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Thesis Summary 

This thesis is concerned with dynamic and transient analysis of MSF 

desalination plants. The technique is developed using artificial neural 

networks (ANN) approach for the purpose of prediction, analysis, modelling, 

and control of MSF desalination plant. The applicability of the method to 

predict an approximation of the transient operating conditions as well as the 

control action are shown satisfactory. The network architecture and learning 

algorithm are developed based on the Multilayered Feed forward Networks 

(MFN) with the Back Propagation (BP) learning algorithm. It was shown that 

the approach could intelligently capture the dynamics of the system. An 

improved technique is developed for the BP learning algorithm based on 

Global Error Node Evaluation (GENE) approach for MFN to retains the 

function approximation requirements for a nonlinear dynamic behaviour. 

However, by using this approach considerable improvement for the 

generalization capability could be obtained for the case study under 

consideration. The technique provides the necessary dynamic learning 

behaviour required for MFN. This approach appears to be effective for the 

input - output dynamic modelling of complex process systems and therefore 

on-line adaptation is possible (when the characteristic of the system is 

changing or when more test data are available for another operating range). 

The developed algorithm is used for the development and validation of an 

elnpirical multi-controller structure for MSF desalination plant. Satisfactory 

results are obtained from practical examples with the additional training 

ability. 
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Chapter 1 INTRODUCTION 

1.1 Introduction 

The desalination industry and related control system engineering have now developed in 

size and complexity to the point where increasingly sophisticated tools are necessary for 

solving the numerous problems that arise in operation, control, planning and design of 

these systems. This has seen the introduction of computer technology, the use of 

mathematical modelling and programming, control theory and simulation tools. Large 

classes of problems however, still continue to elude the above solution methodologies. 

These are frequently characterized by imprecision, heuristic decision making, non-linearity, 

large size and complexity. 

In spite of the significant advances in linear control, the theoretical advances for non-linear 

control have been limited. Precise model of process dynamics becomes increasingly 

difficult to produce as process complexity increases. Precise modells are required in order 

to produce algebraic controller for such systems. 

The desalination process is basically an evaporating and condensing process. The heat 

required for evaporation can be partly recovered during the condensing phase. MSF 

desalination is a type of evaporation with many technical and economic advantages and 

can be regarded presently as providing the optimum solution to the problem of sea water 

desalting. The basic principles and process description of the MSF desalination process are 

introduced later in chapter 2. 
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Like numerous other models, the model of the MSF is nonlinear in nature. This is mainly 

because of the dependence of physical properties of the streams upon temperature, 

pressure and salinity. In addition, relations for the heat transfer coefficients also contribute 

to the non-linearity of the model. All pervious works for modelling MSF process are based 

on the balance equations and the heat transfer equations in the linear form. The physical 

property functions that represent a complementary and basic part of the process model are 

main contributors to the complexity and non-linearity of the equations. They are the 

mathematical correlation expressions describing the thermo-physical properties of water, 

steam, and the brine solution. One important requirement of the correlation is their validity 

over a wide range of temperatures and concentrations. The evaluation of the overall heat 

transfer coefficient for the different stages and the brine heater is another factor of 

complexity. It is not possible to completely rely upon the use of mathematical models 

based on approximate empirical formula obtained through laboratory work. 

Intelligent control attempts to solve difficult or complex problems by admitting process 

uncertainty or complexity and relaxing the specification on controlled response, rather 

than searching for an exact solution to simplified problems as in classical control. Control 

improvement can be achieved by design of a controller whose structure and consequent 

outputs in response to external commands are determined by experimental evidence, i.e., 

the observed input/output behavior of the plant, rather than by reference to mathematical 

or model-based description of the controller. The controller is then considered as 

intelligent controller in which the benefits are through decision making and/or learning 

capability. Both approaches can be combined. Dimitris et al (1992) shows that by 

combining the available prior knowledge of the system with the intelligent controller, 

further enhancement can be achieved where the intelligence will be learning and finding 

uncertainties and non-linearities of the system [1]. 
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Advanced control techniques are intended to take into account all situations arising in real 

plant. AI Gobaisi et al (1991) analyzed the situation in some loops in an MSF plant and 

indicated the possibility of improvement by the application of advanced control technique 

[2]. The support of artificial intelligent (AI) to the application of advanced control 

strategies for the efficient operation of the MSF desalination plants are discussed in 

(AIGobaisi et ai, 1994; Rao et ai, 1994) [3], [4]. El-Hawary (1992) discussed possible 

application of artificial neural network (ANN) to desalination [5]. The main advantage of 

using such an approach is the provision of a general framework to tackle nonlinear control 

problems. Moreover, the engineering effort in developing a neural controller is less than 

for conventional controller design, at least for nonlinear systems. 

In this thesis techniques using intelligent control through the use of ANN for dynamic 

modelling. However, model uncertainty, and control prediction are investigated and 

applied to the MSF desalination process. Benefits from using such techniques are 

discussed with emphasis to the required properties for neurocontrol application. One 

technique is based on creating an approximation of the operating conditions in time state 

space for specific conditions and network topology. This technique is presented to 

demonstrate the capability of Multi-layered Feed forward Network (MFN) for modelling 

and control of a MSF desalination plant based on practical examples available from the 

process. Comparative simulation results using data from the plant have shown that by 

adding more sensory information with proper choice of the learning rate and other learning 

parameters, the neurocontroller could generalize for all cases available when it is applied 

to the process under consideration. This is a very fast way for estimating controllers set 

points once the off-line training is successful. The weak point of ANN with feed forward 

configuration is the number of training examples required for generalization and the long 

training time. However, an improved technique based on Global Error Node El'alilalioll 

(GENE) approach, which retains the function approximation requirement for the back 
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propagation learning algorithm is developed. A novel network architecture and learning 

algorithm based on the back propagation using the GENE approach is shown to capture 

intelligently the dynamics of the system. The main benefit appears when more data are 

available for other conditions, the network can be further trained so that the previous and 

current learning are working for capturing the function approximation and not just 

interpolating the data. It is best suited to on-line approximate calculation. Moreover, 

:MFN's with BP learning algorithm are characterized with the static behavior capability, 

however, by using this approach considerable improvement is obtained for the 

generalization capability of BP for MFN, as well as the technique provides the necessary 

dynamic behavior required for the MFN. 

1.2 Out line of the thesis 

Chapter 2: Overview of Desalination Process 

The basic principles and process description of the MSF desalination process are 

introduced. Literature review on work done for modelling MSF desalination process 

including efforts for dynamic modelling are briefly introduced. Description of the control 

system required for MSF desalination process is discussed along with an application of a 

supervisory control system for MSF desalination process. 

Chapter 3: Intelligent Control & Conventional Control System: An 

Overview 

Mathematical modelling techniques have been traditionally popular for tasks such as the 

study of system behavior, process optimization, process control and the like, but owing to 

a variety of reasons like inadequate knowledge about the process, large computational 

cost of the attendant simulation etc., alternate strategies might be sometimes called for. 

Artificial neural networks (ANN) offer one such efficient and cost effective alternative. 
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Neural networks are essentially multidimensional regression paradigms based on input-

output relationships. They are made to capture the knowledge about the characteristics of 

a system through a suitable learning process, so that a tuned network serves as an efficient 

tool for simulation studies. The present work attempts to highlight this aspect of neural 

networks with a case study conducted on a multistage flash (MSF) desalination plant. 

This chapter reviews the literature in applying ANN to the control and modelling problem. 

The relationship of intelligent control to traditional control system is briefly reviewed. 

Next a comparison with the control system problems solving paradigm is carried out and 

lastly a brief overview of intelligent control methodology and application using the 

Artificial Neural Networks is discussed. 

Chapter 4: Artificial N eural Networks (ANN) 

Advances in both learning algorithms and microelectronics have renewed interest in neural 

networks across a spectrum of research areas. For control engineering, ANN are attractive 

because they have the ability of nonlinear plant modelling, can handle large amount of 

sensory information, perform collective processing and learning and offer the potential for 

highly parallel computation. 

The most important characteristic of ANN is its ability to learn the frequently complex 

dynamic behavior of a physical system. Learning is the process where the network 

approximates the function mapping from system inputs to outputs, given a set of 

observations of its inputs and corresponding outputs. This is done by adjusting the 

network internal parameters, to minimize the squared error between the network outputs 

and the desired one. One such method is the error back-propagation (BP) algorithm, 

which is essentially a first order gradient decent method [6], and is discussed in detail. 

The results shown indicate the validity of the approach and gives some insight into the 
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behavior and generalization capability of the ANN. Problems concerning with convergence 

speed, the number of hidden neurons and the required number of training examples are 

discussed. A methodology is developed based on global error node evaluation (GENE) 

scheme for MFN, that account for generalization and avoiding local minima so that a 

consistent ANN approach can be developed for dynamic control of MSF. A new method 

based on GENE approach for MFN is developed. It retains the function approximation 

requirements for the back propagation (BP) learning algorithm for a nonlinear dynamic 

behavior. This approach appears to be effective for the input - output modelling of 

complex process systems and therefore on-line adaptation is possible (when the 

characteristic of the system is changing or when more test data are available for another 

operating range). Two problems in BP are addressed, namely, the saturation of the 

network nodes and the ultimate paralysis of the entire MFN during learning; and the 

problems of convergence to a local minima. In this approach the architecture is modified 

by adopting linear activation nodes at the output layer with fixed weights, while the hidden 

layers (two layers) are having nonlinear activation nodes. The GENE approach is validated 

using the relationship of the back propagation errors between each layer (output & hidden 

layers), and the subsequent weight update relation during the whole learning process. 

By using multilayered feed forward network (MFN) for nonlinear empirical approximation 

for the model of interest, and adopting the static learning algorithm developed from the 

standard back propagation (BP) algorithm, it has shown to have the drawback of 

excessively long training time required for the development of even a simplified model of 

the process, hindering the development of a single model valid in its entire operating 

envelope. Alternatively, a Global Error Node Evaluation learning algorithm (GENE) for 

MFN is developed as an accelerated enhancement to train the MFN. The two main 

distinctions of this learning algorithm are: (1) no saturation for network nodes is exhibited 

avoiding the ultimate paralysis of the entire MFN during learning, (2) Global convergence 
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can be achieved by keeping the direction of the gradient in the same direction, avoiding the 

local minima problem. The internal behavior of the GENE hidden nodes is investigated 

and is shown to provide the necessary dynamic/nonlinear behavior that lacks in the 

standard BP for MFN. 

Chapter 5: Application of Modelling & Control of MSF Plants by ANN-I 

This chapter is devoted to demonstrate the capability of ANNs for modelling and control 

of a MSF desalination plant based on a description of practical examples from the 

desalination process and results of using ANN s for the simulation, identification, 

modelling, and control of MSF desalination plant. This is followed by a brief overview on 

the data used for the analysis and the various network structure used for learning. These 

include both transients and controlled variables that can be obtained from the various 

sensors. Next the ANN controller approach for set - point generation is described and 

lastly conclusion is drawn including possible direction of future research. 

The approach used in this thesis is described. Data from the plant are used for training and 

testing. A Multi layer Feed forward Network (MFN) architecture with the BP learning 

algorithm is used and described. Control and modelling capability are investigated by 

considering the sample of the system input - output during load change following a time 

state space function V(t) with a mapping function N that can be approximated using ANN. 

The set point estimation task using the ANN approach is investigated by using two 

ANN's; the first one (NNE) has the task of estimating the plant load/status trajectories 

during load variation, while the second one (NNC) has the task of producing the necessary 

control input based on NNE estimation. Thus the inputs to NNE network are selected as 

inputs and outputs for NNM. The outputs of the estimation network are which is the 
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subsequent input to another network. These outputs are the inputs to the control network 

(NNe) and the outputs are the manipulated variables (set point to regulatory control). 

Chapter 6: Application of Modelling & Control ofMSF Plants by ANN-II 

To investigate the response of the control system to external disturbances such that the 

plant availability is not disturbed for MSF desalination plant, all main control loops were 

observed during imposed disturbances so that the interactions of the desalination process 

could be covered. The objective of this chapter is to present a dynamic black box model of 

the desalination process. The developed GENE algorithm is applied to data obtained from 

MSF desalination plant to identify and model the process behavior due to dynamic 

disturbances. The philosophy of applying ANN involve training on part of the scenarios 

obtained, and then, using the rest of the scenarios to test and study the network 

performance. The study includes the static test (slow variation of the process variables). 

The GENE approach is adopted as the learning algorithm, for which it is required to 

investigate what dynamic capability could be provided by the feed forward network. The 

internal behavior and convergence properties of the algorithm are compared to the 

standard back propagation with one hidden layer, and the advantages and disadvantages 

are discussed. The results are illustrated using data obtained from AL- T A WEELAH MSF 

plant at Abu Dhabi. Satisfactory results are obtained from simulation examples and they 

are gIven. 

The performance of the network is studied by using dynamic test data from one control 

loop in a multi - controller structure for a large-scale process. Next it is discussed what 

kind of additional learning method is effective when new dynamic data are available from 

other control loops, so that the additional information provided are learnt efficiently 
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without affecting the previous learning process. The effective learning method is based on 

the Back Propagation (BP) algorithm with a variation or condition in order to: 1) it 

approximates an underlying mapping rather than interpolating training ｳ｡ｭｰｬ･ｳｾ＠ 2) it is 

robust against gross error; 3) the rate of convergence is improved since the influence of 

incorrect samples is gracefully suppressed. It is important to examine the modelling 

capability of different ANN s, to determine what functional, representational and 

generalization properties they possess. 

Chapter 7: Conclusion 

Results for application of the ANN techniques using the GENE approach to predict the 

brine levels in the stages of MSF plants are summarized. Further work for the 

development of these techniques is discussed. 



Chapter 2 OVERVIEW OF DESALINATION 

2.1 Introduction 

Vitality of water for life growth and lack of natural water sources in some areas of the 

world, especially in the Middle East and the Gulf areas, leads to sea water desalination for 

fresh water production. Different types of desalination plants are available, with the largest 

production capacity being in the conventional multistage flash desalination plants. 

Generally the desalination process is by which pure water is separated from a solution of 

water and salts. In order to separate the pure water from the concentrated solution we 

have to supply some driving force for those separation. The provision of this driving force 

results into the energy consumption. Desalination processes can be split in two main 

categories: 

1) Those where the separation involves a change of phase. 

2) Those in which no change of phase is involved. 

In the first category, energy is supplied to bring about a phase change between the product 

in the vapor form and the concentrated stream in the liquid form. It is important to note 

that, at the point of separation, there is no physical barrier between the two streams. 
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In the second category, the main processes are reverse osmosis and electrodialysis in 

which the product and concentrate streams are separated by a physical barrier called a 

membrane. The membrane allows the passage of only one material through it and so 

desalination is accomplished by the membrane allowing the passage of pure water through 

the membrane in case of reverse osmosis and by the passage of the charged ions through 

the membrane in the case of electrodialysis. 

2.2 MSF Desalination Process 

The desalination process in the first category is basically an evaporating and condensing 

process. The heat required for evaporation can be partly recovered during the condensing 

phase. MSF desalination is a type of evaporation with many technical and economic 

advantages and can be regarded presently as providing the optimum solution to the 

problem of sea water desalting. 

The basic layout consists of a steam source, a water / steam circuit (brine heater) and an 

evaporator unit. The plant includes a brine heater and several flash stages divided into two 

sections - recovery and reject. The number of stages are determined according to the plant 

capacity and performance ratio. Optimum performance ratios are established on a case by 

case basis depending of fuel costs, quantity of distillate required, purpose and usage of the 

plant. 

Steam is fed to the brine heater (to heat sea water) and ejector (to create vacuum). The 

circulating water is heated by the absorbed heat from the distillate and passes to the brine 

heater where the necessary heat is provided. The heated brine is flash evaporated in the 
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evaporator cells. The evaporator cells have condensers, through which relatively cool 

circulating water passes, the condensation takes place thereby producing distillate. 

The stages are water sealed from each other to prevent pressure equalization between 

stages. Figure 2.1 shows the schematic process diagram of the multistage flash plant, and 

is limited to the main elements of the plant which are described in the as following section. 

2.2.1 Basic Scheme of MSF Desalination Plant 

The cooling water, which is chlorinated sea water from the sea water supply pumps, 

enters the plant as the "inlet heat reject flow". It flows through the condenser tubes of the 

heat reject stages on which vapor from the flashing brine condenses on the outside of the 

condenser tubes. Part of the cooling water heated in this way returns to the sea as heat 

reject flow. Only a fraction output of the flow is taken as feed water for the plant and is 

called the make-up. This feed is suitably conditioned and for this purpose a dosing unit 

and a deaerator are provided. The required make-up is added to the recirculating brine in 

the last stage. A combination of brine and make-up is extracted from the last stage of the 

evaporator by brine recirculating pump and is then pumped through the condensers of heat 

recovery section. The recirculating brine is treated with sodium sulphate to act as an 

oxygen scavenger and with antiscale to prevent scale before entering the heat recovery 

section. Here the vapor formed by the flashing brine is condensed. When the brine is 

recirculated through the heat recovery section condenser tubes, it absorbs the latent heat 

of the vapor formed by the flashing brine thereby raising its temperature and finally flows 

out from the condenser in the first stage. It then enters the brine heater and is heated by 
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steam to the required top brine temperature (TBT). Condensate formed in the brine heater 

returns to the condensate header. 

From this point the brine flows into the bottom of the first chamber (flash chamber). 

Since it is superheated compared to the conditions in the flash chamber it flashes 

spontaneously and the brine temperature is lowered in accordance with equilibrium 

condition of the stage. The brine at its lower temperature flows through the inter -stage 

transfer orifices into the new stage in which the equilibrium temperature is a few degrees 

lower. Here, in all the subsequent stages, the flashing process is repeated, so that: 

a) The brine cools down in the bottom of the chamber to the accompaniment of 

vapor formation. 

b) The vapor formed by the flashing brine is condensed on the condenser tubes. The 

condensed water called distillate falls into the distillate tray, and 

c) The brine in the condensers has its temperature raised. (refer to the "Temperature 

Profile" for an MSF desalination plant described below). 

Through the flashing which takes place, the salt content of the brine increases stage by 

stage and reaches its maximum value in the final heat reject stage. 

To prevent buildup of the salt content in the system, it is necessary to tap off a certain 

fraction of the brine at some points in the circuit and an equivalent amount of make up is 

taken as a feed. This make-up feed water is in addition to the feed water required to 

replace the distillate. This is done in the final heat reject stage at the point where the blow 

dOH'n flow is shown in the diagram, as this is the minimum temperature, reducing the heat 
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losses. Since this stage is under vacuum the flow diverted in this way must be extracted 

with a pump. 
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Figure 2.1: Schematic diagram ofMSF plant 
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Within the stages the nsmg vapor passes through demisters before reaching the 

condensing tubes to prevent the distillate from being contaminated by any entrained sea 

water. The demisters usually consists of a closely woven wire mesh. The distillate falls 

from the condenser tubes and is collected in wide channels and flows through all the 

stages via special inter-stage transfer orifices. In flowing through the stages the distillate 

undergoes the same flashing process as the brine flowing underneath. It thereby follows 

that in each stage the sum of the distillate and brine flow between the inter -stages is 

constant and is equal to the value of the brine flow in the condenser tubes and before entry 

into the first flash chamber. Distillate must likewise be withdrawn by a pump from the 

final heat reject stage. Vacuum is usually created by connecting the flash chambers and the 

feed water deaerator to a steam jet ejector system. This ejector system will evacuate all air 

on start-up and also extract during the normal running of the evaporator all the non-
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condensing gases, especially all the oxygen and carbon dioxide, which enter with the feed 

water and develop in the circuit as a result of thermal decomposition. In general each flash 

chamber vents into the next chamber with the non-condensing gases being removed at the 

last stage. However, as most of the gases are released in the first few stages, provision is 

made such that these are individually vented to the vacuum system. 

2.2.2 Principal of Flash Chamber 
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Tubes 

Distillate 
Tr y 

Stage a 

1 
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inside tubes 
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Flash'ing Bone 

o Brine 
Flow 

Dimested 
Vapor 
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Figure 2.2: MSF stage (flash chamber) 

The principle of flash chamber is illustrated in figure 2.2. If we take any stage of the 

evaporator the water vapor pressure prevailing in the flash chamber will be that 

corresponding to the equilibrium temperature reached in the stage. Hence the pressure in 
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the stage b, Pb is lower than that of the preceding stage Pa, but higher than that of the 

next stage Pc. It is this pressure difference which draws the brine through the evaporator 

stages. The brine enters a stage through the inter-stage brine orifices which are fitted with 

a brine gate which may be adjusted from inside the stage. This will enable the optimum 

brine level to be established in the stage during plant commissioning. A jump plate is fixed 

to the stage floor. This jump plate cause a wave to form thereby increasing the water 

depth in front of the brine orifice ensuring the inter-stage brine orifice is fully submerged 

and possibility of vapor blow through is eliminated. A splash plate is fixed to the stage 

wall above the inter-stage brine orifice to prevent the brine splashing, due to the sudden 

flashing 

2.2.3 Temperature Profile 

A typical temperature diagram for an MSF desalination plant is shown in figure 2.3. The 

diagram is divided into three areas corresponding to the heat reject section, heat recovery 

section and the brine heater. The cooling water enters the heat reject section at a 

temperature of t 1. Within the condenser tubes of the heat reject section its temperature 

will rise to t4. This temperature and the brine temperature after flashing in the last stage 

are approximately identical, as with equality of these temperatures the vibrations are 

minimized. In the condenser tubes of the heat recovery section the brine flow (at 

temperature t4) is raised in temperature and on leaving the first stage has reached a 

temperature of t2 which also will be the brine heater inlet temperature. In the brine heater 

the temperature is increased to the maximum temperature in the circuit t3. This is the Top 

Brine Temperature (TBT). From the brine heater the brine flows at a temperature of f 3 

into the first stage flash chamber where it is slightly cooled by the simultaneous flashing 

and vapor formation action. The flashing brine leaves the first stage at a slightly lower 
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temperature than that with which it entered and this change of temperature is 

approximately the same for all the stages. In the last stage the flashing brine drops to its 

lowest temperature within the circuit 14. This is the Bottom Brine Temperature (BBT) . 

