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Abstract

There is a growing literature on the realized volatility (RV ) forecasting of
the asset returns using the high-frequency data. We explore the possibility
of forecasting the RV with the factor analysis; once considering the signi�cant
jumps. A real high-frequency �nancial data application suggests that the factor
based approach is of signi�cant potential interest and novel.
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1 Introduction

Recently, there has been increasing interest in forecasting methods that utilize large
high frequency data sets. Andersen and Bollerslev (1998), Andersen et al. (2003),
Barndor¤-Nielsen and Shephard (2002) (termed BNS henceforth), among others, ad-
vocated the use of nonparametric realized volatility (RV ). The consistency of the
RV as an estimator is violated by the presence of the market microstructure noise
(henceforth �noise�) which emerges due to market frictions. Another backdrop is that
the nonparametric RV literature has concentrated less on distinguishing jump from
non jump movements. Corsi et al. (2010) reveal that dividing volatility into jumps
and continuous variation yields a substantial improvement in volatility forecasting.
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There is an alternative way of looking at these problems. The limitations of the
traditional procedures motivate our diverse approach for measuring and forecasting
the realized equity return volatility. We apply the methodology of approximate factor
modelling on the nonparametric RV and also on the realized bipower variation (BV )
when it is required after separately measuring the continuous sample path variation
and the discontinuous jump part of the quadratic variation (QV ) process. Factor
methods are very appealing and extensively used for forecasting; providing a theoret-
ical device for summarizing large data sets without running into degrees of freedom
problem, while taking into account the marginal bene�ts that increasing information
brings to forecasting. As argued by Ludvingson and Ng (2009), the �uctuations and
comovements of a large number of economic and �nancial variables are produced by a
handful of observable or unobservable factors, which in this case represent the omit-
ted unobservable factors in the noise. Our new factor-based realized volatility model
(FB �RV � J) �ts well for large dimensional panels.

2 Theory

The dynamics of the logarithmic price process, pt, is usually assumed to be a jump-
di¤usion process of the form:

dpt = �tdt+ �tdWt + dJt (1)

where �t denotes the drift term with a continuous and locally bounded variation, �t
is the di¤usion parameter and Wt is a standard Brownian motion. Jt is the jump
process at time t, de�ned as Jt =

PNt
j=1 ktj where ktj represents the size of the jump

at time tj and Nt is a counting process, representing the number of jumps up to time
t. The QV of the price process up to a certain point in time t is:

QVt =

1Z
0

�2sds+
NtX
j=1

k2tj (2)

where
1R
0

�2sds = IVt is the integrated variance or volatility. Thus, QV has two parts;

the di¤usion component and the jump component. The two components have a di¤er-
ent nature and should be separately analyzed and modelled. The IV is characterized
by persistence, whereas jumps have an unpredictable nature.
Let the interval [0; t] split into n equal subintervals of lengthm. The jth intra-day

return rj on day t is de�ned as rj = pt�1+jm � pt�1+(j�1)m . QVt can be estimated
by the realized volatility, or variation, (RVt ), de�ned as (Andersen and Bollerslev
1998):

RVt =
nX
j=1

r2j
p�! QVt; for m �! 0 (3)

where
p�! stands for convergence in probability. Hence, in the absence of discon-

tinuities and noise the RVt is consistent for the IVt. Most of the jump detection
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procedures are based on the comparison between RVt and a robust to jump estima-
tor. To highlight, none of these procedures can test for the absence or presence of
jumps in the model or the data generating process. Hence, it is di¢ cult to judge
whether the realization of the process is continuous or not, within a certain time
interval or at a certain moment without a jump test. We turn now to the jump
detection methods.

2.1 Jump Tests

We use two tests, the adjusted ratio statistic of BNS (2006) and the Lee and Mykland
test (Lee and Mykland, 2008; termed LM henceforth), in order to check whether the
two tests give consistent results. BNS test tells whether a jump occurred during
a particular day and how much the jump-squared contributes to the total realized
variance, i.e.

