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Thesis Summary

This thesis is concerned with dynamic and transient analysis of MSF
desalination plants. The technique is developed using artificial neural
networks (ANN) approach for the purpose of prediction, analysis, modelling,
and control of MSF desalination plant. The applicability of the method to
predict an approximation of the transient operating conditions as well as the
control action are shown satisfactory. The network architecture and learning
algorithm are developed based on the Multilayered Feed forward Networks
(MFN) with the Back Propagation (BP) learning algorithm. It was shown that
the approach could intelligently capture the dynamics of the system. An
improved technique is developed for the BP learning algorithm based on
Global Error Node Evaluation (GENE) approach for MFN to retains the
function approximation requirements for a nonlinear dynamic behaviour.
However, by using this approach considerable improvement for the
generalization capability could be obtained for the case study under
consideration. The technique provides the necessary dynamic learning
behaviour required for MFN. This approach appears to be effective for the
input - output dynamic modelling of complex process systems and therefore
on-line adaptation is possible (when the characteristic of the system is
changing or when more test data are available for another operating range).
The developed algorithm is used for the development and validation of an
empirical multi-controller structure for MSF desalination plant. Satisfactory
results are obtained from practical examples with the additional training

ability.
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Summary of Original Contributions

To the best knowledge of the author, the following portion of the thesis is
considered as the original contributions:
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Improvement of the Back Propagation learning capability for Multi
Layered Feed forward Networks using GENE approach.

Learning System Dynamics for MIMO using the MFN.

Applicability of using the Artificial Neural Network for assisting the
modelling control problems found in MSF desalination process.
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Chapter 1 INTRODUCTION

1.1 Introduction

The desalination industry and related control system engineering have now developed in
size and complexity to the point where increasingly sophisticated tools are necessary for
solving the numerous problems that arise in operation, control, planning and design of
these systems. This has seen the introduction of computer technology, the use of
mathematical modelling and programming, control theory and simulation tools. Large
classes of problems however, still continue to elude the above solution methodologies.
These are frequently characterized by imprecision, heuristic decision making, non-linearity,

large size and complexity.

In spite of the significant advances in linear control, the theoretical advances for non-linear
control have been limited. Precise model of process dynamics becomes increasingly
difficult to produce as process complexity increases. Precise modells are required in order

to produce algebraic controller for such systems.

The desalination process is basically an evaporating and condensing process. The heat
required for evaporation can be partly recovered during the condensing phase. MSF
desalination is a type of evaporation with many technical and economic advantages and
can be regarded presently as providing the optimum solution to the problem of sea water
desalting. The basic principles and process description of the MSF desalination process are

introduced later in chapter 2.
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Like numerous other models, the model of the MSF is nonlinear in nature. This is mainly
because of the dependence of physical properties of the streams upon temperature,
pressure and salinity. In addition, relations for the heat transfer coefficients also contribute
to the non-linearity of the model. All pervious works for modelling MSF process are based
on the balance equations and the heat transfer equations in the linear form. The physical
property functions that represent a complementary and basic part of the process model are
main contributors to the complexity and non-linearity of the equations. They are the
mathematical correlation expressions describing the thermo-physical properties of water,
steam, and the brine solution. One important requirement of the correlation is their validity
over a wide range of temperatures and concentrations. The evaluation of the overall heat
transfer coefficient for the different stages and the brine heater is another factor of
complexity. It is not possible to completely rely upon the use of mathematical models

based on approximate empirical formula obtained through laboratory work.

Intelligent control attempts to solve difficult or complex problems by admitting process
uncertainty or complexity and relaxing the specification on controlled response, rather
than searching for an exact solution to simplified problems as in classical control. Control
improvement can be achieved by design of a controller whose structure and consequent
outputs in response to external commands are determined by experimental evidence, i.e,,
the observed input/output behavior of the plant, rather than by reference to mathematical
or model-based description of the controller. The controller is then considered as
intelligent controller in which the benefits are through decision making and/or learning
capability. Both approaches can be combined. Dimitris e al (1992) shows that by
combining the available prior knowledge of the system with the intelligent controller,
further enhancement can be achieved where the intelligence will be learning and finding

uncertainties and non-linearities of the system [1].
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Advanced control techniques are intended to take into account all situations arising in real
plant. Al Gobaisi et al (1991) analyzed the situation in some loops in an MSF plant and
indicated the possibility of improvement by the application of advanced control technique
[2]. The support of artificial intelligent (AI) to the application of advanced control
strategies for the efficient operation of the MSF desalination plants are discussed in
(AlGobeaisi et al, 1994; Rao et al, 1994) [3], [4]. El-Hawary (1992) discussed possible
application of artificial neural network (ANN) to desalination [5]. The main advantage of
using such an approach is the provision of a general framework to tackle nonlinear control
problems. Moreover, the engineering effort in developing a neural controller is less than

for conventional controller design, at least for nonlinear systems.

In this thesis techniques using intelligent control through the use of ANN for dynamic
modelling. However, model uncertainty, and control prediction are investigated and
applied to the MSF desalination process. Benefits from using such techniques are
discussed with emphasis to the required properties for neurocontrol application. One
technique is based on creating an approximation of the operating conditions in time state
space for specific conditions and network topology. This technique is presented to
demonstrate the capability of Multi-layered Feed forward Network (MFN) for modelling
and control of a MSF desalination plant based on practical examples available from the
process. Comparative simulation results using data from the plant have shown that by
adding more sensory information with proper choice of the learning rate and other learning
parameters, the neurocontroller could generalize for all cases available when it is applied
to the process under consideration. This is a very fast way for estimating controllers set
points once the off-line training is successful. The weak point of ANN with feed forward
configuration is the number of training examples required for generalization and the long
training time. However, an improved technique based on Global Error Node Evaluation

(GENE) approach, which retains the function approximation requirement for the back
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propagation learning algorithm is developed. A novel network architecture and learning
algorithm based on the back propagation using the GENE approach is shown to capture
intelligently the dynamics of the system. The main benefit appears when more data are
available for other conditions, the network can be further trained so that the previous and
current learning are working for capturing the function approximation and not just
interpolating the data. It is best suited to on-line approximate calculation. Moreover,
MFN's with BP learning algorithm are characterized with the static behavior capability,
however, by using this approach considerable improvement is obtained for the
generalization capability of BP for MFN, as well as the technique provides the necessary

dynamic behavior required for the MFN.

1.2 Out line of the thesis

Chapter 2: Overview of Desalination Process
The basic principles and process description of the MSF desalination process are
introduced. Literature review on work done for modelling MSF desalination process
including efforts for dynamic modelling are briefly introduced. Description of the control
system required for MSF desalination process is discussed along with an application of a

supervisory control system for MSF desalination process.

Chapter 3: Intelligent Control & Conventional Control System: An
Overview

Mathematical modelling techniques have been traditionally popular for tasks such as the
study of system behavior, process optimization, process control and the like, but owing to
a variety of reasons like inadequate knowledge about the process, large computational
cost of the attendant simulation etc., alternate strategies might be sometimes called for.

Artificial neural networks (ANN) offer one such efficient and cost effective alternative.
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tn

Neural networks are essentially multidimensional regression paradigms based on input-
output relationships. They are made to capture the knowledge about the characteristics of
a system through a suitable learning process, so that a tuned network serves as an efficient
tool for simulation studies. The present work attempts to highlight this aspect of neural

networks with a case study conducted on a multistage flash (MSF) desalination plant.

This chapter reviews the literature in applying ANN to the control and modelling problem.
The relationship of intelligent control to traditional control system is briefly reviewed.
Next a comparison with the control system problems solving paradigm is carried out and
lastly a brief overview of intelligent control methodology and application using the

Artificial Neural Networks is discussed.

Chapter 4: Artificial Neural Networks (ANN)

Advances in both learning algorithms and microelectronics have renewed interest in neural
networks across a spectrum of research areas. For control engineering, ANN are attractive
because they have the ability of nonlinear plant modelling, can handle large amount of
sensory information, perform collective processing and learning and offer the potential for

highly parallel computation.

The most important characteristic of ANN is its ability to learn the frequently complex
dynamic behavior of a physical system. Learning is the process where the network
approximates the function mapping from system inputs to outputs, given a set of
observations of its inputs and corresponding outputs. This is done by adjusting the
network internal parameters, to minimize the squared error between the network outputs
and the desired one. One such method is the error back-propagation (BP) algorithm,
which is essentially a first order gradient decent method [6], and is discussed in detail

The results shown indicate the validity of the approach and gives some insight into the
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behavior and generalization capability of the ANN. Problems concerning with convergence
speed, the number of hidden neurons and the required number of training examples are
discussed. A methodology is developed based on global error node evaluation (GENE)
scheme for MFN, that account for generalization and avoiding local minima so that a
consistent ANN approach can be developed for dynamic control of MSF. A new method
based on GENE approach for MFN is developed. It retains the function approximation
requirements for the back propagation (BP) learning algorithm for a nonlinear dynamic
behavior. This approach appears to be effective for the input - output modelling of
complex process systems and therefore on-line adaptation is possible (when the
characteristic of the system is changing or when more test data are available for another
operating range). Two problems in BP are addressed, namely, the saturation of the
network nodes and the ultimate paralysis of the entire MFN during learning; and the
problems of convergence to a local minima. In this approach the architecture is modified
by adopting linear activation nodes at the output layer with fixed weights, while the hidden
layers (two layers) are having nonlinear activation nodes. The GENE approach is validated
using the relationship of the back propagation errors between each layer (output & hidden

layers), and the subsequent weight update relation during the whole learning process.

By using multilayered feed forward network (MFN) for nonlinear empirical approximation
for the model of interest, and adopting the static learning algorithm developed from the
standard back propagation (BP) algorithm, it has shown to have the drawback of
excessively long training time required for the development of even a simplified model of
the process, hindering the development of a single model valid in its entire operating
envelope. Alternatively, a Global Error Node Evaluation learning algorithm (GENE) for
MEFN is developed as an accelerated enhancement to train the MFN. The two main
distinctions of this learning algorithm are: (1) no saturation for network nodes is exhibited

avoiding the ultimate paralysis of the entire MFN during learning, (2) Global convergence
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can be achieved by keeping the direction of the gradient in the same direction, avoiding the
local minima problem. The internal behavior of the GENE hidden nodes is investigated

and is shown to provide the necessary dynamic/nonlinear behavior that lacks in the

standard BP for MFN.

Chapter 5. Application of Modelling & Control of MSF Plants by ANN-I
This chapter is devoted to demonstrate the capability of ANNs for modelling and control
of a MSF desalination plant based on a description of practical examples from the
desalination process and results of using ANNs for the simulation, identification,
modelling, and control of MSF desalination plant. This is followed by a brief overview on
the data used for the analysis and the various network structure used for learning. These
include both transients and controlled variables that can be obtained from the various
sensors. Next the ANN controller approach for set - point generation is described and

lastly conclusion is drawn including possible direction of future research.

The approach used in this thesis is described. Data from the plant are used for training and
testing. A Multi layer Feed forward Network (MFN) architecture with the BP learning
algorithm 1s used and described. Control and modelling capability are investigated by
considering the sample of the system input - output during load change following a time

state space function V(t) with a mapping function N that can be approximated using ANN.

The set point estimation task using the ANN approach is investigated by using two
ANN's; the first one (NNE) has the task of estimating the plant load/status trajectories
during load variation, while the second one (NNC) has the task of producing the necessary
control input based on NNE estimation. Thus the inputs to NNE network are selected as

inputs and outputs for NNM. The outputs of the estimation network are which is the
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subsequent input to another network. These outputs are the inputs to the control network

(NNC) and the outputs are the manipulated variables (set point to regulatory control).

Chapter 6: Application of Modelling & Control of MSF Plants by ANN-II
To investigate the response of the control system to external disturbances such that the
plant availability is not disturbed for MSF desalination plant, all main control loops were
observed during imposed disturbances so that the interactions of the desalination process
could be covered. The objective of this chapter is to present a dynamic black box model of
the desalination process. The developed GENE algorithm is applied to data obtained from
MSF desalination plant to identify and model the process behavior due to dynamic
disturbances. The philosophy of applying ANN involve training on part of the scenarios
obtained, and then, using the rest of the scenarios to test and study the network
performance. The study includes the static test (slow variation of the process variables).
The GENE approach is adopted as the learning algorithm, for which it is required to
investigate what dynamic capability could be provided by the feed forward network. The
internal behavior and convergence properties of the algorithm are compared to the
standard back propagation with one hidden layer, and the advantages and disadvantages
are discussed. The results are illustrated using data obtained from AL-TAWEELAH MSF
plant at Abu Dhabi. Satisfactory results are obtained from simulation examples and they

are given.

The performance of the network is studied by using dynamic test data from one control
loop in a multi - controller structure for a large-scale process. Next it is discussed what
kind of additional learning method is effective when new dynamic data are available from

other control loops, so that the additional information provided are learnt efficiently
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without affecting the previous learning process. The effective learning method is based on
the Back Propagation (BP) algorithm with a variation or condition in order to: 1) it
approximates an underlying mapping rather than interpolating training samples; 2) it is
robust against gross error; 3) the rate of convergence is improved since the influence of
incorrect samples is gracefully suppressed. It is important to examine the modelling
capability of different ANNs, to determine what functional, representational and

generalization properties they possess.

Chapter 7: Conclusion

Results for application of the ANN techniques using the GENE approach to predict the
brine levels in the stages of MSF plants are summarized. Further work for the

development of these techniques is discussed.



Chapter 2 OVERVIEW OF DESALINATION

2.1 Introduction

Vitality of water for life growth and lack of natural water sources in some areas of the
world, especially in the Middle East and the Gulf areas, leads to sea water desalination for
fresh water production. Different types of desalination plants are available, with the largest

production capacity being in the conventional multistage flash desalination plants.

Generally the desalination process is by which pure water is separated from a solution of
water and salts. In order to separate the pure water from the concentrated solution we
have to supply some driving force for those separation. The provision of this driving force
results into the energy consumption. Desalination processes can be split in two main

categories:

1) Those where the separation involves a change of phase.

2) Those in which no change of phase is involved.

In the first category, energy is supplied to bring about a phase change between the product
in the vapor form and the concentrated stream in the liquid form. It is important to note

that, at the point of separation, there is no physical barrier between the two streams.
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In the second category, the main processes are reverse osmosis and electrodialysis in
which the product and concentrate streams are separated by a physical barrier called a
membrane. The membrane allows the passage of only one material through it and so
desalination is accomplished by the membrane allowing the passage of pure water through
the membrane in case of reverse osmosis and by the passage of the charged ions through

the membrane in the case of electrodialysis.

2.2 MSF Desalination Process

The desalination process in the first category is basically an evaporating and condensing
process. The heat required for evaporation can be partly recovered during the condensing
phase. MSF desalination is a type of evaporation with many technical and economic
advantages and can be regarded presently as providing the optimum solution to the

problem of sea water desalting.

The basic layout consists of a steam source, a water / steam circuit (brine heater) and an
evaporator unit. The plant includes a brine heater and several flash stages divided into two
sections - recovery and reject. The number of stages are determined according to the plant
capacity and performance ratio. Optimum performance ratios are established on a case by
case basis depending of fuel costs, quantity of distillate required, purpose and usage of the

plant.

Steam is fed to the brine heater (to heat sea water) and ejector (to create vacuum). The
circulating water is heated by the absorbed heat from the distillate and passes to the brine

heater where the necessary heat is provided. The heated brine is flash evaporated in the
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evaporator cells. The evaporator cells have condensers, through which relatively cool

circulating water passes, the condensation takes place thereby producing distillate.

The stages are water sealed from each other to prevent pressure equalization between
stages. Figure 2.1 shows the schematic process diagram of the multistage flash plant, and

is limited to the main elements of the plant which are described in the as following section.

221 Basic Scheme of MSF Desalination Plant

The cooling water, which is chlorinated sea water from the sea water supply pumps,
enters the plant as the "inlet heat reject flow". It flows through the condenser tubes of the
heat reject stages on which vapor from the flashing brine condenses on the outside of the
condenser tubes. Part of the cooling water heated in this way returns to the sea as heat
reject flow. Only a fraction output of the flow is taken as feed water for the plant and is
called the make-up. This feed is suitably conditioned and for this purpose a dosing unit
and a deaerator are provided. The required make-up is added to the recirculating brine in
the last stage. A combination of brine and make-up is extracted from the last stage of the
evaporator by brine recirculating pump and is then pumped through the condensers of heat
recovery section. The recirculating brine is treated with sodium sulphate to act as an
oxygen scavenger and with antiscale to prevent scale before entering the heat recovery
section. Here the vapor formed by the flashing brine is condensed. When the brine is
recirculated through the heat recovery section condenser tubes, it absorbs the latent heat
of the vapor formed by the flashing brine thereby raising its temperature and finally flows

out from the condenser in the first stage. It then enters the brine heater and is heated by
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steam to the required top brine temperature (TBT). Condensate formed in the brine heater

returns to the condensate header.

From this point the brine flows into the bottom of the first chamber (flash chamber).
Since it i1s superheated compared to the conditions in the flash chamber it flashes
spontaneously and the brine temperature is lowered in accordance with equilibrium
condition of the stage. The brine at its lower temperature flows through the inter-stage
transfer orifices into the new stage in which the equilibrium temperature is a few degrees

lower. Here, in all the subsequent stages, the flashing process is repeated, so that:

a) The brine cools down in the bottom of the chamber to the accompaniment of
vapor formation.

b) The vapor formed by the flashing brine is condensed on the condenser tubes. The
condensed water called distillate falls into the distillate tray, and

c) The brine in the condensers has its temperature raised. (refer to the "Temperature

Profile" for an MSF desalination plant described below).

Through the flashing which takes place, the salt content of the brine increases stage by

stage and reaches its maximum value in the final heat reject stage.

To prevent buildup of the salt content in the system, it is necessary to tap off a certain
fraction of the brine at some points in the circuit and an equivalent amount of make up 1S
taken as a feed. This make-up feed water is in addition to the feed water required to
replace the distillate. This is done in the final heat reject stage at the point where the blow

down flow is shown in the diagram, as this is the minimum temperature, reducing the heat
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losses. Since this stage is under vacuum the flow diverted in this way must be extracted

with a pump.
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Figure 2.1: Schematic diagram of MSF plant

Within the stages the rising vapor passes through demisters before reaching the
condensing tubes to prevent the distillate from being contaminated by any entrained sea
water. The demisters usually consists of a closely woven wire mesh. The distillate falls
from the condenser tubes and is collected in wide channels and flows through all the
stages via special inter-stage transfer orifices. In flowing through the stages the distillate
undergoes the same flashing process as the brine flowing underneath. It thereby follows
that in each stage the sum of the distillate and brine flow between the inter-stages is
constant and is equal to the value of the brine flow in the condenser tubes and before entry
into the first flash chamber. Distillate must likewise be withdrawn by a pump from the
final heat reject stage. Vacuum is usually created by connecting the flash chambers and the
feed water deaerator to a steam jet ejector system. This ejector system will evacuate all air

on start-up and also extract during the normal running of the evaporator all the non-
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condensing gases, especially all the oxygen and carbon dioxide, which enter with the feed
water and develop in the circuit as a result of thermal decomposition. In general each flash
chamber vents into the next chamber with the non-condensing gases being removed at the
last stage. However, as most of the gases are released in the first few stages, provision is

made such that these are individually vented to the vacuum system.

