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ABSTRACT

The success or failure of a derivatives (futures or forward) contract is determined by its ability
to perform its economic functions efficiently, and therefore, to provide benefits to economic
agents, over and above the benefits they derive from the spot market. These economic functions
are price discovery and risk management through hedging. A considerable amount of empirical
research has been directed towards examining these functions in different financial and
commodity derivatives markets. The evidence however, on the over-the-counter FFA market is
very limited. This thesis therefore, by investigating these issues provides new evidence in the
literature for a forward market with some unique characteristics such as the trading of a service.
Our empirical results can be summarised as follows. First, the FFA contracts perform their price
discovery function efficiently since forward prices contribute to the discovery of new
information regarding both current and expected spot prices. Furthermore, most FFA contracts
contribute in the volatility of the relevant spot rate, and therefore, further support the notion of
price discovery. Second, the introduction of FFA contracts has not had a detrimental effect on
the volatility of the underlying spot market. On the contrary, it appears that there has been an
improvement in the way that news is transmitted into prices following the onset of FFA trading.
Third, FFA prices fail to reduce market risk to the extent evidenced in other markets in the
literature and, hence, the FFA market does not perform its risk management function
satisfactorily; this is thought to be the result of the lack of the cost-of-carry arbitrage
relationship of storable assets that keeps spot and derivatives prices close together. Fourth, there
seems to be a positive relationship between bid-ask spreads and expected price volatility in
most FFA trading routes. Finally, in the routes where the cointegrating vector is restricted to be
the lagged basis, the VECM generates more accurate forecasts than the VAR model and in the
routes where the cointegrating vector is not restricted to be the lagged basis the VAR generates
more accurate forecasts than the VECM model.

JEL Classification: G13, G14, C32.
Keywords: Unit Roots, Cointegration, Vector Error-Correction Models, Multivariate and
Univariate GARCH Models, Price Discovery, Volatility Spillovers, Derivatives Trading and
Volatility, Hedging, Time-Varying Hedge Ratios, Bid-Ask Spreads, Forecasting, Over-the-
Counter Market, Forward and Futures Markets, Shipping.
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CHAPTER 1- INTRODUCTION

1.1. INTRODUCTION

The aim of this thesis is to provide further evidence, which will enhance our understanding of

how the Forward Freight Agreement (FFA) derivatives market, of the dry-bulk sector of the

shipping industry, performs its economic functions by examining five important empirical

areas: First, to investigate the price discovery function of the FFA market. The empirical

analysis consists of two different testable hypotheses; the unbiasedness hypothesis, and the

lead-lag relationship of spot and FFA prices in returns and volatilities. Together they constitute

the level of efficiency of the FFA contract as a hedging vehicle against freight rate fluctuations.

Second, to examine if FFA trading, by encouraging speculation, has impacted the volatility of

the underlying spot market. Third, to examine the risk management function of the FFA

contract by measuring its hedging effectiveness. Fourth, to investigate the relationship between

bid-ask spreads and anticipated volatility of the FFA market. Finally, the forecasting

performance of spot and FFA prices is examined in generating short-term forecasts.

This thesis is of great importance for market agents in the dry-bulk freight market, which need

to cover the freight risk exposure that they face. If FFA prices are to fulfil their price discovery

role, they must provide accurate forecasts of the realised spot prices, and consequently, they

must provide new information in the market and in allocating economic resources.

Understanding the process by which new information is incorporated into current spot and FFA

prices can allow market agents to use the leading market as a price discovery vehicle, since

such information may be used in decision making. Moreover, market agents whose physical

operations concentrate on specific trading routes can benefit from using optimal hedge ratios

that minimise their freight rate risk. Thus, a better understanding of the dynamic relation of spot

and FFA prices and its relation to the basis will provide to these agents the ability to use

hedging in a more efficient way. Finally market agents can benefit from having accurate short-

term forecasts of the spot and FFA prices, since availability of such forecasts will enable them

to design more efficient trading strategies.
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The special features of this market, in comparison to the existing literature on futures and

forward markets, are: (i) the non-storable nature of the underlying commodity, being that of a

service. The theory of intertemporal relationships between spot and derivatives prices of

continuously storable commodities is well developed (Working 1970), in contrast to that of

non-storable commodities (e.g. freight services). The non-storable nature of FFA market

implies that spot and FFA prices are not linked by a cost-of-carry (storage) relationship, as in

financial and agricultural derivatives markets. Thus, inter-dependence between spot and FFA

prices may not be as strong as for storable commodities; and (ii) the asymmetric transactions

costs between spot and FFA markets. These costs are believed to be higher in the spot freight

market (in relation to the FFA market) as they involve the physical asset (vessel).

In forward markets, to the best of our knowledge, there have been only few studies (with the

exeption of currency forwards) investigating the economic fLuIctions of Over-The-Counter

(OTC) derivatives contracts, primarily due to the unavailability of data. In contrast in futures

markets there is a plethora of similar studies. The possession of daily data (bid and ask quotes)

that were manually gathered and processed in an electronic format and the use of critically

selected econometric techniques enable us, for the first time, to introduce empirical evidence for

the price discovery, risk management, and forecasting performance of the FFA market. The

uniqueness of this thesis lies in the fact that its concern is with a market that has been subject to

extremely limited, if any, coverage.

The purpose of this chapter is to provide an introduction to the thesis and to familiarise the

reader with the concepts and terms used in shipping finance and more specifically in the

shipping freight derivatives business. It is divided in four main sections where each section

considers the following issues. The first section describes the theory and practice of hedging

financial risks. It presents the types of market participants, the alternative theories of hedging, it

introduces the concept of basis and basis-risk and concludes with the measures of hedging

effectiveness. The second section presents the use of financial derivatives in the shipping

industry. It provides a historical background of their evolution in this market and focuses on

hedging the freight market risk using freight derivatives.

The third section presents the characteristics and specifications of the unique FFA market with

the underlying asset to be shipping trading routes from either, the Baltic Panamax Index (BPI),
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the Baltic Capesize Index (BCI), or the Baltic Handymax Index (BHMI) for the dry-bulk sector

or from the Baltic International Tanker Routes (BITR) index for the tanker sector. It examines

its use, its advantages and disadvantages and its relation with the standardised exchange-listed

Baltic International Freight Futures Exchange (BIFFEX) contract, which was trading until April

2002. Finally, this chapter concludes by presenting the research areas that are investigated; the

price discovery function of the FFA market, the impact of FFA trading on the volatility of the

underlying spot market, the risk management function of the FFA market, the relationship

between bid-ask spreads and expected FFA volatility and forecasting the spot and FFA prices.

1.2. THE THEORY OF HEDGING

The core function of the financial system is to facilitate the allocation and development of

economic resources, both spatially and across time, in an uncertain environment (Merton,

1990). The economic function of financial markets can be seen in three dimensions: time, risk,

and information. Borrowing and saving are the major functions of the financial systems in order

to achieve an efficient intertemporal allocation of funds (Arditti, 1996). The intertemporal

nature of financial decisions implies uncertainty. Risk is, therefore, an inherent characteristic of

financial decisions. The capital market provides a wide range of instruments or institutional

arrangements to either diversify risks (hedge), i.e. to eliminate risks for the society as a whole,

or to (re)allocate the undiversifiable part of the risks among households and firms, from those

who want to avoid risk to those who are willing to accept risk.

The origin of the term hedging is unclear, but it appears to derive from the use of hedges to

form a protective or defensive barrier around property. In business context, the term means "to

secure oneself against a loss on an investment by investing on the other side". The losses an

investor seeks to offset (neutralise) are the direct results of adverse price level changes

(fluctuations) through time of his investment (Arditti, 1996). Hedging is therefore insuring

(protecting) against changes in the market so that the buyer and seller in the market will be

protected against any adverse changes in pricesl . In this way the hedgers take an equal but

'It should be noted that some risks cannot be hedged perfectly with derivatives instruments, such as default risk,
which is the risk of one participant that the other counterparty may default, or quantity risk, which is the
uncertainty about the quantity that will be sold or bought at some future date.
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opposite in direction derivatives position to the position, which they are exposed to in the

physical market. Before implementing a hedge, various factors should be considered:

identification of risk exposure, calculation of potential risk exposure, selection of hedging

instrument, calculation of the size of the hedge, and finally monitoring the hedge (Boland,

1999). Companies and individual investors can use modern risk management instruments in

order to hedge their risks. These instruments are usually called derivatives instruments and can

be defined simply as aggregates or bundles of contractually created rights and obligations, the

effect of which is to create a transfer or exchange of specified cash-flows at defined future

points in time (Arditti, 1996).

The quantum of these cash-flows are determined by reference to or derived from (hence the

word derivatives) underlying spot or physical markets, i.e. foreign exchange, commodities, or

from particular financial indices, such as one of the benchmark interest rates; the London

Interbank Offered Rate (LIBOR). The variety and the number of derivatives instruments are

enormous and the terminology used to describe them is often bewildering. However, derivatives

instruments, even in their most exotic forms can, and should be, approached not as an endless

series of discrete products but as examples of how basic financial building blocks can be

assembled to produce an almost infinite series of products. The available methods of hedging

rely upon the form of risk and the preferences of the investors. In the shipping industry, there

are several factors relating to the industry, which make it an interesting environment for

analysis of risk and uncertainty and the ways to minimise them. Shipping markets can be

characterised as capital intensive, cyclical, volatile, and exposed to the international businesses

environment.

1.2.1. Types of Market Participants

Market agents can be generally categorised, with respect to their preferences, as hedgers,

speculators, or arbitrageurs.

1.2.1.1. Hedgers

Hedgers are interested in reducing a price risk that they already face by either transferring it to

another hedger with an opposite position in the market, or to a party willing to accept and trade

the risk. They wish to hedge their financial position against any unfavourable moves in the

future. The hedger might do so to stabilise income or debt or to get a better grip on cash
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management, thereby managing different types of exposure in the market. By definition, they

are risk-averse. Normally, a hedger will hedge an existing position in the market, referred to as

cash hedge, such as interest payments from a loan to another party. However, the hedge might

also be of anticipatory nature - when a cash position is expected in the future.

1.2.1.2. Speculators

Speculators wish to take a position in the market by anticipating market volatility, which will

result in a profit for them, when they are correctly predicting directional changes in prices. They

are less risk-averse than hedgers, betting that a price will go up or betting that it will go down,

and their motivation is not to hedge any underlying physical position. They take on the risks

that a hedger wants to avoid. They use their risk capital in an attempt to take advantage of

favourable price fluctuations in the market by buying contracts when they believe prices will

rise and selling when they believe prices will fall. If they are correct they make a profit.

Speculators are often viewed with suspicion. However, they are essential to market existence,

as they are willing to take risks, thereby introducing capital to the market, ensuing its liquidity.

Speculators benefit from leverage, low transaction costs, ease of opening and closing positions,

narrow bid-ask spreads and the ability to short the market, due to their large in size positions.

Without their presence, the market would tend to move violently, reaching extreme values, as

there would be no one to take the opposite position and smooth the fluctuations. A hedger

accepts to sustain a loss on a derivatives contract, as it probably reflects profits from the

underlying asset. The speculator has no underlying asset in his portfolio and seeks profits from

the derivatives contract.

1.2.1.3. Arbitrageurs

Arbitrageurs have a similar role to speculators, they seek a risk-free profit by entering

simultaneously into transactions in two or more markets buying in the cheaper market and

selling in the most expensive market. They take advantage of temporary discrepancies in the

markets caused by time lags or temporary imbalances in demand or supply, although arbitrage

opportunities occur infrequently.
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Three criteria, taken from the London International Financial Futures and Options Exchange

(LIFFE), should be considered as the ground rules to identify whether the trader is a hedger or a

speculator:

(i) Intention: The transaction should be intended to reduce the risk exposure,

(ii) Correlation: The price of the derivatives contract and the hedged asset or liability should

show a high positive correlation so that they will move in the same direction and with

similar magnitude,

(iii)Certainty: There should be a reasonable expectation that the cash transaction will be

fulfilled.

Working (1960) categorised the possible motives of the three different market agents:

(i) Operational hedging: Companies are buying and selling on the derivatives market as

temporary substitutes for subsequent cash market transactions. This motive provides

flexibility in the business operations of the firm and price risk reduction,

(ii) Arbitrage hedging (or carrying-charge hedging): A company can arbitrage the derivatives

and the cash markets and earn a risk-free return from the predictable change in the price of

the derivatives contract and the expected future spot price,

(iii)Anticipatory hedging: Companies are buying and selling derivatives contracts in

anticipation (price expectations) of forthcoming cash market transactions.

1.2.2. Theories of Hedging

The reasons for hedging are as many as there are potential risks in the market. However, there

are three views of the nature and purpose of hedging: the traditional risk minimisation view,

where traders are seeking to reduce price risk; the profit maximisation view, where traders are

attempting to profit from expected movements of the spot price - derivatives price spread

(basis); and the portfolio approach, where traders try to reach a satisfactory risk-return trade-off

by diversification (Sutcliffe, 1997). Each of these interpretations is considered next.

1.2.2.1. Risk Minimisation

Risk minimisation refers to someone who is exposed to a risk, and wishes to reduce or remove

this exposure, as it is his primary goal. This is achieved by taking an additional investment

whose risk cancels out or offsets the initial risk. The investments of both the initial asset and the

security used to offset the risk of this asset must be of equal magnitude. The naive hedge ratio,
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which is the number of derivatives contracts bought or sold, divided by the number of spot

contracts whose risk is being hedged, in this case, is one-to-one (or unity). The price of the

derivatives contract and the price of the spot asset to be hedged must have sufficient correlation,

and therefore, losses on one position can be compensated for by gains on the other position.

Thus, the traditional approach assumes that hedging will entirely eliminate price risk during the

hedging period.

We must notice that, using futures or forward contracts, a small amount of risk remains

unhedged (tail-risk). A perfect hedge occurs when the risk of the additional investment exactly

offsets the initial risk. Unfortunately, in practice this is not a common thing. The price of the

derivatives instrument and the price of its underlying spot asset cannot have a correlation of one

for a great range of economic reasons, i.e. a change in the supply and demand conditions of the

underlying asset in the future will influence the price of the asset.

1.2.2.2. Profit Maximisation

Working (1953) was the first to challenge the traditional risk minimisation approach, arguing

that hedging is practiced not only for risk minimisation but also for other business reasons, one

of them being profit maximisation. In the context of profit maximisation a hedge can be viewed

as a spread between the short derivatives contract and the long underlying spot asset. Working

discusses four different reasons for a market agent to initiate hedging: (i) for buying and selling

decisions, where the aim is to locate a favourable price for buying and selling in relation to

other current prices and not a favourable absolute level of the price; (ii) freedom for business

decisions, where a market agent can purchase or sell lots of the commodity that would not

otherwise be possible at a favourable price level; (iii) a reliable basis for conducting storage of

commodity surpluses, where hedging allows operation on the basis by deriving that the spot

price is low in relation to the derivatives price; and (iv) because hedging reduces business risks.

Under these assumptions, the objective of a hedge is to make a profit (speculation) from

movements in the relative prices of the derivatives contract and the spot asset, and not only to

minimise risk. As a consequence, market agents must estimate optimal hedge ratios (Working,

1953).
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1.2.2.3. Portfolio Approach

Johnson (1960) was the first to develop and present the portfolio approach of hedging, using the

portfolio theory of Markowitz. A popular view of hedging is that both risk minimisation and

profit maximisation are objectives of hedgers. Under this approach, a hedger is assumed to be

risk-averse and can hold different positions of cash (long) and derivatives contracts (short) in

his portfolio with the objective of maximising the expected value of his utility function.

Therefore, the hedger will choose among the alternative portfolios on the basis of their means

(expected return) and variances (expected risk). By incorporating hedges, a market agent can

identify the lowest-risk portfolio for each level of return (optimal hedge).

After determining the assets of the portfolio and the desired level of risk and return of the

hedged position, the hedging decision can be formulated as a Markowitz portfolio selection

problem and solved with risk-aversion and expected return constraints. The efficient frontier,

i.e. feasible combinations of expected profit and risk for each level, that have maximum profit,

can be found by repeatedly solving this portfolio problem for a wide range of values of the risk-

aversion parameter.

Ederington (1979) argues that a portfolio approach to hedging is superior to both the risk

minimisation and profit maximisation approaches. An investor buys or sells derivatives

contracts in the same way he buys or sells any other portfolio of assets, according to his risk-

return preferences. Therefore, a portfolio with assets and/or derivatives contracts can be wholly

or partially hedged, depending on the risk and return an investor wants to sustain or earn,

respectively. If an investor wants more earnings, he must also be willing to take a larger risk.

Portfolio strategies offer an opportunity to the hedger to select from a range of expected returns

(diversify), and not just the traditional target of locking in existing returns, because this

approach does not require a cash position to be fully hedged (Howard and D'Antonio, 1991).

1.2.3. Basis and Hedging

1.2.3.1. Definition of the Basis

Basis can be defined as the spot price (S,) of the asset to be hedged minus the price of the

derivatives contract used (Ft). The basis is much more predictable than the individual level of

spot and derivatives prices, and can provide more information about the market conditions
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(Sutcliffe, 1997)2. A narrowing (or strengthening) basis occurs when the basis moves toward

zero and the absolute difference between spot and derivatives prices becomes smaller. On the

other hand, a widening (or weakening) basis occurs when the basis moves away from zero and

the absolute difference between spot and derivatives prices increases.

The outcome of hedges is influenced from the type of the derivatives position (long or short)

and from market conditions (contango3 or backwardation market4). If the basis is significantly

positive or negative, then opportunities may exist for arbitrage or spread trading. This type of

analysis is useful for arbitrage and hedge management because it is in general preferable to sell

forward when they are rich to cash and buy forward when they are cheap to cash. A contango

market is characterised by increasing derivatives prices as the time to delivery becomes more

distant, while a backwardation market by decreasing derivatives prices as delivery becomes

more distant. The terms contango and backwardation can be used to describe an entire pattern

of derivatives prices, from the price of the nearest month contract to the price of the most

distant month contract. A feature of the basis, which is common to both futures and forward

contracts, is its tendency to narrow when the expiration of the derivatives contract approaches.

This is known as basis convergence, where at expiration the spot and the derivatives prices are

equal.

1.2.3.2. Basis Risk and Hedging

The main purpose of hedging is to eliminate or minimise the risk exposure that is caused by

adverse price movements. This kind of exposure is called price risk and is provided by the

uncertainty of the future price levels. Besides price risk, there is basis risk which occurs from:

(i) the changes of the derivatives price in relation to the corresponding spot rates, defined in the

commodity derivatives theory; and (ii) from the changes of the derivatives price in relation to

the corresponding implied forward rates, defined in the financial derivatives theory. Basis risk

can be better predicted and controlled when following a risk management approach, instead of

2 A short hedger (short derivatives position) is said to be long the basis, while a long hedger (long derivatives
position) is short the basis.
3 Contango is the term used to describe the situation in which spot prices are lower than derivatives prices, and
consequently the basis will be negative. Forward contracts are expensive when the basis is negative and they are
cheap when the basis is positive.
4 Backwardation is the term used to describe the situation in which spot prices are higher than derivatives prices,
and consequently the basis will be positive. Thus, near forward contracts will be higher priced than distant forward
contracts.
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monitoring the level of prices. This is the reason that market agents use hedging and are able to

accept the relatively small basis risk in order to eliminate the price risk.

In practice, the magnitude of the basis risk depends mainly on the degree of correlation between

spot and derivatives prices - the higher the correlation the less the basis risk. Thus, basis risk is

defined as the variance of the basis. If basis (B) is defined as the difference between the spot

price (St) and the derivatives price (Fr):

Bt — St - Ft

Then when changes in spot and derivatives prices are not equal there will be basis risk, which is

defined as the variance of the basis:

e.a2Bt = a2
[St - Ft] = 2 — + 2 Ft - zpa(St) a(Fr)

where, a 2 = variance

a = standard deviation

p = correlation coefficient between the spot and the derivatives prices.

The last equation reveals that when the variances of the spot and derivatives prices are identical

and the correlation coefficient between spot and derivatives prices equals one, the basis risk will

be zero. Conversely, if the correlation coefficient is very low or the difference between the

variances is large, then there will be some basis risk. The basis risk should be significantly less

than the price risk in order for the hedge to be attractive. Since there is never a perfect

correlation between spot and derivatives prices, hedgers always assume some basis risk in order

to reduce their exposure to price risk5. The behaviour of the basis from the time a hedge is

placed until the time it is lifted is of considerable importance to the hedger. The very essence of

hedging involves an exchange of risk - price risk for basis risk.

5 Hull (1997) argues that hedging with futures and forward contracts work less than perfectly in practice for the
following reasons: (i) the asset whose price is to be hedged may not be exactly the same as the asset underlying the
contract; (ii) the hedger may be uncertain as to the exact date when the asset will be bought or sold; and (iii) the
hedge may require the contract to be closed out well before its expiration date.

(1.2)
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Variance (Net Gains or Losses in Hedged Position)

1.2.4. Hedging Effectiveness

1.2.4.1. The ex ante Hedging Effectiveness

An effective hedge occurs when there is a high correlation between the spot and the derivatives

prices. Thus, the hedging effectiveness can be measured by how well changes in the value of a

hedge position keep pace with changes in the value of the risk-bearing position. When the

anticipated basis risk is small relative to the expected price risk, the ex ante hedging

effectiveness is high. Therefore, the measure of hedging effectiveness (HEI ) can be expressed

as one minus the ratio of expected variance of the basis to the expected variance of the spot

prices.

HE = 1 
a-2 (BO 	

(1.3)

1.2.4.2. The ex post Hedging Effectiveness

The previous measure is based on the expectation of variances and therefore, it is used only to

judge how good a particular hedge is likely to be a priori. After a hedge is completed we can

measure the ex post hedging effectiveness:

HE2 = 1 -
Variance (Net Gains or Losses in Unhedged Position)

(1.4)

The closer HE2 is to one, the more effective the hedge.
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1.3. THE USE OF DERIVATIVES IN THE SHIPPING INDUSTRY

Not even the most casual or indifferent observer of the world's capital markets can fail to have

noticed the growth and evolution of financial instruments that address the needs of many

different end-users in a wide range of different market environments. The pace of this growth

has been explosive, being driven by an underlying demand for risk management products and

financial engineering skills that reflects the fact that the overall economic environment, within

which business is conducted, has grown more volatile and unstable. The last 20 years have

witnessed extensive securities innovation6. There are numerous lists of recent financial

innovations published by practitioners, and academics that show the wide range of financial

innovation (see Finnerty, 1988, 1992). As already indicated, the risk associated with a financial

environment, which lacks stability and is characterised by change and flux, has created a

demand for financial instruments to protect against that risk. The family of the derivatives

products best represents these instruments.

Derivatives can be traded on financial exchanges or on OTC markets in order to address more

specific needs and to be tailored to the exact business exposures. Table 1.1 presents the

differences between listed and non-listed OTC contracts. We can notice that, exchange-based

and OTC derivatives can serve the same economic functions but under different contractual

structures. Selection between them depends on the preferences and needs of the individual

investor.

Table 1.1. Listed vs. OTC Derivatives
LISTED OTC

FEATURES Standardised contracts,
maturities, contract size,
exercise type, delivery,
payouts.

Terms are flexible and negotiable, any
maturity date, varying contracts, payouts
are flexible, physical or cash settlement.

TRADING Exchange-traded, liquid. Private placement agreements, limited
liquidity.

GUARANTEE Derivatives Clearing-House. No organisation as guarantor.
Source: Collins, 1998.

6	•Finnerty (1988, 1992) claims that the period 1970-1990 is quite unique in financial history, in that "no other 20-
year period has witnessed such a burst of innovative activity".
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Both futures and forward derivatives contracts represent a binding obligation under which a

person either sells or buys a specified asset at a specified price on the contract maturity date.

The specified underlying asset of the contract is not literally bought or sold, but the market

price of that contract at maturity compared to the contract price will determine whether the

holder of the derivatives contract has made a profit or a loss (Duffle, 1989). Despite their

similarity, each instrument is designed under different contractual and legislative terms. The

contractual differences between forward and futures contracts are presented in Table 1.2.

Table 1.2. Contractual Differences between Futures and Forward Contracts
FUTURES CONTRACT FORWARD CONTRACT

Contract
Specifications

Standardised specifications of
unit, size, and price of trading.

No standardisation with
individually agreed terms and
prices.

Method of Trading Open	outcry	auction	on	an
exchange	trading	floor	during
specific trading hours.

OTC market between individual
buyers and sellers, 24 hours per
day.

Pricing Same best price available at the
time for all traders, regardless of
transaction size.

The price varies with the size of
the transaction, the credit risk. No
guarantee that it is the best.

Daily Fluctuations
Limit

There is a daily price limit for
most contracts.

There are no daily price limits.

Market Liquidity High	liquidity	and	ease	of
offsetting	a	position	due	to
standardisation.

Limited liquidity and offset due
to variable contract terms.

Payment Schedule Interim payments during the life
of the contract (mark-to-market).

A payment is made only on the
maturity date and there is no
initial cash-flow.

Clearing Operation A clearing-house deals with the
daily	revaluation	of	open
positions, and cash payments.

There	is	no	clearing-house
function.

Security A	clearing-house	assumes	the
credit	risk	and	controls	for
default risk,

The	trader's	reputation	and
collateral control for default risk,
and	the	participant	bears	the
credit risk of the	counterparty
defaulting.

Delivery on
Maturity

It	is	not	the	object	of	the
transaction and only 2% of the
contracts are delivered.

It is the object of the transaction
and over 90% are delivered.

Delivery Procedure Specific maturity dates per year
at approved locations,

Written with specific (individual
agreed) times to maturity and
locations.

Publicity of
Information

Information is publicly available. Information is disclosed to the
public.

Regulation Regulated by a government
agency.

Self-regulation.

Source: Hsu, 1996
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A futures market is an organised formal market in which a given underlying asset may be

bought or sold in the future. In theory any commodity, financial instrument, or a service could

be traded on a futures market. In practice, there are many limitations on the type of commodity,

which can be traded on a futures market, and very few new contracts proved in the end to be

successful (Gray, 1990). OTC derivatives are contracts not executed on regulated exchanges.

The classes of underlying assets, which a derivative instrument may derive its value consist of

physical commodities (i.e. agricultural products, metals, petroleum), financial instruments (i.e.

debt, interest rate instruments, equity securities, foreign currencies), indices (i.e. based on

interest rates or securities prices) or spreads between the value of such assets (Calvin, 1994).

As an example, of the contractual differences between futures and forward contracts, consider

the financial function of providing a well-diversified portfolio of equities for individual

investors. At one time, this function was best served by buying shares on a stock exchange.

However, transactions and monitoring costs as well as problems of indivisibilities significantly

limited the number of companies that could be held in almost any investor's portfolio. The

innovation of pooling intermediaries such as unit trusts greatly reduced those costs, piovided

for almost perfect divisibility, and thereby allowed individual investors to achieve vastly better-

diversified portfolios. Subsequently, futures contracts were created on various stock indices.

These exchange-traded contracts further reduced costs, improved domestic diversification, and

provided expanded opportunities for international diversification. Moreover, these contracts

gave the investor greater flexibility for selecting leverage and controlling risk. Recent further

innovations, that serve the diversification function, have intermediaries using equity-return

forward contracts to create custom contracts with individual specification of the stock index, the

investment time horizon, and even the currency mix for payments.

In the trading world there is a need to be able to plan ahead and frequently enter into

commitments to buy or sell a commodity many months in advance. The problem inherent in

international trading is that many products are subject to wide price fluctuations. Derivatives

markets exist to provide some control of this price risk. They are also very useful mechanisms

for price discovery and gauging market sentiment. Prices generated from exchange-based

derivatives markets are fully transparent because they are updated second by second as trading

occurs, enabling an open, equitable and competitive environment.
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An example of hedging with futures (or forward) contracts can be illustrated as follows: A

company which knows that is due to sell an asset at a particular time in the future can hedge by

taking a short futures position (short hedge). If the price of the asset goes down, the company

does not fare well on the sale of the asset but makes a gain on the short futures position. If the

price of the asset goes up, the company gains from the sale of the asset but takes a loss on the

futures position. Similarly, a company that knows that it is due to buy an asset in the future can

hedge by taking a long futures position (long hedge).

Financial innovation has significantly expanded the investment alternatives for traders of all

types. The value of derivatives can be understood by the role they can play for the traders.

There are essentially four roles for derivatives (Fite and Pfleiderer, 1995): (i) to modify the risk

characteristics of an investment portfolio, facilitating an efficient distribution of risks among

risk bearers; (ii) to enhance the expected return of a portfolio, depending on how efficiently

risks can be shared among investors; (iii) to reduce transactions cost associated with managing

a portfolio; and (iv) to circumvent regulatory obstacles. Moreover, the above four roles can

formulate the economic functions of derivative transactions given in Table 1.3.

Table 1.3. The Economic Functions of Derivatives Contracts
Hedging Decreasing the risk exposure from the spot position.
Transparency of markets Reducing transactions costs, reducing bid-ask spread, promoting liquidity.
Efficiency of markets If traders with different risk preferences, expectations, and attitudes buy and

sell the same instrument, information aggregation is stronger, and prices are
more efficient in reflecting new information.

Diversification Given that derivatives represent only a fraction of the cash investment, it is
easier to diversify a given amount of capital across several assets.

Contract standardisation Allowing quick execution of transactions.
Price discovery Producing more information than the information that exists in the spot

market.
Leverage Requiring only a small fraction of the investment in the underlying

securities, while participating from the volatility of the underlying.
Volume Allowing traders to benefit from movements in the market as a whole.
Liquidity Attracting new traders and new capital.
Arbitrage Increasing liquidity and stabilising basis risk.
Financial engineering New financial instruments can be created from the existing instruments.
Efficient risk allocation Transferring the risk from risk-averse traders (hedgers) to risk-takers

(speculators).
Complete the financial
markets

A market is complete if the number of states equals the number of assets
with no-redundant payoffs.

Access to asset classes Which are not available as financial investments otherwise.
Source: Gibson and Zimmermann, 1994
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Derivatives, when used in the shipping industry, allow shipowners to minimise the negative

impact of changes in interest, foreign exchange, bunker, or freight rates. Derivatives are also

used to precisely tailor investment products for shipowners. The introduction of derivatives

contracts in the shipping - transport industry is not a development of the last decade. Grain

futures were traded a century ago in the US for protecting farmers from adverse grain price

movements. Later, derivatives were used for other commodities, expanding to the financial

markets using as the underlying instruments fixed-income bonds, foreign exchange, stock-

indices, equities during the 1970s and 1980s. Market agents of the shipping industry were using

currency swaps to provide foreign currencies for the payment of newbuildings, due to the fact

that shipowners' income is in US dollars and the payments for the shipyards is mostly in

Japanese Yen.

In London the commodity futures market grew mainly during the 1880s with the creation of the

London Metal Exchange (LME) and during the 1980s with the creation of the International

Petroleum Exchange (IPE). The IPE is a futures and options exchange that lists futures and

options contracts for energy products (i.e. Brent Crude and Gas Oil). It is the second largest

energy futures exchange in the world, listing futures contracts that represent the pricing

benchmarks for two thirds of the world's crude oil and the majority of middle distillate traded

in Europe. The contracts listed by the IPE are used by producers, refiners, traders, consumers

and institutional investors across the world to either manage their inherent price risk, to

speculate on outright price changes in oil and/or to balance their portfolio of risk exposure

(Drewry Shipping Consultants, 1997).

The Baltic Exchange is the world's leading international shipping market. Two-thirds of all the

world's open market bulk cargo movement is at some stage handled by Baltic members. In

addition it is calculated that about half of the world's sale and purchase of vessels is dealt with

through firms represented at the Baltic. Altogether, this international business generates around

$2.5 billion a year in freight commissions, which are no less then 6 percent of the UK's total

invisible earnings, and tens of billions of dollars in chartering costs go through London's

banking system (Drewry Shipping Consultants, 1997).

Until April 2002, two distinct parts complemented the "futures" markets of freight derivatives

instruments, in the dry-bulk shipping industry; the organised futures exchange of the BIFFEX
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contract and the OTC market of the FFA contracts. On May 1st 1985 LIFFE launched the first

freight futures contract, the BIFFEX, through the Baltic Exchange for the dry-bulk industry,

while in October 1991 BIFFEX Options were introduced. Also October of the same year, the

OTC FFA contract was created by the shipbroking company Clarkson Securities Ltd. originally

marketing it through their joint-venture company, Clarkson Wolff. Despite the early success of

the BIFFEX contract, the trading volume during the last five years has been decreasing steadily,

where in 2001 there were very few trades. Due to this fact, LIFFE terminated BIFFEX trading

on April 2002.

Other recent developments were the creation of the Forward Freight Agreement Brokers

Association (FFABA) in 1997 by members of the Baltic Exchange, and the launch of the first

internet-based electronic trading platform, the FFAonline, which was introduced by Simpson

Spence and Young (SSY) on April 27th 2000. Moreover, the newly formed internet venture

LevelSeas launched its freight derivatives online platform during the third quarter of 2000, and

the Baltic Exchange launched its own online FFA trading system for trading dry- and wet-bulk

FFAs on October 2001. The Baltic FFA trading system responds to an increased demand from

market users to improve price transparency and credit risk management. Finally, a web-based

exchange for trading OTC freight derivatives, the International Maritime Exchange (IMAREX),

started trading during November 2001. IMAREX uses the Norwegian Options and Futures

clearing-house (NOS) for the clearing of standardised listed futures and other OTC derivatives.

It is clear that there is considerable interest in the shipping industry for the introduction of risk

management facilities and a considerable amount of time, effort and money is being channelled

into the establishment of the provision of this service.

1.4. THE FORWARD FREIGHT AGREEMENT CONTRACT

1.4.1. Forward Contracts

By using hedging instruments, market agents can secure (stabilise) their future income and

reduce their uncertainty and unforeseen volatility. The realisation that controlling the price has

become the crucial factor in the global export market has turned even the most traditional and

conservative players in the shipping industry to use derivatives instruments in order to react to

price changes and to manage their price risk. Shipping freight derivatives have the potential to

offset the risk of the dry-bulk and wet-bulk sectors of the shipping industry and its support
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industries. The shipowner or charterer can readily compare rates offered by the physical market

(spot) as well as by the alternative forward freight market. In this way market agents can locate

the best rates by hedging through this alternative market (Drewry Shipping Consultants, 1997).

A forward contract is not a recently created instrument. Outside the financial area, forward

contracts relating to commodities have long been used to protect against price risk, long in this

context equalling some 800 years, since historians suggest that forward contracts first appeared

at medieval trade fairs in the 12th century. Furthermore, forward contracts are simple in concept:

a financial forward contract is an agreement to buy or sell a given quantity of a particular asset,

at a specified future date at a pre-agreed price. Forward contracts are interesting for three

reasons: Firstly, new exotic financial instruments are created from a relatively small number of

financial blocks. One of those building blocks is the forward contract. Secondly, much

confusion still attaches to precisely what the forward price in a forward contract is indicating. Is

it the market's best and most informed estimate of what the actual current spot price of a

financial asset will be in the future, or is it something else. Thirdly, the principles used to price

a forward contract are basic principles of widespread application that informs us much about

the workings of the international capital markets in general.

The forward contract can be regarded as the most fundamental of the financial building blocks

because other building blocks, the swap contract and the futures contract, for example, can be

seen in essence as no more than variations of forward contracts. The forward contract is

normally not traded on organised exchanges but by dealers trading, directly with one another or

with their cotmterparties using the telephone, screens, faxes or the internet (Chance, 1998).

Finally, the central insight provided by Scholes and Black in 1973 in creating the classic option

pricing Black-Scholes model was that the payoff profile of an option can be created

synthetically by combining a dynamic (continually adjusting) portfolio. This portfolio would be

consisting first of forward contracts on the underlying property, which is the subject of the

option and a portfolio of riskless, i.e. Treasury or Government, securities.

Forward contracts are not as liquid as futures contracts are. If they have to be reversed or

unwound, then the value of a forward contract prior to maturity is taken to be the difference

between the forward price at which the contract was agreed initially and the spot price that

prevails in the market at the date on which the contract is unwound.
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1.4.2. Forward Freight Agreements

Whenever commodities are traded, someone in the chain between the supplier (charterer) and

his client, demanding the commodities, will be required to arrange for the transportation. The

charterer will bear a freight risk in a volatile market. If the transportation of the cargo is to

occur within a short period of time, the required freight rate can be forecasted and therefore,

estimated accurately. For any longer period the ocean transportation of the cargo will be faced

with financial exposure by the volatile freight rates. The longer the interval between the

commodity sale and the shipment date the greater the exposure. A shipowner is faced with

similar forward commitment in a volatile market.

FFA are principal-to-principal agreements, or contracts, between a seller and a buyer to settle a

freight rate, for a specified quantity of cargo or type of vessel, for usually one, or a combination

of the major trade routes of the dry-bulk and wet-bulk industries. One counterparty takes the

view that the price of an agreed freight route, at an agreed time, will be higher than the agreed

level, and he buys FFA contracts (charterer). The other party takes the opposite position, and

sells FFA contracts (shipowner). Settlement is made on the difference between the contracted

price and the average price of the spot route selected in the index over the last seven working

days.

FFA contracts are traded in an OTC derivatives market where two parties must agree to do

business with each other. That means that each party accepts credit risk from the other party.

The institutions that facilitate this market are major shipbrokers, investment banks, and other

financial intermediates in the fund management industry. The primary advantage of an OTC

market is that the terms and conditions are tailored to the specific needs of the two parties. It is

a private market in which the general public does not know that the transaction was done. The

OTC market is also an unregulated market. This gives investors more flexibility by letting them

introduce their own contract specifications in order to cover their specific needs, saves money

by not normally requiring initial, maintenance, and variation margins (common in the futures

organised exchanges — see footnote 13), and allows the market to quickly respond to changing

needs and circumstances by developing new variations of old contracts.
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As with the BIFFEX contract, until November 15t 1999, the underlying asset of FFA contracts

was trading routes of the Baltic Freight Index (BFI), where the two parties agreed a freight rate

for a particular cargo size, i.e. 52,000 tons of HSS, on a specified trade route, i.e. US Gulf to

Japan, for a designated settlement date in the future. The FFA contract (or paper trade as it has

become known) was based on one or more of the 11 routes, which made up the BFI (Table 1.4).

The FFA contract was settled by a cash payment (binding-fixture) from one party to the other.

The cash sum was representing the difference between the agreed price of the FFA and the

settlement price. The latter was determined by reference to average BFI returns of the last five

days for the relevant trade route at the time of the agreed settlement date, and therefore reflected

the level of the physical spot market at that time7.

Table 1.4. Routes, Vessels and Cargoes of the Baltic Freight Index (Jan 1985)
ROUTES VESSEL SIZE (dwt) CARGO ROUTE	 WEIGHTING

1 55,000 Light cargo US Gulf to North Europe 20%
2 52,000 HSS US Gulf to South Japan 20%
3 52,000 HSS US Pacific Coast to South Japan 15%
4 21,000 HSS US Gulf to Venezuela 5%
5 35,000 Barley Antwerp to Jeddah 5%
6 120,000 Coal Hampton Roads to South Japan 5%
7 65,000 Coal Hampton Roads to ARA 5%

110,000 Coal Hampton Roads to ARA
8 130,000 Coal Queensland to Rotterdam 5%
9 55,000 Coal Vancouver to Rotterdam 5%
10 90,000 Iron Ore Monrovia to Rotterdam 5%

150,000 Iron Ore Tubarao to Rotterdam
11 25,000 Pig Iron Vitoria to China 5%

25,000 Phosphate Casablanca to West Coast India
12 20,000 Potash Hamburg to West Coast India 2.5%

14,000 Phosphate Aqaba to West Coast India
13 14,000 Phosphate Aqaba to West Coast India 2.5%

Notes:	 Source: Drewry Shipping Consultants, 1997
• HSS stands for Heavy Grain, Soya and Sorghum.
• ARA stands for Amsterdam, Rotterdam and Antwerp area.
• Skaw Passero is the strait between Denmark and Scandinavia.

7 In terms of the BIFFEX market, there have been efforts in the past to develop a freight futures contract. In setting
up a futures contract whose underlying commodity is freight rates, a fundamental problem had to be overcome. By
their very definition, a futures market must trade a uniform, standardised contract, in standard quantities for
delivery on specified dates in the future (complete liquidity of trading), which has good price availability
(transparency of pricing), (Gray, 1987). In a service market, as the shipping market, where no standard unit exists,
the only possible solution was to trade an index. It was not until January 1985 that a universal freight index the BFI
was conceived in order to overcome this problem. The BIFFEX contract was ready to be launched after the
introduction of the cash settlement procedure in 1985. The cash settlement corresponds for delivering the cash
value of the underlying asset at expiration.
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FFA contracts are a comparatively recent development and they stem from the creation of the

BFI and the establishment of BIFFEX in 1985, and most recently from the introduction of the

BPI in 1998 (Table 1.5), the BCI in 1999 (Table 1.6), the BHI (Baltic Handysize Index) in 1997

(Table 1.7), and the BHMI in 2000 (Table 1.8) (from October 2000 the BHMI officially

replaced the BHI and consequently, FFA trades are conducted for BHMI only).

The Baltic Exchange currently publishes four dry-bulk freight indices, providing 24 individual

dry-bulk routes in total; the BPI with 7 routes, the BCI with 11 routes, the BHMI with 6 routes

and the Baltic Dry Index (BDI) as an overall composite index of all the above. These indices

are baskets of spot freight rates designed to reflect the daily movement in rates across dry-bulk

spot voyage and time-charter rates. No specific cargo or tonnage requirements are represented,

but each route is given an individual weighting to reflect its importance in the world-wide

freight market. Another development was the averaging of the settlement period. From their

inception, the settlement for the FFA was based on the average of the last five trading days of a

given month. On November 1st 1999 this became the last seven days, which addressed a

concern by the market participants that the contracts were potentially subject to manipulation

over a period as short as five days.

In the dry-bulk sector, FFA contracts are available at present to complement the capesize,

panamax, and handymax routes. For those wishing to hedge long-term freight risk, a time-

charter FFA is tradeable with settlement based on the difference between the contract price and

the daily average of the time-charter routes from either the panamax (1A, 2A, 3A, 4)8, capesize

(8, 9, 10, 11) or handymax (1A, 1B, 3, 4A, 4B) indices. It is customary to divide the period into

monthly settlements to establish cash-flow. These routes are regularly reviewed to ensure their

relevance to the underlying physical market. The combination of time-charter routes can create

the equivalent of a period time-charter trade (Clarkson Securities, 1999).

8 As of April 3rd 2000 Route 9 renamed as Route 4.
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Table 1.5. Baltic Panamax Index (BPI) — Route Definitions
ROUTES WEIGHTINGS SIZE OF

VESSELS
DESTINATIONS

P1 10% 55,000 1-2	safe	berths/anchorages	Mississippi	River	not
above Baton Rouge/Antwerp, Rotterdam, Amsterdam.

P 1 A 20% 70,000 Transatlantic (including ESCA) round of 45/60 days
on the basis of delivery and redelivery Skaw-Gibraltar
range.

P2 12.5% 54,000 1-2	safe	berths/anchorages	Mississippi	River	not
above Baton Rouge/1 no combo port South Japan.

P2A 12,5% 70,000 Basis delivery Skaw-Gibraltar range, for a trip to the
Far East, redelivery Taiwan-Japan range, duration
60/65 days.

P3 10% 54,000 1 port US North Pacific/1 no combo port South Japan.

P3A 20% 70,000 Transpacific round of 35/50 days either via Australia
or Pacific (but not including short rounds such as
Vostochy/ Japan),	delivery	and	redelivery	Japan/
South Korea range.

P4 15% 70,000 Delivery Japan/ South Korea range for a trip via US
West Coast — British Columbia range, redelivery
Skaw-Gibraltar range, duration 50/60 days.

PA1 0% 70,000 1 safe berth Richards Bay Coal Terminal/1 safe port,
safe berth Belgium - Holland range.

Notes:	 Source: Baltic Exchange, 2002
• The PA1 is the Baltic European Coal route and does not consist an underlying asset for FFA trading.

Table 1.6. Baltic Capesize Index (BC!) — Route Definitions
ROUTES WEIGHTINGS SIZE OF

VESSELS
DESTINATIONS

Cl 5% 120,000 1 port Hampton Roads excluding Baltimore
/Rotterdam.

C2 10% 160,000 Tubarao/Rotterdam.

C3 10% 150,000 Turabao/Beilun and Baoshan.

C4 5% 150,000 Richards Bay/Rotterdam.

C5 15% 150,000 W. Australia/Beilun-Baoshan.

C6 10% 120,000 Newcastle/Rotterdam.

C7 5% 150,000 Bollivar/Rotterdam.

C8 10% - Delivery Gibraltar-Hamburg range, 5-15 days ahead
of the index date, transatlantic round voyage duration
30-45 days, redelivery Gibraltar-Hamburg range,

C9 5% - Delivery ARA or passing Passero, 5-15 days ahead of
the index date, redelivery China-Japan range, duration
about 65 days.

C10 20% - Delivery China-Japan range, 5-15 days ahead of the
index	date,	round	voyage	duration	30-40	days,
redelivery China-Japan range.

C11 5% - Delivery China-Japan range, 5-15 days ahead of the
index	date,	redelivery	ARA or passing Passero,
duration about 65 days.

Source: Baltic Exchange, 2002.
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Table 1.7. Baltic Handy Index (BHI) — Route Definitions
ROUTES WEIGHTINGS SIZE OF

VESSELS
DESTINATIONS

H1 25% 43,000 Delivery Antwerp/Skaw range trip, duration about
60/65 days, to Far East, redelivery Singapore/Japan
range (including China).

H2 30% 43,000 Delivery South Korea/Japan range for 1 Australian
or transpacific round voyage one laden leg
redelivery South Korea/Japan range.

1-13 15% 43,000 Delivery Singapore time-charter trip 65/70 days
duration via Australia redelivery Gibraltar/Skaw
range.

H4 30% 43,000 Delivery Skaw/Passero range 1/1 laden legs via US
Atlantic, US Gulf or South Atlantic, 50/60 days
duration, redelivery Skaw/Passero.

TR2 - 43,000 1SP Brazil/1SP Lisbon-Hamburg range (excluding
UK/France).

Source: Baltic Exchange, 2002

Table 1.8. Baltic Handymax Index (BHMI) — Route Definitions
ROUTES WEIGHTINGS SIZE OF

VESSELS
DESTINATIONS

MIA 12.5% 45,500 Delivery Antwerp/Skaw range for a trip about
60/65	days	redelivery	Singapore/Japan	range
including China.

M1B 12.5% 45,500 Delivery passing Canalckale for a trip about 50/55
days redelivery Singapore/Japan range including
China.

M2 25% 45,500 Delivery South Korea/Japan for 1 Australian or
trans	Pacific	round	voyage,	one	laden	leg,
redelivery South Korea/Japan range.

M3 25% 45,500 Delivery South Korea/Japan range for a trip about
60165 days redelivery Gibraltar/Skaw range.

M4A 12.5% 45,500 Delivery Antwerp/Skaw range for a trip about
30/35 days redelivery US Gulf.

M4B 12.5% 45,500 Delivery US Gulf for a trip about 30/35 days
redelivery Skaw/Passero.

Source: Baltic Exchange, 2002

Freight rates on the individual underlying trading routes are reported on a daily basis (at 11:00

a.m. London time) by a panel of eleven independent London shipbrokers to the Baltic Exchange

and the latter reports them in the market at 13:00 p.m. London time. The panel members are:

Clarkson (London), Galbraiths (London), E.A. Gibson (London), Howard Houlder (London),

Howe Robinson (London), Simpson Spence & Young (London), Arrow Chartering (London),

J.F. Dillon (Stamford), Yamamizu (Tokyo), Banchero Costa (Genoa), Fearnleys (Oslo). The

panel members are companies who (Gray, 1990):

"...are deemed by the Baltic Exchange to be of sufficient size, reputation and

integrity to be good independent arbiters of the market".
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Each member of the panel submits, to the Baltic Exchange, its daily view of the rate on each

constituent route of the Baltic indices. Each freight rate assessment is derived from actual

fixtures, or in the absence of an actual fixture from the panelist's expert view of what the rate

would be on that day if a fixture had been agreed. Then the Baltic Exchange, for each trade

route, after excluding the highest and lowest assessments of the day, takes an arithmetic average

of the remaining. The average rate of each route is then multiplied by the Weighting Factor9

(WF) to return the contribution of each route to the index. Finally, by adding all the route

contributions, an overall average index is created, for example the daily BPI.

There is no physical delivery under the contract and all positions are cash-settled. The market

agents that use the FFA contracts are from all sectors of the shipping industry. They are

shipowners, charterers, operators (fleet managers/freight traders), grain, coal and energy traders,

bankers, private and professional investors. FFA contracts can be used for:

• Hedging.

• Speculation: If a market agent has an expectation of where the market is going and if the

quoted price of a FFA contract is cheap compared to the expectation, he can buy the

FFA contract anticipating that as the future unwinds he could make money if the

expectation is correct.

• Spread play: Based on historical data, if the FFA price difference between two shipping

routes is large, a market agent can buy the cheap and sell the expensive in order to take

advantage of an anticipated return to normal differentials. This can be done between

freights in different regions, different vessel sizes, or types of trade.

• Portfolio switching: A market agent trading a particular route where he believes that the

short-term volatility is going to be low, may sell FFA contracts on the existing trade

route and buy a matching volume on a different more volatile route.

• Portfolio management of existing time-charters (a market agent using FFA contracts can

close any unwanted positions).

• Early access to newbuildings: When a shipowner commits to a newbuilding, there is a

lead-time before the ship delivers. The shipowner can bridge this gap by using FFA

contracts to cover the period before his ship delivers.

9 The WF is a constant, unique for each route, and reflects the importance of each route to the index. For example,
the WF for each BPI route is: 11.185 (route 1), 0.027 (route 1A), 7.067 (route 2), 0.015 (route 2A), 9.307 (route 3),
0.031 (route 3A), 0.023 (route 4).
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• An alternative to time chartering: Buying (or selling) a FFA contract is the same as time

chartering in (or out) without the operation risk of running a vessel.

• An alternative to Contracts of Affreightment (COA)10.

Table 1.9 shows the growth in freight covered by FFA by the shipbroking company Clarkson

Securities Ltd.

Table 1.9. Indications of Activity Growth in the FFA Market
Year Number of Deals per

Month
Number of

Counterparties
Freight Covered by
Trading FFAs ($m.)

1992 Average 2 10 0.5
1993 Average 4 18 48
1994 Average 10 25 70
1995 Average 20 35 203
1996 Average 27 52 331
1997 Average 55 86 852
1998 Average 90 118 1,114

Notes:	 Source: Clarkson  ecurrties, 1999.

• All Indications are from Clarkson Securities Ltd. They posses a market share of around 30%.

In 1999 the total FFA volume was about 1,200 contracts at something similar to 1998, with less

emphasis on the Gulf - Japan market and users focusing on other routes such as time—charter

average, Pacific and coal routes. The result was increased liquidity on these trades, particularly

after 1999's Panama Canal draught restrictions, which minimised the Gulf - Japan trades".

According to Clarkson Securities Ltd., in 2001 the total FFA volume was about 2,500 contracts:

"today's traders are relying more on sophisticated patterns of hedging and

trading...a premium on accurate forecasting and research... should prompt further

change, growth and adoption of the derivative products by the shipping industry.

There are more users, more knowledge, more products to use in risk hedging and

more sophistication among the users"

I ° The COA governs a series of voyage charters in order to transport a specific quantity of cargo between areas
within a certain timeframe and at specified intervals. The two major differences between this form of charter and a
consecutive voyage charters are that under a COA the actual ship is not precisely designated and the voyages are
not undertaken on a round-trip basis.

Taken from Lloyd's List (November 2000).
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Future prices in shipping are based on expectations, which are themselves highly fickle and

heavily influenced by where the spot rates are. Unlike physical commodities, which are

physically stored, FFA contracts, which are based on a service, have no carrying cost (no cost-

of-carry arbitrage relationship). The FFA prices must reflect expectations of where the rates

will be at the time of settlement.

Figures 1.1 to 1.4 present the near-month FFA prices against the spot prices in panamax routes

1 (voyage), 1A (time-charter), 2 (voyage) and 2A (time-charter), respectively. In routes 1 and

1A the estimation period is 1997:01 to 2000:07. In routes 2 and 2A the estimation period is

1997:01 to 2001:08. In every route the FFA and spot prices move together and the FFA capture

closely the fluctuations of the spot prices. The correlation coefficients, of FFA prices in routes

1, 1A, 2, and 2A against the corresponding spot rates are 0.965, 0.972, 0.986, and 0.985,

respectively. The correlation coefficients indicate a close relationship between FFA and spot

prices, with FFA prices in routes 2 and 2A to have a stronger relationship with the

corresponding spot. From the figures we notice that FFA and spot prices are not trending over

time.

Figure 1.1. FFA and Spot Prices in Route 1; Daily Data (16/01/97 — 31/07/00)
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Figure 1.3. FFA and Spot Prices in Route 2; Daily Data (16/01/97 — 10/08/01)
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Figures 1.5 to 1.8 present the second near-month FFA prices against the spot prices in routes 1,

1A, 2, and 2A, respectively. The estimation periods are the same with the previous graphs for

the near-month prices. The correlation coefficients of FFA prices in routes 1, 1A, 2, and 2A

against the corresponding spot rates are 0.731, 0.787, 0.838, and 0.849, respectively.

Figure 1.5. FFA and Spot Prices in Route 1 (Second near-month); Daily Data

Figure 1.6. FFA and Spot Prices in Route 1A (Second near-month); Daily Data

Figure 1.7. FFA and Spot Prices in Route 2 (Second near-month); Daily Data
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Figure 1.8. FFA and Spot Prices in Route 2A (Second near-month); Daily Data

Figures 1.9 to 1.12 present the third near-month FFA prices against the spot prices in routes 1,

1A, 2, and 2A, respectively. The estimation periods are the same with the previous graphs for

the near-month prices. The correlation coefficients of FFA prices in routes 1, 1A, 2, and 2A

against the corresponding spot rates are 0.583, 0.675, 0.735, and 0.775, respectively.

Figure 1.9. FFA and Spot Prices in Route 1 (Third near-month); Daily Data
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Figure 1.10. FFA and Spot Prices in Route 1A (Third near-month); Daily Data
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Figure 1.11. FFA and Spot Prices in Route 2 (Third near-month); Daily Data

Figure 1.12. FFA and Spot Prices in Route 2A (Third near-month); Daily Data

1.4.3. The Use of FFA Contracts in Shipping Practice

Some examples of FFA contracts can illustrate the theoretical concepts already discussed:

Example A — BPI Route 2 US GULF - JAPAN

Agreement

• 18 May 2002

• A charterer wants to lock in Gulf/Japan (Route 2) at a forward rate with dates 26/30 July at

$15.00

• A shipowner is willing to sell forward freight for similar dates at $15.00

• Shipowner: Seller of FFA

• Charterer: Buyer of FFA

• Fixed price: $15.00

• Dates: 26/30 July 2002
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• Commission: Both parties to pay the broker as agreed, basis fixed price x quantity,

i.e.$15.00 x 54,000

• Route: USG/Japan as per Route 2 of BPI

• Cargo size: 54,000 tons HSS

Conclusion

• 30 July 2002

• Settlement price: $18.1964 per ton

• The settlement price is higher than the fixed price, so the seller pays $3.1964 per ton to

buyer, i.e. $54,000 x $3.1964 = $172,605

• $172,605 is to be paid by the shipowner to the charterer.

Example B — BCI Route 4 RICHARDS BAY - ROTTERDAM

Agreement

• 8 July 2002

• FFA Buyer. European electricity producer with large import commitments

• FFA Seller. Owner wishing to hedge against declining rates in Cape sector

• Route 4 Richards Bay/Rotterdam 150,000 mt coal. Fixed price: $5.00

• Dates: 25/31 August 2002

• Commission: Both parties to pay the broker as agreed, basis fixed price x quantity, i.e.

$5.00 x 150,00 tons

Conclusion

• 31 August 2002

• Settlement price: $5.5398

• The settlement price is higher than the fixed price, so the seller pays $0.5398 per ton to

buyer, i.e. $150,000 x $0.5398 = $80,970

• $80,970 is to be paid by the shipowner to the charterer.

1.4.4. Major Participants of the FFA Market

Anyone with interest in hedging, speculation or arbitrage can use FFA contracts - shipowners,

charterers, freight traders, coal traders, grain traders, electricity producers, private investment

funds, energy groups (oil traders), financial institutions - the prerequisite being that they are

acceptable to the counterparty. Having agreed terms, the identity of the buyer and seller is
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revealed, and thereafter there is a short period in which either party can withdraw, i.e. if the one

counterparty is not satisfied with the other's creditworthiness or if one counterparty is not

fulfilling its obligations. The major FFA brokers are mostly situated in London, where the most

recent trend in this market is the combination of a well-established FFA broker together with a

financial derivatives broker. For example, Howe Robinson Co. Ltd. has teamed up with GNI

Ltd., Fearnleys A/S with Cargill Investor Services and Clarkson with Rudolf Wolff & Co.

Ltd12.

The FFABA was formed in 1997 by members of the Baltic Exchange and Freight Indices and

Futures Committee (FIFC): Clarkson Securities Ltd., Fearnleys A/S, Howe Robinson & Co

Ltd., GNI Ltd., Ifchor S.A., Mallory Jones Lynch Flynn & Associates Inc, Simpson Spence &

Young Ltd., Pasternak, Baum & Company Inc., Yamamizu Shipping Co. Ltd. The FFABA acts

within the framework of the Baltic Exchange and seeks to:

• Promote the trading of FFA contracts.

• Promote high standards of conduct amongst market participants.

• Co-operate with the Baltic Exchange to ensure the production of high quality indices.

• Provide a forum for brokers and principals to resolve problems as they arise.

• Develop and promote the use of standard contracts.

• Develop the use of other OTC and Exchange traded derivatives products for freight risk

management.

• Not only to provide tools for the freight derivatives market but also to provide credible

barometers of the freight market for physical users.

A new type of market agent that is slowly appearing in the FFA market is the shipping-bank

player. The idea that banks should want to incorporate hedges into deals has started to become

more acceptable. If a shipping company has a stream of cash-flows that moves up and down

with the market and it is financing a ship, the cash-flows to repay the loan will also move with

the market. If the company does not hedge, it may end up with a default situation in a weaker

market. The question needs to be asked whether banks should undertake deals that could

potentially go wrong in the event of a weak market. Banks should be aware of the cash-flows of

any owner before a loan is made. Increase of FFA trading by banks could be in the following

12 In all the cases the first counterparty represents the FFA broker, while the other party the derivatives broker.
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scenario: banks try to hedge against a time-charter. Time-charters are becoming rarer because

grain houses, such as Cargill, are using FFA to manage price risk. If time-charters are not so

readily available, maybe soon banks will be keen to finance ships with a hedge in place.

1.4.5. Advantages and Disadvantages of FFA Contracts

The main advantages of the FFA contracts are the following. FFA contracts can be tailored to

meet specific requirements (route, size, period, type of charters, contract quantity and rate),

whereas futures and options markets are designed to be liquid markets trading a standard

contract. The counterparties are free to introduce their own variations (i.e. part cargoes) into the

contract providing they are mutually agreed. However, greater standardisation generally leads

to increased liquidity and this reinforces the active trading on a handful of routes on generally

accepted terms. FFA contracts can also be traded on non-standard routes if a willing

counterparty can be found. The parties would need to accept and agree a fixed differential to the

most closely fitting index route, so US Gulf— China, grain, might be pro-rated to BPI route 2.

With FFA contracts (rather than time-chartering out a vessel) a shipowner retains operational

control of his vessel and at the same time is taking benefit of a spot market change. Whereas, a

charterer is free from any operational risks as a result from a time-chartering. FFA contracts

give investors considerably more flexibility in covering their freight rate risk, with lower

commissions payable to brokers; 1 percent of the principal sum (0.5 percent from the buyer and

0.5 percent from the seller) with no address commissions. The low commission structure

implies that it is cheaper to trade in and out of a FFA position prior to the settlement month than

trading in and out of a physical position, where the commissions are higher. In addition, the

simple nature of a FFA contract makes it easier to trade in and out of a position, which in turn

encourages liquidity (Drewry Shipping Consultants, 1997).

FFA contracts allow the market to respond quickly to changing needs and circumstances by

developing new variations of old contracts. There is no physical delivery involved with FFA,

they simply become a cash settlement upon conclusion of the agreed terms. There are not any

cash deposits (initial guarantee) and margin calls like futures contracts although they can be

negotiated into the agreement if the counterparties agree that this additional financial security is

appropriate. Finally, the advantage of being a private market in which the general public does
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not know that the transaction is done, prevents other traders from interpreting the size of

various trades as perhaps false signals of information.

The main disadvantage is that they are OTC instruments (principal-to-principal) and therefore

are not guaranteed by a clearing-house or open exchange market. They are not mark-to-market

(as futures contracts) and it is not easy to close (unwind) the open position by reversing the

initial position (opposite) for the same settlement month. The opposite trade will most likely be

carried out with a different counterparty and therefore the settlement obligations remain open

with the two separate counterparties, so although there is no longer any risk regarding market

movements, there are still counterparty risks (Collins, 1998). However, the difficulty of

unwinding the open positions has been minimised with the introduction of online FFA trading

systems.

Due to the fact that they are unregulated and there is no open market for OTC instruments, there

is lack of liquidity (unavailability of information, absence of a standardised contract, not every

type of voyage or vessel can be hedged) and lack of transparency (as fixtures and deals are

undisclosed), and as a consequence, several types of risk can be created (Bank of International

Settlements, 1998):

• Counterparty credit risk, which is the risk that a counterparty will fail to perform an

obligation owed to the other party.

• Liquidity risk, which is the risk that a lack of counterparties will leave a firm unable to

liquidate or offset a position.

• Settlement risk, which is the risk that a counterparty will not receive funds or instruments

from its other party at the expected time.

• Legal risk, which is the risk that a counterparty will suffer loss as a result of contracts being

unenforceable or inadequately documented.

The above types of risk must be covered by the use of collateral, close-out netting, even with

the use of other instruments (credit derivatives), or controlled by a clearing-mechanism of an

organised derivatives exchange (i.e. IMAREX). A number of recent high profile aberrations in

performance within the dry-bulk FFA sector (25 companies defaulted from FFA inception) has

led to the need of a system of financial regulation for OTC contracts. There are already moves
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to form a regulated body (Consultative Group) of brokers, committees and associations in order

to create a structure of financial discipline, i.e. the counterparties place a deposit and adopt a

marginal system similar to the futures markets.

Shipbrokers, charterers, and shipowners trading in the paper market have focused their

attention comparing the roles and uses of the OTC traded FFA contracts. The main attraction,

and possibly the potential problem for the FFA contracts, is that the parties involved only

exchange cash at the end of the contract period, which can be several months ahead. On the

BIFFEX market an account was set up and, once a position was held, money flew in and out of

the account in control by the London Clearing-House (LCH), depending on the movement of

the daily futures market13.

1.4.6. Tanker FFA Contracts

The discussion so far about FFA contracts was primarily concentrated in hedging the market

freight risk of the dry-bulk sector of the shipping industry. However, with the high amounts

involved and the underlying volatility of the tanker industry, the use of tanker FFA contracts

can be very promising. At present there is a slow development of a FFA market for wet-bulk

trades. Tanker FFA contracts are OTC principal-to-principal cash-settled agreements, which are

not subject to the financial security of a clearing-house. The tanker FFA contract is simply an

agreement between two parties, whose identities are disclosed once the deal is agreed, to fix a

freight rate on a predetermined tanker route, over a mutually agreed time period, at a mutually

agreed price.

Settlement is made against the 10 Baltic Dirty Tanker routes of the Baltic International Tanker

Routes Index (BITR) presented in Table 1.10, panel A or the 4 Baltic Clean Tanker routes of

the BITR presented in the same table, panel B. Initially, the settlement was only by an

13 Dealings on futures exchanges were conducted via a clearing-house mechanism. When a trade was transacted for
the BIFFEX contract, following the confirmation of the transaction, the counterparty to every trade, whether
bought or sold, was technically the LCH. This immediately released all buyers and sellers from any obligation to
each other and the obligation was transferred to the LCH. The trader was required to place immediately with the
LCH an initial deposit of money (Initial Margin), which was on a per contract basis and was set at a size to cover
the clearing-house against any loses which the trader's new position might incurred during the day. Moreover, the
exchange ensured that all participants were able to meet the claims arising from this continuous settlement process.
Users of the market were required to post an amount of money (Variation Margin) in order to cover the extent to
which a trading position showed a potential loss. Finally, BIFFEX contracts were mark-to-market at the end of
each trading day and the resulting profit or loss was settled on that day.
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assessment made in London by the London Tanker Brokers' Panel (LTBP) and in New York by

the Association of Shipbrokers and Agents Tanker Brokers' Panel (ASBA) calculating

worldscale rates (US$/ton equivalents for each route, which are derived assuming that a

nominal tanker functions on round voyages between designated ports) for voyage assessments

and daily-hire for time-charters. On February 1998 the LTBP launched its own tanker freight

rate assessment system as a rival to the one launched by the Baltic Exchange. The International

Tanker Freight Index (ITFI), whose main shareholders are the six members of the LTBP, plus

the four brokers in the US, is only available on subscription, unlike the BITR assessment, which

is free. The ITFI covers six routes, covering very large crude carriers, suezmax, aframax and

panamax tankers (Table 1.11). Both systems were set up to encourage FFA trading in the tanker

market, which until now, have been largely confined to the dry-bulk sector. Most market agents

agree that the tanker market should be open to freight derivatives trading, and a meaningful

index is the only way to do this. Although, the idea for the index was set by members of the

FFABA, the Baltic Exchange had been criticised by some as not being the right vehicle for

promulgating a tanker index. Its critics have said that the Baltic Exchange was perceived

predominantly as a dry-cargo market, and that it is inappropriate to produce a tanker index14.

Table 1.10. Baltic International Tanker Routes Index (BITR) — Route Definitions
ROUTES SIZE OF

VESSELS
DESTINATIONS

Panel A: Baltic Dirty Tanker Routes
TD1 280,000 Middle East to Gulf. Ras Tanura to Loop.
TD2 260,000 Middle East Gulf to Singapore. Ras Tanura to Singapore.
TD3 250,000 Middle East Gulf to Japan. Ras Tanura to Chiba.
TD4 260,000 West Africa to US Gulf. Off Shore Bonny to Loop.
TD5 130,000 West Africa to USAC. Off Shore Bonny to Philadelphia.
TD6 130,000 Cross Mediterranean Sidi Kerrir to Lavera.
TD7 80,000 North Sea to Continent. Sullom Voe to Wilhelmshaven.
TD8 80,000 Kuwait to Singapore. Mena al Ahmadi to Singapore.
TD9 70,000 Caribbean to US Gulf. Puerto La Cruz to Corpus Christi.
TD10 75,000 Caribbean to USAC. Aruba to New York.

Panel B: Baltic Clean Tanker Routes
TC1 50,000 Middle East Gulf to Japan. Ras Tanura to Yokohama.
TC2 50,000 Continent to USAC. Rotterdam to New York.
TC3 50,000 Caribbean to USAC. Aruba to New York.
TC4 50,000 Singapore to Chiba.

Source: Baltic Exchange, 2002.

14
Taken from Lloyd's List (September 2000).
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Table 1.11. International Tanker Freight Index (ITFI) — Route Definitions
ROUTES SIZE OF

VESSELS
DESTINATIONS

I 250,000 Persian Gulf to Japan, 20 to 30 days notice periods.
2 280,000 Persian Gulf to US Gulf, 20 to 30 days.
3 80,000 Persian Gulf to Singapore, 10 to 15 days.
4 130,000 West Africa to US Atlantic Coast, 20 to 30 days.
5 50,000 Caribbean to US Atlantic Coast, 7 to 10 days.
6 70,000 Caribbean to US Gulf, 7 to 10 days.

Source: London Tanker Brokers' Panel, 2001.

The panelists on the ITFI are: Clarkson Securities, Galbraith's, E.A. Gibson, Howard Houlder

(Tankers), Jacobs and Partners, and Seascope Shipping (the six members of the LTBP), and

McQuilling Brokerage Partners, Odin Marine, Poten and Partners, and Charles R. Weber

Company. The panel brokers on the Baltic Exchange are: Simpson Spence & Young Ltd.,

Braemar, ACM Capital, Lorentzen & Stemoco, Mallory Jones Lynch Flynn & Associates, and

Fearnleys. Freight derivatives brokers in London have been anxious for some time to form a

credible, international basis for assessing freight rates that could be used as settlements for

tanker FFA contracts.

The introduction of hedging with freight derivatives in the tanker industry is a major debate

between market agents. Today, many brokers are dealing with freight derivatives on a daily

basis for the dry-bulk industry. The wet-bulk industry has been ignored by that trend of the

business. The only exception was an attempt to build a similar instrument, like BIFFEX, for the

tanker industry, the Tanker International Freight Futures Exchange (TIFFEX) in 1986, which

failed due to lack of interest shown from the industry. Explanations for this converge to the

opinion that there is normally only limited interest from shipowners. Charterers, in the tanker

market, see freight risk as a small part of very little interest in their total cost (about 2%)

(Drewry Shipping Consultants, 1997). The only solution left was the tanker FFA contract, but it

was only from mid-1997 that it appeared on the tanker industry. A forward freight market could

prove beneficiary to the tanker industry because it would provide secured freight for long-term

refinery supply and greater stability within the shipping markets.
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1.4.7. OTC Derivatives and Risk

In view of the rapid growth of OTC derivatives business, numerous international groups and

regulatory agencies have studied the risks arising from OTC derivatives trading (i.e. Basle

Committee on Bank Supervision, Bank of International Settlements, Commodity Futures

Trading Commission, Securities and Investments Board, United States General Accounting

Office, amongst others). These risks include credit risk, liquidity risk, settlement risk,

operations risk and legal risk (see section 1.4.5).

Such risks are not unique to OTC derivatives transactions, but are of special concern due to the

volume, scope, and variety of OTC transactions, the degree of interrelatedness of participants,

the opaqueness and uncertain liquidity of OTC markets, and the complexity and potential

leverage of such instruments. The financial risks of such instruments must be carefully

assessed, as a weakness of one market participant can have ramifications elsewhere in the

system (i.e. as in the case of Enron). It is now generally acknowledged, by financial services

regulators, financial services providers and corporate users alike, that a key component of a

robust framework for the management of the risks attaching to OTC derivatives business is a

strong structure of risk management controls within companies active in this business.

In order for market agents in the shipping industry to safeguard their positions, they may well

terminate or restrict activities with market participants as to which there may be doubts as to the

adequacy of their management controls. Market agents must adopt a qualitative approach and

check their counterparty's business profile, geographical location, management profile, trading

track record, business history, and financial flexibility. Moreover, each company should ensure

that their counterparty:

• has the power to enter into a proposed transaction,

• is represented by an officer with actual or ostensible authority,

• is creditworthy, and

• has access to appropriate payment systems.

Derivatives brokers have incentives to monitor customers' use of derivatives to ensure that they

use derivatives to hedge and not to speculate (Hentschel and Smith, 1997). Brokers often have

access to information about counterparty characteristics that mitigates the information
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asymmetry concerning the motive behind the OTC derivatives. Specifically, the broker may

know the direction of the counterparty's operating exposure to the underlying risk factor, based

on which it can infer whether the OTC derivative contract is meant to be a hedge or not.

Moreover, it is possible to implement the simple accept/reject decision rule based on observed

counterparty credit rating (certain investment grade threshold level) that guarantees the

exclusion of speculative contracts.

More recently, however, sub-investment grade counterparties have been allowed to enter into

OTC derivatives contracts, largely due to two developments: (i) much of the business has

moved away from small broking agencies to large ones, which have long-term relationships

with OTC derivatives counterparties. Such a relationship provides the broker with better

information about the nature of the underlying operating exposure and the true company

quality; and (ii) the market has increasingly come to rely on non-price credit enhancement

mechanisms to limit exposures, especially with counterparties of doubtful quality. The most

commonly used credit enhancements are: master agreements, netting arrangements,

collateralisation of transactions, credit triggers, marking-to-market, letters of credit and

guarantees15. These techniques assures that all realised OTC derivatives transactions are

undertaken for hedging purposes and default-risk ceases to be important.

