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SYNOPSIS

The overall aim of this research has been to develop new algorithms and
computer software that may be used to assess the reliability of water
distribution systems. Such a tool can be used by design engineers to create
systems which are both economical in total cost commensurate with meeting
targets for a specified level of reliability.

The introduction describes how water supply and distribution systems are
normally designed, what they comprise and problems associated with failure
or lack of availability of an adequate supply to the end user. This is followed
by a r6sum6 of current methods and algorithms for the analysis of networks
and a detailed examination of the previous work on network optimisation and
reliability.

Three main algorithms exist for the analysis of water networks. These are the
Hardy-Cross methods, the Newton-Raphson methods and the Linear method.
A computer program based on the Linear method, which is known to be the
most reliable, is proposed for the hydraulic analysis part of the present work.

With respect to reliability, a full discussion of the topic, including all the
various factors which influence it such as the stochastic nature of customer
demands, the apparently random occurrence of pipe breakages and the concept
of repair time, is presented. A reliability analysis model, that incorporates
simultaneously the three reliability factors mentioned, for the assessment of
nodal and system availabilities, is proposed, from which an efficient computer
program has been developed and tested.

Two models for the design of optimal water distribution systems, based on
reliability criteria, have been developed, programmed and tested. The first
model makes use of the entropy principle for producing 'reliable' distributions
of flow and the Linear Programming technique is used for computation of the
least cost design. In the second model, however, a Genetic Algorithm
procedure, that incorporates the new reliability analysis model and which is
superior to other models has been formulated.

The thesis concludes with a comparison between the two methods formulated
as a result of this research and applied to realistic practical systems, plus
suggestions for further work to improve the optimisation of water distribution
networks.
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NOTATION

Ad =

AFit =

ANet =

Anode. =1

aP

AsT

a , )3

=

=

=

bk =

bp =

C, C, =

CIJ. =

Check, =

Ct. =

Cl, =

CostNET =

Costs, =

CostNET(St) =

c
P

=

D .-_

D =
eq

pipe section, m2

average fitness of a population of strings

network availability

availability of node i

coefficient of pump curve

target system availability

pre-specified values of probability

net head loss in path k, k = 1,...,(NF - 1), m

coefficient of pump curve

Hazen-Williams coefficient (for link i)

Hazen-Williams Coefficient of pipe of diameter j in link i

0/1 variable used in the Path_Q computer program

large constant

cost of link i

total network cost (£)

total network cost for string St including penalty cost (£)

network cost for string St without penalty cost (£)

coefficient of pump curve

pipe diameter, m

equivalent diameter, In
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D1.i	= diameter of pipe j in link i, m

Dmin, Dmax = minimum and maximum diameter, m

= theoretical diameter, m

Dti	= theoretical diameter of link i, m

= coefficient of pump curve

zE	= difference in total head between two fixed head nodes, m

6(h)	 defining length of schema h

z1-1.	= head loss in link i, m

= head loss in link i corresponding to loading condition j, m

E[f]	= known value of expectation function fi

eP	= coefficient of pump curve

pump energy

precision of computation for determining L5

algebraic function

optimal value of F

time that supply is in failure state

number of failures per unit time of pipe i

probability of insufficient supply at node i of the jth violation

of minimum pressure

raw fitness

schema average fitness

raw fitness of string St

scaled fitness of string St

expectation function fi of the ith probability of the discrete

random variable y

probability of hydraulic failure of node i

EP =

=

=

Fs =

FailTime =

F. =

Fij =

Fit =

Fit(h) =

Fits, =

Fit'st =

f(y) =

Fnode. =
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function of flow Q for a given pipe

function of flow Q for a pump

derivative of fQ

derivative of ;

fQ =

; =

f 'Q =

f ; =

g
	= acceleration due to gravity (9.81 m/s2)

Gi	= gradient of function fQ evaluated at Q = Qi

constant depending on the units used in the Hazen-Williams

head loss equation

schema

original head at the source, m

cutoff head of the pump, m

minimum required head at node k, m

Hkmin 0)	= minimum required head at node k for loading condition j, m

H .	= pressure at node i, m1

hL	= total head loss in a pipe including minor loss, m

hLm	= minor loss, m

hu,	. head loss, m

pump head, m

hydraulic gradient at peak flow

hydraulic gradient of pipe of diameter j in link i

lowest and highest hydraulic gradients

index for counting violations of minimum pressure

constants equal to 4/71. and 10.70 respectively

arbitrary positive constants

ratio of the actual demand to the time averaged demand

demand factor for zone i
1

V =

h =

H o =

Hc =

;min =

Hpump

.j d

J..q

=

=

=

Jffn.n' Jmax =

k =

K 1' K2 =

KB, Ks, K =

KLoad =

KLoad. =
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Km	. minor loss constant

Km 	number of times the pressure test was violated

Kp	= pipe constant which is function of length, diameter and

roughness

. constant used in the Linear NormalizationKS cal

L	. pipe length, m

Lb	= length of a string St

L1.	. length of link i, m

L5	= length of a sub-string corresponding to a decision variable

m	. minor loss coefficient

M	. number of expectation functions

m(h,t)	= number of copies of schema h at time t

n	. coefficient

N	= number of subsystems

Ncopiess,	= number of copies of string St

ND	= number of decision variables

Nd	= number of candidate decision variables

Nd(i)	= set of outflows, including any demand, from node i

NF	= number of fixed head nodes

n(i)	= number of permissible diameters in link i

Nj	= number of nodes

NL	= number of loops

NLoad	= total number of demand conditions

N	= number of pipes
P

N op	 = population size
p

Nx	= number of segments connected in series in a link
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o(h)	. order of schema h

. probability of generating initial GA populationPo

Poi	. proportion of the total supply to the network provided by

source i

P	= probability of crossovercrossover

pD.	= probability of failure per day of pipe i of diameter Di1

pDeci	= probability of failure of a link of the equivalent diameter Det1

Pf(k)	= set of links in path k, k = 1,...,(NF - 1)

Pi	. probability of occurrence of subsystem i

P.	. probability of flow arriving at node i, i = 11

PKLoad.	= probability of demand condition i1

P1(i)	. set of links in loop i

= probability of mutation
Pmutation

Pn(i)	= set of links in the path from the source to node i

PNetwork = probability of no pipes being out of action

Ppipei	= probability of failure of pipe i

= external inflow at node j, m3/sgo;

Q	. flow, m 3/s

Qavg	
= overall average demand, m3/s

Qiavg	
= time averaged demand at node i, m3/s

Qi	. flow at link i, m3/s

Qii	= flow of link i for loading condition j, m3/s

= flow into the node, m3/sgin

Qmin' QmaX = minimum and maximum design flow, m3/s

. flow away from the node, m 3/sClout

Qiext	
= external demand or supply at node i, m3/s
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P

rD.1

=

=

Rs =

RsT =

S =

So =

SB =

Scheck =

S. =1

n ext	
= external demand for loading condition i at node j, m3/s

"cii

Qp	= peak flow, m3 Is

Ranks	= rank of solution St

constant cost coefficient

breakage rate per year and per km of pipe i of diameter D

system reliability

target system reliability

system entropy

entropy of sources;

Boltzman's entropy

control variable used in the PATH Q computer program_

entropy of node i

SN =

Ss =

St =

St. =1

nodal entropies

Shannon's entropy

string of binary/integer values

string i of binary/integer values

St.'1 =

To =

e .

T.1 =

TotalTime =

Trep =

Vd =

new string i resulting from the application of genetic

operators to string St.

total supply or demand, m3/s

exponent greater than 1

total outflow (including any demand from node i), m3/s

time interval considered, day

repair time during which a pipe remains in. a failed state, day

design velocity at peak flow, m/s

Nimin , Vmax = minimum and maximum design velocities, m/s

x.	= decision variable i, i= 1 ,...,Nd1
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X . , Xmm max

x..
If

. optimal value of x

. minimum and maximum values of decision variables x

. segment length of pipe of diameter j in link i, m

. discrete random variables
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Chapter I

WATER DISTRIBUTION SYSTEMS

1.1 INTRODUCTION

Water is one of the essential fluids upon which life is based. Without it death

and extinction would follow. The purpose of a water supply system therefore is

to provide an adequate supply of suitable water at points of need. The system

provides a link between points of availability, ie the sources of water, and the

users, be they agricultural, domestic or industrial.

If the sources of supply are some distance from the users, and also if the users

are large in number and spread over a wide geographical area, relatively long

distance trunk supply mains will be required. The more general distribution to

the various consumers will be through distribution networks. The trunk mains

will often be of large diameter, eg 1-4 metres, whilst the pipes in the

distribution networks will be in general in the range of 150-500 mm or less.

The design of a water supply system is influenced by many factors. However, it

may be postulated that there are, say, three key stages through which the

engineering design process evolves. These are - the initial feasibility studies,

the functional design and the risk assessment or fault analysis.

During the feasibility studies the overall economic and engineering issues are

reviewed to assess the viability and worthwhileness of the scheme, leading to a

specification for a functional design if it is agreed that the scheme should go

ahead.
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The functional design is when details of the system are worked out, pipeline

routes, sizes and materials chosen, the location of pumping stations, selection

of pumps, valves and control gear made, operating strategies evolved, and so

on. This is also where feedback loops start to appear in the design process -

not only in relation to the risk assessments and the impact that these may

have on the design, but also in relation to optimisation, scope for developments

in future demand or, perhaps, even potential changes in available sources.

The major concern in this project is with "optimisation". Historically, this

process has been interpreted in many different ways by engineers and

researchers. Early interpretations tended to focus on the optimisation of capital

cost, eg the cheapest layout of the pipe network and, perhaps, pumping

stations. Other interpretations look, for example, at optimising operational

costs, saving energy, and so on. The full literature will be discussed presently,

However, it is only recently that optimisation from the perspective of the

consumer has begun to be addressed - and particularly so in this study.

To lay the foundation for the development of these ideas various features of all

water distribution systems are now discussed in more detail, following which

various techniques for the functional analysis are reviewed. A detailed review

of the literature on optimisation will then be given in Chapter 3.

1.2 SYSTEM DESIGN

The principal driving force in pipe network design is the demand. The demand

is created by domestic consumers and by industrial, commercial and

agricultural needs. Some allowance must also be made for losses from the

system and for "free" usage, ie public parks and leisure use, fountains,

firefighting, etc.

Globally, agriculture accounts for about 55 per cent of water demand, industry

35 per cent and domestic usage about 10 per cent (Park, 1986), but without

doubt the level and character of demand will both vary from country to

country, and through time within each country. In the United Kingdom during

the present century, agriculture demand for irrigation water has been limited

and industrial and domestic demand have been dominant (Park, 1982).
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Over 99 per cent of England and Wales is now served by the privatised water

supply. Most domestic users have unmetered supply, and are charged in

proportion to property rateable values, not on the basis of water used, which

would require water metering. Domestic consumption currently averages about

125 1/person/day (Park, 1986) and by the end of the century, it is estimated to

become around 140-160 1/person/day (I.W.E.S, 1984).

1.2.1 Domestic usage

It is estimated that around 33 per cent of domestic demand is used in WC

flushing, a further 17 per cent is used in bathing and showering, 12 per cent is

used in clothes washing machines and the remaining 38 per cent is used in

various ways which include hand washing, drinking, cooking, cleaning, outside

use such as garden watering and car washing and luxury appliances such as

dishwashers etc.

Domestic demands vary within the same country and from country to country.

Among the causes of different domestic consumption there are:

- variation in habit, as regards frequency of use of appliances and fittings;

- volume per use;

- levels of appliance ownership;

- climatic conditions.

Compared to the UK domestic consumption, it was found in the US that there

is a very high level of use of WC flushing because the average volume/flush is

5 gallons, twice the UK level. Moreover flow rate for showers is much higher

in the US than in the UK (5 US gallons/minute in US, 1 gallon/minute in UK)

and also the frequency of showering in US is greater than that in UK (about 1

per person per day against an average 11/2 baths or showers per person per

week in the UK) (I.W.E.S, 1984).

Consumption of water due to garden watering is weather dependent and occurs

over a short period. In the UK it constitutes a small part of the average annual

household, consumption accounting for less than 5 per cent (I.W.E.S, 1984)
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though in other countries, due to climate conditions garden watering can

exceed the total of the remaining part of domestic demand (Power et al.,

1981).

Tourist demand can be added to consumer requirements. This appears within

the spring/summer months in general. The amount of water needed is variable,

depending upon the area served and the type of accommodation used (Hooper,

1981). Tourist demand may in some circumstances create serious problems of

supply. For example, from a survey by South West Water Authority (1978), it

was found that at the height of the tourist season the global demand could

increase by 20 per cent over the annual average.

1.2.2 Industrial, Commercial and Agricultural usage

The second category of water consumption is represented by industrial,

commercial and agricultural usage. Water consumption in small engineering

workshops and high industry may range up to 3 m3 per 1000 m2 of factory

floor per day (I.W.E.S, 1983).

Unlike the domestic demand, industrial consumption can be influenced by

controlling consumption, ie by means of reduction of wastage of water,

recycling water, or even by changing the production process to another one

which uses less water.

Consumption in small factories where water is not used in the manufacturing

process, commercial consumption in restaurants, shops and offices, and

institutional consumption in schools, hospitals and government offices can be

assessed from the water authorities.

The use of public water supply for agricultural purposes in the UK is relatively

small in terms of annual average demand (about 500 Ml/d, less than 5 per cent

of the total). About 40 per cent of all agricultural water requirements are met

by direct abstraction (I.W.E.S, 1984).
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1.2.3 'Free' usage

Firefighting, park irrigation, sewer jetting, flushing and the maintenance of

mains are considered as 'free' usage. In general, water used for firefighting is

not recorded and measurement can be difficult to make since it is not known in

advance when and where water will be needed. The total quantity used is likely

to be small, and is usually ignored in estimating future demands (I.W.E.S,

1983).

1.2.4 Losses

Losses represent water wastage through leakage, bursts and illegal use. Losses

start at the consumer's premises and may result from a broken service pipe

downstream of the meter, defective ball valves and WC cisterns, and dripping

taps. In the distribution system, water leaks through openings due to main

bursts and failures of the various network fittings such as joints, hydrants and

meter boxes. Illegal use results from illicit connections to the distribution

mains.

All water distribution systems leak. Estimated losses from water networks vary

widely depending on factors such as pressure, age and maintenance. It is

extremely rare to find a rate of leakage less than 15 per cent. Such a figure

would be associated with a well maintained system. In the UK it is taken as

25-50 per cent. Losses of 50 per cent and more are not uncommon. For

instance, in the city of Kathmandu in Nepal, the rate of losses was 75 per cent

in 1973 (I.W.E.S, 1983). The knowledge of leakage rate is an important factor

in assessing future demands.

1.2.5 Variation/Uncertainty of demands

Demand profiles vary from day to day, season to season and year to year.

Among the features causing this variation are the size of the area, its type in

terms of industrial, commercial, tourist, domestic area or a combination of

these, the weather, the temperature and the time of the year.
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Typical changes in the rate of usage that occurs during the day within a

distribution system is given in Fig. 1.1.

Consumption peaks can be observed in both winter or summer. Winter peaks

do not correspond to a real use of water but are caused by loss of water due to

leaks and bursts in system links. On the other hand summer peaks may be

explained by a rise in consumption resulting from two main effects, the "tourist

effect" and the "garden watering effect". However the proportion of summer

peak demand due to garden watering is not known (I.W.E.S., 1984).

Some peaking coefficients have been produced in the literature, ranging (for

local distribution mains) from three times average demand to a higher factor of

up to six times winter demand. It has also been observed that the ratios of

peak week, peak day and peak hour to average (or winter) demands have not

changed as per capita unmetered demand has risen (I.W.E.S., 1984).

In designing water networks, demands have been generally taken as

deterministic values. However in reality they are not. In order to ensure a

design is adequate all, or at least a number of the expected critical, conditions

must be considered. In recent literature, the ability of a network to operate

under various demand patterns has been equated with a reliable network

(Templeman, 1982).

1.3 THE ELEMENTS OF PIPE NETWORKS

To meet the needs of the various consumers, as introduced in the preceding

sections, the network that evolves comprises pipes for conveyance, pumps for

providing the energy to drive the fluid, reservoirs and storage tanks to provide

a buffer between the rate of supply and rate of demand, and valves and meters

to control and monitor the demand respectively.

1.3.1 Pipes

The pipework of a distribution system comprises a number of sections with

different purposes. Mains intended to convey water in bulk from one part of

the network to another are called trunk distribution mains. These may contain
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some branch connections but generally no consumer connections. Secondary

mains provide the basis of the system and their use is to link the service mains

with the service reservoirs and/or with the trunk distribution mains. Some

direct connections to these pipes may be allowed especially for large individual

demands.

Service mains play the role of supplying water from the secondary mains to

the smaller consumers. A pipe size of more than 100 mm is generally adopted

by water authorities since there are numberous connections to individual

households and for reasons of firefighting in residual areas. About 70 per cent

of the UK distribution system is 150 mm or smaller in diameter and made

from cast iron (Lackington, 1983).

Service pipes are the small diameter pipes conveying a supply of water from

the service main into the customers' property. For domestic supplies a

diameter less than 25 mm is generally used. The majority of service pipes are

13 mm nominal diameter, but other consumers may require larger sizes.

Service pipes are frequently further subdivided in the communication pipe

which links the service main to the boundary of the premises being supplied,

and the supply pipe which is the portion within the boundary.

1.3.2 Pipe Materials

Cast iron, spun iron, ductile iron, spun ductile iron, asbestos cement, uPVC

(unplasticized polyvinyl chloride) and MDPE (medium density polyethylene,

mainly used by British Gas for many years) are the most common pipe

materials used for manufacturing and fabrication of water mains. Steel pipes

are frequently used for trunk distribution mains. Copper and galvanized mild

steel are used for service pipes. Cast or spun iron pipes and lead pipe is for

practical purposes no longer used, though both materials were widely adopted

in the past (I.W.E.S, 1983). The water industry has been somewhat

conservative in its selection and use of pipe materials since the provision and

maintenance of mains is an expensive and long-term work. About 85 per cent

of distribution pipework in the UK is cast iron; Asbestos cement and uPVC

make up a large proportion of the remaining 15 per cent.
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Spun ductile iron pipe which includes the advantages of ductile iron pipe over

gray iron pipe (eg greater strength, 30 per cent lighter, more resistance to

fracture under beam loading conditions) was first manufactured in the UK on a

commercial scale in 1961 (Water Authority Association Advisory Committee,

1983).

Asbestos cement pipe which is fabricated from asbestos fibres and ordinary

Portland cement have been used in the UK for more than 50 years (Water

Authority Association Advisory Committee, 1982), while uPVC pressure pipe

has been available to the water industry only for about 20 years (Ibid, 1982).

Recently, however significant technological advances have been seen in the

world of pipe manufacturers to the extent that designers are more willing to

vary their choice, with confidence in the whole-life performance of the selected

material (Latham, 1990).

1.3.3 Pumps and Pumping Stations

Pumps are used to raise a fluid from one level to a higher level. Many different

types of pumps can be used. However, centrifugal pumps are most frequently

used within water distribution systems. Details of these pumps and others may

be obtained from textbooks (eg Anon, 1968, 1982).

Basic pumping plants in use for application in the water industry are lift

stations and booster stations. Lift stations are necessary where water cannot

be supplied by gravity from one point to another. Such pumping may be either

to service reservoirs or water towers. Booster stations, on the other hand may

be applied to increase the carrying capacity of a main especially at period of

peak demands, so avoiding or postponing replacement or duplication. They

may also be applied to overcome local deficiencies in pressure or to maintain

or increase output of a pumping station with increasing friction-head or

demand. Guidelines on the selection of these pumping plants, their sites,

operation, control and maintenance are fully described in I.W.E.S (1984).
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1.3.4 Valves

The movement of water within the distribution network needs at all time to be

controlled. Examples include maintaining system pressure within min/max

operating limits, controlling leakage, maintenance and repair or adding new

connections. Valves are an essential and integral part of the system: the more

there are the more flexibility there is. The term 'valve' is widely used for both

controlling devices, eg pressure reducing valve, and for throttling devices, eg

partially closed valve.

Block valves are intended to fully open or fully shut and should not be used for

flow regulation. The common sluice or sliding-gate valve is usually used for

this purpose, as it is comparatively cheap and virtually water tight when shut.

Pressure throughout the system needs to be great enough to satisfy nodal

demands. However, excessive pressures are neither desirable nor economic and

also increase leakage and wear and tear on fittings including customer's own

water-using apparatus. Pressure reduction in such situations may be achieved

through the use of pressure-reducing valves or pressure-control valves, which

are designed to maintain a preset pressure or flow in the downstream side of

the valve for all flows which are lower than the upstream pressure.

Pressure-sustaining valves are similar to pressure-reducing valves but are

designed to protect upstream rather than downstream pressure.

1.3.5 Reservoirs and Storage

Other major components which may appear within water distribution systems

are service reservoirs and water towers. The former is a receiving tank for

treated water, situated generally on high ground near a centre of population.

The latter is a form of service reservoir, but elevated artificially above ground

to create the necessary pressure throughout the area served which is usually of

flat topography. Both tanks fulfil the same purpose of:

(1) Dampening hourly consumer demand peaks;

(2) Providing contingency storage;

(3) Compensating for variation in water quality.
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Service reservoirs and water towers are many and varied ranging from small

individual steel tanks through massive masonry or brick structures to those of

large reinforced concrete construction built recently.

1.4 DESIGN PRACTICE

Design methods for water distribution networks vary considerably between the

different industries which use pipe networks. To date the methods used can be

included in four approaches:

(1) Feasible solution;

(2) Trial-and-error "optimisation";

(3) Rules-of-thumb;

(4) Mathematical optimisation.

Approaches (1), (2) and (3) can be performed manually. However, the

mathematical optimisation approach requires a computer facility, especially for

medium and large networks.

The first approach refers to any feasible set of diameters found by the designer

that will function hydraulically for a given network without concern for the

least cost solution.

The second approach, trial-and-error "optimisation", does not use methods of

theoretical optimisation such as Linear, Non-Linear Programming, Geometric

Programming or Genetic Algorithms or others, for the choice of pipe sizes.