222 Principal of Flash Chamber
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Figure 2.2: MSF stage (flash chamber)

The principle of flash chamber 1s illustrated in figure 2.2 If we take any stage of the
evaporator the water vapor pressure prevailing in the flash chamber will be that

corresponding to the equilibrium temperature reached in the stage. Hence the pressure In
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the stage b, Pb is lower than that of the preceding stage Pa, but higher than that of the
next stage Pc. /7 is this pressure difference which draws the brine through the evaporator
stages. The brine enters a stage through the inter-stage brine orifices which are fitted with
a brine gate which may be adjusted from inside the stage. This will enable the optimum
brine level to be established in the stage during plant commissioning. A jump plate is fixed
to the stage floor. This jump plate cause a wave to form thereby increasing the water
depth in front of the brine orifice ensuring the inter-stage brine orifice is fully submerged
and possibility of vapor blow through is eliminated. A splash plate is fixed to the stage
wall above the inter-stage brine orifice to prevent the brine splashing, due to the sudden

flashing

223 Temperature Profile

A typical temperature diagram for an MSF desalination plant is shown in figure 2.3. The
diagram is divided into three areas corresponding to the heat reject section, heat recovery
section and the brine heater. The cooling water enfers the heat reject section at a
temperature of t1. Within the condenser tubes of the heat reject section its temperature
will rise to t4. This temperature and the brine temperature after flashing in the last stage
are approximately identical, as with equality of these temperatures the vibrations are
minimized. In the condenser tubes of the heat recovery section the brine flow (at
temperature t4) is raised in temperature and on leaving the first stage has reached a
temperature of t2 which also will be the brine heater inlet temperature. In the brine heater
the temperature is increased to the maximum temperature in the circuit t3. This is the Top
Brine Temperature (TBT). From the brine heater the brine flows at a temperature of /3
into the first stage flash chamber where it is slightly cooled by the simultaneous flashing

and vapor formation action. The flashing brine leaves the first stage at a slightly lower
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temperature than that with which it entered and this change of temperature is
approximately the same for all the stages. In the last stage the flashing brine drops to its
lowest temperature within the circuit 74. This is the Bottom Brine Temperature (BBT).
The total brine temperature range of the plant i.e. the difference between the top brine
temperature 73 and the bottom brine temperature 74 is called the "working range" or the
"flashing range". The temperature of the distillate is lower than that of the flashing brine
flowing beneath it by approximately 1 to 1.5 ©C, i.e. by the amount of the boiling point

elevation of the flashing brine and of various other temperature losses in the stage e.g.

non-equilibrium, non-condensing gases, demister and bundle losses.
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Figure 2.3 : MSF evaporator temperature diagram
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Figure 2.4: MSF evaporator control system / flow diagram

2.3 Desalination Control System
Different types of control system are found and used in a large scale MSF desalination
plant with about twenty closed loop controls. Figure 2.4 shows the basic control system
diagram for the MSF evaporator. Considering the parameters that would affect the
process conditions, as well as the quantity of the distillate which is the end product of the
plant. Controlling these parameters will affect the plant stability, production, and
performance . These parameters are :

1. Sea Water from reject section temperature

2. Brine recirculation of flow rate

3. Brine from brine heater temperature (T.B.T)
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4. Feed (makeup) flow rate/antiscale flow ratio

5. Brine blow down flow

Detailed description of the process control system is as follows:

1. The sea water flow rate to reject section is regulated so that the sea water from reject
section temperature is equal to the temperature of the brine in the first stage which is
the temperature of the brine recirculation at the pump discharge or entering the heat
recovery section through the condenser to keep the heat balanced in the process. Sea
water flows to the heat reject section depends on seasonal conditions (summer or
winter) and is maintained by actuating the sea water discharge valve or by varying the

speed of the sea water supply pump employing PI controller.

2. The brine recirculation flow is regulated to increase / decrease the production as it will
increase/decrease the brine flashing rate. It will affect the quantity of brine that remains
inside each stage. This must be done properly so that no disturbance occur in the levels
of the brine in the different stages. The level in each stage should not be so high so that
the carry over is encountered, which is the contamination of distillate product which
result in higher salt content of the distillate than the required design level. At the same
time the level should not be so low that will lead to blow through flow in the inter-
stage. To maintain the brine flow rate, signals from electromagnetic flow transmitters
are used to actuate the respective control valve. The objective is to maintain the brine
recirculation and distillate flow rates at the required value in response to seasonal

(summer, versus winter), and high temperature chemicals conditions affecting the flow

rates.
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3. The feed (makeup) flow rate is regulated so that the salinity of the recycled brine is
controlled at a constant optimum concentration, this is achieved by a ratio control with
the flow rate of the distillate drawn from the plant.

4. The control of distillate product flow is by regulating the Top brine temperature and
the brine recirculation flow in reasonable sequences and at a rate of change that does
not affect the equilibrium of the process. This rate is usually determined at site. The
required brine temperature in order to produce a certain distillate product is regulated
by variation of the steam temperature and flow rate to the brine heater. The steam
temperature variation is achieved by variation of the de-superheating water flow. PID
control is employed in the temperature controller. The steam pressure in the brine

water is normally used as an auxiliary variable in the cascade control mode.

5. Brine level in the last stage chamber of the evaporator which is directly related to the
levels in the preceding stages, is maintained at a predetermined set point. The PI level
controller actuates the brine blow down valve. In the case of a brine blow down pump
equipped with variable speed control, level control is done through speed change. For
the system material balance it is required to keep the brine blow down flow rate equal

to the difference between the makeup flow rate and the distillate output.

Additional loops such as the chemical injection loop, and sea water make up flow loop
may be integrated in the overall control system. Further improvements are obtained when

additional loops are added such as blow down flow, sea water recirculation, and heat

reject section inlet temperature.

2.3.1 Process Control Requirement
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Control of MSF desalination plants is generally based on conventional PID controller for
TBT and only PI for the rest of the variables. However a derivative control function may
be added if a fine control is desired. The controllers function fairly well when set properly
at or near the best desired and calibrated set points. When a disturbance takes place,
conventional controllers do not perform satisfactorily because the controller parameters

settings do not correspond to the disturbance encountered.

MSF desalination plants with considerable amounts of mass and energy require novel
types of high performance controllers that are almost always digitally based and perform

control functions based on many available modern control algorithms.

Adaptive control (or self tuning control) offers one solution to the manual tuning of PID
controllers, by attempting to maintain good robustness even if unpredictable changes
occur in the process, sensors, and probably due to damage to the controller itself. The
basic idea 1s to combine an on line parameter estimation procedure with some control
system design technique to produce a control /aw with a self tuning capability. These
controllers are capable of tuning themselves to optimal settings and returning whenever
the process dynamics / behavior changes. The application of high performance controllers
can result in a stable, efficient, smooth operating plant with extended life span. Adaptive
control is successful only if a model exists with sufficiently accurate parameters. Model

accuracy can be improved using artificial intelligence [3], [4].

For MSF desalination, control system design requires a knowledge of the inherent plant
dynamic behavior, the really crucial flow-related control parameters are not those which
are directly observable (such as temperature, flow, and pressure). Instead. they are the

more indirect quantities such as overall (and localized) heat transfer coeflicients in large
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tube bundles, non-equilibrium losses in flashing of brine, and the stability of tray brine
levels and inter-stage flows. Measurement of these phenomena must be derived from the
direct measurements often requiring considerable accuracy. Proper modelling to

understand the plant dynamic behavior is required and it would be great if the brine levels

could be estimated accurately.

Like other processes, other modelling difficulties appears from the requirement for the
inclusion of complex process characteristics such as time delays, disturbances, unmeasured
variables, time-varying parameters, nonlinearities and multivariables interactions. While
microcomputer based controllers are adequate hardware that is theoretically adequate to
overcome these problems, the challenge is to find the appropriate software to direct the
hardware. Artificial neural networks provide an innovative new paradigm that is

beginning to be applied to these areas with excellent results.

2.4  The Dilemma of MSF Process Modelling

In general, the MSF process, as shown in figure 2.5, contains two recycle loops I, II. In
the major recycle loop, part of the brine is recirculated to merge with the make-up flow.
this combined stream, flowing counter currently to the flashing brine, is heated in the
recovery section until it enters the brine heater. The second loop results by recycling part
of the cooling water from the reject section to maintain constant cooling water

temperature at the entry of the reject section (during the winter season).

The recovery and reject sections contain several stages. Each stage can be considered
containing four compartments as shown in figure 2.6, namely, brine pool, product tray.
vapor space and tube bundle; among these compartments the vapor and liquid flows are

indicated by solid and broken lines, respectively.
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Figure 2.5: MSF process block diagram

Each fluid stream communicating with the individual stage has four attributes: Flow rate.
temperature, pressure, and salt concentration, which can be considered as independent
variables. For a detailed modelling the conservation of mass and energy for each stage
must be satisfied, which are influenced by other stages. The model present a large scale
problem where several hundreds of nonlinear equations must be solved. Various
approaches were employed for solving such a model of nonlinear equations. One approach
is based on the solution of these equations by stage to stage calculations, which is
characterized by instability and low rate of conversions (e.g.: Beamer et al [7] used a
stage to stage model with calculations being started at the hot end of the plant in an
optimization study. A similar approach was used by Barba et al [8] where initial guess,
provided by a simplified model which calculates the main dependent variables, were fed to
the main model.). Another approach is to develop a rigorous method for solving the
detailed steady state model which is based on the decomposition of the large set of
equations into a smaller subsets followed by iterative sequential solution of these subsets.
Rautenbach and Buchel [9], Omer [10] and Medani et al [11] followed a sequential
approach with certain optimization program to minimize the stage wise fashion
calculations starting at the hot end of the plant. Helal et al [12] linearized the governing

equations for different sections of the plant. These were solved simultaneously using
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tridiagonal matrix (TDM) technique originally proposed by Amundson and Pontinin [13]
and was improved by Wang and Hanke [14] and was employed by Husain [15], [16].

To obtain a rigorous model for the MSF desalination process, a total mass, component
and enthalpy balance can be written for each of the four compartment divisions of a stage
shown in figure 2-6, plus heat transfer equation between the tube bundle and a vapor
space. In addition, one has to consider that the evaporation process occurring in the brine
pool is a constant enthalpy process. With time derivatives included, such a generalized
model serves as dynamic model; when these derivatives are put equal to zero it represents
steady-state condition [17]. This model has to be supported by accurate correlations for
brine densities, boiling temperatures, brine and vapor enthalpies, and heat transfer
coeflicients. These parameters/coefficients which in the two-phase section is different from
the parameters for one-phase section. They depend on the fraction of vapor, fluid velocity
and the difference between pressure in the stage and the previous stage. In addition, there
are temperature losses between the brine pool and the vapor space due to boiling point
elevations, non-equilibration in the pool and pressure losses in the demisters and across
the tube bundle, which must all be accounted in a representative model. Furthermore,
there are uncertainties such as the fraction of the total evaporation which takes place from
the product tray is not separately known. In a solvable analytical model along the above
lines, simplifications lead to inaccuracies for which the main sources are the following :

e Heat transfer coefficients: the theoretical values differing 10% or more from those
calculated from the actual plant operating data [7] may be due to the presence of non
condensable gases. In addition, heat transfer rates decrease with time due to fouling.
For on-line simulation, periodical measurements and calculations are necessary.

e During flashing if the thermal equilibrium is reached, then the temperature of the brine

in each stage will be equal to the temperature of the vapor plus the boiling point
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elevation. Normally, the equilibrium is not reached, therefore, there is an additional
temperature loss that has to be accounted for in order to properly evaluate the vapor

temperature.

1 COOLING
< - TUBE BUNDLE — — “BRINE
Q
- 2 vapor __
3 VAPOR liquid - — —
PRODUCT SPACE
TRAY e, TR
|
| __» PRODUCT
FLASHING 4
BRINE — — — BRINE POOL o e

Figure 2.6: Representation of a single stage of the MSF plant

As regard the overall enthalpy balances, two approaches are possible, a local and a global
approach. The balance is made with respect to terminal streams in each stage for the local
approach. Whereas in the global approach, heat input to either recovery or reject sections

is taken into account in making an enthalpy balance for each individual stage [8].

2.5  Supervisory Control System for MSF Desalination Process

One of the primary concern is to maintain the water production under all circumstances.
MSF process startup requires the preparation of the vacuum into the stages and this
requires some time and effort from the operator to create the vacuum required for the
operation. For this plant shut down due to any disturbance is required to be avoided.
Additionally load variation is frequently required in large MSF units. Hence a smooth,
reliable and efficient control is required by the operator through the interface station for

the various controllers  The change of distillate production in MSF plants is based on
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controlling the heat input to the brine heater by decreasing / increasing the TBT controller
set point in predetermined steps. For each step of the TBT change, the brine recirculation
flow rate is also suitably changes in sequence. These steps are repeated until the required
distillate product is achieved. The rate of change of the above parameters, determined by
the amount of change in the set points in each step and the time between two successive

steps, 1s judged by the operator on site.

Manual control of the MSF plant is a hard task for the operator and the dynamic model,
considering the previously mentioned conditions, is quite complicated. Therefore, efforts
have been taken to use the computer to assist the operator. A computer supervisory load
variation control can be adopted and this has been realized at various locations in the
Arabic Gulf such as Abu Dhabi and Oman [18], [19]. However, a dynamic model has not

been used.

The values of the set points are calculated according to the followings:

e The brine recirculation flow rate is calculated using the operating curves as function of
the product distillate flow rate and the cooling water temperature (reject inlet).

e The cooling water flow rate is function of the cooling water temperature (reject inlet)

e The TBT is calculated using the heat and mass balance of the evaporator and changes
according with the changes in the fouling factor and in the sea water temperature.

e The steam temperature to the brine heater inlet is calculated according to the TBT.
The calculation is performed in order to limit the degree of superheating of the steam

at high load, and according to the maximum de-superheating water flow rate at low

load.
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The set point variation program consists mainly of two parts; the first is a successive step
change command given to the controllers set points until the desired load is reached. The
value of the step change is constant and is always determined by trial and error during the
first commissioning of the plant. The second part is a waiting cycle, during which
calculations and bound limit checks are usually performed. For example, the control
deviations are checked on steady state behavior (e.g.: the control deviations have not
exceeded 2% within the last 5 minutes). If the control deviations fulfill the steady state
condition, set point variation steps can take place. Prior to executing the set point control
program, a steady state check is made on the unit otherwise the program will not be
executed. A steady state mathematical model is usually used to monitor the variations of
the process parameters of the plant. A description of the mathematical model used and the
equations involved in the calculation is reported in Appendix I [20]. During the execution
of each step all external input and output modules are monitored. A faulty module will
stop the program execution. Additionally the steam flow from the steam raising plant to
the desalination unit is monitored in order to recognize if the supervisory control program
over-charges the boiler capacity. The program will be switched back to latest step and

stops if the steam flow exceeds 20 % of the value at the beginning of the step.

The foregoing supervisory control system is installed at Umm Al Nar East desalination
plant in Abu Dhabi since 1988. During the first commissioning of the unit, and in order to
obtain an efficient and reliable operation of the system, a continuous tuning of the
coefficients and parameters was carried out for a period about three months. The main
requirements are:

. to collect the operating fitting curves for the flow and temperatures,

. to calibrate the main parameters and

. to adapt the control logic to the desalination plant characteristics.
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For example set point for TBT is calculated from a curve for load corresponding to TBT
values. The curve parameters is tuned during the first commissioning of the unit. Further
improvements to the procedure was based on observation and trial and error. Control
logic adopted during a load variation for set points sequence of change is that at the start
the change is affecting the TBT, 1.p. steam to brine heater temperature and the antiscale
dosing flow. After a time delay, the brine recirculation flow rate, the sea water to reject
flow rate and the sea water to reject temperature start to be changed. The reason for this
sequence of operations depends on the response of the process to the control actions and
is explained in the following:

o The delay between the activations of the TBT and the brine recirculation flow rate is
due to the need to develop the slope for the curve to change the temperature (increase
or decrease), before any change of the brine recirculation affects it. In fact, an increase
of the flow rate causes a decrease in the temperature, due to the difference response
time of the process to the two changes of set points.

e The delay of the reject set points is due to the fact that their final values are calculated
with a balance at the final running conditions, and a change in the reject temperature
set point causes big fluctuations in the value of the sea water recirculation flow rate,
because the time of change of the reject outlet temperature is very high.

e The set point of 1. p. steam and antiscale dosing are functions of the TBT, so they are
changed at the same time.

o The antiscale dosing (antiscale/make-up flow fraction) is a function of the TBT. The
function depends on the kind of antiscale used. A lower limit of the dosing is fixed in

order to avoid the alarm limit for the antiscale flow rate during normal operation at

low load.

2.6 Conclusion
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All pervious work for modelling MSF process are based on linearization of the balance
equations and heat transfer equations. Validity of correlated values over a wide range of
temperatures and concentrations is vital. Although several simulation results are reported

in the literature, all are based on steady state simulation.

Steady state mathematical models for the MSF are available to be used for process steady
state validation. The best model to be used does not require the user to be skilled model
builder, and understand all programming and tuning details. Such that when further tuning
is required the user can adapt the model to the process. However, an engineer who
understands the process being simulated will not require more than a few days training in
the neural net approach. In general, neural net approach has the advantage when the
process data required to build the model are readily available. First principle methods are
required to build models for operating regions not covered by the existing plant data, and
are normally used with well-understood and previously modelled processes. The two

approaches can be combined.

Neural net models can be quickly built and checked before implementation, typically
taking less than one day. The required measurement tolerances can be statistically
generated from information in the training data set. Further tuning is not necessary, as real

plant data are used to build the models.

The key advantage of neural networks is that there is no need to build stage to stage or
even short cut models of the desalination process from first principles. Neural net can
build models describing any deterministic process relationship, without requiring the

engineer to fully understand or describe the equations or the relationships between the

process variables.
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The key is to have a training data set that is large enough to contain information covering
the full operating region of the plant. The model will then include influences of all inputs
on the product quantity and quality. In the following chapters, the artificial neural network
approach and its application to model the MSF desalination process is discussed in details

and results from practical data obtained from the plant are introduced.



Chapter 3 Intelligent Control & Conventional Control
System: An Overview

3.1 Introduction

Research and development for the control systems are continuing to keep abreast of the
state of the art technology. Innovative concepts in control systems have relegated what
was considered a satisfactory solution a decade ago to obsolescence today. One novel
feature of artificial intelligence (AI) is its ability to handle the uncertainties and
nonlinearities that we encounter in today's complex process control. One approach in the
field of intelligent control is the Artificial Neural networks (ANN) controller or "neuro-
controller'. System engineering in the desalination industry is used by a variety of different
techniques to solve the modelling and control problem in this area. So the question that
must be considered is how ANN would perform compared to other methods. In this
chapter we address this issue. In the pervious chapter a discussion of a bnef history of
modelling and control problems that are found in the desalination technology. In this
chapter a brief overview of the relationship of Intelligent Control to traditional control
systems is discussed. Next a comparison with control system problems solving paradigm is
carried out and lastly a brief overview of Intelligent Control methodology and application

using the Artificial Neural Network is discussed.
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3.2 Conventional and Intelligent Control

The term "conventional (or traditional) control" is used here to refer to the theories and
methods that were developed in the past decades to control dynamic systems, the behavior
of which is primarily described by differential and difference equations. Note that this
mathematical framework may not be general enough in certain cases. In fact, it is well
known that there are control problems that cannot be described in a differential/difference
equations framework. Examples include discrete event manufacturing and communication
systems, the study of which has lead to the use of automata and queuing theories in the

control of systems.

In the minds of many people particularly outside the control area, the term "Intelligent
Control" has come to mean some form of control using fuzzy and / or neural network
methodologies. This perception has been reinforced by a number of articles and interviews
mainly in the nonscientific literature. However, intelligent control does not restrict itself
only to those methodologies. In fact, according to some definitions of intelligent controls,
not all neural / fuzzy controllers would be considered intelligent. The fact is that there are
problems of control which cannot be formulated and studied in the conventional
differential / difference equation mathematical framework. To address these problems in a
systematic way, a number of methods have been developed that are collectively known as

intelligent control methodologies.

There are significant differences between conventional and intelligent control. It is worth
remembering at this point that intelligent control uses conventional control methods to
solve "lower level" control problems and that conventional control is included in the area
of intelligent control. Intelligent control attempts to build upon and enhance the

conventional control methodologies to solve new challenging control problems.
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The word "control" in intelligent control has a different, more general meaning. than the
word control in "conventional control". First, the processes of interest are more general
and may be described, for example, by either discrete event system models, differential /
difference equations models, or both. This has led to the development of theories for
hybrid control systems that study the control of continuous-state dynamic processes by
discrete-state sequential machines. In addition to the more general processes considered in
intelligent control the control objectives also can be more general. for example, "fault
tolerance techniques" can be the general task for the controller; this is then decomposed
into a number of sub tasks, several of which may include, for instance, "follow a particular
trajectory,” which may be a problem that can be solved by conventional control
methodologies. To attain such control goals for complex systems over a period of time,
the controller has to cope with significant uncertainty that fixed feed back robust
controllers or adaptive controllers cannot deal with. Since the goals are to be attained
under large uncertainty, fault diagnosis and control reconfiguration, adaptation and
learning are important consideration in intelligent controllers. So the control problem in
intelligent control is an enhanced version of the problem in conventional control. It is
much more ambitious and general. It is not surprising then that these increased control
demands requires methods that are not typically used in conventional control. The area of
intelligent control is in fact interdisciplinary, and it attempts to combine and extend
theories and methods from areas such as control, computer science and operation research

to attain demanding control goals in complex systems.

Note that the theories and methodologies from the areas of operations research and
computer science cannot, in general, be used directly to solve control problems, as they

were developed to address different needs. They must firstly be enhanced and new
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methodologies need to be developed in combination with conventional control
methodologies, before controllers for very complex dynamic systems can be designed in
systematic ways. Also, traditional control concepts such as stability may have to be
redefined when, for example the process to be control is described by discrete event
system models. Rigorous mathematical frameworks, based for example on calculus, are
being used to study such questions. However, in order to address control issues, these
mathematical frameworks may not be convenient and they must be enhanced, or new ones
must be developed, to appropriately address these problems. This is not surprising as the
techniques from computer science and operations research are primarily analysis tools
developed for non-dynamic systems, while in control, synthesis techniques to design real-
time feedback control laws for dynamic systems are mainly of interest. In view of this
discussion, it should be clear that intelligent control research, which is mainly driven by
applications, has a very important and challenging theoretical component. Significant
theoretical strides must be made to address the open questions and control theorists are
invited to address these problems. The problems are nontrivial, but the payoff is high

indeed.