While OTC derivatives serve important risk management and other economic functions, these

products can present significant dangers if misused or misunderstood by market agents. A

number of large, well-published financial losses over the last few years have focused the

attention of the financial services industry, its regulators, and derivatives end-users, on potential

problems and abuses in the OTC markets. As a consequence, risk management control

mechanisms for OTC derivatives should be integrated within a company's overall risk

management framework.

However, risk management control mechanisms are not a substitute for adequate capital. The

control structure that should be established, and the practices that should apply, in the case of

any particular institution, must be appropriate to that institution relative to the scale, the risk

15 See Wakeman (1996) for a detailed survey of credit enhancement techniques.
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profile and the complexity of its OTC derivatives activities (Basle Committee on Banking

Supervision, 1994).

In the Baltic Exchange freight derivatives forum, on April 11th 2002, the main issue was the

credit risk and the methods and procedures to diminish it. Several opinions were formed with

the most attractive, for the market, to be a marginal system, a clearing system, an internet based

clearing-house, or a credit-rating system specifically for the market agents of the shipping

industry. Another strand of opinions were to revise the current FFA contract in order to include

clear definitions of a default event, default procedures, and rights and remedies to net and offset

against physical freight that may exist between counterparties or their affiliates. The issue of

credit-risk has not been resolved at the time of writing and consists one of the major

disadvantages of the OTC FFA market. From one hand, all the above procedures will force the

small players out of the market due to the increased transactions costs, but from the other hand,

the creditworthiness of the market will attract the big professional players.

1.5. STRUCTURE OF THE THESIS AND ITS CONTRIBUTION TO THE

LITERATURE

In this section the research areas that are investigated in this thesis, along with the motivation

for further research in each area and the contributions of this thesis to the existing literature are

presented. These research areas are examined in chapters 3 to 8. More analytically, chapter 2

provides an introduction to the econometric procedures that are employed in this thesis. Chapter

3 examines the unbiasedness hypothesis of the FFA and expected spot prices (presented at the

2" International Safety of Maritime Transport Conference, 7-9 June 2001, Chios, Greece and at

the 12th International Association of Maritime Economists (TAME) Conference, 13-15

November 2002, Panama City, Panama). Chapter 4 examines the lead-lag relationship between

spot and FFA prices in returns and volatility (presented at the City University Cass Business

School, Research Workshop in Finance, 21 January 2002, London and at the 12th IAME

Conference, 13-15 November 2002, Panama City, Panama). Chapter 5 investigates the impact

of FFA trading on the volatility of the spot market. Chapter 6 examines the hedging

effectiveness function of the FFA contracts. Chapter 7 investigates the relationship between

bid-ask spreads and anticipated volatility of the FFA contracts. Chapter 8 examines the

59



forecasting performance of spot and FFA prices. Finally, chapter 9 presents our conclusions and

some suggestions for fruitful future research which, due to space constraints, are not covered in

this thesis. The general structure of these chapters is similar. We introduce the approach;

discuss the relevant theory and related issues; describe the methodology and the testing

procedure to be used; report the empirical findings; and draw conclusions. The contributions of

each research area, to the literature, are presented next.

1.5.1. The Unbiasedness Hypothesis of Forward and Expected Spot Prices in the Forward

Freight Market

For many years observers sought to discover whether prices in financial markets exhibited

patterns over time, and thus, discover whether these patterns made accurate predictions

possible. The earliest examples of this are the works of Roberts (1959) and Samuelson (1965)

which set the ground rules for what was became known as the Efficient Market Hypothesis

(EMH) with the seminal paper of Fama (1970).

In efficient markets, market agents process information rationally and incorporate current and

past information into asset prices (Fama, 1970). In that sense, only new information, or news,

should cause changes in prices. Since news are by definition unforecastable, then price changes

(or returns) should be unforecastable; no information at time t or earlier should help to improve

the forecast of prices (or returns). Forecast errors should be therefore zero on average and

should be uncorrelated with any information that is available at the time the forecast was made.

In such efficient markets, the existence of futures/forward markets can help to discover prices

which are likely to prevail in the spot market. Thus, according to the unbiasedness hypothesis,

FFA contract prices must be unbiased estimators of the spot prices of the underlying asset that

will be realised at the expiration date. If during the life of the FFA contract, the forward price,

which is the price agreed at the initiation of the contract, continually mirrors the spot price of

the underlying asset, then there is negligible credit risk associated with the forward contract and

the contract can be sold at the market price16.

16 The credit risk associated with the FFA contract is the risk that occurs when one party is not performing, on the
expiration date, the obligations relative to a change in the value of the forward contract from zero.
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The motivation for the investigation of the topic can be characterised by the following

arguments: First, the price discovery function provides a strong and simple theory of the

determination of spot prices. The existence of biased forward prices can increase the cost of

hedging, assuming that the market agents are fully informed when they set the forward price in

FFA contracts17. Moreover, investigation of the subject is of particular interest to market agents,

because if forward prices are not unbiased forecasts then they may not perform their price

discovery function efficiently. However, it should be noted that this argument is not valid for

markets in which the derivatives price is determined by arbitrage (e.g. stock-index futures), but

is valid for markets in which arbitrage is not present (e.g. freight forwards). If forward prices

are to fulfil their price discovery role, they must provide accurate forecasts of the realised spot

prices, and consequently, they must provide new information in the market and in allocating

economic resources (Stein, 1961).

Second, the apparent lack of academic research in the FF A trades further mitigates this study

and provides a fruitful way to complement the specific market and to provide a performance

comparison with the BIFFEX market, investigated by Chang (1991), Chang and Chang (1996),

Kavussanos and Nomikos (1999), and Haigh (2000). Kavussanos and Nomikos (1999) examine

the BIFFEX contract using cointegration techniques and argue that futures prices one and two

months from maturity provide unbiased forecasts of the realised spot prices. On the other hand,

futures prices three months from maturity are biased estimates of the realised spot prices. They

conclude that the direction of the futures price is usually correct but not necessarily a good

predictor of the exact spot rates at settlement time. Moreover, the decrease in volume in futures

contracts has coincided with the creation of the FFA contracts at the beginning of 1992 (Figure

1.13). Market agents attribute this decrease in BIFFEX trading to be associated with the growth

in hedging activity with the FFA contracts. Empirical testing of the unbiasedness of the FFA

market provides us a helpful direction towards the validity of the above inference.

Third, it can provide a yard-stick to practitioner's operations, where research output can be

thought of increasing the attractiveness of the market and subsequently bringing more volume

to the market. Perhaps the strongest evidence on the importance of the investigation of the price

17 When forward prices are well above (below) the expected spot prices, long (short) hedgers are obliged to buy
(sell) the forward contracts at a premium (discount) over the price they expect to prevail on expiration.
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discovery function is the very large growing number of papers addressing the topic. However,

different studies tend to reach different conclusions even when investigating the same set of

prices over the same sample period. This study provides evidence of the price discovery

function, for the first time, of a unique forward contract, specifically designed for hedging

freight rates in the dry-bulk industry.

Figure 1.13. Yearly Volumes of the BIFFEX Contract (May 1985— June 1999)

Source: LIFFE, 2000.

1.5.2. The Lead-Lag Relationship in Returns and Volatility Between Spot and Forward

Prices in the Forward Freight Market

The first part of the price discovery function examines whether FFA prices form unbiased

estimators of the spot prices that will prevail at the expiration date. The second part of the price

discovery function of the FFA contracts examines whether FFA prices provide information

regarding current spot prices. The lead-lag relationship in returns and volatility between spot

and FFA prices is regarded as FFA prices are responding rapidly to new market information,

and therefore, leading the changes in spot prices18. If this is true then market agents, who have

collected and analysed the new information, would prefer to trade in the FFA market rather than

in the spot market. This, in turn, could bring more volume in the FFA market, as agents would

be more confident in trading a derivatives instrument that serves effectively and efficiently its

price discovery function.

The interesting aspect that makes the analysis important is that besides the plethora of studies in

various futures markets, the empirical investigation of the lead-lag relationship in forwards

market is undermined. This is due to the secretive nature of the unregulated OTC forward

18 Causality between FFA and spot prices can run in one (FFA to spot) or both (FFA / spot feedback) directions,
depending on the specific market, but always FFA prices must contribute to the discovery of new information
regarding current spot rates.
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markets, where the public availability of economic data is limited. The possession of daily data

for the FFA trades provides us the opportunity to examine a function of forward contracts of

paramount importance for the market agents and for the market as a whole. A special feature of

this market is that the underlying commodity is a service. The theory of intertemporal

relationships between spot and derivatives prices of continuously storable commodities is well

developed (Working 1970), in contrast to that of non-storable commodities (e.g. freight

services). The non-storable nature of FFA market implies that spot and FFA prices are not

linked by a cost-of-carry (storage) relationship, as in financial and agricultural derivatives

markets. Thus, inter-dependence between spot and FFA prices may not be as strong as for

storable commodities.

Kavussanos and Nomikos (2001) examine the lead-lag relationship in returns in the BIFFEX

market and argue that spot and BIFFEX prices stand in a long-run relationship between them.

Causality tests indicate that futures prices tend to discover new information more rapidly than

spot prices. They conclude that BIFFEX performs its price discovery function efficiently. The

current study investigates the issue further by providing empirical evidence, for the first time,

on the price discovery function of the forward freight market. The special features then of this

market, in comparison to the existing literature on futures markets, are: (i) the non-storable

nature of the underlying commodity, being that of a service; and (ii) the asymmetric

transactions costs between spot and FFA markets. These costs are believed to be higher in the

spot freight market (in relation to the FFA market) as they involve the physical asset (vessel).

Although research devoted towards the relationship between derivatives and spot returns (first

moment conditions) is voluminous (see for example, Stoll and Whaley, 1990; Chan et al., 1991;

Chan, 1992, amongst others), there is currently a growth in interest for examining higher

moment dependencies (time-varying volatility) between markets; volatility spillovers or risk

transmission between spot and derivatives markets in commodities and in financial markets (see

for example, Ng and Pirrong, 1996; Crain and Lee, 1996; and Koutmos and Tucker, 1996,

amongst others)19. Interest on the impact of volatility spillovers from one market to the next has

primarily arisen due to the realisation of speculative price changes being interwoven with

19 "Volatility spillover" is the impact of an innovation of market i on the conditional variance of market].
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higher moment dependencies, such as shown by Bollerslev et al. (1992)20. Cheung and Ng

(1996) argue that volatility spillovers are important because changes in volatility reflect the

arrival of information. Additionally, the investigation of a causal relationship in volatility

provides insight into the dynamics of asset prices.

This study is of great importance for market agents in the dry-bulk freight market, which need

to cover the risk exposure that they face. Understanding the process by which new information

is incorporated into spot and FFA prices can allow market agents to use the leading market as a

price discovery vehicle, since such information may be used in decision making. Thus, a better

understanding of the dynamic relation of spot and FFA prices and its relation to the basis will

provide to these agents the ability to use hedging in a more efficient way.

1.5.3. An Investigation of the Introduction of Forward Freight Trading on Spot Market

Price Volatility

While derivatives (futures and forward) markets can be seen to be enhancing economic welfare

by allowing for new positions and expanding the investment sets or enabling existing positions

to be taken at lower costs, they have been criticised for encouraging speculation. Goss and

Yamey (1978) argue that derivatives markets, by allowing individuals to undertake speculative

activity without having them to become involved in the production, handling or processing of

the commodity or asset, can increase speculation. Furthermore, the low cost of participating and

the rapid implementation of a position in the derivatives markets make it easy for market agents

to engage in speculation. Thus, there has been a considerable concern regarding the impact that

derivatives markets may have on prices of the underlying spot market. This study examines

whether, and to what extent, the recent introduction of trading in FFA contracts has impacted on

the volatility of the underlying spot market.

In general there are two main beliefs between market agents. The first is that speculators in

derivatives markets have a destabilising impact on spot prices. The second is the exact opposite,

were speculators are seen to have a stabilising impact on spot market prices. This controversial

interest has been the subject of considerable empirical analysis (mostly in futures and options

20 Ross (1989) argues that the variance of price changes is related directly to the rate of flow of information.
Hence, previous studies ignoring the volatility mechanism may not offer a thorough understanding of the
information transmission process.
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markets, where in forward markets analysis is limited) and has received the attention of

policymakers. Despite that, the issue of whether derivatives trading destabilises or stabilises the

spot market, is still viewed with suspicion by market agents and policymakers alike.

The classical view of the impact of speculators is that they have a useful role and assist to

stabilise prices (Kaldor, 1960). The issue of the impact of speculators dates back almost to the

inception of derivatives trading. The main reason for this is the fact that derivatives trading may

encourage speculation. It can be argued that derivatives markets require speculators, to enable

hedgers to transfer risks, which they wish to avoid. Since derivatives prices have a close

relationship with spot prices, yet impose less costs on speculators than would trading in the spot

market, they are very attractive to those seeking to engage in speculation.

This study contributes to the literature on the relationship between VF A trading and spot pkt

volatility in the following four respects. First, the study not only investigates if FFA prices have

an impact on spot volatility, but also attempts to question why FFA trading might has an impact

on spot market price volatility. Second, the proposed methodology enables the investigation of

the link between information and volatility and of the market dynamics, as reflected by a

change in the asymmetric volatility response. Third, the FFA forward market is organised quite

differently from a futures market. All trading is bilateral, there is no clearing-house, no open

outcry, and no centralised exchange. Only at the end of the trading day, information on deals

negotiated during the day, is widely disseminated. During the day, traders must rely on their

contacts for information on the transactions consummated. Finally, much of the analysis in

previous studies has been devoted on considering the impact of trading in market-wide

instruments (i.e. index contracts). Such studies are useful in assessing market-wide impact, but

any effect in the underlying spot market can be dissipated across the many constituent assets in

the index, making it difficult to detect. Because FFA contracts are route-specific, since the

underlying asset is freight rates of a trading route, changes in the volatility of individual routes

can be examined.

This study can provide regulators and traders with important insights into the FFA trading -

spot price volatility relationship. If FFA contracts cause a change in the level of volatility in the

spot market (as in the arguments that speculators increase volatility) and this, in turn, is

associated with greater uncertainty and unduly higher required freight rates, then there may well
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be a case for FFABA and FIFC to increase the regulation of these contracts. However, if FFA

contracts lead to new channels of information being provided, more information due to more

traders, and a reduction in uniformed investors, then FFA contracts provide a useful service and

calls for their regulation are unwarranted.

1.5.4. The Hedging Performance of the Forward Freight Market

The reason for the existence of derivatives markets is to provide instruments for businesses to

reduce or control the unwanted risk of price change by transferring it to others more willing to

bear the risk. This function of the derivatives markets is performed through hedging the spot

position by holding an equal but opposite position in the derivatives market, in order to

neutralise the impact of adverse price level changes. Throughout the financial literature there is

a plethora of research studies focusing on the hedging effectiveness of derivatives markets by

estimating hedging ratios, which indicate the strength of offsetting the price risk of the spot

market21 (see for example, Lindahl, 1992; Park and Switzer, 1995; Geppert, 1995; Kavussanos

and Nomikos, 2000a, 2000b, 2000c; Butterworth and Holmes, 2001, amongst others).

The hedger initially must answer two questions, which will determine the type of the contract

that is the most appropriate to use and how the hedge will be constructed; what kind of

derivatives instrument to use and which contract month. Answering the previous questions the

hedger must decide his continuous hedging strategy: to hedge with a nearby derivatives contract

and rolling the hedge forward; or hedge with a more distant derivatives contract, and rolling it

less frequently in the future22. Rolling the hedge more frequently causes higher brokerage and

transactions costs. On the other hand, using a more distant contract increases basis risk, as the

derivatives price will be less correlated with the spot price. Researchers have concentrated on

three hedge strategies: the traditional one-to-one (naïve) hedge; the beta hedge; and the

conventional minimum variance hedge. The traditional naïve strategy involves hedgers

adopting a derivatives position equal in magnitude but opposite in sign to the spot position, i.e.

h = -1, i.e. an investor who is long in the spot market should sell a unit of derivatives today and

buy the derivatives back when he sells the spot. Implicit in such strategy is the view that

21 The hedge ratio, h, is defined as the number of derivatives contracts that an agent must buy or sell for each unit
of the spot position on which there is price risk.
22 Rolling a hedge forward can be accomplished by buying in the current settlement month a derivatives contract
and simultaneously selling a similar contract in a later settlement month, in the hope that it can be lifted at a higher
net price.
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derivatives and spot prices move closely together. Indeed, if proportionate price changes in one

market exactly match those in the other market, then price risk is eliminated (perfect hedge).

The beta hedge strategy is very similar, but recognises that the spot portfolio to be hedged may

not match the portfolio underlying the derivatives contract. With the beta hedge strategy, h is

calculated as the negative of the beta of the spot portfolio. Thus, beta is the coefficient of the

independent variable in a regression of market returns on spot portfolio returns. For example, if

the spot portfolio beta is 1.5, the hedge ratio will be -1.5, since the spot portfolio is expected to

move by 1.5 times the movement in the derivatives contract. Where the spot portfolio is that

which underlies the derivatives contract, the traditional strategy and the beta strategy yield the

same value for h. In practice, price changes in the two markets do not move exactly together

and, therefore, the traditional or beta hedge will not minimise risk.

The portfolio explanation of hedging, first presented by Johnson (1960), Stein (1961) and

Ederington (1979) apply the Markowitz foundations of portfolio theory to show that the hedge

ratio that minimises the risk of the spot position is given by the ratio of the unconditional

covariance between spot and derivatives price changes over the unconditional variance of

derivatives price changes. The model of hedging ratios, developed by Johnson (1960) and

Ederington (1979) assumes that hedger's interests are in minimising risk, and the covariance

between spot and derivatives price changes as well as the variance of spot and derivatives price

changes are known with certainty or are well-specified ex ante. The derivation of this model is

as follows. Market agents in derivatives markets choose a hedging strategy that reflects their

individual goals and attitudes towards risk. In particular, consider a shipowner who wants to

secure his freight rate income in the forward freight market. Suppose the investor has a fixed

long position of one unit in the spot market and a short position of —h units in the FFA market.

The random return to this portfolio, APt, between t-1 and t, is equal to:

P= AS, - hAF,	 (1.5)

where, AS, = 5, — St_ i is the logarithmic change in the spot position between t-1 and t; AF, = F, —

F,_1 is the logarithmic change in the FFA position between t-1 and t, and h is the hedge ratio (the
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proportion of the portfolio held in FFA contracts)23. By using the portfolio theory the variance

of the returns of the hedged portfolio is given by:

Var(AP,) = Var(ASt) + h2Var(AFt) — 2hCov(ASi, AF,)	 (1.6)

where, Var(ASt), Var(AFi) and Cov(ASE, AF,) are, respectively, the unconditional variances and

covariance of the spot and FFA price changes. The hedger must choose the value of h that

minimises the unconditional variance of his hedged portfolio returns i.e. min [Var(APt)].

Taking the partial derivative of Equation (1.6) with respect to h, setting it equal to zero and

solving for h, yields the conventional Minimum Variance Hedge Ratio (MVHR), ht, as follows:

Cov(ASI,AE)
h*—

Var(AE)

The conventional MVHR takes account the imperfect correlation between the two markets and

identifies the hedge ratio which minimises risk (as measured by variance)24. The negative sign

reflects that to hedge a long spot position requires selling derivatives. Using the conventional

MVHR as the basis for hedging implicitly assumes investors are infinitely risk-averse, i.e. they

will forgo an infinite amount of expected return in exchange for an infinitely small risk

reduction. While such an assumption about the risk-return trade-off is unrealistic, the

conventional MVHR provides an unambiguous benchmark against which to assess hedging

performance25. Ederington (1979) argues that a portfolio approach to hedging is superior to

both the traditional one-to-one risk minimising and Working's (1953) profit-maximising

interpretations. However, Benninga et al. (1984) argue that unless there is an unbiased

derivatives market, where the derivatives price is equal to the expected spot price, the

conventional MVHR is not necessarily the optimal hedging strategy.

23 We should notice that, the proportion of the portfolio held in the spot commodity equals 1 by assumption.
24 It can be shown that, provided expected returns to holding derivatives contracts are zero, the conventional
MVHR of Equation (1.7) is equivalent to the utility-maximising hedge ratio. A proof of this result is available in
Benninga eta!. (1984) and Kroner and Sultan (1993).
25 

While some studies have incorporated expected returns into hedging decisions and developed risk-return
measures of hedging effectiveness (see, for example Howard and D'Antonio, 1991, amongst others), such models
suffer from the same shortcoming in that they require a subjective assessment to be made in relation to investor
preferences.

(1.7)
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Empirically, this approach is equivalent to the slope coefficient, h*, in the following regression:

AS, = ho + h* AF + Et ; Et - iid(0,a2)	 (1.8)

where AS, and AF, are changes in logarithmic spot and FFA prices, respectively, Et is an error

term, and ho, h* are regression parameters. In addition, the estimated ho and h* in this

specification give a best fit of the historical linear relationship between S, and FI, and guarantee

that the sum of the squared error terms (Ee,2) will be as small as possible. The degree of

variance reduction in the hedged portfolio achieved through hedging is given by the coefficient

of determination (R2) of the regression, since it represents the proportion of risk in the spot

market that is eliminated through hedging; the higher the R2 the greater the effectiveness of the

minimum variance hedge.

In the freight futures (BIFFEX) market, the conventional MVHR methodology is applied by

Thuong and Vischer (1990) where they estimate the degree of hedging effectiveness achieved

by BIFFEX across all the BFI routes from August 1986 to December 1988. They find that the

hedging effectiveness of the contract is higher for the panamax routes, compared to the capesize

and the handysize routes. Overall they conclude that the conventional MVHR fails to eliminate

the risk of the spot position to the extent in other commodities markets (the higher R2 being

only 32%). They argue that this is due to the heterogeneous composition of the underlying

asset, the BFI, which consists of dissimilar shipping routes in terms of vessel size and

transported commodities. In a similar study, Haralambides (1992) argues that a shipowner,

operating on route 3 (of the BFI) can achieve greater risk reduction by using the conventional

MVHR compared to a traditional (naïve) hedge.

Several points need to be mentioned regarding the performance of these hedging strategies.

First, h* and R2 of Equation (1.8) are ex-post measures of hedging effectiveness, since they

depend upon the previously explained correlation between the spot and derivatives prices and,

as such, give an indication of the historical performance of the hedging strategy (in-sample

performance). In reality, hedgers in the market use the historical hedge ratios to hedge a

position in the future. Hence, a more realistic way to evaluate the effectiveness of alternative

hedging strategies is in an out-of-sample setting.
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Second, Myers and Thompson (1989) and Kroner and Sultan (1993) argue that Equation. (1.8)

implicitly assumes that the risk in spot and derivatives markets is constant over time. This

assumption is too restrictive and contrasts sharply with the empirical evidence in different

markets, which indicates that spot and derivatives prices are characterised by time-varying

distributions (see for example, Choudhry, 1997; Hogan et al., 1997; and Kavussanos and

Nomikos, 2000a, 2000b, amongst others). This in turn, implies that MVHR should be time-

varying, as variances and covariances entering the calculations are time-varying as new

information arrives in the market and the information set is updated.

Third, economic analysis and intuition suggest that the prices of the spot asset and the

derivatives contract are jointly (simultaneously) determined (see for example, Stein, 1961).

Consequently, the estimation of Equation (1.8) is subject to simultaneity bias, i.e. the estimated

hedge ratio will be upward biased and inconsistent. Furthermore, Equation (1.8) is potentially

misspecified because it ignores the existence of a long-run cointegrating relationship between

spot and derivatives prices (Engle and Granger, 1987) resulting in downward biased not optimal

hedge ratios (see for example, Ghosh, 1993b; Chou et al. 1996; and Lien, 1996, amongst

others). These issues raise concerns regarding the risk reduction properties of the hedge ratios

generated from Equation (1.8). These problems have been addressed in several commodity and

financial derivatives markets (see for example, Kroner and Sultan, 1993; Gagnon and Lypny,

1995, 1997; and Kavussanos and Nomikos, 2000a, 2000b, amongst others).

This study contributes to the existing literature in a number of ways. First, despite the growing

importance of the forward freight market, no effort has been devoted to ascertaining the relative

importance and feasibility of the effectiveness of constant and time-varying optimal hedge

ratios. Second, different model specifications are estimated and compared so as to arrive at the

most appropriate model, which takes into account the univariate properties of spot and FFA

prices. Third, in-sample and out-of sample tests are employed so as to assess the effectiveness

of the FFA contract in minimising the risk in the spot freight market. Market agents

(shipowners and charterers) whose physical operations concentrate on specific panamax routes

can benefit from using optimal hedge ratios that minimise their freight rate risk. Finally, the

interesting research aspect is to analyse the hedging effectiveness of the FFA contract and to

compare it with the hedging effectiveness of the BIFFEX contract, analysed by Kavussanos and

Nomikos (2000a, 2000b, 2000c). The latter argue that time-varying hedge ratios outperform
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alternative specifications and have been found successful in reducing spot market risk in four

shipping routes, but they fail to reduce the risk of the spot position to the extent found for other

markets in the literature.

Due to the lack of the existence of a long-run cointegrating relationship between spot and

derivatives prices in the optimal hedge ratio methodology, we model the spot and the FFA

prices as a Vector Error-Correction Model (VECM) (Engle and Granger, 1987 and Johansen,

1988) with a Generalised Autoregressive Conditional Heteroskedasticity (GARCH) error

structure (Bollerslev, 1986). This framework meets the earlier criticisms of possible model

misspecifications and time-varying h1*, since the Error-Correction Term (ECT) describes the

long-run relationship between spot and FFA prices and the GARCH error structure permits the

second moments of their distribution to change over time. We also include the squared lagged

ECT of the cointegrated spot and FFA prices in the specification of the conditional variance, in

what is termed the GARCH-X model (Lee, 1994)26. The time-varying hedge ratios are then

calculated from the estimated covariance matrix and their in sample and out-of-sample hedging

performance is compared to that of constant hedge ratios. In the above, the selection criterion

(loss function) for the optimum model to use is the variance reduction of the hedged portfolio.

1.5.5. The Relationship Between Bid-Ask Spreads and Price Volatility in the Forward

Freight Market

Transactions costs are usually ignored in asset pricing theories but are an important

consideration in investors' investment decisions. One significant cost is the bid-ask spread

(BAS). Brokers match buy and sell contracts and the price charged for this service is known as

the bid-ask spread, the difference between the buying (bid) and selling (asked) price per

contract. This normally is regarded as compensation to brokers for providing liquidity services

in a continuously traded market. The mark-up charged by brokers in the financial markets, as in

any other market, is a function of the operational efficiency of the brokers and the nature of the

product. Tinic and West (1972) argue that there is a positive relationship between spreads and

price volatility on the grounds that the greater the variability in price, the greater the risk

26 A principal feature of cointegrated variables is that their time paths are influenced by the extent of deviations
from their long-run equilibrium (Engle and Granger, 1987). As spot and FFA prices respond to the magnitude of
disequilibrium, then, in the process of adjusting they may become more volatile. Thus, inclusion of the ECT in the
conditional variance specification is appropriate and may lead to the estimation of more accurate hedge ratios.
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associated with performance of the function of the brokers. Bollerslev and Melvin (1994) also

argue that greater uncertainty regarding the future price of the asset, as associated with greater

volatility of the price of the asset, is likely to result in a widening of the spread.

The nature and the behaviour of the BASs have been examined thoroughly in the equity (see

McInish and Wood, 1992), foreign exchange (see Bollerslev and Melvin, 1994; and

Bessembinder, 1994) and bond markets (see Kalimipalli and Warga, 2000). However,

knowledge of derivatives spreads is limited, presumably due to the lack of information on bid-

ask quotes (with the exception of the studies of Laux and Senchack, 1992; Ma et al., 1992;

Wang et al., 1994; Ding, 1999; and Wang and Yau, 2000, amongst others). Transactions costs

related to derivatives is an important issue because: (i) the low cost of trading is often cited as

one rationale for the existence of derivatives markets; (ii) high transactions costs will affect

market participants' ability to trade quickly and cheaply; and (iii) regulators (FFABA and

FIFC) will need to consider how their policy decisions may impact the volatility of the market,

and consequently, the BASs.

The purpose of this study is to investigate what impact an anticipated increase in FFA price

volatility will have on transactions costs in terms of BAS. Extant literature that provides some

possible answers to the previous question includes those studies on the relationship between

BASs and price volatility (see for example, Tinic and West, 1972; Benston and Hagerman,

1974; Stoll, 1978; Copeland and Galai, 1983; and McInish and Wood, 1992, amongst others).

This study contributes to existing literature in a number of dimensions. First, we examine the

relationship between BAS and expected price volatility in the forward freight market, which

offers a unique and directly observable BAS data set. Second, we employ a two-step modeling

specification in order to ensure robust inferences on the relationships between variables. In the

first-step the GARCH specification is used for modeling the volatility of the FFA prices. This

specification is consistent with a return distribution which is leptokurtic (speculative prices),

and it also allows for a long-term memory (persistence) in the variance of the conditional return

distributions. The GARCH model is known to be capable of mimicking observed statistical

characteristics of many time-series of return on financial assets (see Bollerslev, 1987 and

Baillie and Bollerslev, 1989). In the second-step we investigate if the expected conditional

volatility (led by one-day) has a significant positive relationship with the current BAS using the

General Method of Moments (GMM) approach (Hansen, 1982).
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Third, volatilities in the several markets of the shipping industry are subject to sudden

movements which are, at best, only partially predictable. A better understanding of the

movements of FFA prices, and the consequent effect in transactions costs, may provide

important information and insights for market agents about the timing of trades, the sentiment

and the future direction of the FFA market. For example, a widening of the BAS may

discourage risk-averse market agents from participating and trading as it may indicate a period

of high volatility. More specifically, traders, speculators, hedgers, and arbitrageurs alike are

interested in extracting information from these variables to know how their reaction to new

information can be used in predicting future prices.

1.5.6. The Forecasting Performance of Forward and Spot Prices in the Forward Freight

Market

Forecasting is of fundamental importance in all of the sciences, including financial economics.

Forecast accuracy is of obvious importance to users of forecasts because forecasts are used to

provide superior signals that guide future supply and demand decisions in ways that contribute

to a more efficient allocation of economic resources. Comparisons of forecast accuracy are also

of importance to economists, more generally, who are interested in discriminating among

competing economic models. As in the case of other financial and commodity derivatives

markets, market agents in the FFA market can potentially benefit through the use of more

accurate forecasts.

In this study, we investigate the performance of alternative time-series models in generating

short-term forecasts of the spot and FFA prices. We want to investigate if FFA prices provide

more accurate short-term forecasts of the spot prices than forecasts generated by time-series

models. Market agents can benefit from having accurate short-term forecasts of the spot and

FFA prices, since availability of such forecasts will enable them to design more efficient trading

strategies. In order to identify the model that provides the most accurate forecasts, we estimate

alternative multivariate and univariate specifications and assess their forecasting performance.

The statistical test of Diebold and Mariano (1995) is used to assess whether the forecasts from

the competing models are equally accurate.
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Cullinane (1992) was the first to propose time-series models for forecasting the BFI. Cullinane

applies the Box-Jenkins (1970) methodology to identify the best Autoregressive Integrated

Moving Average (ARIMA) model for the BFI. The forecasting performance of this model is

then compared to forecasts generated from simple 10- and 20-days moving averages of the BFI

and from Holt-Winters (Holt, 1957 and Winters, 1960) exponential smoothing model. Cullinane

(1992) concludes that an AR model outperforms the other specifications for forecasts up to 7

days ahead, while for greater lead times, the Holt-Winters model provides superior forecasts.

Following Kavussanos and Nomikos (2001), we compare the forecasting performance of a

VECM, to that of ARIMA, Vector Autoregressive (VAR) and Random Walk (RW) models.

Kavussanos and Nomikos (2001) investigate the forecasting performance of the BFI and

BIFFEX prices. They report that the VECM generates significantly the most accurate forecasts

of BFI prices, for a period up to 15 days ahead, and therefore, BIFFEX prices help in improving

the forecasting performance of spot prices. For the BIFFEX prices however, they report that the

increase in forecasting performance, through the VECM, is insignificant across all the

forecasting horizons. However, Tashman (2000) argues that non-independent forecasts can be

biased (a shock in a specific forecast horizon may affect all other forecasts horizons) and can

invalidate the forecasting results. Thus, in order to avoid biased forecasts, induced by serially

correlated forecast errors, we estimate independent out-of-sample N-period ahead forecasts over

the test period.

1.5.7. Data and Estimation Periods

Our empirical analysis is undertaken using four spot trading routes from the BPI (1, 1A, 2, and

2A) and FFA price data for the period 29 November 1989 to 26 December 2001. The dataset

used in each study is different, depending on the nature of the investigated hypothesis. Price

data for the panamax spot routes are from the Baltic Exchange and Datastream. FFA prices are

collected in a hard copy format, from the shipbrolcing company Clarkson Securities Ltd, and

processed in an electronic format by the author. In every trading day, we collected the bid and

ask quotes for every trading route of the BPI, one-, two-, and three-months from maturity (see

Table 1.12 for a daily FFA report). We also present in an Appendix (at the end of the thesis) an

example of a FFA contract.
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The unbiasedness hypothesis, in chapter 3, is examined using FFA prices one, two and three

months from maturity and spot prices on the maturity day of the contract, for the period January

1996 to July 2000 in routes 1 and 1A and January 1996 to December 2000 in routes 2 and 2A.

The choice of this dataset is dictated by the delivery periods of the FFA contract. Since there is

a FFA contract maturing every month in the market, the smallest feasible frequency for such a

study is monthly data. The lead-lag relationship in returns and volatility between

contemporaneous spot and FFA prices, in chapter 4, is investigated using daily spot and FFA

prices over the periods 16 January 1997 to 31 July 2000 in routes 1 and 1A and 16 January

1997 to 30 April 2001 in routes 2 and 2A.

The impact of the introduction of FFA contracts on spot market price volatility, in chapter 5, is

examined using daily spot route data. The dataset covers the periods 29 November 1989 to 31

July 2000 in route 1, 7 August 1990 to 31 July 2000 in route 1A, 29 November 1989 to 24

August 2001 in route 2, and 12 February 1991 to 24 August 2001 in route 2A. The hedging

performance of the FFA market, in chapter 6, is investigated using weekly spot route and FFA

prices, for the periods 16 January 1997 to 26 July 2000 in routes 1 and 1A and 16 January 1997

to 26 December 2001 in routes 2 and 2A. A weekly hedging horizon is preferred, in line with

other studies in the hedging literature, such as Kroner and Sultan (1993) and Kavussanos and

Nomikos (2000a, 2000b).

The relationship between bid-ask spreads and volatility of the FFA market, in chapter 7, is

examined using daily bid-ask spreads and FFA prices in panamax Atlantic routes 1 and 1A

from 16 January 1997 to 31 July 2000 and daily bid-ask spreads and FFA prices in panamax

Pacific routes 2 and 2A from 16 January 1997 to 10 August 2001. Finally, the forecasting

performance of spot and FFA prices, in chapter 8, is examined using alternative time-series

models, which are estimated from 16 January 1997 to 30 June 1998 for all routes

(corresponding to one and a half year). The period from 1 July 1998 to 31 July 2000 for the

Atlantic routes (1 and 1A) and the period from 1 July 1998 to 30 April 2001 for the Pacific

routes (2 and 2A) are used to obtain out-of-sample N-period ahead forecasts. The choice of a

daily dataset for this study is dictated by two factors. First, the proposed VECM model is based

on our empirical model in chapter 4, which is estimated using daily spot and FFA prices.

Second, the objective of this chapter is to propose a short-term model for forecasting spot and

FFA prices; from that respect, the choice of daily data is also necessary.
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Table 1.12. Clarkson Securities Ltd. FFA Report

•014--wileg

CLARKSON
SECURITIES LIMITED

PANAMAX AND CAPESIZE FFA REPORT
Day Month Year

BPI BDI BC! Usd/Dm Usd/Yen UK/Usd 180cst rdmT 380cst rdm

1,503(+7) 1,454 (+1) 1,813 (-2) 2.1944 121.12 1.4338 132.00 124.00

PANAMAX FORWARD FREIGHT AGREEMENT INDICATIONS:

2. US Gulf/Japan 2A. TCT East
Bid Offer Bid Offer

May	 22.65 22.85 11,950 12,250

Jun	 21.30 21.70 11,200 11,650

Jul	 20.25 20.65 10,200 11,000

Oct	 20.75 21.40

BPI	 22.907 12,554

3a. TP Round 4. Feast / Cont

Bid Offer Bid Offer
May	 9,800 10,100 9,350 9,900
Jun	 9,500 9,800 9,000 9,600
Jul	 8,700 9,500 8,500 9,300

BPI	 9,459 9,256

PE SIZE FORWARD FREIGHT AGREEMENT INDICATIONS:
Bolivar / Rotterdam R7 Rich Bay / Rotterdam R4

Bid Offer Bid Offer

May 6.00 6.45 7.95 8.25

Jun 6.00 6.40 7.90 8.15

Jul 6.20 6.45 7.85 8.15

Aug 6.20 6.45 7.85 8.15

Sep 6.20 6.55 7.90 8.2

Oct 6.30 6.55 8.05 8.25

Nov 6.30 6.55 7.85 8.25

Dec 6.20 6.50 7.69 8.10

BCI 6.431 8.150

Baltic Exchange Spot Indices:

Baltic Panamax Index (BPI) 1503 (+7) Baltic Capesize Index (BCD 1813 (-2)

1.	US Gulf! Cont 15.243 1. Hampton Roads / Rotterdam 6.456

Ia. TA Round Voyage 12,366 2. Tubarao / Rotterdam 6.728

2.	US Gulf/Japan 22.907 3.	Tubarao / Beilun + Baoshan 9.500

2a. Skaw-Gibraltar/Taiwan-Japan 12,554 4.	Richards Bay/ Rotterdam 8.150

3. NoPac/Japan 15.242 5.	W. Australia / Beilun + Baoshan 5.242

3a. TP Round Voyage 9,459 6.	Newcastle / Rotterdam 12.689

4.	Japan-S Korea/Skaw-Gibraltar 9,256 7.	Bolivar! Rotterdam 6.431
8. Trans-Atlantic Round Voyage 16,938
9. ARA-Passero/China-Japan 17,094
10. Trans-Pacific Round Voyage 16,483
11. China-Japan / ARA-Passero 16,667
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CHAPTER 2- ECONOMETRIC TIME-SERIES METHODS

2.1. INTRODUCTION

The objective of this chapter is to introduce the reader to the time-series techniques and

methodologies that will be applied throughout this thesis. The standard classical methods of

estimation, in applied econometric work, are based on the assumption that the means and

variances of the variables are well-defined constants and independent of time. However, it has

been shown that these assumptions are not satisfied by a large number of macroeconomic time-

series and the results of the classical econometric regressions as a result are misleading and

biased (Granger and Newbold, 1974).

Variables whose means and variances change over time are known as non-stationary, having a

unit root. Furthermore, it has been shown that using classical estimation methods, such as

Ordinary Least Squares (OLS), to estimate relationships with non-stationary variables gives

spurious inferences. This is known as the spurious regression problem27 (see section 2.3). As a

result, it became important to examine the univariate properties of the regression variables, in

terms of unit roots, and a new econometric framework has emerged. This framework is

presented in this chapter, where we start with some important definitions in time-series analysis

and then proceed with a discussion on the underlying properties of stationary and non-stationary

processes. Two of the most well known tests for unit roots, developed by Dickey and Fuller

(1979, 1981) and Phillips and Perron (1988) are analysed.

27 If the means and variances of non-stationary variables change over time, all the computed statistics in a
regression model, which use these means and variances, are also time dependant and fail to converge to their true
values as the sample size increases. Furthermore, conventional tests of hypothesis will be seriously biased towards
rejecting the null hypothesis of no relationship between the dependant and independent variables. Phillips (1987)
also shows that the Durbin-Watson (DW) statistic converges towards zero (low DW statistics indicate that the
variables in a regression model are non-stationary).
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The cointegration methodology, which is regarded as a technique to estimate the equilibrium or

long-run parameters in a relationship with unit root variables, is presented next. If individual

variables are non-stationary they may be cointegrated. If these variables are cointegrated, they

cannot move too far away from each other. In contrast, lack of cointegration suggests that such

variables have no long-run link; in principle, they can wander arbitrarily faraway from each

other. Two alternative approaches for cointegration are presented; First, the Engle and Granger

(1987) test, which amounts to estimating a static OLS regression in order to test for the

existence of an equilibrium relationship between non-stationary variables. This can be

accomplished by performing unit root test on the residuals of the OLS regression. Second, the

Johansen (1988) test, which is a Maximum-Likelihood Estimation (MLE), under which the

non-stationary variables are modelled as a VAR model. The Johansen (1988) test provides a test

statistic with an exact limiting distribution enabling us to perform hypothesis tests.

The last section introduces the ARCH family of models, firstly introduced by Engle (1982),

which are specifically designed to model the time-varying conditional variance of time-series

variables. The theory of these models, the variety and purpose of the most important ARCH

models, their representation, and estimation is analytically presented.

This chapter is organised as follows. In section 2.2 some important definitions of time-series

econometric analysis are presented. Section 2.3 discuses the underlying properties of non-

stationary and stationary variables. Sections 2.4 and 2.5 present the unit root and cointegration

tests, respectively. Section 2.6 presents the characteristics and properties of the ARCH models.

Finally, section 2.7 summarises this chapter.

2.2. SOME IMPORTANT DEFINITIONS

Let T be a linear (if t i , t2 T, then t 1 + t2 T) index set and {Xt: t e T} a collection of random

variables. The collection {Xt: t e 7) is said to be a stochastic process. A stochastic process is

covariance stationary (or weakly stationary) if the following conditions are satisfied for all

values oft:

1. If its mean remains constant over time; E[yd =,u, V t
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2. If its variance remains constant over time; Var(y,) = E[(y, - 11)2i = a : Y( 0), V t

3. If its autocovariances depend only on the distance between two observation points;

Cov(yr,Yi- = E[(Yr - p)(y t_, - p)] =	r 	1,2,... V t

Let {Xn: n E NI be a sequence of random variables, where N = {0,±1, }. The stochastic

process is said to be strictly stationary (or stationary in the strict sense) if and only if its

properties are unaffected by changes of time origin. In other words, the joint probability

distribution at any set of times, t, t+1, t+2,...,T, must be the same as the joint probability

distribution at times, T+1, T+2,...,T+t. Note that, weak stationarity plus normality is equal to

strict stationarity.

A white noise series {E,}, t = -co � t +co, has a sequence of zero mean, finite variance,

mutually uncorrelated, random variables. Often the additional requirement that the variance is

unity is added to the definition of white noise. This definition is useful when dealing with

covariance stationary as distinct from strictly stationary processes; when dealing with the latter,

we define white noise to be a sequence of independent identically distributed (iid), zero mean,

finite variance random variables.

Notice three implications of this assumption:

1. E(E,) = E(E, / Et_1,	E(E, / all information at t-1) = 0

2. E(E, 80= COV(Ei	= 0

3. Var(E,) = Var(E, / Et_ i , Et-2,...) = Var(Er / all information at t-1) = 2€

The first and second properties are the absence of any serial correlation or predictability. The

third property is conditional homoskedasticity or a constant conditional variance.

Let El be a white noise sequence, and define:

u {un: un =	ascn_s, n E	 (2.1)
S = 0
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The sequence u is said to be a (bilateral or two-sided) Moving Average (MA) process of infinite

extent, denoted by MA( cc); if a, = 0, s < 0, it is said to be a (unilateral or one-sided) moving

average of infinite extent; if a, = 0, Is! > q it is said to be a moving average of order q, and is

denoted by MA(q).

Let Et be a white noise sequence, and define:

CO

u = {//n: En = E	n E
	

(2.2)

The sequence u is said to be a (bilateral) Autoregression (AR) of infinite order and is denoted

by AR( co); if k = 0, j < 0, it is said to be a unilateral autoregression of infinite order; if bi = 0

for Id > p it is said to be a finite autoregression of order p, and is denoted by AR(p).

Let ct be a white noise sequence, and define:

	

co
	 00

	

u= {un: E	=	n E /V}	 (2.3)

u is said to be a bilateral Autoregressive Moving Average (ARMA) process of infinite order,

and is denoted by ARMA( co , co). If b., 0,j <0 and a, = 0, s < 0, it is said to be a unilateral

process of infinite order; if bi = 0 for Id> p and a, = 0, 1st> q, it is said to be a finite

autoregression moving average of order (p, q) and is denoted by ARMA(p, q) .

2.3. UNIT ROOT PROCESSES

Consider the following AR(1) model:

y, = P Yr-i + Et, t =	T ; /N(0,a2)
	

(2.4)

where yo = 0 and et are normally distributed error terms with zero mean and finite variance cy2.
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The variable yt will be:

• Stationary, if 1p1 < 1 (shocks are temporary and disappear with reversion of the series to

long-run mean).

• Non-stationary, if p = 1 (follows a stochastic trend and shocks are permanent with no

reversion to long-run mean, and with time dependant variance).

• Explosive, if IPI > 1 (tends towards ± 00 ).

When p approaches 1 the OLS estimator of p is biased downward. If the true process is a

random walk ( p = 1), then the deviation of the OLS estimate from the true value ( — 1) must

be multiplied by T rather than Aff to obtain a variable with a useful asymptotic distribution,

which is not the usual Gaussian distribution but is a ratio involving a i(1) variable in the

numerator and a separate, non-standard distribution in the denominator.

The solution of the difference Equation (2.4) when p = 1, given some initial condition yo, is:

y, = E yo ci
	

(2.5)
i=1

From Equation (2.5) we can see that the accumulated disturbances imply that a si shock has a

permanent effect on the conditional mean of the yt, where yt does not converge to its mean

value since, if at some point in time yt = c then the expected time until yt again returns to c is

infinite. Furthermore, the variance and the covariance of yt increase to become infinitely large

as t increases. The correlation coefficient between yt and yr- k:

Cov(yi, yr - k)	 (t — k)a 2 	It — k 

ANar(p)Var(yi - 1c)	-Nita 2 (t — k) 22	V t

will be approximately unity as t is large relative to k, and the Autocorrelation Function (ACF)

of the series will decay very slowly.

Pk — (2.6)
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When a series is non-stationary then it is said to follow a stochastic trend (the series drifts

upwards or downwards) as a result of the cumulative effects of the disturbance terms, and does

not return to its long-run mean of zero. This stochastic trend is eliminated by taking the first-

difference of the price series. Taking for example the first-difference of yt yields Ay, = ct, which

is a stationary process since E(Ayi) = 0, Var(Ayt) = su2 and Cov(Ayt, Ayt_k) = 0. Since the first-

difference of yt is stationary, then yi is referred to as first-difference stationary or integrated of

order 1 series, denoted as 1(1) (Engle and Granger, 1987). In general, if a series must be

differenced d times to become stationary, then it contains d unit roots and is denoted as I(d).

Using non-stationary variables in standard regression methods can lead to biased inferences

because the OLS estimates are inconsistent and the t- and F-statistics do not follow standard

distributions generated by stationary series. This phenomenon in econometric modelling is

known as spurious or nonsense regressions whereby the regression results may falsely indicate

the existence of a causal relationship between the price series (Granger and Newbold, 1974).

Thus, it is important to test the order of integration of each variable in a model before further

econometric analysis is undertaken. This can be done by employing unit root tests, which are

presented next.

2.4. UNIT ROOT TESTS

2.4.1. Dickey and Fuller Test

A time series is stationary if its mean, variance and autocovariances are independent of time. A

property of stationary variables is that the effect of a shock is not persistent, and consequently

there is not a high degree of dependence between successive observations. The ACF of the

series, in Equation (2.6), decays very fast. Hence, failure of the ACF to die down quickly is an

indication of non-stationarity. Although visual inspection of the ACF is a useful indicator for

detecting the presence of unit roots, this method is subjective since what appears as a non-

stationary process to one observer may appear as a stationary process to another. This problem

arises when p in Equation (2.4) takes values close to 1, giving a non-stationary pattern of the

ACF (slowly decaying) when in fact it is not.
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Dickey and Fuller (1979) consider the AR(1) process in Equation (2.4) where yo is a fixed

initial value and Et is an iid sequence of random variables. By subtracting yt_i from both sides of

Equation (2.4) we obtain the following equivalent forms depending on whether no deterministic

components or, an intercept term or, an intercept and a linear trend term appear in Equation

(2.1), respectively:

=	Y  t-i+ et (2.7)

Ay r = 11 + 7.Yr-/ ±Ct (2.8)

Ayt --,--1.1.+St+yyt_, +Et (2.9)

where y = p - 1, 1.t is an intercept term t is a linear trend term, and whichever equation is

assumed to determine y,, we assume that st is an iid process. The DF test involves estimating

one of the Equations (2.7) to (2.9) using OLS, and then testing the null hypothesis of a unit root,

Ho: y = 0 (or equivalently p = 1), against the alternative of stationarity, Hi : y < 0 (or p < 1). If p

is less than one in absolute value then Equation (2.7) is a zero mean stationary AR(1) process,

Equation (2.8) is a stationary AR(1) process with a mean of p. / (1 — p), and Equation (2.9) a

stationary AR(1) process about a linear trend if 8 is non zero.

If the data are generated according to Equation (2.7) with p equal to one then it can be said that

yt is integrated of order one and is a random walk without a drift. If the data are generated

according to Equation (2.8) with p equal to one and tt non-zero then yt is again integrated of

order one and is a random walk with non-zero drift. Finally, if the data are generated according

to Equation (2.9) with p equal to one and p. non-zero then y is a random walk about a non-

linear time trend. At this point it is useful to make explicit the various alternative combinations

of estimating equations and true parameter values that can be considered. We may either choose

to estimate Equations (2.7), (2.8) or (2.9). On the other hand the values of p. and 8 in Equation

(2.9) will necessarily be in accord with one and only one of the following possibilities:

j.t=Oand6=O (I)

= 0 and 8 �  0 (II)

�  0 and 8 = 0 (III)

�  0 and 8 �  0 (IV)
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Thus, for example, case (I) implies Equation (2.7) is correct, Equation (2.8) includes an

unrequired intercept term and Equation (2.9) includes both an unrequired intercept and an

unrequired time trend. Case (II) implies Equation (2.7) excludes a required time trend, Equation

(2.8) includes an unrequired intercept and excludes a required time trend and Equation (2.9)

includes an tutrequired intercept. The standard testing procedure for this hypothesis is to

construct a t-test and compare it to the critical values of the t-distribution. However, under non-

stationarity, the computed statistic does not follow a standard t-distribution but, rather, a DF

distribution. Dickey and Fuller (1979) derive a limiting distribution for the least squares t-

statistic for the null hypothesis that p = 1 where Equations (2.7) to (2.9) are each in turn

assumed to be the estimated equation, but in each case under the assumption that case (I) is

correct (i.e. the Equation (2.7) generates the data).

Critical values for these tests are tabulated by Dickey and Fuller (1979, p. 373); these depend

on the sample size as well as the deterministic regressors contained in the mode) and are

denoted as, T when Equation (2.7) is the estimated equation, tv. when Equation (2.83 is the

estimated equation, and sr when Equation (2.9) is the estimated equation. Note that, because the

alternative hypothesis in each case is that p <1, a calculated value smaller than the (negative)

critical value would lead to rejection of the null hypothesis of a unit root in favor of the

alternative of stationarity. The results in the last paragraph are valid in case (I). They are not

necessarily true in other cases we have identified. Thus:

1. if the data are generated according to Equation (2.8) with a non-zero intercept, i.e. case (III)

describes how the data are generated, then the limiting distribution of TA is standard normal

but the limiting distribution of TT remains non-standard.

2. if the data are generated according to Equation (2.9) with a non-zero value of 8 then the

limiting distributions of and sr are both standard normal. This is so whether or not 1.t is

zero, so that we are concerned with either case (II) or (IV).

The issue that arises is which model, in Equations (2.7) to (2.9), one should choose in order to

test for a unit root, since each of these models implies a different alternative hypothesis for the

d.g.p. of the underlying series with different critical values. Moreover, since sr < TA < T < 0,

adding a constant and a time trend increases (in absolute value) the critical values thus making

it more difficult to reject the null of a unit root when it should be rejected. Since in practice we

will not know the correct values for 11 and 8, it is necessary to follow a data-based sequential
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testing procedure in which one tests jointly for the presence of an intercept term and/or a time

trend as well as for a unit root. Perron (1988) suggests such a sequential testing procedure, to

decide which model to use for unit roots testing; Table 2.1 presents the procedure:

• In the first step, we start with the least restrictive of the plausible DF models - Equation

(2.9). If we cannot reject the null of a unit root using the T, statistic, then it is necessary to

determine whether too many deterministic regressors are included in the model.

• Thus, in step 2, we test the null hypothesis Ho: 7 = 5 = 0 using a non-normal F-test; critical

values for this test, denoted as 03, are tabulated in Dickey and Fuller (1981). If the null is

rejected using the (1)3 statistic, then the trend term is significant under the null of a unit root,

which results in the sr, statistic to be asymptotically normal.

• In this case, we proceed to step 2A and test the null hypothesis of a unit root, Ho: 7 = 0 in

Equation (2.9), using the standard-normal critical values.

• If we fail to reject the null hypothesis using the (1)3 statistic, then we proceed to step 3 with

the examination of the more restrictive Equation (2.8) and test for a unit root using the tt,

statistic.

• If we cannot reject the null, then we proceed to step 4 and test the hypothesis 1{ = v. = 13

using the non-standard F-test, (I)1, reported in Dickey and Fuller (1981). Rejection of the

null hypothesis using the IA statistic, implies that the constant term in Equation (2.8) is

significant under the null hypothesis of a unit root and asymptotic normality for the T,

statistic follow;

• Thus, the standard-normal critical values are used to test the null hypothesis Ho: 7 = 0 in

Equation (2.8), as described in step 4A.

• If the null hypothesis y = pt = 0 cannot be rejected then, we proceed to step 5 where we

estimate Equation (2.7) and test for a unit root using the t statistic.

Table 2.1. Perron's (1988) Sequential Testing Procedure for Unit Roots
Step Model Null Hypothesis Test Statistic 5% Critical Values

1 Ay,=yy,_1+1.1+St+E, y = 0 TT -3.45
2 Ay,= yy,./ + u. + St + c, y = 8 = 0 03 6.49
2A Ay,= yym + [1. + St + s, y = 0 Standard Normal -1.96
3 6,311= YYpi + 11+ EI y = 0 T

P
-2.89

4 An = YY/-1 + 11 + Et y =1.1 = 0 (1), 4.71
4A Ay,= yym + II + 6, y = 0 Standard Normal -1.96
5 An= TY,-1 4- Et y = 0 T - 1.95

Notes:
• 5% critical values for the tests are based on a sample size of 100 observations.
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Perron (1988) argues that the testing procedure starts with the most general model specification

and the testing continues down to more restrictive alternatives. The testing stops as soon as the

null hypothesis of a unit root is rejected. If it cannot be rejected at any of the stages then the

series has a unit root. Steps 2A and 4A are undertaken only if the joint hypotheses in steps 2

and 4 can be rejected, respectively.

However, even when asymptotic normality holds for the T., and TA statistics, the DF distribution

provides a better approximation than the standard normal in finite samples. Harris (1995)

argues that the results obtained from steps 2A and 4A should be treated with caution and that

tests based on the DF distribution should be preferable. Enders (1995) suggests that rather than

applying the Perron (1988) testing strategy, the deterministic regressors in the DF tests should

be determined using the information provided by the series. The plots of spot and FFA prices in

chapter one, do not indicate that any of the series contains a deterministic trend, although the

mean of the series is different than zero in all the cases. Therefore, only an intercept term

should be included in the DF and ADF tests (see next section), as in Equation (2.8).

2.4.2. Augmented Dickey and Fuller Test

The DF test can be extended to accommodate higher order autoregressive processes. Lagged

values of the dependent variable are added to compensate for the presence of auto correlation in

the residual series since the DF distribution in based on the assumption that et is white noise.

These tests are called Augmented Dickey Fuller tests (ADF, 1981). We have so far assumed

that the disturbance term, et, is an iid process. If this assumption is incorrect then the limiting

distributions and critical values obtained by the DF test cannot be assumed to hold. However,

Dickey and Fuller (1981) demonstrate that the limiting distributions and critical values that they

obtain under the assumption that et is an iid process are in fact also valid when et is

autoregressive if the ADF regression is run.

The null hypothesis is the existence of a unit root. Fuller (1976) reports the appropriate

cumulative distribution and the critical values. Critical values for the ADF (1981) statistics,

computed from sample sizes smaller than 100, are provided in Engle and Yoo (1987). The null

and alternative hypotheses in the standard unit root tests can be interchanged. The appropriate

regressions are:
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AYt 7	+ I	+ c	 (2.10)
1=1

Ay t = +1' Yr-i EkvpotYt_i + 6 t	 (2.11)
1=1

Ay t	+ Ot + yt_, +Ew ,Ayt_, + Et	 (2.12)
i=l

In performing the ADF (1981) tests it is important to select the appropriate lag-length, p; too

few lags may result in over-rejecting the null hypothesis of a unit root when it is actually true,

while too many lags may reduce the power of the test (i.e. the probability of rejecting a false

null hypothesis). An appropriate solution for the choice ofp is to use a model selection criterion

such as the Akaike Information Criterion (AIC) (Akaike, 1973) or the Schawarz Bayessian

Information Criterion (SBIC) (Schwarz, 1978):

AIC = —2 (LL — K)
	

(2.13)

SBIC = —2 (a — 0.5K InT)
	

(2.14)

where LL is the maximum value of the log-likelihood function of the ADF regression, K is the

number of regressors and T is the number of observations. These criteria trade off the increase

in the value of the log-likelihood function against the loss of degrees of freedom when the lag-

length of the model increases. The selected model is the one which receives the highest value of

the AIC or SBIC. Usually, the SBIC is preferred over the AIC because it is strongly consistent,

penalise for the degrees of freedom lost, and always determines the true model asymptotically,

whereas for the AIC an over-parameterised model will always emerge. Dickey and Fuller

(1981) argue that the ADF procedure is valid asymptotically as long as the value of p used in

estimation increases at the rate TI/3 as the sample size, T, increases. In practice it is usual to

include as many terms in the lagged dependent variable as is necessary to achieve white noise

residuals.
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2.4.3. Phillips and Perron Test

The ADF (1981) test includes additional higher-order lagged terms to account for the fact that

the underlying d.g.p. is more complicated than a simple AR(1) process. The extra terms,

involving lags of the dependent variable, are used to whiten the error term in the regression

equation used for testing, since autocorrelated errors (due to the misspecification of the

dynamic structure of yi) will invalidate the use of the DF distribution. An alternative approach

is that suggested by Phillips (1987) and extended by Perron (1988) and Phillips and Perron

(1988). Rather than taking account of extra terms in the d.g.p. by adding them to the regression

model, a non-parametric correction to the t-test statistic is undertaken to account for the

autocorrelation that will be present (when the underlying d.g.p. is not AR(1)). Thus, DF-type

Equations (2.7) to (2.9) are estimated, in line with Perrons (1988) testing strategy, and then the

t-test statistic (of the null hypothesis of non-stationarity) is amended to take account of any bias

due to autocorrelation in the error term of the DF-type regression model.

The Phillips and Perron (1988) tests use a non-parametric adjustment to the standard Dickey-

Fuller tests for non-independent and identically distributed processes in order to handle any

possible serial correlation or time-dependent heteroskedasticity in the residuals, and

accommodate models with a drift and a time trend so that they may be used to discriminate

between unit root non-stationarity and stationarity about a deterministic trend. The tests involve

computing one of three OLS regressions defined from:

yt ,
.	.	.

Y  t 	11 + a Yr-i + Et (2.16)

Y  t .-- il + i3(T— ti2) +a ym + E t (2.17)

where T denotes the sample size and the disturbance terms ( ,67,T1) are such that their

expected values are zero, but there is no requirement that the disturbance terms are serially

uncorrelated or homogeneous. Instead of the Dickey-Fuller assumptions of independence and

homogeneity, the Phillips-Perron (PP, 1988) tests allow the disturbances to be weakly

dependent and heterogeneously distributed.

(2.15)
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Given Equation (2.15), the null hypothesis of a unit root, i.e. H0 1 : Cc = 1, is tested against the

stationary alternative by the adjusted t-statistic Z(t ) given in Table 2.2. In the model of

Equation (2.16) the null hypotheses of a unit root, with or without a drift, i.e. H02: a* = 1 and

H03: = 0, a* = 1, are tested against the stationary alternatives by means of the adjusted t- and

F-statistics Z(t a ) and Z((pi ), respectively given in Table 2.2. Finally, in the model of Equation

(2.17), which allows for a deterministic trend, the null hypotheses H04:oTi, = 1, H05 : 13 = 0, --

1, and H06: ji = 0, 13 = 0, = 1 can be tested by means of the test statistics At a), Z(y3), and

Z(y2), respectively given in Table 2.2. The critical values for the PP (1988) statistics are

precisely those given for the Dickey-Fuller tests.

Table 2.2. Test Statistics for a Unit Root in the Univariate Models (2.15) — (2.17)
Null Hypothesis Test Statistics Critical Values

61 = 1 in (2.15) Z(t a ) = (scis,or a - 1/2(sn2 - s02)

FiSra Yr-1 2)11

Fuller

(1976, Table 8.5.2)

a * = 1 in (2.16) ( S2 —S02)Z(t a * ) = (SG/S77) t cc * - ( ASTI)7-1

[1-2E (y,i —	i'_.)2]-44

Fuller

(1976, Table 8.5.2)

if = 0, a . = 1

in (2.16)

Z(91) = (S02/Srn(Pi - ( AST/2)( ST/2 — S02)

{T( a *- 1) — 1/4( ST12 — S02) [ T2 E (Y,1— Y-1)2v)

Dickey and Fuller

(1981, Table IV)

tc- = 1 in (2.17) Z(t a ) = (so/sTi)t a - (sT/2 — 502)la

{ ST711(3Dx/ 'Ail

Fuller

(1976, Table 8.5.2)

f3 = 0, a = 1

in (2.17)

Z((p3) = (S02/S772)93- (1/2S772)( Srt2 — S02)

[T( a - 1) — T6/48D) ( Sr/2— S02)]

Dickey and Fuller

(1981, Table IV)

la = 0, 1-3 = 0, a = 1

in (2.17)

Z((p2) = (So2/Srn(P2 -(1/3ST/2)( ST/2 — S02)

[T(& - 1) — T6/48D) ( 5712— S02)]

Dickey and Fuller

(1981, Table IV)

Notes:
S S2) (1)3 = (2 g 2)-1 

71
s02_	_	_ g2j, and 92 = (3 g2)-1 ns02 _ 2)

• =PS*2)-1 T(S02—
• t9, t a , and tir, are the standard t-test statistics for Cc = 1 in (2.15), a = 1 in (2.16), and a = 1 in

Equation (2.17), respectively.
• Dx is the determinant of (x'x), where x denotes the Tx3 matrix of explanatory variables in the OLS

regression by Equation (2.17).

• s02,s'2, and -§ 2 denote the residual variance under the appropriate null hypotheses and OLS residual
variances, respectively.

• S772 refers to a consistent estimator for the variance of E Eh under the appropriate null hypothesis, as
n

defined by S772 = T -1	6/2 ± 2TE E Wr/ et et-r and the weights w = 1 — r/ (1 + 1) ensure that the
t=1	T4 t=r+1

estimate of the variance ST72 is positive (see Newey and West, 1987).
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Both the PP (1988) and the ADF (1981) approaches are based on asymptotic theory. Thus, in

both cases it is important to consider how well the limiting distributions approximate the finite

sample distribution of the relevant statistic. In addition it is interesting to consider whether there

is evidence concerning the relative power properties of the PP (1988) statistics as compared to

the ADF (1981) statistics. Monte Carlo work by Schwert (1987) suggests that the Phillips-type

tests have poor size properties, with the tendency to over-reject the null when it is true, when

the underlying d.g.p. has negative moving-average components.

Phillips and Perron (1988) assume that Et in Equation (2.8) is generated by a MA(1) process in

their simulation experiments:

gt = Oer-i ± et	 (2.18)

where et are iid. They find that when the disturbance term has a positive moving average

component (0 is positive) the power of ADF (1981) tests is low compared to the PP (1988)

statistics, so that the latter statistics is preferred. However, when 0 is negative, matters are less

clear since the evidence suggests that the PP (1988) statistics can have serious finite sample size

distortions in this case.

An indication as to whether the PP (1988) statistics should be used in addition to (or in place of)

the ADF (1981) tests might be obtained in the diagnostic statistics from the DF and ADF

regressions. If normality, autocorrelation or heterogeneity statistics are significant, one might

adopt the PP approach. Furthermore, power may be adversely affected by misspecifying the lag

length in the ADF regression, although it is unclear how far this problem is mitigated by

choosing the number of lags using data-based criteria, and the PP (1988) tests have the

advantage that this choice does not have to be made. Against this, one should avoid the use of

the PP (1988) tests if the presence of negative moving average components is somehow

suspected in the disturbances (Bhaskara, 1994).
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2.5. COINTEGRATION TESTS

2.5.1. The Cointegration Concept

The basic idea behind cointegration is that if all the components of a vector time-series process

X t, [y, z,]', have a unit root there may exist linear combinations 4Tx1 without a unit root. These

linear combinations may then be interpreted as long-term relations between the components of

X t, or in economic terms as static equilibrium relations. Therefore, the concept of cointegration

mimics the existence of a long-run equilibrium relationship to which an economic system

converges over time, and cr (the residuals obtained from regressing yr on zt) can be interpreted

as the disequilibrium error, i.e. the distance that the system is away from equilibrium at time t.

For bivariate economic 1(1) processes, cointegration often manifests itself by more or less

parallel shapes of the plots of the two series involved.

The concept of cointegration was first introduced by Granger (1981) and elaborated further by

Engle and Granger (1987), Engle and Yoo (1987, 1991), Phillips and Ouliaris (1990), Stock and

Watson (1988), Phillips (1991), Johansen (1988, 1991) and Bierens (1997), amongst others.

Working in the context of a bivariate system with at most one cointegrating vector, Engle and

Granger (1987) estimate the cointegrating vector 4 = (1, 42)T by regressing the first component

x 1,, (y,) of Xt on the second component x2,t (zt), using OLS, and then testing whether the OLS

residuals of this regression have a unit root, using the ADF (1981) test. However, since the

ADF (1981) test is conducted on estimated residuals, the tables of the critical values of this test

in Fuller (1976) do not apply anymore. The correct critical values involved can be found in

Engle and Yoo (1987)28.

Phillips and Ouliaris' (1990) tests are also based on these residuals, but instead of using the

ADF (1981) test for testing the presence of a unit root they use further elaborations of the

Phillips (1987) and Phillips and Perron (1988) unit root tests. Both types of tests have absence

of cointegration as the null hypothesis. Their main disadvantage is that they cannot apply

parameter restrictions on the cointegrating vector in order to test for hypotheses.

28 For a further analysis of the Engle and Granger (1987) test see next section.
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Park (1992) proposes a test for unit root and cointegration using the variable addition approach,

by regressing the OLS residuals of the cointegrating regression on powers of time and testing

whether the coefficients involved are jointly zero. The same idea has been used by Bierens and

Guo (1993) to test (trend) stationarity against the unit root hypothesis. However, also Park's

approach requires consistent estimation of the long-run variance of the errors of the true

cointegrating regression by a Newey-West (1987) type estimator, which sacrifices a substantial

amount of asymptotic power of the test, and consequently it is not recommended when the

sampling period is small. Also the tests of Hansen (1992) and Park (1992) are based on a single

cointegrating regression, and both tests employ variants of the instrumental variables estimation

method of Phillips and Hansen (1990).

2.5.2. Engle and Granger Test

If the long-run components in two time-series are modelled as stochastic trends and if they

move together, then the two time-series should be cointegrated (Granger, 1986). Engle and

Granger (EG, 1987) propose the following two-step approach for testing for cointegration of

two series. The first step tests whether each of the two variables of interest has a stochastic

trend (1(1)). That is investigated by performing unit root tests on the variables. If both variables

are found non-stationary then, the second step tests whether stochastic trends in these variables

are related. This is investigated by estimating the residuals, Et, from the following regression,

called the cointegrating or equilibrium regression:

Y t = ± flgt +Et
	 (2.19)

If y t and zt are cointegrated, then the estimated residual series ( Et ) must be stationary. The E,

series represents the deviations of yt and z, from their long-run relationship. Testing the

residuals for stationarity, under the Engle and Granger methodology, involves one of the

following: (i) the Durbin-Watson statistic from the cointegration regression of Equation (2.19)

(CRDW statistic). If the Durbin-Watson statistic is sufficiently large, is deemed stationary and

the two series are cointegrated; (ii) the Dickey-Fuller (1979) type regressions to test whether the

estimated time-series of the residuals from the cointegration regression has a unit root (if there

is a unit root the two series are not cointegrated); or (iii) the ADF (1981) test which is similar to
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the previous, but additional lags of the residuals are used to be sure that the residuals are

uncorrelated. The ADF (1981) test is based on the estimated residual series E, :

p-1
AEr Togt-1 EW,A6t-i (1)t ; cot — IN(0,c,02 )	 (2.20)

1=1

where lagged values of A, 	entered into the equation so as to whiten the errors. The

inclusion of a trend term and/or a constant in Equation (2.20) depends on whether a constant or

a trend appears in the cointegrating regression since deterministic components can appear in

Equation (2.19) or in Equation (2.20). If deterministic terms appear in both Equations (2.19)

and (2.20) then, the cointegrating test is misspecified (Harris, 1995).

The null hypothesis of no cointegration (existence of a unit root), in the estimated residual

series, Ho: Ivo = 0, is based on a t-test with a non-normal distribution. Since all unit root tests are

concluded on estimated residuals, the tables of the critical values of the DF (1979) and ADF

(1981) tests in Fuller (1976) do not apply anymore. The correct critical values for DF (1979)

and ADF (1981) tests are given by Engle and Yoo (1987) and MacKinnon (1991)29.

The Granger Representation Theorem (Engle and Granger, 1987) states that if a set of non-

stationary variables are cointegrated then an Error-Correction Model (ECM) can be estimated,

and conversely, if a set of non-stationary variables can be modelled as an ECM then, these

variables are cointegrated. Engle and Granger (1987) following their theorem, try to identify an

ECM of the joint process, using the estimates of last period's disequilibrium

= y,_1 — — fl 2 z,_1 to obtain information on the speed of adjustment to equilibrium:

in	 k

Ay r = —a 1	YIAzt E0pAzt-; E (PJAyt_J +vt
j=1	 1=1

vi IN(0,o-)	(2.21)

29 Moreover, the Box-Pierce (1970) statistic can also be employed to test for serial correlation, which has a
idistribution.
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where cti is the speed of adjustment coefficient and lagged values of Ayt and Az( are included in

the model to capture any autocorrelation in the residuals. All the terms in Equation (2.21) are

stationary and hence, statistical inference using standard t- and F-tests is applicable.

The ECM representation incorporates short-run adjustment of Ayt to changes in the right-hand

side variables, captured by current and past values of Azt and lagged values of Ayt, and long-run

adjustment through the ECT, Et_, , which measures the distance of the system being away from

equilibrium (speed of adjustment). For example, suppose that yi starts falling more rapidly than

is consistent with Equation (2.19); this results in "E (0 . Since the ai coefficient in Equation

(2.21) has a negative sign, the net result is an increase in Ay,, thereby forcing yt back towards its

long-run path.