The total brine temperature range of the plant i.e. the difference between the top brine 

temperature 13 and the bottom brine temperature 14 is called the "working range" or the 

"flashing range". The temperature of the distillate is lower than that of the flashing brine 

flowing beneath it by approximately 1 to 1.5 oC, i.e. by the amount of the boiling point 

elevation of the flashing brine and of various other temperature losses in the stage e.g. 

non-equilibrium, non-condensing gases, demister and bundle losses. 
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Figure 2.3 : ,\fSF evaporator temperature diagram 
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4. Feed (makeup) flow rate/anti scale flow ratio 

5. Brine blow down flow 

Detailed description of the process control system is as follows: 

1. The sea water flow rate to reject section is regulated so that the sea water from reject 

section temperature is equal to the temperature of the brine in the first stage which is 

the temperature of the brine recirculation at the pump discharge or entering the heat 

recovery section through the condenser to keep the heat balanced in the process. Sea 

water flows to the heat reject section depends on seasonal conditions (summer or 

winter) and is maintained by actuating the sea water discharge valve or by varying the 

speed of the sea water supply pump employing PI controller. 

2. The brine recirculation flow is regulated to increase / decrease the production as it will 

increase/decrease the brine flashing rate. It will affect the quantity of brine that remains 

inside each stage. This must be done properly so that no disturbance occur in the levels 

of the brine in the different stages. The level in each stage should not be so high so that 

the carry over is encountered, which is the contamination of distillate product which 

result in higher salt content of the distillate than the required design level. At the same 

time the level should not be so low that will lead to blow through flow in the inter-

stage. To maintain the brine flow rate, signals from electromagnetic flow transmitters 

are used to actuate the respective control valve. The objective is to maintain the brine 

recirculation and distillate flow rates at the required value in response to seasonal 

(summer, versus winter), and high temperature chemicals conditions affecting the flo\v 

rates. 
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3. The feed (makeup) flow rate is regulated so that the salinity of the recycled brine is 

controlled at a constant optimum concentration, this is achieved by a ratio control with 

the flow rate of the distillate drawn from the plant. 

4. The control of distillate product flow is by regulating the Top brine temperature and 

the brine recirculation flow in reasonable sequences and at a rate of change that does 

not affect the equilibrium of the process. This rate is usually determined at site. The 

required brine temperature in order to produce a certain distillate product is regulated 

by variation of the steam temperature and flow rate to the brine heater. The steam 

temperature variation is achieved by variation of the de-superheating water flow. PID 

control is employed in the temperature controller. The steam pressure in the brine 

water is normally used as an auxiliary variable in the cascade control mode. 

5. Brine level in the last stage chamber of the evaporator which is directly related to the 

levels in the preceding stages, is maintained at a predetermined set point. The PI level 

controller actuates the brine blow down valve. In the case of a brine blow down pump 

equipped with variable speed control, level control is done through speed change. For 

the system material balance it is required to keep the brine blow down flow rate equal 

to the difference between the makeup flow rate and the distillate output. 

Additional loops such as the chemical injection loop, and sea water make up flow loop 

may be integrated in the overall control system. Further improvements are obtained when 

additional loops are added such as blow down flow, sea water recirculation, and heat 

reject section inlet temperature. 

2.3.1 Process Control Requirement 
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Control of MSF desalination plants is generally based on conventional PID controller for 

TB T and only PI for the rest of the variables. However a derivative control function may 

be added if a fine control is desired. The controllers function fairly well when set properly 

at or near the best desired and calibrated set points. When a disturbance takes place, 

conventional controllers do not perform satisfactorily because the controller parameters 

settings do not correspond to the disturbance encountered. 

MSF desalination plants with considerable amounts of mass and energy require novel 

types of high performance controllers that are almost always digitally based and perform 

control functions based on many available modern control algorithms. 

Adaptive control (or self tuning control) offers one solution to the manual tuning of PID 

controllers, by attempting to maintain good robustness even if unpredictable changes 

occur in the process, sensors, and probably due to damage to the controller itself The 

basic idea is to combine an on line parameter estimation procedure with some control 

system design technique to produce a control law with a self tuning capability. These 

controllers are capable of tuning themselves to optimal settings and returning whenever 

the process dynamics / behavior changes. The application of high performance controllers 

can result in a stable, efficient, smooth operating plant with extended life span. Adaptive 

control is successful only if a model exists with sufficiently accurate parameters. Model 

accuracy can be improved using artificial intelligence [3], [4]. 

For MSF desalination, control system design requires a knowledge of the inherent plant 

dynamic behavior, the really crucial flow-related control parameters are not those which 

are directly observable (such as temperature, flow, and pressure). Instead, they are the 

more indirect quantities such as overall (and localized) heat transfer coefficients in large 
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tube bundles, non-equilibrium losses in flashing of brine, and the stability of tray brine 

levels and inter-stage flows. Measurement of these phenomena must be derived from the 

direct measurements often requiring considerable accuracy. Proper modelling to 

understand the plant dynamic behavior is required and it would be great if the brine levels 

could be estimated accurately. 

Like other processes, other modelling difficulties appears from the requirement for the 

inclusion of complex process characteristics such as time delays, disturbances, unmeasured 

variables, time-varying parameters, nonlinearities and multivariables interactions. While 

microcomputer based controllers are adequate hardware that is theoretically adequate to 

overcome these problems, the challenge is to find the appropriate software to direct the 

hardware. Artificial neural networks provide an innovative new paradigm that is 

beginning to be applied to these areas with excellent results. 

2.4 The Dilemma ofMSF Process Modelling 

In general, the MSF process, as shown in figure 2.5, contains two recycle loops I, II. In 

the major recycle loop, part of the brine is recirculated to merge with the make-up flow. 

this combined stream, flowing counter currently to the flashing brine, is heated in the 

recovery section until it enters the brine heater. The second loop results by recycling part 

of the cooling water from the reject section to maintain constant cooling water 

temperature at the entry of the reject section (during the winter season). 

The recovery and reject sections contain several stages. Each stage can be considered 

containing four compartments as shown in figure 2.6, namely, brine pool, product tray, 

vapor space and tube bundle; among these compartments the vapor and liquid flows are 

indicated by solid and broken lines, respectively. 
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Figure 2.5: MSF process block diagram 

Each fluid stream communicating with the individual stage has four attributes: Flow rate. 

temperature, pressure, and salt concentration, which can be considered as independent 

variables. For a detailed modelling the conservation of mass and energy for each stage 

must be satisfied, which are influenced by other stages. The model present a large scale 

problem where several hundreds of nonlinear equations must be solved. Various 

approaches were employed for solving such a model of nonlinear equations. One approach 

is based on the solution of these equations by stage to stage calculations, which is 

characterized by instability and low rate of conversions (e.g.: Beamer et al [7] used a 

stage to stage model with calculations being started at the hot end of the plant in an 

optimization study. A similar approach was used by Barba et al [8] where initial guess, 

provided by a simplified model which calculates the main dependent variables, were fed to 

the main mode1.). Another approach is to develop a rigorous method for solving the 

detailed steady state model which is based on the decomposition of the large set of 

equations into a smaller subsets followed by iterative sequential solution of these subsets. 

Rautenbach and Buche} [9], Orner [10] and Medani et al [11] followed a sequential 

approach with certain optimization program to minimize the stage wise fashion 

calculations starting at the hot end of the plant. Helal et al [12] linearized the governing 

equations for different sections of the plant. These were solved simultaneously using 
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tridiagonal matrix (TDM) technique originally proposed by Amundson and Pontinin [13] 

and was improved by Wang and Hanke [14] and was employed by Husain [15], [16]. 

To obtain a rigorous model for the MSF desalination process, a total mass, component 

and enthalpy balance can be written for each of the four compartment divisions of a stage 

shown in figure 2-6, plus heat transfer equation between the tube bundle and a vapor 

space. In addition, one has to consider that the evaporation process occurring in the brine 

pool is a constant enthalpy process. With time derivatives included, such a generalized 

model serves as dynamic model; when these derivatives are put equal to zero it represents 

steady-state condition [17]. This model has to be supported by accurate correlations for 

brine densities, boiling temperatures, brine and vapor enthalpies, and heat transfer 

coefficients. These parameters/coefficients which in the two-phase section is different from 

the parameters for one-phase section. They depend on the fraction of vapor, fluid velocity 

and the difference between pressure in the stage and the previous stage. In addition, there 

are temperature losses between the brine pool and the vapor space due to boiling point 

elevations, non-equilibration in the pool and pressure losses in the demisters and across 

the tube bundle, which must all be accounted in a representative model. Furthermore, 

there are uncertainties such as the fraction of the total evaporation which takes place from 

the product tray is not separately known. In a solvable analytical model along the above 

lines, simplifications lead to inaccuracies for which the main sources are the following : 

• Heat transfer coefficients: the theoretical values differing 10% or more from those 

calculated from the actual plant operating data [7] may be due to the presence of non 

condensable gases. In addition, heat transfer rates decrease with time due to fouling. 

For on-line simulation, periodical measurements and calculations are necessary. 

• During flashing if the thermal equilibrium is reached, then the temperature of the brine 

in each stage will be equal to the temperature of the vapor plus the boiling point 
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elevation. Normally, the equilibrium is not reached, therefore, there is an additional 

temperature loss that has to be accounted for in order to properly evaluate the vapor 

temperature. 
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Figure 2.6: Representation of a single stage of the MSF plant 

As regard the overall enthalpy balances, two approaches are possible, a local and a global 

approach. The balance is made with respect to terminal streams in each stage for the local 

approach. Whereas in the global approach, heat input to either recovery or reject sections 

is taken into account in making an enthalpy balance for each individual stage [8]. 

2.5 Supervisory Control System for MSF Desalination Process 

One of the primary concern is to maintain the water production under all circumstances. 

MSF process startup requires the preparation of the vacuum into the stages and this 

requires some time and effort from the operator to create the vacuum required for the 

operation. For this plant shut down due to any disturbance is required to be avoided. 

Additionally load variation is frequently required in large MSF units. Hence a smooth, 

reliable and efficient control is required by the operator through the interface station for 

the various controllers. The change of distillate production in MSF plants is based on 
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controlling the heat input to the brine heater by decreasing / increasing the TBT controller 

set point in predetermined steps. For each step of the TBT change, the brine recirculation 

flow rate is also suitably changes in sequence. These steps are repeated until the required 

distillate product is achieved. The rate of change of the above parameters, determined by 

the amount of change in the set points in each step and the time between two successive 

steps, is judged by the operator on site. 

Manual control of the MSF plant is a hard task for the operator and the dynamic model, 

considering the previously mentioned conditions, is quite complicated. Therefore, efforts 

have been taken to use the computer to assist the operator. A computer supervisory load 

variation control can be adopted and this has been realized at various locations in the 

Arabic Gulf such as Abu Dhabi and Oman [18], [19]. However, a dynamic model has not 

been used. 

The values of the set points are calculated according to the followings: 

• The brine recirculation flow rate is calculated using the operating curves as function of 

the product distillate flow rate and the cooling water temperature (reject inlet). 

• The cooling water flow rate is function of the cooling water temperature (reject inlet) 

• The TB T is calculated using the heat and mass balance of the evaporator and changes 

according with the changes in the fouling factor and in the sea water temperature. 

• The steam temperature to the brine heater inlet is calculated according to the TB T . 

The calculation is performed in order to limit the degree of superheating of the steam 

at high load, and according to the maximum de-superheating water flow rate at low 

load. 
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The set point variation program consists mainly of two parts; the first is a successive step 

change command given to the controllers set points until the desired load is reached. The 

value of the step change is constant and is always determined by trial and error during the 

first commissioning of the plant. The second part is a waiting cycle, during which 

calculations and bound limit checks are usually performed. For example, the control 

deviations are checked on steady state behavior (e.g.: the control deviations have not 

exceeded 2% within the last 5 minutes). If the control deviations fulfill the steady state 

condition, set point variation steps can take place. Prior to executing the set point control 

program, a steady state check is made on the unit otherwise the program will not be 

executed. A steady state mathematical model is usually used to monitor the variations of 

the process parameters of the plant. A description of the mathematical model used and the 

equations involved in the calculation is reported in Appendix I [20]. During the execution 

of each step all external input and output modules are monitored. A faulty module will 

stop the program execution. Additionally the steam flow from the steam raising plant to 

the desalination unit is monitored in order to recognize if the supervisory control program 

over-charges the boiler capacity. The program will be switched back to latest step and 

stops if the steam flow exceeds 20 % of the value at the beginning of the step. 

The foregoing supervisory control system is installed at Umm AI Nar East desalination 

plant in Abu Dhabi since 1988. During the first commissioning of the unit, and in order to 

obtain an efficient and reliable operation of the system, a continuous tuning of the 

coefficients and parameters was carried out for a period about three months. The main 

requirements are: 

• to collect the operating fitting curves for the flow and temperatures, 

" to calibrate the main parameters and 

• to adapt the control logic to the desalination plant characteristics . 
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For example set point for TBT is calculated from a curve for load corresponding to TBT 

values. The curve parameters is tuned during the first commissioning of the unit. Further 

improvements to the procedure was based on observation and trial and error. Control 

logic adopted during a load variation for set points sequence of change is that at the start 

the change is affecting the TBT, l.p. steam to brine heater temperature and the antiscale 

dosing flow. After a time delay, the brine recirculation flow rate, the sea water to reject 

flow rate and the sea water to reject temperature start to be changed. The reason for this 

sequence of operations depends on the response of the process to the control actions and 

is explained in the following: 

• The delay between the activations of the TBT and the brine recirculation flow rate is 

due to the need to develop the slope for the curve to change the temperature (increase 

or decrease), before any change of the brine recirculation affects it. In fact, an increase 

of the flow rate causes a decrease in the temperature, due to the difference response 

time of the process to the two changes of set points. 

• The delay of the reject set points is due to the fact that their final values are calculated 

with a balance at the final running conditions, and a change in the reject temperature 

set point causes big fluctuations in the value of the sea water recirculation flow rate, 

because the time of change of the reject outlet temperature is very high. 

• The set point of 1. p. steam and antiscale dosing are functions of the TB T, so they are 

changed at the same time. 

• The antiscale dosing (antiscale/make-up flow fraction) is a function of the TBT. The 

function depends on the kind of antiscale used. A lower limit of the dosing is fixed in 

order to avoid the alarm limit for the antiscale flow rate during normal operation at 

low load. 

2.6 Conclusion 
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All pervious work for modelling MSF process are based on linearization of the balance 

equations and heat transfer equations. Validity of correlated values over a wide range of 

temperatures and concentrations is vita1. Although several simulation results are reported 

in the literature, all are based on steady state simulation. 

Steady state mathematical models for the MSF are available to be used for process steady 

state validation. The best model to be used does not require the user to be skilled model 

builder, and understand all programming and tuning details. Such that when further tuning 

is required the user can adapt the model to the process. However, an engineer who 

understands the process being simulated will not require more than a few days training in 

the neural net approach. In general, neural net approach has the advantage when the 

process data required to build the model are readily available. First principle methods are 

required to build models for operating regions not covered by the existing plant data, and 

are normally used with well-understood and previously modelled processes. The two 

approaches can be combined. 

Neural net models can be quickly built and checked before implementation, typically 

taking less than one day. The required measurement tolerances can be statistically 

generated from information in the training data set. Further tuning is not necessary, as real 

plant data are used to build the models. 

The key advantage of neural networks is that there is no need to build stage to stage or 

even short cut models of the desalination process from first principles. Neural net can 

build models describing any deterministic process relationship, without requiring the 

engineer to fully understand or describe the equations or the relationships between the 

process variables. 



CHAPTER 2: OVERf;7EWOF DESALIX4TJOX 30 

The key is to have a training data set that is large enough to contain information covering 

the full operating region of the plant. The model will then include influences of all inputs 

on the product quantity and quality. In the following chapters, the artificial neural network 

approach and its application to model the MSF desalination process is discussed in details 

and results from practical data obtained from the plant are introduced. 



Chapter 3 

3.1 Introduction 

Intelligent Control & Conventional Control 
System: An Overview 

Research and development for the control systems are continuing to keep abreast of the 

state of the art technology. Innovative concepts in control systems have relegated what 

was considered a satisfactory solution a decade ago to obsolescence today. One novel 

feature of artificial intelligence (AI) is its ability to handle the uncertainties and 

nonIinearities that we encounter in today's complex process control. One approach in the 

field of intelligent control is the Artificial Neural networks (ANN) controller or 'neuro-

controller'. System engineering in the desalination industry is used by a variety of different 

techniques to solve the modelling and control problem in this area. So the question that 

must be considered is how ANN would perform compared to other methods. In this 

chapter we address this issue. In the pervious chapter a discussion of a brief history of 

modelling and control problems that are found in the desalination technology. In this 

chapter a brief overview of the relationship of Intelligent Control to traditional control 

systems is discussed. Next a comparison with control system problems solving paradigm is 

carried out and lastly a brief overview of Intelligent Control methodology and application 

using the Artificial Neural Network is discussed. 
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3.2 Conventional and Intelligent Control 

The term "conventional (or traditional) control" is used here to refer to the theories and 

methods that were developed in the past decades to control dynamic systems, the behavior 

of which is primarily described by differential and difference equations. Note that this 

mathematical framework may not be general enough in certain cases. In fact, it is well 

known that there are control problems that cannot be described in a differential/difference 

equations framework. Examples include discrete event manufacturing and communication 

systems, the study of which has lead to the use of automata and queuing theories in the 

control of systems. 

In the minds of many people particularly outside the control area, the term "Intelligent 

Control" has come to mean some form of control using fuzzy and / or neural network 

methodologies. This perception has been reinforced by a number of articles and interviews 

mainly in the nonscientific literature. However, intelligent control does not restrict itself 

only to those methodologies. In fact, according to some definitions of intelligent controls, 

not all neural/fuzzy controllers would be considered intelligent. The fact is that there are 

problems of control which cannot be formulated and studied in the conventional 

differential / difference equation mathematical framework. To address these problems in a 

systematic way, a number of methods have been developed that are collectively known as 

intelligent control methodologies. 

There are significant differences between conventional and intelligent control. It is worth 

remembering at this point that intelligent control uses conventional control methods to 

solve "lower level" control problems and that conventional control is included in the area 

of intelligent control. Intelligent control attempts to build upon and enhance the 

conventional control methodologies to solve new challenging control problems 
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The word "control" in intelligent control has a different, more general meaning, than the 

word control in "conventional control". First, the processes of interest are more general 

and may be described, for example, by either discrete event system models, differential / 

difference equations models, or both. This has led to the development of theories for 

hybrid control systems that study the control of continuous-state dynamic processes by 

discrete-state sequential machines. In addition to the more general processes considered in 

intelligent control the control objectives also can be more general. for example, "fault 

tolerance techniques" can be the general task for the controller; this is then decomposed 

into a number of sub tasks, several of which may include, for instance, "follow a particular 

trajectory," which may be a problem that can be solved by conventional control 

methodologies. To attain such control goals for complex systems over a period of time, 

the controller has to cope with significant uncertainty that fixed feed back robust 

controllers or adaptive controllers cannot deal with. Since the goals are to be attained 

under large uncertainty, fault diagnosis and control reconfiguration, adaptation and 

learning are important consideration in intelligent controllers. So the control problem in 

intelligent control is an enhanced version of the problem in conventional control. It is 

much more ambitious and general. It is not surprising then that these increased control 

demands requires methods that are not typically used in conventional control. The area of 

intelligent control is in fact interdisciplinary, and it attempts to combine and extend 

theories and methods from areas such as control, computer science and operation research 

to attain demanding control goals in complex systems. 

Note that the theories and methodologies from the areas of operations research and 

computer science cannot, in general, be used directly to solve control problems, as they 

were developed to address different needs. They must firstly be enhanced and new 
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methodologies need to be developed in combination with conventional control 

methodologies, before controllers for very complex dynamic systems can be designed in 

systematic ways. Also, traditional control concepts such as stability may have to be 

redefined when, for example the process to be control is described by discrete event 

system models. Rigorous mathematical frameworks, based for example on calculus, are 

being used to study such questions. However, in order to address control issues, these 

mathematical frameworks may not be convenient and they must be enhanced, or new ones 

must be developed, to appropriately address these problems. This is not surprising as the 

techniques from computer science and operations research are primarily analysis tools 

developed for non-dynamic systems, while in control, synthesis techniques to design real-

time feedback control laws for dynamic systems are mainly of interest. In view of this 

discussion, it should be clear that intelligent control research, which is mainly driven by 

applications, has a very important and challenging theoretical component. Significant 

theoretical strides must be made to address the open questions and control theorists are 

invited to address these problems. The problems are nontrivial, but the payoff is high 

indeed. 

Because intelligent control addresses more general control problems that also includes the 

problems addressed by conventional control, it is rather difficult to come up with 

meaningful benchmark examples. Intelligent control can address control problems that 

cannot be formulated in the language of conventional control. To illustrate this point, for 

example, in a desalination plant, while conventional controller may include flow regulators 

of the various streams, in the intelligent control framework one may include fault diagnosis 

and alarm systems. The problem of deciding on the set-point of the regulators, is based on 

the sequence of orders processed, selected, based on economic decisions, maintenance 

schedules, availability of machines etc. 
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Another difference between intelligent and conventional control is the separation between 

the controller and the system to be controlled. In conventional control the system to be 

controlled, called the plant, typically is separated from the controller. The controller is 

designed by the control designer, while the plant is in general given and cannot be 

changed; note that recent attempts to coordinate system design and control have been 

reported in areas such as space structures and chemical processes, since many times 

certain design changes lead to systems that are much easier to control. In intelligent 

control problems there may not be a clear separation of the plant and the controller; the 

control laws may be imbedded and be part of the system to be controlled. This opens new 

opportunities and challenges since it may be possible to affect the design of processes in a 

more systematic way. 

