because of the complex nature of the interaction of individual elements.

A large amount of research effort has been devoted to spine-beam analysis,

and a considerable amount of literature has been published on the very wide

- range of analytical methods available. The existing methods can be

classified into three general categories which are called the thin-walled

beam theory, the folded plate method and the finite element method. Maisel

and Roll (82, 83) have made an extensive literature survey and have

reviewed almost all the methods developed hitherto. Many of these methods

are complex, somewhat academic and have limitations in the structural forms

they can idealize.

A three-dimensional finite element analysis can, of course, offer

the most comprehensive treatment. It can readily take into account a variety

of structural geometries, supports and loading conditions, and has made

possible the accurate assessment of structural effects. However, such.an

analysis involves very extensive computations which lead to expensive

computing costs and in some cases to voluminous computing output.

At the preliminary analysis and design stage it is likely to be

impractical to conduct a full three-dimensional analysis, since the bridge

geometries and loading conditions, etc., could be modified for instance.
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It is, therefore, desirable at this stage to use a realistic but simplified

method of analysis which is both accurate and economic. Such a method

should indicate those areas which require a more accurate analysis.

As a result of the work presented in this thesis a finite beam

approach, with idealization only in the spanwise direction, developed on the

basis of thin-walled beam theory seems to fulfil the requirements discussed

above.

The objectives of the present project may be summarized as follows:

1) To develop a general beam theory for the global analysis of

box spine-beams. The scope of the development is limited to spine-beam

bridges with at least one vertical axis of symmetry. The beam may have a

- variable cross-section and can be straight or curved in plan. Diaphragms

can be specified at any node. The structure is treated in three-dimensional

space and longitudinal warping effects as well as transverse distortion

are taken into account. The effect of shear lag is included by adopting

an "effective breadth" concept.

2) To establish a family of special one-dimensional sub-parametric

elements and to present this analytical treatment in a form suitable for

computer analysis. This objective comprises the writing and testing of a

computer code. The purpose is to provide a program that can handle a

wide variety of bridge structures such as straight or curved box spine-beams,

multibox girders, articulated bridge decks and cable-stayed bridges. The

associated program has been called CUBAS (City University Bridge Analysis

System).

3) To carry out a comprehensive experimental investigation on

different types of box beams, which can assess the appropriateness of the

formulation and the accuracy of the results. An understanding of the

structural action can also be obtained which would assist the development
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of the theory.

Generally, it is hoped to provide designers with a practical

analysis to be used for the initial design process when a complete stress

analysis is unnecessary. The solution is sufficiently accurate for design

purposes.

An attempt has been made to present this thesis in a form compatible

with the objectives of the project. In this chapter the peculiar structural

action of spine-beam construction is briefly described and existing

analytical methods leading to the present study,are reviewed. Basic

considerations and assumptions are established for further investigation.

In Chapter 2 a brief description of some special features related

- to the bending analysis of thin-walled members is presented. Moreover, an

• analytical process based on the warping torsion theory is summarized and

supplementary formulae are developed. Following an ordinary folded plate

approach, the effect of cross-sectional deformation on single-spined box

beams subjected to torsion is investigated in Chapter 3. The method is

extended to curved beams and the interaction between bending, torsion and

distortion is discussed.

Based on the elastic theory described in Chapters 1 to 3, a complete

derivation of the one-dimensional finite element family is given in Chapter 4.

This provides the theoretical basis for the computer program described in

Appendix I.

The verification and applications of the present study are given

in Chapters 5 to 8. In Chapter 5, results from a few selected examples

are given, and in Chapter 8 an extensive series of model tests is

described. Chapter 6 further describes a finite elementgrillage approach

which extends the method to the analysis of multi-box systems.

Applications to short span bridge structures such'as the cellular
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articulated bridge deck and to long span bridges such as the cable-stayed

bridge are presented in Chapters 6 and 7 respectively. In order to assess

accuracy, some of the examples and all of the tested models are calculated

by full three-dimensional finite element analysis using the LUSAS computer

program (79, 80).

Finally, in Chapter 9 the conclusions to which the present study

leads and proposals for future studies are, given. In addition, to establish

the usefulness of the program CLJBAS, its structure is briefly described in

Appendix I, and the format of the input data as well as a description of

the input parameters are included. Data input to a supplemental program

PFRAN for calculating the distortional sectional properties and sectional

property formulae for a trapezoidal single-cell box-section are presented

- in Appendices II and III respectively.

1.2 Types of structuralaction

In developing a simplified design method, it is necessary to know

that it does in fact give an adequate representation of the required

structural behaviour. Thus, it is worth indicating the range of types of

structural action possible before deriving the corresponding formulations.

In addition to assessing the load effects inherent in simple beam theory,

the following structural characteristics are shown to be peculiar to spine-

beam construction and may require special consideration under certain

circumstances:

1) Distortion or deformation of the cross-section due to torsional

loading arises from transverse bending of the walls of the box beani, causing

a change of shape of the section. Resistance to distortion is provided

either by transverse diaphragms or by increasing the bending strength of

the walls of the box beam (see Fig. l.3a).
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2) Warping of the cross-section corresponds to out-of-plane or

axial displacements of points on the cross-section, causing plane sections

not to remain plane (see Fig. l.3b). The longitudinal displacements caused

by torsion and distortion are termed torsional warping and distortional

warping respectively.

3) Shear lag is another form of warping resulting from shear

deformation in the planes of the flanges, and leads to a decrease away from

the webs, in the longitudinal bending stresses calculated by simple bending

theory.

4) Poisson's ratio effects are significant when transverse bending

stresses due to distortion of the cross-section can be of the same order as

the longitudinal stresses associated with longitudinal bending, torsional

and distortional warping. 	In such cases, the Poisson's ratio effect in

transverse bending can generate longitudinal bending stresses in individual

component plates of the box section which are by no means negligible.

5) Local effects in the slabs are induced by external loading

applied between the webs or on the side cantilever.

6) Transverse membrane stresses, which are constant through the

wall thickness, arise from differential shear stresses on cross-sections.

It is evident that a complex analysis will result if all the types

ofstructural action in a box beam are considered. An approximate

analytical approach requires the structural actions to be simplified to an

acceptable degree of accuracy. Accordingly, the shear lag phenomenon can

be considered by adopting an 	 breadth' concept, and the Poisson's

ratio effect is simulated by an empirical consideration based on

experimental investigations (83).
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In accordance with the principles of the ordinary theory of

elasticity, the stresses arising from local bending may be calculated by

a one-way frame solution with consideration of the respective effective

lengths (see Fig. 1.4), independently of the global box beam analysis.

Alternatively the influence surfaces for plates (47, 46, 101) may be used.

Sawko and Mills (120) have proposed an analytical procedure for the

design of cantilever slabs of spine-beam bridges in which the slabs are

considered in isolation. Numerical examples indicate how small the

transverse membrane stresses are. These stresses are constant through the

wall thickness, and are not considered in the present treatment nor are

they in the previous approaches given by other investigators (59, 42, 134,

135).

1.3 Review of analytical methods for thin-walled box spine-beam bridges

The analysis of box spine-beams has been a focus of attention for

many investigators in recent years, and various theories and analytical

methods have been developed. In this section a review of only the most

relevant approaches for the static analysis of box spine-beam bridges will

be described.

1.3.1 Analysis of box beams as thin-walled beams

In this method the actual thin-walled space structure is regarded as

a single beam. The first systematic study of the theory of thin-walled

beams was carried out by Vlasov (146). In order to explain warping, Vlasov

divided a torsional moment into pure and 'flexural' components (152)

which correspond to the St. Venant shear stresses and torsional warping

shear stresses respectively. Vlasov introduced a new type of force termed

a 'bimoment' and defined additional functions of the properties of a section,
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calling them the sectorial coordinate and the torsional warping moment

of Inertia.

The analysis of such beams was later reformulated and generalized

by Benscoter (10), Kollbrunner,Basler and Hajden (56, 57, 58, 59), and

Heilig (42) for multicell boxes with arbitrary cross-sectional shapes.

Dabrowski (22) has extended the theory to curved girders with thin-walled

cross-sections. He presented an extensive collection of tables, together

with influence lines and diagrams of internal forces for curved, single-span,

two-span and three-span beams of constant section, arranged according to

stiffness parameters and angles of curvature. The straight beam was

treated as a limiting case and the tables are of use in the preliminary

analysis of curved bridges of steel, composite or reinforced concrete

- construction.

In order to avoid the mathematical difficulties arising from solving

the differential equation, an analytical method for predicting the torsional

behaviour of thin-walled continuous members subject to torsion was presented

by Khan and Tottenham (54). The method is based on a direct distribution

of bimoments in a manner analogous to that of the well-known moment

distribution method. The analysis is essentially a hand method which

produces values of redundant bimoments in a continuous structure.

Vlasov (146) drew the analogy between the differential equation

describing the response of a box beam to the distortional component of

the loading and that of a beam on an elastic foundation (BEF). Subsequently,

Wright et al (150) and Billington (11) evolved the BEF method for

trapezoidal single cell boxes. This method considers both. the distortional

stiffness of the box walls and that of intermediate diaphragms or cross

bracing. The deformation of the cross-section of a box beam is analogous

to the deflection of a beam on an elastic foundation. Diaphragms in the
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box beam, which prevent distortion but not warping, correspond to simple

unyielding supports for the beam and an end support condition, where

warping is prevented, is analogous to a built-in end support for the beam.

A diaphragm, which provides elastic restraint to distortion, is analogous

to an elastically yielding point support for a beam on an elastic foundation.

Non-dimensional curves are presented which provide the maximum distortional

stresses for boxes with regularly spaced interior diaphragms subjected to

concentrated loading at mid-panel or uniformly distribution loading. The

BEF method is also available for the analysis of box beams curved in plan

resulting from the work of Billington (11).

Wright (151) proposed a simple distribution method for both

multicell and multibox sections such that the distortional loading is found

- for each cell which is then treated independently using the BEF method

for single cell boxes. This procedure has been shown to lead to very

conservative results in some cases. Billington (11) has further proposed

a grillage-BEF which forms the basis of a simplified method for the

analysis of multibox systems. The method is compared with finite element

analyses for a range of practical bridge structures.

Steinle (134, 135) derived the differential equation governing the

distortional behaviour of a rectangular single cell section box beam,

including the effect of shear deformation. The distortional stress

resultants are represented by the distortional moment and the distortional

bimoment. Thus, the expressions for the distortional stresses are analogous

to those of warping torsion theory. Dabrowski (21) investigated the

influence of shear deformation on the warping torsion of box beams with

deformable cross-sections. In his comprehensive treatment (22), derivation

of the differential equation for a trapezoidal single cell section box

beam curved in plan, subjected to distortional loading, and neglecting

the effect of shear deformation, was given. The equation includes additional
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terms representing distortional forces caused by longitudinal bending

moments.

More recently Kistek (62, 63) has provided an accurate elastic

solution based on a set of differential equations. The analysis of a box

girder with a deformable cross-section is carried out in two steps. The

first step includes the girder with an absolutely rigid cross-section in

its own plane, and the second step covers the distortional effect of the

cross-section. The girder may have a variable cross-section (such as

variable height and thickness of webs), and the various parts of the

structure may be made of materials having different properties. The

static system may also be fairly complex (continuous beams, frameworks etc.).

Abdel-Samad et al (1) and recently Maisel (84) have extended the

generalized coordinate method developed by Vlasov (146) to account for

torsional, distortional and shear lag effects in straight, thin-walled,

box beams of uniform section. The position of an arbitrary point in the

middle plane of the walls is determined by a local rectangular system of

coordinates in which the z-axis and the beam axis are co-linear, the

n-axis is normal to the middle plane of the plate, and coordinate, S,

describes the distance on the middle plane from an initial generator.

According to the thin-walled beam theory developed by Vlasov (146), the

displacement components of a point.on the middle plane may be written as a

finite sum of products as follows

In this decomposition the functions q 1 are the longitudinal generalized

coordinates, which are known and chosen in advance for each type of

cross-section, and the functions U•are unknown functions, which have to be

solved. The solution procedure presented for the generalized coordinate

method permits consideration of single cell or multicell sections with
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side cantilevers and arbitrary end and interior boundary conditions.

During the investigation of the analysis of truss bridges, Lie

(70, 71) has proposed a new approach as an extension of the theory of

thin-walled beams. A set of fourth order differential equations has been

established for the rectangular single cell section prismatic beam with

a vertical axis of symmetry, considering the interaction between bending,

torsion and distortion. In general, the solution indicates no centre of

twist for a cross-section with a deformable contour. The only exception

is the doubly-symmetric cross-section. The method has been extended by

Lie to a trapezoidal single cell section beam, in an unpublished

communi cation.

- 1.3.2 Analysis of box beams as folded plate structures

A box beam may be regarded as a speàial type of folded plate system

in that it is composed of an assembly of flat plate strips forming a

closed section. Methods of analysis originally developed for folded plates

may thus be adapted for the analysis of box beams. In recent years much

research has been devoted to the analysis of folded plates and two main

methods have been established, these being the "Elasticity Method" and the

"Ordinary Method".

Of these two methods, the Elasticity Method, which was conceived

by Goldberg and Leve (36) for simply-supported prismatic shells, is the

more accurate and it has been applied to box beam analysis as a direct

stiffness approach by Scordelis (124, 125). More recently the method has

also been extended by Meyer and Scordelis (87, 88) to the analysis of

bridgs curved in plan.

In this method, termed the "Folded Plate Method" by Scordelis, the

bending of each plate element normal to its plane is analysed by plate
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flexure theory, and its in-plane bending is analysed by plane stress theory.

The external loads must be represented by Fourier Series. Although the

theory is exact, it is limited in that it can only be applied to box beams

with constant cross-sections and simply-supported ends. A combination of

the displacement (stiffness) method and a force (flexibility) method has

been extended by Scordelis to deal with the intermediate diaphragms and to

deal with girders spanning over intermediate supports, provided that the

extreme ends of such girders still remain simply-supported. In certain

cases difficulty can be experienced with concentrated loading conditions

because of the poor convergence of the harmonic series used in the analysis.

The Ordinary Method is an approximate technique which can be applied

in cases where the length/width ratio of the component plates exceeds 3.

- Scordelis (126) has, in fact, successfully adapted the Ordinary Method,

which he termed the "Finite Segmental Method", to the analysis of single

span girders and continuous box girders. This method can be applied to

structures with arbitrary boundary conditions at the two ends, yet it is

restricted to the analysis of box girders containing uniform rectangular

plates under loads applied at the ridges only.

Johnson and Lee (52) developed the Ordinary Method for application

to the analysis of folded plates containing tapered elements, provided that

the taper is not excessive. Subsequently, the Nodal Section Method,

referring also to the Ordinary Method, was developed by Rockey and Evans

(109, 110) for the analysis of straight box girder bridges. It is assumed

in the Nodal Section Method that the bending action of each plate

perpendicular to its plane can be represented by considering a transverse

one-way slab strip, and the in-plane longitudinal bending action of an

individual plate is similar to that of a beam spanning between the end

diaphragms. The structure is then idealized by taking a number of

aribtrarily spaced nodal sections in the transverse direction, elastically
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supported by a system of interconnected plate beams which span longitudinally

between the supporting diaphragms. The Nodal Section Method can be used

for various support conditions, and can be applied to the analysis of

girders in which the geometry of the cross-section varies along the span.

Recently, A1-Rifaie and Evans (2, 3) have further extended the method to

enable it to deal with the analysis of single-cell, simply-supported, curved

girders.

1.3.3 Analysis of box beams using the finite element method

It is evident that the finite element method is the most powerful

and versatile tool for structural analysis, in which complex geometries

and difficult boundary conditions occur. Recent progress permits a full

three-dimensional analysis of a spine-beam bridge to be carried out. Plate

elements, flat shell or even semiloof shell elements are available for

use in the idealization of box structures.

According to the configuration of box spine-beam bridges, triangular,

rectangular or quadrilateral elements are usually used. The simplest

elements suitable for the analysis are triangular elements (85), although a

fine mesh division is necessary to obtain accurate results. The use of

rectangular finite elements has been discussed by Rockey and Evans (108)

and Zienkiewicz (154), and yields results of greater accuracy than those

obtained from the triangular elements. Both of these two types have at

each of the nodal points, two in-plane degrees of freedom u, v and three

out-of-plane degrees of freedom, w, G, e but not the in plane rotation 0z•

To achieve accurate results with economy it is advantageous to be

able to represent the beam action of the wall in the formulation. The

introduction of an additional in-plane rotation as a nodal variable has

thus been investigated by several authors. MacLeod (81) developed a

rectangular plane stress element with the two translations u, v, while the
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nodal rotation is taken alternatively as - 	and - - 	around the
ax

element. This element was used to analyse shear walls with openings.

Lim et al (75) developed a quadrilateral element with the nodal rotation

°z taken as 	. Sisodiya et al (129, 130) also developed an in-plane

element with nodal variables u, v and --! • Two element geometries were

formulated, a parallelogram and a quadrilateral. Moffat and Lim (94), and

Fain and Turkstra (33) have recently developed elements with u, v and -

and c as nodal variables. These elements possess an accurate beam

response and can approximate the web beam action with a relatively coarse

mesh.

Scordelis (129, 125) used a rectangular in-plane element having

u, v and O as the degrees of freedom at each node, where Oz = 1(	— - ),

' and a rectangular plate bending element with w, ex and	as the degrees

of freedom at each node. Sawko and Cope (118) used in-plane elements

alone to analyse multicell rectilinear box girder bridges. This method

does not account for out-of-plane, or bending, rotations at the nodes.

However, it can give fast solutions for bridges with narrow cells.

Lyons (80) has recently developed the ISOFLEX family of thin plate

flexure elements with a translation w and two rotations O = - - 	and

=	as the "bending" nodal variables, and a family of extensional

elements which includes nodal variables of u, v and e =	. The

combination of these two types of elements has formed the extensional-f lexural

elements or the so-called flat thin shell box elements (the ISOBOX elements,

Ref. 79 and Fig. 1.5). Variable thickness can be accommodated, and since

the elements are formulated in local element axes, directional material

properties can be defined relative to the element orientation. The elements

are particularly suitable for the analysis of shell boxes. Only a few high

aspect elements are required along the length of a structure and a single
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element over the depth of a web provides accurate results even in the

vicinLty of a support or a wheel load.

Irons (49) has developed a doubly curved shell element known as a

semiloof shell element, but for cellular structures the additional

computational expense associated with the double curvature would be

unwarranted since in general, cellular structures are an assemblage of

flat or almost flat plates.

In order to develop more accurate elements and reduce the computing

time for the analysis of straight and curved box girder bridges, Jirousek

et al (50) have presented a special macro-element for practical applications.

The macro-elements may be viewed as transverse slices of the bridge. Each

macro-element is formed using two types of special purpose elements: a

modified Ahmad's thick shell element and an assembly element. After the

assembly of the elements of the substructure has been completed, all

internal degrees of freedom are eliminated by the standard process of static

condensation. Thus only the degrees of freedom associated with nodes

appearing in the two transverse planes delimiting the slices are retained

for subsequent resolution in which each substructure is already viewed as

a single large element. The effect of prestressing is properly taken

into account in the form of appropriate local loads considered at the

element level.

Although the conventional beam element has been extensively developed

with straight or curved shapes in three-dimensions (100, 51,92 , 95), it

is still characterized by an inability to represent distinctive features

with special reference to the analysis of box beams. Research effort has

been devoted by several investigators to extend the availability of one-

dimensional finite elements.

Krahula (60) and Krajeinovic (61) derived the stiffness matrix for



16

a straight prismatic thin-walled element having an open section. In

addition to the two-component displacements , n in the direction of the

principal axes x and y, and the angular displacements ' , i i ' and 4) about

the x, y and z directions respectively, the rate of the twisting angle

4)' was chosen so as to form another nodal variable corresponding to the

torsional warping. 	Similar elements with seven degrees of freedom at

- aezeach node, {u, v, w, ox, Gy, Oz v} where V - - , were proposed by

Chai Hong Yoo (14) to facilitate the stability analysis of thin-walled

assemblages. The generalized forces and displacements are shown in Fig. 1.5

and 1.6 referring to Ref s. (61) and (14) respectively, in which the

normal force Pz and the bending moments Mx and My are referred to as the

centre of gravity, while the torque Mz(T) and the transverse forces Qx and

- Q ( V and V) are referred to the shear centre. The force corresponding

to the additional degree of freedom is the bimoment.

The shape functions for torsional behaviour, originally given by

Krahula and adopted by Krajeinovic and Chai Hong Yoo, were derived from

the exact solutions of the homogeneous equations. The shape functions

are in the form of hyperbolic functions:

N46= jj 1(1 - chk9.)chkz + shkshkz - kzshkZ + (1 - chkZ + kshk9.)]

N 7 = ---((kZchk2, - shk2)chkz ^ (chk2. - 1 - kshk2,)shkz + kz(chk2. - 1)

+ (shk9, - k2chk9.)J

1
N413=	((chkZ - 1)chkz - shkshkz + kzshk9, + (1. - chkZ)]

((shk. - kR.)chkz + (1 - chkZ)shkz + k(chk - l)z + (k9 - shk9.)]

where D = (kshk2. + z(l - chk)] 	 (1.2)

and	k =
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Barsoum and Gallagher (8) used cubic polynomials in evaluating

the thin-walled beam stiffness matrix, whilst Ettouney and Kirby (27)

used quadratic expansions accounting for the restraining of warping.

Baant and Nimeiri (9) and Zyl (156) have contributed a skew-ended

beam element for box beams curved or straight in space taking transverse

distortion and longitudinal warping into consideration. In conformity

with the method of separation of variables developed by Vlasov (146),

the box element used in this study has sixteen degrees of freedom. These

consist of the usual six degrees of freedom at each end, plus two new

degrees of freedom at each end. These latter two are the transverse

distortion mode and the longitudinal warping mode. The forces associated

with these two displacements are the longitudinal bimoments (59, 42) and

- the transverse bimoments (62). The basic distribution of unknown displacement

within the finite element are approximated by linear and quadratic forms.

The cross-section can consist of a single cell with sloping webs and

cantilevers and may be variable in depth and width along the span. Shear

lag effects are neglected in the analysis.

Nikkolo and Paavola (90) have presented a somewhat similar approach

for the analysis of a rectangular single-cell box girder with side

cantilevers. Interpolar or shape functions are represented by cubic

polynomials in each element as is commonly done in the finite element

solution of beam problems. It is observed that the known displacement

functions describing the deformation modes of the cross-section must be

chosen in advance for each type of cross-section. Thus, difficulties

exist in extending the method for more complicated or more general types

of cross-section.

Lie (71) has presented a single cell straight beam element to

investigate the bending-torsional vibration, and the stability and stress
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of truss bridges. The bending-torsional displacements in the cross-

sectional plane are expressed in terms of the lateral and vertical

translations u(z) and v(z) of the "cefltre of the rigidities of shear"

of the box sectjon and the rotations 4)(z) and 4,(z) of the vertical and

horizontal sides of the cross-section about the x and y axes respectively

as shown in Fig. 1.8. In addition the continuity of the first

derivatives of these displacements must also be maintained. As a result

the degrees of freedom at each node are {u, u', v, v', 4), 4)', 4, ' }.

All the displacement functions of the element are taken in the form of

cubic parabolas.

1.3.4 Some other methods of box beam analqsis

Apart from the foregoing methods suitable for the analysis of box

beams, there exist other approaches which will be described briefly here.

1.3.4.1 Finite strip method

The finite strip method was developed by Cheung (16) as a hybrid

of the finite element procedure, and was extended to the analysis of

curved box beams. The method was also used by Scordelis and Meyer (87, 88)

for the analysis of both curved folded plate structures and curved box

beams. Loo and Cusens (77, 78) used a fifth order displacement interpolation

function to formulate a refined finite strip solution.

The finite strip analysis is based on the principle of dividing

the structure into a series of strips simply supported at their ends by

diaphragms. These diaphragms are considered to be infiniteLy rigid in

their own plane but perfectly flexible normal to their own plane. The

finite strips are assembled transversely by using finite element techniques,

yet the displacement components are in the form of Fourier series
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longitudinally, and the external loads are also resolved into the same

Fourier serjes for the corresponding displacement components.

The finite strip method has gained acceptance and is currently

being used £n practical design for the reduction of computational costs.

However, due to the use of orthogonal functions the method is restricted

to the analysis of simply supported box beam bridges.

1.3.4.2 Space frame and grillaqe analyses for box beams

Many standard programs are already available for space frame and

grillage analyses. The box beam can be idealized as a space frame

using beam elements in three dimensions (Fig. 1.9). This method, as in

- the finite element method, needs a considerable amount of computer time

and a multitude of input data. It does not, however, require the

development of new programs nor detailed knowledge concerning the

peculiarities of the behaviour of box beams, and can be used in the cases

of variable cross-sections and arbitrary groundplans.

Some authors have also presented a grillage approach as an

approximate process for the analysis of box beams. Lightfoot and Sawko

(72, 73, 113) were among the first to utilize computers in the analysis

of grillages related to structures such as slabs, beams and floors.

Goldstein et al (37) and Sawko and Wilicock (114) developed grillage

analyses for bridge decks having varying sectional properties. The

grillage approach was als .o successfully employed for the analysis of

composite box girder bridges by Sawko and Mosley (121). Sawko (115)

has also presented work on grillages consisting of members curved in plan

and interconnected by transverse diaphragms. West (148) has presented

recommendations for the grillage analysis of slab and pseudo-slab bridge

decks.
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Hambly and Pennells (41) have used grillage idealization to

analyse cellular bridge decks such as multi-cell boxes with vertical and

sloping webs and voided slabs. 	Detailed guidelines about the grillage

mesh and the evaluation of stiffness parameters, which lead to a

satisfactory representation of the structural behaviour of box beams,

were given by the authors. SomG guidance was also given on the

interpretation of results for design calculations. Evansand Shanmugam

(30) proposed a somewhat similar grillage approach for the analysis of

cellular structures.

One of the merits of the grillage approach is that the structural

behaviour of grids is more readily understood by bridge engineers and

many accessible computer programs are available. It is, however, a coarse

approximation of the true structure, and does not exactly express the

peculiarities of the behaviour of spine-beams.

1.3.4.3 kwisting analysis by the displacement method given by Richmond

Richmond (103) developed a method,_ termed the equivalent beam

method by Maisel (83), which represents an approximate solution. This is

suitable for rapid design with reference to distortional effects. A

displacement solution for rectangular boxes with concentrated diaphragms

was also proposed. The box beam was thought of as a series of bays

between the diaphragms. The equilibrium conditions for an elementary

section of box surrounding a diaphragm were formulated in terms of the

displacements at the adjacent diaphragms, leading to a set of simultaneous

equations when applied to each diaphragm.

Dalton and Richmond (23) extended the displacement method to

include trapezoidal cross-sections, and the method was limited to boxes

of constant depth and width, with a vertical axis of symmetry. Richmond
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(104) also derived the more general differential equation for trapezoidal

boxes with continuous diaphragms subjected to both torsional and

distortional components of loading. He described its solution for

simplified boundary conditions and loading. Furthermore, Richmond (105)

introduced the matrix difference solution as a general numerical method

for a box beam with discrete diaphragms.

As a result of the above literature survey, it can be seen that an

analytical approach, which combines the finite element technique and the

thin-walled beam theory, is appropriate for the design of box spine-beam

bridges especially for medium and long spans. Incomplete attempts in

this direction by previous researchers are developed and extended in this

thesis to a relevant form, which results in low computing costs and ease of

' usage, whilst retaining an acceptable degree of accuracy and versatility.

1.4 Coordinate systems and sign conventions

In this section an attempt is made to specify the coordinate

systems and the main sign conventions. In order to perform reliable

calculations it is necessary to derive the formulae throughout the thesis

in a form consistent with accepted axes and sign conventions. For emphasis

some of the specifications listed here will be repeated at appropriate

positions in the following chapters.

All the structures considered are located in a Cartesian orthogonal

coordinate system XZ, which is termed the general coordinate system. For

the analysis of bridge structures it is convenient to assume that the Y

axis is normal to the horizontal and is taken as positive downwards. The

loads and deflections due to gravity are then both positive quantities.

Two local coordinate systems are adopted in the formulation: the

right-handed orthogonal system of coordinates xyz (Fig. 1.10), and the
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curvilinear system S directed around the box cross-section (Fig. 1.11).

It is obvious that the stress resultants follow the same sign rules.

The positive directions of the internal stress resultants acting on a

positive cross-sectional face and of the applied loading are shown in

Fig. 1.14. The shear forces Q and Qy and the axial force N are positive

when in the positive directions of the x, y and z axes respectively.

The bending moments Mx and My and the torsional moment Mt are positive

when their right-hand corkscrew vectors are in the positive directions

of the x, y and z axes respectively. However, the distortional moment Md

is positive when in the negative sense of the twisting angle of Oj.

In this thesis, the convention of Fig. 1.15 will be used to represent a

positive bimoment. It will be noted in Fig. 1.14 that the positive

- directions of the externally applied loads acting on the beam elements shown,

are the same as those of the resistive stress-resultants acting on the

positive face of the cross-section shown.

1.5 Basic assumptions and fundamental equations of elasticity

The usual assumptions associated with linear elastic small

displacement theory have been adopted, which can be generally statcd as

being that the structural material is homogeneous, isotropic and 1inrly

elastic, and that the actual deformations are small compared with the

structural dimensions.

Since this thesis is concerned mainly with the analysis of thin-walled

box spine-beams, the definition of a thin-walled beam can be referred to

the criteria given by Vlasov (146), Dabrowski (22), Kolibrunner and Basler

(56), which. have been summarized by Maisel (83). Note that the criteria

are sometimes not strictly satisfied in practical bridge structures, but

thin-walled theory has nevertheless been used for them. Additional
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assumptions, which are mainly related to thin-walled structural behaviour,

have been considered in this approach, and are as follows:

(i) The dimensions of the cross-sections are significantly less

than the span lengths and less than the radii of curvature in the case of

curved members. The length/width ratio of the component plate should

normally exceed 3(29, 22).

(ii) The thicknesses of the walls are small compared with the

dimensions of the cross-section.

(iii) Diaphragms are considered to be infinitely or finitely stiff

in their own plane, but perfectly flexible in the direction normal to the

plane.

(iv) Plane sections remain plane during pure bending deformation,

but not necessarily normal to the beam axis, thus allowing for shear

deformation.

(v) For warping torsion analysis, cross-sections are assumed to

remain undeformed in their own plane, but may rotate about the flexural

axis (locus of the shear centres) and be subject to longitudinal warping.

(vi) The in-plane longitudinal bending action of an individual

component plate is analysed using elementary beam theory, and the shear

deformation caused by distortion is neglected.

(vii) Transverse membrane strain8 and longitudinal bending strains

of an individual plate are assumed to be zero. The bending action of the

individual plate normal to its plane is represented by the flexural behaviour

of an equivalent transverse frame.

Assumption (i) is an essential condition for the applicability of

structural analysis by beam-type members and for the following assumptions.
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A differential element of side ds x dz and thickness t cut from the wall

is shown in Fig. 1.16. In accordance wLth assumption (ii) concerning the

small thickness of the wall, the direct and shear stresses normal to the

plate surface, and the resistive torsional moments of the plate may be

neglected. The stress system on the differential element is, therefore,

specified by plane stresses 	and	and out-of-plane bending

moments mdb and mib.

The equilibrium of the element in the z arid S directions

respectively may be expressed, neglecting body forces, as follows:

3q + t._i = 0
	

(1.3)

and

az +
	 = 0
	

(1.4)

The displacement of a point on the wall can be represented by three

components: two in-plane components Ut and v, and an axial component Wj.

The three displacement components Ut, v and w compose a right-handed

orthogonal system which is shown in Fig. 1.17.

The strain components are expressed in terms of the displacements

by the following equations

3
	

(1.5)

=	+
	

(1.6)
as	Rfl

and	3S	'S3 =	 az
	 (1.7)

where	and	are direct strains along the z axis and are tangential to
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the mid-line of the wall respectively. 	is the shear strain, and 1

is the curvature of the wall. It £s obvious that for a straight wall

the curvature equals zero.

Hooke t s law is expressed by the following equation,

where E is Young's modulus of elasticity and v is Poisson's ratio.

The position of the x-y-z origin is taken to coincide with the

centroid of the cross-section. The z axis is orientated along the longitudinal

direction of the beam, and the x and y axes coincide with the principal axes

of the cross-section, in which the y axis is fixed as the vertical axis of

symmetry. The curvilinear coordinate S is taken as positive in the

anticlockwise direction, as shown in Fig. 1.11, which also indicates the

position of the origin for S.

For the sake of consistency we further specify the sign of the face

of a cross-section. A positive cross-sectional face is one whose external

normal points in the positive direction of the z axis. A negative cross-

sectional face is one whose external normal points in the negative direction

of the z axis. All the calculations in this thesis are referred to the

positive faces of the cross-sections.

Displacement components of a point on the cross-section in the

directions of the x, y and z axes are taken as positive when they lie in the

positive directions of these axes. They are denoted by UX, vy and

respectively, as shown in Fig. 1.12. Rotations O, and ey  and the twisting
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angle O are also shown, and are positive when the corresponding

right-hand corkscrew vectors are in the positive directions of the x, y

and z axes respectively. The positive directions of distortional

displacements are given by Fig. 1.13 under torsional loading.

Resistive stresses caused by applied external loading exist in the

structural members. For a positive crossectional face, a normal stress

component is to be regarded as positive if it acts in the positive direction

of an axis; otherwise it is negative. For a negative cross-sectional

face, a stress component acting in the negative direction of an axis is

positive. Shear stresses acting on a cross-section and in the positive

direction of the curvilinear coordinate are positive, otherwise they are

negative. As an exception, the shear stresses acting upwards in the interior

walls separating neighbouring cells are negative, and are positive when

acting downwards. The global transverse bending stressed due to distortion

are associated with deformed shapes of cross-section as shown in Fig. 1.13.

In this thesis, such stresses will be plotted in diagrams, where ordinates

are drawn on the tension face, thus obviating the need for signs in

these diagrams.

According to assumption (vii) and ignoring the effect of transverse

membrane stresses due to their insignificance, we can obtain the relation

between stresses and strains, which will be used throughout this thesis,

=
(1.9)

= Gy5

where

E 1 = E/i -
	

(1. 10)

is called the conversion modulus of elasticity, and

E
G - 2(1-i-u)



aw
,.	Lcs = 0

I as
(1.13)
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is the shear modulus.

Assumption (vLi) also implies that the longitudinal bending moment

of the plate per unit width. can be approximated by multiplying the

corresponding transverse bending moment per unit length by 	 ratio,

mLb =
	 (1.12)

A compatibility condition often used in this approach, which indicates

the continuity of axial displacements, is expressed by the following

equation,

where, the subscript i indicates that the line integration is carried

around the th cell. The equation must be satisfied for each cell of

the box section.

Finally, it should be pointed out that all measurements in this

thesis are based on SI (International System) units, i.e., the units for

length are metres or millimetres, and for force are newtons or kilonewtons.

All the values adopted from other references,which were in other unit

systems, will remain in their previous form. However, converted values

(to SI units) will be listed as well.
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Fig. 1.2 Typical cross-sections for spine-beam bridges

i) Distortion or
	

(b) Warping of cross-section (c) Shear lag in
deformation of
	

bending
cross-section

Fig. 1.3 Types of structural action which may require special
consideration in box beam bridges



+_1____ -

30

Nodal variables:

U	U

V	V

Tv2

Fig. 1.4 Independent frame solution of the cross-section

Y.V.By

.w,Oz

Ut1 b/Ii1b

y \LIIIIIIIII 2-__._

1	QSH4/SHI6

X I , Ox

for corner
nodes of
extensional-

	

IV	WI
• ) 	=	1,	flexural

elements
aw

ox -
ay

aw

	

I	ax

av
ax

-  {u} for midside nodes along
edge directions

Fig. 1.5 	Flat thin shell box elements in three-dimensions
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Fig. 1.6 Generalized forces and displacements.
bending moments; (b) torsion moments
and bimoment.
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Fig. 1.7 	Generalized forces and displacements
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I

Fig. 1.8 Displacements in the box section plane

Typical aOSZ-5,Cf'Ofl

Fig. 1.9 Half-span of Jesmond Dene Bridge shoving space frame

idealization
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-

Fig. 1.10 Coordinate axes x, y and z

,origin for curvilinear coordinate S
S	B/

	

I-.	--	-	-	- -I

d-line —	I

	

of.iuU	IS

L.__.!__

Fig. 1.11 Curvilinear coordinate S, showing origin and positive directions

Fig, 1.12 Positive directions of displacement, rotation and twist

Fig. 1.13 Positive directions of distortional displacement for twisting
loading on the cross-section
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Mx,ext llYXt..,ø#Bet
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Fig. 1.14 Positive directions of internal stress-resultants and
external loading

(a) Warping force group
	

(b) Positive bimoment

Fig. 1.15 Warping force group and bimoment

q a	- T51t

(a)
	

(b)

Fig. 1.16 Stress system on a differential element
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Fig. 1.17 Elementary frame showing displacement components
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CHAPTER 2

BENDING AND TORSION OF THIN-WALLED MEMBERS

2.1 Introduction

The bending analysis of thin-walled members presents no more

conceptual difficulties than those encountered in the investigation of the

bending of solid-section beams. However, the distribution and the method of

evaluation of the stress components, for example the evaluation of the shear

stresses and of the position of the shear centre of the section, are different

in the two analyses in some esseniial features. Moreover, in thin-walled

members, the in-plane shear deformation of the flange plates may have a

considerable influence on the distribution of longitudinal stresses within the

flanges. This phenomenon, often termed shear lag, results in the deflections

and the longitudinal stresses at the web-flange intersections of the section

being greater than those given by the elementary theory of bending. For the

sake of convenience, it is preferable in this chapter to present a brief

description of some special features related to the bending analysis of

thin-walled members.

In addition to bending action, bridge substructures are usually

subjected to torsional loads arising from the eccentricity of loading and/or 	-

the in plan curvature of the bridge deck. The basic assumption in the

development of the torsional theory of thin-walled sections is that of plane

deformation being analogous to the pure bending case. It states that the

cross-section as a whole may rotate, but that the form of the cross-sectional

projection is not changed from its original shape. This assumption is valid

only when the beam has a sufficient transverse stiffening system along its

length.

The torsional shear deformation gives rise, in general, to non-planar

longitudinal displacements which we call warping of the cross-section. In
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pure torsion, only shear stresses exist and the longitudinal warping

displacements are constant along the member, i.e., the rate of twist along

the length of the member remains constant. In fact, axial restraints to

warping always exist due to the variation of the section stiffness, and due to

some support conditions or even non-uniformity of applied twisting moments

along the span. As a result, additional direct stresses and associated shear

stresses arise in the sections. This is called the axial constraint or

warping stress system. In this sense this torsional phenomenon is termed

specifically ?warpjngtorsiofl to be distinguished from 'pure torsion'.

The warping torsion theory of open and closed section members

proposed and developed byVlasov (146), Benscoter (10), Heileg (42),

Kolibrunner and Hajden (57,58,59), Dabrowski (22) and Kistek (62) makes

possible the solution of the warping torsion problem within acceptable

accuracy. Accordingly, another main objective of this chapter is to

summarize these analytical processes and to develop supplementary formulae

whereby shear flows and warping forces in open and closed section bridge

girders with a vertical axis of symmetry can be incorporated in the further

development of the stiffness analysis presented in this thesis.

2.2 Direct and shear stress distribution due to bending

The derived procedure relating to the formulae for the evaluation of

the normal bending stresses will not be stated here, and only the final

expressions will be listed, since they are all well known. It is supposed

that the origin of the x and y axes coincide, with the centroid G of the

cross-section. The neutral axis passes through the centroid of the cross-

section and is inclined at some angle to the x axis where a is considered

to be positive in a clockwise sense. The normal stress at any point in the

cross-section is expressed as,

( 
MyIxx - Mxlxy 	x + ( 

Mxlyy+ Mylxy 	
(2.1)

2	 2
'xx Tyy 'xy	 lxx I yy- Ixy
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where Mx and My are the internal bending moments about x and y axes

respectively. The definition of the sectional properties in the above

expression is given by

T	-	r	ZIA
1-XX -	A Y "-

= 'A x 2 dA,	 (2.2)

I xy = ' A XY cIA,

which are the moments of inertia about the x and y axes and the product of

inertia respectively.

Eq. 2.1 is usually written in the more convenient form:

Mx
G b - y - _L X

'xx	Iyy

where

-	Mx + MyIxy/IYy and	
= My + Mxlxy/Ixx 	

(2.4)Mx = __________ 	 ___________

1 —Iy/IxxIyy 	 1 - Iy/IxxIyy

Since the y axis is fixed as an axis of symmetry in the present

approach, then 1y is zero and Gxy are principal axes. Eqs. 2.4 then reduces

to

Mx= Mx	and My	My,	 (2.5)

and Eq. 2.3 becomes

	

Mx	My	 (2.6)

	

a b=—	x
L	'xx	Iyy

The shear flow and direct stresses acting on an element of the wall

are related by Eq. 1.3, i.e.,

+ t ____ = 0 	 (2.7)
3z

Differentiating Eq. 2.6 once, we have

b =	Y	- 3My	x	 (2.8)

3z	lxx	az	Iyy
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3M	 3M
From the equilibrium condition _. = Qy and __i. = Qx we can write

3z

____ =
	y	x

____	
+ Q -
	 ( 2.9)

Qy . ;;-

Substitution of Eq. 2.9 into Eq. 2.7 gives

. =L.t.y-_.tx 	,	 (2.lOa)

'xx	Iyy

or

= - x .t.x - y•t•y
	 (2.lob)

where

x=	 Q=i_	 (2.11)

' yy	 'xx

For an open cross-section we may choose to make the open edge,

where the shear stress must be zero, coincide with the origin of

curvilinear coordinates S. 	Integrating Eq. 2.10(b) with respect to S from

the origin for S to any point round the cross-section, we obtain,

qs = - Q x boS t	- QftYds = - QxSy QySx 	 (2.12)

where	S = Ityds, and •Sy = ftxds, 	 (2.13)

are the first moments of area of the partial cross-section with respect to

the x and y axes respectively.

In contradistinction to the case of the open section the mathematical

difficulty in integration is attributable to the fact that the constants

of integration are unknown. Compatbility conditions of deformation mut

then be introduced, since the problem is statically indeterminate.

For a single-spined box beam with n cells, there are n unknown

constant shear flows, i.e., the degree of static indeterminacy is increased
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by 1 with the addition of each closed cell. To resolve this difficulty,

the section is imagined as cut open at n reference points, one in each cell,

in order to convert the multi-cell beam into a single shear loaded open

section beam. While the basic or open section shear flow 	in the

resulting open section can be determined by the use of Eq. 2.12, contiguous

points on either side of the imaginary opening at the ith cell will be free

to move relative to each other. This relative motion cannot take place in

the actual closed section, since the continuity of deformation of the

section would then be broken at cut point i. The presence of the statically

indeterminate shear-flow q 0 at this point of the closed section ensures that

the contiguous points do not undergo any relative motion and, thus, the

continuity of the deformation is maintained. Once the distribution of shear

flow () in the imaginary open section is determined, a redundant shear flow

(q q ) of uniform intensity throughout individual cells can be superposed on

it to obtain the actual shear flow (q) in the closed section. Thus, the

formal expression for the shear flow developed in cell i is

= q 01 +
	

(2.14)

where q 0 1 is the constant shear flow at the 1th cut required to close the

gap, and 	is the shear flow at any point in cell i which is given by

Eq. 2.12.

The 1th 
cell of the multi-cell section is shown in Fig. 2.1. The

shear forces Qx and Qy are assumed to act through the shear centre (see

section 2.7). The curvilinear coordinates s1 	2•••• and S of cells

1, 2,...., and n, respectively, are chosen to be positive in the anticlock-

vise direction, as shown in Fig. 2.1. Th shear flows in the same direction

are also positive, except in the webs where the downward flows are defined

as positive.

The total complementary potential energy per unit length of the member
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due to bending is

"C =	
1b dA + I 	dA

2E1	 2G

2.	 2

= f	dA +	f	
(q 0, j q•j) ds n+1	(q +	q014	

ds
A 

2E1	 2Gt	+	 2Gt

(2.15)

By the use of the principle of minimum complementary potential energy, which

states that 1I must be a minimum with respect to each of the statically

indeterminate shear flow q 01 ,  it follows that

Thus, a set of simultaneous equations may be written in the form

dS1 - q02 f	

dS1 +
q01	 1,2 T	

qb,1 dS 1 = 0

dS2	dS2	 dS2	_____
- q 01 J ,2 ---  + q 02 — -q03f2,3	

+	
dS2 =	 (2.17)

dS	 b1fl dS
-q0_1	 + q0	 = 0

where use has been mde of the fact that, in the common wall of the cross-

Section, q bj = - q b,j+i and dS = -dS1+1

Eqs. 2.17 can be written in matrix form as

tf]{q 0 } = { Dq}
	

(2.18)

The elements of the flexibility matrix (fJ are called flexibility

influence coefficients which are the displacements due to the unit values of

the redundants. Therefore, (f] depends only on the properties of the

structure, and represents the flexibility of the released structure. The
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flexibility influence coefficients can be expressed as

ds
Ik = - "i,k Integral along the common wall

between cell i and cell k

(2.19)

fil =
	

Contour integral along the

circumference of cell i

The vector {Dq} is the displacement vector in the released structure

due to the shear flows qb. It is expressed as

T
{Dq} = FDq,1 , Dq,2, ........., Dq,n] (2.20)

in which

D	= -	qb, dS
q,

=	x I	x,i
	 (2,21)

and where

= - f1 
txdS = 'Syj 	

(2.22)

q yj = - ftydS = -S,,j

The elements of the vector q 0 }  are the redundant flows which can be

obtained by solving Eq. 2.18

{q 0 }  = [ f] {Dq} 	 (2.23)

Although the positions of the cuts can be arbitrary from a theoretical

point of view, their positions are quite important from a numerical point of

view. In order to avoid an ill-conditioned system of equations, the cuts

are preferably located near the centres of either the upper or lower walls

of the cells. 	Generally, at these points, the final shear flows differ

only slightly from those of the determinate structure. The resulting

equations of consistent deformation are, therefore, well conditioned.
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Let us suppose the multi-cell cross-section, with side cantilevers

shown in Fig. 2.2, possesses n cells with two flanges parallel to the local

x axis and n-i-i webs which are not necessarily vertical to the flanges.

The resultant shear force acts through the shear centre. The values of open

section flow (q) due to unit shear force ( 	= 1 ) are expressed as
Iyy

follows,

=	xn+1,ne2 = b t(x 0	b )  =	b ( b t + b) t

	

= -	bj tt,j (x 1 + x41+
2

be
(q) 1 ^1 11 j =	b' . j ttj (Xj+ Xj1	—u--  )2

=	 - (x)i,j

= (x)j , n.j +	(x1+ h c1coscL i )thj

xn+312n+	= ()fl.3+3

-	n+i+n+i+	=	)n+j+12n+i+21b,j1	 ) t bj 1

( Clx)n +i^22n+ i +3 =	 +

	

x2n+33n+3	= - (q)+3,fl+3

(i=l,2.....,n)

(i=l,2, . . . . ,n)

(i=l,2.....,n+l)

(il,2.....,n+l) (2.24)

where cosct 1 is the direction cosine between the vector 1, n+i-*-2 and the

x axis, and b t = b tj = x 1 - Xj

The following expression is also available for checking the

result,

( q )r 4 3, 3 fl e3 =	1 x ) 2n+32n. i . 3 = (x) 2n+2 3 n+3	bb,fl (x2 ^ 2 -bb,fl)tb1fl (2.25)

The following expressions relate to the calculation of open section

flow ( q y) due to unit shear force ( 	= 1),

(q)1 1 j = - (q y)n+1n+2 =-bctcyG

(y)i,i+1 = 0.5 btj	tt 1 j	YG
	

(i=l,2.....,n)

(y)i+1i-ei =-0.5 b ti • t t , j YG
	

(i = l,2, . . . . ,n)

= (y)i , i+1	(qy)1,
	

(i1,2.....,n+l)



(i1,2.....,n+l)

(il,2.....,n+l)

(2.26)

(i=2,3.....,n)

(i=2,3.....,n)
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(qy)mn+ i t2	(qy)i , n+ i2	hc .t h , i (Ih - YG)

(qy)n+ i +2 , n^j +2 = (qy)i , n + i +2 - hc1 . th,j (h - y6 )

(y)n + 3 , 2n +4 = (qy)n.3,n+3

(q y)n^i+2,2n+i+2 = (q y)ni. i+1,2n+i+2 - bb , j_1 t b,i-1 (h-ye)

(y)n^i+2,2n+j+3= (qy)n+i+2 , 2n+ i +2 + (qy)n+i+21n+i+2

(y)2n+ 3 , 3n+3 = -.(y)2n.32n+3

To check the result the following expression can be used,

(y) 2 n+3,3 n^3 =	y)2n+3,2n+3 = (y)2n+2 , 3n+3 - b b fl . t bn(h -	(2.27)

where y 
is the vertical ordinate of the centroid from the top flange, and

the subscripts in Eqs. 2.24 to 2.27 represent the node number and the plate

number successively which identify the points considered, while the

subscript 'in' represents the mid-point of the individual plate considered.