A problem with this approach is that it requires the researcher to choose one of the jointly

endogenous variables to put on the left-hand side. While the test is asymptotically invariant to

this so-called direction normalisation rule (order of the variables in the cointegrating

regression), the test results may be very sensitive to it in finite samples. Indeed, practical

experience indicates that the result of the test depends qualitatively on which variable is chosen

to be on the left-hand side (Bhaskara, 1994). Another disadvantage of this procedure is that it is

not possible to perform hypothesis tests on the estimated coefficients, ,31 and Jaz in the

cointegrating regression Equation (2.19). Durlauf and Philips (1988) derive the asymptotic
...

distributions of the OLS estimators, fli and ,82, and their associated standard errors in Equation

(2.19) and show these to be highly non-normal thus invalidating standard inference. Although

the coefficient estimator can be shown to be consistent, the estimated standard errors may be

misleading for hypothesis testing (Stock, 1987)3°.

The ECM of Equation (2.21) imposes the restriction that zt is weakly exogenous to yt (i.e. the

current value of zt is not affected by the current value of yt) and, as a result, the zt series appears

only on the right-hand side of Equation (2.21). This does not take into account all the

information that the variables have to offer. The Engle and Granger approach is bivariate in

design. Johansen (1992) points out that, in general, there are efficiency losses from single-

30 Stock (1987) suggests a way to correct the estimated standard errors. The statistical test is, however, very
sensitive to the nuisance parameters of the underlying series.
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equation estimation in cointegrated systems. In addition, Phillips (1991) points out that the use

of single-estimation techniques in cointegrated systems imparts second-order asymptotic bias

and nuisance parameter dependencies. A multivariate extension was provided by Engle and

Yoo (1987).

2.5.3. Johansen Test

Johansen (1988, 1991) and Johansen and Juselius (1990) provide a statistical procedure for

testing parameter restrictions in cointegrated systems using the full MLE method, where it

allows to formally conducting likelihood ratio tests of the parameters of the equilibrium

relationship between non-stationary variables. The procedure is based on a VAR model that

allows for possible interactions (short- and long-run dynamics) in the determination of the

variables of interest. Furthermore, this procedure does not make any assumptions regarding the

exogeneity of the variables, since all variables in the system are endogenous, and uses the

information provided by both series so as to generate the cointegration tests31.

The Johansen (1988) approach is based on the multivariate technique of canonical correlations.

The canonical correlation analysis is trying to find a linear combination of a set of variables,

such that the correlation among the variables is maximised. Johansen (1988) shows that the

hypothesis of cointegration can be formulated as the hypothesis of reduced rank of a regression

coefficient matrix, which can be estimated consistently from two vector regression equations.

Thus, the likelihood ratio test for cointegration involves deriving the squared canonical

correlations between the regression residuals, which require calculation of eigenvalues.

In short, the cointegrating VAR analysis involves a number of steps: (i) ensuring that the jointly

determined variables of the model are 1(1); (ii) deciding the order of the VAR model; (iii)

identifying the nature of the deterministic variables such as intercepts and trends in the

underlying VAR; (iv) resolving the identification problem of the long-run relations that arises

when the number of the cointegrating relations is larger than unity; and (v) testing over-

identifying restriction on the long-run relations. The above steps are presented in the next

sections.

31 Since the Johansen (1988) procedure takes into account the error structure of the underlying d.g.p., the procedure
can provide more precise parameter estimates than the Engle and Granger (1987) procedure.
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2.5.3.1. VAR and VECM Models

To illustrate the Johansen (1988) cointegration test consider a set of two Al) variables, (ye, z,),

which are generated by the following bivariate system.

Y r = E 2411(i)Y  t-i E A12 (i )z t-i E y.t

	 (2.22a)
i=1	 i=1

zt = E 2421* t_i + E An(i)zt_t ± z,t

	 (2.22b)
i=1	 i=1

where Aki(i) (k,j = 1, 2, i=1, 2, ...,p) are coefficients and Ey,/ and ez,, are uncorrelated white noise

disturbances. In matrix form this system (VAR model of orderp) can be written as:

X t = A i X t_ ± A2 X f _2 + A3 X_3_3 ± • • • ± ApX	 E t ; E l	IN(0,E)	(2.23)

where X, is the 2x1 vector of variables (yl, z,)', Et is the 2x1 vector of residuals (sy,t, ez,e)' which

are normally distributed with mean zero and variance I covariance matrix I and A,, (i = 1, 2, ...,

p) are 2x2 matrices of coefficients:

Ai = V i(i) 2412(i)1

[A21(i) A22(i)]

By subtracting X,_1 from each side of (2.23) we obtain:

Air e =	— /2 )X 1_1 + 142X  t_2 ± A3 X 3	A pX t_p C t

where 12 is a 2x2 identity matrix. Next we add and subtract (Ai - I 2)X 1_2 from the right-hand side

to obtain:

A r = 01 — 12M-1 + (A2 + — /2 )Xt_2 A3X 1_3	A pX t_p + Et
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Next we add and subtract (A2 + A 1 - I2)Xt_3 from the right-hand side to obtain:

AK , = (A l - .12)t-1 + (A2 +A1 — /2 )6Xt-2 + (A3 +A2 + — /2 )217f + + Ap X t _p +et

Continuing in this stepwise fashion we obtain:

p-i

LXt = E Fi AX t-i nxt_i + ct
	 (2.24)

i=1

where U = 412 —Ei41 ) and I-1 = —(12 —Efelt ). Equation (2.24) is called a VECM. The
J=I

VECM specification contains information on both the short- and long-run adjustment to

changes in Xt, via the estimates of I"; and H, respectively. Johansen and Juselius (1990) show

that the coefficient matrix IT contains the essential information about the relationship between yt

and zt. In order to examine for cointegration relationships between the two variables of interest

yt and zt we examine the rank of matrix 1132. If rank(11) = 0, then H is the 2x2 zero matrix

implying that there are no any cointegrating relationships between y, and 24-, in this case

Equation (2.24) is reduced to a VAR model in first differences. If rank(II) = 2 (full rank), then

all the variables in Xi are stationary and the a VAR model in levels as in Equation (2.23) is

estimated. If rank(H) = 1 (reduced rank), then there is a single cointegration relationship,

between yt and zt, which is given by any row of matrix II and the expression Tam is the ECT.

The rank of H is equal to the number of its characteristic roots (or eigenvalues) which are

different from zero. Thus, the number of distinct cointegrating vectors can be obtained by

estimating how many of these eigenvalues are significantly different from zero33. The above

VECM is based on the Engle and Granger (1987) error-correction representation theorem for

cointegrated systems, and the asymptotic inference is related to the work of Sims et al. (1990).

A cointegrating relationship in the system (yt, z,)' implies that there are 2xr (where r is the

number of cointegrating relationship(s)) such that 1-1 = afl and rank(11)= r = 1. The matrix /3

32 The rank of a square n x n matrix is the number of its linearly independent rows, or columns.
33 The characteristic roots (or eigenvalues) of a square nxn matrix H, are the values of X that satisfy the following
equation I n - XInI = 0, where I n is an nxn identity matrix.
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represents the cointegrating vector(s) and matrix a represents the speed of adjustment

parameters (weights).

By step-wise concentrating all the parameter matrices in the likelihood function out, except the

matrix fl, Johansen (1988) shows that the MLE of 18 can be derived as the solution of a

generalised eigenvalue problem. Likelihood ratio tests of hypotheses about the number of

cointegrating vectors can then be based on these eigenvalues. Johansen (1988) proposes the

following two statistics to test for the significance of the estimated eigenvalues.

X trace (r) = —T 141
	

(2.25)
,=„1

X max (r,r+ 1) = —T1n(1 — „,	 (2.26)

where X, are the eigenvalues obtained from the estimate of the H matrix and T is the number of

usable observations. The X trace tests the null that there are at most r cointegrating vectors,

against the alternative that the number of cointegrating vectors is greater than r and the X.

tests the null that the number of cointegrating vectors is r, against the alternative of r + 1.

Critical values for the Xtrace and X. statistics are provided by Osterwald-Lenum (1992). The

distribution of these statistics depends upon the number or non-stationary relationships under

the null and on the deterministic terms that are included in the VECM.

Consider the model in Equation (2.24), which can be expressed in terms of specific equations

for each AX I sequence as follows:

6,111. ) =( 

Azt Azt-i

(71-117/-12

7C2171-22

"Yr-1)+[ey,t

Zt-1 E ,zt

(2.27)
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Since rank(11) = 1, the rows of H are linear multiples of each other and differ by a scalar, s2:

l

Ay t 1	

S27r12

= 	F. 

2

ryt_,	( ffi	7/-12	t -1) (6 y,t)

L A Z t )	i=1	6t-i	
S271-11	

z,t

(2.28)

where s2 is a scalar such as 52 nil = 7c21 and sz Th12 = 7C22. Now if we define a; = si nil , where si =

1, and = nu /nil we can transform each equation as:

(Ay t )

Az t

%--,P-1

i=1

(Ay t_i )

Z t-i

+
1,	2(

a

al	a1 /32

a 8z	2,	2

vt-1

7- t-1 )

y,t

z,t

r; rAy t_i )+ (a, j,e i t-1	(EY>f
V5 

182
1

i=1	Az t-1 2	 zt-1	 z,t

(2.29)

where al =it 11 , az = 52	=	= 1, 132 = n12 itii. Therefore, the general form of the

VECM becomes:

AXt = IX- + afi x t_i +c
	

(2.30)
1=1

where 13' = (1 )62) is the cointegrating vector, normalised with respect to the coefficient of Yr-i

and the speed of adjustment coefficients are given by a = (al a2)'; these show how fast Ay, and

Az i respond to disequilibrium changes from the cointegrating vector. For instance, the larger al

is, the greater is the response of Ay, to the previous period's deviation from long-run

equilibrium. At the opposite extreme, very small values of al imply that Ay, is unresponsive to

the previous period's error. For y, and z, to be cointegrated then at least one of the al and az

coefficients must be significantly different from zero.

Once the number of the cointegrating relations and the estimates of the cointegrating vectors

have been identified, estimation of the short-run and the error-correction coefficients of

Equation (2.30) is carried out by estimating each equation separately using OLS. If some of the

short-run coefficients in the VECM are insignificant, then they may be excluded from the
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model specification so as to arrive at the most parsimonious model. In this case, the two models

in Equation (2.30) contain different sets of regressors (either different variables or different lag

structures for each variable) and the VECM should be estimated as a system of Seemingly

Unrelated Regressions Estimation (SURE) (Zellner, 1962). This method yields more efficient

estimates than OLS when the equations in the system contain different regressors.

We should notice that, the determination of cointegration rank is difficult for a number of

reasons, including the following: deterministic terms (such as constants and trends) play a

crucial role in limiting distributions; the system may not be formulated to ensure the asymptotic

similarity of key test statistics to nuisance parameters; alternative choices of test statistics may

deliver apparently conflicting inferences; finite-sample critical values may differ substantially

from their asymptotic equivalents; the asymptotic distributions themselves are usually

approximations, obtained by simulation and possibly summarised by response surfaces; dummy

variables can alter critical values; and the lag length selected may not remove all residual serial

correlation, or it may be too long (Doornik and Nielsen, 1999).

2.5.3.2. Model Specification

Initially, Johansen (1988) considers the case where X, is absent. Later on, Johansen (1991)

extends his approach to the case where X, contains an intercept and seasonal dummy variables,

and in Johansen (1995) also a time trend in X, (but no seasonal dummy variables) is allowed.

These three cases lead to different null distributions of the likelihood ratio tests of the number

of cointegrating vectors. Moreover, also possible restrictions on the vector of intercepts or the

vector of trend coefficients may lead to different null distributions. Finally, the lag length, p, of

the VECM must be determined. For example, we estimate the unrestricted VAR model of

Equation (2.23), using the longest lag length deemed reasonable for the data set, and then use a

model selection criterion, such as the AIC (1973) or the SBIC (1978) of Equations (2.13) and

(2.14), respectively to arrive at the most parsimonious mode134. Thus, application of Johansen's

tests actually requires some a priori knowledge about the true parameters of the VECM.

34	•For instance, 4, 12 and 21 lags can be chosen for quarterly, monthly and daily data, respectively.
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Johansen and Juselius (1990) and Ostarwald-Lenum (1992) modify the VECM to contain an

intercept, a linear trend or both, arriving at five different model specifications where the short-

run and the long-run parts of the VECM refer to the lagged values of AX(..i and to the

cointegrating relationship, afl'Xt_ i , respectively.

Model A: Linear trend and intercept in the short-run model:

p-1

AX t =FAX, +afl X + ± Ot + et
	 (2.31)

This is the most unrestricted form of the VECM. It indicates the existence of linear trends in the

differenced series, AX,, and hence, the existence of quadratic trends in the levels series, Xt.

However, the existence of quadratic trends in the levels series implies an ever-increasing (or

decreasing) rate of growth for these series, which, is difficult to be justified on economic

grounds (Harris, 1995).

Model B: Trend term in the long-run model and intercept term in the short-run model:

161	I
-= EFAX t_i +	kx;_, t)	+ et (2.32)

This model allows for the presence of a trend term in the cointegrating vector so as to account

for the any exogenous growth in the long-run relationship.

Model C: Intercept term in the short-run model:

p-I
AX t = Eri AX t-i afi X t-i + 11+ Et

	 (2.33)
i=1

This model specification allows for the existence of a linear trend in the levels of the data.
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Ax t = EriAxt_, + afi x t_i + Et (2.35)
1=1

Model D: Intercept term in the long-run model:

p--1

AX t =FAX +a1  (rt_, 1) +c
1=1

(2.34)

This model implies that there are no linear trends in the levels of the data and the intercept is

restricted in the cointegration space to account for the units of measurement of the variables.

Model E: No deterministic components in the short-run model or in the cointegrating relations:

This is the most restricted model and implies that the mean of the series, in X1, is zero.

After excluding the unwanted models, following arguments from the economic theory, that are

relevant to the investigated market, we arrive at two competing models. To determine which

model should be used the Johansen's (1991) test is employed with the null hypothesis to be the

acceptance of the first model (out of the two) and the alternative to be the acceptance of the

second model:

— T[In(1— )— In(1—	- X 2 (1)	 (2.36)

where i; and 5,-. 2 represent the smallest eigenvalues of the first and the second chosen model,

respectively. For the null hypothesis to be true, the values of i*2 and i2 should be equivalent.

Johansen (1991) argues that if the test statistic is large, it is possible to reject the null hypothesis

and accept the model of the alternative hypothesis.

2.5.3.3. Parameter Restrictions Tests

Linear parameter restriction tests on the matrix fi are attained by forming likelihood ratio

statistics from restricted and unrestricted model estimations, by comparing the number of

cointegrating relationships under the null and alternative hypotheses. This is useful when the
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researcher must apply a hypothesis test in order to identify whether the variables follow a

particular long-run relationship, which is dictated by economic theory. For instance, the

unbiasedness hypothesis suggests that forward prices before maturity must be equal to the

realised spot prices, so that the cointegrating relationship between the series is (1, -1) (Si Fr,r-n)'.

Johansen and Juselius (1990) argue that since the number of cointegrating relationships depends

on the number of the largest eigenvalues of the H matrix, in Equation (2.24) that are signifi-

cantly different form zero, the test compares the largest eigenvalues of the restricted and the

unrestricted models:

-T[In(1—	In(1—	— x 2 (n)	 (2.37)

where X is the largest eigenvalue of the unrestricted model and X is the largest eigenvalue of

the model with the imposed restrictions on the cointegrating vector. The asymptotic distribution

of the likelihood ratio test statistic is x2 with degrees of freedom equal to the number of

assumed parameter restrictions (n) placed on p. Small values of it* relative to it indicate a

reduced number of cointegrating vectors and a larger value for the likelihood ratio statistic.

Hence, the restriction embedded in the null hypothesis is rejected if the calculated value of the

test statistic exceeds that in a table.

The Johansen test should be preferred to the Engle and Granger test since it is robust to various

departures from normality, it does not suffer from problems associated with normalisation, and

more is known about its asymptotic behaviour35. Johansen (1995), shows that his test provides

more efficient estimates of the cointegrating relationship that the EG test. Cheung and Lai

(1993) argue that the Johansen's test is fairly robust to the presence of non-normality.

35 See Hall and Taylor (1989) for a discussion of the relative merits of the Johansen test.
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2.6. THEORY OF ARCH AND GARCH MODELS

Despite the popularity of ARMA models, they have a significant limitation, namely, they

assume constant volatility. In financial economics, where correct specification of volatility is of

the utmost importance, this can be a severe limitation. Investigating and modelling the

behaviour of the second moment (variance) of time-series, which is considered as a measure of

volatility, is proved to be of great importance. Mandelbort (1963) argues that large (small)

changes tend to be followed by large (small) changes, a phenomenon he defines as volatility

clustering. The implication of such volatility clustering is that volatility shocks today will

influence the expectation of volatility many periods in the future. Mandelbort's study inspired a

series of studies in modeling the behaviour of variance. ARCH models, proposed by Engle

(1982), were specifically designed to model and forecast conditional variances. The variance of

the dependent variable is conditioned on the square of lagged shocks in the series in an

autoregressive form.

Since then, numerous studies in the literature are devoted in developing and finding the best

functional form for this class of models. For example, Bollerslev (1986) proposes the

Generalised ARCH (GARCH) model; Engle et al. (1987) introduces ARCH in Mean (ARCH-

M) model; Bollerslev et al. (1988) develops the Multivariate GARCH (MGARCH) model;

Nelson (1991) extends ARCH models to allow for asymmetric effects of shocks on volatility

(Exponential ARCH or EARCH), amongst others. These models are widely used in various

branches of econometrics, especially in financial time-series analysis in different areas as for

example, asset pricing, exchange rates, and interest rates. Bollerslev et al. (1992), Bera and

Higgins (1993), Engle (1993), and Bollerslev et al. (1994) are among the recent surveys of the

extensions of ARCH class of models and cite a large number of papers in different directions of

specification, estimation and applications of these models.

One of the assumptions of the classical linear regression, for the parameter estimates to be Best

Linear Unbiased Estimators (BLUE), is that the residuals must be homoskedastic (the variance

of the residuals, a2, must be constant). However, if a2 is time dependent (residuals show time-

varying heteroskedasticity), then the OLS estimators are not BLUE. In a seminal paper, Engle

(1982) proposes a test to detect such variations in the variance and then uses these variations to

measure and model the volatility of the dependent variable(s). Engle's (1982) test is based on
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an auxiliary regression of squared residuals (from the original regression) on lagged squared

residuals and an error term, which is iid with zero mean and constant variance. The joint

significance of parameters of lagged squared residuals can be tested using Lagrange Multiplier

(LM) or F-tests and indicates if the lagged squared residuals can explain the current squared

residuals.

In the linear GARCH(p, q) model with Gaussian shocks 6,, the conditional variance is

postulated to be a linear function of the past q squared innovations (the ARCH term) and of the

past p conditional variances (the GARCH term):

yi = + D ixt +	;	 iid(0, hi)	 (2.38a)

= ao +
	

(2.38b)

Equation (2.38a) is the mean equation and is written as a function of exogenous variables with

an error term. Since h, is the one-period ahead forecast variance based on past information,

Equation (2.38b) is called the conditional variance. The conditional variance is a function of

three terms: the mean ao, news about volatility from the past periods, measured as the lag of the

squared residual from the mean Equation (2.38a), s_ j , and past forecast variances, h,_,. This

process is described by q coefficients Pi, j =	q; p+1 coefficients a„ i =	p; mean To; k

linear regression coefficients pi, i =	k; endogenous and exogenous variables yi and xr,

respectively; shocks cr; and the set of all information up to time t-1,

For this model to be well defined and the conditional variance to be positive, almost surely the

parameters must satisfy a0 > 0, ai > 0, and 3> 0. The process is stationary with a finite variance

if and only if 0 < E a• + E r3; < 1. For p = 0 a GARCH(p, q) model is called the ARCH(q)
=1	J =1

model of Engle (1982). The number of the lagged error terms and lagged variances in the

variance equation is called the order of ARCH or GARCH model, denoted ARCH(p) or
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GARCH(p, q), respectively. However, the most common type of GARCH(p, q) model used in

the literature to model economic variables is the GARCH(1,1) model.

Significance of lagged variance parameters, ai, in Equation (2.38b) indicates the dependence of

the current value of the conditional variance on its lagged values. On the other hand, if the

parameters of lagged squared errors and variance are not statistically significant, then the

variance of the regression is constant (no GARCH effects). GARCH(p, q) processes, where the

mean is constant (both conditional and unconditional), the unconditional variance is constant,

but the conditional variance is non-constant, are uncorrelated but not independent. The

dependence of the conditional variance on the past is the reason that the process is not

independent. The independence of the conditional mean on the past is the reason that the

process is uncorrelated.

In many applications with high frequency data the estimate for E a, E pi turns out to be
t=1	J=1

very close to unity. This provides an empirical motivation for the so-called Integrated

GARCH(p, q) or IGARCH(p, q) model, introduced by Engle and Bollerslev (1986). In the

IGARCH class of models a shock to the conditional variance is persistent in the sense that it

remains important for future forecasts of all horizons. IGARCH processes are either non-

stationary or have an infinite variance (heavy-tailed distribution).

2.6.1. Multivariate Specifications

The specification of Equation (2.38b) is a univariate GARCH(p, q) model. However,

multivariate GARCH(p, q) models can also be used to model the means and variances of two or

more variables simultaneously. These types of models have been suggested by Bollerslev et al.

(1988) in asset pricing specifications.

If two or more time-series are cointegrated then it is suggested that there is a long-run

relationship between the variables. If such a relationship exists, one can expect the short-run

adjustment to the long-run equilibrium to influence both the mean and the variance of the

variables (Lee, 1994). Such a model is known as the multivariate GARCH-X, where the lagged

ECT is used in the conditional mean equation to impose the long-run equilibrium relationship,

106



and the conditional volatility equation is augmented with the lagged squared ECT (z1 ). As an

example the variance and covariance equations of a bivariate GARCH(1,1)-X model can be

expressed as follows:

hut= a0,1 + huh 11,s-1 ± CI le 12,t_i	enz1 (2.39a)

h121= a0,12	b12h12,r-1	C1261,f_i E (2.39b)

h22 = a0,2	b22h22,1-1 ± C228 22,t-1 + e22z, (2.39c)

The actual implementation of a multivariate GARCH model necessarily requires some

assumptions regarding the format of the temporal dependencies in the conditional covariance

matrix sequence [E,i(cie;)]. For a parameterisation of Et_i (cA) several key issues must be

considered: First, all useful specifications must necessarily restrict the dimensionality of the

parameter space. Second, whether such restrictions impose the required positive definiteness of

the conditional covariance matrix estimators. Third, it is important to recognise whether

Granger causality in variance, as in Granger et al. (1986), is allowed (does the past information

on one variable predict the conditional variance of another). Fourth, whether there are linear

combinations of the variables with less persistence than individual series.

Let vech(.) denote the vector-half operator of an (NxN) matrix. Since the conditional covariance

matrix is symmetric, vech(11,) contains all the unique elements in H. Following Kraft and Engle

(1982) and Bollerslev et al. (1988), a natural multivariate extension of the univariate

GARCH(p, q) model is then:

vech(Ht) = Ao + E Bivech(Ht_t) + E Civech(6,4E141)
	

(2.40)
i=1	 J=1

where Ao is an [N(N + 1)12] x 1 vector, and the Bi and C matrices are of dimension [N(N +

1)/2] x [N(N + 1)/2]. This formulation is the so-called VECH representation, introduced by

Engle and Kroner (1995). It allows each of the elements in HI to depend on all of the most
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recent q past cross products of the Et 's and all of the most recent p lagged conditional variances

and covariances, resulting in a total of [N(N + 1)/2][(1 + p + q) N(N + 1)/2] parameters.

However, even for low dimensions of N and small values of q and p, the number of parameters

is very large. In practice, some simplifying assumptions will therefore, have to be imposed. In

the diagonal GARCH(p, q) model, originally suggested by Bollerslev et al. (1988), the Bt and

matrices are all taken to be diagonal. This restriction reduces the number of parameters to

[N(N + 1)/2](1 + p + q). However, this model clearly does not allow for causality in variance,

co-persistence in variance, or asymmetries.

Bollerslev (1990) introduced another attractive way to simplify Ht. Bollerslev assumed that the

conditional correlation between the residuals of the mean equations (Cy,, and ex,,) is constant

over-time and expressed IL as:

Eh2 h

[h x2 y ,, h2 xx,,

[hr,,

 h 

0

0	x,,Rp

pyx

yx I

[h 	0

0	hx,/
(2.41)

where p yx (< 1) is the time-invariant correlation coefficient, and the individual variances h2y,,

and h 2x ,, are assumed to be a standard univariate GARCH process. It is clear that the constant

correlation representation involves 7 parameters. Also, positive defmiteness of the specification

is assured if hy,, > 0 and h	> 0. However, constancy of correlation is a very strong

assumption and validity of Equation (2.41) remains an empirical question.

In the alternative representation of the multivariate GARCH(p, q) model termed by Engle and

Kroner (1995) the Baba, Engle, Kraft and Kroner, (henceforth, BEKK), representation, the

conditional covariance matrix is parameterised as36:

yi=n'xi + Et , Et — dist(0,Ht)	 (2.42a)

	

= NA + E B;Ht_t 13; + E	E'stst'E
i.1	J=1

(2.42b)

36 The BEKK model originally proposed by Baba, Engle, Kraft and Kroner (1987) where it takes its name.
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where y, is an (Nxl) vector of dependent variables, x, is a (lodc) vector of independent variables,

s, is (pxl) vector of exogenous variables, Et is an (Nxl) vector of regression residuals, and Fl is

an (Nxk) matrix of parameters in the mean Equation (2.42a). In the variance Equation (2.42b)

H, is a symmetric variance-covariance matrix, A is a (NxN) lower triangular matrix of constant

parameters, and Bi j = q, and Ci j = p are (NxN) matrices of parameters for the

lagged variance and squared residual terms, respectively, and E is an (Nxp) matrix of

parameters for exogenous variables.

This formulation has the advantage over the general specification in Equation (2.40) that H, is

guaranteed to be positive definite for al t. Because the second and third terms on the right-hand

side of Equation (2.42b) are expressed in quadratic forms, the positive definiteness of the

conditional covariance matrix of asset returns is guaranteed, provided that A is positive definite.

The model in Equations (2.42a) and (2.42b) involves a total of [1 + (p + q)K]1\12 parameters.

However, in empirical applications, the structure of the B, and Cs; matrices must be further

simplified as this model is also overparameterised, which results in loss of degrees of freedom.

A way to overcome this problem is to restrict some or all of the off-diagonal elements in B, and

Ci matrices as follows:

(a»	0	... 0 (b» 0	... 0 \ (Cil 0	... 0 (hi J, I 0	... 0

A=
azi	a22 • •

\ an I	a2n • •

•	0

•	arm

,	13=
0	b22 • • • 0

\ 0	0	• • • b.

Ci=
0

0

C22 •

0	•

•	• 0	)

•	• Cnn

,H,
hzt,,

hnl' I

h22,(

•.

h2n, ( • •

0

•	hnn, (

However, such off-diagonal terms measure the spillover effects between volatilities and

restricting them might involve some misspecification costs, if such effects exist between time-

varying conditional variances. In order to measure volatility spillover effects in Xr, say Xr = [y»,

Y2/1 in a simultaneous framework, we construct an additional matrix containing specific

parameters measuring such effects. The VECM of Equation (2.24) then becomes the following

bivariate BEKK VECM-GARCH model:
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D,=11 I =	 5
P21

	

(el	(71.1i
, Et =	,	=

2,,	 y 1.21	1,22

AX t = (AY")	= (Pm)
Ay2 ,.	 p2o

(OLI
=	

01.11)

0 2 . 1— 02.11

	

(h , h121	(a all 0
Ht =	I	, A =

	

h2l.,11 2,,	 au a22).'

(bon 0 )
Bi =

0 b22)

C011)

.6,Xt =[1,0	t EFAX, +afizt-k +gip/ +et	et dist(0, HI)	(2.43a)
i=1

Ht = A'A +	B + Cei-let-IIC +	 + S2'u2,t_ i u2,1_ I 'S2	(2.43b)

where

(7k.„ rk,1 
a 

[au an.)
rk —	 ,

yk, 21 7 k 22	 au a22

(8 n 0 811 fill fi.2)

I =	 n	nu 20 L/ 21 p2I p 22

z=

n

y - I

0	(s2.	(0 0	E 2,t

, S2 =	 ul,r =
0 ELT 112,1= o o(0 51.	o o

Expanding the matrices of coefficients and variables explaining the mean model the following

model results:

Si =

Ayo = 1/113 111 ft E aLiAy ,r-i +	a2,iAY2,t-i + at /3z, 1 + E (I) Lid/ + Ei,t
i4

p1	 p1	 11
Ayzi = P20 + p2 1t + I b,,,Ay,,t_, E b2,iAY2,t-1 + a21/64-1 E (p2,4+E2t

(2.44a)

(2.44b)

where fi represents the cointegrating vector (the long-run relationship between the two variables

in Xt). Similarly, explaining the variance specification to show elements in matrices of

coefficients the following model results:
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Q 2 + 1,2 h
"1,,	"11	"11 11 1,i-1 11	2,/-1+ C 2 E 2 + S2 2 8 211 1,,-1	 (2.45a)

Q 2 + 1,2 I,
2,1

= 
a 21 + ‘-‘22	22 " 2,t-1 + C 

2 E 2

	

2,t-1	n 1,t-1+ S 1 2 E 2	 (2.45b)

h 12, = all a21 + b 11 b 22 h12,t-1 + c 11 c 22 E 1,i-1 2,t-1	 (2.45c)

where sii (i and j = 1, 2, i #j) coefficients are used to measure volatility spillovers between two

variables.

We should notice that, in the financial literature shocks (news) might have different impact on

the behaviour of the volatilities of time-series. The impact of a positive shock on the volatility

can be different from the impact of the negative shock of the same magnitude. Statistically, this

effect occurs when an unexpected decrease in price (bad news) increases predictable volatility

more than an unexpected increase in price (good news) of similar magnitude. This leverage

effect is important when modelling the second-order moments because univariate or

multivariate GARCH models can be misspecified and lead to biased estimates of volatilities as

well as inaccurate forecast intervals37.

Engle and Ng (1993) develop a set of tests to detect any form of misspecification in GARCH

models due to the asymmetric behaviour of volatility to shocks. Engle and Ng (1993) suggest

that the Ljung-Box test may not have much power in detecting misspecifications related to the

asymmetric effects. These tests are based on regressing the squared standardised residual, (.4 =

^ 2et /h, ), on a series of dummies which are constructed using the sign and relative size of shocks

in the mean equation: (i) the sign bias test considers the variable Y,11 , a dummy variable that

takes a value of one when E,_1 is negative and zero otherwise. This test examines the impact of

positive and negative return shocks on volatility not predicted by the model; (ii) the negative

37 If a'negative return shock causes more volatility than a positive return shock of the same size, the GARCH
model underpredicts the amount of volatility following bad news and overpredicts the amount of volatility
following good news. Furthermore, if large return shocks cause more volatility than a quadratic function allows,
then the standard GARCH model underpredicts volatility after a large return shock and overpredicts volatility after
a small return shock (Engle and Ng, 1993).
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size bias test utilizes the variable Y,-  cm. It focuses on the different effects that large and small

negative return shocks have on volatility which is not predicted by the volatility model; (iii) the

positive size bias test utilises the variable YII sm, where y +i i = 1 _ y i-_,. It focuses on the

different impacts that large and small positive return shocks may have on volatility, which are

not explained by the volatility model; (iv) a joint test of all the previous tests.

The suggested tests are the following:

u,2 = ao + bY , + 13 141 ± (0 1

-
U 

2 
= ao + bY  et 1 ± rip/ ± (Ot1	 I-1	-

U 
2 
= ao + bY  ,+ Er 1 + / 6 "ZOt ± (Ort	 A -

2
u, = ao + bl Y il l + b2Y,I 1 et-i + b3Y 1 et-1± 13 'ZOt ± 001

(2.46)

(2.47)

(2.4S)

(2.49)

where /3' is a constant parameter vector fl = On flog and Zot is a vector of parameters that

explain the variance under the null hypothesis; in the case of a GARCH(1,1) model, zot = (11,,

6,2  ). In Equation (2.46), significance of the term b, implies that negative shocks (bad news)

have a relatively greater impact on volatility than positive shocks (good news). Significance of

the b coefficients in Equations (2.47) and (2.48) implies that the shocks with different

magnitudes have different relative impact on the volatility; that is negative and positive size

biases, respectively. Equation (2.49) performs a joint LM or F-test, in which the null is Ho: b1 =

b2 = b3 = 0, in order to detect any sign and size biases in the impact of the shocks on the

conditional variance.

Furthermore, in analysing a GARCH model the persistence factor of volatility should also be

estimated. Persistence of volatility can be defined as the degree of convergence of the

conditional volatility to the unconditional volatility after a shock. For example, if the

conditional volatility is defined as a GARCH(1,1) process, 11, = ao + bi hm + c1s_1 , then the
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unconditional volatility would be ao/(1 - 1)1 - ci ). Therefore, the degree of persistence of the

conditional volatility can be defined as (bi + ci ). The conditional volatility converges to its

unconditional volatility value, if and only if (bi + ci ) < 1. Also, note that in the BEKK

specification persistence is calculated as (b	C ).

2.6.2. Estimation Methods of ARCH and GARCH Models

The actual implementation of the maximum likelihood procedure requires an explicit

assumption regarding the conditional density of the process. Assuming the conditional joint

distribution of the returns of the two markets is normal, the log-likelihood for the GARCH

models can be written as:

L(0) = - T log(27c) — (0.5)i (logiFid + ; Ht-I 6 )	 (2.50)
I=1

where IL is the 2x2 time-varying conditional covariance matrix, 8, = (Cy,, Ex,i) 1 is the 2x1

vector of innovations at time t, T is the sample size, and is the parameter vector to be

estimated. The log-likelihood function is highly non-linear and, therefore, numerical

maximisation techniques have to be used. The Broyden, Fletcher, Goldfarb, and Shanno

(henceforth, BFGS) iterative optimisation algorithm, which utilises derivatives to maximise the

log-likelihood or alternatively the Berndt, Hall, Hall, and Hausman (1974) (henceforth, BHFIFI)

iterative optimisation algorithm can be used.

The GARCH(p, q) model with conditional normal errors results in a leptokurtic unconditional

distribution. However, the degree of leptokurtosis induced by the time-varying conditional

variance often does not capture all of the leptokurtosis present in high frequency speculative

prices. To circumvent this problem Bollerslev (1987) suggests using a standardised Student t-

distribution:

F[(2 + v)/2] 1/2	1L(Ht, ct, 0) =	 MF(v/2)[7c(v _ 2)] I 0 ) , I	[ 1 ±	
2 

E(0),', F1(0)/-1 e(0)d-R2+v)/2]

, for v> 2

(2.51)
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where F(.) denotes the gamma function, and v denotes the degrees of freedom. The t-

distribution is symmetric around zero, and converges to the normal distribution for n —> oo.

However, for v <4 the Student-t distribution has an undefined or infinite degree of kurtosis [the

theoretical kurtosis is computed as 3(v-2)(v-4)-1]. In such cases the Quasi-Maximum Likelihood

Estimation (QMLE), which estimates robust standard errors, and thus, yields an asymptotically

consistent normal covariance matrix, is preferred (Bollerslev and Wooldridge, 1992). Under

appropriate regularity conditions this is sufficient to establish consistency and asymptotic

normality (Wooldridge, 1994). For symmetric departures from conditional normality, the

QMLE is generally close to the exact MLE.

2.7. CONCLUSION

In this chapter, the econometric framework of analysing non-stationary price series was

presented. We discussed the properties of stationary and non-stationary processes and presented

the Dickey and Fuller (1979, 1981) and Phillips and Perron (1988) unit root tests. We also

presented and described the Engle and Granger (1987) and Johansen (1988) testing procedures.

The latter procedure is more powerful than the Engle and Granger (1987) procedure and

provides a test statistic which has an exact limiting distribution and enables us to perform

hypothesis tests for restricted versions of the cointegrating relationships. Finally, the ARCH

family of models, designed to model time-varying conditional variances, was also discussed.

These techniques are employed in this thesis in order to investigate the economic functions and

uses of the forward freight market.
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CHAPTER 3- THE UNBIASEDNESS HYPOTHESIS OF FORWARD AND

EXPECTED SPOT PRICES IN THE FORWARD FREIGHT MARKET

3.1. INTRODUCTION

According to Fama (1970), a market is efficient if prices always fully reflect all available

information, and in turn, provide accurate signals for resource allocation. Excess or abnormal

market profits (or returns) from trading follow a fair game process, with respect to the

information set available at the time when expectations of future prices are formed, or in other

words excess profits should be zero38. Thus, agents process information efficiently and

immediately incorporate this information into asset prices.

If current and past information is immediately incorporated into current prices then only new

information or news should cause changes in prices. Since news is by definition unforecastable,

then price changes (or returns) should be unforecastable: no information at time t or earlier

should help to improve the forecast of prices (or returns). This independence of forecast errors

from previous information is known as the orthogonality property; information available today

should be of no use in forecasting tomorrow's price. Forecast errors should be therefore zero on

average and should be uncorrelated with any information that was available at the time the

forecast was made. The latter is often referred to as the rational expectations element of the

Efficient Market Hypothesis (EMH).

In such efficient markets, the existence of futures/forward markets can help to discover prices

which are likely to prevail in the spot market. In efficient markets, according to the

unbiasedness hypothesis, forward contract prices must be unbiased estimators of the spot prices

of the underlying asset that will be realised at the expiration date.

38 The expected net return to speculators engaging in intertemporal speculation on assets should be zero.
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Investigation of the unbiasedness hypothesis for the forward freight market is interesting for the

following reasons: First, the underlying asset is a service, which is a unique feature. Second, the

price discovery function provides a strong and simple theory of the determination of spot prices

that may prevail in the future. Third, if forward prices are to fulfil their price discovery role,

they must provide accurate forecasts of the realised spot prices, and consequently provide new

information in the market and in allocating economic resources (Stein, 1981). The existence of

inefficiency of forward prices in marking spot prices can increase the cost of hedging, assuming

that the market agents are fully informed when they set the forward price in FFA contracts39.

Finally, the apparent lack of research in the forward freight trades further motivates this

investigation as the findings can serve as a performance comparison with the BIFFEX futures

market, investigated by Kavussanos and Nomikos (1999), amongst others.

Kavussanos and Nomikos (1999) examine the BIFFEX contract using cointegration techniques

and find that futures prices one- and two-months from maturity provide unbiased forecasts of

the realised spot prices. On the other hand, futures prices three-months from maturity seem to

be biased estimates of the realised spot prices. The decrease in volume in BIFFEX contracts has

coincided with the creation of FFA market at the beginning of 1992. Market agents attribute

this decrease in BIFFEX futures trading to the growth in hedging activity with the FFA

contracts (Haigh, 2000). Empirical examination of the efficiency of the FFA market would

provide a helpful direction towards the validity of the above inference.

The remainder of this chapter is organised as follows. Section 3.2 presents the unbiasedness

hypothesis. Section 3.3 discusses the alternative methodologies for testing the unblaseaness

hypothesis, which can be categorised as traditional-regression and modern-cointegration

methods. A selective literature review of the unbiasedness hypothesis, using forward contracts

in several markets, is presented in section 3.4. Section 3.5 takes a preliminary look of the data

and tests their statistical properties. Section 3.6 applies cointegration methods to the FFA

market and tests the unbiasedness hypothesis. Finally, section 3.7 summarises this chapter.

39 When forward prices are well above (below) the expected spot prices, long (short) hedgers are obliged to buy
(sell) the forward contracts at a premium (discount) over the price they expect to prevail on expiration.
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3.2. FORWARD RATES AS OPTIMAL PREDICTORS OF FUTURE SPOT RATES

The hypothesis that forward prices are the best-unbiased forecasts of future spot prices is often

presented in the economic and financial analysis of forward and futures markets°. In economic

analysis, the hypothesis often appears under the guise of rational expectations, while in the

financial literature the term market efficiency is more generally employed. The joint

assumptions of risk neutrality (or no risk-premium) and rationality (so that speculators cannot

expect to make excess returns) are so central in many finance models that their importance

cannot be understated. Together, these two assumptions have been called by some: simple

efficiency (Hansen and Hodrick, 1980), speculative efficiency (Bilson, 1981), unbiasedness

hypothesis (Hodrick and Srivastava, 1984), and market efficiency (Hakkio and Rush, 1989).

Across the literature it is argued that forward prices can deviate from future spot prices because

of transactions costs, information costs, and risk aversion that produce a risk-premium.

The unbiasedness hypothesis is formulated under the proposition that the expected excess rate

of net return to speculation in the forward (futures) market, conditioned on available

information, is zero. Any discussion of the efficiency of a market requires a specification of the

preferences and information sets of economic agents, the technology available for production,

and the costs inherent in transactions. If economic agents are risk neutral, information is used

rationally, and the market is competitive, then the FFA market will be efficient in the sense that

the expected rate of return to speculation from the FFA contracts will be zero.

If a risk-premium is not observed in the forward price for holding long or short forward

contracts, then speculators are not rewarded for taking on risk. On average the forward price

today F,,r_n should mirror the expected price of the forward price at expiration, Et_n(Frint-n);

given that the information set 5-2,„ available to the market participants at time t-n is assumed to

contain all past and current values of forward and spot prices, and the exact stochastic process

by which prices are determined. Because the expected forward price at expiration should equal

the expected spot price at expiration, Er,(Sta21,), we obtain the following result41:

4° Early studies that test the unbiasedness hypothesis are from Hickman and Braddock (1942), and Culbertson
(1975).
I In the FFA market the forward prices are derived by the expectations of market participants, at time (I-n),

regarding the future spot prices at the expiration (t) of the contract.
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Ft,t_„=Et_n(stint)
	

(3.1)

where Ft,t..„ is the FFA price at time t-n expiring at time t, St is the spot price at expiration, C21-n

is the information set available to the market participants at time t-n, and Et_n is the expectations

operator42. This statement implies that the forward price today is the market's expectation of the

future spot price given the information set available. Forward prices will then be unbiased

estimators of future spot prices. Moreover, let ut,t_,, be the realised return of the forward

contract43 :

Uu-n= [F1,, — St] I F1,1-n
	 (3.2)

The null hypothesis of a zero risk-premium implies that Et_ tun, 1,1-n --t-n,= 0. Hence, the

unconditional mean of ut,t, is zero, and that ut,t_n is uncorrelated with any variable included in

the information set CZ,. The assumption that agents are risk neutral, so that the risk-premium is

zero, and that agents use all available information rationally, so that the expected returns to

speculators are zero, are properties imposed in theoretical macroeconomic models and are

summarised by saying that markets in which they holl are unbiased. If both parts of the

hypothesis hold, then the current forward rate is an unbiased predictor of the future spot rate.

3.3. TESTING THE UNBIASEDNESS HYPOTHESIS

The unbiasedness hypothesis posits parameter restrictions on the relationship between realised

spot and forward prices. Because most macroeconomic (time-series) variables are found to be

non-stationary, use of OLS standard regression-based techniques are inappropriate for statistical

inference and the tests using them are non-informative in the sense that they are incapable of

correctly testing the hypothesis44. Specifically, many of these tests are based on regressions that

42 All time-series are expressed in logarithmic form.
43 This expression can be thought of as the difference between holding yields from the spot contracts and the
forward contracts.
44 Geweke and Faige (1979) state: "To be informative, an econometric procedure should be powerful enough to
reject the efficient markets hypothesis, and it should provide some indication of why the hypothesis is not true in
the market being studied".
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suffer from simultaneity bias, resulting in biased and inconsistent estimators. The cointegration

framework, developed by Engle and Granger (1987) and Johansen (1988, 1991) can be used to

resolve the problem and reliably test for unbiasedness45. Therefore, we must test for the

existence of a cointegrating relationship between the forward price and the realised spot price at

expiration. If the two price series are not cointegrated, one might not reject the unbiasedness

hypothesis, whereas if series are found to be cointegrated, it is possible to predict one on the

basis of another.

3.3.1. Traditional Methods for Testing the Unbiasedness Hypothesis

There are two general traditional methods commonly used to empirically investigate

unbiasedness46. In the first, through a levels specification, two suppositions form the unbiased

expectations hypothesis, where researchers regress the logarithm of the expected future spot

rate at the delivery date, E(S,), on the logarithm of the forward rate observed today t-n for the

delivery date t, F,,,,, and the expectation of the spot price is formed rationally (E(S,) = S, - tit).

Therefore, conditional on the assumption of rational expectations, the realised spot price as time

t, will differ from its conditional expectation at time t-n by a white noise error process47. It

should be noted that the test of unbiasedness is not a simple one, but relates the degree of bias

to the level of the forward price. The first supposition suggests the following parameter

restrictions 181 = 0 and 182 = 1 [(fi )62)= (0, 1)] in:

St = fij +,82Ft,t_n + ut ; ut iid(0,a2)	 (3.3)

where u, is a white noise error process.

45 If a stochastic process must be differenced once in order to become stationary, then the series contains one unit
root and is said to be integrated of order one [1(1)]. If S, and Fij_n are 1(1) series, any linear combination among
these two series will also be 1(1). However, there may be a number of b such that S, - bF,, ,,= s, is stationary. In this
special case the two price series, S, and Ft,t-n, are said to be cointegrated of order C/(1,1), implying that they cannot
drift apart, but return to the long-run equilibrium level.
46 References include Fama (1976), Tryon (1979), Levich (1979), Bilson (1981), Longworth (1981), Hsien (1984),
Huang (1984), Gregory and McCurdy (1984), and Hodrick and Srivastava (1984).
47 Unless we have some independent estimates of E1 (S/C), there is no way to separate the unbiasedness
hypothesis into its two components: the rational expectations and the no risk-premium hypotheses. Only with the
availability of survey data, these two components can be tested separately (Froot and Frankel, 1989, and Liu and
Maddala, 1992).
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This method is used by Frenkel (1977, 1980) and others to test for unbiasedness. Most tests

reject the null hypothesis, finding fi2 positive but significantly less than one (and a equal to

zero). This consists indirect evidence in favour of the unbiasedness hypothesis, but forecasts

embedded in forward rates tend to be systematically biased upward because of the existence of

a term-premium. Often the estimate of /32 is close to zero or negative. In the special case of /32 =

0, the spot rate follows a random walk (no predictive power in the test). A test of the

unbiasedness hypothesis is of both theoretical and practical significance. The condition of a

non-zero expected premium (i.e. normal backwardation < 0, or contango, fi l > 0) increases

the cost of hedging, to compensate speculators for the risk of net long or net short positions

when hedgers are net short or net long, respectively".

This technique cannot be applied to a forward market where the observation period and the

forward contract maturity do not coincide. We avoid using higher-frequency data, which are

available49, otherwise, a moving-average effect would be produced. The overlapping contract

periods would result in serially correlated errors on the regressions and this would result in

inefficient and biased hypothesis tests (Gilbert, 1986).

The second percent change method regresses the percent change in the realised spot rate

relative to the current spot rate [St - St ] against the forward premium or the difference between

the forward and spot rates [F1,1_,, —

(St - Si_n) = 181 + fl2(F 1,t-n — St ) + 1.11 ; u, iid(0,o2)	 (3.4)

where u, is an innovation process in the price and satisfies Et_n(ualt,) = 0. In this case,

efficiency without a risk-premium again requires that the constant term be 0 and the slope be 1

(see for example, Bilson, 1981; Geweke and Feige, 1979; Hansen and Hodrick, 1980; and

Huang, 1984, amongst others). The second method is often preferred because non-stationary

spot and forward rates make the first regression suspect (Johansen, 1988). Unfortunately, the

second method generally yields weak results: one often cannot reject the hypothesis (fl i = 0 and

48 When FFA prices are above the expected spot prices, long hedgers buy FFA contracts at a premium over the
price they expect to prevail on maturity.
9 However, a semi-parametric technique enables us to both estimate and make inferences even in the case of

overlapping observations (Phillips and Hansen, 1990).
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fi2 = 1), but simultaneously one also often cannot reject that the constant is 0 and the slope is —1

(Moore, 1994).

Moore (1994) shows that meaningful inferences cannot be made from Equation (3.4) because it

is, in general, misspecified. The basic source of the specification error is the fact that many

asset prices are typically non-stationary. Furthermore, Liu and Maddala (1992) argue that this

second regression method has some interesting aspects if Si and F1,1,„ are non-stationary. The

left-hand side of Equation (3.4) is stationary. But there is no guarantee that the variable on the

right-hand side (Fr,r_„ — Si_n) is stationary. In fact, it will only be stationary if the unbiasedness

hypothesis is true. If (F1,1, — St_n) is non-stationary, since (St — St_n) is stationary we have a

regression of a stationary variable on a non-stationary one. Thus, the unbiasedness hypothesis

will almost surely be rejected. On the other hand, if (Ft,r, — St_n) is stationary the unbiasedness

hypothesis is true, in which case there is no point in testing it using Equation (3.4). In order to

see if this is a problem, we must also regress (Ft,,,— StA on (Si — StA K‘.Qx.de.x

results.

Fama (1976) conjectures that the weakness of the forecast power of the above regressions,

stems from model misspecification or measurement error. Using standard regression methods in

the presence of non-stationary price series results in inconsistent coefficient estimates and t- and

F-statistics which do not follow the standard distributions generated by stationary series. The

regressions can be characterised as spurious regressions or nonsense regressions (Granger and

Newbold, 1974).

3.3.2. Cointegration Methods for Testing the Unbiasedness Hypothesis

Developments in the theory of cointegration by Engle and Granger (1987), Johansen (1988,

1991), Phillips and Ouliaris (1990) and Phillips (1991) provide new methods of testing

unbiasedness. Cointegration is a property possessed by some non-stationary time series data50.

In general terms, two variables are said to be cointegrated when a linear combination of the two

is stationary, even though each variable is non-stationary.

50 A non-stationary time-series exhibits infinite variance, which violates the central limit theorem making standard
methods for statistical inference inappropriate.
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The unbiasedness hypothesis implies that the current forward rate and the future spot rate are

close together. Therefore, even if the spot and forward rates are non-stationary, they should

never drift apart so that they will be cointegrated. Engle and Granger (1987) demonstrate that if

two non-stationary variables are cointegrated, the variables follow a well-specified ECM, where

the coefficient estimates, as well as the standard errors for the coefficients are consistent51.

The cointegration tests, like the standard regression tests, examine the joint hypothesis of no

risk-premium and rational use of information, under the parameter restrictions (8/, )62) = (0, 1).

More precisely, if two non-stationary variables, S, and F,,,_n are cointegrated of order C/(1,1)52,

the equilibrium regression can be expressed as follows53:

Si =/3 + fi2Ft,t, + ut ; u, 1(0) and ut iid(0,o-2)	 (3.5)

where S, and F,,1 are the series being tested for cointegration. If the restrictions hold, with a

cointegrating vector of one, then S, and F1,, cannot drift too far apart because their difference,

u,, is stationary54. Thus, if Fr,r-n, contains all the information that is relevant in forecasting the

next period's spot price, St, then F,1 should be an unbiased estimator of the future spot price.

On the other hand, if the two variables are not cointegrated then with probability one they will

drift infinitely far apart, in which case forward prices cannot be unbiased estimators of the

future spot prices. The following VECM framework, proposed by Johansen (1998), is used to

test for unbiasedness:

AX,j.t + E F,AXN + lar-/ + Et ; at /N(0,)
	

(3.6)

51 If two variables are cointegrated, the results in West (1986) and Stock and Watson (1988) also can be used to
demonstrate that the ECM is well-specified.
52 The first term of the order of cointegration pertains to the number of times it is necessary to difference the
individual data series to attain stationarity; the second term is the reduction in the number of times it is necessary to
difference the linear combination to achieve stationarity.
53 When testing for cointegration, there is no a priori choice of which variable should be the dependent variable.
Hence, we conduct each test twice, once with the future spot rate as the dependent variable and the FFA rate as
independent variable, and another with the designations reversed.
54 While cointegration is necessary for unbiasedness, it is not sufficient for two reasons. First, the cointegration
vector must also equal 1 and second, unbiasedness requires the error-term in Equation (3.5) to be white noise,
while cointegration only requires the error-term to be stationary.
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where X, is the 2x1 vector (S,, Ft,t_nY, II is a 2x1 vector of deterministic components which may

include a linear trend term, an intercept term, or both, A denotes the first difference operator, Et

is a 2x1 vector of residuals (us,,, uF,,)' and E the variance/covariance matrix of the latter. The

VECM specification contains information on both the short- and long-run adjustment to

changes in X,, via the estimates of F1 and II, respectively.

Johansen and Juselius (1990) show that the coefficient matrix H contains the essential

information about cointegration between 5, and	If rank(II) = 0, then ri is 2x2 zero matrix

implying that there is no cointegrating relationship between S, and In this case the VECM

reduces to a VAR model in first differences. If H has a full rank, that is rank(H) = 2, then all

variables in X, are 1(0) and the appropriate modelling strategy is to estimate a VAR model in

levels. If II has a reduced rank, that is rank(II) = 1, then there is a single cointegration

relationship between S, and F,,,,, which is given by any row of matrix H and the expression

is the ECT. In this case, II can be factored into two separate matrices a and fl, both of

dimensions 2x1, where 1 represents the rank of H, such as H = afl, where fi represents the

vector of cointegrating parameters and a is the vector of error-correction coefficients,

measuring the speed of convergence to the long-run steady state.

Since rank(H) equals the number of characteristic roots (or eigenvalues) which are different

from zero, the number of distinct cointegration vectors can be obtained by estimating the

number of these eigenvalues, which are significantly different from zero. The characteristic

roots of the qxq matrix H, are the values of k which satisfy the following equation	I= 0,

where Iq is a qxq identity matrix55.

55 Johansen (1988), proposes the following two statistics to test for the rank of 11: the X trace	= —T ln(1 — )
i=r+I

and the Xinax , r + 1) = —714 —	), where X and ?r+, are the estimated eigenvalues obtained from the

estimated H matrix, and T is the number of usable observations. The X „ ace tests the null that there are at most r

cointegrating vectors, against the alternative that the number of cointegrating vectors is greater than r and the

kmax tests the null that the number of cointegrating vectors is r, against the alternative of r + 1. Critical values for

the X trace and X. statistics are provided by Osterwald-Lenum (1992).
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The choice of the deterministic components that should be included in the VECM is important

since the asymptotic distributions of the cointegration test statistics are dependent upon the

presence of trends and/or constants in the VECM and is a task that must be supported by some

economic argument56. Unbiasedness is tested by the following restrictions fli = 0 and /32 = -1 on

the cointegrating vector. The following statistic proposed by Johansen and Juselius (1990) may

be used for that:

-414 — X )— ln(1— X., — /(2)	 (3.7)

where X1 is the largest eigenvalue of the unrestricted model and is the largest eigenvalue of

the model with the imposed restrictions on the cointegrating vector. The asymptotic distribution

of the likelihood ratio test statistic is / with degrees of freedom equal to the number of

assumed parameter restrictions (r) placed on fl.

The Fully Modified-Least Squares (FMLS) cointegration test, proposed by Phillips and Hansen

(1990), and the Bierens (1997) non-parametric test can also be used to test for unbiasedness.

Their use is motivated by the overlapping observations problem, present in the two- and three-

months maturity periods, which may affect the Johansen (1988) test (Hansen and Hodrick,

1980). With overlapping contract periods, if the observation frequency of the sample data is,

say h, where h < n (n is the maturity of the contract) in Equation (3.5), a moving average

process of order n I h— 1 in the residuals may be generated.

The Phillips and Hansen (1990) method applies a non-parametric correction to the OLS

coefficient estimates and to their associated t-statistics to take into account the impact of

autocorrelation on the residual term when the right hand side variables of Equation (3.5) are not

weakly exogenous. This method leads to fully modified estimates of both parameters and

standard errors, which are asymptotically equivalent to maximum likelihood estimates. The

method of Phillips and Hansen (1990) does not suffer from the overlapping observations

problem, since it only involves an adjustment to the OLS estimates of the cointegration vector

56 The following test proposed by Johansen (1991) is employed to test the most appropriate specification:

— T[141 — i; )— 1141 — i2 A distributed as x2(1), where i; and 51: 2 represent the smallest eigenvalues of the model
that includes an intercept term in the cointegration vector and an intercept term in the short-run model,
respectively.
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without any reliance on the parameters governing the short-run dynamics (the estimate of the

long-run covariance is positive definite in every case).

Bierens (1997) proposes a multivariate non-parametric method of estimation of Equation (3.3),

which is in the same spirit as Johansen's method in that the test statistics are obtained from the

solutions of a generalised eigenvalue problem and the hypotheses to be tested are the same.

Their main important difference is that the Bierens method estimates two random matrices, in

the generalised eigenvalue problem, constructed independently of the d.g.p. These matrices

consist of weighted means of the system variables in levels and first differences and are

constructed such that their generalised eigenvalues share similar properties to those in the

Johansen method. In contrast, the Johansen's (1988) method constructs the qxq IT matrix to be

dependent on the d.g.p. in a parametric way.

3.4. LITERATURE REVIEW

Several studies in the past have examined the unbiasedness hypothesis in various forward

markets. In the foreign exchange market the existence of time-varying risk-premia are

documented in the literature, amongst others, by, Frenkel (1977, 1980), Hansen and Hodrick

(1980), Hodrick and Srivastava (1984), all interpreting the bias not only as evidence of a non-

zero risk-premium, but also as evidence that the variance of the risk-premium is greater than the

variance of expected depreciation57' 58. Tests of the unbiasedness hypothesis on commodity

markets are fewer in number. This partly reflects the lower level of interest in these markets and

partly the fact that the predominant form of trading in commodities is the futures market rather

than the forward market (Engel, 1996)59.

57 Bilson (1981) expresses the extreme form of this view, which he calls the new empirical paradigm: expected
depreciation is always zero, and changes in the forward discount reflect changes in the risk-premium.
58 For a survey of the literature of the risk-premium anomaly in the currency markets see Hodrick (1987) and Engel
(1996).
9 Futures contracts differ from forward contracts in a number of respects, but the most important in relation to the

unbiasedness hypothesis is that futures contracts denominate a month of delivery whilst forward contracts state a
day of delivery. For this and other reasons, the implications of the unbiasedness hypothesis for futures are less
clear than for forward trading.
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Most of the studies that test for unbiasedness reject it and generally agree on the direction of

bias. They tend to disagree, however, about whether the bias is evidence of a risk-premium or a

violation of rational expectations. Some studies assume that investors are risk neutral, so that

the systematic component of the rate changes in excess of the forward discount is interpreted as

evidence of a failure of rational expectations. On the other hand, others attribute the same

systematic component to a time-varying risk-premium that separates the forward discount from

expected depreciation. Since the list of studies, on several forward markets, is almost endless

we present some indicative studies using cointegration techniques.

In the forward exchange rate market, Baillie and Bollerslev (1989) examine the logarithms of

daily exchange rates between seven currencies, and argue that exchange rates may be

cointegrated using the Engle and Granger (1987) two-step cointegration test and the Johansen

(1988) test. They conclude that currency markets may not be characterised by the joint

hypothesis of the efficient use of information and rationality. Haldcio and Rush (1989) reject the

joint hypotheses of no predictable risk-premium and unbiased expectations for the one-month

forward German mark and one-month forward British pound. Sephton and Larsen (1991),

investigate market efficiency with respect to the US dollar exchange rates for Canadian,

Japanese, and West German currencies using the Johansen (1988) methodology. They

demonstrate that the fragile nature of the test indications suggests that cointegration

methodologies cannot be relied upon to provide reliable evidence on market efficiency60.

Moreover, the Johansen (1988) test should be preferred to the Engle and Granger (1987) test

since it is robust to various departures from normality, it does not suffer from problems

associated with normalisation, and that more is known about its asymptotic behaviour.

Lai and Lai (1991) examine the one-month forward British pound, German mark, Swiss franc,

Canadian dollar and Japanese yen exchange rates and report evidence against the unbiasedness

hypothesis. Barnhart and Szalcmary (1991) find that both spot and one-month forward exchange

rates for the UK, Germany, Japan, and Canada are cointegrated, although they reject the

parameter restrictions for unbiasedness for all currencies. Norbin and Reffett (1996) examine

the three-months forward exchange rates for Germany, Canada, Japan, UK and Switzerland and

60 The temporal instability in the Johansen test renders findings inconclusive. Test results depend critically on the
period used to estimate the error-correction model on which the Johansen (1988) test statistic is based. Different
sample periods lead to different conclusions regarding unbiasedness.
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report evidence in favour of the unbiasedness hypothesis. Luintel and Paudyal (1998) examine

the one-month forward exchange rates for Germany, Canada, France, Japan and US vis-à-vis

the UK forward exchange rate and show that unbiasedness could not be sustained, with the

exception of the Canadian currency. Barnhart et al. (1999) report results in favour of

unbiasedness, using end of month data for one-month forward exchange rates for the British,

Canadian, German, French, Swiss, Japanese and Italian currencies.

In the forward commodity market, MacDonald and Taylor (1988) examine whether any of the

spot rates in the tin, lead, and zinc markets of the LMH are pair-wise cointegrated. They find

that no such cointegration relationship exists, which is consistent with efficiency. Chowdhury

(1991) tests for cointegration between spot prices of different metals and cointegration between

forward and realised spot prices using data from the LMH during the period 1971-1988.

Chowdhury uses averaged data (like the studies of Goss, 1981, 1983, 1986), which are subject

to the criticisms of Gilbert (1986). Ironically, Chowdhury employs very small samples to avoid

the problem of overlapping data even though this leads to very similar problems to those that

arise with averaged data61 . He reports rejection of unbiasedness in the markets of the four

metals which he discusses.

Krehbiel and Adkins (1993) find that the three- and four-months forward contract prices and

realised spot prices are cointegrated in the silver, copper, gold and platinum market of the

Commodity Exchange (COMEX), but with the unbiasedness hypothesis to hold only for the

platinum market. Moore and Cullen (1995) examine the aluminium, copper, lead, nickel, tin

and zinc metal markets of the LME and conclude that unbiasedness cannot be rejected for four

of these — aluminium, copper, lead, and zinc. Overall, the empirical evidence, based on

cointegration techniques, is mixed. Thus, rejection or not of unbiasedness depends on the type

of contract, the maturity of the contract, the market, and the time-period under investigation.

61 For a discussion of overlapping observations refer to Moore (1994) and for averaged data to Gilbert (1986).
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3.5. DESCRIPTION OF DATA AND PRELIMINARY STATISTICS

From the creation of the FFA market on February 1st 1992 until November 1st 1999, the eleven

panamax and capesize voyage and time-charter routes of the BFI served as the underlying

assets of the FFA trades, in the dry-bulk sector of the shipping industry. After the latter date,

with the exclusion of the capesize routes and with the renamed index as BPI, the underlying

assets of the FFA contracts are panamax routes. Data for FFA rates on four panamax routes,

namely route 1, 1A, 2, and 2A, and three contract maturities — one-, two-, and three-months, are

obtained from Clarkson Securities Ltd. for the period January 1996 to December 200062. The

reason for using only four routes out of seven, and January 1996 as a starting date (instead of

1992), is due to the lack of quotes of FFA brokers for the remaining routes (3, 3A, and 4) and

for the years 1992-1995. The FFA price series are the average (mid-point) of bid and ask quotes

(Moore and Cullen, 1995; Evans and Lewis, 1995; Luintel and Paudyal, 1998). Data for spot

freight rates for the same routes are obtained from Datastream for the period January 1996 to

December 2000.

For the analysis, FFA prices are matched with realised spot prices at the contract maturity (or

prompt) date. The prompt date is normally the last trading day of each month, except for the

December contract, which is the 20th of the month. If the prompt date falls on a non-business

day, i.e. a Sunday or a holiday, it is relocated to the next available business day. The

corresponding settlement price for FFA contracts is calculated as the average of the spot rates

over the last five trading days or over the last five trading days prior to 20 December for the

December contract, until November 1999. After November 1999 the settlement price is

sampled as the average of the spot rates over the last seven trading days63. All price series are

transformed in natural logarithms for analysis.

62 For voyage routes 1 and 2 the prices are quoted in $/ton, and for time-charter routes lA and 2A the prices are
quoted in $/day.
3 Using the freight rate of each route on the maturity day for our analysis, rather than the average of the last

five/seven trading days, did not change our results qualitatively.
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The transition from one forward contract to the next is made upon each contract's termination

date (the 25th of each termination month). The delivery period is retained in the analysis

because of the belief that the spot-forward price relationship continues up to the nearby

contract's termination date (Bessler and Kling, 1990). To account for possible systematic

relationships in the data associated with the retention of the last week of a contract (to account

for the statistical effect of including the delivery period in the data set) we introduce a 0,1

dummy variable set equal to 1 at the first day of a new contract. All test statistics and estimated

relationships show little sensitivity to that specification. In particular, unit root tests and

cointegration tests are not qualitatively affected, and consequently, the ensuing analysis does

not include any of these dummy variables specifications.

We consider three different sampling intervals. The first interval consists of closing prices of

the FFA contract one-month before maturity, Ft,t_ i , and the corresponding spot settlement prices

at maturity, St, for routes 1, 1A, 2, and 2A. Thus, our estimation period for routes 1 and 1 A is

from the FFA contract that expires on 31 January 1996 until the FFA contract that expires on 31

July 2000, giving 54 observations. For routes 2, 2A the estimation period is from the FFA

contract that expires on 31 January 1996 until the FFA contract that expires on 30 November

2000, giving 58 observations. FFA prices are sampled at the last trading day of the month

preceding the delivery month.

The second interval consists of closing prices of the FFA contract two-months from maturity,

Ft ,1_2, and the corresponding settlement prices at maturity, for the four panamax routes. Our

estimation period for routes 1, 1A is from January 1996 to June 2000, giving us 53 observations

for every route. For routes 2, 2A the estimation period is from January 1996 to October 2000,

giving us 57 observations for every route.

The third interval consists of closing prices of the FFA contract three-months from maturity,

Ft,t_3 , and the corresponding settlement prices at maturity, for the four panamax routes. Our

estimation period for routes 1, 1A is from January 1996 to May 2000, giving us 52 observations

for every route. For routes 2, 2A the estimation period is from January 1996 to September 2000,

giving us 56 observations for every route. From the graphs of FFA and spot prices for panamax

routes 1, 1A, 2, and 2A presented in chapter 1 (see Figures 1.1 to 1.4, respectively) we observe

that FFA prices closely track the fluctuations of the spot prices for every route.
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Summary statistics of the logarithmic first-differences of spot and FFA prices for the four

panamax routes are presented in Tables 3.1 to 3.4. The unconditional means of the spot and

FFA returns series are statistically zero in all cases. Coefficients of skewness and kurtosis

indicate mixed evidence for both spot and FFA return series. More specifically, the results

denote the existence of: (i) excess skewness in route 1 in one- and two-months spot price series,

and in route 2A three-months spot price series; (ii) excess kurtosis in routes 1 and 2A spot price

series and in route 1A three-months FFA price series; (iii) Jarque-Bera (1980) tests indicate

that, with the exception of routes 1 and 2A spot prices and route 1A three-months FFA prices,

the return series follow normal distributions.

The ADF (1981) and the PP (1988) tests have non-stationarity as the null hypothesis. However,

the way the null hypotheses for the ADF and PP tests are tested is not very informative

regarding the presence of a unit root. That is the ADF and PP tests are not very powerful against

relevant alternative hypotheses (Lee et al., 2000). Thus, the ADF and PP tests often are

complemented by another test that has series stationarity as the null hypothesis. This lack of

power in rejecting the null hypothesis of a unit root is addressed by conducting the KPSS test of

Kwiatkowski et al. (1992), which is specifically designed to test the null hypothesis of

stationarity.

The KPSS (1992) test statistic is calculated as:

T
Nnt = T -2 E K12 /K2 (L)

1=1

where L is the lag parameter, Kt is the cumulative sum of the residuals (et) from a regression of

the series on a constant and a linear trend and

T	 L	 T

K2(L) = T' E e,2 + 2T-1 E [1 - K/(L + 0] E et et-K
1.1	 K=I	 1=K-F1

(3.8)

(3.9)
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Table 3.1. Descriptive Statistics on the Logarithmic Differences of 1-Month, 2-Months,
and 3-Months Route 1 Spot and FFA Prices (1996:01-2000:07)

Panel A: 1-Month Route 1 Spot and FFA Price Series
Mean Skew Kurt J-B ADF

(lags) Lev
PP(12)

Lev
ADF (lags)

1st Diffs
PP(12)
1st Diffs

KPSS

Spot 0.0052 -0.727 6.704 85.23 -0.743 (1) -2.346 -9.586 (0) -10.885 0.913
(0.017) [0.034] [0.000] [0.00]

FFA 0.0033 -0.343 0.789 1.834 -1.514 (0) -1.886 -7.069 (0) -8.399 0.777
(0.014) [0.317] [0.268] [0.40]

Panel B: 2-Months Route 1 Spot and FFA Price Series
Mean Skew Kurt J-B ADF

(lags) Lev
PP(12)

Lev
ADF (lags)

1st Diffs
PP(12)
1st Diffs

KPSS

Spot 0.0024 -0.712 6.953 89.19 -0.772 (1) -2.356 -9.700 (0) -10.742 0.921
(0.017) [0.039] [0.000] [0.00]

FFA 0.0021 0.041 -0.601 0.967 -1.505 (0) -1.883 -6.001 (0) -7.316 0.734
(0.013) [0.907] [0.403] [0.616]

Panel C: 3-Months Route 1 Spot and FFA Price Series
Mean Skew Kurt J-B ADF

(lags) Lev
PP(12)

Lev
ADF (lags)
in 1st Diffs

PP(12)
Pt Diffs

KPSS

Spot 0.0007 -0.682 6.928 86.17 -0.542 (1) -2.537 -9.546 (0) -10.607 0.901
(0.017) [0.051] [0.000] [0.00]

FFA 0.0014 -0.314 0.281 0.851 -1.765 (0) -1.942 -6.154 (0) -7.163 0.643
(0.013) [0.369] [0.699] [0.65]

Notes:
• All series are measured in logarithmic first-differences.
• N is the number of observations, Mean is the sample mean. Standard errors of the sample mean are in

parentheses (.).

• Skew and Kurt are the estimated centralised third and fourth moments of the data, denoted co and (o - 3),

respectively; their asymptotic distributions under the null are AIT co -N(0,6) and -VT (au -3) - N(0,24).
• J-B is the Jarque-Bera (1980) test for normality, distributed as x2(2). Exact significance levels are in square

brackets [.].
• ADF is the Augmented Dickey Fuller (1981) test. The ADF regressions include an intercept term; the lag-

length of the ADF test (in parentheses) is determined by minimising the SBIC (1978). PP is the Phillips and
Perron (1988) test; the truncation lag for the test is in parentheses. The 5% critical value for the ADF and PP
tests is -2.89.

• KPSS is the Kwiatkowski eta!. (1992) test. The critical values for the KPSS test are 0.146 and 0.119 at the 5%
and 10% levels, respectively. The null hypothesis of stationary is rejected if the test statistic exceeds them.