3.3 A Comparison with Control System Problems Solving Paradigm 

Solving the problem of any control design in system analysis starts with a description of 

the problem in the form of state space or a set of linear or non-linear algebraic equation to 

characterize the problem description. Then by using a numerical solution to find the 'stable' 

or 'optimal' solution to the problem is to be solved. This relies on being able to formulate 

the problem at hand into mathematical formalism. In contrast, neural networks allow one 

to deal with problems that cannot be formulated in this manner. 

The neural network is essentially a model because it seeks to develop a model of the 

problem solver rather than the problem itself The adaptation law in the neural network 

represents the manner in which the problem solver tackles the problem, rather than being a 

description of the problem. This opposite direction is motivated for the neural network 
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approach by the learning ability and the generalization capability, if guaranteed. As shown 

in Figure 3.1 a block diagram showing (a) the steps followed by the nonnal system 

analysis versus (b) neural network approach. We note that modelling the problem is 

embedded in modelling the problem solver to find a solution using the learning ability of 

the neural network. 

System analysis approach uses the problem solver directly on the fonnulated model, while 

for the neural network approach it is used directly after solving the problem, and no 

further solution is searched under any condition. From here a restriction or bounds are 

added to the problem in order to be in the domain of the required generalization. This is 

implemented by including constrains which can be included during or after the learning 

phase. Alternatively is by using the first solution with the second one to include a priori 

information in hybrid solution. This requires enough infonnation to be available to reach a 

solution. As the learning is perfonned by adjusting the weights in a supervised 

lunsupervised mode in order to find a solution for representing or solving the problem in 

the same time, i.e. finding a solution for the two problems. 

For practical modelling application and to find an acceptance for the control community, 

researchers in this field have analyzed the problem to find a systematic approach to the 

problem solving. However, the acceptance criteria for neural network approach is in the 

generalization capability. 
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Figure 3. J: A Block diagram showing (a) the steps followed by the normal system 

analysis versus (b) Neural Network approach as a problem solver 

3.4 Artificial Neural Networks and Control Systems 

Learning algorithms are required to operate in ill-defined and time-varying environments 

with a minimum amount of human intervention. These techniques are typically used to 

control plants for which a conventional mathematical analysis is not possible, and many 

different learning systems have been proposed for use within Ie systems. Recent research 

interest has re-focused on using biologically inspired learning algorithms and control 

architectures, and this have been part of a wider improvement or research activity into 

ANN. ANNs and the control community have a long history, which probably began with 

Wiener's Book Cybernetics published in the late forties [21]. During the fifties and sixties, 

the adaptive control field grew a notable success. The unification of several parameter 

estimations algorithms, coupled with the development of gradient and stability-based 

learning rules, provided a firm theoretical background for many of the practical 
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applications [22]. Several neural controllers were developed in the sixties, most notably 

Widrow's inverted pendulum controller in 1963 [23]. More recently, the developments of 

neural network architecture and learning algorithms have provided the stimulus for control 

engineers to re-evaluate the potential of ANN-based controllers, or neurocontrollers. The 

new ANN s were proposed by researchers from different disciplines, such as computer 

science, psychology, etc., and many of the learning algorithms have their 'parallels' in the 

adaptive identification and control fields. 

The most important characteristic of ANN is its ability to learn the frequently complex 

dynamic behavior of a physical system. Learning is the process where the network 

approximates the function mapping from system inputs to outputs, given a set of 

observations of its inputs and corresponding outputs. This is done by adjusting the 

network internal parameters, to minimize the squared error between the networks outputs 

and the desired output. One such method is the error Back-Propagation (BP) algorithm 

by Rumelhart, Hinton and Williams [6], which is essentially a first order gradient decent 

method. The ability to approximate unknown functions through presentation of their 

instances makes ANN a useful tool for modelling in engineering applications. In addition, 

Hornik el. al [24] have proven that multi-layer back propagation networks have the 

capability of approximating any nonlinear continuous function. ANN are of interest to the 

control community because they have the potential to treat many problems that cannot be 

handled by traditional analytic approaches. Different ANN architectures are employed in 

which they have the capability to "learn" system characteristics, through non-linear 

mapping ANNs can be used to implement highly non-linear models/controllers with 

weights or internal parameter that can be determined by a self learning process. For 

control engineering, ANN s are attractive because they have the ability of non linear plant 

modelling, can handle large amount of sensory information, perform collective processing 
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and learning and offer the potential for highly parallel computation. They offer the promise 

of better solutions, to control problems that are so complex that analytical design 

techniques do not exist and may not exist for some time to come. 

There have been some researches on using ANN s for the control of dynamic systems. 

Psaltis, Sideris and Yamamura discussed a number of interesting techniques for using the 

back propagation network to control plants [25]. Several techniques for process 

identification and control using neural network are discussed in Tariq Samad el. al [26]. 

Nguyen and Widrow have reported an ANN application to self learning of backing a 

trailer truck into a loading duck [27]. An ANN feed forward model was used in Jordan 

and Jacobs for system learning and control [28]. 

One particularly popular region of inquiry has been applying the neural computational 

paradigm to existing problems in nonparametric system identification [29], measurement 

prediction [30], fault detection [31] and situations where input-output data are available 

but functional relationships are poorly understood such as the treatment of nonlinear 

dynamic system with approaches to the design neural network based controllers [32], 

[33]. 

ANNs have made a significant impact on the chemical industry, with application in 

nonlinear process and human operator modelling, automatic plant knowledge elicitation, 

fault detection and monitoring, process control and optimization and sensor validation, 

interpretation and fusion. For example, ANNs have been used as part of model predictive 

control [34], for a Continuous Stirred Tank Reactor (CSTR) for pH control of sodium 

hydroxide, by minimizing a quadratic cost function over a finite time horizon subject to 

constraints on the pH range. An ANN is adapted to form a dynamic model of the CSTR 
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off-line, then in real-time with ANN fixed (with variable bias), an optimizer plans a series 

of actions/control over the planning horizon. The optimization problem is one of nonlinear 

programming (via feasible sequential quadratic programming) that may be readily 

implemented on a special chip. 

An ideal application of ANN s is in the field of nonlinear system identification [35]. 

Virtually any discrete time nonlinear system may be represented by Nonlinear Auto 

Regressive Moving Average with eXogenous inputs (NARAMAX) model [33], which 

represents a system in terms of its delayed inputs and outputs. In general the NARAMAX 

model has the following form: 

'" '" "'k '" "'k "'kd) y (k + 1) = f (y ( ), ... ,y (k -d.J,u ( ), ... ,u ( - u) (3-1) 

* * where du and dy are the maximum delays in the input and output vectors 11 , Y , 

respectively. This form of model is ideal for system identification purposes because the 

model is expressed entirely in terms of known quantities. 

An ANN may be used to identify the NARAMAX model of a system by making the 

arguments of (9) the inputs to the ANN and making the output of the ANN be the one-

step-ahead (predicted) output vector y'" (k + 1) as shown in fig. 3.2 (TDL denotes a 

tapped delay line whose outputs are delayed values of its inputs). The ANN may then be 

trained to emulate the function 1(.) in (3 -1) by comparing the predicted output vector 

with the actual output vector at time k + 1, and using the error to update the ANN 

weights via the error back propagation algorithm. 
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Fundamental to the majority of intelligent control schemes is plant identification or 

modelling. ANNs Gust like conventional nonlinear time series methods such as NARMAX, 

extended Kalman filters, etc.) have been applied to dynamic process identification. In the 

chemical process industry, ANNs have been used in the identification of waste treatment 

plants, with multiple holding or settling tanks [37]. The plant is typically 5 input, 9 output 

multivariable process. Excellent modelling results are obtained and the plant has been 

successfully controlled using a model predictive algorithm. 

3.4.1 Neural Computing Benefits 

Neural computing is different from conventional algorithmic computing, although the 

former can generally be decomposed into an algorithm and implemented on a serial 

machine. These apparently contradictory statement can be resolved if it is accepted that it 

is the approach which distinguishes the two techniques, rather than the final 

implementation. Neural networks offers solutions to problems that are very difficult to 
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solve using traditional algorithmic decomposition techniques and the potential benefit of a 

neural approach are : 

• learning from the interaction with the environment (learn by experience), rather than 

by explicit programming (modelling); 

• few restrictions are placed on the type of functional relationship that can be learnt; 

• ability to generalize (interpolate and extrapolate) the training information to similar 

situations; and 

• inherently parallel and the computational load can be evenly distributed across many 

simple processing elements. Thus the networks posses some degree of fault tolerance 

with respect to processor failures. 

The first three properties are desirable for any learning algorithm, and the fourth can be 

used to apply these networks to larger real-time systems. If a learning algorithm possesses 

these properties, it can endow the control system with the following advantages [38]: 

• decreasing the required amount of human intervention; 

• increasing the flexibility of the control system; 

• improving the performance of the control system; and 

• reducing the initial design time and cost. 

The performance of an ANN (learning, recall, computational burden, etc.) depends on 

how well satisfies the first property list, and this determines its potential for off-line design 

problems. For on-line adaptive modelling and control the algorithm also need to posses 

the following properties: 

• 

• 

learn significant new information (plasticity) in a stable manner and in real-time while 

retaining knowledge previously learned; and 

provable learning convergence conditions for local & global optimization 
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Some of the most commonly used ANNs satisfy neither of these properties, although this 

means that while they can be used in neurocontrol application, learning should only occur 

off-line. In chapter 4 a technique based on GENE approach is developed which is suitable 

for on-line global error evaluation. 



Chapter 4 Artificial Neural Networks 

4.1 Introduction 

The primary objective of the control system of MSF is to determine the capability of the 

process to remain in the stable mode of operation particularly during load change 

(transient conditions) as well as when disturbances such as shortage of steam supply is 

imposed. Control system design for MSF desalination plants requires a knowledge of the 

inherent plant dynamic behavior that have quite a few complication process characteristics 

such as time delays, disturbances, unmeasured variables, time-varying parameters, 

nonlinearities and multivariable interactions. One of the really crucial flow- related control 

parameters are not those which are directly observable (such as temperature, flow, and 

pressure). Instead, they are the more indirect quantities such as overall (and localized) heat 

transfer coefficients in large tube bundles, non-equilibrium losses in flashing of brine, and 

the stability of tray brine levels and inter-stage flows. Measurement of these phenomena 

must be derived from the direct measurements often requiring considerable accuracy. 

While microcomputer based controllers are adequate hardware that is adequate 

theoretically to overcome these problems, the challenge is to find the appropriate software 

to direct the hardware. 
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MSF desalination plants are characterized as a complex multi-variable process with several 

regulated variables and interacting loops. The control loops are usually controlled 

separately by PI and PID controllers and the problem of interaction exist such that the 

adjustment of a single set-point causes a profound influence on many other control loops 

in the process. By multi-variable, we refer to those processes wherein many, strongly 

interacting variables are involved. The control input (set point) can be calculated from a 

steady state mathematical model, which is based on the basic equations describing the 

behavior of the desalination unit (heat and mass balance equations and the heat exchange 

equation of each stage). This model is valid only for the steady or near steady state 

situation. The control algorithm is required to be capable to manage all situations taking 

place during load transients, and therefore requires a dynamic nonlinear model 

representation. It is often very difficult and time consuming to drive a realistic system 

model, especially when the basic mechanism of the process is not completely understood. 

Computationally expensive calculations are required for the desired precision and 

accuracy. This aspect is specially crucial for enhanced real-time performance. As a result, 

control algorithms are often synthesized based upon their linear approximation. However, 

MSF systems are nonlinear, consequently, un-modeled dynamics and robustness problems 

arise. Therefore in practical applications supervisory control is adopted [22]. 

Apart from the above methods, fast assessment of the control system of MSF based on 

Artificial neural networks (ANNs) can be an alternative method. In this alternative 

approach, the capabilities of the ANN to learn and generalize enables the network to 

obtain complex mapping of the MSF dynamic behavior and the various transient control 

actions. ANN can estimate the dynamic behavior and the control actions required due to a 

disturbance in negligible time. Recently, ANN approaches have been proposed for the 

estimation of the control actions ofMSF plants [39], [40] &[41]. 
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In the recent years, neural network based control system has been receiving more and 

more attention because they can handle large amount of sensory information, perform 

collective processing and their ability to capture the approximate nature of the real system 

with particular attention to the dynamic nonlinear processes. The ANN can be traced back 

to the 1940's when papers by McCulloch and Pitts on the modelling of the neuron [42] 

and Hebb on learning appeared [43]. Rosenblatt's publication on the Perceptron (1958) 

and Widrow's ADLINE (1960) sparked a great deal of interest initially [44], [45]. 

However, there was no known learning algorithm that could be applied to adjust the 

weights for a specific calculation. In 1969 the text, Perceptrons, was published by Minisky 

and Papert and it showed that the linear neural networks that had received so much 

attention were severely limited in the problems they could solve [46]. This text caused 

most people to lose interest in neural computation except few dedicated scientists. 

Gradually, a theoretical foundation emerged, upon which the more powerful multi-layer 

networks of today are being constructed with many impressive demonstrations of ANN 

capabilities where the most have used the famous algorithm Back Propagation (BP) to 

train the networks, perhaps the most successful of the current algorithm. Back 

Propagation invented independently in three separate research events (Werbos 1974, 

Parker 1982; and Rumelhart, Hinton and Willliams 1986) [47] [48] [6], provides a 

systematic mean for training multi-layer networks, thereby overcoming limitation 

presented by Minisky. Werbos developed the back-propagation algorithm first in 1974, 

but his achievement remained almost unknown [47]. Parker rediscovered the technique in 

1982 [48], and independently in 1986 by Rumelhart, Hinton and Williams [6]. The multi-

layer Perceptron networks were not used in the past because of lack of an effective 

learning algorithm. This has recently changed, mainly owing to Rumelhart and his co-

workers who have popularized the back-propagation algorithm among the scientific 

community [6, 49]. 
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Various types of neural network are being studied or used in applications. However the 

most popular neural network is the feed forward neural network with BP learning 

algorithm. Applications of feed forward neural networks have been the task of "learning" 

maps from discrete data. Examples of such map learning problems can be found in areas 

such as modelling chemical process systems [29], control and identification of dynamically 

systems [32], control of nonlinear systems [25], to name a few. In most of these 

applications, feed forward neural networks act on data by detecting some kind of 

underlying organization. They learn (closely approximate) the similarities among patterns 

directly from instance of them to give the desired map. That is they infer solutions from 

data without prior knowledge of the regularities in the data. This is useful because 

gathering data does not require explaining it. They extract the regularities from data 

empirically. Thus, they can bridge the gap between an individual example and general 

relationships. This is a valuable characteristic for appreciation to predict the nonlinearinties 

and uncertainties for the desalination process, where no obvious expression for calculating 

them. 

Artificial neural networks (ANN) typically consist of an architecture with many simple 

computational elements or nodes arranged in layers and operating in parallel. The weights, 

which define the strength of connection between nodes, are adapted during the learning to 

yield good performance. The term neural reflects the fact that the initial inspiration for 

such networks was derived from the observed structure of biological neural processing 

systems. Changing the weight of an element will alter the behavior of the element and, 

therefore will also alter the behavior of the whole network. The arrangement of the , 

network's nodes and connections defines its architecture and there are many possible 

variations. 
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Figure 4.1: A feed forward multi-laver network 

where each circle corresponds to a node and each arrow represents a weighted link 

One popular arrangement is shown in figure 4. 1 where the nodes are arranged into layers 

and each node in one layer has connections only to with nodes in the preceding layers. The 

goal here is to choose the weights of the network to achieve a desired input/output 

relationship. This process is known as training the network. In other word the weights are 

adapted by training to improve performance. The network can be considered memoryless 

in the sense that, if one keeps the weights constant, the output vector depends on the 

current input vector and is independent of past inputs [6] . This kind of network is known 

to be capable of learning complex input - output mappings. That is, given a set of inputs 

and desired outputs or targets, an adequately chosen neural network can emulate the 

mechanism in order to reproduce the data set through learning. 

-

The success of any ANN approach for MSF dynamic control depends on the successful 

learning of the correct mapping. ANN models are specified by three elements: neuron 

characteristics, network topology and training rule. There are two classes of ANN 

structures, namely feed forward and recurrent. In the present work, Multi-layered feed 

forward networks (MFN's) with error back propagation learning algorithm is adopted. 
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Feed forward networks and the neuron characteristics are discussed in section 2. Section 

3 reviews the famous supervised training algorithm back propagation. When an ANN is 

applied to solve problems it is always worth asking "what size of a network should we use 

for a particular problem?" And "how many examples are needed to generalize the 

problem?". These are discussed in section 4. There are some variations and improvements 

to the back propagation algorithm to avoid the pitfall of the saturation of the network 

nodes and the ultimate paralysis of the entire MFN during learning; and the problems of 

convergence to a local minimum. The last section develops the methodologies that 

account for generalization and avoiding local minima so that a consistent ANN approach 

can be developed to reproduce the MSF process behavior. The methodology when used 

could predict the brine levels in both the first and last stages. The methodologies are 

developed based on global error node evaluation scheme for MFN. The development of a 

dynamic model and with an example for set point generation that can reproduce the 

process behavior using the standard back propagation as well as using the GENE 

approach for the MSF desalination plant are described in chapters 5 & 6. 

4.2 Feed Forward Networks 

4.2.1 The Neuron and the Activation Function 

The basic component in a feed forward network is the single "neuron" model depicted in 

figure 4.2 (a), where x j, .... ,xn are the inputs to the neuron, W j, .... ,wn are the multiplicative 

weights applied to the inputs, 1 is a biasing input, g : R ｾ＠ R, and S is the output of the 

neuron. Thus 

or 

n 

S = g(LW;X; +1) 
;=1 

S = g(L) 

(4-1) 

(4-2) 

The "neuron" of figure 4.2 (a) is often depicted as shown in figure 4.2 (b) where the input 

weights, bias, summation, and function g are implicit. The activation function may be: 
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(a) 

(b) 

simple linear function, g = C(L), where C is a constant, 

hr h ld fu · S - 1 if L > T 
a t es 0 ncbon, S - 0 h . where T is a constant threshold value = ot erwlse ' , 

50 

or a function that more accurately simulates the nonlinear transfer characteristic of the 

biological neuron and permits more general network functions. 

(a) 

X1 

... - ---
(b) X2 

'Ai 

ｾＭＭ - .j Ｚｾ＠ -----

_ s 

Xn 

Figure 4.2: (a) Single neuron model, (b) Simplifted schematic of single neuron 

4.2.1.1 The Squashing Function 

If the geL) function compresses the range of L, so that S never exceeds some low limit 

regardless of the value of L, g is called a squashing function. The squashing function is 

often chosen to be the logistic function or "sigmoid" (meaning S-shaped) as shown in 

figure 4.3 and expressed mathematically as 
1 

g(x) = 1 -x 
+e 

thus (4-3) 

Another commonly used activation function is the hyperbolic tangent. It is similar in shape 

to the logistic function but symmetrical about the origin, resulting in S having the value 0 

when L is zero (see figure 4.3 ), and is expressed as follows: 
1 +e+ r 

S=Tanh("L)= " (4-4) 
1 +e--



CHAPTER 4: INTRODUCTION TO ARTIFICIAL NEURAL .\ETHORKS 51 

The squashing activation function can be thought defining a nonlinear gain for the artificial 

neuron. This gain is calculated by finding the ratio of the change in S to a small change in 

ｾ Ｎ＠ Thus, gain is the slope of the curve at specific excitation level. It varies from low value 

at large negative excitations (the curve is nearly horizontal), to a high value at zero 

excitation, and it drops back as excitation becomes very large positive. Grossenberg [50] 

found that this nonlinear gain characteristic solves the noise-saturation dilemma that he 

posed; that is how can the same network handle both small and large signals. Small input 

signals require high gain through the network if they are to produce usable output; 

however, a large number of cascaded high-gain stages can saturate the output with the 

amplified noise (random variation) that is present in any realizable network Also large 

input signals will saturate high-gain stages, again eliminating any usable output. The 

central high gain region of the logistic function solves the problem of processing small 

signals, while its regions of decreasing gain at positive and negative extremes are 

appropriate for large excitations. In this way, a neuron performs with appropriate gain 

over a wide range of input levels. 

1 I 

" f 

-

. -- I 
Ｍ ＱｌＭＭＭＭＭＭＭｾＭＭＭＭｾＭＭＭＭＭＭＭＭＭＭＭＭＭＭｾ＠

- 5 0 

Tanh Function 
Sigmoid Function 

5 

Figure -1.3: The neuron activation function using (aJ the tanh function, (b) the sigmoid/llnction 
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4.2.2 Multi-Layer Feed Forward Network (MFN) 

A feed forward network is constructed by interconnecting a number of neurons (such as 

shown in figure 4. 1) so as to form a network in which all connections are made in the 

forward direction (from input to output without feed back loops). Neural networks of this 

form are usually composed of an input layer, a number of hidden layers, and an output 

layer. The input layer consists of neurons that accept external inputs to the network. 

Inputs and outputs of the hidden layers are internal to the network, and hence the term 

"hidden". Outputs of the neurons in the output layer are the external outputs of the 

network. Once the structure of the feed forward network has been decided, i.e., the 

number of hidden layers and the number of the nodes in each hidden layer have been set, a 

mapping is learned by varying the connection weights wi} and the biases, ｾ＠ so as to obtain 

the desired input-output response for the network. 

4.3 Training Algorithm 

Finding suitable parameters for ANN s by an experiment has been an impediment to the 

development of ANN s, especially when some of the algorithms consume large amount of 

computer time. A network is trained so that application of a set of inputs produces the 

desired (or at least consistent) set of outputs. Each such input (or output) set is referred as 

a vector. Training is accomplished by sequentially applying input vectors, while adjusting 

network weights according to a predetermined procedure. During training, the network 

weights gradually converge to values such that each input vector produces the desired 

output vector. 