Rather, it only compares alternative feasible link sizes to find a least-cost by

trial and error.

In the third approach some rules-of-thumb are combined by the designer to

reach a practical solution. The selection of pipe diameters is performed on a

criterion such as a peak flow velocity of 1.8 m/s, and a check to ensure that

the solution obtained is hydraulically feasible.

For the last approach, mathematical optimisation techniques are used to find

the optimal pipe sizes. A r6sum6 of the techniques used is presented in

Chapter 3.
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1.4.1 Design parameters

Usually the parameters taken into account in the design of water networks are

some criteria on Flow, Velocity, Pressure, Hydraulic Gradient and Diameters.

The number and the type of criteria change between design teams.

1.4.1.1 Flow

This parameter is the most important variable in pipe size selection. Though

most of the time water networks are operating under normal conditions, ie

average flow pattern, peak flows are used for the design. Usually, peak flows

are linked to the average flows via peaking factors, eg peak hourly flow is

obtained by average flow times peak hourly factor.

1.4.1.2 Velocity

Limits on velocity are different from country to country. In France pipe

velocities have to be between 0.5 and 1.0 m/s (Didier, 1980). According to

Dither, the minimum limit has to be respected in order to avoid a deposit

settling out, while the maximum limit increases energy consumption and the

risk of deterioration of hydraulic components (eg valves and joints).

In the US bounds on velocities are considered in conjunction with the

importance of the flow. Walski (1985) pointed out that velocities of the order

of 0.6 m/s (2ft /s) at average flow and less than 2.4 m/s (8 ft/s) at peak flow

are good practice.

1.4.1.3 Pressure

Constraints on pressure throughout the system are essential in the design of

water mains though the UK Water Acts (Section 39, 1945) did not prescribe a

fixed pressure for supplies to users. Instead, the Water Acts refer to constancy

of supply. Weak pressures are indicative of problems of supply while excessive

pressures are not desirable and not economic. In effect, excessive pressures

cause deterioration of hydraulic fittings, moreover water use increases and
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leakage shoots up. In a recent work it was shown that leakage varies

exponentially with pressure (Patton and Horsley, 1980).

Once again bounds on pressure are not fixed for most countries. In the UK,

most main designers use a minimum distribution pressure of between 15m to

20m head for most consumers, whereas in France this limit is dropped to 1Orn

(Didier, 1980) while it is around 14m (20 psi) during fire conditions in the US

(Walsld, 1985).

Maximum distribution pressures on the other hand vary also between countries.

Generally they range from 40m to 60m or even more (Didier, 1980, I.W.E.S.,

1984 and Walsld, 1985).

Desirable pressures are about 30m to 50m which are frequently achieved

through dividing a distribution system into zones, each valved such that it is

separated from the others on the system or linked by pressure-control valves.

1.4.1.4 Diameters

Bounds on pipe sizes are, in general, only put on the minimum size since the

maximum size depends on the importance of the area served. In the UK, mains

in the network range from as small as 50 mm (2 in) to 450 mm (18 in) and

above. The vast majority of small size are 75 mm (3 in), 100 mm (4 in) and

150 mm (6 in). Whilst current design practice has standardized on 100-150

mm for most new mains (Latham, 1990), there is no statutory duty to provide

any particular capacity for firefighting (I.W.E.S., 1984). However, in the US

some rules specify a minimum diameter of 150 mm for systems providing fire

protection and at least 50 mm for systems where fire protection is absent

(Walski, 1985). In France on the other hand, the minimum diameter is in the

interval 40-60 mm in the situation of a system with no fire protection and at

least 100 mm for fire protection systems (Didier, 1980).

1.4.1.5 Hydraulic gradient

Preferred velocity and preferred hydraulic gradient through the system are used

generally as a basis for choosing pipe diameters. A method for achieving this

is described below.
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1.4.2. The sizing of water mains

When distribution flows are known, pipe diameters can be determined on

sizing criteria often stated in terms of a preferred velocity at peak flow or

average flow (eg 1.5 m/s at average flow to 2.5 m/s for fire situation) or in

terms of a uniform hydraulic gradient (eg 4 m/1000 m at peak flow). Given a

fixed velocity, the use of the continuity equation allows the determination of

the theoretical pipe size as follows:

D	
p=	(K 1 * Q_/Vd ) 1/2

t 

Where

Dt	=
Qp	.
Vd =
K 1	=

theoretical diameter, m
peak flow, m3 /s
design velocity at peak flow, m/s
4/jr.

If the hydraulic gradient is selected with the use of the Hazen-Williams

formula, the size of the pipe can be obtained by:

Dt	=	(K2/jd) 021 * (Qpic) 0.38	
(1.2)

Where

D i	= 	theoretical diameter, m
Jd	=	h/L = hydraulic gradient at peak flow, 4/1000
Qp	=	peak flow, m3 /s
C	= Hazen-Williams C coefficient
K2	=	10.7 for D t, L, h in m and Q in m3 /s.

The size Dt found is a theoretical value which is usually rounded up or down to

the closest available nominal size.

While these approaches have the advantage of being simple and rapid they are

on the other hand less than ideal methods since they ignore the cost factor and

hence the optimal pipe size.
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1.5 SYSTEM FAILURE AND BREAKDOWN

The concept of failure has usually been associated with events such as

breakage of pipes and, perhaps in some cases, loss of pressure due to electrical

power failure. In this study the concept is taken to a greater depth, but some

preliminary comments are appropriate in this opening chapter.

1.5.1 Overall System Failure

Massive failures such as these should occur only rarely, or never at all. The

commonest cause of a temporary, but total, failure is probably loss of electrical

power to the motors driving the pumps. They are fairly rare in most developed

countries but in some parts of the world will be quite frequent, ie one or more

times per week. Far less likely, but not to be completely ignored, are dam

breaks and droughts. A more insidious failure is contamination due to the

ingress of contaminated water when the system operating pressure is

sub-atmospheric. Much more common, however, are failures of sub-sections of

a system due to failures of individual components.

1.5.2 Pipeline Failures

Pipe breaks occur despite precautionary measures such as material selection

and proper mainlaying. Basically, the variety of factors reported to affect the

failure characteristics of water mains are:

(1) defects in manufacture (observed generally immediately after

installation);

(2) poor bacIdill and bedding (because loads on the pipe are not evenly

distributed as was assumed during design);

(3) internal/external corrosion of the fabric of the main;

(4) excessive load from traffic;

(5) pressure surging (eg unexpected transient pressures not catered for

during design, or due to poor maintenance and possible corrosion/fatigue

effects);
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(6) ground movement, through expansion of soils, subsidence or,

freezing/thawing conditions;

(7) joint deterioration (caused by waterhammer for example), may erode

the bedding under a pipe which is then no longer supported adequately and

more likely to burst under external loads;

(8) accidental damage caused by operations of other utility (eg new

construction);

(9) pipe diameter (the rate of bursts increases as pipe diameter decreases,

(Robert and Regan, 1974)).

In particular each type of material is different with respect to the common

cause of failures, the type of failures, and the rate of failures.

For cast iron pipes, the chief causes of mechanical failures are ground

movements, corrosion and uneven loading. The three common types of failure

encountered are circumferential fractures, longitudinal fractures and holes.

Holes are caused by local corrosion whilst longitudinal fractures are generally

associated with preferential corrosion damage along a longitudinal section of

the pipe and ground loading.

Circumferential fractures are commonly observed with small pipe sizes and

generally due to beam loading (Robert and Regan, 1974).

Asbestos cement pipe is made up of asbestos fibres and ordinary Portland

cement as outlined above. Deterioration of these pipes is commonly due to

external attack in aggressive soils (eg those with low pH and/or high sulphate

content) and to conveyance of a negative Langelier Index water, which may

leach the lime from the cement matrix leading to a weakened pipe.

Failure of uPVC pipe can result from fatigue caused by rapid pressure

oscillation or under normal gravity head conditions. The pipe may fail at a

high stress point. These are areas within the pipe caused by:

(1) presence of scratches on the inside surface;

(2) deep notches on the outer surface;
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(3) foreign bodies within the pipe wall;

(4) External point loads.

These causes are discussed in detail elsewhere (Stephens and Gill, 1982 and

Kirby, 1981).

Some historical data on pipe breakage rates have been published in some

studies in the literature (eg O'Day, 1982; Walski and Pellicia, 1982; Weiss et

al., 1985; Kettler and Goulter, 1985). The typical approach is to develop a

regression equation for the break rates, as a function of pipe diameter of water

mains, such as a power regression (Mays, 1989). Robert and Regan (1974)

and Kettler and Goulter (1985) have found that the rate of breaks increases as

pipe diameter decreases. However for the work of Kettler and Goulter, data

collected corresponds to the city of Winnipeg, Canada, which has extreme

temperature variation and hence these data should be applied elsewhere only

with caution (Walters and Knezevic, 1988). Cullinane (1987) and Su et al.

(1987) reported breakage rates for Philadelphia and St. Louis cities

respectively. Male, Walski and Slutsky (1990) presented an inventory of water

mains (6 in - 24 in) by borough and diameters for five boroughs (Bronx,

Brooklyn, Mahattan, Queens and Staten Island) in New York city. Mays (1989)

reported rates of breakage for San Diego and St. Louis. It was observed that

for the city of San Diego, the cast iron pipes had higher break rates than the

asbestos-concrete pipes, by almost a factor of ten for 6 in diameter.

Several authors (Walski and Wade, 1986; Walski, Wade and Sharp, 1987;

Weiss et al., 1985) have demonstrated the seasonality of pipe break rates.

Typically, break rates increase significantly during a period of cold weather

(I.W.E.S, 1984).

A study of the failure records of uPVC and ductile iron in similar conditions

carried out by the Water Research Centre (Critchley and Habershon,1981)

indicated that the recent failure record of uPVC is as good as, or even better

than, ductile iron and this is shown by Fig. 1.2. Previously, there had been

fatigue failures. Typical rates of break are presented in Fig. 1.3.

41



3.0

0.14

0

All pvc mains in data sample

Average for cast iron

I	I	1	I	1	T	1	1	i	I
1965 67 69 71 73 75 77 79 81 83

YEAR

Figure 1.2 Annual Failure Rates of uPVC Water Mains

(1.W.E.S, 1 9 8 4)



4 6 8 10 12 15 16 20 24 30 36

, Winnipeg

New York

Philadelphia

St. Louis

Break Rate (breaks/mile/year)
2.0

1.5

1.0

0.0

0.5

Diameter (in)

Figure 1.3 Break Rate as Function of Diameter

43



1.5.3 Component Failure

Design criteria for networks are usually based on the relevant code of practice

for maximum permissible pressures in the pipes. However, this will prove

useless unless the permissible pressures in the casings and bodies of the

various components can also withstand the same pressures, and also impact

and shock loads due to the motion of moving parts within these components.

This problem which is important is beyond the scope of this work. Thorley

(1991) discussed these aspects.

1.5.4 Failure in terms of Lack of an Adequate Supply

All of the above are expressed in the language of the designer, engineer and

supplier. Failure, as perceived by the consumer, is when water is not available

in sufficient quantity at an adequate pressure. Failure is now perceived as 'lack

of availability' of water and a 'reduction in the reliability' of supply. This

approach is introducing more subtle aspects of the breakdown of the system.

In the next Chapter, various approaches to the classical design and analysis of

water supply networks are developed to give further background. This is

necessary since the more refined techniques will still ultimately contribute to

the assessment of optimisation with respect to availability and reliability. The

full Literature Review will then follow.
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Chapter II

WATER DISTRIBUTION

NETWORK ANALYSIS

2.1 INTRODUCTION

Steady state analysis of flow and pressure in water distribution systems has

been and still is a major task for many water engineers. The governing

equations are non-linear and cannot be solved directly. Most of the techniques

applied for solving these equations involve gradient methods to deal with the

non-linear terms. Consequently, convergence problems are always a possibility

particularly if ill-conditioned data such as, for example poor pump descriptions

or other components are employed. Therefore, there is no absolute guarantee

of convergence.

Historically flow and pressure distributions were most often calculated using a

loop method ie equations were expressed in terms of the unknown flowrates in

the pipes. The node method is another formulation of the problem. That is, the

equations are expressed via the unknown heads at junctions within the system.

Several techniques have been suggested and tested. A summary of the major

techniques available for use on microcomputers has been provided by Thorley

and Wood (1986). The most popular techniques are:

(1) Hardy-Cross Methods (flow formulation and node formulation );

(2) Newton-Raphson Methods (flow formulation and node formulation);

(3) Linear Method.
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Details of these methods can be found in Wood and Rayes (1981). Less

commonly used models are based on the Finite Element Method (Collins and

Johnson, 1975), the Graph Theoretical Approach (Kesavan and

Chandrashekar, 1972) and the Non-linear Optimisation Techniques (Collins et

al., 1976).

2.2 BASIC EQUATIONS

A general description of water distribution networks has been presented in the

previous Chapter. When links and nodes within a system constitute a closed

path, they form loops. Moreover, when junction nodes, fixed head nodes (eg

water towers and service reservoirs) and primary loops are identified the

following relationship holds:

N— NJ + NL + NF - 1P-

Where

Np --.	number of pipes;

Nj =	number of junction nodes;

NL ..-,	number of loops;

NF =	number of fixed head nodes.

It turns out that this identity is directly related to the basic hydraulic equations

which govern steady state flow in water distribution systems.

The distribution of flows through the network under a certain loading pattern

must satisfy two laws: Conservation of Mass (Continuity equations) and

Conservation of Energy. For an incompressible fluid the conservation of mass

is replaced by conservation of flow at each junction node:

(2.1)
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E (q..) - E (q.) = 
Qext	 (2.2)

Where

gin =	flow into the node;

gout
	 flow away from the node;

Qext	external demand or supply at the node.

There are Nj continuity equations. For each primary loop, ie an independent

closed path which does not contain secondary loops within it, conservation of.

energy must hold, that is, the sum of head losses in the loop must be equal to

zero. If hi_ is the head loss in a pipe and Hpump is the head of a pump contained

in the loop, the following equation holds:

E (no - E (Hpump)	0	 (2.3)

Strictly, the total head loss in a pipe must incorporate the kinetic term, ie

V 2/2g, where V is the flow velocity and g is the acceleration due to gravity

(9.81 m/s2). Since velocities in water networks are in general in the range of

0.5 to 2.5 m/s, the kinetic term is insignificant (0.22 m for V = 1.5 m/s)

compared to the other terms in Eq. 2.3 and thus usually ignored.

There exist NL independent primary loops in the network. Finally, the

difference in total head (AE) between two fixed head nodes (ground level plus

pressure), where the head is constant for the simulation period, must be

conserved. If there are NF such nodes, then there are (NF — 1) independent

equations of the form:

LIE	E (hL) - E (Hpump)
	

(2.4)

47



It should be noted that Eq. 2.4 is more general and Eq. 2.3 is a special case of

it, zE is equal to zero for a path forming a closed circuit. As a result, the

conservation law is expressed by (NL + NF - 1) energy equations, and the total

number of equations (Nj +NL+Np — 1), as outlined in Eq. 2.1 constitutes a set

of Np non-linear algebraic equations.

2.3 ANALYSIS ALGORITHMS

Principally, three iterative approaches have been applied to solving the set of

equations described in the previous section. These are the Linear theory, the

Newton-Raphson and the Hardy-Cross techniques.

In 1963, Martin and Peters published an algorithm using the Newton-Raphson

method to solve the non-linear network equations. Shamir and Howard (1968)

showed that pumps and valves could be incorporated as well as being able to

solve for unknowns besides the nodal heads.

The Linear method was first proposed by Wood and Charles in 1972 for

simple networks and, later extended to include pumps (Tavallaee, 1974).

The Hardy-Cross method (Cross, 1936), originally developed in 1936, is

attractive for hand calculation and easily coded. For large complex networks,

however, it has been found that it is not reliable since it converges slowly if at

all (Jeppson, 1983).

2.4 CHOICE OF ANALYSIS ALGORITHM

From the previous section it becomes clear that the selection of an efficient

algorithm for the analysis of water networks is between the Newton-Raphson

approach and the Linear method. The former method is reported to converge

more quickly and require less computer storage than the latter. A disadvantage

of the Newton-Raphson method is that it requires an accurate initial guess to

ensure convergence.
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The linear method has the following advantages:

(1) Rapid convergence, though somewhat less rapid than the

Newton-Raphson;

(2) Does not require an initial starting point;

(3) Has more flexibility in the representation of pumps, and the capability

to analyse all components.

In a very recent study, Wood and Funk (1993) studied extensively the

reliability of the three main procedures. The study was performed on an

extensive data base. These data were provided by consulting engineers and

water distribution engineers and represent actual and proposed distribution

systems in the US. Most of the data were sent to one of the authors (Wood)

because analysis difficulties had been encountered. Different samples of water

networks were analysed by the three approaches and the conclusions were:

(1) The Hardy-Cross method has exhibited significant convergence

problems especially with larger systems.

(2) The most promising algorithms were the Newton-Raphson and the

Linear Methods. The convergence of both of them is virtually assured if

reasonable data are employed. This conclusion was also reached and refined by

Altman and Boulos (1992).

(3) Of the two, the Linear Method has slightly better convergence

characteristics since the Newton-Raphson method showed one failure among

the cases tested. No failure, however, was encountered with the Linear Method.

For the above reasons, the Linear method is chosen for the analysis of water

networks herein. The author has developed a computer program, LMANLS,

coded in Pascal. LMANLS will be used as a tool for solving network equations

in the computer programs being developed in this research. For reasons of

simplicity and rapidity of computation, the Hazen-Williams formulation is

retained as a head loss equation in the LMANLS procedure. The Linear

method algorithm is presented in appendix A.
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Chapter 1:11

LITERATURE REVIEW

3.1 INTRODUCTION

With the availability of computing power, the application of Operations

Research methodologies was accelerated such as optimisation and by the mid

of 1960s, optimisation techniques for the design of water distribution networks

were beginning to appear in the literature (Labye, 1966; Karmeli et al., 1968).

Most of these early models were, however, restricted in application to relatively

simple branched networks and small looped networks (Jacoby, 1968 and

Watanatada, 1973). For these early works, Jacoby who has used a non-linear

formulation has noticed that his approach, which will be reviewed later, tended

to reduce some links to practically zero and the demand can be satisfied

without the loop-forming links. However, in the absence of a minimum size

limit of the decision variables (diameters) and if a single pattern demand is

considered, the cost optimisation process will automatically remove the

redundant links from the design. Consequently, the optimal design will

degenerate into a tree configuration and the loops will then be lost

(Templeman, 1982).

Among the reasons given by the engineers for adopting loops in the

distribution networks rather than trees is that, loops increase system security,

flexibility and reliability. In case of failure of one or more links, the demand

nodes may be supplied by another path which does not contain the failed

pipes. The question of how best to incorporate the reliability issues in the
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design of water networks has not yet satisfactorily resolved (Fujiwara and

Silva, 1990).

Most of the work presented in this Chapter up to 1991 was reviewed by the

author (Khomsi, 1991). The review started from 1966 and recent papers

(1993) were also examined. This Chapter presents a survey of the literature on

Optimal Design and Reliability Analysis of Water Distribution Systems. The

Review basically concentrates on three major parts, namely: optimisation of

water distribution networks, reliability of water distribution networks and

reliability-based optimal design.

3.2 OPTIMISATION OF WATER DISTRIBUTION

NETWORKS

This section contains a review of the published approaches to the optimal

distribution design without reliability considerations. The focus is on looped

networks, which is the most common case for urban systems. A great deal of

effort related to hydraulic system optimisation had been spent to assist the

water engineer. Walski (1985) identified over 60 optimisation problems

(branched and looped networks). Table 3.1 summaries most of the work done

in the optimisation of looped networks area. Given a specific set of links in the

network layout, the optimisation models determine pipe diameters, pump

capacities, heights of water towers, and other design parameters subject to the

governing hydraulic equations satisfying steady flow conditions and various

constraints on pipe diameters, flows, and nodal heads. The problem is even

more complicated if constraints are loading conditions (eg pipe bursts and

stochastic demands).

The objective function of the models focuses exclusively on monetary costs

including acquisition, operation and maintenance costs. Important capabilities

of the models include the type of system analysed (looped or looped and

branched) the number of sources allowed (single or multiple) and the number

of loading design conditions handled. Solution tools range from linear

programming (LP) to fully non-linear (NL) optimisation techniques.
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To interpret Table 3.1, some comments are required. After the first and second

columns where the date and the author(s) are presented respectively, the third

column is related to the decision variables selected. In general, three types of

unknown are used:

(1) The length of the link. In this case, the pipe ie the link, is assumed to

be composed of segments of different diameters. The problem is linear with

respect to the link length (Labye, 1966; Karmeli et al., 1968; Gupta, 1969;

and Alperovits and Shamir,1977).

(2) The diameter of the link. Two formulations were suggested in the

literature. The first one considers diameters as continuous pipe sizes where the

cost of the pipe is non-linear in a continuous concave function in the range of

commercially available sizes (eg Jacoby, 1968; Watanatada, 1973), while the

second one treats diameters as discrete pipe sizes (eg Gessler, 1982).

(3) The length of pipe segments as in the first type. However the

objective is not the optimisation of the pipe cost but to minimise the change of

cost by replacing one size with another (Kally, 1972 and Morgan and Goulter,

1985).

The fourth column distinguishes between the type of system which can be

handled by the model. In fact if the system is fed by a source which is located

above it, this system is classified as supplied by gravity. On the other hand, if

the source head is insufficient and water is pumped to the system, the system

is classified as pumped.

For the pump, if either the head or the flow is known, the cost for pump

energy is linear with respect to the other. Some models take this relationship

and knowing the flow put the energy cost of the pump into the objective

function as a linear term and solve for the head (Robinson and Austin, 1976).

Others use non-linear functions and iterative approaches to select the optimum

head (Alperovits and Shamir, 1977).