R t
t�1 J

2
s dqs=RVt: The signi�cant jump component of RVt is:

bJt � sign(rt)�q(RVt �BVt)� It;(ZJ(bv)���1� ) (4)

where BVt = 1:57
Pn

j=2 jrjj jrj�1j. BNS test can only identify days that contain
jumps. Hence, we use the �intra-day�LM test which has the additional capability of
identifying speci�c returns that can be classi�ed as jumps. We compute the LM test
statistics for every moment tj within a trading day and then pick up the maximum
statistic as the �nal test for that day to determine whether both tests are consistently
detecting the presence of jumps. We e¤ectively observe the consistency in both
methods.

2.2 Model

We now put the idea of separately measuring the jump component and continuous
variation. The contribution to the QVt process due to the discontinuities in the
underlying price process can be estimated by:

RVt �BVt !
NtX
j=1

k2tj ; for m �! 0 (5)

Under this central insight and based on the above mentioned test statistics and
threshold requirements, we use BVt in our analysis if we detect jumps in the data, oth-
erwise RVt: So, Ct = It;(ZJ(bv)<��1� )RVt+ It;(ZJ(bv)���1� )BVt: This recognition motivates
our model. We propose that our nonparametric jump-free �realized�measure can be
decomposed into the common and idiosyncratic components. We relate the common
component to unobservable �nancial characteristics, in particular, to cross sectional
correlation in pricing errors. For simplicity, we abbreviate our model FB �RV � J :

hit = �
0

ift + uit; (6)

t = 1; : : : ; T and i = 1; : : : ; N

where hit, is the realized measure, which is the element in the tth row and ith column
of the data matrix, T � N: ft is a r�dimensional vector of common factors with
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t = 1; : : : ; T and �i refers to the ith row of the corresponding matrix of factor loadings.
�
0
ift = Wit is the set of common components. In addition, uit is the idiosyncratic
component of hit. We assume that in general the idiosyncratic terms are also weakly
dependent processes with mild cross-sectional dependence. �i and ft are clearly not
jointly identi�ed since the factors can be pre-multiplied by an invertible r� r matrix
without having to make changes in the model. The most crucial point here is that
r << N , so that substantial dimension reduction can be achieved.
Factor identi�cation and estimation of (6) is based on the set of assumptions that

are used in Bai and Ng (2002, 2006). Estimation is divided into steps; we start with
determining the number of factors, which is followed by estimating them along with
the loadings. We estimate common factors in large panels by the method of asymp-
totic principal components. This approach �ts well for the large panel of realized
volatilities because it does not su¤er from the curse of dimensionality problem.

2.2.1 The Number of Factors

We now focus on checking robustness with respect to the number of factors and con-
sider two approaches; Bai and Ng (2002) information criteria forming a nonparametric
method to determine the statistically important factors and the Onatski (2010) esti-
mator described by an algorithm named edge distribution (ED). Kapetanios (2010)
suggests a method of the determination of the number of factors using a bootstrap
method, which is robust to considerable cross-sectional and temporal dependence,
but we prefer to follow a simpler approach by Onatski (2010). As it is shown in
the empirical application, the two methods indicate that there exist three common
factors.

3 Empirical Application

The data used in this paper are extracted and compiled from the Trade and Quote
(TAQ). We use 50 largest capitalization stocks included in the S&P500 index. The
data consists of full record transaction prices from January 2007 to December 2010.
As in Müller et al. (1993) linear interpolation of logarithmic �ve-minute returns are
used in all measures. We use a signi�cance level of � = 0:1% to detect jumps and
construct the series for Jit, RVit, BVit. We �nd non-negligible number of signi�cant
jumps in our series.
As common factors are unobserved, we can apply the asymptotic principal com-

ponent method to extract the r largest eigenvectors from bhbh0 ;bh = [h1; : : : ; hT ]. We
use the Bai and Ng(2002) panel decision criteria and �nd rmax = 3, shown in Table
1.
The ED estimator grants the same number of factors, a decent result for the

robustness check. In addition, the regression results from equation (6) give a good
estimate with an average R2 value of 0:8315 for the 50 stocks in consideration. Re-
specting the fact that underestimation of the number of factors may be more chal-
lenging than its overestimation, we try di¤erent numbers of factors. We observe that