Once the distributions of q and 	have been determined the

displacement vector Dq may be obtained. For the sake of convenience we let

Qx = Qx/'yy 
= 1 and Q y = Q/Ixx = 1, and separate the displacement vector

as the sum of the two vectors,

{q} = {Dqx} + {qy}

where
-	 -	ds
Dqx,i 

=	
--

-	 -	ds
Dqy,i 

=	q y 1 i -i-

(2.28)

(2.29a)

(2.29b)

Substitution of Eqs. 2.24 and 2.26 intoEq. 2.34 followed by

integration gives

Dqx,i = - 
b1 

+	afl1+2 jt hl hcj (Xj_
24	

thi

-	 -	thj,1 hci +1 (x,1 -
	h 1 + i cosct1 j

thu



and,

(1=1,2.....,n)

(1=1,2.....,n)

(1=1,2.....,n)

(i1,2.....,n)

(1=1,2.....,n)

(1=1,2.....,n)

(2.31)
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1
^	xn+i+2,2n+j+3 -	tbj (x fl# j^2 - - b)] bbi

b, i

(1=1,2.....,rt)

h - 2Q)1 hcj
Dqy, i	= [(y)i,n+i+2	hc.ith,i	2	th,j

(2.30a)

h	1'ci+1- [(q y ) j+fl+j+3 	hci+lthj+l( 	- 2	thu

+ ((y)n+i^z,2n+i+3

(i1,2.....,n)

- b b , j •  t bj( h -	
bbi

b, i

(2. 30b)

After solving the n linearly-independent equations of consistent

deformation, we may obtain the n corrective flows at the hypothetical cuts.

'The final shear flow can be interpreted as the algebraic suni of the shear

f tows	in the open section and n corrective, constant shear flows q0

applied independently in each cell. The formulae for calculating the actual

shear flows can be expressed as:

(q1	i,I =	x [(q)jj + (x,o)j-1

(q	i,i+1 = x L(q)1+	+	)+i

(q5,	i1nfi+2 = Q	 -	)j_1 + (qx ,o  )1

ni+2,n^j+t Q	 -(qx,o -i + (q x ,0  )1

(q51 r^i+2,2ri+3 =	r ( X )fl+ ^Z2 fl+ I + 3 + ( q ,0 )J

(q5	ni+3,2n^j+3= Q	l x ) n4i+3,2n+i+3 +	Co

and,

(s, y	= Q [(qy)jj + (qy0 )u-i1

(qs,y ,i+i = y (( y ) i,i+1 + ( y,o )+i

(q51y i ,n+i+2	Qy ((y)i,n.i+2 - ( q y,o )i-i + (yo )1

(qs,y m,n4i+2	Qy 1(y)mn4i^2 - (q y10 )i-1 + (qy 0 ))

(qs,y	 = y ((qy)n^i +2 , n+ i42	(y 1 0 )i-1 +	)jl

(q51y n+i+22n3u+3 Qy E @y)n+i+2,2n+i3 + ( q y, o )i I

(qs,y	 Qy ((y)n.j+3 , 2n43 (q y,o )

(1=1,2,.... ,n)

(il.2, .. . ,n)

(i1,2 .....,n)

(il,2,....,n) 	(2.32)

(1=1,2.....,n)

(i=1,2 .....,n)

(1 = 1,2 .....,n)
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in which,

(q ,0 ) o	 =	y 1 oo = (y,o)n+1 = 0,

and	are the redundant shear flows due to the shear forces

Q x = 1 and Q = 1 respectively.

The resultant shear flows in the cross-section are given by

superposition as follows:

=	+ s,y
	 (2.33a)

and the shear stresses in longitudinal loading

T S = q5/t
	

(2. 33b)

2.3 Effects of shear lag

The planar assumption in the elementary theory of bending is invalid

in the case of thin-walled structures owing to the action of in-plane shear

strains in the flanges. Direct stresses are therefore redistributed in the

flanges with the peak values, at the web-flange intersections, being

greater than the stresses given by the elementary theory of bending. As

explained previously this phenomenon is known as shear lag, and is indicated

in Fig. 2.3. The action of shear strains in the flanges also results in the

deflections obtained, using the elementary theory, being underestimated.

The prediction of the shear lag effect has been reported in many

papers, such as the bar simulation method proposed by Evans and Taherian

(31,138,32). The most convenient treatment associated with the present

approach is the concept of. an  effective breadth of each flange to replace

the actual breadth b 1 to give the correct values of the maximum longitudinal

stresses and of the deflections. The effective breadth can be written as

(Fig. 2.3):

'b 0.b dS

bej =
	

(2.34)



p•ei	b1
(2.35)
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and the effective breadth ratio which is the ratio of the effective breadth

of each flange to its actual breadth, as:

Hoff at and Dowling (93) initiated a parametric study of the effective

breadth ratio by the finite element method using the rectangular third order

extensional-f lexural element. The results were incorporated in the Merrison

design rules (18) and in the present British Standard BS 5400 (13). It was

found by Moffatt and Dowling that the effective breadth factors can be

treated in the design rules as independent of the cross-sectional shape.

The total effective breadth of a flange associated with each web should be

taken as the sum of the effective breadths of the portions of flange

considered separately on each side of that web. Thus, the effective breadth

of each portion shall be taken as 	or 0.85 	for parts between webs

or for parts projecting beyond an outer web respectively (Fig. 2.4).

The most significant parameter influencing the effective breadth of a

flange is the breadth of each portion to length ratio (b 1 /2L). The importance

of this parameter can be seen from Table 2.1, which gives effective breadth

ratios at the mid-span, quarter-span, and support sections for different

support conditions. Moffat and Dowling have devised effective breadth ratios

for simply-supported, cantilevered, propped-cantilevered and fixed-ended

box beams shown in Table 2.1 (93,18,13). In the case of an internal span of

a continuous girder, the values of 	given for the fixed ended beams should

be used and, for end spans of continuous beams the values of 	given for

the proppecf-cantilevered beams should be used. When adjacent span; are of

unequal length, the value of 	at the intermediate support may be taken as

the mean of the values obtained at the support for each span considered

separately.
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In order to account for the effect of the orthotropy of a steel

flange the stiffening factor a, which is defined as the ratio of the

cross-sectional area of the longitudinal stiffeners to the cross-sectional

area of the associated flange plate within a breadth b 1 , is also included

in the tables. Table 2.1 provides effective breadth ratios for flanges

having stiffening factors of 0 and 1, and it is recommended that other

values should be obtained by linear interpolation or extrapolation.

Since the present stiffness analysis approach is able to assemble the

stiffness matrix for varying sectional properties, the effective breadth

ratio can be evaluated at each nodal section, in order to account for the

fact that the effective breadth ratio varies along the span. The shear lag

rules state that the values of iJe along a beam is assumed to vary linearly

- between the quoted values in Table 2.1.

The availability of effective breadth ratios described above enables

the peak stress at a web-flange junction (cJ3,m ) to be calculated simply.

However, in the design of a bridge flange, it may often be necessary to

have an estimate of the longitudinal stresses in parts of the flange remote

from the web-flange junction. Such stresses (a,b ) may be estimated using

the following formula (Ref. 18 and Fig. 2.5):

= aä,m (4(2) ^'e 1)
	X 2
- l - 4() U for parts between webs,

bj	2

(2.36a)

x 2	(3Pe1)	x 2
or	a,b = a	-) +	 (1 - (ç) }] for projections,

bc	2

(2.36b)

where a,m is the maximum stress at the web-flange intersection.

The validity of the treatment described in this section will be

investigated and its adequacy assessed from numerical examples and model

tests described in later chapters.



+	o3.p(Tv)max = - Gt (2.38)
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2.4 Pure torsion of open and closed section members

Approximate expressions for shear stress distribution due to

St. Venant torsion and the rate of twist in a thin-walled, open section

member are based on those derived for a thin rectangular strip using the

well-known membrane analogy (142). The shear stress distribution across

the thickness of the section wall may be written as

= 2Gn _____ 	,
	 (2.37)

3z

where O,p is the twisting angle due to St. Venant torsion. The maximum

values of Ty occur on the surfaces of the wall where n = - and are

The rate of twist 	is expressed in terms of the torsional

moment, the shear modulus G and the St. Venant torsional moment of inertia

J by the following relationship,

MT,V = GJ

st3
where J = i	 or	= '

A t 3 ds

(2.39)

(2.40)

In Eq. 2.40 the second expression is used to calculate Jy if the

cross-section has a variable wall thickness. Values of ii for a variety of

open sections have been determined experimentally and quoted in Ref. 107.

In particular, many thin-walled sections can be considered as being composed

of several rectangular sections monolithically connected together. It is

suggested that i could be chosen as unity without significant error. Thus,

the general formula for such a composite member is

	

m	___	
(length4) 	 (2.41)Jv	•E

	

i	3
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where in = total number of component rectangles forming a cross-section,

= length of each 1th component rectangle,

t = thickness of each 
1th 

component rectangle.

The product GJy is known as the St. Venant torsional rigidity of the

member. Eqs. 2.37 and 2.38 may be rewritten in terms of the torsional

moment by substituting for 	from Eq. 2.39. Thus,
az

	

_____	 - ^ M T,V t

	

2NT,V	
,	(Tv)max - _______

	

T V = _____	 ______

J v	 Jv
(2.42)

For a closed section member having n cells shown in Fig. 2.6, the

shear stresses are usually given in terms of shear flows, i.e., shear stress

- times the wall thickness. In Fig. 2.7 consideration of the equilibrium of

forces in the axial direction on a differential element taken from the

wall of the section shows that

( T B +	ds)tdz - TBtdZ 
= a(r8t) 

=0
as	 as

(2.43)

Integration of this equation yields q 0 = Tbt = a constant. It is seen that,

although the shear stress may differ ' from wall to wall, it must have constant

values q 1 ,	 q along the wall of each individual cell. These

are referred to as Bredt's shear flows, and the corresponding torsional

moment is Bredt's torsional moment.

Investigation of the axial equilibrium of forces on an element at a

junction of the walls reveals a further restriction on the shear flow. If

such an element is considered at junction i of the section, the free-body

diagrams shown in Fig. 2.8 require that

-q . dz -	dz	q1 i • dz = 0
B.I	 i-i	 -

i.e.,

= q8	-	 (2.44)
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This shows that the shear flow in an interior wall can be considered to have

been obtained by the algebraic superposition of the shear flows in the

component cells. The convention for the sign of the shear flow is that

adopted by Kolibruner and Basler (55). 	If the shear flow q. is

indicated around the th cell in a sense which is equivalent to the

positive sense of rotation, i.e., a right-threaded screw rotation, then the

shear flow 	is positive. The shear flow q 11 in the wall between

cells i-1 and i is positive when its direction is the same as q.

It is apparent that we are not able to determine the shear stress

distribution by a straightforward consideration of the static equilibrium

of forces, since there are n unknown constant values of shear flow for a

multi-cell beam of n cells. 	Compatibility conditions must therefore be

- used for solving the n unknown constants. 	Let Ut = RtO,p denote the

tangential displacement of a point on the cross-section, where Rt is the

distance from the twisting centre E 5 , and O,p is the angle of rotation of

the section in its plane (Fig.2.9). 	Let Wp denote the associated

longitudinal displacement in the z-direction (warping). Then the associated

shear strain at a point on the mid-line of the wall of the section is given

by

= _____ +
	

= ____	 (2.45)
az	Gt

The condition of continuity of the axial displacements is expressed

by the following equation

.	'P ds = 0 	 (2.46)
I	3s

which states that when proceeding around each individual cell, the initial

and final warping must be equal. Integrating Eq. 2.45 around each cell, and

substituting Eq. 2.46 into it and putting
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. Rids = , 	twice the enclosed area of the th cell, 	(2.47)

we obtain the following expression

T8dS= G2. _____ 	 (2.48)

Extending Eq. 2.48 for each cell, introducing the coefficients

f 11 which have been expressed in Eq. 2.19, and considering that the

circulating shear flows, constant for each cell, oppose one another in the

intermediate webs, we may obtain a set of flexibility equations

[fl{q 8 } = {c}

where

-	q811
q81 =
	ao,p

C
3z

(2.49)

(2.50)

is defined as the unit shear flow distribution function relating to pure

torsion.

The total torsional moment is shared by the shear stresses

distributed over the n cells and is therefore the sum of the individual

moments for each cell,

n
M T , 8 = I q 	R ds = E q

A	a,u	t	i1	8,1

n-
= G( E q	.2.) ____

i::1	8,1	I

We may put

MT,B	GJ3

(2.51)

(2.52)

and therefore

.J 8 = § q8Rds =
	

q8j	 (2.53)

where	is referred to as the Bredt torsional moment of inertia (length4).



53

The shear flow of each cell is

	

-	OTp
q	 Gq

B,i	 B,

M T,B -or	q61	 q0,1

(2.54a)

(2.5 4b)

For a single cell cross-section from Eq. 2.49 it is apparent that

q8 
=	dt	

(2.55a)

dt
	 (2 .55b)

and

=	
(2.55c)

The St. Venant torsional rigidity of the component elements of the

cross-section may make a small contribution to the torsional characteristics

of the entire section. 	The assumption of a constant shear stress T

across the wall of a hollow cross-section is only an approximation. There

is a difference between the maximum and the average shear stress (Fig. 2.10).

If Ar is the difference, it may be considered to be the maximum shear

stress in an imaginary open cross-section having the same specific rotation

as the corresponding closed cross-section with the average shear stree

This leads to the following relation,

M11 p =	+ MT,B = G(.Jy + JB) ae,p
az

= GJ.1.	 (2.56)

where MT,p is the total pure torsional moment,

and	3T =	+ J1 is the total torsional moment of inertia (length4).



30 p=_uI_• (2.60)
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It is also clear that

Jv
MTV = - .

(2.57)

MT =	• M1p

JT

2.5 Deformation of cross-sections

For the moment we shall consider the deformation of cross-sections in

the case of pure torsion. For cross-sections assumed to be undeformed the

movement will be about a certain point in their own plane as for rigid bodies.

The tangential displacement of a point on the cross-section is given by

(Fig. 2.9)

u t = R t O3p
	

(2.58)

where Rt is the perpendicular distance from the centre of twist to the

tangent to the mid-line of wall at the point considered, and Op is the

twisting angle of the section in its plane in pure torsion.

For an open section member we may derive the axial warping displacement

expressing by using Wagner's assumption (147), which shows that

V	-	wJ,V ^ 3u	=0
Ys- _____

9s	9z
(2.59)

where wy denotes the axial or warping displacement in an open section

member.

Substituting Eq. 2.58 in Eq. 2.59 and integrating once we obtain

S	 30

w.v = wo - jo Rtds . _______

in which the unit torsional warping function for an open section
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=	+ f Rids
	

(2.61)

is equal to twice the value of the area shaded in Fig. 2.11 and is also

called the sectorial coordinate (in length1).

For a closed section, the warping displacement can be assumed to

have the same basic transverse distribution as in the St. Venant torsion

of an open section, i.e., the unit warping function is still defined as

the negative warping per unit rate of the ange of twist,

W	= - (U1 az	 (2.62)

When we come to the shear strain at the mid-line of the section

instead of using Wagner's assumption, we note that the shear strain can be

equal to that obtained from the Bredt formula,

Yp =	
= awp + 	 (2.63)

Gt	as	az

Substituting Eqs. 2.54a , 2.58 and 2.62 in Eq. 2.63, and after

cancelling the conmion factor ae,p , the result becomes
az

- aw1 + 
Rt = 	

(2.64) 	-

Integrating Eq. 2.64 once we obtain

=	+ f (Rt - i!! )ds (length 2 )	 (2.65a)
t

where 1 is the unit torsional warping function for a closed section and is

also called the reduced sectorial coordinate.

In particular, for an open section, in which q 8 = 0, we obtain

(U 1 =	= ( U 10 + f Rtds	 (2.65b)
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It is then obvious that we may have the same form of expression

both for closed sections and open sections, except that it is necessary to

use the reduced sectorial coordinate w instead of the sectorial

coordinate wj.

For the determination of the sign of the sectorial coordinate the

following remarks can be seen to apply. If we regard the differential

element of the mid-line ds as a vector, whose direction is the same as that

of the integration, and if this vector causes a right hand screw rotation

about the pole, then the increment Rtds is taken as positive (Fig. 2.11).

The shear flow distribution function 	is also regarded as a vector. If

the directional sense of 	agrees with the sense of integration then the

increment q 8 ds is positive.

Furthermore, since axial restraints to warping always exist, the

torsional behaviour of a member actually appears in the form of warping

torsion. The influences of secondary shear stresses or warping shear

stresses associated with the longitudinal warping stresses have to be taken

into account in the warping torsion of closed section members. The total

angle of twist with respect to the centre of twist can then be split into

two components, namely the primary angle of twist O,p which varies linearly,

and the secondary angle of twist

=	+	 (2.66)

Therefore, the twist per unit length in warping torsion is no longer equal to

the change in the angle of twist as in the case of pure torsion.

By analogy with the assumption made by Benscoter (10) it is further

assumed that the warping displacements vary over the cross-section in the

same way as in pure torsion. Thus, the distribution of v1 tat the cross-

section is still proportional to 	, but the relationship is defined not by
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the primary twist per unit length, but by the rate of the entire warping

torsional rotation. Hence, we may write finally

w31t	=-wI
	 (2.67)

2.6 State of stress system of warping torsion

The torsional warping stresses are given by the following

expression,

a 1 = E 1	=_E1
3z2

- where E1 = E/l-v 2 is the conversion modulus of elasticity.

(2.68)

Since the torsional warping stresses arise from the restraint on

- warping, this stress distribution must be self-equilibrating and must have a

zero longitudinal force resultant and a zero moment resultant. To represent

the global behaviour of the warping stresses a new type of 'force' which may

be called the torsional warping bimoment is introduced

B1 = 'A a 1	dA (force x length 2 )
	

(2.69)

In contrast with a bending moment which may be represented by a force pair,

a bimoment may be represented by an equilibrium moment pair.

By defining a new type of geometric property of the cross-section,

= 1 4	dA (length6)
	

(2.70)

which is known as the torsional warping moment of inertia, we obtain from

Eqs. 2.68, 2.69 and 2.70

2
B 1 = -E1J1
	 (2.71)

oZ
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Substitution of Eq. 2.71 into Eq. 2.68 then gives

= B11	
(2.72)

JI

To obtain an expression for the associated torsional warping shear

stresses a differential element is cut out of the beam such that two planes

dz apart lie perpendicular to the axis of the beam, and planes ds apart are

parallel to the beani axis and perpendicular to the mid-line of the cross-

section. The equilibrium condition for all forces acting on this element

in the z direction gives the expression for torsional warping shear flow,

o -
	t	ds

	

q 1 = q 1	-

= q	+ E 1 (f	1dA) .
az3

	

= 0	 ____q 1 +E1

A	o 	 B •
	 (force/length) 	 (2.73)= q 1 - -

JI

The integral expression in Eq. 2.73 represents another cross-

sectional function called the sectorial statical moment of area in warping

torsion

=	dA	(length4)
	

(2.74)

and B is the first derivative of the bimoment.

For an open section member, if the integration is started from the

contour edge point, where q = 0, we obtain

	

3ea -
	_s 1	 -  1	 (2.75)q 1 =E1S1	

-
- .11

where

S 1 = f	dA	(length4) 	 (2.76)
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It is apparent that the distribution of shear flow q 1 is a particular

problem for closed sections. The difference between Eq. 2.73 and that for

open sections Eq. 2.75, lies in the presence of the term q , which

cannot be determined from the equilibrium condition.

A way out of this difficulty, similar to one which we have already

used, is obtained by cutting each cell of the given section to form an

imaginary open section. The compatibility condition, which requires the

uniqueness or periodicity of the function for normal displacement, should

then be used for solving for the n unknown constants:

§. aw
	

ds = 0
I as

-	Since aw.,t = t - 	
=	+	-	,	 (2.77)1 s -as	 az

and from Eq. 2.48 we have

(Ys	.i)ds=O
	

(2.78)
3z

we can state the condition that the warping shear strain along each closed

portion of the mid-line of the cross-section must be equal to zero

ds = 0
	

(2.79a)

or

r1ds =
	

..L.ds = 0
	

(2. 79b)

By setting up condition Eq. 2.79b for each cell separately, and

putting

0
- q 1	. 	 4q 11 -  _________	(length ) 	 (2.80a)

B1

as the unit shear flow function in warping torsion, i.e.,

o	B -o
q 1	-__q11	,	 (2.8ob)
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and

ds=	. S 1 --	(length4),

we obtain a set of flexibility equations

(fi { 	} = { 	I}

(2.80c)

(2.80)

where the flexibility coefficient matrix Ef] is expressed as in Eq. 2.19.

It may be noted that the coefficient matrices in the systems of

equations (2.18), (2.49) and (2.80) are the same. This is to be expected

since they all represent the relative warping at the cuts due to unit

redundant flows, regardless of the type of loading.

The total torsional moment with respect to the centre of twist is

MT = M1, + MLI

=	+ MT,B + MT,l
	

(2.81)

where MT,p is the primary torsional moment referred to the St. Venant

shear stresses and/or the Bredt shear stresses,

MT,V is the St. Venant torsional moment component,

MTB is the Bredt torsional moment component,

and
	

is the secondary or flexural torsional moment resulted from

warping shear stresses.

We now try to find the relationship between the bimoment and the

flexural torsional moment. For reasons of equilibrium, the warping shear

stresses 	are associated with the longitudinal warping stresses according

to the expression,

9q1 =0	 (2.82)
3Z

On multiplying equilibrium condition (2.82) by w 1 ds and integrating

over the whole cross-section, we obtain



B	-i-f 	I1ds=O
A

(2.83b)

or

q1 = N11	- MTI
JI

(2.86)
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f A ) I dA +
	

(2.83a)

Using the integration by parts the integral in the above expression

can be transformed into

-J 4 q . _ .	ds
I

so that we finally have

B	
1AI

	 (2.84)

Substitution of Eq. 2.65 into Eq. 2.84 gives

B = f 4 q 1 Rds - fq15

= Jq 1 Rds	 -

= N 11	 (2.85)

i.e., the secondary or flexural torsional moment N 11 equals the first

derivative of the bimoment B.

The torsional warping shear flow is then expressed as

By superposition with Bredt's shear flow we can finally obtain the

total shear flow on the external wall of the section,

N	-	N	-o	M	A
/ q1	= TB q 8	+ T,I q 1	- 1,1 S 1	(2.87a)

j	I

where the subscript i shows the number of the cell bounded by this mid-line.

For points lying on the interior wall of the section the shear flow

can be considered to have been obtained by the algebraic superposition of
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the shear flows in the cells lying on either side of the mid-line

separating them,

Mi,u	
- q8,_1) + 

Mn	-o	-o	N
( q 1, j -  q111_1) - T.I	 (2.87b)

JI	 JI

On the open portions of the section the shear flow is

MT ,I
JI

For an open section member the shear flow is

MTIq1=- 
•,	

SI

(2.87c)

(2.88)

where	= ' A
	cIA and S 1 = f	1dA.

In particular, for a single cell cross-section we will have

ds

	

M B + M 11	S1— - M11	 (2.89)

	

j 1	&ds
UT

The maximum shear stresses caused by torsion in the cross-section may

be expressed as

-o	 A

+ MTV .t + MT B	+. M1 • 	
- M 11	S1	 (2.90)

( TT)ma - ______ ____ 	____	____
Jv	 t	JI	 Jr

2.7 Shear centre and twisting centre

We have introduced the term 'shear centre' or 'flexural centre' and

the term 'twisting centre' or 'the centre of twist' in previous sections.

More detailed consideration is given to them in this section.

The shear centre of a cross-section may be defined as the point in

the cross-section through which shear loads must act to produce no twisting.

In contrast to the definition of shear centre, we define the centre of twist

as the point about which the section twists in the case of torsion without



= ( b tj + b bj )h , (2.93)

= 1 -
(q0) (2.94)
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bending. It may be shown by use of the reciprocal theorem that the shear

centre must be identical with the centre of twist of the section subjected

to torsion. We can see, therefore, that there is a two-fold physical

significance attached to each of these centres.

According to the definition we can now locate the shear centre.

Let Nb denote the moment about a longitudinal axis through an arbitrary point

due to the open section or determinate shear flow 	Referring to the

Bredt-Batho formula, the torque developed by a constant shear flow (q0)j

about some point is (q 0 )1.1, where c2 1 is twice the enclosed area of cell i.

Thus the total moment developed by the flows q 0 is (q0) Q 1 . It follows

that the requirement of equilibrium of moments about a longitudinal axis is

satisfied provided

-	Q . e + Mb + i1 (q 0 ) 1	= 0
	

(2.91)

from which the distance es, which indicates the position of the shear centre,

can be determined.

For the section under consideration shown in Fig. 2.2 which possesses

a vertical axis of symmetry, the shear centre must lie on the local y axis

at some distance from the top flange. If we apply shear load Q = 1 through

the shear centre, we may estimate the distribution of shear flows 	and q0

produced by Qx following the process described in section 2.2. Equating

thereafter the moments about the mid-point of the top flange we have

Ys = -	
- i1 (q

0 )1 c 1	 (2.92)

where	is the coordinate of the shear centre referred to the mid-point of

the top flange in the cross-section, and
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The moment due to the determinate shear flow 	can be expressed as

N	{ E x 1 h (2(x)j n+i+2 - (x 1 ^	h 1 cosc ) h , 1 .thj]b	i:1

-	
- b1 .h.tb (x^ 2-- b bj )] 1 (2.95)+iE1	 . h.b1

where k = when the cell number n is even, and k 	when n is an odd

number.

If we pose the problem as alternatively locating the twisting centre,

it is necessary to establish the geometric relations for the sectorial

coordinates 	.	If the start of integration of Eq. 2.65 is chosen to be at

a point where the warping displacement is assumed to be zero, the expression

for sectorial coordinates may be written as

-	

= f(R - 	) ds
	

(2.96a)

or

Wi = fRds
	

(2.96b)

They are then called the normalized sectorial coordinates, and the integral

origin is called the principal origin of integration.

Since the unit warping function arises as a basic distribution of

normal stresses with warping restraint, the sectorial coordinates must

satisfy the following three conditions

A w 1 dA = 0	or f A :dA = 0	 (2.97a)

f Wi .xdAO	fAl.xdA=O	 (2.97b)

1A 
W 1 .y dA = 0	 y dA = 0	 (2.97c)

Eq. 2.97(a) might be used to determine the principal origin of

integration where the warping displacement is zero. According to the definition

Eqs. 2.97(b) and 2.97(c) could be used for determining the location of the
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centre of twist. For this purpose the relationship between the sectorial

coordinates, which are referred to two different poles A and B, is now

determined (Fig. 2.12). Note that the local coordinate axes x, y pass

through the centroid of the section, and if it is assumed that point A is

located at the-centre of twist of the section, point B represents an

arbitrary pole of the sectorial coordinates.

Using Green's integral theorem, we may obtain the differential areas

(dij)A and (dI)B in the forms of

d I A = (x - a ) dy -  (y - ay)dx

drn 1 8 = (x - bx)dy - ( y - by)dx

Noting that = ax- bx, and 	= ay - b, we have

-	d1A - d 18 = - e xdY + eydx.

Integration of this equation with respect to S gives 	-

I8	ex.y+eyx+c.	 (2.98)

Hence substituting Eq. 2.98 into Eqs. 2.97(b) and 2.97(c) respectively

we have, after integration,

	

fAIB.xdAeXfAxYdA+efAxdA+c!AxdA-O 	
(2.99)

and	IB.Y dA	Jy2dA ^ yJxydA + c Jy dA = 0

Since the axes x, y pass through the centroid of the section we have

'A x dA = 'A y dA = 0

and, beause from the equations

JxadA 
= I yy,	JAY2dA = Iy ,	JxydA Ixy,

JAWIBX dA =	 !AW1B.Y dA =

Eqs. 2.99 become

A	 -	 -

( S4,x)B-	+ e y l xy = 0

(S0Y)8-	+	 = 0

(2.100)



(2.101a)

(2.101b)

(2.102a)

(2.102b)

1
C =	fAffIGd (2. 103)
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where S and S are specified as the sectorial products of inertia.

The solution of these two simultaneous equations gives the following

two formulae:

and

i.e.,

and

- = ( .. x ) B I yy	(y)BIxy
ex	 2

I xx I yy - Ixy

-	
(.Jy)BIxx	(So.x)BIxy

I xx I yy - 1xy

'S	 a

ax	b + (S,x)8 Iyy - ( S y)B 'Xy

2.
Ixxlyy - Ixy

a

ay = by - ( S y)8 I - (a,x)BIxy

I xx I yy - Ixy

Substituting Eq. 2.98 into Eq. 2.97(a) we obtain

In the case where axes x, y coincide with the principal axes of a

section, we have I xy = 0 and hence formulae (2.101) are simplified into

formulae (2.104) as follows:

- (S/,x)B
CX - 

lxx	
0	

(2.104)

and	- = - 
(s1)8

- Iyy	•

For a uni-symmetrical section with y as the axis of symmetry the

initial pole can be advantageously located on the y axis. Then because of

the antisymmetry of the w 1 diagram, it follows that

(S t y) 8	(2.105)
and	y = - 	A WI B .  xdA = -
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The twisting centre and the principal radius, therefore, both lie

on the axis of symmetry. 	In particular, when a section has two axes of

symmetry, then its centre of twist lies at its centroid and its principal

radius lies on one of its axes of symmetry.

Bearing in mind that the shear centre and the twisting centre must

be identical with each other for the section under consideration shown in

Fig. 2.2, and choosing the integral origin at the mid-point of the top

flange, we have

Ys
	 (2.106)

Thus, the position of the shear centre and of the centre of twist can be

- located either by Eq. 2.92 or by Eq. 2.105. Numerical examples have showii

that identical results are obtained from both equations. In practice, however,

it is more donvenient to use Eq. 2.105.

2.8 Basic differential equation for warping torsion

We consider now a differential element cut out of a beam subjected

to a continuously distributed twisting moment in ext From the equilibrium

condition, we obtain

+ m ext = 0	 (2.107)

Since the total internal torsional moment is equal to the sum of the

primary torsional moment and the secondary or flexural torsional moment,

from Eqs. 2.56 and 2.85 we have 	 -

=	+ MTL

-	____ - E J ____ 	 (2.108)GJT	 iT
z
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From the generally valid relation

TT =G(	+t) ,

we obtain by Eqs. 2.67 and 2.58

= G( - 	I . 3O3 R ti P )
	

(2.109)

Substitution of Eq. 2.96(a) in Eq. 2.109 gives

TT .G[ (Rt_)L+Rt 	a

Using the equilibrium condition 1A T1 Rt dA = MT , we have

N1 = G[ -(f R dA - § qRds) 
L + _____ .

RtdA]	 (2.110)

Note that the integral refers only to the closed part, whereas the integral

should extend over the entire cross-sectional area.

Using Eq. 2.53 and putting

= 1A Rt dA 	(length4) 	 (2.111)

which is called the central second moment of area, we have

M1=G	 jPj 	 (2.112)

We then finally obtain the connection between the total twist and the

primary twist as follows:

= (1 - lit) 	
301

+
GJB

in which the coefficient

J
= 1 - -(.	'IC

is called the warping shear paranieter.

(2.113)

(2.114)



O3
MT	-E1J1

az3

(2.117)

_____ 

+	

2 o
	

=- E1J1
3z 4	zl

(2.118)
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Substituting Eq. 2.113 in Eq. 2.108 and letting T = 3B for

cross-sections in which the closed portions are not small, we then obtain

MT = - -- E1J1 330j + GJT __L
	

(2.115)

Differentiating Eq. 2.115 and substituting it in Eq. 2.108, we

obtain th general differential equation for warping torsion

-	E1J1	+ c 1 ____ = m3ext 	 (2.116)

3z

In particular, for open section members B 0, and thus t = 1

accordingly

2.9 Calculation of sectional properties in bending and warping torsion

To calculate the normal and shear stresses due to bending and warping

torsion in a thin-walled cross-section, with at least a vertical axis of

symmetry to the flange (Fig. 2.2), the following geometrical variables

relating to the cross-section are required:

- the vertical coordinate of the centroid from the top flange (length), y6,

- the vertical coordinate of the shear centre or the centre of twist from

the top flange (length), y5(ey)

- cross-sectional area (length 2 ), A,

- first moment of area of the partial cross-section about the x-axis

(length 3 ), S, = 	ydA,
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- first moment of area of the partial cross-section about the y-axis

(length 3 ), Sy 	f xdA,

- moment of inertia of the cross-section with respect to the x-axis

(length4), 1xx	Jy2dA,

- moment of inertia of the cross-section with respect to the y-axis

(length4), 1 yy = 1AXdA,

- flexibility coefficients, f11 =
	

or	= 'i,k 	in which the

indices i and k relate to the cells lying on either side of the mid-line

separating them,

- displacement vector due to unit shear force (length 3 ), Dqxj=	1Sy,j

and Dqy,i - 
SxiT

- - twice the enclosed area of each cell (length 2 ), cj,

- the St. Venant torsional moment of inertia (length4), 	=

-	- the Bredt torsional moment of inertia for the closed portion of the section,

(length 4 ), J0 =

- the total torsional moment of inertia in pure tension (length4), T=

- the normalized sectorial coordinates (length 2 ), w i =	-	)ds,

- the torsional warping moment of inertia (length 6 ), J1 =	w dA,

- the sectorial statical moment of area (length4), S = f w1dA,

ds
- the values of S 1 j p. S 1 — (length4),

- the central second moment of area (length 4 ), J = fARt dA,

- the warping shear parameter, t = 1 -
Jc

The evaluation of some of the properties is a well known procedure,

and some of them have already been discussed in detail in previous sections.

In this section some supplementary formulae will be developed particularly
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for calculating the geometric quantities used in the analysis of warping

torsion.

We can see that in the course of determining these quantities, a

certain number of definite integrals must be found. Such definite integrals

can be expressed as follows (Fig. 2.13):

I = ff(x)y(x)dx = Qy(x)
	

(2.119)

where y(x) is a linear function of the variable quantity x,

2	is the shaded area enclosed by the curve f(x) and a, x a,

x 6 is the coordinate of the centroid C.

In particular, we now consider a straight element j-k of the mid-line

of the section. Let its wall thickness by t 1 (Fig. 2.14). For this segent,

let the ordinates r and ij of two different diagrams be given, whose form is

linear. The integral

k	 k
'jk =J	niidF=t1fnidS

is then given by the expression

£.
1jk =	6' r ii(2ri + 	+	+ ni)] (2.120a)

or

1jk = titl 	In(2i + 	+	
;:;)] 	 (2.120b)

Eq. 2.120 may be simplified when = r to give

'jk = L1t (; + 	+

	
(2.121)

In the case in which is a curvilinear line sometimes it is

difficult to generate the position of the centroid. Thus it is advantageous

to use Simpsofl5 integration method. If r is a parabolic curve and i = 1

we may use the following formula with sufficient accuracy
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'jk = 4	ds =	(ii. +	+	 (2.122)

where i is the ordinate at the midpoint.

In order to determine the position of the shear centre and to obtain

the diagram of the reduced sectorial coordinates 	the intersection of the

y axis and the mid-line of the top flange B is chosen as the principal

integral origin. 	The sectorial coordinates IB of individual characteristic

points (end nodes of the elements) can be calculated by the following

expressions:

k= -	 (x1.1 - x1) - (5)m,k+vxk=	I8n+2

+1where, k = when n is an even number and k = —when n is an odd number
(2.123)

A	 A	 -

( wr B )i = 'io)i-1 + (8)m1i (x...1- x)
A

	( w IO ) fl +j+2 =	)j + xh - c; )++2h1

(11,2,.. . . ,n+2)

(i1,2.....,n+l)

It should be noted that in the side cantilevers of the cross-section, both

terms of the integral (2.96a) are equal to zero, so that the value of the

sectorial. coordinate is constant.

( s)m,1 = ( TB)mn+2 = 0

	

= 9,j /t j
	

(i=l,2, . . . . ,n)

(T8)mfl^i+Z =	-
	

(il,2.....,n+1)
	

(2.124)

( T 8 ) m2n+ i +3 =
	

(i=1,2,.. . . ,n)

In which q =	 0, and n is the total number of the cells.

Applying the numerical integration shown in Eq. 2.120, we obtain from
a	 a

the diagram of 	the quantity (S&y)Bas

R t1 [( 1B ) (2xj + Xk) + ( I8 )k 2x  k + Xj)]
	

(2. 125)

where m is the total number of plate elements in the section,

is the length of the th element and t is its thickness.

Subscripts j and k indicate the number of the end nodes of the individual

elements.



(1=1.2,... ,n)

(i1,2,...,n)

(i'1,2.....n)
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Using Eq. 2.105 we may obtain the coordinate y of the shear centre.

The normalized reduced sectorial coordinates 	at individual nodes can then

be evaluated by the following expressions:

A	 k	-
0)t,o 	X0y - j (T) 	(x1_1- x1) 	()mk+1.xk =

n	 n+l
where, k 

= -i when n is an even number, and k = -- when n is an odd

number,	 (2.126)

a A

i,I-i [Ys - 	Bm,i] 
( x 1 _1 -  x)	 (il,2,...,n+2)

A	 A	 -

+ h.x1+ ys(Xfl4j^2 x j)( T B)mfl.j^2 .h ci (i1,2,...,n+1)

Using the diagram of normalized sectorial coordinates o we obtain

from Eq. 2.12. the value of J1as

m	 AZ	 A	 A

	

+0)	.0)=	2 t (w 1	+ 0) ik	:t,j (2.127)

In the same way as with open sections, we may calculate the S1

diagram from the w diagram. 	It should be noticed that all the cuts are

located at the mid-points of the lower flange of the section (Fig. 2.l5f).

The formulae for calculating the values of S 1 at characteristic points

are written as

=	'n^2dn^2 = 0

I ) m,2n+i.3 = 0

1
=-- b bj t bi	 + WIn^i+2)

I n^i+32n^I+3 = - b bj t bi	 + wI,n^i^2)

(I)+3^3

I)2n+3,2n^3	-	i)2n+33n^3

'n+i+2,n+j+2	In+i+22n^i^3 -	(i)n^j+212ni2	(1=2,3,... ,n)

I)m,n^i+2	(I)n+i+2,n+i^2 -	h j  t	(3I,n^i^2+wI,I ) (1=1,2,... ,n+1)
A

	

thj (i,n^i^2	',i )	(1=1,2,... ,n+l)

I ) m1 =	bctc(31 +	=
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( S 1 ) 1,1 = -	bt (w110 +

	ii,i+1 =	Li,i 	̂

	

=	 -	 tt, i	+	 )

a
1+1 = (S 1 )	-	b 1 .t tj (r	+ w •	 )

	

I,	1,1+1

(1l,2,... ,n+l)

(1 =1,2,... ,n)

(11,2, . . . ,n)

(2.128)

To be able to determine the unit warping shear flow function q , it

is necessary to solve Eqs. 2.80. The coefficients are the same as those in

Eqs. 2.49, from which we shall obtain the unit Bredt's shear flow function

first 0 We here formulate the expressions for the free terms of

Eqs. 2.80,

-	btj	
[( s 1 ) 11 + 4(S i )m i+1 +SI i = _______

6tt1

^ bbj	(( S I )ni+2 ,2n+i3	+ 4(Sj)m,2n+i+3	(S1)n^j^3,2n^i+31

6 tb,j

+ h,j	[(Si)i,n^i^2+ 4(x)rn,n+i+2 + (i)n+i^2,n+i+21

6 th I

- hc,j^i	 a	 A

- thj+1 
((s1)1^i,+1^3	+ 4(SI)mn.fi+3	̂

(1=1,2.....,n) 	 (2.129)

Note that in calculating the quantities q , the sign convention

adopted for Bredt's shear flow is used. For each individual cell, the

positive directional sense is regarded as that which runs anticlockwise around

the cell.

Finally, when considering the shear strain effect we shall calculate

the central second moment of area J. The coordinates of the shear centre

in the local coordinate system of the cross-section may be obtained as

XE = 0

= ys -	 (2.130)
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The perpendicular distance from the shear centre to the individual element

can be expressed by the coordinates of the two end nodes and of the shear

centre,

Rt 
= XJYk + XkYE + XEYj - X kYj	xE.yk	X JYE	 (2.131)

We then have

Jc =	
t (xy + XkyE T X kYJ XJYE)

i1	 21

(2.132)

where, m is the total number of elements,

is the length of the 	element and t 1 is its thickness, and

the indices j and k are the number of the discrete nodes of the

individual elements.

To understand the above process more clearly we give now a numerical

example. The dimensions of the section and the subdivision of the section

are given in Fig. 2.15(a) and Fig. 2.15(b).

The flexibility equations (2.81) become:

3
5.6527 q 81 -  2 q 82	 =•- a to

- 2 q 81 + 5.8333 q 2 - 2 	2 a to

-	3
- 2 q 32 + 5.6527 q 83 =	a to

Solving, we obtain

q 61	q 6,3 = 0.5105 a to

= 0.6929 a to 	 -

The unit warping shear stress function 	according to Eqs. 2.124

is shown in Fig. 2.15 (c), together with its directional sense.
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The diagram WIB calculated by Eqs. 2.123 is shown in Fig. 2.15(d).

After evaluating 1yy and the integrals (y)5by Eq. 2.125, we obtain

by Eq. 2.105 the position of the shear centre E5.

6. 2327= 13.2369 a = 0.4709 a

The coordinates of the shear centre about the xy coordinate system

are

XE = 0

= 0.4709 a - 0.3109 a = 0.16 a

The	diagram is then shown in Fig. 2.15(e). Using this diagram we

obtain by integration the value of J 1 as	 -

= 1.0414 x 10 a5t0

The S 1 diagram is shown in Fig. 2.15(f). Using this diagram we calculate

the values for the free terms of the system of equations (2.81)

2 4
= 10.2081 x l0 a

24
s 1,2 = 10.5993 x 10 a

= 10.2081 X 102 4
a

On solving the system of equations we obtain

	

-o	 -2 3
q 11 = 3.2332 x 10 a to

	

-o	 -2 3
q 12 4.034lx10 at0

	

0	 -2 3
q 13 = 3.2332 x 10 a to

The q diagram, with directions introduced, is shown in Fig. 2.15 (e).

Finally the 	- q diagram is shown in Fig. 2.15(f).

Likewise we calculate the value of the central second moment of area

3
= 3.46087 a to
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and the warping shear parameter

2 x 1.5 x 0.5105+ 2 x 0.6929t = 1 -
	 3. 4608	

= 0.1571
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____ I  ________ ____

Fig. 2.1 Redundant shear flow in the 1th cell of an n —cell beam
subjected to shear

b
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Fig. 2.2 Cell reference numbers

TypicaL non-u ni form flange stress

distribution due to shear lag
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2

Fig. 2.3 Shear lag effects in flange plate
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bt/2
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be,t
	

b e,t

(a)

(b)

Fig. 2.4 Bridge cross—sections showing effective breadths of flange

associated with each web

Fig. 2.5 Distribution of longitudinal flange stresses with allowance
for shear lag
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Table 2.1 Effective breadth ratios (Pe)for use in design of box girders

Table 2.1 (a) Effective breadth ratios lPefor simply-supported girders

.

I

Effective
breadth ratio	 e

Loading	Uniformly distributed load

Mid-span Quarter-spm- Support-ends

0	Ii	to	Ii	10	Ii

pP
e

*Point loading at mid-span

Mid-span Quarter-spa Support-ends

0	Ii	0	Ii	1011
Section

considered

0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

	

0.02 0.99 0.99 0.99 0.98 0.93 0.89 0.92 0.90 1.0	1.0	1.0	1.0

	

0.05 0.98 0.97 0.98 0.96 0.84 0.77 0.80 0.75 1.0	1.0	1.0	1.0
0.10 0.95 0.89 0.93 0.86 0.70 0.60 0.67 0.60 1.0 0.99 1.0 0.99
0.20 0.81 0.67 0.77 0.62 0.52 0.38 0.49 0.40 0.98 0.84 0.98 0.84
040 0.50 0.35 0.46 0.32 0.32 0.22 0.30 0.23 0.63 0.44 0.63 0.44
0.60 0.29 0.22 0.28 0.20 0.22 0.15 0.19 0.14 0.36 0.26 0.36 0.26
0.80 0.20 0.16 0.19 0.15 0.16 0.11 0.14 0,10 0.23 0.18 0.23 0.18
1.00 0.16 0.12 0.15 0.11 0.12 0.09 0.12 0.08 0.19 0.14 0.19 0.14

*To be used only for point loads or reactions of significant magnitude; not
for wheel loads or axle loads

Table 2.1 (b) Effective breadth ratios Pefor cantilevered girders

.Ti
1I,u

e

Uniformly distributed load

Quarter point	Free endFixed end	near fixed end

0	Il	0	Ii	0	Ii

pP
e

*
Point loading at free end

Quarter pointFixed end	near fixed end	Free end

0	Il	0	Il	0	Ii
0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

	

0.02 0.91 0.88 1.0	1.0	0.97 0.94 0.96 0.95 1.0	1.0	1.0	1.0

	

0.05 0.82 0.76 1.0	1.0	0.92 0.86 0.91 0.88 1.0	1.0	1.0	1.0

	

0.10 0.68 0.61 1.0	1,0	0.84 0.77 0.80 0.75 1.0	0.99 1.0	0.99

	

0.20 0.52 0.44 1.0	1.0	0.70 0.60 0.67 0.60 0.84 0.72 1.0	0.85
0.40 0.35 0.28 0.88 0.75 0.52 0.38 0.49 0.40 0.74 0.51 1.0 0.70
0.60 0.27 0.22 0.64 0.50 0.40 0.29 0.38 0.31 0.60 0.43 0.85 0.61
0.80 0.21 0.17 0.49 0.35 0.32 0.22 0.30 0.23 0.47 0.36 0.70 0.54
1.00 0.18 0.14 0.38 0.27 0.27 0.18 0.24 0.18 0.36 0.26 0.54 0.40

*To be used only for point loads or reactions of significant magnitude; not
for wheel loads or axle loads



"U

Quarter-span I
near fixed-end I Propped-end

Effective
breadth ratio

11?e

Section	I
considered	Fixed-end

*
Point loading at mid-span

IQuarter-span 	Propped-endFixed-end 	Inear fixed-end I

Loading	Uniformly distributed load

81

contd.

Table 2.1 Effective breadth ratios ( 1Ie) for use in design of box girders

Table 2.1(c) Effective breadth ratios 1Iefor propp 	cantilevered girders

.

01110
	110	1110	1110	1110	Ii

0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
0.02	0.81 0.74 1.0 	1.0	0.90 0.86 0.75 0.67 1.0 	1.0	0.97 0.97
0.05	0.62 0.54 1.0 	1.0	0.79 0.70 0.51 0.42 1.0 	1.0	0.94 0.91
0.10	0.45 0.38 1.0 	1.0	0.63 0.52 0.32 0.26 1.0 	1.0	0.90 0.86
0.20	0.27 0.21 0.92 0.76 0.44 0.32 0.16 0.13 1.0 	1.0	0.83 0.71
0.40	0.13 0.10 0.46 0.35 0.24 0.16 0.08 0.07 0.63 0.48 0.48 0.32
0.60	0.10 0.07 0.24 0.20 0.16 0.11 0.07 0.05 0.31 0.26 0.26 0.19
0.80	0.09 0.06 0.20 0.16 0.11 0.08 0.06 0.04 0.24 0.19 0.16 0.13
1.00	0.09 0.06 0.19 0.15 0.08 0.07 0.05 0.04 0.23 0.19 0.13 0.11

.*To be used only for point loads or reactions of significant magnitude; not
for wheel loads or axle loads

Table 2.1(d) Effective breadth ratios 11) for fixed-ended girders

.

L

Effective
breadth ratio

Loading

Section
considered

e

Uniformly distributed load

Mid-span uarter-span Support- ends

1pP
e

*
Point loading at mid-span

Support-Mid-span Quarter-span 	ends

oIlIOIlIOIlIOIlIOIlIOIl
0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

0.02	0.99 0.97 0.94 0.91 0.77 0.71 0.84 0.82 1.0 	0.97 0.84 0.82

0.05	0.96 0.91 0.85 0.76 0.58 0.50 0.67 0.64 1.0 	0.89 0.67 0.64

0.10	0.86 0.72 0.68 0.55 0.41 0.32 0.49 0.41 1.0 	0.81 0.49 0.41

0.20	0.58 0.40 0.42 0.31 0.24 0.17 0.30 0.21 0.70 0.52 0.30 0.21
0,40	0.24 0.18 0.21 0.14 0.12 0.08 0.14 0.11 0.28 0.19 0.14 0.11
0.60	0.16 0.12 0.12 0.10 0.10 0.06 0.08 0.06 0.14 0.12 0.08 0.06
0.80	0.14 0.10 0.10 0.08 0.08 0.05 0.05 0.04 0.08 0.06 0.05 0.04
1.00	0.13 0.09 0.09 0.07 0.07 0,05 0.04 0.03 0.05 0.03 0.04 0.03

*To be used only for point loads or reactions of significant magnitude; not
for wheel loads or axle loads
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M T,B

Fig. 2.6 Multi-cell beam subjected to a Bredt torsional
moment MTB

Fig. 2.7 Differential element subjected to Bredt's shear
stresses
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Fig. 2.8 Equilibrium of Bredt's shear flows at any junction
of a multi-cell box beam
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x

(centre of
twist)

t

Fig. 2.9 Tangential displacement of cross-section

Fig. 2.10 Shear stress distribution due to pure torsion, considering
linear variation of stress through thickness of wall

Fig. 2.11 Sectorial coordinate of an open section
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Fig. 2.12 Geometric relation for sectorial coordinates
referred to different poles
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Fig. 2.13 Integral represented by area and centroid

t —..	 --I

Fig. 214 Curvilinear integral along a straight element
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(a) Dimensions of cross-section
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CHAPTER 3

THE EFFECT OF CROSS-SECTIONAL DEFORMATION ON

SINGLE-SPINED BOX BEAMS SUBJECTED TO TORSION

3.1 Introduction

Thin-walled box spine-beams can be divided, according to their

behaviour under torsion, into types with an infinitely rigid cross-section

in their own plane and types with finite cross-sectional rigidity. Cross-

sectional deformation of a single-spined box beam can be avoided by a

sufficient number of stiff diaphragms or cross bracings. However, this

measure not only increases the weight of material, but it also complicates

the construction process in several ways. Moreover, it is also often required

that free space be maintained inside the box. As a result, apart from

support diaphragms which transmit the shear from the webs to the bearings,

box beams are often designed with few intermediate diaphragms, or even

without diaphragms. Stiffening may, in fact, be provided by an elastic

bracing system on its own.

