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Abstract 

Abstract 

A general analytical method is developed to study first the buckling behaviour and then the 

dynamic characteristics of thin-walled composite structures with the presence of bending- 

torsion coupling. The dynamic response theory incorporates the dynamic stiffness matrix 

approach and generalised coordinates using the normal mode method. Structural 

components considered are thin-walled laminated composite beams with carbon-fibre, 

glass-fibre or other reinforced plastic lay-ups. The examples of such beams and their 

applications include aircraft wings, hulls of ships, helicopter and wind turbine blades. All 

assumptions made in this work are based on elastic linear small deflection beam theory so 

that the overall response of the beam is represented by the superposition of all individual 

responses in each mode. 

Bending-torsion coupling effects arising from the anisotropic nature of fibrous composites, 

as well as due to non-coincident centroid and geometric shear centre of the beam cross- 

section, are the main contributory elements when developing the theory. 

The beam is subjected to time dependent forces and/or torques which can be either 

concentrated or distributed over its length. Both deterministic and random loads are 

considered. An important example of a deterministic load is one that varies harmonically 

in time. The Duhamel integral is employed to calculate the response to any arbitrary time 
dependent deterministic load. The random load is assumed to be Gaussian, having both 

stationary and ergodic properties. The evaluation of the response to the random load is 

carried out in the frequency domain by relating the Power Spectral Density (PSD) of the 

output to that of the input using the complex frequency response function. A number of 
PSD distributions are considered as random input in order to determine the PSD of the 
dynamic response. Atmospheric turbulence, which is considered to be one of the forms of 

random excitation, is modelled using the von Karman spectra for composite aircraft wings. 

In order to establish the methodology, bending-torsion coupled metallic beams are first 
investigated. The bending-torsion coupling in such beams occurs due to non-coincident 
centroid and geometric shear centre of the beam cross-section. The natural frequencies and 
mode shapes in undamped free vibration are obtained and the significance of generalised 
mass in each of the modes of vibration is evaluated. A normal mode method is then used 
to compute the frequency response function of the beam. The effects of shear deformation, 

rotatory inertia and axial load on the frequencies, mode shapes and dynamic response 
characteristics are demonstrated. 

It was essential at an earlier stage of the investigation to validate the chosen composite 
beam modelling. Among all the different techniques used to determine the rigidities of a 
composite beam, the buckling load provides a reasonable estimate. The elastic critical 
buckling loads of thin-walled laminated composite columns for various end conditions are 
established theoretically using the exact stiffness method. The effect of shear deformation 

on the buckling characteristics of the column is demonstrated. Experiments are carried out 
to establish the elastic critical buckling load of metallic and laminated composite columns. 
Theoretical predictions of the buckling behaviour are corroborated by experimental results 
and other published results. 

The investigation is then focused on composite beams, but the response analysis of such 
beams is significantly more complicated than that of their metallic counterparts. This is 
mainly due to anisotropic characteristics of laminated fibrous composites. A detailed 
parametric study with the variation of significant composite parameters, such as ply angle, 
is undertaken and the importance of the results are highlighted. 

A suite of computer programs in FORTRAN is developed to predict the buckling 
behaviour, the free vibration and the response characteristics of thin-walled composite or 
metallic beams based on the theory proposed. Numerical results are presented, fully 
discussed and commented on. 

15 



Nomenclature 

Principal nomenclature 

A Cross-sectional area 
b Width of laminate 

C1, C2. * C3 Damping coefficients 

ßk2 Material coupling parameter 

ßx2 Geometric coupling parameter 
d Beam depth 

do Frequency response function 

E Young's modulus 

El, E2, E3 Young's modulus in the fibre and transverse directions 

r° E. Equivalent elastic constants , 
EI Bending rigidity 
EA Extensional rigidity 
f'(y, t) Externally applied forces 

"wB 
, 

fn 
f 

fn 
f , 

ýn Inertial forces 

F. (t), (t) Generalised forces 

g(y, t) Externally applied torques 

GG(t), G. (t) Generalised torques 

G Shear modulus 
G12, G23, G33, Shear moduli 
G�,, b Equivalent Shear elastic constants 
GJ Torsional rigidity 
H Frequency response function 

H", Ho, Hr The receptances for the bending displacement, the flexural rotations and 
torsional rotations 

I, I. Second moment of inertia 

Iý Mass moment of inertia per unit length 

Ip Second moment of area 
k Cross-sectional shape factor for shear 
kAG Shear rigidity 
K Bending-torsion coupling rigidity 
K, j Stiffness elements of dynamic stiffness matrix of a bending-torsion 

coupled composite beam 

L Span-wise length 
L, Scale length of a turbulence 
M Bending moment 

m Mass per unit length 

N Number of externally applied concentrated forces on the beam 
NE Number of layers (laminates) 
N,, Ny Normal forces per unit length in x and y directions 

Shear force per unit length in x-y plane 

p2 Axial load parameter 
P Axial force 
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Nomenclature 

P" Elastic critical buckling load 

q� Generalised coordinates 

qs Shear flow 

R GJ/EI 
r2 Rotatory inertia parameter 

ro Radius of gyration 
s2 Shear deformation parameter 
Sf, Se Spectral density of the excitation 

S. 
, 

se, Sy, Spectral density of the response 

S;, u 
Interlaminar ultimate shear strength 

Sah, In-plane ultimate shear strength 
T Internal torque 
Tk, The total kinetic energy 
t Time, Thickness 

u Flexural displacement 

U Mode shape for flexural displacement 

V Internal shear force 

VP. The total potential energy 
V. Speed of the flow, Flight speed 

u, v, w Displacement components in x, y, and z directions 

X, Distance between shear centre and centroid of the cross-section 
X, Longitudinal (fibre direction) ultimate compressive strength 
Xt Longitudinal (fibre direction) ultimate tensile strength 

y Variable of the space along the beam 

Y. Transverse (matrix direction) ultimate compressive strength 
Yt Transverse (matrix direction) ultimate tensile strength 

Greek Symbols 

ß Fibre angle 
S, 

�� 
The Kronecker delta 

; ry (t) 
, %g (t) Stochastic processes of the time dependent randomly varying excitation 

e Normal strain 
0 Phase angle 

A Generalised mass 
v, v12, V23, VJ3 Poisson's ratio 

0 Flexural rotation 

p Mode shape for flexural rotation 

p Density (air, material, etc. ) 

Q1, a2 Normal stress in principal material direction 

Cr"' ay Normal stress 
2 t x: square value of gust velocity 
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Nomenclature 

z12 Shear stress in principal material direction 

T, Shear stress 

O)� Natural frequency 

we The first coupled frequency 

wb The first uncoupled bending frequency 

cot The first uncoupled torsional frequency 

Frequency of the exciting external force/torque 

y/L 

yi Torsional rotation 

yJ Mode shape for torsional rotation 

ý'n Damping ratio 

Matrices 

ID] Displacement matrix 

IF] Force matrix 
[KJ Stiffness matrix 

Abbreviations 

FSDT First-order Shear Deformation Theory 
CALFUN CALculation of Flutter speed Using Normal modes 
CAS Circumferentially Asymmetric Stiffness 

CFRP Carbon-Fibre Reinforced Plastic 
CRLP Chord-wise Rigid Laminated Plate 
CUS Circumferentially Uniform Stiffness 
C-C Clamped-Clamped boundary condition 
C-F Clamped-Free boundary condition 
C-S Clamped-Simply supported boundary condition 
DSM Dynamic Stiffness Method 
FEM Finite Element Method 

FI Failure Index 

HARP High Aspect Ratio Plate model 
HSDT Higher-order Shear Deformation Theory 

PSD Power Spectral Density 
RMS Root Mean Square 
S-S Simply supported-Simply supported boundary condition 
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Introduction 

1 Introduction 

1.1. Overview and historical background 

Flying machines have evolved remarkably during the present century from the Wright 

brothers Flyer at Kitty Hawk to Apollo on the moon, and a fighter ace of 1918 flew a very 

different aircraft from that flown by his successor today. Historically, all the divisions and 

subdivisions of aeronautics, which is made up of many branches of science and 

engineering, have advanced at different rates. The development usually consists of two or 

three great strides associated with new ideas, followed by many years of consolidation and 

expansion of those ideas. 

In the early days of aircraft design, the most significant advances were made in the field of 

aerodynamics as speed increased, with the complications of compressibility. The structural 

aspect of design was a late developer and has a relatively shorter history than 

aerodynamics. Nevertheless, developments in the field of airframe structures have been 

especially vital, since the structure is a large fraction of the total cost and weight of an 

aircraft. The primary concern in the development of a good structural design is the 

provision of efficient "load paths" - the structural elements by which opposing forces are 

connected, using the least practical structural weight. The first major structural advance 

came with the introduction of the use of stressed skin and semi-monocoque construction, 

which became possible by the development of aluminium based light alloy in the 1930's. 

The second fundamental stride forward that aircraft structures have taken, was the 

application of fibrous composite materials following laboratory developments in the 

1960's and 1970's. New and innovative structural design and fabrication techniques in 

composites promise to produce significant advancement towards exploiting fully all the 

advantageous characteristics of advanced composite structures. 

An increasing attraction in the use of composite materials in the design of aircraft 

structures is evident in recent years. This is because fibrous composites offer numerous 

advantages over existing materials. Components made of anisotropic composite materials 

are ideal for structural applications due to their high strength-to-weight ratio, and their 
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ability to be tailored and designed to meet all the stiffness and strength requirements of the 

model. Recently, the advent of high modulus composites has led to its use in highly 

loaded, stiffness-critical wings and control surfaces, as well as in other structures. By 

taking advantage of the directional properties of fibre reinforced composite materials it has 

been possible to "tailor" the aeroelastic response, therefore aeroelastic tailoring and the 

capability of thereby achieving an improved design have advanced significantly. The use of 

composites is stimulated by the need for more efficient structures featuring higher 

strength-to-weight ratios, improved fatigue life, enhanced corrosion resistance, improving 

the aerodynamic smoothness (and thus reducing the aerodynamic drag), and a potential for 

optimal design. Generally, the use of composite materials offers a considerable potential 

for cost-effective design of aircraft structures. There are, however, a number of 

disadvantages, such as the sensitivity of the curing process, the necessity of special 

fasteners, vulnerability to impact with the possibility that certain types of damage may not 

be visible, high initial cost and more complex design engineering. Nevertheless, these 

disadvantages are mostly known and many have largely been overcome; those that have 

not can be endured. 

Because of the growing interest in the application of composite materials in the design of 

aircraft structures, there is a need for the development of analytical and numerical methods 

to predict and optimise the behaviour of thin-walled composite structures in buckling, 

vibration and dynamic response. On the other hand, whilst a composite structure may be 

comparatively easy to model and analyse, it may behave less predictably than expected at 

the micro-level. Thus it is very important to plan for well-designed experiments to achieve 

a better understanding of behaviour of composite materials in airframe structures. These 

topics have constituted a major area of recent research in aeronautical and structural 

engineering, because of their novelty and, more importantly, due to the insufficiently 

understood behaviour of composite structures. 

Various approximate and analytical techniques have been developed to address the 

problem, using one-dimensional theories for beams, since beam modelling for the analysis 

and design of different components in aircraft structures has become a common practice. 

Most of the investigations reported on the analytical solutions for vibration and response 
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analysis of composite beams have been limited to free vibration studies such as the 

determination of their natural frequencies and mode shapes. The analytical solutions for 

forced vibration problems, however, are only available for some very simple cases of 

limited practical interest. Likewise, literature on the effect of bending-torsion coupling on 

the dynamic response of composite beams is very scarce. Such coupling can be the 

consequence of an unsymmetrical cross-section and/or due to the stacking sequence of the 

laminates. In addition, incorporation of the secondary effects, such as transverse shear 

deformation and rotatory inertia, and the analysis of non-uniform beams further 

complicates the mathematical modelling of the structure, and its dynamic analysis. 

1.2. A preliminary discussion of the topics developed in this study 

This study is focused on an exact analytical method to address the buckling, the free 

vibration and dynamic response characteristics of a class of thin-walled laminated 

composite beams and provides a benchmark for other analysts who may use less rigorous 

methods. Such beams are the building blocks of many structural and mechanical systems 

including automobiles, space vehicles, aircraft wings and other major components such as 

control surfaces and undercarriage parts, together with helicopter and wind turbine blades. 

Among all the geometrical structural configurations, those with a cylindrical cross-section 

are most commonly used as parts of aerospace structure vehicles, and these form the main 

area of investigation in this work. Carbon fibre, glass fibre and Kevlar are the main types 

of fibrous composite materials considered in this investigation. 

The finite element method is, of course, an alternative route to approach the problem. 

Although it is a universal numerical resource for structural analysis, it has its disadvantages 

too. In this method, stiffness and inertial properties of the structure are restricted by the 

number of elements used and the way the elements are defined. Unlike the dynamic 

stiffness matrix method, it generally provides much less accurate modal information when 

higher frequencies are involved, and better accuracy is needed in the analysis. Moreover, 

the computer time used for analysis can substantially be saved if explicit analytical 

expressions for the elements of the dynamic stiffness matrix are used instead of finite 
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element or other numerical methods. In this investigation, an exact analytical method has 

been developed and has clear advantages over the finite element method. 

Progress in any field, particularly in aircraft design, is dependent on both experimental and 

theoretical investigations. There are always some aspects and characteristics of a 

mechanical system which do not behave quite as predicted by numerical and/or analytical 

methods. This is mainly because, in practice, there are many unknowns that we have not 

accounted for in theory. Therefore, it is very unlikely that progress can come from 

experiment alone, or from theory alone and thus to develop a realistic approach, 

experiment and theory need to go hand in hand. As a consequence, there is much emphasis 

on planning experimental investigations to ensure that the information needed to design 

high quality aircraft is obtained as effectively and with as much validity as possible. 

Planning and carrying out extensive experiments in order to evaluate the dynamic response 

behaviour of composite beams is beyond the scope of this investigation and can be a major 

advancement to further this research in future. However, to provide an awareness of the 

importance of experimental procedures in understanding the behaviour of composites, a 

number of experiments were carried out to evaluate the buckling characteristics of 

composite beams. A substantial part of the results obtained from the present approach 

have been compared with experimental results given in the literature. 

In the course of this investigation, further insight is obtained into the buckling behaviour 

and the free vibration and dynamic response characteristics of thin-walled laminated 

composite beams. This is achieved by utilising the generalised mass and the modal 

interchange concepts. The importance of generalised mass in predicting the free vibration 

characteristics and dynamic response of a bending-torsion coupled beam has not featured 

significantly in the existing literature. This study establishes the interpretation of the 

behaviour of the overall dynamic response of bending-torsion coupled beams with the help 

of the generalised mass in each mode. Furthermore, modal interchanges between the 

flexural and the torsional modes also play very important roles in predicting the buckling 

load and the characteristics of dynamic response of bending-torsion coupled thin-walled 

composite beams. In such beams, a small alteration in the thickness and/or the length of 

23 



Introduction 

the beam; inclusion of secondary effects - such as shear deformation, rotatory inertia or 

warping stiffness; variation of ply angles or stacking sequences may push up the order of 

bending or torsional modes of vibration or may bring them down. Consequently, this will 

change the buckling load and/or the dynamic response of such beams. This distinctive 

feature which does not normally exist in Bernoulli-Euler beams (bending-torsion 

uncoupled), has not been addressed adequately in the existing literature. 

Due to their anisotropy, laminated composite materials exhibit several interesting coupling 

phenomena, which can be used beneficially in engineering structures. For example, 

bending-torsion coupling can help to increase the divergence speed in a forward-swept 

wing and at the same time decrease its weight. The fact that there are not one or two types 

of composite materials, but an infinite variety of fibres, matrix, fibre orientations, and fibre 

contents, allows a new degree of freedom in structural design. This has a profound effect 

on the whole materials-design-fabrication process. Since the inherent properties of 

composite materials will vary with ply orientation and stacking sequences, the ground is 

thus set for structural optimisation. Because of the accuracy and conciseness of the 

methodology proposed in this study, it can be used in the design of airframe structures as 

part of an optimisation process to minimise the dynamic fibre stresses and/or to restrict the 

dynamic displacements in a laminated composite wing. Although the optimisation of 

laminated composite wings and aeroelastic tailoring are beyond the scope of this 

investigation, a parametric study is carried out to demonstrate the feasibility of using this 

method to minimise fibre stresses. 

Finally, aircraft structures have been designed to meet specific requirements and some 

fundamental criteria, such as those of deformation, fatigue, allowable design materials, 

strength and load. Theory developed in this investigation sets a trend for dynamic response 

of laminated composite structure with particular reference to thin-walled composite beams 

such as composite wings, horizontal tails, vertical fins and elevators. This is a critical step 

towards analysis, design and optimisation of different components in aerospace structures 

with due attention to fundamental design criteria. 
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1.3. Definition of the problem 

A general analytical method is developed to study the buckling behaviour and then to 

determine the dynamic response of thin-walled composite structures with bending-torsion 

coupling by using exact differential equations of motion. The dynamic response theory 

developed incorporates the dynamic stiffness matrix approach, generalised coordinates and 

the normal mode method for the beam element idealisation of the composite structures. 

Due to the complexity of some physical systems, structural elements are often idealised as 

built up from several individual components. Their physical properties that govern the 

dynamic behaviour of the system are determined either theoretically or experimentally. 

These characteristics help in constructing, a mathematical model which represents an 

idealisation of the actual physical system. There are two main categories of mathematical 

models, namely the discrete parameter, or lumped, systems; and those with distributed 

parameters such as continuous systems. The former can be described by ordinary 

differential equations, whereas the latter are governed by partial differential equations, 

which are comparatively difficult to analyse. The latter is used in this investigation since it 

provides a more accurate model. Furthermore, the components of a structure can be 

idealised as a bar, beam, plate, or a shell element. It is generally an acceptable and 

common practice to choose beam elements to analyse certain types of airframe structures. 

Once a suitable physical and mathematical model of the structural components is identified 

and the pattern for dynamic loads is known, the differential equations of motion follow and 

require no further simplification. It is in this sense that the word "exact" has been used in 

this study. Thus all the assumptions are within the limits of the governing differential 

equations of motion. A description of the physical and mathematical models considered in 

this investigation is given below. 

The structural components considered are composite beams made of thin-walled laminated 

plates using lay-ups with plastic-reinforced carbon-fibre and/or glass-fibre. A typical 

example of such a beam may have a flat or box cross-section. The flat composite beam is 

assumed to have symmetric cross-ply (either balanced or unbalanced) and the box cross- 

section is assumed to have Circumferentially Asymmetric Stiffness (CAS) configuration. It 
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is well-known that these cross-sections exhibit the bending-torsion coupling effect. 

The composite beam, which is the principal subject of study in this research, is assumed to 

be straight and its cross-section has at least one axis of symmetry. Although the theory is 

developed for beams with uniform cross-section, it can also cater for non-uniform beams 

either by defining a dynamic stiffness matrix for the non-uniform beam, or by dividing the 

beam into a number of elements with constant cross-section. The theory is valid for any 

beam, provided its end conditions are free, simply supported, or clamped, which cover 

most of the applications. 

Bending-torsion coupling effects in composite beams occur due to material and/or 

geometric coupling. Material coupling arises from the anisotropic nature of fibrous 

composites, while geometric coupling arises from the non-coincident centroid and 

geometric shear centre of the beam cross-section. Both sources of coupling are taken into 

account when developing the theory. Effects such as shear deformation and rotatory inertia 

are included in the analysis, since they may significantly affect the response characteristic 

of composite laminates. A first-order shear theory is introduced to incorporate the effect of 

shear deformation. The importance of a constant axial load (compressive or tensile) on the 

dynamic response characteristics of such beams is also investigated. Warping stiffness is 

neglected when developing the theory, because it does not have a significant effect on the 

dynamic response of beams with closed cross-section. 

Linear viscous damping in shear, flexure and torsion are the only sources of damping 

taken into account. It is assumed that each point of the cross-section moves with its own 

local velocity, so that the local damping force, bending moment and torque for each span- 

wise element are a product of the local velocity and damping terms. 

During its varied motion through the atmosphere and in space, the structure of flight 

vehicles may be exposed to a variety of time-dependent loads induced by gust, sonic- 

boom, etc. In this way, the beam is subjected to vibrating flexural forces and/or torques 

which can be either deterministic or random in time. Concentrated and distributed loads 

for both these cases are considered when developing the theory. 

The dynamic response of the beam is described by its transverse deflection, its flexural 
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slope and its torsional rotation and their associated accelerations; by its dynamic shear 

force, bending moment and torque at various point on the beam; and by the normal and 

shear stresses in the laminates. All the assumptions are based on the elastic, linear, small 

deflection theory for beams, so that the overall response of the beam can be represented by 

the superposition of all the individual responses in each mode. 

1.4. Methodology and layout of the study 

This research is based on the use of continuous analysis leading to exact differential 

equations, which describe the coupled flexural-torsional response of composite beams 

subjected to dynamic loading. A review of the available literature is given in Chapter Two, 

to establish advancements in the dynamic response of composite beams and to identify the 

key areas of research. 

The main areas of concern in dynamic analysis of any structural and mechanical system 

are modelling stiffnesses, inertial properties, methods of numerical analysis, and the 

loading. Therefore, to develop an exact method for dynamic analysis, uncertainties in any 

of those areas must be resolved, and the methodology must be established. In Chapter 

Three, stiffness modelling of laminated composites is established using existing literature, 

so that the essential cross-sectional properties, namely the bending (EI), torsional (GJ), 

bending-torsion coupling (K) and shear (kAG) rigidities of the composite beam, are 

obtained using the variational-asymptotical method. Using this model, the variation of 

these rigidities with ply angle is investigated for each cross-section for some illustrative 

examples. These properties are subsequently used in the buckling and dynamic response 

analyses. 

In order to validate the chosen composite beam modelling, and to resolve any uncertainty 

in the stiffnesses a series of experiments was conducted and a comparison between the 

experimental and numerical results of a static analysis has been carried out. Among all the 

different techniques to determine the stiffnesses, elastic critical buckling load of structural 

elements provides a reasonable estimate. Buckling analysis, therefore, is proposed to 

demonstrate the accuracy of the chosen composite beam modelling. In Chapter Four, the 
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elastic critical buckling loads of thin-walled laminated composite columns with flat or box 

cross-sections having various end conditions are established. This theory is based on an 

exact static stiffness matrix for bending-torsion coupled composite columns, derived from 

solutions of the governing differential equations. The effect of shear deformation on the 

elastic buckling characteristics of a column is included in the theory. A series of 

experiments has been carried out on laminated composite flat columns (with classical 

boundary conditions) made of carbon-epoxy material with various ply angles to determine 

their elastic critical buckling load. Experimental and theoretical results are compared, good 

accuracy is observed, and the results are critically appraised. 

The next step is to determine the free vibration characteristics of composite beams with 

particular reference to composite wings. For higher accuracy and greater computational 

efficiency, the dynamic stiffness matrix method has been used, allowing for both 

geometric and material coupling. The dynamic stiffness matrix of an element is frequency 

dependent and accounts for both stiffness and mass/inertia properties of the element. The 

method of Banerjee-Williams is presented in Chapter Five, to establish the natural 

frequencies and mode shapes of the composite beams using the dynamic stiffness matrix 

method. This exact method provides a higher accuracy when compared with finite element 

and other approximate methods, especially for higher frequencies, because it is based on 

exact shape functions obtained from the solution of the element differential equations. 

Dynamic stiffness expression for a representative case is given in Appendix C. 

In Chapter Six a full account of the theory developed in this thesis is presented. Firstly, 

the governing differential equations of motion for important cases are given. The 

derivation of these equations of motion using Hamilton's principal for a representative 

case is shown in Appendix A. A normal mode method, in conjunction with generalised 

coordinates, is then used to compute the forced vibration or dynamic response quantities. 

The orthogonality conditions for the normal modes are derived and generalised mass and 

non-dimensional damping coefficients in each mode are defined to uncouple the response 

equation in each mode. The derivation of these equations for a representative case is also 

shown in Appendix D. 
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Before embarking on the analysis of the substantially complicated composite beams, the 

free vibration and the dynamic response of bending-torsion coupled metallic beams are 

investigated, first. In this case, the coupling exists due only to the geometry of the beam 

cross-section, where the centroid and geometric shear centre do not coincide. It is easier to 

demonstrate the appropriateness of the assumptions and methods of numerical analysis for 

metallic beams, since there has been more research carried out in that field, with 

associated published results. This is an important stepping stone in order to develop the 

methodology and achieve further insights in the behaviour of beams with bending-torsion 

coupling. 

Aircraft and aerospace structures are subjected to loads with a high level of uncertainty; 

consequently, both deterministic and time-varying random loads are considered in this 

investigation. The Duhamel integral method is employed to calculate the dynamic 

transverse deflection, flexural rotation and torsional rotation in the deterministic case; a 

harmonically varying load is a typical example. In general, any periodic loading can be 

expressed in terms of harmonic loads using a Fourier series. 

The random load is assumed to be Gaussian, having both stationary and ergodic 

properties. The evaluation of the dynamic transverse deflection, flexural rotation and 

torsional rotation due to the random load, is carried out in the frequency domain by relating 

the Power Spectral Density (PSD) of the output to that of the input via the modulus of the 

complex frequency response function. Three types of PSDs are used, namely white noise, 

and two well-known spectra due to von Karman and Dryden, to account for aerodynamic 

fluctuating gust and atmospheric turbulence, representative of wing loading. 

Next, attention is focused on the dynamic response behaviour of composite beams. The 

response quantities together with the externally applied flexural and/or torsional loads are 

used to establish the time-dependent shear force, bending moment and torque. The 

dynamic normal and shear stresses in the laminate at any cross-section of a beam due to 

these loads are then computed using Engineer's theory of bending, Bredt-Batho and 

classical lamination theories. 

Once the stresses are calculated, two main failure criteria are considered. The first, is a 
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non-interactive failure theory, where each stress component is looked at individually, and 

failure in any particular direction is caused independently of the stresses acting in other 

directions. As a result, ply failure occurs if any principal stresses or maximum shear stress 

exceeds their respective ultimate values. The second failure theory considers an interaction 

of the stresses in the material axes directions which is an estimate based on a weighted 

measure of the stresses and will only indicate whether ply failure has occurred or not; 

however, it will not indicate the mode of failure. For example, ply failure is said to occur 

when the failure index, given by the Tsai-Hill theory, exceeds unity. Similar expressions 

can be given for strain-based failure criteria. 

Using the proposed methodology, a suite of computer programs in FORTRAN is 

developed to determine the rigidity properties, buckling analysis, free vibration 

characteristics and dynamic response behaviour of the structural components considered in 

this research. These programs have been validated using a series of carefully selected 

tests. A list of all the computer programs developed during this research and a description 

of their application is given in Appendix F. 

Numerical results are given in Chapter Seven for a number of metallic and composite 

beams. During the course of this investigation some of these results have been published 

in professional journals such as Journal of Sound and Vibration and AIAA Journal of 

Aircraft, and others have appeared in the proceedings of established international 

conferences such as AIAA/ASMFJASCE/AHS/ASC Structures, Structural Dynamics and 

Materials Conference and Annual Conference of Aeronautical Engineers. A list of 

published papers extracted from present work is given in Appendix G. 

Firstly, for metallic beams, results of the developed theory are compared with the classical 

Bernoulli-Euler theory and the effect of bending-torsion coupling on the free vibration 

characteristics and dynamic response is demonstrated. The effects of variation of damping 

ratio, axial load, shear deformation, rotatory inertia and slenderness ratio are also 

investigated. Modal interchange, which normally does not exist in uncoupled problems, 

plays an important rule in the dynamic response of bending-torsion coupled beams. 

Dynamic response results for metallic beams are given for both deterministic and random 

30 



Introduction 

loads. 

Next for composite beams, results obtained using the proposed theory to calculate the 

dynamic response are again compared with classical Bernoulli-Euler theory (where 

bending-torsion coupling does not exist) and the effect of bending-torsion coupling on the 

free vibration characteristics and dynamic response is shown. Variation of frequencies and 

mode shapes of the beams with ply angle are illustrated. In a more comprehensive model, 

the effects of variation of damping ratio, axial load, shear deformation, rotatory inertia and 

slenderness ratio are also investigated. Modal interchange plays an important role in the 

dynamic response of bending-torsion coupled composite beams, in a much more 

significant way to that of metallic beams with bending-torsion coupling, mainly because of 

the ply orientations which results in material coupling. Dynamic response results for 

composite beams are given for both deterministic and random loads. 

The significance of generalised mass in relation to the free vibration characteristics and 

dynamic response prediction of a bending-torsion coupled beam is investigated. This study 

confirms that examining mode shapes on the basis of displacements alone is not sufficient 

to identify the behaviour of one particular mode, that is, whether it is bending or torsion 

dominated, or is coupled, and the contribution of that mode to the overall response. 

Interpretation of the bending-torsion coupled mode using the concept of generalised mass 

is discussed and some conclusions are drawn. 

For optimisation purposes, it is very important to investigate the effect of variation of ply 

angles and stacking sequences on rigidities, buckling loads, frequencies, mode shapes and 

ultimately on the dynamic response behaviour of composite beams. For this reason a 

parametric study is carried out and a model is proposed to optimise the design of 

composite beams taking into account buckling, vibration and dynamic response 

considerations. 

Principal conclusions are drawn in Chapter Eight and recommendations are made for 

further work. 

As mentioned earlier, the literature survey, which was carried out at the beginning and was 

sustained through out the course of research, is presented in the next chapter. 
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2 Literature review 

In order to achieve a better understanding and to identify the key areas of research and the 

potential problems of analysing composite materials, a review of the relevant literature is 

presented throughout Chapters Two to Five. The number of references surveyed for each 

topic is given in Table 2-1. The manifestation of the literature review in this thesis, for 

different subjects, is outlined as follows. 

In this chapter, emphasis is given to the development of the dynamic response 

characteristics of bending-torsion coupled beams, both isotropic and composite, and stress 

analysis of laminated composite beams. These are the main focus areas of the present 

study. 

Choosing a valid model for composite beams and subsequently realising an acceptably 

accurate solution for free vibration analysis of bending-torsion coupled beams, are the 

main stepping stones for the proposed methodology in this thesis. Thus, a strong 

background is needed on these two subjects. The most popular analytical stiffness models 

that have been developed for the modelling of laminated composite beams, such as, flat 

beams and thin-walled beams are discussed and compared in Chapter Three. The 

buckling analysis of composite columns is investigated independently of the dynamic 

characteristics of laminated composites. A general background on this topic, along with 

the analytical and experimental result is presented in Chapter Four. A literature review on 

the free vibration analysis and the use of dynamic stiffness method to calculate natural 

frequencies and mode shapes of composite beams, are given in Chapter Five. 

Table 2-1. Number of references to literature in each chapter 
Topic Chapter No. No. of references 

Dynamics of bending-torsion coupled beams Chapter 2 118 

Stress analysis of thin-walled composite structures Chapter 2 19 

Composite beam modelling Chapter 3 23 
Buckling analysis Chapter 4 47 
Dynamic stiffness method Chapter s 29 
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2.1. Introduction 

Advances of composite materials for structural components : Application of fibrous 

composite materials is now being considered for aircraft primary structural components. 

At first glance, the weight, specific stiffness, and strength properties of the new generation 

fibres appear to be a phenomenal improvement over metals. However, when fibre 

properties are "averaged" by the presence of matrix materials, the advantages of 

composites over metals reduce considerably. Furthermore, off-axis ply orientations, joints 

and dropped plies also reduce the overall advantage of composite structures significantly. 

Added to this are material costs, labour intensive manual lay-up procedures (for 

prototypes) and costly curing, required for most composite material systems. For these 

reasons, at present the direct replacement of metals with composites in existing designs is 

marginally successful at best (Nagendra and Kapania, 1995). 

In order to exploit fully the benefits of composite materials for primary aircraft structural 

components, advanced concepts are currently being studied. One of the main design 

features in fibrous composite materials is tailoring structural stiffness by changing fibre 

orientations or laminate stacking sequences, an idea which is difficult, if not impossible, to 

implement in metals. Laminated beams and plates are also finding an increasing use in 

mechanical, aerospace, marine, and other branches of engineering. Apart from the aircraft 

and aerospace industry, structural components made of laminated composite materials 

have a great potential for their utilisation in a wide variety of applications such as in 

automobile industry, sporting goods, offshore structures, and civil engineering type 

applications (Davies, 1987). 

Composite materials are used for almost all parts of the Lear Fan 2100, different control 

surfaces of Boeing commercial aeroplanes, and X wings (Kapania and Raciti, 1989). The 

X wing consists of a symmetrical composite plastic envelope, fumed over a graphite I 

beam for support. A graphite fibre in a resin called bizmaldeimide together with adhesives 

that resist high temperature (up to 170 °C) is used. 

Lancia, an Italian automobile manufacturer, has recently presented an "Experimental 
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Composite Vehicle" (ECV) designed for the world rally racing class. The ECV's load 

bearing centre section is made of carbon fibres and Kevlar impregnated in epoxy matrix, 

shaped into honeycomb sandwich panels that make the body's core. The estimated weight 

saving as compared to the tubular steel frame is about 20%, with no loss in torsional 

rigidity (Kapania and Raciti, 1989). 

The most attractive properties of composite materials are the high strength-to-weight ratio 

and high stiffness-to-weight ratio. These, added to their excellent fatigue strength, ease of 

formability, wide range of operating temperatures (thermoplastic resins), negative or low 

coefficient of thermal expansion, high damping, resistance to corrosion, and their 

capability for being tailored according to a given requirement (Tsai, 1986) result in 

materials with almost unlimited potential. 

Mechanics of fibrous composite materials : Before discussing the dynamic response of 

composite materials, it is necessary to introduce the relevant literature on the elementary 

behaviour of laminated composites. Many authors, such as Jones (1975), Tsai and Hahn 

(1980) and Datoo (1991), have widely covered the macro-mechanics (and micro- 

mechanics to some extent) of fibrous composite materials in their text books and while 

others, such as Vinson and Sierkowsaky (1986), discussed the characteristics of structures 

composed of composite materials. 

It is also notable that a proper assessment of end or edge effects in any mechanical system, 

especially in laminated composite structures is of fundamental technological importance 

(Horgan and Simmonds, 1994). The extent to which local stresses, such as those produced 

by fasteners and at joints, can penetrate girders, beams, plates and shells must be 

understood by the designer. Thus a distinction must be made between global structural 

elements (where strength of materials or other classical or approximate theories may be 

used) and local elements which require more detailed analyses based on an exact theory of 

elasticity. Moreover, it must be recognised that it is impossible, in general, to refine global 

approximate theories without a simultaneous consideration of local effects. The neglect of 

end effects is usually justified by application of some form of Saint-Venant's principle. 

Also, years of experience with homogeneous isotropic elastic structures have served very 
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well to establish this standard procedure. Saint-Venant's principle is also the fundamental 

basis for static mechanical tests of material properties. Thus property measurements are 

made in a suitable gauge section where uniform stress and strain states are induced and 

local effects due to clamping of the specimen are neglected by an appeal to Saint-Venant's 

principle. Such traditional applications of Saint-Venant's principle require major 

modifications when strongly anisotropic and composite materials are considered. For such 

materials, local stress effects persist over distances far greater than are typical for isotropic 

materials, as shown in a comprehensive paper by Horgan and Simmonds (1994) who 

described some problems of static and dynamic elasticity where anisotropy induces such 

extended Saint-Venant end zones. They clearly pointed out that consideration of such 

extended end zones due to anisotropy is essential in the proper analysis and design of 

structures using advanced composite materials. 

A significant amount of research has been conducted on the buckling, free and forced 

vibration analyses of laminated composite beams. A review of some of these 

developments is given here, and is restricted to studies published in the English language. 

2.2. The development of free and forced vibration of beams 

Use of beam theories to model laminated composite structures " All structures, no matter 

what their dimensions are, can be treated as three dimensional structures. It is well known 

that the solution of the three dimensional elasticity equations is generally very involved and 

in some cases is even unobtainable. To overcome this difficulty it is usual engineering 

practice, depending on the dimensions of the structure, to make some simplifying 

assumptions and reduce the structure to a two dimensional problem or even to a one 

dimensional problem. 