4



Table 1: Selection Criteria for Common Factors

r PC1(r) PC2(r) IC1(r) IC2(r)
0 0:3186 0:3176 �2:1918 �2:1848
1 0:1871 0:1804 �2:8397 �2:8257
2 0:1061 0:1075 �3:5567 �3:5288
3 0:0922 0:0938 �3:7890 �3:7541
4 0:8666 0:8666 �0:8506 �0:8506

adjusted R2, both in individual stocks and on average, decreases gradually with an
increase in the number of factors.
We proceed with a thorough forecasting competition, comparing the FB�RV �J

model with the HAR model of Corsi (2009) and HAR-RV-J model of Andersen et
al. (2007) for three forecasting horizons, two loss functions and R2 of the Mincer-
Zarnowitz (MZ) regressions. In addition, for comparison purposes, the standard
GARCH (1,1), AR(1) and AR(3) models are added. The HAR regresses RV on three
terms: the past one day, �ve days and 22 days average RV s. We also think about a
variation of Corsi�s (2009)�s model by incorporating factors into the regression. We
abbreviate the resulting model F-HAR-RV, and after several combinations, the best
results are obtained with only daily and weekly factors:

RV dt;t+q = �dRV dt�1;t + �
wRV wt�5;t + �

bwRV bwt�10;t + �
twRV twt�15;t + �

mRV mt�20;t (7)

+b�d0ebf (d)t + b�w0ebf (w)t + �dt;t+q

The HAR-RV-J model of Andersen et al. (2007) is:

RVt;t+h = c+ �
(d)RVt + �

(w)RVt�5;t + �
(m)RVt�22;t + �

(j)Jt + �t+1 (8)

where Jt+1(m) = max [RVt+1(m)�BVt+1(m); 0] ; the authors do not refer to any
jump tests. Obviously, the di¤erence RVt � BVt may be non-zero in �nite samples
due to sampling variation even if no jump occurred during period t, which explains
the rationale behind our decision to use the tests to identify the signi�cant jump
component mentioned in Section 2:1.
In order to evaluate the volatility forecasts, a benchmark IV has to be assumed,

as in empirical applications the true one is latent. Hence, the standard practice is to
use the best available estimate as the true IV .1 Part of the literature on assessing the
forecasting performance of daily models (see Hansen and Lunde, 2006) recommends
using RV to evaluate forecast accuracy and we follow in their footsteps. The out-of-
sample forecasts are obtained by estimating rolling models, with 85 days as a rolling
window size.2 Then, we directly compare the forecast models by testing the null
hypothesis of equal predictive accuracy with the Diebold and Mariano (1995) (DM)
statistic.

1Andersen et al. (2003) and Corsi (2009) use the RV estimates as true IV .
2Nowadays there is no consensus about which method to use in order to �nd an optimal rolling

window size (Pesaran and Timmermann, 2007).
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3.0.2 Comparing Predictive Accuracy

In this subsection, each competing model is �tted to examine the out-of-sample fore-
cast accuracy using the 50 stocks from S&P500, while considering multiple prediction
horizons, hi;t+q for q = 1; 5; 10 days. The main tool for forecast evaluations are ex-
pected losses. Patton (2011) proposes a family of robust loss functions and he suggests
RMSE when comparing two imperfect forecasts the ranking can change depending
on the choice of loss function.