On the other hand, resistance of the cross-section to distortion also

results from the longitudinal and transverse flexural stiffness of the component

plates of the box. The transverse flexural stiffness provides the frame

action of the box. The thicknesses of the walls of a box, however, or the

transverse stiffening in the case of a steel box is normally not sufficient

to prevent cross-sectional deformation when the box is subjected to torsion..

The state of stress of a deformed box beam (Fig. 3.1) is quite

different from that of an undeformed beam, the analysis of which has been

described. It must be realized that distortion of the cross-section is the

main source of warping stresses and may form a significant addition to the

ordinary bending stresses resulting from the symmetrical loading component.

Moreover, the additional transverse bending stresses due to distortion of
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the cross-section may be of the same order of magnitude as the longitudinal

bending stresses, and are important in design practice. It is therefore

essential to take account of distortional behaviour in the analysis of box

beams in addition to considering bending and torsional effects.

The objective of this Chapter is to discuss the basic problems related

to distortional effects under torsion. It will be considered that a box

spine-beam is only a particular type of folded plate structure, which

consists of a number of element plates that are stiffly interconnected

together along their longitudinal edges and are arranged so as to form a

closed section (Fig. 3.2). The theory presented in this section is accordingly

based on the assumptions which are adopted in the ordinary folded plate

analysis (29).

In contrast with box beams of rigid cross-section, the analysis of

which has been described, the behaviour of deformable box beams is much more

- complicated. It is therefore intended only to deal with a bridge-girder type

beam, the cross-section of which is symmetrical about the vertical axis, but

for which the thicknesses of flanges and webs and the heights of webs may

change. Furthermore, simplification also results in the neglect of shear

deformation in the distortional warping analysis. A related study by

Steinle (134) shows that neglecting the shear deformation can lead to an

overestimate of maximum distortional warping stresses, and that the difference

due to neglecting the shear deformation is localized near the point of

application of the concentrated loading. 	Steinle and Dabrowski (21) recommend

that the overestimate of distortional warping stresses should be accepted

in practical design because of the simpler calculation involved when shear

deformation is neglected.

Reference should be made to Chapter 1 with regard to coordinate systems

and sign conventions. Index II will be used for those quantities which are
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introduced in the distortional analysis, and which correspond to quantities

in warping torsion. It is intended that the concepts described in this

chapter will give a clear view of the effects of box beam and diaphragm

proportions on the longitudinal warping and transverse flexural stresses

induced by deformation of the cross-section. The content of this chapter

is part of the theoretical basis involved in the later stiffness analysis

procedure described in Chapter 4.

3.2 Distortional component of eccentric loading

External loads between the webs or on the side cantilevers of a box

beam are transferred by flexure of the deck to the webs. Flexure of the deck

would induce transverse bending stresses in the webs and consequently in the

bottom flange of the girder. In design practice the stresses in the deck

from this local bending effect may be calculated independently of the overall

box beam analysis. Thus, for the global analysis of a box spine-beam, the

loads not acting at webs can be approximated by statically equivalent loads

applied at side webs.

Now let us consider a single-spined box beam with a trapezoidal

periphery (Fig. 3.3a). The eccentric distributed loads 	and Py acting along

the x and y axes respectively on the box beam, can be rep laced by shear loads

acting through the shear centre with distributed twisting moments 'H	Pxey

and	= p y e x (Fig. 3.3b,c). In practical analyses of box beams of

deformable cross-section, it is often convenient further to separate the

effects of torsion from the deformation of the cross-section.

The basic advantage of resolving the torsional loads into torsional

and distortional componenl is that wherever the exact loading system may act

we can always represent it as the sum:

Exact loading system = Statically equivalent loading system (corresponding

+	 to torsion)

Self-equilibrating loading system (corresponding to
distortion),
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where the statically equivalent loading system is in equilibrium with the

external loads and satisfies the internal equilibrium conditions. The self-

equilibrating loading system which has zero resultants, is compatible with

the corresponding deformation pattern.

Accordingly, the antisymmetric pairs of loads resulting from the

vertical and horizontal eccentric loading may be split into two groups of

co-planar forces, consisting of the pure torsional load and a section-deforining

load acting along the perimeter of the trapezoid, shown respectively in

Figs. 3.4 and 3.5. The equivalent pure torsional forces may be obtained by

integrating a constant shear flow given by the simple Bredt-Batho formula,

q =	 where denotes twice the value of the entire area enclosed within

the perimeter of the trapezoid. Consequently, they are in equilibrium with

the external twisting moments 	and mH respectively.

The section-deforming loads as shown in Fig. 3.4c and Fig. 3.5c can

then be obtained from the following equilibrium conditions

( S ri + S 2 )sin4 = m/bt

(3.1)S 1	St2 - 2(Sci + S 2 )cos4 = 0

S bl - Sb2'	0

and,

t,1 + 5 t,2 -	- S , 2)c05 =

S b,1 ^ S b , 2 - (c,1 -	, 2) cos4 = mH/h

S1 - S2 = 0

(3.2)

Thus, we may obtain the vertical distortional component as
a

t,2	2	b4

b t . b b .	=	 sj2s b,2 =_	

bj	bb

h c b b	 hc
S c .1 2 =	

ht	
St2

(3.3)
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and the horizontal distortional component as

S.2 =

Sb2	m
	

(3.4)

Sh2 = j	H	

bb

These two groups of distortional forces are self-equilibrating since

the resultants of the forces adjacent to the box corners are equal and

diametrically opposed to each other (Fig. 3.6). These resultants act along

the diagonals of the box producing racking of the cross-section, and are

evaluated from the following expressions

Sd 
= Ih2+ (b + bb)1 St

	

= 4;z	
+ b b) 2 bb 

m3	 (3.5)

42

and,

-	14h2+ ( b t + bb)2 - 	/4h2+ ( b t + bbf	 (3.6)S d =	 Sj2 
= __________________4b b

The vertical and horizontal components of the diagonal resultants are

expressed as

h	= h.b b m	=	bbs v = ___ s t z	 -
2	bt	2(bt + b b) bt

(3.7)

SH 
= b t + 

bb 5t,2 	
=	. 1L

4h	bt

and,

h=	
t,2 = - Tfl H = -

2b b	2^	 2(bt + bb)

(3.8)

-	b. +b b	 bt+bb

	

= ________	 ________

t12	
m	- •; m



1
=	(m 3 - m) (3.10)
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It can be seen from Fig. 3.6 that the distortional diagonal resultants

which arise from a positive twisting load due to the horizontal eccentric

loading, are in the opposite sense to the distortional diagonal resultants

due to the vertical distortional component. Thus the positive horizontal

twisting load accompanied by the positive vertical twisting load together

reduce the distortional effect, but increase the twisting effect.

Each of the four distortional forces acting along the sides of a

trapezoid or acting along the diagonals of the trapezoid together, are

defined as a generalized distortional force. It should be noted that the

term generalized force is used to denote a group of forces that are defined

in direction and relative magnitude. Thereafter, the group can be specified

by a single number. Note also that each of these two groups of distortional

forces provide equal and opposite couples of magnitude mdV = 	 and
2bt

md H = - - m H respectively. 	We can then define the distortional moment as

1	bbm j  = mdy + md H =	( - m - m ) 	 (3.9)
bt

to represent the generalized distortional force. In the case of a rectangular

cross-section with b t = b b, then

The effect on distortion of sloping the webs is clear from Eq. 3.9

in that the deformation of the cross-section reduces as the slope increases.

This is because the bottom flange is shorter and hence, more stiff. On the

other hand, the torsional shear stresses are increased.

We should now consider the effect of loads applied at the cantilever

portion of the cross-section as shown in Fig. 3.7a. If a thick flange is

used almost all the cantilever fixed moment is taken by the flange. The

cantilevers can be equivalent to the mechanism shown in Fig. 3.7c. The



mdv =	[ ae - (1 + ad)( l	b]
2

(3.13b)

or
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distortional loading and transverse moments on the walls of the box -

increase in the same proportion as the torsional load increases, so that

the distortional moment is

= Py
-	.ex
2

(3.11)

On the other hand if thick webs are used almost all the fixed moment

is taken by the webs which are equivalent to the mechanism shown in Fig. 3.7d.

The distortional moment can then be calculated as

in	=!1!.. —bx)	 (3.12)
dv	2

In fact the cantilevers are part of the frame of the whole box and the

cantilever fixed moment is taken partly by the web and partly by the top

flange. If we specify the ratio of the distributed moment in the top flange

to the applied fixed moment as the distribution factor d the distortional

moment due to the vertical eccentric load acting at the cantilever portion,

can be expressed as

= !x [_k(e - b )  + -- dx - (1 - Q)bx I2	bt 
X

=	e - (1 + 	)(l - d)bX1 	 (3.13a)
2	bt	 bt

where ad = bblbt is the ratio of the width of the bottom flange to the top

flange.

It is apparent from Eq. 3.13 that when 	= 1 or 	= 0 we may obtain

the same results as in Eq. 3.11 and Eq. 3.12 respectively. If the bottom

corners of the box are assumed supported horizontally and vertically, the

distribution factor 	due to a unit fixed moment can be obtained from the

analysis of a frame formed from a unit slice of the box beam.
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3,3 Deformation of single-spined box beam

A single-spined box beam with a deformable cross-section is deformed

under torsion into the shape shown in Fig. 3.8. The corner points of the

cross-section are horizontally and vertically displaced by the components

Ut, u b and V t, vb respectively. The displacements Ut and Vt are generally

not identical with ub and vb respectively because of the effect of the

different stiffness exerted by the upper and lower flanges.

The relationship between the displacements Ut, u b, vt and vb

characterizing the deformation of the cross-section, will be fixed using

the condition that the compatibility of the cross-section is preserved.

-	The tangent displacement to the side webs may be expressed in two ways,

i.e.,

Vh = v t 5	+ utc0s4
	

(3.14)

or

vh = Vb S1fl 4 -  bcos4
	

(3.15)

where is the angle of the top flange with respect to the inclined side web.

By comparing these two equations we have

v t s1nc + u t coscJ = v b sin 4 -  ubc0s4

and consequently

= vt + t +	 (3.16)
tgc

It can be seen from Eq. 3.16 that the displacement components are

interrelated. It can also be seen that for a rectangular cross-section

must equal Vt.

The rotationangle for the side web can be expressed as
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=	T v t cos )  + (cosct,+ bsin4)

hc

='t'b sin 2 +(v j - t):sinc0s

h
	

(3.17)

Substituting Eq. 3.16 into Eq. 3.17 we have

= Ut +	 ( 3.18)
h

Hence all the rotation angles of the webs due to deformation of the

cross-section are identical with each other and have the magnitude calculated

by Eq. 3.18.

The shape of the cross-sectional deformation shown in Fig. 3.8

indicates that the upper and lower flanges rotate by angles *3t and

respectively, which are not generally identical with each other. These

horizontal rotation angles can be expressed with relation to the vertical

translations of the corner points as

and

2v

Lt	bt

2v

bb

Substitution of Eq. 3.16 and Eq. 3.18 into Eq. 3.20 gives

(3.19)

(3.20)

=	 +	2h	 (3.21)
btg4	3

Thus, we are now able to define the distortional angle as the

characteristic quantity for representing the cross-sectional deformation.

It is given by the rotation of the top flange of the cross-section related to

the inclined side web and can be expressed as

=	+	
=t + u t +ub 	 (3.22)

b t	 h
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Substituting Eq. 3.14 into Eq. 3.22 we then obtain

+Ub +	( ''h 	- tcot)
1 d	h	bt	sinçb

(3.23)

where Ut, ub and vh are the tangent displacements to the sides of the box

associated with distortion.

Corresponding to the definition of the generalized distortional moment,

the unit value of a distortional angle will be provisionally defined as the

generalized distortional displacement which represents the group of

distortional displacements producing a unit quantity of work when operated

on by a unit generalized distortional force.

It can be seen that if cross-sectional deformation is not constant -

along the beam, it causes not only the motions in the plane of the cross-section,

but also out-of-plane displacements of the cross-section. These additional

warping displacements are called distortional warping displacements, and

are associated with in-plane bending of flanges and webs.

The component of displacement in the plane of the cross-section which

is directed along the tangent ds to the mid-line of the walls will be

denoted by ut(,S), and the warping displacement (i.e., that in the z-direction)

by w(5,S) . 	In the torsion theory of thin-walled beams, the tangent

displacement Ut is found directly from the product of the twisting radius

and the rotation of the whole cross-section. However, in the present case

the term is found from the displacement of the cross-section associated

with distortion. In other words, ut(jS) may be expressed as the product

of a distributjàn function Vs( S) of the tangential displacement and the

measure of distortion 
1d 

expressed in Eq. 3.23 and shown in Fig. 3.8, i.e.

Utd = V 5 (s) Id( Z)	(3.24)
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To develop an approximate theory neglecting shear deformation, it may

be assumed that the in-'plane motion is accompanied by sufficient out-of-plane

displacement (warping) to annul the average shear strains in the plate which

	

form the cross-section. 	This can be expressed as

	

+ aW3d = 0 	
I	 (3.25)

as

After substituting Eq. 3.24 into Eq. 3.25 and integrating it we obtain

wd =	-	(z) 1 V5 (S)ds	 (3.26)

Since the origin of the curvilinear coordinate S lies on the vertical

axis of symmetry of the cross-section, and the distribution of the

longitudinal displacement is antisymmetric about this axis, we have w 0 = 0.

Thus, we finally obtain

w3 d	-	(z) f V5(S)ds

= - w 1 (S)	(z)
	

(3.27)

where

= f V(S)ds
	

(3.28)

indicates the distribution of the longitudinal displacement and is defined

as the unit distortional warping function and has dimensions of L2.

It thereby becomes possible to follow the analogy between the section

properties and functions which have been considered here with the

corresponding quantities in warping torsion. This will be shown in detail

in the following sections.

3.4 Distribution of normal and shear stresses over the cross-section

The warping displacements are not, in general, constant along th axL

of the box beam. Longitudinal stresses thus arise from the construt of

/	 I
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warping. If, in turn, these warping stresses vary along the beam, shear

stresses are required by considerations of longitudinal equilibrium. These

shear stresses in the planes of the plates also change from section to

section.

Differentiating Eq. 3.27 once we can have

2

Ed 
= aw3d = - w(S) a

azz

and the distortional warping stresses are then given by

2

= E1 aw d = - E1u(S) 
a

az

(3.29)

(3.30)

Since the distortional forces are in a self-equilibrating system, the

warping normal stresses a... must also form a system in equilibrium as in

warping torsion; they produce no normal force N, no bending moments Mx and

and the conditions

JadA = f y xdA = .ydA = 0
	

(3.31)

should be satisfied. To represent the resultant of the distortional warping

stresses we may define, by means of the analogy to the warping torsion, the

distortional bimoment as

B	=	cwdA
	

(3.32)

which has dimensions of FL2.

By substituting Eq. 3.30 into Eq. 3.32 we have

2

B	= - E .r a
	 (3.33)

K	132	2
az

where

2
= 1 u 32 dA	 3.3

and is called the distortional warping moment of inertia.



(i=0,l,2.... . n+2)
	

(3.36a)

(1=1,2.... . ,n+l)
	

(3. 36b)

= - ir,n+3

Wj1, 1

and

= _________ _______ =
=

n,i	t0u,n+3

(1=1,2.... . ,n-i-l)

where x 0 , x 1 ......x23 are the x coordinates related to the local

coordinate system.

Thus, the ratio of 	at the two ends of individual webs can be

obtained as

(3.36c)

(3.36d)
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From Eqs. 3.30 and 3.33 we may finally obtain

= _!. 0 =	jiir
	 (3.35)

iii:

It is apparent that this expression is analogous to the normal stress

formulation in warping torsion theory.

For the section with a vertical axis of symmetry shown in Fig. 3.9a

the warping stress pattern has a linear variation across each element plate

as shown in Fig. 3.9b, which is based on the plane assumption of ordinary

folded plate theory. Because of the antisymmetry of the diagram of 	,

the conditions J wdA = 0 and . wy dA = 0 are satisfied.

From the linear variation of U) ][ we may define

(ii	.	X.=	1,1	=

	

W I1,1	 Xl

A 1	 ir,n+l+2 =	n4i+Z

Lfl3	
n+3

(A)Il,r+i+2 =	W ]I,n+i+2	.	

•
WI1,1	 jr,n+3	WI1,1	 U)j

A.
= -_L

a1

=

= x i  (-)(

(3.37)
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where

lj).	=_?L=_xn^i+2	 .t_.0xn++2

c'. 1	x^3	Xi	 b	x1

	(i=l,2.....,n+l)
	

(3.38)

In order to establish equations of equilibrium and hence the

relationships between interior forces, free body diagrams of web and flange

elements are considered (Fig. 3.10). Normal stresses in the elements in the

longitudinal direction may be replaced by bending moments M(z) and normal

forces N(z); shear stresses on the planes of elements being replaced br

shear forces Q(z). Interior forces g, q, n between the individual webs and

flanges in their axes of contact, and transverse moments per unit width l5db'

represent transverse flexural distortion stresses. Actually interior force

g is neglected in the present approach.

We may now obtain the ratio from the condition 1A cix dA = 0:

1) The moment with respect to the y axis of symmetry due to the normal

stresses at the upper flange is

M = bctc [cz 0 (2x 0 + x 1 ) + c'. 1 (2x 1 + x0)]t	3

b ,	tt,i	[a (2x+ x j ^ 1 ) + c^1 (2x 1 ^ 1 + x 1 )]	 (3.39)
i1	6

2) The moment with respect to the y axis of symmetrY due to the normal

stresses at the lower flange is

11

M b =	._	
bb, I tb, i	X ( 2x ^ ^2 + Xj +3 ) + i +1 (2xn + j +3+ X^j + 2 )'l

6

=	-Mb
	 (3. 40a)

where

-	n
N =	bb,j tb,j [X.(2x	+ x	) ^ A j1 (2x	+ x	)] (3.40b)

i1	6	 n^i+2	n+i+3	 +i^3	n++2
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3) The moment with respect to the y axis of symmetry due to the

normal stresses at the webs

n^1	h , th, I	(a 1 (2x 1 + x+2) - A 1	 + x1)]Mh = E
i1	6

(3.41a)
= Mb , l -

where

-	n41	th,l	a (2x.+ xj2)M	=
h,1	i::1	6

and

Mb.) 
=	1	thj	x1(2x41^24 x1)

gL	i1	6

(3.4lb)

(3. 41c)

From the equilibrium condition Mt + Mb + Mb = 0, we then obtain

N +M=	 h,1	 (3.42)

+ Nh,2

For the single cell section shown in Fig. 3.11 we have from Eqs. 3.39.

to 3.42

bb
c b tt 1- 2h c t h( b t +0

b t b + 2h c t h (bb + EL )

(3.43)

In particular, for a single cell rectangular section with b t = b b and

= h , from Eq. 3.43 we can obtain the following formulae which have

been shown in (135):

p
= ____

+ 3

where

=
h

ct b =	h th

b
and a0 = Ut

(3.44)

(3.45)
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We will now continue using the ordinary folded plate analysis process

to set out the relation between normal warping stresses and displacements.

In order to arrive at a general solution, the individual plates are first

considered separately, as a result of which the compatibility condition

along an edge is established.

As we have defined them, the displacements tangential to the side web

plates are designated by vh. The horizontal displacement of the upper flange

plate is designated by u 1 , while the horizontal displacement of the

lower flange plate in the opposite direction is ub. We may express the

displacements u, ub and vh in terms of f 1 = B/J, neglecting the

effect of shear deformation. 	 I

Hence, we have, for the side web plate

-u	- Mb =_ Wj1
vh	

EjIb	ElIb	Wh

where

	

= -	h th

h2
WL =	t

"	6

thus

2Mb- I,	 _____________

=	Eih	Wh

- (3.46a)

(3.46b)

We will now express Mh in terms of f

Mh = -
	- W11,43	

w = - 
(1+)	f W	 (3.47)

h	- n,i n h
2	 2

Substituting Eq. 3.47 into Eq. 3.46b we obtain

vh = Eihc 	]11	 (3.48)
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Similar relations may also be derived for ut and u b . Summarising,

we have

	

;,'	it1 	•

	

h	E1	h

"	W	 2

	

Ut = Lu	- .

	

E1	bt

	

WIt l	2
Ub= _____ - . i.ff

	E 1	bb

(3.49)

Differentiating the geometrical relation Eq. 3.23 twice and

substituting Eqs. 3.49 into it, we then have

- I,	_fl	 -U

Ut + U b +	
( vh
	

-	cot)
1d = ________	_____

h	bt	sin

/
= lIsl	

f - 	
4 cot4 	+	L1_. 2 	

2

2	ir	
•ir + _______.__. (1+)f

E1h b t	Ej	bt	E1h	bb	EihcSiflbt

Wj	
[ 2b j b - 4h b bco tc l + 2b 	+ 2btbb(l+)l

E1 h b t bb

= w11,1 f_ [
2b t b b - 2 ( bt — bb)bb + 2b 	+ 2b t b b + 2btbb)

E1 h b bb

= W1 1 f]1	
[2b + 2b 	+ 2b t b b + 2b t b b )

E1 h b 2t bb

= 2 ( b t + b b)( b t + bb) 
Wit 1 f 11	 (3.50)

E1 h b bb

Substitution of the above expression into Eq. 3.30 gives

a111	= - 2 ( b t + b b)( b t + bb)	f11	 (3.51)

hb bb

From Eq. 3.35 we have

a111 
= :ii W

11 1	 (3.52)



obtain

- bth

=	4(l+)
(3.55)

b h th 3 + 2(a ± a t) + 4 4 )
= 48	 6+(a +a)

(3.56)

and

By comparison of Eq. 3.51 wi,th Eq. 3.52 we finally obtain

hb b b
Wi =	

- 2 ( b t + b b )(b t + bb)	
(length2)

104

(3.53)

By using Simpson's integration method, the distortional moment of

inertia J is evaluated as

n= 2bctc (a, 
+ a + a 0 a 1 ) +	

b1 t t,i	2	2

i-i	
(a.	+ a.	+ a 1 a 131 )

	

I	1413

b , j tb,i (a , 1 +	 + a b,I a bj^1 )+E
- 3

fl h Ithi	2
+	 C,	 (a1 +	 aiab )

i1	3

	

= 2b c t c	2	 b
(a 0 +	+ a 0 a 1 ) +	t,1 tj (a	+ a^ 1 + a 1 a 131 )

	3 	 j1	3

2	
2fl	bj tb,j	(A2 + 'i+1 + Xi X i+ i )

j1	3

n+1	
thi (a + 2	

- a 1 A )+z ____

i1	3
(3.54)

For a single cell rectangular section, from Eqs. 3.53 and 3.54 we can

where, 4 and aare shown in expressions (3.45).

The associated in-plane shear stresses caused by the constraint of

warping are determined from the condition of equilibrium

t	dzds + .!i dzds = 0	 (3.57a)



.TdS =	•rds=0
tli	I t

(3. 60b)

or
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or

tL
	

(3.57b)

Substituting Eq. 3.35 into Eq. 3.57b and integrating we obtain

q	= q° - 	S	 (3.58)

where

=	w dA = f wt ds	(length4)
	

(3.59)

is called the distortional statical moment of area.

The constant of integration in Eq. 3.58 is determined from the

compatibility condition

ds = 0
	

(3.60a)

By stablishing the compatibility condition (3.60b) for each cell

separately, and putting

= q,1 	
(length4) 	 (3.6la)

B

as the unit distortional shear flow function,

i.e.,

B'	o
=	q1	 (3.61b)

and defining

-	 ds	 4
Sj =
	

S T	(length )

we may obtain a set of flexibility equations

t.]	 I
	

(3.62)

where the flexibility coefficient matrix Ef) is expressed as in Eqs. 2.19.



(3.63)

-o
q311

-o

n

SI

SI'2

ir -

sI,n
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After solving the set of flexibility equations (3.62), by superposition

we can finally obtain the total shear flow on the walls of the section

A

q	
B
- 11
JI

where
A

Sit =	l; - Sir

is called the reduced distortional statical moment of area.

(3.64)

(3.65)

It should be borne in mind that for points lying on the interior

walls of the section the unit shear flow function is obtained by the

algebraic superposition of the constant shear flows in the cells lying on

either side of the midline separating them, i.e.,

(q; i1,i 	=	-

	
(3.66)

On the open portions of the section the unit shear f low function equals

zero.

For a general single-spined box beam shown in Fig. 3.9a, we may

calculate the S 1 diagram from the w diagram (Fig. 3.9b). Noting that all

the imaginary cuts are located at the mid-points of the bottom flange of

the section (see Fig3. 3.11d and 3.12d). The formulae for calculating the

values of S at characteristic points are written as

(S1)01 = (S 1 )^ 24 j = 0

(Sir)m213 = 0
	

(i1,2 .....,n)

(S1)^1^2213 	L! b bi t bi (3w 1,12	 )  (i1,2 .....,n)

=	b b t bl (3W1,,3 + Wr+j +2 ) (1=1,2..... ,n)



(i=2,3, . . . . ,n)

(i=1,2.....,n+l)

(1=1,2,.... ,n+l)

(1=1,2.....,n1)

(i=l,2, . . . . ,n)

(i=1,2.....,n)

(3.67)

+ ( S]I ) fl ^j+2 fl +j4.2 ]

+ (S11 ) + j ,+j +3 '

(3.68)
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= (S)fl+32fl+4

(s)24323	= - (SE)2fl^33fl+3

- (S]I)n+142.2n+j+2

=	 -	h,1t	3t,n+i+2 +

( Sli )in+i * z =	 - -- h 1t 1 (w1	
+

( S )mi	- - btc (3w 110+ w 1 ) = (S)2

(S)11	= -	bt(W.0 + Li) ]1 1 )

(S)1141 = (sE)ji	+

( Sn)mi+i = (S]1 ) 1+1 -	t	(3	+ W jj )

= (s) 1 -	b 1 t t , i °Ir,i + t1ir,i+1 )

where n is the total number of cells in the section. For the above indices,

th first subscript represents the node number, and the second represents

the element number, while the subscript m indicates the mid—point of the

individual elements.

The expressions for the free terms of Eqs. 3.62 can be written as

-	bt I	(s) 111	+ 4(S]1)mj1	+ (S11)11141
S]1 1 =

6

bbj
+	I	- [(s) 4122 ^ 1 ^ 3 + 4(S)m2n+i+3	+ (S]1)fl432fl^+3]

6 tbj

+ hc,	
[(S1)1 n+i+2 + 4(Sjr)mn+j+2

6thj

- h1+i [( S1 )1113 + 4(Sn)m,n+i+j
6t

Ci 1, 2 ........n)

The sign convention adopted here is the same as that described in

Chapter 2.

We give now two numerical examples to illustrate the calculation of

sectional properties and the distribution of warping stresses.
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Example 3.1 Single-cell box beam withtrapezOidalsection

The dimensions of the cross-section and the subdivision of the section

are given in Fig. 3.11a and Fig. 3.11b:

(a) Unit distortional warping function w

The cross-sectional parameters are calculated as follows:

	

a 1 -1,	ct 2 --1, 	cz3--2

A 1 =1,	A2=-1

1	2	-1

= 2. a 2 . t 0 + 2 x 0.7159a x 0.5 to(a+07a )

72 a
2 1.2 t 0 + 2 x 0.7159a x 0.5 t0(0.7a + 2)

= 6.2

abl	-6.2

ab2=	6.2

The value of the unit distortional warping function at the upper

corner point is

0.7a x a 2 x 0.7a 	-=-2.0887 x i cr2 a 2= - ________________________
2(a + 0.7a)(6.2a + 0.7a)

The diagram of 	is shown in Fig. 3.11c.

(b) Distortional warping moment of inertia

By integrating the diagram of 	we may obtain

x 0.5a t0(0.0417742+ 0.0208872+ 0.041774 x 0.020887)a 4	= 0.001018 at0

- x at 0 (0.020887 2 )a 4	= 0.000145 at

x 0.7159a x 0.5 t0(0.0208872+ 0.l2949942_ 0.020887 x 0.1294994)a 4= 0.003461jta

x 0.7a x 1.2 t 0 (O.1294994 2 )a 4	0.004696 eto
3

0.00932 a5to
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(c) Reduced distortional statical moment of area S. = q 	-

Using Eqs. 3.67 we first calculate the values of

(s)01 = (S 11 ) 33 = 0

( SI )m6 = 0

(s)46 = - x 0.7a x 1.2t 0 (3 x 0.1294994 - 0.1294994)a 2 -2,7195 x l6a 3 to

(S11 ) 6 = - - x 0.7a x 1.2t 0 (-3 x 0.1294994 + 0.1294994)a 2 = -2.7195 x 102a3t0

(S11 ) 44 = -2.7195 x iO2at0

(S) 5 = 2.7195 x 1O2at0

= -0.027195a 3 t 0-x0.7159ax0.5t 0 (3x0.l294994-0.020887)a = -4.3643x102a3t0

(S 1 ) 4 _0.027l95a3t0_.x0.7159ax05t0(0.l294994_0.020887)a2= -4.6634xl62a3t0

(S 3 ) ,g = 4.3643 x 102a3t0

-2 3
(S11 ) 25 = 4.66 34 x 10 a

-2 3
(S 11 ) 1 = -	x 0.5a x t 0 (-3 x 0.041774 - O.020887)a 2 = 0.9138 x 10 a t0

2	 -23

= - 
x 0.5a x t 0 (-0.041774 - 0.20887)a = 1.5665 x 10 a t0

= 1.5665 x 10 2 a3 t 0 - 4.6634 x 10 2 a3 t 0 = -3.0969 x 102a3t0

( S U )m 2 = -0.030969 a 3 t 0 - - a t 0 (-3 x 0.020887 + 0.020887) = -2.5747 x 102a3t0

-2 3
(S 11 ) 22 = -3.0969 x 10 a t0

(S) 23 = -3.0969 x 10 2 a3 t 0 ^ 4.6634 x 10 2a3 t 0 = 1.5665 x lc52a3t0

0.9138 x l02a3t0

For a single cell box the constant shear flow can be obtained from

-o

q ][ =	-i--

ds

in which

ds = a (0.030969-4x0.0257470.030969)a3tø + O.7a (-2x0.027l95)a3to
t	6t,	 6x1.2t0

2x0.7159a
^

	

	 (-0.046634-4x0.043643--0.,027l95)a3 to
6 xO.5 to

= -0.1513 a4

ds	+ 2x0.7159a	0.7a	
= 4.44693a,'t0

t	to	0..5t0 	
+ 

l.2t0
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Thus, we have

-o	-O.l5l3 	=
q• = ________	-0.034023 a3t0

4.44693
to

Finally, the S = q - SE diagram with arrows showing the direction

is given in Fig. 3.11f.

Example 3.2 Three-cell boxbéamwithtraiiezOidälsection

The dimensions of the cross-section are shown in Fig. 3.l2a. To use

the formulae derived we subdivide the section into individual plate elements

interconnected at discrete nodes (see Fig. 3.l2b).

The calculation is carried out as follows:

(a) Unit distortional warping function WE

Using Eqs. 3.36 and 3.38 we calculate the cross-sectional parameters first:

2.5	 0.5
= - = 0.3333,=	= 1.6667, 	a 1 = 1, 	

1.5

a 3 = -0.3333, 	a4 = -1, 	a5 = -1.6667

= 1,	A2 = 0.5, 	A3 = -0.5, 	Al,	-1

= -1, 	ib2 = -1.5, 	i3 = -1.5, 	 -1.

Mt = .±!? [ 1.6667(2 X 2.5a + l.5a)+(2 X l.5a + 2.5a)l

+ at0 [(2
	l.5a + 0.5a)+0.3333(2 x 0.5a + 1.5a 	

[2x0.3333(2xO.5a-Q.5a)]
6

= 6.9445 a2to

axl.2to [2x0.S(2x0.5a-0.5a)]-	0.5axl.2t0 f(2xa + 0.5a)+0.5(2x0.5a+a)J +
3

= 0.8 a2t0
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-	0.5/ax0.5t0 (2xl.5+a) +	90 x 0.3333(2x0.5a+0.5a)
Mhl =	3

3

= 0.8287 a2t0

axO .5 t0
-	0.5Va x O.5t0 (2xa+1.5a) + _- X 0.5(2x0.5a+0.5a)
Mh2=

= 0.7772 a2t0

69445+08287
= -.. 	. - = 4.93

0.8 + 0.7772

b1 = -•9 	b,2 = -2.465, 2.465,	cLb,4_. 4.93

= - a(3a) 2 x 2a	 =-l.0721 x ia2

Thus the diagram of 	can be shown as in Fig. 3.12c.

(b) Distortional warping moment of inertia J

• By integrating the diagram of 	we obtain the distortional warping moment

of inertia

= 0.38455 a5t0

(c) Reduced distortional statical moment of area 	=	- S

By using Eqs. 3.67 the diagram of the distortional statical moment of area

S 11 is presented in Fig. 3.12d.

In accordance with Eq. 3.68 we may further calculate the free terms

of Eqs. 3.62. The set of flexibility equations may then be set:

5.6527	 -2 q 2	= - 0.1438 a3t0

-2 q 1 + 5.8333 q 2	-2 q 	- 1.1715 a3t0

-2	+ 5.6527	= - 0.1438 a3t0



B	= - .I 4 -i WE ds
as

(3.70)
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Solving, we obtain

-0	-o
= q 3	-0.12471 3to

-o
q]12 = -0.28819 a3t0

The S = q - S diagram with arrows showing the direction introduced is

given in Fig. 3.12f.

3.5 Resistanceof cross-section to distortion

It has already been shown that the distortion of the cross-sectional

shape of a box beam is, in general not uniform along the axis of the beam.

Longitudinal warping stresses and associated shear stresses arise from

constraint to warping.

Considering as a free body an element of the girder in the form of

a closed frame of unit length (Fig. 3.13), the gradient of the in-plane

shear and distortional loading subject the plate element to transverse

flexure. The pattern of deformation is similar to that of a Vierendeel

frame having an elevation identical to the cross-section of the box beam.

Thus the frame action of the cross-section caused by the flexural stiffness

of the walls results in another partial resistance to deformation, which

adds to the resistance caused by the constraint of warping.

From the general equilibrium condition shown in Eq. 3.57b, we may have

f	 dA ^ I 	 ds = 0
A	 as

(3.69)

i.e.,
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And integration by parts of the integral on the right gives 	 -

3w
B	=	 ds	 (3.71)

Substituting Eq. 3.28 and Eq. 3.24 into Eq. 3.71 we then obtain

B	=	I1t,dd5 	 (3.72)

From the principal of virtual work and the definition of the

distortional moment, it is clear that we have

B = Nd	(force x length) 	 (3.73)

This means that the interior distortional moment is identical to the first

derivative of the distortional bimoinent B. 	 -

Now, the resistance of the cross-section to deformation due to frame

action is examined. We define the effective frame stiffness of the

section per unit length as the resisting component which is required to

correspond to a unit distortional angle. 	This is determined with the aid

of the following energy equation.

The internal energy per unit length is given by the general

expression 	k y , while the external energy in terms of the distortional

angle and the distortional moment is equal to - Ndyd.

Hence

1
=+MdId

so that

N
k =E1J = -

a	u
(3.74)

where

k d( force )  is termed distortional frame stiffness of the section per

Unit length,

which has units of L 2 is defined as the distortional second moment



usin + v1cos4
Thl hc

(3.77)

=— j -
h

(3.78)

U)
1h2	_ Ti.L:. (3.79)

eb as
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of area and is equal to l/E1 times frame stiffness.

Physically the distortional frame stiffness can be evaluated by

analysis of a frame with the shape and dimensions of a unit length of the

box beam. The frame is constrained horizontally and vertically at the

lower corner points as shown in Fig. 3.14, and is loaded by diagonal forces

with unit horizontal components, i.e.,

= 1

2

= b t + bb

= I4hZ^ ( b t + bb)2
Sd	

bt+bb
(3.75)

The deformed shape of the frame slice is shown in Fig. 3.15. If we

ighore the axial deformation of the individual plate elements, we will have

u 1 cos - v 1 sin	= v2 sin4 - u 2 cos4 = 0	 (3.76)

The rotation angle for the left side web can be expressed as

Substitution of Eq. 3.76 into Eq. 3.77 gives

u 1 sin 2 + v 1 sincos 	= - u 1 (sin 2 4, + cos2)
hi	

hsin	 h

Similarly we can write down the rotation angle for the right side

Thus,
- U 1 + U2	 (3.80)

1 h	1h1 = 1h2 =	2h



v -v

bt
(3.81)

115

We use Eq. 3.80 instead of Eq. 3.78 or Eq. 3.79, since in using

the computer stiffness method for plane frames, axial deformation is also

included.

The horizontal rotation angle may be written as

Thus the total distortional angle can be expressed as

1d	h1t	
v2-v1

2h	 bt

-bt(uj + u 2 ) + 2h(v 2 - vj)

2hbt

(3.82)

Since the corresponding distortional moment is Md = 2h, from Eq. 3.74 we

can calculate the frame stiffness

4h2 bt
k d =	 (force) 	 (3.83)

-b t( u j + u 2 )+2h(v 2 - v1)

and the distortional second moment of area is

4h2bt	 (length2) 	 (3.84)

E1 j -bt (u 1 + u 2 )+2h(v 2 - v 1 )

where u 1 , u 2 , and v 1 , v 2 are the horizontal and vertical displacements

respectively at the upper corner points of the section, and the sign

convention follows the local coordinate system shown in Fig. 3.15.

In particular, for a single-cell box beam if we ignore axial and

shear deformations, and assume that the effect of the slope angle of the

side web with respect to the flange is insignificant we may analyse the

frame slice directly by the influence coefficient method neglecting the

vertical displacements of the upper corner points (see Fig. 3.16).
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Releasing the frame at the mid-point of the upper flange, from the

conditions of symmetry and antisyinmetry, it is evident that we can clarify

the redundants as

X 1 = 0

X 2 = 0

Placing a pair of unit loads at the released position gives the M3

diagram (Fig. 3.l7a). The bending moment diagram due to external forces is

shown in Fig. 3.l7b.

The influence coefficients can be calculated as

-2

= I
AD

= b	+ b	+ (b + b t b b + b	)h

l2D t	l2Db	 6Dh

- - 1	( b t + 2bb)h.hc + h.b -

D Ii	 Db

From the compatibility condition

6 33 X3 +A =0

we therefore obtain

Dt
2h	t(bt ^ b b ) h c	̂ b] 	

(3.85)X 3 =	Dh	

DtDP. b3 
+ Dt b 3 + 2h ( b + btbb + b ) D

	

t	b

where Dt, Db and Dh are the transverse flexural rigidity of the top and

bottom flanges and side webs respectively. 	 -

The horizontal displacement at the junction of the upper flange and

the side web is

= h2bb [2 . 	+	-	h	
( (b + 2b h ) h c ^	b] X3

6Dh	bb Db	l2Dh	 Db



(135)

T) 1 = (3.88)
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We then finally obtain the frame stiffness of the section per -

unit length as

.2h	2h2	24Dh
kd = - = - = ____

fl1h
(3.86)

where

2 h2 DDb
2 b b b + 2h c b	+ 2hcbbb Dt ^ 3bt 	

-	(3.87)Ti1	=i;:
Db b ^ P b 3 + 2h ( 14 + b j b + b )
Dh	Dh b

For a rectangular section with b t = b b = b and hc = h, we may obtain

2	+ 3 'b +
h	 I

1+	 h

1 b + 1t + 6 h Tt1b

________	
.	 I

where 1 t	b and	are the plate moments of inertia per unit length of the

top flange, the bottom flange and webs respectively.

A frame analysis using the influence coefficient method produces,

however, for complicated cross-sections a procedure rather too complex. It

is more convenient to use the computer stiffness method for plane frames.

A supplemental program, PRFRAN, to the main analytical program has been

written based on the theory of plane frames (see Appendix II) for calculating

the frame stiffness at discrete cross-sections. To operate this program the

input consists of local coordinates of the junctions of the individual plate

elements located on the section considered, the cross-sectional area and the

transverse flexural rigidity of the plate elements.

The transverse flexural rigidity of an individual plate element is

denoted by D. For an unstiffened thin plate
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Et3

12(l-v2)
	 (3.89)

in which v = Poisson's ratio.

For transversely stiffened plates, D may be evaluated as described in

the American Institute of Steel Construction (AISC) Orthotropic Plate Deck

Bridge Manual (25). An approximate expression for the effective width of

plate acting with one transverse stiffener is suggested by Wright et al

(150) as

d tanh(5.6 	)a

	

d0= _____________ 	 (3.90)

5.6d (1-v2)
a

in which (for Eq. 3.90 only) d = the stiffener spacing, d 0	the effective

width of plate, and a = the span of the plate in the transverse direction.

Eq. 3.90 is obtained by fitting curves given in the AISC Manual and assuming

that the plate bends with a line of inflection at midspan. Transverse

flexural rigidity is obtained by computing the moment of inertia of the

stiffner acting with the width of the plate, d 0 and using D =E111d.

For a nonhomogeneous section, such as a steel box beam with a composite

reinforced concrete deck, it is assumed that the thickness t and the rigidity

D are appropriately transformed by the use of some notional Young's modulus E.

3.6 Calculation of transverse bending stresses and theppptiesof
diaphragms

After analysing the frame of unit length loaded by diagonal forces

with unit horizontal components, using the computer stiffness method, we may

obtain the end moments and the shear forces of the individual plate elements.

They may be used as the influence quantities of the transverse interior forces

per unit length at the section considered and are denoted by mdb and

respectively. We can then obtain the transverse distortional bending moments



mdb = EjJdyd (1 -

4
(3.92b)

and
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and distortional shear forces per unit length at the junctions of individual

plate elements by using the following expressions

mdb = mdb • d

(3.91)

=

where	is the influence distortional angle calculated from Eq. 3.82 in the

Vierendeel frame loaded by diagonal forces with unit horizontal components..

1d is the actual distortional angle at the section considered.

The sign convention is that adopted in the conventional displacement

method. It states that the end moments are considered positive if they are

clockwise, and the shear force at one end of a plate element is positive when

it rotates clockwise relative to the other end (see Appendix II).

For a single cell box beam we can obtain the corner moments of the

top and bottom slabs from a frame analysis as

= ElJdyd (1 
+

	
(3.92a)

4

where

( 2b t_ b b) b 2! 2! b3 - 2h c( bt b b - b,)
Dh	Dh t

Ti =	 (3.93)2	
Db 3	Dt
- b t + - b b + 2h(b + b t b b + b ) 

DtDh

D

For a single-cell rectangular section with b t b b = b and h c = h,

we have the following expression which has been given in (134)

Ti 
=	 It	 (394)

1^+6..!
b
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The transverse bending moment diagram for a single-cell box beam is given

in Fig. 3.18. Note that the moments are plotted on the tensile sides of

the plates.

So far we have considered only the transverse distortional bending

stresses adhi due to the antisymmetrical component of load. In fact, the

multicell box beam is another instance for which the symmetrical component

of load also produces transverse stresses db2 	Thus, the final influence

values from the computer frame analyses should be obtained by superposition

of these two loading cases

db =	db,1 +	db.2
	

(3.95)

where db1 and °db2 are the influence values of the transverse distortional

bending stresses due to antisymmetrical and symmetrical components of load

respectively. 	This may be illustrated from the numerical example in

Fig. 3.19 (see also in Chapter 8), where it can be seen that the stress

due to the symmetrical component is a significant proportion of the

total stress. By increasing the number of cells the stresses adb are

increased, yet the deflections and warping stresses are not significantly

changed.

The transverse stresses due to the distortion of the cross-section can

be of the same order as the longitudinal stresses associated with

longitudinal bending and torsional and distortional warping. In such a case,

the Poisson's ratio effect in transverse bending can generate longitudinal

stresses which are not negligible in comparison with the longitudinal

bending stresses and torsional and distortional warping stresses. As an

approximation we may obtain the longitudinal bending moments of the plates

per unit width by multiplying the transverse bending moments by Poisson's

ratio, i.e.,

m(b =	db	 (3.96)
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The approximation can be confirmed by model tests (see References 83, -134

and Chapter 8).

Although it is desirable not to use intermediate diaphragms in box

bridge girders, it is apparent that additional longitudinal warping stresses

and transverse bending stresses due to deformation of the cross-sections,

reduce the advantages anticipated from the high torsional stiffness of the

box beam. A proper provision of diaphragms is preferable in bridge girders.

Thus, diaphragms are sometimes not only located at supports, but also

along the span at regular spacings. According to the different construction

forms there are three types of diaphragms (Fig. 3.20):

1) Plate diaphragms

2) Braced frame - diagonal cross bracing, V-type bracing or 	-

inverted V-type bracing,

3) Ring stiffening.

A diaphragm is a planar figure having membrane and plate bending

stiffness, connected to the box beam (either in the corners only or along its

whole perimeter). In fact the out-of-plane stiffness of a diaphragm is

negligible compared with the warping resistance of the plates composing the

box beam. Thus, in an analysis of box beams, the diaphragm is usually

assumed to be rigid in its own plane and absolutely flexible in a direction

perpendicular to that plane. Therefore, the effect of diaphragm properties

on box beams is determined only by evaluating the corresponding transverse.

distortional stiffness. 	This is defined as the distortional moment that

will produce a unit transverse distortion of the diaphragm.

The transverse bracing system can be regarded as a stiff jointed frame

composed of perimeter plate elements of unit length and stiffned by

braces. Although Wright et al. (150) and Billington (11) have given a list

of formulae for calculating the distortional stiffness of transverse bracing
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systems, it is still convenient to follow the computer frame analysis

process described in the preceding section.

The distortional stiffness due to ring stiffening can be calculated

from the same frame analysis process when the transverse flexural rigidity

D of an individual plate element is replaced by the El of the relevant

stiffener plus the associated effective width of plate which may be

calculated from Eq. 3.90.

For a plate diaphragm of uniform thickness tç, the unit length can

be thought of as the idealized thickness of the diaphragm. Since the

flexural stiffness about the axis normal to the plate is assumed to be

infinite, the diaphragm stiffness can be found from an analysis of an end-

loaded tapered cantilever with span h considering shear strain only.

Denoting by y 1 the deflection due to shear, we obtain for any cross-section

the following expression for the slope (141)

dy 1 = aV	
(3.97)

dx	GA

in which V/A is the average shear stress, G is the modulus in shear and a

is a numerical factor by which the average shear stress must be multiplied

in order to obtain the shear stress at the centroid of the cross-section.

In the case considered we adopt a = 1 (107). Using Simpson's integration

method we obtain

8	+

= 6G Ab	At + Ab

=	h(b •+ l0btbb ^ b ) 	 (3.98)

6ctp bt b b( bt + bb)

So that the transverse distortional stiffness is

h	6Gtbtbb(bt +.bb)h 	 (3.99)k d = E1Jd== 
2

b t +1Obtbb+b
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For a rectangular section with bt = bb = b , we obtain

kd = Gbht = ......E.	bht	 (3.100)
2(1 + v)

It should be noted that diaphragms are assumed to be located at

longitudinal discrete nodes only. Therefore, the diaphragm stiffnesses

are easy to include in the stiffness matrix.

3.7 Single-spined box beams curved in plan

Considering a single-spined box beam curved in plan, it is assumed

that the cross-sectional dimensions are small in relation to the radius of

curvature. Numerical results based on the finite element method and the BEF

analogy (15) show that in a curved box beam the transverse distortional

stresses due to the antisyinmetrical component of the load, are similar to

those in an equivalent straight box beam with a span equal to the developed

length of the centre line of the curved box beam. In accordance with this

structural behaviour, the transverse frame analysis at nodal sections for

curved box beams can be simplified.

At each nodal section, a one-way frame having a unit arc dimension

in the longitudinal direction is taken, as shown in Fig. 3.21. This unit

dimension is measured at the mid-width of the box beam. The dimensions of

a typical frame are shown in Fig. 3.22. It can be seen that the longitudinal

dimension of the frame is 1 + 0.5	at the outer edge of the beam, and

1 - 0.5 at the inner edge, where b is the width of the flange in the

radial direction and R is the radius of curvature of the beam measured to

the centre of the flange.

To simplify the transverse frame analysis, the real frame shown in

Fig. 3.22 is replaced by an equivalent frame shown in Fig. 3.23, where the

plate elements having curved web plates are replaced by equivalent flat
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rectangular members. The individual plates are then considered to have a

width equal to the average of the outer and inner edge dimensions of the

plate. The width of the equivalent web plates, for instance, in a multicell

boxbeam as shown in Fig. 3.9 is determined by

b^12 = 1 -	+ fl1Z

2R
(1=1,2 .....,n+l) 	 (3.101)

where n is the total number of cells,

and x r1 .f 2 are the local x-coordinates of the end nodes of the

web plate elements respectively.

The equivalent frame may then be analysed by the plane frame program. For

a box beam having a radius of curvature of a practical magnitude, the

simplified procedure can be adopted with little loss of accuracy but with

a substantial saving in computational effort.

Additional distortional forces occur in boxbeams curved in plan

due to the radial component of the longitudinal bending stresses. The

radial component, 0R' of the longitudinal bending stress, a b , for unit

length of the box is given by

where R is the radius of curvature which is positive when the centre of

curvature is on the positive side of the x axis.

The system of radial forces shown in Fig. 3.24 can be replaced by an

horizontal force acting through the shear centre and a torsional moment.

Thus, the additional distortional moment per unit length can be expressed as

md = 0.5 f My [ y - (y	YG	
dA

A1 R.xx

where Mx is the longitudinal bending moment about the x axis of a

positive section,

(3.103)
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'xx is the moment of inertia of the entire cross-section about the

horizontal centroidal axis,

y is the coordinate of a point on the centroid of the walls, referred

to the neutral axis x of bending of the cross-section,

is the vertical coordinate indicating the position of the centre

from the mid-line of the top flange, calculated by Eq. 2.92 or Eq.2.l05,

is the vertical coordinate of the centroid from the top flange,

R is the radius of curvature.