For example, in the case of thin plates, thickness is much smaller than the length or width, 

and hence one can neglect the influence of strains and stresses in the thickness direction 

and model it as a two dimensional problem using Kirchoff's hypothesis. Similarly, beams 

are modelled as one dimensional structures using the Bernoulli-Euler hypothesis because 

their width and depth are much smaller when compared with the length. Obviously 
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because of the type of assumptions made, the solution of the reduced problem (in the 

present case, the beam problem) differs from the solution obtained from the three 

dimensional elasticity theory or that obtained from the two dimensional plate theory. The 

significance of the difference among the solutions depends on the initial assumptions and 

their order of severity. Beam approximation that gives comparable (as close as possible) 

results with those obtained from considering the same structure as a three and/or two 

dimensional problem, is the best approximation to be considered. 

Many authors have used beam theory to model three dimensional structures. For example, 

a high aspect ratio composite wing has been modelled using beam idealisation to carry out 

aeroelastic calculations to reasonable accuracy (Weisshaar, 1981 and Green, 1987). More 

recently, Pedersen (1991) studied beam theories for bending-torsion coupled response of 

ship hulls. He presented a consistent one-dimensional finite element procedure for 

dynamic analysis of ship hulls. He included shear deformation and a higher order 

generalised warping deformation in his theory (Pedersen 1991). 

Refined beam theories : The classical Bernoulli-Euler formulations for beams and plates 

that utilise the Kirchoff's assumption of straight lines perpendicular to the mid-plane 

before deformation remaining straight and perpendicular to the mid-plane after 

deformation have been used for a long time. The simple classical theory does not account 

for any shear deformation or rotatory inertia, and has been proven not to provide 

acceptable results for thick beams and plates and for structures made of materials that 

have high anisotropy ratio and low shear moduli as is quite often the case with composite 

materials (Kapania, and Raciti, 1989). 

The theories that relaxed the Kirchoff's assumption came much later to account for 

shear deformation and rotatory inertia A pioneering work in this field is due to 

Timoshenko (1921) who proposed a new beam theory that included the shear 

deformations and rotatory inertia effects. In this theory, straight lines perpendicular to the 

mid-plane before deformation still remain straight but not necessarily perpendicular to 

mid-plane after deformation. This is equivalent to assuming a constant value for the 

transverse shear strain (shear stress for isotropic beams) across the thickness of the beam. 
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This theory has been successfully used for many years to predict the behaviour of isotropic 

beams. In accordance with the standard terminology used by other research workers, this 

theory will be hereafter referred to as the Timoshenko beam theory. The theory was later 

generalised by Mindlin (1951) to include the effects of shear deformations and rotatory 

inertia in the static and dynamic analyses of plates. Several other researchers have studied 

the statics and dynamics of beams and plates modelled by this first order theory and its 

modifications and obtained satisfactory results. 

The first order theory, although providing good results for the gross behaviour (natural 

frequencies and transverse displacements) of such structures, became inadequate for 

predicting the local behaviour (stresses and displacement across the thickness) of 

composite beams and plates (Kapania, and Raciti, 1989). In particular, the first order 

theory violated the condition of no shear stresses on the top and bottom free surfaces. This 

subsequently led to the assumption of deformation patterns, which ensure no shear 

condition on the free surfaces at the top and bottom of beams and plates. In the beginning, 

these assumed distributions were directly substituted in the equations of motions that were 

obtained from the first order theory (Levinson 1980,1981). This led to inconsistent 

formulation and results, because interacting terms between normal and transverse shear 

stresses as well as some related inertia terms in both the equations of motion and boundary 

conditions were ignored. 

A consistent higher order theory which utilised an assumed displacement field to assure 

zero shear on the free surfaces was, apparently, first proposed by Krishna Murty (1970, 

1977) and Krishna Murry and Shimpi (1974). Later a similar third order theory was also 

used by Reddy (1984) and Bhimaraddi and Stevens (1984) in the analysis of composite 

beams and plates. The equations of motion and boundary conditions were obtained by a 

consistent variational principle. Other higher order shear deformation theories have arisen 

in the past two decades with the prime interest of having a simple model that can predict 

accurately the behaviour of beams and plates such as those of Librescu, Khdeir and Reddy 

(1987) and Dobyns (1981). 
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Rending-torsion couplin : The free vibration analysis of a bending-torsion coupled 

metallic beam, particularly when coupling occurs due to the geometry of the cross-section, 

has been attempted by a number of investigators in recent years (Hallauer and Liu 1982, 

Dokumaci 1987, Bishop, Cannon and Miao 1989, and Bishop and. Price 1977). In the 

case of composite beams, coupling between various modes of structural deformation, such 

as bending and torsion, can occur due to the anisotropic nature of fibrous composites as 

well as due to the geometry of the cross-section. Study of the influence of bending-torsion 

coupling on the performance of composites is by no means new. Many authors studied the 

effect of coupling and pointed out its importance (Chamis, 1969 and Grenestedt, 1992). 

However, the traditional finite element analysis based on plate or shell element idealisation 

does not give an insight into the coupling mechanism of the beam (Jensen and Crawley, 

1982 and 1984). The use of beam theory often overcomes this difficulty by giving a better 

insight into the fundamental vibration characteristics. Rehfield and Atilgan (1987,1988 

and 1989) examined the concept of shear centre and elastic axis and their usefulness for 

composite thin-walled structures. They established that, generally, the real shear centre in 

composite beams is not the same as geometric shear centre for an isotropic material, 

because it is altered by the material bending-torsion coupling. Usually due to primary and 

accompanying elastic couplings there will be twisting even if transverse load is applied at 

the geometric shear centre. Therefore, use of the locus of shear centres for a reference axis 

does not simplify the analysis of bending-torsion coupled composite beams. They 

concluded that it is possible to define a new elastic axis, which uncouples bending and 

torsion (Rehfield and Atilgan; 1987; 1988 and 1989). Most of the works reported on the 

vibration of composite beam and plate structures have dealt with the free vibration 

analysis only, with the primary purpose of calculating natural frequencies. 

Free vibration of laminated composite beams : Abarcar and Cunniff (1972), Teoh and 

Huang (1977), Teh and Huang (1979), Wu and Sun (1991), Banerjee and Williams 

(1995) and Teboub and Hajela (1995) have published notable works on the free vibration 

analysis of composite beams. Some investigators considered the effects of bending-torsion 

coupling on the free vibration of composite beams, which is applicable to aircraft wings, 
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wind turbine and helicopter blades; others examined the effect of extension-torsion 

coupling (Kosmatka, 1991 and Banerjee and Butler, 1994) which principally relates to 

wind turbine and helicopter blades. 

Dudek (1970) used the results of Timoshenko beam theory to obtain the transverse shear 

modulus and studied the effect of the ratio of transverse shear and extensional moduli on 

beam frequencies. Abarcar and Cunniff (1972) were among the earliest investigators to 

study the effects of fibre orientation on the natural frequencies of composite beams and 

their results indicated the existence of bending-torsion interaction. They also showed the 

existence of coupling between bending and torsional modes in an orthotropic beam 

experimentally, and proposed a discrete model to analyse the free vibration characteristics 

of a cantilever beam (Abarcar and Cunniff 1972). 

Neglecting shear deformation and rotatory inertia effects, Miller and Adams (1975) 

developed the equations of motion of a generally orthotropic beam with coupled bending 

and torsional vibrations, and obtained the free vibration characteristics of beams with 

several different boundary conditions. Later, Teoh and Huang (1977), and Teh and Huang 

(1979) further investigated the free vibration characteristics of composite beams, using 

respectively, an exact differential equation approach from which frequency equations were 

derived, and a finite element approach. They also included shear deformation and rotatory 

inertia according to the Timoshenko beam theory in a torsional-flexural vibration study of 

an orthotropic cantilever beam. 

Krishna Murty (1970,1979) and Krishna Murty and Shimpi (1974) appear to be the first 

authors to propose the use of a so-called third order theory to include the effect of shear 

deformation in the dynamic analysis of isotropic and laminated beams, respectively. More 

recently, Chandrashekhara et al (1990) have developed the equations of motion of 

composite beams using a first order shear deformation theory and have obtained the 

frequencies and mode shapes of composite beams with several different boundary 

conditions. Suresh et al. (1990) have studied the effect of assumed warping behaviour in 

the formulation, whilst studying on the free vibration characteristics of torsionally and 

flexurally coupled composite beams. More recently, Song and Wass (1997) examined 
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effects of shear deformation on the buckling and free vibration of laminated composite 

beams, having, stepped (unidirectionally) laminated cantilever beams. They compared 

different theories to assess the importance of shear deformation. 

Jensen, Crawley and Dugundji (1982) used a Rayleigh Ritz type analysis to examine the 

effects of laminate unbalance on the natural frequencies and mode shapes of cantilever 

graphite/epoxy plates with bending torsion coupling. Their results were mainly centred on 

symmetric lay ups (laminates) and were validated both by comparison with a detailed 

finite element analysis (Crawley, 1979) using general anisotropic plate elements and by 

comparison with experimental results. Their results showed that, for the type of problems 

they investigated, five assumed modes (two bending, two torsional and one chordwise) 

were required for their Rayleigh Ritz formulation to determine the first three natural 

frequencies and mode shapes of the cantilever plate to adequate accuracy. They 

emphasised the importance of choosing a mode that involves chordwise deformation in 

order to calculate the natural frequencies accurately. Later on, Jensen and Crawley (1984) 

utilised the modes given by an earlier detailed finite element analysis (Crawley, 1979) to 

help the choice of which assumed modes to use in their formulation. Their results 

generally agreed well with both the finite element and experimental results. 

Weisshaar and Foist (1985) used beam theory to understand the basic features of bending 

torsion coupling in vibrating composite wings of moderate to high aspect ratio. They 

adopted an aeroelastician's viewpoint and characterised a bending-torsion coupled 

composite beam/wing by its bending (EI), torsional (GJ) and bending-torsion coupling (K) 

rigidities. Their beam model used classical laminated plate theory to derive expressions for 

these parameters (Weisshaar and Foist, 1985). They showed the importance of including 

chordwise bending curvature in these derivations, consistently with the conclusions of 

Crawley and Dugundji (1980) and Jensen and Crawly (1984), reported above. Therefore, 

accurate determination of the natural frequencies of a composite beam requires an accurate 

determination of its rigidities. The need to determine these rigidities accurately, using both 

theoretical and experimental methods, has received considerable attention in recent years. 

Once the rigidity properties of a composite beam of any cross-section are accurately 
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known, the dynamic stiffness matrix method, which is often called an exact method, can 

be used to predict its natural frequencies. Different methods of composite beam modelling 

and the generality of the dynamic stiffness method are discussed in Chapters Three and 

Five, respectively. 

The above investigations yielded results primarily for flat composite beams of solid 

rectangular cross-section, for which the only form of coupling was between bending and 

torsion. The general conclusion drawn by the authors is that the extent of the bending 

torsion coupling present, and its subsequent effect on the free vibrational modes of a 

laminated composite beam, depend very much on the fibre orientation of the laminate, and 

on the wavelength of the vibrational mode. 

Forced vibration : Exact solutions for forced vibration problems have been reported in the 

literature only for some very simple cases. For example, Sun and Whitney (1974,1976), 

Sun and Chattopadhyay (1975), Whitney and Sun (1977), Dobyns (1981) and Reddy 

(1982) have studied the forced vibrations of simply supported plates or cylindrical bending 

problems formulated with the first order shear deformation theory. On the other hand, the 

third order theory has been used by Khdeir and Reddy (1988,1989), Bhimaraddi (1987) 

and Cederbaum (1988) but again for simple supported plates. Recently, Eslimy-Isfahany, 

Banerjee and Sobey (1996) investigated the dynamic response problem of a bending- 

torsion coupled beam using the dynamic stiffness method. The effect of an axial load on 

the free and forced vibration of the coupled beam was later included (Eslimy-Isfahany and 

Banerjee 1996b). 

For composite beams and plates with arbitrary boundary conditions, forced vibration 

problems have generally been studied using the finite element analysis (Malikaquna and 

Kant, 1988) and Galerkin method (Elishakoff, 1977). Other approximate methods have 

been used if transient or forced vibration problems are to be solved (Grenestedt, 1992). 

Maiti and Sinha (1995) used both a Higher-order Shear Deformation Theory (HSDT) and 

the conventional First-order Shear Deformation Theory (FSDT) to develop a finite element 

method in order to analyse the impact behaviour of laminated composite beams. Their 
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higher-order theory assumes that all the displacement components contain variation up to 

cubic power of thickness. They studied the effects of various parameters, such as span-to- 

thickness ratios, support conditions and stacking sequence on the impact behaviour of 

laminated composite beams and observed that stresses computed using HST and FST 

exhibit wide variations (Maiti and Sinha, 1995). 

Rao and Ganesan (1995) investigated harmonic response of tapered composite beams by 

using a finite element model based on a higher order shear deformation theory. Only 

uniaxial bending was considered and the inter-laminar shear stresses were neglected. The 

Poisson-ratio effect was incorporated in the formulation of beam constitutive equations. 

The effects of in-plane inertia and rotatory inertia were also considered in the formulation 

of the mass matrix. They carried out a parametric study to investigate the influence of 

taper profile and taper parameter. Two years later, they carried out a similar investigation, 

but this time the inter-laminar shear stresses were not neglected (Rao and Ganesan 1997). 

Random vibration : The responses of (metallic) beams to random loads have been 

extensively investigated by many authors such as Eringen (1957), Bogdanoff and 

Goldberg (1960), Crandall and Yildiz (1962), Banerjee and Kennedy (1985) and Chang 

(1994). Some closed form solutions for random vibrations of both Bernoulli-Euler beams 

(Elishakoff and Livshits, 1984) and Bresse-Timoshenko beams (Elishakoff and Livshits, 

1989) are available in the literature. The exact solution for the random vibrations of 

Timoshenko beams with generalised boundary conditions (Singh and Abdelnaser, 1990) 

and the solution to random vibration of externally damped viscoelastic Timoshenko beams 

with general boundary conditions (Singh and Abdelnaser, 1993) are also available. 

However, it is significant to note that the random vibration analysis of beams reported in 

the literature is mainly for metallic beams and is mostly based on Bernoulli Euler 

assumptions and/or Timoshenko beam theory. Thus, when predicting the random response 

of a beam, it has been assumed that the beam deflects only in flexure (bending) which is 

uncoupled with torsion. Such an analysis is restrictive in the sense that it applies to beams 

with only doubly symmetric cross-sections. When bending-torsion coupling exists, 

Bernoulli Euler or Timoshenko theory is inadequate for the prediction of deterministic or 
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random response. 

The dynamic response of composite structures has only recently been investigated. For 

instance, random vibrations of orthotropic or composite plates have been studied by 

Sundararajan and Reddy (1973), Kulkarni, Banerjee and Sinha (1975), Elishakoff (1977), 

and Mei and Wentz (1982) who have used different approximate methods to obtain the 

random response of orthotropic plates modelled by the classical theory. More recently, 

Cederbaum et al. (1988; 1992) discussed the theory of random vibration and reliability of 

composite structures. Singh and Abdelnaser (1992) investigated random response of 

symmetric cross-ply composite beams with arbitrary boundary conditions and Abdelnaser 

(1993) studied random vibrations of composite beams and plates. A full account of 

random vibration of bending-torsion coupled beams is given in Chapter Six. 

2.3. Dynamic Stress analysis 

Stress analysis under static loads : Many investigators have studied the stress analysis of 

composite structures subjected to static loads. For example, Tripathy, Patel and Pang 

(1994) developed a finite element model based on the strain energy principle and carried 

out a bending analysis for the study of deflections and stresses for box beams of isotropic 

and laminated composite materials subjected to different kinds of loading conditions. 

Experiments using aluminium and composite laminates were conducted by them to verify 

the results and they also investigated the effect of transverse shear on the span-wise 

normal stress. However, no dynamic load was included in their investigations. 

Jones (1975) and Datoo (1991) covered stress analysis of laminated composites , using the 

classical theory of elasticity and mechanics of fibrous composites and discussed different 

failure criteria of laminates and composite beams. Other authors used numerical methods 

for stress analysis of laminated composite beams. For example, Kant and Manjunatha 

(1992) studied accurate estimation of transverse stresses in multilayer laminates using 

numerical methods. They proposed numerical algorithms for the accurate evaluation of 

transverse stresses in general composite and sandwich laminates. One year later, 

Manjunatha and Kant (1993) compared different numerical techniques for the estimation 
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of multiaxial stresses in symmetric/unsymmetric composite and sandwich beams with a 

refined theory. They evaluated multiaxial stress behaviour in composites with a set of 

simple, efficient and accurate higher-order displacement models and compared their 

results with those of available closed form solutions for cross-ply and sandwich laminates. 

Miravete (1990) studied strain and stress analysis in tapered laminated composite 

structures. He used a finite element model to evaluate longitudinal and interlaminar normal 

and shear strains and also carried out a failure analysis by means of a quadratic failure 

criterion. Then he carried out an experimental analysis to assess the accuracy of the 

theoretical model as well as to study the different failure mechanisms that appear in a 

variable thickness composite beam when subjected to a transverse load. 

Ardic, Bolcan and Kazan (1995) developed a method of (static) strain and stress analysis 

to predict the failure initiation in laminated composites containing two or more different 

kinds of laminae, calculating the principal strains and stresses both in the fibres and in the 

matrix. They checked their results with those obtained from the classical plate theory. 

Failure criteria : The strength of composite material plies strongly depends on the 

orientation of the plies relative to the stress field. The longitudinal failure stress can be of 

the order of twenty times the transverse or shear failure stresses. The longitudinal failure 

strain is though usually of the same order as, for example, the transverse failure strain. A 

failure criterion based on strains is far less dependent on orientation of the plies than a 

failure criterion based on stresses. An approximate failure criterion can be based on the 

invariants of the strain tensor, thus the composite's strength would be independent of the 

rotation of the strain field. Tsai and Hahn (1980) laid emphasis on such criteria which 

can be used as a conservative first ply failure approximation. 

Echaabi and Trochu (1996) proposed a methodology to derive an implicit equation of 

failure criteria for fibrous composite laminates. They implemented a systematic connection 

between parametric formulation and implicit formulation to describe the failure criteria of 

laminated composites. 

Stress analysis under dynamic loads : There are not many published works about 
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dynamic stress analysis of laminated composite beams. Singh and Abdelnaser (1992) 

investigated random response of symmetric cross-ply composite beams with arbitrary 

boundary conditions. They presented a generalised modal approach to solve the equations 

of motion of a laminated composite flat beam using a third order shear deformation theory. 

They did not account for warping in their proposed theory. Presenting some numerical 

results for natural frequencies and mean square values of the deflections and normal 

stresses for different boundary conditions, they discussed the importance of shear 

deformation in the dynamic analysis of composite beams. They did not present any 

numerical results for the torsional rotation. However, one year later Abdelnaser and Singh 

(1993) examined the effects of bending-torsion coupling and warping on the random 

vibration of a cantilevered flat composite beam. They also reported on random vibrations 

of externally damped viscoelastic Timoshenko beams with general boundary conditions 

(Singh and Abdelnaser, 1993). Abdelnaser (1993) extensively studied the response of 

composite plates to spatially and temporally correlated random loads. However, none of 

the above mentioned publications deals with thin-walled composite box beams or 

composite beams with geometric bending-torsion coupling. 

Maiti and Sinha (1995) examined bending and free vibration analysis of shear deformable 

laminated composite beams by the finite element method. They investigated the effects of 

fibre orientation, stacking sequence, span-to-thickness ratio and support condition on 

deflections, stresses and natural frequencies, and highlighted where only a higher order 

shear deformation theory is likely to yield accurate results. 

2.4. Optimisation 

Optimum design of composite structures means finding the most efficient composite 

structural design that meets the design specifications for a certain application. The advent 

of composites has been a challenge to the designer as laminated structures offer a wide 

range of parameters (e. g. stiffnesses, material properties, ply orientations and ply 

thicknesses) that can be varied both at the micro level as well as at the macro level. 

Furthermore, the designer has to account for a complex behaviour (e. g. both in-plane and 
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out-of-plane load interaction) and account for multiple failure modes and modal 

interaction. The inherent nature of composites as discrete laminated structures introduces a 

new dimension of using discrete variables (Nagendra and Kapania, 1995). 

Composite plates and Composite thin-walled beams are often fabricated very thin and this 

is due to their high strength. Thin laminates result in low free vibration frequencies, low 

buckling loads and large deflection when subjected to a pressure normal to the plate. Lay- 

up optimisation to maximise natural frequencies, buckling loads and minimise deflections 

becomes important (Grenestedt, 1990). Although, optimisation is beyond the scope of the 

current research, a brief review of the literature is however, presented here for 

completeness. 

Structural optimisation techniques have repeatedly proven to come to the designer's rescue 

with their ability to account simultaneously for all the design constraints posed by the 

designer, and to arrive at an optimum design of composite plates and shells under various 

loadings. Typical design variables are ply orientations or thickness of layers with 

prescribed ply orientations. In many practical applications the ply thicknesses are limited to 

integral multiples of the lamina thickness. An excellent source for various techniques used 

in structural optimisation is the text by Haftka and Gurdal (1992). 

Optimisation of composite plates to maximise buckling loads has drawn considerable 

attention in recent years. Traditionally the design variables of the laminate stacking 

sequence are selected to be the number of plies of a given orientation. For example, 

Hirano (1980) considered the buckling load maximisation problem for unstiffened 

laminated plates. 

Mild (1986) proposed a graphical method to determine the optimum fibre orientation 

angles using a flexural lamination parameter diagram assuming that the buckling wave 

number is known a priori for a plate of known aspect ratio. The lamination parameters are 

functions of the laminate in-plane and flexural stiffnesses, and hence of the stacking 

sequence. For unknown buckling wave numbers, the critical buckling mode method is 

proposed. The fibre orientation angles are determined so that the buckling strength does 

47 



Literature review 

not change when the buckling mode changes. The optimum design of laminates having 

any aspect ratio can be performed using this approach. This method can arrive at a 

multiple designs where various combinations of the lamination parameters can have the 

same buckling load. Later, Fukunaga and Vanderplatts (1991) used the lamination 

parameters suggested by Miki. 

Adali and Duffy (1990) studied the buckling load maximisation problem for antisymmetric 

angle ply laminates using fibre orientations as design variables to maximise the buckling 

load subject to a minimum mass constraint. Different methods for finding minimum 

weight designs of stiffened panels has been of considerable interest and discussed by many 

authors. One of those, Manevich (1990), studied optimum design procedures for the 

minimum weight design of longitudinally compressed panels with T shaped stiffeners. On 

the other hand, Shin (1991) used the homotopy method to arrive at optimum design of 

stiffened panels. 

Grenestedt (1992) showed that the use of lamination parameters for the optimisation is 

efficient, because large non-linearities of the object function versus design parameters are 

avoided. This is due to the linearity of the stiffnesses in the lamination parameters 

(Grenestedt, 1992). Furthermore, the number of design parameters is kept to a minimum 

while maintaining more design freedom than discrete ply laminates (Grenestedt, 1992 and 

1994). The main problem with lamination parameters is that the feasible region is not yet 

fully determined. 

2.5. Summary 

The literature review has shown that, as for any new technology, research activity on the 

use of composite materials for vibrating structures has proceeded at two levels, namely 

practical and academic levels. It is evident from these studies that the unique features of 

laminated composite materials make them prime candidates for aerospace applications and 

aeroelastic tailoring efforts. 

However, the main bulk of available literature on vibrating composite beams concentrates 
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either on a simple Bernoulli-Euler beam or on a Timoshenko beam or on an axially loaded 

Timoshenko beam, in all of which only flexural displacement of the beam is considered 

with torsion absent. Thus, the beam theory reported assumes that there is no coupling 

between the bending displacement and any torsional rotation. Such an assumption is valid 

only for simple beams with coincident mass centre and shear centre. Naturally, the 

assumption imposes a severe restriction on the dynamic response analysis of beams for 

which the mass centre and shear centre are not coincident. Furthermore, it should be 

recognised that composite beams exhibit material coupling between various modes of 

deformation (specifically bending-torsion coupling) unlike their metallic counterparts and 

hence, the response analysis of composite beams is significantly more complicated than 

that of metallic beams. 

It has also been shown that despite extensive numerical and experimental analysis by 

others in this field, an exact analytical approach to the dynamic response of thin-walled 

laminated composite beams with substantial coupling between the bending and torsional 

modes of deformation, has not yet been fully understood or well documented. To make 

good this deficiency, the present investigation uses an exact differential equation approach 

and addresses the bending-torsion-coupled response of composite/metallic beams to 

deterministic and random loads. 

The next chapter deals with stiffness modelling of composite beams, which is an essential 

prerequisite for any dynamic response investigation. In particular, the various methods 

associated with published work that have been developed for modelling thin-walled 

laminated composite beams are introduced and examined and, wherever possible, 

comparisons are made. 
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3 Composite beam modelling 

3.1. Introduction 

A successful prediction of the static and dynamic behaviour of any structure depends on an 

accurate evaluation of the mechanical properties of its components, such as flexural, 

torsional and coupling rigidities, the mass and the shear centre locations, the polar mass 

moment of inertia and the mass per unit length. For an accurate prediction of rigidity 

properties of isotropic materials, theoretical models and experimental procedures have 

already been established. The mechanical properties of structural elements made of 

isotropic materials, such as, Young's modulus and Shear modulus, are independent of the 

cross-section of the component and the loading conditions, and thus the rigidity properties 

only depend on the geometrical properties of the cross-section. 

However, for composite materials, due to the fibrous nature of their make up, the eventual 

material characteristics will vary with the orientation of the fibres and the stacking 

sequence of the plies. The cross-section of the structure and the loading conditions will 

also affect the mode of deformation and eventually the stress-strain conditions in the 

structure. Thus an altogether different set of equations to calculate the mechanical 

properties of composite structures is required. Once the material properties are evaluated, 

the sectional characteristics can be investigated, for example the location of shear centre 

for a given cross-section. In the case of isotropic materials, this is purely a sectional 

property depending on the geometry of the section only, but in the case of composite 

materials, the location of shear centre is a totally different concept. It is influenced by the 

laminate material properties, which again depend on the laminate stacking sequence and 

ply angles, as well as the shape of the cross-section. 

In order to obtain experimental, analytical and numerical estimates of structural properties 

of composite structures, considerable efforts have been made in the past two decades. 

Some investigations have considered simple beam theory, whereas others used more 

refined theories. Each investigator has developed the approach for a particular cross- 

section and its ply configurations, and accounted for certain secondary effects and ignored 
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others. Some of the methods have not been fully developed and most of them have not 

been thoroughly validated experimentally for general composite designs. Even today, the 

structural behaviour of composite beams does not appear to be thoroughly understood. A 

summary of studies on composite beam modelling is given in this chapter. The main 

objective here is to discuss and compare the most popular stiffness models that have been 

developed for the modelling of laminated composite beams, such as, flat beams (plates) 

and thin-walled beams (box beams), single cell or multi-cell. Applications of different 

methods are also examined and some conclusions are drawn on the best choice of 

composite beam modelling. 

3.2. Essential rigidities 

Stiffness of a structure is its resistance to deformation as the structure comes in contact 

with an unbalanced system of forces and moments. It primarily depends on the material 

property and the geometry of the cross-section. Therefore, a given value of stiffness can be 

achieved by selecting from a range of materials and varying the geometrical parameters 

such as size and shape of the cross-section. In the case of composite materials the fibre 

orientation and laminate overall sequence gives a wide number of possibilities to achieve a 

certain values of stiffness. 

For thin-walled beams made of isotropic materials, bending or flexural rigidity EI, 

torsional rigidity GJ, extensional rigidity EA and transverse shear rigidity MG are often 

considered. The concept of shear centre can be dated back as early as 1926 when 

Eggensschwyler and Maillart (1926) for the first time coined the concept of shear centre 

and advocated the idea that the centroid is not the only important point in the cross-section. 

In the case of thin-walled beams made of isotropic materials, a single point called the shear 

centre can be located, such that a cross-sectional shear force passing through that point 

will not produce any twist. Alternatively, a torque about this point will not produce any 

bending displacement. The shear centre is also known as the centre of twist of the cross- 

section. This point which gives torsion free bending and bending free torsion, is a 

geometric property of the cross-section and is independent of the loading. On the other 
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hand, in composite materials the general concept and physical role of shear centre remains 

the same, but its location depends in addition on the material properties, such as coupling 

effects, and loading conditions. For composite materials, therefore, bending-torsional 

coupling rigidity K for symmetric laminates and extensional-torsional coupling rigidity K, 

for antisymmetric laminates are further added to the above list of stiffnesses. The accurate 

determination of these stiffnesses ensures a correct prediction of natural frequencies and 

other dynamic characteristics of the structure. 

In the case of conventional isotropic materials the task of calculating the stiffnesses mainly 

involves the computation of the geometrical properties, such as the area of the cross- 

section, the second area moment, etc. Once these properties are computed the stiffnesses 

are then found as the product of the elastic moduli of the material and the geometric 

property of the section. However, in the case of anisotropic composite materials, the task is 

not so straightforward and is generally twofold. Firstly, the laminate equivalent elastic 

constants are evaluated and, secondly, the sectional properties are determined. Another 

approach which can be followed is that of the macro-mechanics of the composites, where 

the overall stiffness estimation can be obtained by developing the stiffness matrix that will 

relate the stresses to the strains. In the latter approach material and sectional details both 

go into the analysis together. 

3.3. Existing models 

The material moduli of isotropic materials are independent of the cross-sectional details 

and the boundary conditions of the structure. The cross-sectional area, second moment of 

area, warping inertia, and Saint-Venant torsion constant for various shapes are well known 

quantities. By way of illustration, Blevins (1979) has provided a comprehensive list of 

these properties. The product of appropriate quantities such as Young's modulus of 

elasticity multiplied with the second area moment will give the bending or flexural rigidity, 

and similarly, the Saint Venant torsion constant times the shear modulus of elasticity will 

give the measure of torsional rigidity of the structure, etc. 

The geometry, along with the loading conditions, will influence the procedures through 
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which the material moduli of the composite structures are to be obtained. Thus, for 

example, on occasions, the laminate equivalent elastic constants based on a membrane 

mode may be required, while at other times the bending mode will be desired (Datoo, 

1991). For some geometries it may be possible to compute the laminate equivalent elastic 

constants and sectional properties separately and the product of both will give the stiffness 

but in other cases it will be desirable to approach the problem in a unified manner so that 

the stiffnesses are computed directly (Datoo, 1991). 

The introduction of composite materials into aircraft structures has added the material 

coupling rigidity terms to the complexity of the problem. Two separate approaches 

associated with published work have been developed for the modelling of composite 

beams. One is a numerical method using the well-known finite element based approach, 

and the other is usually termed as the analytical approach. The main advantage that the 

finite element method offers is the modelling flexibility and versatility, which no analytical 

method can provide so that almost any structural analysis can be reduced to an automatic 

process. With this method one can determine the shear centre, and elastic properties for 

any cross-sectional configuration that can be modelled with two dimensional finite 

elements, no matter how complicated its geometry is. However, its disadvantage is the loss 

of physical insight. Analytical methods are the main concern in this investigation, so that, 

numerical methods will only be briefly summarised. 

Among those who used numerical methods, Womdle (1982) developed a method for the 

determination of the position of shear centre and warping functions based on a two 

dimensional finite element analysis. Bauchau (1985) developed an anisotropic beam theory 

in which out-of-plane cross-section warping is expanded in terms of so called 

eigenwarpings. Kosmatka (1986) used Womdle's analysis but included blades made of 

orthotropic materials with arbitrary fibre orientation instead of transversely isotropic 

materials. Stemple and Lee (1988,1989) developed a finite element based approach in 

which the warping behaviour is determined through specification of warping nodes over 

the cross-section. It considers only thin-walled cross-sections, and out-of-plane warping. 

Suresh and Malhotra (1997) recently studied effects of material and lay-up sequence on 
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the structural behaviour of a rectangular cross-section thin-walled composite box beam 

under a uniformly distributed load on the top face, with end supports, using the finite 

element method and taking shear deformation of the beam into consideration. 

Many researchers have investigated analytically the mechanical properties of composite 

beams. Housner and Stein (1974) provided the model for balanced ply of symmetrical 

laminates. The bending and torsional stiffnesses were assumed to arise solely from thin 

laminated composite cover sheets forming the upper and lower surfaces of the wing. The 

equivalent bending and torsional stiffnesses of the resulting box beam were computed by 

using classical Euler Bernoulli beam deformation assumptions. The same structural 

idealisation was used by Weisshaar (1980,1982) when he investigated the divergence 

behaviour of forward-swept composite wings. He also conducted a systematic study of 

bending-torsion and extension-torsion coupling rigidity terms for linear displacements 

(Weisshaar 1982,1985). 

Mansfield and Sobey (1979), dealt with the composite thin cylindrical tube (beam) 

composed of an arbitrary lay up of fibre composite plies. Expressions were derived for the 

coupled torsional, extensional and flexural stiffnesses for linear displacements. Mansfield 

(1981) subsequently extended the theory to two-celled beams. Libove (1988) presented 

more or less the same theory in the later years and admitted that at the time of his 

investigations he was not aware of Mansfield and Sobey's contributions to the subject 

(1979). He also stated that, due to the effects of coupling terms, the local rate of twist not 

only depend on the torque and the shear forces but also varies with the axial load applied 

and moments about chordwise and span-wise axes. 

Rehfield (1985) pointed out that the above theoretical developments were rather difficult 

to follow, and a single variationally consistent theory was not clearly emerging. He 

performed a similar contour analysis to Mansfield and Sobey (1979) in which a general 

rotor blade cross-section is idealised as a single celled box beam subjected to axial, 

bending, torsional, transverse shear, and warping loads. Nixon (1987) compared the 

theory of Rehfield (1985) with experimental data and showed that transverse shear is very 

important for an accurate modelling of extension-torsion coupled circular tubes. Hodges, 
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Nixon and Rehfield (1987) further demonstrated the accuracy and effectiveness of 

Rehfield's (1985) approach by showing favourable correlation between this relatively 

simple theory and a NASTRAN finite element model for a single cell closed beam. 

Hong and Chopra (1985,1986) developed a non-linear analysis for thin-walled composite 

beams, under going transverse bending (flap and lag), torsion and axial deflections based 

on non-linear strain displacement relations of Hodges and Dowell (1974). A simple 

analytical expression was given for the cross-sectional warping, while effects of transverse 

shear were neglected. Later extensive investigations in the behaviour of structural coupling 

terms due to ply orientations were made by Chandra, Stemple, and Chopra (1990) and 

Smith and Chopra (1991). A direct analytical method for the prediction of the effective 

elastic stiffnesses and corresponding load deformation behaviour of composite symmetric 

and antisymmetric box beam structures was developed. 

Berdichevsky, Armanios, and Badir (1992) developed a variationally and asymptotically 

consistent theory in order to derive the governing equations of anisotropic thin-walled 

beams with closed cross-sections subjected to axial, bending and torsional loads. This 

theory is based on an asymptotic analysis of two dimensional shell theory. Closed form 

expressions for the beam stiffness coefficients, stress and displacement fields are 

provided. It is assumed that the in-plane deformation of the cross-section is zero, but the 

out-of-plane warping is included. In addition to the classical out-of-plane torsional 

warping, two new contributions are identified by the authors; these are the axial strain and 

bending warping. The theory correlated very well with both experimental data and other 

theories in the literature. 

Recently, Song and Librescu (1997) presented a refined theory of a rotating blade 

modelled as a thin-walled composite beam of arbitrary closed cross-sections to study its 

free vibration behaviour. The structural model encompasses a number of non-classical 

features such as the anisotropy and heterogeneity of constituent materials, transverse 

shear, primary and secondary warpings. In their study the influence of the ply orientation 

on the flap-lag-transverse shear and twist-extension coupled free vibration 

eigencharacteristics are presented and the benefits of exploiting the induced elastic 
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couplings are highlighted. 