Because intelligent control addresses more general control problems that also includes the
problems addressed by conventional control, it is rather difficult to come up with
meaningful benchmark examples. Intelligent control can address control problems that
cannot be formulated in the language of conventional control. To illustrate this point, for
example, in a desalination plant, while conventional controller may include flow regulators
of the various streams, in the intelligent control framework one may include fault diagnosis
and alarm systems. The problem of deciding on the set-point of the regulators, is based on

the sequence of orders processed, selected, based on economic decisions, maintenance

schedules, availability of machines etc.
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Another difference between intelligent and conventional control is the separation between
the controller and the system to be controlled. In conventional control the system to be
controlled, called the plant, typically is separated from the controller. The controller is
designed by the control designer, while the plant is in general given and cannot be
changed; note that recent attempts to coordinate system design and control have been
reported in areas such as space structures and chemical processes, since many times
certain design changes lead to systems that are much easier to control. In intelligent
control problems there may not be a clear separation of the plant and the controller; the
control laws may be imbedded and be part of the system to be controlled. This opens new
opportunities and challenges since it may be possible to affect the design of processes in a

more systematic way.

3.3 A Comparison with Control System Problems Solving Paradigm

Solving the problem of any control design in system analysis starts with a description of
the problem in the form of state space or a set of linear or non-linear algebraic equation to
characterize the problem description. Then by using a numerical solution to find the 'stable’
or 'optimal' solution to the problem is to be solved. This relies on being able to formulate
the problem at hand into mathematical formalism. In contrast, neural networks allow one

to deal with problems that cannot be formulated in this manner.

The neural network is essentially a model because it seeks to develop a model of the
problem solver rather than the problem itself. The adaptation law in the neural network
represents the manner in which the problem solver tackles the problem, rather than being a

description of the problem. This opposite direction is motivated for the neural network
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approach by the learning ability and the generalization capability, if guaranteed. As shown
in Figure 3.1 a block diagram showing (a) the steps followed by the normal system
analysis versus (b) neural network approach. We note that modelling the problem is

embedded in modelling the problem solver to find a solution using the learning ability of

the neural network.

System analysis approach uses the problem solver directly on the formulated model, while
for the neural network approach it is used directly after solving the problem, and no
further solution is searched under any condition. From here a restriction or bounds are
added to the problem in order to be in the domain of the required generalization. This is
implemented by including constrains which can be included during or after the learning
phase. Alternatively is by using the first solution with the second one to include a priori
information in hybrid solution. This requires enough information to be available to reach a
solution. As the learning is performed by adjusting the weights in a supervised
/unsupervised mode in order to find a solution for representing or solving the problem in

the same time, i.e. finding a solution for the two problems.

For practical modelling application and to find an acceptance for the control community,
researchers in this field have analyzed the problem to find a systematic approach to the
problem solving. However, the acceptance criteria for neural network approach is in the

generalization capability.
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Figure 3.1: A Block diagram showing (a) the steps followed by the normal system

solution

analysis versus (b) Neural Network approach as a problem solver

3.4  Artificial Neural Networks and Control Systems

Learning algorithms are required to operate in ill-defined and time-varying environments
with a minimum amount of human intervention. These techniques are typically used to
control plants for which a conventional mathematical analysis is not possible, and many
different learning systems have been proposed for use within IC systems. Recent research
interest has re-focused on using biologically inspired learning algorithms and control
architectures, and this have been part of a wider improvement or research activity into
ANN. ANNs and the control community have a long history, which probably began with
Wiener's Book Cybernetics published in the late forties [21]. During the fifties and sixties,
the adaptive control field grew a notable success. The unification of several parameter
estimations algorithms, coupled with the development of gradient and stability-based

learning rules, provided a firm theoretical background for many of the practical
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applications [22]. Several neural controllers were developed in the sixties, most notably
Widrow's inverted pendulum controller in 1963 [23]. More recently, the developments of
neural network architecture and learning algorithms have provided the stimulus for control
engineers to re-evaluate the potential of ANN-based controllers, or neurocontrollers. The
new ANNs were proposed by researchers from different disciplines, such as computer

science, psychology, etc., and many of the learning algorithms have their 'parallels' in the

adaptive identification and control fields.

The most important characteristic of ANN is its ability to learn the frequently complex
dynamic behavior of a physical system. Learning is the process where the network
approximates the function mapping from system inputs to outputs, given a set of
observations of its inputs and corresponding outputs. This is done by adjusting the
network internal parameters, to minimize the squared error between the networks outputs
and the desired output. One such method is the error Back-Propagation (BP) algorithm
by Rumelhart, Hinton and Williams [6], which is essentially a first order gradient decent
method. The ability to approximate unknown functions through presentation of their
instances makes ANN a useful tool for modelling in engineering applications. In addition,
Hornik el. al [24] have proven that multi-layer back propagation networks have the
capability of approximating any nonlinear continuous function. ANN are of interest to the
control community because they have the potential to treat many problems that cannot be
handled by traditional analytic approaches. Different ANN architectures are employed in
which they have the capability to "learn" system characteristics, through non-linear
mapping ANNs can be used to implement highly non-linear models/controllers with
weights or internal parameter that can be determined by a self learning process. tor
control engineering, ANNGs are attractive because they have the ability of non linear plant

modelling, can handle large amount of sensory information, perform collective processing
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and learning and offer the potential for highly parallel computation. They offer the promise
of better solutions, to control problems that are so complex that analytical design

techniques do not exist and may not exist for some time to come.

There have been some researches on using ANNs for the control of dynamic systems.
Psaltis, Sideris and Yamamura discussed a number of interesting techniques for using the
back propagation network to control plants [25]. Several techniques for process
identification and control using neural network are discussed in Tariq Samad el. al [26].
Nguyen and Widrow have reported an ANN application to self learning of backing a
trailer truck into a loading duck [27]. An ANN feed forward model was used in Jordan

and Jacobs for system learning and control [28].

One particularly popular region of inquiry has been applying the neural computational
paradigm to existing problems in nonparametric system identification [29], measurement
prediction [30], fault detection [31] and situations where input-output data are available
but functional relationships are poorly understood such as the treatment of nonlinear
dynamic system with approaches to the design neural network based controllers [32],

[33].

ANNs have made a significant impact on the chemical industry, with application in
nonlinear process and human operator modelling, automatic plant knowledge elicitation,
fault detection and monitoring, process control and optimization and sensor validation,
interpretation and fusion. For example, ANNs have been used as part of model predictive
control [34], for a Continuous Stirred Tank Reactor (CSTR) for pH control of sodium
hydroxide, by minimizing a quadratic cost function over a finite time horizon subject to

constraints on the pH range. An ANN is adapted to form a dynamic model of the CSTR
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off-line, then in real-time with ANN fixed (with variable bias), an optimizer plans a series
of actions/control over the planning horizon. The optimization problem is one of nonlinear

programming (via feasible sequential quadratic programming) that may be readily

implemented on a special chip.

An ideal application of ANNSs is in the field of nonlinear system identification [35].
Virtually any discrete time nonlinear system may be represented by Nonlinear Auto
Regressive Moving Average with eXogenous inputs (NARAMAX) model [33], which
represents a system in terms of its delayed inputs and outputs. In general the NARAMAX

model has the following form:

Y'k+)=f (V' (k),...y (k ~d ) u’(k),...,u (k-d,)) (3-1)
where d;, and dy are the maximum delays in the input and output vectors u*,
respectively. This form of model is ideal for system identification purposes because the

model is expressed entirely in terms of known quantities.

An ANN may be used to identify the NARAMAX model of a system by making the
arguments of (9) the inputs to the ANN and making the output of the ANN be the one-
step-ahead (predicted) output vector y*(k+1) as shown in fig. 3.2 (TDL denotes a
tapped delay line whose outputs are delayed values of its inputs). The ANN may then be
trained to emulate the function fk (.) in (3-1) by comparing the predicted output vector

with the actual output vector at time & + 1, and using the error to update the ANN

weights via the error back propagation algorithm.
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Figure 3.2: System identification using ANNs

Fundamental to the majority of intelligent control schemes is plant identification or
modelling. ANNs (just like conventional nonlinear time series methods such as NARMAX,
extended Kalman filters, etc.) have been applied to dynamic process identification. In the
chemical process industry, ANNs have been used in the identification of waste treatment
plants, with multiple holding or settling tanks [37]. The plant is typically 5 input, 9 output
multivariable process. Excellent modelling results are obtained and the plant has been

successfully controlled using a model predictive algorithm.

341 Neural Computing Benefits
Neural computing is different from conventional algorithmic computing, although the
former can generally be decomposed into an algorithm and implemented on a serial
machine. These apparently contradictory statement can be resolved if it is accepted that it
is the approach which distinguishes the two techniques, rather than the final

implementation. Neural networks offers solutions to problems that are very difficult to
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solve using traditional algorithmic decomposition techniques and the potential benefit of a

neural approach are :

learning from the interaction with the environment (learn by experience), rather than
by explicit programming (modelling);

few restrictions are placed on the type of functional relationship that can be learnt;
ability to generalize (interpolate and extrapolate) the training information to similar
situations; and

inherently parallel and the computational load can be evenly distributed across many
simple processing elements. Thus the networks posses some degree of fault tolerance

with respect to processor failures.

The first three properties are desirable for any learning algorithm, and the fourth can be

used to apply these networks to larger real-time systems. If a learning algorithm possesses

these properties, it can endow the control system with the following advantages [38]:

decreasing the required amount of human intervention;
increasing the flexibility of the control system,
improving the performance of the control system; and

reducing the initial design time and cost.

The performance of an ANN (learning, recall, computational burden, etc.) depends on

how well satisfies the first property list, and this determines its potential for off-line design

problems. For on-line adaptive modelling and control the algorithm also need to posses

the following properties:

learn significant new information (plasticity) in a stable manner and in real-time while

retaining knowledge previously learned; and

provable learning convergence conditions for local & global optimization.
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Some of the most commonly used ANNs satisfy neither of these properties, although this
means that while they can be used in neurocontrol application, learning should only occur

off-line. In chapter 4 a technique based on GENE approach is developed which is suitable

for on-line global error evaluation.



Chapter 4 Artificial Neural Networks

4.1 Introduction

The primary objective of the control system of MSF is to determine the capability of the
process to remain in the stable mode of operation particularly during load change
(transient conditions) as well as when disturbances such as shortage of steam supply is
imposed. Control system design for MSF desalination plants requires a knowledge of the
inherent plant dynamic behavior that have quite a few complication process characteristics
such as time delays, disturbances, unmeasured variables, time-varying parameters,
nonlinearities and multivariable interactions. One of the really crucial flow- related control
parameters are not those which are directly observable (such as temperature, flow, and
pressure). Instead, they are the more indirect quantities such as overall (and localized) heat
transfer coefficients in large tube bundles, non-equilibrium losses in flashing of brine, and
the stability of tray brine levels and inter-stage flows. Measurement of these phenomena
must be derived from the direct measurements often requiring considerable accuracy.
While microcomputer based controllers are adequate hardware that is adequate

theoretically to overcome these problems, the challenge is to find the appropriate software

to direct the hardware.
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MSF desalination plants are characterized as a complex multi-variable process with several
regulated variables and interacting loops. The control loops are usually controlled
separately by PI and PID controllers and the problem of interaction exist such that the
adjustment of a single set-point causes a profound influence on many other control loops
in the process. By multi-variable, we refer to those processes wherein many, strongly
interacting variables are involved. The control input (set point) can be calculated from a
steady state mathematical model, which is based on the basic equations describing the
behavior of the desalination unit (heat and mass balance equations and the heat exchange
equation of each stage). This model is valid only for the steady or near steady state
situatton. The control algorithm is required to be capable to manage all situations taking
place during load transients, and therefore requires a dynamic nonlinear model
representation. It is often very difficult and time consuming to drive a realistic system
model, especially when the basic mechanism of the process is not completely understood.
Computationally expensive calculations are required for the desired precision and
accuracy. This aspect is specially crucial for enhanced real-time performance. As a result,
control algorithms are often synthesized based upon their linear approximation. However,
MSF systems are nonlinear, consequently, un-modeled dynamics and robustness problems

arise. Therefore in practical applications supervisory control is adopted [22].

Apart from the above methods, fast assessment of the control system of MSF based on
Artificial neural networks (ANNs) can be an alternative method. In this alternative
approach, the capabilities of the ANN to learn and generalize enables the network to
obtain complex mapping of the MSF dynamic behavior and the various transient control
actions. ANN can estimate the dynamic behavior and the control actions required due to a
disturbance in negligible time. Recently, ANN approaches have been proposed for the

estimation of the control actions of MSF plants [39], [40] &[41].
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In the recent years, neural network based control system has been receiving more and
more attention because they can handle large amount of sensory information, perform
collective processing and their ability to capture the approximate nature of the real system
with particular attention to the dynamic nonlinear processes. The ANN can be traced back
to the 1940's when papers by McCulloch and Pitts on the modelling of the neuron [42]
and Hebb on learning appeared [43]. Rosenblatt's publication on the Perceptron (1958)
and Widrow's ADLINE (1960) sparked a great deal of interest initially [44], [45].
However, there was no known learning algorithm that could be applied to adjust the
weights for a specific calculation. In 1969 the text, Perceptrons, was published by Minisky
and Papert and it showed that the linear neural networks that had received so much
attention were severely limited in the problems they could solve [46]. This text caused
most people to lose interest in neural computation except few dedicated scientists.
Gradually, a theoretical foundation emerged, upon which the more powerful multi-layer
networks of today are being constructed with many impressive demonstrations of ANN
capabilities where the most have used the famous algorithm Back Propagation (BP) to
train the networks, perhaps the most successful of the current algorithm. Back
Propagation invented independently in three separate research events (Werbos 1974,
Parker 1982; and Rumelhart, Hinton and Willliams 1986) [47] [48] [6], provides a
systematic mean for training multi-layer networks, thereby overcoming limitation
presented by Minisky. Werbos developed the back-propagation algorithm first in 1974,
but his achievement remained almost unknown [47]. Parker rediscovered the technique in
1982 [48], and independently in 1986 by Rumelhart, Hinton and Williams [6]. The multi-
layer Perceptron networks were not used in the past because of lack of an effective
learning algorithm. This has recently changed, mainly owing to Rumelhart and his co-

workers who have popularized the back-propagation algorithm among the scientific

community [6, 49].
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Various types of neural network are being studied or used in applications. However the
most popular neural network is the feed forward neural network with BP learning
algorithm. Applications of feed forward neural networks have been the task of "learning"
maps from discrete data. Examples of such map learning problems can be found in areas
such as modelling chemical process systems [29], control and identification of dynamically
systems [32], control of nonlinear systems [25], to name a few. In most of these
applications, feed forward neural networks act on data by detecting some kind of
underlying organization. They learn (closely approximate) the similarities among patterns
directly from instance of them to give the desired map. That is they infer solutions from
data without prior knowledge of the regularities in the data. This is useful because
gathering data does not require explaining it. They extract the regulanties from data
empirically. Thus, they can bridge the gap between an individual example and general
relationships. This is a valuable characteristic for appreciation to predict the nonlinearinties
and uncertainties for the desalination process, where no obvious expression for calculating

them.

Artificial neural networks (ANN) typically consist of an architecture with many simple
computational elements or nodes arranged in layers and operating in parallel. The weights,
which define the strength of connection between nodes, are adapted during the learning to
yield good performance. The term neural reflects the fact that the initial inspiration for
such networks was derived from the observed structure of biological neural processing
systems. Changing the weight of an element will alter the behavior of the element and,
therefore, will also alter the behavior of the whole network. The arrangement of the
network's nodes and connections defines its architecture and there are many possible

variations.



CHAPTER 4: INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS 48

Figure 4.1: A feed forward multi-layer network

where each circle corresponds to a node and each arrow represents a weighted link

One popular arrangement is shown in figure 4.1 where the nodes are arranged into layers
and each node in one layer has connections only to with nodes in the preceding layers. The
goal here is to choose the weights of the network to achieve a desired input/output
relationship. This process is known as training the network. In other word the weights are
adapted by training to improve performance. The network can be considered memoryless
in the sense that, if one keeps the weights constant, the output vector depends on the
current input vector and is independent of past inputs [6]. This kind of network is known
to be capable of learning complex input - output mappings. That is, given a set of inputs
and desired outputs or targets, an adequately chosen neural network can emulate the

mechanism in order to reproduce the data set through learning.

The success of any ANN approach for MSF dynainic control depends on the successful
learning of the correct mapping. ANN models are specified by three elements: neuron
characteristics, network topology and training rule. There are two classes of ANN
structures, namely feed forward and recurrent. In the present work, Multi-layered feed

forward networks (MFN's) with error back propagation learning algorithm is adopted.
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Feed forward networks and the neuron characteristics are discussed in section 2 Section
3 reviews the famous supervised training algorithm back propagation. When an ANN is
applied to solve problems it is always worth asking "what size of a network should we use
for a particular problem?" And "how many examples are needed to generalize the
problem?". These are discussed in section 4. There are some variations and improvements
to the back propagation algorithm to avoid the pitfall of the saturation of the network
nodes and the ultimate paralysis of the entire MFN during learning; and the problems of
convergence to a local minimum. The last section develops the methodologies that
account for generalization and avoiding local minima so that a consistent ANN approach
can be developed to reproduce the MSF process behavior. The methodology when used
could predict the brine levels in both the first and last stages. The methodologies are
developed based on global error node evaluation scheme for MFN. The development of a
dynamic model and with an example for set point generation that can reproduce the
process behavior using the standard back propagation as well as using the GENE

approach for the MSF desalination plant are described in chapters 5 & 6.

4.2 Feed Forward Networks

421 The Neuron and the Activation Function
The basic component in a feed forward network is the single "neuron" model depicted in
figure 4.2 (a), where x,....,x;, are the inputs to the neuron, wj,....,w), are the multiplicative
weights applied to the inputs, 7 is a biasing input, g : R = R, and S is the output of the

neuron. Thus
S=g(Xwx,+1) (4-1)
i=1

or S =g(%) (4-2)

The "neuron" of figure 4.2 (a) is often depicted as shown in figure 4.2 (b) where the input

weights, bias, summation, and function g are implicit. The activation function may be:
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(a)  simple linear function, g = C(Z), where C is a constant,

: S=1if E>T -
(b)  athreshold function, $-0 o ther>wise , Where T'is a constant threshold value,
or a function that more accurately simulates the nonlinear transfer characteristic of the

biological neuron and permits more general network functions.
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Figure 4.2: (a) Single neuron model, (b) Simplified schematic of single neuron

4.2.1.1  The Squashing Function
If the g(Z) function compresses the range of X, so that S never exceeds some low limit
regardless of the value of Z, g is called a squashing function. The squashing function is
often chosen to be the logistic function or "sigmoid" (meaning S-shaped) as shown in

figure 4.3 and expressed mathematically as

thus S= !
1+e™ l1+e

(4-3)

g(x)=

>

Another commonly used activation function is the hyperbolic tangent. It is similar in shape
to the logistic function but symmetrical about the origin, resulting in S having the value 0

when I is zero (see figure 4.3 ), and is expressed as follows:

+Z
S =Tanh(Z) = 1+e3 (4-4)
I+e~
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The squashing activation function can be thought defining a nonlinear gain for the artificial
neuron. This gain is calculated by finding the ratio of the change in S to a small change in
Z. Thus, gain is the slope of the curve at specific excitation level. It varies from low value
at large negative excitations (the curve is nearly horizontal), to a high value at zero
excitation, and it drops back as excitation becomes very large positive. Grossenberg [50]
found that this nonlinear gain characteristic solves the noise-saturation dilemma that he
posed; that is how can the same network handle both small and large signals. Small input
signals require high gain through the network if they are to produce usable output;
however, a large number of cascaded high-gain stages can saturate the output with the
amplified noise (random variation) that is present in any realizable network. Also large
input signals will saturate high-gain stages, again eliminating any usable output. The
central high gain region of the logistic function solves the problem of processing small
signals, while its regions of decreasing gain at positive and negative extremes are
appropriate for large excitations. In this way, a neuron performs with appropriate gain

over a wide range of input levels.

|
=3 0 5

Tanh Function
Sigmoid Function

Figure 4.3: The neuron activation function using (a) the tanh function, (b) the sigmoid function
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4272 Multi-Layer Feed Forward Network (MFN)
A feed forward network is constructed by interconnecting a number of neurons (such as
shown in figure 4.1) so as to form a network in which all connections are made in the
forward direction (from input to output without feed back loops). Neural networks of this
form are usually composed of an input layer, a number of hidden layers, and an output
layer. The input layer consists of neurons that accept external inputs to the network.
Inputs and outputs of the hidden layers are internal to the network, and hence the term
"hidden". Outputs of the neurons in the output layer are the external outputs of the
network. Once the structure of the feed forward network has been decided, i.e., the
number of hidden layers and the number of the nodes in each hidden layer have been set, a
mapping is learned by varying the connection weights wjj and the biases, I; so as to obtain

the desired input-output response for the network.