Training an ANN can be either supervised or unsupervised. In unsupervised training there 

is no feedback from the environment to determine what that output should be. The 

network must discover for itself the patterns, features, regularities, correlations, or 

categories in the input data and code them in the output. The neurons and connections 

must thus display some degree of self-organization. Kohonen's feature-map forming nets 
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[51], the classical K-means [52] and leader clustering algorithms [53] are trained without 

any supervision. On the other hand, supervised training is to make the network output 

equal to the desired target function for any input. The standard approach is to 

( 1 ) Define an error function measuring the difference between the target and actual 

output function, 

(2) Determine how changes in the network weights (parameters) affect the error. 

(3) Adjust the weights in a way to that reduces the error. 

4.3.1 Back-Propagation Learning Algorithms 

The Back propagation (BP) gives a prescription for changing the weights in any feed-

forward network to learn a training set. The basis of the algorithm is the gradient descent. 

It can be considered as an unconstrained optimization problem of a suitably constructed 

error function (cost function). Typically, the error function is the sum of squared 

differences between the desired target y(xk) and the actual network outputs S(xk) are 

summed over all training pattern k, 
E(w) = I(y(xk )-S(Xk »2 (4-5) 

k 

The core of the algorithm is a repeated loop in which 

(1) The derivative chain rule is applied to determine how weight changes affect the error 

(2) The weights are adjusted by small increments in the direction that reduce the error. 

In "batch mode", every training pattern is considered before each weight change, and the 

algorithm approximate gradient descent when the step size is small enough. In "on-line 

mode", a random subset of patterns (usually just one) are considered before each weight 

change. When the step size is small enough, this approximates gradient descent since the 

accumulated weight changes tend to average to the true (negative) gradient. During 

training, an equation is used to minimize the sum of the network's squared errors. The 
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minimization process has an intuitive geometric meaning. All possible sets of weights can 

be plotted against the errors. The result is an error surface shaped like a bowl, whose 

bottom marks the set of weights with the smallest error. An idealized two-dimensional 

error surface is shown in Figure (4.4). However, real error surfaces typically have ravine-

like features and dent-like local minima. Finding the bottom is the goal during training 

[54]. 

Sum-squared 
error 

eight x 
• Best 

Changes to 
weights 

I 

J 
- ｾ＠ ../1 

I 

-. Current weights 

Figure -1.4: An idealized two dimensional error surface 

There are two requirements for the BP algorithm: 

• 

• 

The connections of the ANN must be in the forward direction, i.e., from a neuron 

closer to the input layer to a neuron in another layer closer to the output layer. 

The nonlinear function of each neuron must be continuous and differentiable. The tanh 

function as shown in figure 4.3 (a) is used here. 
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The back propagation can be summarized as follows: 

step 1. 

step 2. 

step 3. 

step 4. 

Initialize weights and thresholds 

Set all weights and thresholds to small random numbers 

Present inputs and desired outputs 

Present inputs xo>x}> .... 'xn_j and specify the desired outputs Yo>Yj,····,Ym-j· 

The net input to the jth neuron of layer I , 1 ｾ＠ 1< L, at time k is given 

by 

(4-6) 

In the above equation, it is assumed that sf 0 = 1 for all I thus wi oj is the 

bias for the jth network neuron in layer 1+ 1. The output of a network 

neuron will be 
I I 

sj(k)=g(xj(k», 1<I<L (4-7) 

F or units in the output layer, the net input is given by 
N L-1 

ｸｾ＠ (k) = L wt-l (k )SjL-I (k) (4-8) 
j=O 

Calculate actual outputs 

Use Equations 4-7 to calculate actual outputs SO>Sj' .... ,Sm_j 

Adapt weights 

Use recursive algorithm starting from output neurons and working back to 

the hidden neurons. Weights are adjusted according to: 

ｷｾＨｫ＠ + 1) = ｷｾＨｫＩ＠ + 7]d;k' (4-9) 

where the scalar 17 > 0 determines the length of the step to be taken in 
N 

• • I 1+1 1 + 1 
the dlrectlon of the vector dik - L ｾｷ＠ if (k ). The BP adopts the 

j=O 

steepest descent (gradient) method and defines the directions as 

､ｪｾ＠ = - ｖｅＨｗｾＫＱ＠ (k» (4-10) 

and the weight update equation can be rewritten as 

, .. f,(k + 1) = wf,(k)- 7]e:+ I (k)S: (k) (4-11) 
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or using ｌｬｗｾ＠ (k + 1) = ｛ｷｾＨｫ＠ + 1) ＭｷｾＨｫＩ｝＠

then ｌｬｷｾＨｫ＠ + 1) = ＭＱＷＮ･Ｚｾｬ＠ (k). S/ (k) 

(4-12) 

(4-13) 

56 

then by smoothing the weight changes by over-relaxation [6], i.e. by adding 

the momentum term 

where 0< a<1 (typically a = 0.9 ) 

If neuron j is a hidden neuron then the error is 
N'+1 

･ｾ＠ = ｧＧＨｸｾＨｫﾻ＠ ｌ･ｾＫｬＨｫＩｷｾｰＨｫＩＬ＠ 1 ｾ＠ I<L (4-15) 
p=1 

If neuron j is an output neuron then the error 

ef = (SJL(k)- ｙｪＨｫﾻｧＧＨｸＮｾＨｫﾻ＠ (4-16) 

The above equation represents the standard BP of error, g' (.) is the 

derivative of the activation function of the network neuron. To employ 

the BP algorithm for updating connection weighs, the activation 

function g'(.) of the network nodes must be differentiable. In the 

present work, the following tanh function is adopted for the activation 

function of any hidden layer node i 

Tanh(x) = 1 +e+
x 

1 +e-x 
(4-17) 

Appendix A gives detailed derivations of equation (4-12) and (4-13). 

Repeat by going back to step 2 
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This procedure is repeated until a convergence criterion is met or a specified number of 

iterations are reached. The convergence criterion can be either that the error is less than 

specified value or that the weights have stabilized. 

The weight updates described above are used for on-line learning where a learning 

example is presented at the input and then all the weights are updated before the next 

learning example is presented. This description is based on the Generalized Delta Rule. 

The error in the output layer is computed as the difference between the desired output (y) 

and the actual output (S). This error, is transformed by the derivative of the transfer 

function, is "back-propagated" to prior layers where it is accumulated. This back-

propagated and transformed error becomes the error term for that prior layer. 

Alternatively in the batch learning (using the cumulative delta rule) the weight changes 

are accumulated over some number of the learning examples before the weights are 

actually changed. The number of training presentations between weight updates is length 

of an epoch. One of the problems with the cumulative delta rule is the linkage between the 

learning rate and the epoch size. Adjusting the epoch requires adjusting the learning rate. 

One way to overcome this is by using the normalized cumulative delta rule; dividing the 

learning rate by the square root of the epoch size. 

In spite of algorithm apparent simplicity, the algorithm has proven remarkably effective, 

and there are many examples of network trained to implement relatively complex 

functions. This is not to say that difficulties never occur. BP training is often very slow to 

converge in training a MFN and may converge to sub-optimal solutions. The convergence 

proof of the BP is based on calculus limited theory and therefore requires infinitesimal 

weight adjustments. BP is based on the method of steepest descent to update weights. At 

each iteration of the steepest descent procedure, the weight values are modified in the 
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direction in which the error function decreases most rapidly. This direction is given by the 

derivative of the error surface at the current point in weight space. The magnitude of 

adjustment in a weight is proportional to the partial derivative of the error function with 

respect to that weight. The error surface may posses certain nonlinear properties which 

can cause convergence difficulties if the steepest descent algorithm is used. From this 

viewpoint, problems related to the method can be categorized into two groups. Firstly, 

problems associated with the various initialization parameters such as architecture, number 

of layers, number of nodes, learning rate selection and weight initializations scheme, etc. 

The second group of problems is related to the final results; such as local minima solution, 

overfitting and network paralysis that can result in outright failure of the network. 

Practical techniques for solving the first group of problems are discussed in the following 

section. Some remarks are very basic and may be viewed as a checklist of standard 

procedures. Others are more specific. Many of the remarks apply to any learning system, 

but unless otherwise stated, the focus is on supervised learning in MFN. To address the 

second group of problems, a method based on the global error node evaluation (GENE) 

is developed for MFN to improve learning ability of BP in a subsequent section in this 

chapter. 

4.4 Problems with the BP and their Enhancement 

4.4.1 Data Preparation and Preprocessing 

Neural networks are often trained from examples of a desired input - output relationship. 

It is important that these examples adequately describe the function. For this, the data is 

required to be distributed to cover the information about the relative importance of 

different regions of the function, it should generally match the distribution of function 

behavior that will occur in normal operation. The next step usually required is re-scaling of 
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the data such that the variables with different ranges will have an equal footing. This can 

be by centering and normalization of the variables. A commonly used normalization 

x' ］ＨｘＭｾＩＯＨｪ＠ (4-18) 

where ｾ＠ is the mean value of x and (j is the standard deviation [71]. Normalization is 

based on minimum and maximum values. Such preprocessing is an essential factor to 

overcome the poor convergence rates of MFN s. 

4.4.2 Architecture Selection 

The numbers of input and output layer nodes are usually problem dependent. The problem 

lies in the selection of the hidden layer node number, which is directly related to the 

number of weights to be adjusted during training. The learning speed and generalization 

characteristics of ANN s are dependent on their architectures. The goal is to find a network 

powerful enough to solve the problem, yet simple enough to train easily and generalize 

well. Thus, the viability of a specific architecture can only be evaluated after training. Two 

approaches are possible. The first approach is to train many different architectures on the 

same problem and to use the one with the best post-training characteristics. This approach 

significantly increases training time since many ANN s must be trained. Furthermore, an 

optimal architecture is not necessarily obtained with this technique since it may not be one 

of the initial selections. The second approach is that the optimization of the network 

architecture becomes part of the training objective. This can be either by Pruning or 

Constructive techniques. The pruning approach is to train a network that is larger than 

necessary and then remove unnecessary parts. The large initial size allows reasonably 

quick learning with less sensitivity to parameters, while the reduced complexity of the 

trimmed system favors improved generalization. In several studies, pruning techniques 

have produced small networks that generalize well where it was very difficult to obtain a 
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solution by training a small network (obtained by pruning) from scratch with random 

weights [55]. 

Many pruning techniques have been suggested; a survey can be found in Reed (1993) 

[56]. Many of the algorithms fall into two board groups. One group estimates the 

sensitivity of the error to removal of elements and removes these with the least effect. 

Another group adds terms to the error function that penalize unnecessary complex 

solutions. In general, sensitivity methods modify a trained network; the network is trained, 

sensitivities are estimated, and then elements are removed. Penalty methods modify the 

cost function so the optimization drives unnecessary weights to zero and, in effect, 

removes them during training. Even if the weights are not actually removed, the network 

acts like a smaller system. An advantage is that training and pruning are done in parallel so 

the network can adapt to minimize errors introduced by pruning. 

Although pruning and penalty term methods often may be faster than searching for and 

training a minimum-size networks, they do not necessarily reduce training times; larger 

networks may take longer to train because of sheer size, and pruning takes some time 

itself. The goal, however, is improved generalization rather than faster training speed. 

The opposite approach to prurung is to build the network incrementally by adding 

elements until a suitable configuration is found. Starting with a small network, train until 

the error stops decreasing and then add a new node (or nodes) and resume training, 

repeating until an acceptable error is achieved. In some cases, constructive methods can be 

faster than pruning methods, since significant learning may occur while the network is still 

small. The approaches are not incompatible and often used together. Since constructive 

method, when used alone, sometimes create larger networks than necessary, a follow-up 

pruning phase can be useful to reduce the size. 



CHAPTER 4: INTRODUCTION TO ARTIFICIAL }·/EL1UL .\ETIVORKS 61 

It should be noted that pruning and constructive techniques are a means of adjusting 

network size rather than a way of deciding what size is appropriate. Other criteria are 

often useful to decide when to stop adding or removing elements. Bounds on the number 

of hidden neurons were studied by Huang [57] and Sartori [58]. It was proved that k-l (k 

is the number of inputs) is the least upper bound on the number of hidden neurons needed 

to realize an arbitrary real-valued function defined on a finite and linearly separable set. 

• 
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Figure 4.5: (a) A goodfit to noisy data indicated as crosses. (b) Overfitling of the same data: the 

fit is perfect on the training set, but could be poor on a test set represented by the circle 

It is generally possible to get increasingly better performance on the training set by 

increasing the complexity of the model, i.e., increasing the number of hidden neurons and 

thus the number of weights, but such a procedure does not necessarily lead to a better 

ability to generalize. Too many free parameters could results in overfitting. As illustrated 

in figure 4.5 a CUIVe fitted with too many parameters follow all the small details but is very 

poor for interpolation and extrapolation. The same thing happens to a multi-layered 

network: too many weights give poor generalization [59]. 
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4.4.3 Weight Initialization 

The values of the initial weights are very important. If they are too large the squashing 

activation function will saturate from the beginning, luring the network to ｐ｡ｲ｡ｾｬＧｳｩｳＮ＠

Paralysis occurs when nodes are driven into saturation. A reasonable strategy for weight 

initialization is to set weights to "small" random values. The randomness is intended to 

break the symmetry, while "small" weights are chosen to avoid immediate saturation [6]. 

The weight are chosen within a range such that the magnitude of the typical inputs to 

neuron i is less than, but not too much less than unity. This can be achieved by taking the 

weights wi) to be of the order of 1/ .jk; where kj is the number of i's which feed forward 

to j (the fan-in ofneuronj) [59]. 

4.4.4 Shortening Learning Times 

There are at least two reasons for slow convergence. One is because of the variable 

magnitude of the components of the gradient vector. The magnitude of weight update is 

proportional to the derivative of the error surface with respect to that weight. If the error 

surface is fairly flat along the weight dimension, the derivative of the weight is small in 

magnitude. Thus the weight is adjusted by a small amount and many steps are required to 

achieve a significant reduction in errors. Alternatively, if the error surface is highly curved 

along the weight dimension, the derivative of the weight is large in magnitude. Thus, the 

value of weight is adjusted by a large amount and the value may overshoot the minimum 

of the error surface. The other cause for slow convergence is that the direction of the 

negative gradient vector may not point directly towards the global minimum of the error 

surface [60]. 

Adaptive learning rates 

In equation (4-1 1) the symbol II is the learning rate and it is usually a real number between 

O. 1 and 1. To increase the rate of convergence and stability of the learning process, a 
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momentum term [6] is usually added to the right hand side of equation (4-11). This tenn is 

given by the product of the increment of weight change I1roij of the preceding pattern 

presentation and a constant a as in equation (4-14). 

4.5 Analysis for BP Algorithm and GENE Approach 

4.5.1 Introduction 

Most multi-layered feed forward networks (MFN) that adopt the sigmoidal or hyperbolic 

tangent function as the activation function are trained by the standard BP learning 

algorithm or a variant of BP [59], [6], [61]. The required function approximation is 

achieved through the learning process where the aim is to minimize the network error E of 

the network by modifying the weights. Such a goal is normally based on the knowledge of 

local error at each hidden neuron. One of the reasons for the increasing number of local 

minima is that the hidden layer is trained to the local error associated with the node and 

not the network error [62], [63], [64]. However, researchers have tried to understand and 

improve two characteristics of the method: (1) generalization, the ability of a network to 

predict the output (Y) accurately outside the original training set; (2) learning speed or 

convergence rate, which is vital for systems learning from real-time experience (rather 

than fixed training set). The function approximation could be achieved if sufficient data is 

available for training. But practically, it needs the network to be trained with part of the 

available data, and could generalize the solution. Also when the network is trained with 

further new data, it should not forget the previously learnt data but learn the new one as 

well. If this could be achieved, then the function learned can be considered as an 

approximation and not just an interpolation of the data. For this, a method based on 

Global Error Node Evaluation (GENE) approach for Multi-layered Feed forward 

Network (MFN) is developed. It retains the function approximation requirements for the 
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back propagation (BP) learning algorithm for a nonlinear dynamic behavior. This approach 

appears to be effective for the input - output modelling of complex process systems and 

therefore on-line adaptation is possible (when the characteristic of the system is changing 

or when more training data are available for another operating range). 

The development of GENE approach is by addressing two problems in BP, namely, the 

saturation of the network nodes and the ultimate paralysis of the entire :MFN during 

learning; and the problems of convergence to local minima. In this approach the 

architecture is modified by adopting linear activation nodes at the output layer with fixed 

weights, while the hidden layers (two layers) are having nonlinear activation nodes. The 

GENE approach is validated using the relationship of the back propagation errors between 

each layer (output & hidden layers), and the subsequent weights update relation during the 

whole learning process. The methodology when used could predict the brine levels in 

both the first and last stages for MSF plant more accurately compared to the standard BP. 

The development of a dynamic model with an example for set point generation that can 

reproduce the process behavior using the standard back propagation as well as using the 

GENE approach for the MSF desalination plant will be described in chapters 5 and 6 

respectively. The developed algorithm is used for the evaluation of the critical loops due 

dynamic disturbances for MSF desalination plant and is discussed in chapter 6. Simulation 

examples from random generated values are presented in this section. 

4.5.2 Principles of Error Transfonnation in BP 

Consider that back propagation of the error is an error scaling process and the 

transformation of this scaled error by multiplying it by the connecting weight during back 

propagation to the hidden nodes. To be more specific, the error value back propagated 

from the output layer is the error scaled by the derivative of the neuron transfer function 

in the output layer. These scaled errors from the outer layer are then ｦｲ｡ｮｾｦｯｲｭＨＧ､＠
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(multiplied) by the respective weight connection to the hidden neuron and are then added 

together, producing the summation term for that hidden neuron. The summation term is 

then scaled (multiplied) by the derivative of the given neuron transfer function at its 

current operating point to form the local error for that neuron. 

This is the same as if the back-propagated error E is calculated by a transformation of a 

set of output scaled error En through the inter-layer's connection weights into a set Em; 

where n, m represent the total number of neurons in each layer respectively. The 

transformation scheme is based on the values of the connection weights between the 

output and hidden layers. As the connection weights are updated every learning cycle, the 

local error evaluation for each hidden neuron will have a different transformation scheme 

for each iteration and therefore subsequent weights update will have a different 

minimization criteria (minimize the local node error). 

4.5.3 Node Saturation 

Node saturation is not required during weight updates for all nodes. All nodes are required 

to contribute to the function approximation. While both tanh and sigmoid functions are 

monotonic, from the conditioning point of view, the tanh function is the preferred choice 

as it lies between [-1,1], while the sigmoid is [0,1]. However, to cover the linear part of 

the tanh function, data scaling is usually performed to [-0.8,0.8]. The tanh derivatives are 

closer to unity (in a bounded region) and this decreases the distortion of the network error 

back propagated between the layers throughout the summation term [65]. 

To learn the function approximation, the GENE approach is developed by using two 

hidden layers with nonlinear activation function (tanh). A fixed weight from the hidden 

layers to the output layer is used. The output layer adopts linear activation nodes and is 

acting as a fan-in for the error to the hidden layers during error back propagation and this 
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satisfies the transformation requirements for the network error when fed back to all hidden 

nodes. 
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Figure 4.6: Architecture o/GENE approach 

4.5.4 Description of the GENE Approach 

To overcome the local error calculation of network hidden layer nodes as well as the 

ultimate node saturation or paralysis of entire MFN's during training, the GENE approach 

is proposed and based on the following:-

( a) A variant to the back propagation learning algorithm to perform the same 

transformation on the output error whenever it is fed back to the hidden nodes. 

This is by 

(i) removing the nonlinear activation functions in the output nodes of 

MFN, and replacing them with the linear function 1(0) = OJ, 

(ii) connection weights to the output layer are kept to the initialized small 

random value, i.e., no learning is adopted for them. The random value is 

selected within a range [-x, x], where x is less that 1. The selected range is 

denoted by RIW. 
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(b) Two hidden layers Hml and Hm2 are adopted such that: 

(i) both hidden layers are connected to the output layer, 

(ii) the input layer is connected to H m 1 only and H m 1 is connected to 

Hm2, 

(iii) the tanh function is adopted for the hidden layers. 

Figure 4.6 shows the general architecture for GENE approach. This approach will increase 

the probability of convergence to the global minimum, where the objective functions being 

minimized are constraints such that all weights / nodes are trained to reduce the network 

error. It has been shown in [66] that MFN s, which adopt linear activation functions in the 

output nodes, are universal approximations. With the linear activation function adopted at 

the output layer, fan-out the information from the network is another benefit. In addition, 

with no learning for the weights connected to the output layer, the learning problem is 

kept for the hidden layers only. Moreover, when using linear nodes for the input and 

output layers, the input-output information flow will not be distorting the training data, 

and hence the relationships between the input-output data can be easily retained. 

4.5.5 Theoretical Basis of GENE Approach 

In equation (4-10), dfk contains the gradient w.r.t. the local node error. The network 

errors for the hidden and output neurons are given in (4-12), (4-13) respectively. 

Therefore the weights between the input and hidden layers are updated based on the local 

hidden node error. Generally, the major difference of the updating rule for the output layer 

and the hidden layer is in the evaluation of the node error. In the output layer, the error is 

a function of the desired and the actual output and the derivative of the neuron activation 

function. The objective function for the output layer is to minimize the network error. For 

the hidden layer the node errors are calculated on the basis of the transformed upper layer 

node errors. The weights connected to the output layer are updated every learning cycle. 

Hence the transformation scheme for the network error to the hidden layer will also be , 
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changing, and the subsequent minimization criteria for the hidden layers. The local error of 

the hidden nodes cannot be considered as a network error due to that change for its local 

objective function being minimized. 

The GENE approach is developed to overcome the problem of node local error calculation 

for the hidden layers. A linear transfer function is used at the output layer with no learning 

performed at the output layer. The back propagation error is always transformed through 

the same initialized weight according to the RIW selected. Therefore the network error is 

back propagated to the hidden neurons such that the direction of the gradient does not 

change from the previous iteration. On the basis of the above assumptions, equation (4-

13) is no longer valid for the output layer, and the network error is transferred to the 

hidden layer with the same transformation effect for every BP iteration (constraints by 

constant initialized weight). The convergence solution is now based on the search 

direction for equation (4-10) to minimize the transformed network error with a fixed 

transformation process for every application of an input. 