Among those researchers who recently suggested experimental methods to verify a 

composite beam modelling, are Qian, Hoa and Xiao (1997). They proposed a vibration 

experiment for measuring mechanical properties of composites. They established an 

analysis based on a finite element model that considers the effect of transverse shear 

deformation and hysteretic damping. Qian et al. (1997) also used vibration test data for 

identifying elastic and damping properties of composite laminates. Their numerical study 

showed that satisfactory results including transverse shear moduli can be obtained by 

designing a suitable plate specimen. They demonstrated the efficiency of their proposed 

method by experimental results. In principle, their method allows all elastic constants and 

damping factors to be determined simultaneously (Qian et al., 1997). 

3.4. Choosing a suitable model 

Three different methods have been mainly used to analyse a thin-walled composite beam. 

Two of these are the contour analysis (Mansfield, and Sobey, 1979 
, 

Libove, 1988 and 

Rehfield 1985) and the variational-asymptotical analysis (Berdichevsky, Armanios, and 

Badir, 1992) where the displacements and stresses are integrated around the cross-section 

and as a consequence the cross-section is analysed as a unit regardless of its shape. The 

third is the simplified linear analysis used by Chandra, Stemple and Chopra (1990) and 

Smith and Chopra (1991) where the four sides of the thin-walled beam are modelled as 

general composite laminated plates. An important advantage of the contour and 

variational-asymptotical analyses is that the cross-sectional warping can be more 

accurately predicted as it is taken around the cross-section. However, in the simplified 

theory where each side of the beam is modelled as a plate, the torsion related warping is 

expressed in an approximate manner. 

In the case of infinitely long beams made of conventional materials with a closed cross- 

section, the effects of transverse shear deformation and warping inertia are small enough 

to be neglected. However, these effects cannot always be ignored for thin-walled 

composite beams. In a comprehensive model of composites, the effect of transverse shear 
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deformation on the bending deformation and the effect of the warping inertia term on open 

sections, both need to be considered because they may cause substantial differences 

between the predicted and experimental results. The inclusion of the cross-sectional 

warping allows three-dimensional contributions to be recovered from a one-dimensional 

beam formulation. The major difference between the various theories generally lies in the 

methodology used to analyse the box beam and particularly in the methodology used to 

derive the warping of the cross-section and to include its contributions into a one- 

dimensional theory. 

In order to compare different approaches, loading conditions and secondary effects 

considered in the various analytical theories for stiffness predictions of thin-walled 

composite beams are summarised in Table 3-1. Thorough examination is needed when 

choosing a model for the prediction of stiffnesses of a laminated composite beam. 

Generally the choice of model depends on the size and the shape of cross-section (box or 

flat beam), loadings considered, accuracy required and nature of secondary effects that are 

taken into account. Recently, many researchers have discussed the choice of composite 

beam modelling and some investigators have even carried out comparative studies on 

different existing models (Khan, 1993 and Georghiades, 1997) in order to demonstrate 

their differences numerically. To summarise, a Chordwise-Rigid-Laminated-Plate (CRLP) 

model can give satisfactory results only when the wing has such a high torsional rigidity 

for the chordwise rigidity to be assumed. Chordwise rigidity is often assumed in wing 

design when stiff, closely spaced ribs are present within a wing of moderate to high aspect 

ratio. If this is not the case, a High-Aspect-Ratio-Plate (HARP) model is definitely a better 

choice. When a thin-walled beam cross-section is present within a wing, such as a torque 

box of small width-to-depth ratio, a box beam model like the ones given by Berdichevsky 

et al. (1992) and by Rehfield (1985) is a better choice. However, if the width-to-depth 

ratio of the thin-walled beam is large, the HARP model appears to be a better choice since 

the use of axial rigidity terms (instead of the bending rigidity terms) in box beam models 

to estimate the rigidity properties is not valid for high width-to-depth ratios resulting in an 

overestimation of stiffnesses. 
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3.5. Effect of ply orientation on the stiffnesses: case studies 

In this section the effect of ply orientation on the stiffnesses of three composite beams are 

shown. The chosen composite beams are (i) a flat plate (Jensen, Crawley, and Dugundji, 

1982), (ii) a rectangular box (Cesnik, Hodges, and Patil, 1996) and (iii) a bi-convex shape 

(Librescu, Meirovitch, and Song 1996). Cross-sectional and other properties are all given 

in Figures 3-la to 3-3 a. Variations of stiffnesses for each case are calculated according to 

Berdichevsky et al. (1992) and plotted against ply orientation and are shown in Figures 3- 

lb to 3-3b. The flexural, torsional, and bending-torsional coupling rigidities are grouped 

together to obtain a non-dimensional quantity given by 

K2 

EI GJ 
(3-1) 

and this is also plotted against the ply orientation as shown in Figures 3-lb to 3-3b. 

The variation of stiffnesses in all the cases show a similar trend. For example, as can be 

seen in Figure 3-lb, for the flat plate, the flexural rigidity decreases when the ply angle 

increases. The torsional rigidity increases for ply angles between zero to thirty degrees and 

then decreases when ply angle is further increased. A similar trend is evident for the 

bending-torsion coupling rigidity and the non-dimensional coupling rigidity parameter 

when plotted against the ply orientation. The only difference is in the occurrence of the 

peak for each plot. The peak of bending-torsion coupling rigidity occurs at twenty degrees 

whereas the maximum for non-dimensional coupling rigidity occurs at twenty five 

degrees. The other two graphs (see Figures 3-2b and 3-3b) show similar behaviour but 

peaks do not occur at exactly the same ply angles. 

The presence of bending-torsion coupling has a significant effect on both static and 

dynamic characteristics of composite beams. Since studying the static behaviour is a 

stepping stone before embarking on the dynamic behaviour of structures, the next chapter 

sets out to investigate the elastic buckling behaviour of composite columns, mainly when 

coupling rigidity is present. The buckling load is calculated theoretically, and is measured 

experimentally and finally, the associated results are compared. 
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El = 98.0 GPa 

E2=7.9GPa 

G12 = G13 = G23 = 5.6 GPa 

V12 = 0.28 

Ply thickness = 0.134 mm [ßz / 01, 

Density = 1520 kg/m3 

lI t=0.804 mm 

76.2 mm 
1 

/- 

L=0.3048 m 

Figure 3-1(a) Configuration of the laminated flat beam. 
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Figure 3-1(b) Variation of flexural rigidity (EI), torsional rigidity (GJ), coupling 
rigidity (K) and coupling parameter with ply angle for the flat beam. 
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EI = 206.92 x 109 Nm -2 

E2 = E3 = 5.17 x 109 Nm -2 

G12 = 3.10 x 109 Nm'2 

G13=G23=2.55x109Nm2 

V12=V23=VJ3=0.25 

p= 1529.48 kgm'3 

+ß 

Thickness=1.016 cm 

Length = 203.2 cm 
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5 
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Figure 3-2(a) Configuration of the laminated wing box section. 
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Figure 3-2(b) Variation of flexural (EI), torsional (GJ), bending-torsion coupling (K) 

rigidities and coupling parameter against ply angle for the rectagular box. 
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EI = 30 x106 psi 

E2=Es=0.75 x106 psi 

G12 = 0.45 x106 psi 

G23 = G31 = 0.37 x 106 psi 

6.8 cm 

v= 0.25 

All plies are unidirectional. 

p= 14.3 x 10's lb-sec2 /in 4 

L=2.032m 

Figure 3-3(a) Configuration of the laminated bi-convex beam. 
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Figure 3-3(b) Variation of bending (EI), torsional (GJ) and bending-torsion coupling (K) 

rigidities and coupling parameter against ply angle for the bi-convex beam. 
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4 Buckling of composite columns 

4.1. Introduction 

Among all the different techniques to determine the stiffnesses of a composite beam, the 

elastic buckling load provides a reasonable estimate. As was mentioned in Chapter One, it 

is essential to validate the chosen composite beam modelling, and to resolve any 

uncertainty in the stiffnesses. Therefore, determination of the buckling load was chosen, a 

series of experiments was conducted and a comparison between the experimental and 

numerical results has been carried out. In the present chapter reports are given on this 

comparison. 

The elastic critical buckling loads of thin-walled laminated composite columns with flat or 

box cross-sections having various end conditions are established, following a brief review 

of the literature. The theory is based on an exact stiffness matrix for bending-torsion 

coupled composite columns, derived from a rigorous formulation of the basic bending- 

torsion buckling theory. The stiffness expressions are based upon the closed form solution 

of the governing differential equations. 

Simultaneous bending and torsion in a composite column, caused by both geometric and 

material couplings, are considered. The effect of shear deformation on the buckling 

characteristics of the composite column is also included in the theory. The stiffness matrix 

for the degenerate case of the composite column which reduces to a metallic column (for 

which geometric coupling exists but there is no material coupling) is deducible from the 

original matrix. 

The importance of experimental procedures in understanding the structural behaviour of 

composites is emphasised. Experiments are carried out to establish the elastic critical 

buckling load of laminated composite flat columns made of carbon-epoxy material. Other 

objectives are to gain further insights into the buckling characteristics of bending-torsion 

coupled composites columns. Classical boundary conditions are applied. These are simply 

supported-simply supported (S-S), clamped-simply supported (C-S) and clamped- 
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clamped (C-C). Southwell's method (1932) has been used in this investigation to 

determine the critical elastic buckling load (P,, ) from the experimental data. The 

experimentally determined buckling load is compared with theoretical predictions. A 

number of observations about testing methodology are also presented. 

Using the proposed method, some numerical results are presented for both metallic and 

composite columns and compared with published results. The significance of the results is 

discussed and some conclusions are drawn. 

4.2. An overview on the bending-torsion coupled buckling of composite columns 

Geometric bending-torsion couplin : The problem of the bending-torsion (elastic) 

buckling analysis of metallic columns has been extensively researched for well over half a 

century and is well documented. Hoff and Goodier (1943), Timoshenko (1945), Renton 

(1960) and Pekoz and Winter (1969) are among many pioneering researchers in this field. 

However, only a very few investigators have used the stiffness matrix method to solve 

such problems using coupled flexural torsional column theory. One of the advantages of 

stiffness matrix based solutions is of course, that it covers frameworks as well as 

individual members. 

Barsoum and Gallagher (1970) formulated the finite element stiffness matrix of a bending- 

torsion coupled column using an approximate displacement field. Renton (1960,1962) 

used a method that derived the exact stiffness matrix from the classical differential 

equations of the coupled column. Renton's work is very important because it used exact 

classical theory as opposed to the more usual approximate finite element theory. However, 

his work was not followed up and has often been overlooked by later investigators. It may 

be significant that Renton developed his exact stiffness matrix before a well known 

algorithm (Wittrick and Williams, 1971), which uses exact member theory to solve 

buckling (and vibration) eigenvalue problems, was available. Wittrick and Williams 

(1971) developed this algorithm to ensure the prediction of any eigenvalue with certainty, 

when using exact theory. This algorithm is explained in Chapter Five. 
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Chamis (1969) and Ashton and Whitney (1970) used Galerkin's method and observed in 

their theoretical and experimental results that significant non-conservative estimations of 

buckling loads can occur if bending-torsion coupling is not taken into account. Noor and 

Mathers (1976) and Noor et. al. (1977) proposed an energy measure to indicate the 

influence of bending-torsion coupling, whereas Nemeth (1986) used finite element 

solution to show how different parameters affect buckling loads. 

Williams and Anderson (1983) and Al Shareedah and Seirig (1986) used a Lagrangian 

multiplier approach to include strain and displacement constraints as boundary conditions 

in the formulation of the potential energy functional. Their method accounts for additional 

constraints in addition to the natural boundary conditions derived as part of the variational 

formulation. The resultant problem is solved using techniques for the minimisation of the 

Lagrangian functional of the system. 

Sridharan and Peng (1989) questioned the validity of the classical assumption in modelling 

prismatic plate assemblies, namely that out-of-plane displacements vanish at points where 

two plate elements meet at an angle as does the normal stress resultant Ny for each plate 

element at a corner. Sheinman (1987) modelled a stiffened panel using a plate and beam 

combination and derived exact non-linear equations by a variational approach. The 

equations are exact in terms of the von Karman relations. The panel is modelled by plate 

elements for which the non-linear equations are resolved into eigenfunctions and then 

solved using a finite difference approach. 

Composite columns : Investigation into the buckling behaviour of thin-walled composite 

structures is a relatively recent phenomenon and is mostly confined to laminated plates or 

structures assembled from them. Kapanis and Raciti (1989) and Nagendra and Kapania 

(1995) gave an extensive bibliography on the subject. In the case of composite elements 

bending-torsion coupling can occur both because of the geometry of the cross-section and 

also because of the anisotropic, or directional, nature of the fibrous composites. 

Hajela and Shih (1989) proposed a modified branch-and-bound approach to include non- 

linear optimisation problems involving continuous, integer and discrete design variables 
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for the optimum design of a laminated composite beam. The methodology was based on a 

piece-wise linear representation of the non-linear problem. A modified branch-and-bound 

method was used to solve the problem. The approach consisted of a systematic search of 

continuous solutions in which the discrete and integer variables are successively forced to 

assume specific values. The approach was used for the solution of structural design 

problems that are described in terms of continuous and discrete variables. Shin et al 

(1990) used an extension of the penalty-function approach for solving a non-linear 

optimisation problem with discrete variables. The extension was based on the introduction 

of additional penalty terms into the augmented objective function to reflect the requirement 

that the design variables take discrete values. 

Analysis of elastic buckling using plate and shell theories : Grenestedt (1989a) is among 

the first of those who have examined the effects of bending-torsion coupling on the 

buckling strength of composite plates. He investigated the buckling behaviour of 

rectangular plates and showed that neglecting bending-torsion coupling will result in non- 

conservative approximations for the buckling load. Sheinman (1989) threw some light on 

this by arriving at the correct generalised force and generalised strain relations, but by 

ignoring the forces in the y direction. This operation involves inversion of certain matrices 

and is restricted to limited types of beams (Sheinman 1989). 

Bhimaraddi and Chandrashekhara (1991) published their observations on the modelling of 

laminated composite beams with general lay-ups. They considered the modelling of 

laminated beams by systematic reduction of the constitutive relations of the three 

dimensional anisotropic body. The basic equations of the beam theory that they used are 

those of the parabolic shear deformation theory. All the results and the correctness of their 

model were verified by modelling the same beam as a plate (Bhimaraddi et al. 1989). 

Results obtained from the theory presented in this thesis are compared with those from 

Bhimaraddi and Chandrashekhara (1991) for a flat beam with different ply angles and 

shown later in this chapter. 

Gerhard, Gurdal, and Kapania (1994) used a finite element method based on Reddy's 

layer-wise theory to study buckling and post buckling of geodesically stiffened laminated 
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cylindrical shells. The beam was also examined using the Ritz approach. The method used 

the Lagrange multiplier approach to attach the stiffeners to the shell. The buckling results 

from the Ritz discrete analytical method are compared with smeared buckling results and 

with NASA tested finite element results. The report also presented a development of layer- 

wise shell and beam finite elements. The layer-wise beam element was directly attached to 

the layer-wise shell model. These developments were used to obtain displacements, 

stresses and compressive loads for first ply failures using the Tsai-Wu failure criterion. 

Postbuckling behaviour of stiffened cross-ply cylindrical shells using the layer-wise shell 

theory of Reddy and the smeared stiffener approach was studied by Savoia and Reddy 

(1994) and postbuckling analysis of laminated stiffeners was performed by Shen and 

Williams (1993). 

Jaunky et al. (1995a) solved the problem of buckling of arbitrary quadrilateral anisotropic 

plates. They also considered general triangular anisotropic plates (1995b) subjected to 

combined in-plane loads and having different boundary conditions. They obtained 

solutions for plate buckling by using Rayleigh-Ritz method combined with a variational 

formulation using both classical laminated plate theory and first-order shear-deformation 

theory. In their study the Ritz functions consist of polynomials that include circulation 

functions which are used to impose various boundary conditions. Later in this chapter, 

some numerical results are presented using the method of Jaunky et al. (1995a, 1995b and 

1997). 

Refined one-dimensional theories : Other investigators on the buckling behaviour of 

composite structures include Abramovich (1994), who studied analytically the thermal 

buckling of a cross-ply composite laminate using a first order shear deformation theory. 

He presented and discussed some results for various boundary conditions, lay-up 

sequences, slenderness ratios and transverse shear moduli. Bhaskar and Librescu (1995) 

investigated the buckling behaviour of single-cell thin-walled composite beams exhibiting 

extension-twist coupling. They also investigated the effects of direct transverse shear and 

the bending-transverse shear coupling as well as those of different boundary conditions 

and ply angles. 
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Abramovich et al. (1995) studied the vibration and buckling of non-symmetric laminated 

composite beams using the exact element method, which they applied to calculate the 

natural frequencies, buckling loads and the influence of the axial load on the natural 

frequencies and mode shapes of non-symmetric laminated composite beams. In their 

investigation the theoretical model uses a first order shear deformation theory and includes 

the effects of rotatory inertia, shear deformation and coupling between the longitudinal and 

transverse displacements. They also carried out a parametric study to investigate the 

influence of boundary conditions, materials and lay-up sequence on the buckling loads and 

natural frequencies of laminated composite beams with a rectangular cross-section. 

However, they did not discuss the effect of bending-torsion coupling on the buckling load 

or on the natural frequencies of composite structures. 

More recently, Khadeir and Reddy (1997) studied the buckling of rectangular cross-ply 

laminated beams with arbitrary boundary conditions. They used a state space concept in 

conjunction with a Jordan canonical form to solve the governing equations of the buckling 

problem and present analytical solutions of refined beam theories. Song and Waas (1997) 

investigated the effects of shear deformation on the buckling and free vibration of stepped 

laminated composite beams with rectangular cross-section. They used a simple higher- 

order theory that assumes a displacement field varying cubically through the thickness. 

Neither Khadeir and Reddy (1997) nor Song and Waas (1997) produced any results to 

show the effects of bending-torsion coupling on the buckling load. 

Shield and Morey (1997) developed a new theory for the buckling analysis of composite 

beams of open and closed cross-section by taking into account deformation in the plane of 

the cross-section due to anticlastic curvature. They investigated the effects of anticlastic 

curvature and the ply angle on buckling load, and showed that inclusion of the anticlastic 

curvature substantially reduces the predicted buckling load, and that the effect is most 

pronounced when the ply angle is around 45 degrees. For comparative reasons they also 

studied previous works of Rehfield and Atilgan (1989). Some of the Shield and Morey 

(1997) and Rehfield and Atilgan (1989) results are reproduced and presented later in this 

chapter. 
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Comparison of experimental and theoretical results : Since there are always some 

aspects and characteristics of a mechanical system which do not behave quite as predicted 

by numerical and/or analytical methods, many researchers have put a great deal of 

emphasis on planning experimental investigations to ensure that the information needed to 

design high quality aircraft is obtained as accurately and as effectively as possible. For 

example, Barbero and Tomblin (1993) investigated the Euler buckling characteristics of 

thin-walled composite columns. They investigated the global buckling phenomenon and 

experimentally determined the critical buckling loads for various fibre reinforced 

composite I beams. They used Southwell's method to determine the critical buckling load 

about strong and weak axes. Theoretical predictions were subsequently compared with 

experimental results. 

Ishikawa et al. (1993) and Davalos et al. (1997) are among others who performed 

analytical/numerical and experimental studies of the buckling characteristics of thin-walled 

fibrous composite beams. Ishikawa et al. (1993) conducted experimental and numerical 

investigations for the rigorous correlation of initial buckling properties of stiffened panels 

made of carbon fibre composites. They also developed a conventional analytical Rayleigh- 

Ritz approach considering only a local buckling mode of skin. They achieved very good 

agreement between numerical, analytical and experimental results. Davalos et al. (1997) 

carried out a combined analytical/numerical and experimental investigation on flexural- 

torsional buckling of pultruded fibre reinforced plastic (FRP) composite I-beams. They 

obtained good agreement between the experimental results, proposed analytical solutions 

and finite element analyses. Through the combined experimental and analytical 

evaluations, they showed that the testing set-up used can be efficiently implemented in the 

characterisation of flexural-torsional buckling of FRP shapes and their proposed analytical 

design equations can be adopted to predict flexural-torsional buckling loads (Davalos et al. 

1997). 
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4.3. An exact stiffness matrix of a bending-torsion coupled column 

A straight uniform composite column of length L is shown in Figure 4-1, with xa being the 

separation between the centroidal axis and the elastic axis, i. e. between the loci of 

respectively the centroid and the shear centre of the cross-section. In the right handed 

coordinate system of Figure 4-1, the Y axis coincides with the elastic axis, which is 

permitted flexural translation u(y) and torsional rotation V/(y) as indicated, where y is 

measured from the origin. The constant compressive axial load (P) is assumed to act 

through the centroid of the cross section. P can be negative, so that tension is included. 

Characterisation of bending-torsion coupled composite columns by the use of three 

important parameters, namely the flexural rigidity (EI), the torsional rigidity (GJ) and the 

bending-torsion material coupling rigidity (K), is essential in the derivations which follows. 

Using coupled flexural torsional beam theory for thin-walled composites with shear 

deformation and warping stiffness neglected, the governing differential equations for static 

behaviour are given by Mansfield and Sobey (1979) 

EI u""+Kyr"'+P(u"-x. yr")=0 (4-1) 

GJ yrºº + Ku` - P(ro yr� - x. u") =0 (4-2) 

where: primes denotes differentiation with respect to y; EI, GJ and K have already been 

defined above; and ro is the radius of gyration of the beam cross section about the Y axis, 

i. e. the elastic axis, so that the polar second moment of area of the cross section is Are, A 

being the cross sectional area. 

Substituting 

ý=y2 and D =d/dý (4-3) 

into equations (4-1)-(4-2) gives 

D4 u+ (KIJEI)D3 V+ (PL2 /EI) (D2 u- xa D2 yr} =0 (4-4) 
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L D2'+ (KJGJ)D3U_ (PL/GJ)(ro D2 yr- xa D2 u}=0 (4-5) 

Equations (4-4) and (4-5) can be combined into one equation by eliminating either u or yr to 

give 

D2(D2+ä2)W=O (4-6) 

where 

W=u or yr and ä 1= b(1 + c)/(1- a) (4-7) 

with 

a =K2/EI (GJ-Pro ) 

b= PL2 /EI (4-8) 

c=Pxa /(GJ-Pro ) 

The solution of the differential equation (4-6) is 

W(O=C1+C2ý+C3S(c, 0+C*C(c, 0 (4-9) 

where CI-C4 are constants, and 

Z a=o (4-10) 

j=1 when iz2 is positive, j= -1 when ä2 is negative and 

j =1 ; S(a, 0= sin aý ; C(a, 0= cos aý for ä2 >0 (4-11 a) 

j =-1; S(a, Ij = Binh aý ; C(a, 0= cosh aw for ä2 <0 (4-lib) 

W(4) in equation (4-9) represents the solution for both the flexural displacement u and the 

torsional rotation yr, but with different constants. Thus 

u(10=C1+Cs 4+C3S(c, 4) +C*C(c4 4) (4-12) 

WO =CS +C6e+C7S(a, 4) +CaC(i7, Z) (4-13) 
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It can be readily verified by substituting equations (4-12) and (4-13) into equation (4-4), 

that the constants C7 and C8 are related to the constants C3 and C4 by 

C7 _- (v/L) C3 + (jpa/L) C4 (4-14a) 

C8 =- (pa/L) C3 - (v/L) C4 (4-14b) 

where 

ft=K/(GJ-Pro? ) ; v=PLxa/(GJ-Prö) (4-15) 

The anticlockwise rotation 6( 
, the bending moment M(), the shear force V(() and the 

torque T(') can be obtained by substituting equations (4-12) and (4-13) into the following 

equations 

B( ,v= (11L) du/d« (4-16) 

M(( =-(EUL2) d2u/de- (K/L) dyi/dý (4-17) 

V() = (EI/L3) d3u/d3 + (K/L2) d2 wide + (PIL) (du/d4-x�, dyi/dD (4-18) 

T() = (GJ/L) d yi/dý + ()N! ) d2u/de - (Pr0 /L)d yi/dý + (Px, /L) duld « (4-19) 

The end conditions for displacements and forces are respectively, 

at end I (ý = 0) :u=u, ; O= 01 and V/= V/1 

atend2(4=1): u=ul; 9=92andyr=yr2 

and 

at end 1(ý = 0) :V= V1 ; M=Ml and T= -T1 

atend2(ý=1): V=-V2; M= M2andT=T2 

(4-20a) 

(4-20b) 

(4-21 a) 

(4-21b) 

Substituting equations (4-20) into equations (4-12), (4-13) and (4-16) and making use of 

equations (4-14), the end displacements of the column can be related to the constants 

C, -C6 by 
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ul 1 0 0 1 0 0 Cl 

01 0 1/L a/L 0 0 0 C2 

Vi 
= 

0 0 -aµ/L -v/L 1 0 C3 
(4-22) 

U2 1 1 S. Co 0 0 C4 

02 0 1/L aCa/L -jaS/L 0 0 C5 

W2 0 0 ha/L ka/L 1 1 C6 

or 

U=AC (4-23) 

where 

Sg = sin a; Ca = cos a for ä2 >0 (4-24a) 

Sa = sinh a; Ca = cosh a for ßz2 <0 (4-24b) 

and 

ha=-vSa-apCa ; ka=japSa-vCQ (4-25) 

Substituting the end conditions for forces given by equations (4-21) into equations (4-17)- 

(4-19) and making use of equations (4-12)-(4-15), the end forces can be related to the 

unknown constants by 

V, 0 P/L 000 -Pxa /L C, 

M, 0 0 avK / L2 j as (EI _, UK) / L2 0 -K /L C2 

T, 0 -Pxa /L 000 -(GJ - Prof) /L C3 

V2 0 -P /L 000 -PxC /L 
(4-26) 

C4 

M2 0 0 -fa/L2 -gte/L' 0 K/L C,, 

T 0 Pxa /L 000 (GJ-Pro)/L C6 

or 

F=BC (4-27) 

where 

fa = avK CQ+jr! (EI - plC) Sa (4-28a) 

ga =jag (EI - plC) C. - javK Sa (4-28b) 

Eliminating C from equation (4-27) with the help of equation (4-23) gives 

F=KU (4-29) 

or 
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Vi I [KI., K12 KU K14 Ki, 
s 

K16 1r ui 
MI K2,2 K2,3 K2,4 K25 

5 
K2.6 el 

T 

_ 

K33 
3 

K3,4 K35 
5 

K36 
6 wl 

(4-30) 
V2 

n4.4 
K45 

5 
K46 

6 uz 

M2 Sym. K5,5 K5 
6 

e2 

T K6,6 W2 

where 

K=BA"1 

is the required stiffness matrix. 

(4-31) 

The stiffness matrix of equation (4-31) is obtained by inverting the A matrix of equations 

(4-22) and (4-23) and premultiplying by the matrix B of equations (4-26) and (4-27). This 

can be done numerically or algebraically. However, if explicit analytical expressions for 

each of the stiffness elements of equation (4-30) are generated by performing the matrix 

inversion and matrix multiplication steps of equation (4-31) algebraically (or 

symbolically), a significant saving in computational time can be achieved, as demonstrated 

by Banedee and Williams (1992) in their investigation of a related problem. Explicit 

expressions are particularly useful when some, but not all, of the stiffnesses are needed. So 

the tedious task of inverting the A matrix algebraically and premultiplying the resulting 

matrix by the B matrix was undertaken, using the symbolic computing package REDUCE 

(Fitch, 1985 and Rayna, 1986). The derived expressions are presented in concise form in 

equations (4-32), as follows 

K1,1= K4,4 =- K1,4 = (EL L3) 01 /d 

K1,2 =-K2,4 = (EM2) 02/d 

K1,3=K4,6=-K1,6=-K3,4=(Ej2) J3/d 

Ki, s =-K4,5 = (EI/L2) P4/d 

K2,2 = (EJ) ) /d (4-32) 

K213 = K5,6 = -K2,62---K3,5 = (ELL) 
(P6/ d 

Kz, s = (EL) 07/d 

K3,3 z -K6,6 =- K3,6 
= (GJ/L) P8 /, d 

Ks, s = (EI/L) (P9/, d 
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where 2 7=K/EI ; Pro /GJ ; s=xQ/L (4-33) 

5=1+ Ev ; y=1c +v; A=]-179 (4-34) 

d=aSa-2j (1-Ca) (4-35) 

and 
P1=-b [aSa+2j cv(1-C., )J 

P2 =b [Cpd -j S (1-Cq)J 

03=b c4 

P4=bd+11- J2 

dDs =i1+ a), (a CaSg) (4-36) 

06=rid 

07 _ -r7/cd - a2 (a -Sd 

, Pg=ý: d 

P9= PS-2 q vA 

The geometric coupling term xa , and/or the material coupling term K, can optionally be 

substituted by zero in the above stiffness expressions without causing any overflow or 

under-flow, but the axial load P must not be substituted by zero. If xa is put to zero in 

equations (4-32) to (4-36) the remaining matrix represents the exact stiffness matrix of a 

composite column with no geometric coupling. Similarly, if K is put to zero in equations 

(4-32) to (4-36) the resulting matrix represents the exact stiffness matrix of a metallic 

column with geometric coupling only. Nevertheless, separate sets of stiffness expressions 

for P=0, K=0 and xa =0 are given by Banerjee, Eslimy-Isfahany and Williams (in 

progress). 

The determination of the elastic critical buckling load of a single composite column, or of a 

structure assembled from such columns, follows from the application of the Wittrick- 

Williams algorithm (1971), either to the single exact stiffness matrix of the column or to 

the overall stiffness matrix assembled from such columns, respectively. The same 

principle applies when calculating the elastic critical buckling load of metallic columns. 

The Wittrick-Williams algorithm is briefly explained in Chapter Five, and, a more 

detailed description of the application of this algorithm for the determination of the 

buckling loads of composite or metallic columns is given by Banerjee, Eslimy-Isfahany 

and Williams (in progress). 
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4.4. Experiment 

An experimental programme consisting of several specimens has been undertaken. The 

main purpose is to observe the buckling behaviour of laminated flat composite columns 

and then to verify it with the theoretical predictions. Special attention has been focused on 

the bending-torsion coupling effect, which plays a dominant role in the buckling behaviour 

of composite columns. 

Instrumentation : The Euler or long column tests are performed using the INSTRON- 

2000 testing machine. Rigs are specifically designed and developed, and the set up of the 

testing machine is altered for this investigation. The altered testing frame can easily 

accommodate all the required end conditions. Figures 4-2(a) to 4-2(g) show a schematic 

diagram of the testing frame and six photos of the experimental set up in various test 

conditions. 

Calibration : Before every set of tests, calibration checks were performed carefully 

according to the INSTRON manufacturer's manual. Moreover, some of the experimental 

results of the INSTRON-2000 were compared with the results measured from the 

INSTRON-1112. An excellent agreement was found. 

Specimens : Rectangular specimens are cut from a unidirectional plate made of carbon- 

epoxy material of which the mechanical and other properties are given in Figure 4-3. 

Altogether fourteen specimens are tested, each of which is 0.27 (m) long, 0.035 (m) wide 

and 0.002 (m) thick. Ply angles chosen are respectively 0,5,10,15,20,30,40,45,60,75 

and 90 deg. There are more specimens made in the range of 0 to 45 deg because of the 

nature and magnitude of rigidities of the column within that range. For example, there are 

two specimens cut at 0 deg due to the appearance of an unexpected peak around 5 deg in 

the preliminary test. There are also three specimens cut at 20 deg because the bending- 

torsion coupling rigidity is at its maximum around this ply angle. Testing more than one 

specimen at 0 and 20 deg is expected to rectify some uncertainties in the measurement 

procedure, ensuring reproducibility of the experimental results. 

Testing procedure : Each specimen is set on the INSTRON-2000 testing machine. The 

specimen is very carefully set in the testing machine so that the centroidal axis of the 

specimen coincided with the applied loading axis. The centres of the two compressive 
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heads are selected as references to determine the loading axis. The geometric centre axis 

of the specimen is calculated by using the nominal dimensions of the specimen. 

Adjustments are made so that the two axes meet together for various boundary conditions. 

The loading process is conducted using stroke control. The stroke rates are set to be 1 

mm/min. Unidirectional compression is applied monotonically on the specimen until the 

ultimate load is reached. This is reached when the mid-span of the column deflects 

horizontally whilst the top-end deflects vertically with no further increase in the externally 

applied axial load. For each specimen, the horizontal deflection of the mid-span and the 

vertical deflection of the top-end are measured against the applied load. To eliminate 

random errors, the same procedure is carried out for the specimen turned up side down 

and the average of the two results is recorded. The procedure is repeated for different end 

conditions with the same specimen. 

In order to validate the test technique the above procedure was followed to measure the 

buckling load of a metallic specimen made of Duralumin. The procedure produced 

satisfactory results. It is notable that, although this was a case for a torsion free buckling, 

to some extent it can provide reasonable certainty in the results. 

Southwell 's technique : Euler's theory assumes an initially straight column with no 

eccentricity or imperfections such as initial crookedness, as does the Timoshenko theory 

for bending-torsion coupled columns (Timoshenko and Gere, 1961; Popov, 1976). 

Agreement between the critical load obtained in laboratory experiments and the critical 

load determined by Euler's analysis is a somewhat fortuitous occurrence and is expected 

only in the case of perfect columns (Barbero and Tomblin, 1993). 

Southwell (1932 and 1941) accounted for both manufacturing irregularities and 

unavoidable loading eccentricities by using a data reduction technique on the hyperbolic 

experimental data In Southwell's method, the critical load is determined by using the 

asymptote of the experimental measurements. The method is attractive because it does not 

require that the critical load be reached. It is, thus, non destructive, and also it properly 

accounts for imperfections in the column or the testing fixture. Southwell's method was 

extended to account for transverse lateral loads (Fisher, 1934) and extreme eccentricities 
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(Tsai, 1986). The method works well when there is no modal interaction and the 

imperfections have a strong component of the form of the buckling mode. Therefore, the 

method is ideal for composite materials that remain linear for large values of strains. Thus 

experimental results can be expected to behave in a manner similar to Southwell's tests. 

Load versus lateral deflection of the mid-span is recorded, and if the buckling mode is 

isolated, the data show a hyperbolic shape. The raw data are transformed in order to obtain 

the asymptote of the hyperbola from a linear regression of the transformed data. Firstly, 

the load versus lateral deflection graph (P-b) is plotted. This plot is subsequently 

converted into a graph showing variation of the ratio of lateral deflection to axial load 

against lateral deflection (5/P-6). This transforms a rectangular hyperbola in the former 

into a straight line in the latter with a slope 1/7p, where P, is the critical buckling load 

(Gregory, 1967). 

All measurements are taken from a central point with respect to the column length. 

However, as shown by Tomblin (1991), any point along the length can be used to measure 

the deflections. Furthermore, Tsai (1986) noted that enough data points must be collected 

in the linear range of the material to obtain good regression, thus limiting the applicability 

of the method for the case of almost perfect metal columns. As was mentioned earlier, 

Barbero and Tomblin (1993) are among those who recently used Southwell's technique to 

determine elastic buckling load in composite columns. 

Errors in experimentation : Every measurement involves an error. The nature of these 

errors may vary, as may their magnitudes, but total elimination of errors for 

experimentation and testing remains beyond human power (Penny 1974). Because errors 

cannot be completely avoided, one must learn to assess their magnitudes so as to be able 

to control them according to justified needs. In order to achieve accurate and precise 

experimental results, all the potential sources of errors have been considered in designing 

and planning the experiment. Generally, in error analysis, the word accuracy is reserved 

for systematic errors, whereas the word precision is related to all incidental random errors 

(Penny 1974). Systematic errors, such as method errors, instrument errors, calibration 

errors, can be detected and prevented. Random errors, such as variation of condition, can 

also be accounted for by using statistical methods. 
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Experimental observations : In relation to the particular specimen tested, the following 

points are relevant : 

(i) As the load approaches Pa 
, the lateral deflection is found to be around U40 (L being 

the column length). If any extra load is applied, the centre deflection is observed to be very 

large, leading to a complete column failure. 