4.3  Training Algorithm

Finding suitable parameters for ANNs by an experiment has been an impediment to the
development of ANNSs, especially when some of the algorithms consume large amount of
computer time. A network is trained so that application of a set of inputs produces the
desired (or at least consistent) set of outputs. Each such input (or output) set is referred as
a vector. Training is accomplished by sequentially applying input vectors, while adjusting
network weights according to a predetermined procedure. During training, the network
weights gradually converge to values such that each input vector produces the desired
output vector.

Training an ANN can be either supervised or unsupervised. In unsupervised training there
is no feedback from the environment to determine what that output should be. The
network must discover for itself the patterns, features, regularities, correlations, or
categories in the input data and code them in the output. The neurons and connections

must thus display some degree of self-organization. Kohonen's feature-map forming nets
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[51], the classical K-means [52] and leader clustering algorithms [53] are trained without

any supervision. On the other hand, supervised training is to make the network output

equal to the desired target function for any input. The standard approach is to

(1) Define an error function measuring the difference between the target and actual
output function,

(2) Determine how changes in the network weights (parameters) affect the error.

(3) Adjust the weights in a way to that reduces the error.

4.3.1 Back-Propagation Learning Algorithms
The Back propagation (BP) gives a prescription for changing the weights in any feed-
forward network to learn a training set. The basis of the algorithm is the gradient descent.
It can be considered as an unconstrained optimization problem of a suitably constructed
error function (cost function). Typically, the error function is the sum of squared
differences between the desired target y(xj) and the actual network outputs S(xg) are
summed over all training pattern &,
E(w) = Z(y(x) = 5(x, )’ (4-5)

The core of the algorithm is a repeated loop in which

(1) The derivative chain rule is applied to determine how weight changes affect the error

(2) The weights are adjusted by small increments in the direction that reduce the error.

In "batch mode", every training pattern is considered before each weight change, and the
algorithm approximate gradient descent when the step size is small enough. In "on-line
mode", a random subset of patterns (usually just one) are considered before each weight
change. When the step size is small enough, this approximates gradient descent since the
accumulated weight changes tend to average to the true (negative) gradient. During

training, an equation is used to minimize the sum of the network's squared errors. The
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minimization process has an intuitive geometric meaning. All possible sets of weights can
be plotted against the errors. The result is an error surface shaped like a bowl, whose
bottom marks the set of weights with the smallest error. An idealized two-dimensional
error surface is shown in Figure (4.4). However, real error surfaces typically have ravine-

like features and dent-like local minima. Finding the bottom is the goal during training

[54].
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Figure 4.4: An idealized two dimensional error surface

There are two requirements for the BP algorithm:
« The connections of the ANN must be in the forward direction, i.e., from a neuron
closer to the input layer to a neuron in another layer closer to the output layer.

« The nonlinear function of each neuron must be continuous and differentiable. The tanh

function as shown in figure 4.3 (a) is used here.
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The back propagation can be summarized as follows:
step 1. Initialize weights and thresholds
Set all weights and thresholds to small random numbers

step 2. Present inputs and desired outputs

Present inputs x,,x,,....,x, ; and specify the desired outputs y,y,,....V,.;-

The net input to the jth neuron of layer / , 1</<L, at time k is given
by
Ny
x, (k)= gwé.'l(k)sf'l(k) (4-6)

In the above equation, it is assumed that sl,=1 for all / thus wloj is the

bias for the jth network neuron in layer /+ /1. The output of a network

neuron will be

sj(k) = g(xj- (k)), I1<I<L (4-7)
For units in the output layer, the net input is given by
B )= 3wl s ) (+-8)
step 3. Calculate actual outputs

Use Equations 4-7 to calculate actual outputs S5.S),...., 5.

step 4. Adapt weights
Use recursive algorithm starting from output neurons and working back to
the hidden neurons. Weights are adjusted according to:

w! (k+1) = wy (k) + 1d., (4-9)

where the scalar > 0 determines the length of the step to be taken in

NI+I
the direction of the vector di = Y Aw," (k). The BP adopts the
j=0

steepest descent (gradient) method and defines the directions as

d. =-VE(w," (k) (4-10)

and the weight update equation can be rewritten as

wh(k+1)= w! (k)-ne (k)S/ (k) (4-11)
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or using Aw, (k +1) =[w, (k +1)-w! (k)] (4-12)
then Aw (k+1)=-ne/"(k).S' (k) (4-13)

step S.

then by smoothing the weight changes by over-relaxation [6], 1.e. by adding

the momentum term

Aw, (k+1)=-n.e/" (k).S! (k) + a Aw! (k) (4-14)

where 0<ax<l (typically a=0.9)

If neuron j is a hidden neuron then the error is

New
e;.:g'(x]’.(k))gle;l(k)w;.p(k), 1<I<L (4-15)

If neuron j is an output neuron then the error

et =(SF(k)-y,(k))g (x"(k)) (4-16)

The above equation represents the standard BP of error, g'(.) is the
derivative of the activation function of the network neuron. To employ
the BP algorithm for updating connection weighs, the activation
function g'(.) of the network nodes must be differentiable. In the
present work, the following tanh function is adopted for the activation

function of any hidden layer node 1

Tanh(x)=7¢_
1+e

(4-17)

Appendix A gives detailed derivations of equation (4-12) and (4-13).

Repeat by going back to step 2
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This procedure is repeated until a convergence criterion is met or a specified number of
iterations are reached. The convergence criterion can be either that the error is less than

specified value or that the weights have stabilized.

The weight updates described above are used for on-line learning where a learning
example is presented at the input and then all the weights are updated before the next
learning example is presented. This description is based on the Generalized Delta Rule.
The error in the output layer is computed as the difference between the desired output (y)
and the actual output (S). This error, is transformed by the derivative of the transfer
function, is "back-propagated" to prior layers where it is accumulated. This back-

propagated and transformed error becomes the error term for that prior layer.

Alternatively in the batch learning (using the cumulative delta rule) the weight changes
are accumulated over some number of the learning examples before the weights are
actually changed. The number of training presentations between weight updates is length
of an epoch. One of the problems with the cumulative delta rule is the linkage between the
learning rate and the epoch size. Adjusting the epoch requires adjusting the learning rate.
One way to overcome this is by using the normalized cumulative delta rule; dividing the

learning rate by the square root of the epoch size.

In spite of algorithm apparent simplicity, the algorithm has proven remarkably effective,
and there are many examples of network trained to implement relatively complex
functions. This is not to say that difficulties never occur. BP training is often very slow to
converge in training a MFN and may converge to sub-optimal solutions. The convergence
proof of the BP is based on calculus limited theory and therefore requires infinitesimal
weight adjustments. BP is based on the method of steepest descent to update weights. At

each iteration of the steepest descent procedure, the weight values are modified in the
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direction in which the error function decreases most rapidly. This direction is given by the
derivative of the error surface at the current point in weight space. The magnitude of
adjustment in a weight is proportional to the partial derivative of the error function with
respect to that weight. The error surface may posses certain nonlinear properties which
can cause convergence difficulties if the steepest descent algorithm is used. From this
viewpoint, problems related to the method can be categorized into two groups. Firstly,
problems associated with the various initialization parameters such as architecture, number
of layers, number of nodes, learning rate selection and weight initializations scheme, etc.
The second group of problems is related to the final results; such as local minima solution,
overfitting and network paralysis that can result in outright failure of the network.
Practical techniques for solving the first group of problems are discussed in the following
section. Some remarks are very basic and may be viewed as a checklist of standard
procedures. Others are more specific. Many of the remarks apply to any learning system,
but unless otherwise stated, the focus is on supervised learning in MFN. To address the
second group of problems, a method based on the global error node evaluation (GENE)
is developed for MFN to improve learning ability of BP in a subsequent section in this

chapter.

44 Problems with the BP and their Enhancement

441 Data Preparation and Preprocessing
Neural networks are often trained from examples of a desired input - output relationship.
It is important that these examples adequately describe the function. For this, the data is
required to be distributed to cover the information about the relative importance of
different regions of the function, it should generally match the distribution of function

behavior that will occur in normal operation. The next step usually required is re-scaling of
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the data such that the variables with different ranges will have an equal footing. This can
be by centering and normalization of the variables. A commonly used normalization

x' =(x-p)/c (4-18)
where L is the mean value of x and o is the standard deviation [71]. Normalization is
based on minimum and maximum values. Such preprocessing is an essential factor to

overcome the poor convergence rates of MFNs.

4.4.72 Architecture Selection
The numbers of nput and output layer nodes are usually problem dependent. The problem
lies in the selection of the hidden layer node number, which is directly related to the
number of weights to be adjusted during training. The learning speed and generalization
characteristics of ANNs are dependent on their architectures. The goal is to find a network
powerful enough to solve the problem, yet simple enough to train easily and generalize
well. Thus, the viability of a specific architecture can only be evaluated after training. Two
approaches are possible. The first approach is to train many different architectures on the
same problem and to use the one with the best post-training characteristics. This approach
significantly increases training time since many ANNs must be trained. Furthermore, an
optimal architecture is not necessarily obtained with this technique since it may not be one
of the initial selections. The second approach is that the optimization of the network
architecture becomes part of the training objective. This can be either by Pruning or
Constructive techniques. The pruning approach is to train a network that is larger than
necessary and then remove unnecessary parts. The large initial size allows reasonably
quick learning with less sensitivity to parameters, while the reduced complexity of the
trimmed system favors improved generalization. In several studies, pruning techniques

have produced small networks that generalize well where it was very difficult to obtain a
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solution by training a small network (obtained by pruning) from scratch with random

weights [55].

Many pruning techniques have been suggested; a survey can be found in Reed (1993)
[56]. Many of the algorithms fall into two board groups. One group estimates the
sensitivity of the error to removal of elements and removes these with the least effect
Another group adds terms to the error function that penalize unnecessary complex
solutions. In general, sensitivity methods modify a trained network; the network is trained,
sensitivities are estimated, and then elements are removed. Penalty methods modify the
cost function so the optimization drives unnecessary weights to zero and, in effect,
removes them during training. Even if the weights are not actually removed, the network
acts like a smaller system. An advantage is that training and pruning are done in parallel so

the network can adapt to minimize errors introduced by pruning.

Although pruning and penalty term methods often may be faster than searching for and
training a minimum-size networks, they do not necessarily reduce training times; larger
networks may take longer to train because of sheer size, and pruning takes some time

itself. The goal, however, is improved generalization rather than faster training speed.

The opposite approach to pruning is to build the network incrementally by adding
elements until a suitable configuration is found. Starting with a small network, train until
the error stops decreasing and then add a new node (or nodes) and resume training,
repeating until an acceptable error is achieved. In some cases, constructive methods can be
faster than pruning methods, since significant learning may occur while the network is still
small. The approaches are not incompatible and often used together. Since constructive
method, when used alone, sometimes create larger networks than necessary, a follow-up

pruning phase can be useful to reduce the size.
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It should be noted that pruning and constructive techniques are a means of adjusting
network size rather than a way of deciding what size is appropriate. Other critena are
often useful to decide when to stop adding or removing elements. Bounds on the number
of hidden neurons were studied by Huang [57] and Sartori [58]. It was proved that k-1 (k
is the number of inputs) is the least upper bound on the number of hidden neurons needed

to realize an arbitrary real-valued function defined on a finite and linearly separable set.

~

(a) (b)
Figure 4.5: (a) A good fit to noisy data indicated as crosses. (b) Overfitting of the same data: the

fit is perfect on the training set, but could be poor on a test set represented by the circle

It is generally possible to get increasingly better performance on the training set by
increasing the complexity of the model, i.e, increasing the number of hidden neurons and
thus the number of weights, but such a procedure does not necessarily lead to a better
ability to generalize. Too many free parameters could results in overfitting. As illustrated
in figure 4.5 a curve fitted with too many parameters follow all the small details but is very
poor for interpolation and extrapolation. The same thing happens to a multi-layered

network: too many weights give poor generalization [59].
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443 Weight Initialization

The values of the initial weights are very important. If they are too large the squashing
activation function will saturate from the beginning, luring the network to Paralysis.
Paralysis occurs when nodes are driven into saturation. A reasonable strategy for weight
initialization is to set weights to "small" random values. The randomness is intended to
break the symmetry, while "small" weights are chosen to avoid immediate saturation [6].
The weight are chosen within a range such that the magnitude of the typical inputs to
neuron / is less than, but not too much less than unity. This can be achieved by taking the

weights wjj to be of the order of 1/\/k—j where kj is the number of i's which feed forward

to j (the fan-in of neuron ) [59].

4.4.4 Shortening Learning Times

There are at least two reasons for slow convergence. One is because of the variable
magnitude of the components of the gradient vector. The magnitude of weight update is
proportional to the derivative of the error surface with respect to that weight. If the error
surface is fairly flat along the weight dimension, the derivative of the weight is small in
magnitude. Thus the weight is adjusted by a small amount and many steps are required to
achieve a significant reduction in errors. Alternatively, if the error surface is highly curved
along the weight dimension, the derivative of the weight is large in magnitude. Thus, the
value of weight is adjusted by a large amount and the value may overshoot the minimum
of the error surface. The other cause for slow convergence is that the direction of the
negative gradient vector may not point directly towards the global minimum of the error

surface [60].

Adaptive learning rates
In equation (4-11) the symbol 1 is the learning rate and it is usually a real number between

0.1 and 1. To increase the rate of convergence and stability of the learning process, a
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momentum term [6] is usually added to the right hand side of equation (4-11). This term is

given by the product of the increment of weight change Awj; of the preceding pattern

presentation and a constant ¢ as in equation (4-14).
4.5  Analysis for BP Algorithm and GENE Approach

4.5.1 Introduction

Most multi-layered feed forward networks (MFN) that adopt the sigmoidal or hyperbolic
tangent function as the activation function are trained by the standard BP learning
algorithm or a varniant of BP [59], [6], [61]. The required function approximation is
achieved through the learning process where the aim is to minimize the network error F of
the network by modifying the weights. Such a goal is normally based on the knowledge of
local error at each hidden neuron. One of the reasons for the increasing number of local
minima is that the hidden layer is trained to the local error associated with the node and
not the network error [62], [63], [64]. However, researchers have tried to understand and
improve two characteristics of the method: (1) generalization, the ability of a network to
predict the output (Y) accurately outside the original training set; (2) learning speed or
convergence rate, which is vital for systems learning from real-time experience (rather
than fixed training set). The function approximation could be achieved if sufficient data is
available for training. But practically, it needs the network to be trained with part of the
available data, and could generalize the solution. Also when the network is trained with
further new data, it should not forget the previously learnt data but learn the new one as
well If this could be achieved, then the function learned can be considered as an
approximation and not just an interpolation of the data. For this, a method based on
Global Error Node Evaluation (GENE) approach for Multi-layered Feed forward

Network (MFN) is developed. It retains the function approximation requirements for the
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back propagation (BP) learning algorithm for a nonlinear dynamic behavior. This approach
appears to be effective for the input - output modelling of complex process systems and
therefore on-line adaptation is possible (when the characteristic of the system is changing

or when more training data are available for another operating range).

The development of GENE approach is by addressing two problems in BP, namely, the
saturation of the network nodes and the ultimate paralysis of the entire MFN during
learning, and the problems of convergence to local minima. In this approach the
architecture is modified by adopting linear activation nodes at the output layer with fixed
weights, while the hidden layers (two layers) are having nonlinear activation nodes. The
GENLE approach is validated using the relationship of the back propagation errors between
each layer (output & hidden layers), and the subsequent weights update relation during the
whole learning process. The methodology when used could predict the brine levels in
both the first and last stages for MSF plant more accurately compared to the standard BP.
The development of a dynamic model with an example for set point generation that can
reproduce the process behavior using the standard back propagation as well as using the
GENE approach for the MSF desalination plant will be described in chapters 5 and 6
respectively. The developed algorithm is used for the evaluation of the critical loops due
dynamic disturbances for MSF desalination plant and is discussed in chapter 6. Simulation

examples from random generated values are presented in this section.

452 Principles of Error Transformation in BP
Consider that back propagation of the error is an error scaling process and the
transformation of this scaled error by multiplying it by the connecting weight during back
propagation to the hidden nodes. To be more specific, the error value back propagated
from the output layer is the error scaled by the derivative of the neuron transfer function

in the output layer. These scaled errors from the outer layer are then transformed
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(multiplied) by the respective weight connection to the hidden neuron and are then added
together, producing the summation term for that hidden neuron. The summation term is
then scaled (multiplied) by the derivative of the given neuron transfer function at its

current operating point to form the local error for that neuron.

This 1s the same as if the back-propagated error E is calculated by a transformation of a
set of output scaled error E;, through the inter-layer's connection weights into a set E,,:
where n, m represent the total number of neurons in each layer respectively. The
transformation scheme is based on the values of the connection weights between the
output and hidden layers. As the connection weights are updated every learning cycle, the
local error evaluation for each hidden neuron will have a different transformation scheme
for each iteration and therefore subsequent weights update will have a different

minimization criteria (minimize the local node error).

453 Node Saturation
Node saturation is not required during weight updates for all nodes. All nodes are required
to contribute to the function approximation. While both tanh and sigmoid functions are
monotonic, from the conditioning point of view, the tanh function is the preferred choice
as it lies between [-1,1], while the sigmoid is [0,1]. However, to cover the linear part of
the tanh function, data scaling is usually performed to [-0.8,0.8]. The tanh derivatives are
closer to unity (in a bounded region) and this decreases the distortion of the network error

back propagated between the layers throughout the summation term [65].

To learn the function approximation, the GENE approach is developed by using two
hidden layers with nonlinear activation function (tanh). A fixed weight from the hidden
layers to the output layer is used. The output layer adopts linear activation nodes and is

acting as a fan-in for the error to the hidden layers during error back propagation and this
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satisfies the transformation requirements for the network error when fed back to all hidden

nodes.
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Figure 4.6: Architecture of GENE approach

454 Description of the GENE Approach
To overcome the local error calculation of network hidden layer nodes as well as the
ultimate node saturation or paralysis of entire MFN's during training, the GENE approach
is proposed and based on the following:-
(a) A variant to the back propagation learning algorithm to perform the same
transformation on the output error whenever it is fed back to the hidden nodes.
This 1s by
(i) removing the nonlinear activation functions in the output nodes of
MFN, and replacing them with the linear function /(0)) =0,
(ii) connection weights to the output layer are kept to the initialized small
random value, i.e., no learning is adopted for them. The random value is

selected within a range [-X, x], where x is less that 1. The selected range is

denoted by RIW.
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(b) Two hidden layers H,,; and H,,> are adopted such that:

(1) both hidden layers are connected to the output layer,

(ii) the input layer is connected to Hy,; only and H,,; is connected to

Hiy2,

(ii1) the tanh function is adopted for the hidden layers.
Figure 4.6 shows the general architecture for GENE approach. This approach will increase
the probability of convergence to the global minimum, where the objective functions being
minimized are constraints such that all weights / nodes are trained to reduce the network
error. It has been shown in [66] that MFNs, which adopt linear activation functions in the
output nodes, are universal approximations. With the linear activation function adopted at
the output layer, fan-out the information from the network is another benefit. In addition,
with no learning for the weights connected to the output layer, the learning problem is
kept for the hidden layers only. Moreover, when using linear nodes for the input and
output layers, the input-output information flow will not be distorting the training data,

and hence the relationships between the input-output data can be easily retained.

45.5 Theoretical Basis of GENE Approach
In equation (4-10), d), contains the gradient w.r.t. the local node error. The network
errors for the hidden and output neurons are given in (4-12), (4-13) respectively.
Therefore the weights between the input and hidden layers are updated based on the local
hidden node error. Generally, the major difference of the updating rule for the output layer
and the hidden layer is in the evaluation of the node error. In the output layer, the error is
a function of the desired and the actual output and the derivative of the neuron activation
function. The objective function for the output layer is to minimize the network error. For
the hidden layer the node errors are calculated on the basis of the transformed upper layer
node errors. The weights connected to the output layer are updated every learning cycle.

Hence, the transformation scheme for the network error to the hidden layer will also be
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changing, and the subsequent minimization criteria for the hidden layers. The local error of
the hidden nodes cannot be considered as a network error due to that change for its local

objective function being minimized.