Besides the pipe and the pump energy costs, a number of formulations

incorporate the installation cost, called capital cost, and the maintenance cost

into the objective function. These formulations consider the pump cost as a

non-linear function of horsepower or a term composed of a product of pumped

flow and head each raised to different exponents (Watanatada, 1973; Shamir,

1974; Deb, 1978; Rowell and Barnes, 1982).
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Year Author Decision Type of	 Algorithm and Comments

Variable System

1968 Jacoby	D	Pumped	NLP, unconstrained by incorporating flow
constraints into a Merit function.
Single loading condition

	

1969 Lai and	D	Pumped	LP with assumed pressure surface

	

Schaake	 Multiple loading condition.

1972 Kally	X . 	Pumped	LP, unknowns are the change of lengths of
given diameter in a link.

Single loading condition

1973 Watanatada D	Pumped	NL, unconstrained by Lagrangian of flow

constraints.
Single loading condition

1974 Shamir	D	Pumped	NLP, same formulation as Watanatada but

takes into a count other components.
Multiple loading condition

1977 Alperovits	Xii.	Pumped	LPG, Two-level hierarchical scheme LP with

Shamir	 gradient correction based on change in head.

Multiple loading condition

1981 Quindry	D	Pumped	Two-level hierarchical scheme similar to

Brill	 Alperovits and Shamir model but gradient

Liebman	 with respect to change in Flow.

Multiple loading condition

	

1982 Rowell	D*	Pumped	Two-level scheme, NLP for layout using single

	

Barnes	 load and design assumption then Integer

Programming for adding redundancy.

Multiple loading condition

D=	= Discrete Diameter

D	— Continuous Diameter

X1, 	Segment of pipe of diameter i in link j
LP	— Linear Programming

NLP — Non-Linear Programming

LPG — Linear Programming Gradient method of Alperovits and Shamir (1977)

Table 3.1 Water Distribution System Optimisation Models (continued)
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Year Author Decision Gravity
	

Algorithm and Comments

Variable Pumped

1982 Gessler	D*	Pumped	Enumeration
Multiple loading condition

	

1985 Morgan	X	Gravity	LP similar to Kally's formulation, optimal

	

Goulter	 layout is found using heuristic.

Multiple loading condition

1987 Fujiwara	X.	Gravity	Modified LPG method of Alperovits and
ij

Jenchaimahakoon	 Shamir.

Edirisinghe	 Single loading condition

1987 Lansey	D	Pumped	NLP using Augmented Lagrangian function to

Mays	 deal with head bounds.
Multiple loading condition

1990 Fujiwara	Q	Pumped	Two-phase Decomposition approach. In the

Khang	H	 first a NLPG method similar to that of

Alperovits and Shamir but the gradient is

computed using the optimal Lagrange
multipliers. In the second phase a NL program

is solved where the head losses are fixed along

the links.

Multiple loading condition

	

1991 Kessler	Q	Pumped	Decomposition scheme that uses a Minimum

Shamir D Cost Flow Algorithm to determine flow

and similar approach to that of Shamir

and Alperovits to find diameters.

Multiple loading condition

Ds	— Discrete Diameter

— Continuous Diameter

— Head

X..	— Segment of pipe of diameter i in link j

LP	— Linear Programming

NLP — Non-Linear Programming
LPG — Linear Programming Gradient method of Alperovits and Shamir (1977)

NLPG — Non-Linear Programming Gradient method of Fujiwara et al. (1990).

Table 3.1 Water Distribution System Optimisation Models
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The final column gives a very brief comment on the optimisation technique

used and the capability of the model to handle multiple loads or not.

Good reviews of this work have been outlined by Shamir (1974, 1979) who

has summarized the approaches developed during the 1970s, Walski (1985)

and Walters (1988). The most important models are discussed below.

In 1968, Jacoby suggested the use of a numerical gradient technique to

minimise the looped hydraulic network cost. The procedure starts with an

arbitrary set of diameters and flows or head losses and moves in a random

direction, seeking for a local optimum. The objective function to be optimised,

called the Merit function, was the combined cost of pumps and pipes and

penalties for violation of the continuity and the energy equations. The

procedure amounts to a Lagrangian function. No guidance, however, is given

on how to change the penalty weights to move them to correct values. In

addition, the author concluded that the procedure outlined would require a

good deal of engineering judgement.

Following the principal idea of using non-linear programming techniques for

optimally designing hydraulic distribution systems, Watanatada (1973) and

Shamir (1974) developed optimisation procedures incorporating a formal

Lagrangian function and adding the equality constraints to the objective

functions. Watanatada's approach used a combination of Box (1966) and

Haarhoff and Buys (1970) and the variable metric techniques (Davidon, 1959)

for transforming the constraints into the objective function to solve the

non-linear problem, while Shamir's procedure applied the reduced gradient

technique. The initial cost of pumps and multiple loads could be considered in

the formulation.

A second promising line of development for the optimisation of looped systems

was the use of a hierarchical scheme, which fixed either the flows or heads,

solved a linear programming problem for the optimum pipe diameter then,

using the dual variables from the linear program, adjusted the flow or the

pressure distribution. In effect, the formulation of the problem as a linear

programming one was first proposed by Labye (1966) for optimising

branched networks. A link is considered as being made up of segments of

different sizes and the sum of segments of different diameters equals the

length of the link. The optimal design problem is then a linear programming
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problem with respect to the length of different diameters. The advantage of

this linear programming modelling is the use of discrete pipe diameters that

are commercially available, rather than the direct use of diameters as decision

variables which are considered as continuous during the optimisation process,

and which, once the optimal solution is reached, have to be rounded up/down

to commercially available sizes.

In their 1977 paper, Alperovits and Shamir took advantage of the easily

accessible and computationally efficient linear programming algorithms and

extended Labye's model by adding loop equations to their formulation (the sum

of head loss around each loop is equal to zero). The first level algorithm is to

start with a known flowrate distribution satisfying the continuity equations and

to set up the linear programming model with the only unknown being the pipe

segment lengths. In the second level, the authors made use of the dual

variables from the sub-optimal linear program to find a cost descent direction,

ie a gradient search with which the linear problem is modified. They adopted

a fixed step size strategy in which a fixed step size is tried, and if the cost of

the linear program decreases, a new LP problem is set up with the newly

obtained flow rates. If the cost of the linear program for this fixed step size

increases, reduce the step size and try again. If the cost of the LP for a very

small step size increases, stop. In the later part of their article, Alperovits and

Shamir extended this technique which they have called Linear Programming

Gradient (LPG) method to the case of multiple loading conditions and some

other cases.

Apparently, the descent direction found by the authors is actually the Steepest

Descent direction (Fujiwara et al., 1987). In non-linear programming theory,

however, it is well known that this approach is the most intuitive but also the

slowest descent direction. Indeed, in practice it requires hundreds of iterations

to make very little progress toward the solution. Moreover, Quindry et al.

(1979) published a comment with the correction of the gradient terms in

the original method which improved the solution in the example problem.

Fujiwara et al. (1987) solved the drawback mentioned above, which is related

to the proper search direction in the Alperovits and Shamir model. In fact they

have used the BFGS method (Broyden-Fletcher-Goldfarb-Schanno) to

determine the search line, and the backtracking line search (Dennis and
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Schnabel, 1983) to determine the step size. A detailed theoretical analysis of

the LPG method has been presented later by Kessler and Shamir (1989).

In their 1981 paper, Quindry et al. published a procedure where the pressure

was considered as fixed in the sub-program and updated by a hierarchical

scheme. Based on the work of Lai and Schaake (1969), the sub-program can

determine the optimal continuous diameter for a link. A gradient term was

derived from the node equations and directed the change in the pressure

distribution for the next iteration. However, this derivation was incorrect as

stated by Templeman (1982). Templeman pointed out that the linearization of

the original cost which is originally not linear was a source of difficulty and

error. Indeed, the global solution resulting from the linearized problem may

not be even a minimum at all for the original problem. In addition, as the

optimisation problem was formulated, other hydraulic components cannot be

designed.

Gessler (1982, 1985) proposed a heuristic model based upon an enumeration

procedure to seek the best solution. With the availability of a set of possible

pipe sizes, the algorithm performs cost and hydraulic analysis tests on all.

potential combinations to determine a list of alternative optimal solutions.

Logic is incorporated in the model to perform size and cost tests which discard

some combinations without performing the analysis of the network. He then

noticed that his enumeration technique is NP-hard, ie the computer time

required to solve the problem increases exponentially with the number of

unknowns. However, he contends that by limiting the number of diameters and

grouping pipes through engineering judgement, the problem can be reduced to

a size which can be handled within a reasonable time. No indication was given

on the network size that can be handled by the model. Furthermore the

proposed scheme is not an optimisation technique that would produce the

global optimum design.

Morgan and Goulter (1985) published a heuristic algorithm to analyse

hydraulic systems under multiple loads and determine the optimum layout and

design of looped water networks. Two standard techniques were used for this

purpose. The linear programming algorithm and a Hardy-Cross network solver.

This model uses heuristics to define the critical nodes under different loading

conditions, and their pressure constraints acting as the active constraints in a

linear program. The objective considered is not the cost of the pipe but to
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minimise the change of cost by replacing the size of a pipe with another

(Kally, 1972). A change of this nature in a given link thus required constraints

in the model to ensure that the sum of segments of length of pipe equals the

link length. A second heuristic was developed to remove redundant links on the

basis of a weighting procedure. The global algorithm works as follows. First,

an initial solution of the layout and pipe diameters is given and analysed by

the Hardy-Cross solver. Second, a heuristic procedure is performed to remove

unnecessary links on the basis of weighting each link, ie small link weight

indicates that the link does not fully contribute to the distribution of flows and

pressures. Next, given the new layout, the new flow distribution and weighting,

the linear programming model gives the least cost pipe diameters. Finally, the

new pipe sizes are passed back to the network simulator to compute their

corresponding set of flows and the iterative procedure continues until the

value of the objective function is zero, indicating that the linear programming

model does not choose to replace any part of the network and the maximum

weighting for any link in the system is greater than a previously specified

value.

Lansey and Mays (1987,1989) developed a non-linear model for designing

water systems under multiple loads. Besides the pipes, the model is able to

size other components such as pumps and reservoirs. In the conclusion of the

papers, the authors stated that their model, like the previous ones, should be

considered as a guidance tool, that cannot fully solve the problem. In addition,

as mentioned above the tendency towards a branched configuration by

applying the model to an initially looped system is unavoidable.

In recent years the optimisation of water systems has been performed by using

some decomposition techniques so as to reduce the size of the original

problem with the objective of finding better local minima.

Fujiwara and 'Chang (1990) proposed a non-linear two-phase decomposition

method for the design of networks. In each step of the optimisation process,

the first and the second phases are applied. With reference to the first phase, a

new method which the authors called the Non-Linear Programming Gradient

(NLPG) method was suggested. The NLPG is basically similar to that of

Alperovits and Shamir (1977) and Quindry et al. (1981). Indeed, in these

previous works the gradient search was derived from the dual variables whilst

in this phase the gradient is computed using the optimal Lagrange multipliers
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of a non-linear solution. As the decision variables were link flows and pump

head, the gradient is computed to modify these variables so as to find a

reduction in the system cost. In the second phase however, the authors made

use of the solution obtained from the first phase to formulate another

non-linear programming problem by fixing the head losses along the links

and the resulting program is solved for the flow distribution and pump heads.

The new solution is used again as the starting point for the first phase and the

second phase is processed. These two phases are repeated until no further

improvement can be achieved.

The overall algorithm was applied to the extension of the New York water

supply system and it was found that the optimal solution is better than those

published previously (eg Quindry et al., 1981 and Morgan and Goulter, 1985).

The model was extended to deal with new expansions of existing networks,

multiple sources and multiple loading problems and it was stated that the

model cannot guarantee the global optimality of the obtained solution.

In 1991, Kessler and Shamir suggested a decomposition scheme for the

optimisation of water networks. They proposed a global program in which the

objective function is the minimisation of the total system cost (pipes, pump

and water tower costs) and the constraints were the continuity equations, the

head constraints (energy equations) and bounds on nodal heads (minimum and

maximum heads) and link flows (minimum flow required). This program was

decomposed into two sub-models: the Fixed Head sub-model and the Fixed

Flow sub-model. These will interchange information (head, flow) until no better

solution can be obtained. The reduction in the fixed head model was achieved

through:

(1) considering heads as fixed values satisfying a feasible solution;

(2) considering only the continuity equations with minimum limits on link

flows;

(3) expressing the objective function elements in terms of link flow: for

pipe costs this can be obtained by eliminating pipe diameter from the

Hazen-Williams equation.

This formulation is similar to some of the published researches (eg Lai and

Schaake, 1969 and Quindry et al., 1981), except for the decision variable: link
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flow is considered in this model whereas pipe sizes were selected in the others.

As formulated, the authors used the efficient minimum cost flow algorithms

(Kennington and Helgason, 1980) to solve for the flows.

For the fixed flow sub-model, it is basically the Alperovits and Shamir (1977)

model, except that the head constraints are defined by the incidence matrix and

another formulation for the pump. It was noted that usually the solution is

obtained after two iterations but the problem of more than one loading

conditions was not successfully solved.

3.2.1 Conclusion

In summary, there is an obvious tendency to use the two level algorithm along

with decomposition techniques in the field of hydraulic distribution systems in

recent years. They are creative and heuristic in nature. However they lack the

ability to design a complete water distribution network. Their limitations are

due to the size of the network, the number of loading conditions and the type

of hydraulic elements designed.

A common characteristic of all the models discussed is that they can only

guarantee a local minimum with a sub-branched configuration if the system is

forced to be looping. Otherwise, all redundancy is removed by the optimisation

process resulting in a tree network. This is obvious since it is always cheaper

to supply a fixed quantity of water to a node by one pipe rather than by two or

more. The cost optimisation process will reduce the redundant links down to

zero and remove them from the design.

3.3 RELIABILITY OF WATER DISTRIBUTION SYSTEMS

Compared to reliability analysis literature in other fields such as power supply

systems, computer and chemical engineering etc, the literature on reliability

analysis for water networks is scant. This section is divided into two parts:

(1) Water supply reliability;
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(2) Water distribution network reliability.

The early work concentrates on reliability computations of the source or

pumps, assuming the conveying pipeline and the distribution network are

perfectly reliable. Later work recognizes the importance of the distribution

system reliability and recommends some methodologies.

Since the report is aimed at water distribution networks, water supply

reliability will be briefly described. Excellent and comprehensive references will

be given.

3.3.1 Water Supply Reliability

Basically the methods that have been used for the assessment of water supply

reliability are:

(1) Fault Tree analysis;

(2) Frequency and Duration analysis;

(3) Markov Chains methods.

For a general study of reliability, the system may be viewed as a single supply

area connected to a single demand area (Fig. 3.1).

Reliability for such configurations has been developed by Endrenyi (1978),

Billinton and Allan (1984), Shamir and Howard (1981, 1985) and Hobbs

(1985b). More references on these reliability methods and their applications

can be found in Billinton (1972) and the IEEE subcommittee on the

Application of Probability Methods (1978).

For a rather more detailed analysis the system's supply may be modelled with

more components (Fig. 3.2). Each component of the system is characterized by

the probability function of time to failure and time to repair. When these

distributions are assumed to be exponential, the Mean Time Between Failures

(MTBF) and the Mean Time To Repair (MTTR) are the only parameters

required to entirely characterize the system (Wagner et al., 1988a). These

models have been applied by Tangena and Koster (1983), Shamir and Howard

(1985) and Hobbs (1985a).
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Fault Tree analysis is also often used to analyse water supply systems. Fault

tree analysis considers the different ways in which component failures lead to

supply shortfall and computes the associated probabilities. Henley and

Kumamoto (1981) give useful introductions to this field. Willie (1978) and De

Jong et al. (1983) provide an application of these methods to water supply

systems.

However, Shamir and Howard (1985) pointed out that the fault tree method is

used to calculate availability at demand junctions by means of the cut set

procedure. They added that this method is workable only as long as the system

is not too complex, since identifying all the cut sets becomes complicated and

carrying out the computations is expensive.

Markov chain methods were also used for evaluation of water supply systems

(Beim and Hobbs, 1988).

The concept of Frequency and Duration analysis was also used (Hobbs, 1985b;

Hobbs and Beim, 1986; Duan and Mays, 1987,1990). This method indicates

how frequently shortfalls of a given severity occur, and how long they last, and

is one which is used in many electric utility planning studies (Billinton and

Allan, 1983). Duan and Mays (1990) provided applications of the method by

treating five numerical examples.

3.3.2 Water Distribution Network Reliability

This section surveys the methods for computing the reliability of systems

which have the classical series-parallel structure and a general topology. It also

presents the different ways in which reliability was assessed.

Reliability is one of the system objectives. According to British Standards, the

definition of reliability of a non-repairable manufactured item or component in

a system (B.S. 3811, 1974) is "The ability of an item to perform a required

function under stated conditions for a stated period of time. This may be

expressed as a probability". A similar US definition (Mays et al. 1986) is "The

probability that a system performs its mission within specified limits for a

given period of time in a specified environment".
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At present (1994) researchers do not concur on a universally accepted

definition of reliability for water distribution networks even for existing

systems.

Network reliability analysis models have been successfully developed and

applied for electrical, chemical and mechanical engineering processes, and the

electronics industry but do not exist in water distribution system analysis.

One excellent and comprehensive literature review on the topic of reliability

analyses has been presented by Mays and Cullinane (1986) and was later up

dated by one of the authors (Mays, 1989).

Basically, water network reliability was assessed by means of:

(1) Analytical Methods (eg Connectivity, Reachability, Path Enumeration

(path sets, cut sets etc));

(2) Mechanical and Hydraulic Availabilities

(3) Stochastic Simulation Methods (eg Monte Carlo)

3.3.2.1 Analytical Methods

Analytical methods can provide a good assessment of the reliability of

networks, but are generally computationally intensive and time consuming. In

general, these methods relate reliability to connectivity and reachability.

Connectivity refers to the connection of every node to at least one source while

reachability corresponds to a situation where a specified node is connected to a

source (Wagner et al., 1988a).

From the reliability theory (Billinton and Allan, 1983), calculation of

mathematical system reliability requires knowledge of the precise reliability of

the basic subsystems or components and the set of all possible subsystem

(component) failures. If a system has a series-parallel structure, the assessment

of its reliability is a straightforward task. However for complex systems,

additional modelling and evaluation techniques are necessary in order to

determine the reliability of such systems. Those techniques include the

conditional probability approach, cut, path and tie set analyses, tree diagram
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(event tree), logic diagram (Fault tree) and connection matrix techniques. Most

of these techniques which are of similar form but derived from different lines

of consideration (Tung, 1985) transform the logic operation of the system or

topology of the system into a structure that consists only of series and parallel

components, paths or branches.

The methodology presented by Mays et al. (1986) for computing the minimal

cut sets was the first to correctly apply the definition of minimal cut sets in

stochastic process theory to the water distribution systems that account for the

hydraulics of the system. This methodology simulates the performance of a

pipe system under various failure modes of pipes using a network solver and

detects the minimal cut sets by comparing the computed hydraulic heads with

the required hydraulic heads. It was implemented on a numerical example with

seven links, two loops and four nodes. Nodal and system reliabilities were
computed using reliability theory.

Tung (1985) states that there is very little work done on attempting to

quantify the system reliability of water distribution networks. Six techniques

were briefly described for evaluating reliability of a system with complex

configuration in his paper. These techniques are:

(1) conditional probability approach;
(2) connection matrix method;
(3) cut set analysis;
(4) path set analysis;
(5) event tree analysis;
(6) fault tree analysis.

Reliability was defined as the probability that flow can reach all the demand

points in the network. Assuming that all pipes within the numerical example

given have the same failure probability (5 per cent), the author found that five

methods out of the six outlined (path set is not included) yield practically the

same system reliability. But from the computational view point the cut set

method with a first order approximation (ie one pipe is cut at a time) is the

most efficient. However this conclusion is based on analysing only a very

simple network (9-pipe and 7-node network).

Quimpo and Shamsi (1987) used the concept of terminal-pair reliability which

is defined as the probability that a specified vertex (node) can communicate
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with another specified vertex in the stochastic network. A stochastic network

consists of arcs and vertices that fail independently. In water distribution

networks this is illustrated by the probability that a demand point receives

water from the source on the basis of the connection of the demand point and

the source as stated by the authors. They then choose arbitrarily a minimal

path and cut set analysis for calculating terminal-pair reliabilities, which

represent the reliabilities from the source to different nodes called point

reliabilities. A path set is a set of arcs which forms a connection between the

source and demand point, and is minimal when it fails if any of its arcs fail.

On the other hand, a cut set is a set of arcs whose removal disconnects the

source from the demand points. It is minimal if it contains no cut set which is

also a cut set (Billinton and Allan, 1983). As pointed out in the summary of

the paper, point reliability values can be used to construct a reliability surface

for the whole network which may help water authorities to identify sectors of

the system which need maintenance or rehabilitation.

In their second paper (Shamsi and Quimpo, 1988) a preventive maintenance

strategy based upon the use of network reliability using the same techniques

mentioned above to determine point reliability, was presented. These nodal

reliabilities are compared to a threshold level specified by management.

Whenever the computed reliabilities are less than the preset limit, their

locations have to be found and the corresponding pipes/blocks of hydraulic

elements have to be repaired or replaced according to the cost of each

operation ie if a pipe cannot be repaired at a cost less than that of replacement

it should be replaced. The technique outlined was applied to a numerical

example. Reliabilities of individual components or strings of components

connected in series with each other, such as a pipe, pump and valve, were

evaluated using the exponential distribution (Billinton and Allan, 1983) for

constant failure rate of individual components. It should be noted that no

hydraulic simulation was performed to find the path sets in the example

problem. They were found using graph theory.

Wagner et al. (1988a) presented three analytical approaches for evaluating

system reliability: reachability, connectivity (as defined above), and a third

measure expressed in terms of the probability that a system can meet a

specified level of flow at each junction. Analytical solutions to the reachability

and connectivity problem were presented based on the algorithms of

Satyanarayana and Wood (1982) and Rosenthal (1977). Since a reachable
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node may still not receive sufficient supply under a preset pressure, they then

defined the third issue of reliability as the probability that a given node

receives its demand under random component failures. The three indices were

computed for determining the reliability of two numerical examples and it was

found that the probability of the system being able to deliver the required

supply is less than the probability of it simply being connected. However, for

the third index of reliability, the procedure assumed that demand was constant

throughout the day.