(ii) If all centre deflections are kept at or below L/100, it is evident that the tests are 

entirely non-destructive. Note also that after each test, the central deflection of the column 

returned to its unloaded position. 

(iii) For all the boundary conditions imposed, bending-torsion coupling is evident, 

especially when the coupling rigidity is high. The buckling mode is a combination of 

flexural and torsional modes, except for the ply angles 0 and 90 deg for which the buckling 

is purely flexural. 

4.5. Results and discussions 

Metallic columns : The first two examples given are for metallic columns of singly- 

symmetric cross-section (Goland, 1945 and Banerjee and Fisher, 1992), whose 

mechanical properties are given in Table 4-1. The critical elastic buckling loads were 

calculated for all sets of standard classical end conditions for both columns and are 

presented in Table 4-2. 

These results were then compared with those given by Akesson (1980). He proposed the 

following equation which represents the non-dimensionalised exact expression of the 

critical elastic buckling load of an individual column with classical end conditions, when 

coupling exists between bending and torsional deformations (Akesson, 1980) 

Py + PB 4Py PB 
x2 

o. s 
Pye (4-37) 

xZ (P +P r2 2 1- ZYeo 
ro 

where 
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= 
7r2 

and P60= j (4-38 py ) 
L r. 0 

with A=2,1,0.6992 and 0.5 for clamped-free (C-F), (S-S), (C-S) and (C-C) end 

conditions, respectively. The results for both columns are shown in Table 4-2. These 

results agree completely with the results obtained using Akesson's (1980) theory. 

Composite columns : There are three illustrative examples of composite columns 

presented in this section. In the first illustrative example, the critical elastic buckling load 

is determined experimentally and then compared with those obtained from the present 

method. The other two, are based on theoretical investigation and are taken from existing 

literature. 

(i) The composite column shown in Figure 4-3 and described in Section 4-4, is studied 

here. (S-S), (C-S) and (C-C) end conditions are considered. For this composite column, 

two sets of material properties are given by Jensen et al. (1982), namely, flexural and axial 

values (see Figure 4-3). The present theory was used to calculate the buckling loads using 

both sets of material properties. Obviously, values for material properties obtained from 

tensile test, give higher sets of buckling load than the ones obtained when using results of 

flexural tests. As was explained in Section 4-4, experiments were carried out to determine 

the buckling load of the composite column for different ply angles. 

Experimental and theoretical results for the buckling load of the composite column with 

three different end conditions are given in Figure 4-4. Testing two specimens at 0 deg and 

three at 20 deg were intended to rectify some of the uncertainties in the measurement 

procedure. For 0 deg ply angle, the maximum difference between results from the two 

specimens is around 5 percent, and the difference between results from the three 

specimens at 20 deg is less than 6 percent, ensuring reproducibility of the experimental 

results. 

Generally, experimental results show a trend similar to that predicted by theory. Apart 

from a very small range of ply angles, the experimental results are usually between the two 

sets of theoretical results, namely, flexural and axial values. When the ply angle is around 

five degrees there is an unexpected peak in the results. This may be because the 
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experimental set up did not match exactly what is assumed in the theoretical model 

particularly in relation to the end conditions. In the experiment both ends were restrained 

from any lateral movement, whereas this was not taken into account in the theory. 

Furthermore, the Poisson's ratio effect is not considered in the theory, whereas it will 

affect experimental results. 

(ii) A flat rectangular composite column examined by Jensen et al. (1982) is further 

investigated here. Structural properties of this column are given in Figure 3-1a and the 

variation of the flexural, torsional and coupling rigidities against ply angle is shown in 

Figure 3-lb. 

Using the present method the buckling load is calculated for the composite column for four 

different classical boundary conditions, namely with (C-F), (S-S), (C-S) and (C-C) end 

conditions. Figure 4-5 shows the variation of the buckling load of the column against ply 

angle for different end condition. 

In all cases, the buckling load decreases when the ply angle increases as expected. Among 

the different boundary conditions, for any given ply angle, the buckling load is 

progressively higher for (C-F), (S-S), (C-S) and (C-C) case, respectively. The fifth curve 

in Figure 4-5, gives the results for (S-S) case, obtained from an established computer 

program VICONOPT (Williams et al., 1990). The results show a similar trend and agree 

very well with the present theory. 

For the same composite column with (S-S) end conditions, the buckling load is calculated 

and compared, using three different methods in order to gain further insights. The three 

methods are : (i) the present theory, (ii) the laminated plate theory (Jaunky et al., 1995a 

and 1995b) and the use of an established computer program VICONOPT (Williams et al., 

1990). Results given in Table 4-3, show very good agreement among the three different 

methods for different ply angle, but, the present theory provides a more conservative 

estimate than other methods, providing a greater margin of safety in design. 

Similar observations were made when the effect of the bending-torsion coupling parameter 

(see equation 3-1) on the buckling load of the composite column was studied. Figure 4-6 
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shows the effect of the bending-torsion coupling parameter on the non-dimensional 

buckling load of the composite column for different end conditions. 

(iii) The third example is a rectangular box column made of Carbon Fibre Reinforced 

Plastic (CFRP) which was previously investigated by Shield and Morey (1997). Material 

and cross-sectional properties of the rectangular box column are given in Figure 4-7. 

The buckling load is calculated using three different methods : those given by Shield and 

Morey (1997) [S M], Rehfield and Atilgan (1989) [R A] and the well-known Bemoulli- 

Euler theory (uncoupled theory) [B-E] for the composite column with (S-S) end 

conditions. The results are shown in Figure 4-8. For the same boundary condition, the 

critical elastic buckling load of the composite beam is also calculated using the present 

theory and shown in Figure 4-8. Rigidity properties of the column are calculated from both 

Rehfield simplified formula (1990) [P-R], and Armanios general formula (1995) [P A], 

when applying the present theory. As can be seen in Figure 4-8, the present theory 

generally provides a more conservative estimate of the elastic buckling load. 

4.6. Summary 

The theoretical and experimental results show the same trend. However, there are certain 

small discrepancies in the results. This can be either because of the presence of the 

bending-torsion coupling or due to an incompatibility between theoretical and 

experimental modelling, especially around the boundary of the specimen. Further 

investigation is needed to revise the experimental model. 

The method of Berdichevsky, Armanios, and Badir (1992) for composite beam modelling 

was examined. They used the variational-asymptotical analysis where the displacements 

and stresses are integrated around the cross-section and as a consequence the cross-section 

is analysed as a unit regardless of its shape. All in all, the present study shows that the 

chosen composite beam modelling is a satisfactory model and can be used for buckling 

and vibration analysis of laminate composites. 
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Table 4-1. Mechanical properties of bending-torsion coupled columns. 

Goland (1945) Baneriee and Fisher (1992) 

EI (Nm2) 9.75x10 6 63 80 

GJ (Nm2) 9.88x105 43.46 

r 2(M 2) 0.242 0.0245 

L (m) 6.0 0.0155 

(m) 0.18 0.82 

Table 4-2. Critical elastic buckling load of bending-torsion coupled columns. 

Pcr (Nl 

Goland wing, (1945) Banerjee and Fisher beam (1992) 

Akesson (1980) & Present theory Akesson (1980) & Present theory 

X=2 C-F 6.5168x105 20261 

? =1 S-S 2.2845x106 49786 

A. =0.7 C-S 3.3631x106 60999 

7, =0.5 C-C 3.8018x106 66632 

Table 4-3. Critical buckling load of a bending-torsion coupled composite column. 

Pcr (N) 

deel Present theory VICONOPT Jaunkv et al. (1995.1997 

0 34.36 34.39 34.38 
10 29.79 31.58 31.11 
20 20.92 23.78 23.14 
25 16.82 19.25 18.77 
30 13.35 15.17 14.87 
45 7.104 7.586 7.526 
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Figure 4-l. Coordinate system and notation for bending-torsion coupled buckling of composite columns. 
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Figure 4-2(a). Schematic diagram of the testing frame with specimen mounted. 
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Buckling of composite columns 

flexural values extentional values 

El (GPa) 98.0 130 

E2 (GPa) 7.9 10.5 

G12 = G13 = G23 (GPa) 5.6 6.0 

V12 0.28 0.28 

Density (kg/m3) 1520 1520 

ply angle ß (deg) 05 10 15 20 30 40 45 60 75 90 

Number of specimen 21113111111 

Ply thickness =0.25 mm [ß]8 

Z t=2 mm 

b= 35 mm 

L=0.27 m 

Figure 4-3. Mechanical properties (Jensen et. al., 1982) and configuration 
of the laminated flat composite column used in the experiment. 
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Figure 4-4. Variation of the buckling load against ply angle for the composite column shown in Figure 4-3 

a comparison between experimental results and the present theory. 
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Figure 4-5. Effect of ply angles on the buckling load of a composite 

column (Jensen et al., 1982) with different end conditions. 
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Figure 4-6. Effect of bending-torsion coupling parameter on 
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of a composite column (Jensen et al., 1982) with different end conditions. 
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Buckling of composite columns 

El =138 GPa vt1= 0.3 

E2 = 8.96 GPa Ply thickness = 0.003125 m [ß18 

G12 = 7.10 GPa L=5.0m 

G13 = G23 = 2.37 GPa 

0.3 m 

0.205 m . 
230 m 

Figure 4-7 Configuration of the laminated box column (Shield and Morey, 1997). 
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Figure 4-8. Variation of elastic buckling load of a composite box column (Shield and Morey, 19 
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5 Dynamic stiffness method 

5.1. Introduction 

Prediction of the dynamic behaviour of physical systems plays an important role in modem 

day engineering and analysis of free vibratory motion of a mechanical system is a stepping 

stone in structural dynamics. In this chapter, after a brief description of various discrete 

and approximate methods, the choice of the dynamic stiffness matrix method is made for 

the determination of bending-torsion coupled natural frequencies and mode shapes of thin- 

walled composite beams, with particular reference to the Wittrick-Williams algorithm. 

Spatial discretisation errors are eliminated in this method, to give an exact solution in a 

classical sense. This technique is fairly general and widely used in various dynamic 

problems. 

5.2. A review of solution techniques for free vibration problems 

Approximate methods (Rayleigh, 1945) and exact modal solutions for free vibration 

problems have been produced by many authors (Goland, 1945 and Timoshenko and 

Young, 1955), for simple boundary conditions. Approximate solutions have also been 

tried, making use of discretisation by either the lumped mass method (Hurty and 

Rubinstein, 1964) or by assumed deformation shapes, such as the Rayleigh Ritz method 

(Bisplinghoff, Ashley, and Halfman, 1955), the Galerkin method (Fung, 1969 and Rao, 

and Carnegie 1970) and of course, the finite element method (Mei, 1970) have been 

investigated. Additional works based on approximate methods are, amongst others, by 

Engelbrecht (1951) and Stacey (1976). Most of the aforementioned methods are 

applicable to single span beams (i. e. beams supported only at the ends), except the lumped 

mass method (Hurry and Rubinstein, 1964). 

The finite element method is widely used for the vibration and stability analyses of 

structures including thin-walled beams and columns. In a free vibration analysis, the finite 

element method results in a set of algebraic equations whose solutions have become 

standard. However, since the vibrating shape of a structural member varies with the 

frequency of vibration, the finite element method which is based on frequency independent 
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shape functions requires subdivision of a thin-walled beam into many elements for 

reasonably accurate solutions. Alternatively, if the shape functions are frequency 

dependent, then the subdivision becomes unnecessary. One may use the Kantorovich 

method and obtain a set of ordinary differential equations (when the time variable is 

eliminated for harmonic oscillation). In conjunction with the natural boundary conditions, 

the solutions of the ordinary differential equations give the dynamic stiffness matrix. The 

major advantage of this method is that it can be used for the determination of an unlimited 

number of frequencies, and a single element can successfully determine any number of 

natural frequencies for a structure without any loss of accuracy. Naturally, the dynamic 

stiffness method involves fewer assumptions and therefore is more accurate. 

The dynamic stiffness matrix method used to solve free or forced vibration problems of 

structures (or structural elements) has received wide attention in recent years and is often 

referred to as an exact method. A dynamic stiffness matrix is made by frequency 

dependent shape functions, which are exact solutions of the governing differential 

equations, and it accounts for both mass/inertia and stiffness properties. Predictably the 

method provides the analyst with much better model accuracy when compared to finite 

element or other approximate methods. The usefulness of the method becomes apparent 

when higher frequencies and better accuracy of results are required. Generally, the 

dynamic stiffness matrix method enables one to model an infinite number of natural modes 

by means of a small number of unknowns and it eliminates spatial discretisation errors too. 

Substantial saving in computer time can be achieved if explicit analytical expressions for 

the elements of the dynamic stiffness matrix are used instead of numerical methods. Such 

expressions can be derived with the help of symbolic computation. This method has been 

applied with success to many dynamic problems including natural vibration and response 

analysis. 

Friberg (1985) solved the Vlasov equations (1959) analytically and formed the exact 

dynamic stiffness matrix for metallic beams without the assumption of cross-sectional 

symmetry of the beam. He presented a procedure in FORTRAN to generate the dynamic 

stiffness of a thin-walled beam using complex arithmetics. Leung (1992a, 1992b) 

extended the application to lateral buckling. The essential differences from Friberg's study 

96 



Dynamic stiffness method 

were as follows: (i) the characteristic polynomial was expanded explicitly; (ii) the 

characteristic roots were proved to be either real or purely imaginary: (iii) there were only 

six distinct characteristic vectors associated with the differential equations; (iv) all 

characteristic vectors were real; and (v) the in-plane moment was included. 

Banerjee and Williams (1985,1992,1994a and 1994c), Banerjee (1989), Leung and Zhou 

(1995a, 1995b) and Banerjee and Fisher (1992) have developed dynamic stiffness 

matrices of different types of beam elements, starting from the basic governing differential 

equations of motion and has applied them to free vibration analysis of space structures 

(Banerjee and Williams, 1983; 1984). The method has been successfully used for coupled 

flexural-torsional vibration of beams (Banerjee and Williams, 1995) as well as flutter 

analysis of aircraft wings (Banerjee, 1984 and 1988). 

The dynamic stiffness method has been extended to skeletal structures with uniform 

members (Kolousek, 1973) or non-uniform members (Leung and Zhou, 1995a and 

1995b), straight (Howson, Banerjee and Williams, 1983) or curved members (Henrych, 

1981 and Pearson and Wittrick, 1986), damped (Lundon and Akesson, 1983) or 

undamped beam members exactly. For two dimensional structures, if one of the 

dimensions can be eliminated by means of the Kantorovich method (Leung and Zeng, 

1994), the method still applies. However, for more complicated systems, analytical 
formulation of the dynamic stiffness is tedious. 

Banerjee and Williams (1995) recently derived the dynamic stiffness matrix of a bending- 

torsion coupled composite beam. They have taken material coupling into account when 

developing the dynamic stiffness matrix. As discussed in Chapter Three, structures made 

of orthotropic materials such as laminated composite beams, may display coupling 

between bending and torsional modes of vibration, depending on the ply orientation. 

Material coupling is independent of the geometric coupling. Rigidity properties of 

composite beams are assumed to be known either theoretically or experimentally (see 

Chapter Three). 

For many beam theories, if the coefficients of the governing differential equations are 

constants, then closed form solutions can be found. When the coefficients are variables of 
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spatial coordinates, closed form solutions are available only for some special cases, for 

example, beams with thiclaiess and width varying according to two arbitrary powers of the 

longitudinal coordinate (Lee and Lin, 1992). Using these power series solutions, the shape 

functions and dynamic stiffness matrix of a Timoshenko beam element can he constructed 

without difficulty. Non-uniform beams have considerable technological importance in 

many situations of engineering practice (Leung and Zhou, 1995a and 1995b). The existing 

literature (Leung, 1993a and 1993b) reveals that the problem of transverse vibrations of 

non-uniform beams has been historically treated on the basis of classical Bernoulli-Euler 

beam theory. However, if the effects of shear deformation and rotatory inertia are 

considered, Timoshenko beam theory is required (Rossi, Laura and Maurizi, 1992). If the 

beams are under axial force, then the governing equations should include the effect of 

initial stresses. The natural frequencies of the non-uniform beams under axial force can be 

found by equating to zero the determinant of the dynamic stiffness matrix of the system. 

5.3. Dynamic stiffness formulation 

The first step towards developing the dynamic stiffness matrix of a structural element is to 

derive its governing differential equations of motion in free vibration. This can be 

accomplished using various techniques such as by applying Newton's laws, D'Alembert's 

principle, principle of virtual work, Lagrange's equations or Hamilton's principle which 
have all been extensively covered in the literature. 

The governing differential equation of motion of a structural element undergoing free 

undamped vibration can be symbolically written as 

4(u)=0 (5-1) 

where 4 is a differential operator and u is the corresponding generalised displacement 

vector. 

The next step is to solve the above differential equation analytically for harmonically 

varying u. (The dynamic stiffness matrix relates harmonically varying forces to 

harmonically varying displacements at the nodes of a structural element. ) So, the 

displacement u is expressed as 
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u=Zte° (5-2) 

where ZL represents amplitudes of displacements, w is frequency (rad/s), t is time and 

i= [--I. 

Substitution of equation (5-2) into equation (5-1) eliminates the time dependent terms in 

the differential equation to give 

Z, ( 0)=o (5-3) 

where I, is a differential operator. The general solution of the differential equation (5-3) is 

sought in the form 

? t=A C (5-4) 

where C is a constant vector and A is a frequency dependent square matrix. Now, the 

boundary (end) conditions for displacements and forces are applied to eliminate the 

constant vector C in equation (5-4) in order to obtain the force displacement relationship 

via the dynamic stiffness matrix. Firstly, the boundary conditions for the displacements 

(i. e. displacements at nodes) are applied to equation (5-4) to give 

A=BC (5-5) 

where d is the displacement vector which corresponds to the nodal displacements, and B 

is a square matrix obtained from matrix A when boundary conditions for displacements 

are substituted. Next, the boundary conditions for forces are applied. The forces at the 

nodes of the structural element can be related to the constant vector C in a similar manner 

to that of equation (5-5) to give 

7=D C (5-6) 

where 57 is the force vector which corresponds to the nodal forces and D is a frequency 

dependent square matrix. The constant vector C can now be eliminated from equations 

(5-5) and (5-6) to give 

57=DSId=Kd (5-7) 
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where in equation (5-7) 

K=DB 

is the required dynamic stiffness matrix. 

(5-8) 

In equation (5-8), the two steps involved to obtain the dynamic stiffness matrix are: (i) to 

invert the B matrix to give BS' ; and then (ii) to premultiply the inverted matrix by the D 

matrix to give K. Computer implementation of these steps can be accomplished either 

numerically or algebraically. Banerjee and Williams (1994a, 1994c, 1995) have shown 

that there are substantial savings in computer time if explicit analytical expressions for the 

elements of the dynamic stiffness matrix are used to compute K, as opposed to the use of 

numerical methods to obtain K (i. e. the matrix inversion and matrix multiplication steps of 

equation (5-8)). However, the task of inverting the B matrix algebraically and then 

premultiplying by the D matrix, again algebraically, to obtain explicit expressions for the 

elements of the dynamic stiffness matrix K, can be quite formidable. This has only 

become possible due to recent advances in symbolic computing (Fitch, 1985). Moreover, 

explicit expressions are particularly useful when some, but not all, of the stiffness 

coefficients are needed (Banerjee, 1997). 

5.4. Application 

The application of the dynamic stiffness matrix to solve free vibration problems of 

structures (or structural elements) is quite simple. Firstly, the dynamic stiffness matrices of 

all the individual elements in a structure are assembled in the usual way, as is done in the 

finite element method (except that there is only one matrix for each element to assemble, 

i. e., there are no separate massfnertia and stiffness matrices). Then a suitable 

eigensolution procedure can be adopted to obtain the natural frequencies. It should be 

noted that the solution procedure using the dynamic stiffness method leads to a non-linear 

eigenvalue problem. The natural frequency of the structures can be determined by two 

independent methods. Firstly, by using a frequency-determinant plot, which is an old, easy 

and quick way to establish the natural frequencies of a structure. However, this technique 

involves certain difficulties in determining the mode shapes of the structure. Secondly, a 
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safe and reliable way to solve the problem is to use the Wittrick-Williams algorithm 

(1971), which gives all required natural frequencies with certainty and to any desired 

accuracy. The main features of the algorithm are discussed by many authors such as 

Banerjee (1989) and Leung (1992a, 1992b). 

To use the algorithm, the overall dynamic stiffness matrix of the final structure and 

information about the clamped-clamped natural frequencies of the constituent members of 

the structure are needed (Banerjee and Williams, 1994b and Banerjee, Guo and Howson, 

1996). The Wittrick-Williams algorithm gives the number of natural frequencies of a 

structure that lie below an arbitrarily chosen trial frequency W. It is briefly described as 

follows. 

If j is the number of eigenvalues present in a range of frequencies from zero to w% then 

.i= 
j0 + s(K F] 

where 

(5-9) 

j= number of natural frequencies of the structure exceeded by the trial frequency a; 

jo = number of natural frequencies which will still be exceeded if constraints were imposed 

upon the structure so as to suppress all the nodal displacements so that 
jo=Ejm; 

number of natural frequencies of a component member with its ends clamped, which 
have been exceeded by co* ; 

ICS = the overall dynamic stiffness matrix evaluated at w= w* ; 

s}= number of negative elements on the leading diagonal of K* ; 

K` = upper triangular matrix obtained by the application of Gauss elimination to IC 

Therefore, with the knowledge of the above mentioned parameters, natural frequencies of 

a structure to any order of accuracy can be found. An important feature of the algorithm is 

that it guarantees that no natural frequency of the structure is missed, even in the 

exceptional cases where two modes have the same natural frequency. 

The identification of the number of clamped-clamped natural frequencies of all individual 

members in a structure, under a specified trial frequency is an important part of the 
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algorithm, see Jo in equation (5-9), to ensure that no natural frequency of the structure is 

missed. In the particular case of a bending-torsion coupled beam such as an aircraft wing 

Banerjee and Williams (1994b) have ingeniously given an exact method to determine the 

number of clamped-clamped natural frequencies of such beams which exists below a 

given trial frequency. The procedure put forward by Banerjee and Williams (1994b) has 

been used in implementing the Wittrick-Williams algorithm in this thesis. 

5.5. Summary 

A systematic procedure is given for the derivation of the dynamic stiffness matrix of a 

structural element. Generating explicit analytical expressions for the elements of the 

dynamic stiffness matrix gives significant savings in computer time. Such expressions can 

be derived by using symbolic computing. The method presented is fairly general and can 

be extended to cover any structural members, the governing differential equations of 

which are expressible in matrix polynomials in one spatial coordinate when the other 

spatial coordinates are eliminated by the Kantorovich method (Leung and Zeng, 1994). 

An important difference between the dynamic stiffness method and finite element method 

is that the dynamic stiffness matrix method uses a single transcendentally frequency 

dependent matrix of an element, which accounts for both mass/inertia and stiffness 

properties, whereas the finite element method uses separate mass and stiffness matrices 

which are both generally independent of frequency and may be modelled to different 

orders of accuracy. Another related and significant difference is that, unlike the finite 

element method, the dynamic stiffness method accounts for the infinite number of natural 

frequencies of a vibrating structure and so can be used to find higher natural frequencies 

exactly, without the discretisation errors of the finite element method. 

In the subsequent work, the dynamic stiffness method is used to solve the free vibration 

problem of bending-torsion coupled beams. In order to implement this technique a 

computer program is developed to calculate the dynamic stiffness matrix of a bending- 

torsion coupled beam. Dynamic stiffness matrix for a representative case is given in 

Appendix C (Banerjee, 1998). 
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6 Dynamics of composite beams : Theory 

6.1. Introduction 

In this chapter, an analytical method is developed to predict the flexural and torsional 

response of a beam coupled in bending and torsion when acted upon by deterministic or 

random loads. Normal modes are used and both geometric and material coupling are 

considered when developing the theory. The effects of shear deformation, rotatory inertia 

and axial load are also taken into account. An example of a bending-torsion coupled beam, 

which is an aircraft wing, is shown in Figure 6-1. The mass and the elastic axes of the 

beam (the loci of the mass centres and the geometric shear centres of the cross-section) are 

separated by a distance xa as shown. The beam is uniform and subjected to time 

dependent bending and/or torsional loads which can be either deterministic or random. A 

harmonically varying load is considered for the deterministic case whilst in the case of 

random loading, the input is considered to have stationary and ergodic properties. Both 

concentrated and distributed loads are taken into account. The theory presented covers 

both metallic and composite beams, unless otherwise stated. 

The following steps are taken when presenting the theory. Firstly, the basic governing 

differential equations of motion for the bending-torsion coupled beam are derived using 

Hamilton's principle. The governing differential equations of motion are presented for a 

variety of cases, starting from the elementary case where only geometric coupling exists 

(metallic beam), to the most complicated case considered where both geometric and 

material coupling exist and the effects of shear deformation, rotatory inertia and axial load 

are taken into account. 

Secondly, the natural frequencies and mode shapes of the beam in undamped free 

vibration are established using the calculus of ordinary and partial differential equations. 

For every case of a bending-torsion coupled beam, the orthogonality condition of the beam 

and the damping ratio in each mode are derived to decouple the equations of motion of the 

beam, using analytical mechanics and variational analysis. 
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The derivation and solution procedure for each set of equations given in the next section 

are similar, therefore for brevity, the derivations of the governing differential equations of 

motion and details of the solution for the undamped free vibration for a representative case 

are given in Appendices A and B, respectively. The derivation of the orthogonality 

condition is also given in Appendix D for a representative case. 

Since linear small deflection theory has been used, the overall response of the beam is 

represented by the superposition of all individual responses in each mode. 

Next, Duhamel's integral is employed to calculate the response of the beam to 

deterministic loads. The evaluation of the response for the random load is, however, 

carried out in the frequency domain using the theories of random vibration and spectral 

analysis. This is accomplished by relating the power spectral density (PSD) of the output 

to that of the input using the modulus of the complex frequency response function. 

For composite beams, dynamic displacements together with the externally applied loads 

are used to calculate the time dependent shear force, bending moment and torque acting on 

the beam. The dynamic stresses at a cross-section of the thin-walled laminated composite 

beam due to these loads are then computed using the Engineer's bending theory, Saint- 

Venant's torsion theory and classical mechanics of laminated fibrous composites. Finally, a 

failure criterion for stresses is established, based on a detailed examination of the fibre and 

its surrounding matrix. 

6.2. Governing differential equations of motion 

In this section the differential equations of motion are given, for a number of viscously 

damped metallic and composite beams with bending-torsion coupling present in their 

modes of deformation (see Appendix A for derivation of these equations). 

In the following partial differential equations; u =u(y, t), 8= 6(y, t) and y/-- t#(y, t) are the 

transverse displacement and the flexural and the torsional rotation of the elastic axis of the 

beam, respectively. Also f(y, t) and g(y, t) are the external force and torque acting on, and 

105 



Theory 

about, the flexural axis of the beam, m is the mass per unit length, p is the density of the 

material, I is the second moment of inertia about the X-axis, EI, k4G, GJ and K are the 

bending, shear, torsional and bending-torsion coupling (material) rigidities of the beam, Ia 

is the mass moment of inertia per unit length, P is a compressive axial load (Note that P 

can be negative so that, tension is included). An over-dot represents differentiation with 

respect to time and a dash represents differentiation with respect to space. It is notable that 

the geometric and material bending-torsion coupling are characterised by xa (see Figure 

6-1) and K, respectively. 

The coefficients cl, c2 and c3 are linear viscous damping terms per unit length in flexure, 

torsion and shear, respectively. It is assumed that each point of the cross section moves 

with a different local velocity, so that the local damping force sums over the section to the 

given expression containing the cl term. Similarly, the expression containing the c2 term is 

a torque about the elastic axis brought about by elemental damping forces. The expression 

containing cj is associated with the bending moment about the X-axis. No other sources of 

damping are taken into account. 

It should be noted that in the following derivation flexural rotation (6) is of importance 

only when the effect of transverse shear deformation and rotatory inertia are included 

(Timoshenko beams); otherwise, the flexural rotation is simply the first differentiation of 

the flexural displacement (u) with respect to the space variable (y). Furthermore, c3 , 

which derives from linear viscous damping in shear, appears in the equations of motion 

only in the case of Timoshenko beams. 

The governing differential equations of motion for different cases of bending-torsion 

coupled beams are as follows 

Bending-torsion coupled metallic beams : 

CO Bending-torsion coupled (Bernoulli-Eyler) beam 

Elu�ºº - Cl (u - X- I/) - m(u - Xa N= 
.f 

(Y, 1) (64 ) 

GJv"-C2yr+CJXQü-'"+mxaü= g(y, t) (6-2) 
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(ii) Axially loaded bending-torsion coupled (Bernoulli-Euler) beam 

EIu""-P(u"-xay/")-c, (ü-xJf)-m(ü-xaý')=f(Y"t) (6-3) 

GJVI" - P{(Ia / m)V" - xa. u") - c2 yr + c1xaü - I. yr + mxaü = g(y, t) (6-4) 

(iii) Bendin torsion coupled Timoshenko beam 

kAG(u"-0')-c, (ü-xay1)-m(ü-xaiji)= f(y, t) (6-5) 

GJi" - C2 /+ C1XA -'a + n'Xa" 
= 9(y. (6-6) 

ElO"+kAc(u'-e)-c3O-Pre=0 (6-7) 

Lv Axially loaded bending-torsion coupled Timoshenko beam 

kAG(u" - 0') - P(u" - xa yr ") - cl (ü - xa; i) - m(ü - xa Y') =f (y, t) (6-8) 

GJyi"-P{(Ia /m)yi"-x. u")-c2yr+clx,, i-I. yr+mxaü=g(y, t) (6-9) 

EJO"+kAc(u--0)-C3 -pre=0 (6-ý0ý 

Bending-torsion coupled composite beams : 

(a) Composite beams when in every cross-section along the beam geometric shear centre 
is coincident with centroid (xa =0&K- 0) 

(i) Materially bending-torsion coupled composite (Bernoulli-Euler) beam 

Elu""+Kyi"'-c, iü-mü= f(y, t) (6-11) 

Ku"'+GJyr"-c2 i-I. yr =g(y, t) (6-12) 

(i) Axially loaded materially bending-torsion coupled composite (Bernoulli-Euler) beam 

Flu"" + Kyr"' -P u" - c, ü - mü =f (y, 0 (6-13) 

Ku"'+GJyr"-P(Ia/m)V"-c2yr-U =S(Y, t) (6-14) 

(iii) Materially bending-torsion coupled composite Timoshenko beam 

kAG(u" - 0') - c, ü - mü =f (y, t) (6-15) 
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KG" + GJVI� - c2i - r,, r= g(y, t) (6-16) 

Ere- +kAc(u'-0)+K "-c36-pI9=0 (6-17) 
Div) Axially loaded materially bending-torsion coupled composite Timoshenko beam 

kAG(u" - 0') -P u" - c1ü - mü =f 
(y, t) (6-18) 

K9" + GJyr� - P(Ia / m) v" - c2yr - I. Yf = S(Y, t) (6-19) 

EI9"+kAG(u'-e)+K l"- c, -pI =0 (6-20) 

(b) Composite beams with both geometric and material coupling (xa e0&K- 0) 

Ci) Bending-torsion coupled composite (Bernoulli-Eulerl beam 

Elu"+K, i"-c, (ü-x�, Yi)-m(ü-x. ý , )=. f (y, t) (6-21) 

Ku"' + GJyr" - C2 /+c, xr, iÜ -'a + mxa ü= g(y, t) (6-22) 

(ii) Axially loaded bending-torsion coupled composite (Bernoulli-Euler) beam 

Elu,,, º+Kyr"º-P(u"-xýur")-c, (ü-xýYi)-m(ü-xýYý)=. f(Yt) (6-23) 

Ku"' + GJyr" - P((IQ I m)V" - xau") - c2yr + c, xiü - I, yr +mxaü = g(y, t) (6-24) 

(iii) Bending-torsion coupled composite Timoshenko beam 

kAG(u"-9')-c, (ü-xaY1)-m(ü-xaYi)=. f(y, t) 

KO"+GJV"-c2yr+clxaü-Iayr+mxaü = g(y, t) 

E19"+k4G(u'-8)+Kyr"-c, e- pI9=o 

(iv) Axially loaded bending-torsion coupled composite Timoshenko beam 

kAG(u"-9')-P(u"-x. V")-cl(ü-xaYf)-m(ü-xaýV)=f(y, i) 

(6-25) 

(6-26) 

(6-27) 

(6-28) 

KO" + GJyr" - P{(I 
a/ m)V" - XaU") - C2 /+ ClXa? 

-'a >+ mXQü = g(y, t) (6-29) 

ETO"+kAG(u'-9)+Kyr"-c39-p19=0 (6-30) 
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6.3. Free vibration analysis 

For each of the cases of bending-torsion coupled beams described above, the normal 

modes of the beam in free undamped vibration are established by setting to zero the 

damping coefficients, the external force f(y, t) and torque g(y, t), in the differential equations 

of motion. Solutions for u=u(y, t), 9= Cry, t) and yr= yr(y, t) are then sought in the form 

u(y, t) = U(y)e"on , 

6(y, t) = O(y)e`o" ̀  (6-31) 

\V(y, t) = T(Y)e"' , 

where w� is the natural frequency of the system and, U(y), 0(y) and F(y) are the 

eigenfunctions (mode shapes) for flexural deformation, flexural rotation and torsional 

rotation, respectively. By extensive algebraic manipulation, for each of the cases, the 

solutions are obtained in the following general form 

U(ff) = A, cosh aý + A2 sinh aý + A3 cosß + A4 sin ß+ AS cos yy + A6 sin yy (6-3 2) 

O (ý) = B, cosh aý + B2 sinh aý + B3 cosßß + B4 sin /33 + BS cos yy + B6 sin yy (6-33) 

LY( =C, cosh aý+C2 sinhai+C3 cosßý+C4 sinßß+C5 cosy+C6 sinyy (6-34) 

where AI-A6 
, 

BI-B6 and C1--C6 are the three different sets of constants, a, ß, y are 

dependent on the type of beam model considered (see Appendix B) and are functions of 

mechanical properties of the beam; ý=y/L and L is the length of the beam. Equations (6- 

32) to (6-34) in conjunction with the boundary conditions, yield the eigenvalues (natural 

frequencies) and eigenfunctions (mode shapes) of the bending-torsion coupled beam. 

Arriving from equation (6-31) to equations (6-32)-(6-34) is given in Appendix B. 

6.4. Orthogonality condition and damping representation 

Following the procedure described by Clough and Penzien (1975), Bishop and Price 

(1977) and Banerjee and Williams (1995), the orthogonality condition of the principal 
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modes of undamped free vibration of the bending-torsion coupled beam can be derived. In 

this section, the generalised mass, u,,, and the non-dimensional damping ratio, 4"� of the 

beam in each mode of vibration are given, for a number of metallic and composite beams 

exhibiting bending-torsion coupling behaviour. 

The orthogonality condition is essential for application of the separation of variable method 

and is valid, provided the end conditions of the beam (at ý=O and/or ý=1) are free, simply 

supported, or clamped. Introduction of the non-dimensional damping ratio is also 

important for application of the separation of variable method. Besides, it is impractical to 

work with original damping coefficients (cl 
, c2 and c3), therefore, the damping is 

reinterpreted in its modal form. For brevity, derivation of these equations is not presented 

here (Appendix D). Note that, in the following equations Smn is the Kronecker delta. 