The GENE approach is developed to overcome the problem of node local error calculation
for the hidden layers. A linear transfer function is used at the output layer with no learning
performed at the output layer. The back propagation error is always transformed through
the same initialized weight according to the RIW selected. Therefore the network error is
back propagated to the hidden neurons such that the direction of the gradient does not
change from the previous iteration. On the basis of the above assumptions, equation (4-
13) is no longer valid for the output layer, and the network error is transferred to the
hidden layer with the same transformation effect for every BP iteration (constraints by
constant initialized weight). The convergence solution is now based on the search
direction for equation (4-10) to minimize the transformed network error with a fixed

transformation process for every application of an input.

The gradient search can be defined as d, = -VE(w™®)

With the linear activation function adopted for the output layer, the input and output
layers are considered as fan-in and fan-out layers respectively. In this way, each hidden
node is trained to optimize its local error such that the direction of the gradient for all of
the nodes is always in the same direction as transformed from the network output error

and towards the same orngin.

The method of GENE approach can be applied with the configuration described earlier
and can be used for the training of the data available at the start, as well as for any

additional data that could be available after training with the original data; i.e., on-line
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learning. This could be elaborated by considering a convex error surface, with a starting
learning rate high enough to reduce the network error. The error is reduced with time and
has a learning rate decay factor for smooth convergence to avoid abrupt changes when the
error is close to a minimum. After a network is trained with the original data, the learning
rate has been already reduced to a value such that the output error tolerance specified is
reached. The reduced learning rate will be used for any additional training as required.
Any further changes to the weights when the learning process starts again for additional
data will be in the direction of reducing the network error and not reducing the local error,
i.e., retaining the function approximation requirement. As both data sets are related to the
same process, so the learning process will capture the function approximation of both data
sets and not just interpolate each one at each training cycle. The learning rate in the

second (additional) cycle is small, so that no abrupt changes to the weight will occur.

456 Network Error Flow and Weight Convergence Analysis

4.5.6.1 Standard Back Propagation (BP)
From equations (4-12) and (4-13) and for the first iteration step (i.e., k=0), with initialized
weights -0.05< wljp(O) < 0.05, the relation elj << eLj. holds. The evaluation of elj has
eLj as one of the multiplication terms, and all terms lie in the interval [-1,1]. The result of
these multiplications will always be less than the smallest term used with the initialized
weights. When the MFN is trained with BP or a variant and the coefficients are properly
chosen, then the network error could be reduced during the training. The RMS values of
the error for the output and hidden layers for a single hidden layered network are usually
as shown in figures 4.7 and 4.8. In this case, 10elj > eLj over the entire range. This
extends the error relations for all & iterations. It can be concluded that the error hyper-

surface for the output layer is starting from a higher region than the error hyper-surface
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for the hidden layers at the start of the training and this relation remains for the entire

learning process.

Figure 4.7: RMS error for output laver

Figure 4.8: RMS error for Hidden laver
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45.6.2 GENE Approach
The analysis of the dynamic behavior of the error flow throughout the network weights
starts by rewriting the back propagation error equations (4-12) and (4-13) as:

e} =g SUM(e™'.w') 1<iI<L (4-15)

el =EgT (4-16)
The error in equation (4-15) is composed of a multiplication of two terms, namely the
derivative of the activation function and the summation of the upper layer error
throughout the connection weights. By evaluating the summation for N=1,2,..n with
random error and weight values, the evolution of the summation surface can be thought as
the scaled error throughout the connected weights. The resulting surface will be a smooth
like surface regardless of the weight and error values. This is due to the fact that each
multiplication term in the summation will result in a smaller value. This is similar to
compressing the error to a smoother surface throughout the weights. By using the same
(RIW) initialized weights (only for the output layer) for every iteration for the BP
algorithm, it will produce a surface that reflects the output error directly fed back to the

network.

4.5.6.3 Node Saturation
As shown in figure 4.9, the tanh function with its derivative approaching unity is therefore
preferred to the sigmoid which has less than 0.3 derivative value. The preference is based
on the fact that the network error is back propagated to the hidden nodes. The derivative
is directly reflecting the node input. Using the tanh activation, the error evaluated by
equation (4-13) will contain only the summation surface or a slightly scaled version,
depending on the evaluation of the tanh derivative. Further comparisons between the tanh
and the sigmoid activation are shown in figures 4.10 to 4.17, by using random error
generated values < 1 for the errors with the number of neurons (N) is varied up to 90. The

following cases of weight values are considered: (w=0.01, 0.03, 0.05, 0.1, 0.3.05) It
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can be seen that with the tanh activation it is easier to reach the saturation region as the
number of nodes is increased and a higher value of weight is used. However for weight
values less than 0.05, the activation is in the linear region and far from the saturation
region. As shown in figures 4.14 to 4.17, the sigmoid activation will accelerate the node
saturation problem. This confirms the use of the tanh function to avoid node saturation

and the ultimate paralysis of the entire network.

1 T
y(x)
. 05 = f ==
«(x)
0b—- l —
=3 0 5

Figure 4.9: Comparison between the TANH “ y(x)” and Sigmoid “ 2(x)” functions derivatives

4.6  Simulation Results

With the number of neurons (N) varied from 1 to 90, the initialized weight value is
analayzed by considering the following cases for weight values:

w0l ,x=03 ,y=05,k=1, 1'=3 , m=35 , N:=1,2.90 (4-17)

Then the summation term f(.), the tanh node activation g(.) and the sigmoid node

activation s(.) can be written for each case as follows:
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Now if p is the derivative of the sigmoid for k, I, m weight values,

j is the derivative of the sigmoid for w, X, y weight values,
h is the derivative of the tanh for k, 1, m weight values,
i is the derivative of the tanh for w, x, y weight values,

Then the derivative equations for (4-17) can be written as follows:

d d . d : d
K) - =-s(k h(k) =— k R = y ==
p(k) dl(S( ) (k) dl(g( ) s W) dWg(W) J(w) dWS(W)

o 4
o sy o b =dey i =g 2 IV LY
dl dl dx

- d
iy -:d , YY) = ——s(y)
p(m) - s(m) , h(m) -4 s(m)? i(y) dVg(y) dy

(4-18)

(4-19)
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and the neuron error can be written as the summation multiplied by the derivative as

follows:

er(k) =p(k)-fk) , e(k) =h(k)f(k) ,

e(w) =1(w)-f(w), er(w) =j(w)-f{w)

er(l) =p()-f(1) , e() =h(Df1) , e =ix)f(x) , er(x) =j(¥)f(x) (4-20)

er(m) - p(m)-f(m), e(m) =h(m)-f(m), e(y) =i(y)f(y), er(y) =iy)ty)

A)Tanh activation analysis: Using a random generated error values < 1: and for

different cases of weight values: w=0.01, x=0.03, y=0.05, k=0.1,1=0.3, m=0.5 and using
the number of neurons up to 100 (N); the node activation is found to reach the saturation
region as the number of nodes is increasing as well as with the higher values of weights, as
shown in the figures below. However, for weight values < 0.05 the activation is in the

linear region and far from the saturation region.

3 T 1 |
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Summation node activation = Tanh(summation)

Figure 4.10: Summation & node activation for the TANH function - 1
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Figure 4.11: Summation & node activation for the TANH function - 11
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Figure 4.13: Gradient & error values for the TANH function - 1]

B) Sigmoid activation analysis: Using a random generated error values less than 1; and
for different cases of weight values :  w=0.01, x=0.03, y=0.05, k=0.1, 1=0.3, m=0.5 and
using the number of neurons up to 100 (N); it is found that the node activation is always
greater than 0.5 and reaches the saturation region as the number of nodes are increasing as

well as with the higher values of weights.
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error = gradient X (sum) node activation =Sigmoid (summation)

Figure 4.16: Gradient & error values for the Sigmoid function -1
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4.7  Conclusions

BP net is capable of learning the underlying relationships. Once a BP model is available,
then it can be used directly on line. The weak points of an ANN are the number of training
examples required for generalization is not known and the long training time. The GENFE
approach for improving the learning capability of the BP algorithm is developed. Both the
theoretical and empirical validations for the approach have been given. The hidden layer is
only trained to reduce the network error and not the local node error. The resulting
trained neural network is shown to intelligently generalize all the available test data and
reduce the uncertainty associated with the probability for convergence to the global
minimum. Simulation results indicate a superior convergence speed for the GENE
approach and robustness for analog data. Robustness of the network arises when the
network is trained with new data and a practical example is presented in chapter 6. The
network will not forget the previously learned data in order to learn the new data. Other
benefit is the increase in the type of the function approximation such that highly nonlinear
functions could be predicted. This is demonstrated by predicting accurate brine levels for

MSF plants in chapter 5. In the following chapter the capability of the standard back
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propagation to learn the function approximation of a MSF Desalination plant is
investigated as well as for supervisory set point control function generation. In chapter 6,
detailed experiment for using the back propagation that utilized the GENE approach is
described and show how that by providing additional data training the previously learnt

function has not been lost with the capability to learn the new required function.



Chapter 5 Application of Modelling & Control of MSF
Plants by ANN -1

5.1 Introduction

As described in chapter 2, accurate model and control of MSF desalination industry is an
important subject for solving the numerous problems that arise in operation and affect the
plant stability. It is well known that imprecision, non-linearity, large size and complexity
frequently characterize MSF desalination modelling solutions. They are based on empirical
equations obtained from laboratory work and there is no obvious expression to calculate
the complete model. For the purpose of effective control of the brine level inside the
stages, it would be of great significance to obtain accurate model for it. Recently, ANN
has been proposed to solve MSF modelling and identification problems [5], [67], [68].

Compared with other methods, the outstanding merits of an ANN are:

1. The speed of calculation is high, once the network is properly trained. The
computational power involved in calculating the output does not depend on the
complexity of the process and/or the output precision requested, it depends only on
the Neural Network specific architecture and it is, in general, low. Although most
ANN applications are still simulated on digital computers rather than being
implemented on hardware, there is still significant saving in computer time in

comparison with numerical simulation and other methods.
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2. There is no restriction on modelling, in contrast to many other methods. Numerical
simulation can be used to generate training and testing examples, or can be obtained
from the real plant during the commissioning stage of the plant. Thus the network

model will behave exactly like the plant which the training data was extracted from.

3. With the low computational power involved in computing the output, extensive
simulation analysis can be a very useful tool for the operator and the engineers (e.g:

to implement a what-if-analysis).

An ANN is therefore a potential candidate for an on line adaptive control and fault

diagnosis.

This chapter presents a method of applying ANN to reproduce the process behavior
during load variations of MSF desalination plant which can be used for simulation,
modelling and control purposes. The aim is to demonstrate the use of ANN based on
input-output data as viable alternative to mathematical models. The inputs to the network
model are the manipulated variables (set points to regulatory control) and the outputs are

the controlled variables plus the vapor temperatures in each flash stage.

The performance of the network model is studied by comparing the behavior of the
network to an actual behavior of the plant, due to an increase or decrease for one of the
manipulated variables. In contrast to the approach of Parenti, Bogi and Massarani where
data is obtained from a detailed process simulator [67], in this study the data are obtained
from a commercial MSF plant. The data obtained covers load increase and decrease
between 60% and 100% production load. These data are used for training the network as

well as for studying the network performance for making prediction with particular
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attention to the brine level in the first stage. In this study only one network is used to
model the process behavior in contrast to the cross bar structure used by Parenti, Bogi and
Massarani [67] where several networks are deployed such that each one is used to

estimate one single output variable. Using one model is expected to capture all functional

relations between all variables.

52 Review of the Literature

El-Hawary [5] has studied the possible applications of neural networks (based on the
application of the same) to the power system. To the best of our knowledge, the first
attempt for applying ANN to model MSF plants was explored by us [39], [40], [41]. An
ANN with one hidden layer was trained using the BP to learn a set of input-output data
during load variation. Ramasamy and others [68] also used ANN with one hidden layer for
modelling the relationships between the input-output variables. For a (9-5-3) network,
they have considered the controlled variables to be the brine levels of the first and last
stages, and the product rate as an output for the model. They suggested the manipulated

variables to be:

« Brine recirculation flow rate Brec
« Top brine temperature TBT
« Sea Water inlet flow rate SWin-F
o Sea water temperature SWt

« Sea water circulation flow rate ~ SWrec-F
o Makeup sea water flow rate MAKEUP
« Brine blow down flow rate. BBD

o Steam input flow rate ST-F
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For 18 stage MSF desalination plant, a fully connected MFN with one hidden layer and
using the sigmoid transfer function for the neurons was considered. The data was obtained
by conducting designed pseudo random binary sequence (PRBS) tests on a dynamic
simulator model of MSF plant for about 2100 intervals. To reproduce the process
behavior, they used the current value of all the manipulated variables and the controlled
variables as neural network inputs to predict the outputs (controlled variables) at the next
instant. The input-output data were divided into three different sets for training, cross
validation and testing of the neural network model. Each data set contained 700 data
patterns. Satisfactory network performances were obtained by training the network with
BP. However, the result based on the use of PRBS tests to obtain the data from the
simulator does not provide the necessary validation. It is necessary to test on practical
plant data over the entire operating range, including the nonlinear regions, and carry out

rigorous simulations. The work in this chapter is covering this drawback.

Parenti, Bogi and Massarani, have used ANN with one hidden layer for modelling the
MSF process based on an ANN steady state estimator, which has been trained on data
collected from a process simulator. They suggested the following inputs [67]:

o Evaporating brine inflow

« Evaporating brine temperature

o Evaporating brine salinity

e Sea Water temperature

The outputs from the network after training are the value of the following 8 variables for
each steady state record data base:

 Brine heater steam flow

e Makeup flow

e« Blow down flow
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o Evaporating brine out flow

« Evaporating brine out temperature
 Evaporating brine out salinity

e Gained output ratio

 Distillate production

They have not considered the brine levels as one of the controlled output. It appears they
have difficulty in training such a network, and suggested splitting the problem into 8
networks each have 4 inputs and one output. They used the batch learning with an epoch

size of 16 examples, with 5000 updating cycles for every net.

5.3  Constramts of the Study

The use of one ANN to predict a practical comprehensive range of operating conditions
including the brine level has not yet been shown to be feasible and studies have been
confined to restricted situations. The nature of restrictions imposed have a very strong
influence on the success of an ANN in predicting the process behavior during load
variations (load trajectories) or on the types of inputs or outputs required. Data was
obtained from MSF plant at Al-Taweelah consists of 16 stages (13 recovery and 3 reject
stages). The conditions of the study were as follows:

1. Maximum distillate product load (100 %) corresponds to 1350 t/h and minimum

distillate product load (60%) corresponds to 650 t/h.

2. LP steam temperature is 182.5 degree C, and steam pressure of 0.75 bar for all data.
3. Two network topologies are used. When using the BP learning algorithm, a single

hidden layer is adopted, while two hidden layers are adopted when using the GENE

approach.
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Examples were generated from the plant during load increase and decrease between 60%
and 100% production load. This was done twice so that two different trajectories are

obtained.

54 ANN Considerations

This application falls into the category of a nonlinear mapping between inputs and outputs.
The ANN architecture adopted here is a MFN with one hidden layer using a Tanh
activation function when using the BP learning algorithm, while two hidden layers are

adopted when using the GENE approach.

54.1 Choice of ANN Inputs

The choice of inputs is an extremely important factor in the successful use of an ANN.
The modelling problem here is to find suitable manipulated variables, which affects the
controlled variables. For the plant model, having the goal to reproduce the process
behavior from the data obtained, the inputs to the neural network model (NNM) are the
process manipulated variables (set points to regulatory control) and the outputs are the
corresponding controlled variables. Moreover, by having the vapor temperatures as
additional output from the network model, it will provide information on all the flashing

stages and verifies the modelling capability of ANN for reproducing the process behavior.

The problem connected with the control of both brine recirculation loop and the top brine
temperature loop is mainly due to the interaction between the two loops and the process
directly. The control problem can be hardly solved with the tools of the classical and
advanced linear control theory because of the mismatch between the real process and the
model on which based upon. A major source of the mismatch is the nonlinear

characteristic of the process. Load variation for the distillate production rate, requires
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generation of pre-determined steps to the set points of the regulated variables for the two
loops. The product quantity can be maintained with different level patterns in the stages. A
bounded constraint is desirable to keep the brine level within the upper and lower level
limits in each stage. Preventing the brine being flooded with the vapor to the condensate
tray affecting the purity of the product is by the upper bound, while the lower one is for
preventing the blow through of the brine at the inter stage to cause loss of the differential
pressure between stages. Increasing the brine recirculation flow will increase the amount
of brine to the 1st stage, but tend to decrease the level in the last stage. In general an
increase in the brine level in stages decreases the efficiency. A level control with the brine
blow down flow as the manipulated variable for the last stage is usually employed.
However no control can be done on the first stage and any other inter-stage levels.
Difficulties in classical approach can be summarized as follows:

(1) The evaporation process is an open-loop unstable system, because of the existing two-

phase flow mixture.
(2) There is an explicit limitation on the magnitude of the control signal that can be used
for control.

(3) Plant parameter uncertainties and of nonlinear phenomena which cannot be modelled.
Therefore effective control of the brine levels is to obtain accurate models for them.
Attempts in the literature appear using steady state analytical models. An alternative is the
empirical process model for the brine level to be used in adaptive control and fault

diagnosis of MSF. Thus the inputs to the NNM network model are selected as:

. Brine recirculation flow rate Brec
. Top brine temperature TBT
. Sea Water inlet flow rate SWin-F
. Sea water temperature SWt

. Sea water circulation flow rate Swrec-F
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. Makeup sea water flow rate MAKEUP
. Brine blow down flow rate. BBD
. Steam input flow rate ST-F

The outputs of the model are

. Brine Level in first stage BL-1

. Brine Level in last stage BL-L

. Distillate product flow rate PROD

. Distillate Level in last stage DL-L

. Brine to heater temperature BTHT

. Seawater from reject section temperature.  SWrej-t

. Vapor temperature in all stages (16 no.'s)  VT-1...VT-16

As an alternative to the TDL for the past values, each input to the network model has two

associated vectors v j(k), vo(k) and are defined as follows:
vi(k)=u(k)—u(k-1)
3

v,(k)= 2y, (k=n)
Where u(k) is the input at instant k£. Thus, v, represents the change in the current sample
from the previous one, while v, will represent the accumulated change for the current and
the past 3 samples. Thus the model will have 8x3 inputs instead of 8x6 inputs. This
reduces the number of inputs to the network, thus reducing the size of the input vector
and hence the number of free parameters (weights and thresholds) in the network to be
determined during training. This is important for any non-parametric technique since the
number of training examples required grows exponentially with the dimension of the input
vector. A rule of thumb which is sometimes cited is that the number of training examples

should be of the order of ten times the number of weights (see Section 4.2).
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542 Data Collection, Preparation and Preprocessing (Scaling)

As the model required to handle analog data, the acquisition hardware and software used
have the capacity of 1282 analog input values that can be measured with a scanning cycle
of 2 seconds and the integration conversion method is used to read the coded digitized
values (12 bit + sign). MSF plant can be characterized as a relatively slow process.
Tracking one particle of brine from the recycle start point at the last stage, it would
require few minutes to complete the cycle reaching the last stage again. Considering
tracking one particle of brine inside the brine recycle loop, the 2 seconds is a very low
scanning cycle, so a printout of the data has been implemented every 30 seconds. Data
was obtained during 60% to 100% load variation of a MSF plant (13 recovery stages and
3 reject stages) for Al-Taweelah-A desalination plant which is equipped with a process

computer system.

As the network nodes transfer function used in this study is the hyperbolic tangent,
it 1s required to map the data into the working range of such transfer function, which lies
between -1.0 to +1.0. For the software used (Neural Ware Professional II plus), one can
specify the maximum and minimum ranges within which the real input-output data lies. A
linear mapping is then performed on the real data to the network input-output. By this way
the distribution of the data could be easily specified to cover the normal distribution of
each measurement. For example, the distillate flow that could be produced from the plant
under study is in the range of (650 - 1350 t/h), and these were used as the minimum and
maximum values respectively. For the brine recirculation flow the maximum value is
specified by the pump capacity used for recirculation. The minimum value is the minimum
allowable velocity in the condenser tubes to avoid excessive fouling and erosion. For the

top brine temperature, the minimum and maximum values used are the corresponding
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values to the minimum and maximum values of the distillate flow. It was found that it is
very important to set the minimum and maximum values correctly, otherwise the network
may never learn and the error function may be of high values and cannot be reduced.
particularly if the minimum and maximum values for the different measurements are
inconsistent. On the other hand if the minimum and maximum range is enlarged, the
resultant error after training will relatively larger (e.g.: 1% error of the range 0-1500 t/h is
15 t/h, while for a range 650-1350 t/h is 7 t/h). Other advantage from specifying the
maximum/minimum values is that it can be considered as an embedded constraint that can
be utilized for fault diagnostics. The maximum and minimum values used during the

training in this study are shown in Table 5-1.