3.3.2.2 Mechanical and Hydraulic Availabilities

In this class of approaches hydraulic availability is defined as the percentage of

time that the demand can be delivered at or above the required residual

pressure, while mechanical reliability is measured in terms of the probability

that the component is operable at time t given that it was as good as new at
time zero (Cullinane, 1986).

Cullinane (1986) presented concepts for evaluating water distribution system

reliability using both mechanical and hydraulic availability concepts for

assessment of nodal and system performance. The two concepts were

combined to give an expected value of nodal reliability. The author stated that

reliability at critical nodes may be much more important than the overall

system reliability and then he defined system reliability as the average of the

total nodal reliabilities. However, since all nodes did not have the same

importance, the procedure for evaluating system reliability should take into

account this characteristic by, for instance, weighting each node by its demand.

The author combined the mechanical and hydraulic availabilities using expected

value analysis. The proposed procedure calculated the hydraulic availability

with and without specified links operational. The expected value of the

availability was computed as the sum of the product of the link mechanical

availability and associated hydraulic availability plus the product of link

mechanical unavailability and associated hydraulic availability. Link failure was

assumed to be independent, and a heuristic was proposed . to identify

candidates for failure evaluation.
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In his second paper, Cullinane (1987) applied the procedure to a small

numerical example (2 loops, 6 links and 5 nodes ). Hydraulic availability was

computed using an existing extended time period network solver WADISO,

(Headquarters Department of the Army, 1987), while the mechanical

availability, of each link was calculated on the basis of MTBF and MTTR for a
repairable component, drawn from mechanical and electrical systems reliability

(Billinton and Allan, 1983). Multiple link failures were evaluated; however, it

was concluded that in general, multiple link failures could be neglected because

of the high availability of system components. This is in agreement with the

conclusions of other researches (eg Wagner, Shamir and Marks, 1986).

Moreover, the approach is useful, compared to previous methods, since it

considers flow performance factors as well as component failure. However,

only steady flow patterns were used.

3.3.2.3 Stochastic Simulation Methods

More realistic measures of reliability can be offered by stochastic simulation

techniques but the major problem with these techniques is linked to the large

number of calls for network analyses to evaluate availabilities. Simulation

methods allow the analyst to obtain a variety of reliability indices such as the

number, location, duration and impact of failures; furthermore, they allow

greater flexibility in the choice of the type of system component to be

analysed.

The simulation approach proposed by Wagner et al. (1988b) consists of two

parts:

(1) the simulation section which generates failure and repair states

according to pre-established probability distributions; and

(2) the hydraulic network solution section which solves the non-linear

hydraulic equations for the heads and flows for the full or reduced network.

The simulation proceeds by randomly generating failure times of pipes and

pumps according to specified probability functions. When a link is out of use,

it is removed from the network. The corresponding heads and flows to the

reduced system are obtained using a network solver. The new heads at the
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demand nodes are used to predict the behaviour of the system. Once a link has

failed, a random repair time is generated. The system is then assumed to

function in the partially complete configuration until the repair time is reached,

another pipe fails, the reservoir empties or the pump fails. The simulation

program records the total duration of normal, and reduced service, the failure

mode at each node, the nodal shortfall and other measures of reliability such as

total duration of failure time for each pipe, or the total number of breaks

within the system. It was noted in the paper that the simulation method is

time consuming but no ideas were given about the period of time spent in

analysing the two numerical examples presented and, simulation runs are hard

to optimise. The authors of this paper have shown the flexibility and the

usefulness of the simulation methods. However, like many previous works the

stochastic nature of the demand was not considered.

Bao and Mays (1990) work presented a method for the assessment of both

nodal and system reliabilities. The method used random demands, pressure

heads and pipe roughnesses generated using Monte Carlo techniques. The

random variables generated are then tested by a network solver (KYPIPE,

Wood, 1980) and the nodal reliability, which was defined as the probability

that a demand node is satisfied (the probability that the pressure head at the

given node is greater than or equal to the minimum bound required), can be

computed. For the system reliability, three measures were suggested: (1) the

minimum nodal reliability within the system, (2) the mean of all nodal

reliabilities and (3) the mean of all nodal reliabilities as in (2) but weighted by

their demands.

The number of data sets of demands, pressure heads and/or roughness

coefficients, the type of probability distribution and the the parameters for the

random variables must be entered into the computer program written for this

purpose. It was found that about 500 iterations were required for the number

generation and hydraulic simulation to compute nodal and system reliabilities.

Moreover mechanical failure could be added to the program, requiring a

random variable to indicate when the component fails. However, as the

computed reliabilities were unrealistically low (eg 0.915 at node 4), far more

simulation would be required to predict higher reliability values. Monte Carlo

simulations are suitable techniques for evaluation of the reliability of even

complex systems; however, they are expensive to run and cannot provide

precise estimates of reliability without long run times. This limits its practical

application especially within an optimisation scheme for water networks.
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3.3.3. Conclusions

It appears from the hydraulic network reliability review that:

(1) there is no standard universal definition of reliability of water

systems;

(2) there is also no accepted single technique for evaluating reliability;

(3) reliability indices reported are scarce compared to other fields such

as power supply systems, computer and chemical engineering;

(4) the best approaches are those which define reliability in terms of

supplying a node sufficiently, not simply in terms of its connection to a source.

Indeed, in hydraulic systems, a node already connected to the system may

receive insufficient supply or no supply at all if the pressure is below the

required levels.

(5) stochastic simulations may help as techniques for the assessment of

water network reliability.

3.4 RELIABILITY-BASED OPTIMAL DESIGN OF WATER

DISTRIBUTION NETWORKS

In his 1968 paper, Jacoby noticed that his approach tended to

automatically reduce some redundant network element sizes to practically zero

and the prescribed node flow requirements can be satisfied without the links

which form loops.

Watanatada (1973) raised the problem of reliability for the first time when he

tried to optimise a simple water distribution network composed of four nodes,

five links and one pump. He showed that an important characteristic common

to the networks tested was the trend of the network to be branching by the

redundancy of some pipes and their tendency to disappear. This was examined

by studying effects of the minimum permissible diameter (D rain ). When Drain is

equal to zero the cost is the cheapest one and the network has a tree-like

layout. As Drain increases the network gradually changes from a branched
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configuration to fairly uniform sized looping arrangement at D.j. . 18 in. The
transition from Dmin . 0 to 24 in was associated with a rise in total cost of

about 40%, which, as he has asserted may be loosely regarded as the price to

be paid for a more reliable system. At the end of his paper, he suggested that

future work should be on the development of a more complete network model

that explicitly incorporates measures of reliability.

Alperovits and Shamir (1977) noticed that when a network is designed for a

single loading, the optimal design will have a branched configuration unless a

minimum permissible diameter is specified (sub-branched network). They

suggested that more work should define the network reliability, not in terms of

forcing the network to have a fully looped configuration but, in terms of a

performance criterion for specified emergency situations.

The traditional approach to reliability in a distribution network is to provide

loops throughout the system (redundancy). Bhave (1978) suggested a relatively

simple technique which determines the least cost minimal spanning tree ie

branched network, and simply joins the ends of the branches to create the

required redundancy loops. Rowell and Barnes (1982) tried to optimise the

hydraulic system by means of optimising the layout. The reliability was

provided by ensuring that each node has an alternative means of supply. Two

programs were used. The first one is a NL programming model which

determines an economical tree-like configuration for the major pipe links,

whilst the second program, which incorporates an integer programming model,

selects the loop-forming links to add to the former program in order to

minimise the cost of providing a specified level of reliability ie any node is

connected to at least two links. A common disadvantage to these methods is

the fact that they provide a sub-branched network. In addition, they do not

guarantee the maintenance of hydraulic consistency, as Goulter (1987) pointed

out.

Goulter and Morgan (1985) have developed two linked linear programming

models for both sizing and determining the layout of water distribution

networks. The reliability was expressed in terms of redundancy. Looping

constraint sets were incorporated in the layout program which will guarantee

that each node is connected to at least two links. The model maintained

hydraulic consistency but it was very optimistic since it assumed, rather than

checked, that all connections to a junction were independently capable of

supplying the required demand.
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Kettler and Goulter (1983) reported an attempt to use the probability of

component failure in major supply paths. In this approach, the reliability issue

was incorporated directly in a linear programming model through constraints

restricting the average number of breaks per year permitted in each pipe. A

Poisson distribution was used to compute the relevant probabilities of interest

on the basis of the average failure rate in each link. The technique, which is

iterative, uses the dual variables of previous linear programming solutions to

find "improved" solutions. However, one of the authors pointed out (Goulter,

1987), that the authors were not able to solve explicitly for reliability

according to their own definition.

Coals and Goulter (1985) and Goulter and Coals (1986) presented three

approaches by which the probability of failure of individual pipes can be

related to a measure of the overall system reliability in linear programming

minimum cost design procedures. The first approach considers the probability

of the failure of a path supplying a junction. The second approach addresses

the probability of node isolation ie the probability of the simultaneous failure

of all links supplying a node. The last approach assumes that all links

connected to a junction should be able to supply the demand of that junction

on an individual basis. The second approach is more reliable than the first one,

as was claimed by the authors, however, a node may be isolated without the

failures of the links directly connected to it. Indeed, other pipes not directly

connected to a node may fail and then isolate the node and possibly other

nodes. This approach (node isolation) can be improved by examining the

probability of such events in the same way as the calculation of the probability

of node isolation for those pipes directly linked to the node. In such cases, a

new problem will arise associated with the number of all possibilities of node

isolation which increases the computational effort for a real network. In

addition the probability of node isolation possesses a theoretical weakness as

was asserted by Su et al. (1987) since a node may not be adequately supplied

even if there is one link connecting it to the rest of the system. Su et al.

pointed out also that the assumption made for the third approach (all the pipes

connecting to a node have similar diameters) is not applicable in real pipe

networks.
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Tung (1986) approached the problem by assuming that the required head, pipe

roughness coefficients and demand node are random variables with known

probability distributions using a chance-constrained model (Charnes and

Sterdy, 1966) for least cost design. Knowing the probability distribution of

demands, required heads and roughness coefficients which were assumed

normal, a series of chance constraints were formulated as follows:

(1) the probability that the network flow into each node is greater than

the actual demand was greater than a pre-specified value, cr;

(2) the probability that the head is greater than the required minimum

was also greater than some pre-specified value, fi.	•

These two constraints were transformed into their deterministic equivalent (see

Charnes and Cooper, 1963) before running the chance-constrained model. The

reliability consideration was expressed in terms of the uncertainties in the

design procedure, and may result in a more 'reliable' design than would be

determined on the basis of average conditions. No methodology was suggested

as to how to choose cr and fi and how to achieve the optimal design at least

cost.

Using a similar procedure to that of incorporating chance constraints in the

formulation of optimal water network design, Goulter and Bouchart (1987)

have developed an approach based upon both mechanical reliability

(component failure) and flow probability based on reliability issues

(chance-constraints). In this combined approach, chance constraints on pipe

breakage were formulated to restrict the probability that the number of breaks

in a given link would be greater than some predetermined value. No numerical

example was given. However, the authors noticed in the summary of their

article that the improvement of the system reliability is further complicated

after the first trial of the method. In effect, this difficulty is linked to the

question of what steps should be taken to improve, at least cost, the reliability

of the junctions which have been detected as possessing an unsatisfactory level

of reliability. In addition, one of the authors (Goulter, 1987) pointed out that

the problem of how to combine breakage and demand accedence probabilities

into the same criterion for measuring reliability is, as yet, some way off.

73



Su et al. (1987) have developed a combined approach for water distribution

network optimisation under reliability considerations. This approach combined

three models. The first one is a non-linear programming model using the

generalized reduced-gradient model by Lasdon et al. (1984). The second model

is a network solver developed by Wood (KYPIPE, 1980) based on the linear

method for the analysis of hydraulic systems. The last model incorporates the

reliability analysis for determining the nodal and system reliability using the

minimum cut set method. The three models are linked in the following way:

For each iteration of the optimisation model, the reliability model computes

the values of the nodal and system reliabilities using the same approach as was

proposed by Mays et al. (1986). Minimum cut sets are determined by closing a

pipe or combination of pipes in the system before running the network

simulator which gives both pressure heads at nodes and link flows. If the

pressure head of the node under examination is not satisfied this pipe or

combination of pipes is a minimum cut set of the system, as well as of the

demand point whose pressure head is below the required bound. It should be

noted that if any one of the pipes in this cut set is already a minimum cut set

of the demand junction by definition, this cut set is not a minimum set of the

system (Billinton and Allan, 1983). This procedure is repeated until all the

combinations of pipes have been considered. The reliability model then

calculates the value of system and nodal reliability and returns to the

optimisation model.

This model is among the few which exist up to now that incorporate a

reliability measure, but on the other hand it did not completely solve the

problem. Walters and Knezevic (1989) pointed out in their discussion of the

paper that the use of the cut set method, which is suitable for the calculation

of the reliability of general systems subject to any one or combination of

component failures, is not really justified in the evaluation of water systems. In

fact, it is only under extreme conditions or situations that all pipes in a

minimum cut set (of two or more pipes) will be in the failure state at any one

time in real network. Since failure of pipes is usually repaired within one or

two days, this will give a greater probability than that of considering all pipes

being simultaneously out of use.

Jacobs and Goulter (1989) suggested the use of graph theoretic principles to

measure reliability of water networks. For a given network, knowing the

number of links and nodes, the authors found that the optimal reliable network
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is a 'regular' graph, ie, a network in which each node has an equal number of

links incident to it. Such a requirement is with no doubt of limited practical

application in water distribution systems since nodes in the central areas of a

network are usually more connected than those located at the periphery, as

was pointed out by one of the authors in another publication (Goulter, 1992).

Kessler et al. (1990) proposed the concept of an invulnerable network for

designing reliable networks. A topologically invulnerable network is a system

which is able to sustain a single failure by means of adopting two alternative

paths to every node. Their approach, which is composed of three stages, deals

with single-source systems. The model works as follows:

(1) Two disjointed paths are allocated between the source and every

consumer, selected by the designer using graph theory and engineering

judgement. First, the given network is numbered using Depth First Search

(Even, 1979) and a numbering scheme based on the work of Even and Tarjan

(1976). Second, another algorithm is used to find two distinct spanning trees

both of which are rooted in the source (Itai and Rodeh, 1984).

(2)The network diameters are sized using the linear programming

formulation of Labye for branched networks. The head constraints are included

for the two paths from each node.

(3) The solution must be tested for a set of loading conditions since

hydraulic consistency is not incorporated into the optimisation parts.

However, just an application of the first stage of the algorithm is presented.

Moreover, as pointed out in the paper, there is no way to determine the best

pair of trees prior to a full hydraulic evaluation of each pair. The proposed

guidance was the evaluation of the shortest distance tree by means of the

Dijkstra algorithm (Itai and Rodeh, 1984) for tree number 1. Similarly, tree

number 2 may be evaluated on the same basis, except that the links already

chosen by tree number 1 may be assigned to a zero *cost. Such an assignment

will force the second tree toward a maximum overlapping between the trees.

Fujiwara and Silva (1990) proposed a heuristic procedure incorporating two

models. The first one uses the linear programming gradient model (Alperovits

and Shamir, 1977) modified by Quindry et al. (1979) and Fujiwara et al.
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(1987), to size the network and to determine link flows. The second is a

reliability model where the reliability index is measured as the complement of

the ratio of the expected minimum total shortfall in flow to total demands. The

minimum shortfall in the system flow is computed using the maximum flow

algorithm of the capacitated network (Bazaraa et al., 1990). An iterative

approach is subsequently used to modify the given link flows in order to have a

significant increase in system reliability. In effect, the improvement of system

reliability is obtained via the increase of flow capacity along a longest path

(Bazaraa et al., 1990) where a "length" for each link is assigned in such a way

that the selected path gives a significant increase in reliability at a small

increase in system cost. The new link flows are supplied back to the linear

programming gradient model and new pipe sizes are obtained. This process

continues until a satisfactory reliability value is met.

After illustrating the method through a small network, the authors underlined

the fact that further refinements of their work are required since flow capacity

defined in the maximum flow model does not give a clear physical meaning

and the system reliability estimated does not take into account hydraulic

consistency.

Loganathan et al. (1990) used also a two-phase heuristic method to minimise

network costs including reliability issues. In the first phase, the authors used an

iterative procedure based on LP programming techniques to find a tree system,

whilst, in the second phase, a heuristic algorithm is suggested to ensure that

any node within the system is supplied by at least two paths from the sources.

The redundant loop-forming links are designed to have pipe sizes as small as

possible and if it is necessary, the tree found in the first phase is modified to

force a feasible solution. This method is like two others previously published in

the literature (Bhave, 1978 and Rowell and Barns, 1981) which defined

reliability in terms of forcing the network to have loops even with minimum

diameters for the redundant links. However, It was reported that minimum pipe

sizes are more prone to failure than larger diameters (Robert and Regan,

1974). Moreover, the solution obtained with this model is not really a reliable

network since for instance, in the event of mechanical failure of larger pipes,

the system will suffer from inadequate pressures.
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Another line of development for the reliability of water distribution systems is

Entropy. Templeman (1989) was the first to use the principal of Maximum

Entropy for the system to assign most likely flows to alternative paths through

a looped network.

Awumah et al. (1991) proposed a method that minimises the cost of a network

while imposing, in addition to the usual hydraulic constraints, a set of nodal

reliabilities based on the concept of entropy. The entropy constraints are

obtained by enforcing a minimum permissible redundancy at each junction.

Awumah et al. (1991) used the Quindry et al. (1981) formulation since flows

were used as decision variables and are also the variables of the redundancy.

However, minimum bounds on diameters were not stipulated, to allow deletion

of links if cheaper to do so while still maintaining the desired level of

redundancy. The method was applied to a previously published example of

Morgan and Goulter (1985) and it was found that the result obtained was

close to that obtained by Morgan and Goulter (1985) which used an intensive

iterative approach that incorporates 37 different loads.

In their second paper, Awumah and Goulter (1992) presented an alternative

approach to that proposed above. In this approach, the objective function is to

maximise the overall network reliability measured in terms of the concept of

entropy. The constraints are the necessary hydraulic constraints (head loss,

continuity and loop energy equations for single and multiple loads), minimum

level of nodal pressures (for single and multiple loads) and a constraint on the

network cost (budget constraint). The overall procedure works as follows. First,

the model is run without the budget constraint to obtain a more reliable

network corresponding to a local maximum network cost. Second, the budget

constraint is incorporated into the model and reduced (in value) regularly in

the next runs. The authors made use of the available graph theoretic parameter

(Nodal Pair Reliability; Kim et al., 1972) to compare the change in the overall

system entropy with the mean system reliability calculated on the basis of a

nodal pair reliability index. As a consequence, it was found, for the example

given, that a remarkable similarity can be seen between the shapes of two

curves: The first one refers to the network cost saving versus reliability and the

second one relates cost saving to system entropy. However Tanyimboh and

Templeman (1993b) pointed out that if this holds for water distribution

networks generally, it could be interpreted as evidence of a close relationship

between entropy and mechanical reliability. One difficulty that remains with
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the entropy approach, pointed out by one of the authors (Goulter,. 1992) is

what a particular value of entropy measure means in absolute reliability or

redundancy terms.

More recently, Tanyimboh and Templeman (1993c) presented a method for

designing flexible water distribution networks. Flexibility was achieved through

maximisation of the entropy of link flows. The method is based on a non-linear

minimisation problem in which the system cost is optimised subject to

continuity equations, energy equations and bounds (minimum and maximum)

on pressure heads, flow velocities, diameters and non-negativity of flows.

Reliability of the system was measured in terms of entropy. This model differs

from the previous ones in terms of incorporating nodal entropic constraints

into the non-linear program, which necessitates the non-negativity of flows due

to the function logarithm used in entropy. Illustration of the method was

performed using the Alperovits and Shamir (1977) example. It was found

however that the concept of looping is sensitive to the value of entropy used:

When the entropy is zero the system will degenerate into a tree shape. As the

value of entropy increases, the network becomes less and less implicitly

branched. Therefore, to keep loops, the authors suggested an entropy value

considerably higher than zero. Obviously, looped systems are more reliable and

more flexible than branched systems and the addition of entropy constraints in

the optimisation scheme can reduce the tendency towards tree networks.

However, the relationship between entropy and reliability has yet. to be

established.

3.4.1 Conclusion

Basically reliability can be modelled in different ways. These include:

(a) Provision of loops;

(b) Provision of uncertainty in design demand and pressure heads

(chance constraints);

(c) Graph theory: cut sets, regular graph, invulnerable network;
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(d) Heuristic approaches: path failure, node isolation, simultaneous

failure of all links supplying a node, the complement of ratio of the expected

minimum total shortfall in flow to total demand;

(e) Entropy: redundancy, flexible networks.

In short, all the methods provide useful insights into network design but all

have their disadvantages. None of the models incorporating the listed measures

of reliability gives a complete answer to the problem. The most promising

index seems to be related to the randomness of demands, the randomness of

pipe bursts and those using the entropy concept.

3.5 SUMMARY

To date, the optimisation of water distribution networks remains largely

unsolved due to many limitations such as the non-linearity of the governing

equations, the size of the networks and the complexity of the systems

containing miscellaneous components. Yates, Templeman and Boffey (1984)

concluded that discrete pipe size optimisation for distribution networks is

NP-hard. A common characteristic of all the published models is that they

guarantee only local minima, with sub-branched configurations.

With respect to reliability, all past work shows that uncertainties in the full

definition and quantification of reliability still remain. The best indices seem to

be the analytical methods, where the reliability is defined on the basis of the

probability of providing the flows demanded at the required pressure heads

rather than being simply determined upon connectivity or a similar index, but

they are computationally intensive. The stochastic simulation is also a good

indicator but the problem of its incorporation into optimisation is not yet

solved. Entropy seems to provide good insights in this area. However, more

work is needed to establish the relationship between entropy and water

distribution reliability.