The gradient search can be defined as dk == -V'E(w(k») 

With the linear activation function adopted for the output layer, the input and output 

layers are considered as fan-in and fan-out layers respectively. In this way, each hidden 

node is trained to optimize its local error such that the direction of the gradient for all of 

the nodes is always in the same direction as transformed from the network output error 

and towards the same origin. 

The method of GENE approach can be applied with the configuration described earlier 

and can be used for the training of the data available at the start, as well as for any 

additional data that could be available after training with the original ､｡ｴ｡ｾ＠ i.e., on-line 
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learning. This could be elaborated by considering a convex error surface, with a starting 

learning rate high enough to reduce the network error. The error is reduced with time and 

has a learning rate decay factor for smooth convergence to avoid abrupt changes when the 

error is close to a minimum. After a network is trained with the original data, the learning 

rate has been already reduced to a value such that the output error tolerance specified is 

reached. The reduced learning rate will be used for any additional training as required. 

Any further changes to the weights when the learning process starts again for additional 

data will be in the direction of reducing the network error and not reducing the local error, 

i.e., retaining the function approximation requirement. As both data sets are related to the 

same process, so the learning process will capture the function approximation of both data 

sets and not just interpolate each one at each training cycle. The learning rate in the 

second (additional) cycle is small, so that no abrupt changes to the weight will occur. 

4.5.6 Network Error Flow and Weight Convergence Analysis 

4.5.6.1 Standard Back Propagation (BP) 

From equations (4-12) and (4-13) and for the first iteration step (i.e., k=O), with initialized 

weights -0.05< ｷｾｰＨｏＩ＠ < 0.05, the relation ･ｾﾫ＠ eLI holds. The evaluation of ･ｾ＠ has 

eLj as one of the multiplication terms, and all terms lie in the interval [-1,1]. The result of 

these multiplications will always be less than the smallest term used with the initialized 

weights. When the MFN is trained with BP or a variant and the coefficients are properly 

chosen, then the network error could be reduced during the training. The RMS values of 

the error for the output and hidden layers for a single hidden layered network are usually 

as shown in figures 4.7 and 4.8. In this case, 1 ｏ･ｾ＠ ｾ＠ eLj over the entire range. This 

extends the error relations for all k iterations. It can be concluded that the e"or hyper-

surface for the output layer is starting from a higher region than the error hyper-surface 
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for the hidden layers at the start of the training and this relation remains for the entire 

learning process. 
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4.5.6.2 GENE Approach 

The analysis of the dynamic behavior of the error flow throughout the network weights 

starts by rewriting the back propagation error equations (4-12) and (4-13) as: 

･ｾ＠ ］ｧＧｾｓｕｍＨ･ｬＫＱＮｷｬＩ＠ ｬｾｉ＼ｌ＠ (4-15) 

ef = E.g'j (4-16) 

The error in equation (4-15) is composed of a multiplication of two terms, namely the 

derivative of the activation function and the summation of the upper layer error 

throughout the connection weights. By evaluating the summation for N= 1,2, .. 11 with 

random error and weight values, the evolution of the summation surface can be thought as 

the scaled error throughout the connected weights. The resulting surface will be a smooth 

like surface regardless of the weight and error values. This is due to the fact that each 

multiplication term in the summation will result in a smaller value. This is similar to 

compressing the error to a smoother surface throughout the weights. By using the same 

(RIW) initialized weights (only for the output layer) for every iteration for the BP 

algorithm, it will produce a surface that reflects the output error directly fed back to the 

network. 

4.5.6.3 Node Saturation 

As shown in figure 4.9, the tanh function with its derivative approaching unity is therefore 

preferred to the sigmoid which has less than 0.3 derivative value. The preference is based 

on the fact that the network error is back propagated to the hidden nodes. The derivative 

is directly reflecting the node input. U sing the tanh activation, the error evaluated by 

equation (4-13) will contain only the summation surface or a slightly scaled version, 

depending on the evaluation of the tanh derivative. Further comparisons between the tanh 

and the sigmoid activation are shown in figures 4.10 to 4. 17, by using random error 

generated values < 1 for the errors with the number of neurons (N) is varied up to 90. The 

following cases of weight values are considered: (w=0.01, 0.03, 0.05, 0.1, 0.3, 0.5). It 
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can be seen that with the tanh activation it is easier to reach the saturation region as the 

number of nodes is increased and a higher value of weight is used. However for weight 

values less than 0.05, the activation is in the linear region and far from the saturation 

region. As shown in figures 4. 14 to 4.17, the sigmoid activation will accelerate the node 

saturation problem. This confirms the use of the tanh function to avoid node saturation 

and the ultimate paralysis of the entire network. 
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Figure 4.9: Comparison between the TANH" y(x)" and Sigmoid" z(x)" functions derivatives 

4.6 Simulation Results 

With the number of neurons (N) varied from 1 to 90, the initialized weight value is 

analayzed by considering the following cases for weight values: 

w - .0 I ,x ::. .03 , y . = .05 , k = 1 , 1 = .3 , m =.5 , N = 1, 2 .. 90 (4-17) 

Then the summation term f{.), the tanh node activation g(.) and the sigmoid node 

activation s(.) can be written for each case as follows: 
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Now if p is the derivative of the sigmoid for k, 1, m weight values, 

j is the derivative of the sigmoid for w, x, y weight values, 

h is the derivative of the tanh for k, 1, m weight values, 

i is the derivative of the tanh for w, x, y weight values, 

Then the derivative equations for (4-17) can be written as follows: 

d d i(w) 
d j(w) Ｌ］ｾｳＨｷＩ＠

p(k) '= ｾｳＨｫＩ＠ h(k) :=-g(k) , =-g(w) , 
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］ｾｧＨｭＩ＠ , 
iCy) Ｚ］ｾｧＨｹＩ＠ , 

j(y) = ｾｳＨｹＩ＠

p(m) 
d , hem) 

dy . 
" -sCm) dy 

dm dm 

(4-18) 

( 4-19) 
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and the neuron error can be written as the summation multiplied by the derivative as 

follows: 

er(k) =p(k)·f(k) , e(k) =h(k)·f(k) , e(w) =i(w)·f(w), er(w) =j(w) ·ftw) 

er(l) =p(l)·f{l) , e(l) =h(l) ·f(l) , e(x) =i(x) ·f(x) , er(x) =j(\:) ·t(x) ( 4-20) 

er(m) =p(m)·f(m), e(m) =h(m)·f(m) , e(y) = i(y) ·f(y) , ere)') = j(y) ·t(y) 

A)Tanh activation analysis: Using a random generated error values < 1: and for 

different cases of weight values: w=0.01, x=0.03, y=0.05, k=O.l, 1=0.3, m=0.5 and using 

the number of neurons up to 100 (N); the node activation is found to reach the saturation 

region as the number of nodes is increasing as well as with the higher values of weights, as 

shown in the figures below. However, for weight values < 0.05 the activation is in the 

linear region and far from the saturation region. 
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B) Si2moid activation analysis: Using a random generated error values less than 1; and 

for different cases of weight values: w=0.01, x=0.03, y=O.OS, k=O.l , 1=0.3, m=O.S and 

using the number of neurons up to 100 (N); it is found that the node activation is always 

greater than O. S and reaches the saturation region as the number of nodes are increasing as 

well as with the higher values of weights. 
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4.7 Conclusions 

BP net is capable of learning the underlying relationships. Once a BP model is available, 

then it can be used directly on line. The weak points of an ANN are the number of training 

examples required for generalization is not known and the long training time. The GENE 

approach for improving the learning capability of the BP algorithm is developed. Both the 

theoretical and empirical validations for the approach have been given. The hidden layer is 

only trained to reduce the network error and not the local node error. The resulting 

trained neural network is shown to intelligently generalize all the available test data and 

reduce the uncertainty associated with the probability for convergence to the global 

minimum. Simulation results indicate a superior convergence speed for the GENE 

approach and robustness for analog data. Robustness of the network arises when the 

network is trained with new data and a practical example is presented in chapter 6. The 

network will not forget the previously learned data in order to learn the new data. Other 

benefit is the increase in the type of the function approximation such that highly nonlinear 

fimctions could be predicted. This is demonstrated by predicting accurate brine levels for 

MSF plants in chapter 5. In the following chapter the capability of the standard back 
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propagation to learn the function approximation of a MSF Desalination plant is 

investigated as well as for supervisory set point control function generation. In chapter 6, 

detailed experiment for using the back propagation that utilized the GENE approach is 

described and show how that by providing additional data training the previously learnt 

function has not been lost with the capability to learn the new required function. 



Chapter 5 Application of Modelling & Control of ｾＱｓｆ＠

Plants by ANN - I 

5.1 Introduction 

As described in chapter 2, accurate model and control of MSF desalination industry is an 

important subject for solving the numerous problems that arise in operation and affect the 

plant stability. It is well known that imprecision, non-linearity, large size and complexity 

frequently characterize MSF desalination modelling solutions. They are based on empirical 

equations obtained from laboratory work and there is no obvious expression to calculate 

the complete model. For the purpose of effective control of the brine level inside the 

stages, it would be of great significance to obtain accurate model for it. Recently, ANN 

has been proposed to solve MSF modelling and identification problems [5], [67], [68]. 

Compared with other methods, the outstanding merits of an ANN are: 

1. The speed of calculation is high, once the network is properly trained. The 

computational power involved in calculating the output does not depend on the 

complexity of the process and/or the output precision requested, it depends only on 

the Neural Network specific architecture and it is, in general, low. Although most 

ANN applications are still simulated on digital computers rather than being 

implemented on hardware, there is still significant saving in computer time in 

comparison with numerical simulation and other methods. 
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2. There is no restriction on modelling, in contrast to many other methods. Numerical 

simulation can be used to generate training and testing examples, or can be obtained 

from the real plant during the commissioning stage of the plant. Thus the network 

model will behave exactly like the plant which the training data was extracted from. 

3. With the low computational power involved in computing the output, extensive 

simulation analysis can be a very useful tool for the operator and the engineers (e. g. : 

to implement a what-if-analysis). 

An ANN is therefore a potential candidate for an on line adaptive control and fault 

diagnosis. 

This chapter presents a method of applying ANN to reproduce the process behavior 

during load variations of MSF desalination plant which can be used for simulation, 

modelling and control purposes. The aim is to demonstrate the use of ANN based on 

input-output data as viable alternative to mathematical models. The inputs to the network 

model are the manipulated variables (set points to regulatory control) and the outputs are 

the controlled variables plus the vapor temperatures in each flash stage. 

The performance of the network model is studied by comparing the behavior of the 

network to an actual behavior of the plant, due to an increase or decrease for one of the 

manipulated variables. In contrast to the approach of Parenti, Bogi and Massarani where 

data is obtained from a detailed process simulator [67], in this study the data are obtained 

from a commercial MSF plant. The data obtained covers load increase and decrease 

between 600/0 and 1000/0 production load. These data are used for training the network as 

well as for studying the network performance for making prediction with particular 
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attention to the brine level in the first stage. In this study only one network is used to 

model the process behavior in contrast to the cross bar structure used by Parenti, Bogi and 

Massarani [67] where several networks are deployed such that each one is used to 

estimate one single output variable. Using one model is expected to capture all functional 

relations between all variables. 

5.2 Review of the Literature 

El-Hawary [5] has studied the possible applications of neural networks (based on the 

application of the same) to the power system. To the best of our knowledge, the first 

attempt for applying ANN to model MSF plants was explored by us [39], [40], [41]. An 

ANN with one hidden layer was trained using the BP to learn a set of input-output data 

during load variation. Ramasamy and others [68] also used ANN with one hidden layer for 

modelling the relationships between the input-output variables. For a (9-5-3) network, 

they have considered the controlled variables to be the brine levels of the first and last 

stages, and the product rate as an output for the model. They suggested the manipulated 

variables to be: 

• Brine recirculation flow rate Brec 

• Top brine temperature TB T 

• Sea Water inlet flow rate SWin-F 

• Sea water temperature SWt 

• Sea water circulation flow rate SWrec-F 

• Makeup sea water flow rate MAKEUP 

• Brine blow down flow rate. BBD 

• Steam input flow rate ST-F 
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For 18 stage MSF desalination plant, a fully connected MFN with one hidden layer and 

using the sigmoid transfer function for the neurons was considered. The data was obtained 

by conducting designed pseudo random binary sequence (PRB S) tests on a dynamic 

simulator model of MSF plant for about 2100 intervals. To reproduce the process 

behavior, they used the current value of all the manipulated variables and the controlled 

variables as neural network inputs to predict the outputs (controlled variables) at the next 

instant. The input-output data were divided into three different sets for training, cross 

validation and testing of the neural network model. Each data set contained 700 data 

patterns. Satisfactory network performances were obtained by training the network with 

BP. However, the result based on the use of PRBS tests to obtain the data from the 

simulator does not provide the necessary validation. It is necessary to test on practical 

plant data over the entire operating range, including the nonlinear regions, and carry out 

rigorous simulations. The work in this chapter is covering this drawback. 

Parenti, Bogi and Mas sarani , have used ANN with one hidden layer for modelling the 

MSF process based on an ANN steady state estimator, which has been trained on data 

collected from a process simulator. They suggested the following inputs [67]: 

• Evaporating brine inflow 

• Evaporating brine temperature 

• Evaporating brine salinity 

• Sea Water temperature 

The outputs from the network after training are the value of the following 8 variables for 

each steady state record data base: 

• 

• 

• 

Brine heater steam flow 

Makeup flow 

Blow down flow 
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• Evaporating brine out flow 

• Evaporating brine out temperature 

• Evaporating brine out salinity 

• Gained output ratio 

• Distillate production 

They have not considered the brine levels as one of the controlled output. It appears they 

have difficulty in training such a network, and suggested splitting the problem into 8 

networks each have 4 inputs and one output. They used the batch learning with an epoch 

size of 16 examples, with 5000 updating cycles for every net. 

5.3 Constraints of the Study 

The use of one ANN to predict a practical comprehensive range of operating conditions 

including the brine level has not yet been shown to be feasible and studies have been 

confined to restricted situations. The nature of restrictions imposed have a very strong 

influence on the success of an ANN in predicting the process behavior during load 

variations (load trajectories) or on the types of inputs or outputs required. Data was 

obtained from MSF plant at Al- Taweelah consists of 16 stages (13 recovery and 3 reject 

stages). The conditions of the study were as follows: 

1. Maximum distillate product load (100 %) corresponds to 1350 tlh and minimum 

distillate product load (60%) corresponds to 650 tlh. 

2. LP steam temperature is 182.5 degree C, and steam pressure of 0.75 bar for all data. 

3. Two network topologies are used. When using the BP learning algorithm, a single 

hidden layer is adopted, while two hidden layers are adopted when using the GENE 

approach. 
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Examples were generated from the plant during load increase and decrease between 600/0 

and 100% production load. This was done twice so that two different trajectories are 

obtained. 

5.4 ANN Considerations 

This application falls into the category of a nonlinear mapping between inputs and outputs. 

The ANN architecture adopted here is a rvIFN with one hidden layer using a Tanh 

activation function when using the BP learning algorithm, while two hidden layers are 

adopted when using the GENE approach. 

5.4.1 Choice of ANN Inputs 

The choice of inputs is an extremely important factor in the successful use of an ANN. 

The modelling problem here is to find suitable manipulated variables, which affects the 

controlled variables. For the plant model, having the goal to reproduce the process 

behavior from the data obtained, the inputs to the neural network model (NNM) are the 

process manipulated variables (set points to regulatory control) and the outputs are the 

corresponding controlled variables. Moreover, by having the vapor temperatures as 

additional output from the network model, it will provide information on all the flashing 

stages and verifies the modelling capability of ANN for reproducing the process behavior. 

The problem connected with the control of both brine recirculation loop and the top brine 

temperature loop is mainly due to the interaction between the two loops and the process 

directly. The control problem can be hardly solved with the tools of the classical and 

advanced linear control theory because of the mismatch between the real process and the 

model on which based upon. A major source of the mismatch is the nonlinear 

characteristic of the process. Load variation for the distillate production rate, requires 
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generation of pre-determined steps to the set points of the regulated variables for the two 

loops. The product quantity can be maintained with different level patterns in the stages. A 

bounded constraint is desirable to keep the brine level within the upper and lower level 

limits in each stage. Preventing the brine being flooded with the vapor to the condensate 

tray affecting the purity of the product is by the upper bound, while the lower one is for 

preventing the blow through of the brine at the inter stage to cause loss of the differential 

pressure between stages. Increasing the brine recirculation flow will increase the amount 

of brine to the 1 st stage, but tend to decrease the level in the last stage. In general an 

increase in the brine level in stages decreases the efficiency. A level control with the brine 

blow down flow as the manipulated variable for the last stage is usually employed. 

However no control can be done on the first stage and any other inter-stage levels. 

Difficulties in classical approach can be summarized as follows: 

(1) The evaporation process is an open-loop unstable system, because of the existing two-

phase flow mixture. 

(2) There is an explicit limitation on the magnitude of the control signal that can be used 

for control. 

(3) Plant parameter uncertainties and of nonlinear phenomena which cannot be modelled. 

Therefore effective control of the brine levels is to obtain accurate models for them. 

Attempts in the literature appear using steady state analytical models. An alternative is the 

empirical process model for the brine level to be used in adaptive control and fault 

diagnosis ofMSF. Thus the inputs to the NNM network model are selected as: 

• Brine recirculation flow rate Brec 

• Top brine temperature TBT 

• Sea Water inlet flow rate SWin-F 

• Sea water temperature SWt 

• Sea water circulation flow rate Swrec-F 
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• Makeup sea water flow rate MAKEUP 

• Brine blow down flow rate. BBD 

• Steam input flow rate ST-F 

The outputs of the model are 

• Brine Level in first stage BL-1 

• Brine Level in last stage BL-L 

• Distillate product flow rate PROD 

• Distillate Level in last stage DL-L 

• Brine to heater temperature BTHT 

• Seawater from reject section temperature. SWrej-t 

• Vapor temperature in all stages (16 no.'s) VT-1 ... VT-16 

As an alternative to the TDL for the past values, each input to the network model has two 

associated vectors v](k), v2(k) and are defined as follows: 
VI (k) = u(k) - u(k -1) 

3 

v2(k)= LVI(k-n) 
n=O 

Where u(k) is the input at instant k. Thus, VI represents the change in the current sample 

from the previous one, while v2 will represent the accumulated change for the current and 

the past 3 samples. Thus the model will have 8x3 inputs instead of 8x6 inputs. This 

reduces the number of inputs to the network, thus reducing the size of the input vector 

and hence the number of free parameters (weights and thresholds) in the network to be 

determined during training. This is important for any non-parametric technique since the 

number of training examples required grows exponentially with the dimension of the input 

vector. A rule of thumb which is sometimes cited is that the number of training examples 

should be of the order often times the number of weights (see Section 4.2). 
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5.4.2 Data Collection, Preparation and Preprocessing (Scaling) 

As the model required to handle analog data, the acquisition hardware and software used 

have the capacity of 1282 analog input values that can be measured with a scanning cycle 

of 2 seconds and the integration conversion method is used to read the coded digitized 

values (12 bit + sign). MSF plant can be characterized as a relatively slow process. 

Tracking one particle of brine from the recycle start point at the last stage, it would 

require few minutes to complete the cycle reaching the last stage again. Considering 

tracking one particle of brine inside the brine recycle loop, the 2 seconds is a very low 

scanning cycle, so a printout of the data has been implemented every 30 seconds. Data 

was obtained during 60% to 100% load variation of a MSF plant (13 recovery stages and 

3 reject stages) for Al- Taweelah-A desalination plant which is equipped with a process 

computer system. 

As the network nodes transfer function used in this study is the hyperbolic tangent, 

it is required to map the data into the working range of such transfer function, which lies 

between -1. 0 to + 1. O. For the software used (Neural Ware Professional II plus), one can 

specify the maximum and minimum ranges within which the real input-output data lies. A 

linear mapping is then performed on the real data to the network input-output. By this way 

the distribution of the data could be easily specified to cover the nonnal distribution of 

each measurement. For example, the distillate flow that could be produced from the plant 

under study is in the range of (650 - 1350 t/h), and these were used as the minimum and 

maximum values respectively. For the brine recirculation flow the maximum value is 

specified by the pump capacity used for recirculation. The minimum value is the minimum 

allowable velocity in the condenser tubes to avoid excessive fouling and erosion. For the 

top brine temperature, the minimum and maximum values used are the corresponding 
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values to the minimum and maximum values of the distillate flow. It was found that it is 

very important to set the minimum and maximum values correctly, otherwise the network 

may never learn and the error function may be of high values and cannot be reduced. 

particularly if the minimum and maximum values for the different measurements are 

inconsistent. On the other hand if the minimum and maximum range is enlarged, the 

resultant error after training will relatively larger (e.g.: 1% error of the range 0-1500 tlh is 

15 tIh, while for a range 650-1350 tIh is 7 t/h). Other advantage from specifying the 

maximum/minimum values is that it can be considered as an embedded constraint that can 

be utilized for fault diagnostics. The maximum and minimum values used during the 

training in this study are shown in Table 5-1. 

5.4.3 Training Consideration 

The connection weights and thresholds of the NNM were adjusted by training using the 

GENE approach to examine its performance for prediction of the brine level. This is 

compared to the performance when the ANN is trained using the BP based on the 

normalized cumulative delta rule. Each weight and threshold were assigned an initial 

random value between -0.05 and +0.05. The learning rate, momentum and temperature 

values for the output and hidden layers are selected as shown in Table 5.2. The epoch size 

chosen is 16. 