The orthogonality condition and modal damping for different cases of bending-torsion 

coupled beams are as follows 

Bending-torsion coupled metallic beams : 

Bending-torsion coupled Bernoulli-Euler beam (elementary case) 

Axially loaded bending-torsion coupled Bernoulli-Euler beam 

I 
S[mUmUn 

+Ia Jmtn 
-mxa(UmTn +vnTm)]d =, unvmn 

0 

1 (6-35) 
J[CiUmUn 

+c2 Zm 7n - clxat (UmWn + UnTm)]dý 
= 2ýnwnpnsmn 

0 

Bending-torsion coupled Timoshenko beam 

Axially loaded bending-torsion coupled Timoshenko beam 

I 

J[mUmUn +Ia'mZn +P'0mOn -mxa(VmZn+Un 3m)]4 
-pfl5mn 

0 

(6-36) 
JLclUmUn 

+C2WmWn +C30m®n -ClXa(UmTn +UnYm)Jd 
- 

2`ý 
nwnýnsmn 

0 
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Bending torsion coupled composite beams : 

(a) Composite beams when in every cross-section along the beam geometric shear centre 
is coincident with centroid (x« =0&K- 0) 

Bending-torsion coupled Bernoulli-Euler composite beam (elementary case) 

Axially loaded bending-torsion coupled Bernoulli-Euler composite beam 

I 

J 
[mUmUn +IatPmTnId 

- Pnsmn 

0 (6-37) 

SIC1UmUn 
+C2TmWn]d = 2CnO)nPnsmn 

0 

Bending-torsion coupled Timoshenko composite beam 

Axially loaded bending-torsion coupled Timoshenko composite beam 

I 

J[mUmUn+Ia'I'm1'n+pI0 
mOjdý=Pfl mit 

0 (6-38) 

J 
[C1UmUn +C2TmTn + C3OmOn]d = 2ýnW 

nlunsmn 
0 

(b) Composite beams with both geometric and material coupling (xa -0&K- 0) 

Bending-torsion coupled Bernoulli-Eulen composite beam (elementary case) 

Axially loaded bending-torsion coupled Bernoulli-Euler composite beam 

I 

f 
[mU. U. +I. Z, 

Tn 
-mxa(UmTn +UnTm)]d = Pnsmn 

10 (6-39) 
J[CIUmUn 

+c2 Zm Zn -clxa 
(Um'Pn +Un'Pm)]d = ZýnýnýnV 

mit 
0 

Bending-torsion coupled Timoshenko composite beam 

Axially loaded bending-torsion coupled Timoshenko composite beam 

I 
5[mUmUn 

+1,, Z'Tn +p10mOn -mxa 
(Vm 

7n +Un'Ym)]d = Pnsmn 

0 

1 (6-40) 

Sj(mUn +C21fmTn +C3OmOn -ClXa 
(Um Jn 4U 

,, 
Tjl d- 2`ý 

nýnlunsmn 
0 
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With the free vibration modes, natural frequencies and orthogonality condition described 

above, it is now possible to return to the general forced vibration problem of the damped 

bending-torsion coupled beams. 

6.5. Forced vibration analysis 

The solutions for the general forced vibration problem, specified by differential equations 

of motion given in Section 6.1, in terms of eigenfunctions are sought as follows 

co 

u(y, t) = u(L, t) _ q. (t)U. (y) 
r-l 

O(y, t) = 9(eL, t) _ 1: 4h (t )O. (y) 
ml 

m 

V(J, tý = V(4, t/ 
- 

gn(t)Y-f. 
n 

(y) 

r-1 

(6-41) 

where qn(t) is a time dependent generalised coordinate for each mode. Substituting 

equations (6-41) into the differential equations of motion, using the orthogonality condition 

expressed in Section 6.4 and by algebraic manipulation, the following equations are derived 

q ýt)+2,; 
nw 

Rhýt)+w(t)+Gn(t)] (6-42) 

where F� (t) and G� (1) can be expressed as 

L 

F(t) =-11 Un(Y)f(Y, t)dy =1 F� (t) 

(6-43) 
L 

Gn(t) _-1J Vf� (y)g(y, t)c1' =j G�(t) 
uno ßn 

Fý (t) and (t) are the generalised forces. 

6.6. Response to deterministic loads 

Using Duhamel's integral, the general solution for equation (6-42) can be found as follows 
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q�(t) = e'sm` {A� cos(w�dt) + Bn sin(wdt)} 
1= (6-44) 

+J {F�(z) +G^(z)}e-s^m^(`-r) sin(cv�d(t - z)}dz 
0) 

Rd 0 

where rv�d =w� (1-42)In is the damped natural frequency and Ain and B*� are coefficients 

related to initial conditions. Substitution of equation (6-44) into equations (6-41) gives the 

general solution for bending displacement, flexural and torsional rotations of the beam in 

the following form 

u(4, t) - 
ZU. e-Smmnt 1{An cos(CV 

ndt) 
+ Bn- sin(COndt)} 

(6-45) 
'n'n('-s) 

+1 J{F(r) +Gn(z)}e- sin{wnd(t-z)}dz 
0) 

nd 0 

Co 
9(ß, t) = 2: O� e-s^m�t{An cos(w�dt)+B� sin(a)�dt)} 

n=1 
(6-46) 

t 
it-T) 

+ J{F�(z)+G�(z)}e-r ndn sin1wnd(t-z)}dz 
0) 

rd 0 

co 
yr(ý, t) e's^°'^`{An cos(uw�dt)+B� sin(CD�dt)) 

r-l 

t 
(6-47) 

, ýRcý-sý +J {F�(z)+G�(z)}e's sin{tv�d(t - z)}dz 
w 

nd 0 

Equations (6-45) to (6-47) represent the general solutions due to arbitrary deterministic 

forces f(y, t) and torques g(y, t), respectively. 

Multi point force and torque excitation : To cover the solution for a series of externally 

applied isolated forces and torques, the loading is assumed to be in the form 

f (y, t) = 6(y-a; )F sinf, t 

(6-48) 

g(y, t) =8(y-b; )G; sinnt 

which represent a system of harmonically applied concentrated forces and torques with 
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circular frequency (2, at points a; and b; respectively, with i=1,2,3, ... , 
N, and 8(y) is the 

Dirac delta function. Then the dynamic response for bending displacement, flexural and 

torsional rotations of the beam follows from equations (6-45) to (6-47) as 

u( t= 
Co 

U y) e s^°'^ JA' 
cos(O) t+ B` sin w tt 

n--1 

1 

Go N 
[U,, (a, ) F,. +9�(b; ) Gi) 

+ TTnl5lýj (jý 
^ 

(6-49) ýv 

u,, -f72)2 +(2ýnw, Di)2) 

X (0)2n 
-d2i sin. (2it - 

(2ýno)n'Q) CO$. (2it) 

( 
e-cn A: cos/w t\+ B` sin/w t\l e/ 

lýetý =ý On51[ °ýý 
L cos( w1nl nd lJ] 

n=1 

mN 
{Un(a; ) F +W�(b; ) G, } 

+ e(jý 
\ 

(6-50) 
n\SJ 

l pn{lWn -'? t 
)2 +(2Cn(ýnI2 )2} 

n=l 

__ 
D2) X ((0)2 

n, sinDI-(2ý. o),, D, )cosD, t) 

co 
_Smmnt {Än COS(o 

ndt) 
+ Bn Sin(co dt))} 

n=1 

mN (U (a, 
) F+ Vfn(bi) Gi} 

tT, (DE 
2 J/ (ý 

(6-51) + 

»_1 

zn 

i=1 P. {((A 
n ""iý2 

+(2ýncnOi)2) 

x {(w. -I? )sin f; t-(2, ý�w�! 7, )cosSa, t} 

Equations (6-49) to (6-51) provide the general solutions for harmonically varying multi- 

point force and torque loading at given locations. 

Single-point force and torque excitation : If there is only one external force and only one 

external torque acting on the beam at y =a,, and y=b, , respectively, then N =1 and 

f(y, t) = 5(y-aj) F sin £2 t and g(y, t) = 8(y-bl) G sin S2 t, and the steady state bending 

displacement, flexural and torsional rotations of the beam, for zero initial conditions, can 

easily be obtained from equations (6-49) to (6-5 1) which reduce to : 

114 



Theory 

co (. - fY) sin Dt- (2ý 
,, o),, l) cos S2 t 

u(ý, t) =Z Un (4)(UU (a, )F + V. (b, )G) nJ2 (6-52) 
n=i 

Pn2(Cjn -fl2)2 +(2; 
ncn12)2) 

00 (CO 

n- 

[22) sin l2 t- (27 

nw 
I2) cos 12 t 

eil, O_ en(d)(Un(a, )F+P ib, )G} (6-53) 
flniI ýCý 

- 
22)2 +(2ýnýn^)2 

n=1 n 

ý ý{ n-ý)sinSQ 
t-(Zýno)n. ý) cosI2 t 

(6-54) 
V a1)F+tY bl)v /± }`CO 

Yý 
tý- 

n-l 

nýný 
JUnffa)2. 

Q2)2+(24nc) 
. 
Q)2) 

Equations (6-52) to (6-54) can be expressed in simplified form as 

u(4, t) =Z U� (4)(U� (a, )F + T�(bl)G}[A� / (pw)]sin(n t- 0) (6-55) 
n=1 

40 
O( 

, 
t)_ On( ý{Un(a, ýF+ 'n(b, ýG}[A� sin(n t -q$) (6-56) 

Yf(4, t)=ZWI'�(4){U�(a, )F+ýF�(b, )G}[A� ýýCnw )Isin(S2 t-ý) (6-57) 
n=1 

where 

tan 0= 2ýn (f2 / w,, ) /SI- (Q2 / w2)1 (6-58) 

[[I_ ^ 1/^ 
11/2 

An = 
(3LI ýýn/}2+{2ýjn(12/o)n))21 (6-59) 

Equations (6-55) to (6-57) constitute the general solution for a single force and/or torque 

varying harmonically at given locations. 

The equations for u, 9 and yr presented in this section are based on well established 

principles which have been applied to simpler problems before. These equations 

represent an original contribution and were first presented by Eslimy-Isfahany, Banerjee 

and Sobey (1996) and, in the present form, for the first time here. 
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6.7. Response to Random Loads 

The response of a bending-torsion coupled beam to stationary ergodic random excitation 

with zero initial conditions is now considered. The derivations that follow are made in the 

frequency domain, using the receptance method which is also known as the complex 

frequency response function method. As in the case of free vibration analysis, both 

material and geometric coupling is included in the theory. 

Externally applied force and torque are assumed to be uncorrelated. The cross-spectral 

densities of the input excitation, Sf ((I, ý2, fl) and Sg ('I, ý2, Sl), are assumed to be known. 

They are related (Robson, 1963) to the cross-correlation functions RJ(4J, ý2, z) and 

Rg(4j, ýz, z) of the input excitation, by the following Fourier transform pair (the suffices f 

and g denotes external force and torque, respectively) 

S1(tl 
, 
t2, M= -f Rf&,, 

2, i)e-". kd- 
2 71 (6-60a) 

sg(ýl 
2 
42 

2 
fl)= 

2ý 

JD 
Rg(ýI, 

z, T)e-rctdT 

or 
40 

Rf(eº, ýz, T) _ 
1. Sf( z, S2)eiý`dT 

-60b) (6-60b) 

Rg(ýi, 
, 2, t) =L Ss(ýI 

3 
e2,52)eºnýdn 

The cross-correlation functions RJ(C5J, 42, z) & Rg((j, ý2, z) of the excitation are given by 

Rf (ý, , ý2 , z) _ (. f (1" Of (ý2, t+ z)) (6-61) 
Rg (ý1, ý2' z) _ (g(ý1I 09(ý2, t+ z)} 

where <> denotes the ensemble average of the stochastic process (Robson, 1963). 

Cross-spectral density of the unknown response is related to cross-spectral density of the 

excitation via the receptance. Once the receptances are known, the mean square value of 

the response can be found by following the standard procedure. Crandall (1958), Robson 

(1963), Lin (1967), Elishakoff (1983), Newland (1984) and Piszczek and Niziol (1986) 
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have published excellent text books which cover the basic concepts, as well as some 

advanced aspects of the theory of random vibration and spectral analysis for continuous 

linear systems. More recently, Cederbaum et al. (1992) discussed the theory of random 

vibration and reliability of composite structures. 

Some authors modified the classical procedure of the spectral analysis to arrive at the 

dynamic response of beam like structures, such as an axially loaded Timoshenko beam 

(Banerjee and Kennedy, 1985), an axially loaded Timoshenko beam resting on an elastic 

foundation (Chang, 1994) and a metallic bending-torsion coupled beam (Eslimy-Isfahany, 

Banerjee and Sobey, 1996), subjected to random vibration. The following derivations are 

based on the earlier work of Eslimy-Isfahany, Banerjee and Sobey (1996) and represent an 

original contribution, in the present form. 

The receptances H. ((, ý, t) 
, 

He ((, ý, Q) and H. (( 
, 
ý, 

, 
t2) for the bending 

displacement (u), the flexural rotations (6), and torsional rotations (V), respectively 

are defined by their amplitudes at the point ý when a harmonically varying force and/or 

torque with amplitude 1 and circular frequency Sl is applied at the point ýl 
. 

Thus for the 

purpose of computing receptances, the externally applied loading f(' 
, t) and g((, t) are 

represented by 

S( , 
t) = S( -t )ein 

Substituting from equations (6-62) into equations (6-43) gives 

(6-62) 

Fn(t) _ -(1I p)UU(ý, )e : 

G�(t) _ -(1 /, uº, )`ý'ý(i)etn: 
(6-63) 

The solution of equation (6-42) for the above loading is taken in the form 

4,, (t) = Ro,, (ý,, D)ein ' (6-64) 

and on substituting into equation (6-42) and using equations (6-63), leads to 

9'01(41, c)=d�(c)"V,. (41) (6-65) 

in which 
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and 

1/, un(CO2� -SZZ +ZIýýS2CV») (6-66) 

Vn (4) 
--CIFUn 

(41) -aG !n (y1) (6-67) 

where aF is equal to 1 if applied transverse force is present and is equal to 0 if otherwise. 

Similarly, aG is equal to 1 if applied torque is present and is equal to 0 if otherwise. The 

receptances for u, 0 and yr can now be obtained from equations (6-41) with the help of 

equation (6-65) in the form 

Hy( 
f l,, L)= q0 ( 

1,, L)vn( 
) 

n=1 

Co 

, 
Ron( 1, 

fl)E) 
n() 

(6-68) H9(4,41'c)=2: 
n=1 

Hqr(`ý, 
, `)=Zjg0n(41,, `)Tn( 

) 

n=1 

The time dependent randomly varying excitation can be represented by 

f(ý, t0=f()"xf(t) 
S(d, 1) = S()" zg (t) 

(6-69) 

where Zf (t) and %g (t) are stochastic processes and their spectral densities are S/(2) and 

S X(. (l) , respectively. Note that the excitation considered here is random with respect to 

time only, as the loading is not spatially varying. However, the method could readily be 

extended to cover spatially varying random loads but this is not further discussed as it goes 

beyond the scope of the present study. The cross-spectral density for the above loading is 

Sf(ý) 
, 
ý2 Q) = 

.f 
(ýr)f(ý2)Sf (Q) 

(6-70) 
Sg (ý1º ý21 M= g(ýdg(ý2 )S (n) 

For distributed loading, the spectral density functions of the bending displacement and 

flexural and torsional rotations (i. e. S� (ß,. f2), SB ((,. fl) and Sy, ((,. fQ)) are related to the 

cross-spectral densities of the force Sf ((1, ý2, Sl) and torque Sg (c, 
, 
ý2, 

, 
fl) by the following 

relationships 
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I1 

S. (ý, n)=J 
fHuc 

, 1, 
)HLc 

, 2, 
){Sfc 

1ý29Q)+Sg(ýl2ý2, 
fl)}dýldý2 

U0 

11 

SO( 
, 
c)= 11H( ý, ý1,0)HO( 

2, 
c)(sf ( 

1)ý2, 
c)+S2( 

1' 2, 
rl)}dýldý2 (6-71) 

00 

11 

S, (ý, 92)=f JHwl 1, 
n')Hv(ý2ý22 n){Sf(ýl, ý25f2)+ilg(ýl2ý2, fl)}dýldý2 

00 

where * denote the complex conjugate. Substituting the expressions for receptances from 

equations (6-68) into equations (6-71) gives 

Co 00 
SJl 

'Qý= 
dmlý)dn( )ý 

mit\Q)Um\ 
)Uný4ý 

m=1 n=1 

,00 
SBl ýýý= 

dm\ýJdn( ý lmnlýýOm\`ýýOn\ ý 

m=1 n=1 

Co Co 
Sq, 

\ f, `ý= 
dm(, 

L)dn\ýý'/mitl'Lý7m( 

m=1 n=1 

where 

II 

imn(n)=f 
f Vml 

lýVný 2ýýJjl is 2ý, Lý Fý'g\ 
1 2sýý}u ld 2 

00 

Substituting equations (6-70) into equation (6-73) leads to 

1mn(9 (9f,. f,, Sfz +BmOn" 

where 

f Vn (ý)f (a)dd and gn =f 
00 

(6-72) 

(6-73) 

(6-74) 

(6-75) 

Substituting equation (6-74) into equations (6-72) gives 

2 

Sul 
ýfl) 

=E1 fndn(ý)Un( 

n= 

S1 (f)) + gndn lýýUn 
ýýs 

\nJ 

co 2 

n=1 

2 

S0( 'ýI= 
fndn(Q)E). 

n= I 

Z 

Sw(4,92)= 
1 f, d 

, Lyf' 

n=1 

2 CO 

Sf (SZ)+ gndo(S2)®n( S8 (Q) 
n=1 

CO 2 
Si 

`Q) 
+(Q)T,, )n Sg (n) 

n=1 
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If damping is small and the natural frequencies are well separated, equations (6-76) can be 

approximated by (Robson, 1963 and Chang, 1994) 

00 
2 

,02 
Su\ 

ýfl) -1: 
lJndn(ýýUn\ S (ý)+ýIgndncý)Un\`ýýI Sg (n) 

n=1 n=1 

2 

SBý 
ýýý= 

Ifndn( )0ný ý1 Sf (Q)+Igndo( )On( )I Sg() (6-77) 

n=1 n=1 

00 
2 CO 2 

Sw (5, Q) = Ifn d,, (n)'Y,, c al sr (fl) + Igndn (Q) nc al S (fl) 
n=1 n=1 

When the beam is acted upon by a finite number, N, of concentrated, randomly varying 

forces and torques, integrals over the beam length in equations (6-71), (6-73) and (6-75) 

are replaced by the summations over N. 

Finally, the mean square value of the response can be found by integrating the spectral 

density functions over all frequencies, so that 

(u2( 
, t))= S. (4, n)da 

J Se (4, Q)dn (6-78) 

Co (Y 2( 
, t)}= JSv, (ý, SZ)dn 

-Co 
If the input random excitation follows a Gaussian probability distribution, the response 

probability will also be Gaussian and therefore, the response can be fully described by its 

spectral density function. The solution enables us to construct the response for any external 

forces with given power spectral density (PSD) distribution (Robson, 1963 and Newland, 

1984). 

Response to atmospheric turbulence : The experimental data on turbulence in clear air 

and in thunderstorms, and from altitudes below 5000 up to 40000 (ft) have been reviewed 

by Houbolt et al. (1964). The authors have examined it from the standpoint of scale, 

intensity, shape of one-dimensional spectra, homogeneity, isotropy, and normality. Their 

general conclusion is that an adequate model for analysis purposes is the simplest one, that 
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is one which is isotropic, homogeneous, Gaussian and frozen. Etkin (1972) also studied 

the spectral component of isotropic turbulence. In most of the available literature, the one 

dimensional spectrum that best fits the data for the vertical component of turbulence is the 

von Karman spectrum. In this research power spectral density of atmospheric turbulence 

is modelled using the well-known von Karman spectrum given, amongst others, by 

Houbolt et al. (1964) and Perry et al. (1990) as follows 

072L, L 
[]+ (/) (1.339(L, Vs)n}I ] 

sX (D) =1 (6-79) 
2t []+(1.339(LsV)Q}1 J 

where o2 is the mean square value of the gust (turbulence) velocity, Ls is the scale length 

of the turbulence and V, is the airspeed. 

Others have suggested using the well-known Dryden spectra (Bisplingoff et al., 1955) 

which closely resemble the von Karman spectra and assume the turbulence in the gust 

field is isotropic. The PSD of Dryden spectra is given by 

a2 L 
1+3(D 

Ls 
)2J 

Sz (S2) =gS 
V' 

(6-80) 
7rT, [I+(f2 

f 
)2] 2 

V 

For scientific purposes, it is interesting to investigate the random vibration of a structure 

when it is excited over a wide range of frequencies. The white-noise power spectra 

(equation 6-81) are preferred by many researchers because they cover the whole range of 

frequencies and thus give a conservative estimate of the response. The PSD of white-noise 

spectra is constant over all frequencies as shown below 

SX(. fl) = cons tan t (6-81) 

This completes the analytical analysis of the dynamic response of the bending-torsion 

coupled beams to deterministic and random forces. 
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6.8. Stress analysis of thin-walled laminated composite beams 

In order to determine dynamic stresses in the laminates, there are two main choices, 

namely the stiffness method and the displacement method. In the stiffness method, strains 

in any cross-section are derived directly from the dynamic displacement field and stresses 

are determined using stress-strain relationship. The most appropriate manner in which one 

should treat the problem is to arrive at the correct stress and strain relations at the 

beginning, rather than correcting the generalised force and generalised strain relations, 

whose definition varies from one beam theory to another. In the displacement method, 

however, internal forces along the beam are calculated first, using the dynamic 

displacement field and stresses are determined using internal forces-stresses relationship in 

any cross-section. The displacement method has been chosen here and the following steps 

are used in this investigation to find and assess the dynamic stresses in fibres : 

(i) dynamic internal forces in each cross-section are calculated using the equilibrium of 

forces acting on an infinitesimal segment of the beam; (ii) normal and shearing stresses 

induced by axial load, bending moment, shear force and torque are found in the cross- 

section; (iii) stresses are found in the principal material direction; (iv) failure criteria is 

specified and examined. 

6.81. Internal forces : Obtaining the internal forces is the first step in order to find the 

stresses in fibres. For a thin-walled laminated composite beam, internal forces are defined 

as follow: 

Y 

V =f c'+VL 

r 
M= jL dy + ML (6-82) 

631 
Y 
6T 

T=JL0dy+TL 

where 
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ÖV 
X=f (y, t) + m(ü - X. yr) 

=V+ p19 + P(u' - xa yr') (6-83) 

0 
=g(y, t)-(mxaü-IQW) 

and VL 
, 
ML and TL are, respectively, the values of concentrated external flexural force, 

bending moment and torque at the far end, i. e. y=L (or ý=1). P will be zero when there is 

no applied axial load and pI is ignored (set to zero) when the effect of rotatory inertia is 

neglected. 

The equilibrium of forces acting on the element is considered at a particular instant, when 

the beam is at maximum displacement, so the acceleration is at its maximum and the 

speed at that instant is zero. As a result, damping forces, which are assumed to be 

proportional to speed, are not present in the equilibrium. It is also important to be noted 

that damping forces acting on a structure are not in phase with the external and inertia 

forces and they are usually much smaller than these forces. 

In equations (6-83), to determine ii, B and qi 
, 

dynamic displacement and rotations (see 

equations 6-31) are differentiated with respect to time to give 

u(y, t) = U(Y)e" t; ü(y, t) _ -w2U(y)e" -tv2u(Y, t) 

v (y, t) = IP(y)e'w r; W(Y, t) _ -0)2T(y)eil 1= 
-w2V (Y, t) (6-84) 

e(y't) _ O(y)erm t; e(Y, t) = -a2®" 
( )e" t= 

-CO 
2e(Y, t) 

and there is no need to calculate u' and yr' , 
because when equations (6-83) are used 

together with equations (6-82), they give 

Y 

IL P(u' - xaV' ')dy = PI(uy - UL) - Xa (Vly - V'L)] (6-85) 

6.8.2. Stress analysis in composite beams : Based on the mechanics of fibrous 

composites (Datoo, 1991), stress analysis of composite beams is presented in this section. 
Stresses in each ply are a combination of normal and shear stresses induced by axial load 

(P), bending moment (M), shear force (V) and torque (T) in each cross-section. Usually 

there are differences in stress calculations for flat composite plates and thin-walled 

composite cross-sections. 
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6.8.2.1. Normal and shear stresses in thin-walled composite cross-sections 

The common axial strain in the cross-section (E) is 

s= NE 
P 

(6-86) 

(E., tb)f 
j=1 

where NE is the number of laminate parts which constitute the circumference of the cross- 

section, t is the thickness of each laminate part, b is the width of each laminate part, Ey is 

the membrane equivalent Young's modulus value of the laminate with reference to the y 

direction for each individual laminate part in the cross-section. Therefore the proportion of 

the axial load carried by an individual element in the cross-section is 

Pi = (E, tb) jc (6-87) 

Thus the individual element axial load is 

(E'' )' A' 
P i A' 

(6-88) 

where 

Ai = (tb)f (6-89a) 

NE 
Aý =Z (Eytb)j (6-89b) 

j =l 

and the force intensity in they direction is 

(Ny) 
f=P; b (6-90) 

Therefore, normal stresses due to the axial load (P) is given by 

(E)1P 
ýy = NE (6-91) 

(Eytb), 

; _ý 

Normal stresses due to symmetrical bending are given by 
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where 

NE 
It = j, (EyI, )i (6-93) 

and z is the ordinate from the neutral plane of the cross-section to the point of the element 

under consideration. 

Shear stresses due to shear forces are given by 

z_ 
qs 

t 

where 

[Y_1stz 
Nx, = qs = -Ey , 

ds + qs=o 

(EY)1Mz 
(6-92) 

(6-94) 

(6-95) 

and 

for open cross-section 

for closed cross-section 

q, o=0 

_ 
-f rg0j, ds 

q. =o - 2fdA 

(6-96a) 

(6-96b) 

Where r is the distance from shear centre and 
f d4 is the area enclosed by the closed 

cross-section profile. It is to be noted that for cross-sections with at least one axis of 

symmetry qs=o is always zero. 

Shear stresses in closed cross-sections due to torsion are given by 

X. _ 
LJ 

(6-97) 

where 

T 
N, ° Is - 2f dA 

(6-98) 

Shear stresses in open cross-sections due to torsion (T) are given by 
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ý =Gam, (2d) 
NE 

T 
(6-99) 

1 
(Gb bt3 )i 

j =l 
3 

where b is width of the element, t is thickness of the element, Gam, is bending equivalent 

shear modulus and d is the distance from the mid-plane of the element 

(- Y2< d<+ Y2). 
r, ry is a maximum where d =tl2. 

6.8.2.2. Normal and shear stresses in flat composite cross-sections 

The common axial strain in the cross-section (e) is 

E -tb (6-100) 

y 

Therefore, normal stresses due to axial load are given by 

_ 
(EY)kP 

ay 
E tb 

(6-101) 
Y 

where (E)k is the Young's modulus value of the kth layer of the laminate in reference to 

they direction. 

Normal stresses due to symmetrical bending 

(Ey)k Mz 
Q,, = I, 

(6-102) 

where 

P= Ey I, 
x 

(6-103) 

where z is the ordinate from the neutral plane of the cross-section to the point of the 

element in equation and Ey is the bending equivalent Young's modulus value of the 

laminate in reference to they direction. 
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Shear stresses due to shear force 

Z- =0 (6-104a) 

(t 
;, 

)max 
- (6-104b) 

kbt G, 
9, 
b 

where k is the cross-sectional shape factor for shear. 

Shear stresses due to torsion 

ý= 
(G, )k(2d) 

1b 
(6-105) 

3 (Gabt3) 

where (G' ), 
k 

is shear modulus of the kth layer, d is the distance from the mid-plane of the 

element (- 
Y2 <_ d <_ +Y). Tay is maximum where d=tl2. 

6.8.2.3. Stresses in principal material direction: The stress transformation from the 

reference axes to material axes is given below 

sine ß cost /3 -2 sinßcosß Qx =0 

a2 = cost ,6 sine ,ß +2 sin ,6 cosß ay (6-106) 

V12 +sinßcosß -sinßcosß sine #-cost /3 r 

where o, 02 and r12 are the stresses in the principal material direction and ,6 
is the ply angle. 

6.8.3. Failure criteria : The basic types of damage in composites are matrix cracking, 

fibre breakage, debonding of interface and delamination (Zhang and Zhu, 1996). 

Macroscopically, such damage will lead to stiffness reduction but not necessarily to 

structural failure. In this investigation excessive stress is used as the failure criteria of 

fibrous composite laminates. It is assumed that XX 
, 
X, 

, 
Yr 

, 
Y, 

, 
Sh, and Sw are the six 

127 



Theory 

basic ultimate strengths of the composite material, where 

XX is the longitudinal (fibre direction) ultimate tensile strength. 

XX is the longitudinal (fibre direction) ultimate compressive strength. 

Yt is the transverse (matrix direction) ultimate tensile strength. 

YY is the transverse (matrix direction) ultimate compressive strength. 

Ssh, is the in-plane ultimate shear strength. 

Si", is the interlaminar ultimate shear strength. 

Maximum stress theory : Ply failure occurs if any stress value in the material axes 

direction exceeds their respective ultimate strengths: 

for tensile stresses: a< Xt and C2 < XX 

for compressive stresses 
la, /< IX, / 

and 
/62 /< /XX / (6-107) 

for shear stresses 
Ir12 /< Sshr and 

/r, /< S,,, 

where T,, 7 is interlaminar shear stress, a12, a12 and T12 are principal stresses in material 

direction, respectively. 

The above failure criteria is a non-interactive theory, in that each stress component is 

looked at individually and failure in any particular direction is caused independently of the 

stresses acting in other directions. 

Tsai-Hill theory : This theory considers an interaction of the stresses in the material axes 

directions. Ply failure is said to occur when the failure index, given by Tsai-Hill theory, 

exceeds 1. The following inequality must be satisfied for no ply failure: 

F1 (ai/J)2 + (a2 /Y)2 + (712/Sshr)2 - (Qj/X) (a2/X) <1 (6-108) 

where X= Xt or X. and Y= Yt or Y, 
. 

This theory will only indicate whether ply 

failure has occurred or not; it will not indicate the mode of failure. 

This completes the dynamic stress analysis of the bending-torsion coupled composite 

beams. 
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6.9. Summary 

An exact analytical method has been developed to perform the dynamic response analysis 

of bending-torsion coupled beams when subjected to deterministic or random loads. The 

theory covers both geometric and material bending-torsion coupling effects and includes 

effects of shear deformation, rotatory inertia and axial load in a unitary manner. 

The theory developed is based on the normal mode method with generalised coordinates 

so that the overall response of the beam is computed by the superposition of all individual 

responses in each mode. The coupled bending and torsional displacements and 

accelerations of the beam due to the externally applied dynamic loads are first calculated. 

These data are then used in the expressions for the time-dependent internal shear force, 

bending moment and torque at a cross-section of the beam. Finally, dynamic stresses in the 

fibres are determined using the classical lamination theory. Failure analysis of thin-walled 

laminated composite beams is also incorporated. 

Developing the methodology has involved a significant amount of original work using 

analytical mechanics, calculus of partial differential equations, symbolic computing, 

variational analysis, structural dynamics of continuous systems, random vibration and 

spectral analysis, and mechanics of fibrous composites. 

In the next chapter, the theory developed here is applied to a number of bending-torsion 

coupled metallic and composite beams and numerical results are presented, commented on 

and discussed. 
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7 

Y 

cx =1- mxý l'a = U. - mxä) /Ia 

Iý=plp Ip=1c+Axa ; Ia=I�. +1zz 

cx =lcllp=JG/(I0+Ax, ) 

I, = Polar mass moment of inertia about shear centre 
Ip = Polar moment of inertia about shear centre 
Ia = Polar moment of inertia about mass centre 
Ixx = Moment of inertia of the cross-sectional area about X-axis 
Izz = Moment of inertia of the cross-sectional area about Z-axis 
J= Torsion constant 
A= Area of cross-section 

a2 = IaCV2 L2 / GJ 

b2 =moi2L°/ EI» 

p2=PLa/EI, x 
r2 I. 

XX 
/AL? 

s2 = EI, / kAGL2 

ck =1- K2 / EI, 
. 
GJ 

Figure 6-1. (a) The coordinate system and notation for coupled bending-torsional vibration of a 
beam; - elastic axis, ---- mass axis; (b) The distribution of bending and torsional loads; 
(c) Composite laminates and fibre angle. 
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7 Dynamics of composite beams : Results and discussions 

7.1. Introduction 

Based on the theories developed in Chapter Six, illustrative results for free and forced 

vibration of several bending-torsion coupled metallic and composite beams are obtained 

and presented in this chapter. A suite of computer programs in FORTRAN was developed 

for this purpose. The programs have been written, debugged and validated during the 

course of this investigation, to determine the free vibration characteristics and dynamic 

response behaviour of bending-torsion coupled beams. A list of these computer programs 

and a brief description of their application are given in Appendix F. 

Results presented in this chapter are given in two separate sections. Firstly, numerical 

results are given for metallic beams for which only geometric coupling exists. By way of 

illustration, seven different types of metallic beams with geometric (bending-torsion) 

coupling have been selected from published literature to show every possible case of 

important primary as well as secondary effects. Mechanical properties of these beams are 

given in Table 7-1. 

Results are then presented for seven selected composite beams in all of which significant 

material coupling exists between bending and torsional modes of deformation. Flexural, 

torsional and coupling rigidities of three composite beams 
, namely, a flat beam (Jensen, et 

al., 1982), a box beam (Cesnik, et al., 1996) and a bi-convex beam (Librescu, et al., 

1996), have been given in Chapter Three (see Figure 3-1 to 3-3). The mechanical 

properties of the composite materials used for these three beams and two other composite 

beams (Teboub and Hajela, 1995; Dancila and Armanios, 1995) are given in Table 7-2. 

Numerical results are also given for two more composite beams. One was examined by 

Eslimy-Isfahany and Banerjee (1996a) and the other by Teoh and Huang (1977) and 

Banerjee and Williams (1996). 

In order to examine fully and to understand the free vibration and dynamic response 
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characteristics of bending-torsion coupled composite beams, very many numerical results 

were obtained during the course of this research, for many metallic and composite 

illustrative examples. However, only a carefully selected set of representative results are 

given in this chapter, in order to present a comprehensive account of observations made in 

this investigation, in a concise form. Thus, when presenting the results, similar or 

repetitive results are -wherever possible- avoided in different cases. 

In Sections 7.2 and 7.3, firstly, the effects of bending-torsion coupling, axial load, shear 

deformation and rotatory inertia on free vibration analysis of coupled beams, with different 

boundary conditions, are investigated. Numerical results are then presented giving the 

dynamic response of bending-torsion coupled beams subjected to a time dependent 

harmonic varying force. The contribution from each mode to the dynamic response of 

bending-torsion coupled beams is of particular interest. 

Next, results are presented to demonstrate the behaviour of bending-torsion coupled 

beams when subjected to random excitation, using both concentrated and uniformly 

distributed forces. The effects of damping ratio, bending-torsion coupling, axial load, shear 

deformation and rotatory inertia in these studies are investigated. Several classical 

boundary conditions (S-S, C-F, C-S and C-C) are considered. For composite beams, the 

effects of material (bending-torsion) coupling and ply orientation on the free and forced 

vibration analysis are investigated and results are given for dynamic stresses in bending- 

torsion coupled composite beams. 

The accuracy of the dynamic stiffness method in predicting the natural frequencies is 

demonstrated by comparing the results for a range of metallic and composite beams with 

those available in the literature. For example, explicit analytical solutions are available in 

the literature for the free vibration analysis of bending-torsion coupled metallic beams with 

simply supported end conditions. Thus, at the beginning of Section 7.2, results obtained 

from the present theory are given for such beams and compared with the existing 

literature. 
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Two important concepts are further discussed here. One is the interpretation of normal 

modes using the concept of generalised mass in each mode of vibration. The other one is 

the significance of modal interchanges between flexural and torsional modes of vibration, 

which may occur due to the effects of axial load, shear deformation and/or rotatory inertia. 