The literature review shows also that for models which include reliability

specifications, no universally acceptable procedure for their definition is yet

available.
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Chapter IV

RELIABILITY BASED OPTIMAL DESIGN

4.1 INTRODUCTION

The previous work on optimisation of water networks summarised in chapter

three has clearly shown that the published methods for optimally designing

reliable networks do not give a complete answer to the problem.

The causes of the shortcomings of the past studies are various and mainly

related to the complexity of the analysis of water distribution systems, the

optimisation techniques used and more specifically the absence of both a

standard definition of reliability and a well-defined conceptual framework for

the overall approach to the problem of water system reliability evaluation.

The complexity of water networks is due to the non-linear nature of the

hydraulic equations involved in the analysis in addition to the various hydraulic

components that a normal system comprises.

Most of the optimisation procedures proposed so far are essentially gradient

search techniques. Such algorithms can only guarantee local minima associated

with tree-like shapes when the consideration of reliability issues is not taken

into account. This is obvious, since it is always cheaper to convey a fixed

quantity of water by one pipe rather than by two or more.

When non-linear optimisation techniques are used, the usual formulation of the

problem is to consider pipe sizes as continuous decision variables which are
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rounded up/down to commercially available diameters, once the algorithms

meet convergence criteria. The transition from a continuous solution to a

discrete solution was reported to pose some difficulties linked to the feasibility

and the globality of the discrete solution (Gessler and Walsld, 1985).

Ideally, a water system should allow all consumers to draw the desired quantity

and quality of water at the desired time at an adequate pressure. However this

objective cannot be achieved throughout the entire life of a given network.

At this time (1994), there is no universal definition of reliability for water

networks. As outlined in the previous chapter, the definition of reliability of a

non-repairable manufactured item or component in a system according to

British Standards (B.S. 3811, 1974) is "The ability of an item to perform a

required function under stated conditions for a stated period of time. This may

be expressed as a probability". When talking about water distribution networks,

the definition of reliability quoted is inadequate for two reasons. First, because

faults and failures do not cause complete breakdown of the system. Second,

since system components are repairable items, the system's life is not

determined by failure of an individual component. Therefore the concept of

Availability has greater relevance to the evaluation of water distribution

systems than pure reliability concepts.

Most aspects of water network reliability have been principally reported in the

literature, but have not been simultaneously taken into account in the

assessment of reliability. These include connectivity, link capacity, the concept

of repair time, the stochastic nature of the demands and the randomness of

pipe breaks.

The connectivity index, which refers to the probability that each node is

connected to a source, has been reported as useful for identifying systems

and/or nodes with serious problems due to insufficient redundancy. However,

connection of nodes to a supply source is only a necessary, but not at all

sufficient condition since the capacity of links is involved.

The concept of repair time, which is considered as the length of time required

for a failed pipe to regain its operational state, is of fundamental importance

when discussing reliability aspects of water network design as was stressed by

Walters and Knezevic (1988). For instance, if, following a pipe rupture, it
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takes on average two days to return a pipe into service, then an annual

breakage rate of 0.1 per km means that on average a 1 km long pipeline will

be out of service for 0.2 days per year and will consequently be available for

use 99.945 % of the time.

Pipe and system component breakages and hydraulic failures due, for example,

to exceptionally high demands or inadequate pipe sizes are common causes of

unreliability in water networks. These failures may cause a reduction in

availability which could violate the supplier's obligation to its individual

customers. They may also imply loss of revenue through a shortfall in water

supplied as well as an increase in repair costs. A more complete model would

be one that includes both the probabilistic nature of pipe bursts and the

demands. Monte Carlo techniques can fill this gap. However, their heavy

computational requirement limits their practical application especially within

an optimisation scheme for looped systems.

4.2 POSSIBLE APPROACHES CONSIDERED

The above discussions further justify the need for the development of new

methods for optimising water distribution networks that incorporate a sensible

definition of reliability and, that may be used to yield systems which are both

economical in total cost and meet reliability specifications.

More specifically, the objectives are:

(i) For the reliability aspect:

(1)To develop a new index for the definition of reliability of water

networks;

(2) To develop a method that can be used for rapid assessment within an

optimisation procedure;

(3) To incorporate the concept of repair time;

(4) To incorporate the probabilistic nature of both the demands and pipe

bursts;
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(5) To evaluate both nodal and system reliabilities.

(ii) For the optimisation aspect:

(1) To consider explicitly the discrete nature of the pipe sizes;

(2) To apply a new technique to the optimisation of water networks that

is not influenced by the linearity or non-linearity of the objective function and

the constraints involved, and that can find a near global optimal solution for

the reliability based optimal design.

These objectives can be achieved by the development and testing of the

following possible methods:

(a) Flow Assignment plus Linear Programming Optimisation

In this method the required reliability is imposed on the network by assigning

flow capacity to the network links in a manner based upon reliability criteria.

Then, the Linear Programming technique will be performed in order to find the

optimal network cost and link diameters.

(b) Genetic Algorithms with Reliability Tester

This method applies a Genetic Algorithm that is a global search technique to

find the least cost design of water networks subject to the technical constraints

and reliability specifications. The Reliability Tester which is incorporated into

the Genetic Algorithm, allows a rapid assessment of both nodal and system

reliabilities.

These two methods are developed for use on PCs, implemented and tested in

the following Chapters.

Attention is limited to the optimal design of single source networks. Excluded

are the aspects of network layouts and the optimisation of the water

distribution system components such as pump capacities, and heights and

volumes of of water towers etc.
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Chapter V

FLOW ASSIGNMENT MODULE

5.1 INTRODUCTION

In this method, the required reliability is imposed on the network by assigning

flow capacity to the network links in a fashion based on reliability criteria.

The determination of 'reliable' flow may be achieved through using the Entropy

Principle. In other words, before optimising water networks, distribution of link

flows will be obtained via the technique of maximum entropy. It should be

noted that recently, entropy has been used as a new measure for assessing the

reliability of water networks. Since the redundancy in a network is related to

the reliability of that network, works by Awumah et al. (1991) and Awumah

and Goulter (1992) are related to optimising network layout on the basis of

entropic redundancy as reviewed in Chapter three. The method used for

computing link flows on an entropy basis is that proposed by Tanyimboh and

Templeman (1993). The historical development of the notion of entropy will

be reviewed and its character as a means of measuring reliability will be

discussed. Then the work of Tanyimboh and Templeman (1993) will be

reviewed and applied to a small water distribution network.

Although first associated with classical thermodynamics, entropy has become

known as an important and powerful concept in a variety of fields (Kapur,

1983). The notion of entropy has a long history in statistical mechanics. It is a

central idea in information theory (Shannon, 1948). Its maximisation has been

used as a model building principle: Kullback (1959) has built a theory for
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statistical inference. Jaynes (1957) has studied physical systems and Wilson

(1970) has derived urban and regional models.

Entropy has been used as a measure of concentration, decentralization or

variation (Erlander, 1977, 1980; Theil, 1967; Tribus, 1969), and also in

probability concepts in hydraulics (Chiu, 1987, 1988).

In the optimisation area, entropy has also been used in connection with linear

programming as a measure of accessibility and efficiency in the solution of the

distribution problem in transportation planning (Erlander, 1977) and, in

non-linear constrained optimisation it was used as a surrogate solution

technique (Templeman and Xingsi, 1987).

In recent years, entropy has been applied as a measure of flexibility within

manufacturing systems (Yao, 1985 and Kumar, 1987). In these works,

flexibility within manufacturing systems refers to the ability of the whole

produced system to overcome, without significant change in production

capacity, the failure of one of the units in the system.

In 1989, Templeman published a paper about entropy and optimisation in civil

engineering. He had shown how the entropy principle can help in assessing the

most likely link flows in a looped pipe network from incomplete data.

Originally, the classical thermodynamic entropy as defined by Clausius was

concerned only with macroscopic states of matter such as temperature,

pressure, volume, etc. Whilst later on, Boltzmann examined microscopic states

for thermodynamic systems. For a given system having N subsystems, if pi

refers to the probability of occurrence of subsystem i, Boltzmann has defined

the entropy of the system as:

N
SB = - KB E Pi Ln(1)1)
	

(5.1)
i-1

Where

SB :---- entropy;

— Boltzmann (positive) constant.KB -
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In his turn, Shannon (1948) has provided an essential advance in the use of

entropy in new areas, for quantifying the disorder of systems other than

thermodynamic ones. He has shown that, as in thermodynamic systems,

entropy can also measure the amount of uncertainty in any probabilistic

distribution. Shannon's entropy is the same as Boltzmann's entropy:

Ss = — Ks E pi Ln(pi)
	

(5.2)
i=i

Where

Ss = Shannon's entropy;
pi = the probability of occurrence of event i;
Ks = arbitrary positive constant.

Shannon's function Ss has several properties:

(1) Ss is a continuous and symmetric concave function for any fixed N

with respect to all its arguments;

(2) Ss has a global maximum Ln(N) in case of equi-probabilities (pi =

1/N), which increases in magnitude with the increase of the number of

subsystems.

(3) Ss should be zero if one of the N probabilities is equal to one;

(4) Ss possesses the normality condition (It is axiomatic that all pi are

collectively exhaustive and mutually exclusive):

E pi = 1
	

(5.3)
i-1

An interesting contribution of Jaynes (1957) is the use of Shannon's entropy in

a reverse sense, ie, he has extended Shannon's entropy to generate a

probability distribution which would have maximum entropy and which must

contain minimum bias. He has shown theoretically how to avoid the

introduction of bias in solving problems with incomplete information. This

method is known as the Maximum Entropy Principle.
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Suppose a random process can be described by a discrete random variable y

which may take various discrete values of yi , i 1,...,N. If pi refers to the

probability that y has the value yi , maximisation of Shannon's entropy subject

to Eq. 5.3 only is a simple calculation which yields uniform probabilities, pi,

and an entropy ratio:

Ss/Ks = Ln(N)	 (5.4)

This result is derived using no information in addition to the axiomatic

normality condition. If one assumes that some information about this

stochastic process is available in terms of M expectation functions (see

Templeman, 1989) of the form:

E 1); f(y) = E[f]	= 1,...,M	 (5.5)
i-1

Where, ç1(y) and E[f] are known. It is assumed that M < N — 1. If not, Eqs 5.3

and 5.5 suffice to determine uniquely the unknown probabilities. These

probabilities pi can be determined by solving the following constrained

non-linear program:

Problem PO

Maximise Ss./Ks — E pi Ln(pi)
i-t

Subject to:

1) E pi . 1
i=i

2) E 1); f 1 (y) = E[f]
	

j1,...,M
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In problem PO, it is axiomatic that pi is not less than zero, i . 1,...,N.

Templeman and Xingsi (1985) showed that the above optimisation problem PO

can be transformed into its dual form and then easily solved using standard

techniques for unconstrained NL programming.

The use of the maximum entropy formalism is a very important idea in the

sense that when designing water distribution networks, the available

information is, in general, the source of supply and the nodal demands.

Therefore the maximum entropy principle can be used for assigning least

biased values to flows. Knowing the set of the most likely link flows, any

optimisation technique which requires an initial estimate of flows can be

applied to solve for the optimal system cost and diameters.

Another point which is more important than the determination of the least

biased flows is that the reliability of a water network can be expressed in terms

of entropy. Entropy may be viewed as a measure of the spread of the

distribution of water molecules within the pipes of the system and the

accessibility of water molecules to all the demand nodes. The higher the value

of the entropy Ss, the more even the distribution. High entropy means that the

system has maximum disorder, ie, the maximum choice for water molecules to

move to any node via any pipe. However, in water systems, due to the

restrictions expressed in terms of continuity equations water molecules have

less freedom in choosing their routes. So a reduction in the value of Ss occurs.

On the other hand, low entropy may be interpreted by low accessibility of flow

elements to the system nodes: there will be a concentration of flow into some

pipes as in branched systems.

We have introduced enough concepts to be able to formulate an optimisation

problem that permits the design of flexible and "reliable" networks based on

Jaynes's maximum entropy formalism.

5.2 REVIEW OF THE WORK OF TANYIMBOH AND

TEMPLE1VIAN

Consider a general network with Nj nodes, Np pipes, Nj. loops and NF fixed

head nodes. The available data are the demands Qiext, 
i . 1,...,NJ, the NF
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sources and all flow directions specified. Tanyimboh and Templeman (1993b)

defined system entropy in terms of the sum of the sources' entropy and nodal

entropies as:

S/K = So + SN	 (5.6)

Where

S = Shannon's entropy;

K = positive constant;

So = entropy of sources;

S = nodal entropies.

5.2.1 Sources' entropy

In the above equation (5.6), So refers to the entropy of the external inflows

defined as:

S0	- E poi Ln(po;)	 (5.7)
E NF

poi is the proportion of the total supply to the network that is provided by

source j. Its value is given by:

POj = Cl Oj /E ClOj = CI0/T0'
	V E NF	 (5.8)

E NF

Where

external inflow at node j;

To	total supply or demand.
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5.2.2 Nodal entropies

Nodal entropies, SNJ, was defined by the following equation:

Nj

SNJ = — E Ps
	

(5.9)

i=1

Where

Pi = probability of flow arriving at node i, i	1,...,Nj,

S. = entropy of node i.

For any node belonging to Nj , the resulting entropy Si for the outflows

including any demand is:

S. = - E	Ln(pik),	V i	 (5.10)
ik E Nd(i)

The set Nd(i), i = 1,...,Nj , consists of all the outflows, including any demand,

from node i, i =	N. In Eq. 5.10, the probability p 	refers to the

fraction of Ti carried by link i—k, where Ti, i	1,...,Nj , is the total outflow

(including any demand from node i), is given by:

Pik = qik 1E qik =

	 v	ik Nd(i)	 (5.11)
ik E Nd(i)

The symbol qik is used for both internal and external inflows and outflows. For

an external inflow, the first subscript will be zero and the second, the source

node number. Also, the second subscript for a demand will be zero while the

first will be the number of the node where the demand occurs. Otherwise, q

the pipe flow from node i to node k. Tanyimboh and Templeman (1993b)

reported that the probability Pi, i 1,...,Nj was found by adding the probability

of flow arriving at the node by each path. They stated that a convenient

formula for Pi is given by:
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Pi	Ti/To,	V i	 (5.12)

Having So, Si and Pi for any node i of the network, the entropy of the overall

system can be obtained. Maximisation of the system entropy S/K for a general

network having more than one source, subject to the continuity equations,

constitutes a constrained non-linear problem that can be solved by any

available and efficient non-linear programming code. Detail of the derivation of

all the equations involved and an illustration of the model can be found in

Tanyimboh and Templeman (1993b). However, for a single-source network a

non-optimisation approach based on the fact that all the paths supplying a

node should distribute equally the required demand was presented in

Tanyimboh and Templeman (1993b). This accords with two principles:

Laplace's principle of insufficient reason and Jayne's maximum entropy

formalism ( Jaynes, 1957). Once the distribution of flow within a network is

known, the LP technique can be applied for the least cost design. This will be

dealt with in Chapter 8.

5.2.3 Summary

It should be noted that, for the formulation proposed by Tanyimboh and

Templeman:

(1) The derivation of the final entropy of a system is preferred to and

more justified than that suggested by Awumah and Goulter (1991) since, as

stated by Khinchin (1953), the entropy of a system cannot be a simple sum of

the entropy at each node;

(2) So is equal to zero for a single source network;

(3) SNJ may be interpreted as the sum of nodal entropies weighted by

their total outflows, including nodal demands (see Eqs. 5.9 and 5.12).
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5.3 APPLICATION OF THE MODEL OF TANYIMBOH AND

TEMPLEMAN

It is clear from the published works that entropy may be used as an index for

the assessment of water network reliability. The method used herein for the

allocation of flows to a water network is that proposed by Tanyimboh and

Templeman (1993) for single source networks.

For the purpose of illustration, a single source network (Network A) that is

shown by Fig. 5.1 is selected. The topological data are:

NF = 1;

Nj = 6;

Np = 8;

1\1/.. = 2.

External demands are given in Table 5.1.

Node	 Demand
(1/s)

source	 - 80
1	 00
2	 10
3	 10
4	 30
5	 20
6	 10

Table 5.1 Nodal demands of Network A
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Figure 5.1 Network A
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The available information consists of the external demands and the flow

directions. These are essential for identifying nodal paths. The method used is

based on the identification of nodal paths. Then the demands are supplied

equally to nodes by all their paths. Paths and link flows for network A were

determined as stated above and are summarised in Tables 5.2 and 5.3

respectively.

Node Demand
(Us)

No of
Paths

Path
Links

Flow/Path
(1/s)

1 00 1 1 00

2 10 1 1 2 10

3 10 1 1 2 3 10

4 30 3 1 2 3 4 10
1258
1678

5 20 2 125 10
167

6 10 1 1 6 10

Table 5.2 Paths for Network A
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Link Flow by Tanyimboh
& Templeman Model

(Vs)

1 80
2 50
3 20
4 10
5 20
6 30
7 20
8 20

Table 5.3 Link Flows for Network A

5.4 SOFTWARE

For small network sizes, like network A, the approach can be applied

manually. However for somewhat larger and more general networks, an

efficient algorithm is required.

PATH_Q was developed to implement the Tanyimboh and Templeman

approach for single-source networks. The algorithm starts by identifying all

paths serving any node (path enumeration) and then computes the flow

distribution of the system ie, each node within the network is taken in turn and

its demand is divided equally amongst all its supplying paths. Nodes that are

supplied by only one path are first processed. However, for a node that is

served by more than one path, it can be shown that its total number of paths

is the sum of paths to all nodes upstream of, and directly supplying this

node. PATH_Q makes use of two global types of variables: Checki, i 1,...,Nj

and Scheck. Checki, i which initially takes the value of zero is a

control variable for any node that indicates if the node is processed (Checki =

1) or not (Checki = 0). Scheck on the other hand is incremented by one each

time a node has been processed, and is used as a stopping criterion for the

algorithm. ie, when Scheck becomes equal to the total number of system

junctions (Ni), the algorithm stops, indicating that all nodes have been

processed, and then, all link flows are known. Basically, the algorithm is as

follows:
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Program Path__Q

Start Path
Scheck 0
Checks. 0
First_Search
Repeat

Second_Search
Until Scheck	N j
Result Path

Start_Path refers to the routine that allows the entry of the required

topological data for the network (NF, NJ, Np and the connecting links to any

node) and the external demands. The global variables Scheck, and Checki are

initialised to zero before the execution of the procedure First_Search.

The First Search procedure identifies and determines nodes which are supplied

by one path only. Each of these nodes is processed such that its demand is

supplied by its path. As mentioned above, for the nodes processed, Check, 1

(i refers to a processed node) and Scheck will be equal to the number of

processed nodes.

The main part of the algorithm contains a repeat-until loop that incorporates

the Second_Search procedure which is repeated as after as it is required until

the convergence criterion is met. Second_Search deals with any node that is

served by more than one path. When the algorithm reaches its end, the link

flows will be output by the procedure Result_Path.

Other algorithms based on supplying equally each node by its paths (the path

model) are discussed in Tanyimboh and Templeman (1993b).

Running Path_Q with Network A gives exactly the result provided by Table

5.3. Before closing this Chapter it is worth noting that it would be interesting

to make a comparison between a design produced on the basis of the entropy

principle and an arbitrary distribution of flow. This comparison should consider

the reliability aspects. That is, one should:	•

(1) Select samples of networks with different sizes and topologies;
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(2) Give an arbitrary distribution of flow to a sample of networks and

apply Path_Q to the same network for the distributions of flow;

(3) Apply an optimisation technique to the resulting distributions of flow

of the same network, for the optimal cost;

(4) Assess the reliability of the optimal designs corresponding to the

two distributions of flow for the same network.

These points will be dealt with in the three following Chapters. Chapter 6

introduces the application of the Linear Programming technique to the design

of water networks while the reliability aspect is discussed in depth in Chapter

7. Examples of the measure of reliability in terms of entropy will be discussed

in Chapter 8. The final part of the comparison mentioned above is performed

in Chapter 8.
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Chapter VI

LINEAR PROGRAMMING

OPTIMISATION MODULE

6.1 INTRODUCTION

This chapter is related to the previous chapter which allows the determination

of system link flows on the basis of the maximisation of Shannon's entropy.

Having obtained the "reliable" link flow distribution within the network, the

optimisation of the total cost of the network can be performed. At first sight,

the selection of pipe sizes seems to be very non-linear. However, this problem

can easily be transformed into a linear form. The clue is, instead of choosing

pipe diameters as decision variables, consider a link as being made up of a set

of "candidate diameters", and the decision variables being the lengths of

segments of constant diameter within the link as first described by Labye

(1966). In such a case one can take advantage of the very powerful and easily

accessible Linear Programming algorithm and make use of it to find the

optimal network cost and the pipe diameters. Moreover, the advantage of this

LP modelling is the direct use of discrete pipe diameters that are commercially

available. In the rest of this chapter, the formulation and the solution of the

optimisation of water networks using the LP technique is discussed. A

computer program which has been developed for this purpose is also presented

and tested.
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6.2 STATEMENT OF THE PROBLEM

The optimisation of a simple hydraulic distribution network can be stated

as follows:

GIVEN:

1) A set of demand nodes;

2) A set of links;

3) A set of normal loading (demand) conditions;

4) A fixed link flow pattern;

5) A set of commercially available pipe diameters and costs;

6) A set of minimum performance levels for normal loading
conditions.

FIND:

1) Link diameters;

2) The minimum total cost of the network.

SUBJECT TO:

1) Satisfying steady state flow conditions,

2) Satisfying minimum performance levels under normal loading
conditions.

The mathematical relationships between head loss, diameter and length of pipe

are easily formulated and are very amenable for use in LP models.

Indeed, consider the water system (Network C) given in Fig. 6.1. Network C is

taken from Coals and Goulter (1985) where a single link of 1000m (link

number 1) has been added between the first node and the source for

distinguishing between the source and the nodes. For this network, the

topological data are: NF = 1, Nj = 9, Np = 13, and 1\1/.. = 4.

99



Source Figure 6.1 Network C

L.