5.5 Empirical Process Model Development 

5.5.1 BP Approach 

In order to study the ANN approach using the BP algorithm for training for MSF plant 

modelling during load change, the network has to be trained to predict the correct values 

of the controlled variables for every record of data obtained. For a single hidden layer with 
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20 hidden nodes and by using the back propagation learning algorithm it was found that 

adequate learning for the required function approximation has been achieved. The data 

obtained contains 1160 records. For the training phase, the data is divided into two parts; 

each one covers a complete load increase and decrease. The training is conducted using 

the first part for 500 iterations, followed by additional training using the second part and 

then finally the training is conducted using the whole data. Figure 5.2 shows a good 

approximation has been achieved for the various temperatures and flow variables. 

However, the results in figure 5.1 for the brine level of first stage shows non conformance 

with the actual data. The test result does not follow the oscillatory characteristic of the 

actual brine level in the first stage, but a smooth curve has been produced. As will be 

shown later, using GENE approach for learning does not have such drawbacks in 

estimating the oscillatory characteristic for the brine levels over the entire range of data 

obtained. It is worth to note that the low effort and the computational power required for 

obtaining the result as compared to any other mathematical formulation for the MSF 

modelling problem. 

Brine Level - Stage I 
800 ｾＭＭＭＭＭＭＭＭｲＭＭＭＭＭＭＭＭｲＭ｟＠ 80 

60 /C' 
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0 ｾＶＰＰ＠

40 ＢＬｾａＧ＠

400 L-____ ----L _____ ｾ｟｟｟｟ｬ＠
20 

o 500 1000 0 500 1000 

Time Time 

Figure 5.1: Test results for modelling AfSF plant brine levels (ls! and last stage) using BP 

learning algorithm and 20 hidden neurons. 

The dotted lines represent the network output and the lines represent results/rom the 

actual plant. 
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Figure 5.2: Test results/or modelling MSF plant with 16 stages using BP learning algorithm and 

20 hidden neurons. 

The dotted lines represent the network output and the lines represent result from the 

actual plant. 
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5.5.1.1 Empirical Model Validation 

100 data records represent load increase from 700 tlh to 960 tIh is used for model 

validation. All the input variables obtained are varying with exception to the constant sea 

water temperature. The constraints of the model are as follows: 

• The TBT and STF values are coupled together to follow the logical sequence of the 

brine heater. 

• The SWrec and SWFin values are coupled together and are used as obtained from the 

plant such that the inlet seawater temperature remains constant. 

Factors considered for model validations are: 

• The selection of hidden nodes numbers for such mapping. 

• The consistence between the network model and the actual process behavior to keep 

one or more of the inputs to a constant value for a selected region of operation. 

Simulation tests used are as follow: 

1- Tl test: selected input variables are kept to a minimum constant value for all 100 

records data set and apply these records to NNM. The selected variables are as 

follows: 

• TBT and STF for constant heat input to the desalination unit. 

• Makeup flow and brine recycle flow . The seawater recirculation flow , brine blow 

down and seawater inlet flow are the only varying inputs. 

It is envisaged no variation for the product flow under this test. 
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2- T2 test: same as T 1 but using the maximum values found in the data set. 

The minimum and maximum values found in the data set are shown in table 5.3. 

When an input variable is constant, the associated vectors vI, v2 will have a zero value for 

all k's. Simulation results are shown in figures 5.3, 5.4, 5.5, and 5.6 for NNM when using 

4, 12, 20 and 28 hidden nodes respectively. Each figure includes 6 results for each output. 

The response for each output is described in the following: 

• Brine level cell 1 : 

1- M1v1N with 4 hidden nodes: For the first 70 records, the level response follows a 

constant value for T2, while for TIthe level follows an oscillatory response as 

shown in figure 5.3 (a). The level response for T2 is lower than that for TI . 

2- M1v1N with 12 hidden nodes: the level follows the same oscillatory response of the 

original data set but at a constant mean high value for T 1 as shown in figure 

5.4(a). Similarly, the response for T2 is the same but with a constant mean low 

value. 

3- M1v1N with 20 hidden nodes: the level follow the same oscillatory response of the 

original data set but at a constant mean high value for T 1 as shown in figure 

5.5(a). Similarly, the response for T2 is the same but with a constant mean low 

value. 

4- The response for MMN with 28 hidden nodes is in a reverse manner when 

compared to MMN with 4 hidden nodes. The flow response for T 1 is lower than 

that for T2. While visa versa for MMN with 4 hidden nodes. 



CHAPTER 5: APPLICATION OF MODELliNG AND COATROL OF.\/SF ｐｌｾｙｔ ｓ＠ ｂｲＮｾ ｙ｜Ｇ＠ -1 93 

• Brine level cell 16 : 

5- MMN with 4 hidden nodes: The level response follows a constant value for II , 

while for T2 the level follows an oscillatory response as shown in figure 5.3 (b). 

6- MMN with 12 hidden nodes: the level follows a constant value for II and I2 as 

shown in figures 5. 4(b ). 

7 - MMN with 20 hidden nodes: the level follows a constant value for II and I2 as 

shown in figures 5.5 (b). 

8- The response for MMN with 28 hidden nodes is similar to that for MMN with 4 

hidden nodes, but in the reverse manner. The oscillatory response for the level for 

T2 is shown in figure 5.6 (b). 

• Product flow : 

9- MMN with 4 hidden nodes: The flow response follows a constant value for T2, while 

for TIthe flow follows an increasing response as shown in figure 5.3 (c). 

10- MMN with 12 hidden nodes: the flow follows a constant value for II and I2 as 

shown in figures 5A(c). 

11- MMN with 20 hidden nodes: the flow follows a constant value for Tl and T2 as 

shown in figures 5.5(c). 

12- The response for MMN with 28 hidden nodes is similar to that for MMN with 4 

hidden nodes, but in the reverse manner. Ihe increasing response for the flow for II is 

shown in figure 5.6 (c). 
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• Sea water ｲ･ｪ･ｾＧ＠ temPl'fftture: the variation for this variable using T I and T2 data set 

as shown in all figures is due to the variation of the sea water recirculation flow and 

the sea water inlet flow . But again the response for M:MN using 4 hidden nodes is 

reverse to the response when 28 hidden nodes were used. 

• Brine temperature to brine heater: same response as the product flow . 

• Vapor temperature cellI: same response as the product flow . 

From the above M1v1N with 20 or 12 hidden nodes, it shows that better performance is 

achieved compared with that of 4 or 28 nodes in the hidden layer in simulating the process 

behavior. This model can be utilized in case where the brine level of the first stage is not 

an important factor. Figure 5.7 shows the response of the network could not follow the 

oscillatory response for the brine level in the first stage where different number of hidden 

nodes is used. However, in the following section, the GENE approach is explored for 

prediction of accurate brine stage level. 
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Figure 5.7: A comparison between BP learning algorithm with different hidden neurons number 

for prediction of the first stage level. 

5.5.2 GENE Approach 

The BP learning algorithm is shown to give good approximation, with the exception to 

prediction of the first stage brine level. When using the GENE approach for training, it is 

found that a minimum number of hidden neurons is required otherwise the network will 

never learn. The minimum hidden neurons number is estimated by directly performing the 

learning phase with low number of neurons and if the error is not reduced, then add more 

neurons, until one reaches the number at which the error is reduced suddenly. Test results 

for using 60 nodes for each of the two hidden layers are shown in figures 5.8 & 5.9. The 

prediction of the first stage brine level and the last stage distillate level are shown to be in 

agreement with the data obtained as compared to the prediction obtained with the BP 

learning algorithm. Moreover, the estimated level follows the oscillatory characteristic of 
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the brine level in the frrst stage obtained in the data. Furthennore, figure 5.9 shows the 

result of the flow and temperature variables with an increased perfonnance as compared to 

those obtained with the BP. Notice that for both cases, the last stage brine level is shown 

to be smoother and do not have the oscillatory characteristic because the brine blow down 

is used for controlling the level in a closed loop. By increasing the number of hidden nodes 

to 75 for each layer, the prediction of the brine level is further improved as shown in figure 

5.11. 

800 

ｾＶＰＰ＠
I 

400 

Brine Level - Stage I Brine Level- Last Stage 
80 

.,.. 11 -
60 .I" 

,/ I 

'$ 
if r 

.yi' 40 

20 
0 500 1000 0 500 1000 

Time Time 

Figure 5.8: Test results for modelling MSF plant with 16 stages using GENE learning algorithm 

with 60 neuronsfor each hidden layer. 

The dotted lines represent the network output and the lines represent results from the 

actual plant. 
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Figure 5.9: Test results/or modelling MSF plant with 16 stages using GENE learning algorithm 

with 60 neurons/or each hidden layer. 

The dotted lines represent the network output and the lines represent results/i'om the 

actual plant. 
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5.5.2.1 Empirical Model Validation 

Same procedure for model validation is used. Figure 5.10 shows simulation results wi th 

T 1 and T2 data set. The performance is shown to be similar to have a single hidden layer 

with 20 hidden nodes and with the BP learning algorithm. The only draw back is the 

response for the brine temperature to brine heater and vapor temperature for cell 1 usmg 

T 1 and T2 data set are shown to have the same values during simulation. 
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Figure 5.11: Prediction of the first stage brine level using GENE approach (2 hidden layers 

with 75 nodes each) 

The dotted lines represent the network output and the lines represent results from the 

actual plant. 

5.5.3 Discussion 

With the aim to demonstrate the use of Artificial Neural Networks (ANN) as a viable 

alternative to mathematical models for numerical simulation purposes, a case study has 

been carried out on a multistage flash desalination plant (MSF). The results described 

suggest that the use of ANN based on GENE approach for training, rather than with the 

standard BP learning algorithm, is adequate for modelling the MSF process and prediction 

of the stage brine level during load variation over the entire range of data obtained. If the 

brine levels were not required for the model, then the BP algorithm with single hidden 

layer would be enough for such a problem. Another approach is to use the BP for 

modelling the process variables, but for the brine levels, to use the GENE approach. While 

the plant considered is equipped with brine level measurements for stage 1 and stage 16 

only, if a complete model covering all the brine levels for all stages is required, then level 

measurement for all brine level stages would be necessary. It is worth to note the small 
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effort required to obtain the result as well as the low computational power compared with 

any mathematical formulation for the MSF modelling problem. 

Choosing the correct architecture is the key to have an accurate and efficient model that 

predicts the brine level in all stages. 

5.6 ANN Approach for Supervisory Set Point Control of MSF Plants 

As discussed in chapter 2, the current practical applications for the set point generation 

program is based on availability of an approximate operating curves for the brine 

recirculation flow as a function of the product distillate flow rate and the cooling sea water 

temperature. Additionally the TBT is calculated using the heat and mass balance equations 

for the evaporator in their linear form. The operating curves are usually obtained during 

the first commissioning of the units, and may require further tuning to either enhance the 

performance or due to slow changes in the plant parameters that may occur with time. 

However, parameter tuning and updating is usually based on trial and error. The tuning 

process requires the process engineer to be familiar with all programming and tuning 

details and special skilled people are required to be involved. However, an engineer who 

understands the process being simulated requires a few days training in the neural network 

approach. For the purpose of plant modelling with the ANN approach to learn the data 

from the plant is required. 

This section is devoted to demonstrate the applicability of ANN approach to learn and 

generate the necessary set point steps required for load variation between 600/0 and 1000/0 

load production for MSF plants. The developed procedure includes a method to validate 

the set point generation based on the capability of ANN to predict a practical 

comprehensive range of the process behavior. 
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5.6.1 Procedure for Set Point Generation using ANN Approach 

To learn the set point ｧ･ｮ･ｲ｡ｴｩｯｾ＠ a trajectory is developed to cover comprehensive 

operating points during load variations. This is implemented by considering the sample of 

the system input-output during load variations which follow a time state space function 

V(t) with a mapping function NNE that can be estimated or approximated using AN:\ 

approach. Three networks are used for set point control generation and validation. The 

procedure is based on cascaded architecture of ANN and they are used as an Estimator 

network (NNE), Controller network (NNC) and a Mapper network (NNM). The block 

diagram of the approach is shown in figure 5.12. The procedure can be described in the 

following: 

1. The nonlinear time state space trajectory is estimated for different operating points 

(input and output data) during load variations using NNE. The performance of the 

network is studied by considering the time state space trajectories V(t) which is 

composed of several vectors, and comparing the performance to the various 

combinations of vectors. 

2. The control action is learnt using this nonlinear time state space trajectory with NNC. 

NNC could be one network or sub-divided in some cases into two sub-networks. In 

this case, there are two sub-networks. The first sub-network (NNCI) is used for 

control during load increase and the second (NNCD) is used for control during load 

decrease. The performance of the network is studied to find the case when only one 

network of NNC is used to learn the set points required to increase and decrease the 

load simultaneously. 

3. To validate the final results, NNC is used to generate the control signal to the NNtvl 

network based on the estimation of the first network NNE and to compare :---J N\1 

behavior to the process data. 
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Figure 5.12: The block diagram based on cascaded architecture oj..1.\'.\'5 and thev are used as 

an Estimator network (NNE), Controller network (NNC) and a Afapper network (.\X.\1) -

5.6.2 Data Collection, Preparation and Preprocessing (Scaling) 

F or plant modelling and set point generation, data was obtained for 600/0-1000/0 load 

variation of a MSF plant (13 recovery stages and 3 reject stages) for every 30 seconds for 

the following variables: 

1. Brine recirculation flow rate; 

2. Top brine temperature (outlet from the brine heater); 

3. Makeup seawater flow rate; 

4. Steam input flow; 

5. Seawater circulation rate to maintain the sea water inlet temperature during winter 

conditions; 

6. Sea water temperature; 

7. Brine blow down flow rate; 

8. Steam input temperature; 

9. Brine level in the last stage; 

10. Distillate product; 

11 . Brine temperature to brine heater; and 

12. Seawater from reject section temperature. 

Variables 1 to 7 are considered as input to the model, and the other five are the 

corresponding output variables. Data covering load increase and decrease are included 
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with the vapor temperatures in each stage, so that more sensory data are used for the 

training. LP steam temperature is 182.5 DEG C and with a pressure of 0.75 bar. The 

maximum and minimum values used during the training are shown in Table 5-4. 

5.6.2.1 Time State Space Trajectory for Set Point Variation Control 

The time state space trajectory for set point variation control contains several vectors {\'1, 

v2, v3, ... vn}, where each vector is introduced to either define the status of the plant to the 

maximum / minimum load, or to define the plant logical condition like the load variation 

type (increase/decrease). To define the status of the plant to the maximum / minimum load 

data points, each collected data point is tagged with a step number (in the data set during 

load variation). This means tagging each collected sample or pattern with a number (x) 

which is successively increased / decreased with the next collected sample, depending on 

the load changing condition. The status of the plant can now be defined from the collected 

data, and by choosing a suitable variable proportionally related to the load (the top brine 

temperature (TBT) in our case), the maximum and minimum normalized values are 

selected as Xmax and Xmin respectively. They are considered as the upper and lower 

normalized steady state load status values. Now the difference q between any two 

successive (x) is calculated as follows: 

q = (xmax - ｸｭｩｾ＠ / k (1) 

Where k is an integer and represent the total number of data collected during load 

variations. 

Therefore, the following vectors with dimension kx 1 can be used to define the time state 

trajectory: 

vI = [xmax, xmax_q, .......... xmin]T (2) 

v2 = [O, ... q,q, ... ,O, ... -q,-q, .......... O]T (3) 

v3 = [Umax'umax-q, ......... ,umin]T (4) 
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y4 = [O},02, ........................ Ok]T (5) 

Where 

a = tanh (x) (6) 

cr is the average of seawater inlet, make-up, blow ､ｯｷｾ＠ and seawater recirculation flow 

variables. 

The time state can now be defined according to the values ofYl, y2, y3 and y4, i.e. in the 

space represented by these vectors. If two vectors represent the time state, then it is a 

two-dimensional state and is called time state plane. When the representation uses more 

than two vectors, it is called the time state space. For simplicity, the time state space 

terminology will be used in the text. 

Where 

Y 1 represents a linear relationship between the time and the status of the system. 

y2 represents the condition of load (increasing, decreasing or no change). 

y3 represents a nonlinear relationship between the time and the status of the system and 

takes the shape of the tanh function between the minimum and maximum load. 

y4 represents a variable parameter from the plant. 
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Figure 5.13: Block diagram of the proposed neural networkfor step estimation and control or 
MSFDpiant 

5.6.3 Training Consideration 

In this study all networks used have single hidden layer. It is found that by using the back 

propagation learning algorithm satisfactory required performance has been achieved. The 

data used for training does not include the brine level in the first stage. 

As shown in figures 5.13 and 5.14, the block diagram of the proposed NN controller 

consists of two networks: an NN Estimator (NNE), and an NN controller (NNC). NNe is 

sub-divided into two sub-networks, (NNCI) for load increase and (NNCD) for load 

decrease. By applying both input and output data to the NNE, the output of this network 

is the time space state, which is the subsequent input to NNC. Now the output of NNC 

contains the values of the input data to the plant (set point to regulatory control). IS 

applied to NNM to produce the desired output of the plant. 

During the training phase, each network is independent of each other. While in the 

application phase, by increasing / decreasing the time space states successively-with a 
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delay (D) will produce the required trajectory of the output load with respect to the 

required control input. Since the delay is considered as the sampling rate of the obtained 

data, hence the dynamics of the system are included. The set point control is generated 

from both input-output data of the plant. In this case D = 30 seconds. The weights and 

threshold were initialized randomly to lie within (± 0.01). The NNC was a 4-20-7 network 

while NNE was 28-20-4 and NNM was 7-20-5 with the hyperbolic tanh function in the 

hidden and output units. 

Considering the sample of the system input - output during load change following a time 

state space function Vet) with a mapping function N that can be approximated using NN, 

the following cases are considered: 

Case 1: Vet) = N [y(t),u(t)] = {v1,v2} (7) 

Case 2: Vet) = N [y(t),u(t)] = {vI, v3} (8) 

Case 3: Vet) = N [y(t),u(t)] ={ v2, v3} (9) 

Case 4: Vet) = N [y(t),u(t)] ={v1,v2,v3} (10) 

Case 5: Vet) N [y(t),u(t)] ={v1,v2,v3,v4} (11 ) 
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Figure 5.14: Block diagram of neural network with back-propagation training algorithm for 

modelling and set point control function generation for load variation ofJfSF unit 

The collected input and output measured variables are applied to NNE where its estimated 

output is compared to the time state space function Vet). So NNE can be employed by 

using the error between the network output and the nonlinear time state space trajectory 

denoted by ey as shown in figure 5. 13 . 

The performance index 
/\ 

J E == ｾ＠ L r (Yi (t ) - Yi (t ))2 (12) 

i i 
/\ 

is used in the training where Y i is the ith output of the sub-network.. The weights in NNE 

are updated as follows: 

(13) 

where the subscript E refers to NNE, and WE ( t) is the weight vector consisting of all 

weights in the sub-network at time t. The quantity =: E ( WE) is the gradient vector, 

consisting of the derivatives of J E with respect to each weight in the NNE, and r i is the 

step length for weight updating. 
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5.6.4 Control Generation Simulation 

Increasing and/or decreasing the load of a MSF desalination unit requires generation of 

pre-determined steps to the various set points of the regulated variables. The final required 

set points (steady state condition) is calculated by the mathematical model. while choosing 

the most applicable steps is by trial and error [18, 19]. To generate the intermediate set 

points, ANN is proposed to approximate the set-points step generation based on 

input/output samples collected during load change. Firstly, and after sufficient learning by 

introducing all input-output data to (NNE), the output result of NNE, V(t), is used as 

input to (NNC). 

By applying V(t) to the NNC network, the output of this network is the control input to 

the plant during load increase as well as load decrease. The step length, momentum, and 

temperature coefficients are chosen as shown in ｴ｡｢ｬｾ＠ 5.5. Results of variation of these 

coefficients for NNM network are shown in figure 5.15. Results on Figures 5. 16, 5.17 and 

5.18 show that one NNC controller could not approximate the control function by using 

V(t). The RMS error could not be reduced to an acceptable level. 

Considering cases 1,2,3 and 4, the learning ability appears only after splitting the NNe 

controller into two parts: NNCI and NNCD controllers (see figure 5.14) are for load 

increase and load decrease respectively. Figures 5.19 and 5.20 show that the RMS results 

are satisfactory (RMS < 0.1). Variations of the learning rule are considered in all cases 

(Delta rule, Normalized delta rule and Commulative delta rule). The comparison shows 

that by using the commutative delta rule for the back propagation algorithm has not 

improved the network performance in reducing the error function. Whilst by using either 

delta rule or the normalized delta rule the performance of the network has improved by 

reducing the error function. 
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Now using Vet) as defined in case 5 to avoid splitting of the controller, the estimated 

results and desired values are shown in figures 5.21 and 5.22. It indicates that NNe is 

capable of reducing the error between the network output and the plant input denoted by 

ec in figure 5. 13 and with similar performance index and weights update as shown in 

equations (12) and (13). 

5.6.5 Discussion 

A case study and simulation results using real data from the plant have demonstrated the 

capability of the proposed neurocontroller when it is applied to the process under 

consideration. Comparative simulation results have shown that by adding more sensory 

information with proper choice of the learning rate and other learning parameters. the 

neurocontroller could generalize all cases available. The above results are based on a new 

approach of using the neural networks for control ofMSF desalination plant. 

These results are for variations from 60% to 100% load a satisfactory mapping for the 

input-output relationship has been achieved. The network could be extended to learn more 

data when necessary. The foregoing shows that the most common task of the ANN is to 

perform a mapping from an input space to an output space and can approximate the 

nonlinear function between the input-output relation accurately. The approach provides 

the procedure to implement NN controller to satisfy the requirements of MSF tracking 

problem based on cascaded architecture of NN. The NN controller consists of two 

networks, which are used for time-state space trajectory estimation and control signal 

generator, respectively. The superior performance of ANN is not limited to model the 

process behavior (NNM), but also to learn the generation of the control action from the 

data obtained. 
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5.7 Conclusions 

The use of ANN based on the GENE approach for training has been found to give good 

results in prediction of the MSF stage brine levels. 