It is preferable to use Simpson's integration method to evaluate the

integral in Eq. 3.103 for a general multicellular section shown in Fig. 3.9

mdR =
	Mx R i1 2(y + 	+ y )-3(y - Y ) (Yj +

	i

(3.104)

where m is the total number of plate elements which form the cross-section,

y. and 	are the vertical coordinates of two end nodes of the

plate element,

is the area per unit width of the th plate element.

The longitudinal bending moments in statically-determinate box beams

are independent of the torsional moments. In the case of curved box beams

under statically-indeterminate conditions, the bending moments M are not

given at the outset (and the equivalent distortional loading is not known in

advance) and are themselves affected by the cross-sectional deformation.

Generally, the distribution of bending and torsional moments in curved box

beams may be approximated, initially assuming non-deformable cross-sections,

by the use of the stiffness analysis program. 	The distortional loading is

then treated as the sum of the distortional component of the loading and

the additional distortional component of the radial forces given by Eq. 3.103.

The interaction between the bending and torsional moments influenced by
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the deformation of the cross —section can then be included by a further

iterative procedure which will be dscused in later sections.

3.8 Basic differential equation for distortion

In order to implement the stiffness analysis procedure we here follow

an energy argument leading to the governing differential equation.

The strain energy corresponding to the distortional warping stresses

may be written as

U1 = - f 
u c dV 	 dV

=	
1A	

(z)dA ] I y (z))2 dz

=	
-	

J11 [y' (z)]2 dz 	 (3.105)

The energy required to distort a frame formed by a length dz of the box

is

dU2 =	1Cd1d(Z) dz
	

(3.106)

thus,

U2 = -f ky (z) dz
	

(3.107)

The potential energy of the external generalized distortional force

V 
= - 

f md(z)	 dz
	

(3. 108)

The total potential energy is given by

w = u+v

= E1	
(z)J2dz ^ f 1t k d {Td)]2	- .rmdyd(z)dz 	(3.109)

W = JF(z, ;, y ,  y )dz	 (3.110)
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where

F (z, Td ' 1d ' Y )	J11 (; 
) 1 ^	2

2 (Id ) - mdyd (3.111)

According to the principle of the stationary value of the total

potential energy, we have

tSW = 0
	

(3.112)

The Euler-Lagrange equation is used to obtain the first variation of

the total potential energy, thus

a	 a2	
.!) = 0(_)+ -(

a -rd	3z	yi	az2	31d
(3.113)

Thus we obtain the basic differential equation as

E J aId 
+ kdld

az4
(3. ll4a)

where

4'
A =
	

(3.115)
4E1J

is called the distortional decay coefficient.

For a curved box beam Eq. 3.114b should include the effect due to

the radial component of the longitudinal bending stresses. 	It then takes

the form

a id ^ 4 A Id 
=	1	

+ md)	 (3.116)
az4	 E1J	R

where R is the radius of curvature, and

is the initial curvature multiplication factor.
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From Eq. 3.103 we have

=	 Y  CY  - (Y - y6 )] dA	 (3.117)

It can be seen that the basic differential equation for distortion is

identical in form to that for beams on elastic foundations. The physical

basis of the analogy is the fact that the transverse bending strength of

the box beam provides a continuous elastic support for the webs, which

therefore behave like beams on elastic foundations. Although an analytical

procedure based on the BEF analogy has been given (150, 11), a more efficient

finite element technique will be introduced in following chapter for the

solution of the differential equation.

3.9 Interaction between bending, torsion and distortion

We denote the centroid of the box section by G and take it as the

origin of the local x, y axes as shown in Fig. 3.25. The bending-torsional

characteristic displacements in the cross-sectional plane can be expressed

in terms of the lateral and vertical translations u(z) and v(z) of the

point G and the twisting angle O with respect to the shear centre and the

deformation of its contour, i.e., the distortional angle d• The longitudinal

displacement w (x, y, z) in the z direction consists of those due to bending,

torsion and distortion.

For a straight prismatic box beam the fundamental equations governing

the force-displacement relationships can be summarized as follows:

"4
- 1	 ou

- E1Iyy. 	
=px

'-Ix

1	 4v

	

- - E1I	 = Py	
(3.118)Py

1	
E1 J 1	GJ1 	 m3ext

4

E1Jfi	Id +kdd
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for which 1J and ii>, are the shear deformation parameters. 	 -

From the above equations it would seem that each of the bending,

torsional and distortional actions is independent of the others and can be

treated separately. However, strictly speaking this independence is valid

only for a straight prismatic boxbeam with bi-symmetrical cross-sections (70).

Apart from special cases such as curved boxbeams or multi-spined boxbeams,

there is some interaction between bending, torsion and distortion.

The interaction between distortion and bending-torsion is really a

difficult problem. Lie (70,71) tried to solve this problem, but his results

were limited to a single-cell prismatic boxbeam only. Since the main

advantage of the basic technique in this thesis is its simplicity, all

modifications have been governed by the need to retain this simplicity and,

consequently, the economy of the solution procedure. Considering this

special requirement, a numerical iterative procedure, which has been

suggested by Billington (11), is adopted here.

At first, we introduce the rotational angle of the top flange 4

and the rotational angle of the side web 4 (Fig. 3.25). The relationship

between these two rotational angles and the twisting angle O and the

distortional angle 1d can be expressed approximately as

I
= •. (4 +	 Id =	-	 (3.119a)

or

1

+ 2 1 d ' 	 -	Id	 (3.119b)

From Eq. (3.119b) the distortional angle can be thought of as a

rotation of the flange which is additive to the twisting angle. An increase

in twist is equivalent to a decrease in torsional stiffness and the

influence of distortion is to reduce the effective torsional rigidity of the
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cross-section. 	Consequently, we may define the rotation 	as the

effective twisting angle, nd the torsional stiffness reduction factor is

given by

=
	

(3.120)

Substituting Eq. 3.120 into Eqs. 3.118 and assuming that the

torsional stiffness reduction factor is constant along the z axis, we have

4
1	

E11- —
	yy -----;; 	 =px

11)(

-	 EI	 = py

IJY	 az4

(3.121)
2

-	E J	+ dGJT a
	

= m,ext

lIt	
1 I 

az4

E1J aid + k d y d	 =
az4

It is apparent that the third equation in this set of equations is identical

in form to the original torsional governing differential equation, but uses

reduced torsional rigidities instead of full torsional rigidities. This

mathematical analogy provides the basis for an iterative process which leads

to the modified solution considering the interaction between distortion and

bending--tors ion.

The compatibility condition considered is that the effective twisting

angle should be equal to the sum of the half distortional angle ( -- ij) and

the actual twisting angle O given by multiplying ij by the torsional

stiffness reduction factor. The compatibility criterion can be expressed

by the following equation

p 3.i = 0
	

(3.122)

It is shown by numerical studies that the changes in torsional
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stiffness are not sensit j ve to the magnitude of torsional moments. Thus

in many cases no reduction Ls necessary in order to obtain accuracy

sufficient for design, and that in such cases an overestimate is made for

torsional moments and hence distortional stresses. In most cases two or

three successive reductions of the torsional stiffness are sufficient to

calculate the effects of distortion for the loading case considered.
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P	 P•

(a) Deformation of cross-section

(b) Warping stress pattern

Fig. 3.1 Response of boxbeam of deformable cross-section to torsional
load

(a) Folded plates

(b) Box spine-beams

It

Fig. 3.2 Typical folded plate and boxbeam cross_sections
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Fig. 3.6 Distortional component resolved at box corners
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(a) Eccentric loading applied at the cantilever portion

(b) Equivalent twisting load

(c) Equivalent twisting load for thick flanges

II

(d) Equivalent twisting load for thick webs

Fig. 3.7 Distortional force with load on cantilever
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(c) Triple-cell box

Fig. 3.8 Deformation of Uni-symmetrical box spine-beam
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(a) Subdivision of cross-section

(b) Normalized unit warping w/lwiil

Fig. 3.9 Distribution of distortional warping stresses of a
box beam with a vertical axis of symmetry
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Fig. 3.13 Element of box beam with form of elementary frame
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Fig. 3.16 Vierendeel frame of single-cell box

(a)	diagram	 (b) Mp diagram

Fig. 3.17 Bending moment diagrams of released structure
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Fig. 3.18 Diagram of transverse distortional bending moments
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(b) Influence values of transverse bending moments due to
symmetrical component

(c) Composition of the influence values

Fig. 3.19 Influence values of transverse bending moments in a
double-cell box beam



(c) Inverted V-type bracing

(d) V-type bracing

(e) Ring stiffening
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(a) Plate diaphragm

(b) Diagonal cross bracing

Fig. 3.20 Different types of diaphragms
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4.

Fig. 3.22 Typical frame consideredatt 	imxI	ttimi un1 the
transverse frame analysis

Fig. 3.23 Simplified equivalent transverse frame
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Fig. 3.25 Displacements in the cross-sectional plane

Fig. 3.24 Distortional forces due to bending moments in curved boxes
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CHAPTER 4

A ONE DIMENSIONAL FINITE ELEMENT FAMILY

4.1 Introduction

Although a continuous structure is in reality three-dimensional, a

reduced one-dimensional form has certain simplifying advantages in many

instances. However, the conventional truss or beam type elements are over-

simplified to represent box spine-beam bridges. Thus, associated structural

effects such as warping and distortion should be included in the one-dimensional

element formulation.

The main objective of this chapter is to present a family of special

one-dimensional sub-parametric elements which may be used for global bridge

deck analysis; especially for the preliminary elastic analysis of a variety

of general box-type bridge decks, such as box spine-beams, multi-box girders

and articulated bridge decks. The available elements included in the family

can be specified as

- two-node truss elements;

- inclined cable elements with catenary action;

- two-node solid beam elements;

- three-node solid beam elements;

- thin-walled beam elements with rigid sections;

- thin-walled box beam elements with deformable sections.

The thin-walled box beam element can be regarded as a general beam

element in this family. In addition to the usual six degrees of freedom at

each node, represented by the three displacements and the three rotations,

three more degrees of freedom have been incorporated in the formulation, to

account for the warping and distortion effects which occur in box beams. The

additional degrees of freedom are designated as the rate of twisting angle,
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the distortional angle of the cross-section and the rate of the distortion.

The element formulation is available for structures with variable cross-

sections as well as with curved geometric shape.

Since all the other elements included in the family can be realized

as a reduced form of the general box beam element, it seems convenient to

include here only the procedure derived with respect to the thin-walled box

beam element. The other elements can then be obtained from the general form.

It should be noted that the additional degrees of freedom for the

general beam element cannot be transformed from one coordinate system to

another. These types of elements can only be used in cases where the assembly

of general beam elements forms a single continuous curvilinear or rectilinear

lines. As a result the global treatment of the additional degrees of freedom

can then correspond with the local system. It is apparent that this

limitation can be complied with for most girder bridges.

A basis for constructing a finite element approximation is the

principle of minimum potential energy, which involves a displacement field u.

According to this principle the increment of the total potential energy due

to any admissible displacements requires

AU = 0. 	 (4.1)

The total potential energy increment AlL can be expressed as

dV - f v AcT DcdV+f v Ac T o dV - fAuTb dV - f A AuT S dA - AuTP (4.2)

where c is the strain tensor, 	is the initial strain tensor, a is the 'vector

of initial residual stresses, D is the elasticity matrix, b is the vector of

body forces, S is the vector of surface tractions, P is the vector of

external concentrated forces, V is the volume and A is the surface area.
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After some manipulation we can finally obtain the general form of

the stiffness equation (80)

K6 = F
	

(4.3)

where K is defined as the stiffness matrix, iS is the generalized nodal

displacement vector and F is the vector of nodal forces.

The theory presented in this chapter is the basis for the development

of the necessary progranuning for the linear elastic solution of bridge decks.

The extension of the family to multi-box structures will be discussed in

Chapter 6, and the non-linear behaviour of the cable elements arising from

catenary action will be dealt with in Chapter 7. These analytical facilities

will all be incorporated into the program CUBAS, developed in this thesis

(see Appendix I).

4.2	Geometric definition

4.2.1 Geometric definition of a thin-walled box beam element

Consider a thin-walled box beam element with the variable cross-sections

of Fig. 4.1. The external edges of the element may be curved, yet the

sections of the element are generated by straight lines. The element sections

are specified to have at least one axis of symmetry with respect to their

widths, though this is not a necessary condition for the other type of elements

in the family.

The locus of centroids of the cross-sections is defined as the

element axis, and the cross-sections are assumed to be normal to this axis.

Although for a thin-walled box beam element the element axis may be distinct

from the flexural axis (line of shear centres), they are assumed to be parallel

to each other. We should bear in mind that the torsional characteristics

are actually related to the flexural axis of the element.
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The element has two nodes. located on the centroids of the end sections

and an additional internal node located at the middle of the element axis.

rwo coordinate schemes are used in the element formulation: the Cartesian

Drthogonal coordinate system x, y, z and the natural coordinate system

, i, . The origin of the normalized coordinate system P, r, 1.lies at

the middle point of the element axis (Fig. 4.1). It is assumed that

iaries between -1 and +1 on the respective faces of the element. The geometry

)f the element axis is then defined as a mapped image of a parent straight

lement. The length 9 of the element is mapped to a length of 2 in the

mit system.

1.2.2 Defa:nition of the local orthogonal coordinate system

The local coordinate system along the element axis is defined as 	-

follows (Fig. 4.2).

The origin of the coordinate system is located at the centroid of 	 -

:he cross-section, and the orientation of the local axes is assumed to

:oincide with the principal axes of the cross-section. The local z axis is

:angential to the element axis running from node 1 towards node 2, and for

;traight elements it coincides with the element axis. The local y axis

Lormally represents the axis of symmetry with respect to the width. The

.ocal x axis can then be specified as forming a right-handed orthogonal system.

A suitable method for describing the orientation of the local y axis

.s to give the global coordinates of two points that lie in one of the

irincipal axes of the section. In most cases the mid-points of the bottom

langes are specified by the geometrical and environmental requirements.

hus it is convenient to define the global coordinates of the centroid G

md the mid-point of the bottom flange Pc i  for specifying the orientation of

:he local y axis. A unit vector in the local y direction is given by the
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vector difference of 	and

=•	

r	,	 (4.3a)

GP0

or	= cos(X.y) . i + cos(Y.y) . . j ^ cos(Z.y) . k , 	 (4.3b)

A	 A

where i, j and k are unit vectors in the global X, Y, Z directions

respectively, and the direction cosines are given by

x —x
cos(X.y) =	 P	6

/(X P - X)2 + (Y - Y6 )+ (Zp - Z)

Y -Y
cos(Y.y) =	 P	6	

(4.4)

- X G) + (Yp - Y 6 )2 + (Z - Z6)

Z-
cos(Z.y) =

- xf + (Y - G) 	(z - Z6)2

The vector in the z direction can be defined as

=	. j+Y.j+Z.k	 (4.5)

From Eq. 4.5 a unit vector defined in the z direction is given by

-
z=	

= ____________________	 (4.6)

JI	J()2 +
	

+

A	A

The local x is perpendicular to the local y and z, and forms a right

handed system, thus

=	x	,	 (4.7a)

or

az
A [cos (Yy)- -cos (Zy41+fcos (Zy) 	-cos (Xy)-Jj+{cos (Xy4 -cos (Yy)--]

I x
J

+ (-)2 
+

(4.7b)
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In nost cases it is convenient for the analysis of bridge structures

to fix the global Y axis as normal to the level plane, i.e., the XZ plane

is parallel to the levelling base. The global Z axis normally orientates

along the direction of the span. Three special orientations, which appear

mostly in practical bridge constructions, should be mentioned here:

1. The principal planes yz of the element are parallel to the

YZ plane.

In this case the local x axis is orientated following the global

X axis, and we have

A	 A

x=i
	

(4.8)

The unit vector along the local z axis is then given by 	 -

+;
A

= j(aY)2 + (f.)Z
	 (4.9)

The unit vector in the local y axis can be designated by the vector

product

A	 A	 P.

y = z xx

=	
.3 •x i + - 	k x 1

-J 
( Y) 2 + (Z)2

(4.10)

From the definition of the global axes it can be seen that

xl =-i
-	 (4.11)

A	 A

kxij

Substitution of Eq. 4.11 into Eq. 4.10 gives



—1 +A

,I 
( X2	Y2

+

(4.17)

157

A	
-

Y = J()2 + ()2	
(4.12)

2. The principal planes xz of the element are parallel to the

XZ plane.

The local y axis now orientates in the same direction as the global

Y axis, which is defined as

A	A

y=j

	
(4.13)

The unit vector in the z direction is

ax	 azA

= ___________

J

( X)2 + (..)2

The unit vector in the local x axis is given by

A	 A	A

x = -z x y

1 - —k
=

J

( aX) 2 + az 2
()

(4.14)

(4.15)

3. The principal planes yz of the element are parallel to the XY

plane.

The local x axis is now defined as:

=	 (4.16)

The unit vector in the local z direction is given by



ax
1 -=

J 
( 8X2 + ay2

()

(4.18)
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The unit vector in the local y axis can be obtained by the vector

product

a	a	a
y = z xx

For these three special cases, after specifying the position of the

centroid, there is then no need to define another reference point located

at the middle of the bottom flange. This will certainly be advantageous for

the analysis.

4.3	Displacement field and degrees of freedom

4.3.1 Displacement field due to axial loading and bending

The classical thin-beam theory based on the Bernoulli-Euler

assumption, in which normals to the neutral axis before deformation remain

straight and normal to the neutral axis after deformation, excludes any

shear deformations. However, the transverse shear deformation may be

important in cases of thick beams and beams of sandwich construction. Thus,

it is preferable to develop an element formulation which can be used to

analyse either thin beams or beams in which transverse shear deformation

effects are not negligible.

In shear deformation, certain warping of the section occurs, and

this effect is shown in Fig. 4.4. The modified plane assumption, which

states that the cross-sections of the beam remain plane after deformation but

not necessarily normal to the element axis, should now be adopted. Rotations

°x and Oy can thus be considered as average rotations and a correction will

be made subsequently to allow for non-uniform shear distribution. In



ox	1.!L + 
4)x1

{oy} 
=I_

lax +

(4.19)
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Fig. 4.4 the angle 	denotes the average shear deformation and for both

the x and y directions.

where aw/ay or aw/ax is the slope of the neutral axis and is an extra

rotation due to the transverse shear effects. For avoiding the difficulties

which arise in satisfying the C 1 - continuity requirement and having the

ability to reproduce shear deformations, independent translations and

rotations are used. The result is that only C 0 - continuity is required of

the shape functions.

As the strains in the direction normal to the beam axis are

assumed to be negligible, and according with the plane assumption (Fig. 4.3)

the displacement throughout the element can be uniquely defined by the

three translations u, v, w on the beam axis and the two rotations O,, Oy

about the x and y axes respectively. This can be written in matrix form

as

I
	

U

u t = Vy
	

=	 V
	

(4.20)

w - XOy + yO

4.3.2 Displacement field due to warping torsion and distortion

Since the type of element to be considered is that in which the

walls are thin, it is convenient to describe the state of torsional and

distortional displacements using the generalized coordinate system (z,S).

The three displacement components of a point on the wallare shown as the
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tangential displacement Ut, the normal displacement v and the axial

displacement w. The displacements Ut and v are in the plane of the cross-

section under consideration, and w is normal to the section. 	The

positive direction of the tangential displacement component Ut is identical

to the positive direction of the curvilinear coordinate S. 	The positive

direction of the axial displacement component follows the positive

direction of the z axis. The three displacement components Ut, v, and

comprise a right-handed orthogonal system whrch is shown in Fig. 4.5.

Following the warping torsion theory and the distortion theory

described in the preceding chapters, the three displacement components can

be related to the twisting angle and the distortional angle of the

cross-section as 	 -

U t = Rt O + V (S)y

v	0'O ^ Vfl(S)yd

•= _WI________ W11

or in matrix notation

0

0

0
	

(4.21)

Id

Ut	 Rt

Ub_	
V1	=	0

w	 0

0	V5

0	v

-	 0

where O is the angle of twist, 0 	is the rate of twist,

Id is the distortional angle, -r	is the rate of distortion,

Rt is the perpendicular distance from the shear centre to the

tangent to the mid-line of the wall,

V5 (S) is the distribution function of the tangential displacement

in distortion,
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Va(S) is the distribution function of the normal displacement in

distortion,

is the unit torsional warping function, and

is the unit distortional warping function.

4.3.3 Degrees of freedom

We know that the displacement field of an element can be related to

the relevant displacement parameters on the element axis. Thus, the

generalized displacement field in the local coordinate system is expressed

as (Fig. 4.6)

{ii} = 	[u v w O	Oy O	ii'.	Yd * d J T	(4.22)

where V' = - and 	
= Yd

The total number of unknown displacements of a free joint with

respect to the global coordinate system, i.e. the degrees of freedom, amount

to nine

	

= (u V W	 V.	Id	 (4.23)

where U, V and W are the translations along the global X, Y and X axes

respectively, and 	, y and z are the rotations about the global X, Y and

Z axes respectively (Fig. 4.7). Hence, the total number of degrees of

freedom for a thin-walled box beam element is twenty-seven, nine at each of

the three nodes.

For a thin-walled beam element with a rigid cross-section the number

of unknown displacements at a node are reduced to seven, and the total

number of degrees of freedom of the element is twenty-one,

1i} = ( u v 	w	oc	o y	O	V	 (4.24a)
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and	{S}	[u	V	W	x	y	z	 (4.24b)

For a solid beam, since we ignore the warping freedom and since

deformation of the cross-section is not permitted according to the rigid

section assumption, there are only six unknown displacements at each node:

{} = fu	v	w	0x	Oy	O	 (4.25a)

and	 = [U	V W	 y	z] T	 (4.25b)

The truss element is defined as a fairly slender element with

frictionless pin joints. Only one uknown displacement exists at a node in

the local system, whereas the movement of a free node in the global

coordinate system is defined by three translations

{}	{w}
	

(4.26a)

and	s} = [U V WIT
	

(4. 26b)

Thus, the total number of degrees of freedom for a truss element is six.

4.4	Strain components and stress resultants

4.4.1 Strains and stress resultants due to axial loading and bending

The strains in the case of bending at a point in the element domain

can be expressed as

b

Cb

I	 ux "

I	 3z

= JL	aV
I	 I

ay (4.27)

Lca,bi	1

where	,	and ,bare the shear strains and axial strain respectively.



b
Yx

b
Iya

T ]

Ty3 r = Db

abj

(4.31)
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Substitution of Eq. 4.20 in Eq. 4.27 gives

I	
9u

_ev+

I 
-1	F

o x+ -

	

- x	+ y	}

Eq. 4.28 can be written as

1 0 0 0 0

0 1 0 0 0

0	0	1 . y	x

where

—o+y

ox +

Eb

ox

- aoy

(4.28)

(4.29)

(4.30)

Thus, Eq. 4.29 gives the strains at any point in terms of the displacement

of a point on the element axis.

The corresponding stress components at a point in the element domain

can be obtained in the linear-elastic case as

where the elasticity matrix is given by



(4.33)

(4.34)

(4.35)
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G 0 0

Db =	0	G	0
	

(4.32)

0 0 E

E________

in which E 1 = -j and G 
= 2(1^v)1-v

Substituting Eq. 4.29 and Eq. 4.32 into the integral expansion of

Eq. 4.2, we obtain

1	 +1/2 -1-
b DbcbdV =	-I/2	b ab dz

where % = D £b

and

100

	

010	coo	10000

	

Db f A 001	OGO	ol000dA

	

o 0 y	0 0 E 1	0 0 1 y

OOx

o	o	0

0 •	0 	0

E1	E1y 	E 1 x	dA

E1 y	E 1 y 2 E1xy

2
E1 x E 1 xy E1x

G
	

0

0
	

G

= 1A
	0
	

0

0
	

0

0
	

0

Integrating over the region A and since the x and y axes are the

principal axes of the cross-section, this gives

f A E I xdA=0 ,	fE1ydAO,

2and	= f , x dA. Hence we obtain

fE1xydA=0, 	IJy2dA
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GA
	

0
	

o	0	0

0
	

GA
	

o	0	0

0
	

0 E 1 A 0	0
	

(4. 36a)

0
	

0
	

o EiIx 0

0
	

0
	

o	o EiIyy

where A is the cross-sectional area and 	1yy are the moments of inertia

with respect to the x and y axes respectively.

In order to account more accurately for the shear strain energy due

to non-uniform shear distribution, an effective shear cross-sectional area

should be introduced (100). Thus, Eq. 4.36(a) can be further developed in

the form

GA5x

0

Db — 0

0

0

0	0

GAsy	0

0	E1A

0	0

0	0

0	0

0	0

0	0

Ejlxx 0

0	ElIyy

(4. 36b)

where A5x and Asy represent the beam effective shear cross-sectional areas

in the x-direction and the y-direction respectively.

The effective shear areas can be expressed as

1
Asx = - . A

Fsx

and
	

(4.37)

Asy =	. A
Fs,y

where F 5 is defined as the shear-deformation factor, which depends on the

form of the cross-section (107). For a rectangular section, F 5 --, for

a solid circular section, F 5 -, for a thin-walled hollow circular section,
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F= 2, and for an I or box section having flanges and webs of uniform

thickness,

F5	
(13(DZDl )D 	 4D22

2D	 tj	10r2

(4.38)

where D 1 = distance from neutral axis to the nearest surface of the flange,

distance from neutral axis to extreme fiber,

= thickness of web (or webs in box beams)

= width of flange

r = radius of gyration of section with respect to the neutral axis.

If the I or box beam has flanges of nonuniform thickness, it may be replaced

by an "equivalent" section whose flanges, having uniform thickness, have

the same width and area as those of the actual sections. Approximate

results may be obtained for I or box beams taking the effective shear area

as the cross—sectional area of the 'web 'plates onl'f (33.

The stress vector b represents the conventional stress resultants

for a beam, i.e., shear forces, axial force and bending moments (Fig. 4.6)

= ( Qx Q	N Mx M]T

	
(4.39)

The generalized strain vector Eb represents the shear strains, the axial

strain and the curvatures.

4.4.2 Strains and stress resultants due to warping torsion

Prom the specification of the displacement field described in

4.3.2, the strains due to torsion at a point in the element domain can be

expressed as (see also Chapter 2):

It	
4'

L	 2
A	03

(4.40)
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Eq. 4.40 can be written as

'1' I	 01_

A

0	w1j

(4.41)

where the generalized strain vector due to torsion is

I	ae3-Iii-
I

•= 
i	a2e

{ - ____

(4.42)

For the present we may neglect the strain energy due to the secondary

shear stresses associated with the normal warping stresses, and we consider

only the primary torsional shear strain. We can see later that a warping

shear parameter might be used for considering approximately the effects of

secondary shear stresses. Thus, the function 4 may be given as

for the St. Venant part of the shear strain

= -	 (4.43)
1	q8	for the Bredt part of the shear strain

t

where y 1 is the normal coordinate to the mid-line of the wall,

is the unit Bredt shear flow function,

t is the thickness of the wall.

The corresponding stress components are given by

t	

.Ys

a t =
	

= Dt
	

(4.44)

a ,t	 et

where the elasticity matrix

G	0

0	E1
(4.45)
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Substitution of Eq. 4.41 and Eq. 4.45 into the strain energy

expression gives

1v	tDtCt	=	 dz	 (4.46)

where the generalized stress vector is

-	- -	 (4.47)
=

The generalized torsional elasticity matrix can be expressed as

-	 0	G	0	 0

D t =	 A	 A	
dA

o	 o	E1	0

G4	0

=	 A2	
(4.48)

o	E1(A)r

Integrating the terms in the matrix over the whole region A we have

AZ

A 
E 1 w dA = E 1 J 1 , 	 (4.49)

and

1A G4 dA = 	
c (	) dA + 1A 4Cy dA 	 (4.50)

From the compatibility condition shotin in Eq. 2.46 we obtain

1A q
8	= 0 	 (4.51)

t

The total Bredt torsional moment is evaluated as

Mr B = fq 6 Rds	 (4.52)

Substitution of Eqs. 2.54(a), 2.64 and 4.51 into Eq. 4.52 gives

alternatively the Bredt torsional moment as 	-

2
	= G.	J. ) dA .	 (4.53)

t	az

From the definition of the Bredt torsional moment of inertia, we
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/

then have

(4.54)

t

In addition, the second integral on the right hand side of Eq. 4.50

can be expressed as

dA = E	. 2(--) = -} 2.t3 = 	 (4.55)

•	Thus, we have

JAG dA = G( J B +	= GJ 1	(4.56)

Hence, we can write the generalized torsional elasticity matrix as

-	GJT	0

Dt =	 (4.57)

0	E1J1

where	is the total torsional moment of inertia, and J 1 is the torsional

warping moment of inertia.

Note that in the case of a thin-walled closed section beam the

deforinational influence due to the warping shear stresses must not be

neglected. The generalized elasticity matrix has now to be modified in

such a way that the vector product Eq. 4.46 gives the same internal work

in the manner of the governing differential equation listed in Chapter 2.

Thus, we finally obtain the generalized torsional elasticity matrix as

GJT	0

=	 (4.58)

0 -

in which the coefficient 	is known as the warping shear parameter, and

is expressed as in Eq. 2.114.
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= L1/2 1d Nd dz (4.61)
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It is obvious that the generalized stress vector represents the

torsional stress resultants, which are the torsional moment and the torsional

bimoment (Fig. 4.6)

ci t = ( M -1-B1 ]T	 (4.59)

The generalized strain vector 	indicates the rate of the twisting angle,

and the second derivative of the twisting angle. It can be seen that if

the rate of twist is constant only pure torsion appears.

4.4.3 Strains and stress resultants due to distortion

It is convenient to express the generalized distortional strains

and stresses in the manner described in Chapter 3. The strain energy

increment due to distortion includes two parts:

1) the strain energy increments due to the internal work done by

the distortional warping stresses

2	 2
	+1/2 	 a

	

fvA,dE1,d dV = 1 112 A	r) 'A E 1 c4 dP (—	) dz

.1/2
=	1/2'	

a 
Td ) B 11 dz	 (4.60)

2) the strain energy increment associated with the transverse frame

action of the box, i.e., due to the internal work done by the transverse

bending stresses

^1/2
db E l cdb dV = f. t/2 A1d E1Jd 1d dz

where	is the distortional angle, Md is the generalized distortional

moment, and B 11 is the distortional bimoment.
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We may rewrite the above expression in matrix notation as

^1/2 -T -
Dc dV = -t/2d ad dz

where the generalized distortional strain vector is

-	 a2
'd	(Td	

-	d1

(4.62)

(4.63)

and the generalized elasticity matrix is

-	E1Jd	0
=	 (4.64)

0

in which d is the distortional second moment of area, and J, is the

distortional warping moment of inertia.

The generalized stress vector ad represents the distortional stress

resultants, i.e., the distortional moment and the distortional bimoment

(Fig. 4.6)

= [Md BJ1.]T
	

(4.65)

4.4.4 Generalized stress-strain relation

To conclude the derivations, the constitutive relation of linear

elasticity is of the form

= DL
	

(4.66)

where the generalized stress vector (Fig. 4.6) is

=	Q N Mx N MT	B1 Md B]T
	

(4.67)
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and the generalized elasticity matrix is

GAx 0
	

0

o GAsy	0

o	o
	

E1A

o	o
	

0

o	0
	

0

o	0
	

0

o	0
	

0

o	0
	

0

o	0
	

0

o	0	0	0	0	0

o	o	0	0	0	0

o	o	0	0	0	0

E i I xx 0	0	0	0	0

o	Ejlyy 0 	0	0	0

o	o	GJ-1.	0	0	0

o	o	o	! E1 J 1 0	0

o	o	0	0	E1Jd 0

o	o	0	0	0	EiJ

(4.68)

The generalized strain vector is

au
0v + -I	az

3v
ox + -az

aw
az

a

az

az

a 03

az

a 2 03

2
a

a z2

(4.69)

4.5 Transformation of nodal displacements

For the purpose of assembling the element stiffness which will be
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shown in further sections, it is necessary to transform the nodal 	-

displacements relative to the local coordinate system to displacements with

respect to the global system.

Referring to Fig. 4.7, let the resultant vector of translation

components of any point on the element axis be d and the resultant vector

of rotation components of the section be 4'. These can be given in terms of

global components as

=

(4.70)

=	+	+

The translation components u, v, w, and the rotation components

O, O, O with respect to the local x, y, x axes respectively can be obtained

by scalar products as

U =	 ox=

v = ci.; 	oy=
	 (4.71)

w =	 e=

Mter substituting from Eq. 4.70 into Eq. 4.71, we can have

u = UI x+Vj 	 x	-

	

A	A	A	A	A	A

v = U1Y+Vj Y+Wky

	

A	A	 A	A	 A	A

w = UI z+Vj . z+Wk z
(4.72)

Ox =	x+4j •	 .

=	•;+•;+•;

03	4'x-	Z+(•	 Z

where , I x, j	x and k . x are the direction cosines of the local x

axis relative to the global coordinate system; 	- , j	and k y those

of the y axis, and I 	z,	z and k 	z those of the local z axis.



(4. 74a)

0

0

0

A A
j.x

A A
j .y
A A
j.z

0

0

0

i.;

A A
k'z

(4. 74b)

0

0

0

0

0

0

1

(4. 74c)
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According to the single continuous assumption,' the warping

displacement mode and the transverse distortion mode should be transformed

with unity (156).

Hence, the local displacement field ii can be expressed in terms of

the global displacement field

=
	

(4.73)

where A is termed the transformation matrix.

The transformation matrices A for different types of elements are

expressed respectively as:

1. The truss element

A = [iz	jz	kz]

2. The solid beam element.

ix	jx	kx	0
A A	'S A	A A

i . y	jy	ky	0
'A A	A 'S	A A

i • z	j.z	kz	0

=	 A A
o	0	0	ix

o	o	0
A A

o	0	0	i'z

3. The thin-walled beam element with rigid section

1.;	
A;

i . ; .	.;

0	0	0

0 .	0 	0

o	0	0

o	o	0

	

0.	0	0

	

o	0	0

	

o	0	0

i:.; 
jA•;

	

A	A A A
i'y jy ky

A 'S 'S A A
i'z jz kz

	

o	o	0



o	0

o	0

o	0

	

i , ..;	i•;

	

;	.;

o	0

o	o

o	o

(4. 74d)
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0
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4. The thin -walled box beam element

.;	.;	i.;

.;	.;	;	0

.;	0
* 'S

o	0	0	i•x

o	0	0
.5 .5

o	o	0	i'z

o	o	0	0

o	a	0	0

o	0	0	0

The direction cosines are given by the following expressions: 	-

iy	cosXy (X X)/.I(Xp_X)2 + (Yp- Yf + (zp zia

jy = cosYy =(Yp Y)/IX_Xf+ (Yp Y) 2 + (Zp' z)2

ky = cosZy =(Z- Z)/ 1/X)+ (Y-Yf+ (Zp z?

X'2	Y 2	Z 2*
i'x = cosXx = (cosYy -- - cosZy 	)/-F	) + ( -- ) + (	)

X 2	3'( 2	az 2
= cosYx = (cosZy_cosXy)/J(-) + (-) + (--)

(4.75)

Y 2	3Z 2.5*	 Y
k'x = cosZx = (cosXy -- - cosYy 	)/J(	) + (	) + (

j 'z = cosXz =

j

.5.5	
!!. •/,/i?+ (.!)2+ ()l.z = cosYz =

1'; = cos Z z = 	
/ji'2

In the case where the principal planes yz of the element are parallel

to the YZ plane, the direction cosines are simplified to
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A A

i . x =

=	=	.; = ; i . ;;  = 0

AA	 Y2	Z 2
j.y = kz = 	 + ()

zA A	 A A 

= .-'- 
/J F 

)2 
+ (	)-ky = j1.z

(4.76)

When the principal planes xz of the element are parallel to the XZ

plane, we may express the direction cosines as

= 1

=	.; = ;.; = ;. 	= 0

A A	 A A 2
i . x = k z = --• ,/F- )2 + (	)

AA	 AA	 X II x 2	Z 2
iz = -kx	 + (i-)

(4.77)

When the principal planes yz of the element are parallel to the XY

plane, the direction cosines are

= 1

= ;.; = 	=	= 0

Y /rX2
1y =	=	/f(.) + (--)

2	ayiA A	 A A

-j.y = i • z = --.,/j(.) + ( -h)

(4.78)

4.6 Sub-parametric formulation

We now follow the standard displacement method which is given in

Reference 155 to establish the relevant sub-parametric formulae.

4.6.1 Shape functions for mapping the element geome

It has been shown that the normalized coordinates can be distorted
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to a new, curvilinear set when plotted in a Cartesian space (155). Hence

a most convenient method of mapping the geometrical shape of the

one-dimensional element is to use the interpolation function with natural

coordinate . Thus, for each element, we have

C =
	

(4.79)

where C represents the geometrical function of the element, Ge lists the nodal

values of the geometrical function, and N is the geometrical shape function

given in terms of the natural coordinates.

A special form of transformation, referred to as hierarchical mapping

is adopted here (80). The hierarchical shape functions are defined in terms

of the natural coordinate 	as

fori=land2

= (1 - 
2)	

for i3 	
(4.80)

where	=

The hierarchical shape functions take account of the variables

specifying the departure from linearity. Thus, the same shape functions

apply for the geometrical mapping of both the straight elements defined by

two end-nodes only, and the curvilinear elements defined by two end-nodes

as well as a mid-node.

Using the hierarchical mapping defined by Eq. 4.80 the global

coordinates and the characteristic sectional properties of any point on the

element axix may be given in terms of the corresponding nodal values

as



z

Asx

Asy

A

3
=E

i=1

Iyy

Ji/lit

JI'

N1

M1

0

0

M3

M1

N1

M

M1

M1
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X

Y

z

Asx

Asy

A

'xx

Iyy

Jr/lit

J 1I	-
J	L	 JL

(4.81)

From the definition of hierarchical shape functions, when the mid-node

is required the corresponding nodal values represent the departures from

linearity, i.e.,

X	 AX

Y	 AY

Z	 AZ

A	 AA5x

A5y

A____

1xx	 (4.82)

1 yy	 AIyy	 -

Mi/pt

Md

i=3	 M	3



3

x

Y

Z

Asx

Asy

A

'xx

Iyy

IT

III

> -

1

(4.83)
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The departures are calculated simply as

AX

AY

AZ

AAsx

AAsy

AA

AIxx

AIyy

Al1

Al 1 /p

AId

AJ

> - <

3

X

Y

Z

Asx

Asy

A

'xx

'yy

JT

Il/lit

III

X

Y

z

Asx

Asy

A

'xx

'yy

IT

JI /lit

Ju
	

2

It is apparent that for a straight element and for linearly-varying

geometrical properties, all the departures are equal to zero.

4.6.2 Shape functions for defining the displacement field

The displacement field in the global coordinate system can be

expressed in terms of a set of discrete.nodal displacements 6e by the use of

suitable shape functions N

=	 (4.84)

Since only C 0 continuity is required for the analysis of axial loading

and bending, Lagrange polynomials of the second order, in dimensionless form,

are adopted. The shape functions for any point on the beam axis are defined

in natural coordinates r as

=	
+ ) 	for i=l and 2

(4.85)
= (1 - 	 for i=3

where	=	 -



—	f	–	lf
–	.	–

(4.87)

180

It has already been established that the potential energy functional

due to warping torsion and distortion contains second derivatives of the

unknown functions, and the physical problem is characterized by fourth order

differential equations. Continuity conditions between elements have now to

be imposed not only on the unknown quantities themselves but also on their

derivatives. 	This is the so-called C1-continuity problem (155).

When the displacement function and its slope are prescribed at the

nodes, the general interpolation function can be expressed as

—	f	—
f =	f1 + N 2 ( •-• )i^ N 21 f + N22 (	)	N31f3 + 32 ( -; )3 (4.86)

where f is the value of the unknown function at node i and ( ---- ) is its

first derivative.

In order to differentiate the interpolation function with respect to

the Cartesian coordinate z, it is necessary to use the rule of partial

differentiation. For a one-dimensional problem the derivative is replaced

by

where the Jacobian factor J can be expressed, from the definition of the

z axis, as

Z —,/()+ 	a	 2
J =	

–
(4.88)

Differentiating Eq. 4.86 once we obtain

= lN 1 +	( — >1 + _._! f2+	22 (	2 
+	31	_____ ( — )3]

(4.89)

Since three discrete nodes are specified in each box beam element,
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a fifth order polynomial expression would be appropriate 	 -

N = A1 + A2 ? + A3	+ A4 3 + A5 r 4 + A6 5 ,	 (4.90)

and	-

= A + 2A3 2 + 3A4 3 + 4A5 4 + 5A6	. 	 (4.91)

Noting that N 11 = 1 and -i2=l at node i but is zero at other nodes,

we can obtain the shape functions as

=	
(4 - 5 - 22^ 33)

N12 =	(1 -) (1 	
2)

N21 =	+ 5 - 2	
33)

(4.92)
N22= J22(1 +t)(1-1)

N31 = (1 
_2)2

-	 22
N32 = J 3 (l - )

where 1	2 and J 3 are the Jacobian factors at the three nodes of the element.

4.6.3 Displacement field

The global displacement at any point on the beam axis in terms of the

nodal values are given by

0	0	0	0	0	0

0	0	0	0	0	0

0	0	0	0	0	0

N11	0	0	N1Z) 0	0

0	i1	0	Ni() 	0	0

0	0	Nj1	N) 0 	0

i1	Nji	NjI 'S"	NI2

	

--(iz) ----(j .z) ----(kz) i-	0	0

0	0	0	 i1	N12

000	 J1j
az



ibstiti

3

i1

SI

U

V

w

ox

oy

1d
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U

V

w

ition of Eqs. 4.93 and 4.74 into Eq. 4.73 gives

%A	fl
N1 i .x N j•x N1kx 	0	0	0	0	0	0

"A

N1 iy N 1 j . y N 1 k. y	0	0	0	0	0	0

.-	.:..'	i''
N1iz Nyz N 1 k•z	0	0	0	0	0	0

- AA -	 -

o	0	0	N11 ix	N11 jx	N11 kx	0	0	0

-	-	- AA

o	o	0	N11i•y	N11 jy	N11 ky	0	0	0

-	-
o	0	0	N11 iz	N jz	N11 kz	0	0	0

Nj'	Nj1 A	Nj1 A	-
o	o	0 — z —yz —kz N1 2 0	0

az

o	0	0	0	0	0	0	N11	N12

o	o	o	o	o	o	o	
i2

L-

(4.94)
Reducing the unnecessary high order terms we can finally obtain

= [i 	N	=	
(4.95)

where the displacement shape function matrix N is of the order 9 x 27, and its

submatrices are expressed as

	

N1 ix N j . N1	0	0	0	0	0	0

N1 iy N 1 y N 1 ky 0 	0	0	0	0	0

N1 iz N 1	N1	0	0	0	0	0	0

o	0	0	N1 x N jx N1 	0	0	0

=	0	0	0	Niy	N1j .y	N1k. y	0	0	0	(4.96)

0	0	0	iz	Nj1 z	N11 kz	N12	 °

0	0	0

0	0	0	0	0	0	0	N11	N12

0	0	0	0	0	0	0	--	-'

(i = 1, 2, 3)



(4.98)
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4.6.4 Strains

With displacements known at all points within the element the 'strains'

at any point can be determined. From Eq. 4.69 the strains can be written

in matrix notation as

= Lu	 (4.97)

where L is

L=

a suitable linear operator

0	0	0	-1

o	 0	1	0

Using Eq. 4.95, the above Eq. 4.97 can be approximated as

=	 (4.99)

where the strain matrix

= LN=	2 B3]
	

(4.100)

is of the order 9 x 27, and its submatrices are obtained by the multiplication

of matrices
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N1	.	A
ix	•x ---- k•x -N 1 ry -N 1 j •y -N 1 ky	0	0	0

	

Aft.	 Ai%
-	1< Y	N ix	N1 jx	N Ivx	0	0	0

A

o	0	0	--i i." !i " --1-	 0	0x

- N1 'A _N ''
0	0	0o	0	0	-1•y -yy

i'	 i114	o	o
o	0	0	 i Z a z	TT	a

2-

o	o	o	-	
- Nj A	aNji A A	aNj2

jz-----kz ----- i -	0	0

	

a z	az	aZ

o	0	0	0	0	0	0	N11	N12

2	 2-
aNit	aNi2

o0	 0	 0	 0	 0	 0 ---- -----

(1 =1, 2, 3) 	 (4.101)

The derivatives of the shape functions with respect to Cartesian

coordinates z are related by

= J 1	i 	0	

(4. 102)

a 2 N•	3j-1 aN. 	-1 2 ____

and	1 =	__L ^ (J ) 	 (4.103)
az 2	a	az

a 2	az 2
where J'1 

=	,/// -	
)Z + (	) + ( --- )	 (4.104)

and

____ - - ax . a2 x a	a2 y	az az	ax 2	 2	 2

a	-	 + •--	r + ---• ---- I ((--)	a r+ (-) 
+	 (4.1O5)

We can now obtain the derivatives of the shape functions with respect

B 1 =
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to natural coordinates 	directly from Eqs. 4.85 and 4.92 	 -

=-

=+
	

(4.106)

= -2t

N2	=	 (4.107)

and

	

N11 =	
(8 - l52_ 8+ l5)

12	J)

	

- = 	(2 - 3c2 
4 3 54)

- l5)21 = - (8 + l5 r? -

	

22 =
	

(-2 -	 4 + 5c4)

31 = -4 +

= J 3 (l - 6+ 54)

(4.108)
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2-.
N =	

(8 - 30 - 24 + 603)

2.-
N12 =	i (2 - 6t - 12r 2 + 2Q)

,2 T
2-
N21 = -.(8+3o-24-60t)

2-	

= -(-2 - 6 + 122+ 20)

a 2	4

2
____ = —4 + 12

32 = J 3 (-12C + 20)

(4.109)

From Eqs. 4.80 and 4.81 we can obtain

=	(X 2 - x1 ) - 2t X

-	=	(Y 2 - Y 1 ) - 2r Y 	 (4.110)

=	(z 2 - Z 1 ) - 2 tZ

Substituting from Eq. 4.110 into Eq. 4.88 we have

=	J(x2 - X 1 + 4X)2 + (Y2 - Y 1 ^ 4Y)2 + (Z2 - Z 1 + 4Z)2

=	I(X2- X 1 4AX)+ ( y2 — y1 — 4Ay )+ (Z 2— Z 1 — 4Zt 	(4.111)

J 3 •=	J(x2 - X 1 )1 + (Y2 Y1 )+ (Z2 - Z1)2

in which

= X3 — (x 1 -i- X2)

AY = Y3 —	Y1+Y2)
	

(4.112)

= Z 3- (z1 ^ z2)
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4.7 Element stiffness matrix and equivalent nodal forces 	 -

The virtual increment of the displacement field can be approximated

by

=	
(4.113)

Accordingly the increment in strains is given as

= BASe	 (4.114)

Ignoring the initial strain and initial stress system, Eq. 4.1 becomes

'4/2 -T- -
D c dz -
	tu F dV = 0	 (4.115)

where F is the applied force vector.

Substitution of Eqs. 4.99, 4.113 and 4.114 into Eq. 4.115 gives

-e T +½- T - .  -	 -e T	-T-
M	1/2B D B dz $ - (AS ) 	N F dV = 0 	 (4.116)

Since the virtual displacement 1i	is arbitrary, Eq. 4.116 can be

written as

K e . e = Fe
	

(4.117)

where Ke is the element stiffness matrix and is expressed, on substituting

for dz from Eq. 4.88, by

e 3½-T- -	+1 -T- -
K = fv2BDBdz = f 1 JBDBd1 (4.118)

The element stiffness matrix of the box beam element is of the order

27 x 27. Subsequently it follows the dimensions of 21 x 21, 18 x 18, 12 x 12

and 6 x 6 for the thin-walled beam element, the three-node solid beam

element, the two-node beam element and the two-node truss element

respectively. 	The integration of the stiffness coefficient is carried out

exclusively by the Causs-Legendre quadrature. Thus, Eq. 4.118 can be

evaluated numerically by.



e—T —
F = fNFdV (4. 120)

+V2 —T{Fe }B. 	
=	

14 bpA dz (4. 122a)
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Ke	
1	T	I	)( 2	Y 2=	H1(BDB '-t

	+	
+ (Z)Z) (4.119)

where H is the weight coefficient and n is the number of sampling points

(155).

It can be seen that exact integration of the element stiffness should

be facilitated by three-point Gaussian quadrature for the axial and bending

contribution, and six-point quadrature for the torsional and distortional

contribution. We know that the Bernoulli-Euler hypothesis has been

modified here to include shear deformations. The rotations due to bending

are then interpretated as shear strains. A great excess of shear strain is

therefore stored by the element. This problem can be overcome by using

the reduced integration method (45, 80, 153). Thus, the two-point

integration procedure which exactly integrates the bending contribution, but

underintegrates the shear contribution, is used instead of three-point

integration. This greatly improves the element performance and yields

accurate results for both thick and thin beam situations.

As shown in Eq. 4.116 the general form of the consistent nodal loads

is written as

We consider here only the solutions due to gravity loads, uniformly

distributed loads and the point loads (Fig. 4.8)

Fe = {F 
e }B.F. 

+ {Fe f F. + {Fe } P. F.	
(4.121)

The consistent force vector due to gravity loads can be expressed as

where p is the specific weight of the material of the element, and A is the

cross-sectional area which varies following Eq. 4.81.
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Since we have fixed the global Y axis normal to the level plane, we

may express the body force vector as

.% A A A A A	 A A	 A A

b = (j . x jy jz 0 	0	jx(y — y 5 ) 0	jx(yG ;) 0]T (4.123)

where jx, j • y and j'z are the direction cosines of the Y axis relative

to the local x, y and z axes respectively, y indicates the position of the

centroid measured from the top flange, and y is the position of the shear

centre evaluated by Eq. 2.105.