Link i

Figure 6.2 Representation of Segment Xij
in a Link of Length Li
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Assume that any link i, i = 1,...,Np of network C may, in fact, be made up of

one or more spans of pipes of different discrete diameters (Dii , i	1,...,Np, j

1,...,n(i) where n(i) is the total number of candidate diameters of link i

connected in series as shown in Fig. 6.2. When more than one pipe is used,

the total length of pipes (Xii , i	1,...,Np, j	n(i)) employed should be

equal to the length of the link (Li):

n(i)

>X= Li
j-1

V E Np	(6.1)

Eq. 6.1 holds if the pipe diameters D1 i	1,...,Np, j	n(i) of the segment

of length X. are only available in discrete commercial sizes.

For network C, if the flow Qi along any link i, i 1,...,Np, is known (evaluated

either on the basis of an initial flow pattern satisfying continuity equations or

determined from the application of the maximum entropy principle suggested

in chapter 5), the hydraulic gradient Jii , i = 1,...,Np, j = n(i), can be

computed in advance for each candidate diameter D1 from, for instance, the

Hazen-Williams equation as:

J..	(r) ic 11.852 D..-4.87
\	iji

Where y is a constant depending on the unit used and C	the

Hazen-Williams coefficient of diameter j in link i.

Therefore, the head loss along link i (i = 1,...,Np) composed of n(i) segment

of candidate diameter D 1.i is given by:

n(i)

H. . 7 J.. X..	 (6.3)
j=1

(6.2)

101



Head losses Ali , i	1,...,Np, are required for evaluating the following

constraints (Node, Path and Loop) applied to water networks:

(1) Node: nodal heads must be equal or greater than the required

minimum bound:

E AH; ‹. Ho -	 v k€ Nj	(6.4)
I E Pn(k)

Pn(k) is the set of links in the path from the source to node k; Ho is the

original head at the source and ;min is the minimum required head at node k.

(2) Path: the total head loss along any path between two fixed nodes

must equal the difference in head between those nodes:

E	= bk	V k E (NF- 1)	 (6.5)
I E P1(k)

Where Pf(k) is the set of links in path k, k = 1,...,(NF - 1) associated with

known net head loss bk.

(3) Loop: the total head loss around a loop must equal zero, ie, a loop is

a particular path whose bk = 0.

E	= 0
	

V k€ NL	 (6.6)
i E P1(k)

P1(k) is the set of links in loop k, k =

Finally, information on the cost CostDii of each pipe of diameter Dij (i

1,...,Np, j =	n(i)) is required. The total cost of the supply of pipes and

fittings, trench excavation and laying, expressed as a cost per unit length, can

however, include an allowance for future maintenance, repair and replacement.
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Cl.1 (6.8)

The cost of a link Cl1 is then:

n(i)

Cl i = E CostD
I
.
J
. X

ii	
V i E Np	 (6.7)

j=4

The total cost for the whole network is as follows:

COS tNET =

1=1

Having defined the objective function to be minimised and the technical

constraints, the design of network C can be expressed mathematically for a

fixed flow pattern (single load) in terms of the LP formulation, as:

Problem Ll

BM 'ID=EFUNCTION:.___

NP n(i)
Minimise CostNET = E E CostD

1
.
j  X i

.
J

.
	

(6.9)

i=1 j=1

CONSTRAINTS 

1) Length: length of segments in each link must be equal to the length

of that link:

n(i)

E x
Ii 

.  L
i

	
te i€ N p	 (6.10)

.i'l
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n(i)

E E J.. X.. < H
0
 - H

k  min
Ii	Ij — 

3 kE Nj	 (6.11)

iE Pn(k) j=1

5) Non-negativity:

(6.14)

2) Node: minimum permissible head at each node must be satisfied.

3) Path: head loss around any path between two nodes must equal the

difference in head between those two nodes.

n(i)

E E xi; bk	 3 k€ (NF- 1)	 (6.12)
i E Pf(k) j=1

4) Loop: the total head loss round a loop must equal zero.

n(i)

E E	ox,j 
E P1(k)

3 k€ Nj,	 (6.13)

Having set up both the objective function and the constraints, it becomes clear

that the design problem of water systems can be formulated in linear terms

and hence can be handled by any efficient Simplex-based linear package such

as UNDO (Schrage, 1987) for the least cost of the network and the optimal

pipe diameters. Furthermore, solution of problem Li also gives the nodal

heads for the system.

It should be noted that the formulation outlined deals only with a single

loading condition and does not design water towers or pumps.
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6.3 SELECTING LINK CANDIDATE DIAMETERS

To solve problem L 1 , (i) the network data (eg external demands, link lengths,

source head and minimum nodal heads, unit costs of pipe sizes etc.) have to be

specified, (ii) a distribution of link flows is required, and (iii) the candidate

diameters per link and their number have to be determined. Having the

distribution of link flows, the sets of candidate diameters for each link can be

selected by applying one of two approaches:

(1) Selection on the basis of minimum and maximum velocities (eg 0.5

and 2.5 m/s).

(2) Selection on the basis of lowest and highest allowable hydraulic

gradients (eg 0.0005 and 0.05 were used by Alperovits and Shamir, 1977);

In the first approach, the theoretical pipe sizes Dri (in m) for a given individual

link can be found from the following equation (Orth, 1986):

1/2	 1/2

(K .Q /V ) < Dt. < (KI.Qmin/Vmin)1 max	max	— 1 — (6.15)

Where K1 . 4/n; Qmin and Q. are minimum and maximum design flows, m3/s;

and Vmin and Vmax are minimum and maximum design velocities, m/s. Minimum

and maximum flows may be different if multiple loading conditions are

considered. For a single load, however, the two values are equal.

With reference to the second approach, if the Hazen-Williams equation is used

to represent the head loss, the theoretical pipe diameters for an individual link

are given by:

(K2/jrnax) 0.21 • (Qmaxic) 0.38 < Dti < (K24"min) 0.21 • (Q . ic) 0.38
	

(6.16)

Where K2 = 10.70 (for Dti , in m; and %lin , Q. in m3 
Is); C is the

Hazen-Williams coefficient; Jmin and J. are the lowest and highest hydraulic

gradients. As above, for a single load, minimum and maximum flows are equal.
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The first approach was chosen for simplicity. Given bounds on velocities (V..

and V..), link flows Qi , i and the discrete commercially available

pipe diameters, the set of candidate diameters and their number for each link

can be obtained by running a simple procedure called SizeD.

6.4 SOFTWARE

LP packages such as UNDO (Schrage, 1987) are expensive and their use for

solving problem Ll is not a simple task. In effect, application of UNDO to

solve problems like problem Li requires that the objective function and all the

constraints involved are written explicitly in terms of the decision variables

before running the program. This is not a simple task, especially with larger

networks where the numbers of both the decision variables and the constraints

increase rapidly. Therefore, a specific computer program for the design of

water networks by LP algorithm is desirable. LNOPTNET, is a linear

optimisation model that was developed during this research to tackle programs

like problem Ll. However only single-source networks (Problem L2) can be

solved. Problems Li and L2 are similar except that equation 6.12 which deals

with the head losses between two fixed nodes is not required for problem L2.

LNOPTNET is a computer program that uses only the network data, solves

directly the linear program and gives the least cost of the network and the

optimal pipe sizes.

LNOPTNET, which runs on PCs, comprises eight procedures:

Program LNOPTNET

Start_LP
Objective Function Coefficients
RightHandSideCoefficients
Length Coefficients
Node Coefficients
Loop Coefficients
Simplex

Result_LP
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Before examining any of the procedures belonging to the above algorithm, it

should be noted that the routine used in LNOPTNET for solving problem L2

is the Press et al. (1988) routine published in 'Numerical Recipes' book. This

routine (SIMPLX) was selected: (i) because it was recommended by several

academic members of staff. (ii) Because it is available in the Pascal Language,

which is the programming language used in this project. The SIMPLX routine

was slightly modified to give as output only the required results (the objective

function and the decision variable values).

The SIMPLX routine is a powerful one that requires ( 1) the identification of

the type of constraints ('< ' constraints, '> ' constraints and ' ' constraints)

related to the problems considered and their total number, (2) the coefficients

of the LP matrix.

With reference to problem L2, the 5 ' constraints are absent, and for the rest

of the types of constraints, there are Np + NL '	' constraints (Np Length

constraints and NL. Loop constraints) and N1	' constraints (Node

constraints). Thus the total number of constraints is NI + Np + NL.

The LP matrix coefficients are:

(1) The coefficients of the objective function (unit costs of diameters);

(2) The right-hand side coefficients of the constraints (total link lengths,

zeros for the loop constraints and the differences between the head at the

source and the nodal minimum heads);

(3) The left-hand side coefficients of the constraints. These are (i) the

0-1 coefficients corresponding to the Length constraints, and (ii) the known

hydraulic gradients Jii (Node and Loop constraints) for each D1 Qi

combination.

The procedure Start_LP is related to the input of the required network data (eg

N N' NL' the source head H bounds on nodal heads, link lengths, externalP 

demands, Hazen-Williams coefficients, number of candidate diameters per link

n(i), costs of unit length of diameters, etc.).

Objective Function_Coefficients procedure is called to prepare the coefficients

of the objective function. These coefficients are the unit costs of the pipe

diameters.
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The RightHandSide_Coefficients routine allows the determination of the

coefficients of the right-hand sides of all constraints. These are zeros for the

loop constraints, the lengths for the length constraints and the head

differences (Ho - Hkmin , k = 1,...,N1) between the original source head and the

minimum heads of nodes.

The procedure Length_Coefficients prepares the 0-1 coefficients related to the

N Length constraints.P

Node_Coefficients and Loop_Coefficients sub-programs allow the preparation

of the known coefficients, and relate to the Nr Node constraints and the NI,

Loop constraints. These coefficients are either zeros for decision variables not

involved in the constraints or the constant hydraulic gradients (Jii ) of the pipes

involved in the node and loop restrictions.

Finally, the Simplex routine uses all the coefficients prepared by the above

procedures to solve the linear problem while Result .1 organises the output of

the solution with the least network cost and optimal pipe sizes.

6.5 EXAMPLE

The numerical example chosen to run with LNOPTNET is Network C

displayed in Fig. 6.1 below. For consistency, the link and the node numbers

used in the work of Coals and Goulter (1985) have been changed. Table 6.1

gives the correspondence between the two sets of numbers used. The Demand

of nodes is given by Table 6.2. The length and the Hazen-Williams coefficient

are equal to 1000m and 130 for all pipes respectively. The head at the source

is assumed to be 50m and the minimum permissible pressure head is set to

25m. The set of candidate diameters with their Costs which are provided by

Table 6.3 are those utilised by Coals and Goulter (1985).

In addition to the above data, the flow directions have to be specified and an

initial flow distribution is required. These are take from Coals and Goulter

(1985) and shown in Fig. 6.3.
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Link Numbers	 Link Numbers
used	 of Coals and Goulter

(1985)

Nodes

1	 1
2	 2
3	 3
4	 6
5	 5
6	 4
7	 7
8	 8
9	 9

Links

	

1	 -

	

2	 1

	

3	 2

	

4	 5

	

5	 4

	

6	 3

	

7	 6

	

8	 7

	

9	 10

	

10	 9

	

11	 8

	

12	 11

	

13	 12

Table 6.1 Correspondence between Links and Nodes used here

and those used in Coals and Goulter (1985)
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12	 13

2	 3

Source

Figure 6.3 Assumed Flow Directions of Network C

110



For simplicity all the six pipe sizes in Table 6.3 are taken as candidate

diameters for all links. However, before running LNOPTNET with network C,

strings of pipes for pressure and loop constraints have to be specified. These

are given in Table 6.4. Execution of LNOPTNET with Network C gives an

optimal network cost of $639303. The optimal diameters with their

corresponding length are summarised in Table 6.5.

Node	Demand
(us)

1	-208 (Source)

2	 21
3	 21
4	 21
5	 21
6	 21
7	 21
8	 21
9	 61

Table 6.2 Demand of Nodes in Network C
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Diameter	Cost
(mm)	($/m)

100 14.3
150 16.9
200 24.1
250 43.2
300 69.2
350 98.6

Table 6.3 Cost Data for Network C

Path	Number of
Links in Path

Link Number

1
2
3
4
5
6
7
8
9

Node Equation
1	 1
2	 12
3	 123 
4	 1234
3	 125 
2	 16
3	 1	611
4	 1	611
5	 1	611

12
12 13

Loop Equation
10 4 7 -5 -2 6
11 4 8 -4 -3 5
12 4 13 -9 -8 10
13 4 12-10 -7 11

Table 6.4 Strings of Pipes for Pressure and Loop Constraints

112



Link	Length	 Diameter
(m)	 (mm)

1	1000	 350
2	1000	 350
3	1000	 200
4	1000	 200
5	1000	 300
6	1000	 300
7	297	 200

703	 250

	

8	939	 250

	

61	 300

	

9	 13	 250
987	 300

	

10	193	 200
807	 250

	

11	 40	 150
960	 200

	

12	1000	 150

	

13	1000	 200

Table 6.5 Optimal Solution for Network C

6.6 COMMENT ON THE LP SOLUTION

Solution of problem L2 by LNOPTNET is characterised by:

(1) Most of the elements, Xij are zero in the optimal solution. This is

exemplified by the result summarised in Table 6.5. For instance, LNOPTNET

has selected for pipe 1, a segment length, X15 = 1000M, Xli = 0 for j = 1,...,4.

(2) When a single diameter for a link has not been retained from those

available, this link will consist of at most two sections with different diameters.

The sum of their individual lengths is equal to the length of this link. Links 7,

8, 9, 10 and 11 are examples.

(3) Links with two segments should be made up of two adjacent pipe

sizes. (eg 200 and 250 mm in link 7) This adjacency property holds if and

only if pipe costs are a strictly convex function of a power of pipe diameters. A

full proof of this condition can be found in the paper of Fujiwara and Dey

(1987).
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(4) On the practical side, the result of the design by the application of

LNOPTNET should not be seen as a finished work. This result may be

adjusted where appropriate. Indeed, segments that are too small to be of

practical significance in two-section links should be eliminated after the

optimisation process to obtain a more satisfactory engineering solution. This

may be achieved, for example, by substituting the smaller diameter by the

larger one in the same link. In this event, the head loss in the network would

be reduced resulting in a relative increase in both the minimum nodal pressures

and the system cost. For example, if a segment in a link of less than, say 50 m

(13m of 250 mm in link 9 and 40m of 150 mm in link 11), is considered too

small in practice, it can be substituted by the larger pipe size in the same link

(13m of 300 mm in link 9 and 40m of 200 mm in link 11). This modification

is accompanied with an insignificant increase in the system cost (0.1 %) as

mentioned above.

With reference to the head loss in network C, this alteration of pipes 9 and 11

has been accompanied with a relative increase in nodal pressures as expected.

This may be demonstrated by running LMANLS with network C for the two

sets of diameters. Results of these runs are shown in Table 6.6 where all nodal

pressures have been increased except node 1, which is not concerned with the

redistribution of flow and node 6.

Node Pressure	(m)
Before Adjustment
of Diameters

Pressure	(m)
After Adjustment
of Diameters

1 38.20 38.20
2 33.61 33.63
3 27.32 27.36
4 26.26 26.31
5 30.28 30.32
6 33.64 33.62
7 28.72 29.05
8 27.36 27.46
9 25.00 25.08

Table 6.6 Nodal Pressures of Network C for the optimal

and the adjusted solutions
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Other suggestions for the adjustment of the LP solutions can be found in the

work of Orth (1986). Later in this work (Chapter 8), the practical solution

adopted is that being made only of one section per link.

(5) The number of candidate diameters per link is related to the specified

limits on velocity. For a link, the minimum velocity constrained the maximum

candidate diameter and the maximum velocity constrained the minimum size

(see Eq. 6.15). This number of candidate diameters may be zero. For instance,

suppose that for Network C the maximum velocity has been set to 1.5 m/s.

From Eq. 6.15 (Q.. . 0.208 m3/s and V 1.5 m/s), the minimum size,

Dt l' corresponding to link 1, is greater than 400 mm which is not available in

the set of the candidate diameters considered in this example.

(6) Finally, it should be noted that the Linear Programming technique

applied to the optimisation of water networks mail fail to produce feasible

solutions if the constraints are not satisfied. A non-feasible solution can be

met with Network C if, for example, the head at the source is changed to 40m

instead of 50m. Indeed for the problem of non-feasibility, Alperovits and

Shamir (1977) have used different hydraulic gradients for different pipe flows

(eg for Q . 33.33I/s, 0.0004 < zih/L < 0.0228; for Q . 180.56 Ws, 0.0025 <

zh/L < 0.043). Moreover, this is the reason for the introduction of Dummy

Valves in the LP formulation in the same work of Alperovits and Shamir.
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Chapter VII

RELIABILITY TESTER

7.1 INTRODUCTION

Reliability of drinking water distribution systems has recently become a focus

of attention in the water industry. Its significance to network design was

recognised when optimisation techniques were applied to looped distribution

systems (Jacoby 1968 and Watanatada 1973). It was found that when looped

networks were optimised under a single pattern of demands and on a cost

basis, the cost optimisation process reduced the redundant lines down to zero

and the optimal design lost the loops leaving only a branched configuration.

One of the reasons water engineers incorporate loops in a network rather than

having trees, is that loops increase system security, flexibility and reliability.

Cost optimisation tends to reduce system reliability, and hence constraints are

needed within the optimisation process to retain a required reliability standard.

At present researchers do not concur on a universally accepted definition of

reliability, even for analysing existing systems. There is also no

well-established methodology for evaluating water system reliability. Since

system components are repairable items, it was seen in Chapter 4 that the

concept of availability is more appropriate to the performance of water

distribution systems than pure reliability concepts. Consequently, reliability

issues may be usefully quantified on the basis of the availability of adequate

supply to customers rather than the connectivity of the customers to the supply
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point. Indeed a connection of any node to a source is a necessary but not

sufficient condition since, in a hydraulic network, a node linked to a source

may or may not receive any water, depending on the pressures in the system.

As stressed in Chapter 4 also, the other important factor in the assessment of

water system reliability is the concept of Repair Time. A reasonable evaluation

of the network reliability should incorporate this concept.

In Chapter 3, the important approaches published in the literature for the

assessment of the reliability of water networks have been outlined. These

include: (a) provision of loops, (b) uncertainty in demand and pressure heads

(chance constraints), (c) graph theory (eg cut sets), (d) heuristic approaches

(eg path failure, node isolation), and (e) entropy.

It was also mentioned in Chapter 3 that the use of the cut sets method for

considering the reliability of networks subject to component failures is perhaps

not appropriate for many reasons. Among these (1) it is only under

unrealistically extreme conditions that all pipes in a minimum cut set (of two

or more) would be in a failure state at any one time in a real network, since a

failed pipe is usually repaired within one or two days. (2) Identification of all

minimum cut sets requires an extensive computation. (3) the supply to a node

could fail completely without being entirely isolated by broken pipes and

finally, (4) basic cut set methods do not allow the variability in the demands to

be taken into account (Walters and Cembrowicz, 1993).

More realistic measures of reliability can be offered by stochastic simulation

techniques, but the major problem with these methods is linked to the very

large number of network analyses required to evaluate availabilities. Wagner

et al. (1988b) demonstrated the usefulness and the flexibility built into such

techniques in a scheme incorporating the uncertain nature of failure events and

repair times. However the stochastic nature of the demand was not

incorporated.

Bao and Mays (1990) assessed hydraulic reliability on the basis of providing

adequately the nodal supplies under specified pressure bounds where the

demands were determined by a Monte-Carlo technique. Monte-Carlo

techniques are robust and suitable for systems of any complexity; however,

their heavy computational requirement limits their practical application

especially within an optimisation scheme for looped systems.
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More recently, entropy was used as a surrogate reliability measure. Awumah

et al. (1991) used this principle as a means of incorporating redundancy in the

optimisation of water distribution systems. Tanyimboh and Templeman (1993)

suggested that flexible networks can be achieved through maximising the

entropy of flows. The addition of such constraints in the non-linear

optimisation problem of looped systems can reduce the risk of losing the loops.

However the relationship between entropy and reliability has yet to be properly

established.

7.2 SPECIFICATION FOR A NEW MODEL

The previous work and all the above mentioned approaches provide useful

insights into how reliability can be incorporated into water network design, but

all have their limitations.

A new method is sought with the following objectives:

1- To develop a method that can be used for rapid numerical

calculation of reliability within an optimisation procedure. Such a

method must avoid the need for the large number of network analyses

required by Monte Carlo type models.

2- To incorporate simultaneously the probabilistic nature of both the

demands and pipe failures.

3- To incorporate the concept of repair time.

4- To evaluate nodal and system availabilities on the basis of

availability of supply at the demand nodes.

All these objectives will be taken into account in the following stochastic

approach which the writer calls the "Reliability Tester". The description of the

Reliability Tester given in this Chapter is reproduced in Khomsi et al. (1994).

Now an appropriate measure of reliability must be specified before describing

the approach.

118



7.2.1 Reliability Measure Adopted

For this work, reliability may best be expressed in terms of the probability that

a given node receives its supply within specified limits or constraints. This

reflects consumer expectations from a reliable system. In other words, as far as

the consumer is concerned an availability can be defined as the proportion of

time that a satisfactory supply is available:

A	1 - FailTime/TotalTime
	 (7.1)

Where

A	Availability
FailTime	Time that supply is in failure state
TotalTime	Time interval considered

System availability can be defined as the average of nodal availabilities

weighted by the demands to take into account the distribution of the demands.

This index is a reasonable assessment of a system's general performance. It is

suggested that systems should be designed for a specified system availability.

7.3 THE RELIABILITY TESTER

The reliability tester developed herein can be used either for the analysis and

expansion of existing networks or for the design of new ones. Due to its rapid

assessment of availability, it can also be incorporated into an optimisation

framework.

The reliability tester comprises five models or procedures which are:

- Demand Model;

- Pipe Failure Model;

- Topological Model;

- Analysis Model;

- Overall Probabilistic Model.
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7.3.1 Demand Model

Demands that must be provided at minimum specified pressures have in the

past generally been taken as deterministic values in designing water networks.

However, in reality, they are not. They change during the day, the week and

the seasons, and develop over a period of years. They will also follow some

form of probability distribution.