Variation in ply orientation is an important cause of modal interchange in composite 

beams. 

When composite aircraft wings are in an air stream, there will be a significant amount of 

aerodynamic damping (provided there is wing flexure), and structural damping is a small 

fraction of the total damping in the structure. However, in the present investigation the 

bending-torsion coupled beam is not considered to be in forward motion, hence the beam 

is not assumed to be subjected to oscillatory aerodynamic forces. Thus, in the absence of 

aerodynamic damping, only arbitrary values of structural damping has been taken in to 

account. This optional value of damping ratio is assumed to be a constant value in all the 

modes. 

All the results presented are fully discussed and commented on. A schematic check list of 

presented results is given in Table 7-3 where secondary effects are symbolised by 

the following non-dimensional parameters, namely, effects of shear deformation by 

(s2=EI/kAG L), rotatory inertia by (r2=I / AL2 or L/r), axial load by (p2=PL2 / El), 

geometric coupling by (c 2= 1- mxä /Ia ) and material coupling by (ck = KZ/EI GJ). 

In Table 7-3,4 indicates that the effect of damping ratio on the dynamic response is 

demonstrated. Figure 7-1 shows a schematic flow-chart of all the results presented in this 

chapter. 

7.2. Bending-torsion coupled beams with geometric coupling only 

7.2.1. Free vibration characteristics : Free vibration analysis of geometrically bending- 

torsion coupled beams is investigated and the accuracy of the dynamic stiffness method in 

predicting the natural frequencies and mode shapes is demonstrated by comparing these 

frequencies with results for a range of bending-torsion coupled beams having different 
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cross-sections which are available in the literature. In all the Figures in this chapter where 

mode shapes are shown a solid line is used for flexural displacements and a broken line is 

for torsional ones. 

22.1.1. Natural frequencies and mode shapes of a bending-torsion coupled beam with 

simply supported end conditions : The natural frequencies and mode shapes of undamped 

free vibration of the Goland wing (Goland, 1945) are computed using the method 

proposed by Timoshenko and Young (1955) and compared with the results obtained from 

the theory presented in this thesis. The Timoshenko and Young (1955) method is an exact 

solution, but valid for bending-torsion coupled metallic beams with simply supported end 

conditions only. Therefore, for validation purposes the wing is assumed to have (S-S) 

boundary conditions. Mechanical properties of the wing are given in Table 7-1. 

The two methods produced precisely the same results for free vibration analysis of the 

wing with (S-S) boundary conditions. The first five mode shapes and corresponding 

frequencies are shown in Figure 7-2. All the modes show substantial coupling between 

bending displacements and torsional rotations. A convergence study has been performed to 

find the optimum number of modes that is required in the response analysis to produce 

accurate results. It is found that in most cases, the first four modes have the most 

significant contribution in the response. 

Once the natural frequencies and mode shapes of the beam are obtained, modal analysis is 

then used to compute the dynamic response of the structure, namely the flexural 

displacement and torsional rotation, and some statistical response such as mean square 

values of the dynamic flexural and torsional displacements. These dynamic responses are 

useful in structural design, while the statistical dynamic response plays an important role in 

structural reliability analysis. 

The dynamic flexural displacements and torsional rotations at the mid-span of the beam 

due to a harmonically varying concentrated flexural force of unit amplitude at the mid- 

span, versus the forcing frequency are plotted in Figures 7-3 and 7-4, respectively. The 
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response of the beam becomes larger whenever the forcing frequency is near one of the 

natural frequencies. Note that there is no peak close to the third frequency, because load is 

applied in the middle of the beam, which is a node for the third mode of vibration, so that 

the third mode does not have any contribution to the response. Damping ratio is considered 

to be x=0.02 in all modes. 

For random vibration analysis, the externally applied flexural force is a uniformly 

distributed load for which the cross-spectral density function S/(S? ) is assumed to be an 

ideal white noise, where Sf (0) = Sf with Sf being a constant. The results of the analysis 

showing the mean square values of the flexural displacement and the torsional rotation 

along the beam for different damping ratios are illustrated in Figures 7-5 and 7-6, 

respectively. These show that the mean square values of the flexural displacement and 

torsional rotation decrease when damping ratio increases. 

Figures 7-3 to 7-6 show a torsional response for both deterministic and random response, 

although the beam is subjected only to a flexural force. This has occurred due to the 

presence of geometric bending-torsion coupling. 

7.2.1.2. Natural frequencies of bending-torsion coupled beams : In this section the first 

five coupled natural frequencies of three different bending-torsion coupled beams with 

cantilever end conditions are calculated and compared with those of published by other 

authors ( see Tables 7-4 to 7-6). Friberg (1985), Banerjee and Fisher (1992), Leung and 

Zeng (1994) and Bercin and Tanaka (1997) have determined coupled natural frequencies 

of a bending-torsion coupled beam with a semi-circular cross-section (see beam no. 4 

Table 7-1). Bercin and Tanaka (1997) have calculated coupled natural frequencies of a 

concrete channel beam (see beam no. 5 Table 7-1) and a box beam with axial slit (see 

beam no. 7 Table 7-1). It is evident from Tables 7-4 to 7-6 that the agreement between the 

results calculated by the present method and those obtained by Friberg (Tables 7-4) and 

Bercin and Tanaka (Tables 7-4 to 7-6) is very close, which proves the validity of the 

present method. Note that warping effects were neglected when using Friberg's method. 
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7.2.2. Response of Goland wing to deterministic and random loads : The Goland wing 

(Goland, 1945) is actually a typical cantilever aircraft wing, for which flexural and 

torsional motions are inertially coupled (see Table 7-1). This wing is not subjected to an 

axial load, and the effects of shear deformation and rotatory inertia are ignored. The 

undamped free vibration natural frequencies and mode shapes of the wing are computed 

by setting the damping coefficients cj, c2 and the external forces f(y, t) and g(y, t) in 

equations (6-1) and (6-2) to zero. The natural frequencies of the wing are plotted against 

the frequency number n, and shown in Figure 7-7, and the corresponding mode shapes of 

the first five normal modes are illustrated in Figure 7-8. The natural frequencies are quite 

well separated and the modes generated show substantial coupling between flexural 

displacements and torsional rotations. Note that these first five normal modes were 

subsequently found to be sufficient to describe the response of the wing quite accurately 

(i. e., the contribution from the modes higher than the fifth was not found to be significant). 

Two types of loading are considered next. In the first, the flexural and torsional responses 

due to a harmonically varying concentrated flexural force, with constant amplitude F, are 

calculated. Figures 7-9 and 7-10, respectively, show the dynamic flexural and torsional 

displacements at mid-span and tip of the wing when a harmonic flexural force of unit 

amplitude is applied at the tip. The value of the damping ratio(') has been taken to be 

0.01 for these results. Peak responses in these figures correspond to wing natural 

frequencies as expected. 

To compare results obtained from the present theory with those given by the simple 

Bernoulli-Euler beam theory, the dynamic flexural displacement at a distance y=4m 

from the wing root (which is about 0.67 of the span) is calculated using both theories. The 

beam is subjected to a unit harmonically varying concentrated force acting at the tip. The 

two sets of results are obtained, using the present theory and also simple Bernoulli-Euler 

beam theory, and are shown in Figure 7-11. Although the response of the wing in the 

fundamental mode is very little altered, the response behaviour in higher modes predicted 

by the present theory is significantly different from that predicted by the simple Bernoulli- 
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Euler beam theory (see Figure 7-11). The present theory has predicted a substantial 

response of the wing in torsion due to the bending-torsion coupling effect. Clearly the 

simple Bernoulli-Euler beam theory would not predict such a response. Results for the 

torsional response at this 67% span are not presented, but they are similar to those 

obtained for at the tip and mid-span as shown in Figure 7-10. 

The second loading is considered to be a uniformly distributed random atmospheric 

turbulence acting in the flexural direction only. Atmospheric turbulence is modelled by the 

well known von Karman spectrum which is illustrated in Figure 7-12 for Ls /Ys = 1, 

together with the first five natural frequencies of the wing. 

The mean square values of the output responses in flexure and in torsion are presented in 

Figures 7-13 and 7-14, respectively, in which three representative values of the ratio of 

scale length to air speed (L, AV) are used for a fixed value of the damping ratio 4' = 0.05. 

The corresponding effects of the variation of ý on the output responses are shown in 

Figures 7-15 and 7-16, for one fixed value of L5/Y, 
3 = 10. 

To compare once again results obtained from the present theory with those given by the 

simple Bernoulli-Euler beam theory, the mean square values of the flexural and torsional 

responses at the tip of the wing were calculated for 4' = 0.01 and Ls /Vs =1 using both 

theories. The results are shown in Table 7-7. The difference in results in flexure is 

noticeable but, more importantly, in the simple Bernoulli-Euler beam theory the torsional 

response of the wing is neglected completely. 

7.2.3. Effect of axial load on the dynamic response of a wind turbine blade : Results 

are obtained for an axially loaded bending-torsion coupled beam which is, in fact, a wind 

turbine blade (Petersen, 1979) with cantilever end conditions (see Table 7-1). In the 

analysis the damping ratio 4' is taken to be 0.01 for all modes. 

Three load levels are considered :P= 190000 N (which is about 50% of the elastic critical 

buckling load of the cantilever) P=0 and P= -190000 N (tension). The first ten natural 
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frequencies of the blade are shown in Table 7-8. The effect of axial load on the natural 

frequencies is quite noticeable. The presence of the compressive load has reduced the 

natural frequencies as expected. For instance, the difference in results when compared 

with the unloaded (P=0) case is 28% in the first natural frequency and 3% in the second 

natural frequency. In contrast, the presence of the tensile load has predictably increased the 

natural frequencies by 20% in the first mode and 2% in the second mode. 

The corresponding mode shapes of the first five natural frequencies for those three levels 

of axial load are shown in Figure 7-17. For all loading cases, substantial coupling exists 

between bending displacements and torsional rotations in the free vibrational modes of the 

blade, except for the fundamental one. The corresponding natural frequencies and mode 

shapes for the degenerate case of the simple Bernoulli-Euler beam theory and Saint- 

Venant's torsion theory in which the bending-torsion coupling effect is ignored (when 

xa=0 in the present theory) for P=O, are shown and compared with the coupled case in 

Figure 7-18. For the degenerate case this clearly indicates torsion-free bending and 

bending-free torsion as expected. The difference between the two sets of results in Figures 

7-18a and 7-18b is quite noticeable, particularly for higher modes. 

To compare results obtained from the present theory with those given by the simple 

Bernoulli-Euler beam theory, the dynamic flexural displacement at the tip of the blade due 

to a unit harmonically varying concentrated force acting at the same point, was calculated 

using the modes shown in Figures 7-18, respectively. The difference between the two sets 

of results obtained from the two theories is illustrated in Figure 7-19, showing that the 

response of the blade in the fundamental mode is very little altered whereas the response 

behaviour in higher modes has significantly changed. This may be attributed to the fact 

that the fundamental mode of the blade is predominantly a bending mode with torsional 

coupling (deformation) almost non-existent in Figure 7-18a whereas for all other modes 

there is significant coupling between bending displacement and torsional rotation. 

The dynamic flexural and torsional displacements at the mid-span and at the tip of the 

blade due to a harmonically varying concentrated flexural force of unit amplitude applied 
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at the tip, for three different levels of axial load are shown respectively in Figures 7-20. 

In the case of random loading, the externally applied force is assumed to be uniformly 

distributed as an ideal white noise over the blade length and is assumed to act only in the 

flexural direction. The mean square values of the flexural displacement and torsional 

rotation from root to tip of the blade, for three different levels of axial load are shown in 

Figures 7-21a and 7-21b. A compressive axial load increases the mean square values of 

the flexural and torsional response and a tensile axial load decreases them. 

For both sets of deterministic and random loadings, it was found that the first five normal 

modes were sufficient to describe the response of this particular problem adequately. 

7.2.4. Non-dimensional bending-torsion coupled natural frequency graphs :A graph 

showing non-dimensional coupled natural frequencies of a bending-torsion coupled beam 

with cantilever boundary conditions is illustrated in Figure 7-22. It relates the first 

uncoupled flexural frequency (cob) and the first uncoupled torsional frequency (oh) of the 

beam to the first coupled frequency (co, ) of the bending-torsion coupled beam. Figure 

7-22 shows the non-dimensional coupled frequencies for various values of the geometric 

coupling parameter (cx ). 

This is a universal graph and the fundamental natural frequencies of a series of bending- 

torsion coupled beams can be extracted from it. The geometric coupling parameter (c 2) 

varies between zero (heavily coupled) to 1 (uncoupled). Effects of shear deformation and 

rotatory inertia are neglected in Figure 7-22. Similar graphs can be produced for higher 

modes, other boundary conditions, beams with axial load and/or with effects of shear 

deformation and rotatory inertia It is also possible to produce graphs to show the non- 

dimensional coupled frequencies for various values of the material coupling parameter 

(ck ) for composite beams. 

7 2. S. Significance of generalised mass in the free and forced vibration characteristics 

of bending-torsion coupled beams: An investigation has been carried out on the 
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significance of generalised mass in order to gain further insight into the dynamic 

characteristics of bending-torsion coupled beams in each mode. The investigation confirms 

that appearance of a mode shape in the form of displacements only, may not be sufficient 

to identify whether that particular mode is bending or torsion dominated, or whether that 

mode is coupled. By looking at the mode shape one is not comparing like with like (i. e. 

a linear displacement with angle of twist). 

From the orthogonality condition of the principal modes of free vibration of the bending- 

torsion coupled beams, it can be shown that the generalised mass of such beams is given 

by (see equation 6-35) 

I 

J 
{m U+ Iaht 

- Zmx, (UnTn )} =Pn (7-1 

0 

where in is the mass per unit length, Ia is the mass moment of inertia per unit length about 

the Y-axis, U� and Y'� are the nth flexural and torsional mode shapes respectively, xa is 

the distance between the mass and the elastic axes and u� is the generalised mass in the 

nth mode. The generalised mass u is comprised of three parts : mUn2 which is due to 

flexure alone, Ii y/�2 which is due to torsion alone and 2mx,, (U� WY�) which is due to 

bending-torsion coupling. In each of the modes of vibration, the contribution of each term 

in equation (7-1) is a measure of the importance of that term to generalised mass and 

hence to the response characteristics of that mode. 

Results are given for five bending-torsion coupled (metallic) beams with cantilever end 

conditions (see Table 7-1). For simplicity these beams have been numbered from © to Os 

as follows; © is the Goland wing (Goland, 1945), 4 is the Loaring wing, 03 is the box 

beam with axial slit (Banerjee, 1989), ® is the thin-walled semi-circle (Friberg, 1985) 

and OO the concrete channel (Bercin and Tanaka, 1997). Each beam is subjected in turn to 

a unit transverse force or to a unit torque at the tip. The externally applied force and torque 

are random in nature with an ideal white noise power spectral density. Generalised masses 

for flexural (ml4 kgm2) and torsional (1212 kgi2) uncoupled vibration of these beams 
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are given in Table 7-9. In undamped uncoupled free vibration of beams, generalised 

masses for each of the flexural and torsional modes are constant in all the modes. Figures 

7-23 to 7-27 show the results of this investigation for beams ® to (Z, respectively. The 

following results are given for each beam; (a) the first six frequencies and mode shapes, 

(b) comparison of generalised mass in each bending-torsion coupled mode with 

generalised mass in purely flexural or torsional modes, (c) contribution of each term 

(bending, torsion and coupling) to the generalised mass in different modes, (d) percentage 

of modal contribution in the response of the beam at the tip due to a flexural load at the tip 

and (e) percentage of modal contribution in the response of the beam at the tip due to a 

torque at the tip. The following observations were made when analysing the results 

CO Beam subiected to transverse load : The following comments are relevant; 

The first few bending dominated modes have made the largest contribution to the dynamic 

flexural displacement for all the beams. See beam ® first mode, beam ® first mode, beam 

OO first, second and third modes, beam ® first and second modes and beam Os fifth mode 

The first few coupled modes have made the largest contribution to the dynamic torsional 

rotation for all the beams. See beam (D first and second modes, beam ® first and third 

modes, beam ® first, second and third modes, beam ® first and second modes and beam 

(3 fifth mode. 

Torsion dominated modes with little or no coupling have little contribution to the dynamic 

flexural displacement or the torsional rotation (see beam OO first, second, third and fourth 

modes). 

ii Beam subjected to torque : The following comments are relevant; 

The first few torsion dominated modes have made the largest contribution to the dynamic 

torsional rotation for all the beams. See beam O second mode, beam ® third mode, beam 

30 first, and third modes, beam ® second mode and beam © first mode. 

Although the exciting loads contain all frequencies in equal proportions, the contribution of 
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each mode in the overall response falls with increasing mode number, because the 

complex impedance increases with mode number. As a consequence of that, the first few 

coupled modes have the largest contribution to the dynamic flexural displacement. See 

beam ® first and second modes, beam ® first and third modes, beam OO first, second and 

third modes, beam ® first and second modes and beam OO fifth mode. 

Coupled (bending or torsion dominated) modes have some contribution to the dynamic 

torsional rotations. See beam ® first and third modes. 

Bending dominated modes with little or no coupling have no significant contribution to the 

dynamic flexural displacement or the torsional rotation (see beam (I second mode and 

beam 05 second, third and fourth modes). 

Beam 03 ; the first three modes look like torsion dominated modes, but the second mode is 

a bending dominated mode and all of them are heavily coupled. 

Beam ®; the first, second and sixth modes look like torsion dominated modes, whilst the, 

first and sixth modes are bending dominated modes and all of them are heavily coupled. 

This is mostly due to a relatively small moment of inertia per unit length (la ). 

Beam OO ; the fifth mode looks like a torsion dominated mode, whereas, it is in fact a 

heavily coupled bending dominated mode. 

7.2.6. Effects of shear deformation and rotatory inertia on bending-torsion coupled 

frequencies : The effects of shear deformation and rotatory inertia on the natural 

frequencies and mode shapes of simple uncoupled Bernoulli-Euler or Timoshenko beams 

have been well-documented in the literature. They usually reduce the flexural natural 

frequencies of beams, but do not affect the torsional modes of vibration. The effect can be 

more significant on short beams and those with high thickness/length ratio. Also, higher 

frequencies and mode shapes are relatively more sensitive to these effects than the lower 

modes, because the inter-nodal distance decreases with mode number. 
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In the case of bending-torsion coupled beams, these effects can be very different and the 

use of general statements similar to those of uncoupled case may not apply. To investigate 

the effects of shear deformation and rotatory inertia on the free vibration characteristics of 

bending-torsion coupled beams, an independent study has been carried out on a number of 

metallic beams. The cantilever turbine blade (Petersen, 1979), which was used in Section 

7.2.3, here has been chosen with a different length as a representative illustrative example. 

Results are shown in Figures 7-28 to 7-31 and are explained in the following paragraphs. 

The first six natural frequencies and mode shapes of the turbine blade (L = 2.6 m), with 

and without effects of shear deformation and rotatory inertia, are given in Figures 7-28a 

and 7-28b, respectively. Natural frequencies are lower when the effects of shear 

deformation and rotatory inertia are included. The first two mode shapes are virtually 

identical in both cases. Changes appear from the third mode onwards and more 

interestingly, a modal interchange takes place between the fourth and the fifth modes. 

Figure 7-29 shows the variation of the first six natural frequencies of the turbine blade 

against slenderness ratio (LJr). It also indicates whether the frequency pertains to a 

bending (B) or a torsional (T) dominated mode. For each mode of vibration, the variation 

of non-dimensional frequencies for different values of s2 against slenderness ratio (Ur) is 

given in Figure 7-30, whilst Figure 7-31 show the corresponding cross-plot of frequency 

against s2 for different values of slenderness ratio (Ur). 

Shear deformation and rotatory inertia will affect natural frequencies and mode shapes in 

all modes since the modes are all coupled in bending and torsion. Obviously, the effect will 

be relatively more significant on bending dominated modes by decreasing the natural 

frequencies. Lower frequencies in short bending-torsion coupled beams and those with 

high thickness/length ratio, are usually torsion dominated modes. Generally, the effects of 

shear deformation and rotatory inertia will be more pronounced on higher modes, whereas 

for beams with relatively higher (Ur) ratio, these effects will be more pronounced on 

lower modes. Effects of shear deformation and rotatory inertia may cause the very 

important phenomenon of modal interchange as shown in Figures 7-28 and 7-29. 
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7.3. Composite beams 

7.3.1. Free vibration characteristics : In this section free vibration analysis of bending- 

torsion coupled composite beams is investigated and the accuracy of the dynamic stiffness 

method in predicting the natural frequencies and mode shapes is demonstrated by 

comparing with results for a range of composite beams with varying lay-ups and different 

cross-sections that are available in the literature. 

First, bending torsion coupled composite beams made of flat graphite (carbon)/epoxy 

laminates with lay up [ßi /0°]s are considered, because the free vibration characteristics of 

such composite beams have been quite extensively investigated (Crawley, 1979; Jensen, et 

al., 1982; Jensen, and Crawley, 1984; Georghiades, 1997). The natural frequencies of 

these beams, with cantilever end conditions, were calculated by using the dynamic 

stiffness matrix method. Table 7-10 shows these results (eighth and ninth columns), along 

with those of Jensen and Crawley (1984). The results show that the natural frequencies 

given by the Rayleigh Ritz and partial Ritz (beam) methods are consistently higher than 

those from the dynamic stiffness formulation, and that the Rayleigh Ritz solutions with 

four modes and the partial Ritz solutions with two modes are less accurate when 

compared with detailed finite element analysis and experimental results. Interestingly, 

Rayleigh Ritz with five modes and partial Ritz with three modes gave better accuracy than 

the dynamic stiffness method. However, this conclusion is specific to the range of 

problems of Table 7-10 and so cannot be taken as a general rule. Another important 

difference is that the choice of assumed modes is very problem dependent and hence 

subjective judgement often has to be made in deciding the approximate shapes, whereas 

the dynamic stiffness matrix method has no such limitation and hence gives consistently 

good results for any type of composite beam problem. Note that, because of the fragile 

nature of unidirectional laminates, Jensen, and Crawley (1984) have given numerical and 

experimental results for [02/90]. instead of [02/0], 
. 

The second example is the cantilever rectangular box beam (Dancila, and Armanios, 

1995) with lay up: [(3]6 in the top wall, [-ß]6 in the bottom wall and [ß/-ß]3 in the 
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vertical walls. This CAS box beam configuration exhibits bending-torsion coupling. 

The cross-section of the above box beam has the following specifications: 

exterior width = 24.21 (mm) and exterior height = 13.46 (mm) with L=0.84455 (m), 

m=0.0882 (kg/m) 
, 
Iý, = 9.61725x106 (kgm) and the total thickness = 0.762 (mm). Using 

the material properties given in Table 7-2, the rigidity properties were calculated for a 

wide range of the values of the ply orientation. Then using the dynamic stiffness matrix 

method, the free vibration natural frequencies of the beam are computed for different fibre 

angles. Table 7-11 shows the first ten natural frequencies calculated by the present 

dynamic stiffness matrix method alongside the theoretical results of Dancila and Armanios 

(1995). The agreement between the two sets of results is well within 1.5%. The symbols T 

denotes torsion dominated modes, whereas B denotes bending dominated modes. 

The third example is a bending torsion coupled graphite/epoxy laminated cantilever beam 

of solid rectangular cross-section and with all its plies at either 15° or 30°, for which 

Teboub. and Hajela (1995) recently gave theoretical and experimental results. The beam 

has L=0.1905 m, width = 0.0127 m, thickness = 0.003175 m and its material properties 

are given in Table 7-2. The bending, torsional and bending torsion coupling rigidities were 

calculated using the HARP model as EI = 3.568 Nm2, GJ = 1.553 Nm2 and K=1.668 

Nm2 for the, 8=15 ° lay up case, and EI = 1.596Nm2, GJ = 2.158 Nm2 and K=1.369 Nm2 

for the 8=30° lay up case. For both cases m=0.0625 kg/m and I,, = 0.8926x106 kgm 

were used. Table 7-12 shows the first six natural frequencies calculated by the present 

dynamic stiffness matrix method alongside the theoretical and experimental results given 

by Teboub. and Hajela (1995). It should be noted that the theoretical model used by them 

to obtain the above results did not predict the torsional modes. The agreement of the 

results from the dynamic stiffness method with those of experimental and theoretical 

results is very good. The disagreement is usually within 1.5% except for the 4th natural 

frequency for the 15° lay up and the 5th natural frequency for the 30° lay up, which are 

both torsional frequencies and where the differences are 14% and 12%, respectively. 
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7.3.2. Effects of material bending- torsion coupling on the free and forced vibration 

of a composite beam: Material bending-torsion coupling, which usually exists in 

composite beams, is considered in this section. Using computer programs based on the 

theory developed in Chapter Six, the response of a bending-torsion coupled composite 

beam due to both deterministic and random loads is computed. The data used for a flat 

composite beam (Eslimy-Isfahany and Banerjee, 1996a) are as follows : (i) bending 

rigidity El = 9.75x106 Nm2, (ii) torsional rigidity GJ = 9.88x105 Nm2, (iii) bending-torsion 

coupling rigidity K=2.19x106 Nm2, (iv) mass per unit length m =35.75 kg/m, (v) mass 

moment of inertia per unit length 1,, = 8.65 kgm and (vi) length of the beam L=6m. 

The first five natural frequencies and mode shapes of the above beam with cantilever end 

conditions are shown in Figure 7-32. The modes generated are clearly all coupled. Using 

these normal modes, the response of the beam to a harmonically varying concentrated 

flexural force of amplitude F applied at the tip is evaluated. Figures 7-33 shows both the 

flexural and torsional response at mid-span and tip respectively against the frequency of 

the forcing function. The non-dimensional damping ratio in each mode (c,, ) was set to 

0.05. There is significant amount of torsional response at both the tip (Figure 7-33b) and 

mid-span (Figure 7-33a) of the beam, even though there is only flexural load applied at the 

tip. This response is clearly induced by modal coupling. 

The next set of results was obtained when the beam was excited by a uniformly distributed 

flexural random load over its length. Ideal white noise of constant power spectral density 

Sf was used to represent the random load. The mean square values of both the flexural 

displacement and the torsional rotation along the length of the beam were computed and 

are shown in Figure 7-34, using a non-dimensional damping ratio of 0.05. Torsional 

response is again evident even though the random load is entirely flexural, for the reason 

given above. A convergence test of results (based on modal elimination technique) showed 

that the first five normal modes of the beam shown in Figure 7-32 were sufficient to 

describe both the deterministic and random response of the beam sufficiently accurately. 
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In order to illustrate the effects of bending-torsion coupling on the response, the three main 

rigidities, EI, GJ and K, are combined to give two non-dimensional parameters. One is the 

bending-torsion cross-coupling parameter defined as K2/(EI GJ), the other is the ratio 

between the torsional and bending rigidity defined as GJ/EI. The value of K2/(EI GJ) was 

varied by changing K while GJ/EI was kept constant at 0.101. Note that K2/(EI GJ) is 

always between zero and one (Weisshaar and Foist, 1985). The mass and inertial 

properties of the beam were not changed. The computed mean square values of the 

flexural displacement and torsional rotation at mid-span and tip due to the same random 

loading acting in the flexural direction are shown in Figures 7-35a and 7-35b, respectively. 

The cross-coupling parameter has a dominant effect on both flexural and torsional 

response when it is above 0.7. For most practical cases, however, the value the cross- 

coupling parameter is expected to be less than 0.7 (see Chapter Three). The torsional 

response in the absence of any torsional load is again quite pronounced both at mid-span 

and at the tip of the beam (see Figures 7-35). 

7.3.3. Dynamic response of composite box wing :A graphite/epoxy composite wing 

with a thin-walled rectangular box cross-section, as shown in Figure 3-2a, is considered 

and for which flexural and torsional motions are coupled as a result of the intrinsic nature 

of laminated fibrous composites. This Circumferentially Asymmetric Stiffness (CAS) 

configuration exhibits bending-torsional coupling because it has [+ß/+[3] lay-up on the top 

wall, [-p/-ß] on the bottom wall and [+ß/-I3] on the side walls. Firstly, the effects of ply 

orientation on rigidity properties and their subsequent effects on response characteristics 

are demonstrated. The variations of the bending (EI), torsional (GJ) and bending-torsional 

coupling (K) rigidities with ply angles are established using the theory of Armanios and 

Badir and have already been shown in Figure 3-2b. 

Using these rigidities and the dynamic stiffness method, the free vibration characteristics 

of the wing with cantilever end conditions are investigated for various ply angles. The 

variation of the first five natural frequencies of the wing against ply angles is shown in 
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Figure 7-36. The effect of ply orientation on natural frequencies is quite pronounced as can 

be seen. The essential purpose of Figure 7-36 is, however, to show trends and modal 

interchanges as a result of ply orientations which can be interpreted as follows. The first 

mode is basically a fundamental bending mode (with a small amount of torsion in it) and 

remains so for all ply angles. The second mode starts as a torsional mode in the region 

0<Q<10, and then becomes a bending dominated mode as ß is increased. The variation of 

the third natural frequency reveals a different picture. It is predominantly a bending mode 

in the region 0<ß<10; however, it becomes a predominantly torsional mode in the region 

10<ß<25, and predominantly bending again in the region 25<, 6<70, before finally 

becoming a predominantly torsional mode again. In contrast, the fourth natural frequency 

first starts as a torsional mode within the range 0<f3<10, then it becomes a bending 

dominated mode within the range 10<1<25. Subsequently, it becomes torsion dominated 

again within the range 25<13<70, before finally becoming a bending mode. The modal 

interchange (flip-over) between modes 3 and 4 around ß= 70 deg is noticeable, i. e. the 

third bending mode becomes the first torsion whereas the first torsion becomes the third 

bending mode. Finally the fifth mode starts as a torsional mode and remains so until ,ß= 

15 deg and then it becomes a bending mode within the range 15<13<90. 

Representative results for the first five natural frequencies and mode shapes of the wing 

for different fibre angles (ß = 10,15,20,25,30,60,70,80 deg) are shown in Figure 

7-37. When 
,8= 

10 deg, apart from the first mode (which has significant coupling between 

bending and torsion), the wing exhibits predominantly torsional deformation as can be 

seen, see Figures 7-36 and 7-37. It is evident form Figure 7-36 that a modal interchange 

has occurred between the third and the fourth mode of vibration around 70 deg. This can 

also be seen in Figure 7-37, where mode shapes clearly show a modal flip over. 

Note that the first five modes of the wing were used in the response analysis for both 

deterministic and random loads and were subsequently found to be adequate. Damping 

was assumed to be 3% in all modes, i. e. 4'� = 0.03. 
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The amplitudes of the dynamic flexural and torsional displacements at the tip of the wing 

under the action of a harmonically varying concentrated flexural force of unit amplitude 

applied at the same point (tip), are computed using the present theory. The results for ß= 

10 deg are shown in Figure 7-38 where the absolute values of the response are shown. 

The peaks in Figure 7-38 correspond to the natural frequencies of the wing as expected. 

For instance, the first peak occurs around the first natural frequency, i. e. 149 rad/s, 

whereas the second and third peaks occur around second and third natural frequencies, i. e. 

811,1089 rad/s, see Figures 7-37 and 7-38. Note that the results shown in Figure 7-38 

are obtained under the action of flexural load only, but a dynamic torsional rotation is again 

evident as a consequence of the (material) coupling effect. Because of the intrinsic nature 

of the material coupling present in laminated (fibrous) composites, the two displacements 

(bending and torsion), must not be considered in isolation. At the tip where there is a 

concentrated flexural load (but no torsional load), the amplitude of the flexural response 

(unlike the torsional one) is always in the same direction as the applied load. However, for 

certain forcing frequencies, sudden drops in the torsional response occur as shown (in the 

logarithmic scale) in Figure 7-38. This indicates a change in sign for the torsional rotation 

induced by flexural displacement. 

Next, the flexural and torsional response of the wing due to a uniformly distributed 

atmospheric turbulence modelled by the von Karman spectra, defined by equation (6-79), 

is investigated. The spectrum is shown in Figure 7-39 for three different values of LIV. 

The excitation is again assumed to be flexural only. The mean square values of the 

bending displacements and torsional rotations against ply angle (ß) are shown in Figure 

7-40a and 7-40b respectively, for two different values of L, /V ratio. These figures show 

that the torsional response arises solely due to material bending-torsion coupling. Because 

the bending rigidity reduces with the increase in ply angle (see Figure 3-2b), the flexural 

response increases as a consequence. However, no such predictable pattern can be 

observed for the flexure induced torsional response that has been computed in the absence 

of any externally applied torsional load. This investigation shows that the flexure induced 
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torsional response is quite a complex phenomenon, which is primarily dependent upon the 

bending-torsion coupling rigidity. Finally, the flexural and torsional responses were 

computed at various points on the wing. The mean square values of the flexural 

displacement and torsional rotation along the length of the wing for ß=10 deg are shown in 

Figure 7-41a and 7-41b respectively for two values of the damping ratio. Both flexural and 

torsional responses are at their maximum at the tip as expected. The investigation has 

shown that for both deterministic and random excitation, response induced by material 

coupling as a consequence of ply orientation can be significant. 

7.3.4. Effects of shear deformation, rotatory inertia and axial load on the free 

vibration of a composite beam with rectangular cross-section: A cantilever glass-epoxy 

composite beam (Teoh and Huang, 1977 and Banerjee and Williams, 1996) is chosen here 

to demonstrate the effects of shear deformation, rotatory inertia and axial load on the free 

vibration of composite beams. The beam is of rectangular cross-section with width = 12.7 

mm and thickness = 3.18 mm. It is made up of unidirectional plies with fibre angles in 

each ply set to 6= +15 deg. (From a computational point of view, the beam is equivalent 

to a single thick ply. ) Following the models described in Chapter Three, the rigidity 

properties of the beam were calculated as follows ; (i) bending rigidity (E. 1) = 0.2865 Nm2; 

(ii) torsional rigidity (GJ)=0.1891Nm2; (iii) bending torsion coupling rigidity (K)=0.1143 

Nm2; (iv) shear rigidity (kAG) = 6343.3 N; whilst other properties are : (v) mass per unit 

length (m) = 0.0544 kg/m; (vi) mass moment of inertia per unit length (I, ) = 0.7770 x 10-6 

kgm; (vii) length of the beam (L) = 0.1905 m. 

The first sets of results were obtained to show the variation of the first six natural 

frequencies with the slenderness ratio (Lir) of the beam for different boundary conditions 

when the axial load is set to zero (see Figures 7-42a to 7-42d). Bending-torsion coupled 

natural frequencies are plotted with and without the inclusion of shear deformation and 

rotatory inertia effects. For all cases, natural frequencies decrease when L/r increases, as 

expected. Unlike the simple Bernoulli-Euler metallic beam, the effects of shear 

151 



Results and discussions 

deformation and rotatory inertia are not necessarily at their maximum when the 

slenderness ratio is at a minimum. The reason for this can be attributed to the fact that the 

modes generated are all bending-torsion coupled modes. Also, changing the L/r ratio can 

alter a bending dominated mode to a torsion dominated one and vice-versa. Of course, for 

a torsion dominated mode, the effects of shear deformation and rotatory inertia are 

expected to be relatively small. For a given Ur ratio, the effects of shear deformation and 

rotatory inertia are more pronounced in higher natural frequencies, particularly when the 

mode is dominated by bending deformation. This accords with the well known trends 

observed in simple Bernoulli-Euler or Timoshenko beam theory. 

Another intriguing feature of the results shown in Figures 7-42a to 7-42d is that for certain 

Ur ratios, modal interchanges are seen to have taken place, particularly between higher 

modes. For instance, in Figures 7-42a which gives results for the C-C case, modal 

couplings between modes 2 and 3 around Ur = 80, and between 5 and 6 around Ur = 130 

are apparent. The modal coupling is also evident for the C-S, S-S and C-F cases. Due 

recognition to modal coupling must, therefore, be given when studying the free vibration 

characteristics of composite beams. 