543 Training Consideration
The connection weights and thresholds of the NNM were adjusted by training using the
GENE approach to examine its performance for prediction of the brine level. This is
compared to the performance when the ANN is trained using the BP based on the
normalized cumulative delta rule. Each weight and threshold were assigned an initial
random value between -0.05 and +0.05. The learning rate, momentum and temperature
values for the output and hidden layers are selected as shown in Table 5.2. The epoch size

chosen is 16.

5.5 Empirical Process Model Development

55.1 BP Approach
In order to study the ANN approach using the BP algorithm for training for MSF plant
modelling during load change, the network has to be trained to predict the correct values

of the controlled variables for every record of data obtained. For a single hidden layer with
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20 hidden nodes and by using the back propagation learning algorithm it was found that
adequate learning for the required function approximation has been achieved. The data
obtained contains 1160 records. For the training phase, the data is divided into two parts;,
each one covers a complete load increase and decrease. The training is conducted using
the first part for 500 iterations, followed by additional training using the second part and
then finally the training is conducted using the whole data. Figure 5.2 shows a good
approximation has been achieved for the various temperatures and flow variables.
However, the results in figure 5.1 for the brine level of first stage shows non conformance
with the actual data. The test result does not follow the oscillatory characteristic of the
actual brine level in the first stage, but a smooth curve has been produced. As will be
shown later, using GENE approach for learning does not have such drawbacks in
estimating the oscillatory characteristic for the brine levels over the entire range of data
obtained. It is worth to note that the low effort and the computational power required for
obtaining the result as compared to any other mathematical formulation for the MSF

modelling problem.
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Figure 5.1: Test results for modelling MSF plant brine levels (Ist and last stage) using BP
learning algorithm and 20 hidden neurons.
The dotted lines represent the network output and the lines represent results from the

actual plant.



CHAPTER 5: APPLICATION OF MODELLING AND CONTROL OF ASF PLANTS BY ANY -] 90

Figure 5.2: Test results for modelling MSF plant with 16 stages using BP learning algorithm and
20 hidden neurons.
The dotted lines represent the network output and the lines represent result from the

actual plant.
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S.5.1.1  Empirical Model Validation

100 data records represent load increase from 700 t/h to 960 t/h is used for model

validation. All the input variables obtained are varying with exception to the constant sea

water temperature. The constraints of the model are as follows:

o The TBT and STF values are coupled together to follow the logical sequence of the
brine heater.

o The SWrec and SWFin values are coupled together and are used as obtained from the

plant such that the inlet seawater temperature remains constant.

Factors considered for model validations are:
o The selection of hidden nodes numbers for such mapping.
« The consistence between the network model and the actual process behavior to keep

one or more of the inputs to a constant value for a selected region of operation.

Simulation tests used are as follow:

1- T1 test: selected input variables are kept to a minimum constant value for all 100
records data set and apply these records to NNM. The selected variables are as
follows:

B TBT and STF for constant heat input to the desalination unit.

B Makeup flow and brine recycle flow. The seawater recirculation flow, brine blow
down and seawater inlet flow are the only varying inputs.

It is envisaged no variation for the product flow under this test.
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2- T2 test: same as T1 but using the maximum values found in the data set.

The minimum and maximum values found in the data set are shown in table 5.3.

When an input variable is constant, the associated vectors v;, v» will have a zero value for

all k's. Simulation results are shown in figures 5.3, 5.4, 5.5, and 5.6 for NNM when using

4,12, 20 and 28 hidden nodes respectively. Each figure includes 6 results for each output.

The response for each output is described in the following:

Brine level cell 1 :

MMN with 4 hidden nodes: For the first 70 records, the level response follows a
constant value for T2, while for T1 the level follows an oscillatory response as
shown in figure 5.3 (a). The level response for T2 is lower than that for T1.

MMN with 12 hidden nodes: the level follows the same oscillatory response of the
original data set but at a constant mean high value for T1 as shown in figure
5.4(a). Similarly, the response for T2 is the same but with a constant mean low
value.

MMN with 20 hidden nodes: the level follow the same oscillatory response of the
original data set but at a constant mean high value for T1 as shown in figure
5.5(a). Similarly, the response for T2 is the same but with a constant mean low
value.

The response for MMN with 28 hidden nodes is in a reverse manner when
compared to MMN with 4 hidden nodes. The flow response for T1 is lower than

that for T2. While visa versa for MMN with 4 hidden nodes.
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e Brine level cell 16 :

5- MMN with 4 hidden nodes: The level response follows a constant value for T1.
while for T2 the level follows an oscillatory response as shown in figure 5.3 (b).

6- MMN with 12 hidden nodes: the level follows a constant value for T1 and T2 as
shown in figures 5.4(b).

7- MMN with 20 hidden nodes: the level follows a constant value for T1 and T2 as
shown in figures 5.5(b).

8- The response for MMN with 28 hidden nodes is similar to that for MMN with 4
hidden nodes, but in the reverse manner. The oscillatory response for the level for

T2 is shown in figure 5.6 (b).

e Product flow :

9- MMN with 4 hidden nodes: The flow response follows a constant value for T2, while
for T1 the flow follows an increasing response as shown in figure 5.3 (c).

10- MMN with 12 hidden nodes: the flow follows a constant value for T1 and T2 as
shown in figures 5.4(c).

11- MMN with 20 hidden nodes: the flow follows a constant value for T1 and T2 as
shown in figures 5.5(c).

12- The response for MMN with 28 hidden nodes is similar to that for MMN with 4

hidden nodes, but in the reverse manner. The increasing response for the flow for T1 1s

shown in figure 5.6 (c).
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o Sea water reject temperature: the variation for this variable using T1 and T2 data set
as shown in all figures is due to the variation of the sea water recirculation flow and
the sea water inlet flow. But again the response for MMN using 4 hidden nodes is

reverse to the response when 28 hidden nodes were used.

e Brine temperature to brine heater: same response as the product flow.

e Vapor temperature cell 1: same response as the product flow.

From the above MMN with 20 or 12 hidden nodes, it shows that better performance is
achieved compared with that of 4 or 28 nodes in the hidden layer in simulating the process
behavior. This model can be utilized in case where the brine level of the first stage is not
an important factor. Figure 5.7 shows the response of the network could not follow the
oscillatory response for the brine level in the first stage where different number of hidden
nodes is used. However, in the following section, the GENE approach is explored for

prediction of accurate brine stage level.



CHAPTER 5:  APPLICATION OF MODELLING AND CONTROL OF MSF PLANTS BY AN -1 a5

Figure 5.3: Network model simulation results using Tland T2 data after training by BP

algorithm with 4 hidden nodes.
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BP

Figure 5.5: Network model simulation results using T1 and T2 data after training by

algorithm with 20 hidden nodes.
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Figure 5.6: Network model simulation results using T1 and T2 data after training by BP

algorithm with 28 hidden nodes.
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Figure 5.7: A comparison between BP learning algorithm with different hidden neurons number

Jor prediction of the first stage level.

552 GENE Approach

The BP learning algorithm is shown to give good approximation, with the exception to
prediction of the first stage brine level. When using the GENE approach for training, it is
found that a minimum number of hidden neurons is required otherwise the network will
never learn. The minimum hidden neurons number is estimated by directly performing the
learning phase with low number of neurons and if the error is not reduced, then add more
neurons, until one reaches the number at which the error is reduced suddenly. Test results
for using 60 nodes for each of the two hidden layers are shown in figures 5.8 & 5.9. The
prediction of the first stage brine level and the last stage distillate level are shown to be in
agreement with the data obtained as compared to the prediction obtained with the BP

learning algorithm. Moreover. the estimated level follows the oscillatory characteristic of
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the brine level in the first stage obtained in the data. Furthermore, figure 5.9 shows the

result of the flow and temperature variables with an increased performance as compared to

those obtained with the BP. Notice that for both cases, the last stage brine level is shown

to be smoother and do not have the oscillatory characteristic because the brine blow down

is used for controlling the level in a closed loop. By increasing the number of hidden nodes

to 75 for each layer, the prediction of the brine level is further improved as shown in figure

5.11.
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Figure 5.8: Test results for modelling MSF plant with 16 stages using GENE learning algorithm

with 60 neurons for each hidden layer.

The dotted lines represent the network output and the lines represent results from the

actual plant.




Figure 5.9: Test results for modelling MSF plant with 16 stages using GENE learning algorithm

with 60 neurons for each hidden laver.
The dotted lines represent the network output and the lines represent results from the

actual plant.
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55.2]1 Empirical Model Validation

Same procedure for model validation is used. Figure 5.10 shows simulation results with
T1 and T2 data set. The performance is shown to be similar to have a single hidden layer
with 20 hidden nodes and with the BP learning algorithm. The only draw back is the
response for the brine temperature to brine heater and vapor temperature for cell 1 using

T1 and T2 data set are shown to have the same values during simulation.

Figure 5.10: Simulation results from ANN using GENE approach, each of the two hidden layers

have 60 neurons
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Figure 5.11: Prediction of the first stage brine level using GENE approach (2 hidden lavers
with 75 nodes each)
The dotted lines represent the network output and the lines represent results from the

actual plant.

553 Discussion

With the aim to demonstrate the use of Artificial Neural Networks (ANN) as a viable
alternative to mathematical models for numerical simulation purposes, a case study has
been carried out on a multistage flash desalination plant (MSF). The results described
suggest that the use of ANN based on GENE approach for training, rather than with the
standard BP learning algorithm, is adequate for modelling the MSF process and prediction
of the stage brine level during load variation over the entire range of data obtained. If the
brine levels were not required for the model, then the BP algorithm with single hidden
layer would be enough for such a problem. Another approach is to use the BP for
modelling the process variables, but for the brine levels, to use the GENE approach. While
the plant considered is equipped with brine level measurements for stage 1 and stage 16
only, if a complete model covering all the brine levels for all stages is required, then level

measurement for all brine level stages would be necessary. It is worth to note the small
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effort required to obtain the result as well as the low computational power compared with

any mathematical formulation for the MSF modelling problem.

Choosing the correct architecture is the key to have an accurate and efficient model that
predicts the brine level in all stages.

5.6  ANN Approach for Supervisory Set Point Control of MSF Plants

As discussed in chapter 2, the current practical applications for the set point generation
program is based on availability of an approximate operating curves for the brine
recirculation flow as a function of the product distillate flow rate and the cooling sea water
temperature. Additionally the TBT is calculated using the heat and mass balance equations
for the evaporator in their linear form. The operating curves are usually obtained during
the first commissioning of the units, and may require further tuning to either enhance the
performance or due to slow changes in the plant parameters that may occur with time.
However, parameter tuning and updating is usually based on trial and error. The tuning
process requires the process engineer to be familiar with all programming and tuning
details and special skilled people are required to be involved. However, an engineer who
understands the process being simulated requires a few days training in the neural network
approach. For the purpose of plant modelling with the ANN approach to learn the data

from the plant is required.

This section is devoted to demonstrate the applicability of ANN approach to learn and
generate the necessary set point steps required for load variation between 60% and 100%
load production for MSF plants. The developed procedure includes a method to validate

the set point generation based on the capability of ANN to predict a practical

comprehensive range of the process behavior.
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5.6.1 Procedure for Set Point Generation using ANN Approach

To learn the set point generation, a trajectory is developed to cover comprehensive
operating points during load variations. This is implemented by considering the sample of
the system input-output during load variations which follow a time state space function
V(t) with a mapping function NNE that can be estimated or approximated using ANN
approach. Three networks are used for set point control generation and validation. The
procedure is based on cascaded architecture of ANN and they are used as an Estimator
network (NNE), Controller network (NNC) and a Mapper network (NNM). The block
diagram of the approach is shown in figure 5.12. The procedure can be described in the

following:

1. The nonlinear time state space trajectory is estimated for different operating points
(input and output data) during load variations using NNE. The performance of the
network is studied by considering the time state space trajectories V(t) which 1s
composed of several vectors, and comparing the performance to the various

combinations of vectors.

2. The control action is learnt using this nonlinear time state space trajectory with NNC.
NNC could be one network or sub-divided in some cases into two sub-networks. In
this case, there are two sub-networks. The first sub-network (NNCI) is used for
control during load increase and the second (NNCD) is used for control during load
decrease. The performance of the network is studied to find the case when only one

network of NNC is used to learn the set points required to increase and decrease the

load simultaneously.

3 To validate the final results, NNC is used to generate the control signal to the NNM

network based on the estimation of the first network NNE and to compare NNM

behavior to the process data.
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Figure 5.12: The block diagram based on cascaded architecture of ANN's and thev are used as

an Estimator network (NNE), Controller network (NNC) and a Mapper network (N\'\1).

5.6.2 Data Collection, Preparation and Preprocessing (Scaling)

For plant modelling and set point generation, data was obtained for 60%-100% load
variation of a MSF plant (13 recovery stages and 3 reject stages) for every 30 seconds for
the following variables:

Brine recirculation flow rate;

Top brine temperature (outlet from the brine heater),

Makeup seawater flow rate;

Steam input flow;

- U

Seawater circulation rate to maintain the sea water inlet temperature during winter
conditions;

6 Sea water temperature;

7. Brine blow down flow rate;

8 Steam input temperature;

9. Brine level in the last stage;

10.  Distillate product,

1. Brine temperature to brine heater; and

12. Seawater from reject section temperature.

Variables 1 to 7 are considered as input to the model, and the other five are the

corresponding output variables. Data covering load increase and decrease are included
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with the vapor temperatures in each stage, so that more sensory data are used for the
training. LP steam temperature is 182.5 DEG C and with a pressure of 0.75 bar. The

maximum and minimum values used during the training are shown in Table 5-4.

5.6.2.1 Time State Space Trajectory for Set Point Variation Control
The time state space trajectory for set point variation control contains several vectors {v1,
v2, v3,...vn}, where each vector is introduced to either define the status of the plant to the
maximum / minimum load, or to define the plant logical condition like the load varation
type (increase/decrease). To define the status of the plant to the maximum / minimum load
data points, each collected data point is tagged with a step number (in the data set during
load variation). This means tagging each collected sample or pattern with a number (x)
which is successively increased / decreased with the next collected sample, depending on
the load changing condition. The status of the plant can now be defined from the collected
data, and by choosing a suitable variable proportionally related to the load (the top brine
temperature (TBT) in our case), the maximum and minimum normalized values are
selected as Xmax and Xxmin respectively. They are considered as the upper and lower
normalized steady state load status values. Now the difference q between any two
successive (x) is calculated as follows:
q = (Xmax - Xmin) / k (1)

Where k is an integer and represent the total number of data collected during load
variations.

Therefore, the following vectors with dimension kx1 can be used to define the time state

trajectory:
= 1! (2)
vl = [Xmax> Xmax-q> Xmin
v2=[0,..9.9,---,0,...-Q,=q, -+ - O]T (3)
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V4 =[01,02, e, Gk]T (5)

o = tanh (x) (6)

o is the average of seawater inlet, make-up, blow down, and seawater recirculation flow

variables.

The time state can now be defined according to the values of v1, v2, v3 and v4, i.e. in the
space represented by these vectors. If two vectors represent the time state, then it is a
two-dimensional state and is called time state plane. When the representation uses more
than two vectors, it is called the time state space. For simplicity, the time state space

terminology will be used in the text.

Where

v1 represents a linear relationship between the time and the status of the system.
v2 represents the condition of load (increasing, decreasing or no change).

v3 represents a nonlinear relationship between the time and the status of the system and

takes the shape of the tanh function between the minimum and maximum load.

v4 represents a variable parameter from the plant.



CHAPTER 5:  APPLICATION OF MODELLING AND CONTROL OF M SF PLANTS BY ANN -1 105

'I d NN | mPut output
NNEF@ | Plant

Figure 5.13: Block diagram of the proposed neural network for step estimation and control of
MSFD plant

563 Training Consideration
In this study all networks used have single hidden layer. It is found that by using the back
propagation learning algorithm satisfactory required performance has been achieved. The

data used for training does not include the brine level in the first stage.

As shown in figures 5.13 and 5.14, the block diagram of the proposed NN controller
consists of two networks: an NN Estimator (NNE), and an NN controller (NNC). NNC 1s
sub-divided into two sub-networks, (NNCI) for load increase and (NNCD) for load
decrease. By applying both input and output data to the NNE, the output of this network
is the time space state, which is the subsequent input to NNC. Now the output of NNC
contains the values of the input data to the plant (set point to regulatory control). is

applied to NNM to produce the desired output of the plant.

During the training phase, each network is independent of each other. While in the

application phase, by increasing / decreasing the time space states successively with a
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delay (D) will produce the required trajectory of the output load with respect to the
required control input. Since the delay is considered as the sampling rate of the obtained
data, hence the dynamics of the system are included. The set point control is generated
from both input-output data of the plant. In this case D = 30 seconds. The weights and
threshold were initialized randomly to lie within (+ 0.01). The NNC was a 4-20-7 network
while NNE was 28-20-4 and NNM was 7-20-5 with the hyperbolic tanh function in the

hidden and output units.

Considering the sample of the system input - output during load change following a time
state space function V(t) with a mapping function N that can be approximated using NN,

the following cases are considered:

Case 1: V() =N [y()u(t)] = {vI,v2} ©)
Case2: V() =N [y(D,u®)] = {v1,v3} (8)
Case3: V() =N [y()u(t)] ={v2,v3} 9)
Case4: V() =N [y®u(t)] ={v1,v2,v3} (10)

Case 5: V(1) =N [y(t),u(t)] ={v1,v2,v3,v4} (11)
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Figure 5.14: Block diagram of neural network with back-propagation training algorithm for

modelling and set point control function generation for load variation of MSF unit

The collected input and output measured variables are applied to NNE where its estimated
output is compared to the time state space function V(t). So NNE can be employed by
using the error between the network output and the nonlinear time state space trajectory
denoted by ey, as shown in figure 5.13.

The performance index
N
2
Jg = 2r (vi(t)=yi(1) (12)
I
is used in the training where )A/  is the ith output of the sub-network.. The weights in NNE

are updated as follows:

WEO=WE(t-1)-E5( W) (13)
where the subscript E refers to NNE, and W, (t) is the weight vector consisting of all
weights in the sub-network at time t. The quantity Z.( W) is the gradient vector.

consisting of the derivatives of ./, with respect to each weight in the NNE, and r; is the

step length for weight updating.
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564 Control Generation Simulation

Increasing and/or decreasing the load of a MSF desalination unit requires generation of
pre-determined steps to the various set points of the regulated variables. The final required
set points (steady state condition) is calculated by the mathematical model. while choosing
the most applicable steps is by trial and error [18, 19]. To generate the intermediate set
points, ANN is proposed to approximate the set-points step generation based on
input/output samples collected during load change. Firstly, and after sufficient learning by
introducing all input-output data to (NNE), the output result of NNE, V(t), is used as

input to (NNC).

By applying V(t) to the NNC network, the output of this network is the control input to
the plant during load increase as well as load decrease. The step length, momentum, and
temperature coefficients are chosen as shown in table 5.5. Results of variation of these
coefficients for NNM network are shown in figure 5.15. Results on Figures 5.16, 5.17 and
5.18 show that one NNC controller could not approximate the control function by using

V(t). The RMS error could not be reduced to an acceptable level.

Considering cases 1,2,3 and 4, the learning ability appears only after splitting the NNC
controller into two parts: NNCI and NNCD controllers (see figure 5.14) are for load
increase and load decrease respectively. Figures 5.19 and 5.20 show that the RMS results
are satisfactory (RMS < 0.1). Variations of the learning rule are considered in all cases
(Delta rule, Normalized delta rule and Commulative delta rule). The comparison shows
that by using the commutative delta rule for the back propagation algorithm has not
improved the network performance in reducing the error function. Whilst by using either

delta rule or the normalized delta rule the performance of the network has improved by

reducing the error function.
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Now using V(t) as defined in case 5 to avoid splitting of the controller, the estimated
results and desired values are shown in figures 5.21 and 5.22. It indicates that NNC is
capable of reducing the error between the network output and the plant input denoted by
ec in figure 5.13 and with similar performance index and weights update as shown in

equations (12) and (13).

56.5 Discussion

A case study and simulation results using real data from the plant have demonstrated the
capability of the proposed neurocontroller when it is applied to the process under
consideration. Comparative simulation results have shown that by adding more sensory
information with proper choice of the learning rate and other learning parameters. the
neurocontroller could generalize all cases available. The above results are based on a new

approach of using the neural networks for control of MSF desalination plant.

These results are for variations from 60% to 100% load a satisfactory mapping for the
input-output relationship has been achieved. The network could be extended to learn more
data when necessary. The foregoing shows that the most common task of the ANN is to
perform a mapping from an input space to an output space and can approximate the
nonlinear function between the input-output relation accurately. The approach provides
the procedure to implement NN controller to satisfy the requirements of MSF tracking
problem based on cascaded architecture of NN. The NN controller consists of two
networks, which are used for time-state space trajectory estimation and control signal
generator, respectively. The superior performance of ANN is not limited to model the

process behavior (NNM), but also to learn the generation of the control action from the

data obtained.
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57 Conclusions

The use of ANN based on the GENE approach for training has been found to give good

results in prediction of the MSF stage brine levels.