To ensure reliable delivery of water to the users, a water system must be

designed to accommodate a range of expected demand patterns incorporating

exceptionally high demands over part or all the system, these being the chief

causes of hydraulic failure. The greater the demands in the network, the larger

the pressure drops. Designing networks on this basis models operating

conditions more realistically than adopting only one peak loading condition.

One simple way of representing the variable nature of expected loading

conditions is to define a demand factor, KLoad, as the ratio of the actual

demand to the time averaged demand. For simplicity, this factor is taken to

apply uniformly over the network. ie

KLoad . Demand / Time Averaged Demand	 (7.2)

There will be a relationship between demand factor and probability which can

be determined from previously recorded data for customer demands. This can

be presented in the form of a probability density function for demands, as in

Fig. 7.1. The demand can be split into a finite number of zones usually equally

spaced along the x-axis as shown in the same figure. For each zone, the mean

demand factor can be determined with its corresponding probability such that:

E PKLoad. = 11
i-i

Where:

NLoad	= Total No. of demand conditions,
PICLoad.	= Probability of demand condition i.1

(7.3)
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7.3.2 Pipe Failure Model

The second type of failure encountered in water networks is mechanical failure

due to pipe breakage events.

It is assumed in this model that:

(1) The number of failures per unit time, F., j = 1,..., Np (number of pipes in,
the network) for each pipe j is known;

(2) Only one pipe fails at a time;

(3) Breakage events for pipes are independent;

(4) A pipe remains in a failed state for a fixed time interval, T ep.

The second assumption was addressed when the cut sets method was discussed

earlier. In addition, Su et al. (1987) concluded, based on the high availability of

pipelines, that multiple pipe failure was generally so unlikely as to make

analysis of such events unnecessary. An exception to this generalisation would

be failures associated with fluid transient etc following power failure or similar

events.

The assumption of independence of break events means that failure of one link

does not imply an increased or decreased probability that other links will

break. This has been questioned by some authors (Walski and Pelliccia 1982).

However no data are available that can be used to develop a more complex

dependent failure model. Due to the lack of such data this assumption is a

reasonable simplification of the problem.

Once a pipe has failed, the model assumes it is isolated from the network

which then functions in a reduced state for a fixed time interval until a repair

is effected. The probability of pipe j failing, Ppipej, and the network

consequently being in a reduced state is therefore T.Fj	rep, where T and F.rep 

have the same time base. Pipe failure probabilities are used later on for the

assessment of nodal and system availabilities.
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7.3.3 Topological Model

This model arranges all the data needed for the analysis of both the full

network, where all the pipes are in an operational state, and the reduced

network, where one of the pipes has failed and is removed from the network.

For a full network it is clear that when a pipe is removed, the data describing

the network structure and connectivity will change. The objective of the

topological model is to find and reorganise from the full network the data

necessary for the reduced system before performing the analysis.

If for a full network there are Np links, Nj nodes and NL loops, in the reduced

network there will generally be Np - 1 links, Nj nodes and NL- 1 loops. The

exception to this is when the failed pipe is not part of a loop, in which case

the network becomes disconnected, and water cannot be supplied to one or

more nodes.

7.3.4 Analysis Model

According to Chapter 2, the technique selected for solving the non-linear

algebraic equations for flow and pressure is the Linear Method. This method

was chosen because of its high convergence characteristics, as outlined

previously, and also because, unlike other approaches, it does not need an

initial guess for link flows, which would further complicate the computation for

the reduced networks.

The energy head loss equation used is the Hazen-Williams formula since it is

widely adopted by practising engineers in the analysis of water distribution

networks.

It should be noted that for the full network, once the analysis is performed, the

resulting flows and pressures cannot be used as a basis for computing flows

and pressures of a reduced network. This is obvious since flows will be

rerouted in complex ways. However, when a pipe is out of action, the number

of continuity equations will not change (Nj equations) but, continuity equations

at the upstream and downstream ends of the failed pipe are affected. Moreover,

if the failed pipe is among any loop pipes, this loop will be opened and then

the number of energy equations will be reduction by 1 leaving only Np -1

equations to be solved.
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Therefore, it was necessary to develop an analysis model which is capable of

dealing with both full and reduced networks. In the Reliability Tester, the

topological model prepares the data and the analysis model solves the

equations.

7.3.5 Overall Probabilistic Model

Since neither system component breakages alone nor hydraulic failures alone

give an appropriate assessment of system reliability, these two factors are

considered concurrently in this model.

The probabilistic model is connected directly to the demand and pipe failure

models. These provide the necessary probabilities of loading conditions and of

pipe failures respectively. It is also connected to the analysis model which

supplies the calculated flows and pressures. The overall probabilistic model

enables the nodal and system availabilities to be determined in the following

fashion.

7.3.6 Nodal Availability

The nodal availability was defined earlier as the probability that a given node

receives a sufficient supply at or above a minimum pressure.

The computation of the nodal availability requires the analysis of all

topological states of the network (full network and reduced networks) under all

the loading conditions. This computation can be summarized as follows:

1) Consider the Full Network

For each demand factor KLoad. with its corresponding probability

iPKLoad , = 1,...NLoad:

- Analyse the system to obtain pressures H., where j refers to the node

number, j	I\13;

- If H. < H•min then the probability of an insufficient supply at node j with
J

a full network and this demand factor is:
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F. = PKLoad. . PNetwork	 (7.4)
Wherei3Network is the probability of no pipes being out of action and k is an

index for counting violations of minimum pressure.

Strictly,

PNetwork = 11 (1 - Ppiped	 (7.5)

Where

Ppipeii	= probability of pipe ii, ii	1,...,Np, being in a failed state.

However, as only single pipe failure events are considered below, PNetwork is
taken to be:

PNetwork Ppipeii	(7.6)

2) Consider Reduced Networks

For each pipe Lk with its corresponding probability of failure

PPiPeLk' Lk 1,...,Np and for each loading condition KLoadi with its

corresponding probability PKLoadi, i 1,... NLoad:

- Assume pipe Lk is out of service,

- Analyse resulting reduced network for Hi , j

- If H < 11 min then Fjk PpipeLk . PKLoad
	

(7.7)

In this way all combinations of failure mode and loading conditions are
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considered.

3) Sum Nodal Pressure Violations

For each node j, j = 1,..,NI , the probability of hydraulic failure is:

Kmax

Fnode.	=
	

(7.8)
tc..1

Where

Kmax = No of times the pressure test was violated

4) Calculate Nodal Availabilities

For each node j, j	Nj the availability is:

Anode. = 1 - Fnode.	 (7.9)

7.3.7 System Availability

System availability can be expressed as a mean of all nodal availabilities

weighted by their demands.

ANet	
= E (Anode j	nv. N 

Jz,vt	

(7.10)

Where

Qext	= Time Averaged demand at node j,

ANet	= Network availability.
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7.4 SOFTWARE

The algorithm for determining nodal and system availabilities can be

summarized as follows:

Algorithm

Pipe —0
Repeat

Topological Model
Load . I
Repeat

Demand Model
Analysis Model
Pipe Failure Model
Overall Probabilistic Model
Load . Load + 1

Until Load > !Woad
Pipe . Pipe + 1

Until Pipe > P

A computer program for evaluating nodal and system availabilities was

developed in TURBO PASCAL on a PC. The input data needed are those

which describe the full network topology, the design demands with the KLoad

demand factors and their corresponding probabilities, and the probabilities and

constant duration of pipe failures (Tre).

7.5 EXAMPLE

For illustration and clarification of the Reliability Tester a hypothetical

three-loop, eight-pipe and six-node network (Network D), is shown in Fig. 7.2,

and used for demonstration. Mean demands and ground levels for each node

are listed in Table 7.1. The network is supplied by one source at node one.
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Pipe diameters have been deliberately chosen to be insufficient to represent an

overloaded network in need of reinforcement. It should be noted that in the

design of a new network, demands considerably greater than the mean

demands would be used for sizing the pipes. This would then give much higher

levels of system and nodal availabilities than the values used for this example.

Link data (pipe length, diameter) are summarised in Table 7.2. Minimum

permissible pressure and Hazen-Williams coefficients are assumed to be 20m

and 130 respectively for all the system.

As outlined earlier the model requires:

(1) probabilities for pipe failures, Ppipei , i = 1,...,Np

(2) duration of pipe failures, Trep

(3) the probabilistic distribution of the demands, PICLoad.,1

i . 1,...NLoad.

With respect to the first point, the probability of pipe failures can be

determined on the basis of rate of breakage of pipes. Some historical data on

pipe breakage rates that have been published in a few studies in the literature

were presented in Chapter 1.

For this application the average of pipe breakage rates of all the cities

mentioned in Chapter 1, excluding the typical Winnipeg data, has been used.

Node	Mean	Ground
Number	Demand	Level

(L/s)	 (m)

1 -150 200 (Source)

2 20 158
3 30 158
4 40 148
5 30 155
6 30 173

Table 7.1 Characteristics of Demand Nodes for Network D
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Figure 7.3 Network D
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pD. = rD. . L. I 3651	1	1 (7.11)

Link
Number

Length
(m)

Diameter
(mm)

1 1000 250
2 1000 250
3 1000 100
4 1000 200
5 1000 200
6 1000 300
7 1000 150
8 1000 150

Table 7.2 Characteristics for Network D

Knowing rate of breakage, rDi, expressed in breaks/km/year of pipe i, i =

1,...Np, of length L. and diameter D., the mean probability of failure of this pipe1	 1
in a day can be expressed by:

Where

pD. = Mean probability of failure per day of pipe i of diameter D.1

L. = Length of pipe i in km.1

rD. = Breakage rate per year of pipe i of diameter D.1

Diameters and their corresponding probabilities of failure per kilometre are

presented in Table 7.3.

The assumed values of mean pipe probabilities of failure (*) correspond to the

probabilities of failure of diameters that have not been available in the

literature.

In this example, the duration of the mechanical failure of a pipe Trep, is taken

as 1 day for each breakage.
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Diameter
(mm)

Mean Probability of
Failure (1cm-I day-1)

50 0.002000
75 0.001500*
80 0.001000*

100 0.000901
125 0.000680*
150 0.000468
175 0.000300*
200 0.000192
225 0.000170*
250 0.000150*
275 0.000130*
300 0.000107
350 0.000107
375 0.000090*
400 0.000071
450 0.000071*
500 0.000071*
525 0.000071*
600 0.000060*

Table 7.3 Mean Pipe Failure Probabilities by Diameter

* Assumed values.

With reference to point (3) which deals with the probabilistic distribution of

the demands, the daily demand data used in this example corresponds to a

region in South West England for the period of 1976 to 1989 inclusive (South

West Water, 1993). The data was first processed so that a distribution

function relating probability to demand was obtained based on the information

contained in this sample of 14 years.

The selection of the most suitable probability function was based on a

sensitivity analysis. Four types of distribution were considered for this

application. These were the Normal, the Log-Normal, the Weibul and the

Exponential. Using the Kolmogorov-Smirnov Test, the normal distribution was

found to be the closest theoretical distribution function for this daily water

consumption sample. The distribution function and the graphical representation

of the data on normal distribution probability paper are presented in Figures

7.3 and 7.4.
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Fig. 7.3 Distribution of Daily Demands (1976-1989)

for a region in South West England
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KLoad. * Q.avg
t	J

(7.13)

After splitting the area under the curve of Fig. 7.3 into 5 equal zones (NLoad

= 5) along the x-axis as shown in the same figure, the demand factor Kload

can be determined as:

KLoadi	Qiexti Qavg,	V IE NLoad	 (7.12)

where

KLoad. = Demand factor for zone i;

Qavg	= Overall Average Demand ;

Qext	= Time Averaged demand at zone i.

The probabilities corresponding to KLoadi, i 1,...,NLoad, are computed

directly from the normal distribution, the results being shown in Table 7.4.

The demand patterns for all nodes of Network D are determined using Eq.

7.12 such that:

Where

External Demand for loading condition i, i = 1,...,NLoad, at

node j, j	1,...,Nj;

KLoad. = Demand factor i, i 1,...,NLoad;

Qavg = Time averaged demand at node j, j

n ext

s.4ij
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Kload 0.56 0.77 0.99 1.21 1.43

Probability 0.0209 0.2127 0.4900 0.2545 0.0219

Table 7.4 Demand Factors and their Probabilities

Running the reliability tester with Network D (Run #1) gives an artificially low

system availability of 91.26%. Table 7.5 shows details of nodes at which

pressure is below minimum for full and reduced states. Nodal availabilities are

presented in Table 7.6. Examination of Table 7.6 shows also that node 1 has

an availability of 100 %, corresponding to sufficient supply of the source as

assumed. The least reliable node is the one furthest from the source (node 4),

while the highest availability corresponds to the node nearest to the source

(node 2). Nodal availabilities for the rest of the junctions (3, 5 and 6) are close

to each other.

The Reliability Tester is a powerful tool that can help in detecting nodes with

insufficient supply and can also help in determining the major sources of

unreliability. In the absence of pipe breakage, failures are due to infrequent sets

of high demands. With the pipe diameters and loadings specified in this

example, it can be seen from Table 7.5 that no such failure was produced for

node 2. Node 4 failed with a demand factor of 1.21, with the remaining nodes

failed only when a demand factor of 1.43 was imposed.

When pipe breakages are considered, the supply pressure resulting from the

reduced network and probabilistic demands is in all cases insufficient

somewhere in the system, except when pipe 1 fails with a demand factor of

0.56 or when pipes 3, 7 or 8 fail with demand factor less than or equal to

0.99. (see Table 7.5). Not surprisingly, pipes 1 and 6 are the greatest cause of

unreliability in this system since they are the links connected directly to the

source. Almost 41% of the number of failures are due to these pipes. Breakage

of pipe 2 causes 16% of all failures, with insufficient pressure at node 3 for all

demand factors, and at nodes 4 and 5 for all but the lowest demands. Node 6

fails only when the demand factor is 0.99 and over. Failure of pipe 7 is the

least critical for the system.
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Kload 0.56 0.77 0.99 1.21 1.43

Probability 0.0209 0.2127 0.4900 0.2545 0.0219

State of the Probability
Network

Full 0.996932 o 0 0 4 3, 4, 5, 6

Reduced

Pipe 1 0.000150 0 2, 3, 5,6 2, 3, 4,
6

5 2, 3, 4,
6

5 2, 3, 4, 5
6

Pipe 2

Pipe 3

0.000150

0.000901

3

0

3, 4, 5

0

3, 4, 5,

0

6 3, 4, 5,

4, 5, 6

6 3, 4, 5, 6

4, 5, 6

Pipe 4 0.000192 4 4 4 4 3, 4, 6

Pipe 5 0.000192 5 4, 5 3, 4, 5 3, 4, 5 2, 3, 4, 5

Pipe 6 0.000107 5, 6 3, 4, 5, 6 2, 3, 4,
6

5 2, 3, 4,
6

5 2, 3, 4, 5
6

Pipe 7 0.000468 0 0 0 4 3, 4, 5, 6

Pipe 8 0.000468 0 0 0 4, 5, 6 4, 5, 6

TABLE 7.5 Nodes at which Pressure is below minimum

Besides having the possibility of diagnosing water networks, the Reliability

Tester can help planners and designers of water distribution networks to

improve system and nodal reliabilities. In fact, any alternative improvement

options proposed by the designer can be simulated by the model, which has

the ability to detect better alternatives and highlight poorer schemes.
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Node	Initial	Availability	Availability Availability
Number Availability	(%)	(%)	(%)

(%)

Run #1	Run #2	Run #3	Run #4

1 100.0000 100.0000 100.0000 100.0000
2 99.9767 99.9767 99.9893 99.9893
3 97.7594 97.7585 99.9516 99.9519
4 72.3072 97.7300 99.9255 99.9255
5 97.7176 97.7293 97.7572 99.9458
6 97.7396 97.7506 97.7800 99.9860

Table 7.6 Nodal Availabilities (%) for Network D

For instance, the effect of increasing the minimum pipe size on the availability

can be studied by the model. The minimum pipe size (100 mm) for Network D

was increased to 150 mm (Run #2). With this alteration, the system

availability becomes 98.04 % (previously 91.26%), demonstrating a significant

increase in overall availability, and a very large increase in the availability of

node 4 (see Table 7.6). This occurs for two reasons. First, the greater capacity

of larger pipes leads to a reduction in hydraulic failures for the complete

network under high demands (node 4 now fails only with Kload = 1.43 for the

complete network). Second, in the pipe failure model larger pipes fail less

frequently. This latter result is in line with the comment by Fujiwara and Tung

(1991) that improvement in the reliability of water systems may be achieved

through increasing pipe sizes. The Reliability Tester does however assume that

there are no technical problems in adopting larger minimum pipe sizes, such as

the violation of minimum flow velocities.
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If increased nodal availabilities for junctions 3, 4 and 5 are required (initial

availability around 97.72%), this may be achieved by increasing pipe sizes

along the paths supplying these nodes. For example, increasing the diameter of

link 1 from 250 mm to 300 mm (Run #3) increases the system availability to

99.08%, with nodal availabilities of greater than 99.90% for junctions 3 and 4.

(See table 7.6). Similar improvements for nodes 5 and 6 can be achieved by

increasing the diameter of pipe 6 from 300 to 350 mm (Run #4). In this way

system and nodal availabilities greater than 99.92% are achieved.

Calculation of nodal and system availabilities for Network D requires very little

computer time. Approximately 2 seconds on a 486 IBM compatible PC were

required.

7.6 NETWORK DESIGN

As shown above, the Reliability Tester has the ability of detecting nodes with

insufficient supply in addition to the major causes of unreliability. Furthermore,

it was seen earlier that the Reliability Tester can help designers and planners

to improve nodal and system availabilities. However this possibility is only

offered when dealing with small size networks. If for a medium or large size

network, the information on availability (for the system or the individual nodes)

computed by the model, is considered not satisfactory, an algorithm for

improving the reliability can be applied such as that of Fujiwara and Tung

(1991) or Bouchart and Goulter (1991).

Ideally, improvement of nodal and system availabilities would be achieved

through an optimisation model. In such a model, the objective could be the

maximisation of the overall availability of the network subject to a cost

limitation and technical constraints. Technical constraints would include

bounds on pipe velocities, especially on the permissible minimum velocity since

the optimisation procedure will tend to select large diameter pipes which are

less prone to mechanical failure and reduce hydraulic failures.

An alternative approach is to optimise the network on the basis of minimum

cost, with constraints on the reliability of the system and individual nodes.

In either model, the decision variables would be pipe diameters. The reliability

tester would be incorporated into both optimisation models to calculate nodal

and system availabilities.
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7.7 CONCLUSIONS

The reliability tester developed herein is a new model based on a stochastic

simulation for fast assessment of nodal and system availabilities in a water

distribution network.

The model can be used to analyse an existing water system, identifying critical

nodes with serious supply problems, and the major causes of unreliability. This

approach is therefore useful in the detailed investigation of promising options

for the improvement of reliability in existing systems.

The model can also be used in the design of new systems and the expansion of

existing networks where the focus is on provision of a system of specified

reliability or where the reliability is to be maximised.

Owing to its simplicity and fast computation, the model can also be efficiently

and successfully incorporated into an optimisation procedure such as that

presented in Chapter 9, for determining least cost design of water distribution

networks under reliability constraints.
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Chapter VDT

FLOW ASSIGNMENT PLUS

LINEAR PROGRAMMING

METHOD

8.1 INTRODUCTION

This chapter implements the first approach to the optimal design of water

networks with reliability issues. As mentioned in Chapter 5, reliability of water

systems is, in this approach, assessed in terms of the assignment of link flows

on the basis of entropy. With the distribution of flow within the network thus

defined, the LP technique outlined in Chapter 6 is applied for finding both the

optimal set of pipe diameters and the network cost.

In the remainder of this Chapter, the detail of the Flow assignment plus LP

method is presented. Applications of the model to the design of three water

networks are presented. Network C presented previously in Chapter 6 and

Networks E and F defined later. Finally, comparisons of the entropy-based

flow assignment method and arbitrary distributions of flow ends this Chapter.

8.2 DETAILS OF THE MODEL STRUCTURE

This model makes use of the two computer programs developed: PATH_Q, for

the assignment of flow within a given network, and LNOPTNET for the

optimal design of this network. It also uses the routine SizeD for determining
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candidate diameters related to each link.

Given a network having topological data and external demands, PATH_Q is

first applied to obtain the link flows (Qi , i = 1,...,Np). However, before calling

LNOPTNET, candidate diameters for each link must be specified. These may

be obtained by running SizeD. The data required are:

(1) The link flows, Qi, i = 1,...,Np that are supplied by PATH_Q;

(2) The minimum and maximum bounds on velocity V and V..; and

(3) The set of commercially available pipe diameters: Di, i 

where Nd is the maximum number of available sizes.

The outputs of SizeD are:

(1) Number of candidate diameters n(i), i	1,...,Np, for link i; and

(2) Candidate diameters for each link i: Du, i	1,...,Np, j	n(i).

In addition to the candidate pipe sizes for each link and their numbers,

LNOPTNET requires the unit costs of each standard pipe size, CostDi , i

Nd and the minimum nodal pressures.

The execution of LNOPTNET gives both the optimal network cost and pipe

segments ()Cu, i = 1,..,N, j	1,..,n(i)) with their corresponding diameters.

In summary, with respect to this approach, the design of water networks with

reliability specifications, measured in terms of entropy, is represented by the

following three-step algorithm:
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Algorithm

PATH Q;
SizeD;
LNOPTNET

8.3 EXAMPLES

Under this heading, LNOPTNET is run with three example problems:

Networks C, E and F. Network C (see Fig. 6.1) is a four-loop network whilst

Networks E and F, which are shown in Figures 8.1 and 8.2 below, are larger

and more realistic networks. For simplicity all three water systerns are

assumed to be on a level plane although this restriction is not necessary since

the pressure required may be different from node to node. Networks C, E and

F are designed on the basis of the stochastic demand factors proposed in

Chapter 7. The demand factor selected is Kload = 1.43 giving design demands

equal to 1.43 * Mean demands. With this value, the Reliability Tester will

cause no hydraulic failures for the complete network and so in the absence of

pipe failures the most pressure-critical nodes will always receive their demands

at adequate pressure. All design demands for the three networks presented

later are likewise assumed to be weighted by the same demand factor, Kload =

1.43.