• Lev and l't Diffs correspond to price series in log-levels and log first-differences, respectively.
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Table 3.2. Descriptive Statistics on the Logarithmic Differences of 1-Month, 2-Months,
and 3-Months Route 1A Spot and FFA Prices (1996:01-2000:07)

Panel A: 1-Month Route 1A Spot and FFA Price Series
Mean Skew Kurt J-B ADF

(lags) Lev
PP(12)

Lev
ADF (lags)

1st Diffs
PP(12)
1st Diffs

KPSS

Spot 0.003 0.202 -0.346 2.597 -1.385 (0) -1.817 -7.541 (0) -8.485 0.578
(0.017) [0.556] [0.627] [0.27]

FFA -0.001 -0.239 -0.043 0.302 -1.437 (0) -1.898 -6.860 (0) -7.649 0.854
(0.016) [0.486] [0.952] [0.860]

Panel B: 2-Months Route 1A Spot and FFA Price Series
Mean Skew Kurt J-B ADF

(lags) Lev
PP(12)

Lev
ADF (lags)

1 st Diffs
PP(12)
1 st Diffs

KPSS

Spot -0.001 0.601 0.433 3.190 -1.471 (0) -1.998 -7.596 (0) -8.393 0.913
(0.019) [0.083] [0.547] [0.203]

FFA -0.003 -0.302 0.434 1.577 -1.589 (0) -1.962 -5.756 (0) -6.496 0.798
(0.016) [0.383] [0.547] [0.455]

Panel C: 3-Months Route 1A Spot and FFA Price Series
Mean Skew Kurt J-B ADF

(lags) Lev
PP(12)

Lev
ADF (lags)

1st Diffs
PP(12)
1st Diffs

KPSS

Spot -0.002 0.628 0.429 3.386 -1.133 (0) -2.187 -7.271 (0) -8.332 0.905
(0.019) [0.073] [0.555] [0.184]

FFA -0.003 -0.593 1.583 6.661 -1.585(0) -1.927 -5.736 (0) -6.272 0.767
(0.014) [0.090] ,	[0.029] [0.036]

See Notes in Table 3.1

Table 3.3. Descriptive Statistics on the Logarithmic Differences of 1-Month, 2-Months,
and 3-Months Route 2 Spot and FFA Prices (1996:01-2000:11)

Panel A: 1-Month Route 2 Spot and FFA Price Series
Mean Skew Kurt J-B ADF

(lags) Lev
PP(12)

Lev
ADF (lags)

1st Diffs
PP(12)
1st Diffs

KPSS

Spot -0.002 0.218 0.591 0.901 -1.686(0) -1.939 -7.455(0) -8.629 1.025
(0.011) [0.510] [0.387] [0.637]

FFA -0.002 -0.129 -0.69g 1.478 -1.386 (0) -1.833 -5.509 (0) -6.571 0.948
(0.011) [0.696] [0.308] [0.478]

Panel B: 2-Months Route 2 Spot and FFA Price Series
Mean Skew Kurt J-B ADF

(lags) Lev
PP(12)

Lev
ADF ((ags)

1st Diffs
PP(12)
1st Diffs

KPSS

Spot -0.003 0.239 0.563 0.918 -1.743 (0) -1.966 -7.660 (0) -8.565 1.010
(0.011) [0.472] [0.415] [0.632]

FFA 0.000 -0.041 -0.704 1.342 -1.708 (1) -1.692 -5.039 (0) -5.847 0.930
(0.011) [0.902] [0.308] [0.511]

Panel C: 3-Months Route 2 Spot and FFA Price Series
Mean Skew Kurt J-B ADF

(lags) Lev
PP(12)

Lev
ADF (lags)

1s` Diffs
PP(12)
1st Diffs

KPSS

Spot -0.003 0.247 0.507 0.838 -1.371 (0) -2.076 -7.311 (0) -8.492 1.011
(0.012) [0.463] [0.467] [0.658]

FFA 0.001 -0.124 -0.593 1.111 -1.115 (0) -1.578 -5.057 (0) -5.966 0.889
(0.009) [0.713] [0.395] [0.574]

See Notes in Table 3.1
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Table 3.4. Descriptive Statistics on the Logarithmic Differences of 1-Month, 2-Months,
and 3-Months Route 2A Spot and FFA Prices (1996:01-2000:11)

Panel A: 1-Month Route 2A Spot and FFA Price Series
Mean Skew Kurt J-B ADF

(lags) Lev
PP(12)

Lev
ADF (lags)

Pt Diffs
PP(12)
Pt Diffs

KPSS

Spot -0.005 0.611 1.591 7.86 -1.931 (0) -1.918 -8.450 (0) -9.189 0.998
(0.018) [0.064] [0.020] [0.02]

FFA -0.007 -0.093 0.169 0.086 -1.563 (0) -1.897 -5.936 (0) -6.759 0.971
(0.015) [0.778] [0.805] [0.958]

Panel B: 2-Months Route 2A Spot and FFA Price Series
Mean Skew Kurt J-B ADF

(lags) Lev
PP(12)

Lev
ADF (lags)

1' Diffs
PP(12)
Pt Diffs

KPSS

Spot -0.006 0.634 1.571 7.836 -2.056 (0) -1.981 -8.563 (0) -9.031 0.998
(0.018) [0.057] [0.023] [0.020]

FFA -0.004 -0.084 0.077 0.067 -1.531 (0) -1.852 -5.971 (0) -6.627 0.955
(0.016) [0.800] [0.912] [0.967]

Panel C 3-Months Route 2A Spot and FFA Price Series
Mean Skew Kurt J-B ADF

(lags) Lev
PP(12)

Lev
ADF (lags)

Pt Diffs
PP(12)
1' Diffs

KPSS

Spot -0.008 0.666 1.589 8.138 -1.649 (0) -2.161 -8.257 (0) -9.029 0.992
(0.019) [0.048] [0.023] [0.017]

FFA -0.004 -0.181 0.474 0.539 -1.367 (0) -1.807 -5.439 (0) -6.046 0.930
(0.014) [0.591] [0.497] [0.764]

See Notes in Table 3.1

The null hypothesis of stationarity is rejected in favour of the unit root alternative if the

calculated test statistic exceeds the critical values estimated in Kwiatkowski et al. (1992, Table

1, p. 166). Results from the KPSS (1992) test in Tables 3.1 to 3.4 indicate that all spot and FFA

price series in all routes have a unit root in their log-levels representation, as the null hypothesis

of stationarity is not accepted. The results from Table 3.5 indicate that the means of the forecast

errors are statistically zero for all maturities in all routes and that the variance of the forecast

errors increases as the forecast horizon increases from one- to three-months in all routes.

Financial theory indicates that the closer to maturity the contract is, the more information about

prices exists, and consequently, there is less volatility and uncertainty regarding the outcome of

the expected final spot prices, compared with longer days to delivery (Fama, 1970, 1991).
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Table 3.5. Statistics on Forecast Errors
Panel A: Route 1 Forecast Errors

Mean Variance (Si) Test for Equal Variances
1-Month 55 -0.065 2.481 F=S2z/S 1 2 -F(53,54) 1.052

(-0.308) [0.426]

2-Months 54 -0.022 2.611 F=S32/S12 -F(52,54) 1.551
(-0.101) [0.056]

3-Months 53 -0.009 3.848 F=S32/S2' -F(52,53) 1.474
(-0.034) [0.081]

Panel B: Route 1A Forecast Errors
N Mean Variance (S2) Test for Equal Variances

1-Month 55 -102.2 1,549,932 F=S221S 1 2 -F(53,54) 1.305
(-0.609) [0.167]

2-Months 54 -117.9 2,021,205 F=S32/S12 -F(52,54) 1.878
(-0.609) [0.012]

3-Months 53 -193.7 2,910,738 F---S32/S21 -F(52,53) 1.440
(-0.826) [0.095]

Panel C: Route 2 Forecast Errors
Mean Variance (S2) Test for Equal Variances

1-Month 59 -0.166 3.406 F=S2`/S12 -F(57,58) 1.505
(-0.689) [0.062]

2-Months 58 -0.232 5.125 F=S321S12 -F(56,58) 2.325
(-0.781) [0.001]

3-Months 57 -0.285 7.919 F=S32/S22 -F(56,57) 1.545
(-0.765) [0.050]

Panel D: Route 2A Forecast Errors
Mean Variance (S2) Test for Equal Variances

1-Month 59 -263.3 1,921,919 F=S22/S 12 -F(57,58) 1.338
(-1.459) [0.136]

2-Months 58 -321.8 2,570,709 F=-S32/S1 2 -F(56,58) 1.955
(-1.529) [0.006]

3-Months 57 -415.4 3,757,209 F=S3I1S22 -F(56,57) 1.462
(-1.618) [0.078]

Notes:
• Exact significance levels are in square brackets [.].
• Mean and Variance are the sample mean and variance of the series, respectively.
• The t-statistic for the null hypothesis that the mean is zero are in parentheses (.).
• The F-test is the variance ratio test for the null hypothesis of the equality of variances

with degrees of freedom (n1 - 1) for the numerator and (n2 - 1) for the denominator.

Applying an ordinary F-variance ratio test to examine the above inference with the null

hypothesis to be equality of variances, we report that only the variances of the three-months

forecast errors are significantly higher than the variances of the one-month forecasts in all

routes, except in route 1 which is slightly insignificant. Also the variance of the three-months

forecast errors is slightly higher than the variance of the two-months forecasts in route 2.
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These findings may be due to the small size bias of our sampling intervals, which influence the

degrees of freedom of the test or may be attributed to the non-normality of all forecast errors of

all routes (applying a Jarque-Bera test). In order to interpret the above we employ the bootstrap

technique with 10,000 iterations. Bootstrap resamples 10,000 new samples each of the same

size, as the observed data are drawn with replacement from the observed data. The statistic of

interest (variance ratio) is first calculated using the observed data and then recalculated using

each of the new samples, yielding a bootstrap distribution. The resulting replicates are used to

calculate the bootstrap estimates of the bias, the mean and standard error for the variance ratios.

Bias Corrected (BCa) confidence intervals are derived from the empirical confidence intervals,

when the distributions are not normal, which transform the specified probabilities values to

determine which percentiles of the empirical distribution most accurately estimate the

percentiles of interest. The percentiles of the empirical distribution are then returned. Following

the bootstrap procedure we notice that the variances of the three-months forecast errors are

significantly higher than the variances of the one- and two-months forecast errors in all routes,

except in route 2A where the variance of the three-months forecast error is statistically

insignificant from the variance of the two-months forecast error (Table 3.6).

The results of the Box-Pierce (1970) and Ljung-Box (1978) autocorrelation tests applied to the

forecast errors in all routes andior all sampling intervals, for the first 12 lags of the sample

autocorrelation function, indicate mixed evidence (Table 3.7) about the power of past forecast

errors predicting future forecast errors. In an efficient market, with rational market agents, past

information should be already incorporated in current prices and therefore, there should be no

autocorrelation of forecast errors.
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Table 3.6. Bootstrap Results of Forecast Errors Variance Ratio Tests for 10,000 Replications
Panel A: Route 1

Summary Statistics Empirical Percentiles BCa Percentiles

Obs Mean SE t-stat 2.5% 5% 95% 97.5% 2.5% 5% 95% 97.5%
V(FEIM2)/
V(FE1M1)

1.052 1.106 0.329 336.2 0.651 0.702 1.621 1.788 0.646 0.700 1.614 1.768

V(FE1M3)/
V(FEIM1)

1.551 1.622 0.515 315.1 0.999 1.062 2.273 2.481 0.957 1.032 2.197 2.355

V(FE1M3)/
V(FE1M2)

1.474 1.529 0.447 342.1 0.931 0.997 2.170 2.362 0.950 1.018 2.217 2.405

Panel B: Route LA
Summary Statistics Empirical Percentiles BCa Percentiles

Obs Mean SE t-stat 2.5% 5% 95% 97.5% 2.5% 5% 95% 97.5%
V(FE 1 AM2)/
V(FEIAMI)

1.304 1.369 0.420 325.6 0.789 0.855 2.030 2.191 0.734 0.818 1.950 2.087

V(FEIAM3)/
V(FEIAM1)

1.878 1.974 0.580 340.3 1.289 1.361 2.742 2.946 1.234 1.321 2.650 2.806

V(FEIAM3)/
V(FEIAM2)

1.440 1.498 0.411 364.3 0.952 1.021 2.102 2.246 0.934 1.002 2.066 2.200

Panel C: Route 2
Summary Statistics Empirical Percentiles BCa Percentiles

Obs Mean SE t-stat 2.5% 5% 95% 97.5% 2.5% 5% 95% 97.5%
V(FE2M2)/
V(FE2M1)

1.504 1.572 0.457 343.9 0.863 0.939 2.306 2.537 0.790 0.875 2.191 2.342

V(FE2M3)/
V(FE2M1)

2.325 2.437 0.681 357.9 1.588 1.687 3.296 3.536 1.519 1.623 3.170 3.372

V(FE2M3)/
V(FE2M2)

1.545 1.599 0.393 406.7 1.091 1.159 2.178 2.296 1.051 1.129 2.125 2.236

Panel D: Route 2A
Summary Statistics Empirical Percentiles BCa Percentiles

Obs Mean SE t-stat 2.5% 5% 95% 97.5% 2.5% 5% 95% 97.5%
V(FE1AM2)/
V(FEIAMI)

1.338 1.389 0.400 346.9 0.770 0.838 2.072 2.275 0.720 0.801 1.992 2.139

V(FEIAM3)/
V(FE I AM 1)

1.955 2.046 0.571 358.3 1.287 1.378 2.757 2.957 1.218 1.320 2.649 2.811

V(FE1AM3)/
V(FEIAM2)

1.462 1.516 0.396 382.4 0.937 1.004 2.145 2.301 0.911 0.982 2.099 2.243

Notes:
• Obs, Mean, SE, and t-stat are the observed value of the variance ratio test, the sample mean with its standard

error and the 1-statistic, before the replications, respectively.
• FE1, FE1A, FE2, and FE2A correspond to Forecast Errors for routes 1, 1A, 2, and 2A, respectively.
• Ml, M2, and M3 correspond to 1-Month, 2-Months, and 3-Months, respectively.

In all routes in the one-month forecast errors sampling interval the Q(12) statistics reveal that

there is no autocorrelation. In two-months and three-months sampling intervals autocorrelation

exists in all routes. We conclude, that overall the one-month forecast errors are free of

autocorrelation and for higher sampling intervals (two-months and three-months) market agents

can predict future forecast errors from reviewing the past.
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Table 3.7. Autocorrelation Tests on Forecast Errors
Panel A: Autocorrelation Tests on Route 1 Forecast Errors (12 Lags)

Autocorrelation
Coefficient

Standard
Error

Box-Pierce
Statistic Q(12)

Ljung-Box
Statistic Q(12)

FE1M1 (Sample 1-55) 0.068 0.172 17.691 [0.125] 20.235 [0.063]
FE1M2 (Sample 1-54) -0.093 0.183 22.509 [0.032] 24.329 [0.018]
FE1M3 (Sample 1-53) -0.064 0.202 30.825 [0.002] 33.295 [0.001]

Panel B: Autocorrelation Tests on Route IA Forecast Errors (12 Lags)
Autocorrelation

Coefficient
Standard

Error
Box-Pierce

Statistic Q(12)
Ljung-Box

Statistic Q(12)
FEIAMI (Sample 1-55) 0.072 0.178 20.633 [0.056] 21.012 [0.051]
FE1AM2 (Sample 1-54) -0.120 0.189 25.684 [0.012] 27.946 [0.006]
FE1AM3 (Sample 1-53) -0.125 0.209 35.983 [0.000] 39.131 [0.000]

Panel C: Autocorrelation Tests on Route 2 Forecast Errors (12 Lags)
Autocorrelation

Coefficient
Standard

Error
Box-Pierce

Statistic Q(12)
Ljung-Box

Statistic Q(12)
FE2M1 (Sample 1-59) 0.078 0.164 17.874 [0.120] 19.861 [0.070]
FE2M2 (Sample 1-58) 0.029 0.186 29.297 [0.004] 31.875 [0.001]
FE2M3 (Sample 1-57) -0.116 0.209 43.671 [0.000] 47.411 [0.000]

Panel D: Autocorrelation Tests on Route 2A Forecast Errors (12 Lags)
Autocorrelation

Coefficient
Standard

Error
Box-Pierce

Statistic Q(12)
Ljung-Box

Statistic Q(12)
FE2AM1 (Sample 1-59) 0.827 0.160 15.494 [0.216] 17.952 [0.117]
FE2AM2 (Sample 1-58) -0.001 0.177 23.965 [0.021] 26.564 [0.009]
FE2AM3 (Sample 1-57) -0.082 0.196 34.243 [0.001] 37.364 [0.000]

Notes:
• Q(12) are the Box-Pierce (1970) and Ljung-Box (1978) Q statistics distributed as x2(12); 5% critical value

of 21.03.
• Exact significance levels are in square brackets [1.

3.6. EMPIRICAL RESULTS

Having identified that spot and FFA prices are 1(1) variables we test for cointegration of the

spot and FFA series. The FMLS test, proposed by Phillips and Hansen (1990), is applied on the

OLS regression of the realised spot price on the FFA price of Equation (3.5). The test consists

of a non-parametric correction to the OLS estimates to take account of the impact on the

residual term of autocorrelation and possible endogeneity if the right-hand-side variables in the

cointegrating equation are not weakly exogenous. The critical values of the ADF (1981) and PP

(1988) cointegration tests of the estimated residuals, in Table 3.8, do not have the standard

Dickey-Fuller (1981) critical values. MacKinnon (1991) has linked the critical values for

particular tests to a set of parameters of an equation of the response surfaces. Using the table of

MacKinnon (1991) we can derive the critical values for the ADF (1981) and PP (1988)

cointegration tests on the estimated residuals by the following equation:
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C(p) = + 430 1 T + T	 (3.10)

where C(p) is the p per cent critical value (5% in our test) and T is the number of observations.

The residual-based ADF (1981) and PP (1988) tests for cointegration assume that the variables

in the FMLS equation are all 1(1), such that the test for cointegration is whether u, 1(1) (no

cointegration relationship) against the alternative that u, 1(0) (cointegration relationship).

Results in Table 3.8 indicate that for one- and two-months maturities the residuals are stationary

in all routes. Thus, FFA and realised spot prices are cointegrated, with the parameter restrictions

of unbiasedness to hold in routes 1, 1A, and 2A. In route 2 unbiasedness is rejected for both

one- and two-months maturities. For the three-months maturity none of the FFA price series

and the realised spot rates are cointegrated, and thus, unbiasedness is rejected in all routes.

Next the Johansen (1988) procedure is employed in order to test for cointegration. The first step

is to decide on the specification of the VECM with the appropriate deterministic components

and a robust lag structure, so as to capture any residual autocorrelation. SBIC (1978) and AIC

(1973), used to determine the lag length in the VECM, select 1, 2, and 1 lags for the one- two-

and three-months maturities, respectively64. Due to the convergence of forward and spot prices

at the expiration date of the FFA contracts, we do not expect the presence of linear trend term in

the cointegrating vector (exclude model 2.32); Moreover, from the graphs of spot and forward

prices, in chapter 1, we cannot observe the presence of a quadratic trend in the series (exclude

model 2.31); Finally, the existence of an intercept term, either restricted in the long-run

cointegrating space or unrestricted in the short-run model is needed to account for the units of

measurement of the variables (exclude model 2.35). For our analysis we are left with two

different model specifications; model 2.33 — intercept in the short-run model and model 2.34 —

intercept in the long-run model (for a description of the five models see section 2.5.3.2). Use of

the Johansen (1991) LR test select a restricted intercept in the cointegration vector in all cases

(model 2.34).

64 The lag length corresponds to an unrestricted VAR in levels: X, = E AX, / + c,. A VAR with p lags of the
1.1

dependent variable can be reparameterised in a VECM with p-1 lags of first-differences of the dependent variable
plus the levels terms.
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Table 3.8. Unbiasedness Hypothesis Tests using the Phillips-Hansen (1990) Fully Modified-Least
Squares Estimator

Panel A: 1-Month Sampling Interval
Cointegration Tests Coefficient

Estimates
Hypothesis Tests

T (lags) (a) Z (lags) (b) fli fl2 Ho: fil = 0 Ho: A = 1 Ho: /31 	0, A = 1
Route 1 -5.851 (0) -6.173 (10) 0.351

(0.240)
0.85492
(0.0975)

2.135
[0.144]

2.215
[0.137]

2.297
[0.317]

Route lA -5.421 (0) -5.361 (10) 0.511
(0.763)

0.94196
(0.0843)

0.448
[0.503]

0.474
[0.491]

0.922
[0.630]

Route 2 -5.919 (0) -6.233 (10) 0.530
(0.158)

0.82271
(0.0524)

11.233
[0.001]

11.433
[0.001]

11.513
[0.003]

Route 2A -6.0301 (0) -6.117 (10) 0.825
(0.559)

0.90818
(0.0606)

2.177
[0.140]

2.296
[0.130]

3.624
[0.163]

Panel B: 2-Months Sampling Interval
Cointegration Tests Coefficient

Estimates
Hypothesis Tests

T (lags) (a) Z (lags) (b) fil A Ho: A =0 Ho: A = 1 Ho: fil= 0, A = 1
Route 1 -3.909 (0) -3.996 (10) 0.424

(0.315)
0.820

(0.128)
1.889

[0.169]
1.963

[0.161]
2.056
[0.358]

Route IA -3.562 (0) -3.493 (10) 1.019
(0.986)

0.885
(0.108)

1.068
[0.301]

1.108
[0.292]

1.556
[0.459]

Route 2 -3.536 (0) -3.556 (10) 0.620
(0.236)

0.791
(0.078)

6.864
[0.009]

7.087
[0.008]

7.341
[0.025]

Route 2A -3.932(0) -3.826(10) 0.972
(0.814)

0.891
(0.088)

1.428
[0.232]

1.515
[0.218]

2.676
[0.262]

Panel C: 3-Months Samping Interval
Cointegration Tests Coefficient

Estimates
Hypothesis Tests

r (lags) (a) Z (lags) (b) A /32 Ho: fl i = 0 Ho: )32 = 1 Ho: PI = 0,A = 1
Route 1 -3.435 (0) -3.447 (10) - - - -
Route lA -2.983 (0) -3.022 (10) - - - - -
Route 2 -3.050 (0) -3.171 (10) - - - - -
Route 2A -3.440 (0) -3.433 (40) - - - - -

Notes:

• Exact significance levels are in square brackets [.].
• The estimation method is the Phillips and Hansen (1990) Fully-Modified OLS. Estimation is carried out using

Parzen weights; the truncation lag is set equal to 1, 2, and 1 for the one-, two- and three-months maturities,
respectively, minimising the SBIC (1978).

• (a) T is the Dickey and Fuller (1981) residual-based test for cointegration; the lag length, in parentheses (.), is
determined by minimising the SBIC (1978).

• (b) Z is the Phillips and Perron (1988) test for cointegration; the truncation lag, in parentheses (.), is computed
using the formula suggested by Schwert (1987), i.e. int[12(N/100)°-25].

• The critical values for the T and Z tests for the null hypothesis of no cointegration (1(1)) are: for the one-month
-3.451, -3.451, -3.443, and -3.443 for routes 1, 1A, 2, and 2A, respectively. For the two-months -3.453, -3.453,
-3.445, and -3.445 for routes 1, IA, 2, and 2A, respectively. For the three-months -3.455, -3.455, -3.447, and
-3.447 for routes 1, 1A, 2, and 2A, respectively (MacKinnon, 1991).

• The asymptotic standard errors of the coefficient estimates are in parentheses (.). Hypotheses tests on the
coefficient estimates are carried out using a Wald test distributed as x2 with degrees of freedom equal to the
number of restrictions.
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The Johansen's (1988) trace (1. 1 and maximal (4.) statistics, in Table 3.9, indicate that FFA\--sace,

and realised spot prices are cointegrated for all maturities and in all routes, except in route 1A

for the three-months maturity. Due to our relatively small sample (maximum of 58 observations

in routes 2 and 2A in the one-month interval) it is appropriate to adjust the Xmax and - -.ace

cointegrating rank test statistics by a small-sample correction proposed by Reimers (1992). The

Reimers (1992) small sample correction on Johansen's If -- -.ace and kmax test statistics (denoted as

X* trace and k* max) confirms cointegration of all variables except in routes 1 and lA for the three-

months maturity65.

The unbiasedness hypothesis is examined next by testing the restrictions 0 and ,82 = -1 in

the cointegration relationship 16)(1_ 1 = (1 fi l ,82)(St_ i C Ft_1; t-n-1)1. If these restrictions hold, then

the price of the FFA contract is an unbiased predictor of the realised spot price. The estimated

coefficients of the cointegrating vectors, the hypothesis tests on 16" using Equation (3.6), along

with the residual diagnostics of the models, are presented in Tables 3.10 to 3.12 for the one-

two- and three-months maturities, respectively. The results indicate that for the one- and two-

months FFA prices in all routes, and for the three-months FFA prices in routes 2 and 2A,

unbiasedness cannot be rejected at conventional levels of significance. However, unbiasedness

is rejected for the three-months FFA prices in routes 1 and 1A, as FFA and spot prices are not

cointegrated (see Table 3.9, Panel C)66.

The unbiasedness hypothesis is not rejected, in all routes and maturities, where the realised spot

prices and the FFA prices are cointegrated. The unbiasedness hypothesis is rejected in routes 1

and 1A, in the three-months maturity, where the spot and FFA prices are not cointegrated

(based on the X* .a„ and— * trace Statistics). Therefore, there is no need to adjust the LR statistics of

Equation (2.37) by the Psaradakis (1994) small-sample correction67.

65 Reimers (1992) small sample correction consists of using the factor (T— kp) instead of T in the calculation of the
XMIIX and X,.- —ace, where T is the number of observations, k is the number of regressors, and p is the lag length of the
VECM.
66 The discrepancy in our results from the Johansen (1988) test may be attributed to the low power of residual-
based cointegration tests compared to the Johansen (1988) test. Another reason is the small-sample correction of
Reimers (1992) in the Johansen (1988) test.
67 Psaradakis (1994), suggests correcting the LR test of Equation (2.37) by a factor of (T — mlk)IT, where m is the
number of estimated parameters in the VECM subject to the reduced rank restriction ri = afl.
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Table 3.9. Johansen (1988) Tests for the Number of Cointegrating Vectors Between
FFA and Spot Prices

Panel A: 1-Month Sampling Interval (Lag Length of VECM is 1)
Hypothesis
(Maximal)

Test Statistic Hypothesis
(Trace)

Test Statistic 95% Critical
Values

Ho HI Xmax X.max Ho HI Xtrace A:trace Xrnax Xtrace

Route 1 r = 0 r = 1 33.17 31.94 r = 0 r >= 1 34.51 33.24 15.67 19.96
r <= 1 r = 2 1.35 1.30 r <= 1 r = 2 1.35 1.30 9.24 9.24

Route lA r = 0 r= 1 29.19 28.11 r = 0 r >= 1 30.51 29.38 15.67 19.96
r <= 1 r = 2 1.32 1.27 r <= 1 r = 2 1.32 1.27 9.24 9.24

Route 2 r = 0 r= 1 37.21 35.93 r = 0 r >= 1 39.41 38.05 15.67 19.96
r	1 r = 2 2.19 2.12 r <= 1 r = 2 2.19 2.12 9.24 9.24

Route 2A r = 0 r= 1 40.93 39.52 r = 0 r >= 1 43.40 41.90 15.67 19.96
r <= 1 r = 2 2.47 2.39 r <= 1 r = 2 2.47 2.39 9.24 9.24

Panel B: 2-Months Sampling Interval (Lag Length of VECM is 2)
Hypothesis
(Maximal)

Test Statistic Hypothesis
(Trace)

Test Statistic 95% Critical
Values

Ho HI Xmax Amax HO HI Xtrace A:trace Amax Xtrace

Route 1 r = 0 r= 1 20.73 19.16 r = 0 r >= 1 23.33 21.57 15.67 19.96
r <= 1 r = 2 2.60 2.41 r <= 1 r = 2 2.60 2.41 9.24 9.24

Route lA r = 0 r= 1 27.89 25.79 r = 0 r >= 1 31.47 29.09 15.67 19.96
r <= 1 r = 2 3.57 3.30 r <= 1 r = 2 3.57 3.30 9.24 9.24

Route 2 r = 0 r = 1 38.61 35.90 r = 0 r >= 1 42.69 39.69 15.67 19.96
r <= 1 r = 2 4.08 3.80 r <= 1 r = 2 4.08 3.80 9.24 9.24

Route 2A r = 0 r= 1 42.95 39.94 r = 0 r >= 1 46.78 43.49 15.67 19.96
r <= 1 r = 2 3.82 3.56 r <= 1 r = 2 3.82 3.56 9.24 9.24

Panel C: 3-Months Sampling Interval (Lag Length of VECM is 1)
Hypothesis
(Maximal)

Test Statistic Hypothesis
(Trace)

Test Statistic 95% Critical
Values

Ho H1 Amax X .m. Ho H1 Xtrace A: Ince Xrnax Atrace

Route 1 r 0 r 1 16.16 15.54 r 0 r> 1 19.03 18.30 15.67 19.96
r <= 1 r = 2 2.87 2.76 r <= 1 r = 2 2.87 2.76 9.24 9.24

Route lA r 0 r= 1 15.80 15.20 r 0 r>= 1 19.03 18.30 15.67 19.96
r< 11 r = 2 3.23 3.11 r< 11 r = 2 3.23 3.11 9.24 9.24

Route 2 r = 0 r = 1 27.19 26.22 r = 0 r> 11 31.22 30.10 15.67 19.96
r <= 1 r = 2 4.03 3.88 r <= 1 r = 2 4.03 3.88 9.24 9.24

Route 2A r = 0 r = 1 23.50 22.65 r = 0 r >= 1 27.19 26.22 15.67 19.96
r <= 1 r = 2 3.70 3.57 r <= 1 r = 2 3.70 3.57 9.24 9.24

Notes:
• r represents the number of cointegrating vectors,

• X(r,r+1) = -T In(1 -51,1) and A.thace(r) = -T E ln(1	i) where , are the estimated eigenvalues of the II
i =r+1

matrix in Equation (2.24).

• X* max = (T- kp)IT Xmax and k* trace = (T kp)IT Xtrace, are small-sample adjusted cointegrating rank tests, where
k is the number of regressors in the VECM (Reimers, 1992).

• Critical values are from Osterwald-Lenum (1992), Table 1*.
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Table 3.10. Likelihood Ratio Tests of Parameter Restrictions on the Normalised Cointegrating
Vector of One-Month FFA and Spot Prices

Panel A: Model Specification

( A& = ri
i	 \

St -1i	As, _ 1	) ± (a 1) ,
kl fli	1132) + 

(us, /)	;	(215' , 1)
--- /N(0,E) (3.6) 

AFI,I -1 ,O.F's - 1, t -2)	a 2 UF, t	 UF , i

\F1 -1,1 - 2 i
Coefficient Estimates Hypothesis Tests on )6

a 1	az 16' = ( 1 181 A) Ho: Ho: Ho:
ia I = 0 ie 2 = - 1 fi 1 = 0 and )62 = -1

Route 1 -0.385	0.440 1 -0.049 -0.976 0.031 0.043 0.249
(-3.392)	(5.544) [0.860] [0.835] [0.883]

Route lA -0.326	0.420 1 0.4278 -1.045 0.216 0.201 0.561
(-2.834)	(4.938) [0.642] [0.654] [0.755]

Route 2 -0.099	0.026 1 -0.3517 -0.882 3.457 3.493 3.504
(-1.807)	(0.463) [0.063] [0.062] [0.173]

Route 2A -0.268	0.528 1 -0.1550 -0.981 0.736 0.0891 0.790
(-2.180)	(6.547) [0.786] [0.765] [0.674]

Notes:
• al and a2 are the coefficient estimates of the error-correction model implied by the normalised cointegrating

parameters, t-statistics for the null hypothesis (cci = 0) are in parentheses (.).
• Estimates of the coefficients in the cointegrating vector are normalised with respect to the coefficient of the

spot rate, S,.
• The statistic for the unbiasedness hypothesis tests on the coefficients of the cointegrating vector is -T [1n(1

i ) - ln(1 - X 1)] where * 1 and I denote the largest eigenvalues of the restricted and the unrestricted
models respectively. The statistic is distributed as / with degrees of freedom equal to the total number of
restrictions minus the number of the just identifying restrictions, which equals the number of restrictions
placed on the cointegrating vector. Exact significance levels are in square brackets [.].

Panel B: Residual Diagnostics
Residuals LM(1)	' Q(12) ARCIA(4) )43

Route 1 us,/ 0.013 [0.908] 8.788 [0.721] 0.609 [0.962] 85.56 [0.000]
UF,/ 3.792{0.0S1] 20.92 [0.052] 4.021 [0.400] 0.853 [0.653]

Route IA US,/ 1.822 [0.177] 5.632 (0.9331 9.095 f0.059}	, 1.087 [0.58J)
UF,1 2.689 [0.101] 22.16 [0.036] 1.788 [0.775] 1.433 [0.488]

Route 2 US,/ 0.898 [0.343] 7.430 [0.828] 1.199 [0.878] 0.031 [0.985]
U F,/ 0.772 [0.380] 12.39 [0.414] 5.841 [0.211] 1.373 [0.503]

Route 2A US,/ 0.130 [0.718] 7.911 [0.792] 3.131 [0.536] 3.826 [0.148]
UF,/ 7.729 [0.005] 50.06 [0.000] 5.014 [0.286] 0.721 [0.697]

5% c. v. 3.84 21.03 9.49 5.99
Notes:
• us,, and uF,, are the estimated residuals from the spot and the FFA equation in the VECM, respectively.

• LM(1) is the Godfrey (1978) Lagrange Multiplier test for serial correlation of order 1 and is asymptotically
distributed as X2(1). Exact significance levels are in square brackets [.].

• Q(12) is the Ljung-Box (1978) Q statistic of the sample autocorrelation function on the first 12 lags and is
distributed as x2(12). Exact significance levels are in square brackets [.].

• ARCH(4) is the Engle (1982) test for ARCH effects and is distributed as /(4). Exact significance levels are in
square brackets [.].

• J-B is the Jarque-Bera (1980) test for normality and is distributed as /(2). Exact significance levels are in
square brackets [.].
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Table 3.11. Likelihood Ratio Tests of Parameter Restrictions on the Normalised Cointegrating
Vector of Two-Months FFA and Spot Prices

Panel A: Model Specification

(	ASi

AFt, i-2

2

1= E F.
I

 j 
+

AFt	i	2___	- ,	- - iI

a 1	i
j klflif12)

a 2

/	St -1	\

1

fi't -1.1-3)

+	
us., /

UF,t

(

,
us, t

UF,i
- /N(0,E)	(3.6)

Coefficient Estimates Hypothesis Tests on fit

a l az P = ( 1 /31 /32) Ho: Ho: Ho:
fi l = 0 A = -1 fi l = 0 and j32 = -1

Route 1 -0.359 0.417 1 0.178 -1.067 0.204 0.172 0.506
(-0.271) (4.601) [0.652] [0.678] [0.776]

Route lA -0.009 0.517 1 0.896 -1.097 0.845 0.809 2.434
(-0.066) (5.377) [0.358] [0.368] [0.488]

Route 2 0.213 0.642 1 -0.099 -0.965 0.242 0.264 0.394
(1.701) (7.209) [0.623] [0.607] [0.821]

Route 2A 0.057 0.631 1 0.591 -1.062 0.988 0.924 2.129
(0.423) (7.482) [0.320] [0.336] [0.345]

See Notes in Table 3.10, Panel A.

Panel B: Residual Diagnostics
Residuals LM(1) Q(12) ARCH(4) J-B

Route 1 US,/ 3.127 [0.077] 7.662 [0.811] 0.1882 [0.996] 57.946 [0.000]
U F,/ 2.157 [0.142] 36.767 [0.000] 2.577 [0.631] 1.357 [0.507]

Route 1A Us,/ 2.695 [0.101] 4.157 [0.980] 2.808 [0.590] 3.482 [0.175]
uF,/ 2.383 [0.123] 44.042 [0.000] 7.135 [0.129] 1.861 [0.394]

Route 2 us,/ 0.027 [0.869] 6.654 [0.880] 1.096 [0.895] 1.149 [0.563]
UF,/ 4.521 [0.033] 33.335 [0.001] 3.577 [0.466] 0.535 [0.765]

Route 2A US,/ 0.2059 [0.650] 5.363 [0.945] 6.225 [0.183] 4.781 [0.092]
U F,/ 4.206 [0.040] 45.022 [0.000] 4.425 [0.351] 0.481 [0.786]

5% c. v. 3.84 21.03 9.49 5.99
See Notes in Table 3.10 Panel B.
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Table 3.12. Likelihood Ratio Tests of Parameter Restrictions on the Normalised Cointegrating
Vector of Three-Months FFA and Spot Prices

Panel A: Model Specification

St - i
(AFAS,-3).1-1 1	&5,-1	1 + (al) (1 flu fi 2) [	

1

OFF - i, t - 4)	a 2
Fr - 1, t - 4

± Us, i

UF , i

;

UF , i

- /N(0,E)	(3.6)

Coefficient Estimates	 Hypothesis Tests on )5"

a 1 az P = ( 1 fli )62) Ho:

/31 = 0
Ho:

/32 = -1

Ho:

fi l = 0 and /32 = -1
Route1 _ _ _ _ _ _ _

Route 1A - - - - - - - -

Route 2 0.005
(0.068)

0.314
(5.724)

1 -0.399 -0.863 1.016
[0.313]

1.079
[0.299]

1.346
[0.510]

Route 2A -0.088
(-0.978)

0.287
(5.287)

1 -0.004 -0.997 0.001
[0.998]

0.001
[0.982]

0.455
[0.796]

See Notes in Table 3.10, Panel A.

Panel B: Residual Diagnostics
Residuals LM(1) Q(12) ARCH(4) J-B

Route 1 U5,, - - - -

1-1F,/ - - - -

Route 1A us,, - - - -

U F ,t - - - -

Route 2 us,, 2.448 [0.118] 7.705 [0.808] 0.449 [0.978] 0.906 [0.636]

UF,/ 0.947 [0.330] 24.136 [0.019] 2.761 [0.599] 1.948 [0.377]
Route 2A us,/ 1.630 [0.202] 7.930 [0.791] 1.945 [0.746] 3.444 [0.179]

uF,/ 1.252 [0.263] 38.834 [0.000] 9.290 [0.054] 0.556 [0.757]
5% c. v. 3.84 21.03 9.49 5.99

See Notes in Table 3.10, Panel B.

After applying the Bieren's (1997) kmin and gm(ro) cointegration statistics to determine the

cointegration rank, using Equation (3.5), results in Table 3.13 indicate that the FFA prices one-

two- and three-months prior to maturity are cointegrated with the realised spot prices in all

routes, with the exception of route 1A three-months FFA prices. To test for linear restrictions

(unbiasedness) on the cointegrating vectors, we apply the trace statistic proposed by Bierens

(1997). The results indicate that in those routes and maturities for which cointegration was

found, unbiasedness cannot be rejected. The results of the Bierens (1997) test are in line with

the Johansen (1988) test results. Their only difference lies after the small sample correction of

Reimers (1992), which indicates that FFA prices three-months prior to maturity in route 1 are

not cointegrated and are thus, biased predictors of the realised spot prices.
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Table 3.13. Unbiasedness Hypothesis Tests using the Bierens (1997) Test
Panel A: 1-Month Sampling Interval

Hypothesis kmin Critical Values Hypothesis gm(ro) Coef. Estimates Hypothesis Test
r = 0 / r = 1
r = 1 / r = 2

5% Significance
Level

ro = 0, 1, 2 ( Spot, FFA) 1104" (1 -1)

Route 1 0.0009 (0.017) 12.99e+003 (1, -0.844) 1.41-
1.3587 (0.054) 12.16e-002

65.44e+001
Route lA 0.0001 (0.017) 13.54e+004 (1, -0.612) 2.08'

0.8892 (0.054) 27.23e-003
62.80e+000

Route 2 0.0005 (0.017) 12.37e+006 (1, -0.952) 1.10'
1.3097 (0.054) 15.85e-005

91.48e-002
Route 2A 0.0002 (0.017) 18.31e+004 (1, -0.868) 1.37"

1.5895 (0.054) 72.70e-004
61.79e+000

Panel B: 2-Months Sampling Interval
Hypothesis Amin Critical Values Hypothesis gm(ro) Coef. Estimates Hypothesis Test

r = 0 / r = 1
r = 1 / r = 2

5% Significance
Level

ro = 0, 1,2 ( Spot, FFA) Ho: /3' (1-1)

Route 1 0.0000 (0.017) 12.21e+007 (1, -0.791) 1.26'
1.4003 (0.054) 11.73e-006

64.61e-003
Route IA 0.0014 (0.017) 10.14e+002 (1, -0.612) 3.77'

0.8839 (0.054) 35.45e-001
77.79e+002

Route 2 0.0023 (0.017) 16.91e+002 (1, -0.774) 1.62-
1.4766 (0.054) 88.17e-002

62.43e+002
Route 2A 0.0020 (0.017) 29.23e+001 (1, -0.712) 1.85-

1.9603 (0.054) 28.93e-001
36.12e+003

Panel C: 3-Months Sampling Interval
Hypothesis Xmin Critical Values Hypothesis gm(ro) Coef. Estimates Hypothesis Test

r = 0 / r = 1
r = 1 / r = 2

5% Significance
Level

ro = 0, 1, 2 ( Spot, FFA) Ho: fil (1 - 1)

Route 1 0.0000 (0.017) 59.33e+005 (1, -0.996) 1.41'
1.5101 (0.054) 19.99e-005

12.32e-001
Route lA 0.0184 (0.017) 47.67e+000 - -

1.1467 (0.054) 43.14e+000
15.34e+004

Route 2 0.0103 (0.017) 30.55e+001 (1, -0.621) 2.15'
1.6007 (0.054) 40.06e-001

32.19e+003
Route 2A 0.0081 (0.017) 57.77e+000 (1, -0.560) 2.90'

2.1553 (0.054) 11.69e+000
17.02e+004

Notes:
• knin is the Lambda-min test statistic, the parameter m is chosen from optimal values tabulated in Bierens

(1997). Critical values, in parentheses (.), for the 5% significance level are from Bierens (1997). gm(ro)

estimates the number of the cointegration rank, r, consistently (0, 1, 2) using P = argmin„ 2 gm(ro), m = 2.
Bold indicates minimum value of statistic.

• The estimated cointegrating vector is normalised with respect to realised spot prices.
• The hypothesis test on the cointegrating vector is the Bieren's Trace test for linear restrictions, m = 2n with n

the dimension of the system.
• * denotes significance at the 5% level.
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In order to investigate the short-run properties of the spot and FFA prices, we examine the

estimated error-correction coefficients of the spot prices, al , and of the FFA prices, a2, for the

investigated routes (Tables 3.10 to 3.12). The results indicate that for the one-month maturity

the error-correction coefficients of both spot and FFA prices are statistically significant but

have opposite signs. The negative spot price coefficients and the positive FFA price coefficients

are in accordance with convergence towards a long-run equilibrium. Thus, in response to a

positive forecast error both the FFA and the spot price series will increase and decrease in

value, respectively in order to restore the long-run equilibrium. For the two-months maturity we

observe that the coefficients on the spot prices are negative and statistically insignificant for

routes 1 and 1A and positive and statistically insignificant for routes 2 and 2A. On the other

hand, the coefficients on the FFA prices are positive and statistically significant for all routes.

The sign and the significance of the coefficients indicate that only FFA prices respond to

correct the previous period's deviations and restore the long-run relationship. For the remaining

three-months maturity the coefficients on the spot prices are statistically insignificant in both

investigated routes, with a positive sign on route 2 and a negative sign on route 2A. Again only

FFA prices correct the disequilibrium that is created from previous period's deviations.

The signs and the significance of the error-correction coefficients for all routes and maturities

are consistent with the empirical findings regarding the lack of a bias. Any disequilibrium from

the previous period is not carried forward to the current period, as would be expected if there

was a bias in FFA prices. More specifically, both spot and FFA prices respond to restore the

long-run equilibrium in the one-month maturity, while in the two- and three-months maturities

only FFA prices respond to the previous period's deviations from the long-run equilibrium

relationship and do all the correction to eliminate this disequilibrium. This finding is consistent

with the hypothesis that past forecast errors affect the current forecasts of the realised spot

prices, i.e. FFA prices, but not the spot prices themselves. The differences in signs and

significance levels between routes in each maturity period may lie in the different economic

circumstances and trading fluctuations of each route, responding to different shocks in the

system.

The results of the analysis indicate that FFA prices in routes 1 and lA three-months prior to

maturity do not follow a long-run relationship with spot prices. The finding of no cointegration

between spot and forward prices may be due to the following reasons: First, lack of
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cointegration is normally interpreted to imply either market inefficiency or that the markets do

not represent the same asset (Engel, 1996). Second, many FFA brokers suggest that for a

creditworthy agent to initiate a FFA contract with another, less creditworthy, agent, the former

may require a security against a potential default of the latter in the form of a default-premium.

Thus, the FFA price in Equation (3.5) may be substantially different than the spot price, by the

existence of such a premium, creating lack of cointegration between them.

Third, another reason for finding lack of cointegration may be that spot and forward prices

differ in their ability to incorporate information (Cram and Lee, 1996). The international dry-

bulk spot freight market provides an immediate fixture of a vessel, and suppliers and buyers on

the spot market may not have time to respond to new market information. Due to the forward

nature of the FFA market, there may be more time for information to be incorporated in prices

(see also Chapter 4, section 4.5.2). Thus, FFA prices, as they can aggregate more information,

may be set at a different level than spot prices, creating lack of cointegration between them.

Yang and Leatham (1999) argue that this difference between commodity spot and forward

prices may be more significant for commodities traded largely in international markets.

Thin trading (low volume) may provide an explanation for finding lack of cointegration in some

routes three-months prior to maturity (1 and 1A) and not in others (2 and 2A). FFA brokers

provide only actively trading dry-bulk routes as the underlying assets of the FFA contracts.

From August 2000 FFA brokers stopped trading FFA contracts for routes 1 and 1A as their

volumes decreased steadily, making FFA bid and ask prices in these routes to be almost

unchanged for several months (especially prices for FFA contracts three-months prior to

maturity). Consequently, FFA prices may have not followed closely the relevant underlying

spot prices, creating a deviation in their long-run relationship. Moreover, finding FFA prices for

Atlantic routes (routes 1 and 1A) not cointegrated with the spot prices and FFA prices for

Pacific routes (routes 2 and 2A) cointegrated with the spot prices three-months prior to

maturity, may be due to the different sampling periods, which may be liable to different

economic circumstances (Engel, 1996)68.

68 Routes 1 and lA are sampled from January 1996 to July 2000, while routes 2 and 2A are sampled from January
1996 to November 2000.
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Finally, another explanation may be the specific characteristics of the Atlantic and the Pacific

trades. Demand for shipping services in each trade route depends on the economics of the

commodities transported, world economic activity and the related macroeconomic variables of

major economies involved (Stopford, 1997 p. 238). As a policy action FFA brokers should

reassess the way they submit their long-term (three-months) FFA estimates, as in OTC forward

markets there is no guarantee that the current forward price is also the best available estimate in

the market (as opposed in futures markets). Kavussanos and Nomikos (1999) examine the

futures BIFFEX contract and conclude that BIFFEX prices are cointegrated with spot prices

one-, two-, and three-months prior to maturity, but finding unbiasedness only in the first two

maturities.

The implications of the analysis can be stated as follows. First, shipowners and charterers can

receive accurate signals from FFA prices, one- and two-months prior to maturity in all

investigated routes, and from FFA prices three-months prior to maturity in routes 2 and 2A,

regarding the future course of spot prices. Consequently, market agents can use the information

generated by FFA prices so as to guide their decisions in the physical market and secure their

cash-flow (transportation costs). Freight rates may deviate from the expected level quite

considerably, and eliminate expected operating profits (Kavussanos, 1996). Thus, FFA

contracts may provide a valuable tool for a market agent operating in the dry-bulk sector to

protect himself against adverse freight rate movements, by using unbiased FFA prices to better

predict the spot market.

Second, given the fact that FFA prices are found biased in routes 1 and 1A three-months prior

to maturity (which may be due to the low trading volume), speculation and arbitrage

opportunities may create possibilities for excess profits to be made. This however, could well

provide an extra incentive for speculators to enter the market and consequently, attract the

much-needed volume. Third, routes 1 and 1A three-months prior to maturity, where FFA prices

are found biased, risk-averse agents, with the choice of employing information from the FFA

market to construct rolling-hedges, should avoid using these FFA contracts. It appears that the

specific time of the expiration of the contracts is not a time when the markets are efficient and

hence, it is not the time when the hedges should be rolled over. FFA brokers must have realised

the aforementioned bias and as a policy action they have withdrawn FFA trading in these

routes. The results of a clear absence of any cointegration relationship between spot and FFA
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prices three-months prior to maturity for routes 1 and 1A, confirm prior work of Leuthold

(1979) and Naik and Leuthold (1988), which suggest the greater the distance over time the

greater the degree of independence between spot and forward prices. However, to what extent

FFA contracts can offset effectively the freight rate risk (hedging) and increase market agents

wealth (speculation) are matters of further research.

3.7. CONCLUSION

This chapter investigates the unbiasedness hypothesis of FFA prices. Voyage routes 1 and 2 and

time-charter routes 1A and 2A of the BPI index, from January 1996 to December 2000, have

been examined. Parameter restriction tests on the cointegrating relationship between spot and

FFA prices indicate that FFA prices one- and two-months prior to maturity are unbiased

predictors of the realised spot prices in all investigated routes. However, the efficiency of the

FFA prices three-months prior to maturity gives mixed evidence, with routes 2 and 2A being

unbiased estimators and with routes 1 and 1A being biased estimators of the realised spot

prices.

The results in this study are in line with the studies by Moore and Cullen (1995) and Barnhart et

al. (1999), which find unbiasedness for the one- and two-months commodity and foreign

exchange forward prices, respectively. However, rejection of unbiasedness for the three-months

FFA prices, for routes 1 and 1A, is not in line with the study of Norrbin and Reffett (1996)

which provides evidence in favour of unbiasedness in the three-month foreign exchange

forward prices, but is in line with the study of Krehbiel and Adkins (1993) which find three-

months commodity forward prices biased estimators of the realised spot prices. Thus, it seems

that unbiasedness depends on the market and type of contract under investigation. For the

investigated routes and maturities for which unbiasedness holds, market agents can use the FFA

prices as indicators of the future course of spot prices, in order to guide their physical market

decisions. Furthermore, speculation and spread/arbitrage opportunities, due to the fact that FFA

prices three-months prior to maturity for routes 1 and 1A are found to be biased, may provide

the possibility for excess profits to be made, while it may increase the much-needed volume of

this derivatives market.
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CHAPTER 4— THE LEAD-LAG RELATIONSHIP IN RETURNS AND

VOLATILITY BETWEEN SPOT AND FORWARD PRICES IN THE

FORWARD FREIGHT MARKET

4.1. INTRODUCTION

Following Working (1970), price discovery refers to the use of one price series (e.g. derivatives

returns) for determining (predicting) another price series (e.g. spot returns). The lead-lag

relationship between the price movements of derivatives returns and the underlying spot market

returns illustrates how fast one market reflects new information relative to the other, and how

well the two markets are linked. In a perfectly frictionless world, price movements of the two

markets would be contemporaneously perfectly correlated and non cross-autocorrelated. Thus,

in perfectly efficient derivatives and spot markets, informed investors are indifferent between

trading in either market, and new information is reflected in both simultaneously. However, if

one market reacts faster to information, and the other market is slow to react, due to market

frictions such as transactions costs or market microstructure effects, a lead-lag relation in

returns is observed. In particular, volatility spillovers from one market to the next arises

primarily due to the realisation that speculative price changes are being interwoven with higher

moment dependencies, such as shown by Bollerslev et al. (1992)69.

Thus, the lead-lag relationship in returns and volatilities between spot and derivatives markets

is of interest to academics, practitioners, and regulators for a variety of reasons. Firstly, the

issue is linked to market efficiency (as explained earlier) and arbitrage". Secondly, it is

69 Ross (1989) uses a no-arbitrage model to show that the variance of price changes is related directly to the rate of
flow of information. Engle et al. (1990) provide an alternative interpretation that relates information processing
time to variance movements. This development suggests price volatility has significant implications concerning
information linkages between markets. Hence, previous studies ignoring the volatility mechanism may not offer a
thorough understanding of the information transmission process.
70 If new information disseminating into the marketplace is immediately reflected in spot and derivatives prices by
triggering trading activity in one or both markets simultaneously, there should be no systematic lagged responses
long enough, or large enough to economically exploit, considering transactions costs. Significant causal
relationships would, however, be incompatible with market efficiency because they would imply that forecast
accuracy of the spot (derivatives) market's subsequent performance can be improved upon by using past
information from the derivatives (spot) market. To avoid contradicting the unbiasedness hypothesis paradigm, the
joint co-movement of price changes in the two markets should be predominantly contemporaneous (Chan et al.
1991).
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believed that derivatives markets potentially provide an important function of price discovery.

If so, then derivatives prices should contain useful information about subsequent spot prices,

beyond that already embedded in the current spot price. Thirdly, if volatility spillovers exist

from one market to the other, then the volatility transmitting market may be used by market

agents, which need to cover the risk exposure that they face, as a vehicle of price discovery. For

example, the instantaneous impact and lagged effects of shocks between spot and derivatives

prices is of interest, since such information may be used in decision making regarding hedging

activities and budget planning (Wahab and Lashgari, 1993). Thus, a better understanding of the

dynamic relation of spot and futures prices and its relation to the basis provides to these

"agents" the ability to use hedging in a more efficient way. Furthermore, if a return analysis is

inconclusive, volatility spillovers provide an alternative measure of information transmission

(Chan et al. 1991).

For all these reasons research devoted towards the relationship between futures and spot returns

(first moments) has been voluminous (see Chan et al., 1991; Chan, 1992, amongst others), with

this interest expanding to examining higher moment dependencies (time-varying volatility

spillovers71) between markets (see Ng and Pirrong, 1996; and Koutmos and Tucker, 1996,

amongst others).

In forward markets, to the best of our knowledge, there have not been any studies investigating

the lead-lag relationship in returns and volatilities between spot and forward prices (with the

exeption of currency forwards), primarily due to the unavailability of data. This study

investigates the lead-lag relationship between derivatives and spot markets, both in terms of

returns and volatility utilising the FFA market of the dry-bulk sector of the shipping industry. A

special feature of this market is that the underlying commodity is a service. The theory of

intertemporal relationships between spot and derivatives prices of continuously storable

commodities is well developed (Working 1970), in contrast to that of non-storable commodities

(e.g. freight services). The non-storable nature of FFA market implies that spot and FFA prices

are not linked by a cost-of-carry (storage) relationship, as in financial and agricultural

derivatives markets, Thus, inter-dependence between spot and FFA prices may not be as strong

as for storable commodities.

71 "Volatility spillover" is the impact of an innovation in market i on the conditional variance of market j.
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Kavussanos and Nomikos (2001) have investigated the latter relationship by examining the

BIFFEX market72. They find a bi-directional causal relationship between the BIFFEX futures

contract and spot prices, with the relationship being stronger from BIFFEX to spot prices. The

latter is thought to be a consequence of higher transactions costs that prevail in the spot market

in comparison to those in the freight futures market. The current study investigates the issue

further by providing empirical evidence, for the first time, on the price discovery function of the

forward freight market. The special features then of this market, in comparison to the existing

literature on futures markets, are: (i) the non-storable nature of the underlying commodity,

being that of a service; and (ii) the asymmetric transactions costs between spot and FFA

markets. These costs are believed to be higher in the spot freight market (in relation to the FFA

market) as they involve the physical asset (vessel).

During the last years participants in the shipping markets have been switching gradually from

using BIFFEX to FFA contracts for risk management purposes. The reasons for this have been

documented in Kavussanos and Nomikos (2000), and relate mainly to the low hedging

effectiveness that BIFFEX contracts offer to agents. In addition, FFA contracts are perceived to

be more easily understood by agents in the industry and do not involve mark-to-market costs73.

The lead-lag relationship between spot and FFA returns is investigated through a multivariate

Vector Error-Correction (VECM)-Generalised Autoregressive Conditional Heteroskedasticity

(GARCH) model. Variances and covariances of price series are allowed to vary over time,

which allows for and mimics volatility spillovers between the spot and derivatives markets. The

procedure ensures efficient econometric specification and improves market analysis and

forecasts.

72 The BIFFEX freight futures contract was listed in LIFFE between May 1985 and April 2002. Its underlying asset
was the index basket of the seven routes of the BPI, (see Table 1.5 in chapter 1). It has been used as a hedging
instrument for the freight markets of the shipping industry.
73 In futures markets, the trader is required to place with the clearing-house an initial margin, which is an amount
of money on a per contract basis and is set at a size to cover the clearing-house against any loses which the trader's
new position might incur during the day. Moreover, futures contracts are mark-to-market at the end of each trading
day. That is, the resulting profit or loss is settled on that day. Traders are required to post a variation margin in
order to cover the extent to which their trading positions show losses. FFA transactions costs are 1% of the contract
price, shared equally between the buyer and the seller.
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The remainder of this chapter is organised as follows. Section 4.2 presents the literature review

on the lead-lag relationship in returns and volatility between several derivatives and spot

markets. Section 4.3 describes the methodology and presents some theoretical considerations.

Section 4.4 presents the properties of the data. The empirical results of the lead-lag relationship

in returns and volatility between the spot and FFA markets are presented in section 4.5. Finally,

section 4.6 summarises this chapter.

4.2. LITERATURE REVIEW

The empirical work whether the derivatives market leads the underlying spot market is

voluminous and the review in this section is not exhaustive. Rather it seeks to identify the most

influential work in this area. Previous studies that examine lead-lag relationships between

commodity or financial derivatives and spot markets, indicate that derivatives prices respond to

new market information in the same way as the underlying spot prices and lead the changes in

these prices (Chan, 1992; Tse and 13oot,1996).	commoia

(1983) argue that, in general, wheat, and corn futures of the Chicago Board of Trade (CBI)

market, and orange juice futures of the New York Cotton Exchange (NYCE) market lead price

changes in the relevant spot markets. Silver futures of the Commodity Exchange (Comex), oats

futures of the CBT and copper futures of the Comex have a bi-directional relationship with their

relevant spot markets. Schroeder and Goodwin (1991) examine the same economic function for

the Chicago Mercantile Exchange's (CME) live hog futures and Omaha's spot market prices.

They argue that price discovery originates in the futures market with the Omaha spot market

lagging the CME live hog futures contract.

In the stock index futures market, Kawaller et al. (1990) put forward the general principle that

spot prices are affected by their past history, current and past futures prices, and other market

information. Likewise, derivatives prices are affected by their past history, current and past spot

prices, and other market information. Thus, causality is likely to be bi-directional. They further

argue that potential lead-lag patterns are subject to change as new information arrives. Ghosh

(1993a) examines the intra-day S&P 500 index futures and spot market data and concludes that

there are more information flows from the futures to the spot. In the forward exchange market,

Wang and Wang (2001) examine the spot and forward exchange rates of the British, German,
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French and Canadian currencies against the US dollar and conclude that there is price discovery

in both markets, implying a feedback effect between each pair of markets. These studies found

mixed evidence for cointegration for storable commodities but no cointegration for non-storable

commodities.

In recent years, there has been an increasing interest in investigating the volatility interaction

between spot and derivatives markets. Ross (1989) suggests that it is the volatility of an asset's

price, and not the asset's price change, that is related to the rate of flow of information to the

market. If information arrives first in the derivatives (spot) market, then there will be volatility

spillovers to the spot (derivatives) market. In the stock index futures market, Kawaleer et al.

(1990) argue that there is no systematic pattern of lead-lag relationship in volatilities, contrary

to the observed lead and lag relationship in price changes between the futures and the spot

market. Arshanapali and Doukas (1994) also examine whether the S&P 500 index futures and

the underlying spot index have the same volatility process. They report evidence against

interdependence of volatilities in futures and spot markets. Koutmos and Tucker (1996)

examine the S&P 500 spot index and stock index futures and report that volatility of both

markets are an asymmetric function of past innovations and that the spot volatility is influenced

by the news that originates from the futures market in an asymmetric way.

In the currency futures market, Chatrath and Song (1998) examine for volatility spillover

relationships the spot and futures markets for Japanese Yen and argue that the futures volatility

influence the spot due to faster incorporation of new market related information, such as

macroeconomic announcements in the United States. Most of the volatility spillover studies

argue that although the lead-lag relationship in returns is almost unidirectional or asymmetric

(derivatives leading spot), for volatility this relationship is bi-directional or symmetric (see for

example, Chan, et al., 1991; Chan and Chung, 1993, amongst others).

Most of the studies on the time-varying volatility in various markets have considered the spot

rates or the spot and derivatives rates separately (see for example, McCurdy and Morgan, 1988;

Hsieh, 1989; Baillie and Bollerslev, 1990). A limited number of studies on multivariate

volatility measures includes Diebold and Nerlove (1989), Lee (1994), Koutmos and Tucker

(1996), Chatrath and Song (1998), Wang and Wang (2001), and Bhar (2001). Another strand of

research on volatility spillovers is in the same market but between different geographical
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domains (see for example, Koutmos and Booth, 1995; Karolyi, 1995; and Lin and Tamvakis,

2001, amongst others).

The econometric methodology employed by most of the above research for testing volatility

dependencies between markets has primarily focused upon accounting for the presence of

conditional heteroskedasticity within time-series. The reason being that most financial data

usually exhibit volatility clustering, perhaps due to increased uncertainty from new information

arrival and the time delays for traders to adjust to it. Engle (1982) accounted for this by

modeling asset returns via an ARCH process, where it has further extended by Bollerslev

(1986) to a GARCH process. GARCH models allow variances to be a conditional function of

past variances and squared error residuals. Thus, data which have leptokurtic distributions can

be more readily accommodated, as conditional heteroskedastic modelling generates a degree of

unconditional excess kurtosis.

4.3. METHODOLOGY AND THEORETICAL CONSIDERATIONS

Given the time-series nature of the data, the first step in the analysis is to determine the order of

integration of each price series using ADF (1981) and PP (1988) unit root tests. Given a set of

two 1(1) series74, Johansen (1988, 1991) tests are used to determine whether the series stand in a

long-run relationship between them; that is that they are cointegrated. The following VECM

(Johansen, 1988) is estimated:

AX, E FtAXt_ i + nx,/ + et ; CI I K-21-1 dist(0,	 (4.1)

where Xt is the 2x1 vector (St, Ft)' of log-spot and log-FFA prices, respectively, A denotes the

first difference operator, Et is a 2x1 vector of residuals (Es, ,, EF,t)' that follow an as-yet-

unspecified conditional distribution with mean zero and time-varying covariance matrix, Ht.

The VECM specification contains information on both the short- and long-run adjustment to

changes in Xt, via the estimated parameters Fi and H, respectively. The Johansen (1988)

74 1(1) stands for a price series which is integrated of order 1; that it is needed to be differenced once to become
stationary.
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procedure is preferred because it provides more efficient estimates of the cointegration vector

than the Engle and Granger (1987) two-step approach (see Gonzalo, 1994). Toda and Phillips

(1993) argue that causality tests based on OLS estimators of unrestricted VAR models in levels

are not very useful in general because of uncertainties regarding the relevant asymptotic theory

and potential nuisance parameters in the limit. However, maximum likelihood estimators based

on Johansen's (1988, 1991) ML method (for large samples of more than 100 observations) are

asymptotically median unbiased, have mixed normal limit distributions and they take into

account the information on the presence of unit roots in the system. Therefore, they are much

better suited to perform inference.

Johansen and Juselius (1990) show that the coefficient matrix H contains the essential

information about the relationship between St and Ft. Specifically, if rank(H) = 0, then H is 2x2

zero matrix implying that there is no cointegration relationship between St and In this case

the VECM reduces to a VAR model in first differences. If H has a full rank, that is rank(11) = 2,

then all variables in Xt are 1(0) and the appropriate modelling strategy is to estimate a VAR

model in levels. If H has a reduced rank, that is rank(11) =1, -then there is a single cointegating

relationship between St and Ft, which is given by any row of matrix ri and the expression TIX/-1

is the ECT. In this case, H can be factored into two separate matrices a and fl, both of

dimensions 2x1, where 1 represents the rank of H, such as H = afl, where fl' represents the

vector of cointegrating parameters and a is the vector of error-correction coefficients measuring

the speed of convergence to the long-run steady state.

Since rank(11) equals the number of characteristic roots (or eigenvalues) which are different

from zero, the number of distinct cointegrating vectors can be obtained by estimating the

number of these eigenvalues, which are significantly different from zero. The characteristic

roots of the nxn matrix H, are the values of 2 which satisfy the following equation III—XL I = 0,

where In is a nxn identity matrix. Johansen (1988), proposes the following two statistics to test

for the rank of II:

ktrace (r)= —T 
fl	

(4.2) 

i=r+1
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Xmax (r, r+1) = — Tln(1 — „,	 (4.3)

where are the eigenvalues obtained from the estimate of the H matrix and T is the number of

usable observations. The 2trace,race tests the null that there are at most r cointegrating vectors, against

the alternative that the number of cointegrating vectors is greater than r and the Xmax tests the

null that the number of cointegrating vectors is r, against the alternative of r + 1. Critical values

for the —trace and Xmax statistics are provided by Osterwald-Lenum (1992).

If spot and FFA prices are cointegrated then causality must exist in at least one direction

(Granger, 1988). Granger causality can identify whether two variables move one after the other

or contemporaneously. When they move contemporaneously, one provides no information for

characterising the other. If "X causes Y", then changes in X should precede changes in Y. In

particular, to say that "X causes Y", two conditions should be met. First, X should help to

predict Y; i.e., in a regression of Y against past values of Y, the addition of past values of X as

independent variables should contribute significantly to the explanatory power of the

regression. Second, Y should not help to predict X. Consider the VECM specification of

Equation (4.1), which can be written as follows:

As, EasAS,, + E bs,JAFt-i + aszt-i + ES,t
	 (4.4a)

i=1	 i=1

E J,t Qt-1 distr(0,

AF, =	+ E bF,JAFt-i + aFzt-i + EF,t
	 (4.4b)

i=1

where as,,, bs,,, aF,,, bF,, are the short-run coefficients, 4.1 = ,6"Xt_ 1 is the ECT, and es,, and CF,, are

residuals (as explained earlier).

Unidirectional causality from FFA-to-spot (Ft Granger causes St) requires: (i) that some of the

coefficients, i = 1, 2, ..., p-1, are non zero and/or (ii) as, the error-correction coefficient in

Equation (4.4a), is significant at conventional levels. Similarly, undirectional causality from

spot-to-FFA (S, Granger causes Ft) requires: (i) that some of the aF,i coefficients, i = 1, 2, • • •, p-

1, are non zero and/or (ii) aF is significant at conventional levels. If both variables Granger
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cause each other, then it is said that there is a two-way feedback relationship between S, and F,

(Granger, 1988). These hypotheses can be tested by applying Wald tests on the joint

significance of the lagged estimated coefficients of AS,_, and zF,1. When the residuals of the

error-correction equations exhibit heteroskedasticity, the t-statistics are adjusted by White

(1980) heteroskedasticity correction. The significance level of the error-correction coefficients,

as and aF, can be tested by adjusted t-tests applied to the VECM of spot and FFA,

respectively75.

In order to examine for higher moment dependencies (volatility spillovers), the conditional

second moments of spot and FFA prices are measured using the family of ARCH models. For

this purpose, the following VECM-GARCH-X model with the Baba et al. (1987) augmented

positive definite parameterisation is used (see for example, Kavussanos and Nomikos, 2000a,

2000b)76:

H, = A'A + B 1 H,_1 13 +	+ S 1	+ S21u2,,-1u2,t-1 1 S2+ E'	)2E	(4.5)

where A is a 2x2 lower triangular matrix of coefficients, B and C are 2x2 diagonal coefficient

matrices, with 13 kk2 + y kk2 < 1, k = 1,2 for stationarity, Si and S2 are matrices, which contain

parameters of spillover effects, u1,,_1 and u2,,_1 are matrices whose elements are lagged square

error terms (ui, ,_i represents the volatility spillover effect from the spot to the derivatives market

and 1.12,,_1 represents the volatility spillover effect from the derivatives to the spot market),

(z,_1 )2 is the lagged squared basis, and E is a 1x2 vector of coefficients of the lagged squared

basis77. The B and C matrices are restricted to be diagonal because this results in a more

parsimonious representation of the conditional variance (Bollerslev et al., 1994). In this

diagonal representation, the conditional variances are a function of their own lagged values (old

news), their own lagged error terms (new news), volatility spillover parameters, and a lagged

75 The error-correction coefficients serve two purposes: (i) to identify the direction of causality between the two
variables and (ii) to measure the speed of adjustment to the long-run equilibrium (Granger, 1988).
76 Several other specifications are also used, such as a bivariate VECM-EGARGH, allowing for volatility
spillovers, but yield inferior results judged by the evaluation of the log-likelihood and in terms of residual
specification tests (not reported).
71 The use of the lagged square basis specification, instead of the lagged level or the lagged absolute value
specifications, is justified in the empirical work because it provides uniformly superior results.
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squared basis parameter, while the conditional covariance is a function of lagged covariances

and lagged cross products of the ct's.

The model incorporates the lagged squared basis as an ECT in order to examine the relation

between the two markets, as a factor that influences the variances of the two variables 78. Engle

and Yoo (1987) show that the ECT, which is the short-run adjustment from the long-run

cointegrating relationship, has important predictive power for the conditional variances of

cointegrated series. This may imply that if the series deviate further from each other they are

harder to predict. The main virtue of this model lies in its capability of pointing to a particular

feature of cointegrated series, which is the potential relationship between disequilibrium

(measured by the ECT) and uncertainty (measured by the conditional variance), (Lee, 1994).

In this setting, spillover effects between spot and FFA volatilities can be tested through the

coefficients of S1 and S2. For example, the element of Si, s121, measures the spillovers of the

volatility of the spot equation to the volatility of the FFA equation. Similarly, the element of S2,

s212, measures the spillovers of the volatility of the FFA equation to the volatility of the spot

equation. Moreover, this specification guarantees I-1, to be positive-definite almost surely for all

t and allows the conditional covariance of cash and FFA returns to be time-varying79. Finally,

the most parsimonious specification for each model is estimated by excluding insignificant

variables. Following Bollerslev (1987), the conditional Student-t distribution is used as the

density function of the error term, Et, and the degrees of freedom, v, is treated as another

parameter to be estimated. The general form of the likelihood function becomes:

F[(2 + v)/2] 
L(Ht, Et, 0) —

F(v/2)[m(v — 2)] 1 1-10 )1 -112 [ 1 ±	c(0),',14(0),-1 E(0)(TE(2+v)/21
v —2

, for v> 2

78 Booth and Tse (1997), in a study for US and Eurodollar interest rates, report that interest rate volatilities are
time-varying and that the dynamic of this risk is, to some extent, predictable by the spread between these two
interest rates. Ng and Pirrong (1994, 1996) suggest that an alternative way to study the relation of economic factors
that influence volatility could be through the relation of basis and volatility. In another study for the spot and
futures market for Australia, Hong Kong, and Japan, Choudhry (1997) argues that both the short-run deviation of
spot and futures returns, and shocks to the spot and futures markets should affect volatility.
79 For a formal discussion of the properties of this model and alternative multivariate representations of the
conditional covariance matrix see Bollerslev et al. (1994) and Engle and Kroner (1995).

(4.6)
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where F(.) is the gamma function, and v denotes the degrees of freedom. This distribution

converges to the multivariate normal as v 00, although in empirical applications the two

likelihood functions give similar results for values of v above 20. Baillie and Bollerslev (1995)

show that for v <4, the Student-t distribution has an undefined or infinite degree of kurtosis

[the theoretical kurtosis is computed as 3(v-2)(v-4)-111. In such cases the QMLE, which estimates

robust standard errors, and thus, yields an asymptotically consistent normal covariance matrix,

is preferred (Bollerslev and Wooldridge, 1992). Preliminary evidence on our data set with the

Student-t distribution reveals that the parameter of the degrees of freedom, v, is lower than 4 in

all cases (v = 2.012 in route 1, v = 2.001 in route 1A, v = 2.217 in route 2, and v = 2.003 in

route 2A). Thus, the QMLE should be used in the estimation of the VECM-GARCH-X models

in all routes. Assuming the conditional joint distribution of the returns of the two markets is

normal, the log-likelihood for the VECM-GARCH-X models can be written as:

L(Ht, Et, 0) = - log(27E) — (0.5)	(log111(0)11 + E(0) ;14(0)% 140)1)
	

(4.7)
/.1

where Ht is the 2x2 time-varying conditional covariance matrix, s = (es, , EF,i)  is the 2x1 vector

of innovations at time t, and 0 is the parameter vector to be estimated". For symmetric

departures from conditional normality, the QMLE is generally close to the exact MLE. The log-

likelihood function is highly non-linear and, therefore, numerical maximisation techniques have

to be used. The BFGS algorithm, which utilises derivatives to maximize the log-likelihood, is

used.