Investigation have shown that, under some conditions, and using all the available
information with the GENE approach adopted for the MFN, the network will give
accurate results with a minimum effort for the data obtained during load change (transient
condition). It is evident that this is true for data obtained for such dynamic behavior of
MSF plant during load change, particularly for the brine level. If the brine levels were not
required for the model, then the BP algorithm with single hidden layer would be enough
for such a problem. Another approach is to use the BP for modelling the process variables,

and for the brine levels to use the GENE approach.

Compared with other reported work [67], we have utilized real data obtained from the

plant so that simulation and test result gives an actual behavior of the plant.

In the next chapter, disturbances that cause different instability modes for MSF plant and
all major loops will be explored. Separate dynamic tests were conducted on existing plant
to obtain system dynamic behavior for each control loop. This causes instability and low

performance of the trained network and the solution to this will be explored in the next

chapter.
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VARIABLES Min. value | Max. value || units
Brine Recirculation flow 13210 15000 th
Brine from heater temperature (TBT) 67.78 9473 deg C
Sea water (SW) inlet flow 5003 7229 t/h
SW to evaporator temperature 27.81 32.75 deg C
SW circulation flow 5667 8438 t/h
Makeup SW flow 3266 6090 t/h
Brine blow down flow 2261 5125 t/h
Steam input flow rate 77.42 171.9 deg C
Brine Level in first stage 426.3 662.7 mm
Brine Level in last stage 30.3 66 %
Distillate product flow 648.6 1350 t/h
Brine to heater temperature 62.59 71.98 deg C
Distillate Level in last stage 63.02 87.92 %
SW from reject section temperature 33.85 37.51 deg C
Vapor temperature in stage 1 66.24 89.95 deg C
Vapor temperature in stage 2 64.58 86.74 deg C
Vapor temperature in stage 3 62.57 82.89 deg C
Vapor temperature in stage 4 59.82 78.77 deg C
Vapor temperature in stage 5 57.26 74.84 deg C
Vapor temperature in stage 6 55.15 70.81 deg C
Vapor temperature in stage 7 51.09 66.23 deg C
Vapor temperature in stage 8 49.66 62.11 deg C
Vapor temperature in stage 9 46.45 57.81 deg C
Vapor temperature in stage 10 44 .26 53.78 deg C
Vapor temperature in stage 11 42.06 4993 deg C
Vapor temperature in stage 12 40.5 46.64 deg C
Vapor temperature in stage 13 38.21 4279 deg C
Vapor temperature in stage 14 36.34 40.14 deg C
Vapor temperature in stage 15 34.28 39 48 deg C
Vapor temperature in stage 16 32.13 3532 | degC

Table 5.1: Variables minimum & maximum values
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Output Layer || Hidden Layer
Step length 0.15 0.3
Momentum 0.4 0.4
Temperature 0.1 0.1

Table 5.2: Learning schedule for output & hidden layers

variable Brec TBT MAKEUP | STF
Dimension | t/h oC t/h t/h
min. 13250 68 3860 89
max. 15000 80 5240 149

Table 5.3: Minimum & maximum values adopted for the input variables during model validation

simulation tests T] and T2

VARIABLES Min. value | Max. value
Sea water make-up flow (t/h) 3860 5906
Cell 16 distillate level (%) 65.88 67.53
Brine Recirculation flow (t/h) 13254 14726
Low pressure steam flow (t/h) 89.32 162.9
Sea water to evaporator flow (t/h) 5362 7079
Sea water recirculation flow (t/h) 7418 7491
Brine blow down flow (t/h) 3437 4594
Brine from heater temperature (deg C) 68.8 94.66
Brine to heater temperature (deg. C) 63.9 87.92
Sea water to evaporator temperature (deg C) 30.34 31
Sea water from evaporator temperature (deg C) 34.55 36.71
distillate flow (t/h) 701.7 1333

Table 5.4: Variables minimum & maximum values

Output Layer Hidden Layer

Learn count 6000 | 12000 | 19000 | 25000 || 6000 [ 12000 | 19000 | 25000
Step length 0.15 0.4 0.019 | 0.001 | 0.3 0.15 0.038 [ 0.002
Momentum 0.4 0.2 0.05 0.003 f 0.4 0.2 0.05 0.003
Temperature | 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Table 5.5: Learning schedule for output & hidden lavers



Figure 5.17: Output error for NNC net with epoch = 10, with 1(t)={1'1,1 2} as the input
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A-Delta rule, B-Normalized delta rule, C-Commulative delta rule Learning Counts

Figure 5.18: Output error for NNC net with epoch = 10, with 1'(t)={1'1} as the input

Learning Counts

Figure 5.19: Output error for NNCI net with epoch = 20
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Figure 5.20: Output error for NNCD net with epoch = 20
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Time steps

Figure 5.21: Estimated (dark lines) & desired (doted lines) flow values

Figure 5.22: Estimated (dark lines) & desired (doted lines) temperature values
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6.1 Introduction

In the last chapter, other reported works on MSF desalination process modelling by ANN
was reviewed [67], [68]. They focused on systems obtained from simulators, though
results considering simple network were reported. Moreover they did not discuss the
effect of the dynamic behaviour of the system on the performance of ANN. Generally
speaking, at least two control modes can be identified for MSF; the first is required to
perform load change between minimum and maximum load working point to cope with
the daily load demand, while the second mode is the response of the control system to
external disturbances such that the plant availability is not disturbed. The first one has been
dealt with in the last chapter and difficulty is experienced in capturing accurate prediction
of the first stage brine level. To investigate the second mode for MSF desalination plant,
all main control loops were observed during imposed disturbances so that the interactions
of the desalination process could be covered. The objective of this chapter is to present a
dynamic black box model of the desalination process and to provide a method for learning

the control action due to external disturbances.
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In this chapter we present a different case from the prevoius one, namely the application of
MFN to MSF desalination plant to identify and model the process behaviour due to
dynamic disturbances. Specifically our attention will be focused to cover the major control
loops, and they are as follows:

o Top brine temperature control loop.

e Brine recirculation flow control loop.

o LP steam temperature control loop.

¢ Brine level control loop.

¢ Distillate level control loop.

e Sea water make up flow control loop.

o Sea water supply temperature control loop.

To obtain the relevant information about the process behaviour, dynamic tests were
necessary. The unit steps were made at the control valve, e.g. to realize a sudden change
of the steam flow to the brine heater, then leave the system to stabilize by itself due to
such disturbance. Thus the dynamic test involves disturbing or exciting the manipulated
variables for some control loops. By such excitation the resultant effect on the controlled
variables could be obtained. Seven different dynamic scenarios were possible to be
obtained as follows:

1. Brine recirculation dynamic test (df,)

2. Brine level dynamic test (df,)

Distillate level dynamic test (dt,)

(OS]

4. Low pressure steam flow dynamic test (dZ,)
5. Low pressure steam temperature dynamic test (dr,)
6. Makeup flow dynamic test (d¥,)

7. Sea water supply temperature dynamic test (df;)
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Additionally a static test (dt;) (slow variation of the process variables such that no
disturbances are encountered) could be obtained for the following variables:

¢ Brine recirculation flow.

o Brine level in last stage.

o Distillate level in last stage.

o Sea water supply temperature.

The foregoing scenarios will be used for network training and to study the network model
performance. The philosophy of applying ANN involves training on part of the scenarios
obtained, and then, using the rest of the scenarios to test and study the network
performance. The GENE approach is adopted as the learning algorithm, for which it 1s
required to investigate what dynamic capability could be provided by the feed forward
network. The internal behaviour and convergence properties of the algorithm are
compared to the standard back propagation with one hidden layer, and the advantages and
disadvantages are discussed. The results are illustrated using data obtained from Al-
Taweelah MSF plant at Abu Dhabi. The objective is to perform the learning using limited
number of data and to generalize for every excitation scheme obtained, so that the
dynamics of the process is learnt efficiently. Moreover, identifying which of control loops

are critical to learn the plant dynamic due to external disturbances.

21
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6.2 Dynamic Test and Data Collection

Generally speaking, process disturbances will cause one of the following effects:

1. The process is disturbed such that the internal process is excited The
excitation effect is reduced and drives the process to the same or another stable
state.

2. The process excitation continues cyclically or exponentially reaching unstable
state.

For plant stability, the second effect is not desirable. All tests conducted on the process to
obtain the data fell under the first effect. The system was excited by 5 to 10% of the
operating point (a unit step of variable magnitude and duration time is used). Examples
were generated from Al-Taweelah MSF plant at Abu Dhabi. Table 6.1 (a,b) contains list

of data points obtained for the seven control loops and additional monitoring points.
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1. Top Brine Temperature Controller Range
1. Top brine temperature set point 0-250° degC
2. LP steam flow 0-250° deg C
3. Top brine temperature controller output 0-100 %
4. LP steam valve position 0-100 %

72. Brine Level Controller

S. Brine level controller set point 0-1000 mm
6. Brine level last stage 0-1000 mm
7. Brine level controller output 0-100 %
8. Blow down valve position 0-100 %
9. Brine level controller blow down flow 0-8000 tons/h
3. Distillate Level Controller
10. Distillate level controller set-point 0-1000 mm
11. Distillate level 0-1000 mm
12. Distillate level controller output 0-100 %
13. Distillate level valve position 0-100 %
}4. Sea Water Make Up Flow Controller
14. Seawater make up flow controller - set ratio 0-8000 tons/h
15. Seawater make up flow 0-8000 tons/h
16. Distillate flow 50-2000 tons/h
17. Seawater make up flow controller output 0-100 %
18. Seawater make up valve position 0-100 %

IS. Seawater Supply Temperature Controller

19. Seawater supply temperature controller set-point 0-20000 tons/h
20. Cooling seawater flow 0-20000 tons/h
21. Seawater supply temperature controller output 0-100 %
22. Cooling seawater valve position 0-100 %

|6. Brine Recirculation Flow Controller

23. Brine recirculation flow controller - set Ratio 0-20000 tons/h
24. Brine recirculation flow 0-20000 tons/h
25. Brine recirculation flow controller output 0-100 %
26. Brine recirculation valve position 0-100 %
27. Brine heater outlet valve position 0-100 %
7. LP Steam Temperature Controller
28. LP steam temperature controller set Point 0-150° degC
29. LP steam temperature controller output 0-100 %
30. LP steam temperature after spraying 0-150° degC
31. Seawater valve Position 0-100 %

Table 6.1(a): List of the data points for the seven control loops obtained during the various

dvnamic tests



CHAPTER 6: APPLICATION OF MODELING AND CONTROL OF MSF DESALINATION BY ANN - II 4

Additional Monitoring Points Range

32. Brine heater inlet temperature 0-1209 degC

33. Brine heater condensate level 0-1000 mm

34. Brine recirculation inlet temperature 0-120° degC

35. M.P. steam temperature 0-250° degC

36. Spray water flow 0-15 tons/h

37. Cooling seawater temperature 0-50°  degC

38. Seawater temperature 0-50°  degC

39. Condensate temperature 0-120° degC

40. Brine level of first stage 0-1000 mm

41. Seawater recirculating flow 04000 tons/h

42. Seawater make up temperature to deaerator 0-60° degC |
43. Top brine temperature 0-120° degC |
44. LP steam temperature 0-150° degC

Table 6.1(b): List of the additional monitoring points obtained during the various dvnamic tests

Due to the high amount of measurement signals and long duration period of every test
(every change of the top brine temperature needed approximately 30 to 45 minutes) the
measurement system had to deal with lots of data. The hardware used includes data
acquisition system featuring 126 measuring channels (16-bit resolution) with a sampling
rate of 10 kHz for 16 channels could be connected via measurement racks to a controlling
and storing computer. For rapid functions 16 channels are available (12 bit resolution)
with a scanning frequency of 1 MHz. To realize the simultaneous data collection in the

technical and local control room 800 m fiber optic cable was used [69].
6.3 Data Preparation / Preprocessing

Similar procedures used in the previous chapter section 5.4.2 are used here for
preprocessing. However, the data was obtained at a sampling rate of one point / sec. For
each measuring point it was convenient to use the average of every 10 points such that the

data file size can be reduced 10 times. The maximum and minimum values used during the

various training sessions in this study are shown in Table 6.1 (a,b).
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6.4 MSF Modelling using GENE Approach

One of the difficulties involved in describing the process behaviour of MSF process is the
prediction of the dynamic behaviour for the brine level in the various stages. ANN can be
used to predict the brine levels from the input information to the network. This black box
approach requires the brine level measurments in the different stages of interest to be
available and excitation of the system is possible. The current installation is normally
equipped with level measurement facilities for the first and last stages. This can be used for
the learning process and model validation. A base case study was carried out adopting the
GENE approach as the learning algorithm. The inputs to the network are the tapped
delayed points for the followings:

1. Brine heater inlet temperature

2. Cooling sea water temperature

3. Sea water temperature

4. Top brine temperature

5. Sea water recirculating flow

6. Sea water make up flow

7. Cooling sea water flow

8. Brine recirculating flow

9. Brine blow down flow

10. Sea water make up temperature to deaerator

11. Brine recirculating inlet temperature

12. Brine level of last stage

13. Distillate flow

14. Brine level of first stage
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The network outputs are the current operating points for the last 5 parameters above
Thus the network represent the NARAMAX identification of the system [36]. The

procedure used for presenting the tapped delay values in the previous chapter is adopted

here.

It is important to identify which of the available data sets used for the learning process will
provide good mapping results. In this regard a number of variations of the base case. using
different combinations of data sets for training the network with the same structure were
also studied. The selection of the data sets combination is based on an engineering
understanding of the problem. Next, the variations of the network structure for different

combinations of the data sets were also studied.

A parameter fgq, the total sum of squares of the errors between estimated output and
desired output, was used as a measure of the performance of the network, where ¢, and
tsste are used to denote the #g¢ for the training set and the testing set respectively. 7y 1s

the total sum of g and £z, Obtained from presenting all data sets.

To evaluate the weight initialization scheme, a 42-15-15-5 network architecture based on
the GENE approach was trained with df, , , ,  data set. By selecting a low range (RIW) for
the weight initialization scheme (see section 4.5.4) and comparing the resultant RMS error
achieved with a higher range of RIW. This exercise will stop when no further
improvement could be achieved by increasing the range of RIW. When using RIW for the
output layer between -0.05 and +0.05, the RMS error converged to a value of 0.145 and
could not be reduced with further training. Investigation to use the normalized delta rule
or the delta rule for the second hidden layer has revealed the same result When using
RIW for the output layer to be between -0.15 and +0.15, the RMS error converged to

0.028 and 0.038 when the normalized delta rule and the delta rule were adopted tor the
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second hidden respectively. No further improvement was obtained by increasing the range
of the initialization scheme. Therefore, the choice of the initialization scheme used here for
the output layer is between -0.2 and +0.2, and the normalized delta rule is used for the

second hidden layer.

The learning rate and momentum values used are 0.3 and 0.4 for the first hidden layer and
0.25 and 0.4 for the second hidden layer respectively for the first 3000 epochs. After 3000
epochs the learning rate and momentum values are reduced to 0.15 and 0.2 for the first
hidden layer, and 0.125 and 0.2 for the second hidden layer respectively. Training was
terminated when one of the following conditions applied:

- Network output RMS error was less than a pre-specified value.

- A specified number of epochs were reached.

64.1 Base Case

The study was carried out by using a 42-30-30-5 network based on the GENE approach.
Data set of 645 examples from the brine recirculation dynamic test (d?,) were used for
training, and then all other data sets were used for testing. With RIW chosen to be
between -0.2 and 0.2 for the outer layer while for the hidden layers the RIW was chosen
between -0.01 and 0.01, the network RMS error converged to a value of 0.024 after 4000
epoch. The trained network was tested with all other examples dft, to dlf, resulting in T
of 64.02. Table 6.2(a) shows Z¢g for each output of the network (the output is denoted
by O,, n = 1,2,..5). Table 6.3(a) shows fgss, for each output of the network. In some
cases the Zsg7, are unacceptably high. When using the standard BP with one hidden layer.
the RMS error converged to a value of 0.028 after 4000 epoch with no significant

improvement is obtained for Zggy , Isste @nd Tsg as shown in tables 6.2(b) and 6.3(b). Itis
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obvious, that the performance of the network deteriorates very little with the exception of

Oj5 (brine level of the first stage).

O |02 |03 |04 |Os 0y [0, |03 [0y Tos
! sstr ! sstr t Sstr 4 sstr ! sstr Tsstr [ sstr TSSIr Tastr | Lostr
a't1 0.01 001 0.04 | 0.03 | 0.06 dtl 001 1001 [003 {003 |0.06
@) ®)

Table 6.2: Base case performance for the training sets for each network output using (a1 GENE

approach, (b) BP approach

0; (0, |03 |04 |O; 0; |0y |03 |0y o5
tsste tsste tsste tsste tsste ! SS tsste Tsste ! sste Tsste Isste Loy
a't2 0.54 | 0.13 0.03 0.26 || 8.85 9.81 022 1043 1.51 0.01 2.89 5.00
a't3 045 10.11 0.05 10.14 {|6.27 7.02 0.21 0.39 1.2 0.04 2.15 3.99
dt4 0.63 025 1048 | 093 5.76 8.05 0.91 081 0.36 1.98 397 8.03
dt5 0.02 | 0.01 0.13 025 | 0.38 0.79 0.03 004 | 0.16 0.29 0.37 0.89
dt6 0.01 0.01 0.04 | 0.05 ]0.05 0.16 0.01 0.01 | 0.02 0.07 0.1 0.21
dt7 0.12 | 0.23 1.75 1 0.72 |}5.3 8.12 068 | 057 |07 3.54 12.31 17.8
dt8 1.15 0.09 1062 [13.35 {24.7 2991 0.93 1.63 || 6.67 2.32 2.60 14.15
T = 63.86 Tee = 5013
(a) (b)

Table 6.3: Base case performance for the testing sets for each network output using (a) GENE

approach, (b) BP approach. The double line border is for tsge < 2

6.4.2 Variation 1
Since the base case did not give satisfactory results, tests were made by training the
network with a different combination of the data sets. Using the GENE approach with the

same network structure as the base case, nine data sets were used for training. In the

following dt, , , denotes data sets d¥, , dt, and dt, are combined in one data set.
 Case 1.1, dt,, is used for training, and then all other data sets were used for testing.
e Case 1.2, dt,, . is used for training, and then all other data sets were used for testing

« Case 1.3. dt,,,is used for training, and then all other data sets were used for testing
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Case 1.4, dl, , , is used for training, and then all other data sets were used for testing.

Case 1.5, dt, , 5 is used for training, and then all other data sets were used for testing.

Case 1.6, dt, , , is used for training, and then all other data sets were used for testing.

Case 1.7, dt,, ; is used for training, and then all other data sets were used for testing.

Case 1.8, dl, , ; is used for training, and then all other data sets were used for testing.

Case 1.9, dt, , ,, s is used for training, and then all other data sets were used for testing.

The training was stopped when either the error is less that 0.01 or after 10000 epochs. All
cases were converged to a RMS error of less than 0.034. After each training the network
is tested with all data sets. 7 results are compared in table 6.4 for the nine cases. It is
obvious that when the training examples were increased to cover more than one dynamic
test, the performance on the testing set is improved compared with the base case. On the

other hand, when the "Low pressure steam flow dynamic test" (d¥,) data is included in the

data set for training the network, the performance is further improved.

Case 1.1 1.2 1.3 14 1.5 1.6 1.7 1.8 1.9
Training data d13,4,5 dtz,4,5 dt],a,s d11,3,4 dtl‘“ dtl.2,4 dtl.2,3 dtz.s,s dt 12348
Teq 2842 | 1925 [6.734 [ 2212 | 2209 | 1925 (4184 | 7953 | 2542
RMS error 0.008 | 0.022 [0.019 | 0.023 | 0.025 |0.022 |0.022 [0.021 | 0.024

Table 6.4: Variation I case performance for the testing sets for each network output using GENE

approach

64.3 Varnation 2

The optimal number of hidden neurons in a network for a particular mapping is generally
unknown beforehand. It would be interesting to see the effect of changing the numbers of
hidden neurons. When the number of hidden neurons is increased, the number of
connection weights is increased as well. Thus the number of training examples should be

increased accordingly. Same training examples used in variation 1 were used. Four cases

were studied:
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. Case 2.1, a 42-15-15-5 network was used.

. Case 2.2, a 42-20-20-5 network was used.

. Case 2.3, a 42-25-25-5 network was used.

. Case 2.4, a 42-35-35-5 network was used.

The performances of the networks are compared in table 6.5.

For cases 2.1, Tsgvalues are unacceptably high for all combination of training data. On the
other hand, the improvement for case 2.2 is not for all combinations of data sets. It seems
that a bigger network can be expected to have a better performance than a smaller
network. It appears that also due to too many parameters for case 2.4, the performance
starts to deteriorate (compared to the base case in table 6.4) for the same combinations of

data sets. Therefore the base case hidden neurons number used can be considered as the

optimum.