Investigation have shown that, under some conditions, and usmg all the available 

information with the GENE approach adopted for the MFN, the network will giye 

accurate results with a minimum effort for the data obtained during load change (transient 

condition). It is evident that this is true for data obtained for such dynamic behavior of 

MSF plant during load change, particularly for the brine level. If the brine levels were not 

required for the model, then the BP algorithm with single hidden layer would be enough 

for such a problem. Another approach is to use the BP for modelling the process variables, 

and for the brine levels to use the GENE approach. 

Compared with other reported work [67], we have utilized real data obtained from the 

plant so that simulation and test result gives an actual behavior of the plant. 

In the next chapter, disturbances that cause different instability modes for MSF plant and 

all major loops will be explored. Separate dynamic tests were conducted on existing plant 

to obtain system dynamic behavior for each control loop. This causes instability and low 

performance of the trained network and the solution to this will be explored in the next 

chapter. 
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VARIABLES Min. value Max. value units 

Brine Recirculation flow 13210 15000 th 
Brine from heater temperature (TBT) 67.78 94.73 deg C 

Sea water (SW) inlet flow 5003 7229 tIh 

SW to evaporator temperature 27.81 32.75 deg C 

SW circulation flow 5667 8438 tIh 

Makeup SW flow 3266 6090 tIh 

Brine blow down flow 2261 5125 tIh 

Steam input flow rate 77.42 171.9 deg C 

Brine Level in first stage 426.3 662.7 mm 

Brine Level in last stage 30.3 66 0/0 

Distillate product flow 648.6 1350 tih 

Brine to heater temperature 62.59 71.98 deg C 

Distillate Level in last stage 63.02 87.92 0/0 

SW from reject section temperature 33.85 37.51 deg C 

Vapor temperature in stage 1 66.24 89.95 deg C 

Vapor temperature in stage 2 64.58 86.74 deg C 

Vapor temperature in stage 3 62.57 82.89 deg C 

Vapor temperature in stage 4 59.82 78.77 deg C 

Vapor temperature in stage 5 57.26 74.84 deg C 

Vapor temperature in stage 6 55.15 70.81 deg C 

Vapor temperature in stage 7 51.09 66.23 deg C 

Vapor temperature in stage 8 49.66 62.11 degC 

Vapor temperature in stage 9 46.45 57.81 deg C 

Vapor temperature in stage 10 44.26 53.78 de&C 

Vapor temperature in stage 11 42.06 49.93 deg C 

Vapor temperature in stage 12 40.5 46.64 deg C 

Vapor temperature in stage 13 38.21 42.79 deg C 

Vapor temperature in stage 14 36.34 40.14 deg C 

Vapor temperature in stage 15 34.28 39.48 deg C 

Vapor temperature in stage 16 3213 35.32 deg C 

Table 5.1: r 'ariables minimum & maximum vahlt,s 
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Output Layer Hidden Layer 

Step length 0.15 0.3 

Momentum 0.4 0.4 

Temperature 0.1 0.1 

Table 5.2: Learning schedule for output & hidden layers 

variable Brec TBT MAKEUP STF 
Dimension tlh °c tIh tIh 
min. l3250 68 3860 89 
max. 15000 80 5240 149 

Table 5.3: Minimum & maximum values adopted for the input variables during model validation 

simulation tests T1 and T2 

VARIABLES Min. value Max. value 

Sea water make-up flow (t/h) 3860 5906 

Cell 16 distillate level (0/0) 65.88 67.53 

Brine Recirculation flow (t/h) 13254 14726 

Low pressure steam flow (t/h) 89.32 162.9 

Sea water to evaporator flow (t/h) 5362 7079 

Sea water recirculation flow (t/h) 7418 7491 

Brine blow down flow (t/h) 3437 4594 

Brine from heater temperature (deg C) 68.8 94.66 

Brine to heater temperature (deg. C) 63.9 87.92 

Sea water to evaporator temperature (deg C) 30.34 31 

Sea water from evaporator temperature (deg C) 34.55 36.71 

distillate flow (t/h) 701.7 1333 

Table 5.-1: T 'ariables minimum & maximum values 

Output Layer Hidden Layer 

Learn count 6000 12000 19000 25000 6000 12000 19000 25000 

Step length 0.15 OA 0.(H9 0.001 0.3 0.15 0.038 0.002 

Momentum OA 0.2 0.05 0.003 O.-l 0.2 0.05 0.003 

Temperature 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Table 5.5: Learning schedule for output & hidden layers 
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Figure 5.21: Estimated (dark li nes) & desired (doted lines) flow values 
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Figure 5.22: Estimated (dark lines) & desired (doted lines) temperature values 



Chapter 6 Application of Modelling & Control of ｾｉｓｆ＠
Plants by ANN - II 

6.1 Introduction 

In the last chapter, other reported works on MSF desalination process modelling by ANN 

was reviewed [67], [68]. They focused on systems obtained from simulators, though 

results considering simple network were reported. Moreover they did not discuss the 

effect of the dynamic behaviour of the system on the performance of ANN. Generally 

speaking, at least two control modes can be identified for MSF; the first is required to 

perform load change between minimum and maximum load working point to cope with 

the daily load demand, while the second mode is the response of the control system to 

external disturbances such that the plant availability is not disturbed. The first one has been 

dealt with in the last chapter and difficulty is experienced in capturing accurate prediction 

of the first stage brine level. To investigate the second mode for MSF desalination plant. 

all main control loops were observed during imposed disturbances so that the interactions 

of the desalination process could be covered. The objective of this chapter is to present a 

dynamic black box model of the desalination process and to provide a method for learning 

the control action due to external disturbances. 
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In this chapter we present a different case from the prevoius one, namely the application of 

MFN to MSF desalination plant to identify and model the process behaviour due to 

dynamic disturbances, Specifically our attention will be focused to cover the major control 

loops, and they are as follows: 

• Top brine temperature control loop. 

• Brine recirculation flow control loop . 

• LP steam temperature control loop. 

• Brine level control loop. 

• Distillate level control loop . 

• Sea water make up flow control loop. 

• Sea water supply temperature control loop. 

To obtain the relevant information about the process behaviour, dynamic tests were 

necessary. The unit steps were made at the control valve, e.g. to realize a sudden change 

of the steam flow to the brine heater, then leave the system to stabilize by itself due to 

such disturbance. Thus the dynamic test involves disturbing or exciting the manipulated 

variables for some control loops. By such excitation the resultant effect on the controlled 

variables could be obtained, Seven different dynamic scenarios were possible to be 

obtained as follows: 

1. Brine recirculation dynamic test (dt1) 

2. Brine level dynamic test (dt2) 

3. Distillate level dynamic test (dt 3 ) 

4. Low pressure steam flow dynamic test (dt4 ) 

5. Low pressure steam temperature dynamic test Ｈ､ｴｾＩ＠

6. Makeup flow dynamic test (dt6) 

7. Sea water supply temperature dynamic test (dt 7 ) 
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Additionally a static test (dIg) (slow variation of the process variables such that no 

disturbances are encountered) could be obtained for the following variables: 

• Brine recirculation flow. 

• Brine level in last stage. 

• Distillate level in last stage. 

• Sea water supply temperature. 

The foregoing scenarios will be used for network training and to study the network model 

performance. The philosophy of applying ANN involves training on part of the scenarios 

obtained, and then, using the rest of the scenarios to test and study the network 

performance. The GENE approach is adopted as the learning algorithm, for which it is 

required to investigate what dynamic capability could be provided by the feed forward 

network. The internal behaviour and convergence properties of the algorithm are 

compared to the standard back propagation with one hidden layer, and the advantages and 

disadvantages are discussed. The results are illustrated using data obtained from Al-

Taweelah MSF plant at Abu Dhabi. The objective is to perform the learning using limited 

number of data and to generalize for every excitation scheme obtained, so that the 

dynamics of the process is learnt efficiently. Moreover, identifying which of control loops 

are critical to learn the plant dynamic due to external disturbances. 
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6.2 Dynamic Test and Data Collection 

Generally speaking, process disturbances will cause one of the following effects: 

1. The process is disturbed such that the internal process is excited. The 

excitation effect is reduced and drives the process to the same or another stable 

state. 

2. The process excitation continues cyclically or exponentially reaching unstable 

state. 

For plant stability, the second effect is not desirable. All tests conducted on the process to 

obtain the data fell under the first effect. The system was excited by 5 to 1 0% of the 

operating point (a unit step of variable magnitude and duration time is used). Examples 

were generated from Al-Taweelah MSF plant at Abu Dhabi. Table 6.1 (a,b) contains list 

of data points obtained for the seven control loops and additional monitoring points. 
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11. Top Brine Temperature Controller Range 
1. Top brine temperature set point 0-2500 deg C 
2. LP steam flow 0-2500 deg C 
3. Top brine temperature controller output 0-100 % 
4. LP steam valve position 0-100 % 

12. Brine Level Controller 
5. Brine level controller set point 0-1000 mm 
6. Brine level last stage 0-1000 rum 
7. Brine level controller output 0-100 % 
8. Blow down valve position 0-100 % 
9. Brine level controller blow down flow 0-8000 tonslh 

13. Distillate Level Controller 
10. Distillate level controller set-point 0-1000 rum 
11. Distillate level 0-1000 rum 
12. Distillate level controller output 0-100 % 
13. Distillate level valve position 0-100 % 

14. Sea Water Make Up Flow Controller 
14. Seawater make up flow controller - set ratio 0-8000 tonslh 
15. Seawater make up flow 0-8000 tonslh 
16. Distillate flow 50-2000 tonslh 
17. Seawater make up flow controller output 0-100 % 

18. Seawater make up valve position 0-100 % 

15. Seawater Supply Temperature Controller 
19. Seawater supply temperature controller set-point 0-20000 tonslh 

20. Cooling seawater flow 0-20000 tonslh 

21. Seawater supply temperature controller output 0-100 % 

22. Cooling seawater valve position 0-100 % 

16. Brine Recirculation Flow Controller 
23. Brine recirculation flow controller - set Ratio 0-20000 tonslh 

24. Brine recirculation flow 0-20000 tonslh 

25. Brine recirculation flow controller output 0-100 % 

26. Brine recirculation valve position 0-100 % 

27. Brine heater outlet valve position 0-100 % 

[7. LP Steam Temperature Controller 
28. LP steam temperature controller set Point 0-1500 deg C 

29. LP steam temperature controller output 0-100 % 

30. LP steam temperature after spraying 0-1500 deg C 

31. Seawater valve Position 0-100 % 

Table 6.1 (a): List of the data points for the seven control loops obtained during the mrlOus 

dynamic tests 
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Additional Monitorin Points 
32. Brine heater inlet temperature 

33. Brine heater condensate level 

34. Brine recirculation inlet temperature 

35. M.P. steam temperature 

36. Spray water flow 

37. Cooling seawater temperature 

38. Seawater temperature 

39. Condensate temperature 

40. Brine level of fIrst stage 

41. Seawater recirculating flow 

42. Seawater make up temperature to deaerator 

43. Top brine temperature 

44. LP steam temperature 

Ran e 
0-1200 deg C 
0-1000 mm 

0-1200 deg C 

0-2500 deg C 

0-15 tonslh 

0-500 deg C 

0-500 deg C 

0-1200 deg C 

0-1000 mrn 
04000 tonslh 

0-600 deg C 

0-1200 deg C 

0-1500 deg C 

Table 6.1 (b): List o/the additional monitoring points obtained during the various dynamic tests 

Due to the high amount of measurement signals and long duration period of every test 

(every change of the top brine temperature needed approximately 30 to 45 minutes) the 

measurement system had to deal with lots of data. The hardware used includes data 

acquisition system featuring 126 measuring channels (16-bit resolution) with a sampling 

rate of 10kHz for 16 channels could be connected via measurement racks to a controlling 

and storing computer. For rapid functions 16 channels are available (12 bit resolution) 

with a scanning frequency of 1 MHz. To realize the simultaneous data collection in the 

technical and local control room 800 m fiber optic cable was used [69]. 

6.3 Data Preparation / Preprocessing 

Similar procedures used in the preVIOUS chapter section 5.4.2 are used here for 

preprocessing. However, the data was obtained at a sampling rate of one point / sec. For 

each measuring point it was convenient to use the average of every 10 points such that the 

data file size can be reduced 10 times. The maximum and minimum values used during the 

various training sessions in this study are shown in Table 6.1 (a,b). 
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6.4 MSF Modelling using GENE Approach 

One of the difficulties involved in describing the process behaviour of MSF process is the 

prediction of the dynamic behaviour for the brine level in the various stages. AN:\ can be 

used to predict the brine levels from the input information to the network. This black box 

approach requires the brine level measurments in the different stages of interest to be 

available and excitation of the system is possible. The current installation is normally 

equipped with level measurement facilities for the first and last stages. This can be used for 

the learning process and model validation. A base case study was carried out adopting the 

GENE approach as the learning algorithm. The inputs to the network are the tapped 

delayed points for the followings: 

1. Brine heater inlet temperature 

2. Cooling sea water temperature 

3. Sea water temperature 

4. Top brine temperature 

5. Sea water recirculating flow 

6. Sea water make up flow 

7. Cooling sea water flow 

8. Brine recirculating flow 

9. Brine blow down flow 

10. Sea water make up temperature to deaerator 

11. Brine recirculating inlet temperature 

12. Brine level of last stage 

13. Distillate flow 

14. Brine level of first stage 



CHAPTER 6: APPLICATION OF MODEliNG AND CO.\ 'mOL OF A/SF DESAUXJ. TIOY BY AYY _ II 1:(, 

The network outputs are the current operating points for the last 5 parameters above 

Thus the network represent the NARAMAX identification of the system [36]. The 

procedure used for presenting the tapped delay values in the previous chapter is adopted 

here. 

It is important to identify which of the available data sets used for the learning process will 

provide good mapping results. In this regard a number of variations of the base case. using 

different combinations of data sets for training the network with the same structure were 

also studied. The selection of the data sets combination is based on an engineering 

understanding of the problem. Next, the variations of the network structure for different 

combinations of the data sets were also studied. 

A parameter Iss, the total sum of squares of the errors between estimated output and 

desired output, was used as a measure of the performance of the network, where Isslr and 

IssIe are used to denote the Iss for the training set and the testing set respectively. ｬｾｳ＠ is 

the total sum of Isslr and Isste obtained from presenting all data sets. 

To evaluate the weight initialization scheme, a 42-15-15-5 network architecture based on 

the GENE approach was trained with dlt,2,3,4,S data set. By selecting a low range (RJW) for 

the weight initialization scheme (see section 4.5.4) and comparing the resultant RMS error 

achieved with a higher range of RIW. This exercise will stop when no further 

improvement could be achieved by increasing the range of RIW. When using RIW for the 

output layer between -0.05 and +0.05, the RMS error converged to a value of 0.145 and 

could not be reduced with further training. Investigation to use the normalized delta nIle 

or the delta rule for the second hidden layer has revealed the same result \\'hen using 

RIW for the output layer to be between -0.15 and +0.15, the RMS error converged to 

0.028 and 0.038 when the normalized delta rule and the delta rule were adopted for the 
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second hidden respectively. No further improvement was obtained by increasing the range 

of the initialization scheme. Therefore, the choice of the initialization scheme used here for 

the output layer is between -0.2 and +0.2, and the normalized delta rule is used for the 

second hidden layer. 

The learning rate and momentum values used are 0.3 and 0.4 for the first hidden layer and 

0.25 and 0.4 for the second hidden layer respectively for the first 3000 epochs. After 3000 

epochs the learning rate and momentum values are reduced to O. 15 and 0.2 for the first 

hidden layer, and 0.125 and 0.2 for the second hidden layer respectively. Training was 

terminated when one of the following conditions applied: 

- Network output RMS error was less than a pre-specified value. 

- A specified number of epochs were reached. 

6.4.1 Base Case 

The study was carried out by using a 42-30-30-5 network based on the GENE approach. 

Data set of 645 examples from the brine recirculation dynamic test (dl1 ) were used for 

training, and then all other data sets were used for testing. With RIW chosen to be 

between -0.2 and 0.2 for the outer layer while for the hidden layers the RIW was chosen 

between -0.01 and 0.01, the network RMS error converged to a value of 0.024 after 4000 

epoch. The trained network was tested with all other examples dl2 to dIs resulting in ｲＮｾｳ＠

of64.02. Table 6.2(a) shows Isstr for each output of the network (the output is denoted 

by On, n = 1,2, .. 5). Table 6.3(a) shows IssIe for each output of the network. In some 

cases the IssIe are unacceptably high. When using the standard BP with one hidden layer. 

the RMS error converged to a value of 0.028 after 4000 epoch \vith no significant 

improvement is obtained for Isslr , IssIe and Tss as shown in tables 6 2(b) and 6.3(b). It is 
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obvious, that the performance of the network deteriorates very little with the exception of 

a 5 (brine level of the first stage). 

dtz 
dt3 
dt4 

dt5 
dt6 

dt7 

dts 

°1 °2 03 °4 °5 
tsstr tsstr tsstr tsstr tsstr 

°1 0" °3 0./ 0, 
Tsstr tsstr T t,slr Isslr sslr 

dtl 0.01 001 0.04 0.03 0.06 dtl 0.01 0.01 0.03 0.03 0.06 

(a) (b) 

Table 6.2: Base case performance for the training sets for each network output using (aJ GE.YF 

approach, (b) BP approach 

°1 °2 03 °4 °5 °1 °2 03 0./ °5 
tsste tsste tsste tsste tsste tss tsste Tsste tsste T sste t .'Isle Iss 

0.54 0.13 0.03 0.26 8.85 9.81 0.22 0.43 1.51 0.01 2.89 5 ()(l 

0.45 0.11 0.05 0.14 6.27 7.02 0.21 0.39 1.2 0.04 2.15 -'.99 

0.63 0.25 0.48 0.93 5.76 8.05 0.91 0.81 0.36 1.98 3.97 8.tH 

0.02 0.01 0.13 0.25 0.38 0.79 0.03 0.04 0.16 0.29 0.37 0.89 

0.01 0.01 0.04 0.05 0.05 0.16 0.01 0.01 0.02 0.07 0.1 0.21 

0.12 0.23 1.75 0.72 I 15.3 8.12 0.68 0.57 0.7 13.54 12.31 17.8 

1.15 0.09 0.62 3.35 24.7 29.91 0.93 1.63 I 6.67 2.32 2.60 l·tlS 

Tf:f: = 63.86 Tn· = SOD 

(a) (b) 

Table 6.3: Base case performance for the testing setsfor each network output using (aJ GFXf: 

approach, (b) BP approach. The double line border is for tsste < :; 

6.4.2 Variation 1 

Since the base case did not give satisfactory results, tests were made by training the 

network with a different combination of the data sets. Using the GENE approach with the 

same network structure as the base case, nine data sets were used for training. In the 

following dt3.4.5 denotes data sets dt3 , dt4 and dt5 are combined in one data set. 

• Case 1. 1, df 3.4.5 is used for training, and then all other data sets were used for testing 

• Case 1.2, dt
2A

.
5 

is used for training, and then all other data sets were used for testing 

• Case 1.3, dt1.3.5 is used for training, and then all other data sets \vere used for testing 
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• Case 1.4, dt1,3,4 is used for training, and then all other data sets were used for testing. 

• Case 1.5, dt1,4,5 is used for training, and then all other data sets were used for testing. 

• Case 1.6, dt1,2,4 is used for training, and then all other data sets were used for testing. 

• Case 1.7, dt1,2,3 is used for training, and then all other data sets were used for testing. 

• Case 1.8, dt2,3,5 is used for training, and then all other data sets were used for testing. 

• Case 1.9, dt1,2,3,4,5 is used for training, and then all other data sets were used for testing. 

The training was stopped when either the error is less that 0.01 or after 10000 epochs. All 

cases were converged to a RMS error of less than 0.034. After each training the network 

is tested with all data sets. Tss results are compared in table 6.4 for the nine cases. It is 

obvious that when the training examples were increased to cover more than one dynamic 

test, the performance on the testing set is improved compared with the base case. On the 

other hand, when the "Low pressure steam flow dynamic test" (dt4 ) data is included in the 

data set for training the network, the performance is further improved. 

Case 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 
Training data dt3,4,5 dt2,4,5 dtl ,3,5 dt134 ､ｴＱＮＴＮｾ＠ dt124 dtu ,3 dt., 3 ｾ＠ ､ｴｵＮｱｾ＠

ｾＮ＠ ,-

T",:;: 2.842 1.925 6.734 2.212 2.209 1.925 4.184 7.953 2.542 
RMSerror 0.008 0.022 0.019 0.023 0.025 0.022 0.022 0.021 0.024 

Table 6.4: Variation I case performance for the testing sets for each network output using CE.\,E 

approach 

6.4.3 Variation 2 

The optimal number of hidden neurons in a network for a particular mapping is generallv 

unknown beforehand. It would be interesting to see the effect of changing the numbers of 

hidden neurons. When the number of hidden neurons is increased, the number of 

connection weights is increased as well. Thus the number of training examples should be 

increased accordingly. Same training examples used in variation 1 \vere used Four cases 

were studied: 
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• Case 2.1, a 42-15-15-5 network was used. 

• Case 2.2, a 42-20-20-5 network was used. 

• Case 2.3, a 42-25-25-5 network was used. 

• Case 2.4, a 42-35-35-5 network was used. 

The performances of the networks are compared in table 6.5. 

For cases 2.1, Tssvalues are unacceptably high for all combination of training data. On the 

other hand, the improvement for case 2.2 is not for all combinations of data sets. It seems 

that a bigger network can be expected to have a better performance than a smaller 

network. It appears that also due to too many parameters for case 2.4, the performance 

starts to deteriorate (compared to the base case in table 6.4) for the same combinations of 

data sets. Therefore the base case hidden neurons number used can be considered as the 

optimum. 