80 Using standard MLE, the variance-covariance matrix of the estimated coefficients is given by var(O ) =

, where K is the outerwhere J is the information matrix, i.e. J = -E(a2Liaem). Under QMLE,	) = rqu-'

product of the first-order derivatives, K = E (auao) (auao)'.
i.1
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4.4. DESCRIPTION OF DATA AND PRELIMINARY STATISTICS

The data set used consists of daily spot and FFA prices in panamax routes 1 and 1A from 16

January 1997 to 31 July 2000 and daily spot and FFA prices in panamax routes 2 and 2A from

16 January 1997 to 30 April 200181 . The difference in the sample periods between the Atlantic

and the Pacific routes is because the Atlantic routes are characterised by modest FFA trading

and FFA brokers have stopped publishing FFA quotes for those routes. In contrast, the Pacific

routes concentrate most of the FFA trading, and therefore, are the most liquid BPI routes. Spot

price data are from the Baltic Exchange. FFA price data for the four panamax routes are from

Clarkson Securities Limited. All price series are transformed into natural logarithms.

FFA prices are always those of the nearby contract because it is highly liquid and is the most

active contract. However, to avoid thin markets and expiration effects (when futures and

forward contracts approach their settlement day, the trading volume decreases sharply) we

rollover to the next nearest contract one week before the nearby contract expires.82 There is

sufficient liquidity in the nearby contract up to a few days before its maturity date to justify

such a rollover policy. Using daily data (instead of monthly) enables us to utilise as much as

possible information embedded in the daily data. The use of a monthly frequency, for the

purposes of this chapter, for a data set consisting of one-month forward and spot prices it would

result in information loss (Baillie and Bollerslev, 1989).

Combining information from FFA contracts with different times to maturity may create

structural breaks in the series at the date of the forward rollover since FFA returns for that day

are calculated between the price of the expiring contract and the price of the next nearest

contract. Such structural breaks in the series may possibly lead to biased results. To account for

possible systematic relationships in the data associated with the retention of the last week of a

contract (to account for the statistical effect of including the delivery period in the data set) a

perpetual FFA contract could be calculated as a weighted average of near and distant FFA

contracts, weighted according to their respective number of days from maturity. This procedure

81 Hakkio and Rush (1991) argue and empirically show that switching to high frequency data from low frequency
adds little power to detect cointegration relationships among variables because basically cointegration is a long-run
property of data. Consequently, we assume that with daily data we can reasonably detect any cointegr, ation
relationship, if it exists.
82 This procedure prevents the possibility of squeezes in the delivery period from distorting prices (inducing serial
correlation in the price series). This price series is assured to have come from a highly liquid market.

161



could generate constant maturity price series that avoids the problem of price-jumps caused by

the rollover of the contracts (Pelletier, 1983). Herbst et al. (1989) suggest a perpetual contract

22-days horizon, which corresponds to the average number of trading days in a month, by

taking a weighted average of the rates of contracts that expire before and after the 22-day

period. Let S and P denote the days to expiry of the spot and prompt month FFA contracts, with

S �  22 �  P. The price of a 22-days perpetual contract is calculated as follows:

FFA22 = FFAs [(P — 22)/(P — 5)] + FFAp [(22 — S)/ (P — 5)]	 (4.8)

where FFAs and FFAp denote the prices of the spot and prompt month FFA contracts,

respectively83. However, in the OTC FFA market, such a trading strategy cannot be formulated

for the following reasons. First, this procedure assumes high market liquidity. Second, this

procedure assumes that market agents must take long positions in the spot and prompt FFA

contracts and rebalance these positions on a daily basis as the time to expiry of a FFA contract

changes. However, due to the nature of the shipping business it is not in the interest of market

agents to hedge their spot positions on a daily basis. Third, this procedure can generate

excessive brokerage and transactions costs in the current investigated market than a single FFA

contract position. Consequently, our results in the following sections are based on the price of a

single FFA contract.

Summary statistics of logarithmic first-differences of daily spot and FFA prices for the four

panamax routes are presented in Table 4.1. The results indicate excess skewness and kurtosis in

all price series, with the exception of the skewness statistic in routes 1, 1A and 2A FFA price

series. In turn, Jarque-Bera (1980) tests indicate departures from normality for spot and FFA

prices in all routes. The Ljung-Box Q(36) and Q2(36) statistics (Ljung and Box, 1978) on the

first 36 lags of the sample autocorrelation function of the raw series and of the squared series

indicate significant serial correlation and existence of heteroskedasticity, respectively. The

existence of serial correlation in spot prices may be attributed in the way shipbroking

companies calculate freight rates. These rates are based either on actual fixtures, or in the

83 As an example, on 13 March 2000 the prices of the spot (March 00) and prompt (April 00) FFA contracts for
route 2A were 11,750 (15) and 11,875 (33), respectively (days to maturity in parentheses). The price of the 22-days
perpetual FFA contract on route 2A of that day was 11,799 applying Equation (4.8). The following day, 14 March
2000, the prices of the spot (March 00) and prompt (April 00) FFA contracts for route 2A were 11,225 (14) and
11,625 (32), respectively. The price of the perpetual FFA contract of that day was 11,403.
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absence of an actual fixture, on the shipbroker's view of what the rate would be if there was a

fixture. In the latter case, shipbrokers submit an assessment, which may be a mark-up over the

previous day's rate which, in turn, induces autocorrelation in the route prices. After applying

the ADF (1981) and PP (1988) unit root tests on the log-levels and log first-differences of the

daily spot and FFA price series, the results indicate that all variables are log first-difference

stationary, all having a unit root on the log-levels representation.

Table 4.1. Descriptive Statistics of Logarithmic First-Differences of Spot and FFA Prices
Panel A: Route 1 Spot and FFA Price Series 16/01/97 to 31/07/00)

Skew Kurt Q(36) Q2(36) J-B ADF (lags) PP(12) ADF (lags) PP(12)
Lev Lev 15` Diffs Ist Diffs

Spot -0.168 13.347 216.43 264.77 6,609.8 -1.534 (3) -1.315 -9.169 (2) -15.751

FFA -0.151 5.429 304.47 283.47 1,096.7 -1.646 (0) -1.570 -31.722 (0) -32.070

Panel B: Route 1A Spot and FFA Price Series 16 01 97 to
Skew Kurt Q(36) Q2(36) J-B ADF (lags) PP(12) ADF (lags) PP(12)

Lev Lev 1 st Diffs 15t Diffs

Spot 1.811 30.788 186.29 290.45 35,637.3 -1.890 (2) -1.665 -10.343 (1) -14.051

FFA -0.037 4.708 258.59 221.35 822.28 -1.607 (0) -1.775 -29.547 (0) -29.714

Panel A: Route 2 Spot and FFA Price Series 16/01/97 to 30 04 01
Skew Kurt Q(36) Q2(36) J-B ADF (lags) PP(12) ADF (lags) PP(12)

Lev Lev 15` Diffs lst Diffs

Spot 0.626 522.25 507.73 215.81 12,271,081 -1.847 (3) -1.827 -13.995 (1) -32.768

FFA 0.286 5.049 285.55 276.36 1,158.85 -1.519 (0) -1.628 -30.421 (0) -30.457

Panel B: Route 2A Spot and FFA Price Series 16 01 97 to
Skew Kurt Q(36) Q2(36) J-B ADF (lags) PP(12) ADF (lags) PP(12)

Lev Lev 1st Diffs 1st Diffs

Spot -1.281 31.348 157.80 246.01 44,392.5 -2.121 (2) -1.885 -12.481 (1) -15.215

FFA 0.096 6.237 292.49 404.80 1,747.4 -1.891 (1) -1.952 -30.009 (0) -30.029

•
•

distributions under the null are	cü- N(0,6) and ff" ( oca - 3) - N(0,24), respectively.

• Q(36) and Q2(36) are the Ljung-Box (1978) Q statistics on the first 36 lags of the sample autocorrelation
function of the raw series and of the squared series; these tests are distributed as x2(36). The critical values are
58.11 and 51.48 for the 1% and 5% levels, respectively.

• J-B is the Jarque-Bera (1980) test for normality, distributed as x2(2).
• ADF is the Augmented Dickey Fuller (1981) test. The ADF regressions include an intercept term; the lag-

length of the ADF test (in parentheses) is determined by minimising the SBIC (1978).
• PP is the Phillips and Perron (1988) test; the truncation lag for the test is in parentheses.
• Lev and 15` Diffs correspond to price series in log-levels and log first-differences, respectively.
• The 5% critical value for the ADF (1981) and PP (1988) tests is -2.89.

Notes:
All series are measured in logarithmic first-differences.
Skew and Kurt are the estimated centralised third and fourth moments of the data; their asymptotic
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4.5. EMPIRICAL RESULTS

4.5.1. Cointegration in the Markets

After identifying that spot and FFA price series are non-stationary in all investigated routes,

cointegration techniques are used next to examine the existence of a long-run relationship

between these series (Table 4.2). SBIC (1978), used to determine the lag length in the VECM,

indicate 3 lags in routes 1A, 2 and 2A, and 4 lags in route 1. The Johansen's (1991) LR test, of

Equation (2.36) indicates that an intercept term should be restricted in the cointegrating vector

(not reported). The estimated Xrnax and X-f- —ace Statistics show that the spot and FFA prices in all

routes are cointegrated, and thus, stand in a long-run relationship between them. The

normalised coefficient estimates of the cointegrating vector in Equation (4.1) for each route are

also presented in Table 4.2. In order to examine whether the exact lagged basis should be

included as an ECT in the VECM model, the following cointegrating vector, zt = fiX t = (StJJ

Fd is examined, with )3' = (1, 0, —1), implying that the equilibrium regression is the lagged

basis, 4.1 = St-1 — Ft_ 1 (see for example, Viswanath, 1993; Zapata and Rambaldi, 1997;

Kavussanos and Nomikos, 2000a). The results in Table 4.2 indicate that in route 1 the

restrictions on the cointegrating vector to represent the exact lagged basis hold. In routes 1A, 2,

and 2A the restrictions are not accepted. This discrepancy in the results may arise from the

different economic and trading conditions that prevail in each trading route.

Table 4.2. Johansen (1988) Tests for the Number of Cointegrating Vectors
Between Spot and FFA Prices

Lags Hypothesis
(Max mal)

Test
Statistic

Hypothesis
(Trace)

Test
Statistic

Cointegrating
Vector

Hypothesis
Test

Ho H1 Amax HO Hi Atrace 13' = (I, pi , 132) 13' = (1, 0, -1)
Route! 4 r = 0 r= 1 34.55 r = 0 r >= 1 36.81 (1, 0.017, -1.00) 3.76 [0.153]

r< 1 r= 2 2.25 r<= 1 r = 2 2.25
Route lA 3 r = 0 r= 1 47.70 r = 0 r >= 1 51.20 (1, 0.509, -1.054) 10.17 [0.006]

r< 11 r = 2 3.498 r< 11 r = 2 3.49
Route 2 3 r = 0 r= 1 75.09 r = 0 r >= 1 78.03 (1, -0.204, -0.933) 16.47 [0.000]

r<=1 r= 2 2.94 r<= 1 r= 2 2.94
Route 2A 3 r = 0 r= 1 78.67 r = 0 r >= 1 82.76 (1, 0.172, -1.017) 8.16 [0.017]

r<= 1 r= 2 4.09 r<= 1 r = 2 4.09

Notes:
• Lags is the lag length of an VAR model; the lag length is determined using the SBIC (1978).
• Figures in square brackets [.] indicate exact significance levels.
• r represents the number of cointegrating vectors.

• X.max(r,r+1) = -T ln(1	,.41) and Xfrace(r) = -T E In(1	,) where X, are the estimated
i=,94

matrix in Equation (4.1).
• Estimates of the coefficients in the cointegrating vector are normalised with respect to

spot rate, S,.

eigenvalues of the II

the coefficient of the
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• The statistic for the parameter restrictions on the coefficients of the cointegrating vector is —T [1n(1 - S I ) —

ln(1 - '5: 1 )] where is, and 5: I denote the largest eigenvalues of the restricted and the unrestricted models,
respectively. The statistic is distributed as with degrees of freedom equal to the total number of restrictions
minus the number of the just identifying restrictions, which equals the number of restrictions placed on the
cointegrating vector.

• In route 1 the cointegrating vector is restricted to be z, = fix, = (1, 0, —1), while in routes 1A, 2, and 2A the
cointegrating vector is z, = /31X, = (1 lu F,)'.

4.5.2. The Lead-Lag Relationships between Spot and FFA Returns

The results from estimating the short-run parameters of the VECM, for the FFA market, using

SURE, are reported in Table 4.3, Panel A. The SURE method (Zellner, 1962) is used because

the system is reduced to a partial VECM, as insignificant variables are dropped to arrive at the

most parsimonious model. This ensures efficient and consistent parameter estimates. Given the

results from Table 4.2, in route 1 we apply the restrictions fi = (1, 0, —1) on the cointegrating

vector (i.e. the lagged basis), while in routes 1A, 2, and 2A the cointegrating vector is not

restricted to be the lagged basis. The residual diagnostic tests, presented in the same table, Panel

B, indicate existence of heteroskedasticity, in some routes. Thus, we adjust the t-statistics, as

well as the Wald test statistics in the same table, Panel A, which are employed to test for

Granger causality, by the White (1980) heteroskedasticity correction.

The coefficients (as and aF) of the ECTs, provide some insight into the adjustment process of

spot and FFA prices towards equilibrium in all investigated routes. The coefficients of the ECTs

in the FFA equations (aF) are statistically significant and positive, while the coefficients of the

ECTs in the spot equations (as) are statistically significant and negative. This implies that both

FFA and spot prices respond to correct a shock in the system in order to reach the long-run

equilibrium. For example, in response to a positive deviation from their equilibrium relationship

at period t-1, FFA prices in the next period increase in value and spot prices decrease in value,

thus, eliminating any disequilibrium.

The estimated coefficients of the lagged own-returns (as,i and bF,i) and lagged cross-market

returns (bs,i and aF,i) in all routes indicate that between one and three lags of changes in spot and

FFA's are significant in the spot and FFA equations. Adjusted Wald tests on the joint

significance of the lags in the spot and FFA equations (performed on the unrestricted VECM)

indicate the existence of a two-way feedback causal relationship between the two markets.
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The results in all routes indicate that the FFA markets, equally with the spot markets, serve as a

focal point of information assimilation for large numbers of buyers and sellers. Market agents

may depend on price changes in the FFA market when making their own trading decisions.

These findings are in accordance with previous studies in futures markets. Chan et al. (1991),

Chan (1992), and Wahab and Lashgari (1993), amongst others, suggest that there is a bi-

directional relationship between derivatives and spot returns. However, the coefficients of the

spot lags on the FFA equations are broadly larger in magnitude than the coefficients of the FFA

lags on the spot equations in all trading routes. Thus, it seems that FFA prices play a leading

role in incorporating new information.

Overall, possible explanations for finding FFA markets informationally more efficient than

their corresponding spot markets may be the following. First, FFA trades are cash-settled deals,

which require no chartering of a ship or movement of a cargo, and therefore, are due to lower

transactions costs than the spot market. Second, an investor can have a FFA contract on one or

more of the trading routes for several time intervals, providing him ease of shorting (it is not

common to establish a short position in a spot market, which trades a service, by hiring in

vessels). If new information indicates that freight rates are likely to rise, a speculator has the

choice of either buying a FFA or fixing a spot deal. Although the FFA transaction can be

implemented immediately with no up-front cash, spot fixtures require a greater initial outlay, a

constraint of resources (vessels) and may take longer to be completed. Third, FFA markets

provide more flexibility to investors in the sense that they enable investors to speculate on the

price movements of the underlying asset without the financial burden of owning the asset itself;

this point is important given the highly capital intensive nature of the shipping industry.

Therefore, market agents may react to the new information by indulging in FFA rather than spot

transactions. Spot prices will react with a lag because spot transactions cannot be executed so

quickly.
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Table 4.3. Estimates of the SURE-VECM and Granger Causality for Spot and FFA prices
in Routes 1, 1A (16/01/97 - 31/07/00) and 2, 2A (16/01/97 - 30/04/01)

Panel A: SURE-VECM Model Estimates and Wald Tests for Granger Causality
p-i	 p-I

AS, =-- E as,,ASt_i + E bsjAFt-i + asZi-i + Cs,/	 (4.4a)

P-1	 p-1 r

AF, = E aFAS,.; + E bFAF/_, + aFZI-1 + EF,/	;	sr =
1=1	i=i	

(es,

EF , i
I n,_, - IN(0, E)	(4.4b)

Route 1 Route lA Route 2 Route 2A
AS, AF, AS, AF, AS, AF, AS, AF,

0.081'Z, 1 -0.016* 0.061 -0.025. 0.083* -0.060 0.034- -0.043
(-3.657) (4.084) (-4.279) (5.026) (-7.794) (1.879) (-6.074) (4.511)

AS,1 0.439. 0.465. 0.520 0.345* 0.549 0.573 0.481 0.295'
(13.572) (5.282) (15.697) (3.708) (23.166) (8.890) (16.493) (5.001)

AS„2 0.093 - 0.171* 0.182- 0.094 -
(2.686) (5.278) (1.958) (3.353)

AS„3 0.141 - - - -0.290 -
(4.495) (-5.209)

AF, 1 0.059- -0.068 0.035 - 0.068- 0.099* 0.094"
(5.810) (-1.981) (2.908) (5.268) (7.489) (2.818)

AFp2 -0.100- -0.111'
(-2.983) (-3.627)

AF„ 3 - - - - 0.032. -
(2.547)

Wald 38.181 26.920 9.623 42.372 29.097 58.797 57.313 25.198
Tests [0.000] [0.000] [0.002] [0.000] [0.000] [0.000] [0.000] [0.000]

Panel B: Residual Diagnostics
Route 1 Route IA Route 2 Route 2A

AS, AF, AS, AF, AS, AF, AS, AF,
K2 0.437 0.046 0.473 0.073 0.477 0.057 0.501 0.041

Q(12) 7.325 17.914 19.453 5.921 14.119 13.575 7.325 17.914
[0.835] [0.118] [0.078] [0.921] [0.293] [0.329] [0.835] [0.118]

Q2(12) 26.068 5.492 63.556 20.619 136.61 19.948 26.068 5.492
[0.010] [0.940] [0.000] [0.055] [0.000] [0.068] [0.010] [0.940]

Notes:
• * and ** denote significance at the 5% and 10% levels, respectively.
• Figures in parentheses (.) and in squared brackets [.] indicate t-statistics and exact significance levels,

respectively.
• 1-statistics and Wald tests (performed on the unrestricted VECM) are adjusted using the White (1980)

heteroskedasticity consistent variance-covariance matrix, in the cases of heteroskedasticity in the residuals
(see Panel B).

• The cointegrating vector z,.1 = gX,1 is restricted to be the lagged basis (S,1 - F„ /) in route 1. In the
remaining routes the ECT is the following spread: ECT = S,1 - 1.054*F„1 + 0.5093 in route 1A; ECT = S„/ -
0.9327*F,_1 - 0.204 in route 2; and ECT =	1.017*F„1 + 0.172 in route 2A.

• Q(12) and Q2(12) are the Ljung-Box (1978) tests for 12th order serial correlation and heteroskedasticity in the
residuals and in the squared residuals, respectively; the test statistics are x2(12) distributed.
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Newberry's (1992 P. 210) postulation that derivatives markets provide opportunities for market

manipulation, suggests another argument for the hypothesis. According to this argument,

derivatives markets may be manipulated either by the better informed at the expense of the less

informed or by the larger at the expense of the smaller. For example, big chartering houses may

find it profitable to intervene in the FFA market to influence the production decisions (i.e. of

grain or coal) of their competitors in the spot market. Again, the implied causality runs from

FFA to spot prices. Fleming et al. (1996) introduce what they call the trading cost hypothesis,

which predicts that the market with the lowest overall trading costs will react most quickly to

new information and thus, exhibit price leadership. They suggest that the lead-lag relationship

should change when it becomes more costly or less costly for traders to exploit the information

in the spot market.

4.5.3. Impulse Response Analysis

A more detailed insight on the causal relationship between spot and FFA prices is obtained by

analysing the impulse response function of the SURE-VECM. This measures the reaction of

spot and FFA prices in response to one standard error shocks in the equations of the VECM.

Following Sims (1980), impulse responses can be computed by orthogonalising the underlying

shocks to the model using a Cholesky decomposition of the covariance matrix in Equation

(4.1). However, this approach leads to impulses, which are not unique aud deptad

ordering of the variables in the system (Lutkepohl, 1991). A solution to these problems is

proposed by Pesaran and Shin (1997) who suggest the use of Generalised Impulse Responses

(GIR). Consider the following VAR model in standard form Xr = E A iXt-i + Et; this has the
i=1

following infinite order Vector Moving Average (VMA) representation (Sims, 1980): Xt =

CO

E(1),Er-i where the 2x2 matrices Cto i are computed using the recursive relations (130 i = AI 1. 1 +

A2(1 2 +	+ Apeo i_p,I = 1,2... with (Do = /2, and (D i = 0 for i < 0. Pesaran and Shin (1997)

define the GIR function of the FFA price at time t+N, following a standard error shock (avi ) in

Eel 
the equation of the spot price at time t as: GIspot,FFA,t+N 

e2 4:13 N	, where e2 = (0 1)', E is the
cro

variance-covariance matrix of the system and ON is computed from the recursive equation

described above. In the case of a VAR model in levels, lim0 1 = 0. However, for a VECM limao;

= C(1) which is a non-zero 2x2 matrix with rank 1, derived from the VMA representation of the
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underlying VECM (see Pesaran and Shin, 1997). This implies that when the underlying

variables in the VAR are 1(0) in levels, the effect of the shocks in the variables eventually

vanishes while in the case of a VECM, where the variables are first-difference stationary, this

effect will be persistent and the variables will adjust to a new long-run level once shocked.

The time profiles of the GIR responses of spot and FFA prices to innovations in the spot returns

are presented in Figures 4.1, 4.3, 4.5, and 4.7 for routes 1, 1A, 2, and 2A, respectively. In every

case, an overshooting is observed in the spot market, while FFA prices adjust gradually to

equilibrium. The adjustment period is more or less the same, only the time path is different. The

impact of a shock in the spot market is much more direct in spot rates. The time to adjustment

varies between routes, taking approximately 25-30 days in route 1, and 15-20 days for the rest

of the routes (1A, 2, and 2A). Route 2 is slightly different compared to the rest in that FFA rates

jump to the new equilibrium in 1-2 periods. Also adjustment in 2A for FFA rates is in half the

period than spot rates take to adjust - 10 to 20 days. These differences may be explained by the

different economic conditions and liquidity in each trading route. Figures 4.2, 4.4, 4.6, and 4.8

for routes 1, 1A, 2, and 2A, respectively show the reaction of spot and FFA prices to one

standard error shock in FFA returns. With the exception of route 1 (for which there is very low

volume of trade) FFA prices adjust almost immediately - 1-3 days - to the new long-run

equilibrium. In contrast, spot prices adjust gradually and seem to take 15 days to reach the new

equilibrium.

These results are in accordance with the earlier results of the causality tests, based on a SURE-

VECM model, and confirm the bi-directional findings of the Wald tests. In addition, they

indicate that FFA prices respond to new information and reach the long-run equilibrium level

more rapidly than their corresponding spot prices, with the result being more emphatic when the

shock is in the FFA market. In a world with non-differential transactions costs across markets

and no restrictions on borrowing or short selling, we would expect the spot and FFA markets to

be equally accessible to all traders. Investors who have collected and analysed new information

would tend to be indifferent about transacting in one market or the other and thus, new

information would tend to be revealed simultaneously in the prices of both markets. However,

if conditions tend to favour transactions in a particular market, then new information may be

processed more rapidly in that market. This is the case here, where transactions costs are much

higher in the spot compared to the FFA market.
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4.5.4. The Lead-Lag Relationships between Spot and FFA Volatilities

Having examined the lead-lag relationship between spot and FFA markets in the mean we turn

now to the examination of the relationship in the variance. The QMLE estimates of the VECM-

GARCH-X model for route 1 and the VECM-GARCH models for routes 1A, 2, and 2A are

shown in Table 4.4. These have been selected on the basis of LR tests, Schwartz (1978)

information criteria, and on the basis of diagnostic tests. The estimates of the coefficients of the

mean equation and the variance equation, including the volatility spillover parameters are

presented in panels A and B, respectively. Any insignificant variables are excluded from the

model to reach a more parsimonious specification. In most cases the VECM-GARCH(1,1)

specification provides a good description of the joint distribution of spot and FFA price returns,

with the exception of route 1, where a VECM-GARCH(1,4)-X model is found superior (see

footnote 84).

Table 4.5 reports diagnostic tests based on the standardised residuals (c1 /J).). Ljung-Box

(1978) statistics for 12th-order serial correlation in the level and squared standardised residuals,

as well as the test statistics for asymmetry (sign bias, negative size bias, positive size bias, joint

sign and size bias test) developed by Engle and Ng (1993) — see Table 4.5 notes — indicate that

models are well-specified. The exception is for the spot variance equation in routes 1 and 2A,

which indicates that standardised residuals exhibit ARCH effects and for the FFA variance

equation in route 2, which indicates a sign bias asymmetry84. The estimated implied kurtosis

indicates the presence of excess kurtosis in the residuals in all investigated routes. As a result,

the Jarque-Bera (1980) test rejects normality in all routes.

84 Different specifications of VECM-GARCH(p, q)-X are used to capture excess ARCH effects in the residuals for
the spot equation in routes 1 and 2A. However, the ARCH effects could not be removed completely. Therefore,
estimation results of the VECM-GARCH models with the least ARCH effects in the standardised residuals for the
spot equation in routes 1 [VECM-GARCH(1,4)-X] and 2A [VECM-GARCH(1,1)] are presented. We have to note,
that the SBIC (1978) in the case of route 1 selects a VECM-GARCH(1,1) specification. However, in terms of
residual diagnostics the model exhibited severe asymmetries. Using an asymmetric VECM-EGARCH(1,1) model
in route 2, to remove the sign asymmetry in the FFA variance equation, yield inferior results judged by the
evaluation of the log-likelihood and in terms of the SBIC (1978).
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Table 4.4. Estimates of VECM-GARCH Models for the Spot and FFA Prices (Routes 1 and 1A:
1997:01-2000:07, Routes 2 and 2A:1997:01-2001:04)

p-1	 p-1
AS, = E as,,As,„ + E bs,JAF/-i ± aszpi ± CS,/	 (4.4.a)

i=1	 i=1

Thl	 Thl	 i
AF / = E aFAS,; + E bF,,AF,_, + aFzi-l-F CF,	;	Ci =	'

1=1	t=1	

[Es

EF, /
(4.4.b)I ni_i	maw	 (4.4.b)

H, = /VA + B I H,_1 13 + C' Et- i cr-1 I C + S 1 'ul, ,_ l u 1,,_ i 'S1 + S2'u2,p1u2,,1'S2+ 
EV  t-i )2E	(4.5)

Coefficients	Spot 1	FFA 1	I	Spot IA	I	FFA IA	I	Spot 2	I	FFA 2	I	Spot 2A	I	FFA 2A
Panel A: Conditional Mean Parameters

ai , j = 1,2 -0.017 0.063 -0.013. 0.083 -0.045 0.039 -0.036. 0.083'
(-3.259) (4.504) (-2.329) (4.248) (-6.925) (2.547) (-5.428) (5.362)

ai,i , j = S, F 0.494. 0.563 0.654 0.419 0.599 0.665 0.567- 0.510.
(11.034) (7.046) (9.727) (2.902) (19.470) (6.917) (9.203) (5.824)

aj,2,	j = S, F 0.139. 0.134 0.165. -0.l61
(3.582) (2.846) (1.422) (-1.714) (1.984)

ao, j = S, F 0.072 - - -0.237 -
(2.212) (-2.759)

ajA, j = S, F - -0.205 - - - - - -
(-2.223)

b1,1 , j = S, F 0.043. -0.080- 0.028 - 0.079- - 0.054- 0.082'
(3.975) (-2.369) (2.495) (3.829) (3.634) (2.910)

bi,2,	j = S, F - -0.095 - -0.095 0.031"
(-3.055) (-3.742) (2.604)

bo, j = S, F - - - - 0.029 - - -
(2.152)

Panel B: Conditional Variance Parameters

all 0.0047 (7.991) 0.0026 (1.349) 0.0024- (3.055) 0.0007 (1.637)
a21 0.0010 (2.757) 0.0049 (6.801) 0.0047 (7.507) 0.0019 (2.992)
a22 0.0178	(2.359) 0.0093- (1.839) 0.0093- (4.285) 0.0056-	(1.748)

bkk , k = 1, 2 -0.030 0.614 -0.599- 0.897 -0.365 0.755 -0.848 0.925'
(-0.252) (1.464) (-6.625) (11.028) (-2.412) (9.603) (-20.276) (19.447)

cl,kk , k = 1, 2 0.379. 0.014 0.619. 0.173. 0.549. 0.061 0.476- 0.017
(3.406) (0.391) (5.149) (3.236) (6.472) (1.621) (5.287) (0.590)

Czkk ) k = 1,2 0.246- 0.059 - - -
(1.768) (0.669)

C3,1(k ) k = 1, 2 0.202- -0.067 - - - - - -
(3.193) (-0.511)

Cok , k = 1, 2 0.276. 0.036 - - - - - -
(3.059) (0.532)

ekk , k = 1, 2 0.030 0.082 - - - - - -
(2.114) (1.558)

S121 (Spot-) - -0.00006 - 0.546 - 0.790- - 0.894.
[0.999] [0.191] [0.000] [0.003]

S212 (FFA ->) 0.117- 7.42E-07 - 0.099- - 0.091.
[0.002] [0.999] [0.041] [0.002]

Notes:
• All variables are transformed in natural logarithms.
• * and ** indicate significance at the 5% and the 10% levels, respectively.
• Figures in parentheses (.) and in squared brackets [.] indicate (-statistics and exact significance levels,

respectively.
• The GARCH-X process is estimated with the QMLE. The BFGS algorithm is used to maximise the

QMLE.
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• z,_1 represents the lagged ECT. The ECT is restricted to be the lagged basis in route 1 only. In routes 1A,

2, and 2A the ECT is the unrestricted basis (see notes in Table 4.3).
• Volatility spillovers are measured by the coefficients of the Si and S2 matrices. They indicate volatility

spillovers from the market shown in the row to the market shown in the column [see the (—>) symbol].

Focusing next on the parameters describing the conditional variance of the VECM-GARCH

models in each market, it can be seen that in the spot variance equation in route 1, the

coefficient of the lagged variance (b11 = -0.030) is insignificant, while the coefficients of the

lagged error terms to c4,11) are significant, which indicate that there is only ARCH in the

spot rates. Insignificant coefficients of lagged variance (b22 = 0.614) and lagged error terms

(c1,22 to c4,22), in the FFA variance equation in route 1, indicate that volatility of FFA rates is not

time-varying. The results in routes 1A and 2 and 2A indicate time-varying variances in both

spot and FFA equations. Overall, the coefficients of the lagged error-terms in the spot variance

equation are higher than those in the FFA variance equation in all routes, implying that past

shocks (new news) have a greater impact on the spot rather on the FFA volatility. On the other

hand, the coefficient of the lagged variance in the spot variance equation is lower than that in

the FFA variance equation in all routes, implying that informed agents use past volatility (old

news) more in the FFA market. The results of the coefficients of the lagged squared basis (ekk)

in the variance equations indicate that the basis is significant and affects positively the volatility

of the spot market in route 1 only. Therefore, variation in the lagged squared basis for the spot

market results in increased volatility in the spot market. In routes 1A, 2, and 2A the lagged

squared unrestricted basis is found insignificant in the spot and FFA variance equations. This in

turn implies that the unrestricted basis does not assist in explaining the relationship between

disequilibrium and conditional volatility.

The coefficients of volatility spillover effects, s121 and s212, pick up the effect of lagged squared

forecast errors (residuals) of the spot equation in explaining the volatility of FFA rates, and of

the FFA equation in explaining the volatility of spot rates, respectively. In general, a volatility

spillover from one market to another means that any piece of information that is released by the

volatility transmitting market has a superior information role and therefore, has an effect on the

market that receives the volatility spillover.
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Table 4.5. Diagnostic Tests on Standardised Residuals of VECM-GARCH Models
Spot 1	I	FFA 1 Spot IA I FFA lA Spot 2	I	FFA 2 Spot 2A I FFA 2A

System LL 6,925.822 6,431.812 7,140.977 6,465.179
Skewness 0.384 -0.043 0.549 0.264 0.018 0.774 0.639 1.274

[0.000] [0.604] [0.000] [0.001] [0.823] [0.000] [0.000] [0.000]
Kurtosis 7.979 10.688 14.281 8.429 8.878 9.608 4.748 13.579

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
J-B Normality 2,377.39 4,221.99 7,599.68 2,642.29 2,916.60 3,503.87 895.45 7,078.38

Test [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
Q(12) 8.449 13.907 12.411 6.145 7.166 12.110 9.572 5.526

[0.673] [0.238] [0.334] [0.864] [0.786] [0.355] [0.569] [0.903]
Q2(12) 38.991 4.255 2.937 15.371 2.373 7.746 24.306 2.474

[0.000] [0.962] [0.992] [0.166] [0.997] [0.736] [0.012] [0.996]
ARCH(12) 3.288 0.335 0.245 0.983 0.226 1.268 1.855 0.212

[0.000] [0.983] [0.996] [0.463] [0.997] [0.232] [0.036] [0.998]
Persistence
(b2kk + C2kk)

0.322 - 0.742 0.835 0.435 0.574 0.946 0.856

H-L 1.61 - 3.32 4.83 1.65 2.25 13.41 5.46
AIC -13,799.644 -12,829.624 -14,245.953 -12,896.359
SBIC -13,675.277 -12,748.307 -14,159.853 -12,815.042

LR (E = 0) 7.556 - x2(2) 10.154 - x2(2) 7.584 - x2(2) 1.070 - x2(2)
Sign and Size Bias Tests

Sign Bias 0.197 1.119 -0.814 0.632 -0.264 2.191 -0.230 -0.121
[0.844] [0.264] [0.416] [0.528] [0.792] [0.029] [0.818] [0.903]

Negative Size -0.225 0.095 -0.059 0.276 -0.095 -0.095 0.150 0.425
Bias [0.822] [0.925] [0.953] [0.783] [0.924] [0.924] [0.881] [0.671]

Positive Size -0.238 -0.102 0.293 -0.106 0.309 -1.784 0.908 -0.603
Bias [0.812] [0.919] [0.770] [0.916] [0.757] [0.075] [0.364] [0.547]

Joint Test 0.027 0.582 0.356 0.276 0.063 2.303 0.311 0.241
for 3 Effects [0.994] [0.627] [0.785] [0.843] [0.979] [0.076] [0.8183 10.868j

Notes:
• Figures in squared brackets [.] indicate exact significance levels.
• System LL is the System Log-Likelihood.
• J-B Normality is the Jarque-Bera (1980) normality test, with probability values in square brackets.
• Q(12) and Q2(12) are the Ljung-Box (1978) tests for 12th order serial correlation and heteroskedasticity in

the standardised residuals and in the standardised squared residuals, respectively.
• ARCH(12) is the Engle's (1982) F test for Autoregressive Conditional Heteroskedasticity.

• The persistence coefficient is calculated as b kk2 + c kk2 (see footnote 85).

• H-L is the Half-Life test, which measures the number of days that it takes for volatility to reduce its size
to half its original size after a shock. It is measured as 1 - [log(2) / log(b2kk + c2kk)], k = 1, 2.

• AIC and SBIC are the Akaike Information Criterion (1973) and Schwartz Bayesian Information Criterion
(1978), respectively.

• LR(E = 0) is the likelihood ratio statistics for the restriction E = 0. Let LLU and LLR be the maximised
value of the log-likelihood functions of the unrestricted and the restricted models, respectively. Then the
following statistic 2(LLU - LLR) is X2 distributed with degrees of freedom equal to the number of
restrictions placed in the model.

• The test statistics for the Engle and Ng (1993) tests are the t-ratio of b in the regressions: u = ao + bY

+ w, (sign bias test); 14 = ao + bY i c11 + co, (negative size bias test); u	ao + bY  ;1. 1 61_ 1+ a), (positive

size bias test), where /4 are the squared standardised residuals (E,2 /h,). Y 1 is a dummy variable taking

the value of one when Ei_ i is negative and zero otherwise, and Y i = 1 - \CI . The joint test is based on

the regression /4 = ao + b 1 Y,11 +	+ b3Y,1- 1 ci-i + col . The joint test Ho: 6 1 = 62 = 63 = 0, is an F-
test with 95% critical value of 2.60.
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In route 1, the coefficient of the volatility spillover from spot to FFA is insignificant (-0.00006),

while the coefficient of the volatility spillover from FFA to spot is significant (0.117), which

implies that there is a unidirectional volatility spillover from the FFA to the spot market. The

finding, that only FFA volatility affects spot volatility, is consistent with the empirical work of

Koutmos and Tucker (1996), Chatrath and Song (1998), amongst others. In route 1A, the

coefficients of volatility spillovers for both markets are highly insignificant, indicating that

there is no volatility spillover from any market to the other. The finding of no volatility

spillovers is consistent with Kawaleer et al. (1990) and Arshanapali and Doukas (1994),

amongst others.

In route 2, the coefficients of the volatility spillovers from spot to FFA (0.790) and from FFA to

spot (0.099) are significant at the 5% level. Thus, there is a bi-directional relationship in

volatility spillovers, but it seems to be stronger from the spot to the FFA market, which is in

accordance with earlier results that the FFA market informationally leads the spot market.

Finally, in route 2A, the coefficients of volatility spillovers, for both markets, are highly

significant at the 5% level, which imply that there is a bi-directional relationship in volatility

spillovers between the two markets. However, the magnitude of the s121 coefficient (0.894) is

higher than the magnitude of the s212 coefficient (0.091), implying that the effect of the shock in

the spot market on the FFA market volatility is larger than that on the spot market volatility

induced by the shock in the FFA market, which again is consistent with earlier results. In routes

2 and 2A the finding that there is a bi-directional relationship in volatility spillovers is in

accordance with the empirical work of Chan et al. (1991), Chan and Chung (1993), and Wang

and Wang (2001), amongst others.

Overall, in route 1 the results of the mean equation indicate that there is a bi-directional

relationship between FFA and spot prices, and that FFA prices play a leading role in

incorporating new information. However, the results of the variance equation indicate that there

are unidirectional volatility spillovers from the FFA to the spot market, and thus, the FFA

market seems to lead the spot market in terms of volatilities. In route 1A the results of the mean

equation indicate that there is a bi-directional relationship between FFA and spot prices, while

there are no volatility spillovers in any direction. The discrepancy in the results between returns

and volatilities, in routes 1 and 1A may be justified by the thin-trading in terms of FFA

contracts, and thus, the information assimilation may change between periods of high and low
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trading and in terms of different economic conditions. In contrast, in routes 2 and 2A there is a

bi-directional relationship in terms of both returns and volatilities, and the direction of

information flow seems to be stronger from FFA to spot. These results may be attributed to the

high trading activity of routes 2 and 2A, which results in information being incorporated faster

in the FFA market, in comparison to the spot market.

The persistence of volatility of the spot and FFA market, following a shock in the respective

market, measured by b kk2 + c kk2 , where k = 1,285, show that the unconditional variances are

stationary (persistence factors less than one). In routes 1A and 2, FFA price shocks seem to

have a greater effect on FFA volatility, than spot price shocks on spot volatility. This is also

seen through the Half-Life (H-L) measure, estimated as 1 — [log(2)/log(13 2kk + ckk2 )], which

indicates the time period required for the shocks to reduce to one-half of their original size86.

According to the results, the shocks reduce to half their original size in approximately 3 days

for the spot market and 5 days for the FFA market in route 1A, and 1 day for the spot market

and 2 days for the FFA market in route 2. In contrast, in route 2A, spot price shocks seem to

have a greater effect on spot volatility, than FFA price shocks on FFA volatility. The H-L

measure indicates that shocks reduce to half their original size approximately 14 days for the

spot market and 6 days for the FFA market in route 2A. Finally, in route 1, the volatility of the

FFA prices is not time-varying (as the coefficients of the lagged variance and lagged error terms

are statistically insignificant), and thus, there is no persistence in FFA volatility. On the other

hand, spot price shocks seem to have an effect on spot volatility, with a H-L measure of 2 days.

85 The volatility persistence factor is defined as the degree of convergence of the conditional volatility to the
unconditional volatility after a shock. For example, if the conditional volatility is defined as a GARCH(1,1)

2	 2	2
process, a =ao+bi cy +ci c , then the unconditional volatility would be ao /(1—b1—c1). Therefore, the degree of

persistence of the conditional volatility can be defined as (b1 + c1). The conditional volatility converges to its
unconditional value, if and only if (131 + c1 ) < I. In the BEKK specification persistence is calculated as (b1 2 + c12).
86 The closer to unity is the value of the persistence measure, the slower is the decay rate and the longer is the Half-
Life measure.

177



4.6. CONCLUSION

This chapter investigates the lead-lag relationship in daily returns and volatility between spot

and FFA price series in the panamax voyage routes 1 and 2 and time-charter routes 1A and 2A.

The study contributes to the general literature by examining an OTC forward market, extending

the concepts associated with intertemporal spot and forward prices to non-storable commodities

(e.g. services), with no explicit storage relationship linking spot and forward prices. In addition,

a feature of this market is higher transactions costs in spot compared to the FFA market.

The major findings of this chapter can be summarised as follows. First, spot and FFA prices are

cointegrated (stand in a long-run relationship between them) in all routes but restrictions on the

cointegrating vector, to represent the lagged basis, hold in route 1 only. This may indicate that

prices do not move closely enough in the rest of the trading routes. Second, after using a SURE-

VECM model and GIR analysis, the results indicate that there is a bi-directional causal

relationship in all routes, implying that FFA prices can be equally important as sources of

information as spot prices are in commodity markets. However, FFA prices tend to discover

new information more rapidly than spot prices in all routes. This pattern is thought to reflect the

fundamentals of the underlying asset since, due to the limitations of short-selling and higher

transactions costs of the underlying spot rate, investors who have collected and analysed new

information would prefer to trade in the FFA rather than in the spot market.

In order to investigate for volatility spillovers between the spot and FFA markets, this study

utilises an extended bivariate VECM-GARCH-X model. The cointegrating lagged residual is

found to be a significant determinant of the conditional mean returns but have poor explanatory

power on the conditional volatilities. The results indicate that the FFA market volatility spills

information to the spot market volatility in route 1. In route 1 A the results indicate no volatility

spillovers in either market. In routes 2 and 2A there is a bi-directional relationship as each

market transmits volatility in the other. However, in routes 2, and 2A the FFA market plays a

leading role in incorporating new information.

The results of the lead-lag relationship in returns are in accordance with the results in most

futures markets, including futures markets in shipping freight contracts (see Chan et al., 1991;

Chan, 1992; and Kavussanos and Nomikos, 2001, amongst others). Results then, in terms of
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returns, indicate that informed agents are not indifferent between trading in the FFA and the

spot market, as new market information disseminates faster in the FFA market than the spot.

Thus, it seems that FFA prices in all routes contain useful information about subsequent spot

prices, and therefore, can be used as price discovery vehicles, since such information may be

used in decision making. Furthermore, the FFA contracts in routes 1, 2, and 2A contribute in

the volatility of the relevant spot rate, and therefore, further support the notion of price

discovery. The findings of this study suggest that equilibrium models that rely exclusively on

first moments may be misspecified, as second moments seem to contribute to the discovery of

information in most of the investigated routes. Practitioners, by explicitly modelling conditional

variance dynamics, can have a clearer understanding of the price interactions in the spot and

FFA markets. This can lead to a better assessment of risk management, ship-chartering and

budget planning decisions.
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CHAPTER 5— AN INVESTIGATION OF THE INTRODUCTION OF

FORWARD FREIGHT TRADING ON SPOT

MARKET PRICE VOLATILITY

5.1. INTRODUCTION

While derivatives markets can be seen to be enhancing economic welfare by allowing for new

positions and expanding the investment sets or enabling existing positions to be taken at lower

costs, they have been criticised for attracting uniformed traders because of the high degree of

leverage (Figlewksi, 1981), and for encouraging speculation (Cox, 1976). Figlewski (1981) and

Stein (1987) argue that the lower level of information of derivatives traders, compared with that

of spot market participants, results in increased spot market price volatility. Goss and Yamey

(1978) argue that derivatives markets, by allowing individuals to undertake speculative activity

without them having to become involved in the production, handling or processing of the

commodity or asset, can increase speculation. Furthermore, the low cost of participating and the

rapid implementation of a position in the derivatives markets make it easy for market agents to

engage in speculation. Thus, there has been a considerable concern regarding the impact that

derivatives markets may have on price volatility of the underlying spot market. This chapter

examines whether, and to wh`at extent, the recent introduction of trading in FFA contracts has

impacted on the price volatility of the underlying spot market87. If the sole interest of a large

number of market agents is not hedging themselves, against adverse freight rate movements, but

to speculate using the FFA market, their actions may induce excess volatility, and therefore,

destabilise the spot market.

This chapter extends the empirical literature on the relationship between derivatives (futures

and forward) trading and spot market price volatility in the following ways. First, most of the

studies view the question about the impact of derivatives trading on spot price volatility from a

stabilising or destabilising view-point by comparing spot price volatility during the pre- and

post-derivatives trading areas. While a number of methodologies have been adopted to examine

87 FFA contracts were introduced in London in October 1991 by the shipbroking company Clarkson Securities
Ltd., originally marketing them through their joint-venture company, Clarkson Wolff.
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this issue the investigation of the link between information and volatility in earlier studies is

neglected, (with the exemption of Chatrath et al., 1996; Antoniou et al., 1998; and McKenzie et

al., 2001).

Second, the conditional variance from Glosten, Jagannathan, and Runkle (1993) GJR-GARCH

model is found to be the appropriate process of volatility of the spot freight rates, enabling the

investigation of the link between information and conditional volatility and of the market

dynamics, as reflected by a change in the asymmetric volatility response. Antoniou et al. (1998)

argue that derivatives markets may change the role of market dynamics in terms of the way in

which volatility is transmitted and, therefore, how information is incorporated into prices.

Merton (1995) argues that the introduction of derivatives markets can improve efficiency by

reducing asymmetric responses to information. The prior literature has generally restricted itself

to testing changes in spot price volatility and has not considered whether reduced asymmetry

(linked to news arrival) has resulted from derivatives trading. Such a restricted testing

framework may lead to inappropriate policy responses.

Third, if a stabilising/destabilising impact is found, we investigate whether the introduction of

FFA trading is the only cause for a change in the spot market volatility. The hypothesis that

other factors may have affected market volatility is tested. For this purpose several other

economic indicators are included as proxies for market factors in the variance model.

Fourth, the FFA market is organised quite differently from a futures market. All trading is

bilateral, there is no clearing-house, no open outcry, and no centralised exchange. Only at the

end of the trading day, information on deals negotiated during the day, is disseminated88.

During the day, traders must rely on their contacts for information on the transactions

consummated.

Finally, much of the analysis in previous studies has been devoted on considering the impact of

trading in market-wide instruments (i.e. stock index contracts). Such studies are useful in

assessing the market-wide impact, but any effect in the underlying spot market can be

dissipated across the many constituent assets in the index, making it difficult to detect. Because

88 Shipbrokers in London report to their clients daily the FFA quotes around 17:00 UK time.
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FFA are route-specific contracts (the underlying asset is freight rates of a trading route) this

study contributes in the general literature by examining changes in the volatility of individual

routes (assets). In addition there are some special features in these contracts, which do not

appear in other markets. These include (i) the investigation of the issue on a forward rather than

a futures market. We have not seen any studies before on OTC markets, primarily due to the

lack of available data. Yet differences in the results between forward and futures markets may

arise; (ii) the underlying commodity is a service and the usual cost-of-carry relationship

between spot and forward does not exist here; and (iii) transactions costs are thought to be

lower in the FFA market in comparison to spot and also in FFA compared to futures

(Kavussanos and Nomikos, 2001).

This chapter can provide regulators and practitioners with important insights into the FFA

trading - spot market price volatility relationship. If the FFA market cause a change in the level

of volatility in the spot market (as in the arguments that speculators increase volatility) and this,

in turn, is associated with greater uncertainty and unduly higher required freight rates, then

there may well be a case for the FFABA and the FIFC to increase the regulation of this market.

However, if this market leads to new channels of information being provided, more information

due to more traders, and a reduction in uniformed investors, then the FFA market provides a

useful service and calls for its regulation are unwarranted.

The remainder of this chapter is organised as follows. Section 5.2 presents the literature review.

Section 5.3 discusses the theoretical issues relating to the relationship between information and

volatility and presents the research methodology. Section 5.4 describes the data and provides

some preliminary statistics. The empirical results are presented in section 5.5. Finally, section

5.6 summarises this chapter.

5.2. LITERATURE REVIEW

The empirical work whether derivatives (futures and forward) trading stabilises or destabilises

the spot market is voluminous and the review in this section is not exhaustive. Rather it seeks to

identify the most influential work in this area. Questions pertaining to the impact of derivatives

trading activity on spot market volatility have been empirically addressed in two ways. First,

182



researchers have attempted to establish the impact of speculative trading on spot markets by

comparing spot price volatility during the pre- and post-derivatives trading areas (see for

example, Antoniou et al., 1998; and Mckenzie et al. 2001, amongst others). Second, researchers

have examined the relationship between speculative trading activity and spot markets by

directly evaluating the impact of derivatives trading activity (generally proxied by trading

volume) on the behavior of spot markets (see for example, Bessembinder and Seguin, 1992;

and Chatrath et al., 1996, amongst others)89.

In general there are two main beliefs among market agents. The first is that speculators in

derivatives markets have a destabilising impact on spot prices (see for example, Harris, 1989;

Damodaran, 1990; and Antoniou and Holmes, 1995, amongst others). Several studies suggest

that the participation of speculative traders in systems that allow high degrees of leverage could

lower the quality of information and could increase uncertainty in the market, which in turn,

could raise the required rate of return of investors in the market, and consequently, could

increase the volatility of spot prices (see Stein, 1961; and Figlewski, 1981, amongst others).

Cox (1976), argues that uniformed traders could play a destabilising role in spot markets.

Furthermore, an increase in volatility on expiration days is expected as investors attempt to

close out their positions, settle contracts, and trade on potential arbitrage opportunities.

The second is the exact opposite, were speculators are seen to have a useful and stabilising role

in spot markets (see for example, Kaldor, 1960; Moriarty and Tosini, 1985; Edwards, 1988a;

Robinson, 1994; and Choi and Subrahmanyam, 1994, amongst others)90. It can be argued that

derivatives markets require speculators, to enable hedgers to transfer risks which they wish to

avoid. It has been suggested that derivatives markets have become an important vehicle of price

discovery in spot markets, as they may bring more (private) information to the market and

allow for quicker dissemination of information (Schwarz and Laatsch, 1991). Several authors

have argued that trading in these markets improves the overall market's depth (market's

completeness) and informativeness (Powers, 1970), increases market liquidity (Kwast, 1986),

89 In this chapter only the first approach is followed, as volume figures for the FFA market are not publicly
available.
90 Kaldor (1960) argues that: "speculators are people of better than average foresight who step in as buyers
whenever there is a temporary excess of supply over demand, and thereby moderate the price fall; they step in as
sellers, whenever there is a temporary deficiency of supply, and thereby moderate the price fall... The idea that
speculative activity might increase price fluctuations was not considered in traditional theory since this would
require that speculative activity resulted in losses; selling when prices are low and buying when high".
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compresses spot market volatility (Kyle, 1985), enhances market efficiency (Stoll and Whaley,

1988), and thereby improves investment choices for investors (Arditti and John, 1980).

This controversial issue of the impact of speculators, which dates back almost to the inception

of derivatives trading, has been the subject of considerable empirical analysis and has received

the attention of policymakers. Despite that, the issue of whether derivatives trading destabilises

or stabilises the spot market, is still viewed with suspicion by market agents and policymakers

alike. For example, in financial futures markets such suspicion has led to suggestions that

futures trading should be further regulated, including higher margins (see Bessembinder and

Seguin, 1992)91 . However, further regulation may have a negative impact on the working of

financial and commodity markets and hence on economic welfare. Thus, the uncertainty of the

existent theoretical literature implies that the issue of whether and how derivatives markets

affect the underlying spot markets remains mainly an empirical one.

In currency markets, Eldridge (1984) examines the impact of the futures positions taken by

European traders at the end of their business day on the volatility of currency futures traded on

the International Monetary Market (IMM). Eldridge suggests that price volatility (measured by

standard deviation) in Deutsche Mark futures contracts, temporarily rises at the close of the

European business day. Clifton (1985) explicitly examines the relationship between currency

futures and exchange rate volatility. The author examines the impact of currency futures trading

on the interbank currency market during the early 1980s. A strong positive correlation between

futures trading volume and intraday exchange volatility (measured for the spread between

intraday high and low rates) is documented. However, the study is not able to provide

conclusive evidence on the causality between exchange rate fluctuations and futures trading

volume.

McCarthy and Najand (1993) employ a state-space model to provide mixed evidence on the

stabilising influence of futures trading on daily futures currency prices. While the lagged levels

of trading volume on the British Pound, Swiss Franc, and Deutsche Mark futures are found to

91 The Brady Commission (1988) suggests that low futures margins may allow investors to control large positions
with low initial investments, and thus, in order to protect the marketplace, margins on stock index futures should
be consistent with margins for professional market participants in the stock market.
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have a negative (stabilising) impact on the volatility of the respective futures price, the lagged

trading volume levels on the Canadian Dollar futures are found to have a positive

(destabilising) impact (see also Grarnmatikos and Saunders, 1986). Chatrath et al. (1996) using

a GARCH model, as a proxy of volatility of the exchange rates, suggest that currency futures

trading has a significant positive impact on the volatility in the exchange rate changes, with a

weaker feedback from exchange rate volatility to futures trading.

In stock markets, Edwards (1988a and 1988b) analyses the impact of stock index futures trading

on stock price volatility of the S&P 500 and Value Line indices by examining the volatility of

the stock market before and after the inception of futures trading. Edwards (1988a) uses the

variance of close-to-close percentage daily price changes to measure volatility. The results

indicate that volatility has decreased post-futures for the S&P 500 index and that volatility was

not significantly different post-futures for the Value Line index. Thus, there is no evidence that

futures trading has had a long-run destabilising effect on the stock market. Aggarwal (1988)

uses a regression model where returns on the stock index are regressed on the returns on an

OTC composite index and dummy variables relating to early and mature futures periods. The

regressions are also repeated using return squared deviations in place of returns. The results

indicate that while the post-futures period is more volatile, this holds for all markets, and hence,

stock index futures may not be the primary cause of this increase.

Harris (1989) uses cross-sectional analysis of covariance methods to examine for changes in

stock index volatility since the onset of stock index futures trading. Harris suggests that, despite

the fact that spot market volatility has increased with the trading in futures markets, there are

other index related phenomena (i.e. growth in index funds) that could account for the results.

Becketti and Roberts (1990) use a statistical model to highlight potential outliers in order to

determine whether stock index futures have led to an increase in the frequency of jumps in daily

stock returns. They conclude that there is little or no relationship between stock market

volatility and either the existence of, or the level of activity in, the stock index futures market.

Baldauf and Santoni (1991) use an ARCH model to examine for increased volatility in the stock

index following the introduction of futures trading. The squared difference in the log of daily

price changes is modelled as an ARCH process for periods before and after the onset of futures

trading. Testing for changes in the parameters of the model did not yield any significant
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evidence, suggesting that the inception of futures trading had no significant effect on volatility.

Brorsen (1991) argues that the autocorrelation of stock prices should be reduced by the

introduction of futures trading, since such trading reduces market friction leading to prices

adjusting more rapidly to new information. Furthermore, Brorsen argues that reducing market

frictions, the variance of short-run price changes increases. Tests of the homogeneity of

variance for time periods before and after futures trading indicate that while the variances of

daily price changes are significantly different, there is no significant difference in the variances

of five and twenty day price changes.

Darrat and Rahaman (1995) conclude that S&P 500 futures volume did not affect spot market

volatility. Board et al. (1997) report that contemporaneous futures market trading had no effect

on spot market volatility. Bologna (1999) and Bologna and Cavallo (2002) argue that the

introduction of stock index futures trading in the Italian stock exchange has led to diminished

volatility. McKenzie et al. (2001) examine whether the introduction of trading in share futures

contracts on individual stocks (i.e. individual share futures) has impacted on the systematic risk

and volatility of the underlying shares. They report a general reduction in systematic risk on

individual stocks after the listing of futures, a decline in unconditional volatility, and mixed

evidence concerning the impact on conditional volatility.

5.3. METHODOLOGY AND THEORETICAL CONSIDERATIONS

The debate about the impact of derivatives trading on spot price volatility can be more

successfully examined within the context of the EMH. The EMH states that prices in a market

depend upon the information, which is currently available in that market. When new

information becomes available in an efficient market, prices will adjust rapidly to reflect that

new information. Thus, price movements, and hence price volatility, are directly related to

information arrival in an efficient market. Cox (1976) argues that there are two reasons why

derivatives trading can alter the amount of available information. First, derivatives trading

attracts an additional group of traders to a market (speculators), who might otherwise not

participate in the market. It is assumed that speculators, in pursuing their own interest, are

bringing good quality information to the market (well-informed). Second, since derivatives

trading incurs less transactions costs than does trading in the spot market, when new

186



information does become available it may be transmitted to the derivatives market more quickly

(price discovery role of derivatives markets).

From the point of view of market efficiency it is reasonable to argue that if derivatives trading

does increase the amount of information available, then spot price volatility may increase. The

assumption that must be made, however, is that speculators must be well-informed in order for

a direct link between information and volatility to be established92. The arguments of Cox

(1976) that derivatives trading might increase available information does not necessarily imply

that information becomes available which would not otherwise. Rather, it may simply be that

information becomes available earlier. Thus, the rate of information flow increases, as does the

rate at which the information is impounded into prices. Hence, volatility of prices may increase.

Ross (1989) presents a formal theoretical connection between information (timing of the

release) and volatility. Ross uses the no arbitrage methodology developed by Ross (1976) and

Cox and Ross (1976) to state that in an arbitrage-free economy, the volatility of prices is

directly related to the rate of information flow arriving in the market. This argument implies

that if price volatility is not equal to the rate at which information arrives then arbitrage is

possible. In the context of the impact of derivatives markets on spot market volatility, if

derivatives trading does increase the rate of flow of information, then spot prices may exhibit

increased volatility.

Although the theorem of Ross (1989) may hold, the irrational behaviour of noise/positive

feedback traders may induce asymmetries in the increased volatility. Santana and Wadhwani

(1992) provide an explanation of the asymmetric response of volatility to news. In particular,

with a model of feedback traders who have access to less information than their informed

counterparts, responses to bad news (price falls) lead to greater volatility than do responses to

good news. If noise traders are attracted away from the spot market to the derivatives market,

then asymmetries that are observed in the spot market prior to the inception of derivatives

92 However, not all investors act in a rational manner when making their buy and sell decisions, and their actions
may lead to asymmetries. Black (1986) terms such investors noise traders — they trade not on information but on
noise. Black claims that such investors react to information in a way that would not be present in a fully rational
model and they must be a significant proportion of total market trading. Furthermore, Shiller (1984) claims that
positive feedback traders chase trends based upon popular models that can be related to fundamentals, but there is
an element of overreaction to news.
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trading will not be evident in the spot market after derivatives trading, although they may,

nonetheless, be present in the derivatives market.

Thus, in examining spot price volatility pre- and post-FFA, it is important to use a model to

take into account the link between information and volatility and of possible asymmetric

responses to news. By examining this issue it can be seen whether the introduction of FFA

trading has increased or decreased spot price volatility and to investigate the extent to which the

introduction of FFA contracts also affected the nature of volatility in the underlying spot

market. Even if it is found that spot market volatility has increased post-derivatives, this is not

necessarily an undesirable consequence of derivatives trading, because there may,

simultaneously, be a change in the spot market dynamics that removes asymmetries and

improves the transmission mechanism for news.

Board and Sutcliffe (1990) have shown that studies based on historical estimates of volatility

are sensitive to the measures of volatility used. However, recent studies indicate that most of the

financial price series exhibit non-linear price dependencies. For example, it is possible for spot

prices to be linearly unrelated and yet be non-linearly dependent. The general evidence suggests

that dependencies work through the conditional variance (and other even-ordered moments),

rather than being a result of certain misspecified first-order dynamics (Engle and Rothschild,

1992). Under these conditions, the applicability of traditional volatility measures would provide

inconsistent estimates in the current study.

The ARCH model of Engle (1982) and the GARCH model of Bollerslev (1986) can capture

such time variation in return distributions. In the ARCH model, the conditional error

distribution is normal, but the conditional variance is a linear function of past squared errors.

The GARCH process allows for a more flexible lag structure, as the conditional variance is a

linear function of past squared errors and past variances. There is a great deal of evidence in

various financial markets that the conditional variance from ARCH class of models provides a

superior estimate of spot price variability (see Bollerslev et al., 1992 for a review). ARCH

processes allow the examination of the structure and the characteristics of volatility, explicitly

address the issue of time dependence in the variance, and therefore, overcome problems

associated with heteroskedasticity in the data.
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More recent studies in this area have extended their scope to consider the impact of the

introduction of derivatives contracts on how the market responds to news. FFA trading may

potentially impact on these market dynamics. According to Antoniou et al. (1998), market

dynamics related to the transmission of news may be responsible for asymmetries in the

volatility response mechanism93. Thus, to test the impact of the introduction of FFA contracts, a

GARCH model is modified along the lines of the GJR-GARCH model of Glosten et al.

(1993)94. The impact of the onset of FFA trading is captured by the introduction of a dummy

variable in the variance equation of the process, representing the time period before and after

FFA trading95.

Following Pagan and Schwert (1990) and Engle and Ng (1993), before any empirical analysis

can be undertaken it is necessary to generate a news component of returns, in order to remove

from the time series any predictability associated with lagged returns or day-of-the-week

effects. Let r, be the return on a FFA from time t-1 to t and i be the information set

containing all relevant information up to time, t-1. Given that S2,_i is known, conditional

expected returns are the values of r, conditional onCt,Cpt = EKrgl.,_‘11 and conditionai

volatilities are the values of the variance of r, conditional on 52t_ 1 [11, = var(rInt_ i )]. News can be

defined as the unexpected component of returns, u, (u, = r, - p,) where a positive u, is treated as

good news and a negative u, as bad news. This unexpected component should be a mean-zero

white noise process. Because this chapter is interested in the effect of news on conditional

volatility, the returns are regressed on a constant and day-of-the-week effects, and subsequently,

ensure that the residuals from this model are serially uncorrelated96. When such residuals are

93 It has been suggested that the traditional explanation of the leverage effect for asymmetry (see Nelson, 1990a,
1990b) cannot fully account for observed asymmetry in the market (Bekaert and Wu, 2000).
94 Engle and Ng (1993) suggest that the GJR-GARCH model captures asymmetries more accurately than the E-
GARCH model in terms of the log-likelihood function and that the former should be preferred. In order to
determine the best GARCH specification several other specifications are used, such as the symmetric GARCH
(Bollerslev, 1986), and the asymmetric E-GARCH (Nelson, 1991), but yield inferior results judged by the
evaluation of the log-likelihood, in terms of residual specification tests, and in terms of a LR test which is X2

distributed with degrees of freedom equal to the number of restrictions imposed (not reported).
95 Besides FFA trading, other factors, such as, industrial production, grain exports and international trade are likely
to impact spot price volatility. Rather than attempting to identify the whole spectrum of factors that may impact
spot price volatility, the study focuses on the internal dynamics of daily spot price volatility and only considers
some indicative proxy variables (see section 5.5.2), which represent major world economic conditions.
Furthermore, most macroeconomic series are available on a monthly or quarterly basis, while the interest of this
chapter is on a day-to-day basis of the spot freight market. This prevents their use in the ensuing analysis.
96 In order to test for day-of-the-week effects we introduced dummy variables for Tuesday through Friday.
However, the results indicate that they are insignificant at conventional levels of significance, and therefore, they
are excluded in the ensuing analysis.
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serially correlated an autoregressive model of the returns is formed and any linear temporal

predictability is subsequently removed. Thus, the mean equation of the GJR-GARCH process

can be defined as follows:

AS/ =	+ Eqost_i+ Et 9	Et "---• iid(0,121)
	

(5.1)

where St is the natural logarithm of the daily spot price, A is the first-difference operator and Et

are the residuals that follow a normal conditional distribution with mean zero and time-varying

covariance, hi . The conditional variance of the process can be specified as follows:

= a9 +	+ a2Diht-i 
016,2 i+ 02E4,2 +	+ 72Di	 (5.2)

where D1 is a dummy variable that takes on a value of unity after the introduction of FFA

contracts and D is a dummy variable that takes on a value of unity if the error is negative and

zero otherwise. The specification of the conditional variance in Equation (5.2) allows the

examination of the impact of FFA trading to the unconditional volatility of the spot market

through the 72 coefficient. A significant positive 72 coefficient indicates increased spot price

unconditional volatility in the post-FFA period, whereas a significant negative 72 coefficient

indicates decreased spot price unconditional volatility in the post-FFA period.

Furthermore, the model allows a number of tests of the impact of FFA trading on conditional

spot price volatility97. We may individually test the ARCH term or the GARCH term. However,

in the context of the GARCH framework, it is more appropriate to test the joint null hypothesis

of no impact on the conditional variance specification (a2 = (32 = 0) against the alternative of at

least one coefficient being non-zero. Furthermore, we may test the joint hypothesis that the FFA

introduction has had no impact on volatility per se (a2 = f32 = 72= 0) against the alternative of at

least one coefficient being non-zero. In this case, the test examines both unconditional and

conditional volatility effects.

97 For a formal discussion of dummy variables see Gujarati (1970). He argues that the Chow test might reject the
hypothesis of stability but cannot tell us which particular coefficients are unstable, whereas the dummy variable
method gives this information.
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Finally, the specification of Equation (5.2) allows the investigation of whether FFA trading has

changed the role of market dynamics in terms of the way in which volatility is transmitted, and

therefore, inferences can be made on how information is incorporated into prices. When the

coefficient on D is equal to zero, the model of Equation (5.2) is the symmetric GARCH

model. A negative shock (I) = 1) can generate an asymmetric response. Where yi > 0 (71 <

0), the model produces a larger (smaller) response for a negative shock compared to a positive

shock of equal magnitude.

However, to address the issue of the relationship between information and volatility, and not

simply investigate whether FFA trading has led to an increase or decrease in volatility in the

spot market, the period under investigation is partitioned into two sub-periods relating to before

and after FFA trading began. GJR-GARCH models of Equation (5.2) are estimated for both

sub-periods, without the DI dummy variable for the existence of FFA trading:

ht = ao +	+1318,2 + 71E /2 D /11
	 (5.3)

where D = 1 if E <0, D = 0 otherwise. Comparisons can then be made on the estimated

coefficients, in order to examine the impact of FFA trading on the nature of spot volatility and

to assess if FFA trading has led to changes in the asymmetric response of volatility.

Accordingly, the impact of the FFA trading on this asymmetry feature can be assessed through

a comparison of the yi coefficient in pre- and post-FFA periods.

With a sample of four spot routes for which FFA contracts have been introduced, it is possible

that factors, other than the introduction of forward contracts, may affect the variables

considered in each of the hypotheses tests. For example, market-wide changes may have

occurred around the time of the FFA introduction date that altered the dynamics of the market.

Tests may erroneously attribute such a change, if it occurred, to the introduction of FFA

contracts. To this end a control procedure is implemented under which we augment the

conditional variances of the spot freight routes by incorporating the conditional variances of

other economic indicators. Thus, the model is recursively estimated in two-steps. First, we

estimate the conditional variance of every selected economic variable [S&P 500 Composite
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Index (SPI), S&P 500 Commodity Index98 (SPCI), London Brent Crude Oil Index (BCOI) and

West Texas Intermediate (WTI) crude oil] computed by the most parsimonious GARCH model

(in terms of the log-likelihood and residual diagnostic tests). The selected economic variables

are commonly used as control variables in the literature. In the next step, the model of Equation

(5.2) is augmented by incorporating the conditional variance of the economic variables from the

previous step. Thus, the augmented variance model is the following:

ht = ao + ai ht_ i + a2Dihr-I + 13 is ,2 1 + P2D16,2 .+Yisi2 1 D ili ± Y2D 1 + 8 i Gt
	(5.4)

where GI is the conditional variance, from a GARCH model, of an economic variable. A

significant 81 coefficient indicates that the conditional variance of the economic variable affects

the conditional variance of the spot freight rates. Thus, if its inclusion in the model does not

alter the significance level and sign of the 72 coefficient, then the unconditional volatility of the

spot freight market has not increased/decreased due to this variable and the conclusions drawn

with respect to the impact of the introduction of the FFA contracts are strengthened.

Bollerslev and Wooldridge (1992) argue that excess kurtosis in the estimated standardised

residuals (ci Rrh-, ), even after accounting for second moment dependencies, can invalidate

traditional inference procedures. Therefore, the GJR-GARCH processes are estimated with the

QMLE, which estimates robust standard errors, and thus, yields an asymptotically consistent

normal covariance matrix (Bollerslev and Wooldridge, 1992). The GJR-GARCH models are

also estimating by using the Student-t distribution of Bollerslev (1987). The results, of the

coefficient of the degrees of freedom, v, indicate that the QMLE should be used, as in all routes

v was lower than 4, which implies an undefined or infinite degree of kurtosis (Bollerslev and

Wooldridge, 1992). For symmetric departures from conditional normality, the QMLE is

generally close to the exact MLE. The Berndt-Hall-Hall-Hausman (1974) (henceforth, BHHH)

optimisation algorithm is employed to obtain maximum-likelihood estimates of each of the

coefficients in the mean and variance equations.

98 The SPCI covers a broad cross section of commodities traded in the US, providing a broad, accurate picture of
the commodity market. It tracks 17 commodities in 6 Sectors (Grains, Meat and Livestock, Metals, Softs, Fibres
and Energy).
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5.4. DESCRIPTION OF DATA AND PRELIMINARY STATISTICS

The impact of FFA trading, on the volatility of the underlying spot freight market in panamax

Atlantic (1 and 1A) and Pacific (2 and 2A) routes, is investigated by estimating a model for a

period which covers the time before and after the introduction of FFA contracts. Due to the

specific nature of the FFA market it was not until late 1990s when this market started to attract

a respectfill number of market agents. From Table 1.9 in chapter 1 it is clear that until 1996 the

market was very thin (with only 27 deals, on average, per month in 1996), so it was unlikely

that the existence of speculators (if any) could impact the spot market volatility. Thus, in the

ensuing analysis, January 1997 will be the threshold point that separates pre- and post-FFA

trading in order for robust inferences to be made99. The data set comprises daily observations of

the spot freight rates for each of the aforementioned panamax routes. It covers the periods 29

November 1989 to 31 July 2000 in route 1, 7 August 1990 to 31 July 2000 in route 1A, 29

November 1989 to 24 August 2001 in route 2, and 12 February 1991 to 24 August 2001 in

route 2A. Spot prices in all routes are from the Baltic Exchange. SPI, SPCI, BCOI and WTI

prices are from Datastream. All prices are transformed to natural logarithms.

The descriptive statistics of logarithmic first-differences of the daily spot pfices in tie four

routes are reported in Table 5.1, which is divided into three periods. The first period (panel A)

corresponds to the whole period of the analysis. The second (panel B) and third (panel C)

periods correspond to the pre- and post-FFA periods, respectively. The results indicate excess

skewness and kurtosis in all price series. In turn, Jarque-Bera (1980) tests indicate departures

from normality for spot prices in all routes. Applying the ADF (1981) and PP (1988) unit root

tests on the log-levels and log first-differences of the daily spot price series, the results indicate

that all variables are log first-difference stationary, all having a unit root on their log-levels

representation 100.