The consistent force vector due to distributed forces is written as

{Fe}t 	
= t12	

qe dz

n
=E H.(TqeJ()2+	Y

i::1

where the distributed forcevector is (Fig. 4.8)

qe 
=	 X,Xt "ext mct b1 1d 

b ]T

(4.124)

(4.125)

The distributed components per unit length are all related to the local

coordinate system of the cross—section, and are assumed to be constant

along the element.

The statically equivalent nodal forces due to the applied concentrated

forces can be expressed as

{F}M =	 (4.126)

Any point load applied on an element is specified in terms of its

global components. The point of application of the concentrated load is

defined by the natural coordinate and the local coordinates x and y.

The concentrated force vector is then (Fig. 4.8)

P =	 1)' P	Mx My M	0	Md 
0]	 (4.127)
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The components of the force vector in Eq. 4.127 are calculated by

the following expressions:

= Px(ix) +	 + pkx)

Py = Px(iy) + Py(i . ;) . +

+ py(jz) + pkz)

Mx	Mx,ext(i) + Iy,ext(ix). + z,ext(k	+ P3 y	 (4.128)
My	 +	ext(iy +	 +

N3	Mxex(i. z) + i,{y,ext(j • z) + Mz,ext (k z) +	x —	YYS

M d	[	. PyX ^ ?x(y-y+ YG) ,	bt/2 , or

M d =	[. PyX - (1 +	)(l_d)bx + P(y_y+y)] IX >b/2

where bx = x - bt/2 (x > 0), or bx 	x + b t/2 (x < 0) ,

and d is the distribution factor which can be obtained from the analysis

of a frame formed from a unit slice of the box beam.

4.8 Boundary conditions

Using the basic equilibrium and compatibility conditions, we can

finally obtain the well known stiffness equation as shown in Eq. 4.3. The

structure stiffness matrix is formed from the assembly of the individual

elements of the structure. However, without substitution of a minimum

number of prescribed displacements, or boundary conditions, the complex

stiffness matrix K is singular. The minimum number of prescribed

displacement components should be equal to the maximum degrees of freedom

of a typical free joint in the system.

For some conventional support conditions used in bridge construction

the following holds true:

1. If the beam is fixed at the support, no deformation arises in

the support cross-section, and therefore the following may be written
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u=v = W = 01	U =v = W = 0

0 x = 0y= 0 3 = O	 x=	f= c Z	0

= 0	 (4.129)

= 0

= 0

2. If the support cross-section is connected by a pinned support and

is braced by a rigid diaphragm, and yet is free to warp, then the independent

boundary conditions are

u = v = w = 0 - 	U = V = W = 0

0 3 = 0

= 0

3. If the cross-section is supported by a linear roller which is

orientated perpendicularly to the longitudinal axis, and also is braced by

a rigid diaphragm, but is free to warp, the boundary conditions may be

adjusted to

U = V = 0

0 3 = 0

= 0

4. If the free end cross section of a cantilever is braced by a

diaphragm to resist its transverse deformation only, yet is free to warp,

only one boundary condition applies and that is

= 0
	

(4.132)

From the above conditions, it is obvious that in some cases such as

curved bridges or structures with inclined supports the imposed restrictions

at the boundaries are in the local xyz directions. It would be very unlikely

that the orientation of a single global coordinate system would comply with

this requirement. Thus, further modification of the structures stiffness



(4. 133)

F1

F2

F.

I	

F1

F2

X1F1

(4.135)
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equation should be made for dealing with the boundary conditions.

The complete stiffness matrix of a skeletal structure prior to the

introduction of the boundary conditions would have the following pattern:

K11

21

i1

Kni

K12	 Kin	'i

K22	 K2n	62

1(12 ......1 iI .....Zin	•I

1(n2.....K ......Jnn	n

If the prescribed displacements in the directions of the local frame

are specified at the 
1th 

joint of the structure, from Eq. 4.73 we have

K11	K12 .....K11(X1.....ln

K21. .........
	

J

	
F2	

(4.134)

....K11(X1)'.....

Kn
	

In

Since the premultiplication of the 
1th 

row on both sides by X would

not disturb the equality, and noticing that in orthogonal coordinate systems,

X.XT = 1, Eq. 4.134 finally becomes

	

11	K12 .....K1IXT......Kin

	

1(21	K22

	

X1K11	 -: XjKjn

K1.........Kn1A........Kç

where A1 is the transformation matrix at the 	node and is related to the

element specifying the local coordinate system.
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Now, the boundary conditions specified by the local coordinate

system can be introduced to Eq. 4.135 by simply erasing the corresponding

rows and columns. If there is more than one node at which the local

boundary conditions are defined, the above procedure must then be repeated

for each of these nodes.

In certain cases, alternative treatment for boundary conditions may

be the use of appropriate springs at support nodes. Note that the spring

support stiffnesses are given in a local coordinate system which can

produce large off-diagonal terms when the transformation to the global

system is done. These terms can influence the solution accuracy of the

equilibrium equations. Thus, it is still preferable to use the technique

indicated in Eq. 4.135.

4.9 Internal forces at the ends of the individual elements

The solution of Eq. 4.3 yields the displacement field & at the nodes

of the structure. Although the internal forces can be related to the

discrete nodal displacements by combining Eqs. 4.66 and 4.99

-e	
(4. 136)

it is advantageous to use the following formulae for recovering the internal

forces at the respective faces of each element:

= X_1 { ( 4 K2 K3 ] 	- F?
	

(4. l37a)

and

=	 { I K1 K	K3 3 & - F }
	

(4. l37b)

where 4 , K2 ........ K3 are the submatrices of the element stiffness matrix,

the subscript numbers 1, 2 and 3 indicate the end-nodes and the mid-node

of the element respectively, and F , 	are the equivalent nodal forces

produced by the external forces applied on the element considered.
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The secondary or flexural torsional moment due to the warping shear

stresses can be calculated from

M11 = MT -  Pt GJ1 ) 1 (_ J -i  1 • Z	jZ

-

-
N12

-1 z
3z

ti

(4.138)

and the primary torsional moment is

M1 = M1 - N 1- 1	(4.139)
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I i..

Fig. 4.1 Thin-walled box beam element with three nodes

a'
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(a) Thin beam theory 	 (b) Thick beam theory

Fig. 4.4 Cross-sectional deformation of beam

Fig. 4.5 Displacement field in generalized coordinate system
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CHAPTER 5

NUMERICAL EXAMPLES AND APPLICATIONS

5.1 Introduction

The objectives of this Chapter are first to demonstrate the

reliability of the present analytical method relative to other methods or

experimental studies and secondly to show its versatility.

A number of initial problems were analysed to check the theory as well

as the computational procedure, CUBAS, and some of the results are reported

herein. A subsequent series of applications of the analysis to cases of

different types of box beam was investigated to establish the validity and

generality of the proposed formulation. The influence of the number of -

diaphragms between supports on the warping stresses and transverse

distQrtional bending stresses was also investigated.

5.2 Numerical examples

5.2.1 A deep cantilever beam

The first problem to be considered was a relatively deep beam, Fig. 5.1.

It was subjected to both uniformly distributed and concentrated loads. The

beam was idealized either with two-node beam elements or with three-node

beam elements for various discretizations. The deflections and bending

moments are plotted for both loading cases (Figs. 5.1 and 5.2). The results

agree very closely with the Engineer's theory of bending (141). Tip

displacement results for several discretizations are also presented in

Table 5.1. It can be seen that the three-node beam element results are

vastly superior to the two-node beam elements especially for the case of

concentrated load.
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5.2.2 L-type cantilever load

The structure in Fig. 5.3 was analysed with a 4 element mesh using

three-node beam elements and was subjected to both uniformly distributed

and concentrated loads. The variations of displacements, bending moments

and torsions are plotted in Figs. 5.3, 5.4, 5.5 and 5.6. These results

demonstrate that the bending moments in the beam BC have been accurately

transferred to torsion. The tip displacements in both loading cases include

three components which can be calculated individually as follows:

Bending displacements,

3
(5 5 = 2 x PyL
	= 0.28294146

3EIxx
rn4	i	4

2 x ____ + ____ = 2.47573777
8EIxx 3EIxx

Shear displacements,

= 2Fsyi_. = 0.00589463
GA

= 2Fs, PY	= 0.05894628

(for concentrated load),

(for distributed load),

(for concentrated load),

(for distributed load),

Torsional displacements,

= MT2 = 0.53051524
G

= ____ = 2.65257618
G T

(for concentrated load),

(for distributed load).

Thus, their sums equal 0.81935 and 5.18726 respectively, which are identical

to the computer solutions presented.

5.2.3 A semi-circular beam

The structure was subjected .to a concentrated load and was idealized

with a 4 element mesh using three-node beam elements. The variations of

deflections, bending moments and torsions are plotted in Fig. 5.7. These
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results demonstrate that the three-node beam elements can accurately

accommodate very large curvatures, and the additional deflection due to shear

which plays a significant part in the total deflection for this particular

case.

5.2.4 Dome structure

The dome structure shown in Fig. 5.8 was analysed using the three-node

beam element. Since the structure is axi-symmetric, only one beam was

analysed. A 4 element mesh was used to model the curve. The results are

shown in Fig. 5.9, which correlate very closely with the solutions obtained

using semiloof beam elements (95).

5.3	Application to the analysis of single-spined box beams

5.3.1 A simply-supported box beam subjected to an eccentric live point load

To verify the validity of the inclusion of warping and distortion

effects in the element formulation, a simply-supported box beam example

given by Maisel and Roll (83) was considered first. The span L is 30 m and

the diaphragms are located only at the ends where there is full torsional

and distortional restraint. The diaphragms are assumed to offer no

resistance to warping. At midspan there is a live point load of 1000 kN over

one web as an approximate idealization of one bogie of an HB vehicle.

Thin-walled box beam elements were used with an 8 element mesh to analyse

the beam. Fig. 5.10 shows the geometry and loading, and Fig. 5.11 gives

the bending moment, shear force and torsional moment diagrams due to live load.

Torsional warping as well as distortional warping effects are shown in

Figs. 5.12 and 5.13 respectively. The torsional warping theory of

Kollbrunner, Hajdin and Heilig (59, 57, 42), and the distortional warping

theory based on the beam-on-elastic-foundation analogy, neglecting shear
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deformatiOn, (135, 134, 150), were used to obtain the solutions of Eq.-2.116

and Eq. 3.114 for comparison. The results agree very closely with the

results of finite element method.

5.3.2 A fixed-ended box beam subjected to an eccentric live point load

As a second example, consider the beam and loading pr'eviously

illustrated in Fig. 5.10, with the end conditions changed to fixed-ends,

i.e., full restraint of bending, torsion and distortion. The live load

torsional warping effects are shown in Fig. 5.14, and the distortion along

the beam of internal stress resultants due to cross-sectional deformation

is shown in Fig. 5.15. As in the case of the simply-supported beam, the

finite element results are very close to the differential equation solutions.

As shown in Figs. 5.12 and 5.14, the total internal resistive torsional

moment of a box beam is made up of a combination of St. Venant and Bredt

shear stresses and torsional warping shear stresses. Note that the sum of

their magnitudes remains constant at M , /2along each half span. In addition,

the torsional warping stresses are highly localized in the longitudinal

direction, as indicated in Figs. 5.12 and 5.14. However, the distortional

warping stresses, shown in Figs. 5.13 and 5.15, are less localized

longitudinally provided only magnitude is considered and the reversal of

the sign of the solutions is ignored.

5.3.3 Simply-supported box beam example given by Vlasov

The third example examined is a simply-supported box beam considered

initially by Vlasov (146). The span of the beam is 10 in, the depth 1200 mm

and the width 700 mm. The wall thickness is 10 mm for vertical plates and

16 mm for horizontal plates. Poisson's ratio is assumed to be zero. The

beam is loaded by a uniformly distributed load of 100 kg/rn (981 N/rn) applied

in the plane of one of the vertical plates. Only one thin-walled box beam
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element was used for each half of the beam. The maximum stresses for the

cases of symmetrical and antisymmetrical load are shown in Figs. 5.16(a) and

5.16(b) respectively. Fig. 5.16(c) shows the composition of the stresses.

Nikkola and Paavola in Ref. 90 have analysed the same problem using a

special type of finite element with a twenty-element mesh. Both Vlasov's

and Mikkola's results are shown in parentheses for comparison.

5.3.4 Simply-supported box beam example given by K.istek

Another simply-supported box beam with a span of 262.47 ft (80.05 m),

discussed by Kistek (63), is further considered. Mikkola and Paavola

have also provided results for the same beam (90).

The cross-section and the uniformly distributed loading are shown in

Fig. 5.17(a). The Young's modulus is taken as 4500 kip/sq.in (31.05 kN/mn2),

and Poisson's ratio as 0.15. The example was solved by the method described

in this thesis using two box beam elements for each half of the beam whereas

10 elements were necessary in Mikkola's and Paavola's method in Ref. 90.

The deformed shape of the cross-section at midspan is shown in Fig. 5.17(b).

Figs. 5.17(c) and Fig. 5.17(d) show the longitudinal warping stresses and

transverse bending moment diagrams at midspan respectively. The results

from Ref. 63 and Ref. 90 are also given in parentheses in each figure. The

agreement between the results obtained by the different methods is quite

satisfactory.

5.3.5 Sawko and Cope's simply-supported box girder model

A simply-supported box girder model with cantilever slabs, fabricated

from perspex sheets, was tested by Sawko and Cope (20, 118, 119). The span

of the model was 60 in. (1524 mm) and the cross-section was as shown in

Fig. 5.18. An asymmetrical point load of 224 lb (0.9968 kN) producing

torsional effects applied at midspan above the web was considered. Th sanu
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problem has also been considered or referred to in Refs. 50, 85 and 90

Since these existing results vary considerably, it is difficult to make a

satisfactory comparison. Thus, we here recalculate this problem by using,

for further comparison, the LUSAS finite element system (79, 80).

The finite elements chosen in the LUSAS system are the flat thin shell

box elements (SHI6) each with six nodes, taking account of both membrane

(in-plane) and flexural (out-of-plane) deformations. In order to ensure

that the boundary conditions are the same for the present study four node

thin shell box elements (sH14) are also employed as the diaphragms resisting

torsional and distortional deformations of the cross-sections at the end

supports. The finite element idealization of the model is shown in Fig. 5.19

in which 84 elements are used.

Eight thin-walled box beam elements were used for the whole beam in

the present study. Mikkola and Paavola (90) however, calculated the same

box girder using a thirty element mesh. In order to consider the shear lag

effect, effective breadth ratios are used from Table 2.1 (93, 13, 18).

Fig. 5,20 displays the deformed shape of the cross-section at midspan.

Good agreement between the present results and the L!JSAS results is evident.

The longitudinal membrane stresses are shown in Fig. 5.21(a), and the

longitudinal warping stresses and the transverse bending stresses at the

outer surface at midspan are shown in Fig. 5.21(b) and Fig. 5.21(c)

respectively. A close agreement for practical engineering purposes is

evident between the results obtained from the box beam elements and from

the LUSAS program.

5.3.6 Tapered box girder models given by Idistek

The box girder analyses and experiments carried out by Kistek (62)

to illustrate the two steps in his elastic procedure, were selected as a

further example to verify the present work.
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Kistek did the experiments on tapered celluloid box girder models

with fixed ends. The models are shown in Figs. 5.22 and 5.23. The span

of the first model is 24 in. (610 mm), and the width is 1.6 in. (40.6 mm),

while the depth varied parabolically from 3.2 in. (81.3 mm) to 7.2 in.

(182.9 mm). The second beam had a span of 48 in. (1220 mm), a width of 4 in.

(102 mm), and a depth which varied parabolically from 4.7 in. (119 mm) at

the supports to 3.2 in. (81.3 mm) at midspan. The wall thicknesses were

constant at 0.12 in. (3.05 mm) throughout both models. The modulus of

elasticity was 500,000 psi (3.45 kN/mrn 1 ) and Poisson's ratio was 0.33.

In the first step of Kistek's analysis, the box was assumed to

have no transverse distortion. The stiffness of the cross-section for the

first model was ensured by means of diagonal cross braces at regular intervals.

The girder was loaded at both ends by couples, the value of which was

125 in.-lb (14.13 rn-N) and the ends were fixed to prevent warping.

In the present study an analysis was carried out using 15 thin-wa1le

beam elements. The variation of the longitudinal warping stresses in one

of the corners is plotted in Fig. 5.24 together with results obtained by

Kistek (62).

The second step of Kistek's method consisted of analysing the box

girder for transverse distortion. The girder was loaded by a pair of

distributed loads along the diagonal of the box. The load had a constant

vertical component of 0.716 lb/in. (125 N/rn) and its horizontal component

varied parabolically from 0.609 lb/in. (106.5 N/rn) at the supports to

0.895 lb/in. (156.6 N/rn) at midspan.

Three elements for each half of the beam were used in the present

solution. Baant and El Nimeire (9) also used the same models as illustrative

examples. The vertical deflections at the corner point for all the

comparable methods are given in Table 5.2, together with Kistek's experimental
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results. Graphical comparisons are also shown in Fig. 5.25. Agreement

was found to be good.

5.3.7 A double-cell box beam under twisting loads

The distortional and torsional behaviour of a box beam with a

trapezoidal double-cell cross-section has been demonstrated by the analysis

of a simply-supported prestressed concrete bridge given by Richmond (104, 106).

The span of the box beam is 200 ft (61 m) and the trapezoidal cross section is

shown in Fig. 5.26(a). Twisting loads of 40 kips (178 kN) are applied at

inidspan. The modulus of electricity is 3 x 10 kip/sq.in. (20.7 kNlmin2)

for G/E =

Eight thin-walled box beam elements were used for the present analyis.

Finite element analysis by means of the LUSAS program was also carried out

for comparison. Figs. 5.26(b), 5.26(c) and 5.26(d) show the solution of the

example compared with the stresses and deflections of a finite element

solution using thin shell elements. It can be seen that fairly good results

are given by the present study compared with the finite shell element analysis.

5.3.8 A two-span 3-cell box-bridge given by Scordelis and Davis

Fig. 5.27(a) shows a two-span three-cell box-bridge with no overhangs

but with rigid diaphragms provided at all support sections. The cross-

section of the 3-cell structure is depicted in Fig. 5.27(b). A 1000 lb

(4450 N) line force, concentrated over 1 ft (305 mm) longitudinally and

applied over one exterior web at the centre of each span, comprised the

loading. The material properties are also indicated in Fig. 5.27.

The bridge was first analysed by Scordelis and Davis (126) to study

the efficiency of the computer programs which they had developed using the

folded plate theory compared with the finite element and finite segment
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approaches. The two span box bridge has also been analysed by Loo and

Cusens using the program COSBOB based on the finite strip approach(77).For the

present method, separate computer analyses were performed again by the

finite element method with either a thin-walled box beaui element mesh or

a thin shell element mesh. Results by the LUSAS program are considered

exact for purposes of comparison in order to assess the relative accuracy

of the present method. Longitudinal symmetry of loading permitted treatment

of only one fixed-simple span by the two methods The concentrated line

load is simulated by a narrow patch load. Eight box beam elements were used

for the present study, while a total number of 140 shell elements were used

for the LUSAS analysis.

Vertical deflections at the top of the loaded web are shown in Fig. 5.28.

The vertical deflections are generally the least sensitive of the results

obtained and the present approach produced deflections comparing favourably

with those of the finite shell element analysis.

The longitudinal distribution of longitudinal in-plane stresses near

the box corner is plotted in Fig. 5.29 for each of the two analyses. A typical

plot of the transverse slab moments is shown in Fig. 5.30. Although the

breadth of the box-bridge in relation to its length is not suitable for

approximating the substructure as a single-spined beam, the figures indicate

general agreement among results for the two methods except in the vicinity of

the concentrated load. The thin-walled beam solution appears to underestimate

the stresses under the applied load.

5.3•9 A simply-supported single-box girder bridge curved in plan

As a final example, this box-bridge illustrates the versatility of

the present theory for describing the structural behaviour of box beams

including those of curved spine-beam bridges. 	The curved box-bridge was
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initially presented by Meyer to illustrate the validity of the curved strip

theory and of the computer program CURSTR (87). By means of the program

CURSTR it is possible to analyse prismatic folded plate structures curved

in plane and simply-supported along their straight radial edges.

The dimensions of the curved box girder are shown in Fig. 5.31(a). The

amodulus of elasticity is 432 x 10 kip/sq.ft (20.69 kN/mm ), and the

Poisson's ratio is 0.15. 	The girder is subjected to a single concentrated

1 kip (4.45 kN) load at midspan over the outer web.

The present analysis was carried out by using box beam elements with an

eight element mesh. The state of stress in the curved single-box girder

bridge is plotted in Fig. 5.31(b) and Fig. 5.31(c) together with the values

obtained by computer programs LUSAS and CURSTR respectively. 	It can be seen

that fairly good results are given by the present study. The only significant

difference in transverse moments is in the region of the local disturbance

at point loads. The difference in transverse bending moments between the

present study and the finite element solution is due to local plate bending

of the cantilever.

5.4 Box beam diaphragms

In the present analysis of box beams, the diaphragm is assumed to be

rigid in its own plane and absolutely flexible normal to that plane. Thus,

the diaphragm prevents the deformation of shape of the cross-section in which

it is placed, but does not induce any bimoment effects.

Diaphragms may be classified according to their position into support

diaphragms and intermediate ones. Accordingly, they have a somewhat different

effect on the behaviour of the box beam.

The support diaphragms prevent deformation of the cross-sectional shape
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at supports, and consequently reduce significantly the transverse 	-

distortional bending stresses and the longitudinal normal stresses which are

caused by torsion accompanied by a deformation of the cross-sectional shape.

The intermediate diaphragms also reduce the deformability of the cross-

sectional shape, but their influence manifests itself differently both with

regard to longitudinal warping stresses and also to transverse distortional

bending stresses.

An analysis based on the box beam given by Kistek (Example 5.3.4) was

carried out with different numbers of rigid diaphragms located between end

supports. The relative values of the longitudinal warping stresses and

transverse distortional bending stresses vary in accordance with the number

of intermediate diaphragms in the curve shown in Fig. 5.32. All values in

the diagram refer to the values for the girder which is provided with rigid

support diagrams only and is used as the datum for comparison. The transverse

distortional bending stresses as well as the warping stresses decrease

rapidly with an increasing number of rigid diaphragms between supports.

Actually, on the basis of the calculations for many practical and

possible cases of box beams with different numbers of intermediate diaphragms,

carried out by Kistek, there are four different types of curves showing

the influence of the number of diaphragms between supports on the warping

stresses and transverse distortional bending stresses (Ref. 63 and Fig. 5.33).

The type of curve in each case depends on the length of the box beam

and on the dimensions of the cross-section. 	For a symmetrical rectangular

cross-section Kistek gave the following formula for determining a critical

distance of transverse rigid diaphragms, for which the warping stresses are

nlaxjmum (63).

L cr	0.844 .J[b h2 ( ht h + bttt)(_-+-- I
	

(5.1)
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On the basis of the known value of Lcr it is possible to decide

which type of behaviour (see Fig. 5.32) a box beam under consideration

exhibits. The following approximate rules may be obtained (63):

Fig. 5.32(a) corresponds to
	

L	Lcr,

Fig. 5.32(b) corresponds to
	

Lcr < L < 2Lcr,

Fig. 5.32(c) corresponds to
	

L	2Lcr,

Fig. 5.32(d) corresponds to
	

2Lcr< L < 3Lcr.

5.5 Conclusion

The various applications successfully presented in this chapter

demonstrate that the general one—dimensional finite element system has been

implemented correctly. The results have been compared with analytical

solutions or with other types of elements such as flat thin shell elements.

Good agreement generally exists between the results obtained. The thin—walled

box beam element together with a transverse frame analysis give an economical

approach for the analysis of straight or curved single—spined box beams

with variable cross—sections and different boundary conditions having

sufficient accuracy for preliminary design purposes. Additional vertifIcation

for the present approach, using model test results, will be presented in

Chapter 8.
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Fig. 5.16 Results for example from Ref. 146:

(a) Longitudinal stresses due to symmetrical load at mid-span;

(b) Longitudinal warping stresses due to antisymmetric
load at midspan;

(c) The total longitudinal stresses at midspan.

Values in parentheses are from Ref. 146 and Ref. 90(lkg=9.81N)

Fig. 5.17 Results for example from Ref.63: (a) Cross-section and loading;
(b) Shape and displacement of the deformed cross-section
at rnidspan; Cc) Longitudinal warping stresses in the cross-
section at midspan; (d) Transverse bending moments at midspan.
Values in parentheses are from Refs. 63 and 90 respectively.
(1 in. = 25.4 mm; 1 lbf = 4.45N; 1 kip = 4.45 kN).
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Fig. 5.19 Idealization of Sawko and Cope's box girder model using

thin shell finite elements
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Table 5.2 Deflections of nodal edges of tapered box girder
compared with results from Refs. 9, 62 and 90.

Distance from 	Measured	Computed	Computed	Computed
support, in 	Present deflections deflections deflections deflections
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rig. 5.31 Influence of the number of diaphragms between supports

oii the state of stresses in the box beam given by Kistek (63).
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Fig. 5.32 Influence of the number of diaphragms between supports on
the warping stress and transverse distortional bending stresses
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CHAPTER 6

A FINITE ELEMENT - GRILLAGE APPROACH TO THE ANALYSIS OF

MULTIBOX BRIDGE STRUCTURES

6.1 General

The box-section forming the spine provides the main source of strength

in a single-spined box beam bridge. However, as may be expected there is

a limit to the breadth over which the strength of a single spine may be

economically effective. In practical bridge construction, the full width

required may then be provided by multi-spined or twin superstructures. 	The

term 'twin' is used to denote two nearly identical superstructures side by

side, placed on common piers or with each of the pair having an independent

system of piers. The twin superstructures may be completely independent

but the halves are often joined by simple precast elements spanning between

the two. In some cases, the gap between is filled with in-situ concrete

although transverse flexural continuity is not assumed in the analysis.

By contrast, the multi-spined superstructure is obviously beneficial under

unevenly distributed live loading since it reduces both the bending moment

on individual spines and the difference in deflections between neighbouring

spines. As a result, a multi-spined superstructure should be generally

adopted in preference to twin single piers.

Swann has stated (136), as a general rule for concrete box spine-beam

bridges, that single-spined structures are suited to decks of breadth less

than about 18 m and multi-spined or twin superstructures are suited to

decks of breadth greater than this, Fig. 6.1. A survey of 173 concrete

box spine-beam bridges given by Swann shows that of the total, 53 are single-

spined having a single cell, 59 are single spined having multicells, and

the remainder, 61, are multi-spined with a number of twin structures.
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A substantial number of multi-spined steel box-bridges have also

been constructed. A similar survey of data obtained from 62 steel box-bridges

compiled for the Merrison Committee Parametric Studies report (35) reveals

that 15 were single cell, 4 were multicells and 43 were multi-spined.

In addition, the use of composite box girder bridge decks has gained

in popularity in the small to medium span range. A composite box girder

bridge deck consists of a number of pre-fabricated steel boxes or precast-

prestressed boxes with an in-situ composite concrete slab, Fig. 6.2. The

concrete slab acts as the transverse distributing medium in the bridge

deck. The torsion rigidty of the component boxes obviates the necessity of

using intermediate diaphragms. It can be seen that composite box girder

bridges can be placed in the same category as that of multi-spined box beams,

which are basically composed of several box girders connected by a continuous

top flange only.

Furthermore, short and medium span bridge decks are often erected by

laying out precast-prestressed hollow box beams side by side and connecting

then with in-situ concrete fill, Fig. 6.3. 	Since the joints will have

very small and uncertain transverse bending stiffnesses and torsional

stiffness it is often assumed in design that the joints act as pure shear

keys, and the bridge deck as aji articulated plate bridge.

In general we can use the term multibox structures to designate

multi-spined box beams, or composite box girder bridge decks, or even

articulated cellular bridge decks, having cross-sections with several

separate boxes.

An analytical approach in the form of a one-dimensional discrete

system with reference to single-spined superstructures, has been presented

in previous chapters. 	It is clear that for the method to be of general use

to the designer, it must also be applicable to multibox structures. At
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first sight this type of superstructure seems unlikely to be idealized

by a one-dimensional discrete system. However, an interconnected grillage

of beams (37, 73, 114, 115, 116, 121, 148, 41, 30) can, with care, be

made to yield an adequate representation of structures which clearly

behave in a three-dimensional mode. This measure of flexibility, combined

with economy in computing, input preparation and interpretation time, makes

grillage analysis a popular and widely used method in the bridge design

offices.

In this chapter amethod based on a finite element-grillage approach,

using the general one-dimensional finite element system derived for the

analysis of multibox structures, is proposed. Guidance is given on the

geometric layout of grillage beams to represent the actual structure, and

on the establishment of equivalent element properties. An iterative

procedure proposed initially by Billington (11) is incorporated into the

computer program to account for distortional effects in a deformable

multibox structure. Modification of the stiffness matrix due to the effect

of shear keys is also formulated.

The method is used to investigate a typical twin-box structure, and

also to investigate the load distribution of some articulated cellular

bridge decks. Validation is proved by comparison with three-dimensional

finite element results or with other analytical solutions.

6.2 Grillage idealization of multi-spined box beams

As a first step in a grillage analysis, the actual continuum structure

must be idealized as a two-dimensional arrangement composed of discrete

one-dimensional elements. The interaction between longitudinal and

transverse force system takes place at nodal points. Restraints may be

applied at any joint and elements framing into a joint can be at any angle.

It should be borne in mind at all stages of calculation that the grillage
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idealization is riot a direct representation of the real physical structure;

nevertheless, it can be made, with care, to reflect an adequate

distribution of displacements and internal forces within the structure.

Logically, the longitudinal grillage members should be placed

coincident with the physical boxes, i.e., single equivalent elements along

individual spine axes. Thus, internal forces in the grillage members

directly represent those in the spines of the structure. This idealization

leads to a higher degree of accuracy than one where the members are placed

coincident with the longitudinal webs in the deck (30, 41). It also

considerably reduces the total number of longitudinal elements. Additional

longitudinal members of low stiffness are sometimes located along the

edg es of deck cantilevers or along the midline of the slab between

neighbouring boxes to assist load description.

In order to provide a representation of the transverse bending action,

transverse grillage members, intersecting the longitudinal members, must

be used. There will invariably be transverse diaphragms at the supports and

there may be diaphragms within the spans. Obviously, transverse grillage

members must be incorporated along the line of each diaphragm in a structure.

In bridge construction, the spacing of the transverse diaphragms may be

considerably greater than that of the distance between boxes. In such a

case, additional transverse elements placed between the transverse diaphragms,

are needed to reflect the load —sharing characteristics of the deck.

Experience shows that very close spacing of transverse elements

permits a detailed study of the structure, but is expensive and does not

necessarily make the characteristic behaviour of the grillage any closer to

that of the actual structure. On the other hand, very wide spacing results

in inaccuracy of load transference and excessively large discontinuities

in internal forces at the joints. Some guidance given by West (148) is that
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transverse element should be placed at intervals not exceeding twice the

spacing of longitudinal elements. For the present analysis of multi-spined

box beams, it is preferable to stipulate that the spacing should not exceed

twice the breadth between the outer webs of neighbouring box-spines. It

is also recommended that normally the spacing of transverse grillage

elements should be not less than this breadth or not less than the spacing

of longitudinal elements.

Notice that the fictitious transverse medium between the box-spines

consists only of the deck slab itself. However, across the width of the

box additional stiffening is present due to the frame action of the box cells.

Different grillage elements with high stiffness are th€c	artoss the

width of the box so that the transverse grillage elements, which represent

the slab between individual boxes, have the correct span and stiffness

properties.

Although the one-dimensional discrete system will invariably change

the even internal force system of a real three-dimensional structure so that

it is abrupt and centred on nodal points, the accuracy of the grillage

niethod, within accepable limits, may be justified by physical reasons.

First of all, in a thin-walled structure the use of an effective width of

top slab for calculating the flexural section property evades problems

which would otherwise arise from incompatibility of the longitudinal bending.

Secondly, since the connecting slab between boxes does not increase the total

torsional stiffness appreciably, the discontinuity of the warping restraint

within the top plate is not expected to cause significant error in the

solution. Thirdly, the load-sharing capacity between individual spines

depends mainly on the transverse bending action of the top slab and of the

diaphragms, and this action can be represented adequately by the transverse

interconnected elements.
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As an example, a finite element-grillage discretization for a

twin-box beam is shown in Fig. 6.4. The idealization consists of a single

line of longitudinal elements along the centre line of each box with

transverse elements to represent the boxes and top slab as well as the

support diaphragms. Three-node beam elements are used to simulate the

transverse action of the boxes, with the mid-nodes of these elements

coincident with the box axes. Cantilevered transverse slab members can also

be used beyond the outer half of the box, though they are not very necessary

in the calculations.

The computer program presented in this thesis permits the application

of point loads and distributed loads on the elements. Since the grillage

approach is expected only to produce a global response to the structural

action, it implies that external loads are always statically distributed

to longitudinal elements so that deck distortion and local bending of

transverse elements are not confused.

In accordance with this principle, when the applied loads locate

within the width of the individual box spines, they are considered as

eccentric loads acting directly at corresponding longitudinal elements.

1hilst for loads applied on the connecting slab between neighbouring box

spines or on the side cantilevers, it is sufficiently accurate to replace

the loads by statically equivalent loads distributed to pairs of neighbouring

longitudinal grillage elements.

6.3 Determination of grillage element properties

Grillage element properties depend upon the positioning of the

elements. Fig. 6.4 shows the division of the deck into longitudinal beams

by cuts through the slab midway between adjacent spines. By splitting the

deck in this way, the longitudinal grillage elements coincide with the

I ndividual box-spines. Thus, the sectional properties for these longitudinal
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equivalents are calculated from a complete box with its associated top

slab, and obviously no computational difficulties need be anticipated using

the formulae derived in previous chapters.

It should be borne in mind that shear lag has a significant effect

on distribution of bending stresses. This can be estimated by considering

the flange to have a reduced 'effective width' over which the stress is

uniform, as is outlined in Chapter 2. 	Using the full effective width of

the flange and assuming that it can act with the webs, the beam stiffness

can then be established.

In most cases of multi-spined box beam bridges, at any cross-section

of a bridge, the longitudinal grillage elements will have the same sectional

properties with vertical axes of symmetry. Consequently, the Individual

horizontal neutral axes will appear at the same level as the neutral axis

of the deck as a whole. However, in some cases the sectional sizes of the

side cantilevers will be slightly different from the half intervals.

Thus, by cutting the deck along the slab midway between neighbouring spines,

the side box-spines will be unsymmetrical and the level of neutral axes

will vary across the width of the deck. For simplification It is assumed

that the neutral axes of all longitudinal elements are coincident with

that of the gross cross-section. Moreover, the side box-spines are also

treated as having cross-sections with vertical axes of symmetry for

evaluating the warping properties. Numerical experience has shown that

calculated results are close to a three-dimensional finite element analysis.

Within the net spacing of the neighbouring box-spines the transverse

medium consists only of the deck slab itself. No difficulties are experienced

in calculating the sectional properties. When a transverse grillage element

represents a diaphragm as well as some width of the top and bottom slabs,

the inertia and shear stiffness should include that of the diaphragm.
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The width of slab considered to act with the diaphragm should be the

flange width reduced by shear lag, as given in Chapter 2. The remainder

of the slabs are attributed to neighbouring transverse grillage members,

which have very low shear stiffness to allow for distortion.

The determination of the equivalent stiffness for the transverse

grillage elements is not immediately obvious. The structural action of the

medium is somewhat complex since no through diaphragms are present.

Transverse distribution of loading is achieved by the distortion of cell

walls as in a Vierendeel girder. For simulating this Tframet type of action

it is convenient to analyse a frame with the shape and dimensions of a

unit length of the deck. This can be done by using the plane frame

computer program PFRAN (Appendix II).

Fig. 6.5(a) shows a slice of half of an individual box-spine. Under

the action of a unit pure bending moment the webs remain undistorted and

flexure is achieved by extension of the top flange and compression of the

bottom flange. The equivalent moment of inertia of a transverse grillage

element is therefore calculated as

2
Txx =	bt	(per unit length) 	 (6.1)

8E1 65

where 6B is the bending deflection in the direction of the local y axis

at the corner node above the outer web of the box-spine.

For assessing an effective cross-sectional area which results in

shear deflections approximating to those of Vierendeel, the frame is

constrained as in Fig. 6.5(b), so that it cannot rotate, and is subjected

to a unit distortional shear force S. By equating the shear stiffness

Sf6 5 to O.5AsyG/bt the equivalent shear area of the grillage element can

be determined as

A5	
= 2G65	

(per unit length) 	 (6.2)
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where s is the shear deflection at the corner node in the local

y-direction.

The torsional inertia of a fictitious transverse element within the

neighbouring outer webs represents the resistance of the top slab to

torque and is calculated by

13
J 1 =	t	(per unit length) (6.3)

where t is the thickness of the top slab.

The torsional stiffness of a transverse grillage member across the

box-spine arises from the opposed shears in the top and bottom slabs

represented by that member. 	The torsion constant is the same as two layers

within a solid slab giving (41)

= 2h2tttb 	(per unit length)
	

(6.4)

t t + tb

where tt and tb are the thicknesses of the top and bottom flange respectively,

and h is the depth of the cross-section.

6.4 An iterative process for assessing distortional effects

Economic considerations dictate that the use of thin walls and the

elimination of intermediate diaphragms may lead to significant deformabIlity

of the box-section. Thus it has been necessary to consider the distortion

of the transverse cross-sections. With regard to the structural action

arising from deformation of the cross-sections, the grillage assemblage

has no adequate mechanism with which to represent directly the distortional

effects. Additional deflections of the box corners which result from

deformation have been simulated by using an equivalent shear area of the

transverse grillage member calculated to produce the same displacements as
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the box when subjected to shear forces. However, the top flange, which

connects the individual boxes and completes the entire cross-section,

rotates not only through the pure twisting angle but also through an addition

of half of the distortional angle (Fig. 3.25). The rotation of the top

flange can then be regarded as equivalent to the effective torsional angle

of the cross-section. This has a significant effect on the stress

distribution in the deformable multi-spined superstructure.

For assessing the rotational angle, which results from deformation,

additional to the pure twisting angle, the reduced torsional stiffness

referred to as the effective torsional stiffness of the box-section, can

be used in the analysis. This structural treatment leads to an iterative

procedure utilising the proposed grillage approach with reduced torsional'

stiffness for the longitudinal box beam elements to make allowance for

deforintion of the cross-section. Thus, compatibility of deformations and

continuity of rotation are ensured between adjacent elements.

The following iterative procedure, which yields the final solution,

is convenient for programming:

Step 1 Carry out a grillage analysis of the multi-spined structure

assuming that the longitudinal elements have the full

torsional stiffness as given in Chapter 2.

Carry out a distortional analysis of each box-spine with

distortional loading associated with the member end forces

given by Step 1.

At key sections compare the sum of twisting angle and half

of the distortional angle with the effective torsional angle

given by the grillage analysis.
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step4	Calculate the new torsional stiffness equal to the full

torsional stiffness multiplied by the reduction factor

which is given by

d,i	3)j
d ,i^1 = __________________

d,i (iP3)+ "dI

(6.5)

where	is the effective torsional angle and the subscript

i indicates the iterative circulation.

Step 5	Carry out a further grillage analysis with the new reduced

torsional stiffness.

Step6 Carry out a distortional analysis of each box-spine with

distortional loading associated with the member end forces

given by Step 5.

Step7 Repeat Steps 3 to 6 until the following compatibility

criterion is obtained at Step 3

(4i) =	 +
	

(6.6)

The above iterative analysis yields the correct distribution of

displacements and internal forces, and experience has shown that the iterative

process converges very quickly. Thus we may specify in the program that

nornally after four circulations the iteration will be stopped and the

output accepted. This measure will decrease relatively the computing time

and still provide sufficient accuracy for design purposes.

Since the continuous structure is idealized by discrete, skeletal

grillage elements, the distribution of the internal forces for the

longitudinal elements has discontinuities at the joints due to interaction

with the transverse elements. Where all the elements meeting at a joint are

physical beams, there will be a genuine step in the diagram of stress
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• resultants at this point and the actual output of values from the program

should be used. If any of the transverse grillage beams are hypothetical

and represent sections of slab, the Ttrue?diagram of the internal forces

can be assumed for the purpose of design to pass through the average value

of the internal forces on the two sides of each joint. Note that the

distribution of bimoments and distortional moments are not affected by the

transverse grillage elements.

The transverse bending moments of the top and bottom slabs within the

box-spines are derived from the distortion of the cross-section proportioned

to the plane frame analysis. The transverse bending moments of the top slabs

between the box-spines are obtained directly from the grillage anal ysis.

The local effects occurring in the top slab are evaluated indpendentiy and

are added to the moments from distortion.

6.5 Numerical example of a composite twin-box beam

A simply-supported composite twin-box beani discussed by Billington

(11) is used to verify the validity of the proposed finite element-grillage

approach. The dimensions of the twin-box structure are shown in Fig. 6.6.

The cross-section consists of two open-topped steel boxes with a composite

reinforced concrete deck. The four webs are equally spaced at 8 ft. (2440 mm)

centres and a concentrated load of 1000 LBP (4.45 kN) is applied above an

outer web at midspan. The modulus of elasticity for the steel is 3.0 x 10

lb/sq.in. (207 kN/min 2 ), and for the concrete is 40 x io6 lb/sq.in. (27.6 kN/mm2).

Poisson's ratio is taken as 0.30 for steel, and 0.20 for concrete. The

modular ratio for calculating the sectional properties referred to bending is

E	 1-v2

E	
Co = 7.912
z

E CO	 1V5t

(6.7)

and the modular ratio for calculating the sectional properties referred to

torsion is
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= 5k. x	
+	= 6.923 	 (6.8)

Eco

The idealization used for the grillage analysis is shown in Fig. 6.8

and consists of a single line of longitudinal elements along the centre

line of each box with transverse elements to represent the boxes and the

slab. Three-node beam elements with high stiffness evaluated from a

transverse frame analysis are used across the width of the box to simulate

the transverse action. The sectional properties of each element are given

in Table 6.1. The final iteration for the grillage analysis gave the values

of GJT/1 7.38 for the loaded box and GJ T /l8.60 for the unloaded box.

The three-dimensional finite element analysis was performed using

the LTJSAS program for comparison. The mesh selected for the analysis

consisted of rectangular flat thin shell box elements (Fig.6.7). Billington

also carried out a three-dimensional finite element 'shell' analysis using

the ICSAS (Imperial College Structural Analysis System) program.

The deformable shape of the cross-section at midspan obtained from

the grillage analysis together with the results calculated by LUSAS is

plotted in Fig. 6.9. Agreement between the grillage analysis and the FE

results are found to be good. Fig. 6.10 shows a comparison of the

longitudinal stresses with the FE results, and the transverse flexural

distortion stresses for the load case with the corresponding FE results

are given in Fig. 6.11. The stress results indicate that the grillage

approach with an iterative process gives results of sufficient accuracy for

design purposes.

6.6 Analysis of articulated cellular bridge decks

An articulated deck is a pseudo-slab form of construction. The deck

is formed of precast prestressed beams each of which has incorporated in it
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some transverse shear steel, at the time of casting. Transverse continuity

is then obtained by making concrete joints between the beams. The deck

will distribute load almost entirely by shear, since it will have very

little bending stiffness and torsional stiffness at the joints.

The articulated bridge deck can be analysed by orthotropic plate

theory formulated by Cuyon and Massonet and developed by other investigators

such as Spindel (132). Kistek (63, 64) has also presented a solution

based on elasticity, for structures composed of box beams connected by

hinges. Since existing analytical methods lack the ability to deal with

skew supports and continuity, and the full three-dimensional finite element

analysis requires too much computing time, Sawko and Swaminadhan (122, 137)

developed a rectangular quasi-slab element which is specified as a six-node

grillage element. The element has a single degree of freedom at each node

including vertical displacements at the four corners of each element and

two rotations along the longitudinal centre line. The derivation of the

element stiffness matrix is based on both the finite element and grillage

concepts.

In fact the grillage approach proposed in this Chapter is also

applicable, without any difficulties, to the analysis of arsiat.c(

decks with stiff as well as deformable cross-sections and to skew and

continuous spans. As described in previous sections, the distortional

effects can be simulated by a shear area analogy obtained from transverse

Vierendeel frame analysis. The only modification necessary for the transverse

elemental stiffness is the releasing of the member end moments which will be

zero at the positions of shear keys.

The analytical procedure is similar to the static condensation process

described in Ref. 155. We use the three e-node beam elements to represent

the component boxes transversely in which the mid-node is always coincident

with the box axis and the width of each element is equal to the centre to
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centre distance of the shear keys between the beams. The sequence of the

degrees of freedom is rearranged and the subscript 'r' is used to denote

the released degrees of freedom and 'f' the remaining degrees of freedom

of the element i. The equilibrium equations for the element i can be

written in terms of released and remained displacements as

k ff	kf	

= < F	l	 (6.9)

k f	6,. 	f,.J

where

I
S f = [u 1 , V1 , W1 ,  U 2 ,  V2 W, 113, V3 , W3J

and

T
6,.	[O	'	' O j, 0 xa , Oyz,	0X3' 0 y3	033 1

Solving for 6,. in terms of 61 from the released condition

cS;
(kf	k,.,.] 	'	= 0

6,.

we have

- k,. 	kf 6f

Substituting from Eq. 6.11 for 8,. in Eq. 6.9 gives

[k ff -	 k1.1 I 	= {ff - kf k,. f}

or

(kff - R I 6 f } = {f f	k fr k r	r

where R is the released matrix which is given by

ER] = k f ,.k,.. k,.f

(6.10)

(6.11)

(6.12)

(6. 13)

(6.14)

(6.15)

(6.16)

Eq. 6.15 can be written as

kI {6 } =
	

(6.17)
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where

[k] = k ff -  R
	

(6.18)

and

= f f  - k fr k r r
	 (6.19)

Only kR and R are then transformed to the global coordinate system

and added to the structure stiffness matrix and load vector.

The formulae derived have been incorporated into the computer program

CUBAS. The degree of accuracy of the present method is tested by comparing

the results obtained by the computer program CUBAS with the methods of

Swanlinadhan (122, 137) and Kistek (64) on a right bridge deck for point load.

The geometry of the deck and the mesh arrangement are shown in Fig. 6.12.

Figs. 6.13 to 6.15 show the deflections, moments and torsion diagrams for

deformable cross sections. It can be seen that in all cases the agreement

between the different approaches is very good.

The present method can deal with fixed and continuous support

conditions without difficulty. A single 18 metre span was analysed with

three different sets of end conditions as shown in Fig. 6.16, and referred

to as simple-simple, simple-fixed and fixed-fixed. These various end

conditions will give a range of results intended to demonstrate the versatility

of the finite element-grillage method for analysing continuous decks. The

mesh arrangement used is shown in Fig. 6.17.

Table 6.2 shows the midspan deflections for the various support

conditions under central and eccentric point loading. The mid span moments

are given in Tables 6.3 and 6.4. Results obtained by Swaminadhan (137)

are also listed in the tables with parentheses. Again excellent agreement

between the two methods is apparent. It can also be seen from these tables

that the total moment predicted at a section by the analysis differs from

the theoretical total moment (shown at the bottom of Tables 6.3 and 6.4)
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by less than l.O7. These observations for the three types of edge conditions

appear to confirm the validity of the approach for the analysis of

continuous structures.

Swaminadhan also used his method to investigate a skew articulated

bridge deck model (137). Although no comparable results are shown here

between the two methods, it follows that the present method would be able

to predict the behaviour of a skew articulated bridge deck with the same

degree of accuracy.
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example for a concentrated load applied above an outer
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1	2	3	I	 5	6	7	8	9
Sppo t ss. N ____________________________________ _________________ __________________ _________________ _________________ __________________ _________________ __________________

SJiPLE- 22.72	23.89	26.34	30.35	33.28	30.35	26.34	23.89	22.72
SJHPLE (22.63) (23.84) (26.35) (30.42) (32.90) (30.42) (26.35) (23.84) (22.63)

SI1IPLE-	8.40	9.38	11.49	15.12	17.88	15.12	11.49	9.38	8.40
PIXED	(8.60) 	(9.60) (11.77) (15.51) (17.83) (15,51) (11.77) 	(9.60) 	(8.60)

PIXED-	3.85	4.67	6.50	9.82	12.43	9.82	6.50	4.67	3.85
}'IXED	(4.04) 	(4.88) 	(6.77) (10.21) (12.40) (10.21) 	(6.77) 	(4.88) 	(4.04)

(a) Midspan Vertical Deflections (mm) for Central Loading

\Beos I
1	2	3	4	5	6	7	8	9

SIIIPLE- 48.84	41.17	33.21	27.23	22.72	19.38	17.02	15.52	14.79
si y j	(48.72) (41.43) (33.32) (27.22) (22.63) (19.25) (16.87) (15.35) (14.61)

SDIPLE- 29.33	22.54	15.95	11.48	8.40	6.30	4.91	4.07	3.67
P!.ED	(29.56) (23.10) (16.30) (11.75) 	(8.60) 	(6.46) 	(5.04) 	(4.18) 	(3.77)

SIXED-	21.26	15.11	9.49	6.02	3.85	2.50	1.67	1.21	1.00
LIXED	(21.53) (15.67) 	(9.86) 	(6.28) 	(4.04) 	(2.64) 	(1.79) 	(1.30) 	(1.08)

I___ ___ ___ ___ ___ ___

(b) Nidspan Vertical Deflections (mm) for Eccentric Loading

Table 6.2 Midspan Vertical Deflections
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CHAPTER 7

STATIC ANALY SIS OF CABLE-STAY ED BRIDGES

7.1 Introductory remarks

As a practical application of the one-dimensional finite element

family to the analysis of bridge decks, in this chapter we will discuss the

static analysis of cable-stayed bridges. Despite the fact that the concept

and practical application of cable-stayed systems have been attractive to

engineers and builders for centuries (98), a successful implementation has

been realized only recently, with the introduction of high-strength steels,

progress in structural analysis and model studies, and the development of

electronic computers. Ever since the first modern cable-stayed bridge,

the Strt3tnsund Bridge, was completed in Sweden in 1955, the number of

applications of this type of bridge has grown rapidly. This indicates its

competitiveness in medium and long span bridge construction.