Case 2.1 22 23 24

Training data | Ty, RMS | Ty RMS | T RS | T RAS
dt, 13.76 | 0.027 { 3.59 | 0.025 | 2416 | 0.008 | 2.498 | 0.008
dt, . 7.982 | 0.026 | 2.772 | 0.024 | 4298 | 0.022 | 2.134 | 0.02
dt s 246 | 0.025 | 8457 | 0.091 | 7.583 | 0.022 | 5.977 | 0.025
di,, 11.9 [ 0.031 | 2.894 | 0.021 | 2.553 | 0.023 | 2.162 | 0.023
dt 4 10.98 | 0.031 | 2.557 | 0.02 | 3.453 | 0.023 | 3.591 | 0.024
dt,, 15.27 | 0.033 | 4.2 0.02 | 2057 | 0.025 |2.005 | 0.024
dr, , 2032 [ 0.014 | 7.964 | 0.009 | 4787 | 0.022 | 7.298 | 0.024
dt, 20.98 | 0.034 | 9.584 | 0.023 [ 8.496 | 0.021 | 9.086 | 0.028
dl ;s 16.66 | 0.033 | 2.797 | 0.028 | 2.967 | 0.027 | 337 | 0.028

Table 6.5: Tgg results after training using GENE approach for different number of hidden

neurons
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6.4.4 Vanation 3

Further investigations using different hidden number of neurons and with different data

sets confirms the improved results of the GENE approach as compared to the standard

BP.

hl | h2 |w |L d RMS | Ty
1 |34 |43 |025 | GENE | dfdt,,dt, |0.021 |16.25
2 |34 |43 025 | GENE | df dt,,dt, | 003 |453
3 15% |10 | 025 | GENE | df di,, dt, |0.038 | 494
4 | 45% |45 |025 | GENE |dIdt,,.dt, {0022 | 279
5 145 (45 025 | GENE |df,,,, 0.019 | 2215
6 |45* |45 |[025 | GENE |dl,,,,, 0.019 | 2.65
7 |45 |45 | 025 | GENE | df,,,, 0.028 | 2.85
8 |45% |45 |025 | GENE | df,, 3.469
9 30% | - - BP di, 2.97
10 [30% |- - BP dr, , 40.49
11 |45% |45 |025 | GENE | dif,, 8.02
12 | 30* |- - BP dt, 13.45
13 |35% |35 |02 |GENE |dl, 10.31

Table 6.6: A comparison for Tss & RMS results when the network is trained using GENT

approach & the standard BP learning algorithm
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6.5 Learning Response of the Control System due to External Disturbances
for MSF Plants

In the last chapter, it has been shown that the required function approximation for any
mapping problem can be achieved using ANN through the learning process with the aim to
minimize the network error by modifying the weights. However, potential problems,
which are likely to affect practical applications, are that the learning process may be
seriously plagued by the presence of local minima in the cost function and the long training
time. Learning 1s normally achieved based on the knowledge of local error associated with
each hidden neuron and not the network error [62], [36], [30]. For this, most of the
reported success is based on the assumption that sufficient and rich data are available for
the training to capture the required function approximation. But in most of the practical
cases 1t is generally required to train the network with partial data and also, if trained with
additional new data. It should not forget the previous training. Researchers have modified
either the weight update rule [27], or employed a new form of objective function [70]. In
this section, the MFN network using the GENE approach is studied and compared to the
standard BP learning algorithm by developing a nonlinear empirical multi-controller
structure for MSF plants (figure 6.1 shows a simplified block diagram of the sructure).

The data obtained for the previous section (dr,, d, , dt, , dt, , dt, , dt, , di, ) are used for

training, then the problem of finding set of weights for a given data set (dtn) can be solved

using ANN, but the additional learning using another data set (dtm) for the resultant

network will have either one of the following effects on the network:
1) the network will learn the new data, but loses part of the previous function learnt.. or

2)  the network will not converge as the two directions are opposite or higher order is

—

required.
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The study was carried out with the inputs to the network being the tapped delay points for
all the variables listed in tables 6.1 and 6.10 (this includes the controller set-point, control
valve position, regulated variable for the seven control loops and additional monitoring
points), excluding the outputs of each controller which are used as the network outputs.
Instead of feeding all past data to the network, the following equation is used for

calculating the tapped delayed values:

D = STD [(S-Sma)/Sspan * (V-Yma)Vspan + (C-Crnad Cspanl. ~ (6-1)

Where STD is the standard deviation, § is the set point, }" is the control valve position,

and C is the controlled variable.

The parameter T used in the previous section was used here again as a measure of the

performance of the network.

\_» learning
module — \ feed
e IearnAing signal ‘ forward
© control
set + o
poiri — feedback X plant

Ny e controller > > o
- | - N plant
. ___i output

feed back loop

T 1

process
R computer

Figure 6.1: a simplified nonlinear empirical multi-controller structure for MSE planis
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6.5.1 Training using the Standard BP Learning Algorithm

Firstly, we used the standard BP learning algorithm with one hidden layer network and
found that when the network is subject to further training with new data, a drift occurs
when testing the previously trained data. This is due to the static feature of the single
hidden layer. No improvement could be achieved by adding more hidden neurons. It was
found that by using the delta rule for the output and hidden layers instead of the
normalized commutative delta rule, the RMS error for the network is converging to a
considerably lower value. The learning rate and momentum values used were 0.05 and 0.4
for the output layer, and 0.3 and 0.4 for the hidden layer respectively for the first 5000
epochs. After 5000 epochs the learning rate and momentum values are reduced to 0.0355
and 0.2 for the output layer, and 0.15 and 0.2 for the hidden layer respectively. Data set of
1028 examples from low pressure steam temperature dynamic test, makeup flow dynamic

test and sea water supply temperature dynamic test (df,;,) was used for the initial

training for 4000 epochs. Then the network is subject to further training with data set of

547 examples from brine recirculation dynamic test and brine level dynamic test(d?, ,). The

network is then further trained with 561 examples from distillate level dynamic test and

low pressure steam flow dynamic test (df; ). All available data sets (df, , ;,.¢,) Were used

for studying the network performance. Four cases were studied:

e Case 1.1, a 107-130-7 network was used.
e Case 12, a107-110-7 network was used.
. Case 1.3, a 107-90-7 network was used.

e Case 1.4, a 107-70-7 network was used.
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The resultant T for each output of the network are shown in table 6.7, where (f1)
denotes results after first training, (f2) denotes results after second training and (f3)
denotes results after third training. The values of Tg shown are neither acceptable (high
value) nor improving with the additional training conducted by another set of examples.

However, the best result is for case 1.3, for which a comparison will be made to the

GENE approach.
Iss(O1) |Tss(0O2) |Tss(O3) |Tss(O4) |Iss(O5) |Tss(O6) |Tss(O7)
f1 |1468.6 450.1 4883 2831.7 |81852 [135289 |7171.6
Case 1.1 f2 [1727.5 348.7 2812 4452 15893 |3000.6 1084 .9
f3 11660.8 476.7 59349 (8384 1461.1 14672.0 630.8
f1 |11308.1 |151.2 3011.5 1210.8 |6256.6 |16856.3 [458.2
Case 1.2 12 |2111.7 456.3 65398 [872.5 1520.3 |3687.8 418.2
f3 11936.2 492.6 12179.2 6954 14959 [6273.8 785.1
f1 13019.6 669.9 7690.3 11397 |6612.1 15878.1 |781.4
Case 1.3 {2 |5960.8 515.6 55324 {5974 1308.8 (31233 1023.7
f3 |3651.3 3991 5837.6 |506.6 1027.1 8126.7 1837.2
f1 |3450.2 3355 51889 |3999.7 |8785.1 203265 [124.5
Case 1.4 f2 |4480.6 551.7 72746 {15181 1382.5 (27679 1055.8
f3 [3783.5 5358 10002.5 (11129 1176.6 {20592 1531.9

Table 6.7: Tss values for each BP network output after first (fl), second (f2) and third (/3

training of different examples.

6.5.2 Training using GENE Approach

All simulations presented in this study utilize the same network architecture. In particular.

the network has 107 inputs, 7 outputs, 60 nodes in the first hidden layer and 30 nodes in

the second hidden layer.
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To evaluate the RIW scheme, a 107-60-30-7 network architecture based on the GENE

approach was trained with df, , ,,, and the following cases for random initialized weight
schemes are considered:

o Case 2.1, the network is trained using RIW in the range [-0.1 , 0.1].

o Case 2.2, the network is trained using RIW in the range [-0.05 | 0.05]

o Case 2.3, the network is trained using RIW in the range [-0.01 . 0.01]

Table 6.8 shows the RMS values for each layer after 5000 epochs. These values could not
be reduced with further training. Investigations using the normalized delta rule or the delta

rule for the second hidden layer have revealed the same result.

output layer | first hidden layer | second hidden layer
Case 2.1 0.123953 0.016297 0.19504
Case2.2 | 0.030918 0.004721 0.004792
Case23 | 0.037433 0005542 0.006425

Table 6.8: RMS error values for each layer after 5000 epochs.

When using RIW between -0.05 and +0.05 for the output layer, the RMS error converges
to 0.030918, 0.004721 and 0.004792 for the output, first and second hidden layers
respectively. No significant improvement was obtained by decreasing the RIW range.
Therefore, the choice of the RIW scheme for the output layer is between -0.05 and +0.05,

and the normalized delta rule is used for the second hidden layer.

The learning rate and momentum values used are 0.3 and 0.4 for the first hidden layer and
025 and 04 for the second hidden layer respectively for the first 10000 epochs. After

10000 epochs the learning rate and momentum values are reduced to 0.15 and 0 2 for the
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first hidden layer, and 0.125 and 0.2 for the second hidden layer respectively. The same
procedure for the first, second and third training used for the BP is used here. However.

the first training was made for 25000 epochs, while the second and the third training are

made for 5000 epochs.

The resultant T for each output of the network are shown in table 6 9 for the following

Cases:

o Case 3.1,Gene approach is used during the training, and RIW scheme used for the
output layer is between -0.05 and +0.05, and the normalized delta rule is
adopted for the second hidden layer.

 Case 3.2, same training procedure for case 3.1, but the RIW scheme used for the
output layer 1s between -0.1 and +0.1.

 Case 3.3, the standard BP algorithm with single hidden layer and 90 neurons are

used during the training. The delta rule is adopted for the output and

hidden layer.
Iss (O1) |Tss(O2) |Tss(O3) |Tss(O4) |Tss(O3) |Tss(Q6) |Tss(O7)
f1 45555 |1198.6 (76492 |2184.8 (87385 (69447 [973.5
Case3.1 2 (37282 |291.38 38469 |1327.1 [18113 (12793 [271.5
3 [35254 |361.1 43278 14584 12623 |1067.1 [159.1
f1 |20809.1 |2970.1 [10679.9 {1470.1 |7889.8 (40192.1 (4272
Case3.2 12 |1617.6 |[364.1 6880.3 (16574 |[1806.7 (37956 1904
f3 (13923 (332.1 57905 (15103 [1411.1 |41532 15145
f1 {7813 695.7 23825 [917.1 70182 |17117.4 {9107
Case3.3  f2]1438.1 |1403 2747.1 |1156.2 |2107.6 (29159 |239.1
f3 [1555.5 [206.5 4520.1 |1320.6 |1580.3 |102313 [360.9

Table 6.9: Tss values for each network output after first, second and third training.
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The best results are shown when using the GENE approach for case 3.1, for which the
additional training conducted using new examples has improved the 7ss values for each
output of the network. When using the standard BP with one hidden layer (Case 3.3), the
Tss value does not improve for all network outputs except for output 2.7 where it is
improves after the second training, but deteriorates after the third one. It is obvious. that
the performance of the network using the GENE approach is far better than the BP for
learning the additional data while retaining the previously learned data. The GENE
approach is shown to be robust for the learnt analog data. The predicted network output
is compared to the reference data for the three cases and is shown in figures 6.6, 6.7 and

6.8 after learning with the first, second and third data set respectively for one output only.
6.5.3 Error Value Analysis for Output & Hidden Layers

We have discussed in chapter 4 the requirement of unique error transformation when the
error is back propagated (transformed) to the hidden layer, such that no change to the
gradient search direction during the training. This will yield an increase to the probability
of reaching a global solution for the errors. To illustrate this, the RMS error values for the
three cases are plotted in figure 6.2. Case 3.3 is shown to provide the least RMS error
values during the entire training process. However, this does not mean that it is the best
case. For each case, the error values from each layer (output & hidden) during the learning
process are plotted in figures 6.3, 6.4 and 6.5. It is obvious that only for case 3.1. the
same error pattern is transformed to the hidden layers, i.e, when the error value increases
in the output layer during the additional training phase, the error values for the hidden
layers follows the same increase, and visa versa. While for cases 3.2 & 3 3, the error

values are not following the same transformation pattern, but they are changing abruptly

for the output layer. This is due to the change that occurs in the direction of the gradient
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during the learning process. For case 3.2, this is due to high initialized weight value
selected, such that the node activation for the tanh function will not be in the linear region.
while for case 3.3 (standard BP), this is due to the change of gradient direction for each

iteration to update the weight values between the output and hidden layers after each

iteration.

As discussed in chapter 4, for the initialized weight values in the range [-0.05, +0.05]. and
using the tanh function as the activation for the nodes, the activation will lie in the linear
region and far from the saturation region. This means that the hidden nodes will be trained
to reduce the network output error. When the learning process continues for additional
data, the weight updates are shown to be in the direction of reducing the network error
but not reducing the local error, i.e., retaining the function approximation requirement. As
both data sets are related to the same process, so the learning process will capture the
function approximation of both data sets and not just interpolate each one at each training
cycle. For higher initialized weight values, the hidden layers are shown not to follow the
same network output error characteristic, and this means that it does not follow the same

gradient direction of the output layer.

6.6 Conclusion

To a large extent the validation results demonstrate that the developed empirical multi-
controller structure is indeed capable of generalizing the process dynamics during
operational transients, from only a limited training set. The performance is increased when

trained with another test data (another loop) and good results are obtained on all the

available test data.
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The benefit from the additional learning capability is that as the operating point changes
from one state to another, the learning controller has not forgotten what has been learnt
earlier and it can be improved upon. The learning controller builds up a nonlinear model of
all desired control surfaces. This requires the learning module, which is temporally stable.

to learn about one area in the input space which affects minimally the knowledge stored in

different regions.

The network is initially trained using the transient test data obtained from exciting one
of the manipulated variables. When using the standard BP, a significant long training
time is required for convergence. The adjustment for the learning rate and the
momentum was a tedious job, even though the developed structure was found valid in
its entire operating envelope. When using the GENE approach, two main distinctions
of this approach are : - (1) its ability to generalize and when new test data is
introduced the performance of the structure is improved for the test, (2) very fast
convergence as compared to the standard one. The resulting trained neural network is
shown to intelligently generalize all the available test data and reduce the uncertainty
associated with the probability for convergence to the global minimum. Simulation
results indicate a superior convergence speed for the GENE approach and robustness
for analog data. Robustness of the network arises when the network is trained with
new data. The network will not forget the previously learned data in order to learn the

new data.
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Figure 6.2: RMS Error values during network learning using the BP (solid), Gene »with
initialized weight (-0.1,0.1) (dot) and Gene with initialized weight (-0.05,0.05) idash)

respectively.

Figure 6.3: Error values during network learning for output layer using Gene approach with
initialized weight (-0.1,0.1) (left) and using Gene approach with initialized weight (-0.05,0.05)
(right).

Figure 6.4: Error values during network learning for hidden lavers using Gene approach with

initialized weight (-0.1,0.1) (left) and using Gene approach with initnialized weight (-0.05.0.03)

(right).Solid line for hidden layer # 1.
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Figure 6.5: Error values during network learning using the BP Jor output (left) and hidden
(right) layers respectively.

Figure 6.6: Test result after first training for cases 3.1,3.2 and 3.3 from left to right. The solid line
and the solid line are for the network prediction and the corresponding reference respectively:.

Figure 6.7: Test result after second training for cases 3.1,3.2 and 3.3 from lefi to right. The solid
line and the solid line are for the network prediction and the corresponding reference respectively.

Figure 6.8: Test result after third training for cases 3. 1,3.2 and 3.3 from left to right. The solid line
and the solid line are for the network prediction and the corresponding reference respectively



Chapter 7 CONCLUSIONS

A fast technique in the prediction and analysis of MSF dynamic system has been studied in
this thesis. The technique uses the ANN based on GENE approach to predict the process
behaviour during load variations of MSF desalination plant including the brine levels in the
first and last stages. The neural networks are capable of providing a nonlinear model that
explains the relationship between input-output variables. The two main distinctions of this
learning algorithm (GENE) are: (1) no saturation for network nodes is exhibited to avoid
the ultimate paralysis of the entire MFN during learning, (2) Global convergence can be
achieved by keeping the direction of the gradient constant, this avoids the local minima
problem. These properties have improved the ability of the network to be trained with
additional data in an effective manner. The additional training ability is studied in this

thesis for the prediction of the various controllers response due to external disturbance on

the MSF desalination plant.

Brine levels prediction by ANNs

Current research on using ANN for brine level prediction is mostly restricted to MFEN
trained by the standard BP. Subject to the availability of data from empirical simulators.

successful simulations have been achieved. For MSF plants, persistent excitation 1s
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required to be performed on the system, particularly to the steam/top brine temperature.
However, two modes of control have been studied. One is the smooth load variation
between minimum and maximum load condition, the other is a disturbed plant mode of
operation. For both cases, GENE approach for ANN is shown to give satisfactory results
in prediction of the process behavior including the brine levels as compared to the
standard BP. For 16 stages MSF plant, ANN with all inputs/outputs can be trained easily
and perform accurate predictions of the brine levels. In fact it is found that for the dynamic
mode using the GENE approach subject to additional training using additional training
data, reasonable, accurate and improved prediction of controllers response including the

brine level controller can be achieved.

Although some preliminary successful results were reported in this thesis, some inherent
difficulties exist with the use of ANNs:-
« It takes very long time to generate training examples.

« The predicted brine level and the controller response can be pessimistic or optimistic.

Future Work

Future work for the development of these techniques would be to study the application of
GENE approach for ANN to improve the performance and the reliability of MSF plant.
Additionally to compare the GENE approach to other types of neural networks such as

the recurrent networks.
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Mathematical models used to assist the set point sequence change at the plant in Abu
Dhabi (U.AE.) for 16 stage (13 recovery + 3 reject) MSF units are described in the
following:

Three mathematical models are adopted,;

o The first model is used for fouling factor calculation, by dividing the evaporator into
groups of three stages (five for the recovery section, one for the reject section) Using
the temperatures measured at the tube bundle side for each three stage (6 + 1 on the
brine heater), with the brine temperature for each stage, with the distillate space
temperature of the last stage of each group, and using the heat exchange equation for
each group. By this it is possible to calculate the brine temperature at the tube bundle
inlet, knowing the temperature of the condensing steam and the brine temperature at
the tube bundle outlet. The measurement is made for each group of three stages, the
model is used to calculate the outlet temperature from the group by applying 3
consecutive equations and comparing the result with the measured value. The model is
solved iteratively using Newton method with an initial guess or later using the last

fouling factor calculated.

o The second model is a short cut model used for simplified calculation of the set points.
The model calculates an approximate set points for the TBT and the recycle brine tlow
rate values that must be set to obtain the requested production (fixed running
conditions); and the values of other process variables as flow rate and temperatures.
using the energy and mass balance equations and the overall heat exchange equations.
The recovery and the reject sections are assumed as single blocks. The method used 1s

based on a repetitive calculation and on the use of the operation curves
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o The third model is a detailed mathematical model for each stage of the desalination

unit. The variation of the fouling degree is input from the first model. A description of

the equations involved in the calculation is in the following.

Mathematical model equations

The mathematical model is based on the resolution of a system of linearized equations, as

follows (see fig below):
Brine Recirculation
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Heat exchange equation of the upper part of the stage

Recovery section W.cor,. T -W . cpr,,. T =U 4 in_
i 1+ hiil | B Bt T _ T
hl G Ty
I,~T,
Reject secti /4 T -W, by =1,
eject section reprig L, —Wocpr, T =U.4 Tlﬁ—T_
In G T2
]:i - ];‘ﬂ
with the following boundary conditions:
in the first stage L =T,
in the last stage L =T,
in the last recovery stage and in the first reject stage o = L,
in the recovery stage in the last reject stage =1

where

Flashing brine temperature

distillate temperature

recirculation brine (feed water) temperature in tubes
flashing brine flow rate

recirculating brine flow rate

feed water flow rate

steam flow rate

steam enthalpy

overall heat exchange coefficient

n ORI IE S

stage heat exchange surface
cps,cpd ,cpr  specific heat capacity
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