99 Several other threshold point dates were also used, which yield qualitatively the same results.
100 The ADF (1981) and PP (1988) test statistics were undertaken allowing for the presence of an intercept only.
Allowing for the presence of a time trend did not affected the results qualitatively.
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Of greatest interest in Table 5.1 are the figures obtained for the standard deviation estimates,

providing an initial view of volatility for each route in the sample. In the pre-FFA period spot

prices in routes 2 and 2A provide the lowest standard deviations. In the post-FFA period, routes

1 and 2 provide the lowest standard deviations, where route 2 shows considerable reduction in

the standard deviation from the pre-FFA period. By comparing the two periods, it seems that

the volatility of the voyage routes (time-charter routes) has decreased (increased) over time.

One possible reason for this, in route 2, is the increase in inbound cargoes to the US (primarily

coal following the US energy crisis), which has meant a substantial increase in tonnage coming

open in the US Gulf region. This ensures that there is a constant supply of tonnage for the US

Gulf market, which in turn, has guaranteed that demand is regularly met. In contrast,

historically the US Gulf market was a ballasters market, i.e. shippers needed to pay owners to

come to the Gulf for cargoes, adding substantially to the volatility of the freight rates. The result

of the recent change in the import status of the US is that freight rates now seem to move

in a narrower bound for voyage trips and volatility has been reduced. On the other hand, time-

charters in this region (route 2A) are not generic in terms of specifications and every shipper

introduces his preferences. This in turn can generate increased volatility in time-charter freight

rates.

Similarly to the authors of earlier studies in this area, we initially conduct equality of variance

tests (see Chatrath, et al., 1996). The results, in Table 5.2 panel A, reveal significant differences

between the pre- and post-FFA variances in all trading routes. In panel B, of the same table, we

compare the pre- and post-FFA variances of various economic indicators. The results indicate

that, with the exception of the F-test and the Levene test statistics for the WTI crude oil, the

level of the variances has changed between the two periods. This may indicate that besides the

introduction of FFA contracts, there might be several other economic events (i.e. Asian crisis)

that contributed to this change of variances. However, we must note that all investigated market

indicators have a derivatives market (either exchange-based or OTC) which may contribute as

well to the above result. The results suggest that some change has taken place over the relevant

period, and thus, motivates further investigation.
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Table 5.1. Descriptive Statistics of Logarithmic First-Differences of Spot Freight Prices
Panel A: Spot Freight Prices; Whole Period

SD Skew Kurt J-B ADF (lags)
Lev

PP(8)
Lev

ADF (lags)
1 st Diffs

PP(8)
I st Diffs

Route 1 0.01255 1.196 26.327 80,742.2 -2.418 (1) -2.799 -17.432 (3) -36.669
Route IA 0.01263 1.065 5.899 4,251.9 -2.704 (3) -2.043 -15.569 (2) -27.744
Route 2 0.01067 0.592 14.549 26,974.6 -2.825 (2) -2.527 -24.111 (1) -32.093
Route 2A 0.01323 2.682 32.745 124,824 -2.113 (2) -1.758 -20.501 (1) -28.700

Panel B: Spot Freight Prices; Pre-FFA Period
SD Skew Kurt J-B ADF (lags)

Lev
PP(12)

Lev
ADF (lags)

1st Diffs
PP(12)
1st Diffs

Route 1 0.01394 1.397 24.881 48,294.1 -2.748 (2) -2.610 -14.557 (3) -30.864
Route lA 0.01263 1.065 5.899 4,251.9 -2.704 (3) -2.043 -15.569 (2) -27.741
Route 2 0.01123 0.553 15.375 18,306.7 -2.763 (2) -2.521 -19.708 (1) -27.006
Route 2A 0.01185 3.664 53.984 189,458.4 -2.413 (3) -1.908 -13.508 (2) -24.372

Panel C: Spot Freight Prices; Post-FFA Period
SD Skew Kurt J-B ADF (lags)

Lev
PP(12)

Lev
ADF (lags)

1st Diffs
PP(12)
1st Diffs

Route 1 0.00912 -0.650 7.475 2,213.9 -1.835 (3) -1.427 -9.650 (2) -16.012
Route lA 0.01387 1.193 5.192 1,255.5 -2.017 (2) -1.659 -10.726 (1) -14.282
Route 2 0.00973 0.655 11.154 6,242.9 -2.085 (1) -1.916 -16.285 (0) -16.426
Route 2A 0.01483 1.980 19.073 18,782.8 -2.302 (2) -1.974 -12.948 (1) -16.694

Notes:
• All series are measured in logarithmic first-differences.
• Figures in parentheses (.) indicate t-statistics.
• SD is the standard deviation.
• Skew and Kurt are the estimated centralised third and fourth moments of the data; their asymptotic

„
distributions under the null are -n 7' oc3 - N(0,6) and ,N T(c4 - 3) - N(0,24), respectively.

• J-B is the Jarque-Bera (1980) test for normality, distributed as x2(2).
• ADF is the Augmented Dickey Fuller (1981) test. The ADF regressions include an intercept term; the lag-

length of the ADF test (in parentheses) is determined by minimising the SBIC.
• PP is the Phillips and Perron (19138) test; the truncation Vag for the test is in parentheses.
• Lev and 1st Diffs correspond to price series in log-levels and log first-differences, respectively.
• The 5% critical value for the ADF (1981) and PP (1988) tests is -2.89.
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Table 5.2. Equality of Variance Tests for Pre- and Post-FFA Trading
Panel A: Spot Freight Routes

F-test Bartlett Levene Brown-Forsythe
Route 1 3.443 [0.000] 331.74 [0.000] 20.282 10.000] 20.132 [0.000]
Route lA 1.289 [0.000] 14.894 [0.000] 15.704 [0.000] 15.868 [0.000]
Route 2 1.489 [0.000] 46.647 [0.000] 3.346 [0.006] 3.269 [0.007]
Route 2A 1.578[0.000] 61.136 [0.000] 54.945 [0.000} 56.458 [0.000]

Panel B: Economic Indicators
F-test Bartlett Levene Brown-Forsythe

SPI 3.105 [0.000] 477.99[0.000] 288.85 [0.000] 287.52[0.000]
SPCI 1.831 [0.000] 135.98 [0.000] 88.74 [0.000] 88.154[0.000]
BCOI 1.200 [0.000] 11.849[0.000] 7.895[0.000] 7.922[0.000]
WTI 1.003 [0.956] 0.004[0.953] 20.714[0.000] 20.797[0.000]

Notes:

• The F-test is given by F = s 	s2 , where s 	s 2s are the larger and smaller variances, respectively.

The F-test has a F-distribution with fl L - 1 numerator degrees of freedom and ns - 1 denominator degrees
of freedom.

• The Bartlett test compares the logarithm of the weighted average variance with the weighted sum of the
logarithms of the variances. It is distributed as 2,2(1) degrees of freedom and is reported adjusted for
departures from normality.

• The Levene test is based on an Analysis of Variance (ANOVA) of the absolute difference from the mean.
The Levene test has a F-distribution with 1 numerator degrees of freedom and L + ns - 2 denominator
degrees of freedom.

• The Brown-Forsythe test is a modification of the Levene test in which the absolute mean difference is
replaced with the absolute median difference.

• SPI is the S&P 500 Composite Index; SPCI is the S&P 500 Commodity Index; BC01 is the London Brent
Crude Oil Index; and WTI is the West Texas Intermediate crude oil.

Table 5.3 panels A to C, report the Ljung-Box (1976) portmanteau statistics for the first and

twelfth autocorrelation of the residuals series, Q(L), and squared residual series, Q2(L), of the

regressions of the first-difference return series on a constant, adjusted for serial correlation by

the Newey-West (1987) correction. Panel A corresponds to the whole period of the analysis,

while panel B and C correspond to the pre- and post-FFA periods, respectively. The results

indicate significant linear and non-linear temporal dependencies in the adjusted residual series

and squared adjusted residual series (with the exception in the pre-FFA period in route 2A),

respectively. It is clear that these series cannot be treated as news as there is evidence of serial-

correlation.
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Table 5.3. Ljung-Box Statistics for Linear and Non-Linear Temporal
Dependences in Regression Models

Panel A: Whole Period
Route 1 Route lA Route 2 Route 2A

Q(1) 481.01	[0.000] 919.22 [0.000] 830.31	[0.000] 893.79 [0.000]
Q(12) 1,331.4 [0.000] 2,904.2 [0.000] 1,558.9 [0.000] 2,068.3 [0.000]

Q2( 1 ) 8.889	[0.003] 310.11	[0.000] 41.24	[0.000] 29.434 [0.000]
Q2(12) 80.38	[0.000] 450.69 [0.000] 110.25 [0.000] 53.238 [0.000]

Panel B: Pre-FFA
Route 1 Route lA Route 2 Route 2A

Q(1) 265.87 [0.000] 919.34 [0.000] 406.36 [0.000] 374.54 [0.000]
Q(12) 751.90 [0.000] 2,904.4 [0.000] 787.45 [0.000] 1,037.5 [0.000]
Q2(1) 4.768	[0.029] 309.69 [0.000] 7.934	[0.005] 1.593	[0.207]
012) 48.94	[0.000] 450.08 [0.000] 64.53	[0.000] 2.193	[0.999]

Panel C: Post-FFA
Route 1 Route IA Route 2 Route 2A

Q( 1 ) 335.74 [0.000] 402.65 [0.000] 479.12 [0.000] 483.86 [0.000]
Q(12) 879.31 [0.000] 984.23 [0.000] 875.54 [0.000] 1,026.1 [0.000]

Q2( 1 ) 167.03 [0.000] 129.66 [0.000] 108.29 [0.000] 48.948 [0.000]
Q2(12) 77.11	[0.000] 218.18 [0.000] 134.66 [0.000] 104.39 [0.000]

Notes:
• Figures in squared brackets [.] indicate exact significance levels.
• Q(L) and Q2(L) are the Ljung-Box (1978) Q statistics on the first L lags of the sample

autocorrelation function of the series and of the squared series; these tests are distributed
as AL).

• Standard errors and exact significance levels are adjusted for serial correlation by the
Newey-West (1987) correction.

Therefore, autoregressive models are estimated in each route in order to remove any linear

temporal predictability. Table 5.4 panels A to C, report the Ljung-Box (1976) portmanteau

statistics for the first and twelfth autocorrelation of the residuals series, Q(L), and squared

residual series, Q2(L), of the most parsimonious autoregressive specifications, adjusted for

serial correlation by the Newey-West (1987) correction. Panel A to C correspond to the same

time periods as in Table 5.3. The results indicate that the autoregressive models capture the

serial-correlation in the adjusted residual series, suggesting that the adjustment procedure

removes the predictable part of the return series10I . Significant non-linear temporal

dependencies in the squared adjusted residual series, suggest that the volatility of adjusted

returns follows an ARCH-type model. Having obtained the unexpected component it is now

possible to analyse the impact of the introduction of FFA on the nature and characteristics of

volatility.

101 The only exceptions are in routes 1 and 2A in panel A, and in route 2A in panel C, where serial-correlation
cannot be fully removed. Thus, the results of the most parsimonious autoregressive models are presented in those
cases.
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Table 5.4. Ljung-Box Statistics for Linear and Non-Linear Temporal
Dependences in Autoregressive Models

Panel A: Whole Period
Route 1-AR(4) Route 1A-AR(3) Route 2-AR(2) Route 2A-AR(3)

Q(1 ) 0.005 [0.942] 0.063 [0.802] 0.038 [0.846] 0.002 [0.964]
Q(12) 26.18 [0.010] 12.96 [0.372] 12.17 [0.432] 26.50 [0.009]
Q2( 1 ) 73.09 [0.000] 161.77 [0.000] 154.57 [0.000] 136.08 [0.000]
Q2( 12) 168.21[0.000] 184.32 [0.000] 257.88 [0.000] 150.06 [0.000]

Panel B: Pre-FFA
Route 1-AR(4) Route 1A-AR(3) Route 2-AR(2) Route 2A-AR(3)

Q( 1 ) 0.007 [0.935] 0.063 [0.802] 0.057	[0.811] 0.013 [0.910]
Q(12) 20.28 [0.062] 12.96 [0.372] 15.85	[0.198] 10.02 [0.614]
01 ) 38.02 [0.000] 161.48 [0.000] 62.91	[0.000] 18.14 [0.000]
Q2( 12) 96.05 [0.000] 183.95 [0.000] 134.78 [0.000] 18.56 [0.000]

Panel C: Post-FFA
Route 1-AR(3) Route 1A-AR(2) Route 2-AR(1) Route 2A-AR(2)

Q(1 ) 0.003 [0.957] 0.006 [0.936] 1.989	[0.158] 0.019 [0.891]
Q(12) 11.81 [0.461] 17.731[0.124] 10.64 [0.568] 33.04 [0.001]
Q2( 1 ) 8.207 [0.004] 55.89 [0.000] 105.75 [0.000] 241.56 [0.000]
Q2(12) 25.39 [0.013] 62.13	[0.000] 135.90 [0.000] 355.74 [0.000]

otes:
• Figures in squared brackets [.] indicate exact significance levels.
• Q(L) and Q2(L) are the Ljung-Box (1978) Q statistics on the first L lags of the sample autocorrelation

function of the series and of the squared series; these tests are distributed as x2(L).
• Standard errors and exact significance levels are adjusted for serial correlation by the Newey-West (1987)

correction.
• The order of the most parsimonious autoregressive models are in parentheses (.).

5.5. EMPIRICAL RESULTS

5.5.1. Impact of FFA Trading on Spot Market Volatility

To assess whether there has been a change in volatility after the inception of FFA trading, GJR-

GARCH(1,1) models of conditional volatility are estimated. A dummy variable that takes the

value of 0 pre-FFA and 1 post-FFA is included. The most parsimonious specification for each

model is estimated by excluding insignificant variables. The QMLE estimates of the GJR-

GARCH models of spot freight rates for the whole period of the analysis for each route are

presented in Table 5.5102• The diagnostic tests, on the standardised residuals and squared

standardised residuals, indicate absence of linear and non-linear dependencies, respectively.

Thus, the estimated models fit the data very well. The estimated implied kurtosis indicates the

presence of excess kurtosis in the standardised residuals in all investigated routes. As a result,

the Jarque-Bera (1980) test rejects normality in all routes.

102 The financial literature has demonstrated that the GARCH(1,1) specification is the most appropriate for a wide
variety of markets (see Bollerslev et al., 1992, amongst others).
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The results in Table 5.5 indicate that in all routes FFA trading has had a negative impact

(stabilising effect) on the level of price volatility of the underlying spot freight market (y2

coefficient). However, the magnitude of this negative impact is marginally larger in the voyage

routes 1 and 2 and it is in accordance with earlier results that the volatility of the voyage routes

has decreased. Thus, the introduction of FFA appears to have a stabilising impact on the level

of volatility in the underlying spot routes. The results of the Wald test statistics for the null

hypothesis of joint equality to zero of the change in ARCH and GARCH terms indicate that the

null hypothesis is rejected in every route. This evidence suggests that the conditional variance

of all spot routes underwent some form of change around the date of the FFA introduction. The

analysis can be extended to consider the impact of the FFA trading on both the conditional and

unconditional variance by testing that the FFA introduction has had no (joint) effect on any

variance equation parameters, that is a2 = 132 = y2 = 0. The results of the Wald tests for the null

hypothesis indicate that the relevant coefficients in the variance equation have significantly

changed in all trading spot routes.

The results of the yl coefficient of the asymmetric effects suggest statistically significant

asymmetric effects in all routes, with the exception in route 2A. In routes 1A and 2 the

statistically significant asymmetry coefficients (y1) are negative, suggesting that negative

shocks elicit a smaller response than positive shocks of an equal magnitude. In route 1 the

asymmetry coefficient is significant and positive suggesting that negative shocks elicit a larger

response than positive shocks of an equal magnitude. Finally, the persistence estimates of the

conditional volatility reveal the presence of a near-Integrated GARCH (IGARCH) process in

routes 1 and 2A, with persistence estimates close to but slightly less than unity (see Bollerslev,

1987).
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Table 5.5. GJR-GARCH Model Estimates of the Effect of FFA Trading on Spot Market Volatility
(Whole Period)

Panel A: Coefficient Estimates
P-1

AS, = yo + DAS/4 + el	; 	et - i id(0,hr)	 (5.1)
I-4

h, = ao + ai hr_i + azD i hpi ± 016 ,2 1 + 021) 1 6 /2 1 + 1'1e 1 D-ill + Y2D 1	 (5.2)

Route 1-AR(3)
(29/11/89 - 31/07/00)

Route 1A-AR(3)
(07/08/90 - 31/07/00)

Route 2-AR(2)
(29/11/89 - 24/08/01)

Route 2A-AR(2)
(15/02/91 - 24/08/01)

Mean Equation

(Po 1.72E-05 (0.865) 2.11E-05 (0.633) -4.87E-05 (-0.094) -1.17E-04 (0.163)

(P1 0.454* (28.439) 0.566* (23.240) 0.545- (25.221) 0.585- (26.193)

(P2 0.159	(6.658) 0.166* (5.835) 0.126. (5.997) 0.158* (7.409)

(P3 0.083- (3.485) 0.06* (2.606) - -
Variance Equation

ao 6.65E-07- (13.336) 1.69E-05* (15.958) 4.31E-06 (11.241) 8.15E-05	(11.763)
al 0.914* (562.23) 0.609 (28.762) 0.881* (114.35) 0.074 (0.947)
az -0.023	(-4.153) 0.056* (2.128) -0.536	(-11.913) 0.704. (9.586)

131 0.030* (15.275) 0.312* (11.820) 0.112- (12.522) 0.153* (5.663)

02 0.027- (3.543) 0.047* (1.796) 0.233* (7.584) 0.064 (2.268)

Yi 0.033- (8.151) -0.198* (-6.796) -0.061* (-6.362) -
-8.05E-05. (-11.591)Y2 -6.01E-07* (-7.191) -4.97E-06* (-3.569) -1.62E-06 (-9.830)

Panel B: Residual Diagnostic
Route 1 Route lA Route 2 Route 2A

LL 11,665.03 10,942.16 13,033.41 11,274.72
Skewness 0.302 [0.000] 1.418 [0.000] 0.123 [0.006] 3.663 [0.000]
Kurtosis 13.307 [0.000] 17.856 [0.000] 12.821 [0.000] 79.864 [0.000]

J-B 20,481.6 [0.000] 35,289.4 [0.000] 20,801.8 [0.000] 72,868.8 [0.000]
Q(24) 23.845 [0.413] 21.387 [0.557] 32.215 [0.096] 21.995 [0.521]
Q2(24) 31.566 [0.109] 11.073 [0.982] 27.723 [0.226] 0.788 [0.999]]

ARCH(12) 0.921 [0.573] 0.404 [0.963] 1.396 [0.160] 0.017 [0.999]

az = 02= 0 17.864 [0.000] 28.262 [0.000] 142.531 [0.000] 163.753 [0.000]

az = i32 = 12 = 0 153.211 [0.000] 28.661 [0.000] 187.479 [0.000] 420.769 [0.000]
Persistence 0.981 0.826 0.629 0.995

UV 0.000003 0.000069 0.000007 0.000200
Notes:

• Figures in parentheses (.) and in squared brackets [.] indicate (-statistics and exact significance levels,
respectively.

• * and ** denote significance at the 5% and 10% levels, respectively.
• The GJR-GARCH process is estimated with the QMLE using the BHHH algorithm.
• LL is the Log-Likelihood.
• J-B is the Jarque-Bera (1980) normality test.
• Q(24) and Q2(24) are the Ljung-Box (1978) tests for 24th order serial correlation and heteroskedasticity in

the standardised residuals and in the standardised squared residuals, respectively.
• ARCH(12) is the Engle's (1982) F-test for Autoregressive Conditional Heteroskedasticity.
• The joint hypothesis tests (az = P2= 0 and az = 02= Y2 = 0) are Wald tests.
• Persistence is defined as the degree of convergence of the conditional volatility to the unconditional

volatility after a shock and is calculated as al + az + 13 1 + P2 +

• UV is the unconditional volatility estimate of the GJR-GARCH models, measured as (a0+y2) /
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Although the introduction of FFA trading has had an effect on the level of spot market

volatility, the interesting issue is whether the introduction of FFA trading had an effect on the

way news impacts on volatility; that is, if FFA trading altered the market dynamics. To address

this issue the GJR-GARCH models of conditional volatility are estimated for the adjusted return

series for the pre- and post-FFA periods. The QMLE estimates of the GJR-GARCH models of

spot freight rates for the pre-FFA period for each route are presented in Table 5.6. The standard

diagnostic tests of the residuals from the model confirm the absence of any further ARCH

effects, suggesting an appropriate model specification. That is, the squared standardised

residuals of the modified GJR-GARCH(1,1) models reveal a general absence of significant

autocorrelation that Bollerslev and Mikkelsen (1996) argued indicates the model has captured

the ARCH effects.

The results of the coefficients of the lagged variance (ai ) and lagged error-terms (f3i ) indicate

that the conditional volatility in all routes is time-varying, and specifically in route 2A there are

ARCH effects only. The results of the asymmetry coefficient (yi ) suggest that in routes 1A, 2,

and 2A there is a statistically significant and negative asymmetric effect, which implies that

negative shocks elicit a smaller response than positive shocks of an equal magnitude. In

contrast, in route 1 the asymmetry coefficient is significant and positive, which implies that

negative shocks elicit a larger response than positive shocks of an equal magnitude. Finally, the

persistence of volatilities of the spot markets following a shock, show that unconditional

variances are stationary (persistence factors less than one) in all routes.

The issue of the impact of FFA trading on spot market volatility is further investigated by

estimating the GJR-GARCH model for spot returns for the post-FFA period. The QMLE

estimates of the GJR-GARCH model of spot freight rates for the post-FFA period for each route

are presented in Table 5.7. The results of the diagnostics tests report absence of any linear or

non-linear dependencies. The impact of FFA introduction on asymmetric market responses may

be assessed via consideration of the asymmetry coefficient (71) that captures the nature of any

bias in the post-FFA period.
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Table 5.6. GJR-GARCH Model Estimates for the Pre-FFA Period
Panel A: Coefficient Estimates

p-1
AS, = yo + DiAS,-; + cf	;	El '''' iid(0,hr)	 (5.1)

t4

h, = ao + alhi_i + i3 1 6 /2 1 ± YI E /2 1 D /11	 (5.3)

Route 1-AR(3)
(29/11/89 - 01/01/97)

Route 1A-AR(3)
(07/08/90 - 01/01/97)

Route 2-AR(2)
(29/11/89 - 01/01/97)

Route 2A-AR(3)
(15/02/91 -01/01/97)

Mean Equation

(Po 2.34E-05 (0.639) 2.33E-05 (0.651) -4.80E-06 (-0.261) -3.76E-05 (-0.054)

(PI 0.413	(22.218) 0.568- (23.005) 0.483	(19.221) 0.524 (14.722)

(P2 0.169' (5.737) 0.164'(5.797) 0.135' (4.963) 0.112' (3.151)

(P3 0.116	(3.963) 0.062 (2.674) - 0.073	(2.301)
Variance Equation

ao 6.04E-07- (13.164) 1.60E-05	(20.351) 4.21E-06	(11.139) 8.03E-5- (10.218)
al 0.951 	(613.89) 0.619 (38.985) 0.884 (118.721) 0.061 (0.668)

RI 0.018. (14.495) 0.329 (12.869) 0.112 (12.709) 0.223 (5.486)

y i 0.024 (7.137) -0.191	(-7.018) -0.071	(-7.671) -0.124 (-2.452)

Panel B: Residual Diagnostic
Route 1 Route 1A Route 2 Route 2A

LL 7,468.70 10,940.23 7,700.19 6,297.11
Skewness 0.596 [0.000] 1.522 [0.000] 0.682 [0.000] 6.654 [0.000]
Kurtosis 16.101 [0.000] 18.395 [0.000] 12.331 [0.000] 138.839 [0.000]

J-B 20,049.5 [0.000] 37,531.30 [0.000] 11,844.1 [0.000] 1,239,341.3 [0.000]
Q(24) 22.082 [0.515] 20.158 [0.632] 23.938 [0.407] 26.518 [0.277]
Q2(24) 22.946 [0.464] 12.088 [0.969] 29.951 [0.151] 0.367 [0.999]

ARCH(12) 1.534 [0.105] 0.403 [0.963] 1.454 [0.213] 0.011 [0.999]
Persistence 0.996 0.757 0.925 0.160

UV 0.000001 0.000021 0.000005 0.000502
Notes:

• See notes in Table 5.5.
• UV is the unconditional volatility estimate of the GJR-GARCH models, measured as ao / (1-a1-I31-y1)].

The results, presented in Table 5.7, indicate that the post-FFA asymmetry coefficient, in routes

2 and 2A, is statistically insignificant. Thus, the introduction of FFA contracts appears to have

had an impact on the asymmetry of volatility in those routes, as a significant asymmetry

coefficient in the pre-FFA period results in an insignificant asymmetry coefficient in the post-

FFA period. If noise/feedback traders are present in routes 2 and 2A and they overreact to news,

especially good news, then the introduction of FFA trading seems to have reduced this

overreaction. This could come about either because FFA markets provide more reliable

information, and thus, traders become better informed, or because noise traders have less of an

impact as a result of more reliable information in the public domain.
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Table 5.7. GJR-GARCH Model Estimates for the Post-FFA Period
Panel A: Coefficient Estimates

/7-1

AS, = 90 + DiASs-i ± 6/	;	Et - iid(0,h)	 (5.1)

h, = ao + ai hi-i + PIE /2 1 + 716	IDT--1	 (5.3)

Route 1-AR(2)
(01/01/97 -31/07/00)

Route 1A-AR(3)
(01/01/97 - 31/07/00)

Route 2-AR(2)
(01/01/97 -24/08/01)

Route 2A-AR(2)
(01/01/97 - 24/08/01)

Mean Equation

(Po 4.82E-06 (1.702) -1.85E-05 (-0.967) -1.05E-04 (-0.417) -1.88E-04 (-0.133)

(P1 0.539- (16.339) 0.650* (14.576) 0.675 (15.222) 0.619. (18.963)

(P2 0.152* (4.289) 0.217 (4.415) 0.072 (1.996) 0.169 (5.548)

(P3 - -0.085	(-2.390) - -
Variance Equation

ao 8.33E-08 (1.094) 1.23E-05- (11.378) 2.11E-05 (13.260) 1.11E-06- (5.028)
al 0.902 (115.26) 0.547 (18.021) 0.329- (7.429) 0.726- (88.684)

131 0.042 (5.649) 0.502 (6.531) 0.313	(9.652) 0.227 (14.269)

y i 0.052 (4.672) -0.290 (-3.767) - -
Panel B: Residual Diagnostic

Route 1 Route IA Route 2 Route 2A
LL 4,182.11 3,832.72 5,298.14 4,942.74

Skewness -0.210 [0.009] 0.826 [0.000] -0.783 [0.000] 0.032 [0.649]
Kurtosis 6.289 [0.000] 16.468 [0.000] 13.965 [0.000] 10.332 [0.000]

J-B 1,524.38 [0.000] 10,500.6 [0.000] 9,080.8 [0.000] 5,159.33 [0.000]
Q(24) 31.185 [0.118] 34.518 [0.058] 19.579 [0.667] 25.032 [0.349]
Q2(24) 24.605 [0.371] 14.735 [0.904] 14.731 [0.904] 11.351 [0.979]

ARCH(12) 0.650 [0.799] 0.458 [0.939] 0.268 [0.994] 0.533 [0.894]
Persistence 0.996 0.759 0.642 0.953

UV 0.0000001 0.000016 0.000059 0.000023
See notes in Tables 5.5 and 5.6.

By comparing the coefficients of the lagged variances (ai ) and lagged error-terms (131) of the

GJR-GARCH models in the pre- and post-FFA periods, it is possible to examine not just the

impact of FFA trading in terms of increasing or decreasing spot price volatility, but also the

impact of FFA trading on the nature of volatility. For the periods before and after the onset of

FFA trading a GJR-GARCH(1,1) representation is the most appropriate in routes 1, 1A, and 2,

where statistically significant coefficients of the lagged variance and lagged error-terms imply

that the volatility is time-varying. The only exception is in route 2A where the insignificant

coefficient of the lagged variance in the pre-FFA period result in a significant coefficient in the

post-FFA period. Thus, the onset of FFA trading led to a change in the nature of volatility in

route 2A only. The results of the unconditional volatility estimate (UV) indicate that in routes 1,

1A, and 2A there has been a decrease in the unconditional volatility. This finding is consistent

with the earlier results of a stabilising impact in the volatilities and with the view that more

information is being transmitted to the spot markets. In route 2 the unconditional volatility has
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increased which is not in accordance with the results of a stabilising impact from the

introduction of FFA contracts.

In the context of this analysis the lagged error-term, Di , relates to changes in the spot price on

the previous day which are attributable to market specific factors. Assuming that markets are

efficient, then these price changes are due to the arrival in the market of items of information,

which are specific to the pricing of the FFA contracts. Thus, the coefficient of the lagged error-

term can be viewed as a new news coefficient, which relates to the impact of yesterday's market

specific price changes on price changes today. Hence, a higher value in the post-FFA period

implies that recent news have a greater impact on price changes. The results, from Tables 5.6

and 5.7, indicate that this holds in all routes suggesting that information is being impounded in

prices more quickly due to the introduction of FFA trading.

The coefficient of the lagged variance term, al , can be thought of as reflecting the impact of old

news. It is picking up the impact of price changes relating to days prior to the previous day, and

thus, to news which arrived before yesterday. A reduction in uncertainty regarding previous

news can be regarded as an increase in the rate of information flow with the onset of FFA

trading (old news will have less impact on today's price changes). This argument seems to

confirm the expectation of increased market efficiency as a consequence of the activity in the

FFA market. The results, from Tables 5.6 and 5.7, indicate that this holds in routes 1, 1A, and 2,

where the value of the al coefficient has been reduced in the post-FFA period.

5.5.2. Impact of FFA on Spot Market Volatility Considering Market Factors

The next step consists in examining whether the introduction of FFA trading is not the only

factor responsible for the reduction in the spot market volatility. To address this issue, the

behaviour of the spot variances is adjusted for exposition to additional factors which may affect

spot market volatility. The adjustment is obtained by including the conditional volatility

(computed by a GARCH process) of economic indicators as explanatory variables in the

specification of the spot variance equationm3. More specifically, the SPI, the SPCI, the BCOI

and the WTI are used as economic indicators that can capture major world economic

conditions, which may impact the spot market volatility of the investigated freight routes. Thus,

103 Including the logarithmic first-difference price series of the economic indicators as explanatory variables in the
spot mean equation, yielded insignificant coefficients, and therefore, are excluded from the final specification.
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we test the hypothesis that FFA trading is the only cause for the diminished volatility, testing

the null hypothesis that the FFA dummy coefficient (72) is zero.

In the interest of space, we report only those results that we feel are the most relevant to the

issue at hand. Thus, the QMLE estimates of the most parsimonious and well-specified (in terms

of diagnostic tests) GJR-GARCH model for every spot freight route are presented in Table 5.8.

The estimates of the coefficients of the variance equation including: (i) the SPI variable are

presented in panel A; (ii) the SPCI variable are presented in panel B; (iii) the BCOI variable are

presented in panel C; and (iv) the WTI variable are presented in panel D.

The results in Table 5.8 indicate that the FFA dummy variable (72 coefficient) has not been

affected by the used economic variables that significantly contribute in the spot market's

conditional volatility for voyage routes 1 and 2. This result supports not only the hypothesis of

reduced spot volatility but also that the reduction in volatility may be a direct consequence of

FFA trading. In contrast, in the time-charter routes lA and 2A we notice that the FFA dummy

variable has been affected by most of the economic variables. More specifically, in route lA the

72 coefficient becomes positive and significant with the use of the SPI variable and insignificant

with the use of the WTI variable. In route 2A despite the negative sign and significance of the

72 coefficient three out of the four economic variables (SPI, SPCI, and BCOI) fail to contribute

to the spot market's conditional volatility. Thus, the results do not present a clear answer as to

whether reduction in spot volatility, in routes 1A and 2A, is a direct consequence of FFA

trading. Although these results are not as consistent as those from the GJR-GARCH models of

Equation (5.2), we still observe a propensity for volatility to decrease after the FFA introduction

in voyage routes 1 and 2.

We do not deny that these results may be influenced by other factors and advocate some caution

in interpreting empirical results. In particular, several points should be considered that may

confound the interpretation of the results, and those of all the previous studies in the literature.

First, the systematic reporting of FFA rates, from FFA brokers, might also have resulted in

more systematic reporting of spot rates, thus leading to the reduction in spot price volatility.
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Table 5.8. GJR-GARCH Model Estimates of the Effect of FFA Trading and Other Economic
Indicators on Spot Market Volatility (Whole Period)

p-I
AS, = yo + ET4S,1 +E,	;	Et - iid(0,k)	 (5.1)

m

h, = ao + ai hm + azp ihr-i ± Pi g /2 i + 02DIE	i ± Y1 6	i D T-1 + Y2D i + O i Gi	(5.4)

Route 1-AR(3)
(29/11/89 - 31/07/00)

Route 1A-AR(3)
(07/08/90 - 31/07/00)

Route 2-AR(2)
(29/11/89 - 24/08/01)

Route 2A-AR(2)
(15/02/91 - 24/08/01)

Panel A: Coefficient Estimates of Variance Equation Wth SPI Variable
ao 7.12E-07' (12.988) 3.34E-06' (7.890) 3.29E-06' (9.160) 8.15E-05' (11.823)
al 0.934* (557.675) 0.659' (38.883) 0.887' (118.087) 0.073 (0.935)
az -0.025' (-3.846) -0.383' (-7.154) -0.589' (-13.659) 0.719 (9.654)
p, 0.031' (15.481) 0.297' (13.075) 0.105' (11.946) 0.143' (5.328)

32 0.024' (3.140) 0.108	(3.196) 0.258' (8.051) 0.065* (2.113)

T 1 0.033' (7.999) -0.188' (-6.949) -0.059* (-6.050) 3.81E-03 (0.189)

Y2 -4.41E-07* (-2.853) 1.65E-05' (3.504) -1.69E-05' (-10.305) -7.98E-05	(-11.547)
8 1 -3.01E-03- (-1.880) 0.192 (14.613) 0.015* (5.932) -4.93E-03 (-1.607)

Panel B: Coefficient Estimates of Variance Equation with SPCI Variable
ao 4.46E-07* (3.899) 8.69E-06' (10.053) 4.69E06' (10.171) 8.15E-05' (11.846)
al 0.932* (577.92) 0.644' (33.786) 0.881' (111.49)

-0.542'(-11.968)
0.073 (0.927)
0.721'(9.681)az -0.027* (-4.451) 1.01E-03 (0.041)

131 0.026' (14.670) 0.312' (12.551) 0.111* (12.355) 0.123* (5.318)

132 0.030* (3.893) 0.045- (1.737) 0.233' (7.487) 0.066 (2.156)

y l 0.032' (8.564) -0.191* (-6.936) -0.061' (-6.426) 3.91E-03 (0.188)
-8.04E-05* (-11.669)Y2 -6.898* (-7.107) -3.06E-06' (-2.068) -1.67E-05* (-10.106)

SI 3.36E-03'(1.866) 0.117'(10.938) -7.32E-03- (-2.199) -2.60E-03(-0.486)
Panel C: Coefficient Estimates of Variance Equation with BCOI Variable

ao 2.82E-07* (5.273) 8.66E-06' (15.064) 2.51E-05' (16.559) 8.09E-05' (11.685)
al 0.931'(552.06) 0.689'(39.201) 0.469'(17.149) 0.075 (0.950)
az -0.041* (-7.413) 0.191' (11.391) -0.224* (-4.847) 0.724* (9.525)

Pi 0.022* (13.234) 0.217* (13.531) 0.196* (7.095) 0.124* (5.349)

132 0.040* (5.634) .-	-0.086' (-4.855) 0.089' (2.329) 0.071' (2.284)
yi 0.036* (9.065) -0.041' (-2.713) 0.115* (3.644) 1.33E-03 (0.64)

-8.02E-05" (-11.541)Y2 -6.91E-07' (-5.845) -8.63E-06* (-12.317) -5.76E-06' (-2.612)
O i 1.93E-03' (10.169) 7.55E-03' (11.117) 0.016' (13.504) 6.54E-04 (0.566)

Panel D: Coefficient Estimates of Variance Equation with WTI Variable
ao 2.04E-07' (4.033) 1.02E-05- (15.759) 2.68E-05* (17.574) 7.98E-05* (11.328)
af 0.932* (566.77) 0.634* (34.618) 0.432' (16.246) 0.083 (1.029)

az -0.047* (-8.481) 3.59E-03 (0.169) -0.229' (-5.189) 0.718* (9.158)

131 0.023' (13.469) 0.322- (13.183) 0.206' (7.149) 0.132' (5.441)

132 0.057' (6.234) 0.025 (0.959) 0.084' (2.065) 0.070' (2.587)

Yi 0.031' (8.305) -0.187* (-6.882) 0.128' (3.786) -7.05E-03 (-0.286)
-7.94E-05* (-11.254)Y2 -6.78E-07* (-5.790) -3.99E-07 (-0.366) -6.54E-06* (-3.077)

8 1 1.25E-03' (9.695) 7.58E-03' (11.102) 0.012' (17.158) 1.54E-03* (2.169)

Notes:
• See notes in Table 5.5.
• SPI is the S&P 500 Composite Index; SPCI is the S&P 500 Commodity Index; BCOI is the London

Brent Crude Oil Index; and WTI is the West Texas Intermediate crude oil.
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Second, the introduction of FFA contracts is not an entirely exogenous event. The introduction

process involved many decisions made by FFABA and FIFC panelists, members of the Baltic

Exchange and representatives from FFA broking companies, who may have been influenced by

recent or anticipated market conditions. For example, in financial markets the reluctance of

regulators to approve the introduction of derivatives contracts during periods of political

uncertainty may introduce a selection bias.

Third, given that most financial and commodity markets in developed economies impound

information into prices rapidly, the impact of the onset of derivatives trading in terms of the

speed of the price change, while significant, is likely to be at the margin. If this change is to be

identified, it is necessary to utilise high-frequency intraday data. In this study the most frequent

data available are used, namely daily data. This data set proves to be sufficiently frequent to

identify the changes resulting from the onset of FFA trading. If information is continually

flowing into the spot market then the fact that FFA speeds up this flow may not be identified if

the data set used is weekly or monthly, as the increase in the speed of information might by a

matter of hours or even days. Fourth, because the events in our sample are not independent

draws from a homogeneous population, we cannot interpret this as we would from a traditional

event study. Different trading routes have different regulatory and economic conditions. Mete

might have been important political and economic developments that are not captured by our

model.

5.6. CONCLUSION

This chapter examines the impact of FFA trading and the activities of speculators on spot

market price volatility in panamax voyage routes 1 and 2, and in time-charter routes lA and 2A.

It covers the periods 29 November 1989 to 31 July 2000 in route 1, 7 August 1990 to 31 July

2000 in route 1A, 29 November 1989 to 24 August 2001 in route 2, and 12 February 1991 to 24

August 2001 in route 2A. The daily data are collected from the Baltic Exchange. Most previous

studies report mixed evidence. There is evidence consistent with the assertion that speculators

in derivatives markets produce destabilising forces (Stein, 1961; Figlewski, 1981). On the other

hand, evidence also supports that the introduction of derivatives trading leads to more complete

markets, enhanced information flows, and thus, improved investment choices for market agents
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(Stoll and Whaley, 1988; and Schwarz and Laatsch, 1991). However, many earlier studies

either have not accounted for the interdependence of the time-series of returns in speculative

markets (volatility clustering), or have largely ignored the relationship between information and

volatility (exceptions are the studies of Antoniou et al., 1998; and McKenzie et al., 2001). The

methodology extends the traditional analysis of examining whether FFA trading has increased

spot market volatility by considering the link between volatility and information, and of

possible asymmetric effects in the conditional volatilities (market dynamics). The results

suggest that the onset of FFA trading has had: (i) a stabilising impact on the spot price volatility

in all routes; (ii) an impact on the asymmetry of volatility (market dynamics) in routes 2 and

2A; and (iii) substantially improved the quality and speed of information flowing in routes 1,

1A and 2. However, after including in the conditional variance equation other explanatory

variables that may affect spot volatility, the results indicate that only in voyage routes 1 and 2

the reduction of volatility may be a direct consequence of FFA trading. The results do not

present a clear answer as to whether reduction in spot volatility, in time-charter routes 1 A and

2A, is a direct consequence of FFA trading.

The results are consistent with the theoretical arguments of Ross (1989) and the view that

derivatives trading increases the flow of information of the spot market. Thus, prices which

were already adjusting rapidly, adjust more rapidly with the onset of FFA trading. However, the

results disagree somewhat with the arguments of Ross as FFA trading does not subsequently

increase the spot price volatility as expected. These findings have implications for the way in

which the FFA market is viewed. Contrary to the traditional view of derivatives trading and

despite the route-specific nature of the FFA contracts, with the different economic and trading

conditions in each route, the results indicate that the introduction of FFA contracts has not had a

detrimental effect on the underlying spot market. On the contrary, it appears that there has been

an improvement in the way that news is transmitted into prices following the onset of FFA

trading. We can conjecture that by attracting more, and possibly better informed, participants

into the market, FFA trading has assisted on the incorporation of information into spot prices

more quickly. Thus, even those market agents who do not directly use the FFA market have

benefited from the introduction of FFA trading.
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CHAPTER 6- THE HEDGING PERFORMANCE OF THE FORWARD

FREIGHT MARKET

6.1. INTRODUCTION

The reason for the existence of derivatives markets is to provide instruments for businesses to

reduce or control the unwanted risk of price changes by transferring it to others more willing to

bear the risk. This function of the derivatives markets is performed through hedging the spot

position by holding an equal but opposite position in the derivatives market in order to

neutralise the impact of adverse price level changes. In practice, it is only rarely possible to

offset spot market risks completely with derivatives (futures and forward) contracts.

Differences between spot and derivatives prices give rise to basis risk. Thus, the effectiveness

of a hedge is influenced by the existence of basis risk, the hedging horizon'", and the

correlation between changes in the spot and derivatives prices. By holding forward contracts

until settlement, basis risk is zero, due to the convergence of forward and spot prices. Basis risk

is introduced by rebalancing the derivatives position (prior to expiration) in regular time

intervals. However, due to changing market and economic conditions the correlation between

changes in the forward and spot prices may also change sharply before the expiration date,

introducing price risk. Thus, this chapter examines how effective the FFA contracts are in

reducing price risk. Moreover, by estimating hedging ratios105 computed from several model

specifications, we also try to identify the hedging model that generates the highest price risk

reduction.

104 Benet (1992) documents the fact that hedging effectiveness tends to increase as the investment horizon
increases. Benet offers two explanations for this positive association: (i) the economic rationale is that the arrival
of information in the market resolves price uncertainty. More uncertainty is resolved, given a longer amount of
time - the basis is reduced; and (ii) noise in the market tends to be cancelled over time - the true underlying
relationship between the spot and derivatives prices emerges in long investment horizons. Geppert (1995) argues
that neither of these arguments is particularly compelling and shows that the increase in hedging effectiveness
follows from cointegration between the spot and derivatives prices.
105 The hedge ratio, h, is defined as the number of derivatives contracts that an agent must buy or sell for each unit
of the spot position on which there is price risk.
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The FFA contracts are based on the expected value of the service of seaborne transportation.

The physical characteristics of this commodity make it impossible to store it or to carry it

forward in time. As a result, FFA prices are not linked to the underlying spot prices through

cash-and-carry arbitrage, but rather are driven by the expectations of market agents regarding

the expected spot prices, i.e., the spot prices that will prevail at the expiration of the contracts.

Therefore, it is expected a priori that spot and FFA prices may not be strongly linked, as they

would be by a no-arbitrage relationship. As an example, increased demand for these contracts at

a certain time period may indulge FFA brokers to charge a mark-up on their FFA quotes

(weight of money effect) decreasing the correlation between changes in the FFA and spot

prices. In that case the hedging effectiveness may be lower than expected. The level of the

hedging effectiveness of this market is, thus, an empirical issue.

In chapter 1, we presented the MVHR methodology of Johnson (1960), Stein (1961) and

Ederington (1979). The MVHR postulates that the objective of hedging is to minimise the

variance of the returns in the hedge portfolio held by the investor. Therefore, the hedge ratio

that generates the minimum portfolio variance should be the optimal hedge ratio. As discussed

in chapter 1, the hedge ratio that minimises the variance of the returns in the hedge portfolio is

equivalent to the ratio of the unconditional covariance between spot and FFA price changes to

the variance of FFA price changes; this is equivalent to the slope coefficient, h*, in the

following regression:

ASt = /10 + h* AFt + C, ;	— iid(0,cr2)	 (6.1)

where ASt = St — St. 1 is the logarithmic change in the spot position between t-1 and t; AF, = Fr —

F1_ 1 is the logarithmic change in the FFA position between t-1 and t, and h is the hedge ratio.

The degree of variance reduction in the hedged portfolio achieved through hedging is given by

the coefficient of determination (R2) of the regression, since it represents the proportion of risk

in the spot market that is eliminated through hedging; the higher the R2 the greater the

effectiveness of the minimum variance hedge.

In the freight futures (BIFFEX) market, the MVHR methodology is applied by Thuong and

Vischer (1990) where they estimate the degree of hedging effectiveness achieved by BIFFEX

across all the BFI routes from August 1986 to December 1988. They find that the hedging
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effectiveness of the contract is higher for the panamax routes, compared to the capesize and the

handysize routes. Overall, they conclude that the MVHR fails to eliminate the risk of the spot

position to the extent in other commodity markets (the higher R2 being only 32%). They argue

that this is due to the heterogeneous composition of the underlying asset, the BFI, which

consists of dissimilar shipping routes in terms of vessel size and transported commodities.

Futures contacts in different commodity and financial markets are effective in reducing the

variability of the spot position by as much as 98%; see Ederington (1979) for interest rates,

Figlewski (1984) and Lindahl (1992) for stock indices and Malliaris and Uratia (1991) for

currencies. Haralambides (1992) argues that a shipowner, operating on route 3 (of the BFI), can

achieve greater risk reduction by using the MVHR compared to a traditional (naïve) hedge (see

also Kroner and Sultan, 1993; Gagnon and Lypny, 1995; and Bera et al., 1997, amongst others).

Several points need to be mentioned regarding the performance of the MVHR strategy. First, h*

and R2 of Equation (6.1) are ex-post measures of hedging effectiveness, since they depend upon

the previously explained correlation between the spot and derivatives prices and, as such, give

an indication of the historical performance of the hedging strategy (in-sample performance). In

reality, hedgers in the market use the historical hedge ratios to hedge a position in the future.

Hence, a more realistic way to evaluate the effectiveness of alternative hedging strategies is in

an out-of-sample setting.

Second, Myers and Thompson (1989) and Kroner and Sultan (1993) argue that Equation (6.1)

implicitly assumes that the risk in spot and derivatives markets is constant over time. This

assumption is too restrictive and contrasts sharply with the empirical evidence in different

markets, which indicates that spot and derivatives prices are characterised by time-varying

distributions (see for example, Choudhry, 1997; Hogan et al., 1997; and Kavussanos and

Nomikos, 2000a, 2000b, amongst others). This in turn, implies that MVHR should be time-

varying, as variances and covariances entering the calculations are time-varying (adjusted

continuously) as new information arrives in the market and the information set is updated.

Third, economic analysis and intuition suggest that the prices of the spot asset and the

derivatives contract are jointly (simultaneously) determined (see Stein, 1961). Consequently,

the estimation of Equation (6.1) is subject to simultaneity bias, i.e. the estimated hedge ratio

will be upward biased and inconsistent. Furthermore, Equation (6.1) is potentially misspecified
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because it ignores the existence of a long-run cointegrating relationship between spot and

derivatives prices (Engle and Granger, 1987), and fails to capture the short-run dynamics by

excluding relevant lagged variables, resulting in downward biased not optimal hedge ratios (see

for example, Ghosh, 1993b; Chou et al. 1996; and Lien, 1996, amongst others). Since the two

biases work in opposite directions, one may hope that they will, on average, cancel each other,

even though such a coincidence cannot be assured (Lien and Tse, 2000).

Lien and Luo (1994) argue that although a GARCH process may characterise the price

behaviour, the cointegration relationship is the only truly indispensable component when

comparing ex post performance of various hedge strategies. Moreover, Herbst, et al. (1992)

argue that the estimation of the MVHR suffers from the problem of serial correlation in the

regression residuals. These issues raise concerns regarding the risk reduction properties of the

hedge ratios generated from Equation (6.1). These problems have been empirically addressed in

several commodity and financial derivatives markets (see for example, Kroner and Sultan,

1993; Gagnon and Lypny, 1995, 1997; and Kavussanos and Nomikos, 2000a, 2000b, amongst

others).

This chapter contributes to the existing literature in a number of ways. First, despite the

growing importance of the forward freight market, no effort has been devoted to ascertaining

the relative importance and feasibility of the effectiveness of constant and time-varying optimal

hedge ratios of this OTC forward marketi °6. In a 1985 survey of major US corporations, Khoury

and Chan (1988) found that forward contracts were rated as the most often used hedging vehicle

by both financial and non-financial respondents. The corporations favoured forward contracts

primarily because of their relatively low cost and high degree of flexibility. The lack or any

initial financial commitment and the fixed cost (relative to a futures contract) also were deemed

to be very attractive attributes.

106 An essential distinction between futures and forward contracts is the different timing of the settlement of the
contracts. Futures losses and gains are settled daily; while those on forward contracts are settled at maturity. This
implies that futures positions, unlike forward positions, involve a double speculation on the price of the deliverable
asset and on interest rates (Shalen, 1989).
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Second, different model specifications are estimated and compared so as to arrive at the most

appropriate model, which takes into account the univariate properties of spot and FFA prices.

Third, in-sample and out-of sample tests are employed so as to assess the effectiveness of the

FFA contracts in minimising the risk in the spot freight market. Market agents (shipowners and

charterers) whose physical operations concentrate on specific panamax routes can benefit from

using optimal hedge ratios that minimise their freight rate risk.

Finally, the interesting research aspect is to analyse the hedging effectiveness of the FFA

contracts and compared it with the hedging effectiveness of the BIFFEX contract, analysed by

Kavussanos and Nomikos (2000a, 2000b, 2000c). Kavussanos and Nomikos (2000a, 2000b,

2000c) argue that time-varying hedge ratios outperform alternative specifications and have been

found successful in reducing spot market risk in four shipping routes, but they fail to reduce the

risk of the spot position to the extent found for other markets in the literature (hedging

effectiveness of the BIFFEX contract varies from 23.25% to 4% across the different shipping

routes which constitute the BFI).

The model used in this chapter is a VECM (Engle and Granger, 1987 and Johansen, 1988) with

a GARCH error structure (Bollerslev, 1986). This framework meets the earlier criticisms of

possible model misspecifications and time-varying hedge ratios, since the ECT describes the

long-run relationship between spot and FFA prices and the GARCH error structure permits the

second moments of their distribution to change over time. Following Kavussanos and Nomikos

(2000a, 2000b), the squared lagged ECT of the cointegrated spot and FFA prices in the

specification of the conditional variance is included, in what is termed the GARCH-X model

(Lee, 1994). A principal feature of cointegrated variables is that their time paths are influenced

by the extent of deviations from their long-run equilibrium (Engle and Granger, 1987). As spot

and FFA prices respond to the magnitude of disequilibrium, then, in the process of adjusting

they may become more volatile. Thus, inclusion of the ECT in the conditional variance

specification is appropriate and may lead to the estimation of more accurate hedge ratios.

The time-varying hedge ratios are then calculated from the estimated time-varying variance-

covariance matrix using the nearby FFA contract as the hedging instrument. The hedging

effectiveness of the dynamic hedge ratios are contrasted with the effectiveness of constant

hedge ratios both in-sample and out-of-sample. The selection criterion (loss function) for the
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optimum model to use is the variance (risk) reduction of the hedged portfolio. In the literature,

empirical results concerning the performance of GARCH hedge ratios are generally mixed. In-

sample comparisons show that, in some cases, dynamic hedging generates much better

performance in terms of risk reduction (see Koutmos and Pericli, 1999) but in others the

benefits seem too minimal to warrant the efforts (see Wilkinson et al., 1999). Out-of-sample

comparisons are mostly in favour of the conventional hedge strategy, even after updating the

second-moment forecasting equations as new data arrived (Lien et al., 1999)107.

The remainder of this chapter is organised as follows. Section 6.2 presents the derivation of the

conditional time-varying hedge ratio. Section 6.3 illustrates the empirical model that is used for

determining time-varying hedge ratios. Section 6.4 discusses the properties of the data and

presents the empirical results. Section 6.5 evaluates the hedging effectiveness of the proposed

strategies. Finally, section 6.6 summarises this chapter.

6.2. ESTIMATION OF TIME-VARYING HEDGE RATIOS

Market participants in derivatives markets choose a hedging strategy that reflects their

individual goals and attitudes towards risk. Consider the case of a shipowner who wants to

secure his freight rate income in the forward freight market. The return on the shipowner's

hedged portfolio of spot and FrA positions, AP„ is given by Equation (1.5) repeated here for

convenience:

AP, = AS - htAFt	(6.2)

where AS, = St — St_i is the logarithmic change in the spot position between t-1 and t; AF, = Ft —

Ft. 1 is the logarithmic change in the FFA position between t-1 and t; and kis the hedge ratio at

time t. If the joint distribution of spot and FFA returns is time-varying, then the variance of the

returns on the hedged portfolio will change as new information arrives in the market; therefore,

1 °7 Lence (1995) argues that the benefits of sophisticated estimation techniques of the hedge ratio are small. Lence
(1995) advocates that hedgers may do better by focusing on simpler and more intuitive hedge models. His concerns
appear to be supported by some empirical studies (see, for example, Lien et al., 1999).
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Cov(ASt,AF11 - i)

the variance of the returns on the hedged portfolio, conditional on the information set available

to market agents at time t-1, ç, is given by:

Var(AP, I E_I)  = Var(AS/ I Ez-i) + hi2var(AF1 I tz_i) - 2h1Cov(ASI, AF,
	

(6.3)

where 	I 2,1), Var(AFt I 12,4) and Cov(ASI, AFt I Om) are, respectively, the conditional

variances and covariance of the spot and FFA returns. The hedger must choose the value of ht

that minimises the conditional variance of his hedged portfolio returns i.e. min [Var(APt I

Taking the partial derivative of Equation (6.3) with respect to 14, setting it equal to zero and

solving for h,, yields the optimal MVHR, li t* , conditional on the information available at t-1:

ht* I nt-i -
Var(AFti ot_i)

The conditional MVHR of Equation (6.4) is the ratio of the conditional covariance of spot and

FFA price changes over the conditional variance of FFA price changes. Since the conditional

moments can change as new information arrives in the market and the information set is

updated, the time-varying hedge ratios may provide superior risk reduction compared to static

hedges. Furthermore, the conditional MVHR, 171* , nests the conventional MVHR, h* , of

Equation (6.1); if we replace the conditional moments in Equation (6.3) by their unconditional

counterparts and minimise with respect to h then we get the conventional MVHR. The

conditional model will reduce to the conventional model if the joint distribution of spot and

FFA is constant through time.

6.3. ARCH MODELS AND TIME-VARYING HEDGE RATIOS

To estimate ht* in Equation (6.4), the conditional second moments of spot and FFA prices are

measured using the family of ARCH models, introduced by Engle (1982). For this purpose, we

employ a VECM for the conditional means of spot and FFA returns with a GARCH error

structure for the conditional variances. The motivation behind using bivariate GARCH models

in the context of hedge ratio estimation is that daily FFA and spot prices react to the same

(6.4)

215



information, and hence, have non-zero covariances conditional on the available information set.

Given the time-series nature of the data, the first step in the analysis is to determine the order of

integration of each price series using ADF (1981) and PP (1988) tests. Given a set of two /WI"

series, Johansen (1988, 1991) tests are used to determine whether the series stand in a long-run

relationship between them; that is that they are cointegrated. The following VECM (Johansen,

1988) is estimated:

AX t = p, + E FtAX t_t + lat.] + et ; E I	dist(0, 1-1t)
	

(6.5)

where Xt is the 2x1 vector (St, Fd of log-spot and log-FFA prices, respectively, A denotes the

first difference operator, and Et is a 2x1 vector of residuals (Es, ,, EF, t)' that follow an as-yet-

unspecified conditional distribution with mean zero and time-varying covariance matrix, Ht.

The VECM specification contains information on both the short- and long-run adjustment to

changes in Xt, via the estimated parameters in Fi and H, respectively. The significance of

incorporating the cointegrating relationship into the statistical modeling of spot and FFA prices

is emphasised in studies such as Kroner and Sultan (1993), Ghosh (1993b), Chou et al. (1996),

Lien (1996), and Kavussanos and Nomikos (2000a, 2000b); hedge ratios and measures of

hedging performance may change sharply when this relationship is unduly ignored from the

model specification.

Johansen and Juselius (1990) show that the coefficient matrix H contains the essential

information about the relationship between St and Ft. Specifically, if rank(H) = 0, then H is 2x2

zero matrix implying that there is no cointegration relationship between St and Ft,t . In this case

the VECM reduces to a VAR model in first differences. If H has a full rank, that is rank(11) = 2,

then all variables in Xt are 1(0) and the appropriate modelling strategy is to estimate a VAR

model in levels. If H has a reduced rank, that is rank(11) = 1, then there is a single cointegration

relationship between St and Ft, which is given by any row of matrix H and the expression nx,_,

is the ECT. In this case, H can be factored into two separate matrices a and /3, both of

dimensions 2x1, where 1 represents the rank of H, such as H = air, where fr represents the

108
1(1) stands for a price series which is integrated of order 1; that it is needed to be differenced once to become

stationary.

216



vector of cointegrating parameters and a is the vector of error-correction coefficients measuring

the speed of convergence to the long-run steady state109.

The conditional second moments of spot and FFA returns are specified as a VECM-GARCH-X

model using the following Baba et al. (1987) augmented positive definite parameterisation

(henceforth, BEKK) (see for example, Engle and Kroner, 1995; and Kavussanos and Nomikos,

2000a, 2000c)11°:

= NA + B'HI _ I B +	+ E (z,_1 )2E	 (6.6)

where A is a 2x2 lower triangular matrix of coefficients, B and C are 2x2 diagonal coefficient

matrices, with 3kk2 + 7 2kk < 1, k = 1,2 for stationarity,	)2 is the lagged squared basis, and E is

a 1x2 vector of coefficients of the lagged squared basisl 1 1 . The B and C matrices are restricted

to be diagonal because this results in a more parsimonious representation of the conditional

variance (Bollerslev et al., 1994). Moreover, a GARCH(1,1) model is used because of the

substantial empirical evidence that this model adequately characterises the dynamics in the

second moments of spot and FFA prices (see Kroner and Sultan, 1993; Bera et al., 1997; and

Kavussanos and Nomikos, 2000a, 2000c). In this diagonal representation, the conditional

variances are a function of their own lagged values (persistence), their own lagged error terms

(lagged shocks), and a lagged squared basis parameter, while the conditional covariance is a

function of lagged covariances and lagged cross products of the ci's.

Moreover, this specification guarantees H, to be positive-definite almost surely for all t and

allows the conditional covariance of spot and FFA returns to be time-varying112. As advocated

by Baillie and Myers (1991, p. 116), it is vital to let the conditional covariance be time-

109 Since rank(II) equals the number of characteristic roots (or eigenvalues) which are different from zero, the
number of distinct cointegrating vectors can be obtained by estimating the number of these eigenvalues, which are
significantly different from zero. Johansen (1988) proposes the X„ and X. statistics to test for the rank of if
110 Several other specifications are also used, such as a bivariate VECM-EGARGH and a VECM-GJR-GARCH,
but yield inferior results judged by the evaluation of the log-likelihood and in terms of residual specification tests
(not reported).
III The use of the lagged square basis specification, instead of the lagged level or the lagged absolute value
specifications is justified in the empirical work because it provides uniformly superior results (see Lee, 1994).
112 For a formal discussion of the properties of this model and alternative multivariate representations of the
conditional covariance matrix see Bollerslev et al. (1994) and Engle and Kroner (1995).
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dependent, as in the bivariate GARCH model, rather than be a constant. Multivariate GARCH

models provide more precise estimates of the parameters because they utilise information in the

entire variance-covariance matrix of the errors (Conrad et al., 1991). Further, the generated

regressor problem associated with univariate models is avoided in multivariate models because

it estimates all parameters jointly (Pagan, 1984). The most parsimonious specification for each

model is estimated by excluding insignificant variables.

The model incorporates the lagged squared basis as an ECT in order to examine the relation

between the two markets, as a factor that influences the variances of the two variables. Engle

and Yoo (1987) show that the ECT, which is the short-run adjustment from the long-run

cointegrating relationship, has important predictive power for the conditional variances of

cointegrated series. This may imply that if the series deviate further from each other they are

harder to predict. The main virtue of this model lies in its capability of pointing to a particular

feature of cointegrated series, which is the potential relationship between disequilibrium

(measured by the ECT) and uncertainty (measured by the conditional variance), (Lee, 1994).

Following Bollerslev (1987), the conditional Student-t distribution is used as the density

function of the error term, Et, and the degrees of freedom, v, is treated as another parameter to

be estimated. The general form of the likelihood function becomes:

F[(2 + v)/2] Iwo ),1 - 1 /2 [1 +  1 	c(0),,, H(0)1'com-[(2+v)/2]L(1-1,, Et, 0) —
v — 2F(v/2)[7c(v — 2)] I	I

, for v> 2

where F(.) is the gamma function, and v denotes the degrees of freedom. This distribution

converges to the multivariate normal as v oo, although in empirical applications the two

likelihood functions give similar results for values of v above 20. Baillie and Bollerslev (1995)

show that for v <4, the Student-t distribution has an undefined or infinite degree of kurtosis

[the theoretical kurtosis is computed as 3(v-2)(v-4)-1, v> 4; see Bollerslev, 1987]. In such cases

the QMLE, which estimates robust standard errors, and thus, yields an asymptotically consistent

normal covariance matrix, is preferred (Bollerslev and Wooldridge, 1992). For symmetric

departures from conditional normality, the QMLE is generally close to the exact MLE.

Preliminary evidence on our data set with the Student-t distribution reveals that the parameter

(6.7)
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of the degrees of freedom, v, is greater than 4 in routes 1 (v = 5.206) and 1A (v = 5.765) and

lower than 4 in routes 2 (v = 3.941) and 2A (v = 3.853). Thus, the Student-t distribution is used

as the density function of the error term in routes 1 and 1A and the QMLE is used in routes 2

and 2A. The log-likelihood function is highly non-linear and, therefore, numerical

maximisation techniques have to be used. The BFGS algorithm, which utilises derivatives to

maximise the log-likelihood, is used.

6.4. DESCRIPTION OF DATA AND EMPIRICAL RESULTS

The data sets that are used consist of weekly spot and FFA prices in panamax routes 1 and 1 A

from 16 January 1997 to 31 July 2000 and weekly spot and FFA prices in panamax routes 2 and

2A from 16 January 1997 to 31 December 2001. Weekly data are preferred in this chapter for

several reasons. First, given the long horizon of operations in the shipping industry, which may

extend over a period of two or three months, the choice of weekly hedges is realistic if there is

enough liquidity in the market and implies that hedgers in the market rebalance their FFA

positions on a weekly basis. Second, weekly data provide us with an adequate number of

observations (N = 184 in routes 1 and 1A and N = 258 in routes 2 and 2A) to investigate the in-

and out-of-sample performance of GARCH-based hedge ratios, compared to other frequencies

(e.g. two or four weeks). Third, the one-week hedge can be used to reduce risk without

incurring excessive transactions costs. Finally, the choice of a weekly hedging horizon is also in

line with the empirical studies in other forward markets (see as well Chang et al., 1993 and

Islam, 1993).

Spot and FFA price data are Wednesday prices of the four panamax routes. FFA prices are

always those of the nearby contract; when a holiday occurs on Wednesday, Tuesday's

observation is used in its place. To avoid thin markets and expiration effects, however, we

rollover to the next nearest contract one week before the nearby contract expires, as there is

sufficient liquidity in the nearby contract up to a few days before its maturity date. The

differences in the time to maturity across data points in the nearby FFA price series are rather

small. However, it introduces some uncertainty about the difference between the forward price

of the contract being closed out the forward price of the new contract that is entered into. At

that specific time, hedgers face roll-over basis risk as well as hedge risk. Spot price data are
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from the Baltic Exchange. FFA price data for the panamax routes are from Clarkson Securities

Ltd. All price series are transformed into natural logarithms.

Summary statistics of logarithmic first-differences of weekly spot and FFA prices for the four

panamax routes are presented in Table 6.1. The results indicate excess skewness and kurtosis,

with the exception of the skewness statistic in routes 1, 1A and 2 FFA price series, and in route

2 spot price series and of the kurtosis statistic in route 1A FFA price series. In turn, Jarque-Bera

(1980) tests indicate departures from normality for FFA and spot prices, with the exception in

route 1A FFA price series. The Ljung-Box Q(12) statistic (Ljung and Box, 1978) on the first 12

lags of the sample autocorrelation function of the level series indicate significant serial

correlation, with the exception of FFA price series in all routes. The existence of serial

correlation in spot prices may be attributed in the way shipbroking companies calculate freight

rates. These rates are based either on actual fixtures, or in the absence of an actual fixture, on

the shipbroker's view of what the rate would be if there was a fixture. In the latter case,

shipbrokers submit an assessment, which may be a mark-up over the previous day's rate which,

in turn, induces autocorrelation in the spot prices. The Q2(12) statistic (Ljung and Box, 1978)

on the first 12 lags of the sample autocorrelation function of the squared series indicate

existence of heteroskedasticity, with the exception of FFA price series in routes 1A, 2 and 2A.

After applying the ADF (1981) and PP (1988) unit root tests on the log-levels and log first-

differences of the daily spot and FFA price series, the results indicate that all variables are log

first-difference stationary113. Having identified that spot and FFA prices are 1(1) variables, we

next use cointegration techniques to examine the existence of a long-run relationship between

these series (Table 6.2). SBIC (1978), used to determine the lag length in the VECM, indicate 2

lags in all routes. The Johansen's (1991) LR test, of Equation (2.36) indicates that an intercept

term should be restricted in the cointegrating vector (not reported)114. The estimated kmax and

113 The ADF (1981) and PP (1988) test statistics were undertaken allowing for the presence of an intercept only.
Allowing for the presence of a time trend did not affected the results qualitatively.
114 Johansen (1991) proposes a statistic to test for the appropriateness of including an intercept term in the

cointegrating vector against the alternative that there are linear trends in the level of the series: —T [1n(1 - * 2) —

ln(1 - X 2)1 where k * 2 and k 2 denote the smallest eigenvalues of the model that includes an intercept term in the
cointegrating vector and an intercept term in the short-run model, respectively. Acceptance of the null hypothesis
indicates that the VECM in Equation (6.5) should be estimated with an intercept term in the cointegrating vector.
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? trace statistics show that spot and FFA prices in all routes are cointegrated, and thus, stand in a

long-run relationship between them.

Table 6.1. Descriptive Statistics of Logarithmic First-Differences of Spot and FFA Prices
Panel A: Route 1 Spot and FFA Price Series (01/97 to 07/00)

Skew Kurt Q(12) 012) J-B ADF (lags) PP (4) ADF (lags) PP (4)
Lev Lev 1st Diffs 1st Diffs

Spot -0.735 2.161 63.267 42.162 48.571 -1.706(1) -1.285 -8.225(1) -8.111
FFA -0.306 1.078 13.980 24.149 10.756 -1.429 (0) -1.201 -14.431 (0) -15.169

Panel B: Route 1A Spot and FFA Price Series (01/97 to 07/00)
Skew Kurt Q(12) Q2(12) J-B ADF (lags) PP (4) ADF (lags) PP (4)

Lev Lev lst Diffs 1' Diffs
Spot 0.623 2.161 34.935 21.019 44.493 -1.808 (1) -1.472 -9.831 (0) -9.986
FFA 0.303 0.622 12.995 12.902 5.261 -1.663 (0) -1.507 -14.175 (0) -15.051

Panel C. Route 2 Spot and FFA Price Series (01/97 to 12/01)
Skew Kurt Q(12) Q1(12) J-B ADF (lags) PP (4) ADF (lags) PP (4)

Lev Lev lst Diffs lst Diffs
Spot 0.211 1.852 38.810 28.194 36.405 -1.514(3) -1.602 -10.656(2) -12.247
FFA 0.286 1.235 18.752 9.495 18.684 -1.652 (0) -1.589 -14.836 (0) -14.870

Panel D: Route 2A Spot and FFA Price Series (01/97 to 12/01)
Skew Kurt Q(12) 012) J-B ADF (lags) PP (4) ADF (lags) PP (4)

Lev Lev 15' Diffs et Diffs
Spot 0.408 0.731 63.740 81.310 12.416 -1.899 (2) -1.688 -9.545 (2) -10.276
FFA 0.841 3.329 13.487 8.999 142.644 -1.928 (0) -1.719 -15.129 (0) -15.429

Notes:
• Data series are weekly, measured in logarithmic first-differences.
• Skew and Kurt are the estimated centralised third and fourth moments of the data; their asymptotic

distributions under the null are ,[77 oc3 -N(0,6) and If (  -3) N(0,24), respectiv
• Q(12) and Q2(12) are the Ljung-Box (1978) Q statistics on the first 12 lags of the

function of the raw series and of the squared series; these statistics are distributed as x2(
• J-B is the Jarque-Bera (1980) test for normality; the statistic is distributed as x2(2).
• ADF is the Augmented Dickey-Fuller (1981) test. The ADF regressions include an

length of the ADF test (in parentheses) is determined by minimising the SBIC (1978).
• PP is the Phillips and Perron (1988) test; the truncation lag for the test is in parentheses
• Lev and 1st Diffs correspond to price series in log-levels and log first-differences, respe
• The 95% critical value for the ADF (1981) and PP (1988) tests is -2.88.

The normalised coefficient estimates of the cointegrating vector in Equation (6.5) for each route

are also presented in Table 6.2. In order to examine whether the exact lagged basis should be

included as an ECT in the VECM model, the following cointegrating vector, zt = 16"X t = (St /31

Ft)' is examined, with /3' = (1, 0, -1), implying that the equilibrium regression is the lagged

basis, zt_i = S1-1 - F1. 1 (see for example, Viswanath, 1993; Kavussanos and Nomikos, 2000a).

The results in Table 6.2 indicate that in voyage routes 1 and 2 the restrictions on the

cointegrating vector to represent the exact lagged basis hold, while in time-charter routes 1 A

and 2A the restrictions are not accepted.

IN

ely.
sample autocorrelation
24).

intercept term; the lag-

ctively.
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Table 6.2. Johansen (1988) Tests for the Number of Cointegrating Vectors
Between Spot and FFA Prices

Lags Hypothesis
(Maximal)

Test
Statistic

Hypothesis
(Trace)

Test
Statistic

Cointegrating
Vector

Hypothesis
Test

Ho HI Amax Ho HI Xtrace fl' = (1, pi, 132) g = (1, (), -1)

Route 1 2 r = 0 r = 1 22.803 r = 0 r >= 1 25.012 (1, -0.034, -0.979) 2.343 [0.310]
r <= 1 r = 2 2.209 r< 11 r = 2 2.209

Route IA 2 r = 0 r= 1 29.521 r = 0 r>= 1 32.163 (1, 0.498, -1.053) 6.790 [0.034]
r< 1 r = 2 2.643 r( 11 r = 2 2.643

Route 2 2 r = 0 r= 1 63.100 r = 0 r >= 1 65.917 (1, 0.0206, -1.005) 3.305 [0.192]
r< 11 r= 2 2.817 r<11 r= 2 2.817

Route 2A 2 r = 0 r = 1 53.237 r = 0 r >= 1 57.202 (1, 0.285, -1.029) 6.662 [0.036]
r< 11 r = 2 3.965 r <= 1 r = 2 3.965

Notes:
• Lags is the lag length of an VAR model; the lag length is determined using the SBIC (1978).
• Figures in square brackets [.] indicate exact significance levels.
• r represents the number of cointegrating vectors.