The cable-stayed bridge consists of a stiffened girder at deck level,

rigidly supported on abutments and piers and elastically supported at

interniediate points by inclined cables. The cables are suspended from towers

located at interior supports. In contrast with conventional suspension

bridges, the essential feature of this type of bridge is that the reactions

from the cables are transferred directly to the bridge deck (Fig. 7.1). Thus,

the deck in a cable-stayed bridge is subjected to the combined effects of

both axial forces and bending moments.

The cable-stayed bridge is a highly statically indeterminate space

structure which is difficult and tedious to analyse. Most of the existing

analytical methods approximate the real structure to a two-dimensional plane

frame. This approach is relevant only to the single-plane system in which

torsional forces acting on the deck would have to be superimposed on the
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girder. If the bridge girder is suspended along its edges, the additional

torsional resistance provided by the stayed cables is rather significant.

In spite of its complexity, an analysis taking into account the three-

dimensional space action is then necessary.

The complexity of the analysis is caused not only by the necessity of

considering the space action, but also by the fact that the cable-stayed

bridge displays a nonlinear structural behaviour. The nonlinearity is due to

large displacements, bending moment-axial force interaction and the catenary

action of the inclined cables. The structural problem is then a geometrically

nonlinear problem together with the non-linear material of the cables. In

addition, the creep of the concrete and the relaxation of the cable may also

induce nonlinearity in the analysis. For a nonlinear structure, the

principle of superposition does not apply and consequently, it is not possible

to determine stresses and displacements by superposition of influence lines

as in the case of linear bridge systems. The analysis of a cable-stayed

bridge should be carried out by loading the system with its full dead and

and live loads.

The objective of this chapter is to apply the one-dimensional finite

element family developed in this thesis to a plane or spatial frame model of

the cable-stayed structure combining it with a Newton-Raphson iterative

scheme. Firstly, a review of different structural forms which can be used

f or the cables, the decks and the towers, is made. The existing methods of

analysis are then briefly introduced. A detailed derivation of an equivalent

modulus of elasticity of the inclined cable,considering the catenary action,

is given. A stiffness analysis based on the one-dimensional finite element

system and on the Newton-Raphson algorithm has then been devised. Finally,

a numerical example and a practical construction are investigated to confirm

the validity of the present study.
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7.2 Geometric configuration of cable-stayed bridges

The cable-stayed bridge has a large variety of different geometrical

configurations. The variety is shown in the span arrangements, the types

and geometric configurations of the cables, the superstructure types, the

tower configurations and placement etc. The combination of these different

features lends itself to versatility in relation to the environmental

requirements and the optiniisation of design.

It is not the object of this thesis to attempt to present an extensive

study of all aspects of the structural features involved in design, but for

the sake of understanding the following analytical process, a general

description concerning possible structural forms is made.

7.2.1 Span arrangements

The span arrangements of cable-stayed bridges can be categorized as

of three basic types: two spans, symmetrical or asymmetrical, Fig. 7.2;

three spans, Fig. 7.3; or multiple spans, Fig. 7.4.

A partial survey of existing bridges (97) indicates that, for the

two-span asyimnetrical bridge structure, the length of the longer span ranges

from 0.60 - 0.70 of the total length. In three-span structures the ratio of

centre span length is of the order of 0.55. An investigation of bridges with

multiple spans indicates that the spans are normally of equal length, with

the exception of the flanking spans which are adjusted to connect with the

approach span or abutments.

To avoid high longitudinal bending moments in the towers and to use a

System which brings mainly vertical loads to the foundation, Leonhardt (69)

Proposed two alternative multispan cable-stayed bridge structures shown in

Pig. 7.5.
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7.2.2 Stay geometry

There are two basic arrangements for the positions of cables in space,

viz, the single-plane system and the two-plane system (Fig. 7.6). For very

wide bridges with combined railway and highway traffic 3 or 4 cable planes

might be chosen.

The single-plane arrangement consists of one vertical plane of cables

normally located on the longitudinal centre line of the structure. A

variation of this arrangement occurs when the vertical plane of the cables

is positioned laterally from the longitudinal centre line of the structure.

In the two-plane system the cables may lie in two vertical or oblique

planes. The latter is recommended for very long spans where the tower has

to be very high and needs the lateral stiffness given by the triangular frame

effect.

According to the various longitudinal cable arrangements, there are

four basic systems that are normally used (Fig. 7.7): 1. The radiating or

converging system where all the cables are spaced along the girder and

are attached at a common point on the tower; 2. The harp system where the

cables are parallel to each other and are siaced aloiig t).e girter and the

tower; 3. The fan system where the cables are spaced along the girder and

the tower but are not parallel to each other; 4. The star system where the

cables are spaced along the tower and converged at a common point on the

girder. Within the four basic systems a number of variations are available.

A tabular summary of the various arrangements is presented in

Fig. 7.8. A recent tendency is for a large number of stays to be used with

spacings at the deck anchorage of only 8 to 15m. The beam girder then behaves

mainly as the compressive chord member of a cantilever structure suspended

from the towers by inclined stay cables (69).
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7.2.3 Superstructure types

Basically there are two types of girder: the stiffening truss and

the solid web type. In practice, the stiffening truss is seldom used. Cross-

sections of solid web steel girders are shown in Fig. 7.9a. Of these the

box girder type with an orthotropic deck is most widely used.

In recent years a number of cable-stayed bridges have also been built

with reinforced or prestressed concrete girders. These bridges are economical,

possess high stiffness and exhibit relatively small deflections. The damping

effect of these monolithic structures is very high and vibrations are

relatively small. Typical cross-sections of this system are shown in

Fig. 7.9b.

The proportion of the girder depth to the length of span varies from

1:40 to 1:100. In multi-stay-cable systems, the depth of the longitudinal

girder is almost independent of the main span and should be chosen to be

small. Furthermore, if the girder is suspended along its edges, a simple

concrete slab or an orthotropic steel plate with massive edge ribs or

hollow edge girders is sufficient (Fig. 7.10).

7.2.4 Tower types

Cable-stayed bridge towers are designed to suit the site and design

conditions, as well as for aesthetic considerations and to suit cable

geometry. The various possible types of tower construction are illustrated

in Fig. 7.12, which shows that they may take the form of

1. Single towers (Fig. 7.11a and b),

2. Twin towers (Fig. 7.11d),

3. Rectangular or trapezoidal portal frames (Fig. 7.11e),

4. A-shaped frames (Fig, 7.111),

5. Diamond-shaped towers (Fig. 7.11g),

6. Inverted Y-shaped tower (Fig. l.11c).
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The height of the towers influences the necessary amount of cable

steel and the longitudinal compressive forces in the bridge deck. Tower

height normally rises to about O.2L up to O.25L, where L is the length of

the span.

7.3 Brief review of some of the existing analytical methods

Various analytical methods have been devised, based on computer

applications, to consider the linear and nonlinear behaviour of cable-stayed

bridge systems. Most papers published on the static behaviour of cable-

stayed bridges related only to the simplified idealization of a two-dimensional

plane frame structure.

The transfer matrix method, also referred to as the reduction method,

which was developed in Cermany,has been applied to the analysis of cable-

stayed bridges by Tang (139). Au iterative process which treats all nonlinear

terms as imaginary external loads, considers both the nonlinear behaviour

of girders and towers as well as the special force-deformation relationships

of the cables and is suitable for computer programming.

Trotsky and Lazar (143) used a flexibility approach to obtain

analytical data for comparison with experimental results. Lazar (65) also

proposed the standard stiffness method for carrying out a two-dimensional

frame analysis. The general computer programs employed, e.g. FRAN, STRESS,

STRUDL, are adjusted through methods (19, 86, 91, 112) which take into

account the nonlinearity due to large displacements, axial force-bending

moment interaction and cable catenary action. When the Southern Crossing

Bridge across San Francisco Bay was being designed in 1972, aspace frame

idealization was proposed by Baron and Lien (7).

A mixed force-displacement method was developed by Stafford Smith

(131). As one of the exceptions to consider the space behaviour of cable-
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stayed birdges, Smith extended his approach to the analysis of double-plane

cable-stayed bridges and treated the deck as a plate.

An attempt was made by Goschy (38,40) to give an analytical method

for a twisted cable-stayed bridge. The approach is based on the theory of

thin-walled structures, developed by Vlasov (146). The structure is

considered as a three-dimensional system consisting of a stiffening girder

supported by inclined cables.

Kajita and Cheung (53) studied the linear analysis of a double plane

cable-stayed bridge by the finite element method, in which the bridge deck

was divided into a number of shell elements and the whole structure treated

as a three dimensional system. A computer program has been developed which

can deal with various saddle types for the cables and also various types

of connections between the tower and the deck.

7.4 Behaviour of catenary-stayed cables

The actual shape of a perfectly flexible cable hanging freely under

its own weight and tensioned at both ends is a kind of curve known as the

catenary. The end displacement of the cable under an axial load depends

not only on the cross-sectional area and the modulus of elasticity of the

cable but to a certain extent on the cable sag. As a result, the cable

does not behave linearly and it is necessary to adopt a corrective

technique to account for the nonlinear effect.

To facilitate the analysis of cable-stayed bridges, all cables are

assumed to be straight members and are represented geometrically by their

chord. The tension forces calculated are also assumed to act along the chord

lines. For small sag ratios the error is within acceptable limits for

design purposes. In addition, cables are also assumed to remain in tension.
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This assumption is reasonable because all the cables must be relatively

highly stressed under dead load in order to act as effective supports for

the bridge girder.

For representing the nonlinear effect due to the change of sag

several methods have been proposed by various authors who suggest the use of

an equivalent modulus of elasticity for the cable (26, 39, 145). The basic

principle in the analysis for the cable tension force is that the behaviour

of the straight substitute member with an equivalent modulus of elasticity

is nearly identical to that of the catenary curved cable. The most popular

proposal uses an expression for the equivalent modulus of elasticity given

by Ernst (26):

E
Eeq = _________________

1 + [(p L) 2 /12 c I E (7.1)

where E eq = equivalent modulus of elasticity,

E = modulus of elasticity of the cable material,

p = specific weight of the cable,

L = horizontal length of the cable,

= tensile stress in the cable.

For protection against corrosion, the cables are normally wrapped

with glass fibre tissue drenched in polyethylene or polyurethane. An

alternative proposition is to coat the cable by a prestressed concrete tube

after erection. As a result, the cables are no longer perfectly flexible

and a certain bending stiffness may exist. The stiffened cables are termed

semi-stiffened cables (128). We here devise a more general formula for the

evaluation of the equivalent modulus of elasticity involving not only the

tensile stiffness but also the bending stiffness due to the coating.

Let us now consider an inclined cable with hinged ends subjected to

uniformly distributed load (Fig. 7.12). The simple beam moment of the cable
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under load component q 1 is given by

Ms =	
E1 d2
	

(7.2)
dz

From the basic principles of static equilibrium the cable moment

can be determined by

= MC+M

where Mc = - T•v

and	Mq =
	(—z)

2

Substitution of Eqs. 7.3 and 7.4 into Eq. 7.2 gives the basic

differential equation for the cable,

d2 v - q	2
v =	1 (z - £z)

2E1

where cz = T/EI, 	 (7.6)

and	T is the tensile force of the cable along the chord.

(7.5)

By solving this second order nonhomogeneous linear equation with

constant coefficients we have

=	.	
chczc	

- z) 	
-	_j_ (z-  i.z)

T	 chEc!	 2T
2

The cable length is

S = i . Ji + (	) dz (7.8a)

and by using the curtailed form of Taylor's series expansion, we may write

z
S	= £ + 	(	) dz0	dz

(7. 8b)
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Differentiating Eq. 7.7 once and substituting into Eq. 7.8(b),

the cable length can then be expressed as

S = 2. +	
q1Z )Z 2.[ 5shctZ T	- 2czc 2.chczc t + 11	(7)
T	 (1 + chart)	(22.?	12

The differentiation of Eq. 7.9 yields

dS =	
+ G	SShccct— 3c2. - 2a2.chct2.	1	4at - 15	

-1 k— + ______

(1 + chcz2.)(ciZ)3	24

{ 1 + 5shat - 3 xL - 2cxc2.cR.	I	4c2. 2}dT (7.10)

T 3	12 	(1 ^ Chac2.) ( act) 3	4 	(a2.)3

where C	q12. = pA2.cosc = w9 2.cos	w9L
	

(7.11)

According to Hooke's law, the elongation of the cable due to the

change of the tensile force T is approximated by

dS =	S
	

(7.12)
EA

where A is the sectional area of the cable.

The axial deformation of the chord due to the change of the tensile

force T may be expressed similarly by using the apparent modulus of

elasticity,

cit - 	2.
	 (7.13)

dT	Eeq.A

Substituting Eqs. 7.12 and 7.13 into Eq. 7.10, using the chord length

as the length of the cable, and assuming e°9 = 0, we finally obtain an

expression for the equivalent modulus of elasticity in the form

Eeq =	 E	 (7.14)

1 + (wgL)2 AE	1	3cz2.— 35/4
T 3 - l2 -	(a2.)3
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If we substitute I 	0 into Eq. 7.14, we may obtain directly the

well known Ernst formula for the flexible cable

E
(7.15)Eeq	

1 + ((wgL) 1 A E/12T3J

where L is the horizontal component of the chord length, and Wg is the

weight per unit length of the cable.

Since the stiffness of the cable-stayed bridge depends largely upon

the tensile stiffness of the stayed cables, the utilization of semi-stiffened

cables will improve the structural behaviour of the whole bridge to some

extent. 	However, there are difficulties in actual construction, so it

is still seldom used practically. 	It is also apparent both from Eq. 7.14

and 7.15 that the analysis becomes an iterative process requiring several

determinations of cable stresses and the corresponding equivalent moduli of

elasticity until a convergence of the values is achieved.

7.5 Stiffness method of analysis with approximate nonlinear considerations

Since cable-stayed bridges are generally large and important

structures used for long spans, many alternative structural forms need to be

compared and many load cases have to be considered, It does not seem a

realistic solution to use the three-dimensional finite element plate or

shell analysis (53) for design purposes. Although the cable-stayed system

in . modern bridge engineering has a large variety of geometrical

configurations as shown in Figs. 7.2 - 7.12, a linear statical analysis can

be carried out without any difficulties by using the present one-dimensional

finite element family. The structure can be modelled as either a plane

frame or as a spatial frame according to the accuracy required. By choosing

relevant types of elements available in the family of elements, deformations

due to shear, distortion and warping of the girder section can be considered.
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The difficulties arising in the statical analysis of cable-stayed

bridges are those associated with particular considerations of nonlinear

features. As stated in previous sections, the cable-stayed system is so

flexible that the deflections both from the deck and from the towers change

significantly the orientation of the stayed cables and consequently the

horizontal and vertical components of the cable forces. These changes

introduce, in the deck, new axial forces and bending moments which cannot

be deduced through any conventional linear analytical method. Accordingly,

bending moment-axial force interaction also needs to be taken into account

in the analysis. Thus, the problem is that of a structure with large

displacements; this transforms it into a geometrically non-linear problem.

In addition, because of the sag change, the cables do not behave linearly.

Thus some of the elements of the structure have a non-linear behaviour which

cannot be related directly to the deflections of the deck and the towers.

For these reasons, the structural problem becomes a geometrically nonlinear

problem with a non-linear material.

Whether the displacements (or strains) are large or small, equilibrium

conditions between internal and external forces have to be satisfied.

Following the minimum potential energy process, the nonlinear equilibrium

equations become (149, 155)

-	_T_
R() = ftB 0 dz - F = 0 	 (7.16)

whéreR represents the sum of external and internal generalized forces, in

which the integration is carried out over the whole length £ of the element,

the strain matrix B is defined from the general definition of strain as
I

= B d
	

(7. 17)

the stress resultants a are written in terms of the elasticity matrix D

and the strain vector c as

=	 (7.18)
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and F is a vector of equivalent nodal forces due to the external forces.

The solution for the nonlinear equations (7.16) is based on the Newton-

Raphson method involving a series of solutions to linear incremental

equilibrium equations (Fig. 7.13). If an initial estimation of the total

displacements is 	forr which R(S1) 	0, then the value of R for an increment

in & is given by Taylor's series expansion of R about & ignoring

third and succeeding terms as follows:

R(S1 + M1) = (5) + 3(&)
	

+

which can be written as

+ M ) = R(5 1 ) + KT &SI	 (7.19)

where Kr is called the tangent stiffness matrix evaluated at (S = S.

It can be seen that problems involving geometric nonlinearity arise

both from non-linear strain-displacement relations, and from finite changes

in geometry. Assuming that the curvature is small, the large deformation

strain (Green-Lagrange strain) is defined in terms of the displacements as



T
{x} = (, ;f, 	J (7.22)
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Furthermore, a particle ç, on the beani axis in an initial undeformed

position is identified by the Lagrangian coordinates:

lx} = [X, Y, ZJT
	

(7.21)

and the same particle is identified in the final deformed position p by the

Eulerian coordinates:

where a bar above an item () denotes reference to the deformed position of

the element. A bar omitted signifies reference to the initial undeformed

position. Coordinates are with respect to fixed Cartesian axes, i.e., the

global coordinate system.

If the displacements u of the particle p in deforming to p' are given

a function of {X} or {x} by

u(X) = u(X) = [U, V, w
	

(7.23)

then the final coordinates are given by

{X} = {X} + {u}
	

(7.24)

It can be seen that the cable-stayed superstructure mainly performs

as a truss system, and that the bending moments in the stiffening girder

depend largely on the magnitude of deflection of the stiffening girder at

the locations of cable attachments. The deformations of the system change

the angle of inclination of the cable with respect to the chord of the

girder and consequently lead to the redistribution of the stresses in the

girder. This means that for a' cable-stayed bridge the 'change in geometry'

effect is more important than the relative magnitudes of the linear and

non-linear strain-displacement terms. Hence, as an approximation we may

ignore the non-linear portion in the Green-Lagrange strain vector, i.e.,

£ =
	

(7.25)



(7.27)
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Thus the tangential stiffness matrix is equivalent to the conventional

stiffness matrix which is used in any small displacement-small strain

analysis, but is also a function of the current value of the displacements.

It can then be expressed as (155)

= K0(&)
	

(7.26)

in which K 0 represents the usual, small displacements stiffness matrix.

As tested designs indicate, the change of stresses, considering the

influence of deformations on cable-stayed systems, does not exceed a few

percent (34). The error produced by neglecting the whole nonlinear behaviour

of the cable-stayed bridge may increase however, according to Wintergerst,

up to 12.4% (65). The relatively small influence of the deformation of the

whole system on the magnitudes of the computed forces in the members of the

strutture, justifies the application of an approximate method of analysis.

Tang (139) and Lazar (65) have adopted a similar approach in their analytical

processes.

Moreover, all the two-node elements in the present family are assumed

to remain straight after deformation, which is reasonable only when the axial

force is small in comparison with the Euler load (112). Thus, it is

advantageous to use the three-node elements for the idealization of cable-

stayed bridges. Since the bowed shape of the element after deformation can

beniapped by the changed coordinates of the three nodes, the interaction

between bending moment and axial force can be approximately considered.

From Eqs 7.19 and 7.26 the linearized approximation for the relation

between the residual force vector 	and the resulting increment in nodal

displacements M , necessary to achieve equilibrium, is

from which a new approximation to the total displacements is obtained as,
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= S +&
	

(7.28a)

or	=	+	(1)R1,
	 (7.2 8b)

where	= F -
	 (7.29)

is the residual load vector.

Thus we only need to solve at each step a linear system of equations

defined by the tangential stiffness matrix, 1(, computed on the deformed

structure. In order to find a complete equilibrium path, R1 is applied as a

series of incremental loads. The residual load vectorhas two terms: The

first one is formed by the external loads currently applied on the structure,

and the second one is the sum at each node of the end forces of all the

elements which are connected to this node. These forces have to be projected

over the global coordinate directions and to do this, the current orientation

of each element has to be considered. Iterations continue within a load

increment until R satisfies a given convergence criterion.

The non-linearity in the response of cable stays does not affect the

analytical method which has just been described. The only difficulty is

in evaluating the cable tension at each iteration. The well-known Ernst

formula Eq. 7.15 or Eq. 7.14, which determines the equivalent cable modulus

due to the sag effect, can be used to compute at any moment the tangent

stiffness of the cable, However, Eqs. 7.14 and 7.15 are based on a constant

value of force or stress, i.e., a zero force or stress increment. They

cannot give an accurate value of cable tension after each iteration which

is what is needed to compute the nodal forces to be used in Eq. 7.28. The

cable tension can be determined through an independent iterative procedure

which has been described in Fig. 7.14, using the secant modulus in each

Iteration which can be expressed by (97):

E
Eeq =	- (wgL) 2 (1+ T+t)A.E 	

(7.30)

1 +
24TT11 -
	I
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In this equation E is the cable material modulus, L is the horizontal

projected length of the cable, Wg is the weight per unit length of the cable,

A the cross-sectional area of the cable and T 1 and T 1 ^ 1 are the cable

tensions corresponding to two consecutive steps in the Newton-Raphson

process.

The problem which arises in computing the secant modulus is that T11

is not known. A first estimate of cable tension, T?1 , can be determined

by using the tangent modulus corresponding to a cable tension equal to T1.

Once 
T1+1 

is known, the secant modulus corresponding to the interval T1,

TI11 
is determined according to Eq. 7.29 and a new estimation of cable

tension, T 1 , is computed. This process is repeated until satisfactory

convergence is reached. Convergence is obtained quickly and three iterations

are usually sufficient in most cases.

In addition, cable-stayed bridges are structures in which initial

stresses are very important and have to be considered when a non-linear

analysis is to be performed. The initial stresses are usually known, since

they are introduced during the erecting stages. It is possible to adjust

the axial forces in the cables to assign the erected dead load stresses to

compensate for extreme live load stresses and to achieve more effective use

of material. For example, the cable tension can be defined in such a way

that each cable supports the dead weight of its corresponding girder length.

In order to apply the Newton-Raphson iteration to analyse the response

of the complete bridge structure to any live load, the complete set of

member forces which are left after the end of the construction process has

to be given as initial data to start the nonlinear analysis. To achieve

equilibrium conditions all the dead loads have to be idealized by a system

of nodal loads. These are added to the nodal live loads to form the nodal

road vector to be considered in the nonlinear analysis (Eq. 7.28). The
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initial member forces together with the member forces due to live load, which

are found after iteration, after being projected along the global coordinate

directions, will form the nodal auxiliary force vector to be used in Eq. 7.28.

Then a new distribution of member forces will be obtained, since the initial

forces are resolved at any iteration according to the current orientation

of each element.

7.6 Numerical example and analysis of Santai cable-stayed bridge

A numerical example given by M.C. Tang (139, 140) will be used to

verify the nonlinear analytical process described in the previous section.

The dimensions of the cable-stayed bridge and the basic specifications are

shown in Fig. 7.15(a). For evaluating the stresses of the bridge under dead

load Tang selected the statically determinate base system as shown in

Fig. 7.15(b), and assigned the following values to M:

M5 tower = 0,

M6 girder = -50,000 ft-kips (-67862.5 kM-ni),

M11 girder = -20,000 ft-kips (-27145.0 kM-in),

M16 girder = -10,000 ft-kips (-13572.5 kM-ui).

Thus, the stress state of the bridge under dead load is established, whereby

the cable tension is determined as follows:

Tieft = 9680 kips (43076 kN) , Tright = 11500 kips (51175 kM)

For nonlinear analysis due to uniform live load of a magnitude of

8.Okips per linear ft. (116.72 kM/rn), the initial stress state of the system

under dead load, is assigned as shown in Fig. 7.15(c). The whole structure

is idealized using eighteen three-node beam elements and two cable elements.

The bending moment diagram due to live load is shown in Fig. 7.15(d) and

the results of the analysis are shown in Table 7.1. It can be seen that

the results obtained from the present approach are very close to those
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calculated by Tang (139) using the reduction method (or referred to as

the transfer-matrix method). By comparing the results of different

iterations listed in Table 7.1, we can see how the nonlinearity affects

the stresses.

As a further practical engineering example, the Santai cable-stayed

bridge, which spans the Pujiang River in China, has been analysed using the

present one-dimensional finite element family. The bridge was designed

previously by the author and was completed in 1981.

Santai bridge is a 3 span (56.0 + 128.0 + 56.0 m) cable-stayed concrete

highway bridge with a suspended span of 16 in in the centre. The overall

dimensions of the bridge are shown in Fig. 7.16, and a general view of it

can be seen from Figure 1.

The prestressed concrete girder has a twin box-section connected by

monolithic slab and transverse diaphragms at the supports and cable

anchorages. The girder has a constant depth of 2.0 in, except near the fixed

end where it varies linearly from 2.0 m to 2.20 in within a distance of

13.20 in. The overall width of the girder is 10.50 in, and the total length

241.06 in. At the towers, the girder is fixed to the piers as well as to the

towers. At each end abutment the girder is held down against uplift from

the cables by two pairs of hinged support bars that allow for temperature

movement. The overall dimensions of a typical section and elevation of the

girder are given in Figs. 7.17 and 7.18 respectively. Also, detailed

figures are listed in Table 7.2.

The concrete girder is stayed by two-plane cables at 9 m intervals.

the cables are arranged in a pattern commonly called the 'Fan' type. From

the top area of each tower where the cables are anchored without using saddles,

five pairs of cables radiate to the respective anchorages at the side of the
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roadway. The cables are composed of 5 mm dia. steel wires with an

ultimate strength of about 16000 kg/eta2 (1.57 kN/inm2). 	The composition of

each cable is shown in Table 7.3.

The dimensions of the reinforced concrete towers and piers are shown

in Figs. 7.19 and 7.20 respectively. Erection of the bridge was carried

out by the free cantilever balanced casting method with a segmental length

of 3.0 m. The girder was post-tensioned longitudinally during the

erecting stage.

Before the actual opening of the bridge static loading tests, which

can be seen from Figures 2, 3 and 4, were carried out. 	The different vehicle

loading positions are shown in Figs. 7.21 to 7.24.

For comparison with the measured values obtained from the loading

tests, the bridge has been analysed using the model represented in Fig. 7.25.

The model is three-dimensional and is composed of 61 elements and 80 node

points. It can be seen that the entire structure can be separated into

two individual parts by the suspended span in the static analysis.

Since the diaphragms are sufficient to retain the shape of the whole

cross section, the twin-box girder is represented by single longitudinal

thin-walled beam elements along the longitudinal centre-line of the roadway.

Each element of the model has the same properties as the corresponding member

of the prototype. At the anchorage positions, the transverse beam elements

which perform like rigid arms extend to the locations of the cable anchorages.

The cables are represented by cable elements which are assumed to be straight

in the 1inea analysis, and are considered to be a catenary supporting

its own dead weight in the nonlinear study. The tower and the pier are

divided into 12 elements using three-node solid beam elements.

Youngs rnoduli of elasticity taken for the analysis are as follows:
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Ebi	= 2.0 x 10 kg/cm2 (196.2 kN/mnm2),

Egirder	3.5 x 10 kg/cia2 (34.335 kM/nan2),

Etower	3.3 x 10 kg/cm2 (32.373 kN/rnrn2),

E .	= 3.1 x 10 kg/cm2 (30.411 kM/rum2).
pier

The Poisson's ratio of the concrete is taken as 0.167. The cable

tension due to dead load was determined in the erecting calculation as:

Side Span

T1 = 90.17 (884.57 kN)

T 2 = 120.09 (1178.08 kN)

= 180.87 (1774.33 kN)

T4 = 192.24 (1885.87 kN)

T 5 = 211.20 (2071.87 kN)

Mid-Span

Ti = 78.32 (768.32 kN) ,

T2 = 114.60 (1124.23 kN)

= 180.30 (2768.74 k&)

T4	197.31 (1935.61 kN)

223.67 (2194.20 kM)

A few influence lines for the Santal Birdge are given in Figs. 7.26

and 7.27. They are merely representative of those required in design, from

which the critical positions of the vehicles can be determined. The

calculated deflections with measured values under vehicle loading in

position I are shown in Table 7.4 and Fig. 7.28. A comparison of the

transverse distribu.tion of vertical deflection due to eccentric loading at

typical sections between the theoretical solutions and the tested values can

be seen from Fig. 7.29. A summary of the comparison of measured and calculated

values is given in Table 7.5. The agreement between theory and test in

general is good, and it verifies that the one-dimensional finite element

family presented here can be used adequately for the design of cable-stayed

bridges.
4
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Fig. 7.1 Cable Tension Inducing Shear and Compression in Tower and Girder

Seve'' 	 -	 (_.._

(3Oltn)	 (151m)

Knie Bridge (Germany)

639.7ff	 1049.9ff	
-1(195m)	 (320m)

Batman Bridge (Australia)

J 
164ft	 689ff	 -I	 - I
(SOin)'	(210m)	 (170m)

Fig. 7.2 Examples of Two-Span Cable-Stayed Bridge Structures
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Lu1th Bridge Louisiana (U.S.A.)

ft
m)	 (376vn)	 (l5Qm)

North Bridge Dusseldorf (Germany)

Point Meules Bridge (France)

Fig. 7.3 Examples of Three-Span Cable-Stayed Bridge Structures

Maracaibo (Venezuela)

524.9ff	
...f.	

771ff	 771ff
(160m)	 (235m)	 (235m1

Ganga Bridge (India, not built)

Fig. 7.4 Examples of Multispan Cable-Stayed Bridge Structures
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(a)

Fig. 7.5 Multlspan Cable—Stayed Bridges

(bi

	

I
	

A

	

(a)
	

(b)
	

(ci
	

Cd)

Fig. 7.6 Transverse Cable Arrangement: (a) Single Plane-Vertical;

(b) Single Plane-VertIcalfLateral; (c) Double Plane-Vertical;
(d) Double Plane-Sloping

(a)
	

(bJ

Cc)	 Cd)

Fig. 7.7 Longitudinal Cable-Arrangements: (a) Radiating; (b) Harp;

(c) Fan; (d) Star.
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Types of main girder
— Arrangement	Deck cross-section

T., in	 ______________

ii	T1girder

Single______________________
rectangular

2 box girder	 I----
- Central box

girderand	___________________
3 side sin9(e	I	F	I ITweb giraers

SingEetwin	____________________________
box girder and	._'cç-j
slopingstruts	_____________

Single______________
S trapezoidal	•"\I-.---.— box girder	______________________________

Twin________________
6 rectangular	

-t- Ibox girder

Twin____________________
7 trapezoidaL	-\__/

box girder

Fig. 7.9a Types of steel main girder

	Types of girder	Deck cross-section

	

Singtebox	________ _______
girder

	

1 (Brotonne	 ____________
Bridge.France)

Twin box
girder__________________

2 (RiverParcina
Bridge.
Argentina)

Twin box
girder________________ ________________

	

3 (River Wuu(	
[3ridge.

HO(td)

	

Multiplebox	__________ ___________
girder

(Polcevera

Italy)
-	

Vjcducf.	__________________

Fig. 1.9b Reinforced and Prestressed Concrete Girders
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(a)	 t

(bi I	 >15m

(C)

	 I

Fig. 7.10 a 	Cross_SeCt1° of a concrete bridge with a width b < 15 m
7.lOb,c CrossSeCti°n of concrete or Steel bridge width b > 15 in

Fig. 7.12 Uniformly loaded cable
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One cable plane - tower shapes

Two cable planes - tower shapes

Fig. 7.11 Different solutions for the towers



Fig. 7.13 Newton—Raphson method

I

Iji

300

5

R

I-.- 
LO	 A5	_1P82_I

S

Fig. 7.14 Determination of the tensile force of the cable
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(a)

3	5	7	9

(61m)	 200ft (61m)

Fi

- llOOft(30.5m

*1
c'41

c,I
D	 E

I	I-

19	JfL
L!oofu3o.sm J (2.64m)

eeifications: modulus of elasticity 	4000000 ksf (191.6 KN/mm1);

girder - 1 	45.0 ft(O.3894 tn 4 ); A = 8.0 sq.ft.(0.7442 ni2);

tower - above girder: I = 20.0 ft(0..1731 rn'); A = 3.0 sq.ft.
(0.2791 rn1)

below girder: I 200.0 ft 4 (l.731 rn 4 );  A = 10.0 sq.ft.
(0.9303 m2);

cables - A 	1.10 sq.ft. (0.1023 rn2);

dead load of girder 	16.0 kips per lin.ft. (233.44 KNIm);

live load of girder 	8.0 kips per lin. ft. (116.72 KN/m).

I b)

-50000 kf

Fig. 7.15 Example given by Man-Chung Tang (139,140)
(1k - 4.45 RN, 1 kf 	1.35725 KN-m)



R esu Its
Stage

	32673 	32361	33826	32111	32134

	14147 	14147	13148	13167	13150

	

6691	6860	7265	7545	7539

	

-37283	-37597	-37872	-38072	-38101

	

-10747	-10710	-11930	-12102	-12128

2343	2151	2864	2974	2991

4686	4385	4981__J5068	5077

(c) Deflection, in feet ( 1 foot 	0.305 m)

	1.176 	1.171	1.171

	

1.354	1.353	1.353

	

1.120	1.125	1.125

	

0.310	0.312	0.313

	

0.072	-0.073	-0.073

	

0.268	0.269
	

0.269

	

0.181	0.182
	

0.182
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Table 7.1 Results of analysis and influence of nonlinearity

(a) Axial forces of cables, in kips ( 1 kip = 4.45 kN )

Cables

left
	

4191.658 4335.789 4233.8721 4230.876 .4230.968 	+0.94

right
	

5059.026 5068.200 51l8.107j 5115.925 5116.0741 +1.13

(b) Bending moment in kip-feet ( 1 kip-feet = 1.35725 kN-m)

Girder

3

5

7

11

13

Tower

3

5

Girder

3

5

7

10

13

Tower

1

3

	

1.191	1.192

	

1.408	1.370

	

1.155	1.105

	

0.296	0.296

	

-0.066	-0.066

	

0.262	0.262

	

0.172	0.172

	

-.1.65	3zgoo

	-7.05 	14400

	

+12.67	8850

+2.19 -37500

	

+12.85	-11700

	

^27.66	2940

	

+8.34	5000

	

-1.68	1.165

	-3.91 	1.354

	

-2.60	1.126

	

+5.74	0.308

+10.61 -0.074

	

+2.67	0.265

	

+5.81	0.180
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Table 7.2 Detailed dimensions of the cross-sections (in cm, 1 cm = 10 nim)

h1	tt	tb	b1	12	b3	b	a	c	a'	C'

	1 	220	18	38	525 296 36	16	45	15	15	15

	

2	215	18 33 525 296 36 16	45 15 15 15

	

3	210	18 28 525 296 36	16	45	15	15	15

	

4	205	18 23	525	296	36	16	45	15	15	15

200 18	18 525 296 36 16 45	15 15	15

	

20	100	-	- 428 428	-	-	-	-	-	-

Table 7.3 Composition of the stayed cables

1
	

2
	

3
	

4
	

5

5
	

5
	

7
	

7
	

9

36
	

36
	

36
	

36
	

36

180
	

180
	

252
	

252
	

324

3534
	

3534
	

4948
	

4948
	

6362

Number of strands of
the cables

Number of wires in
each strand

Number of wires in
each cable

Sectional area for
each cable (uim2)
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1050

Fig. 7.19 Tower system of Santai Bridge (Dimensions in cm)
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Fig. 7.20 Pier System of Santal Bridge (Dimensions in cm)
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(a) List of selected nodes

(b) Deflection of girder : Node 61

I	 '0
I

AL
• • r r r

(a) Deflection of girder : Node 14

o.asrn

(d) Horizontal deflection of tower : Node 63

Fig. 7.26 Typical influence lines of deflection
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(a) List of selected members

ACT-v.11.	 C)
I	 1-
4	 C)

I	 I

o	
i

0.5
In

U'

(b) Force in cable : Member 56

y

(c) Moment in girder : Member 21

(d) Axial force in girder : Member

Fig. 7.27 Typical influence lines of internal forces
(1T-9.8lkN, 1T-M-9.8lkNm)
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(a) Cross-section of the girder

7	 c	 3	2

(b) Section 9 of the side-span for loading position 4
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0
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(c) Section 16 of mid-span for loading position 3

_______ calculated deflection

measured deflection

Fig. 7.29 Transverse distribution of vertical deflection



2.340(1)

14.938(1)

49.0(1)

Girder

Sidespan
11

idspan
20

Tower

top

1.90

12.85

42.0

+23.2

+16.2

+16.7
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Table 7.5 Comparison of measured and calculated values

Loading	Measured	Calculated	Difference, as
Sections	position	vaLues	 values	a percentage

(a) Axial forces of cables, in kg (1 kg 9.81 N)

Cables

	

3	 (1)	 23470	24945	+6.3

0.

	

4	 (1)	 32990	37911	+14.9
a,

	

5	 (1)	 57030	65414	+14.7

	

3	 (1)	 27650	29979	+8.4

	

ft 4	 (1)	 36890	41960	+13.7

	

Z 5	 (1)	 55830	66283	+18.7

(b) Mean stresses at bottom reinforcement, in kg/cm 2 (lkg/cm 2 0.0981 N/unn2)

Girder

Sidespan
9	 (2)	 +197	 +219	+11.2

Nidspan
5	 (1)	 —289	—271	—6.2

(c) Deflection, in nun
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CHAPTER 8

EXPERIMENTAL INVESTIGATION

8.1 Objectives of the experimental investigation

Although the beam models have been tested by previous investigators,

notably Roll and Aneja (4, ill), Steinle (134), Kistek (62), Billington

and Dowlirig (11, 12), Evans and Al-Rifaie (2, 3, 28), Moffatt and Lint (94),

and Sawko and Cope (118, 119), it was considered that a comprehensive

experimental investigation of a specific geometrical and material nature was

necessary. The results of this could then be related to the theoretical

research work. However, model research is expensive and time-consuming,

and accordingly only four linearly-elastic box beam models representing

different structural forms were carefully chosen and tested to investigate

the static response of deformable box beams subjected to bending as well

as to twisting loads. Details of the four models were as follows,

Model 1 - straight cantilever single cell box beam,

Model 2 - curved cantilever single cell box beam with side cantilevers,

Model 3 - two-span continous double cell box beam,

Model 4 - simply supported twin-box beam with trapezoidal

cross-sections.

Model 1 has been introduced mainly to verify the use of additional

degrees of freedom which represent warping and distortion. Models 2 and 3

have been used to verify the extension of the proposed analysis to structures•

with initial curvatures in plan or with cross-sections other than single

cells. Model 4 has been tested to confirm the procedure for the numerical

analysis of multibox structures described in Chapter 6.

To summarize, the objectives of the experimental research were

two fold. In the first place, it was necessary to assess the validity and

versatility of the proposed theoretical methods by means of comparison with
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existing analytical solutions and also with results of model tests. Then,

secondly, it was necessary to be able to observe the real behaviour of

the models during an experiment so that an understanding of the structural

action could be obtained which would assist the development of the theory

in different structural cases.

All experiments were conducted in the linear elastic range. As an

exception, once the elastic response had been recorded, Model 3 was

continuously loaded until failure. The ultimate load and mechanism of

failure (Figure 13) wer obtained for other purposes.

8.2	Description of model structures

8.2.1 Dimensions and fabrication of the models

For the sake of convenience, and in the interests of accuracy,

Models 1, 2 and 4 were constructed from mild steel plates, whilst Model 3

was constructed in prestressed concrete.

The dimensions and construction of the individual models are shown

in Figs. 8.2, 8.3, 8.4 and 8.6 respectively. General information about the

cross-sections of the models is shown in Fig. 8.1 and tabulated in Table 8.1.

The steel plate thickness of the models was measured at several positions

and the average thickness of each member was determined and recorded in

Table 8.1. It should be noted that for the steel models, the flange width/

thickness ratios for both top and bottom flanges were approximately 60-100.

The models are, therefore, extremely thin-walled according to Vlasov's

definition (146). Furthermore, there were no diaphragms within the span.

Thus ensuring that the warping and distortional effects were rather significant

when the models were subjected to eccentric loading. However, the flange

width/thickness ratio of the prestressed concrete model was approximately

13 which is within the usual range for prestressed concrete box beams

governed by local bending effects.
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The steel plate used for the manufacture of Model 1 was cut from

cold rolled mild steel sheet having a thickness of 3.12 mm. The flat steel.

plate was folded around a specially prepared former and was welded along

one interconnected edge to form a hollow rectangular section. This hollow

segment was then welded at one end to a 610 x 610 x 20 mm steel plate which

was later connected by 3/4" bolts to a reaction frame.

The radius of curvature to the centre line of Model 2 was 3000 mm

providing an RIL ratio of 2.0. The model was fabricated from mild steel

plate having a thickness of 3.46 mm. The flanges were cut to shape and

the web plates were bent from a flat steel plate to follow the profile

of the edges of the bottom flange. The webs were attached to the bottom

flange by means of welding, as shown in Figure 9. The open U channel was

then welded on to the top flange to form the closed section. Finally the

curved box beam was also welded at one end to a 610 x 610 x 20 mm steel

plate and was subsequently connected to the reaction frame by 3/4" bolts.

The remaining twin-box steel model was designed to have a simply

supported span of 1500 mm. The top flange thickness was designed to be

greater than the top flange thicknesses of the existing steel models in

order to be able to transfer the structural action from one box to the

other. Thus, the top flange was formed from mild steel plate having a

thickness of 5.0 mm and the other plates (bottom flanges and webs) had

thicknesses of 3.0 mm. The two trapezoidal channels were folded by using

single steel sheet. They were then welded to the monolithic top flange.

The support diaphragms in the trapezoidal boxes had a thickness of 5 nun.

There were no diaphragms between the two boxes.

Model 3 was a two-span continuous beam, and each span was precast

in micro-concrete separately. After setting each of the box beams on

concrete piers, the intermediate diaphragm was cast to form the continuity.
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The model was prestressed using 9 Nos. 5 mm unbonded high tensile steel

wires. Fig. 8.5 shows the steel arrangement of the model

8.2.2 Material property

The modulus of elasticity of the model steel was measured by the

flexure of cantilever calibration beams and was calculated from the

following expression,

where P is the concentrated load applied at the tip of the cantilever beam,

is the measured deflection of the calibration beam,

k is a proportionality factor depending on the dimensions of the

beam and the position of measurement.

The observed load—deflection curves for the beams with different

thicknesses are shown in Fig. 8.7. The average value of the modulus of

elasticity calculated from the bending tests was found to be 196.2 kN/mm2

(2.Ox 10 kg/cm2).

An experimental value of Poisson's ratio for the steel plate was

obtained from bending tests on special cantilever beams, Fig. 8.8. T pattern

uniaxial strain gauges or biaxial rosette gauges were located on the top

and bottom surfaces of the cantilever beams. By comparing both the

longitudinal and transverse strains recorded, Poisson's ratio could be

obtained. The average 	 ratio calculated from bending tests was

found to be 0.27.

The modulus of elasticity for the concrete model was found to be

29kN/mm2 from compressive and bending tests. Poisson's ratio for the

concrete was determined to be 0. 18.
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8.2.3 Instrumentation

The models were instrumented to provide experimental values of the

displacements and strains in two directions at right angles within the

models. The instrumentation was concentrated at sections which were

considered to have significant structural action. In general, at least one

section in each of the models was fully instrumented.

The vertical and horizontal displacements in Model 1 were measured

with dial gauges graduated in units of 0.002 mm. Experience has shown

that the sensitivity is sufficient for measuring the deflections of this

type of model. However, in view of the extensive instrumentation on the

remaining models, it was considered essential to read the deflections

electronically rather than visually. Therefore special transducers

(Potentiometer, Type 8FLP1O, Japan) were used for the remaining three models.

The transducers were wired into four arm full bridge circuits in an automatic

data logger to record the deflections; 	calibration resolution showing

that one digit reading from the data logger was approximately equivalent to

a deflection of 0.00265 mm. The layout of the dial gauges or transducers

for the models is shown in Fig. 8.9.

For comparison with displacement values obtained from dial gauges

in Model 1, an optical instrument (the Hilger & Watts Angle-Dekkor Mark III)

was used for measuring directly the rotated angle of the deformed vertical

web.

The Angle-Dekkor is essentially an auto-collimating telescope fitted

vith measuring graticules to measure, simultaneously, angular displacements

of up to 60 x 60 minutes in two planes. When the telescope is accurately

Set vertical to the clean surface-plate, the reflected cross-lines of the

target graticule appear superimposed on the scales of the measuring graticule,

and in focus with them. The movement of the cross-lines of the reflected
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image gives a direct reading to 0.5 minutes of arc. The arrangement as

used in the test of this optical system is shown in Figure 8.

Longitudinal and transverse strains for the first model shown in

Fig. 8.2 were recorded by means of T.M.L. electrical resistance strain

gauges having a gauge length of 6 mm and a gauge factor of 2.11. The

strain gauges were arranged in a T-pattern on the outer surfaces where

stresses were required both in the longitudinal as well as the transverse

directions. A total of 112 of these strain gauges were located at the

1/8, 1/4, 3/8, 1/2, 5/8, 3/4 and 7/8 span cross-sections to record the strain

readings. The position of the gauges at a cross-section is indicated in

Fig. 8.10(a).

Biaxial rosette gauges having a gauge length of 6 mm and a gauge

factor of 2.095 were used for Models 2 and 4. In most locations the rosette

gauges were bonded to both sides of-the box walls in order to separate

in-plane and flexur1 components of stresses. A total of 72 rosette gauges

were located at 1/8, 1/2 and 7/8 arc length cross-sections for the curved

cantilever model, and 38 rosette gauges were bonded at midspan cross-section

for the twin-box beam model. The gauge positions located at sections

considered for these two models are shown in Figs. 8.10(b) and 8.10(c)

respectively.

Since the main purpose of Model 3 was to obtain the ultimate load

behaviour of this structure for another research student, the model was not

as comprehensively instrumented for the author's purpose as it would

otherwise have been. Thus, there were no strain record points set up within

the two span continuous concrete box beam model.

Two data logging systems were used for the tests - a 100 channel

Compulog It and a 200 channel Compulog IV. The 100 channel logger was used
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for Models 1 and 2, and the 200 channel system was used for Model 4.

The supports of Model 3 and 4 were instrumented by load cells so

that the support reactions could be measured. The load cells were calibrated

using a proving ring. This gave a calibration of approximately 1 digit

reading equivalent to a force of 3.2 N(0.7 lbf.). The load cells were

pre-compressed by tightening the bolts of the support reaction frames so

that both tensile and compressive reactions could be recorded (Figures 10

and 13), and they were then connected to a four—arm full bridge circuits

in an automatic data logger to record the reactions.

8.2.4 Loading system and testing procedure

In accordance with the objectives of the model research, the elastic

behaviour of the models was determined by applying point loads. The load

conditions applied to the models are listed in Table 8.2.

Special reaction frames were constructed and 5 ton (44.5 kN) hydraulic

jacks were used for the application of the point loading. To apply a pair

of point loads, the two 5 ton (44.5 kN) jacks were connected by a hydraulic

hose to a hand pump through a tee connector. As a result, the pressure

applied to the models by the two jacks was confirmed to be identical and

simultaneous. For the test on the concrete model, a 30 ton (267 kN)

hydraulic jack was used to apply two point loads by a steel distributing

beam. All the jacks and pressure gauges were calibrated by proving rings

before the tests were carried out.

The test procedure adopted for each of the four models was similar.

Having assembled the model, loading system and apparatus for measuring the

deflections and strains, preliminary tests were carried out on each model

to check the operation of the system and instrumentation.



327

Each load case test consisted of taking readings for the following

sequence of loads:

00 LL 00 LL 00

where 0 represents one set of readings at zero load,

L represents one set of readings with the load applied to the model.

This sequence includes two complete loading cycles, which allows

dupulicate readings to be taken. Overall views of the models and the

layout of the instrumentation and loading system can be seen in Figures 7

to l'r.

8.3 Experimental and theoretical results

The results of the tests conducted on the four elastic models are

presented in this section. A comparison between the results obtained

experi,mentally and the results derived from theoretical studies is given.

No attempt has been made to reproduce all the information obtained from the

tests, but representative results which illustrate particular aspects of

the structural behaviour are included. The behaviour of the individual

models is studied with particular attention being given to the torsion and

distortion of the box sections, the cross-sectional distributions of

longitudinal and transverse bending stresses and the deflections.

Before the actual comparison of experimental and theoretical results

is carried out, the methods used to obtain the results are discussed

individually. The magnitude of the load considered as a basis of comparison

in each of the tests is given in Table 8.2.

8.3.1 Calculation of the experimental results

The incremental values of deflection and strain were recorded

throughout each loading cycle and the average of the two cycles was obtained.
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Only the average values of displacement and strain corresponding to the

maximum load were compared with the theoretical results.

The observed deflections at each point considered were obtained

directly, after multiplying the differences between readings at zero load

and readings at the applied final load by the calibration factor for the

transducers. The longitudinal distributions of the deflections and/or the

transverse distributions of the deflections at typical cross-sections were

then plotted or tabulated. To illustrate the existence of additional degrees

of freedom which represent warping and distortion, the distributions of the

torsional angles as well as the distortional angles for Model 1 were

evaluated and plotted.