Case 2.1 2.2 2.3 2.4 

Training data Tss RMS Tss RMS Tss I{\/.)' T .'IS 
R. \ /,,,' 

dt3,4,5 13.76 0.027 3.59 0.025 2.·H6 0.008 2.498 0.008 

dt2,4,5 7.982 0.026 2.772 0.024 4.298 0.022 2.134 0.02 

dt1,3,5 24.6 0.025 8.457 0.091 7.583 0.022 5.977 0.025 

dtU ,4 11.9 0.031 2.894 0.021 2.553 0.023 2.162 0.023 

dt1,4,5 10.98 0.031 2.557 0.02 3.453 0.023 3.591 0.024 

dtU ,4 15.27 0.033 4.2 0.02 2.057 0.025 2.005 0.024 

dt1,2.3 20.32 0.014 7.964 0.009 4.787 0.022 7.298 0.024 

dt2,3,5 20.98 0.034 9.584 0.023 8.496 0.021 9.086 0.028 

dt1,2.3A.5 16.66 0.033 2.797 0.028 2.967 0.027 337 0.028 

Table 6.5: Tss results after training using GENE approach for different numher ｬｾｬｨｩ､､･ｮ＠

neurons 
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6.4.4 Variation 3 

Further investigations using different hidden number of neurons and with different data 

sets confirms the improved results of the GENE approach as compared to the standard 

BP. 

hI h2 w L d RAfS Tss 

1 34 43 0.25 GENE dt1,dt2,··dt7 
0.021 16.25 

2 34* 43 0.25 GENE dt1 ,dt2 , .. dt7 0.03 4.53 

3 15* 10 0.25 GENE dt1,dt2,··dt7 
0.038 4.94 

4 45* 45 0.25 GENE dtp dt2,··dt7 0.022 2.79 

5 45* 45 0.25 GENE dt1.2.3 .. u 0.019 2.215 

6 45* 45 0.25 GENE dt1.2.3 .. U 0.019 2.65 

7 45* 45 0.25 GENE ､ｦＱＮＲＬＳＬＴＮｾ＠ 0.028 2.85 

8 45* 45 0.25 GENE dt1.2,4 3.469 

9 30* - - BP dt1,2,4 2.97 

10 30* - - BP dt1.2,3 40.49 

11 45* 45 0.25 GENE dt1,2,3 8.02 

12 30* - - BP dt4 
13.45 

13 35* 35 0.2 GENE df4 10.31 

Table 6.6: A comparison/or Tss & RMS results when the network is trained using UI,-'YF 

approach & the standard BP learning algorithm 
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6.5 Learning Response of the Control System due to External Disturbances 

for MSF Plants 

In the last chapter, it has been shown that the required function approximation for any 

mapping problem can be achieved using ANN through the learning process \\ ith the aim to 

minimize the network error by modifying the weights. However, potential problems, 

which are likely to affect practical applications, are that the learning process may be 

seriously plagued by the presence of local minima in the cost function and the long training 

time. Learning is normally achieved based on the knowledge of local error associated with 

each hidden neuron and not the network error [62], [36], [30]. For this, most of the 

reported success is based on the assumption that sufficient and rich data are available for 

the training to capture the required function approximation. But in most of the practical 

cases it is generally required to train the network with partial data and also, if trained with 

additional new data. It should not forget the previous training. Researchers have modified 

either the weight update rule [27], or employed a new form of objective function [70]. In 

this section, the MFN network using the GENE approach is studied and compared to the 

standard BP learning algorithm by developing a nonlinear empirical multi-controller 

structure for MSF plants (figure 6.1 shows a simplified block diagram of the sructure). 

The data obtained for the previous section (dtp dt2 , dt3 , dt4 , ､ｴｾ＠ , dt6 , dt7 ) are used for 

training, then the problem offinding set of weights for a given data set (dt n) can be solved 

using ANN, but the additional learning using another data set (dt m) for the resultant 

network will have either one of the following effects on the network: 

1) the network will learn the new data, but loses part of the previous function learnt ｾ＠ or 

2) the network will not converge as the two directions are opposite or higher order is 

required. 
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The study was carried out with the inputs to the network being the tapped delay points for 

all the variables listed in tables 6.1 and 6.10 (this includes the controller set-point, control 

valve position, regulated variable for the seven control loops and additional monitoring 

points), excluding the outputs of each controller which are used as the network outputs. 

Instead of feeding all past data to the network, the following equation is used for 

calculating the tapped delayed values: 

D = STD [(S-SmaxJ1Sspan + (V-VmaxJlVspan + (C-CmaxJ1Cspan]. (6-1) 

Where STD is the standard deviation, S is the set point, V is the control valve position, 

and C is the controlled variable. 

The parameter Tss used in the previous section was used here again as a measure of the 

performance of the network. 
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6.5.1 Training using the Standard BP Learning Algorithm 

Firstly, we used the standard BP learning algorithm with one hidden layer network and 

found that when the network is subject to further training with new data, a drift occurs 

when testing the previously trained data. This is due to the static feature of the single 

hidden layer. No improvement could be achieved by adding more hidden neurons. It was 

found that by using the delta rule for the output and hidden layers instead of the 

normalized commutative delta rule, the RMS error for the network is converging to a 

considerably lower value. The learning rate and momentum values used were 0.05 and 0.4 

for the output layer, and 0.3 and 0.4 for the hidden layer respectively for the first 5000 

epochs. After 5000 epochs the learning rate and momentum values are reduced to 0.0355 

and 0.2 for the output layer, and 0.15 and 0.2 for the hidden layer respectively. Data set of 

1028 examples from low pressure steam temperature dynamic test, makeup flow dynamic 

test and sea water supply temperature dynamic test Ｈ､ｴｾＬＶＬＷＩ＠ was used for the initial 

training for 4000 epochs. Then the network is subject to further training with data set of 

547 examples from brine recirculation dynamic test and brine level dynamic test(dt1.2)' The 

network is then further trained with 561 examples from distillate level dynamic test and 

low pressure steam flow dynamic test (dt3.,J. All available data sets Ｈ､ｴＱＮＲＮＳａＬｾＮＶＬＷＩ＠ were used 

for studying the network performance. Four cases were studied: 

• Case 1. 1, a 107-130-7 network was used. 

• Case 1. 2, a 107-110-7 network was used. 

• Case 1.3, a 107-90-7 network was used. 

• Case 1.4, a 107-70-7 network was used. 



CHAPTER 6: APPLICATIO.vOF MODEUNGAXD CONTROL OF.\/SF DESAUX-lTIOY ｂｲａ｟｜ｾ｜Ｇ＠ -11 1.;5 

The resultant Tss for each output of the network are shown in table 6.7, where (fl) 

denotes results after first training, (f2) denotes results after second training and (n) 

denotes results after third training. The values of Tss shown are neither acceptable (high 

value) nor improving with the additional training conducted by another set of examples. 

However, the best result is for case 1.3, for which a comparison will be made to the 

GENE approach. 

Tss(OJ) Tss(02) Tss(03) Tss(O.J) Tss(05) Tss(06) Ｗｾ｜ＧｳＨＨｽＷＩ＠

fl 1468.6 450.1 4883 283L7 81852 13528,9 7171.6 

Case 1.1 f2 1727.5 348.7 2812 445.2 15893 3000.6 1084.9 

f3 1660.8 476.7 5934.9 838.4 146Ll 4672.0 630.8 

fl 11308.1 151.2 3011.5 1210.8 6256.6 16856.3 458.2 

Case 12 f2 211 L7 456.3 6539.8 872.5 1520.3 3687.8 418.2 

f3 1936.2 492.6 121792 695.4 1495.9 6273.8 785.1 

fl 3019.6 669.9 7690.3 1139.7 6612.1 15878.1 781.4 

Case L3 f2 5960.8 515.6 5532.4 597.4 1308.8 3123.3 1023.7 

f3 3651.3 399.1 5837.6 506.6 1027.1 8126.7 1837.2 

fl 3450.2 335.5 5188.9 3999.7 8785.1 20326.5 124.5 

Case 1.4 f2 4480.6 55L7 7274.6 1518.1 1382.5 2767.9 1055.8 

f3 3783.5 535.8 10002.5 1112.9 1176.6 2059.2 1531. 9 

Table 6.7: Tss values for each BP network output after first ([1), second (/2) and third (/3 1 

training of different examples. 

6.5.2 Training using GENE Approach 

All simulations presented in this study utilize the same network architecture In particular. 

the network has 107 inputs, 7 outputs, 60 nodes in the first hidden layer and )() nodes in 

the second hidden layer. 
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To evaluate the RIW scheme, a 107-60-30-7 network architecture based on the G E"\ 'E 

approach was trained with dtt ,2,3,4,5 and the following cases for random initialized weight 

schemes are considered: 

• Case 2.1, the network is trained using RIW in the range [-0.1 ,0.1]. 

• Case 2.2, the network is trained using RIW in the range [-0.05 , 0.05] 

• Case 2.3, the network is trained using RIW in the range [-0.01 ,0.01] 

Table 6.8 shows the RMS values for each layer after 5000 epochs. These values could not 

be reduced with further training. Investigations using the normalized delta rule or the delta 

rule for the second hidden layer have revealed the same result. 

output layer first hidden layer second hidden layer 

Case 2.1 0.123953 0.016297 0.19504 

Case 2.2 0.030918 0.004721 0.004792 

Case 2.3 0.037433 0005542 0.006425 

Table 6.8: RMS error values/or each layer after 5000 epochs. 

When using RIW between -0.05 and +0.05 for the output layer, the RMS error converges 

to 0.030918, 0.004721 and 0.004792 for the output, first and second hidden layers 

respectively. No significant improvement was obtained by decreasing the RlW range. 

Therefore the choice of the RIW scheme for the output layer is between -0.05 and +0.05. , 

and the normalized delta rule is used for the second hidden layer. 

The learning rate and momentum values used are 0.3 and 0.4 for the first hidden layer and 

0.25 and 0.4 for the second hidden layer respectively for the first 10000 epochs. After 

10000 epochs the learning rate and momentum values are reduced to O. 15 and 0 2 for the 
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first hidden layer, and 0.125 and 0.2 for the second hidden layer respectively. The same 

procedure for the first, second and third training used for the BP is used here. However. 

the first training was made for 25000 epochs, while the second and the third training are 

made for 5000 epochs. 

The resultant Tss for each output of the network are shown in table 6.9 for the following 

cases: 

• Case 3. 1, Gene approach is used during the training, and RIW scheme used for the 

output layer is between -0.05 and +0.05, and the normalized delta rule is 

adopted for the second hidden layer. 

• Case 3.2, same training procedure for case 3. 1, but the RIW scheme used for the 

output layer is between -0. 1 and +0. 1. 

• Case 3.3, the standard BP algorithm with single hidden layer and 90 neurons are 

used during the training. The delta rule is adopted for the output and 

hidden layer. 

Tss (OJ) Tss(02) Tss(03) Tss(04) Tss(05) Tss(06) Tss(07) 

fl 4555.5 1198.6 7649.2 2184.8 8738.5 6944.7 973.5 

Case 3.1 f2 3728.2 291.8 3846.9 1327.1 1811.3 1279.3 271.5 

t1 3525.4 361.1 4327.8 458.4 1262.3 1067.1 159.1 

fl 20809.1 2970.1 10679.9 1470.1 7889.8 40192.1 427.2 

Case 3.2 f2 1617.6 364.1 6880.3 1657.4 1806.7 3795.6 1904 

t1 1392.3 332.1 5790.5 1510.3 1411.1 41532 1514.5 

fl 781.3 695.7 2382.5 917.1 7018.2 17117.4 910.7 

Case 3.3 f2 1438.1 140.3 2747.1 1156.2 2107.6 2915.9 2391 

t1 1555.5 206.5 4520.1 1320.6 1580.3 10231.3 360.9 

Table 6.9: T,·s values/or each network output after first, second and third traimng 
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The best results are shown when using the GENE approach for case 3. 1, for which the 

additional training conducted using new examples has improved the Tss values for each 

output of the network. When using the standard BP with one hidden layer (Case 3.3), the 

Tss value does not improve for all network outputs except for output 2,7 where it is 

improves after the second training, but deteriorates after the third one. It is obvious. that 

the performance of the network using the GENE approach is far better than the BP for 

learning the additional data while retaining the previously learned data. The GENE 

approach is shown to be robust for the learnt analog data. The predicted network output 

is compared to the reference data for the three cases and is shown in figures 6.6, 6.7 and 

6.8 after learning with the first, second and third data set respectively for one output only. 

6.5.3 Error Value Analysis for Output & Hidden Layers 

We have discussed in chapter 4 the requirement of unique error transformation when the 

error is back propagated (transformed) to the hidden layer, such that no change to the 

gradient search direction during the training. This will yield an increase to the probability 

of reaching a global solution for the errors. To illustrate this, the RMS error values for the 

three cases are plotted in figure 6.2. Case 3.3 is shown to provide the least RMS error 

values during the entire training process. However, this does not mean that it is the best 

case. For each case, the error values from each layer (output & hidden) during the learning 

process are plotted in figures 6.3, 6.4 and 6.5. It is obvious that only for case 3. L the 

same error pattern is transformed to the hidden layers, i.e, when the error value increases 

in the output layer during the additional training phase, the error values for the hidden 

layers follows the same increase, and visa versa. While for cases 32 & 3 3, the error 

values are not following the same transformation pattern, but they are changing ｡｢ｲｵｰｴｬｾ＠

for the output layer. This is due to the change that occurs in the direction of the gradient 
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during the learning process. For case 3.2, this is due to high initialized weight value 

selected, such that the node activation for the tanh function will not be in the linear region 
ｾ＠ . 

while for case 3.3 (standard BP), this is due to the change of gradient direction for each 

iteration to update the weight values between the output and hidden layers after each 

iteration. 

As discussed in chapter 4, for the initialized weight values in the range [-0.05, +0.05]. and 

using the tanh function as the activation for the nodes, the activation will lie in the linear 

region and far from the saturation region. This means that the hidden nodes will be trained 

to reduce the network output error. When the learning process continues for additional 

data, the weight updates are shown to be in the direction of reducing the network error 

but not reducing the local error, i.e., retaining the function approximation requirement. As 

both data sets are related to the same process, so the learning process will capture the 

function approximation of both data sets and not just interpolate each one at each training 

cycle. For higher initialized weight values, the hidden layers are shown not to follow the 

same network output error characteristic, and this means that it does not follow the same 

gradient direction of the output layer. 

6.6 Conclusion 

To a large extent the validation results demonstrate that the developed empirical multi-

controller structure is indeed capable of generalizing the process dynamics during 

operational transients, from only a limited training set. The performance is increased when 

trained with another test data (another loop) and good results are obtained on all the 

available test data. 
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The benefit from the additional learning capability is that as the operating point changes 

from one state to another, the learning controller has not forgotten what has been learnt 

earlier and it can be improved upon. The learning controller builds up a nonlinear model of 

all desired control surfaces. This requires the learning module, which is temporally stable. 

to learn about one area in the input space which affects minimally the knowledge stored in 

different regions. 

The network is initially trained using the transient test data obtained from exciting one 

of the manipulated variables. When using the standard BP, a significant long training 

time is required for convergence. The adjustment for the learning rate and the 

momentum was a tedious job, even though the developed structure was found valid in 

its entire operating envelope. When using the GENE approach, two main distinctions 

of this approach are : - (1) its ability to generalize and when new test data is 

introduced the performance of the structure is improved for the test, (2) very fast 

convergence as compared to the standard one. The resulting trained neural network is 

shown to intelligently generalize all the available test data and reduce the uncertainty 

associated with the probability for convergence to the global minimum. Simulation 

results indicate a superior convergence speed for the GENE approach and robustness 

for analog data. Robustness of the network arises when the network is trained with 

new data. The network will not forget the previously learned data in order to learn the 

new data. 
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Figure 6.2: RMS Error values during network learning using the BP (solid), Gene with 

initialized weight (-0. J, O. J) (dot) and Gene with initialized weight (-0.05, O. 05) (dash ) 

respectively . 

0.2 ＮＭＭＭＭＭＭｾＭＭＭＭｾＭＭＭＭＭＭＭＬ＠ 0.2 r-----,-----r-------, 

ｾ＠
ｾ＠ 0.1 
ｾ＠o 

0.01 

ｾ＠

g 
4) 

ｾ＠ 0.1 t 
c.. ::; 
o 

100 1000 
ｏ ｌＭ ＭＭＭｾＭＭ ＭＭｾＮＭＭＭＭｔＵ＠

100 1000 1°10 

Learn count Learn COWlt 

Figure 6.3: Error values during network learning for output layer using Gene approach \I 'illl 

initialized weight (-0. J, O. J) (left) and using Gene approach with initialized weight (-0.05, O. 05) 

(right). 
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Figure 6. -I : Error values during network learning for hidden layers using Gene approach U'l th 

initialized weight (-0. J, 0.1) (left) and using Gene approach with iniltalized weight (-0. ()5 . U (15 1 

(right). Solid line for hidden layer # 1. 
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Chapter 7 CONCLUSIONS 

A fast technique in the prediction and analysis of MSF dynamic system has been studied in 

this thesis. The technique uses the ANN based on GENE approach to predict the process 

behaviour during load variations ofMSF desalination plant including the brine levels in the 

first and last stages. The neural networks are capable of providing a nonlinear model that 

explains the relationship between input-output variables. The two main distinctions of this 

learning algorithm (GENE) are: (1) no saturation for network nodes is exhibited to avoid 

the ultimate paralysis of the entire MFN during learning, (2) Global convergence can be 

achieved by keeping the direction of the gradient constant, this avoids the local minima 

problem. These properties have improved the ability of the network to be trained with 

additional data in an effective manner. The additional training ability is studied in this 

thesis for the prediction of the various controllers response due to external disturbance on 

the MSF desalination plant. 

Brine levels prediction by ANN s 

Current research on using ANN for brine level prediction is mostly restricted to \ Ｑｆｾ＠

trained by the standard BP. Subject to the availability of data from empirical simulators. 

successful simulations have been achieved. For MSF plants, persistent excitation is 
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required to be performed on the system, particularly to the steam/top brine temperature. 

However, two modes of control have been studied. One is the smooth load yariation 

between minimum and maximum load condition, the other is a disturbed plant mode of 

operation. For both cases, GENE approach for ANN is shown to give satisfactory results 

in prediction of the process behavior including the brine levels as compared to the 

standard BP. For 16 stages MSF plant, ANN with all inputs/outputs can be trained easily 

and perform accurate predictions of the brine levels. In fact it is found that for the dynamic 

mode using the GENE approach subject to additional training using additional training 

data, reasonable, accurate and improved prediction of controllers response including the 

brine level controller can be achieved. 

Although some preliminary successful results were reported in this thesis, some inherent 

difficulties exist with the use of ANN s:-

• It takes very long time to generate training examples. 

• The predicted brine level and the controller response can be pessimistic or optimistic. 

Future Work 

Future work for the development of these techniques would be to study the application of 

GENE approach for ANN to improve the performance and the reliability of MSF plant 

Additionally to compare the GENE approach to other types of neural networks such as 

the recurrent networks. 



Appendix I 

Mathematical models used to assist the set point sequence change at the plant in Abu 

Dhabi (U.A.E.) for 16 stage (13 recovery + 3 reject) MSF units are described in the 

following: 

Three mathematical models are adopted; 

• The first model is used for fouling factor calculation, by dividing the evaporator into 

groups of three stages (five for the recovery section, one for the reject section) Using 

the temperatures measured at the tube bundle side for each three stage (6 + 1 on the 

brine heater), with the brine temperature for each stage, with the distillate space 

temperature of the last stage of each group, and using the heat exchange equation for 

each group. By this it is possible to calculate the brine temperature at the tube bundle 

inlet, knowing the temperature of the condensing steam and the brine temperature at 

the tube bundle outlet. The measurement is made for each group of three stages, the 

model is used to calculate the outlet temperature from the group by applying 3 

consecutive equations and comparing the result with the measured value. The model is 

solved iteratively using Newton method with an initial guess or later using the last 

fouling factor calculated. 

• The second model is a short cut model used for simplified calculation of the set points . 

The model calculates an approximate set points for the TBT and the recycle brine flow 

rate values that must be set to obtain the requested production (fixed running 

conditions); and the values of other process variables as flow rate and temperatures. 

using the energy and mass balance equations and the overall heat exchange equations 

The recovery and the reject sections are assumed as single blocks. The method used is 

based on a repetitive calculation and on the use of the operation curves 
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• The third model is a detailed mathematical model for each stage of the desalination 

unit. The variation of the fouling degree is input from the fir st model. A description of 

the equations involved in the calculation is in the follo wing, 

Mathematical model equations 

The mathematical model is based on the resolution of a system of linearized equations, as 

follows (see fig below): 

Wv, 
I 

Hv, 
I 

WV i+1 
Brine Recirculation 

inside tubes 

1 
HVi+1 

__ ｾ＠ __ ｾ＠ __ ｾ＠ ｾｲ］ｾ＠ __ --____ _ 
Condenser 

Tubes 

Wr 

Wd 
I 

Td 
I 

Ts, 
I 

Overall heat balance 

• 

i Wd i+1 

-
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Heat exchange equation of the upper part of the stage 

T -T 
ｾＮ｣ｰＧｩＮ＠ 1'" - W . cpr l' T = U .. A r, ｾＭｉ＠

I r 1+ r,+l 1 I • T - T 
In c· " 1 I ｉｾ＠

Recovery section 

T -T 
Cj 'i 

Reject section 
T -T 

Wf . CP'i+1 . 1'" - Wf . cpr+2 . T = U. A. 'i+1 'i-:: 
1+1 1 'i+2 I ｦｾ＠ T - T 

In Cj ＧｩｾＺＺ＠

T -T 
Cj 'i+1 

with the following boundary conditions: 

in the first stage I; = Tmax 
I 

in the last stage 1; = Tsw 
22 

in the last recovery stage and in the first reject stage 

in the recovery stage in the last reject stage 

where 

I; Flashing brine temperature 

r; distillate temperature 

ｾ＠ recirculation brine (feed water) temperature in tubes 

ｾ＠ flashing brine flow rate 

w,. recirculating brine flow rate 

Wf feed water flow rate 

ｾＮ＠ steam flow rate 

H" steam enthalpy 

U overall heat exchange coefficient 

A stage heat exchange surface 

cps, cpd, cpr specific heat capacity 
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