• Xmax(r,r+1) = -71n(1 — ril) and X ce(r) = -T E ln(1 — i) where	are the estimated eigenvalues of the
i=14-1

matrix in Equation (6.5).
• Estimates of the coefficients in the cointegrating vector are normalised with respect to the coefficient of the

spot rate, S,.

• The statistic for the parameter restrictions on the coefficients of the cointegrating vector is —T [1n(1 - i * / ) —

ln(1 - X 1 )] where X i and X I denote the largest eigenvalues of the restricted and the unrestricted models,
respectively. The statistic is distributed as / with degrees of freedom equal to the total number of restrictions
minus the number of the just identifying restrictions, which equals the number of restrictions placed on the
cointegrating vector.

• In routes 1 and 2 the cointegrating vector is restricted to be z,	= (1, 0, —1), while in routes lA and 2A the
cointegrating vector is z,	= (1 fl F,)'.

The maximum-likelihood estimates of the preferred VECM-GARCH or VECM-GARCH-X

models, selected on the basis of a LR test, for each route are presented in Table 6.3115. The

estimates of the coefficients of the mean equation, and the variance equation are presented in

panels A and B, respectively. Any insignificant variables are excluded from the model to reach

a more parsimonious specification. In most cases the GARCH(1,1) specification provides a

good description of the joint distribution of spot and FFA price returns, with the exception in

route 1A where an ARCH(0,1) model is used.

The results of the mean equations in routes 1, 1A, and 2A indicate that the ECT in the spot

equation is found to be significant and negative, while the ECT in the FFA equation is found to

be significant and positive. It follows that, both the spot and FFA markets in those routes

115 LR statistics, testing the VECM-GARCH-X model against the VECM-GARCH (E = 0), indicate that the
VECM-GARCH-X model is the preferred specification in routes 1, 2, and 2A. In route IA the VECM-ARCH is
the preferred specification (for a description of the test and results see Table 6.4).

222



respond to shocks in the system in order for the long-run equilibrium to be restored. For

example, in response to a positive deviation from their equilibrium relationship at period t-1,

the spot price in the next period will decrease in value while the FFA price will increase, thus

eliminating any disequilibrium. In the remaining route 2 the results indicate that only the ECT

in the spot equation is found to be significant and negative. The ECT in the FFA equation is

found to be insignificant. Thus, in route 2 only spot prices respond to shocks in the system in

order for the long-run equilibrium to be restored116.

Focusing next on the parameters describing the conditional variance in each market, it can be

seen that in route 1 in both spot and FFA variance equations, the coefficients of the lagged

variance are significant, while the coefficients of the lagged error terms are insignificant. The

results in routes 2 and 2A indicate that in both spot and FFA variance equations the coefficients

of the lagged variance are significant, while only the coefficients of the lagged error terms in

the spot variance equations are significant. Thus, the volatility of spot and FFA rates, in routes 2

and 2A, is time-varying. Finally, the results in route 1A indicate that in both spot and FFA

variance equations the coefficients of the lagged error terms are significant, which indicate that

there is ARCH in both spot and FFA rates.

The coefficients of the lagged error terms in the spot variance equation are higher than those in

the FFA variance equation in routes 1, 2, and 2A, implying that past shocks (new news) have a

greater impact on the spot rather on the FFA volatility. On the other hand, the coefficient of the

lagged variance in the spot variance equation is lower than that in the FFA variance equation in

routes 1, 2, and 2A, implying that informed agents use past volatility (old news) more in the

FFA market. The results of the coefficients of the lagged squared basis (ekk) in the variance

equations indicate that the basis is significant and affects positively the volatility of both spot

and FFA markets in routes 1, 1A, and 2A. Therefore, variation in the lagged squared basis for

the spot (FFA) market results in increased volatility in the spot (FFA) market.

116 A possible explanation for this result in route 2 can be the following: FFA prices reflect the changing
expectations of market agents regarding the future course of spot prices, and the spot prices in turn converge to this
rationally forecasted value.
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Table 6.3. Maximum Likelihood Estimates of 'VECM-GARCH Models (Routes 1 and 1A: 1997:01-
1999:12, Routes 2 and 2A:1997:01-2000:12)

p-1	p-I
AS, = E as,,AS,, + E h5,16,Fr-i + aszr-i + ES,1

i=1	 i=1

/A	 /A

AF, = E aFJASpi + E bFAFf_i + aFzi_ i ± EF,t	;	sr =

i=i	1=1	

[Es,t

SF,,

H, = A'A + B'H,I B + Csi_ l ei_ l i C + Ei (z ,_/ )2E

(6.5a)

I ng., - dist(0,1-11)	(6.5b)

(6.6)

VECM-GARCH(1,1)-X VECM-ARCH(0,1) VECM-GARCH(1,1)-X VECM-GARCH(1,1)-X
Coefficients Spot 1	I	FFA 1 Spot 1AI FFA 1A Spot 21	FFA 2 Spot 2A  1 FFA 2A

Panel A: Conditional Mean Parameters
ai , j = 1, 2 -0.107

(-2.765)
0.138
(2.139)

-0.219-
(-3.956)

0.188
(2.936)

-0.346
(-5.886)

0.055
(0.812)

-0.171
(-3.752)

'	0.168-
(3.122)

ai, ,, j = S, F 0.483
(8.212)

0.173
(1.977)

0.472
(6.737)

0.389
(4.004)

0.127
(2.049)

0.203
(2.353)

0.188
(1.804)

a, j = S, F -0.101
(-1.673)

- -0.176
(-3.239)

- -0.125
(-3.209)

-

b, j = S, F - - - - 0.204
(3.972)

- 0.236
(4.349)

-

bp, j = S, F - - - - - -0.164'
(-2.441)

Panel B: Conditional Variance Parameters
a11 0.015	(2.665) 0.047	(13.118) 0.002 (1.427) 0.006 (3.195)
a21 0.004 (1.332) 0.018	(6.881) 0.004 (1.425) 0.008- (3.826)
a22 0.009- (1.712) 0.055	(10.767) 0.007 (1.172) 0.011 (2.939)

0.951'
(57.230)

bkk , k = 1, 2 0.836
(6.316)

0.944
(31.741)

- - 0.933
(56.701)

0.962
(43.919)

0.896
(29.261)

ckk , k = 1, 2 0.095
(0.523)

-0.015
(-0.114)

0.299
(3.312)

0.524
(3.349)

0.289
(3.617)

0.040
(0.642)

-0.271
(4.088)

0.017
(0.313)
0.263'
(4.998)

ekk , k = 1,2 0.117-
(1.837)

0.229-
(3.512)

- 0.144-
(1.657)

0.215
(2.258)

0.239
(4.037)

v 5.206 5.765 - -
Notes:

• All variables are transformed in natural logarithms.
• * and ** denote significance at the 5% and the 10% levels, respectively.
• Figures in parentheses 0 and in squared brackets [.] indicate t-statistics and exact significance levels,

respectively.
• The GARCH models are estimated in routes 2 and 2A using the QMLE, while in routes 1 and IA using

the Student-t distribution; v is the estimate of degrees of freedom from the Student-t distribution. The
BFGS algorithm is used to maximise the distributions.

• z,1 represents the lagged ECT (41 = /31)(14). The ECT is restricted to be the lagged basis (S„1 - F,1) in
routes 1 and 2. In the remaining routes the ECT is the following spread: ECT S„1 - 1.053*F" + 0.498 in
route 1A; and ECT S,1 - 1.029*F,.1 + 0.285 in route 2A.
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Table 6.4 reports the descriptive statistics for the standardised residuals (c, RN), the Ljung-

Box (1978) statistics for 12th-order serial correlation in the level and squared standardised

residuals, as well as the asymmetry test statistics (sign bias, negative size bias, positive size

bias, joint test sign and size bias) developed by Engle and Ng (1993). The diagnostic tests

indicate the absence of dependencies in the standardised residuals, and the absence of any

asymmetries in the standardised squared residuals. The response of volatility to shocks (news)

is symmetric and is not affected by the magnitude of the shock, providing further evidence that

the GARCH specification is appropriate. Thus, the estimated models fit the data very well. The

estimated implied kurtosis indicates the presence of excess kurtosis in the standardised residuals

in all investigated routes, with the exception of the standardised residuals of the FFA variance

equations in routes 1 and 1A.

The persistence of volatility of the spot or FFA market, following a shock in the respective

market, measured by b kk2 + c kk2 , where k = 1,2117, show that the unconditional variances are

stationary (persistence factors less than one). In routes 1, 1A and 2A FFA price shocks seem to

have a greater effect on FFA volatility, than spot price shocks on spot volatility. This is also

seen through the Half-Life measure, estimated as 1 — [log(2)/log(b2kk + c2kk )] (see ChoudIlly,

1997), which indicates the time period required for the shocks to reduce to one-half of their

original size118. According to the results, the shocks reduce to half their original size in

approximately 3 days for the spot market and 7 days for the FFA market in route 1, 1 day for

the spot market and 2 days for the FFA market in route 1A. and 6 days for the spot market and

8 days for the FFA market in route 2A. In contrast, in route 2, spot price shocks seem to have a

greater effect on spot volatility, than FFA price shocks on FFA volatility. The Half-Life

measure indicates that shocks reduce to half their original size approximately 16 days for the

spot market and 10 days for the FFA market in route 2.

117 The volatility persistence factor is defined as the degree of convergence of the conditional volatility to the
unconditional volatility after a shock. For example, if the conditional volatility is defined as a GARCH(1,1)

process, h, = ao + 13141 + ci c , then the unconditional volatility would be ao / (1 — bl — c1). Therefore, the degree
of persistence of the conditional volatility can be defined as (b1 + c1 ). The conditional volatility converges to its
unconditional value, if and only if (b, + c1 ) < 1. In the BEKK specification persistence is calculated as (b1 2 + c12).
118 The closer to unity is the value of the persistence measure, the slower is the decay rate and the longer is the
Half-Life measure.
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Table 6.4. Diagnostic Tests on Standardised Residuals of VECM-GARCH-X Models
Spot 1	1	FFA 1 Spot IA I FFA 1A Spot 2	I	FFA 2 Spot 2A I FFA 2A

System LL 578.936 474.424 1,222.92 1,066.69
Skewness -0.564

[0.005]
-0.204
[0.315]

0.788
[0.000]

0.010
[0.961]

0.642
[0.000]

0.429
[0.014]

0.475
[0.006]

1.073
[0.000]

Kurtosis 1.981
[0.000]

0.404
[0.326]

3.401
[0.000]

0.079
[0.846]

3.236
[0.000]

1.287
[0.000]

1.339
[0.000]

3.634
[0.000]

Q(12) 10.595
[0.477]

11.201
[0.427]

11.991
[0.364]

14.458
[0.209]

9.502
[0.576]

9.867
[0.542]

9.788
[0.549]

8.720
[0.648]

Q2(12) 12.700
[0.313]

12.796
[0.307]

12.036
[0.361]

8.999
[0.622]

10.413
[0.494]

6.207
[0.859]

9.885
[0.541]

3.497
[0.982]

ARCH(12) 1.263
[0.249]

0.915
[0.534]

0.934
[0.516]

0.709
[0.741]

0.833
[0.616]

0.522
[0.899]

0.863
[0.585]

0.247
[0.995]

Persistence
(b2kk + C2kk)

0.708 0.891 0.089 0.275 0.954 0.927 0.876 0.905

H-L 3.01 7.03 1.29 1.54 15.72 10.15 6.25 7.92
AIC -1,127.87 -926846 -2,419.84 -2,101.37
SBIC -1,082.81 -893.803 -2,376.89 -2,048.52

LR (E = 0) 7.816 - x2(2) 0.838 - x2(2) 40.683 - x2(2) 7.505 - x2(2)
Sign and Size Bias Tests

Sign Bias -0.932
[0.353]

0.225
[0.823]

-0.075
[0.940]

0.296
[0.767]

-0.695
[0.488]

0.656
[0.513]

-0.386
[0.700]

-0.229
[0.819]

Negative Size
Bias

-0.577
[0.565]

0.806
[0.422]

0.451
[0.653]

0.825
[0.411]

0.567
[0.572]

0.143
[0.886]

0.072
[0.943]

-0.096
[0.924]

Positive Size
Bias

-0.659
[0.510]

0.709
[0.479]

1.924
[0.066]

0.146
[0.884]

1.805
[0.073]

-0.550
[0.583]

1.849
[0.085]

0.075
[0.940]

Joint Test
for 3 Effects

2.071
[0.107]

0.988
[0.401]

1.839
[0.143]

0.729
[0.536]

1.132
[0.337]

0.215
[0.886]

1.376
[0.252]

0.059
[0.981]

Notes:
•	Figures in squared brackets [.] indicate exact significance levels.
• System LL is the System Log-Likelihood.
• Q(12) and Q2(12) are the Ljung-Box (1978) tests for 12th order serial correlation and heteroskedasticity in

the standardised residuals and in the standardised squared residuals, respectively.
• ARCH(12) is the Eng/e's Q982) F test for Autoregressive Conditional HeterosIcedasticity .

• The persistence coefficient is calculated as b 2kk + c ik (see footnote III).

• H-L is the Half-Life test, which measures the number of days that it takes for volatility to reduce its size
to half its original size after a shock. It is measured as 1 - [log(2) / 1og(b2kk + c2kk)], k = 1, 2.

• AIC and SBIC are the Akaike Information Criterion (1973) and Schwartz Bayesian Information Criterion
(1978), respectively.

• LR(E = 0) is the likelihood ratio statistics for the restriction E = 0. Let LLU and LLR be the maximised
value of the log-likelihood functions of the unrestricted and the restricted models, respectively. Then the
following statistic 2(LLU - LLR) is / distributed with degrees of freedom equal to the number of
restrictions placed in the model.

• The test statistics for the Engle and Ng (1993) tests are the t-ratio of b in the regressions: 14,2 = ao + bY ;II

+ co, (sign bias test); u 	ao + bY T_I sm + co, (negative size bias test); u	ao + bY  ;I- i sm+ co, (positive

size bias test), where u 	the squared standardised residuals (c 	Y	is a dummy variable taking

the value of one when E/.1 is negative and zero otherwise, and Y_1 = 1 - Y. The joint test is based on

the regression u 	ao + bl Y 	+ b2Y ,-_i £m ± b3Y t+ 1 E14 + tor. The joint test Ho: 1) 1 = b2 = b3 = 0, is an F-

test with 95% critical value of 2.60.
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6.5. COMPARISON OF HEDGE RATIOS AND HEDGE EFFECTIVENESS

6.5.1. In-Sample Hedge Ratios Comparison Results

Following estimation of the GARCH models, measures of time-varying variances and

covariances are extracted and used to compute the time-varying hedge ratios of Equation (6.4).

Figures 6.1 to 6.4 present the time-varying hedge ratios together with the conventional hedge

ratios obtained from the OLS model of Equation (6.1). It can be seen that the conditional hedge

ratio is clearly changing as new information arrives in the market. However, it should be noted

that beside the two extreme hedge ratios there are intermediate possibilities, such as a simple

rolling hedge ratio based on the last 30 days of data.

Figure 6.1. Constant vs. Time-Varying Hedge Ratios for Spot and FFA in Route 1

Figure 6.2. Constant vs. Time-Varying Hedge Ratios for Spot and FFA in Route 1A

Figure 6.3. Constant vs. Time-Varying Hedge Ratios for Spot and FFA in Route 2

OPS

OSP

0933

OOP

0050

OOP

0 PO

227



Figure 6.4. Constant vs. Time-Varying Hedge Ratios for Spot and FFA in Route 2A

The descriptive statistics of the hedge ratios are presented in Table 6.5. The conventional hedge

ratios have a higher average value than their conditional counterparts in routes 2 and 2A while

in contrast, the conventional hedge ratios have a lower average value than their conditional

counterparts in routes 1 and 1A. The results of ADF (1981) and PP (1988) unit root tests, on the

conditional hedge ratios, indicate that the hedge ratio series are stationary, implying that the

time-varying hedge ratios for these routes are mean-reverting, and thus, the impact of a shock to

the series eventually becomes negligible.

Table 6.5. Summary Statistics on Hedge Ratios
Mean SD ADF (lags) PP (4)

Route 1 VECM-GARCH-X 0.339 0.018 -3.242 (1) -2.950 (4)
Conventional 0.337 - - -

Route lA VECM-ARCH 0.516 0.098 -10.034 (0) -9.910 (4)
Conventional 0.457 - - -

Route 2 VECM-GARCH-X 0.474 0.046 -5.785 (0) -5.332 (4)
Conventional 0.508 - - -

Route 2A VECM-GARCH-X 0.492 0.056 -4.912 (1) -4.521 (4)
Conventional 0.501 - - -

Notes:
• Mean and SD are the mean and standard deviation of the series.

• ADF is the Augmented Dickey-Fuller (1981) test on the level of the series. The ADF regressions include
an intercept term; the lag length of the ADF test (in parentheses) is determined by minimising the SBIC
(1978).

• PP is the Phillips and Perron (1988) test on the level of the series; the truncation lag for the test is in
parentheses.

• The 95% critical value for the ADF (1981) and PP (1988) tests is —2.88.

As indicated by Baillie and Myers (1991) and Park and Switzer (1995) comparison between the

effectiveness of different hedge ratios is made by constructing portfolios implied by the

computed ratios each week and then comparing the variance of the returns of these constructed

portfolios over the sample using Equation (6.2). For each route, we consider five different
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hedge ratios: the hedge ratios from the VECM-GARCH and VECM-GARCH-X specifications;

the hedge ratio generated from a VECM with constant variances, estimated as a SURE system

(see Zellner, 1962); the OLS hedge of Equation (6.1); and a naive hedge by taking a FFA

position of the same size as the spot position (i.e. setting the hedge ratio equal to 1). The

variance of the hedged portfolios is compared to the variance of the unhedged position, i.e.

Var(ASi). The greater the reduction in the unhedged variance the better the hedging

effectiveness' 
9• 

We should notice that by using the variance reduction, instead of the standard

deviation reduction, as a measure of hedging performance, the true extent of risk reduction may

actually be overestimated. For reasons of consistency and comparison with the literature on

derivatives hedging, however, we use the variance reduction as a measure of hedging

performance.

The results in Table 6.6 indicate that time-varying hedge ratios perform better, in terms of

hedging effectiveness, in the time-charter routes 1 A and 2A. The ARCH model and the

GARCH-X model provide greater variance reduction of the returns of the hedged portfolio,

than the alternative models, in routes IA and 2A, respectively. In contrast, in the voyage routes

1 and 2, the simple conventional OLS model outperforms both GARCH specifications despite

the "superior" statistical properties of the latter models. Not surprisingly, we can also notice

from the same table that the naïve hedge, where spot market positions are matched dollar for

dollar in the FFA market, is the worst hedging strategy.

One final observation is that the best hedging strategy of all the constant hedge models is the

conventional model. This is expected because the conventional model explicitly solves for the

hedge ratio, which minimises the in-sample portfolio variance, and therefore, its resulting in-

sample variance must be smaller than any other constant hedge ratio strategy (Kroner and

Sultan, 1993). The evidence contrasts with the widely-held belief among practitioners and

academics that the naive approach yields greater variance reduction than the OLS model in

some financial markets (Gagnon and Lypny, 1995).

119 For the conventional hedge ratio, the in-sample variance reduction of the hedged portfolio, in Equation (6.2), is
equal to the R2 of Equation (6.1), (see Ederington, 1979).
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Table 6.6. In-Sample Hedging Effectiveness
Variance Comparisons

Route 1 Route lA Route 2 Route 2A
Unhedged 0.001320 0.003710 0.001440 0.003120
Naïve 0.002230 0.004090 0.001410 0.003110
Conventional 0.001000 0.002780 0.001010 0.002020
VECM 0.001000 0.002820 0.001010 0.002010
VECM-GARCH 0.001020 0.002710 0.001020 0.002000
VECM-GARCH-X 0.001030 0.002720 0.001010 0.002010

Variance Reduction (%)
Unhedged
Naïve -69.01 -10.20 1.88 0.28
Conventional 24.10- 24.99 30.09- 35.45
VECM 24.10 24.12 30.09 35.45
VECM-GARCH 22.67 26.87- 29.44 35.35
VECM-GARCH-X 22.29 26.61 29.66 35.86-

Notes:
• Variance is the variance of the portfolio in Equation (6.2). The results are rounded to 6 decimal places.
• Variance reduction is the variance reduction from the unhedged position from the use of the alternative

models. The results are rounded to 4 decimal places.
• * denotes the model with the greatest variance reduction.

6.5.2. Out-of-Sample Hedge Ratios Comparison Results

While the in-sample performance of the alternative hedging strategies gives an indication of

their historical performance, investors are more concerned with how well they can do in the

future using alternative hedging strategies. Park and Switzer (1995) and Baillie and Myers

(1991) further claim that a more reliable and realistic measure of hedging effectiveness is the

hedging performance of different methods for out-of-sample periods. Since theory does not

indicate how many observations should be used for estimation and for out-of-sample

forecasting, we use an initial portion of the sample for estimation and apply the remaining

sample for out-of-sample forecasting. For that, in routes 1 and lA we withhold 30 observations

of the sample (5 January 2000 to 26 July 2000, representing a period of seven months), and in

routes 2 and 2A we withhold 52 observations of the sample (3 January 2001 to 26 December

2001, representing a period of one year), and estimate the two conditional models using only

the data up to this date.

Then, we perform one-step-ahead forecasts of the covariance and the variance as follows:

E(hsF,t+i Pt) = a11a12 bilb22 hsF,t ci IC22 CS,: CF,t e1 1 e22 z

E(hF,t+i Int) a
F,r= 122 + a 2 +1702hF,t+C22262i ±e222Z

 2 (6.9)
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These are used to estimate the one-step-ahead hedge ratios as follows:

E(h* ,,Filnt)= E(hsF,t+i Int) / E(hF,t+i Int)	 (6.10)

The following week this exercise is repeated, with the new observation included in the data set.

We continue updating the models and forecasting the hedge ratios until the end of our data set.

The results for the out-of-sample hedging effectiveness are presented in Table 6.7.

Table 6.7. Out-of-Sample Hedging Effectiveness
Variance Comparisons

Route 1 Route lA Route 2 Route 2A
Unhedged 0.000741 0.001980 0.000466 0.001710
Naïve 0.001280 0.002910 0.000591 0.002170
Conventional 0.000585 0.001430 0.000324 0.001240
VECM 0.000586 0.001500 0.000324 0.001240
VECM-GARCH 0.000607 0.001350 0.000332 0.001220
VECM-GARCH-X 0.000596 0.001360 0.000346 0.001210

Variance Reduction (%)
Unhedged
Naïve -72.98 -46.43 -26.76 -27.43
Conventional 21.07. 28.18 30.46. 27.56
VECM 20.95 24.68 30.40 27.47
VECM-GARCH 18.03 32.16 28.78 28.78
VECM-GARCH-X 19.58 31.61 25.85 29.10.

Notes:
• Variance is the variance of the portfolio in Equation (6.2). The results are rounded to 6 decimal places.
• Variance reduction is the variance reduction from the unhedged position from the use of the alternative

models. The results are rounded to 4 decimal places.
• * denotes the model with the greatest variance reduction.

The VECM-GARCH-X model seems to outperform the alternative hedging strategies in route

2A (29.10%); for instance, the variance reduction achieved by the VECM-GARCH-X

compared to the OLS model is 2.42% (= 1 - 0.001210 / 0.001240). This suggests that, in route

2A, inclusion of the squared ECT in the conditional variance equation has important

implications for the determination of the hedge ratios, and thus, for hedging effectiveness. The

short-run error from the cointegrating relationship is therefore a useful variable in modelling the

conditional variance as well as the conditional mean of the series.
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In route 1A, in line with the in-sample results, the highest variance reduction is achieved by the

VECM-ARCH model (32.16%). In routes 1 and 2 the OLS hedge performs better than the

GARCH models in reducing the variability of the returns of the hedged portfolio. Myers (1991)

and Garcia et al. (1995) also report that there are no gains in variance reduction with use of

time-varying hedge ratios in the wheat and soybean futures markets, respectively. Tong (1996)

finds that in the case of foreign-exchange risk hedging, dynamic hedging is not substantially

better than static hedging. He attributes this to the rather stable relationship between the spot

asset and the direct hedging instrument. This suggests that the additional complexity of

specifying and estimating GARCH models may be justified for some commodities but not in

others.

Overall, the results, from both in- and out-of-sample hedging effectiveness, reveal that in

voyage routes (1 and 2) the relationship between spot and FFA prices is quite stable and market

agents can use simple first-difference regression models in order to obtain optimum hedge

ratios. In contrast, in time-charter routes (1A and 2A), it seems that the arrival of new

information affects the relationship between spot and FFA prices, and therefore, time-varying

hedging models should be preferred. Shipowning companies with vessels operating worldwide

or trading companies that transport commodities to different parts of the world can use FFA

contracts to reduce their freight rate risk, since the variability of their cash-flows can be

explained by the fluctuations of the spot routes.

Despite the mixed evidence provided in favour of the GARCH-based hedge ratios in the

forward freight market, all the proposed hedging strategies fail to eliminate a large proportion

of the variability of the unhedged portfolio. The highest variance reduction is evidenced in route

IA (32.16%) and the lowest in route 1 (18.03%). The reduction in the out-of-sample portfolio

variances by the GARCH specifications relative to the OLS hedges range from 5.60% in route

1A to 2.42% in route 2Al20 . In the freight futures (BIFFEX) market, Kavussanos and Nomikos

(2000a) report that the greatest variance reduction is 23.25% in route 1A, and the percentage

variance improvements of GARCH hedges, relative to the OLS, are ranging between 5.7% and

120 We should notice that, our results may be sensitive to the hedging horizon examined (one week). It is well-
known that the in-sample hedging effectiveness tends to increase as the investment horizon increases (see footnote
104). This may suggest that our results could be different had we investigated longer hedging horizons (two or
three weeks). However, due to the recent creation of the FFA market, a hedging horizon longer than one week
could give us an insufficient number of observations.
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0.43%. Furthermore, they argue that this is because BIFFEX used to be a cross-hedge instead of

a route-specific instrument like FFA contracts. However, the current study shows that route-

specific forward freight contracts, despite the fact that provide better hedging opportunities than

the BIFFEX contract, fail to reduce freight rate risk to the extent found for other markets in the

literature (see Gagnon and Lypny, 1995; Bera et al., 1997; and Koutmos and Pericli, 1999,

amongst others).

Despite the trading preferences of participants in the shipping markets, who are now

increasingly use FFA contracts, the freight derivatives markets are characterised by a modest

trading activity, which can consist a major reason for the poor hedging performance of the

investigated contracts. Due to the fact that it is an OTC market, FFA brokers report their FFA

quotes based on actual deals, but in the absence of an actual trade they report their expert view

(expectations) of what the rate would be if a trade had been concluded. Thus, it may be that in

some cases, without any actual trades for several days, the brokers' FFA estimates are not

efficient enough to predict the future spot rates. Furthermore, spot and FFA prices are not linked

by a cost-of-carry arbitrage relationship, and therefore, are free to deviate from each other more

easily than stock index and stock index futures prices for example. This could provide another

explanation about the low hedging effectiveness of the FFA contracts, as shocks in the system

could decrease more easily the correlation between changes in the FFA and spot prices.

Awareness and increased liquidity of freight derivatives trades may promote the hedging

efficiency of the contracts. However, the fact remains that the observed hedging effectiveness is

still small, and may not be sufficient to induce market agents to begin to use the market for

hedging purposes.

As a policy action, the FFABA, the FIFC and the Baltic Exchange should: first, advertise more

this freight derivatives market through marketing campaigns in order to attract the much needed

volume; and second, monitor better the way that FFA brokers are conducting their FFA trades

in order to verify that the daily FFA quotes are the best available (like a price discovery

mechanism) before they are published to market participants.
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6.6. CONCLUSION

In this chapter the hedging effectiveness of the forward freight contracts in the voyage routes 1

and 2 and in the time-charter routes 1A and 2A has been examined. The data sets that are used

consist of weekly spot and FFA prices in panamax routes 1 and 1A from 16 January 1997 to 31

July 2000 and weekly spot and FFA prices in panamax routes 2 and 2A from 16 January 1997

to 31 December 2001. Spot price data are from the Baltic Exchange. FFA price data for the

panamax routes are from Clarkson Securities Ltd. The fact that cointegration exists between

spot and FFA prices in all routes is consistent with the literature (see Kavussanos and Nomikos

2000a, 2000b).

Both in-sample and out-of-sample hedging performances are examined for each FFA contract,

considering alternative methods, both constant and time-varying, for computing more effective

hedge ratios. Results from in- and out-of-sample tests indicate that time-varying hedge ratios

marginally outperform alternative specifications in reducing market risk in the time-charter

routes 1A (VECM-ARCH model) and 2A (VECM-GARCH-X model). In contrast, the results

reveal that the simple first-difference OLS regression is the preferred method for estimating

hedge ratios in voyage routes 1 and 2. Moreover, the hedging effectiveness varies from one

freight market to the other. This is because freight prices, and consequently FFA quotes, are

affected by different trading and regional economic conditions. Market agents can benefit from

this result by developing appropriate hedge ratios in each route, and thus, controlling their

freight rate risk more efficiently.

However, the extent of risk reduction is less than that found in other commodity and financial

markets in the literature. The currently low trading volume, the way that FFA brokers estimate

their FFA quotes, and the lack of the cost-of-carry arbitrage relationship of storable assets that

keeps spot and derivatives prices close together may provide explanations about the finding that

spot price fluctuations of the investigated trading routes are not accurately tracked by the FFA

prices.
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CHAPTER 7- THE RELATION BETWEEN BID-ASK SPREADS AND

PRICE VOLATILITY IN THE FORWARD FREIGHT MARKET

7.1. INTRODUCTION

Transactions costs are usually ignored in asset pricing theories but are an important

consideration in investors' investment decisions. One significant cost is the bid-ask spread

(BAS). Brokers match buy and sell contracts and the price charged for this service is known as

the bid-ask spread; the difference between the buying (bid) and selling (asked) price per

contract. This normally is regarded as compensation to brokers for providing liquidity services

in a continuously traded market. The mark-up charged by brokers in the financial markets, as in

any other market, is a function of the operational efficiency of the brokers and the nature of the

product. Tinic and West (1972) argue that there is a positive relationship between spreads and

price volatility on the grounds that the greater the variability in price, the greater the risk

associated with performance of the function of the brokers. Intuitively, unambiguous good or

bad news regarding the fundamentals of the price of the asset should have no systematic effect

on the spread. Both the bid and the ask prices should adjust in the same direction in response to

the traders receiving buy or sell orders that reflect the particular news event. However, greater

uncertainty regarding the future price of the asset, as associated with greater volatility of the

price of the asset, is likely to result in a widening of the spread (Bollerslev and Melvin, 1994).

The nature and the behaviour of the BASs have been examined thoroughly in the equity (see

McInish and Wood, 1992), foreign exchange (see Bollerslev and Melvin, 1994; and

Bessembinder, 1994) and bond markets (see Kalimipalli and Warga, 2000). However,

knowledge of derivatives spreads is limited, presumably due to the lack of information on bid-

ask quotes (with the exception of the studies of Laux and Senchack, 1992; Ma et al., 1992;

Wang et al., 1994; Ding, 1999; and Wang and Yau, 2000, amongst others). Transactions costs

related to derivatives is an important issue because the low cost of trading is often cited as one

rationale for the existence of derivatives markets, high transactions costs will also affect market

participants' ability to trade quickly and cheaply and regulators will need to consider how their

policy decisions may impact the volatility of the market, and consequently, the BASs. The
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purpose of this chapter is to investigate what impact an anticipated increase in FFA price

volatility will have on transactions costs in terms of BAS. Extant literature that provides some

possible answers to the previous question includes those studies on the relationship between

BASs and price volatility (see for example, Tinic and West, 1972; Benston and Hagerman,

1974; Stoll, 1978; Copeland and Galai, 1983; and McInish and Wood, 1992, amongst others).

In the OTC FFA market, there is no official organised market, but there is a network of

shipbrokers who act as FFA brokers, and transactions occur only when buy and sell orders are

matched. The FFA brokers provide the market by quoting daily bid and ask prices

simultaneously against which market orders can be executed. In the trading process, interest to

buy or sell FFA contracts is send through the telephone or a computerised order-entry system

by the FFA brokers to all potential traders. By receiving the replies, the FFA brokers try to

match the bid and the ask prices by continuously negotiating with the two parties. If an

agreement is reached then the contract is fixed. It should be noted that the forward freight

market remains a broker market rather than one in which there are dealers (it is too expensive

for individual market-makers to come but not large enough to attract the big professional ones).

Enron used to be a major FFA dealer in the past but after its default, during December 2001, the

market is cautious in trusting another market-agent. However, the new initiative from IMAREX

(described in Chapter 1) is currently following the structure of a dealers market. Moreover, the

daily bid and ask prices in the FFA market are directly observable, and therefore, there is no

need to estimate them as in other derivatives markets. Several procedures have been proposed

for the estimation of the BAS (and its components) when it is not directly observable (see for

example, Bhattacharya, 1983; Roll, 1984; Choi et al., 1988; Thompson and Waller, 1988;

George et al., 1991; Laux and Senchack, 1992; and Chu et al., 1996). For a formal discussion of

the alternative BAS estimators see Ding (1999).

This chapter contributes to existing literature in a number of dimensions. First, we examine the

relationship between BAS and price volatility in the FFA market, which offers a unique and

directly observable BAS data set. Second, we employ a two-step modeling specification in

order to ensure robust inferences on the relationships between variables. In the first-step the

GARCH specification is used for modeling the volatility of the FFA prices. This specification is

consistent with a return distribution which is leptokurtic (speculative prices), and it also allows

for a long-term memory (persistence) in the variance of the conditional return distributions. The
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GARCH model is known to be capable of mimicking observed statistical characteristics of

many time-series of return on financial assets (see Bollerslev, 1987 and Baillie and Bollerslev,

1989). In the second-step we investigate if the expected conditional volatility (led by one-day)

has a significant positive relationship with the current BAS using the General Method of

Moments (GMM) approach (Hansen, 1982). Third, volatility in the several markets of the

shipping industry are subject to sudden movements which are, at best, only partially

predictable. A better understanding of the movements of FFA prices, and the consequent effect

in transactions costs, may provide important information and insights for market agents about

the timing of trades, the sentiment and the future direction of the FFA market. For example, a

widening of the BAS may discourage market agents from participating and trading as it may

indicate a period of high volatility. More specifically, traders, speculators, hedgers, and

arbitrageurs alike are interested in extracting information from these variables to know how

their reaction to new information can be used in predicting future prices. From a policy

perspective, the issue is important because of its implications for the analysis of market

liquidity and its relationship with risk. Using BAS as a proxy of market liquidity, a market can

be considered to be liquid when large transactions can be executed with a small impact on

prices (Galati, 2000). Policy makers and regulators (FFABA and FIFC) are interested in

knowing how changes in these variables impact the market activity.

The remainder of this chapter is organised as follows. Section 7.2 presents the literature review.

Section 7.3 discusses the research methodology. A description of the data and some preliminary

statistics are presented in section 7.4. The empirical results are presented in section 7.5. Finally,

section 7.6 summarises this chapter.

7.2. LITERATURE REVIEW

Demsetz (1968) characterises the BAS as the cost of obtaining immediacy; the right to transact

without significant delay. Microstructure theory implies that BASs must cover three costs

incurred by providers of immediacy: inventory carrying costs (see Stoll, 1978), asymmetric

information costs (see Bagehot, 1971; and Copeland and Galai, 1983), and order processing

costs (see Demestz, 1968; and Tinic, 1972). The inventory component should be the cost of the

market-maker of maintaining open positions or demanding liquidity from other market
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participants, which is positively related to risk. According to this view, volatility increases price

risk and thereby pushes up spreads (Boilerslev and Melvin, 1994). The asymmetric information

costs component may be positively correlated with price volatility, and competition would

affect the total size of the spread inversely (Bessembinder, 1994). For a comprehensive guide to

the most influential theoretical work in market microstructure literature see O'Hara's (1995)

study.

Although there are differences in the theoretical arguments, all the above empirical studies

conclude that BASs are positively related to price volatility. In general these studies report a

positive relationship between price volatility and BASs when price changes were measured

over short intervals (e.g., daily). The relationship became insignificant for price changes

measured over longer intervals (e.g., monthly). Of the three different types of costs, the

asymmetric information cost is the most relevant in the FFA market. Order processing costs are

relatively low and FFA brokers do not sustain any inventory carrying costs, as they do not hold

inventories of FFA contracts. Copeland and Galai (1983) argue that the BAS must be wider to

protect brokers from the costs of providing liquidity to informed traders, which can affect the

brokers unfavorably. In this respect, the BAS may vary with both the timing of information

arrival and the uncertainty of the information flow. Glosten and Milgrom (1985) and Hasbrouck

(1988) also show that the BAS might be positively related to the amount of information coming

to the market.

If information arrives sequentially, the more informed participants will trade first and the less

informed participants will trade later. Because informed traders who acquire positive (negative)

information are willing to bid (ask) a higher (lower) price to buy (sell), the spread may change

according to the trading behaviour of the parties who possess private information. The trader's

perceived exposure to private information determines how he will respond to large versus small

orders and to arrivals of market-generated and other publicly available information. With regard

to the uncertainty of information flows, it has been argued that less informed traders seek

protection from the generation and ownership of private information in the market by requiring

a higher risk-premium (Glosten and Milgrom, 1985; and Glosten and Harris, 1988). This

adverse selection hypothesis suggests that the level of BASs should be related to the uncertainty

of the information flow in the market. As the broker attributes a positive probability to the order

being generated from informed traders, the BAS widens, and therefore, may signal the arrival of
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new information. From a different perspective, Saar (2000) investigates the role of demand

uncertainty, i.e. uncertainty about preferences and endowments of the investors' population, in

introducing information content to the order flow. Saar (2000) shows that demand uncertainty

increases both the BAS and price volatility.

In the equity market, McInish and Wood (1992) report that NYSE equity BAS widen (decrease)

with underlying volatility (trading volume and trade size) over time. Wang et al. (1994), using

direct estimates of the BAS, examine the intraday relationship of BASs and price volatility in

the S&P 500 index futures market and control for information effects. They find that BASs and

price volatility are jointly determined and positively related. Furthermore, they demonstrate that

OLS estimates of the BAS equation are inconsistent if the standard deviation of transaction

price changes is found in the regression.

In the foreign exchange market, Fieleke (1975) reports a positive relationship between the rate

of change in the exchange rate and the cost of transacting, and Overturf (1982) finds a positive

relation between BAS and price volatility measured by its standard deviations. Overturf (1982)

further suggests that the uncertainty regarding the rate of change in exchange rates tends to

widen the BAS. Boothe (1988) finds that various measures of risk and transactions volume have

an impact on BASs, and in particular he provides evidence for a positive relationship between

the level of uncertainty regarding futures prices and BASs. Bollerslev and Melvin (1994)

examine the nature of the relationship between BAS for exchange rate quotes and the volatility

of the underlying exchange rate process. Using a two-step process, they obtain the GARCH

estimates of the underlying volatility of the exchange rate process and then incorporate the

volatility estimates as inputs into an ordered probit model. They report a positive relationship

between latent volatility and observed BAS on the deutschemark/dollar exchange market. Using

a similar framework, Gwilym et al. (1998) find a positive relationship between BAS for stock

index options traded on LIFFE market and the volatility of the underlying stock market index.

Bessembinder (1994) also finds that BAS in the foreign exchange market increases with

GARCH-based return volatilities and proxies for liquidity costs.

Ding (1999) investigates intra-day and daily determinants of BASs in the foreign exchange

futures market and argues that the number of transactions and the volatility of the prices are the

major determinants. The number of transactions is negatively related to the BAS, whereas
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volatility in general is positively related to the BAS. Galati (2000) reports that the correlation

between trading volumes and volatility is positive during normal periods but turns negative

when volatility increases sharply. Galati (2000) argues that volatility and BAS are positively

correlated, as suggested by inventory cost models, but contrary to the prediction of these

models, he does not report evidence of a significant impact of trading volumes on BAS.

In the bond market, Kalimipalli and Warga (2000) using an Autoregressive Conditional

Duration (ACD) model that provides input for an ordered probit model for observed BAS, find

a significant positive (negative) relationship between latent volatility (trading volume proxy)

and observed BAS. When repeating the exercise using a GARCH specification, instead of the

ACD model they report that their findings are robust to alternative specifications.

Another strand of research on the relationship between BAS and price volatility concentrates on

the trading hours of derivatives markets. For example, Amihud and Mendelson (1987)

demonstrate that the existence of a positive relationship at the closing hour of the New York

Stock Exchange (NYSE). Brock and Kleidon (1992) show that periodic market closure causes

greater transactions demand at the open and close of trading. Traders have a greater need to

revise portfolios at the opening because they could not trade during the night while information

continued to develop. Whereas, near the close, traders are revising their portfolios in

anticipation of being unable to trade overnight, again while information continues to arrive.

This greater transactions demand at open and close increases asks and lowers bids (widens the

spread), so that the spreads follow a U-shaped pattern throughout the day, and increases trading

activity (volume). Although, price volatility is not addressed explicitly in this theory, Ma et al.

(1992) note that the theory implies greater divergence of beliefs during non-trading hours,

greater information disparity among traders during the opening period, and higher price

volatility in the opening period. Subrahmanyam (1989) and Foster and Viswanathan (1994)

predict higher BASs at open and close because the presence of informed traders increases the

adverse information component of the spread.
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7.3. RESEARCH METHODOLOGY

Most of the previous empirical studies have concentrated on explaining the determinants of

BASs utilising two classes of factors. The first class includes: (i) activity variables such as

volume and order size; (ii) various measures of risk; (iii) competition in market-making, such as

the numbers of brokers trading in the asset; (iv) the number of transactions; and (v) institutional

ownership. The second class of factors is related to the features of exchanges and the financial

characteristics of assets. Extensive literature reviews are provided by Benston and Hagerman

(1974), Hasbrouck (1988), Stoll (1989), and McInish and Wood (1992), amongst others.

The measurement of price volatility is a difficult task, and many different measurement

procedures have been employed in the literature. These can be subdivided into those which

have used historical volatility, and those which have used a forecast of the volatility. The latter

are those which use the implied volatilities derived through option prices. The definition of

historical price volatility employed in any particular study depends on the frequency of the

available observations (i.e. transactions data, closing prices) and the length period for which the

volatilities are to be computed (i.e. days or months). It is often taken as the variance of the

logarithm of the daily price relatives. This has the advantage that, as the level of prices alters

over time, the variance of the logarithm of the price relatives is more likely to be stationary than

is the variance of alternative volatility measures (Board and Sutcliffe, 1990).

A shortcoming of the earlier studies is the way price volatility is computed. Board and Sutcliffe

(1990) have shown that studies based on historical estimates of volatility are sensitive to the

measures of volatility used. However, recent studies indicate that most of the financial price

series exhibit non-linear price dependencies. For example, it is possible for FFA prices to be

linearly unrelated and yet be non-linearly dependent. The general evidence suggests that

dependencies work through the conditional variance (and other even-ordered moments), rather

than being a result of certain misspecified first-order dynamics (Engle and Rothschild, 1992).

The applicability of traditional volatility measures without utilising a procedure that considers

these conditions would provide inconsistent estimates in the current study.
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The ARCH model of Engle (1982) and the GARCH model of Boilerslev (1986) can capture

such time variation in return distributions. In the ARCH model, the conditional error

distribution is normal, but the conditional variance is a linear function of past squared errors.

The GARCH process allows for a more flexible lag structure, as the conditional variance is a

linear function of past squared errors and past variances. There is a great deal of evidence in

various financial markets that the conditional variance from ARCH class of models provides a

superior estimate of spot price variability (see Bollerslev et al., 1992 for a review). ARCH

processes allow the examination of the structure and the characteristics of volatility, explicitly

address the issue of time dependence in the variance, and therefore, overcome problems

associated with heteroskedasticity in the data.

In order to derive an estimate of the FFA volatility, the following AR-GARCH(1,1) model is

employed:

AF, =	+	Et	et iid(0,h,)
	

(7.1a)

ht ao + a1h, 1 + 13.6,2	 (7.1b)

where Ft is the natural logarithm, of the daily FFA price changes (average mid-point of the bid-

ask quotes), A is the first-difference operator, BAS, is the difference of the natural logarithm of

the ask quote minus the natural logarithm of the bid quote (1n(Askt) — ln(Bid,)) 121, and Et are the

residuals that follow a normal distribution with mean zero and time-varying variance, ht.

Bollerslev (1987) shows that GARCH(1,1) adequately fits many economic time-series122. After

ensuring that the model is well-specified, following Bessembinder (1994) and Galati (2000), we

construct one-step ahead conditional volatility estimates (ht+. 1 ). Following a common practice in

the literature, the GARCH model is fitted on the entire time-series, thus yielding in-sample

121 Models are also estimated using the percentage BAS, defined as (Ask-Bid)/{(Ask+Bid)/2}. However, the
results are qualitatively unaffected, and thus, in the ensuing analysis the models using the differenced BAS are
reported.
122 In order to determine the best GARCH specification several other specifications are used, such as the symmetric
GARCH-M (Engle et al., 1987), the asymmetric E-GARCH (Nelson, 1991) and the E-GARCH-M, but yield
inferior results judged by the evaluation of the log-likelihood and in terms of residual specification tests (not
reported).
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forecasts. Ideally, volatility implied in FFA option prices could be used, since there is evidence

in other markets that it outperforms GARCH models in providing forecasts of future volatility

(Jorion, 1996). However FFA option contracts are currently not very liquid.

To analyse the relationship between expected volatility and current BAS, the BASs are

regressed against variables that represent risk, information, a dummy variable that serves to

measure non-trading intervals, and a lagged BAS. To evaluate the importance of the approach

of non-trading intervals in determining BASs, following Bessembinder (1994), we include a

non-trading indicator variable set equal to one on Fridays and on the last trading day before

holidays celebrated in UK. However, the results yield insignificant coefficients of the dummy

variable in all routes, and therefore, are excluded from the ensuing analysis:

BAS, = Po +	+132BASm + f33AF1 + u,	u, iid(0,111)	 (7.2)

where risk is defined as the one-step ahead conditional volatility (h,+1) from a well-specified

AR-GARCH(1,1) model, information effects are evaluated by the first-difference FFA price

series (AF,) and BAS, is defined as previous. Ding (1999) proposes an alternative method to

evaluate information effects by using a price dummy variable, calculated as follows: First, the

median transaction price is identified from the entire time-series. The FFA price of each day is

then compared to the overall median price. If the FFA price is greater than the median price,

then the dummy variable is assigned a value of one. Otherwise, a value of zero is assigned.

However, Ding (1999) admits that the first-difference price series, rather than the price dummy,

may generally provide more information. Thus, only the results containing the first-difference

price series are reported here.

Two main problems occur when examining the relationship between volatility and BAS. First,

it is readily seen that the use of BAS will result in simultaneity bias leading to inconsistent OLS

estimates. In order to overcome the simultaneity problem, Harvey (1989) points out that lagged

values of the endogenous variables should be used because they are classified, together with

exogenous variables, as predetermined. Therefore, in order to estimate the model, instruments

are required for BAS,, and lagged BAS is used for this purpose. The second difficulty concerns

the presence of heteroskedasticity implying inefficient standard errors. Thus, the model is
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estimated via GMM as proposed by Hansen (1982). The GMM approach allows an instrument

to be used for BAS, therefore, avoiding any simultaneity bias. It also has the additional

advantage of yielding heteroskedasticity and autocorrelation consistent estimates (as proposed

by Newey and West, 1987) in the process. The use of the first-difference FFA price series in the

model assists in examining the relationship between informational uncertainty and BASs. If

high price levels result from informed trading, then the relationship between price levels and

BASs should be positive (Copeland and Galai, 1983). In most empirical studies of BASs a

positive price levels-BAS relation has been found (Stoll, 1978). These studies generally

attribute their findings of large broker spreads to the risk of adverse selection or uniformed

trading. A negative relationship lends support to the presence of scale economies in trading in

the FFA market. When prices are high, the dollar volume of transactions rises. This may lead to

a lowering of brokers' required BAS to cover their costs (McInish and Wood, 1992).

7.4. DESCRIPTION OF DATA AND PRELIMINARY STATISTICS

The data sets that are used consist of daily FFA and BAS prices in panamax Atlantic routes 1

and 1A from 16 January 1997 to 31 July 2000 and daily FFA and BAS prices in panamax

Pacific routes 2 and 2A from 16 January 1997 to 10 August 2001. All price data are from

Clarkson Securities Ltd. FFA price series are transformed into natural logarithms. FFA prices

are always those of the nearby contract. To avoid thin markets and expiration effects, however,

we rollover to the next nearest contract one week before the nearby contract expires as there is

sufficient liquidity in the nearby contract up to a few days before its maturity date. Summary

statistics of the daily logarithmic first-difference FFA prices and of the BAS prices for the four

panamax routes are presented in Table 7.1. Jarque-Bera (1980) tests indicate departures from

normality for FFA and BAS prices in all routes. The Ljung-Box Q(24) and Q2(24) statistics

(Ljung and Box, 1978) on the first 24 lags of the sample autocorrelation function of the raw

series and of the squared series indicate significant serial correlation and existence of

heteroskedasticity, respectively. After applying the ADF (1981) and PP (1988) unit root tests on

the daily log first-difference FFA price series, the results indicate that in all routes the log first-

difference FFA price series are stationary. The results of the unit root tests on the levels of the

BAS series indicate that all BAS price series are stationary.
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Table 7.1. Descriptive Statistics of Logarithmic First-Difference FFA Prices and
BAS Prices (1n(Aski) - In(Bidi))

Panel A: Route 1 FFA and BAS Price Series (16/01/97 to 31/07/00)
N S.D. Skew Kurt Q(24) Q2(24) J-B ADF (lags) PP(6)

FFA 896 0.0239 -0.151 5.429 44.466 34.183 1,096.7 -31.722 (0) -32.070
BAS 897 0.0441 1.103 4.327 3,236.0 2,698.3 247.548 -8.773 (0) -8.517

Panel B: Route 1A FFA and BAS Price Series (16/01/97 to 31/07/00)
N S.D. Skew Kurt Q(24) Q2(24) J-B ADF (lags) PP(6)

FFA 896 0.0301 -0.037 4.708 35.083 50.891 822.28 -29.547 (0) -29.936
BAS 897 0.0606 0.828 3.813 5,689.8 5,506.7 127.294 -5.516 (2) -6.792

Panel C: Route 2 FFA and BAS Price Series (16/01/97 to 10/08/01)
N S.D. Skew Kurt Q(24) Q2(24) J-B ADF (lags) PP(6)

FFA 1,150 0.0178 0.285 12.711 45.426 56.827 4,534.59 -31.632(0) -31.727
BAS 1,151 0.0105 1.369 6.208 2,452.3 1,420.4 852.907 -12.979 (1) -16.837

Panel D: Route 2A FFA and BAS Price Ser'es (16/01/97 to 10/08/01)
N S.D. Skew Kurt Q(24) Q2(24) J-B ADF (lags) PP(6)

FFA 1,150 0.0278 0.984 15.266 48.906 50.905 7,394.89 -31.084 (0) -31.176
BAS 1,151 0.0381 1.534 6.499 8,170.1 7,666.8 1,038.29 -7.113 (2) -9.628

Notes:
• All series are measured in logarithmic first differences.
• N is the number of observations.
• S.D. is the standard deviation of the series.
• Skew and Kurt are the estimated centralised third and fourth moments of the data; their asymptotic

distributions under the null are Al T	N(0,6) and -s/T ( cia -3) - N(0,24), respectively.
• Q(24) and Q2(24) are the Ljung-Box (1978) Q statistics on the first 24 lags of the sample autocorrelation

function of the raw series and of the squared series, respectively; these tests are distributed as x2(24).
• J-B is the Jarque-Bera (1980) test for normality, distributed as x2(2).
• ADF is the Augmented Dickey Fuller (1981) test. The ADF regressions include an intercept term; the lag-

length of the ADF test (in parentheses) is determined by minimising the SBIC.
• PP is the Phillips and Perron (1988) test; the truncation lag for the test is in parentheses.
• The 5% critical value for the ADF (1981) and PP (1988) tests is -2.88.

The BASs are presented in Figures 7.1 to 7.4 for routes 1, 1A, 2, and 2A, respectively,

providing a visual representation of the transactions costs induced by the FFA brokers. From

the figures we can observe that the maximum BAS for route 1 is $0.25 per ton, for route 1A is

$0.35 per day, for route 2 is $0.09 per ton, and for route 2A is $0.29 per day. Moreover, after

about September 1999 the BASs for routes 2 and 2A start to narrow significantly. This and the

small BAS figures in route 2 can be explained by the fact that routes 2 and 2A concentrate most

of the FFA trading interest in the panamax sector. Thus, FFA brokers can report narrow BASs

as shipowners and charterers agree to fix FFA contracts after a few negotiations only. Figures

7.5 to 7.8 show the historical volatility (standard deviation) of daily percentage FFA price

changes, computed over moving windows of 20 days, and the BASs for routes 1, 1A, 2, and

2A, respectively. From the figures we can observe a positive relationship between volatility and

BAS in most cases, which is clearer and more consistent in routes 2 and 2A. However, formal

empirical analysis is needed for the significance of the above inference.
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Figure 7.1. Route 1 BAS Series; Sample Period 16/01/97 to 31/07/00

Figure 7.2. Route 1A BAS Series; Sample Period 16/01/97 to 31/07/00

Figure 7.3. Route 2 BAS Series; Sample Period 16/01/97 to 10/08/01

Figure 7.4. Route 2A BAS Series; Sample Period 16/01/97 to 10/08/01

0350

0300

0.250
cd's 0200
Qn 0.150

0.100

0050

0 000
F,.
C?
-.'

OA Fir	rr" - , „ 1
—

I,-
C?
E

I,-
Cn
2

I,-
Cr.)

r--
'7)
0)

r--	oo
C?	Cr ?
2-

oo	co	oo	co	co	a,	0)	Cr)	Cr)	0)	0)	0	0	0	0	0	0	••••

C?	Cr .)	Cr? Cr)	C?	'7.)	C?	a.)	e?	0)C P	9	9	9	9	9	°	9
i*,	D'	5	-.ii	..1.'	3	t	r$r 3	;- 

21	
$	r,	t 3	t	2-2 2	0)- 2 2 " u)	- 2 2 'co	'2-

..-	•-	 ..-9 ° 9
45	fri 3

2 2 '

246



Figure 7.5. Route 1 BAS and Historical Volatility; Sample Period 16/01/97 to 04/07/00
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Figure 7.7. Route 2 BAS and Historical Volatility; Sample Period 16/01/97 to 16/07/01
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Figure 7.8. Route 2A BAS and Historical Volatility; Sample Period 16/01/97 to 16/07/01
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7.5. EMPIRICAL RESULTS

In order to model the volatility of the FFA prices, AR-GARCH(1,1) models are estimated. The

most parsimonious specification for each model is estimated by excluding insignificant

variables. The QMLE estimates of the GARCH models of FFA rates for each route are

presented in Table 7.2. The diagnostic tests, on the standardised residuals and squared

standardised residuals, indicate that models are well-specified with no asymmetries and there

are no linear and non-linear dependencies, respectively. The estimated implied kurtosis

indicates the presence of excess kurtosis in the standardised residuals in all investigated routes.

As a result the Jarque-Bera (1980) test rejects normality in all routes.

In routes 1 and 1A the coefficients of the lagged variance (ai ) are significant, suggesting that

there is a persistence effect in price volatility, while the coefficients of the lagged error terms

(13 1 ) are insignificant. In routes 2 and 2A the coefficients of the lagged variance and the lagged

error terms are significant at conventional significance levels. The persistence estimates of the

conditional volatility reveal the presence of a near-IGARCH process in all trading routes, with

persistence estimates close to but slightly less than unity (Bollerslev, 1987).

After estimating the GARCH(1,1) models and ensuring that they are well-specified, we extract

one-step ahead conditional volatility estimates (11+1) for each trading route. The results of ADF

(1981) and PP (1988) unit root tests on the daily one-step ahead conditional volatility estimates

indicate that the conditional volatility series are stationary in all routes (not reported).

The BASs are then regressed against one-step ahead conditional volatilities, current first-

difference FFA returns, and lagged BAS, to investigate the relationship between BAS and

expected volatility. The results from the GMM regressions are presented in Table 7.3, panel A.

The diagnostic tests indicate the existence of serial correlation and heteroskedasticity in most

cases, and thus, justify the use of the GMM approach. The adjusted R-squares of 0.711 for route

1, 0.782 for route 1A, 0.407 for route 2, and 0.683 for route 2A show that respectively, 71.1%,

78.2%, 40.7% and 68.3% of the variation in daily BASs are explained by the independent

variables.
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Table 7.2. GARCH Model Estimates of the FFA Conditional Volatility
Panel A: Coefficient Estimates

p-I

AF, = 90 + IP,AFpi + et	;	Et - iid(0,hr)	 (7.1a)
m

h, = ao + a1 hr-1+13ie t2 i	 (7.1b)

Route 1
(16/01/97-31/07/00)

Route lA
(16/01/97-31/07/00)

Route 2
(16/01/97-10/08/01)

Route 2A
(16/01/97-10/08/01)

Mean Equation

(Po 0.012 (0.972) 2.2E-05 (0.021) -0.0002 (-0.425) -0.0004 (0.512)

(Pi -0.079	(-2.541) - 0.065. (2.339) 0.099 (3.638)
Variance Equation

ao 1.1E-05 (0.637) 5.2E-5 (0.844) 1.7E-06 (0.964) 7.1E-06 (1.142)
al 0.969- (28.715) 0.925	(12.391) 0.981	(93.471) 0.970 (67.859)

RI 0.011 (1.362) 0.018 (1.139) 0.013- (1.997) 0.021' (2.459)

Panel B: Residual Diagnostic
Route 1 Route lA Route 2 Route 2A

LL 2,079.5 1,876.7 3,032.7 2,532.7
Skewness 0.004 0.304 0.422 1.207
Kurtosis 13.260 11.275 13.704 16.567

J-B 3,925.8 2,570.4 5,519.8 [0.000] 9,090.9
Q(12) 15.550 [0.159] 10.056 [0.611] 15.288 [0.170] 19.313 [0.056]

Q2( 12) 5.046 [0.929] 12.945 [0.373] 4.165 [0.965] 5.131 [0.925]
ARCH(5) 0.259 [0.935] 0.408 [0.843] 0.242 [0.944] 0.712 [0.615]
ARCH(12) 0.386 [0.969] 1.096 [0.359] 0.339 [0.982] 0.417 [0.957]
Persistence 0.980 0.943 0.994 0.991

UV 0.000425 0.000772 0.000283 0.000211
Sign Bias -0.545 [0.586] -1.115 [0.265] -0.924 [0.356] -0.635 [0.525]
Negative
Size Bias

0.627 [0.531] 0.562 [0.575] 0.352 [0.725] 0.298 [0.766]

Positive Size
Bias

0.270 [0.787] -0.086 [0.932] -0.565 [0.572] -0.272 [0.786]

Joint Test for
3 Effects

0.161 [0.922] 0.496 [0.685] 0.623 [0.601] 0.215 [0.886]

Notes:
• All variables are transformed in natural logarithms.
• Figures in parentheses (.) and in squared brackets [.] indicate t-statistics and exact significance levels,

respectively. * and ** denote significance at the 5% and 10% levels, respectively.
• The GARCH process is estimated with the QMLE. The BHHH algorithm maximised the QMLE.
• LL is the Log-Likelihood. J-B is the Jarque-Bera (1980) normality test.
• Q(12) and Q2(12) are the Ljung-Box (1978) tests for 12th order serial correlation and heteroskedasticity in

the standardised residuals and in the standardised squared residuals, respectively.
• ARCH(.) is the Engle's (1982)F-test for Autoregressive Conditional Heteroskedasticity.
• Persistence is defined as the degree of convergence of the conditional volatility to the unconditional

volatility after a shock and is calculated as al +
• UV is the unconditional volatility estimate of the GARCH models, measured as (a0) / (1-a1-131).

• The test statistics for the Engle and Ng (1993) tests are the t-ratio of b in the regressions: eo- = a0 +

al l'	+ w, (sign bias test); ecr; = ao + al Y	+ cot (negative size bias test); ea = ao + alY

(positive size bias test), where ecr‘2 are the squared standardised residuals (E21/a). Y_1 is a dummy

variable taking the value of one when Ei_1 is negative and zero otherwise, and Yi+ i = 1 - Y . The joint

test is based on the regression eo-i2 = ao + al Y	+ a2Y e, + a3Y ;E t c,. 1 + co,. The joint test Ho: al = a2 =
a3 = 0, is an F test with 95% critical value of 2.60.
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Consistent with the findings of the literature, the coefficient on the GARCH variance forecast

(13 I) is positive and statistically significant in routes 1, 2, and 2A, suggesting that expected

volatility has predictive power in determining BASs through its effect on asymmetric

information costs. This result was expected, as anticipated large price changes may be

correlated with the presence of information traders, and FFA brokers might increase the BAS to

compensate for expected losses when trading with informed traders. In terms of magnitude, the

elasticity of BASs with respect to price volatility is higher in route 1 (20.409) than those in

routes 2 (13.517) and 2A (5.839). These results are in accordance with Figures 7.1 to 7.4, which

indicate that in routes 2 and 2A the BASs are significantly narrower than in route 1, as routes 2

and 2A concentrate most of the FFA trading interest in the panamax sector. The finding of the

13 1 coefficient, in route 1A, negative (-3.524) and insignificant is in stark contrast with the

findings of the literature, and possibly it is explained by the infrequent FFA trading activity.

The coefficients of lagged BASs (132) are positive and significant at the 1% level. This suggests

that the dynamic adjustment of the BAS is not usually completed in a one-day period for the

selected forward contracts. The coefficient of the first-difference FFA price series (133) is found

to be negatively significant in route 2 only. In the other three investigated routes the 13

coefficient is insignificant. This finding, in route 2, dominates the presence of any asymmetric

information trading. It is therefore, consistent with the presence of scale economies in trading in

the FFA market of route 2 and supports the results of McInish and Wood (1992) for the stock

market, and Ding (1999) for the currency futures market. Copeland and Galai (1983) argues

that higher price levels in the stock market are associated with larger spreads because of a

higher informational uncertainty due to bidding up of prices by informed traders. In contrast,

our findings of lower spread levels when prices increase supports the notion of the presence of

economies of scale (when prices are high, the dollar volume of transactions rise, leading to a

lowering of brokers' required BAS to cover their costs) in trading FFA contracts in route 2.

In order to verify the previous inferences, we further estimate the relationship between BASs

and volatility, where as a measure of historical volatility we use the one-step ahead variances of

daily percentage FFA price changes, computed over moving-windows of 20 days

(approximately one trading month). The results, presented in Table 7.3, panel B are in

accordance with previous results as the coefficients of the statistically constructed measure of

volatility (13I ) are positive and statistically significant in routes 1, 2 and 2A. In route 1A, as
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expected, the Pi coefficient is negative and insignificant. The coefficients of lagged BASs (132)

are positively significant at the 1% level in all routes, and the coefficient of the first-difference

FFA price series (f33) is found to be negatively significant in route 2 only.

Table 7.3. GMM Estimates of the Relationship Between BAS and Price Volatility
BAS, = i3o ± 01111+1+10AS/4 + 133AF, + u, ; u, iid(0,h1)

	
(7.2)

Panel A: Volatility measured as the Conditional Variance of GARCH Models
Explanatory

Variables
Route 1

(16/01/97-30/07/00)
Route lA

(16/01/97-30/07/00)
Route 2

(16/01/97-9/08/01)
Route 2A

(16/01/97-9/08/01)
Ro 0.005 (1.095) 0.019- (3.295) 0.004 (6.313) 0.008* (4.452)
PI 20.409- (2.176) -3.524 (0.657) 13.517	(4.948) 5.839	(3.175)

P2 0.827	(31.421) 0.884 (37.958) 0.573 (12.002) 0.801* (27.456)

133 -0.098 (-1.191) 0.026 (0.333) -0.052	(-2.081) 0.068 (1.317)
Diagnostics

K2 0.711 0.782 0.407 0.683

Q(12) 19.048 [0.087] 30.793 [0.002] 45.401 [0.000] 54.154 [0.000]
Q2(12) 64.458 [0.000] 28.599 [0.005] 185.82 [0.000] 140.69 [0.000]

Panel B: Volatility measured as the Rolling Variances
Explanatory

Variables
Route 1

(16/01/97-30/07/00)
Route lA

(16/01/97-30/07/00)
Route 2

(16/01/97-9/08/01)
Route 2A

(16/01/97-9/08/01)

13o 0.014 (6.611) 0.017 (5.235) 0.007. (8.929) 0.010. (7.639)

13 1 5.242 (2.640) -0.120 (-0.121) 2.978- (2.773) 4.530* (5.039)

P2 0.826. (29.962) 0.883* (36.913) 0.599- (15.206) 0.783* (29.699)

33 -0.099 (-1.220) 0.036 (0.472) -0.040* (-1.993) 0.065 (1.252)
Diagnostics

K2 0.710 0.779 0.392 0.687

Q( 12) 18.348 [0.106] 31.310 [0.002] 59.030 [0.000] 54.781 [0.000]
Q2(12) 57.074 [0.000] 27.520 [0.006] 150.01 [0.000] 134.39 [0.000]

Notes:
• Figures in parentheses (.) and in squared brackets [.] indicate t-statistics and exact significance levels,

respectively.
• * and ** denote significance at the 5% and 10% levels, respectively.
• Volatility, in panel A, is defined as the one-step ahead conditional variance of the FFA prices, computed

from a well-specified GARCH(1,1) model
• Volatility, in panel B, is defined as the one-step ahead variance of percentage FFA price changes,

computed over moving-windows of 20 days.
• Q(12) and Q2(12) are the Ljung-Box (1978) tests for 12`11 order serial correlation and heteroskedasticity in

the residuals and in the squared residuals, respectively.

• K2 is the adjusted R-squared of the regression.

• The GMM method uses a weighting matrix (A	) that is robust to heteroskedasticity and

autocorrelation of unknown form. The covariance matrix ( a ) is defined as:

	

T - I	 1	T

F ( 0 )+( E k(j ,q)(f(j)-1"'(j) where f(j).	( Ez'i- jUin - j Zi), the kernel (k) is

	

- 1	
T - k

set to Bartlett functional form, and the truncation lag window (9) is set to Newey-West fixed bandwidth

selection criterion.
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7.6. CONCLUSION

The microstructure of the FFA market differs in several ways from that of the often examined

derivatives markets, providing an interesting alternate market for developing and testing

microstructure theories. This chapter utilises a two-step model that attempts to explain some of

the empirical regularities cited in the microstructure literature. We provide some new evidence

on interactions between expected volatility and bid-ask spreads, by finding that FFA spreads

vary with proxies for asymmetric information costs, including alternative risk forecasts. More

specifically, results indicate that there is a positive relationship between BASs and expected

price volatility in routes 1, 2, and 2A, after other factors are controlled. In contrast, in route 1A

we do not observe a significant relationship between BASs and expected volatility, and this

finding may be explained by the thin trading of the FFA contracts in the latter route.

The results of this chapter can provide a better understanding of the movements of FFA prices,

and the consequent effect in transactions costs. Market agents using the information of the

behaviour of the BASs can have a better insight about the timing of their FFA transactions and

the future direction of the FFA market, as a widening BAS corresponds to an anticipation of

increased future volatility. As a policy implication, FFABA and the FIFC should consider how

their future policy decisions may impact the volatility of the market, and consequently, the bid-

ask spreads.

Although this chapter investigated and identified some key determinants of BASs in the FFA

market, it recognises the possibility that other may exist (i.e. trading volume). In general,

however, risk is thought to be a stable determinant and is found to support the findings of

previous studies.
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CHAPTER 8— FORECASTING PERFORMANCE OF SPOT AND

FORWARD PRICES IN THE FORWARD FREIGHT MARKET

8.1. INTRODUCTION

In this chapter, we compare the performance of multivariate and univariate time-series models

in generating short-term forecasts of spot and FFA freight rates. In particular, we investigate if

FFA prices provide more accurate short-term forecasts of the spot prices than forecasts

generated by time-series models. Market agents can benefit from having accurate short-term

forecasts of the spot and FFA prices, since availability of such forecasts will enable them to

design more efficient trading strategies. In order to identify the model that provides the most

accurate forecasts, we estimate alternative multivariate and univariate specifications and assess

their forecasting performance.

This exercise is interesting for three reasons. First, unlike markets in financial assets and most

non-agricultural commodities, the freight market trades a non-storable service. This means that

FFA rates are not tied to spot rates by an arbitrage condition, but are free to be determined by

speculative activity. In a speculatively efficient market we would expect that a FFA rate would

incorporate all available information about the likely future spot rate, and hence provide a good

basis for forecasting future spot rates. Second, the asymmetric transactions costs between spot

and FFA markets. These costs are believed to be higher in the spot freight market (in relation to

the FFA market) as they involve the physical asset (vessel). Third, the FFA market is relatively

new, and like all forward markets has developed primarily in response to the needs of hedgers.

It is an empirical question — partially answered in this chapter - whether liquidity on all the

routes covered by the market is indeed sufficient to make the FFA prices speculatively efficient,

or whether they are dominated by hedging pressure.

Our multivariate specifications are motivated by the causality results between contemporaneous

spot and FFA prices, in chapter 4. We found that spot and FFA prices are cointegrated. Thus,

incorporating the information contained in the cointegrating relationship in the model may

improve the predictability of spot and FFA prices (Engle and Yoo, 1987). We therefore,
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compare the forecasting performance of a VECM, to that of a standard VAR, and univariate

ARIMA and Random Walk models, which do not exploit the interdependencies between the

two price series. If the univariate models outperform the multivariate model in predicting the

spot price, this would be evidence against the speculative efficiency of the FFA market.

Kavussanos and Nomikos (2001) apply these models to data from the now defunct exchange-

based BIFFEX market, and conclude that the VECM generates significantly the most accurate

forecasts of BFI prices, for a period up to 15 days ahead, and therefore, BIFFEX prices help in

improving the forecasting performance of spot prices. For the BIFFEX prices however, they

report that the increase in forecasting performance, through the VECM, is insignificant across

all the forecasting horizons. This suggests that the prior of market efficiency is reasonable.

However, our data come from the new OTC market. Moreover, Tashman (2000) argues that

non-independent forecasts are biased and can invalidate the forecasting results. Thus, in making

the model comparisons we are careful to estimate the models recursively, using only data up to

each base date for the forecasts, and to use non-overlapping sets of forecasts for each forecast

horizon, as advocated in Tashman (2000). This lets us conduct formal (Diebold and Mariano,

1995) tests for comparative forecast accuracy.

The remainder of this chapter is organised as follows. Section 8.2 describes the data used and

the models that are used to generate the forecasts. Section 8.3 evaluates the forecasting

performance of the alternative model specifications. Finally, section 8.4 summarises this

chapter.

8.2. DATA AND ESTIMATION OF ALTERNATIVE TIME-SERIES MODELS FOR

FORECASTING

The data sets used are daily spot and FFA prices in panamax Atlantic routes 1 and 1 A from 16

January 1997 to 31 July 2000 and daily spot and FFA prices in panamax Pacific routes 2 and

2A from 16 January 1997 to 30 April 2001. Spot price data are from the Baltic Exchange. FFA

price data for the four panamax routes are from Clarkson Securities Ltd. The FFA prices are

from the contract which is closest to expiry until five working days before the maturity of the

contract, in which case the next nearest contract is considered. In order to identify the model
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that provides the most accurate short-term forecasts of spot and FFA prices in the market and to

perform a comprehensive comparison of the forecasting performance of the prices, five

alternative models for predicting the spot and FFA prices are considered. The alternative time-

series models are initially estimated over the period 16 January 1997 to 30 June 1998 for all

routes (the first estimation period corresponding to one and a half year). The end observation in

the first estimation period (7) is 30 June 1998 which is the forecasting origin — the observation

from which the forecasts are generated. Following Taslunan (2000), the period from 1 July

1998 to 31 July 2000 for the Atlantic routes and the period from 1 July 1998 to 30 April 2001

for the Pacific routes are used to generate independent out-of-sample N-period ahead forecasts

over the test data period.