Table 2: Forecasting Results
Comparison of the out-of-sample performances of the 1,5 and 10 day ahead forecasts of FB-RV-J,

F-HAR-RV, HAR-RV, HAR-RV-J, GARCH(1,1), AR(1) and AR(3). Performance measures are the

minimum, maximum, and average values of the root mean square error (RMSE), the mean absolute

error (MAE), and the averageR2 of the Mincer Zarnowitz regressions. The best model is in bold.

q = 1

RMSE MAE R2

Competing Models Min Max Average Min Max Average Average
FB-RV-J 0.9168 4.4540 1.6580 0.3595 1.7243 0.8325 0.6946
HAR-RV 1.9171 5.3187 2.7999 1.5134 3.8875 1.9141 0.3931
F-HAR-RV 1.3115 4.4811 2.0467 0.7662 1.9593 1.6891 0.5071
HAR-RV-J 1.1368 4.9662 2.4534 0.4167 2.7637 1.2965 0.4639
GARCH(1,1) 2.8029 7.1083 6.4997 2.5920 5.6712 3.8002 0.1441
AR(1) 4.4660 7.5482 8.4430 4.0894 7.1776 4.4962 0.1213
AR(3) 4.7251 10.1483 7.5060 3.6947 6.1502 4.0924 0.1129

q = 5

RMSE MAE R2

Min Max Average Min Max Average Average
FB-RV-J 1.0102 4.5865 1.6550 0.3625 2.2274 0.7963 0.6541
HAR-RV 2.8812 5.3187 3.4627 2.0678 3.8875 2.5769 0.3140
F-HAR-RV 2.5980 5.1048 2.7698 1.4561 3.3151 1.7665 0.4707
HAR-RV-J 1.9442 4.7432 2.9807 1.3025 2.5860 1.8267 0.4159
GARCH(1,1) 4.3810 8.9727 8.3229 4.1561 7.4401 5.4456 0.1108
AR(1) 6.1546 9.4417 10.3978 5.7539 9.0480 6.1878 0.0933
AR(3) 6.4298 12.2166 9.3975 5.3331 7.9513 5.7559 0.0868

q = 10

RMSE MAE R2

Min Max Average Min Max Average Average
FB-RV-J 1.0313 4.6980 1.4049 0.3956 2.4233 0.6427 0.5335
HAR-RV 3.1313 5.3337 3.8213 1.9141 3.8484 2.6493 0.2632
F-HAR-RV 2.5589 5.2253 2.9746 1.4561 3.0289 2.0527 0.4307
HAR-RV-J 2.2064 4.8878 3.4386 1.1759 3.0831 2.1672 0.3859
GARCH(1,1) 5.0820 10.3154 9.5743 4.8260 8.5690 6.2952 0.0775
AR(1) 7.1037 10.8497 11.9404 6.6467 10.4018 7.1409 0.0652
AR(3) 7.4170 14.0123 10.8005 6.1667 9.1515 6.6488 0.0607

We grid search over the evaluation of the forecast accuracy and consider MAE,
RMSE, and R2 of the MZ regressions (Table 2). Three main conclusions are extracted
from the results. The di¤erence in forecasting performance between the standard
models and the ones using factors that capture the persistence of the empirical data
is evident. The FB�RV �J has the smallest RMSE and MAE but the largest R2 of
the MZ regression among all models, followed by F-HAR-RV, HAR-RV-J, HAR-RV,
GARCH (1,1), AR (3) and AR (1). So, in terms of R2, FB � RV � J forecasts are
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more accurate than the others. It turns out that, the FB � RV � J model steadily
outperforms the others at all three time horizons considered.
The inference on the statistical signi�cance of the RMSE of all models compared

to the FB�RV �J benchmark is performed using the DM test, with a Newey-West
covariance estimator. In Table 3, considering the one step ahead column, the HAR-
RV is favored compared to the benchmark only in 3 out of 50. On the other hand, the
number of rejections in favor of our model is 43 out of 50. Hence, the percentage of
rejections of the null hypothesis of equal prediction errors indicates that FB�RV �J
is the leading model, particularly in the further step ahead forecasts. We can observe
the improvement in the results especially when separating continuous and signi�cant
jump components, showing the relevance of including this criterion in the analysis.
Overall, we �nd that a large proportion of the RMSEs of the factor based models are
statistically signi�cant, con�rming that the factors tend to improve the estimation
and forecast performance of the realized estimators.