Representative results are shown in Table 7-13 for the first six natural frequencies of the 

cantilever (C-F) beam with and without the effects of shear deformation, rotatory inertia 

and axial load, noting that these effects can be uniquely described by the parameters rý, s2 

and p2 (see Figure 6-1). The natural frequencies shown in columns 2 and 3 agreed 

completely with those given by Banerjee and Williams (1996). The shear deformation and 

rotatory inertia are seen to have a relatively marginal effect on the natural frequencies of 

this particular composite beam, as was observed by Banerjee and Williams (1996). The 

axial load is taken to be about 50% of the critical buckling load of the cantilever (P=O. SPP, 

where Pc, =14.8N) which corresponds to the non-dimensional values of p2=-0.95 and 

p2=0.95 for the tensile and compressive loads, respectively. The axial load has made quite 

a significant difference to the fundamental natural frequency of the beam as can be seen in 

Table 7-13. Similar to previous examples of geometric bending-torsion coupled beams 
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presented in Section 7.2, a compressive axial load has reduced the natural frequencies 

whereas a tensile one has increased them. The fourth and fifth natural frequencies are 

virtually unaltered because these frequencies, unlike the first three, represent torsion 

dominated modes for which the axial load does not have any major effect. 

The next set of results was obtained to illustrate the sole effect of the axial load on the 

fundamental natural frequency of the beam by ignoring the effects of shear deformation 

and rotatory inertia (i. e. s2 =0 and r2 =0). Figure 7-43 shows the variation of the first 

natural frequency of the beam with the non-dimensional axial load PIP, for different 

boundary conditions. The change in the natural frequency due to axial load is noticeable. 

The natural frequency diminishes when the axial load changes from tensile to compressive 

as expected. Finally, for all cases, at P/PP1=1, the natural frequency becomes zero which 

implies that, at this load level, buckling of the composite column occurs as a degenerate 

case of natural vibration at zero frequency which is a case of the duality between buckling 

and natural vibration problems (Wittrick, 1968). 

This investigation on the effects of shear deformation, rotatory inertia and axial load on 

free vibration of composite beam has shown that significant changes in natural frequencies 

can occur as a result of changing these parameters. 

7.3.5. Effects of shear deformation, rotatory inertia and axial load on the free and 

forced vibration of a bi-convex composite wing :A cantilever composite wing with bi- 

convex cross-section (Librescu et. at, 1996) is considered now. Attention here is confined 

to the effect of bending-torsion material coupling only. This effect is prevalent in 

composite wings but non-existent in metallic ones. The cross-section of the wing is shown 

in Figure 3-3a. This bi-convex cross-section has Circumferentially Asymmetric Stiffness 

(CAS) configuration so that it exhibits bending-torsional coupling while undergoing free 

vibration. The rigidity properties of the wing for different ply angles are independently 

established using the theory of Armanios and Badir and have already been shown in 

Figure 3-3b. Note that the elastic constants and other properties used to obtain these 

153 



Results and discussions 

results, are those of Carbon-Fibre Reinforced Plastic (CFRP) taken from (Librescu et. al., 

1996). In this section, the effects of shear deformation, rotatory inertia and axial load on 

the free and forced vibration of the composite wing are investigated, in the order given. 

Next, the free vibration characteristics of this composite wing are investigated using the 

dynamic stiffness method. The variation of the first six natural frequencies against ply 

angles is shown in Figure 7-44, both with and without the effect of shear deformation. 

Although, the effect of shear deformation is not so pronounced on the first two 

frequencies, higher frequencies have significantly altered as can be seen. Figure 7-44 

shows that the variation of natural frequencies due to ply orientation is quite noticeable. 

The effect of rotatory inertia was also investigated but it did not have any significant 

influence on the natural frequencies of this particular wing. Representative results for 

natural frequencies and mode shapes corresponding to the fibre angle ß10 deg are shown 

in Figure 7-45, both with and without the inclusion of the shear deformation effect. The 

bending deformation in the fundamental mode is quite evident whereas the rest of the 

modes are dominated by torsional displacements only. The inclusion of shear deformation 

has made hardly any difference to the mode shapes except to the sixth one. 

Representative results for free vibration and response behaviour to deterministic and 

random loads, corresponding to the fibre angle 8= 10 deg. are given next. Three axial 

load levels are considered in the analysis. These are : (i) P=70000 N (which is almost 50% 

of the lowest critical buckling load of the beam), (ii) P=O and (iii) P=-140000 N (tension). 

Damping is assumed to be 3% in all modes. 

Table 7-14 shows the effect of axial load on the first five natural frequencies of the beam. 

The presence of the compressive load has reduced the natural frequencies; for instance, the 

difference in results when compared with the unloaded case (P=0) is 29% in the first 

natural frequency. In contrast, the presence of the tensile load has predictably increased the 

natural frequencies by 37% in the first mode. For all loading cases, substantial coupling 

exists between bending displacement and torsional rotations in the free vibrational modes 
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of the beam. The effect of axial load on the sixth natural frequency of the beam is less than 

I% and is not given here 

The amplitude of dynamic flexural and torsional displacements at the tip of the beam 

under a harmonically varying concentrated flexural force of unit amplitude applied at the 

tip, for the above three levels of axial load, are computed using the present theory and are 

shown in Figures 7-46a and 7-46b, respectively. The peaks in Figures 7-46 correspond to 

the natural frequencies of the beam as expected. Note that the results shown in these 

figures are obtained under the action of flexural load only, but a dynamic torsional rotation 

is evident as a consequence of the material bending-torsion coupling effect. 

In the case of random loading, two types of power spectra are considered. Firstly, the wing 

is assumed to be subjected to an atmospheric turbulence, modelled using the von Karman 

spectra (see equation 6-79). The excitation is assumed to be entirely flexural, so that any 

torsional response arises solely due to bending-torsion (material) coupling. The mean 

square values of the dynamic response of the bending displacements and torsional 

rotations against ply orientation are shown in Figures 7-47a and 7-47b respectively, both 

with and without the inclusion of shear deformation. The results show that shear 

deformation has a relatively small effect on the torsional response of the beam, whereas for 

small ply angles it has made about 10% difference to the bending response. 

Next, the externally applied flexural force is assumed to be uniformly distributed as an 

ideal white noise over the beam's length. The mean square values of the flexural 

displacement and torsional rotation for three different axial loads, are shown in Figures 7- 

48a and 7-48b, from root to tip of the beam. As in the case of deterministic load, the 

torsional response is induced by modal coupling only. The use of the Bernoulli-Euler or 

Timoshenko beam theory would not predict such a response. 

The first six modes of the beam were used in the response analysis (and were 

subsequently found to be adequate) for both deterministic and random response analysis. 
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Z3.6. Dynamic stress analysis : Dynamic stresses in the laminated carbon/epoxy 

composite box wing (Figure 3-2) are considered now, for which the (material) coupling 

between bending and torsional deformations can be significant. The composite beam has 

cantilever end conditions. The variations of these natural frequencies with ply angle are 

shown in Figure 7-36. The modal interchanges from bending to torsional mode and vice- 

versa, which are due to changes in ply orientations, were observed in all natural frequencies 

except the fundamental. This particular feature of modal interchanges in thin-walled 

composite beams was discussed in details earlier in this chapter (see Section 7.3.2). 

The theory on the dynamic response given in Chapter Six accounts for both deterministic 

and random loads as inputs, but numerical results for illustrative purposes are given only 

for the random case when the wing is subjected to atmospheric turbulence as modelled by 

the von Karman spectra. It was assumed that this externally applied random load was 

purely flexural. The first five normal modes were used in the response analysis which 

were subsequently found to be adequate. 

The variation of the mean-square value of the flexural and torsional displacements of the 

mid-plane of the box, along the wing-span, is shown in Figure 7-49. These results were 

obtained for a ply angle 8=10 deg. Note that an inspection of the first five normal modes 

used in the analysis, for this particular ply orientation revealed that they were all dominated 

by torsional deformation (see Figure 7-37). The maximum response (both flexural and 

torsional) occurs at the tip of the cantilever as expected but, more importantly, the 

torsional response in the absence of any externally applied torsional load is significantly 

pronounced in Figure 7-49. Clearly such a torsional response is a direct consequence of 

material coupling induced by the fibre orientations in the laminate. The variations of the 

flexural and torsional accelerations along the wing-span are shown in Figure 7-50 where 

the flexure induced torsional acceleration is also pronounced. 

The mean-square values of the bending moment (M), shear force (V) and torque (T) were 

computed based on the above results (see Figures 7-49 and 7-50). The variation of the 
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mean square values of the bending moment and shear force along the span is shown in 

Figure 7-51a, and that of torque is shown in Figure 7-51b. The maximum of bending 

moment, shear force and torque occurs at the root of the cantilever as expected. The 

results show that the a significant amount of torsional load is experienced by the wing even 

though the externally applied load is entirely flexural. The bending-torsion coupling effect 

due to the directional nature of fibrous composites is again a contributory factor to explain 

this phenomenon. 

Next, a dynamic stress analysis is carried out. For illustrative purposes, attention is 

focused at the mid-span cross-section of the wing. The variations of mean-square values of 

both displacements and accelerations for bending and torsional motions at mid-plane of 

this cross-section against ply angles are shown in Figures 7-52 and 7-53, respectively. The 

maximum flexural displacement occurs when the fibre angle 8=90 deg (see Figure 7-52). 

This is expected because the bending rigidity is at its minimum for this ply angle (see 

Figure 3-2). However, the reason for the maximum torsional displacement around ß=35 

deg (see Figure 7-52) is not so obvious although it could be argued that the strong 

bending-torsion coupling present for this fibre orientation (see Figure 3-2) might have 

caused this large torsional displacement at mid-span. The results on accelerations (see 

Figure 7-53) indicate that the flexural acceleration is at its maximum when ß is 90 deg 

(which is expected) whereas the maximum torsional acceleration occurs when 6 is around 

10 deg. The normal modes of the wing for this fibre angle showed that it deforms 

primarily in torsion, which might have attributed to this large torsional acceleration. 

In order to determine the stresses, the dynamic internal forces (i. e. bending moment, shear 

force and torque) were calculated at the mid-span for various ply angles. The variation of 

the mean-square values of the bending moment and shear force with ply angle at the mid- 

span are shown in Figure 7-54a and for torque in Figure 7-54b. The results of Figures 7- 

54 are subsequently used to calculate the stresses a1 , q2 and zj2. The variation of the 

mean-square value of these stresses at the mid-span of the wing against ply angle is shown 
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in Figure 7-55. It is quite apparent from this figure that al , 62 and r12 reach their 

maximum values when the fibre angles are 0 deg, 90 deg and 45 deg respectively. 

Representative results are given to demonstrate the effect of axial load on dynamic 

response and stresses of the composite wing to random loads, corresponding to the fibre 

angle 8= 10 deg. Three axial load levels are considered in the analysis. These are : (i) 

P=80 kN (compressive load which is almost 50% of the lowest critical buckling load of 

the wing), (ii) P=0 and (iii) P=-160 kN (tensile load). For all loading cases, substantial 

coupling exists between bending displacement and torsional rotations in the free 

vibrational modes of the wing. Damping was assumed to be 3% in all modes. 

Axial load has a pronounced effect on the first five natural frequencies of the wing, as 

shown in Table 7-15 for the three load cases. The presence of the compressive load has 

reduced the natural frequencies; for instance, the difference in results when compared with 

the unloaded case (P=0) is 27 % in the first natural frequency. In contrast, the presence of 

the tensile load has predictably increased the natural frequencies by 36 % in the first mode. 

Numerical results are given when the wing is subjected to atmospheric turbulence as 

modelled by the von Karman spectra. It is assumed that this externally applied random 

load is entirely flexural with no torsional component present. The mean square values of 

the flexural displacement and torsional rotation from root to tip of the wing, for three 

different axial loads, are respectively shown in Figures 7-56a and 7-56b. A dynamic 

torsional rotation is evident as a direct consequence of the bending-torsion coupling 

induced by the fibre orientations in the laminate. The variations of the flexural and 

torsional accelerations along the wing-span are shown in Figures 7-57a and 7-57b, where 

the flexure induced torsional acceleration is even more pronounced. The maximum 

response (both flexural and torsional) occurs at the tip of the cantilever. 

Next, the mean-square values of the bending moment (M), shear force (V) and torque (T) 

for the ply angle, ß= 10 deg, were computed using a normal distribution. The variation of 

shear force, bending moment and torque along the span are shown in Figures 7-58. The 
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maximum of each of the bending moment, shear force and torque occurs at the root of the 

cantilever. 

Finally, the effects of variation of the non-dimensional axial load (P/P7) on dynamic 

response are shown in Figures 7-59. A detailed stress analysis for the above loading 

conditions is carried out by varying the axial load. For illustrative purposes, stresses are 

calculated at the middle of the top wall on the mid-span of the wing. The variations of 

stresses in the principal material direction (Qi 
, a2 and 712) against the non-dimensional 

axial load (PIP, ) for the fibre angle ,6= 10 deg, are shown in Figure 7-59d. The results of 

Figures 7-59 show that flexural and torsional displacement and their respective 

acceleration, shear force, bending moment, torque and stresses increase with the increase 

in (P/Pc, ), as expected. The investigation has shown that the dynamic stresses in 

composite wings are heavily influenced by fibre angle and axial load (ß, P). 

7.4. Summary 

The general exact analytical method developed in Chapter Six, has been applied to a 

number of bending-torsion coupled beams, representative of aircraft wings, wind turbine 

blades, composite beams and composite wings, for which a substantial amount of coupling 

between the bending and torsional modes of deformation was prevalent. Numerical results 

are given and discussed for these beams when subjected to time dependent deterministic 

or random loads. Significant conclusions are drawn from these results. 

Both free and forced vibration characteristics of bending-torsion coupled beams have been 

investigated. The accuracy of the method in predicting the natural frequencies has been 

demonstrated by comparing results obtained from the analysis of a range of metallic and 

composite beams having different cross-section and varying lay-ups with those available in 

the literature. 

In some of the illustrative examples given, attention is mainly confined to the effect of 

bending-torsion coupling on the free and forced vibration of the coupled beams. This 
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affects the natural frequencies and the mode shapes of different beams differently. 

Although the coupling effect on the natural frequencies is sometimes relatively small, the 

corresponding effect on the mode shapes of the beam may be significant. Generally it was 

observed that both geometric and material bending-torsion coupling reduce the 

fundamental natural frequency of the beam. With regard to dynamic response, when a 

bending-torsion coupled beam is subjected to a purely transverse force, usually there is a 

significant difference in flexural response of the beam when compared to Bernoulli-Euler 

theory but, more importantly, a torsional (that is rotational) response is evident. The latter 

is due to geometric and/or material bending-torsion coupling effect. Simple Bernoulli- 

Euler or Timoshenko beam theory cannot predict such response, because such theories 

assume torsion free bending and bending free torsion. It has been shown that due 

recognition to modal coupling must be given when studying the free and forced vibration 

characteristics of bending-torsion coupled metallic or composite beams. 

Ideally an infinite number of modes is needed to calculate exactly the dynamic response of 

a continuous system. However, in practice, depending on the type of the loading, only a 

few carefully chosen modes are needed to predict the response with reasonable accuracy. 

In most of the cases, for both sets of deterministic and random loadings, it has been found 

that the first four to six normal modes were sufficient to describe the response of the 

particular problem investigated. The number of modes considered in the analysis is 

indicated for each illustrative example. 

Numerical results are given for all standard classical boundary conditions, showing the 

effects of shear deformation, rotatory inertia, axial load and slenderness ratio on natural 

frequencies. The investigation has shown that significant changes in natural frequencies 

can occur as a result of changing these parameters and mode shapes can vary considerably 

as result of changes in natural frequencies. 

The effect of a constant axial load on the free vibration and dynamic response of the beam 

is also noticeable. Effects of a compressive axial load are opposite to those of a tensile 
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load. A compressive axial load reduces the natural frequencies and increases the dynamic 

response of the beam whereas the tensile load has a stabilising effect, increasing the 

natural frequencies and reducing the dynamic response. 

Shear deformation and rotatory inertia will affect natural frequencies and mode shapes in 

almost all modes since most of the modes are coupled in bending and torsion. Obviously, 

the effect will be relatively more significant on bending dominated modes, decreasing the 

natural frequencies. Lower frequencies in short bending-torsion coupled beams and those 

with high thickness/length ratio, are usually torsion dominated modes. Generally, the 

effects of shear deformation and rotatory inertia are much more pronounced on higher 

modes, whereas for beams with relatively higher (Ur) ratio, these effects will be more 

pronounced on lower modes. Effects of shear deformation and rotatory inertia may also 

cause the very important phenomenon of modal interchange. They always increase the 

dynamic response of the coupled beams. 

The effects of ply orientation on rigidity properties and their subsequent effects on natural 

frequencies, mode shapes and dynamic response characteristics of composite beams are 

demonstrated. The investigation has shown that response induced by material coupling as 

a consequence of ply orientation can be significant. The investigation has shown that the 

dynamic stresses in composite wings are heavily influenced by fibre angle, axial load and 

the effects of shear deformation and rotatory inertia. 
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Table 7-1 Mechanical properties of six chosen isotropic bending-torsion coupled beams. 

EI (N ml) GJ (N m2) m (kg/m) IQ (kg-m) x« (m) L (m) 
1. Goland wing 9.7567x106 9.88x105 35.75 8.65 0.183 6.096 
(Goland, 1945) 

2. Loaring Wing 677.6 1019 8.06 0.0585 0.038 2.06 

(Loaring, 1944) 
3. Box beam with axial slit 5.8x104 78.3 2.45 0.02 0.08 5 

(Banerjee, 1989) 

4. Thin-walled semi-circle 6380.14 43.46 0.835 0.000501 0.0155 0.82 

(Friberg, 1985) 
5. Concrete channel beam 30.43x107 97.83x104 225 56.87 0.336 3.2 

(Bercin and Tanaka, 1997) 
6. Wind turbine blade 2.2101x10' 5.1483x106 112 21.8 0.153 12 

(Petersen, 1979) 
7. Box beam with axial slit 14.36 x104 346.71 4.256 0.0317 0.0735 2.7 

(Bercin and Tanaka, 1997) 

Table 7-2 Material properties of three chosen composite beams. 

El 
(GPa) 

E2=E3 
(GPa) 

G12 

(GPa) 

G23 

(GPa) 

G13 

(GPa) 
V12=V13 V23 p 

(kOM3) 

Flat beam 98.0 7.9 5.6 5.6 5.6 0.28 1520 
(Jensen, et al., 1982) 

Flat beam 129.11 9.408 5.1568 2.541 4.304 0.3 1550.1 
(Teboub and Hajela, 1995 

Box beam 206.92 5.17 3.10 2.55 2.55 0.25 1529 
(Cesnik, et al., 1996) 

Box beam 142.0 9.8 6.0 4.83 6.0 0.42 0.5 1604.1 
Dancila and Armanios, 1995 

Bi-convex beam 206.8 5.17 3.1 2.55 2.55 0.25 1400 
(Librescu, et al., 1996) 
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Table 7-4. Natural frequencies (Hz) of a cantilever semi-circular beam. 

Friberg (1985) and Present method 
Frequency No. Bercin and Tanaka (1997) 

1 63.39 62.34 

2 129.34 129.88 

3 259.22 259.21 

4 415.72 418.91 

5 607.29 605.20 

Table 7-5. Natural frequencies (Hz) of a cantilever channel beam. 

Frequency No. Bergin and Tanaka (1997) Present method 

1 10.19 10.19 

2 30.34 30.57 

3 50.99 51.17 

4 69.68 71.60 

5 91.60 86.34 

Table 7-6. Natural frequencies (Hz) of a cantilever box beam with an axial slit. 
(Bercin and Tanaka, 1997) 

Frequency No. Bercin and Tanaka f 1997) Present method 

1 8.30 8.31 

2 23.79 23.81 

3 36.63 36.56 

4 47.21 47.26 

5 67.15 67.18 
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Table 7-7 Mean square values of the flexural and torsional responses at the wing tip 

obtained by using the present theory and Bernoulli-Euler theory (4'=0.01 and L, N=1) 

Present theory Bernoulli-Euler theory 

Flexural <u2>/af x 1010 (s2) 20.13 22.09 
Torsional < y? >/of x 10" (rad s/m)2 13.18 - 

Table 7-8 Natural frequencies of an axially loaded 
cantilever turbine blade with different axial loads. 

Frequency 

number 

Frequency (rad/s) 

P=190 kN P=0 P=-190 
kN 

1 7.8 10.8 13.0 
2 62.4 64.4 65.8 
3 70.1 71.2 72.8 
4 177.3 179.5 181.6 
5 211.4 212.3 213.2 
6 319.9 321.8 323.7 
7 374.9 376.4 377.9 
8 470.7 472.8 474.9 
9 554.3 556.1 557.8 

10 636.1 638.7 641.4 

Table 7-9 Generalised mass for flexural and torsional uncoupled vibration of bending- 
torsion coupled beams, given in Table 7-1. 

mL14 (kSm2) IIU2 (kgm2) 

Goland Wing 54.483 23.365 
Loaring Wing 4.1509 0.060255 
Box Beam with an axial slit 3.0625 0.05 
Semi-circle, thin-walled 0.171175 2.0541 X 10-4 
Concrete Channel Beam 180.0 90.992 
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Results and discussions 

Table 7-12. Natural frequencies (Hz) for the unidirectional graphite/epoxy cantilever 
beam (Teboub and Hajela, 1995). 

15° 30° 

Mode No T/H expt present T/H expt present 

1 85.4 82.5 82.1 52.7 52.7 52.6 

2 531.5 511.3 511.3 329.8 331.8 328.8 
3 1472.2 1423.4 1413.8 921.7 924.7 917.4 

4 - 1526.9 1741.4 1801.4 1766.9 1783.9 

5 2839.1 2783.6 2743.6 - 1827.5 2050.0 

Table 7-13. Natural frequencies of a cantilever composite beam with and without the 

effects of shear deformation (s) 
, rotatory inertia (rz) and axial load (p). 

Frequency Natural frequency (rad/sec) 

No 

t2 = s2 =0 r2 = 0.00002322 and s2 = 0.001245 

p2=0 p2=0 p =0.95 p =-0.95 

1 193.6 193.2 138.2 233.1 
2 1211 1192 1140 1242 
3 3376 3260 3216 3303 
4 4076 4073 4070 4076 
5 6596 6196 6155 6238 
6 10780 9832 9791 9872 

Table 7-14 Natural frequencies of an axially loaded cantilever beam with different axial loads 

Frequency (rad/s) 

Frequency no. P=70 kN P=O P=-140W 

1 99.4 139.3 191.3 
2 707.0 740.4 801.4 
3 1061.4 1077.8 1111.3 
4 1791.5 1824.9 1890.5 
5 2991.5 3022.7 3083.3 

Table 7-15 Natural frequencies of an axially loaded composite wing with different axial loads 

Frequency 
No. P=8OkN 

Freouency. rad/s 
P=0 P=-160kN 

1 109.2 149.0 202.7 
2 785.8 810.9 853.1 
3 1075 1089 1121 
4 2075 2100 2147 
5 3296 3309 3336 
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Results and discussions 

Bending-torsion coupled beams 

with different boundary conditions 

Geometric coupling only II Geometric and material coupling 
Secondary effects c i, p2, s2, r'2 Secondary effects cz , p2, s2, r2, Ck , )6 

Natural frequencies and mode shapes 

Dynamic response when subjected to deterministic force 

Dynamic response when subjected to random force 

Dynamic stress analysis 
(only for composite beams 
subjected to random force) 

Figure 7-1. A schematic flow-chart of results presented in this chapter. 
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Figure 7-2. Bending torsion coupled natural frequencies (radls) and mode shapes 

of the Goland wing with S-S end conditions. 

170 



I. E-4 

1. E-6 

4=o. 5 
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1. E-8 
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Forcing frequency n (rad/s) 

Figure 7-3. Dynamic flexural displacement of the Goland wing with (S-S) end conditions 
due to a unit harmonically varying force at the mid-span, response at 4=0.2 and T=0.5. 
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Figure 7-4. Dynamic torsional rotation of the Goland wing with (S-S) end conditions 
due to a unit harmonically varying force at the mid-span, response at 4=0.2 and 4=0.5. 
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Figure 7-5. Variation of the mean square value of the flexural displacement 

along the Goland wing with (S-S) end conditions for different damping ratios. 
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Figure 7-6. Variation of the mean square value of the torsional displacement 

along the Goland wing with (S-S) end conditions for different damping ratios. 

Figure 7-7. Circular natural frequencies (C On. ) of the Goland wing (C-F). 
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cue=97.0 ra%Vs 
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Figure 7-8. Coupled bending-torsioal natural frequencies and mode shapes of the goland wing (C-F); 
flexural displacement (U), - -- torsional displacement M. 
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Figure 7-9. Dynamic flexural displacement of the Goland wing (C-F) due to a unit harmonically 

varying concentrated force at the tip. at the mid span, at the tip. 
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Figure 7-10. Dynamic torsional rotation of the Goland wing (C-F) due to a unit harmonically 

varying concentrated force at the tip. at the mid span, ----- at the tip. 
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Figure 7-11. Dynamic flexural displacement of the Goland wing (C-F) at a distance of 
4 metres from the root due to a unit harmonically varying concentrated force at the tip. 

-- -- Present Theory; - Bernoulli-Euler Theory. 
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Figure 7-12. The von Karman PSD function (LS/V=1) 
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Figure 7-13. Variation of the mean square value of the 

flexural displacement along the Goland wing (C-F) 

for different LS/V ratios (damping coefficient=0.05). 
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Figure 7-15. Variation of the mean square value of 

the flexural displacement along the Goland wing (C-F) 

for different damping coefficients (L`/V =10). 
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Figure 7-14. Variation of the mean square value of the 
torsional rotation along the Goland wing (C-F) 

for different Ls/V ratios (damping coefficient=0.05). 
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Figure 7-16. Variation of the mean square value 
of the torsional rotation along the Goland wing (C-F) 
for different damping coefficients (l, s/V =10). 
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Results and discussions 

p=190000N (Compression) P=O (No axial load) P=-190000N (Tension) 

w, 77.8 radls 

w2=62.4 rad/s 

w3=70.1 rad/s 
""w 

w4=177.3 rad/s 

ws=211.4 rad/s 

w, =10.8 rad/s 

w2=64.4 rad/s 

w3=71.2 rad/s ~ "-.. ,ý 

w, =179.5 rad/s 

ws=212.3 rad/s 

w,: 13.0 rad/s 

w2=65.8 rad/s 

m3=72.8 rad/s 'ý" ,. 

w4 =181.6 rad/s 

c, s=213.1 rad/s 

Figure 7-17. Effect of axial load on bending-torsion coupled natural frequencies and mode shapes 
of a wind turbine blade (Petersen, 1979), 

--- Flexural displacement (U), .. "..... torsional rotation ( ). 
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10.8 rad/s 

=64.4 rad/s co, 

W3=71.2 rad/s "_ 

w4=179.5 rad/s 

c, 5=212.3 rad/S 

ul-10.8 radls 

w= 63.6 rad/s 

w3-68.0 rad/s 

"`ý7 
m. = 190.3 rad/s 

c, 5=190.8 rad/s 

(a) Bending-Torsion Coupled Beam Theory (x, x0 ); (b) Bernoulli-Euler Beam Theory (x, =0 ). 

Figure 7-18. Effect of bending-torsion coupling on natural frequencies 
. and mode shapes of a wind turbine blade (Petersen, 1979). 
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Figure 7-19. Effect of bending torsion coupling on dynamic flexural response at the tip of a wind turbine 
blade (Petersen, 1979) due to a unit harmonically varying concentrated force at the tip. 
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Figure 7-2 1. Variation of mean square value of a) flexural and b) torsional displacements 

along a wind turbine blade (Petersen, 1979) for different levels of axial load. 
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Figure 7-22. Non-dimensional bending-torsion coupled natural frequency graph. 
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Figure 7-23. Significance of generalised mass in the dynamic response characteristics of a bending- 

torsion coupled beam. Using the example of Goland wing (Goland, 1945). 

(a) the first six frequencies (rad/s) and mode shapes; (b) comparison of generalised mass in each bending-torsion 

coupled mode with generalised mass in purely flexural or torsional modes; (c) contribution of each term (bending, 

torsion and coupling) to the generalised mass in different modes; (d) percentage of modal contribution in the 

dynamic flexural and torsional response of the beam at the tip due to the flexural load at the tip; (e) percentage of 

modal contribution in the dynamic flexural and torsional response of the beam at the tip due to the torque at the tip. 
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Figure 7-24. Significance of generalised mass in the dynamic response characteristics of a bending- 

torsion coupled beam. Using the example of Loaning wing (Loaring, 1944). 

(a) the first six frequencies (rad/s) and mode shapes; (b) comparison of generalised mass in each bending-torsion 

coupled mode with generalised mass in purely flexural or torsional modes; (c) contribution of each term (bending, 

torsion and coupling) to the generalised mass in different modes; (d) percentage of modal contribution in the 

dynamic flexural and torsional response of the beam at the tip due to the flexural load at the tip; (e) percentage of 

modal contribution in the dynamic flexural and torsional response of the beam at the tip due to the torque at the tip 
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Figure 7-25. Significance of generalised mass in the dynamic response characteristics of a bending- 

torsion coupled beam. Using the example of a box beam with an axial slit (Banerjec, 1989) 

(a) the first six frequencies (rad/s) and mode shapes; (b) comparison of generalised mass in each bending-torsion 

coupled mode with generalised mass in purely flexural or torsional modes; (c) contribution of each term (bending, 

torsion and coupling) to the generalised mass in different modes; (d) percentage of modal contribution in the 

dynamic flexural and torsional response of the beam at the tip due to the flexural load at the tip; (e) percentage of 

modal contribution in the dynamic flexural and torsional response of the beam at the tip due to the torque at the tip. 
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Figure 7-26. Significance of generalised mass in the dynamic response characteristics of a bending- 

torsion coupled beam with a thin-walled semi-circular cross-section (Friberg, 1995). 

(a) the first six frequencies (rad/s) and mode shapes; (b) comparison of generalised mass in each bending-torsion 

coupled mode with generalised mass in purely flexural or torsional modes; (c) contribution of each term (bending, 

torsion and coupling) to the generalised mass in different modes; (d) percentage of modal contribution in the 

dynamic flexural and torsional response of the beam at the tip due to the flexural load at the tip, (e) percentage of 

modal contribution in the dynamic flexural and torsional response of the beam at the Up due to the torque at the tip 
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Figure 7-27. Significance of generalised mass in the dynamic response characteristics of a bending- 

torsion coupled concrete beam with a channel cross-section (Bercin and Tanaka, 1997) 

(a) the first six frequencies (rad/s) and mode shapes; (b) comparison of generalised mass in each bending-torsion 

coupled mode with generalised mass in purely flexural or torsional modes; (c) contribution of each term (bending, 

torsion and coupling) to the generalised mass in different modes; (d) percentage of modal contribution in the 

dynamic flexural and torsional response of the beam at the tip due to the flexural load at the tip, (e) percentage of 

modal contribution in the dynamic flexural and torsional response of the beam at the tip due to the torque at the tip 
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Figure 7-28. Natural frequencies (rad/s) and mode shapes of a turbine blade [L=2.6 m] (Petersen, 1979) 

(a) without effects of shear deformation and rotatory inertia 

(b) with effects of shear deformation and rotatory inertia 
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Figure 7-29. Variation of natural frequencies of a turbine blade (Petersen, 1979) 
in each mode against slenderness ratio (Ur) t: torsion; b: bending. 
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Figure 7-31. Variation of the first six natural frequencies against the 

shear deformation parameter (s2) [a turbine blade (Petersen, 1979)]. 
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Concluding remarks 

8 Concluding remarks and recommendations for future work 

8.1. Concluding remarks 

A theory has been developed to perform the response analysis of a bending-torsion 

coupled beam when subjected to deterministic or random loads. The equations of motion 

are derived using Hamilton's principle. This solution procedure is applied both to metallic 

and composite beams. 

The investigation and examples presented are focused on the potential for enhancing the 

dynamic characteristics of thin-walled composite structures. Bending-torsion coupling 

effects arising both from the anisotropic nature of fibrous composites as well as non- 

coincident mass and geometric shear centres, are taken into account when developing the 

theory. Applications include aircraft wings, ship hulls, wind turbine and helicopter blades, 

for which bending and torsional modes of deformation are usually coupled as a result of 

either non-coincident mass and shear centres or as a result of the intrinsic nature of 

laminated fibrous composites. 

The free vibration characteristics of composite beams have been examined in detail using 

the dynamic stiffness method. The study has shown that the anisotropic property of 

composite materials can be used as a modal coupler or decoupler, and can be applied to 

decouple modes which are geometrically (inertially) coupled in the same way as with mass 
balancing, but without a weight penalty. It can also be used to reverse completely the 

unfavourable coupling introduced by sweep angle (backward or forward). 

Numerical results are given for all standard classical boundary conditions, showing the 

effects of shear deformation, rotatory inertia, axial load and slenderness ratio on natural 

frequencies. The investigation has shown that significant changes in natural frequencies 

can occur as a result of changing these parameters. It has also been revealed that due 

recognition to modal coupling must be given when studying the free and forced vibration 

characteristics of composite beams. 
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In general, the responses of beams with a greater degree of end constraints (such as 

clamped-clamped and clamped-simply supported beams) are seen to be more affected by 

the shear deformation than beams with a lesser end degree of constraints (such as simply 

supported-simply supported and cantilever beams). The results indicate that thicker and 

stiffer stocky beams are more susceptible to the effect of shear deformation, which accords 

with earlier studies. In response analyses and reliability studies of such beams, it is 

therefore important to consider the effect of shear deformations. 

The effects of ply orientation on rigidity properties and their subsequent effects on the 

response characteristics and dynamic stresses are demonstrated. The variation of stresses 

along the length of a wing (for a given ply orientation and stacking sequence) is also 

demonstrated. The investigation has shown that dynamic stresses in composite wings are 

heavily influenced by fibre angle, shear deformation, rotatory inertia and axial load. 

Two important concepts have been discussed. One is the interpretation of normal modes 

using the concept of generalised mass in each of the modes of vibration. The other one is 

the significance of modal interchanges between flexural and torsional modes of vibration, 

which may occur due to the effects of axial load, shear deformation and/or rotatory inertia 

and additionally in the case of composite beams, the variation in ply angles. 

The effect of simultaneous bending and torsion in a composite column, caused by both 

geometric and material couplings, on the elastic buckling load of composite columns has 

also been investigated. The effect of shear deformation on the buckling characteristics of 

the composite column is included in the theory. Bending-torsion coupling reduces the 

elastic critical buckling load of composite columns. 

The importance of experimental procedures in understanding the structural behaviour of 

composites is emphasised. Experiments have been carried out to establish the elastic 

critical buckling load of laminated composite flat columns made of carbon-epoxy material. 

Other objectives are to gain further insights into the rigidity properties and the buckling 

characteristics of bending-torsion coupled composite columns. 
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8.2. Recommendations for future work 

As with any investigation, a great number of new ideas suggest themselves. The 

generalised modal approach presented can be used with different models of beams and 

plates with virtually the same level of ease. Here, some suggestions for future extensions 

of this work are as follows 

In many cases of real life applications, beams are usually non-uniform. Examples of such 

beams are aircraft wings, turbine and fan propellers, and helicopter rotors. So one 

extension of the present work is to study non-uniform composite beams. Although the 

method presented in this study is applied to uniform beams, it may be used in the free and 

forced vibration analysis of bending-torsion coupled beams with varying cross sections. As 

is shown in Appendix E, the free vibration solution of non-uniform beams can be obtained 

by idealising the beam as an assembly of many different uniform beams, i. e. a stepped 

beam. 

Further improvements in the beam model can also be achieved by the inclusion of 

deformation in the chordwise direction. Chordwise bending has been shown to be of 

considerable importance, especially for beams of low aspect ratio. Thus the solution of 

beam problems with these secondary effects included in their equations of motion may 

sometimes be necessary. 