In making the forecast comparisons we are careful to avoid the biases in error measures which

can arise if forecasts are for overlapping forecast periods. Overlapping forecast periods means

non-independent forecasts errors (a shock in a specific forecast horizon may affect all other

forecast horizons), which in turn violate the assumptions underlying standard tests of the

statistical significance of differences in mean square errors. Our methodology is to recursively

augment our estimation period by N-period ahead forecasts by N observations every time. For

example, in order to compute 5 steps-ahead forecasts, we augment our estimation period by N =

5 observations each time. Thus, this method yields 104 and 141 independent (non-overlapping)

forecasts in the Atlantic and Pacific routes, respectively. Similarly, in order to compute 10

steps-ahead forecasts, this method yields 52 and 70 independent forecasts in the Atlantic ancl

Pacific routes, respectively. As discussed in Tashman (2000), this procedure provides two

desirable characteristics for an out-of-sample accuracy test - adequacy (enough forecasts at

each forecasting horizon), and diversity (desensitising forecast error measures to special events

and specific phases of business).

Estimated parameters for the VECM are presented for the first estimation period in Tables 8.1

to 8.4 for routes 1, 1A, 2, and 2A, respectively, under the column VECM. VECM models offer

an interesting alternative to Box-Jenkins (1970) ARIMA models for problems in which

simultaneous forecasts are required for a collection of related economic variables, such as spot

and FFA prices forecasting. The second model is a parsimonious VECM which is derived by

eliminating the insignificant coefficients from the original VECM. The selected model has

different regressors in the two equations, and is therefore, estimated as a system of SURE since
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this method yields more efficient estimates than OLS (see Zellner, 1962). The estimation results

for this model are presented in the same tables under the column SURE-VECM (for the fit

period).

The third model is a VAR model in first differences without any ECTs and is presented in the

same tables under the column VAR (for the fit period). The use of VAR models for economic

forecasting was proposed by Sims (1980), motivated in part by questions related to the validity

of the way in which economic theory is used to provide a priori justification for the inclusion of

a restricted subset of variables in the structural specification of each dependent variable.

Strictly speaking this is a misspecified VECM and the number of parameters to be estimated

may be very large. This lack of parsimony may present serious problems when the model is to

be used in a forecasting application123. Thus, it is employed here as a benchmark for the

contribution of the ECT in forecasting accuracy. Fourth, ARIMA models (Box-Jenkins, 1970)

are also used, which have been proposed by Cullinane (1992) as tools for forecasting freight

rates. The most parsimonious and well-specified models for the spot and FFA returns, selected

using the SBIC (1978) and ensuring that residuals are free of serial correlation, are presented in

Tables 8.1 to 8.4 for routes 1, 1A, 2, and 2A, respectively, under the column ARIMA (for the fit

period).

The alternative model specifications are estimated during the out-of-sample period and generate

independent forecasts of the spot and FFA prices up to 20-steps ahead. Finally, the Random-

Walk (RW) model is also considered for benchmark comparison; this model postulates the spot

(FFA) prices at time t-n, Si_n (Ft-n), are the most accurate predictors of spot (FFA) prices at time

t, S, (F,). Therefore, it uses the current spot or FFA prices to generate forecasts of these prices,

and thus, requires no estimation. The results of the ADF (1981) and PP (1988) unit root tests on

the log-levels and log first-differences of the daily spot and FFA price series indicate that all

variables are log first-difference stationary, all having a unit root on the log-levels

representation (not reported).

123 Apart from the multicollinearity between the different lagged variables leading to imprecise coefficient
estimates, the large number of parameters leads to a good within-sample fit but poor forecasting accuracy because,
according to Litterman (1986, p.2), "parameters fit not only the systematic relationships ... but also the random
variation".
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Table 8.1. Estimates of the Models in Route 1 for the Out-of-Sample Forecasts;
Sample Period 16/01/97 to 30/06/98

VAR VECM SURE-VECM ARIMA
AS, AF, AS, AF, AS, AF, AS, AF,

z,1 -0.007 0.056 -0.008 0.061* -
(-1.016) (2.385) (-1.266) (2.832)

ASI. 1 0.348' 0.601' 0.350" 0.585. 0.360* 0.412. 0.451' -
(6.354) (3.213) (6.385) (3.152) (7.579) (3.039) (8.682)

AS,_2 -0.002 -0.128 13E-04 -0.142 - - 0.041 _
(-0.032) (-0.669) (24E-04) (-0.749) (0.709)

AS,.3 0.233* 0.167 0.234- 0.153 0.244' - 0.212* -
(4.174) (0.877) (4.203) (0.811) (5.823) (4.074)

AS,4 -0.012 -0.223 -0.010 -0.231 - - - -
(-0.229) (-1.302) (-0.209) (-1.358)

AF„ I 0.107" -0.090- 0.102* -0.054 0.104" - - -0.052
(6.704) (-1.651) (6.193) (-0.968) (6.623) (-0.981)

AFI.2 0.039 -0.076 0.035 -0.046 0.033 - - 0.003
(2.261) (-1.299) (1.989) (-0.763) (2.039) (0.062)

0.109**AF,_3 0.034* 0.055 0.031- 0.081 - - -
(1.995) (0.944) (1.773) (1.374) (1.931)

AF„ 4 0.003 -0.087 0.001 -0.065 - - -
(0.161) (-1.510) (-0.004) (-1.117)

K. 2 0.4215 0.0258 0.4216 0.0385 0.4219 0.0355 0.3536 0.0047

Q(12) 2.705 12.099 2.740 10.048 3.117 19.536 2.245 9.956
[0.994] [0.356] [0.994] [0.526] [0.989] [0.052] [0.997] [0.534]

Notes:
• * and ** denote significance at the 5% and 10% levels, respectively.
• Figures in parentheses (.) and in squared brackets [.] indicate t-statistics and exact significance levels,

respectively.
• t-statistics are adjusted using the White (1980) heteroskedasticity consistent variance-covariance matrix.
• The cointegrating vector is restricted to be the lagged basis in routes 1 and 2A. In the remaining routes it

is the following spread: S,4-1.0143*F,I +0.1585 in route IA; and S,1-1.0067*F„1+0.0324 in route 2.
• Q(12) is the Ljung-Box (1978) Q statistics for 12th order serial correlation in the residuals.

Table 8.2. Estimates of the Models in Route 1A for the Out-of-Sample Forecasts;
Sample Period 16/01/97 to 30/06/98

VAR VECM SURE-VECM ARIMA
AS, AF, AS, AF, AS, AF, AS, AF,

z,1 - -0.014- 0.093 -0.013- 0.108. - .
(-1.783) (3.051) (-1.660) (3.857)

AS„ 1 0.601' 0.481' 0.596' 0.510. 0.602- 0.596* 0.643' -
(11.171) (2.230) (11.114) (2.392) (11.586) (4.223) 12.275

AS,.2 0.121' 0.219 0.121' 0.221 0.104* - 0.126- -
(2.320) (1.048) (2.321) (1.071) (2.116) 2.399

AF,_, 0.033"
(2.410)

-0.089
(-1.648)

0.024**
(1.708)

-0.033
(-0.586)

0.027'
(1.976)

- - 0.138*
(4.625)

AF„ 2 0.031" -0.135' 0.025- -0.091 0.031" - - -
(2.324) (-2.498) (1.780) (-1.635) (2.371)

K2 0.5551 0.0425 0.5578 0.0641 0.5574 0.0626 0.5450 0.0096

Q(12) 15.119 14.797 14.217 10.210 14.270 12.874 15.663 10.079
[0.177] [0.192] [0.221] [0.512] [0.218] [0.302] [0.154] [0.523]

See Notes of Table 8 1.
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Table 8.3. Estimates of the Models in Route 2 for the Out-of-Sample Forecasts;
Sample Period 16/01/97 to 30/06/98

VAR VECM SURE-VECM ARIMA
AS, AF, AS, AF, AS, AF, AS, AF,

zr-1 - -0.052" 0.029 -0.052* 0.031
(-4.544) (0.986) (-4.574) (1.105)

AS,..1 0.611' 0.434* 0.556* 0.464 0.555 0.457' 0.668" -
(14.376) (4.107) (12.911) (4.219) (13.057) (4.392) (17.012)

AF,_i 0.079 -0.030 0.047. -0.012 0.049' - 0.161*
(3.452) (-0.531) (2.012) (-0.209) (2.343) (4.443)

K 2 0.4592 0.0417 0.4872 0.0417 0.4871 0.0442 0.443 0.0161

Q(12) 12.239 7.553 9.747 6.761 9.841 6.601 8.717 6.843
[0.346] [0.723] [0.553] [0.818] [0.545] [0.830] [0.648] [0.812]

See Notes of Table 8.1.

Table 8.4. Estimates of the Models in Route 2A for the Out-of-Sample Forecasts;
Sample Period 16/01/97 to 30/06/98

VAR VECM SURE-VECM ARIMA
AS, AF, AS, AF, AS, AF, AS, AF,

z,1 - -0.032 0.088' -0.030 0.101* -
(-2.479) (2.362) (-2.444) (3.145)

AS/4 0.558" 0.416* 0.558- 0.416* 0.570 0.401" 0.739- -
(10.072) (2.571) (10.141) (2.590) (13.289) (3.783) (20.621)

AS,_2 0.043 0.034 0.052 0.009 - -
(0.681) (0.185) (0.827) (0.051)

ASI.3 -0.053 0.108 -0.044 0.085 - - - -
(-0.839) (0.593) (-0.710) (0.468)

AS,_4 0.006 -0.046 0.013 -0.065 - - - -
(0.118) (-0.306) (0.255) (-0.438)

AF,_ 1 0.087* 0.106- 0.065- 0.167 0.066" 0.174* - 0.169'
(4.537) (1.889) (3.090) (2.723) (3.181) (3.026) (3.263)

AF,.2 0.056* -0.109- 0.036- -0.054 0.046* - - -
(2.819) (-1.879) (1.710) (-0.873) (2.380)

AF,.3 0.053* -0.061 0.037- -0.018 0.038* - - -
(2.635) (-1.042) (1.799) (-0.301) (2.063)

AF,4 0.068 -0.037 0.055- -0.001 0.056* - - -
(3.399) (-0.629) (2.677) (-0.009) (3.071) -

K 2 0.5808 0.0467 0.5868 0.0588 0.5892 0.0715 0.5396 0.0259

Q(12) 17.264 12.469 16.952 9.977 17.396 10.433 14.047 10.209
[0.100] [0.329] [0.109] [0.532] [0.097] [0.492] [0.230] [0.512]

See Notes of Table 8 1.

The Johansen (1988) test indicates that spot and FFA prices are cointegrated in all routes. The

cointegrating vector zr_1 = flat-i is simply the lagged basis (St_ i - Ft_ 1) in routes 1 and 2A. In the

other routes this is restricted in favour of (S1-1 - 1.0143*Ft_ 1 + 0.1585) in route lA and (St-i -

1.0067*Ft_ 1 + 0.0324) in route 2124. The results of the LR tests applied on the cointegrating

vector to test the restrictions are: 4.901 [0.086] in route 1; 8.011 [0.018] in route 1A; 8.481

[0.014] in route 2; and 3.581 [0.167] in route 2A.

124 Restricting the cointegrating vector to be the lagged basis, in routes lA and 2, yields downward biased RMSEs
in all cases. Thus, in routes 1A and 2 the cointegrating vector is not restricted to be the lagged basis in the ensuing
analysis.
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DM= N(0,1)
12n fd(0) 

N

(8.1)

8.3. FORECASTING PERFORMANCE OF THE TIME-SERIES MODELS

We compare forecasts from all models at N = 1, 2, 3, 4, 5, 10, 15, and 20 day horizons, using

the Root Mean Square Error (RMSE) as our error metric. Other measures of the seriousness of

error may be relevant in this market — for example, monetary gains and losses from trading on

the model forecasts. However, the RMSE is conventional, and consistent with the quadratic loss

function implicitly used when parameterising the models by least squares and maximum-

likelihood methods. The forecasting performance for each model, across the different forecast

horizons, are presented in matrix form in Tables 8.5, 8.7, 8.9, and 8.11 for the spot prices in

routes 1, 1A, 2, and 2A, respectively, and in Tables 8.6, 8.8, 8.10, and 8.12 for the FFA prices

in routes 1, 1A, 2, and 2A, respectively. Numbers on the principal diagonal are the RMSEs125

from each model and the off-diagonal numbers are the ratios of the RMSE of the model on the

column to the RMSE of the model on the row. When this ratio is less than one, the model on the

column of the matrix provides a more accurate forecast than the model on the row. We employ

Diebold and Mariano's (1995) pairwise test of the hypothesis that the RMSEs from two

competing models are equal. This statistic is constructed as follows. Let the average difference

between the squared forecast errors from two models at time t, u ,, u 22,„  be given by j=

-
1 E (4,	) where N is the number of forecasts. Under the null hypothesis of equal
N'

forecast accuracy the following statistic has an asymptotic standard norma/ distri6kaion..

where fd(0) is the spectral density of (u 12 , - u 22,1 ) at frequency 0. Following Diebold and Mariano

(1995), a consistent estimate of fd(0) can be obtained by calculating the weighted sum of the

sample autocovariances of (u - u 22,, ) using a Bartlett weighting scheme as in Newey and West

125 The forecast accuracy of each model is assessed using the RMSE which attaches a higher weight to larger

N
forecast errors. The RMSE is calculated as follows: RMSE = — E (Rt — Zr)2 ; where R, are the realised values

N,1

of the spot (FFA) prices, Z, are the forecasted values of the spot (FFA) prices, and N is the number of forecasts.
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(1987). The truncation lag equals one-third of the corresponding out-of-sample observations

each time (see Andrrews, 1991). This test statistic is shown to be robust to the presence of non-

normality and serial correlation in the forecast errors. Hypothesis tests for the equality of the

RMSEs are conducted for each pair of models and the significance of the tests are indicated (as
* and *•- see Table 8.5 notes) next to the RMSE ratios.

Consider first the route 1 spot price forecasts in Table 8.5. The RMSEs of the VECM and the

SURE-VECM specifications are almost identical in most forecast horizons. This is confirmed

by Diebold and Mariano's (1995) test which indicates that the difference between the RMSE

from the two models is not significant, with the exceptions of the 1-day, 2-days, 15-days and

20-days ahead forecasts. The VECM produces forecasts which are significantly more accurate

than the VAR, ARIMA and the RW for all forecast horizons. The only exceptions are in the 10-

days and 20-days ahead forecasts where the ARIMA is as good as the VECM. Regarding the

performance of the VAR and ARIMA models they outperform the RW model for all forecast

horizons. Therefore, it seems that conditioning spot returns on lagged FFA returns and on the

lagged basis significantly enhances the predictive accuracy of the model. The reduction in the

RMSE achieved by the VECM over the RW model for the 1-day ahead forecasts is 8.88% (i.e.

1 — 0.91121). This is in accordance with the findings in other markets; Tse (1995) finds that the

ECM outperforms the naive model by 3% in the Nikkei stock index market.

Turning next to the route 1 FFA price forecasts in Table 8.6, it can be seen that the RMSEs of

the VECM and the SURE-VECM specifications are almost identical for all the forecast

horizons, with the exception of the 2-days ahead forecasts. The VECM outperforms the RW

model up to 10-days ahead forecasts. Furthermore, the VECM significantly outperforms the

VAR and the ARIMA up to 4-days ahead. For the 5-days ahead forecasts the VAR significantly

outperforms the VECM and the RW but not the ARIMA, and for 10-days up to 20-days ahead

forecasts the ARIMA outperforms all other specifications. Thus, it seems that conditioning FFA

returns on lagged spot returns and on the lagged basis generates the most accurate forecasts up

to 4-days ahead. For longer forecast horizons the ARIMA seems to generate the most accurate

forecasts. The reduction in the RMSE achieved by the VECM over the RW model for the 1-day

ahead forecasts is 34.25% (i.e. 1 — 0.65752).
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Table 8.5. Route 1 Spot Price Forecasts for Out-of-Sample Period
Horizon
(days)

N RMSEs VECM SURE-
VECM

VAR ARIMA RW

1 520 VECM 0.00585
SURE-VECM 0.98817 0.00592
VAR 0.99152. 1.00338 0.00590
ARIMA 0.81703 0.82681 0.82402- 0.00716
RW 0.91121 0.92211- 0.91900- 1.11526 0.00642

2 260 VECM 0.00559
SURE-VECM 0.98763. 0.00566
VAR 0.98763 1' 0.00566
ARIMA 0.79516 0.80512- 0.80512 0.00703
RW 0.77639 0.78611 0.78611. 0.97638. 0.00720

3 173 VECM 0.00584
SURE-VECM 0.98648 0.00592
VAR 0.99488" 1.00851 0.00587
ARIMA 0.77248 0.78306- 0.77645. 0.00756
RW 0.63755 0.64628' 0.64082. 0.82532 0.00916

4 130 VECM 0.00579
SURE-VECM 0.98135 0.00590
VAR 0.98974 1.00854 0.00585
ARIMA 0.75984. 0.77427- 0.76771' 0.00762
RW 0.58722' 0.59837' 0.59330 0.77281' 0.00986

5 104 VECM 0.00699
SURE-VECM 0.98868 0.00707
VAR 0.98868' 1 0.00707
ARIMA 0.86296' 0.87283 0.87283 0.00810
RW 0.60311' 0.61000- 0.61000 0.69887 0.01159

10 52 VECM 0.00464
SURE-VECM 1.00869 0.00460
VAR 0.96868- 0.96033- 0.00479
ARIMA 0.95670 0.94845 0.98762 0.00485
RW 0.53456' 0.52995' 0.55184' 0.55875' 0.00868

15 34 VECM 0.00710
SURE-VECM 0.97796- 0.00726
VAR 0.99440' 1.01680 0.00714
ARIMA 0.80225' 0.82033' 0.80677' 0.00885
RW 0.46254' 0.47296" 0.46514 0.57654 0.01535

20 26 VECM 0.00518
SURE-VECM 0.99807' 0.00519
VAR 0.97003' 0.97191 0.00534'
ARIMA 0.92998 0.93177 0.95870 0.00557
RW 0.49007' 0.49101' 0.50520' 0.52696' 0.01057

Notes:
• Forecasts are generated by the models in Tables 8.1 to 8.4.
• N is the number of forecasts.
• * and ** denote significance at the 5% and 10% levels, respectively.
• Numbers on the principal diagonal are the RMSE from each model and the off-diagonal numbers are

the ratios of the RMSE of the model on the column to the RMSE of the model on the row.
• The Diebold and Mariano (1995) pairwise test of the hypothesis that the RMSEs from two competing

models are equal is estimated using a Newey-West (1987) covariance estimator with a truncation lag
equal to one-third of the corresponding out-of-sample observations each time.
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Table 8.6. Route 1 FFA Price Forecasts for Out-of-Sample Period
Horizon
(days)

N RMSEs VECM SURE-
VECM

VAR ARIMA RW

1 520 VECM 0.02060
SURE-VECM 0.99757 0.02065
VAR 0.99133- 0.99374 0.02078
ARIMA 0.97815* 0.98053 0.98670. 0.02106
RW 0.65752- 0.65911 0.66326 0.67220* 0.03133

2 260 VECM 0.02152
SURE-VECM 0.99079 0.02172
VAR 0.99491- 1.00416 0.02163
ARIMA 0.97200. 0.98102 0.97696 0.02214
RW 0.67737 0.68366* 0.68083* 0.69688* 0.03177

3 173 VECM 0.01789
SURE-VECM 0.99721 0.01794
VAR 0.98730. 0.99006 0.01812
ARIMA 0.99003* 0.99280 1.00276 0.01807
RW 0.68702 0.68894 0.69585 0.69393 0.02604

4 130 VECM 0.02222
SURE-VECM 0.99865 0.02225
VAR 0.99285- 0.99419 0.02238
ARIMA 0.97541* 0.97673* 0.98244 0.02278
RW 0.69114* 0.69206* 0.69611 0.70855 0.03215

5 104 VECM 0.01674
SURE-VECM 0.99053 0.01690
VAR 1.01086 1.02053 0.01656
ARIMA 0.99761 1.00715 0.98688 0.01678
RW 0.69461- 0.70124- 0.68713- 0.69626- 0.02410

10 52 VECM 0.01015
SURE-VECM 0.96300 0.01054
VAR 1.02628. 1.06572- 0.00989
ARIMA 1.04639 1.01958 0.00970
RW 0.68860- 0.71506 0.67096* 0.65807 0.01474

15 34 VECM 0.00647
SURE-VECM 1.09475 0.00591
VAR 1.05374 0.96254 0.00614
ARIMA 1.25875- 1.14980* 1.19455- 0.00514
RW 0.79680 0.72783 0.75615 0.63300 0.00812

20 26 VECM 0.00994
SURE-VECM 1.01635 0.00978
VAR 1.00607 0.98987 0.00988
ARIMA 1.11185- 1.09395. 1.10514- 0.00894
RW 0.73575 0.72390 0.73131 0.66173. 0.01351

See Notes in Table 8.5.
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For the route 1A spot price forecasts in Table 8.7, the results indicate that the RMSEs of the

VECM and SURE-VECM models are not significantly different than those of the VAR model

for all forecast horizons, with the exception of the 1-day ahead forecasts. However, the VECM

and SURE-VECM significantly outperform the ARIMA and the RW for all forecast horizons.

The VAR significantly outperforms the ARIMA and the RW for all forecast horizons, with the

exception of the 10-days and 20 days ahead ARIMA based forecasts. Thus, it seems that the

VAR model produces forecasts with similar accuracy as those produced by VECM and SURE-

VECM models. Only in 1-day ahead forecasts the SURE-VECM significantly outperforms all

other specifications. These results are in accordance with earlier cointegration results which

reject the hypothesis that the cointegrating vector can be restricted to be the lagged basis in

route 1A. Thus, lack of restricting the cointegrating vector to be the lagged basis may explain

why forecasts produced by the VAR model are as accurate as those produced by VECM and

SURE-VECM models. The reduction in the RMSE achieved by the VECM over the RW model

for the 1-day ahead forecasts is 14.32% (i.e. 1 — 0.85681).

Turning next to the route 1A FFA price forecasts in Table 8.8, the results indicate that the

difference between the RMSE from the VECM and SURE-VECM specifications is not

significant, with the exception of the 1-day ahead forecasts. However, the RMSEs of the VECM

and SURE-VECM specifications are not significantly different than those of the VAR model

for all forecast horizons, with the exception of the 1-day ahead forecasts. Finally, the

differences between the RMSEs from the ARIMA and from the other time-series models are

significant up to 4-days ahead forecasts. For longer forecast horizons conditioning FFA returns

on lagged spot returns does not enhance the forecasting accuracy of FFA prices. All

specifications significantly outperform the RW model. Thus, it seems that for 1-day ahead

forecasts the VECM model produces the most accurate forecasts amongst all other

specifications. For 2-days up to 4-days ahead forecasts the VAR model produces forecasts as

accurate as those by VECM and SURE-VECM models. For longer forecast horizons the

ARIMA model produces forecasts as accurate as those by the other time-series models. The

reduction in the RMSE achieved by the VECM over the RW model for the 1-day ahead

forecasts is 31.19% (i.e. 1 — 0.68807).
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Table 8.7. Route lA Spot Price Forecasts for Out-of-Sample Period
Horizon
(days)

N RMSEs VECM SURE-
VECM

VAR ARIMA RW

1 520 VECM 0.01119
SURE-VECM 1 0.01119
VAR 0.98764 0.98764 0.01133
ARIMA 0.85290* 0.85290* 0.86356* 0.01312
RW 0.85681 0.85681 0.86753- 1.00459 0.01306

2 260 VECM 0.00979
SURE-VECM 1 0.00979
VAR 0.99089 0.99089 0.00988
ARIMA 0.78320. 0.78320* 0.79040 0.01250
RW 0.67751 0.67751 0.68374 0.86505 0.01445

3 173 VECM 0.01038
SURE-VECM 1.00387 0.01034
VAR 0.99904 0.99519 0.01039
ARIMA 0.77003 0.76706 0.77077 0.01348
RW 0.59179 0.58951* 0.59236 0.76853 0.01754

4 130 VECM 0.00878
SURE-VECM 1 0.00878
VAR 1.00228 1.00228 0.00876
ARIMA 0.73167 0.73167 0.73000 0.01200
RW 0.52606* 0.52606* 0.52487* 0.71899* 0.01669

5 104 VECM 0.01334
SURE-VECM 0.99627* 0.01339
VAR 0.99330 0.99702 0.01343
ARIMA 0.92382* 0.92729* 0.93006* 0.01444
RW 0.57950* 0.58167* 0.58341* 0.62728- 0.02302

10 52 VECM 0.01097
SURE-VECM 0.99546. 0.01102
VAR 1.00183 1.00639 0.01095
ARIMA 0.98034* 0.98481 0.97855 0.01119
RW 0.57285* 0.57546- 0.57180. 0.58433* 0.01915

15 34 VECM 0.01463
SURE-VECM 0.99932 0.01464
VAR 1.00688 1.00757 0.01453
AR1MA 0.91323* 0.91386* 0.90699* 0.01602
RW 0.56926* 0.56965* 0.56537* 0.62335* 0.02570

20 26 VECM 0.00606
SURE-VECM 0.98058 0.00618
VAR 0.95886 0.97785 0.00632
ARIMA 0.93519* 0.95370* 0.97531 0.00648
RW 0.36179* 0.36896* 0.37731* 0.38687" 0.01675

See Notes in Table 8.5.
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Table 8.8. Route lA FFA Price Forecasts for Out-of-Sample Period
Horizon
(days)

N RMSEs VECM SURE-
VECM

VAR ARIMA RW

1 520 VECM 0.02636
SURE-VECM 0.99172'. 0.02658
VAR 0.98986- 0.99812- 0.02663
ARIMA 0.96310 0.97114 0.97296 0.02737
RW 0.68807- 0.69381 0.69512 0.71443 0.03831

2 260 VECM 0.02709
SURE-VECM 0.99376 0.02726
VAR 0.99963 1.00590 0.02710
ARIMA 0.98438 0.99055- 0.98474. 0.02752
RW 0.65993 0.66407 0.66017 0.67040 0.04105

3 173 VECM 0.02866
SURE-VECM 0.99204 0.02889
VAR 0.98794 0.99586 0.02901
ARIMA 0.95757. 0.96525- 0.96926 0.02993
RW 0.68647 0.69198 0.69485 0.71689 0.04175

4 130 VECM 0.02886
SURE-VECM 0.99209 0.02909
VAR 0.97930 0.98711 0.02947
ARIMA 0.93338. 0.94082- 0.95310 0.03092
RW 0.60912 0.61397 0.62199- 0.65260- 0.04738

5 104 VECM 0.02551
SURE-VECM 0.98953 0.02578
VAR 0.99648 1.00703 0.02560
ARIMA 0.96702 0.97726 0.97043 0.02638
RW 0.70450- 0.71196 0.70699 0.72853 0.03621

10 52 VECM 0.02326
SURE-VECM 0.96836 0.02402
VAR 0.99402 1.02650 0.02340
ARIMA 0.96474 0.99627 0.97055 0.02411
RW 0.68878 0.71128 0.69292 0.71395- 0.03377

15 34 VECM 0.02927
SURE-VECM 0.99187 0.02951
VAR 1.00827 1.01653 0.02903

ARIMA 0.95280 0.96061 0.94499 0.03072
RW 0.65628. 4.66166* 0.65490 Q.68879. Q.04460

20 26 VECM 0.01839
SURE-VECM 1.00109 0.01837
VAR 1.01434 1.01324 0.01813
ARIMA 0.98132 0.98026 0.96745 0.01874
RW 0.67486- 0.67413- 0.66532- 0.68771- 0.02725

See Notes in Table 8.5.
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For the route 2 spot price forecasts in Table 8.9, the results indicate that the RMSEs of the

VECM and the SURE-VECM specifications are almost identical in all forecast horizons. This is

confirmed by Diebold and Mariano's (1995) test which indicates that the difference between the

RMSE from the two models is not significant. Moreover, both models outperform the RW

model. However, the RMSEs of the VECM and SURE-VECM models are not significantly

different than those of the VAR model for all forecast horizons, with the exceptions of the 1-

day and 2-day ahead forecasts. This is expected as lack of restricting the cointegrating vector to

be the lagged basis in route 2 may explain why forecasts produced by the VAR model are as

accurate as those produced by VECM and SURE-VECM models. Furthermore, the VAR

outperforms the ARIMA and RW models for all forecast horizons. The reduction in the RMSE

achieved by the VECM over the RW model for the 1-day ahead forecasts is 14.67% (i.e. 1 —

0.85335).

Turning next to the route 2 FFA price forecasts in Table 8.10, the results indicate that the

RMSEs of the VECM and the SURE-VECM specifications are significantly different up to 4-

days ahead forecasts. For longer forecast horizons the VECM produces forecasts as accurate as

the SURE-VECM. However, the RMSEs of the VECM and SURE-VECM models are not

significantly different than those of the VAR model for all forecast horizons, with the exception

of the 1-day ahead forecasts. For up to 4-days ahead forecasts the VAR model outperforms the

ARIMA and RW. For longer forecast horizons the ARIMA model produces forecasts as

accurate as those by the VAR, VECM, and SURE-VECM models. Finally, the ARIMA model

outperforms the RW for all forecast horizons. Thus, for 2-days, 3-days, and 4-days ahead

forecasts the VAR model produces forecasts as accurate as those by VECM and SURE-VECM

models. For longer forecast horizons the ARIMA model produces forecasts as accurate as those

by the other time-series models. The reduction in the RMSE achieved by the VECM over the

RW model for the 1-day ahead forecasts is 28.01% (i.e. 1 — 0.71986).
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Table 8.9. Route 2 Spot Price Forecasts for Out-of-Sample Period
Horizon
(days)

N RMSEs VECM SURE-
VECM

VAR ARIMA RW

1 707 VECM 0.00675
SURE-VECM 1.00148 0.00674
VAR 0.98253 0.98108* 0.00687
ARIMA 0.94803 0.94663 0.96489* 0.00712
RW 0.85335 0.85209 0.86852 0.90013 0.00791

2 353 VECM 0.00652
SURE-VECM 1 0.00652
VAR 0.97024* 0.97024 0.00672
ARIMA 0.91961 0.91961 0.94781- 0.00709
RW 0.65859- 0.65859- 0.67879- 0.71616 0.00990

3 235 VECM 0.00639
SURE-VECM 1.00157 0.00638
VAR 0.97557 0.97405 0.00655
ARIMA 0.96235 0.96084 0.98645- 0.00664
RW 0.60626. 0.60531. 0.62144 0.62998 0.01054

4 176 VECM 0.00682
SURE-VECM 1 0.00682
VAR 0.97708 0.97708 0.00698
ARIMA 0.92162- 0.92162- 0.94324- 0.00740
RW 0.53240- 0.53240- 0.54489- 0.57767- 0.01281

5 141 VECM 0.00629
SURE-VECM 1 0.00629
VAR 0.99055 0.99055 0.00635
ARIMA 0.93881* 0.93881 0.94776- 0.00670
RW 0.53260. 0.53260* 0.53768 0.56732 0.01181

10 70 VECM 0.00448
SURE-VECM 1 0.00448
VAR 0.93333 0.93333 0.00480
ARIMA 0.88363 0.88363 0.94675 0.00507
RW 0.48643 0.48643 0.52117. 0.55049- 0.00921

15 47 VECM 0.00629
SURE-VECM 1 0.00629
VAR 0.98589 0.98589 0.00638
ARIMA 0.96621 0.96621 0.98003 0.00651
RW 0.51727 0.51727- 0.52467 0.53536 0.01216

20 35 VECM 0.00518
SURE-VECM 1 0.00518
VAR 0.91519 0.91519 0.00566
ARIMA 0.88245 0.88245 0.96422* 0.00587
RW 0.56243- 0.56243- 0.61455- 0.63735- 0.00921

See Notes in Table 8.5.
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Table 8.10. Route 2 FFA Price Forecasts for Out-of-Sample Period
Horizon
(days)

N RMSEs VECM SURE-
VECM

VAR ARIMA RW

1 707 VECM 0.01642
SURE-VECM 0.99818* 0.01645
VAR 0.99274 0.99456 0.01654
ARIMA 0.98382 0.98562 0.99101 0.01669
RW 0.71986* 0.72117 0.72512 0.73170. 0.02281

2 353 VECM 0.01501
SURE-VECM 0.99602 0.01507
VAR 0.99404 0.99801 0.01510
ARIMA 0.98945 0.99341 0.99539 0.01517
RW 0.63900* 0.64155 0.64283 0.64581 0.02349

3 235 VECM 0.01743
SURE-VECM 0.99828 0.01746
VAR 0.98754 0.98924 0.01765
ARIMA 0.95350- 0.95514- 0.96554- 0.01828
RW 0.68460 0.68578* 0.69324 0.71799 0.02546

4 176 VECM 0.01642
SURE-VECM 0.99576 0.01649
VAR 0.98737 0.99158 0.01663
ARIMA 0.93402 0.93800 0.94596' 0.01758
RW 0.63742 0.64014 0.64557 0.68245 0.02576

5 141 VECM 0.01422
SURE-VECM 1.00141 0.01420
VAR 1.00566 1.00424 0.01414
ARIMA 1.00424 1.00282 0.99859 0.01416
RW 0.72366' 0.72265 0.71959 0.72061' 0.01965

10 70 VECM 0.01416
SURE-VECM 1 0.01416
VAR 1.01215 1.01215 0.01399
ARIMA 1.01143 1.01143 0.99929 0.01400
RW 0.69651 0.69651 0.68815' 0.68864' 0.02033

15 47 VECM 0.01466
SURE-VECM 1.00068 0.01465
VAR 1.00068 1 0.01465
ARIMA 0.96638 0.96572 0.96572 0.01517
RW 0.70211- 0.70163- 0.70163- 0.72653- 0.02088

20 35 VECM 0.01417
SURE-VECM 0.99719 0.01421
VAR 1.00496 1.0078 0.01410
ARIMA 0.96856 0.97129 0.96377 0.01463
RW 0.59865* 0.60034* 0.59569' 0.61808* 0.02367

See Notes in Table 8.5.
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For the route 2A spot price forecasts in Table 8.11, the results indicate that the difference of the

RMSE from the VECM and the SURE-VECM specifications is not significant up to 4-days

ahead forecasts. For longer forecast horizons the VECM significantly outperform the SURE-

VECM. Moreover, the VECM outperforms the VAR, ARIMA, and RW models for all forecast

horizons, with the exception in the 10-days ahead forecasts where the ARIMA is as good as the

VECM. Regarding the performance of the VAR and ARIMA models they outperform the RW

model for all forecast horizons. Therefore, it seems that conditioning spot returns on lagged

FFA returns and on the lagged basis significantly enhances the predictive accuracy of the

model. The reduction in the RMSE achieved by the VECM over the RW model for the 1-day

ahead forecasts is 19.37% (i.e. 1 — 0.80626).

Turning next to the route 2A FFA price forecasts in Table 8.12, the results indicate that the

difference of the RMSE from the VECM and the SURE-VECM specifications is significant in

most forecast horizons, with the exceptions of the 3-days and 4-days ahead forecasts. The

VECM significantly outperforms all other specifications up to 4-days ahead forecasts. For 5-

days and 10-days ahead forecasts the VAR significantly outperforms the SURE-VECM,

ARIMA and RW specifications. However, the difference of the RMSE from the VECM and the

VAR specifications is not significant for these forecast horizons. Thus, the VECM model

produces forecasts as accurate as those by the VAR for 5-days and 10-days ahead forecasts. For

longer forecast horizons the ARIMA model produces forecasts as accurate as those by the other

time-series models. Finally, the ARIMA model outperforms the RW model for all forecast

horizons. The reduction in the RMSE achieved by the VECM over the RW model for the 1-day

ahead forecasts is 29.71% (i.e. 1 — 0.70294).
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Table 8.11. Route 2A Spot Price Forecasts for Out-of-Sample Period
Horizon
(days)

N RMSEs VECM SURE-
VECM

VAR ARIMA RW

1 707 VECM 0.01082
SURE-VECM 0.98453 0.01099
VAR 0.98543 0.01098
ARIMA 0.91077- 0.92508- 0.92424 0.01188
RW 0.80626- 0.81893- 0.81818- 0.88525- 0.01342

2 353 VECM 0.01021
SURE-VECM 0.99416 0.01027
VAR 0.97891- 0.98466 0.01043
ARIMA 0.90354 0.90885* 0.92301 0.01130
RW 0.58044 0.58385 0.59295* 0.64241* 0.01759

3 235 VECM 0.00979
SURE-VECM 0.99089 0.00988
VAR 0.98491- 0.99396 0.00994
ARIMA 0.95980- 0.96863* 0.97451 0.01020
RW 0.59369* 0.59915- 0.60279 0.61856 0.01649

4 176 VECM 0.01098
SURE-VECM 1 0.01098
VAR 0.98741- 0.98741 0.01112
ARIMA 0.89196* 0.89196 0.90333 0.01231
RW 0.46823- 0.46823- 0.47420- 0.52495- 0.02345

5 141 VECM 0.01124
SURE-VECM 0.97654- 0.01151
VAR 0.98944 0.01136
ARIMA 0.95823- 0.98124 0.96846 0.01173
RW 0.58088 0.59483 0.58708- 0.60620* 0.01935

10 70 VECM 0.00665
SURE-VECM 0.97651* 0.00681
VAR 0.94729- 0.97009 0.00702
ARIMA 0.94326 0.96596 0.99574 0.00705
RW 0.49627- 0.50821- 0.52388- 0.52612- 0.01340

15 47 VECM 0.01223
SURE-VECM 0.97295 0.01257
VAR 0.97918- 1.00641 0.01249
ARIMA 0.93216- 0.95808* 0.95198- 0.01312
RW 0.51150- 0.52572- 0.52238- 0.54872- 0.02391

20 35 VECM 0.00706
SURE-VECM 0.98056 0.00720
VAR 0.93386 0.95238 0.00756
ARIMA 0.90281- 0.92072- 0.96675 0.00782
RW 0.40297- 0.41096- 0.43151- 0.44635* 0.01752

See Notes in Table 8.5.
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Table 8.12. Route 2A FFA Price Forecasts for Out-of-Sample Period
Horizon
(days)

N RMSEs VECM SURE-
VECM

VAR ARIMA RW

1 707 VECM 0.02726
SURE-VECM 0.99055- 0.02752
VAR 0.99489 1.00438 0.02740
ARIMA 0.97322- 0.98251 0.97822 0.02801
RW 0.70294 0.70964 0.70655 0.72228. 0.03878

2 353 VECM 0.02284
SURE-VECM 0.99434- 0.02297
VAR 0.99651 1.00218 0.02292
ARIMA 0.97316 0.97870. 0.97657- 0.02347
RW 0.67395 0.67778 0.67631 0.69253 0.03389

3 235 VECM 0.03187
SURE-VECM 0.99160 0.03214
VAR 0.99438. 1.00281 0.03205
ARIMA 0.96517- 0.97335- 0.97062 0.03302
RW 0.68938 0.69522- 0.69327- 0.71425. 0.04623

4 176 VECM 0.02434
SURE-VECM 1.00165 0.02430
VAR 0.98463 0.98301- 0.02472
ARIMA 0.95115 0.94959 0.96600 0.02559
RW 0.63106 0.63002* 0.64091 0.66347 0.03857

5 141 VECM 0.03105
SURE-VECM 0.98197- 0.03162
VAR 1.00064 1.01901- 0.03103
ARIMA 0.95421- 0.97173 0.95360 0.03254
RW 0.76403- 0.77805 0.76353- 0.80069 0.04064

10 70 VECM 0.02670
SURE-VECM 0.98126- 0.02721
VAR 1.01022 1.02951- 0.02643
ARIMA 0.95802- 0.97632 0.94833* 0.02787
RW 0.63195- 0.64402. 0.62556 0.65964. 0.04225

15 47 VECM 0.03822
SURE-VECM 0.98454 0.03882
VAR 1.00738 1.02319 0.03794
ARIMA 0.97301 0.98829 0.96589 0.03928
RW 0.66713- 0.67761 0.66224 0.68563. 0.05729

20 35 VECM 0.02546
SURE-VECM 1.00118. 0.02543
VAR 0.99337 0.99220 0.02563
ARIMA 0.95071 0.94959 0.95706 0.02678
RW 0.58949. 0.58879" 0.59342" 0.62005' 0.04319

See Notes in Table 8.5.
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To conclude, there are four major findings from this forecast exercise. First, restricting the

cointegrating vector to represent the exact lagged basis significantly affects the forecast

performance of the VECM model. In routes 1 and 2A (where the restriction is accepted) the

VECM provides more accurate forecasts than the VAR specification. In contrast, in routes 1A

and 2 (where the restriction is not accepted) the VAR provides more accurate forecasts than the

VECM specification, with the exception of the 1-day ahead forecasts.

Second, while conditioning spot returns on lagged FFA returns generates more accurate

forecasts of the spot prices for all forecast horizons, conditioning FFA returns on lagged spot

returns enhance the forecasting accuracy of FFA prices up to 4-days ahead forecasts in routes 1,

1A, and 2 and up to 10-days ahead forecasts in route 2A. For longer forecast horizons the

univariate Box-Jenkins (1970) ARIMA model produces forecasts as accurate as those by the

other time-series models in all trading routes, and therefore, there is little gain in forecasting

accuracy by employing multivariate time-series models.

Third, the reduction in the RMSE achieved by the VECM over the RW for the 1-day ahead spot

forecasts is lower than the RMSE achieved by the VECM over the RW for the 1-day ahead FFA

forecasts in all trading routes. This compares favourably to the findings in other markets. For

example, Ghosh (1993a) reports reductions in RMSE for the 1-day ahead spot forecasts ranging

from 15% to 34% for the S&P 500 and the Commodity Research Bureau (CRB) spot indices,

respectively, while reports reductions in RMSE for the 1-day ahead futures forecasts ranging

from 24% and 39% for the S&P 500 and the CRB futures markets, respectively. However, the

studies of Ghosh (1993a) and Tse (1995) use only 1-step ahead forecasts and do not test

statistically the equality of the RMSE. Investigation of longer forecast horizons and hypothesis

tests for the RMSE in this study, are important because they allow market agents in the FFA

market to find the appropriate time-series specification in order to generate accurate forecasts of

the spot and the FFA prices, and hence design more efficient investment and speculative trading

strategies.

Finally, all time-series models generate more accurate spot and FFA forecasts than the forecasts

obtained by the RW model in all routes. Thus, there is much gain in forecasting accuracy by

employing time-series models rather than using the readily available information provided by

the current spot and FFA prices.
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8.4. CONCLUSION

In this chapter, we investigated the performance of alternative time-series models in generating

short-term forecasts of the spot and FFA prices. We examine the forecasting performance of a

VECM of spot and FFA prices where the cointegrating vector is restricted to be the lagged basis

in routes 1 and 2A only. The forecasts from this model are compared to forecasts generated by

SURE-VECM, ARIMA, VAR and the RW models.

We find that in routes (1 and 2A) where the cointegrating vector is restricted to be the lagged

basis, the VECM outperforms the VAR model and in routes (1A and 2) where the cointegrating

vector is not restricted to be the lagged basis, the VAR outperforms the VECM model. More

specifically, while conditioning spot returns to lagged FFA returns generates more accurate

forecasts of the spot prices for all forecast horizons, conditioning FFA returns to lagged spot

returns enhance the forecasting accuracy of FFA prices up to 4-days ahead forecasts in routes 1,

1A, and 2 and up to 10-days ahead forecasts in route 2A. For longer forecast horizons the

univariate Box-Jenkins (1970) ARIMA model produces forecasts as accurate as those by the

other time-series models in all trading routes, and therefore, there is little gain in forecasting

accuracy by employing multivariate time-series models. Thus, market agents by selecting the

appropriate time-series model for forecasting purposes can design more efficient investment

and speculative trading strategies.
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CHAPTER 9— CONCLUSIONS AND FURTHER RESEARCH

9.1. INTRODUCTION

This chapter concludes the thesis. The main subject of the thesis is the investigation of the price

discovery, and risk management functions of the FFA market. These are the most important

functions of any derivatives (futures or forward) market and are often presented as the

justification for derivatives trading (see Garbade and Silber, 1983). Moreover, we investigate

the impact of the introduction of FFA trading on the spot market price volatility and the

relationship between bid-ask spreads and expected volatility in the FFA market. Finally, we

also address the issue of forecasting spot and FFA prices and propose a model which

outperforms all the other models considered so far in the literature.

A considerable amount of empirical research has been directed towards examining these

hypotheses in different exchange-based financial and commodity derivatives markets. In

forward markets, to the best of our knowledge, there have been only few studies investigating

the economic functions of OTC derivatives contracts (with the exeption of currency forwards),

primarily due to the unavailability of data. The possession of daily data that were manually

gathered and processed in an electronic format and the use of critically selected econometric

methodologies enable us for the first time to introduce empirical evidence for the FFA market.

It is has been therefore, the objective of this thesis to fill this gap in the literature. The

uniqueness of this thesis lies in the fact that its concern is with a market that has been subject to

extremely limited, if any, coverage.

The special features of this market, in comparison to the existing literature on futures and

forward markets, are: (i) the non-storable nature of the underlying commodity, being that of a

service. The theory of intertemporal relationships between spot and derivatives prices of

continuously storable commodities is well developed (Working 1970), in contrast to that of

non-storable commodities (e.g. freight services). The non-storable nature of FFA market

implies that spot and FFA prices are not linked by a cost-of-carry (storage) relationship, as in

financial and agricultural derivatives markets. Thus, inter-dependence between spot and FFA
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prices may not be as strong as for storable commodities; and (ii) the asymmetric transactions

costs between spot and FFA markets. These costs are believed to be higher in the spot freight

market (in relation to the FFA market) as they involve the physical asset (vessel).

Due to space and time constraints we selected four trading routes of the panamax sector of the

dry-bulk shipping industry, which are constituent routes of the BPI; the Atlantic voyage route 1

(US Gulf/Antwerp-Rotterdam-Amsterdam), the Atlantic time-charter route 1 A (Transatlantic

round to Skaw-Gibraltar range), the Pacific voyage route 2 (US Gulf/Japan) and the Pacific

time-charter route 2A (Skaw Passero-Gibraltar/Taiwan-Japan). The choice of the above routes

was based on the FFA trading interest of the market agents for those routes, where routes 1 and

1 A are characterised by low trading interest and, in contrast, routes 2 and 2A concentrate the

highest trading interest at the time of writing. Thus, by comparing less liquid and highly liquid

trading routes, robust conclusions can be reached.

The structure of this chapter is as follows. In section 9.2 we report the conclusions for each

chapter. In section 9.3 we discuss the policy implications of our findings. Finally, section 9.4

presents some topics for further research, which, due to space and time constraints, are not

investigated here.

9.2. SUMMARY OF THE FINDINGS AND CONCLUSIONS

In the first chapter, we described the two benefits that derivatives markets, in general, provide

to economic agents — price discovery and risk management; a description of the dry-bulk and

wet-bulk spot and FFA markets is also examined. The contribution of the thesis to the literature

was also identified. In the second chapter, we presented time-series techniques for investigating

equilibrium relationships involving non-stationary price series. The properties of stationary and

non-stationary processes were discussed and the Dickey and Fuller (1979 and 1981) and the

Phillips and Perron (1988) unit root tests were presented. Furthermore, we presented the

cointegration methodology and described the Engle and Granger (1987), and Johansen (1988)

testing procedures. The Johansen (1988) test is more powerful than the Engle and Granger

(1987) test, it provides a test statistic which has an exact limiting distribution, and enables us to

perform hypothesis tests for restricted versions of the cointegrating relationships. Finally, the
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theory of ARCH and GARCH models was presented and various univariate and multivariate

specifications were analysed.

The empirical analysis of the thesis is presented in chapters 3 through 8. In chapters 3 and 4 we

investigated two different aspects of the price discovery function of the market, namely the

relationship between current forward prices and expected spot prices — the unbiasedness

hypothesis — and the lead-lag relationship in returns and volatility between spot and forward

prices. More specifically, in chapter 3, we investigated the unbiased expectations property of

the forward prices in the market using cointegration techniques. Parameter restriction tests on

the cointegrating relationship between spot and FFA prices indicate that FFA prices one- and

two-months prior to maturity are unbiased predictors of the realised spot prices in all

investigated routes. However, the efficiency of the FFA prices three-months prior to maturity

gives mixed evidence, with routes 2 and 2A being unbiased estimators and with routes 1 and lA

being biased estimators of the realised spot prices. Thus, it seems that unbiasedness depends on

the market and type of contract under investigation. For the investigated routes and maturities

for which unbiasedness holds, market agents can use the FFA prices as indicators of the future

course of spot prices, in order to guide their physical market decisions. Our results are

consistent with those of Kavussanos and Nomikos (1999) who examine the BIFFEX market

using cointegration techniques and find that futures prices one- and two-months from maturity

provide unbiased forecasts of the realised spot prices. On the other hand, futures prices three-

months from maturity seem to be biased estimates of the realised spot prices.

In chapter 4, we investigated the lead-lag relationship between FFA and spot markets, both in

terms of returns and volatility - which represent the second dimension of the price discovery

role of derivatives markets. After using a SURE-VECM model and GIR analysis, to investigate

the short-run dynamics and the price movements in the two markets, causality tests indicate that

there is a bi-directional causal relationship in all routes, implying that FFA prices can be

equally important as informational sources as the spot prices, in commodity markets (Yang et

al., 2001). However, FFA prices tend to discover new information more rapidly than spot prices

in all routes. This pattern is thought to reflect the fundamentals of the underlying asset since,

due to the limitations of short-selling and higher transactions costs of the underlying spot rate,

investors who have collected and analysed new information would prefer to trade in the FFA

rather than in the spot market. In order to investigate for volatility spillovers between the spot
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and FFA markets, we utilised an extended bivariate VECM-GARCH-X model. The results

indicate that the FFA market volatility spills information to the spot market volatility in route 1.

In route 1A the results indicate no volatility spillovers in either market. In routes 2 and 2A there

is a bi-directional relationship as each market transmits volatility in the other. The previous

results, in all routes, indicate that informed agents are not indifferent between trading in the

FFA and the spot market, as new market information disseminates in the FFA market before the

spot market. Thus, it seems that FFA prices contain useful information about subsequent spot

prices, beyond that already embedded in the current spot price, and therefore, can be used as

price discovery vehicles, since such information may be used in decision making. Furthermore,

the FFA contracts in routes 1, 2, and 2A contribute in the volatility of the relevant spot rate, and

therefore, further support the notion of price discovery. Kavussanos and Nomikos (2001)

examine the lead-lag relationship between BFI and BIFFEX markets in terms of returns only

and conclude that there is a bi-directional causal relationship between the BIFFEX and BFI

prices, and that this relationship is stronger from BIFFEX to BFI prices.

In chapter 5, we investigated the impact of FFA trading and the activities of speculators on spot

market price volatility. The results suggest that the onset of FFA trading has had: (i) a

stabilising impact on the spot price volatility in all routes; (ii) an impact on the asymmetry of

volatility (market dynamics) in routes 2 and 2A; and (iii) substantially improved the quality and

speed of information flowing in routes 1, 1A and 2. However, after including in the conditional

variance equation other explanatory variables that may affect spot volatility, the results indicate

that only in voyage routes 1 and 2 the reduction of volatility may be a direct consequence of

FFA trading. The results do not present a clear answer as to whether reduction in spot volatility,

in time-charter routes 1A and 2A, is a direct consequence of FFA trading. These findings have

implications for the way in which the FFA market is viewed. Contrary to the traditional view of

derivatives trading and despite the route-specific nature of the FFA contracts, with the different

economic and trading conditions of each route, the results indicate that the introduction of FFA

contracts has not had a detrimental effect on the underlying spot market. On the contrary, it

appears that there has been an improvement in the way that news is transmitted into prices

following the onset of FFA trading. We can conjecture that by attracting more, and possibly

better informed, participants into the market, FFA trading has assisted on the incorporation of

information into spot prices more quickly. Thus, even those market agents who do not directly

use the FFA market have benefited from the introduction of FFA trading.
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In chapter 6, we investigated the risk management function of the FFA market. We examined

the effectiveness of time-varying hedge ratios in reducing freight rate risk in four routes of the

BPI. In- and out-of-sample tests indicate that in voyage routes (1 and 2) the relationship

between spot and FFA prices is quite stable and market agents can use simple first-difference

regression models in order to obtain optimum hedge ratios. In contrast, in time-charter routes

(1A and 2A), it seems that the arrival of new information affects the relationship between spot

and FFA prices, and therefore, time-varying hedging models should be preferred. Also the

hedging effectiveness varies from one freight market to the other. This is because spot prices,

and consequently FFA quotes, are affected by different trading and regional economic

conditions. Market agents can benefit from this result by developing appropriate hedge ratios in

each route, and thus, controlling their freight rate risk more efficiently. Shipowning companies

with vessels operating worldwide or trading companies that transport commodities to different

parts of the world can use the FFA contracts to reduce their freight rate risk, since the

variability of their cash-flows can be explained by the fluctuations of the spot routes.

Despite the mixed evidence provided in favour of the time-varying hedge ratios in the FFA

market, and despite the fact that FFA contracts provide better hedging opportunities than the

BIFFEX contract examined by Kavussanos and Nomikos (2000a, 2000b), the freight rate risk

reduction across the four investigated routes is lower than that evidenced in other commodity

and financial markets in the literature. The currently low trading volume, the way that FFA

brokers estimate their FFA quotes, and the lack of the cost-of-carry arbitrage relationship of

storable assets, that keeps spot and derivatives prices close together, may provide explanations

about the finding that spot price fluctuations of the investigated trading routes are not accurately

tracked by the FFA prices.

In chapter 7, we examined the relationship between expected volatility and bid-ask spreads. The

results indicate that there is a positive relationship between bid-ask spreads and expected price

volatility in routes 1, 2, and 2A, after other factors are controlled. In contrast, in route 1A we do

not observe a significant relationship between bid-ask spreads and expected volatility, and this

finding may be explained by the thin trading of the FFA contracts in the latter route. The results

of this study provide a better understanding of the movements of FFA prices, and the

consequent effect in transactions costs. Market agents using the information of the behaviour of

the bid-ask spreads can have a better insight about the timing of their FFA transactions and the
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future direction of the FFA market, as a widening bid-ask spreads corresponds to an

anticipation of increased future volatility. More specifically, traders, speculators, hedgers, and

arbitrageurs alike are interested in extracting information from these variables to know how

their reaction to new information can be used in predicting future prices.

Finally, in chapter 8, we investigated the performance of different time-series models in

generating short-term forecasts of the spot and FFA prices. More specifically, we examined the

forecasting performance of a VECM of spot and FFA prices. The forecasts from this model

were compared to forecasts generated by VAR, SURE-VECM, ARIMA, and the RW model.

Following Tashman (2000), we created independent non-overlapping forecasts by generating N-

period ahead multiple forecast sets, generated from recursively estimated model parameters.

We find that in the routes (1 and 2A) where the cointegrating vector is restricted to be the

lagged basis, the VECM outperforms the VAR model and in the routes (1A and 2) where the

cointegrating vector is not restricted to be the lagged basis, the VAR outperforms the VECM.

More specifically, while conditioning spot returns on lagged FFA returns generates more

accurate forecasts of the spot prices for all forecast horizons, conditioning FFA returns on

lagged spot returns enhance the forecasting accuracy of FFA prices up to 4-days ahead forecasts

in routes 1, 1A, and 2A and up to 10-days ahead forecasts in route 2A. For longer forecast

horizons the univariate Box-Jenkins (1970) ARIMA model produces forecasts as accurate as

those by the other time-series models in all trading routes, and therefore, there is little gain in

forecasting accuracy by employing multivariate time-series models. Thus, market agents by

selecting the appropriate time-series model for forecasting purposes can design more efficient

investment and speculative trading strategies.

Concluding, this thesis examines the performance of the price discovery and risk management

functions of the FFA market. These two functions represent the major benefits that derivatives

markets provide to economic agents and are often presented as the justification for derivatives

trading. The thesis also investigates the impact of the introduction of FFA trading in spot

market price volatility, the relationship between bid-ask spreads and expected FFA volatility,

and whether the forecastability of spot prices can be improved by incorporating the information

contained in the FFA prices, thus providing further evidence on the informational properties of

FFA prices in the market.
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9.3. POLICY IMPLICATIONS

The success of a derivatives (futures or forward) contract is dependent upon the contract

providing benefits to economic agents, over and above the benefits they can get from the spot

market alone. These benefits are price discovery and risk management through hedging. If the

market does not perform one or both of these functions satisfactorily, then market agents have

no reasons to trade in the derivatives market, which eventually leads to loss of trading interest

by the market agents.

The results of this thesis indicate that the FFA market performs its price discovery function

efficiently. FFA prices contribute to the discovery of new information about current and

expected spot prices. Therefore, market agents receive accurate signals from the FFA prices,

regarding the future course of spot prices, and can use the information generated by these prices

so as to guide their decisions in the physical market.

Moreover, it appears that there has been an improvement in the way that news is transmitted

into prices following the onset of FFA trading. We can conjecture that by attracting more, and

possibly better informed, participants into the market, FFA trading has assisted on the

incorporation of information into spot prices more quickly. Our findings provide regulators and

practitioners with important insights into the FFA trading - spot market price volatility

relationship as FFA trading lead to new channels of information being provided, more

information due to more traders, and a reduction in uniformed investors. Thus, the FFA

contracts provide a useful service and calls for their regulation, by the FFABA and the FIFC,

are unwarranted.

On the contrary, the findings for the risk management function of the FFA market are not so

promising. The risk reduction in the spot routes compares very poorly to the risk reduction

evidenced in other commodity and financial derivatives market; for instance, the greatest in-

sample variance reduction is 35.86% in route 2A and the highest out-of-sample variance

reduction is 32.16% in route 1A, while the variance reductions evidenced in other markets in

the literature range from 57.06% to 97.91%. The underlying reasons for this poor hedging

performance are the currently low trading volume, the way that FFA brokers estimate their FFA

quotes, and the lack of the cost-of-carry arbitrage relationship of storable assets, that keeps spot
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and derivatives prices close together. As a result, the FFA contract cannot provide risk

reduction to the extent that is observed in other markets. Awareness and increased trading

activity of freight derivatives trades may promote the hedging efficiency of the contracts. As a

policy action, the FFABA, the FIFC, and the Baltic Exchange should: first, advertise more this

derivatives market through marketing campaigns in order to attract the much needed volume;

and second, monitor more the way that FFA brokers are conducting their FFA trades in order to

verify that the daily FFA quotes are the best available (like a price discovery mechanism)

before they are published to market participants.

The results of this thesis also indicate that there is a positive relationship between bid-ask

spreads and expected price volatility in most of the investigated routes, after other factors are

controlled. From a policy perspective, the issue is important because of its implications for the

analysis of market liquidity and its relationship with risk. Using bid-ask spreads as a proxy of

market liquidity, a market can be considered to be liquid when large transactions can be

executed with a small impact on prices (Galati, 2000). Policy makers and regulators are

interested in knowing how changes in these variables impact the market activity.

Concluding, the Baltic Exchange, the FFA brokers, the FFABA, and the FIFC are thinking

ways to improve the use of the FFA contract and increase its trading activity, by a possible

launch of a FFA information system, a revision of the contract and other initiatives. As an

example, IMAREX, a web-based exchange for trading OTC freight derivatives, started trading

during November 2001. IMAREX uses a clearing-house for the clearing of standardised listed

and other OTC derivatives. Moreover, the FFABA revised the FFA contract during August

2002 in order to include default and termination procedures. It is clear that there is considerable

interest in the shipping industry for the introduction of risk management facilities and a

considerable amount of time, effort and money is being channeled into the establishment of the

provision of this service.
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9.4. SUGGESTIONS FOR FURTHER RESEARCH

The theme of the research in this thesis was to investigate the price discovery and risk

management functions of the FFA market using four panamax trading routes (1, 1A, 2, and 2A).

This thesis also considered the impact of the introduction of FFA trading on the spot market

price volatility, the relationship between bid-ask spreads and expected volatility in the FFA

market, and the issue of forecasting spot and FFA prices. The motivation for investigating these

issues derives from the fact that these are the most important functions of any derivatives

market, and hence, the findings of this thesis are of particular importance to those involved in

trading and regulating the FFA market. Empirical investigation presented in chapters 3 to 8 of

this thesis, although quite comprehensive, is subjected to certain limitations due to space and

time constraints and availability of data. Therefore, the aim of this section is to suggest

directions in which fruitful future research can be undertaken to improve and enhance our

knowledge in the area of freight derivatives.

A natural suggestion for further research would involve undertaking similar investigations for

the remaining BPI routes (3, 3A and 4), the constituent trading routes of the BCI and BHMI

indices of the dry-bulk sector, and the constituent trading routes of the BITR index of the wet-

bulk sector, as tanker FFA contracts have become important risk management tools in the oil

and energy industries, provided that sufficient data will be available. This would enhance our

understanding of the role and functioning of the FFA contracts in general and provide investors

and policy makers with important information. It would be interesting to further develop the

work carried out in this thesis. Regarding the price discovery function of the market, future

research should study the ability of end of month FFA prices to predict the realised spot prices

on the maturity day of the contract. Thus, the purpose of such forecasting exercise is to

investigate whether one can obtain more accurate forecasts of the settlement prices one-, two-,

and three-months ahead by employing time-series models rather using the readily available

information provided by FFA prices.

For the impact of the introduction of FFA trading on spot market price volatility it would be

interesting to incorporate in the model more market-wide factors that represent major world

economic conditions, which are likely to impact spot price volatility, such as the industrial

production, grain exports and international trade. Thus, we could have a greater understanding
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whether the introduction of FFA trading is the only factor responsible for the reduction in the

spot market volatility. Furthermore, it would be worthy of note if proxies for political and

economic developments could be incorporated in the model, because different trading routes are

subject to different regulatory and economic conditions and regimes.

There is also ample scope for further research in the hedging performance of the market. The

current study can be extended to investigate the effectiveness of time-varying ratios in reducing

freight rate risk in a portfolio of freight routes, rather than in a single route. Shipowners who

operate a fleet of vessels across different shipping routes or charterers who want to transport

their commodities to different parts of the world would be interested with the findings of such

hedging exercise. For example, Gagnon et al. (1998) examine the effectiveness of time-varying

hedge ratios in hedging a portfolio of foreign currencies and compare the performance of these

hedges to the case where the currencies are hedged in isolation. They report, however, that by

taking the portfolio effects into consideration, the increase in the hedging effectiveness is small,

only 1.88%. Whether similar findings will emerge by considering, for instance, a portfolio of

voyage routes, or a portfolio of time-charter routes is an issue worth investigating.

Turning next into the relationship between bid-ask spreads and expected volatility, the current

study can be extended by computing several alternative measures of historical volatility or

implied volatility extracted from FFA option prices and see whether similar findings with this

study emerge. Moreover, FFA volume can be used as a measure of trading activity and can be

included in the proposed model in order to examine the relationships between bid-ask spreads,

volume and expected volatility, provided that volume data will be publicly available. Finally, it

would be interesting in the area of forecasting to investigate the performance of alternative

models for predicting spot and FFA price volatility. The alternative models can contain both

simple models such as the random walk and smoothing models and complex models such as

ARCH-type and stochastic volatility models. Market agents can potentially benefit by having

accurate forecasts of both spot and FFA volatilities since they will be able to design more

effective investment and speculative strategies. For example, Yu (2002) uses nine alternative

models for predicting stock price volatility and argues that the stochastic volatility model

provides the best performance among all the candidates and the simple regression and

exponentially moving average models perform the worst, in contrast to the results found in

various markets.
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APPENDIX

FORWARD FREIGHT AGREEMENT BROKERS ASSOCIATION ("FFABA")
FORWARD FREIGHT AGREEMENT (AUGUST 2002)

File Ref: «REF»	 Contract Date: «DATE»
This Forward Freight Agreement is made this day of «DATE» in London between:

	

1. «BUYER»	and	2. «SELLE1b>
	("the Buyer")	 ("the Seller")	on the following terms and conditions.

1) Contract Route: As per Route(s) XX of the [Baltic Panamax Index] [Baltic Handy Index] [Baltic Cape Size
Index] as defined on the Contract Date including any forthcoming amendments published at the Contract Date
which will become effective prior to the settlement of this Agreement.
2) Contract Rate: USD «RATE» per [ton]/[day]
3) Contract Quantity: «QUANTITY» [tons] [ [days] each Contract Month]
4) Contract Month(s): «MONTH»
5) Settlement Date(s): «MONTH»
6) Settlement Period: Settlement Period defined as all the Baltic Exchange Index publication days of the Contract
Month (or state the number of days) up to and including the Settlement Date.
7) Settlement Rate: The Settlement Rate shall be the average of the rates for the Contract Route published by the
Baltic Exchange over each Settlement Period. If for any reason the Baltic Exchange cannot provide any rate
required for establishing the Settlement Rate, then the current Chairman of the Forward Freight Agreement
Brokers Association ("FFABA") shall be instructed by either party to form a panel comprising of a minimum of
three independent brokers (the "Panel") to establish an appropriate rate which will be final and binding on both
parties. The parties agree not to bring any proceedings of any kind and to jointly and severally indemnify and hold
harmless this Panel, the Baltic Exchange, the FFABA and their members against all liability, claims, demands,
costs and expenses arising directly or indirectly as a result of the Panel's decision.
8) Settlement Sum: The Settlement Sum is the difference between the Contract Rate and the Settlement Rate
multiplied by the Contract Quantity. If the Settlement Rate is greater than the Contract Rate, the Seller shall pay
the Buyer the Settlement Sum. If the Settlement Rate is less than the Contract Rate, the Buyer shall pay the Seller
the Settlement Sum.
9) Payment Procedure and Obligations:

(a) The payment obligation of each party as provided below is subject to the condition precedent that no
Termination Event(s) (or notice period provided for in clause 12 (i)) with respect to the other party has
occurred and is continuing. In the event that a Termination Event does not result in the termination of this
Agreement (as provided for in clause 12) this condition precedent will no longer apply.

(b) The Settlement Sum must be received within five clear London Banking Days (to mean between the hours
of ten am until four pm) after the Settlement Date. The parties are obliged to provide each other with their
respective bank remittance details, and invoice if requested, in order to facilitate timely payment. Payment
of the settlement sum shall be made telegraphically in full in United States Dollars. Payment shall be made
without deduction, set off or counterclaim save as provided for under clause 11 below. The costs incurred
in effective payment shall be for the account of the payor. Payment may only be effected directly between
the parties.

(c) Payment is "received" for the purposes of clause 9(b) when the Settlement Sum has been received into the
bank account designated by the payee.

(d) If receipt of payment is delayed beyond the period referred to in clause 9(b) above solely as a result of
proven clerical and/or banking error then the payee shall give the payor written notice granting the payor
the opportunity to rectify the error within three clear London Banking Days of such written notice.

10) Capacity and Solvency: Each party warrants (which warranty shall continue to apply throughout the duration
of this Agreement) at the time of entering into this Agreement that:
(a) It is duly incorporated and validly exists under the laws of its domicile and is solvent;
(b) It has the power to execute, deliver and perform this Agreement;
(c) All regulatory, governmental and other consents that are required to have been obtained by it with respect to
this Agreement have been obtained and are in full force and effect and all conditions of any such consents have
been complied with.
(d) In the event that either party to this Agreement is a person domiciled in the United States, or a corporation
incorporated in the United States for a body [[corporation]] with its principal place of business in the United
States], that party represents to the other party that its is an 'eligible swap participant' as defined by the United
States Commodities Futures Trading Commission in C.F.R. Section 35.1(b) (2).
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11) Payment Netting: If the Settlement Date(s) for this Agreement and any other forward freight Agreement(s)
entered into between the parties shall fall on the same day and in the same currency, payments shall be made on a
net basis.
12) Termination Events: In the event either party (the "Non-Performing Party") shall:
(i) Fail to honour its obligations (whether totally or partially) the other party in accordance with clause 9 if such
failure is not remedied within four clear London Banking Days after written notice of such failure (pursuant to this
sub paragraph) is given to the party; or
(ii) be proven to have made a warranty under clause 10 that was incorrect or misleading in any material respect or
be proven to have made a warranty under clause 10 which is no longer sustainable; or
(iii) petition or otherwise commence or authorize the commencement of proceedings under any bankruptcy or
similar insolvency law for the protection of creditors or have any such petition filed or proceedings commenced
against it or its assets; or
(iv) institute or have instituted against it a proceeding seeking a judgment of bankruptcy or insolvency or a petition
is presented for its winding up or liquidation; or
(v) fail to honour its obligations to the other party in accordance with clause 19 below (if clause 19 applies)
(each event (i), (ii), (iii), (iv), (v) shall be referred to as the "Termination Event").
the other party (the "Performing Party") shall (save in the case of a Termination Event (iii) or (iv) where this
Agreement shall be automatically terminated (and any overall monetary gains or losses, costs and expenses
calculated) immediately preceding the presentation of the relevant petition or the institution of the relevant
proceedings if the Termination Event specified in (iii) and (iv) is governed by a system of law that does not permit
termination to take place after the occurrence of a Termination Event) have the right immediately (but latest within
seven clear London Banking Days from the Termination Event) to terminate this Agreement and to calculate in
good faith its overall monetary gains or losses under this Agreement and its costs and expenses reasonably incurred
in terminating this Agreement. The Performing Party shall aggregate any monetary gains or losses, costs and
expenses with respect to this Agreement into a single amount. The Performing Party will arrange for such single
amount to be certified, as commercially reasonable, by an impartial FFABA broker (the "Certified Amount"). The
Certified Amount will be final and binding on both parties. The Performing Party shall notify in writing the Non-
Performing Party of any Certified Amount owed. The Non-Performing party shall arrange prompt remittance. The
Performing party shall be entitled, in its option and discretion, to set off against any Certified Amount owed by it,
any amounts payable to the Non-Performing Party under this Agreement or any other agreement to prompt
remittance.
13) Commission: Each of the parties is jointly and severally liable to pay brokers' commission within five clear
banking days of the Contract Date. An invoice will be provided.
14) Non-Assignability: This Agreement is non-assignable unless otherwise agreed in writing between the parties.
15) Principal to Principal: This is a principal to principal Agreement with settlement directly between the two
parties. Both parties agree that [brokers name] and any impartial FFABA broker (referred to clause 12) shall be
under no legal liability in relation to this Agreement. Both parties agree jointly and severally to indemnify and hold
harmless [brokers name] and any impartial FFABA broker against all actions, including but not limited to all
claims, demands, liabilities, damages, costs and expenses both from the two parties and any third party. Claims,
demands, liabilities, damages, costs and expenses suffered or incurred are to be settled directly by or between the
two parties.
16) Entire Agreement: Each party confirms that it has taken its own independent financial, legal and tax counsel
prior to entering into this Agreement and is not relying upon any advice, counsel or representations made by the
other party.
17) Telephone Recording: Each party reiterates their consent to the recording of telephone conversations in
connection with this Agreement.
18) Law and Jurisdiction: This Agreement shall be governed by and construed in accordance with English law
and subject to the non-exclusive jurisdiction of the High Court of Justice in London, England. Proceedings may be
validly served upon either party by sending the same by ordinary post and/or by fax to the addresses and/or fax
numbers for each party given above.
19) Guarantee Clause: The Seller [Buyer] shall procure promptly the generation of a guarantee from [specify
guarantor] in the attached form. The guarantee must be finalized and signed by [state date] latest. Clause 19 only
applies if completed.

il. ignecl for the Buyer-63,'"7"'	 thaillerb
[printed name]	 [printed name]
Duly authorised signatory	 Duly authorised signatory
Date:	 Date:
C.Company5sal or Stanlp	 (C.,,oppany Seal or Stam
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