Utl
	

Ut2

>EITT4

1b1	
Ub2

Fig. 8.11 	The rotations of the flanges and webs due to

the twisting load

The horizontal displacements of the top and bottom flange plates are

designated by Uti , ut2 	u bi and Ub2 respectively. Similarly, the vertical

deflections of the webs are designated by v,and vb2 respectively (see Fig.8.11).
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Thus, we can evaluate the angle of rotation of the flange from the

observed deflections by

= Vbl - Vb2

BD

and the angle of rotation of the web from the dial gauge readings by

=	- Utj ) + (U b2 - U tz )

2H0

(8.2)

(8.3)

However, the angle of rotation of the web could be measured more accurately

using the Angle—Dekkor.

Furthermore, from the geometric relationship we have,

=	+
	

(8.4a)

and

=	-
	

(8. 4b)

From Eqs. 8.4 we may then obtain the torsional and distortional angles

by measuring the angles of rotation of the walls, i.e.

= 1(P - 4j)
	

(8.5 a)

and

=	+
	

(8.5b)

The strains were measured in the longitudinal (tangential) and transverSe

(radial) directions on the outer and/or inner surface of a plate at the points

considered, as shown previously in Fig. 8.10. The stresses con each surface

atapoint could then be calculated from orthogonal strain readings c 3 and

according to the relationships:

a	
(1 E

	
+ vc5) 	 (8.6a)
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E

a5 = (1 - v2) 
(c 5 + vcj)

where E is youflgs modulus

V is Poisson's ratio.

The subscripts (z) and (s) denoting the longitudinal (tangential) and

transverse (radial) directions respectively.

(8.6b)

In practice, gauges or rosettes identical with those used in testing

were fixed to a compensating cantilever beam (Fig. 8.8) subjected to known

stresses and of the same material as the test model. The required stresses

were obtained directly in terms of the known compensating stress and the

measured resistance changes (89). Cross-sensitivity, gauge factor and

constants of elasticity of the test piece cancel out under these conditions

and errors due to inaccurate assumptions of their values are avoided.

The resolution of a strain gauge is related to the strains in the

test piece by

= (R/R) =	F	(€ + nc 5 )	 ( 8.7)
lflV0

where R is the resistance of the strain gauge,

F is the gauge factor,

n is the cross-sensitivity factor,

v 0 i3 the calibration value of Poisson's ratio.

Two gauges are fixed in any z,s-direction to a test surface and two

gauges from the batch are fixed in the same manner in the L,c-direction to

a compensating bar. If the separate gauge signals or their sums and

differenaes are indicated by appropriate bridge circuits, then from Eq. 8.7

and using Hook's law we have

F(l ± n) 1 + V'
+ PC

1-nv0	E'

F(ln)1*u 	+
p s + p s	 - (c1j_a)

1-nv 0	E

(8.8)



+
+-	=	 •ciLa3 a	+

- PC

(8. ba)
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Hence

+	 -
+	- P3—P5•__•l+v
- a - ________ 	______

+	/	-
-	E 1 +v

(8.9)

or, if the compensating bar is of the same material as the test piece,

ci =	 J -3	2	2

- PC

(8. lOb)

( L • 5 -
2.	2

- PC

where, E is the Youflgs modulus of the test piece, E' is the Young's modulus

of the compensating bar, and v, v' are the Poisson's ratios of the test

piece and the compensating bar respectively. The subscripts z, s denote

the mutually perpendicular directions in the test piece, and L, c the

longitudinal and transverse directions of the compensating bar.

From Eqs. 8.10 the required stresses a, a5 are thus completely

determined by the four gauge readings and the known compensating stress

the five constants F, n, v 0 , E, v cancelling out. The accuracy now depends

only on the gauge readings.

Knowing the stresses in the longitudinal (tangential) and transverse

(radial) directions on both surfaces, the transverse moments and longitudinal

direct stresses were then obtained as:

transverse moment per unit length

= ( 
a5, -

i.e.,



approximately by

E
ci	= l_2

or

= a	2
- PC

(8. 12b)

tB. lla)
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and longitudinal membrane stresses

+= ___________

2

The subscripts t and b denoting the top and bottom surfaces respectively

of the plate under consideration.

Since there were no gauges fixed on the inner surfaces of the plates,

the longitudinal membrane stresses for Model 1 could be evaluated

8.3.2 Theoretical solutions

The models were analysed by the finite element method of analysis

using both thin-walled box beam elements and three-dimensional thin shell

elements facilitated in L!JSAS.

The general theory has been derived and discussed in previous chapters.

The theoretical results predicted by the present study were obtained by

using the CUBAS computer program which will be described in Appendix I. The

general beam idealization of the individual models is shown in Fig. 8.l2.

The properties of the box beam sections, without considering the shear lag

effect, are listed in Table 8.3. In practice, the bending moments of inertia

I x used in the computing, were evaluated by considering the effective

width of the flanges from the relevant tables listed in Chapter 2, which

have been suggested by Moffat and Dowling (93).

For each loading condition the output of the computer program gave

displacement components and stress resultants at each node. The longitudinal
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and/or transverse displacement distributions and the stresses could then

be obtained theoretically at each gauge section for the individual loading

conditions.

For the purpose of comparison, three-dimensional finite element

analyses were also carried out. The LUSAS computer program (79) was

utilized to obtain the theoretical results for each model test. The detail

theoretical background for the LUSAS system can be found in Ref. 80.

The extensional-f lexural quadrilateral elements with six nodes named

SHI6 were chosen for idealizing the boxes and the lower order quadrilateral

elements with four nodes named SHI4 were used for representing the diaphragms.

The flat thin shell box element idealization for each of the four elastic

models is shown in Figs. 8.13, 8.14, 8.15 and 8.16 respectively. For

obtaining the convergence results and also for the sake of convenience

when comparing with the experimental results, fine meshes for the flange

plates and along the lenth of the beams were used. Since the in-plane

displacement field represented exactly the beam action in the cell walls,

only a single element over the depth of a web was involved (80). It should

be noted that, although the web elements are cylindrically-curved plates

in the curved cantilever box beam model, they are treated in practice as

flat rectangular elements because of the limitation of the available elements

in the computer program.

8.3.3 Comparison of the theoretical and experimental results for the models

The values obtained from the experimental tests on the four models

will now be compared with those predicted by the general beam and three-

dimensional finite element methods. The loading conditions for the models

are listed in Table 8.2.
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8.3.3.1 Presentation of results for Model 1 —straight cantilever

box beam model

The twisting angles and distortional angles along the box beam were

evaluated from the observed values of displacements (Table 8.3 and 8.4).

The comparisons of the distributions of the twisting angles as well as the

distortional angles along the beam are listed in Table 8.4 together with

the plots shown in Figs. 8.17 and 8.18. The close agreement of the

theoretical solutions with those obtained experimentally indicates that the

additional degrees of freedom which represent the warping and disortional

actions can be presented accurately by thin-walled box beam finite elements.

In Fig. 8.19 the vertical deflections of the bottom flange at 7/8

span and midspan cross-sections are plotted and tabulated. Good agreement

is also shown between the observed values and the calculated values both

from the thin shell box element idealization and the thin-walled box beam

element idealization. The deformed shape of the cross-section at the tip

of the beam can be seen visually from the photograph of Figure 15.

The values of longitudinal warping stresses and transverse bending

stresses on the outer surface around the 3/4 span cross-section and midspan

cross-section of the model are plotted in Figs. 8.20 and 8.21. Table 8.3

gives a detailed comparison of the observed and calculated stresses in the

top flange near the web. The stress comparison in the case of Model 1 has

shown that the additional stress system arising from the warping torsion

arid distortion effects can be predicted sufficiently accurately for straight

single-spined box beams by a one-dimensional finite element analysis using

thin-walled box beam elements. Attention should also be drawn to the facç

that the calculated stress results from beam elements and shell elements

are in close agreement.
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8.3.3.2 Presentation of results for Model 2—curved cantilever

box beam model

In the comparison of results obtained from the tests on Model 2, the

vertical deflections at various positions across the top flange at the

7/8 arc length cross-section from the fixed end, are shown in Fig. 8.23.

The comparison shows that the theoretical values obtained by thin-walled

box beam elements with the reduced torsional stiffness described in

Chapter 3 are in close agreement with those measured in both loading cases.

In this case the three-dimensional finite element solution is not in close

agreement with either the experimental results or the results obtained

using the thin-walled box beam element. Yet, the deformed shapes are

basically the same as the experimental ones.

The deformed shapes of the tip cross-section can be seen from

Figures 16 and 17. By using photogrammetric techniques the distortional

angle of the tip section was measured as 0.01649 radians for the two-point

load case and 0.04448 radiansfor the one-point load case. The corresponding

values calculated by general beam theory were 0.01649 radians and 0.04597

radians respectively. The observed model results are in very close

agreement with the calculated results.

Typical examples of the comparison between the experimental stresses

and those obtained from the finite element methods are given in Figs. 8.24

and 8.25. Here the longitudinal membrane stresses at the 1/8 arc length

cross-section, and transverse bending stresses for the outer surfaces

at the 7/8 arc length cross-section have been plotted.

It may be noted that from Figs. 8.24 and 8.25 the radial stresses

obtained by the finite elment method using either shell elements or beam

elements are in reasonable agreement with those obtained experimentally.

The tangential (longitudinal) stresses, however, do not compare so well.
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In general, the finite element values are higher than the experimental

ones, but it should also be noted that the theoretical results from the

present approach are closer to the experimental values than in the case of

the three-dimensional finite element analysis. The shapes of the tangential

stress plots are basically the same as those of the experimental results.

8.3.3.3 Presentation of results for Model 3—two-span continuous

box beam model

The results obtained from Model 3 represented only the elastic

behaviour of this structure. Since no devices were employed to measure

the strains on concrete surfaces, only a comparison of experimental and

theoretical deflections has been established.

In Fig. 8.26 the vertical deflection at the bottom of the side web

along the continuous box beam is plotted and tabulated. Close agreement

has been shown between the theoretical values and the observed results.

As a typical comparison the measured transverse distribution of the vertical

deflection across the bottom flange at the mid-span cross-section of the

loaded span, together with the results calculated from finite element

methods is shown in Fig. 8.27.

The values of longitudinal stress resultants and transverse bending

moments around the mid-span cross-section of the model are plotted in

Figs. 8.28 and 8.29 respectively. A comparison of the finite element

shell analysis and the finite element beam analysis for the longitudinal

stresses at the mid-span cross-section of the loaded span is shown in

Fig. 8.30. This indicates that close agreement between these two theoretical

approaches occur not only for the displacement results but also for the

stresses.
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8.3.3.4 Presentation of results for Model 4 - simply supported

twin-box beam model

The observed deflections across the top flange at the mid-span

cross-section for two symmetrical concentrated loads totalling 40 kN applied

above the two inner webs at 7/16 of the span, together with those evaluated

from the finite element analyses, are plotted and tabulated in Fig. 8.31.

In addition, the shape of the deformed cross-section at midspan due to a

concentrated load of 20 kN applied above one of the inner webs at 7/16

span has been shown in Fig. 8.32. It is interesting to note that the

results due to symmetrical loading may be obtained from those due to

asymmetrical loading by the superposition principle.

The comparison presented in Fig. 8.31 shows that the maximum

deflection calculated by the finite element-grillage method with a reduced

torsional stiffness factor of 1/7.90 for the symmetrical loading case is

within 7% of the experimental value, an accuracy quite adequate for design

purposes. For the asymmetrical loading case, however, the agreement

between the deflections obtained from the experiment and from the finite

element-grillage calculation with reduced factor of 1/7.91 for the loaded

box and of 1/8.05 for the unloaded box, shown in Fig. 8.32, is not good;

although the deformed shapes are largely the same. The theoretical results

obtained from finite element analysis using thin shell elements indicate

that, in general, it gives results of greater stiffness than those

obtained from measurement as well as from the finite element-grillage analysis.

The longitudinal stresses on the outer surface at the mid-span cross-

section from the three-dimensional finite element, the experimental and

the finite element-grillage results are shown in Figs. 8.33 and 8.34.

Stresses for both loading cases are in adequate agreement in the loaded

box. It is also interesting to note that the finite element-grillage

approach results in an overestimate of the stresses in the loaded box, and
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an underestimate of the stresses in the unloaded box.

Figs. 8.35 and 8.36 indicate the comparison of transverse bending

stresses at the mid-span cross-section for both loading cases. Although

the theoretical results and the observed values are not in very close

agreement, the discrepancy between theory and experiment in the loaded

box for both loading cases, is acceptable for primary design purposes.

The reactions measured by the load 	cells in both loading cases are

shown on a plan of the structure in Figs. 8.37 and 8.38 together with the

values calculated from finite element analyses. The sum of the measured

reactions was 1.79% lower than the total applied for the symmetrical loading

case, whereas the total applied load gave the lesser value of 1.65% for

asymmetrical loading.

8.4 swnrnary and conclusions of the results obtained from the experimental

work

A series of comprehensive model investigations was carried out in an

indirect manner, i.e., the models were used mainly to assess the validity of

the proposed theory. Also, the experimental tests enabled the real

structural behaviour of the box spine-beams with deformable cross-sections

to be observed. Thus an understanding of the structural action was obtained

which effectively assisted the development of the theory.

In the previous section, the theoretical and experimental results

obtained have been compared and discussed. 	From this comparison and also

from the comparison between the results given by the thin-walled beam

elements and the flat thin-shell elements, several conclusions can be

established and these may be summarized as follows:

1. From the close agreement of the experimental and theoretical

values for Models 1 and 3 it can be concluded that thin-walled box beam
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elements which have additional nodal variables can be used to predict the

global behaviour of straight single-spined box beams with sufficient

accuracy.

2. The results obtained experimentally from Model 2 have illustrated

the behaviour of curved box beams. This study showed that if deformation

of the cross-section is permitted, the initial curvature greatly increases

the rigid deflections of the girder. This confirms that the interaction

between the bending and torsional effects is significantly influenced

by the cross-sectional deformation. However, the transverse distortional

response of the curved box beam is not very different from an equivalent

straight box beam with a span equal to the developed length of the centre

line of the curved box.

Furthermore, experimental results have verified that additional

distortional forces occur in box beams curved in plan due to the radial

component of the longitudinal bending stresses. They must be included in

the distortional calculation even when the applied loads are symmetrical

about the cross-section axes.

3. The investigated structural response of the curved model has

shown that the radial and tangential stresses obtained from thin-walled

box beam elements were overestimated but the theory predicted well the

distribution and aenseof the stresses. Thus the general beam theory can be

used to analyse deformable box spine-beams curved in plan with adequate

accuracy for design purposes.

4. The finite element-grillage method developed within this thesis

for mnulti-spined box beams, Consists essentially of making reductions to

the torsional stiffness properties of the longitudinal members of the

grillage to allow for the apparent increased rotations about the
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longitudinal axis due to distortion of the cross-section. The results

obtained from Model 4 compared with the theoretical solutions indicate that

a finite element-grillage analysis gives an adequate assessment of the

displacements and stresses in the case of the loaded box. In practice,

the monolithic top flange would be much stiffer than that in the model.

The analysis should therefore be more accurate when applied to a real

inulti-spined box beam.

5. From the observed distribution of longitudinal normal stresses

across the model cross-sections, the effective breadth treatment of shear

lag, which is based on Moffatt's work (93), has been qualitatively verified.

6. The longitudinal warping stresses which arise from constrained

torsional warping and distortional warping can form a significant addition

to the ordinary bending stresses and must be considered in design.

Distortion is the main source of warping stresses and torsional warping

stresses are generally of secondary importance in practical box beam

structures. Maximum distortional warping stresses for the models were found

to be 22% - 70% of the ordinary bending stresses, whilst the torsional

warping stresses were only 1% - 7% of the bending stresses.

7. Transverse distortional bending stresses in deformable box beams

are extremely sensitive to the transverse cross-sectional properties. They

may be of the same order as the longitudinal bending stresses under the

sanie loading. Consequently, transverse distortional bending can generate

significant longitudinal stresses due to the Poisson's ratio effect and

are by no means negligible in comparison with the longitudinal bending
-V

stresses. The experimental stress results, when compared with those

obtained theoretically, verify that the longitudinal bending moments of

individual plates can be approximated by the corresponding transverse

bending moments multiplied by Poisson's ratio (83).



34].

8. The multicell box is another instance in which the symmetrical

coniponent of load produces transverse bending stresses. This is illustrated

for Model 3 in Fig. 8.31, where it can be seen that the bending stress

due to the symmetrical components is a significant portion of the total

stress, while the deflections and warping stresses are not significantly

changed.

I
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Table 8.1 Centreline dimensions and wall thicknesses of cross-sections

shownin Fig. 8.1 ______ ______ ______ ______ _____

!j ofl	b t	 bb	 h	x	tt

Ibr (mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)

I	300	300	300	150	-	3.18	3.18	3.18

	

300	300	450	150	-	3.46	3.46	3.46

lIT	660	660	660	225	330	25	25	30

	

300	•	200	900	I	154	150	5.0	3.0	3.0
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(a) Dial gauge positions fot straight cantilever model. at 1/4, 3/8, 1/2,
5/8, 6/8 and 7/8 span cross-sections respectively

i- i -

(b) Transducer positions for curved cantilever model at 1/2 and 7/8

arc length cross-sections respectively

[II.LI]
82. 1 82.5 1 8 2 . 5j 82.5 82.54!2.

mm mm nm mm mm nm mm nm

(c) Transducer positions for Continuous box beam model at midspan

cross-section of the loaded span

(ci) Transducer positions for twin-box beam model at midspan cross-section

Fig. 8.9 Positions of deflection gagues for the models
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(b) Strain gauge positions for curved cantilever model at 1/8, 1/2
and 7/8 arc length cross — sections respectively
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mm	mm	 mm	mm

(c) Strain gauge positions for twin—box beam model at midspan
cross-section

Fig. 8.10 Strain gauge positions for the models.
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Table 8.2 Loading cases

Type of Loading
Test	 Values

	

Cross-section	 Plan

A pair of opposite point

29O	

the concentrated torque	(500
toads at tip ends to form	4905 N

2	

r 3OOmm11	

(400kg)
Porni loads at tip end	3926t4

3	
-I	

Point load at tp	
(800kg)

end	7848N

2x P
_________________________	Point loads near midspan	P=

'I	
of the loaded span	 1OKN
(see Fig.8.)	 (1O19cg)

p iso p

5	\	
1m1	

Point toads at 7/16	

(2038kg)

SPQI)	2OKN

P

6	 \	I	(2O38kg
Point toad at 7/16 span	2OKN
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.1;

'Figure 9 Layout of the transducers and loading system
for the curved box beam model
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6	7	1	?	12	1I	1	13	i	15	16

(a) straight cantilever box beam model

9 10 ii

32

4:

(1,) Curved cantilever box beam model

4 5 6 7 8 9 10 111213 14 151617 1819 2021 fl23 24 25 26 772829 3 31 32 33

(c) Two-span continuous box beam model

1	8	15	22	29	36	43	50	57	64	71	78	85	99	106 113

	

\Z 9	16	23	30 37	44 51	58 65	72	/9	86 93	9Q 07 116

w

	

3 10	17	26	31	38	45	52	59	66 73	80	87	94	101 108 115

	

c © 
18 2S 32 39 46® 53 	

© ©	 10P 109 116iO	57	76	81	88	95

	

5 12	19	26	33	40	47	54	61	68	75	82	89	96	103 110 117

	

6 13	20	27	34	41	68	55	62	69	76	83	90	97	104 111	118Tr— j - - - -j—yr
	7 16 	21	28	35	42	49	56	63 70	77	84	91	98	105 112 119

(d) Simply-supported twin-box beam model

Fig. 8.12 Finite element mesh for the models using thin-walled box
beam elements
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(c) Cross-section

Fig. 8.14 Curved cantilever box beam model finite element
idealization using thin shell box elements (LUSAS)
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Ca) 1/2 top flange mesh

-,-- -- -- -.-- -.-- -^- -.-- -,-- -.-- -- -.-- -.-- -.- -.-- -- -.--

- -- -.-- __.- -.- ---.- - -- -.- -- -.- -.-- - - -- -

-4-- -.- -- -- --	 -.- -.-- -.- -- -.- - -.-- -,-- -.- -.-

- - - -.-- -- - -- -.-- -.- - -.- - -- - -s_ -
-4-- -.- -4--- -4--- -- -4--- -.-- -.-- -.-- -.-- - -- -4-- -0- -0- -0-

-I- -0-- -•	-0-- -0-- -0-	 -0-- -4--- -0- -0- - - -0- -

-4- -- -0-- -0-- -4-- -4--- -0-- -0-- 0- --- - -0-- 0- -4-- 4- -4--

-0- -4-- -0- 0- - -0-- -0-	 0- -	 0-

-4- -4-- -4--- -4-- - -0-- -4-- -4-- -0- -4-- - -0- -	0- 0-

- - -4--- -4-- -0-- --- -0- -4-- -0-- 0-- -0-- 0-	 0- 0- -

-0- --- -4-- -4 -4-- -0--- -4-- -4-- -0-- 0- - 0- 0- 0- 0-

(b) Mesh of 1/2 bottom flange and jebs

Cc) Cross-section

Total number of elements : 296

Total number of nodes	513

Pig. 8.16 Twin-box beam model finite element idealization using
thin shell box elements (LUSAS)
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CHAPTER 9

CONCLUSIONS AND RECOMRENDATIONS FOR FUTURE WORK

Conclusions

A method of analysis which is based upon the finite element

technique has been developed for the analysis of thin-walled box-spine beam

bridges having complex geometry and boundary conditions. The important

stages in the development of the analysis may be summarized as follows:

(1) Existing thin-walled beam theory has been extended for single-

cell as well as multi-cell box beams. This extension considers the

structural effects arising from longitudinal bending, warping torsion and

cross-sectional distortion.

(ii) The development of a general one-dimensional finite element

family, and in particular, the development of a thin-walled box beam element

which includes the effects of warping and distortion, has been carried out.

(iii) A finite element-grillage approach is proposed for the

analysis of multibox structures. Also, an inclined cable element and an

iterative procedure for the nonlinear analysis of cable-stayed bridges have

been developed.

The above theoretical work has been incorporated into a computer

program called CUBAS. The main program, with a supplementary program called

?FRAN, can be used for a wide range of bridge structures having various

geometries, boundary and loading conditions.

Extensive experimental tests on elastic box beam models have been

conducted by the author and numerical results for various types of box

spine-beams have been calculated and compared with alternative theoretical

results, in particular three-dimensional finite element analyses. An actual
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cable-stayed bridge has been analysed and compared with a field loading

test. On the basis of the investigations carried out, several conclusions

may be drawn, and these may be sunimarized as follows:

1. The comparison between the author's finite element beam

solutions, the finite element shell solutions calculated by the LUSAS

program, and the box beam model experimental values shows good agreement.

These results support the appropriatness and the accuracy of the beam

elements. The general one-dimensional finite element can then be used

successfully for the elastic analysis of a variety of general box-type

bridge decks, such as spined box beams, multibox girders and articulated

bridge decks.

2. The main advantage of the proposed method of analysis is that

it may be used for bridge analysis in situations where a full three-

dimensional analysis is unnecessary, such as during preliminary design

procedures. The method possesses a simple solution procedure, economical

storage and execution time requirements, ease of data preparation and of

output interpretation.

It can be observed from the following comparisons that the time

required to obtain a solution by the present method is substantially less

than that required for a solution by the three-dimensional finite element

ethod:



Structure

Straight cantilever box model

Curved cantilever box model

Two-span continuous
box beam model

Twin-box beam model

Sawko and Cope's Simply supported
box girder model(20,118,119)

A 2-cell box beam given by
Richmond (104,106)

Curved box girder bridge given
by Meyer ( 87)

A 2-span 3-cell box bridge
given by Scordelis(126)

A composite twin-box girder
given by Billington(11)
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Total No. 	No. of Degrees Proc. Time
of Elements of Freedom 	(Sec.)

(1)	(2)	(1)	(2)	(1)	(2)

8	160	153	1180	11.16 210.73

17	192	315	1416	68.22 232.70

16	188	297	1180	18.72 243.05

67	296	1071	2078	182.52 454.36

8	84	153	620	10.08 113.35

8	I 268 I 	153 I 1752 	1 16.56 I 375.54

8	I 200 I 153 I 1416 	I 19.44 1333.76

8	I 140 I 	153 I 	868	I 11.52 I 322.82

67	I 264 I 1071 I 1770 	1176.40 I 419.56

N.B., Column (1) is the general beam solution; Column (2) is the shell

solution by LUSAS program.

It can also be emphasized that a major advantage over other existing

methods is the versatility of the proposed method. The method is available

for single-cell as well as multi-cell box spine-beams, and is applicable

to the elastic analysis of concrete, steel and composite structures.

The method can account for the effects of transverse stiffening, curvature

in plan, variations in cross-sectional properties, and random positioning

of supports.

3. Unlike the three-dimensional analysis," the structure in the

proposed method is subdivided only in the longitudinal direction. The

proposed method thus lacks the accuracy of the finite element method using

shell elements with membrane and/or plate bending properties. It is,
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however, advantageous in cases of primary design where the overall response

is of most significance and many repetitions of calculation are necessary

for establishing an efficient design. Detailed investigation using the

three-dimensional finite element method can, if required, then be applied

to chosen sub-sections of the structure. This considerably simplifies

the design procedure for thin-walled box spine-beam bridges.

4. The results obtained experimentally have illustrated the specific

structural actions of thin-walled box beams which must be considered in

design. 	The most important conclusions have been summarized itt the section

8.4 of Chapter 8.

5. By including non-linear interaction effects, cable-stayed

bridges can be represented adequately by the one-dimensional finite element

family. The proposed method of analysis using this family is a convenient

and practical design tool for this type of bridge. The results obtained by

the method have been compared with previous results of a numerical example

and the results obtained from an actual field loading test. These comparisons

are favourable.

Recommendations for future research

(1) The present project has been concerned only with the static

analysis of thin-walled box spine-beam bridges. However, some structures

such as cable-stayed bridges are prone to the effects of elastic instability

arising from beam-column action. Although classical formulations continue

to be applicable to digital computer analyses of large-scale systems for

such circumstances, an opportunity exists for improved efficiency, though

at the expense of approximation by virtue of finite element concepts (8,14).

in addition, consideration of problems associated with space frameworks

suggests the need to cope with torsional instability as well as combined
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torsional-f lexural instability. Consequently, the extension of the general

beani element to the analysis of torsional and torsional-flexural stability

problems, thereby incorporating the warping bimoment and distortion

contributions to stability effects of thin-walled assemblages, would be

very valuable. It should be noted that a prismatic thin-walled beam

element with a rigid open section has been studied by Barsoum and

Gallagher (8), and Chai Hong Yoo (14), to deal with the problem of

torsional-f lexural buckling.

(2) Practical experience shows that vibration is often important

for long span bridges such as cable-stayed bridges. Future research should

also be directed at investigating the dynamic response of thin-walled box

girder bridges. The natural vibrations of a box girder can have three

characteristic forms, flexural vibrations, torsional vibrations and

distortional vibrations. The general beam element gives the opportunity

for the economic resolution of bending-torsional vibration problems (70,71).

(3) Large displacements and material nonlinearity for cable-stayed

bridges are predicted in an approximate manner in the present approach.

Although in bridge structures other than cable-stayed bridges non-linear

effects are normally not significant, it is still preferable to further

develop a more complex procedure capable of predicting geometrical and

material non-linear effects more accurately.

(4) For predicting the shear lag effects associated with the

longitudinal bending an empirical procedure has been used. It would seem

possible to use the generalized coordinate method of Vlasov (146) to

include the structural action of shear lag directly in the element

formulation. Such an approach would also make the method more accurate

for complex support conditions.
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(5) Large finite element systems are often more useful in pure

research work than in the practical work carried out in design offices.

The CIJBAS computer program has been developed successfully to predict the

appropriatness of the theoretical concepts derived in this thesis. Thus

the program can be a basis for further developments for the analysis and

design of actual bridge structures.
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APPENDIX I COMPUTER PROGRAM - CUBAS

1.1 General introduction

This appendix is written as a users guide for the computer program,

CUBAS, which is based on the finite element displacement method covered

in Chapters 4, 6 and 7. The scope and a general procedure of the program

are briefly described in section 1.2. Section 1.3 provides users

instructions for preparing input data, associated with the description

of the variable names concerned. The interpretation of error diagnostics

and illustrative examples for data input are presented in sections 1.4

and 1.5 respectively.

The program, compiled on a Honeywell computer, has been written

using the Fortran IV language and contains a range of spatial one-dimensional

finite elements and solution procedures. It is particularly suitable

for the analysis of a variety of types of bridge structure during the design

stage. The program incorporates facilities mainly for linear static

stress analysis, yet the prediction of nonlinear effects in cable-stayed

bridges, arising from large displacements, bending moment-axial force

interaction and the catenary action of the inclined cables, is also included.

The support node conditions may be restrained, restrained with prescribed

displacements, or free. The load types available are concentrated point

loads, gravity loading, temperature and uniformly distributed loads.

The data input is completely free-format and thus suitable for

input from a terminal. It is, however, very easy to modify to accept

formatted data input ;  as shown in the instructions. Some automatic data

generation facilities are available, which enable considerably economy

in data input. 	The program contains a set of error diagnostics which

advise the user of improbable or wrong input. The results output are

Clear and self-explanatory. 	It should be borne in mind that all the
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stress resultants output are referred to the positive faces of cross-

sections. Units of output wjll be the same as those used for input.

The method of solving the load-deflection equations in CUBAS is

the frontal technique (45), whIch has earned the reputation of being

easy and inexpensive to use. The maximum size of problem which can be

solved is governed by the maximum frontwidth specified with the value of 140

in the present program code. The actual frontwidth in an individual

analysis is controlled by the order in which the elements are introduced

for solution. Since CUBAS always solves the structure equations according

to ascending element numbers, the user should number the element across

the narrow direction of the structure to minimise the frontwidth.

The size of structure that can be analysed is expandable

depending on the size of core storage of the computer being used. Typically,

up to 250 elements and 350 nodes could be used to one analysis in the

present program code.

1.2 Scope and general procedure

The computer program, CTJBAS, is availalle for the analysis of the

following ten types of structures, which are identified by representative

numbers:

NTYPE = 1 plane or space truss

2 plane or space framework assembled by members having

solid cross-sections

3 thin-walled assemblage with members having open or closed

rigid cross-sections
	 1

4 articulated open or cellular bridge deck

5 straight single-spined box beam with deformable cross-

sections

6 straight multi-spined box beam with deformable cross-

sections
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7 single-spined box beam curved in plan with deformable

cros-'sections

8 multi.-spined box beam curved in plan with deformable

cross-sections

9 cable-stayed bridge with main girder having rigid

cross-sections

10 cable-stayed bridge with single-spined box girder having

deformable cross-sections

There are six essential types of elements available in the CTJBAS

program for modelling a bridge structure. Each type of element is given an

identifying three-digit number. The first digit indicates the number of

nodes in an element, and the second one shows the degrees of freedom at

each node. The final digit is five for cable elements or elements which

are specially used for modelling the connecting plates between neighbouring

boxes in a finite element-grillage analysis. For all other elements the

final digit is zero. The available elements in the program are listed

be low:

NETYPE = 230 two-node truss element

235 inclined cable elements with two side nodes

260 two-node solid beam element

265 transverse solid beam element with two side nodes

360 three-node solid beam element

365 three-node transverse solid beam element

370 three-node thin-walled beam element with rigid

cros s-sections

390 three-node thin-walled box beam element with

deformable cross-sections

It is permissible in CUBAS to mix different types of elements together

in an analysis.
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The input data comprises; options, specifying problem type and

output required, element nuinhers node numbers, node coordinates, geometric

and material properties for each. element, support nodes and the loading

etc. Reference should be made to Chapter 1 and Chapter 4 with regard

to coordinate systems and sign conventions.

On processing the input data the general program (CTJBAS) calls

the submatrices for generation of the stiffness matrix and nodal forces.

The stiffness matrix and the nodal forces are then modified in

accordance with the support conditions.

Repeating this for all elements the program assembles the overall

structure stiffness and forms and solves the governing equations of the

structure for the load case specified. The reactions are then calculated

and the results of both displacements and reactions are written out.

With displacements now known the program calls the subroutine for

calculation of stress resultants and the subroutine for writing the stress

resultants. For nonlinear analysis of cable-stayed bridges the residual

force vector is then calculated and the above computing process is repeated

until convergence requirements are satisfied.

A simplified flow chart of these operations is given in Fig. A.l.

1.3 Data input to CUBAS

Although specified input format will be indicated in the following

instructions, the data input is completely free-format in the present

program.

+ Optional data. Card is omitted if not required

* Minimum data necessary.
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*1. Problem Card (15) —One card

notes	coluinnn 	yad,able

(1)	 1-5	 NPRQR

entry

Total number of problems to be

solved in one run.

Notes!

(1) This rerun facility can be used for the erection analysis of

bridge structures, which could be carried on through some stages

with different structural forms. It can also be used

effectively for the non-linear analysis of cable-stayed bridges

considering the effects of initial stress state. The first

problem can then be solved as the initial state of the cable-

stayed bridge.

*2. Title Card (A80) —One card

notes	columns	variable 	entry

(1)	 1-80	 ITITLE
	

Title of the problem - limited to

80 alphanumeric characters

Notes /

(1) Begin each new data case with a new title card.

*3 Option card (1015)—One card

notes	columns	variable

(1)	 1-5	 IOPTION(l)

6-10	 IOPTION(2)

11-15	 IQPTION(3)

entry

Output intermediate computing results

Output displacements in local

coordinate system

Output local displacements in each

iterative process for the analysis

of multi-spined box beanis
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16-20
	

IOPTION(4)	Output local displacements and

stress resultants in each iterative

process for the non-linear analysis

of cable-stayed bridges

2 1-25 IOPTION(5) Evaluate and output initial stress

matrix for the non-linear analysis

of cable-stayed bridges

	

26-30
	IOPTION(6)	Consider the effects of initial stress

state in the non-linear analysis nf

cable-stayed bridges

31- 35
	

IOPTION(7)	Input directly the initial displace-

ment vector for the non-linear

analysis of cable-stayed bridges.

Normally this code should be taken as

	

36-40
	

IOPTION (8)

	

41-45
	

IOPTION (9)

	

46-50
	

IOPTION (10)

zero.

Carry out the iterative process for

considering the interaction between

distortion and bending-torsion in the

analysis of single-spined box beams

curved in plan

Input node coordinates to be references

to a global cylindrical system (RY,O)

Input prescribed displacements at the

support nodes

Motes 1

(1) EQ.O no ececution EQ.1 optional execution.



(2) LCASE6-10

(3) NPOIN11-15

(4) NVF IX16-20

(5) LVF IX21-25

(6) NDOFN26-30

(7) NTRUS31-35
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*4 Structure Type Card (15)—One card

notes	columns	variable 	entry

(1)	 l-5	 NTYPE	Identifying number (1-10) for the

structure considered

Notes /

(1) The representation of the number can be referred to the description

in section 1.2.

*5 •  Control Card (1615)—One card

notes	colums	variable

(1)	 1-5	 NOLIN

	

36-40	NSOLB

	

41-45	NTHIN

en try

Analysis type code:

EQ.O; linear analysis

EQ.1; non-linear analysis

Total number of different loading

cases to be analysed

Total number of nodal points in the

model

Total number of restrained boundary

nodes, where one or' more degrees of

freedom are all restrained with

reference to the global axes

Total number of support nodes restrained

relative to the local axes

Number of degrees of freedom per

node

Total number of truss and/or cable

elements

Total nurnberof solid beam elements

Total number of thin-walled beam

elements
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5 1-55	NTRAI

(8) 56-60	NNATS

(9) 61-65	NSECS

(10) 66-70	NBOXS

(11) 71-75	NDIAP

(12) 76-80	MAXCARD

Notes!

Total number of transverse solid beam

elements

Total number of diffeentia1 material types

Number of individual nodal sections having

different sectional properties

Number of deformable box sections having

different sectional properties

Number of intermediate solid diaphragms

Maximum number of cards necessary to be

input for each data case.

(1) Non-linear analysis is only available for the cable-stayed

bridges.

(2) The total number of load cases to be solved for provided that

the structural geometry remains unchanged. The element stiffness

need not be recomputed for each additional loading case.

(3) Nodes are labeled with integers ranging from "1" to the total

number of nodes in the system, "NPOIN". The ordering of nodal

numbering is irrelevant. The program exists with diagnostic

message if NPOIN.LE.0 or NPOIN.GT.350.

(4) This includes all nodes that are supported in the structure

considered.

(5) This includes only the nodes that are restrained corresponding

to the specified local axes.

(6) If different types of element are mixed together in the analysis,

NDOFN should be input as the maximum one.

(7) Elements are assigned integer labels ranging from "1" to the

total number of elements, NELEM, which should be the sum of the

elements in each group, i.e.,

NELEM = NTRUS + NSOLB + NTHIN + NESBE + NTRAN.



423

Illegal references are: NELEM.LE.O or NELEM.GT.225.

() Different materials are numbered with integers ranging from "1"

to the total number of different materials, NMATS.

(9) All the nodal sections are arranged into different groups, in

which sectional properties are the same. They are assigned

integer labels ranging from "1" to the total number of section

groups, NSECS.

(10) NBOXS should be always less than or equal to NSECS, and the

individual deformable box sections should always be labeled

following all the other rigid section groups.

(11) Support diaphragms and bracings are not included.

(12) MAXCARD is a program testing parameter which allows the user to

test if the number of input cards is correct. The maximum

cards can be calculated by the formula:

MAXCARD = NCARD1 + (NELEM-NCARD2) + (NPOIN-NCARD3) + (NVE'IX-NCARD4)

+ (2NSECS+NBOXS-NCARD5) + (NUELP-NCARD6) + (NPOIN-NCARD7)

where, NCARDIis the actual number of input cards for one

problem not including the first problem card,

NCARD2 is the actual number of element data cards for one problem,

NCARD3 is the actual number of node data cards for one problem,

NCARD4 is the actual number of prescribed displacement cards

for one problem,

NCAR.DS is the actual number of sectional property cards for

one problem,

NCARD6 is the actual number of distributed load cards for one

problem,

NCARD7 is the actual number of temperature cards for one problem.

Note that each two succes8ive cards for the initial displacement

data cards, the distributed load cards and the concentrated load

cards are accounted as a single card in the above formula.
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424

*6. Load Control Cards_(515)—One card for each loading case. Total of

LCASE cards (see Card Set 5)

note	co1umn	vra,ble

(1)	1-5
	

IULOD

6-10
	

NGRAV(IULOD)

entry

Loading case number

Gravity loading control parameter

O no gravity loads to be considered

1 gravity loads to be considered

Number of applied concentrated point loads,

and zero (0) implies no applied concentrated

loads to be input

16-20	N1JELP(IULOD)	Number of elements subjected to uniformly

distributed loads, and zero (0) implies

no distributed loads to be input

21-25	NITHER(IULOD) Thermal loading control parameter

0 no thermal loading to be considered

1 thermal loading to be considered

Notes/

(1) Loading cases are assigned integer labels ranging from "1" to

the total number of loading cases, LCASE. The program terminates

reading corresponding loading data when a zero number is

encountered.

*7 Element Data Cards (213,14,2(13,12), 915,Fl5.0)-One card for each

element. If there is no data generating process to be incorporated,

total of NELEM cards (see Card Set 5)

notes columns 	variable 	entry

(1) 1-3	NUMEL	 The first element number of a series of

elements to be generated

(2) 4-6
	

MUNEL	 The last element number of a series of

elements to be generated
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(3) 7-10
	

KE 1

(4) 11-13
	

NETYP (NLJMEL)

(5) 14-15
	

NERLE (NUNEL)

Difference between element numbers of the

series of elements to be generated

Element type number

Moment releasing option parameter

0 no member end moment releasing

procedure to be incorporated

1 member end moment releasing procedure

to be incorporated

16-18

(6) 19-20

(7) 21-25

26-30

31-35

36-40

(8) 41-45

46-50

51-55

56-60

MATNO(NUMEL)	Material property number

NUBOX(NUNEL)	Identifying number for individual box-spines

LNODS(NUMEL,1) 1st nodal connection number

LNODS(NUMEL,2) 2nd nodal connection number

LNODS(NUMEL,3) mid-node number

KE2	 Difference between node numbers of the

series of elements to be generated

NGEOM(N1JMEL,l) Sectional property number at the 1st node

NGEOM(NU'MEL,2) Sectional property number at the 2nd node

NGEOM(NIJNEL,3) Sectional property number at the mid-node

KE3	 Difference between sectional property

numbers of the series of elements to be

6 1-65

generated -

NORIE(NtJMEL)	Element orientation number

1 the principal planesyz of the element

are parallel to the YZ plane

2 the principal planes xz of the element

are parallel to the XZ plane

3 the principal planes yz of the element are

parallel to the XY plane

4 the element orientates in the three-

dimensional space arbitrarily
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66-80	TENFO(NUMEL)	Initial axial force existing in the element

Notes /

(1) The input Qrder of the element data cards can be arbitrary,

however, all the elements in the model must be specified.

(2) NUMEL MUMEL implies no data generation to be operated.

(3) If a series of elements occurs in which each element number

(NTJNEL) 1 is KE1 greater than the previous number (NUMEL)1_1

i.e. (NIJMEL) 1 = (NUMEL) 1 _1 + KE1

only the element data card for the first element in the series

need be given as input, provided the

(i) nodal connection number

(ii) sectional property number

can be generated following the same sequence, and the

(iii) element type number

(iv) moment releasing code

(v) material property number

(vi) box-spine identifyin number

(vii) element orientation code

(viii)inital axial force

are the same for each element in the series.

(4) Each group of elements must be specified by a three-digit

identifying number, see section 1,2.

(5) The moment releasing information is specifically for the

transverse grillage members in the analysis of articulated

bridge decks.

(6) Each box-spine between diaphragms should be given a unique
1'

identifying number starting from "1".

(7) The nodal point numbersof the series are

LNODS(i,1) = LNODS(i-1,l) + KE2

LNODS(i,2)	LNODS(i-1,2) + KE2

LNODS({,3) = LNODS(i-1,3) + KE2.
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(8) The sectional property numbers of the series are

NGEOMU.,1) = NGEQM(J.- . 1,l) ^ KE3

NGEOM(i,2) = NGEOM(j-1,2) ^ KE3

NGEOM(i,3) = NGEOMU-1,3) + KE3

+8. Transverse Beam Element Cards (815, 4F10.0)—One card for each

transverse solid beam element. Total of NTRAN cards (see Card Set 5),

and omit: this card set if NTRAN = 0.

notes columns 	variable 	 entry

(1) 1-5
	

IUTRA	 Sequence number

(2) 6-10
	

NETRA(IUTRA)	Transverse solid beam element number

(3) 11-15
	

NODEL(IUTRA,l)	1st nodal connection number of the

transverse beam element

16-20
	

NODEL(IUTRA,2)	Box beam element number associated with

the transverse beam element at its 1st

side node

21-25
	

NODEL(IUTRA,3)	Node identifying code of the box beam

element associated with the transverse beam

element at its 1st side node

-1 1st side node

0 mid-node

1 2nd side node

26-30
	

N0DEL(IuTRA,4) 	2nd nodal connection number of the transverse

beam element

31-35

36-40

N0DEL(IUTRA,S)	Box beam element number associated with

the transverse beam element at the 2nd

side node

N0DELCIuTRA,6)	Node identifying code of the box beam

element associated with the transverse

beam element at its 2nd side node.



428

(4)	41-50
	

XYTRA(IUTR&,1)	x-ordnate of the 1st side node of the

transverse beam element

51-60	XYTBA(IUTRA,2)	y-ordinate of the 1st side node of the

transverse beam element

61-70
	

XYTRA(IUTRA, 3)
	

x-ordinate of the 2nd side node of the

transverse beani element

71-80
	

XYTRA (IUTRA, 4)
	

y-ordinate of the 2nd side node of the

transverse beam element

Notes /

(1) the Sequence number starts from "1" and ends to "NTRAN",

however, the input order in the card set can be arbitrary.

(2) The transverse solid beam elements include only those representing

connecting plates between neighbouring boxes.

(3) These informations indicate the connecting positions between

the transverse solid beam element and the neighbouring boxes

(4) The coordinates are all referred to the local coordinate system

of the box sections where the additional distortjonal forces

from the transverse beam element are incorporated, i.e., they

are the local coordinates of the box top corner points.

*9 Node Data Cards (215, 7F10.0) —One card for each node, if there is no

generating procedure; or two sequence cards for a series of nodes

notes columns 	variable 	 entry

(1) 1-5	NUNPO	 Node number

(2) 6-10	KN
	

Total number of intervals in the series,

and zero implies no generation to be

involved

(3) 11-20	COORD(NUNPQ,1)
	

X(or R) -ordinate

21-30	COOR.D(NUMP0,2)
	

Y	-ordinate

31-40	COORD(NIJMPO,3)
	

Z(or 8) -ordinate (degrees)
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(4)	41-50
	

COORD (NuMIo, 4)

	

5 1-60
	

COORD (NUMPO,S)

X (or R) -ordinate of the reference node

at the mid-point of the bottom flange

of the box-section

y	-ordinate of the reference node

at the mid-point of the bottom flange

of the box-section

61-70	COORD(NUMPO,6)	Z(or 0) -ordinate of the reference node

at the mid-point of the bottom flange

of the box-section.

(5)
	

7 1-80
	

RADIU(N(JMPO)	Radius of the in plan curvature at the

position of the node

Notes /

(1) Node data cards need not be input in node-order sequence;

eventually, however, all nodes in the integer set {l,NPOIN}

must be defined.

(2) Node data for a series of nodes

{NUMPO, NIJMPO+lxKNl.....,NUMPO+(KN-1)xKNl, MUNPO}

may be generated from information given on two (2) cards in

sequence:

Card l/NUMPO,KN,COORD(NtJNPO,l) .....,RADIU(NUMPO)/

Card 2/MUMPO,KN,COORD(MtJHPO,1),.... ,RADIU(MUHPO)/

KN1 is the mesh generation parameter given by

KN1 = MUMPO - N1JMPO

The first generated node is NUMPO + 1 x KN1; the second

generated node is NUMPO + 2 x KN1, etc. Generation continues

ui1itil the node number MIJMPO is established. Note that the node

difference MtJMPO-NUMPO must be evenly divisible by KN.

Intermediate node coordinates are found by linear interpolation

between NUMPO and MUMPO at equal intervals.



430

(3) A special cylindrical coordinate system is allowed for the

global description of nodal point locations. If a "1" is

entered jn card column forty-five (45) of the option card

(see Card Set 3), then the entries given in cc 11-70 are taken

to be references to a global (R,Y,O)system rather than to

the standard (X,Y,Z) system. The program converts cylindrical

coordinate references to cartesian coordinates using the

formulae:

X = -Rsine

Y=Y

Z = RcosO

Cylindrical coordinate input is merely a user convenience for

locating nodes in the standard (X,Y,Z) system, and no other

references to the cylindrical system are implied; i.e., boundary

condition specifications, output displacement components, etc.

are referred to the (X,Y,Z) system.

(4) If the element orientation number equals 1-3, the coordinates

of the reference node can be specified arbitrarily.

(5) If the element axis is curved in space, the radius of curvature

should be taken as the component to be reference to the local

x-axis of the nodal section.

*10. Restrained Node Cards (1215)—One card for each restrained node.

Total of NVFIX cards (see Card Set 5)

notes columns variable

(1) 1-5	NIJFIX

6-10	NOFIX(NTJFIX,l)

(2) 11-15	NOFIX(NUFIX,2)

entry

Sequence number

Restrained node number

eference element number indicating

restrained direction
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(3)	16-20

21-25

26-30

31-35

36-40

41-45

46-50

51-55

flTRE(NUFIX,1)	X(or x)-translation boundary condition

code

IFRE (NWIX,2)

	

	
(or y)'-translation boundary condition

code

IFPRE (NIJFIX,3)
	

Z(or z)-translation boundary condition

code

IFPRE(NUFIX,4)	X(or x)-rotation boundary condition code

IFPRE(NTJF]:X,5)	Y(or y)-rotation boundary condition code

IFPRE(NTrFIX,6)	Z(or z)-rotation boundary condition code

IFPRE(NUFIX,7)	Torsional warping condition (rate of twist)

code

IFPRE(NUFIX,8)	Distortion condition (distortional angle)

code

56-60	IFPRE(NLJFIX,9)	Distortional warping condition (rate of

distortion) code

Notes!

(1) The sequence number starts from "1" and ends to "WJFIX't,

however, the input order in the card set can be arbitrary.

(2) If reference element number equals zero (0), this implies that

the boundary condition specifications are taken to be

references to the global (X,Y,Z) system. Whilst, the restrained

conditions are taken to be references to the local (x,y,z) system

specified by the reference element axis.

(3) Boundary condition codes can only be assigned the following values

(M = 1, 2,....,9):

IFPRE(NUPIX,M)=0; unspecified (free) displacement (or rotation)

component

IFPRE(NTJFIX,M)=l; deleted (fixed) displacement (or rotation)

component, or prescribed displacement

component.
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The maximuiu number of equL1ibrtum equations is always less

than the largest degree of freedom per node times the total

number f nodea in the model,

+11. Prescribed Displacement Cards (IS, 6F10.0, 3F5.0)—One card is

required for each restrained node having any prescribed displacement

components.

notes columns variable 	 entry

(1) 1-5

(2) 6-15

16-25

26-35

36-95

MUF IX
	

Restrained node number

PRESU(MUFIX,1)	Specified displacement along the X-(or x-)

axis

PRESU(MLJFIX,2)	Specified displacement along the Y-(or y-)

axis

PRESU(MUFIx,3)
	

Specified displacement along the Z-(or z-)

axis

PRESU(MUFIx,4)
	

Specified rotation 	about the X-(or x-)

axis

46-55

56-65

66-70

7 1-75

76-80

Notes!

PRESU(MUFIX,5)

PRESU(MUFIX, 6)

PRESU (MUFIX, 7)

PRESU (MIrFIX, 8)

PRESU(MUFIX, 9)

Specified rotation about the Y-(or y) axis

Specified rotation about the Z-(or z-) axis

Specified rate of twist

Specified distortional angle

Specified rate of distortion

(1) Only the restrained nodes having any non-zero prescribed

displacement components need be specified by the input cards.