The theory given in this thesis does not include time-dependent oscillatory unsteady 

aerodynamic forces on the wing that occur because of the forward motion of the aircraft. 

Consideration of all of the aeroelastic forces is a subject for further investigations and an 

important improvement to this work. 

Throughout this work, the energy dissipation during vibration and response analysis was 

included in the form of modal damping after the equations of motion were uncoupled. 

However, it is possible to include more refined forms of energy dissipation by modelling 

the composite laminate as a viscoelastic material and also by including aeroelastic 

damping forces. 
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Further investigation will be required, particularly for thick composite beams (wings) to 

make an objective assessment of the effects of different theories (first order or other higher 

order) for the inclusion of shear deformation to complement this study. 

In the present investigation, a series of experiments on the elastic buckling behaviour of 

composite structures was conducted to throw some light on the rigidity properties of 

composites. However, at the end of the buckling tests, it would have been preferred to 

have carried out dynamic tests. An alternative type of experiment should be designed to 

investigate this matter using dynamic means. At the same time experiments should be 

carried out on the free and forced vibration of composite beams to validate the results and 

conclusions of the present study. 

Effects of the warping stiffness and the warping inertia are considered to be small for 

beams with closed cross-section. However, the inclusion of warping stiffness and warping 

inertia in the equations of motion for composite beams, especially when beams with open 

cross-section are under investigation, is recommended for future works. 

Despite the extensive research that has been carried out in the field of dynamic 

characteristics of composite beams, formal strategies and design goals for efficient 

utilisation of advanced composite materials have yet to be fully developed. Such design 

strategies require consideration of issues such as durability, damage tolerance, automatic 

control and their interaction with structural response, and overall aircraft performance. The 

literature cited in this report, together with the examples presented, have shown that new 

approaches and further insights will be required for the new era of structural design. 

Finally, a major component of an important procedure that should encompass for further 

studies is the subject of structural optimisation. The present methodology can be 

effectively used as a tool in a multidisciplinary structural design and optimisation 

procedure. 
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Appendices 

Appendix A Derivation of the governing differential equations of motion 

In this appendix, the damped forced vibration equations of motion of an axially loaded 

composite Timoshenko beam are developed in two stages. Firstly, the undamped 

equations of motion are developed using Lagrangian methods, and then the damping loads 

are introduced as external loads, together with any other external loads such as those of 

aerodynamic origin. 

The governing differential equations of motion for the coupled bending-torsion undamped 

free vibration of an axially loaded composite Timoshenko beam can be derived using 

Hamilton's principle as follows : 

The total potential energy Vp, of an axially loaded composite Timoshenko beam is given by 

vs=2 fL [EJ(O')2 
- P{(u? )2 + Ia /m(W1)2} + 2KO' '+ kAG(u' - e)2 + GJ(w )2 ] (A. 1) 

and the total kinetic energy Tke is given by 

T,. =2 
,fL 

[mo), 
+ I. (wý2 + PI(e)2 

}. 
Y (A-2) 

where all the terms and symbols are defined in Chapter Six. 

Hamilton's principle states that if 4=Tk, -Vpe, where 4 is defined as the Lagrangian (kinetic 

potential), then 
1= 

4 di taken between any arbitrary intervals of time (tj 
, t2 ), is 

t, 

stationary for a dynamic trajectory. Therefore, 

5f 
t2 

( 
ke - 

V, 3d t=0 (A-3) 

ti 

Substituting equations (A-1) and (A-2) into equation (A-3) gives 

5jt2 jL {[m(u)2 + la (Xý)2 + p1(O)2 ] 

-ýE1(9 )2 - P{(u')2 + ra i m(W')2 }+ 2KO'w' +k 4G(u - e)Z + cJ(W)2 }dydr =0 

(A-4) 

from which follow the governing differential equations of motion 

kAG(u" - 0') - Pu" - mü =0 (A-5) 
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GJyr"+K9"-P(Ia /m)tu"-Iýyr=0 (A-6) 

EIO"+kAG(u'-0)+Kyr"- pI6=0 (A-7) 

and the expression for the shear force (V), bending moment (M) and torque (T) 

V= ET O" + KVi" + Pu' - p19 (A-8) 

M. -ETON-Kv' (A-9) 

T=GJvl+K9'-PIS yr' (A-10) 
m 

Equations (A-5) to (A-10) together with appropriate end conditions completely define 

the coupled bending-torsional free vibration of an axially loaded composite 

Timoshenko beam. 

In order to account for externally applied loads, firstly, the time dependent forces and 

torques are introduced on the right had side of the equations (A-5) and (A-6), respectively. 

Next, the following steps are taken to introduce the damping in equations (A-5) to (A-7). 

As mentioned in Section 6 
. 2, it is assumed that each point of the cross section moves with 

a different local velocity, so that the local damping force sums over the section to the given 

expression containing the cl term. Similarly, the expression containing the c2 term is a 

torque about the elastic axis brought about by elemental damping forces. The expression 

containing c3 is associated with the bending moment about the X-axis. No other sources of 

damping are taken into account. 

Introduction of all the external loads in to equations (A-5) to (A-7) leads to the differential 

equations of motion of an axially loaded composite Timoshenko beam. 

kAG(u"-8')-P u"-cü-mü= f(y, t) (A-11) 

KO"+GJyr"-P(Ia /m)yr"-c2yi-I. r=g(y, t) (A-12) 

EI6" +kAG(u' - 9) + Kyr" - c39 - p19 =0 (A-13) 
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Appendix B Solution of the undamped free vibration 

The solutions for free natural vibration of the beam can be assumed in the form 

u(y, t) = U(y)e"" 

cv(y, t) = W(y)et" 

e(y, t) = e(y)erm r 

(B-1) 

Substituting equations (B-1) into equations (A-5) to (A-7) gives the following three 

ordinary differential equations in U� 
, 

O� and ! '� : 

kAG(U" - O') - PU" + mw2U =0 (B-2) 

GJ? '"+KO"-P(Ia /MAU" +Iac)2 I=0 (B-3) 

EIO" + kAG(U' - O) + KYD" + pIw20 =0 (B-4) 

By extensive algebraic manipulation, equations(B-2) to (B-4) can be combined into one 

equation by eliminating all but one of the three variables U, O and T, to give : 

(D6+äD4 -bD2-c)W=0 (B_5) 

where 

W=U, Oor P' ; D=d/dý ; ý=y/L (B-6) 

and U, b and c are given below 

b2s2(b2ck -a2p2)+(b2 -a2p2)(p2 +b2r2(1-, 
= ä 

(1- P2s2 )(b2ck - a2P2 ) 

b- b2{(1-b2r2s2)(b2 -2a2p2)-a2b2(r2 +s2)} 
(1- P2s2)(b2ck - a2P2 ) 

a2b4(1-b2r2s2) 
C= (1- P2s2 )(b2ck - a2P2 ) 

with a2, b2, p2, r2 , s2 and ck , 
defined as 

s2)}+a2b2(1- v's2 

(B-7) 
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a2 =1aw2L2 /GJ 

b2=mw2L°IEI 

p2=PL2/EI 

r2 =1 / ALZ 
(B-8) 

s2 = EI / kAGL2 

ck =1-K2/EI. GJ 

The solution of the differential equation (B-5) is 

W( )=C; cosh ac + C; sink aý + C3 cos ß3, + C; sin ßý + CS cos yy +C, * sin y« (B-9) 

where C! '-C6 are constants and 

a= [2(q/3) 0.5 cos(4 / 3) -ä/ 310.5 (B-10) 

[2(q / 3)os cos{(Tt - 4) / 3} +ä/ 3]o. s (B-11) 

[2(q / 3)0.5 cos{ (n + 0) / 3) +ä/ 3]0.5 (B-12) 

with 

q=b +ä2 /3 (B-13) 

ý=cos'[(27c-9äb -2ir3)/(2(a2+3b)1-5)] (B-14) 

Equation (B-9) represent the solution for the bending displacement U(f), bending rotation 

O(ff), and torsional rotation Yß(5) Thus 

U(ff) = A, cosh aý + A. sinh aý + A3 cosßý + A, sin X33 + AS cos yy + A6 sin y (B-15) 

O(ff) = B, cosh aý + B. sink aý + B, cosß + B4 sin ßd + BS cos yý + B6 sin yy (B-16) 

P(ý) = C, cosh aý + C2 sinh aý + C, cos ßc + C4 sin f3 + CS cos yý + C6 sins (B-17) 

where Al -A6, Bi -B6 and C, -C6 are the three different sets of constants. 

Substituting equations (B-15) and (B-16) into equation (B-2) shows that 

B, =(ä/L)A,; B3 =-(ß/L)A3; Bs =-(y/L)A5 
B2 = (a L)A2; Bo = (Q I L)A4; B6 = (Y / L)A6 

where 

(B-is) 
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a/(1-b2r's'-a2s2) 

, 
8= 

, 
6/ (1- b2r2s2 +ß2s2) (B-19) 

T =y/(1-b2r2s2+y2s2) 

Then substituting equations (B-15) and (B-17) into equation (B-4) gives 

Cl = (ka / xQ )A,; Cj = (k, 
6 

/ xa )A3 ; Cs = (k., / xa )As (B-20-a) 

C2 = (ka / XaA; C4 = (kß / xa)A4; C6 = (kr / x�)A6 (B-20-b) 

where k,, k. 8 and kr are functions of a1, b2, pa, r2, S2 and ck , and are given by 

ka = -äa2(K/GJ)/ {(1-a2p2 /b2)a2 +a2) 

k. 
6 = -ß{32(K/GJ)/ {(1-a2p2 /b2)ß2 +a2) (B-21) 

ky =-yy2(K/GJ)/{(1-a2p2 lb 2)Y2 +a2) 

The expressions for the bending moment M, Shear force V and torque T are obtained from 

equations (B-15) to (B-17), after some simplification, as 

M( )_-(EI/L) -(KlL) 
dij 

_-(F1/L2) (B-22) 

(A, 
ga cosh aF, + A2 ga sink cx - A, gß cos (3, - A4 ga sin ßt - A5 gy cos y, - A6 gr sin y, 

} 

v( = (EI I L2) Ld - 'I +(K/ EI) 
d+ 

(PL i)d+ b2r2e = (EI I I]) (B-23) 

{Aifa 
cosh aý+A2 fa sinha4+ A3 fß cosßß- A4 fß sinßß+ AS fr cosy- A6 fr sinyy} 

T(ý) _ (GJ / L) 
dIP 

+ (K / L) - (Pia / mL) _ (GJ / LZ) (B-24) 

JA, 
ea coshoc +A2ea sinhcc, - A3eß cos3E - A4eß singt - A5e7, cosy -A. e. singt} 

where ea , eQ , er , 
fa 

, 
fp 

, 
fr 

, ga, g, 8 and g7 are functions of a2, b2, p2, r2 
, s2 and ck , as 

given below 

ea=a(ka+a 
K 

-a2 p2lb2); e. 8=P(ký+ý 
K 

-a2p2/b2); eý, =y(k+y 
K 

-a'p=/b') GJ GJ GJ 

Ja = a(S. +P2)+a-b'r' ; f. 
8 =ß(gß -P=)-Qb2r2 º f, =Y(S7 -P')-Yýýrý (8-25) 

=a(' +K ca) ; gß =Q(ß+ k, 
e) ; g,, =Y(7+ 

K 

F1 
1c, ) 
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Finally, equations (B-15) to (B-17) and equations (B-22) to (B-24) in conjunction with the 

boundary conditions yield the eigenvalues (natural frequencies) and eigenfunctions (mode 

shapes) of the bending-torsion coupled composite Timoshenko beam. Table B-1 shows the 

classical boundary conditions for the clamped-clamped (C-C), clamped-simply supported 

(C-S), simply supported-simply supported (S-S) and clamped-free (C-F) beams. Note that 

the torsional rotation is prevented for the simply supported end condition. 

Table B-1. Boundary conditions for different end conditions. 

End conditions End 1 End 2 

C-C U=O=`F=0 U=O=T=0 
C-S U=O=''=0 U=T=M=O 

S-S U=T=M=O U=T=M=O 
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Appendix C Expression of the dynamic stiffness matrix 

The dynamic stiffness matrix of an axially loaded composite Timoshenko beam relating 

harmonically varying forces to harmonically varying displacements can be expressed as 

Vi ] [KH, 
i 

Ki, 
2 

K13 Ki, 
4 

K15 K1.6 IF Ui 
MI K2.2 K23 

3 
K24 

4 
K25 

5 
K26 

6 
8t 

T, K33 
3 

K34 
4 

K35 
5 

K36 
6 '1 

(C-1) 

V2 K44 
4 

K45 
5 

K4.6 u2 
M2 Sym. K55 

5 
K5.6 e2 

T K6,6J [W21 
where V, M, T are the amplitudes of the shear force, bending moment and torque and 

u, 0, yr are the amplitudes of the transverse displacement, flexural rotation and torsional 

rotation. The derived expressions for the twelve independent elements of the dynamic 

stiffness matrix [K], are presented here in a concise form as follows (Banerjee, 1998) 

K1,1= K4,4 = (EUL3) 'P1 /d 

K1,2 =-K4,5 = (EUL2) CP2/d 

K1,3 =- K4,6 = (EI/LZ) C3 /d 

K1,4 = (EUL3) 04 /A 

K1, s =- K2,4= (EI/L2) (ps/d 

K1,6 =- K3,4 _ (EI/ 
, 
2) 

<P6/d 

K2,2 = K5, s = (EM) 07/d (C-2) 

K2,3 = K5,6 = (EUL) D8 /d 

K2, s = (EI/L) P9/d 

K2,6 =K3,5 = (EIIL) o1o/d 

K3,3 = K6,6 = (GJ/L) d51] /d 

K3,6 = (GJ/L) 012 d 

where 

4-(Jul e-022+Pst)SpSySha-2fti/2Sp(1-CyCha)-2p2 
p3S7(1-CpCha) 

- 2p p3 Sha (1- Cp C7) (C-3) 

and 
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01 = -t1G. L1SßCYSha -A2SBSYCha+p3CßSYSi ),. 

02 = V2SßSySha + )3Sha(I - CßC7) +2ISß(O - 
C7Ch )+ A2Sy(1 

- CßCb ), 

03 = -z3SßSYSha - 23Sh2(1- CßC7) - 
ýiSp(1 

- C7Ch) -. 2S7(1 - CßCha), 

04 = TlCU1 SßShot ---112'SPSY + u3'SYShx)+ 

05 = -z1[kxShx(Cp - C7) - kßSß(Cc - Cha) + k7Sy(Cp - Cha)J, 
(C-4) 

06 = 'Cl PaSha(CB - 
C7) - 

PSß(C7 - Chor) + ? 'SY(CP - Ci )J, 

07 = -ýI SßCYSha + L2SßSYCha - 3CßSYSha + 6L CßCyCha - 13Cß - ý1 CY + 2Chp, 

08=PiSßCySha+P3CßS, Si-P2S8S7C61+Q2CpC7C +P 3Cß+PtCC-P2Cha, 

09 = ý1SßShm - ý2SPSV + ý3SYshm - ! 3gChm +42CßCY - Z1CpCha +Q1+ 

010 = -P1SßSh2 - P3S7Shm + P2SPSY + P3C7Chm - P2CPC7 +11 CPChat +U21 

TI1 = V1 SpCySha + V; CßSyShx - V2SpSyCbQ + Q3CBC7Ch +V3Cß + V1 Cy - V2Cha+ 

4P12=-vlSßSha-v3S; Sha+v2SßSy+v3CyChat -v2CßCy+vlC#Cha+63 

with 

p= kp - Pka; P2 = Pky - Ykß; µ3 = yyka - 5k7; 

E1 =fakß +fßka; e2 =fßk}' -fykß; 63 =ffka +f«k'y; 

ýi =i; +fß; C2 =fßY -f; C3 =f cc +fY; 

nl = gm + gß; 12 ° 90 - g; u3 - 9F + gal' 

=eat +eß; n2=eß-e1; X13=e7+eQ; 

Al = µ1E2 - ß2E1; Z2 = {1263 + 931E2; )3 = 1=361 -- UlE3; (C-5) 

ý1 = µ1C2 - µ2C1+ IZ2 = u2C3 + IL3C2+ '3 = 11301 -µ1C3; 

'tl =fal12 'fßP3 -f p; t2 = µ1f1 + P2E2 - P3f3; T3 = JL1C1 + P2C2 - µ3C3+ 

= kaµ3n2 - k6µ2113; ý2' = kß111 13 -k, 31; 3= kqu2n 1+ kaµ1? I2; 

!1=k,,, u2? 13 + kßP3y12; !2= kßfi3il 
- k7j1113; ý3 = k7Ll172 

- ka[12g1; 

PI = aP3'12 - 
ßJ2n3+ P2 Y111173 - n1311; P3 = y111i1 + °91fl2+ 

01 = °GM13 '+' ßk3n2; P2 =ß3l - 7-41 q3; P3 = 7µ02 - iu2n]; 
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VI = x/13? 2 - 
ß/t213; v2 = ßJL1q3 

- 7#03 &1 ; V3 = Yý2ff1 + 6k1i 2+ 

v1 = xP243+ ßJ13fl2; V2 = ßP3n1 - Y141fl3; V3 = Yµ1 2- aý2ý1+ 

61 = -kkp2n2 - k#143 ? 13 + krµA; 0'2 = lyP2n2 + Pµ313 
- 7/1 fl Q3 = a/12 12 + ßJ2313 

- y/1141 

in which a2, b2, p2,1 , 2, S2, ßk2 ,'T, U, a, Q, Y, ,ß, 
7, q, 0, ka, k, 6, ky 

, ea, ep . e7 , 

f., f. 
, 

fr, ga , g, 6, g7 have all been defined in Appendix B, with kt =K/GJ and kb = K/EI. 
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Appendix D Orthogonality condition and modal damping 

D. I. Derivation of the orthogonality condition 

The free vibrational mode shapes, derived for bending-torsion coupled beams, have 

orthogonality relationships equivalent to those defined for uncoupled Bernoulli-Euler 

beams but the derivation is comparatively more difficult. This can be demonstrated in a 

similar manner by applying Betti's law (Clough and Penzien, 1975). Orthogonality 

conditions together with the expressions for generalised damping have earlier been given 

in equations (6-35) to (6-40) for different types of bending-torsion coupled beams (both 

metallic and composite). The procedure for derivation of the orthogonality condition for 

the most complicated case is given below. 

An axially loaded bending-torsion coupled composite Timoshenko beam is assumed to be 

vibrating in two different modes, say m and n. It is also assumed that the displaced shape 

of the nth mode is subjected to inertia forces of the mth mode and the displaced shape of 

the mth mode is subjected to inertia forces of the nth mode. The beam can have any 

classical boundary conditions and the same procedure is applicable when the beam has 

arbitrarily varying stiffness and mass along its length. When Betti's law is applied to these 

two deflection patterns, it means that the work done by the inertia forces of mode n acting 

on the deflection of mode m is equal to the work of the forces of mode m acting on the 

displacement of mode n (Clough and Penzien, 1975), that is, 

f(U. 

Jna 
+ F. f 

,. 
v i-0" 

. 
fe)C`b 

= 
f(U» 

fm + 7n 
f�', v +0� 

�m)(D-1) 
00 

where f,, f,, f�, f, ' 
, 

f,. ' and fm are the inertia force, moment and torque of mode 

nth and mth and given below 

fn =m [Ün-Xaen1 ; f. =m [Üm 
-Xa'm 

fW= la`IJ� - mx«U� ; fº� =1a'i', - mxa Ü (D-2) m 

fe= plen ; fm = pIÖ 
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Substituting equations (D-2) and (B-1) in (D-1) gives 

1 

(fi 
j[mVmUn 

i-I. T T� +PI¬ On 
-mxa(UmYn +UnWm)]d 

(D-3) 

tTf TfTl 
omJ [mUmUn + 1a 

Zm 
un+ pl0m®n _M a\`' m 

17n +V 
nm 

\ý,. jý )J«b 

0 

or 

1 
('(ý \ 

«02- 0)') 
f 

[m 
mUn 

+ 1Ct 

m 
In + PIE) 

m�- mxa (U 'F� + U�f'm)] -0 (D-4) 
0 

from which, following the method of Clough and Penzien (1975), the orthogonality 

condition for an axially loaded bending-torsion coupled composite Timoshenko beam is as 

follow 

1 

j[mUmU� ++p100. -mxa(U Tn +Un''m)1al = µn mit 
(D-5) 

0 

where p. is the generalised mass in the nth mode. 

This leads to the physical meaning of the orthogonality condition which is; work done by 

the inertia forces of the nth mode over the displacements of the mth mode is zero. 

D. 2. Derivation of damping ratio in each mode 

Governing differential equations of motion for the undamped free vibration of an axially 

loaded bending-torsion coupled composite Timoshenko beam is obtained from equations 

(6-28) to (6-30) by setting damping coefficients and externally applied loads to zero 

kAG(u" - 6') - P(u" - xaW ") - m(ü - xayl) =0 (D-6) 

Ä'0"+GJW"-P{(1 /m) "-x u"}-Iay1+mxaü=0 (D-7) 

EIO" + kAG(u'- O) +K"- pIÖ =0 (D-s) 

Substituting equation (6-31) into equations (D-6) to (D-8) leads to 
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kAG(U, '- G') - P(U; '- xa`Y�) = -mw �(U� 
_X C, 

LP�) (D-9) 

KO; '+GM�"-P{(Ia/m)'P, "-xjUn'}=o (_loam�+mxCU�) (D-10) 

EIO;; + kAG (U' - O�) + K`1';, '= -(o n 
(pIO�) (D-11) 

Substituting equation (6-41) into equations (6-28) to (6-30) follows 

Lc 

kAG(U: 
- 

en) qn - 
P(Un 

- XaTn) qn 
(K (ý 

rrE1 
-CI 

(U. 
- XTn) 4,1 

- M(Un - X-'") 4-f 
lbI 

t) 
\''-I2) 

Kehq, 
º+GJ'P'q�-P{(I«/m)'; 

'n" -x«Unj q,, 

-c lY +c xUI 'F +mx U- 
At, 1) (D-13) 

co [EIe: +MG(u-e) qx +KTn/gn 

(D-14) 

and substituting equations (D-9) to (D-11) into equations (D-12) to (D-14) leads to 

00 
Z [-mw �(Un - x, `1')41- c, (Un - x«Tn)4n - m(UU - x«'Pn)4n1= 

,f 
(ý, t) (D45) 

T-1 

Co 

= S(ý, t) (D-16) ýýw ý +mx«Un)9'n - c2`ýn4n +cIx«Ungn - I«`ý'nRn + tnX. U. R, 
n=1 

Co 

-(s (pIO�)q� - C3E), - PIO., Rn] =O 
T-1 

(D-17) 

Multiplying equations (D-15) to (D-17) by -U. , -Y,, and -O. , respectively, adding 

them together, integrating them with respect to ý from O to =1, using the orthogonality 

condition and following method of Bishop and Price (1977), then equations (6-42) and 

(6-43) are obtained only if 

J 
IC1Uml% +CZTmTn +C3®m®n -Clx. 

(UmT» +UnTm)14= 2bna 
nji 

ö, 
4n 

(D-1ö) 

0 

where 
1 

ýn = 
2ý1 

J[c1U,, 
+c2'J +C3On -2c x. Un'i'. ]4 (D-19) 

ßµMo 

and ý'� is the damping ratio in the nth mode. 
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Appendix E Free vibration of non-uniform beams with bending-torsion coupling 

In many cases of real life applications, beam structures are usually non-uniform. Examples 

of such structures are aircraft wings, turbine and fan propellers, and helicopter blades. The 

method developed in this thesis has been applied mainly to uniform beams, however, it 

may be easily extended to the free and forced vibration analysis of bending-torsion coupled 

beams with varying cross-sections. A non-uniform beam can be idealised as an assembly 

of many different uniform beams, i. e. a stepped beam. In this appendix the free vibration 

characteristics of three non-uniform beams (two metallic and one composite) with different 

end conditions, is investigated using the present method and the results are compared with 

those available in the literature. 

E. I. A tapered Timoshenko beam 

The first chosen example is a metallic beam that is linearly tapered in depth along the 

length of the beam. The beam has the following mechanical properties (Cleghorn and 

Tabarrok, 1992) :E= 210 GPa, G= 80 GPa, k=0.667, L= 25.4 cm, height of the 

beam at the left end = 2.54 cm and height of the beam at the right end = 1.27 cm. 

Boundary conditions are considered to be clamped-clamped and clamped-simply 

supported. 

The first five natural frequencies of tapered beams are calculated using the present method 

and compared with those of previously published by To (1979,1981) and Cleghom and 

Tabarrok (1992). The natural frequencies are given in Table E-1. Results of the present 

method show very good agreement with those of To and Cleghom et al. 

To (1979,1981) and Cleghom and Tabarrok (1992) used finite element methods, but 

based on two different formulations. To (1979,1981) formulated the element matrices for 

a tapered Timoshenko beam. A cubic polynomial was assumed for the deflected shape, 

and a linear distribution for the shearing strain. On the other hand, Cleghom and Tabarrok 

(1992) developed a finite element model for free lateral vibration analyses of linearly 
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tapered Timoshenko beams. The shape functions were obtained by them from 

homogeneous solutions of the governing equations for static deflections. 

E. 2. A tapered swept back wing 

The second example is a non-uniform swept back wing (Hallauer, 1982) and is shown in 

Figure E-1. Mechanical properties of the wing are given in Table E-2. The first four 

natural frequencies of wing are calculated using the present method and compared with 

those of Hallauer (1982) using respectively exact and finite element methods. The natural 

frequencies are given in Table E-3. Results of the present method show very good 

agreement with those of Hallauer (1982). 

E. 3. A tapered composite beam 

The third illustrative example is a tapered composite beam (Rao and Ganesan, 1997) and 

the beam is shown in Figure E-2 for different configurations. The following AS4/3051-6 

graphite-epoxy material properties (in the usual notation) are used : El =144.8 GPa; 

E2 = 9.65 GPa; G12 = G13 = 4.14 GPa; G23 = 3.45 GPa; v=0.3; p =1389.23 kg/m3; 

L= 25.4 cm; hl/h2 = 0.5; Uhs = 40 and width of the beam = 2.54 cm. The stacking 

sequence used is [0/90/90/0]. The end condition considered is simply supported-simply 

supported. Three different types of tapered beams as shown in Figure E-2 are considered. 

The first one is of increasing type, the second one is of decreasing-increasing type and the 

third one is of increasing-decreasing type (see Figure E-2). 

The first three natural frequencies of these beams are calculated using the present method 

and compared with those published by Rao and Ganesan (1997) who calculated the 

natural frequencies using two different theories, namely first order shear deformation 

theory (FSDT) and higher order shear deformation theory (HSDT). Natural frequencies 

are given in Tables E-4 to E-6, receptively, for increasing type, decreasing-increasing type 

and increasing-decreasing type. Results obtained from the present method show quite 

good agreement with those of Rao and Ganesan (1997). 
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Table E-1. Natural frequencies of a tapered Timoshenko beam 

co ( Hz)x104 

(C-C) (C-S) 

mode To (1981) Cleghom/Tabarrok (1992) Present theory To (1981) Cleghorn/Tabarrok (1992) Present theory 

(20 elements) (20 elements) 

1 0.91718 0.91707 0.91721 0.22174 0.22174 0.21983 

2 2.4112 2.4118 2.4110 1.0334 1.0336 1.0295 

3 4.4775 4.4834 4.4768 2.5588 2.5614 2.5502 

4 6.9910 7.0094 6.9875 4.6532 4.6656 4.5978 

5 9.8992 9.9152 9.8898 7.2155 7.2448 7.1864 

Table E-2. Mechanical properties of a stepped swept back wing (Hallauer, 1982) 

element EI GJ m/L plp/L xQ L 

no. (MNm2) (MNm2) (kg/m) (kg-m) (m) (m) 

AB 9.773 0.9877 35.72 8.643 -0.1826 2.438 

BC 6.515 0.6584 23.81 5.762 -0.1826 2.134 

CD 3.258 0.3292 11.91 2.881 -0.1826 1.829 

Table E-3. Natural frequencies of a stepped swept back wing (Hallauer, 1982) 

Frequenc y No. Present method Hallauer (1982) FEM (Hallauer. 1982) 

1 57.67 57.68 57.69 

2 118.4 118.4 119.0 

3 218.1 218.1 220.8 

4 368.8 368.8 388.6 
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Table E-4. Natural frequencies of the increasing type tapered composite beam (kHz). 

Rao and Ganesan (1997) 

mode no. present theory FSDT HSDT 
(20 elements) 

1 2.4056 2.4054 2.4065 

2 8.3527 8.3514 8.3671 

3 15.574 15.558 15.617 

Table E-5. Natural frequencies of the decreasing-increasing type tapered composite beam (kHz). 

Rao and Ganesan (1997) 

mode no. present theory FSDT HSDT 
(20 elements) 

1 2.0898 2.0897 2.0902 
2 8.1773 8.1728 8.1885 
3 15.727 15.705 15.762 

Table E-6. Natural frequencies of the increasing-decreasing type tapered composite beam (kHz). 

Rao and Ganesan (1997) 

mode no. present theory FSDT HSDT 
(20 elements) 

1 2.6171 2.6170 2.6175 
2 8.2053 8.1986 8.2148 
3 15.651 15.638 15.700 
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500 

A 

Y 

X 

Figure E-1. Elastic axis of cantilevered swept back wing (Hallauer, 1982), planform view. 
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Figure E-2. Different types of taper profile (Rao and Ganesan, 1997). 
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Appendix F List of computer programs 

A suite of computer programs in FORTRAN has been developed during the course of this 

investigation, (i) to determine the rigidity properties, (ii) to perform the buckling analysis 

and (iii) to predict the free and forced vibration characteristics of the bending-torsion 

coupled metallic or composite beams, considered in this research. These programs have 

been validated using published literature and a series of carefully selected tests. A list of 

all the main computer programs developed, with a description of their application is given 

below. 

Program Command lines Routine 

abdmx. f 277 main 

boxmxe. f 694 main 

psd6. f 978 main 

axitim 

subcmp 

force. f 329 main 

tw-stress 

fp-stress 

tpcmcomp. f 258 main 

Description 

To calculate the rigidity properties of a composite 
beam with flat rectangular cross-section. 

To calculate the rigidity properties of a composite 
beam with thin-walled cross-section. 

To calculate the dynamic response of bending- 
torsion coupled beams to deterministic and 
random loads. This program can calculate 
dynamic displacements or accelerations. 

To calculate the natural frequencies and mode 
shapes of a bending-torsion coupled metallic 
beam. 

To calculate the natural frequencies and mode 
shapes of a bending-torsion coupled composite 
beam with both geometric and material 
coupling. 

To calculate the dynamic shear force, bending 

moment and torque in any cross-section of 
a bending-torsion coupled beam. 

To calculate the stresses in principal material 
direction in a thin-walled laminated composite 
beam. 

To calculate the stresses in principal material 
direction in a flat rectangular laminated 
composite beam. 

To calculate the elastic critical buckling load 
of bending-torsion composite columns with 
both geometric and material coupling. 
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Appendix G List of published papers extracted from the present work 

A list of published papers extracted from the present work is given here. The papers were 

published either in refereed journals or presented in refereed established international 

conferences and appeared in their proceedings. 

Journal publications 

1. S. H. R. Eslimy-Isfahany and J. R. Banerjee, 1997; Dynamic Response of Composite 

Beams with Application to Aircraft Wings, AIAA Journal of Aircraft, Vol. 34, 

November-December, No. 6, pp. 785-791. 

2. S. H. R. Eslimy-Isfahany, J. R. Banerjee and A. J. Sobey, 1996; Response of a Bending- 
Torsion Coupled Beam to Deterministic and Random Loads, Journal of Sound and 
Vibration, Vol. 195, No. 2, pp. 267-283. 

3. S. H. R. Eslimy-Isfahany and J. R Banerjee, 1996; Dynamic Response of an Axially 

Loaded Bending-Torsion Coupled Beam, AIAA Journal of Aircraft, Vol. 33, May- 

June, No. 3, pp. 601-607. 

Presented papers and conference proceedings 

4. S. H. R. Eslimy-Isfahany and J. R. Banerjee, 1998; Effects of Axial Load on Dynamic 
Stresses in Composite Wings Subjected to Random Excitation, Proceedings of Annual 
Conference of Aeronautical Engineers, Shahinshahr, Isfahan, Iran, October, Vol. 2, pp. 
684-692. 

5. S. H. R. Eslimy-Isfahany and J. R. Banerjee, 1998; Dynamic Stresses in Composite 
Timoshenko Beams with Application to Aircraft Wings, Proceedings of 
AIAA/ASME/ASCE/AHS/ASC 39th Structures, Structural Dynamics and Materials 
Conference, Long Beach, CA, USA, April, pp. 3201-3211. 

6. S. H. R. Eslimy-Isfahany and J. R. Banerjee, 1997; Deterministic and Random 
Response of an Axially Loaded Composite Timoshenko Beam, Proceedings of 
AIAA/ASME/ASCE/AHS/ASC 38th Structures, Structural Dynamics and Materials 
Conference, Kissimmee, CA, USA, April, pp. 511-520. 

7. S. H. R. Eslimy-Isfahany and J. R. Banerjee, 1997; Effects of Shear Deformation and 
Rotatory Inertia on the Response of a Composite Aircraft Wing to Random 
Atmospheric Turbulence, Proceedings of Annual Conference of Aeronautical 
Engineers, Tehran, Iran, January, pp. 620-632. 
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8. S. H. R. Eslimy-Isfahany and J. R. Banerjee, 1996; Response of Composite Beams to 

Deterministic and Random Loads, Proceedings of AIAA/ASME/ASCE/AHS/ASC 

37th Structures, Structural Dynamics and Materials Conference, Salt Lake City, USA, 

April, pp 813-821. 

9. S. H. R. Eslimy-Isfahany and J. R. Banerjee, 1995; Response of an Axially Loaded 

Bending-Torsion Coupled Beam to Deterministic and Random Loads, Proceedings of 

AIAA/ASME/ASCE/AHS/ASC 36th Structures, Structural Dynamics and Materials 

Conference, New Orleans, LA, USA, April, pp 2523-2533. 

Papers submitted for presentation in international conferences 

10. S. H. R. Eslimy-Isfahany and J. R. Banerjee, 1999; Theoretical and Experimental 

Investigations into Buckling of Composite Columns, Proceedings of 

AIAA/ASME/ASCE/AHS/ASC 40th Structures, Structural Dynamics and Materials 

Conference, St. Louis, MO, USA, April. 

11. J. R. Banerjee and S. H. R. Eslimy-Isfahany, 1998; Free Vibration of Laminated 

Composite Beams with Effects of Shear Deformation, Rotatory Inertia and Axial 

Load, Proceedings of International Conference on Theoretical, Applied, Computational 

and Experimental Mechanics, Indian Institute of Technology, Kharagpur, India, 

December. 

Publications in preparation 

12. S. H. R. Eslimy-Isfahany and J. R. Banerjee; Closed Form Solution for the Response of 
a Simply Supported Bending-Torsion Coupled Beam to Deterministic and Random 
Loads, Engineering Structures. 

13. S. H. R. Eslimy-Isfahany and J. R. Banerjee; Response of an Axially Loaded Bending- 

Torsion Coupled Timoshenko Beam to Deterministic and Random Loads, 

International Journal of Solids and Structures. 

14. J. R. Banerjee, S. H. K Eslimy-Isfahany, and F. W. Williams; Coupled Flexural- 
Torsional Static Stiffness Matrix of Composite or Metallic Columns, Composite 
Structures. 

15. S. H. R. Eslimy-Isfahany and J. R. Banerjee; Significance of Modal Interchange and 
Generalised Mass in Each Mode of Vibration on Response Characteristics of a 
Vibrating Bending-Torsion Coupled Beam, Composites Part B: Engineering. 

16. S. H. R. Eslimy-Isfahany and J. R. Banerjee; Review of the development of free and 
forced vibration of beams, The shock and Vibration Digest. 
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