Table 3: Diebold Mariano Test Results
Table reports the DM test results at the 10% signi�cance level. FB-RV-J is the factor based RV model, HAR-

RV is the HAR model of Corsi (2009), F-HAR-RV is the HAR model with factors, HAR-RV-J is the model of

Andersen et al. (2007). The forecasting exercise is performed using a rolling window of 85 days. DM1 and DM2

refer to the LHS and RHS of the test, respectively.

q = 1 q = 5 q = 10

DM1 DM2 DM1 DM2 DM1 DM2
HAR-RV 3 43 1 46 1 46
F-HAR-RV 4 39 3 41 2 42
HAR-RV-J 4 40 3 39 1 40
GARCH(1,1) 1 44 0 45 0 48
AR(1) 0 45 0 47 0 49
AR(3) 1 43 0 44 0 47

In Table 4, we also provide DM test results for one stock only (IBM) to save the
space.3 In addition to the benchmark analysis, we present the pair wide test results
of the competing models. The F-HAR-RV is preferred when it is compared with the
HAR-RV-J and HAR-RV, pointing out how factors can enhance the results. The DM
test results are generally in line with the MAE and RMSE; the FB � RV � J is
performing signi�cantly better than the others.

3All other results for the rest of the stocks are included in the working paper version.
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Table 4: Diebold Mariano Test Results (IBM)
Table reports the DM test results, the * indicates which model is favored. FB-RV-J is the factor based RV

model, HAR-RV is the HAR model of Corsi (2009), F-HAR-RV-F is the HAR model with factors, HAR-RV-J

is the model of Andersen et al. (2007). The forecasting exercise is performed using a rolling window of 85 days.

So, if two forecasts A and B; respectively exist as byA
t+hjt and byBt+hjt, then using the forecasts, there would be two

loss functions which are de�ned as lAt = (yt+h� byAt+hjt)2 and lBt = (yt+h� byBt+hjt)2; where losses do not need to
be MSE. Accordingly, Diebold Mariano (DM) is implemented as a t�test for E [�t] = 0; where �t = lAt � lBt ; and

H0 : E [�t] = 0; and HA
1 : E [�t] < 0; HB

1 : E [�t] > 0: The sign indicates which model is favoured. Therefore,

reject if jtj > C�, where C� is the critical value for a 2-sided test using a normal distribution with size �: If

signi�cant, reject in favour of model A if test statistic is negative, or reject in favour of model B if test statistic

is positive.

Competing Models q = 1 q = 5 q = 10

FB-RV-J� vs HAR-RV -5.5927 -6.0222 -7.7834
FB-RV-J� vs HAR-RV-J -4.1660 -5.4430 -5.0518
FB-RV-J� vs F-HAR-RV -3.9344 -5.3484 -4.6222
HAR-RV-J vs F-HAR-RV� 2.7269 5.8283 -2.5538
F-HAR-RV� vs HAR-RV -4.5503 -4.8250 -6.6222
HAR-RV vs HAR-RV-J� 3.8081 5.0859 6.0755

4 Concluding Remarks

This paper examines the role of approximate factors in forecasting future RV . For
an enhanced forecasting performance, we begin with identifying the discontinuous
components using the jump tests before applying factors. We then relate the common
component to the unobservable �nancial characteristics. Both on the methodological
and substantive side, our FB � RV � J model outperforms the currently available
approaches with regards to its forecast accuracy and e¢ ciency at various prediction
horizons. Overall, we believe that our results are appealing and complement the
burgeoning RV literature.
Acknowledgments: We have greatly bene�tted from comments by Oliver Lin-

ton. We are also grateful for advice from Fulvio Corsi, as well participants in the
CEF, 2010 meeting in London. The usual disclaimer applies.
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