(2) For any unspecified displacement components zero values should

be put in the corresponding columns.
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*12. Material Cards (15, 5F15.0) —One card for each different material.

Total of NMATS cards (jee Card Set 5)

notes columns 	variable 	 entry

(1)	1-5	NUMAT	 Material identifcation number

	

6-20	ELMAT(NUMAT,1)	Young's modulus of elasticity, E

21-35	ELMAT(NVMAT,2)	Shear modulus of elasticity, G

	

36-50	ELMAT(NTJNAT,3)	Poisson's ratio, v

	

51-65	ELMAT(NtJMAT,4)	Weight density (used to calculate

gravity loads), p

	

66-80	ELMAT(NUMAT,5)	Coefficient of thermal expansion

(used to calculate thermal loads) a

Notes!

(1) The material identification number starts from "1" and ends

to "NMATS", however, the input order in the card set can be

arbitrary.

*13. Sectional Property Cards —Maximum three cards are required to be

input in sequence for each unique set of sectional properties

Card 1 (13, 12, 5F15.0):

notes columns 	variable 	 entry

(1) 1-3	NUSEC	 Sectional property number

(2) 4-5	IDENT	 Input specified number

0 The following two cards can be

omitted

1 The following second card must be

input

6-20	GPROP(NUSEC,1)	Cross-sectional area, A

21-35	GPROP(NUSEC,2)	Bending moment of inertia, IXX

36-50	GPROP(NIJSEC,3)	Bending moment of inertia, Iyy

51-65	GPROP(NIJSEC,4)	Torsional moment of inertia, J1

66-80	CPROP(NIJSEC,5)	Torsional warping moment of inertia,J1
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Card 2 (15, 6F5.O, 2Fl5.0)

notes columns 	yarjahle

1-5	NTJSEC

(3) 6-10	PAIWI(NUSEC,1)

10-15	PARAM(NTJSEC,2)

16-20	PARAN(NUSEC,3)

21-25	PARAM(NTJSEC,4)

26-30
	

PARAM (NUSEC , 5)

31-35
	

PARAN(NTJSEC, 6)

(4) 36-50
	

XYSHE (NUSEC, 1)

51-65
	

XYSHE(NUSEC,2)

entry

Sectional property number

Shear-deformation factor, 1x

Shear-deformation factor, ]!,y

Torsional warping shear parameter, t

Ratio of the width of the bottom flange

to the top flange, a d = bb/bt

DIstortional distribution factor, d

Initial curvature multiplication

factor, d

local x-ordinate of the shear centre

local y-ordinate of the shear centre

Card 3 (15, 2F15.0)

notes columns 	variable
	

entry

(5)	1-5	NUSEC
	

Sectional property number

6-20	GPROP(NUSEC,6)	Distortional second moment of area, 3d

21-35	GPROP(NIJSEC,7)	Distortional warping moment of inertia, J

Notes!

(1) One card is necessary for each different section, and total

of NSECS cards (see Card Set 5)

(2) Input specified number equals zero implies that the sectional

properties specified by the following two cards are the same

as those prescribed by the previous card set.

(3) Shear-deformation factors are used for evaluating the

effective shear areas; torsional warping shear parameter is

for the consideration of the deformatjonal influence due to

the warping shear stresses; ratio ad is used for the calculation

of distortional force; and Cd and	are the effects to the
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distortional force due to side cantilevers and irtitial jn

plan curvature respectively.

(4) Shear forces and torsional moment are with reference to the

shear centre f the Section.

(5) The third data card need be input only when

NUSEC.GE.(NSECS-NBOXS + 1).

+14. Diaphragm Data Cards (315, 4F15.0) —One card per diaphragm

Total of NDLAP cards, and if NDIAP = 0 in Card Set 5 omit this set.

notes columns

(1)	1-5

6-10

11-15

16-30

31-45

46-60

6 1-75

Notes!

variable

NUDIA

NODIP (NUDIA)

MAD IF (NUDIA)

DIAPH(NIJDIA, 1)

DIAPH (NUDIA, 2)

DIAPII(NTJDIA,3)

DIAPH(NUDIA, 4)

entry

Diaphragm number

Node number where diaphragm is located

Material type number

Top-width of the diaphragm

Bottom-width of the diaphragm

Height of the diaphragm

Thickness of the diaphragm

(1) The diaphragm number starts from. "1" and ends to "N])IAP",

however, the input order in the card set can be arbitrary.

+15. Initial Displacement Data Cards (15, 7F15.0) —Two successive cards

per node. Total of NPOIN independent cards, and if IOPTION(7) = 0 in

Card Set 3 omit this set.

notes columns 	variable 	entry

(1)	1-5	IPOIN	 Node number

	

6-20	ASDIS(l) 	Displacement component along the X-axis

	

21-35	ASDIS(2)	Displacement component along the Y-axis

	

36-50	ASDIS(3)	Displacement component along the Z-axis

	

51-65	ASDIS(4)	Rotation component about the X-axis



51-65
	

PLDIS (IUELP,3)

65-80
	

PLDIS(luELp,4)

81-95
	

LDIS (IUEU,5)

Notes!
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66-80
	

ASDIS (5)
	

Rotation component about the Y-axis

	

81-95
	

ASDIS (6)
	

Rotetion component about the Z-axis

	

96-110
	

ASDIS(7)
	

Bte of the twisting angle

(1) These data cards are necessary only when the option code,

"IOPTION(7)" is taken as unit (1), see Card Set 3. The

node numbers should be input in ascending order.

+16. Distrted Load Cards (213, 14,215, 9F15.0)—Two successive cards

f or each elemental load. If there is no generating procedure to be

involved, total of NUELP(ICASE) independent cards. Omit this card

set if NUELP(ICASE) = 0.

notes columns 	variable 	entry

(1) 1-3	IUELP	 First sequence number

4-6	JTJTELP	 Last sequence number

(2) 7-10	KM	 Number of intervals, zero(0) implies no

	

11-15	LOELE(IUELP)

	

16-20	LOELE(JUELP)

(3)
	

21-35	PLDIS(IUELP,l)

	

36-50	PLDIS(IUELP,2)

96-110	PLDIS(IUELP,6)

data generation to be involved

First element number in the series

Last element number in the series

Distributed force component per unit

length, p

Distributed force component per unit

length, p

Distributed force component per unit

length, p

Distributed moment component per unit

length, m ext

Distributed moment component per unit

length, my a ext

Distributed moment component per unit

length, mext
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111-125
	

£LDIS (IUELP, 7)

	

126r'140
	

I'LDIS (XEJELP8)

141-155	PLDIS(IIJELP,9)

Notes /

Distributed torsional bimoment per unit

1enth, br

Distributed distortional force per unit

length, md

Distributed distortional bimoment per

unit length, b

(1) Elemental load sequence number starts from "1" and ends to

"NIJELP(ICASE)". Elemental load cards need not be input in

element-order sequence; eventually, however, all loads in the

set must be defined.

(2) A series of elements having the same distributed loads may be

generated from information given on the data card. The

generation increments are given by

JTJELP - IUELPINCRE1 = KN

and

LOELE (JUELP) - LOELE (IUELP)INCRE2 = KN

Generation continues until the last sequence number JUELP and

the last element LOELE(JIJELP) in the series are established.

Note that the sequence number difference and the element

difference must be evenly divisible by KM.

(3) The distributed components per unit length are all related to

the local coordinate systeni of the cross-section, and are

assumed to be constant along the element.

+17. Concentrated Load Card (215, F1O.O, 9F15.0)— Two successive cards

for each concentrated lQad, Total of N(J'QL(ICASE) independent cards.

If NTJPOLCICASE) = 0 in Card Set 6 omit this set.

notes	columns	var i able	entry

(1)	1-5
	

JIJPOL	 Sequence number



6-10

11-20

21-35

(2)	36-50

51-65

65-80

81-95

96-110

111-125

126-140

N1JEL (JIJPOL)

PZETACJUPOL)

WIDTH (JUPOL)

PCOMP(JUPOL,1)

PCOMP(JUPOL,2)

PCOMP(JUPOL,3)

PCOMP (JUPOL, 4)

PCOMP (JUPOL, 5)

PCOMP (JUPOL, 6)

XPCOR (JUPOL)
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141-155	YPCOR(JUPOL)

Notes/

Element number subjected to the

concentrated load

point o application of the concentrated

load defined by the natural coordinate

Top-width of the box section

Load component in X-direction

Load component in Y-direction

Load component in Z-direction

Moment component about X-axis

Moment component about Y-axis

Moment component about Z-axis

local x-ordinate of the point of application

of the concentrated load

local y-ordinate of the point of application

of the concentrated load

(1) The sequence number starts from 	and ends to "NUPOL(ICASE)'t,

however, the input order in the card set can be arbitrary.

(2) Any point load applied on an element is specified in terms

of its global components. The point of application of the

concentrated load is defined by the natural coordinate and

the local coordinates x and y.

+18. Temperature Cards (315, Fl5.0) — One card for each node. Total of

NPOIN cards, if there is no generating procedure to be involved.

If NTHER(ICASE) = 0 in Card Set 6 omIt this set.

notes columns 	variable 	entry

(1)	1-5	IFOIN	 FIrst node number in the series

6-10
	

JFQIN	 Last node number in the series

11-15
	

KN	 Number of intervals in the series, zero(0)
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1

3

4
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implies no generation to be involved.

16-30	TEMPEO'QIN)	Temperature at node

Notes!

(1) A series of nodes haying the same values of temperature may

be generated by the Lncrement:

INCRE = JPOIN - IPOIN

KN

Generation continues until the last node number in the series are

established. Note that the node difference must be evenly distributed

to KN.

1.4 Error diagnostics

Any errors which are detected are signalled by the printing of an

error number and an associated number, which indicates how many times the

particular error has been diagnosed. The interpretation of each error

number is as indicated below.

Diagnosed by Subroutines CHECK1 and CIIECK2

2

5

Interpretation

The specified total number of problems, NPROB, in the analysis is

less than or equal to zero.

The structure type number, NTYPE, is not specified as one of

the integers between 1 to 10.

The analysis type code, NOLIN, is not specified as either 0 or 1.

The specified total number of loading cases, LCASE, is less than

or equal to zero, or greater than the maximum possible loading

cases (50) defined in the program.

The specified total number of nodes, NPOIN, in the structure is

less than or equal to zero, or greater than the possible maximum

nodes (350) coded in the program.
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Error
Label
	

Interpretation

6	I The sum of nodes per element over all the elements in the

structure is less than the specified node number, NPOIN.

7
	

The specified restrained nodes, NVFIX, have a number less than 1

or greater than the specified maximum value, NPOIN.

8
	

The number of support nodes restrained relative to the local

axes, LVFIX, is greater than the specified maximum value, NVFIX.

9
	

The moment releasing option parameter, NERLE, equals 1, but the

element type number, NETYP, is not chosen as 360.

10
	

The specified maximum number of degrees of freedom per node, NDOFN,

in the structure is less than 3 or greater than 9.

11
	

A total of x elements whose numbers of nodes/element implied in

the element type numbers, NETYP, are not equal to either 2 or 3.

12
	

The maximum number of degrees of freedom per node implied in the

element type numbers, NETYP, is not equal to the specified value,

NDOFN.

13
	

The specified total number of input cards, MAXCARD, is not

compatible to the actual input cards.

14
	

The total number of elements, NELEM, is less than or equal to

zero or greater than the possible maximum elements (225)

specified in the program.

15
	

The specified total number of different materials, NMATS, is

less than or equal to zero or greater than the possible maximum

different materials (100) specified in the program.

16	The specified total number of different sections, NSECS, is less

than or equal to zero or greater than the specified maximum value,

NPOIN, or greater than the possible maximum different sections
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(100) limited in the program.

17
	

The specified total number of intermediate diaphragms, NDIAP,

is greater than the specified maximum value, NPOIN, or greater

than. the possible maximum value (150) coded in. the program.

18
	

The number of different deformable box-sections, NBOXS, is

greater than the specified total, NSECS.

19
	

The total number of truss and/or cable elements, identified by

type number 230 or 235, is not equal to the specified value, NTRUS.

20
	

The total number of solid beam elements, identified by type number

either 260 or 360, is not equal to the specified value , NSOLB.

21
	

The total number of transverse solid beam elements, identified as

either 265 or 365, is not equal to the specified value, NTRAN.

22
	

The total number of thin-walled beam elements, identified by 370,

is not equal to the specified value, NT}IIN.

23
	

The total number of thin-walled box beam elements, identified by

390, is not equal to the specified value, NBSBE.

24
	

A total of x identical nodal coordinates have been detected, i.e.

x nodes have coordinates which are identical to those of one or

more of the remaining nodes.

25
	

A total of x material identifying numbers are less than or equal

to zero or greater than the specified value, NMATS.

26
	

A total of x nodal section identifying numbers are less than

or equal to zero or greater than the specified value, NSECS.

t

27
	

A total of x elements whose orientation numbers are specified as

1, but their principal planes yz are not parallel to the YZ plane.

28
	

A total of x elements whose orientation numbers are specified

as 2, but their principal planes xz are not parallel to the XZ plane.
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Error
Label

29

30

31

32

33

34

35

36

37

38

39

40

Interpretation

A total of x elements whose orientation numbers are specified as

3, but their principal planes yz are not parallel to the XY plane.

A total of x nodal connection numbers are negative or equal to

zero.

A total of x nodal connection numbers are greater than the specified

maximum value, NPOIN.

A total of x repetitions of node numbers within individual

elements have been detected.

A total of x nodes exists in the list of nodal points which do

not appear anywhere in the list of element nodal connection numbers.

Non—zero coordinates have been specified for a total of x nodes

which do not appear in the list of element nodal connection numbers.

A total of x node numbers which do not appear in the element nodal

connections list have been specified as restrained nodal points.

The largest frontwidth encountered in the problem has exceeded

the maximum value specified in solution subroutines of the program.

A total of x restrained nodal points have numbers less than or

equal to zero or greater than the specified maximum value, NPOIN.

A total of x restrained nodal points at which all the fixity codes

are less than or equal to zero have been detected.

A total of x repetitions in the list of restrained nodal points

have been detected.

The total number of support nodes restrained with respect to the

local axes doe9 not equal the specified value, LVPIX.
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1.5 Data input examples

1.5.1 A simply-supported single-box girder bridge curved in plan

The example shown below has been described as a numerical example in

Chapter 5. The curved girder is idealized using eight thin-walled box beam

elements. The support conditions at node 1 are restrained in the tangent

and radius directions and in the Y direction. The support conditions at

node 17 are restrained only in the radius and Y directions. Both of the

two restrained nodes are restrained against rotation about the tangent to

the curved longitudinal axis. Also rotations about the vertical axes and

distortions are restrained.

The curved girder is subjected to a single concentrated 1 kip (4.45 kN)

load at midspan over the outer web. Data input:

10
	

1
20
	

ANALYSIS OF A SIMPLY-SUPPORTED BOX BEAM CURVED IN PLAN
30
	0110000110

40
	

7
50
	

011722900080155051
60
	

10100
70
	

1213900111322111020.0
80
	

3 4 1 30 0 1 1 5 7 6 2 1 3 2 2 2 0.0
90
	

5 6 1 390 0 1 1 	9 11 10 2 5 3 4 -2 2 0,0
100 7 8 1 390 0 1 1 13 15 14 2 1 1 1 	0 2 0.0
110
	

1 1 243.0 0.0 101.46 243.0 0.0 101.46 243.0
1 20 1? 1 243.0 0.0 78.54 243.0 0.0 78.54 243.0
130 1	11111011010
140 2 17 8 t 1 0 0 1 1 0 1 0
150 1 432300.0 187826.0869 0.15 0.153 0.00001
160 1 1 24.89924 89.04434 1433.99317 183.43894 781.07360
170 1 1.36 3.60 0.40919 0.71429 0.53430 0.48858 0.0 -0.35239
180 1 0.030270596 491.6527893
190 2 0 24.89924 85.13712 1433.99317 183.43894 781.07360
200 3 0 24.89924 85.13712 1433.9931? 183.43894 781.07360
2t0 4 0 24.89924 85.13712 1433.99317 183.43894 781.07360
220 5 0 24.89924 85.13712 1433.99317 183.43894 781.07360
230 1 4 1.0 14.0 0.0 1.0 0.0 0.0 0.0 0.0 -7.0 -1.49696

$	/0 , 2

a	 )	'' I '' 	-' I ( 	 .f'

'/	Z"
J	

1
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1.5.2 Simply-supported twin-boxbeam model

This data input example has been described in detail in Chapter 8.

Data input:

10
	

1
20
	

ANALYSIS OF A TWIN-BOX 9EAI WITH TRAPEZOIDAL SECTIONS
30
	

0100000 000
40
	

6
50
	

0 1 119 4 0 9 0 36 0 16 17 1 9 5 0 241
60
	

10100
70
	

1	3 2 360 0 1 01324 1 1 1	0 2 0.0
80
	

6 8 2 360 0 1 0 8 10 9 4 3 3 3 0 2 0.0
90
	

9 11 2 360 0 1 O 15 17 16 4 3 3 3 0 2 0.0
100 14 16 2 360 0 1 0 22 24 23 4 3 3 3 0 2 0.0
110 17 19 2 360 0 1 0 29 31 30 4 3 3 3 0 2 0.0
1 20 22 24 2 360 0 1 0 36 38 37 6 3 3 3 0 2 0.0
130 25 27 2 360 0 1 0 43 45 44 4 3 3 3 0 2 0.0
1 40 30 32 2 360 0 1 0 50 52 51 4 3 3 3 0 2 0.0
1 50 33 35 2 360 0 1 o 57 59 58 4 3 3 3 0 2 0.0
160 38 40 2 360 0 1 0 64 66 65 4 3 3 3 0 2 0.0
1 70 41 43 2 360 0 1 0 71 73 72 4 3 3 3 0 2 0.0
1 80 46 48 2 360 0 1 0 78 80 79 4 3 3 3 0 2 0.0
190 49 51 2 360 0 1 0 85 87 86 4 3 3 3 0 2 0.0
200 54 56 2 360 0 1 ) 92 94 93 4 3 3 3 0 2 0.0
210 57 59 2 360 0 1 0 99 101 100 4 3 3 3 0 2 0.0
220 62 64 2 360 0 1 ) 106 108 107 4 3 3 3 0 2 0.0
230 2 2 0 365 0 1 ) 3 5 4 0 a 2 2 0 2 0.0
240 7 7 0 365 0 1 ) 10 12 11 O 4 4 4 0 2 0.0
250 10 15 5 365 0 1 ) 17 19 18 7 4 4 4 0 2 0.0
260 18 23 5 365 0 1 3 31 33 32 7 4 4 4 0 2 0.0
270 26 31 5 365 0 1 ) 45 47 46 7 4 4 4 0 2 0.0
280 34 39 5 365 0 1 ) 59 61 60 7 4 4 4 0 2 0.0
290 42 47 5 365 0 1 3 73 75 74 7 4 4 4 0 2 0.0
300 50 55 5 365 0 1

	
87 89 88 7 4 4 4 0 2 0.0

310 58 63 5 365 0 1
	

101 103 102 7 4 4 4 0 2 0.0
320 66 66 0 365 0 1

	
115 117 116 O 2 2 2 0 2 0.0

330 4 12 8 390 0 1
	

2 16	9 14 5 5 5 0 2 0.0
340 20 28 8 390 0 1

	
30 44 37 14 5 7 6 2 2 0.0

350 36 44 8 390 0 1
	

58 72 65 16 9 7 8 -2 2 0.0
360 52 60 8 390 0 1

	
86 100 93 14 5 5 5 0 2 0.0

370 5 13 8 390 0 1
	

6 20 13 14 5 5 5 0 2 0.0
380 21 29 8 390 0 1

	
34 48 41 14 5 7 6 2 2 0.ü

390 37 45 8 390 0 1
	

62 76 69 14 9 7 8 -2 2 0.0
400 53 61 8 390 0 1

	
90 104 97 14 5 5 5 0 2 0.0

410 65 6? 2 360 0 1 C I 113 115 114 4 1 1 1	0 2 0.0
420 1	2	3	4 -1

	
5 5 -1 15.0 -4.367 -15.0 -4.367

430 2 7 10 4 0 12 5 0 15.0 -6.367 -15.0 -4.367
440 3 10	17 12 -1

	
19 13 -1 15.0 -4.367 -15.0 -4.367

450 4 15	24 12 0 26 13 0 15.0 -4.367 -15.0 -4.367
460 5 18 31 20 -i 33 21 -1 15.0 -4.367 -15.0 -4.367
470 6 23 33 20 0 40 21 0 15.0 -4.367 15.0 -4.367
480 7 26 45 28 -1 47 29 -1 15.0 -4.367 -15.0 -4.367
490 8 31 52 28 0 54 29 0 15.0 -4.367 -15.0 -4.367
500 9 34 59 36 -1 61 37 -1 15.0 -4.367 -15.0 -4.367
510 10 39 66 36 0 68 37 0 15.0 -4.367 -15.0 -4.367
520 11 42 73 44 -1

	
75 45 -1 15.0 -4.367 -15.0 -4.367

530 12 47 80 44 0 82 45 0 15.0 -4.367 -15.0 -4.367
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540 13 50 87 52 -1 89 53 -1 15.0 -4.367 -15.0 -4.367
550 14 55 94 52 0 96 53 0 15.0 -4.267 -15.0 -4.367
560 15 58 101 60 -1 103 61 -1 15.0 -4.367 -15.0 -4.367
570 16 63 103 60 0 110 61 0 15.0 -4.367 -15.0 -4.367
580 17 66 115 60 1 117 61	1 15.	-4.367 -15.0 -4.367
590
	

1 7 -37.5 0.0	0.0 -37.5 0.0	0.0 0.0
600 113 7 -37.5 0.3 150.0 -37.5 0.0 150.0 0.0
610
	

2 7 -22.5 0.0	0.0 -22.5 0.0	0.0 0.0
620 114 7 -22.5 0.0 150.0 -22.5 0.0 150.0 0.0
630
	

3 7 -7.5 0.3	0.0 -7.5 0.0	0.0 0.0
640 115 7 -7.5 0.0 150.0 -7.5 0.0 150.0 0.0
650
	

4 7	3.0 0.0	0.0	0.0 0.0	3.0 0,0
660 116 7	3,0 0.3 150.0	0.0 0.0 150.0 0.0_
670
	

5 7	7.5 0.0	0.0	7.5 0.0	0.0 0.0
680 117 7	7.5 0.0 150.0	7.5 0,0 150.0 0,0
690
	

6 7 22.5 0.0	0.0 22.5 0.0	0.0 0.0
700 118 7 22.5 0.0 150.0 22.5 0.0 150.0 0.0
710
	

7 7 37.5 0.3	0.0 37.5 0.0	0.0 0.0
720 119 7 37.5 0.0 150,0 37.5 0.0 150.0 0.0
730 1	201 11311010
740 2	60111011010
750 3 114 0 1 1 0 0 1 1 0 1 0
760 4 118 0 1 1 0 0 1 1 0 1 0
770 1 2000003.0 787401.5748 0.27 7.85 0.00001
780 1 1 12.85000 603.02004 10573.4000 595.71665

	
OSO

790 1 1.0 1.71132 1.0 1.0 1.3 0.0 0.3 0.0
800 2 2 3.34375	0.06966 6608.36458	0.0

	
0.0

810 2 1.2 2430.0 1.0 1.0 1.0 0.0 0.0 0.0
820 3 3 7.5	648.21734 14822.5	833.76563

	
0.0

830 3 1.0 605.70632 1.0 1,0 1.0 0.0 3.0 0.0
840 4 4 4.6375	0.09766 9264.06250	0.39063

	
0.0

850 4 1.2 24)0.0 1.0 1.0 1.0 0.0 0.0 0.0
860 5 5 37.97460 1425.04138 5496.12104 2529.55510 3301.70121
870 5 1.33244 4.67852 0.10117 0.66667 0.86461 0.0 0.0 1.278
880 5 0.00239 35655.59741
890 6 0 37.97460 1350.73881 5496.12104 2529.55510 3301.70121
900 7 0 37.97460 1350.73881 5496.12104 2529.55510-  3301.70121
910 8 0 37.97460 1350.73881 5496.12134 2529.55510 3301 .70121
920 9 0 37.97460 1350.73881 5496.12104 2529.55510 3301. 70121
930 1 29 0.0 30.0 0.0 2038.0 0.0 0.0 0.0 0.0 -15.0 0.0
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MAIN PROGRAM CUBAS
-i

/INPUT DATA!

jData processing

(iE all data correct?)- 	
No

Yes

/i1put loading data/

Calculate element tangent
stiffness matrix

Calculate consistent nodal forces J

Modify using support conditionsj

(jthjs last element?)

Yes

Form overall structure stiffness
Form and solve eciuilibriuni equations

Output displacements and reactions if requifl

No -(Is this a nonlinear analysTi

Yes

[Evaluate initial stress matrix I

Calculate residual force vector

Calculate stress resultants at
elemental nodes

Write stress resultants if required

the residual forces less than critical data")

Yes

—(Is iteration 4 for multi-spined deformable box)

(No
Yes	

(Is there another loading cas)

No L
Yes	

(Is there another proble)

No

[sTOP)

END

Fig. A.l Flow diagram of the general computing procedure
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APPENDIX II DATA INPUT TO COMPUTER PROGRAM PFRAN

The plane frame analysis program PFRAN, is written as a supplement

of the main analysis computer program, CUBAS, for calculating the

distortional sectional properties and for obtaining the influence values

of the Vierendeel frame of the box-section considered. The theoretical

basis of the program is the plane frame stiffness method and related

parts included in the thesis.

The necessary information required for resolving the problem

is described by the following sequence of cards, and note that completely

free-format is actually available for the present code of program:

1. Problem Card (15)—One card

Columns	1-5	NRPROB	Total number of problems to be solved

in one run

2. Loading Case Card (15)—Begin each new problem data with a new

loading case card

Columns	1-5	LCASE
	

Total number of different loading cases

to be solved

3. Title Card (A80)—One card

Columns	1-80	ITITLE
	

Title of the loading case - limited to

80 alphanumeric characters

4. Control Card (915, 2F15.0)—One card

Columns	1-5
	

NTYPE
	

Thin-walled type number

f <370
	

Normal section to be analysed

1
	

Thin-walled section to be analysed

	

6-10
	

NPO IN
	

Total number of nodes



46-60	Ec
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11-15
	

NELEM

	

16-20
	

NMATS

	

21-25
	

NSECS

	

26-30
	

Ml

31-35	M2

36-40	M3

41-45	M4

61-75	GNIJC

Total number of elements

Total number of different materials

Total number of different sections

Node number of the top-left corner point

of the box-section represented by the

frame

Node number of the top-right corner point

of the box-section represented by the

frame

Node number of the bottom-left corner

point of the box-section represented by

the frame

Node number of the bottom-right corner

point of the box-section represented by

the frame

Notional modulus of elasticity of the

frame

Notional Poisson's ratio of the frame.

5. Element Data Cards (515, F15.0) —One card for each element. Total

of NELEM cards

columns	1-5	NUMEL	Element number

6-10	NATNO(NUMEL) Material property number

11-15	NGEOM(NLJMEL) Sectional property number

16-20	LNODS(NUMEL) 1st nodal connection number

21-25	LNODS(NUMEL) 2nd nodal connection number

26-40	WIDTH(NUMEL) Width of the element

6. Node Data Cards (15, 2F15.0)—One card for each node. Total of

NPOIN cards



columns	1-5

6-10

11-15

NVIFX

NUPOL

IOPTION

0

1

2

449

columns 1-5 	NtJNPO	 Node number

6-20	COORD(NUNP0,1) x-ordinate

21-35 COORD(NUNPO,2) y-ordinate

7. Material Cards (15, 2F15.0)—One card for each different material.

Total of NMATS cards

columns	1-5	NLJMAT	 Material identification number

6-20	ELMAT(NUMAT,1) Modulus of elasticity, E

21-35	EUIAT(NEJMAT,2)	Poisson's ratio, V

8. Sectional Property Cards (15, 2F15.0)—One ca 'rd for each different

section, Total of NSECS cards

columns 1-5 	NUSEC	 Sectional property number

	

6-20	GPROP(NUSEC,1)	Cross-sectional area, A

	

21-35	GPROP(NIJSEC,2)	Bending moment of inertia, I

9. Boundary and Loading Control Cards (315)—Begin each new loading case

with a new control card

3

4

Total number of restrained nodes

Total number of nodes subjected to

point loading

Analytical type number

Conventional frame analysis

Evaluation of distortional second moment

of area, 3d

Evaluation of equivalent bending moment of

inertia for the transverse grillage element

across the box-section, 1xx

Evaluation of equivalent shear area for

the transverse grillage element across

the box-section, Asy

Evaluation of distortional distribution

factor, d
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10. Restrained Node Cards (515)—One card for each restrained node and

total of NVFIX cards in each loading case

columns	1-5	N1IFIX

6-10	NOFIX(NUFIx)

11-15	IFPRE(N1JFIX,l)

16-20	IFPRE (NIJFIx,2)

Sequence number

Restrained node number

x-translation boundary condition

y-translation baundary condition

code

21-25	IFPRE(NTJFIx,3) 	z-rotation boundary condition code

J
O	free displacement (or rotation) component

1 1	fixed displacement (or rotation) component

11. Concentrated Load Cards (215, 3F15.0)—One card for each nodal point

load and total of NTJPOL cards in each loading case

columns	1-5
	

JIJPOL

	

6-10
	

NPNOD (JUPOL)

	

11-25	PCOMP(JUPOL, 1)

	

26-40	PCOMP (JUPOL,2)

	

41-55	PC0fi'(JUP0L,3)

Sequence number

Node number subjected to concentrated

point load

Load component in x-direction

Load component in y-direction

Moment about the z-axis

Note that the x, y axes are regarded as the global axes located at

the plane of the frame, and the z axis is normal to the frame plane. Note

also that the sign convention of the output internal forces follows that

adopted in the conventional displacement method. It states that tensile

axial forces are defined as positive, and end moments and shear forces

which tend to rotate the element clockwise are assumed to be positive (Fig.A.2)

N1

a 1	 QJ

Fig. A.2 Positive internal forces



I4;::®T7.
'

-r	- 1 • __
	, =

VtI _
-f 

1' •
	 '# 4

jPvxho

451

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
1 80
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570

Data input example:

1
4
SECTIONAL PROPERTIES
390 12 12 1 2 2 6 8
1 1 1	1	2 1.0
2 1 1	2	3 1.0
3 1 1	3	4 1.0
4 1 1	4	5 1.0
5 1 1	5	6 1.0
6 1 1	6	7 1.0
7 1 2	2	8 1.0
8 1 2	6 12 1.0
9 1 2 S	9 1.0

10 1 2	? 10 1.0
11 1 2 10 11 1.0
12 1 2 11 12 1.0

1	22.5 -4.367
2	15.0 -4.367
3	7.5 -4.367
4	0.0 -4.367
5 -7.5 -4.367
6 -15.0 -4.367
7 -22.5 -4.367
8	10.0 11.033
9	5.0 11.033

10	0.0 11.033
11	-5.0 11.033
12 -10.0 11.033
1 2000000.0 0.270
1 0.5 0.010416667
2 0.3 0.00225
221
1	8110
2 12 1 1 0
1 2 -1.0 0.616 0.0
2 6 -1.0 -0.616 0.0
222
1	4111
2 10 1 1 1
1 6 0.064935064 0.0 0.0
212-0.0649353640.00.0
10 1 3

1	2100
2 3100
3	4111
4 5100
5 6100
6 8100
7 9100
8 10 1 1 1
9 11 1 0 0

10 12 1 0 0
1 6 0.0 1.0 0.0
214
1	4110
2 10 1 1 0
1 6 0.0 0.0 1.0

OF A TWIN-BOX MODEL FOR DISTORTION
12 2000000.0 0.270



(A2)

(A3)
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APPENDIX III Sect zonal Property Formulae for a Trapezoidal Single-Cell

Box-Section

For the cross-section of a box beam shown in Fig. A.3, some of the

sectional properties with references to the warping torsion and distortion

are expressed as follows:

1. Shear centre

The position of the shear centre determined by the distance from the

centre line of the top flange is

2
bt1

	

h c b
b - bbbt _?.t._)((bt+ 2b )hctfl 1 

b7tb3	
bb)(.3(bt+ bb)_t+b2+ 3tjb 12	1h t h	2tb	2tt

=	
1?k_ bt +

2tb	t t,
(Al)

where b = b t + 2b

For a rectangular cross-section, Eq. Al can be simplified as

bh K
ys=	

K+ 1(3+

Iyy

where	K1 =	b t b t h b t t b + 3h th)

12 12
= b t ht t( t b	th)

1	12	2
K3 =	ttbth(t+ h )

1( 4 = bc t t t b t h( b c + bt)

K5	btth(tt+ t b ) + 2htttb

2. Torsional moment of inertia J1

22
3	(bt+ b b) h	

(A4)J r =	(btt+ 2hct + b bt b +

t t t b	th



= 0

-	(bt+ bb)h
=

4	t b th

where (A6)

453

3. Normalized torsional warping function w1

= 0

ysU)1,2 = _bt

= Zb -

= .. b b	- ( h..+I. ) -
24 th

(A5)

4. Normalized distortional warping function

W I = 0

-	hbbb
w112

=	_____________________

2 ( b t + b b)(8 bt + bb)

W 3 = -	hbt bbb

2 ( b t^ b b)(8 b t + bb)

=	8hb bb

2 ( b t + b b)(8 b t + bb)

= 0

where

8 
= cz b t t + 2hcth(bt+^L)

b tb+ 2hcth(bb+bt)
2

and

cs0 = b/bt

(A7)

(A8)
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(A9)

5. Torsional and distortional warping moments of inertia

By using Simpson's integration method we obtain the following

formulae:

tt( b c	 w113 ) + 	U)12 J + 3 th	I,2 + W 1•4 + U) 1,2	w14)

+	tb U)14

and

1	 2	 1
J 11 = j btu43 +

	t h h c(wfl2 + tU4+ U2	+	t b bb wff , 4	 (AlO)

6. Distortional second moment of area

24= ______	 (All)

where

=	

b b b + 2hb --  + 2hcbbb 4 ;; + 3b h2 Tt1b

+i b + 2h ( b + b t b b+ b ) 't'b 	
(Al2)

I

in which 't' 'b and 	are the plate bending moments of inertia per unit

length of the top flange, bottom flange and webs respectively.

7. Central second moment of area

= y t tb +j[b(h - y5) + bbysJ2-I. (h - Ys) t bbb	 (A13)

I

8. Warping shear parameter

J
.IL = 1 -

L	 J

where

(bt+ bb)2h2
=	

2h
+

t t	t b	th

(A14)

(A15)
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Fig. A.3 Trapezoidal singlecall box-section

Fig. A..4 Normalized torsional warping functjon j

Fig. A.5 Normalized distortional warping function w11


	D042556_1_0001.tif
	D042556_1_0003.tif
	D042556_1_0005.tif
	D042556_1_0007.tif
	D042556_1_0009.tif
	D042556_1_0011.tif
	D042556_1_0013.tif
	D042556_1_0015.tif
	D042556_1_0017.tif
	D042556_1_0019.tif
	D042556_1_0021.tif
	D042556_1_0023.tif
	D042556_1_0025.tif
	D042556_1_0027.tif
	D042556_1_0029.tif
	D042556_1_0031.tif
	D042556_1_0033.tif
	D042556_1_0035.tif
	D042556_1_0037.tif
	D042556_1_0039.tif
	D042556_1_0041.tif
	D042556_1_0043.tif
	D042556_1_0045.tif
	D042556_1_0047.tif
	D042556_1_0049.tif
	D042556_1_0051.tif
	D042556_1_0053.tif
	D042556_1_0055.tif
	D042556_1_0057.tif
	D042556_1_0059.tif
	D042556_1_0061.tif
	D042556_1_0063.tif
	D042556_1_0065.tif
	D042556_1_0067.tif
	D042556_1_0069.tif
	D042556_1_0071.tif
	D042556_1_0073.tif
	D042556_1_0075.tif
	D042556_1_0077.tif
	D042556_1_0079.tif
	D042556_1_0081.tif
	D042556_1_0083.tif
	D042556_1_0085.tif
	D042556_1_0087.tif
	D042556_1_0089.tif
	D042556_1_0091.tif
	D042556_1_0093.tif
	D042556_1_0095.tif
	D042556_1_0097.tif
	D042556_1_0099.tif
	D042556_1_0101.tif
	D042556_1_0103.tif
	D042556_1_0105.tif
	D042556_1_0107.tif
	D042556_1_0109.tif
	D042556_1_0111.tif
	D042556_1_0113.tif
	D042556_1_0115.tif
	D042556_1_0117.tif
	D042556_1_0119.tif
	D042556_1_0121.tif
	D042556_1_0123.tif
	D042556_1_0125.tif
	D042556_1_0127.tif
	D042556_1_0129.tif
	D042556_1_0131.tif
	D042556_1_0133.tif
	D042556_1_0135.tif
	D042556_1_0137.tif
	D042556_1_0139.tif
	D042556_1_0141.tif
	D042556_1_0143.tif
	D042556_1_0145.tif
	D042556_1_0147.tif
	D042556_1_0149.tif
	D042556_1_0151.tif
	D042556_1_0153.tif
	D042556_1_0155.tif
	D042556_1_0157.tif
	D042556_1_0159.tif
	D042556_1_0161.tif
	D042556_1_0163.tif
	D042556_1_0165.tif
	D042556_1_0167.tif
	D042556_1_0169.tif
	D042556_1_0171.tif
	D042556_1_0173.tif
	D042556_1_0175.tif
	D042556_1_0177.tif
	D042556_1_0179.tif
	D042556_1_0181.tif
	D042556_1_0183.tif
	D042556_1_0185.tif
	D042556_1_0187.tif
	D042556_1_0189.tif
	D042556_1_0191.tif
	D042556_1_0193.tif
	D042556_1_0195.tif
	D042556_1_0197.tif
	D042556_1_0199.tif
	D042556_1_0201.tif
	D042556_1_0203.tif
	D042556_1_0205.tif
	D042556_1_0207.tif
	D042556_1_0209.tif
	D042556_1_0211.tif
	D042556_1_0213.tif
	D042556_1_0215.tif
	D042556_1_0217.tif
	D042556_1_0219.tif
	D042556_1_0221.tif
	D042556_1_0223.tif
	D042556_1_0225.tif
	D042556_1_0227.tif
	D042556_1_0229.tif
	D042556_1_0231.tif
	D042556_1_0233.tif
	D042556_1_0235.tif
	D042556_1_0237.tif
	D042556_1_0239.tif
	D042556_1_0241.tif
	D042556_1_0243.tif
	D042556_1_0245.tif
	D042556_1_0247.tif
	D042556_1_0249.tif
	D042556_1_0251.tif
	D042556_1_0253.tif
	D042556_1_0255.tif
	D042556_1_0257.tif
	D042556_1_0259.tif
	D042556_1_0261.tif
	D042556_1_0263.tif
	D042556_1_0265.tif
	D042556_1_0267.tif
	D042556_1_0269.tif
	D042556_1_0271.tif
	D042556_1_0273.tif
	D042556_1_0275.tif
	D042556_1_0277.tif
	D042556_1_0279.tif
	D042556_1_0281.tif
	D042556_1_0283.tif
	D042556_1_0285.tif
	D042556_1_0287.tif
	D042556_1_0289.tif
	D042556_1_0291.tif
	D042556_1_0293.tif
	D042556_1_0295.tif
	D042556_1_0297.tif
	D042556_1_0299.tif
	D042556_1_0301.tif
	D042556_1_0303.tif
	D042556_1_0305.tif
	D042556_1_0307.tif
	D042556_1_0309.tif
	D042556_1_0311.tif
	D042556_1_0313.tif
	D042556_1_0315.tif
	D042556_1_0317.tif
	D042556_1_0319.tif
	D042556_1_0321.tif
	D042556_1_0323.tif
	D042556_1_0325.tif
	D042556_1_0327.tif
	D042556_1_0329.tif
	D042556_1_0331.tif
	D042556_1_0333.tif
	D042556_1_0335.tif
	D042556_1_0337.tif
	D042556_1_0339.tif
	D042556_1_0341.tif
	D042556_1_0343.tif
	D042556_1_0345.tif
	D042556_1_0347.tif
	D042556_1_0349.tif
	D042556_1_0351.tif
	D042556_1_0353.tif
	D042556_1_0355.tif
	D042556_1_0357.tif
	D042556_1_0359.tif
	D042556_1_0361.tif
	D042556_1_0363.tif
	D042556_1_0365.tif
	D042556_1_0367.tif
	D042556_1_0369.tif
	D042556_1_0371.tif
	D042556_1_0373.tif
	D042556_1_0375.tif
	D042556_1_0377.tif
	D042556_1_0379.tif
	D042556_1_0381.tif
	D042556_1_0383.tif
	D042556_1_0385.tif
	D042556_1_0387.tif
	D042556_1_0389.tif
	D042556_1_0391.tif
	D042556_1_0393.tif
	D042556_1_0395.tif
	D042556_1_0397.tif
	D042556_1_0399.tif
	D042556_1_0401.tif
	D042556_1_0403.tif
	D042556_1_0405.tif
	D042556_1_0407.tif
	D042556_1_0409.tif
	D042556_1_0411.tif
	D042556_1_0413.tif
	D042556_1_0415.tif
	D042556_1_0417.tif
	D042556_1_0419.tif
	D042556_1_0421.tif
	D042556_1_0423.tif
	D042556_1_0425.tif
	D042556_1_0427.tif
	D042556_1_0429.tif
	D042556_1_0431.tif
	D042556_1_0433.tif
	D042556_1_0435.tif
	D042556_1_0437.tif
	D042556_1_0439.tif
	D042556_1_0441.tif
	D042556_1_0443.tif
	D042556_1_0445.tif
	D042556_1_0447.tif
	D042556_1_0449.tif
	D042556_1_0451.tif
	D042556_1_0453.tif
	D042556_1_0455.tif
	D042556_1_0457.tif
	D042556_1_0459.tif
	D042556_1_0461.tif
	D042556_1_0463.tif
	D042556_1_0465.tif
	D042556_1_0467.tif
	D042556_1_0469.tif
	D042556_1_0471.tif
	D042556_1_0473.tif
	D042556_1_0475.tif
	D042556_1_0477.tif
	D042556_1_0479.tif
	D042556_1_0481.tif
	D042556_1_0483.tif
	D042556_1_0485.tif
	D042556_1_0487.tif
	D042556_1_0489.tif
	D042556_1_0491.tif
	D042556_1_0493.tif
	D042556_1_0495.tif
	D042556_1_0497.tif
	D042556_1_0499.tif
	D042556_1_0501.tif
	D042556_1_0503.tif
	D042556_1_0505.tif
	D042556_1_0507.tif
	D042556_1_0509.tif
	D042556_1_0511.tif
	D042556_1_0513.tif
	D042556_1_0515.tif
	D042556_1_0517.tif
	D042556_1_0519.tif
	D042556_1_0521.tif
	D042556_1_0523.tif
	D042556_1_0525.tif
	D042556_1_0527.tif
	D042556_1_0529.tif
	D042556_1_0531.tif
	D042556_1_0533.tif
	D042556_1_0535.tif
	D042556_1_0537.tif
	D042556_1_0539.tif
	D042556_1_0541.tif
	D042556_1_0543.tif
	D042556_1_0545.tif
	D042556_1_0547.tif
	D042556_1_0549.tif
	D042556_1_0551.tif
	D042556_1_0553.tif
	D042556_1_0555.tif
	D042556_1_0557.tif
	D042556_1_0559.tif
	D042556_1_0561.tif
	D042556_1_0563.tif
	D042556_1_0565.tif
	D042556_1_0567.tif
	D042556_1_0569.tif
	D042556_1_0571.tif
	D042556_1_0573.tif
	D042556_1_0575.tif
	D042556_1_0577.tif
	D042556_1_0579.tif
	D042556_1_0581.tif
	D042556_1_0583.tif
	D042556_1_0585.tif
	D042556_1_0587.tif
	D042556_1_0589.tif
	D042556_1_0591.tif
	D042556_1_0593.tif
	D042556_1_0595.tif
	D042556_1_0597.tif
	D042556_1_0599.tif
	D042556_1_0601.tif
	D042556_1_0603.tif
	D042556_1_0605.tif
	D042556_1_0607.tif
	D042556_1_0609.tif
	D042556_1_0611.tif
	D042556_1_0613.tif
	D042556_1_0615.tif
	D042556_1_0617.tif
	D042556_1_0619.tif
	D042556_1_0621.tif
	D042556_1_0623.tif
	D042556_1_0625.tif
	D042556_1_0627.tif
	D042556_1_0629.tif
	D042556_1_0631.tif
	D042556_1_0633.tif
	D042556_1_0635.tif
	D042556_1_0637.tif
	D042556_1_0639.tif
	D042556_1_0641.tif
	D042556_1_0643.tif
	D042556_1_0645.tif
	D042556_1_0647.tif
	D042556_1_0649.tif
	D042556_1_0651.tif
	D042556_1_0653.tif
	D042556_1_0655.tif
	D042556_1_0657.tif
	D042556_1_0659.tif
	D042556_1_0661.tif
	D042556_1_0663.tif
	D042556_1_0665.tif
	D042556_1_0667.tif
	D042556_1_0669.tif
	D042556_1_0671.tif
	D042556_1_0673.tif
	D042556_1_0675.tif
	D042556_1_0677.tif
	D042556_1_0679.tif
	D042556_1_0681.tif
	D042556_1_0683.tif
	D042556_1_0685.tif
	D042556_1_0687.tif
	D042556_1_0689.tif
	D042556_1_0691.tif
	D042556_1_0693.tif
	D042556_1_0695.tif
	D042556_1_0697.tif
	D042556_1_0699.tif
	D042556_1_0701.tif
	D042556_1_0703.tif
	D042556_1_0705.tif
	D042556_1_0707.tif
	D042556_1_0709.tif
	D042556_1_0711.tif
	D042556_1_0713.tif
	D042556_1_0715.tif
	D042556_1_0717.tif
	D042556_1_0719.tif
	D042556_1_0721.tif
	D042556_1_0723.tif
	D042556_1_0725.tif
	D042556_1_0727.tif
	D042556_1_0729.tif
	D042556_1_0731.tif
	D042556_1_0733.tif
	D042556_1_0735.tif
	D042556_1_0737.tif
	D042556_1_0739.tif
	D042556_1_0741.tif
	D042556_1_0743.tif
	D042556_1_0745.tif
	D042556_1_0747.tif
	D042556_1_0749.tif
	D042556_1_0751.tif
	D042556_1_0753.tif
	D042556_1_0755.tif
	D042556_1_0757.tif
	D042556_1_0759.tif
	D042556_1_0761.tif
	D042556_1_0763.tif
	D042556_1_0765.tif
	D042556_1_0767.tif
	D042556_1_0769.tif
	D042556_1_0771.tif
	D042556_1_0773.tif
	D042556_1_0775.tif
	D042556_1_0777.tif
	D042556_1_0779.tif
	D042556_1_0781.tif
	D042556_1_0783.tif
	D042556_1_0785.tif
	D042556_1_0787.tif
	D042556_1_0789.tif
	D042556_1_0791.tif
	D042556_1_0793.tif
	D042556_1_0795.tif
	D042556_1_0797.tif
	D042556_1_0799.tif
	D042556_1_0801.tif
	D042556_1_0803.tif
	D042556_1_0805.tif
	D042556_1_0807.tif
	D042556_1_0809.tif
	D042556_1_0811.tif
	D042556_1_0813.tif
	D042556_1_0815.tif
	D042556_1_0817.tif
	D042556_1_0819.tif
	D042556_1_0821.tif
	D042556_1_0823.tif
	D042556_1_0825.tif
	D042556_1_0827.tif
	D042556_1_0829.tif
	D042556_1_0831.tif
	D042556_1_0833.tif
	D042556_1_0835.tif
	D042556_1_0837.tif
	D042556_1_0839.tif
	D042556_1_0841.tif
	D042556_1_0843.tif
	D042556_1_0845.tif
	D042556_1_0847.tif
	D042556_1_0849.tif
	D042556_1_0851.tif
	D042556_1_0853.tif
	D042556_1_0855.tif
	D042556_1_0857.tif
	D042556_1_0859.tif
	D042556_1_0861.tif
	D042556_1_0863.tif
	D042556_1_0865.tif
	D042556_1_0867.tif
	D042556_1_0869.tif
	D042556_1_0871.tif
	D042556_1_0873.tif
	D042556_1_0875.tif
	D042556_1_0877.tif
	D042556_1_0879.tif
	D042556_1_0881.tif
	D042556_1_0883.tif
	D042556_1_0885.tif
	D042556_1_0887.tif
	D042556_1_0889.tif
	D042556_1_0891.tif
	D042556_1_0893.tif
	D042556_1_0895.tif
	D042556_1_0897.tif
	D042556_1_0899.tif
	D042556_1_0901.tif
	D042556_1_0903.tif
	D042556_1_0905.tif
	D042556_1_0907.tif
	D042556_1_0909.tif
	D042556_1_0911.tif
	D042556_1_0913.tif
	D042556_1_0915.tif
	D042556_1_0917.tif
	D042556_1_0919.tif
	D042556_1_0921.tif
	D042556_1_0923.tif
	D042556_1_0925.tif
	D042556_1_0927.tif
	D042556_1_0929.tif
	D042556_1_0931.tif
	D042556_1_0933.tif
	D042556_1_0935.tif
	D042556_1_0937.tif
	D042556_1_0939.tif
	D042556_1_0941.tif
	D042556_1_0943.tif
	D042556_1_0945.tif
	D042556_1_0947.tif
	D042556_1_0949.tif
	D042556_1_0951.tif