The cost of pipes is commonly considered as a function of the pipe diameter D

and the length L (Water Research Center, 1977; U.S. Army Corps of

Engineers, 1980). The unit cost, CostD (eg $/m, E/m) is usually taken as:

CostD = pDe	(8.1)

Where p= constant cost coefficient and e = exponent greater than 1. For this

research, the cost coefficients considered (p and e) are those used by

Tanyimboh and Templeman (1993). These are: p £900 and e = 2.4 when D

is in metres.

For the purpose of comparison, Network C will be designed on the basis of

two distributions of flow: (1) for the flow distribution of Coals and Goulter

(1985), (2) for the flow distribution resulting from the application of the path

method.
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8.3.1 Network C

Results of running PATH_Q with Network C and the flow distribution

proposed by Coals and Goulter are tabulated in Table 8.1.

To apply SizeD to the two distributions of flow for the candidate diameters,

the minimum and maximum limits on velocity should be specified. These,

which are also considered for the design of networks E and F, are 0.5 m/s and

3.0 m/s respectively. Such bounds may cause the numbers of candidate

diameters for links to vary. For reasons of reducing the number of decision

variables, at most 5 candidate diameters, starting from the minimum pipe size

for each link, are considered if they are available under the velocity constraints.

This strategy will be followed in the design of the others networks (E and F).

Table 8.2 summarised the candidate diameters for each distribution of flow.

Link
Number

Flow by
Path_Q

(Its)

Coals & Goulter
Flow Distribution

(Us)

1 208.0 208.0
2 104.0 125.0
3 38.2 34.0
4 17.2 13.0
5 44.8 70.0
6 104.0 83.0
7 44.8 34.0
8 34.3 49.0
9 30.5 41.0

10 34.3 34.0
11 38.2 28.0
12 17.2 7.0
13 30.5 20.0

Table 8.1 The Two Flow Distributions for Network C
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Candidate Diameters (mm)

Link PATH_Q Coals & Goulter
(1985)

1 300 350 375 300 350 375
400 450 400 450

2 225 250 275 250 275 300
300 350 350 375

3 175 200 22.5 125	150 175
250 275 200 225

4 100	125 150 75	80 100
175 200 125	150

5 175 200 225 175 200 225
250 275 250 275

6 225 250 275 200 225 250
300 350 275 300

7 150	175 200 125	150 175
225 250 200 225

8 125	150 175 150	175 200
200 225 225 250

9 125	150 175 150	175 200
200 225 225 250

10 125	150 175 125	150 175
200 225 200 225

11 150	175 200 125	150 175
225 250 200 225

12 100	125 150 75	80 100
175 200 125

13 125	150 175 100	125 150
200 225 175 200

Table 8.2 Candidate Diameters for the Two Flow

Distributions for Network C



Path Number of	Link Number
Links in Path

1
2
3
4
5
6
7
8
9

Node Equation
1
2
3
4
3
2
3
4
5

1

1
1
1

12
123
1234
125
16

611
611
611

12
12 13

Loop Equation
10 4 7 -5 -2 6
11 4 .	8 -4 -3 5
12 4 13 -9 -8 10
13 4 12 -10 -7 11

Table 8.3 Strings of Pipes for Pressure and Loop Constraints

Before executing LNOPTNET with Network C for the two different flow

distributions, strings of pipes for pressure and loop constraints have to be

specified. These are given in Table 8.3.

The results of running LNOPTNET are given in Table 8.4. It follows from

Chapter 6 that the solutions given should not be considered as finished. These

solutions must be adjusted where appropriate (Links with two segments) for

the reasons discussed in Chapter 6 (Section 6.6). Moreover, for two-section
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Cost: £426242£426648

Link
	

PATH_Q
	

Coals & Goulter
(1985)

x	D
	

X	D
(m)
	

(mm)
	

(m)	(mm)

1 1000.00 400 1000.00 400

2 1000.00 300 127.28 300
872.72 350

3 361.33 200 1000.00 200
638.67 225

4 1000.00 175 1000.00 150

5 788.50 225 445.76 250
211.50 250 554.24 275

6 1000.00 300 1000.00 275

7 788.50 225 421.53 200
211.50 250 578.47 225

8 1000.00 225 1000.00 250

9 1000.00 225 1000.00 225

10 1000.00 225 465.21 200
534.79 225

11 361.33 200 450.05 175
638.67 225 549.95 200

12 1000.00 175 1000.00 125

13 1000.00 225 1000.00 200

Table 8.4 Optimal Solutions of Network C for the two flow Distributions
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Link L
(m)

D
(mm)

1 1000 400

2 1000 300

3 1000 225

4 1000 175

5 1000 •225

6 1000 300

7 1000 225

8 1000 225

9 1000 225

10 1000 225

11 1000 225

12 1000 175

13 1000 225

Table 8.5 Practical Solution of Network C

for the Path Approach

links, lengths of segments should be rounded up/down in order to obtain a

more satisfactory engineering solution. Therefore, one of the practical solutions

corresponding to the design on the basis of the path approach (PATH_Q) is

presented in Table 8.5.
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The practical solution presented in Table 8.5 is composed of one single

diameter per link. 225 mm are proposed for Links 3, 5, 7 and 11. This

alteration corresponds to an insignificant increase (0.033 %) in the network

cost compared to that given in Table 8.4. The solution shown in Table 8.5 has

been analysed using LMANLS to see the impact of this alteration of segment

lengths on the system pressures. Table 8.6 gives the results of the analysis of

network C where it can be seen that all nodal pressures are greater than the

specified minimum bound (25m).

Node Pressure
(m)

1 43.84
2 36.92
3 32.16
4 28.12
5 31.41
6 36.92
7 32.16
8 28.12
9 25.22

Table 8.6 Nodal Pressures of Network C

With respect to the network costs of the two solutions, it may be seen from

Table 8.4 that the path approach gives a solution cost (£426648) a little bit

greater than that produced on the basis of the flow distribution of Coals and

Goulter (£426242).

Comparison of the reliabilities of the two solutions was performed using the

Reliability Tester. This will be dealt with later in subsection 8.4, after the

optimisation of networks E and F.
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8.3.2 Network E

The second numerical example selected is Network E (Awumah, Bhatt and

Goulter, 1989). Network E (NF = 1, Nj . 12, Np = 18 and Nj, = 6) is shown

with an assumed flow direction in Fig. 8.1. Table 8.7 lists the network

demands. The source head and the minimum pressure for all nodes are set to

55m and 30m respectively. Hazen-Williams coefficients are equal to 130. All

network links are 1000m long.

Node Demand
(1/s)

Source -531
1 83
2 28
3 42
4 42
5 42
6 42
7 56
8 56
9 56

10 28
11 28
12 28

Table 8.7 Demands of Network E

Flows resulting from the PATH_Q program and an arbitrary flow distribution

are detailed in Table 8.8. The sets of candidate diameters for network E,

resulting from running SizeD with this network for the two flow distributions,

and the strings of pipes for pressure and loop constraints are listed in

Appendix B (Tables B1 and B2).

The last step in the design of Network E is performed by running

LNOPTNET. The optimal costs and the optimal diameters are tabulated in

Table 8.9.
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Figure 8.1 Network E
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Link Flow by
PATH_Q

(Vs)

Arbitrary
Flow Distribution

(1/s)

1 531.00 531.00
2 183.87 248.00
3 68.13 92.00
4 264.13 200.00
5 87.73 128.00
6 26.13 50.00
7 87.73 16.00
8 52.27 32.00
9 134.40 142.00

10 81.20 70.00
11 36.40 40.00
12 40.60 44.00
13 36.40 28.00
14 37.80 42.00
15 29.40 30.00
16 16.80 12.00
17 9.80 14.00
18 11.20 16.00

Table 8.8 The Two Flow Distributions for Network E

Examination of Table 8.9 shows that for Network E, the maximum network

cost (£1. 002756) corresponds to the arbitrary flow distribution. For the entropy

basis approach, the path approach gives a network cost (£988845) less than

that corresponding to the arbitrary distribution (£1002756). It should be noted

that this result is the opposite to that seen with network C.
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Link PATH_Q

X	D
(m)	(mm)

Arbitrary
Flow Distribution

X
(m)	(mm)

1 1000.00 600 1000.00 600
2 891.18 400 438.54 450

108.82 450 561.46 500
3 372.33 250 1000.00 300

627.67 275
4 661.81 450 1000.00 400

338.19 500
5 1000.00 300 67.55 300

932.45 350
6 1000.00 200 1000.00 250
7 1000.00 300 52.79 150

947.21 175
8 1000.00 250 619.34 200

380.66 225
9 1000.00 350 399.20 350

600.80 375
10 34.73 275 1000.00 275

965.27 300
11 1000.00 225 1000.00 250
12 662.43 225 1000.00 250

337.57 250
13 79.33 200 1000.00 225

920.67 225
14 30.22 200 1000.00 225

969.78 225
15 1000.00 225 834.01 200

165.99 225
16 1000.00 200 1000.00 150
17 1000.00 150 182.36 150

817.64 175
18 1000.00 150 1000.00 200

Cost:
	

£988845	 £1002756

Table 8.9 Optimal Solutions of Network E for the two

flow Distributions



8.3.3 Network F

Network F (NF = 1, N1 = 7, Np = 13 and NI, = 6), which is shown in Fig. 8.2,

is the final water system selected for comparison between the flow

distributions approaches. The nodal demands are presented in Table 8.10. All

network links are 1000m long and have the same Hazen-Williams coefficient

(130). The source head is assumed to be 90m while the minimum pressure for

all nodes is 30m.

Node Demand
(1/s)

Source -248.82
1 00.00
2 42.90

3 42.90

4 42.90

5 34.32
6 42.90

7 42.90

Table 8.10 Demands of Network F

Table 8.11 summarises the results of the application of the PATH_Q software

along with an arbitrary distribution of flow.

Appendix B (Tables B3 and B4) contains also the sets of candidate diameters,

resulting from running the SizeD program, and the strings of pipes for pressure

and loop constraints for Network F.

The execution of LNOPTNET with network F for the two flow distributions

gives the results summarised in Table 8.12.
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Link Flow by
PATH_Q

(Us)

Arbitrary
Flow Distribution

(Us)

1 248.82 248.82

2 80.44 120.60

3 33.60 50.00

4 50.41 3.80

5 41.11 10.90

6 24.67 34.00

7 22.88 2.00

8 8.58 2.00

9 2.86 30.32

10 42.18 32.00

11 84.37 50.70

12 80.44 20.00

13 168.38 128.22

Table 8.11 The Two Flow Distributions for Network F



Source

Figure 8.2 Network F
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Cost: £345513 .£254636

Link PATH_Q

X	D
(m)	(mm)

Arbitrary
Flow Distribution

X	D
(m)	(mm)

1 1000.00 375 1000.00 350

2 605.92 200 700.92 250
394.08 225 299.08 275

3 207.69 150 339.92 175
792.31 175 660.08 200

4 1000.00 225 1000.00 80

5 1000.00 225 1000.00 150

6 770.53 150 35.14 150
229.47 175 964.86 175

7 1000.00 200 1000.00 75

8 37.14 80 513.84 50
962.86 100 486.16 75

9 501.93 50 262.18 125
498.07 75 737.82 150

10 764.43 175 96.89 150
235.57 200 903.11 175

11 1000.00 275 1000.00 225

12 564.21 250 1000.00 175
435.79 275

13 1000.00 300 921.59 275
78.41 300

Table 8.12 Optimal Solutions of Network F for the

two flow Distributions



For network F, examination of Table 8.12 shows that the greater optimal cost

(£345513) of the two distributions of the flow is related to the design obtained

by the application of the path approach. The arbitrary distribution of flow

produces a lower cost (£254636).

8.4. COMPARISON OF FLOW ASSIGNMENT METHODS

8.4.1 Cost

The results of the application of LNOPTNET to the sample networks show

that the design on the basis of entropy gives cheaper solution (£988845) than

that produced on an arbitrary basis (£1002756) for network E while for

networks C and F, the opposite has been found. As far as the cost is

concerned, the optimal cost of a network depends on the distribution of flow as

was exemplified by the Linear Programming Gradient Method of Alperovits

and Shamir (1977).

To finish the comparison between the design of the three networks, the

reliability aspect must be considered. This point is addressed in the following

subsection.

8.4.2 Reliability

It was seen in Chapter 5 that designing water networks on the basis of

distributing link flows using entropy may result in producing reliable networks.

It would be interesting to verify this point. This can be investigated by

applying the Reliability Tester to the solutions produced by the arbitrary flow

distributions and the entropy based distributions.

It should be noted that for convenience, the comparison should be directly

made on the solutions resulting from the application of LNOPTNET before

any alteration to the optimal lengths.

Examination of the solutions, after running LNOPTNET, shows that some

links are made of two segments. This means an increase in the number of
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nodes, with no external demands, of the original system. To maintain the same

parameters of the original network and reduce the run time of the reliability

tester, an equivalent diameter with its corresponding probability of failure may

be sought as follows.

For a link of total Length L consisting of N. segments connected in series of

Length Xi and Diameter Di , the equivalent diameter Deg that will produce the

same head loss resulting from the application of the Hazen-Williams equation

to segments of a link in series is given as:

D
eg 
= [Li E	iD.4.871 1/4.87 (8.2)

Likewise, for a link consisting of N. segments connected in series of Length

X, of Diameter D., and Probability of failure pD. related to Length X., thei	 1	 1	 1
probability of failure pDeq may be obtained from:

1\1,

pD
eq = E pDi	 (8.3)

1=1

Strictly, the product of the probabilities of failures should be subtracted from

Eq. 8.3. However, since these probabilities are very low (eg 0.000192 for 200

mm), Eq. 8.3 is a reasonable approximation.

The set of commercially available diameters with their probabilities of failure

used in this report are presented earlier in Table 7.3.

In addition to the probabilities of pipe failures, the probabilistic distribution of

the demands and the duration of pipe failures are required for running the

reliability tester. These are the same as those considered for computing the

system availability related to Network D. ie, Trep = 1 day and the demand rates

and their probabilities are given in Chapter 7 by Table 7.4.
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Running the reliability tester with networks C, E and F gives the artificial

system availabilities presented in Table 8.13. Table 8.14 gives also the optimal

system costs for comparison.

PATH_Q
Model

Arbitrary
Flow Distribution

Cost £426648 £426242
Network C

ANe, (%) 99.98 99.97

Cost £988845 £1002756
Network E

AN 	(7) 99.99 99.98

Cost £345513 £254636
Network F

AN (%) 99.98 99.96

Table 8.13 Optimal Costs and Availabilities of Networks C, E and F

Examination of Table 8.13 shows that designing water networks on the basis

of the maximisation of entropy results in more reliable networks than those

designed on an arbitrary flow distribution. This point is clearly exemplified by

the relatively low values of the availabilities corresponding to the arbitrary

distributions of flow, especially for network F (99.96%) compared to the

availabilities resulting from the entropic flow distribution (99.98%).
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8.5 CONCLUSIONS

From the above discussion, it becomes clear that the optimal design of water

networks on the basis of the entropy principle produces more reliable

networks. This result has become possible thanks to the reliability tester. The

maximum artificial system availability reached by the application of the

entropy principle to the numerical examples is 99.99%. This maximum

availability obtained by running the Reliability Tester with the sample

networks corresponds to a design produced on the basis of the stochastic

demand factor of 1.43 that does not cause a hydraulic failure for the full

network. This is the reason for the relatively high availabilities obtained for the

three numerical examples.

160



************************************

Chapter IX

GLNI',1 IC ALGORITHM
1\10D1HT

**1.******************************



Chapter IX

GENETIC ALGORITHM MODEL

9.1 INTRODUCTION

This Chapter presents an alternative approach to the optimisation of water

networks with reliability considerations. Optimisation will be performed via the

technique of Genetic Algorithms (GAs). GAs have been promoted as a class of

general purpose search strategies that manoeuvre through complex spaces in a

near optimal way. GAs have also been shown to be robust search methods

which use concepts borrowed from the natural world. The Genetic Algorithms

discussed in the present chapter incorporates the Reliability Tester model,

previously presented in Chapter 7, to assess nodal and system availabilities.

In the rest of this Chapter, GAs are explored, and examined as an engineering

optimisation tool for the minimisation of the cost of water networks under

reliability specifications.

9.2 DESCRIPTION OF GENETIC ALGORITHMS

To get an insight into genetic algorithms, a look at what they are and where

they come from is undertaken. In doing so, the mechanics of the algorithm are
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presented, with an attempt to gain some idea of why they work. Then a more

rigorous explanation of the underlying search processes is presented. Finally,

implementations of the algorithm to numerical applications are presented.

9.2.1 What are Genetic Algorithms?

GAs are a class of stochastic improvement algorithm; they were invented to

mimic some of the processes observed in nature: these algorithms solve

problems of finding good artificial chromosomes by manipulating the material

in the chromosomes blindly. They know nothing about the problems they are

solving; the only information they are given is an evaluation of each string they

produce, and their only use of that evaluation is to bias the selection of

artificial chromosomes so that those with the best evaluations tend to

reproduce more often than those with a poor evaluation. In a sense, GAs

enforce the survival of the fittest among a population of artificial chromosomes

(strings). The algorithms are genetic because the string manipulations

employed resemble the mechanics of natural genetics. Every generation, a new

set of artificial chromosomes is generated using components (sub-strings) of

the fittest of the old generation; an occasional new part is tried for good

measure.

Yet, one should not assume that genetic algorithms are a simple random walk

through some parameter space; these methods are not coin flipping by a fancy

name. GAs can be viewed as parallel search algorithms that efficiently exploit

old information to seek in a huge space trial points with above average

performance. Indeed, by considering many strings as potential candidate

solutions, the risk of getting trapped in a local optimum is greatly reduced.

GAs have been introduced and developed by John Holland (1975) and his

students in the Computer and Communications Sciences Department at the

University of Michigan. The main goals of their research have been twofold:

1) to abstract and understand, mathematically, the adaptive processes of

natural systems,

2) to design software for artificial systems that retain the important

mechanisms of natural systems.
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This approach has led to important discoveries in both natural and artificial

systems science.

The power of these algorithms is derived from a very simple heuristic

assumption: that the best solution will be found in regions of the search space

containing relatively high performance of good solutions; and that these

regions can be identified by judicious and robust sampling of the space.

Holland (1975) showed how simple mathematical models of population

genetics can efficiently and implicitly make use of this heuristic. GAs

implement these models by iteratively manipulating a population of strings

using genetic operators(eg Selection, Crossover and Mutation).

While established as a valid approach to optimisation problems requiring

efficient and effective searches, GAs are computationally simple, and powerful.

This is so, because they place a minimum of requirements and restrictions on

the user prior to engaging the search procedure. The user simply codes the

problem as a finite length string, characterizes the objective or objectives

(biologists call this objective the fitness function) as a black box, and turn the

GA crank. The genetic search then takes over, seeking near-optima through the

combined action of its operators.

9.2.2 Overview of the Theory

The fundamental theorem of GAs published by Holland (1975) will be briefly

reviewed. More details on the explanation of the theorem can be found

elsewhere (Goldberg, 1989). As it is discussed further in the following Chapter,

GAs work on populations of strings. The theory is based on the concept of

schemata (schema in singular). A schema is a similarity template describing a

subset of strings with similarities over certain string positions.

The basic structure processed by GAs is the string. Assume that we have a

finite binary string of length Lb (number of bits in the string), and we wish to

describe a particular similarity. For instance, consider the two strings Sti and
St2, each with a length Lb = 5:

St . 10111i

St2 = 11100
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We can see that both of the strings have l's in the first position. Such

similarity can be described by for example introducing a star * in all positions

where we are disinterested in the particular bit value. As a consequence, the

similarities in the first and the third positions can be described as follows:

and	**1**.

Note that the combined similarity can be described by the string 1* 1 ** , having

1 at the first and third positions respectively.

These schemata, or similarity templates, apply to not only strings Sti and St2
but also describe the subset of strings in each schema. For instance, the

schema 1**** describes a subset of 24 = 16 strings, each with a 1 in the first

position. The particular schema (1* 1 ** ) contains a subset of 23 = 8 strings,

each with 1 in the first and the third position.

In general, not all schemata are generated equally. Some are more specific than

others. Some have defining positions that span a greater or lesser proportion

of the string. The specificity of schema h (its number of fixed positions), is

called the order of schema o(h). For example, o(h = l* l ** ) = 2 and o(h =

1****) = 1.

Another factor used in measuring the quality of a schema is its defining length

6(h), defined as the distance between the outermost defining positions of the

schema.

For example, the defining length of any one-bit schema is 0:

6(h = 1**** ) = 6(h = ** I 	= 0.

For the two-order schema, the 6(h = 1* 1 ** ) can be computed by substruction

the position indices of the outermost defining positions as:

6(h = 1* 1 ** ) = 3 - 1 = 2.
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Fit(h)

E Fit (Sti)
St; E h

(9.2)

Using the concepts of order and defining length, the fundamental theorem of

GAs, otherwise known as the schema theorem can be written as follows

(Goldberg, 1989):

r
m(h,t+1) > m(h,t) Fit(h) L	

6(h)
- Pcrossover	 Pmutation*C(h)	 (9-1)

AFit

Where

in(h,t) = number of copies of schema h at time t;

m(h,t+1) = number of copies of schema h at time t + 1;

AFit	= Average fitness of the population;

Pcrossover
	Probability of crossover;

6(h)	= Defining length of schema h;

ljb

	 = length of string Sti

Pmutat ion
	Probability of mutation;

0 (h )	= Order of schema h;

Fit(h) = Schema average fitness, defined by:

m(h,t)

The schema average fitness Fit(h) is the average of the fitness values of all

strings Sti which currently include the schema h.

Schemata are an interesting notational device for discussing similarities in

strings. More than this, they provide the basic means for analysing the

performance of GAs.
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In Eq. 9.1, Pcrossover 
and pmutation refer to the probabilities of applying the genetic

operators crossover and mutation respectively. These will be more thoroughly

discussed in the following sections.

The factor multiplying the m(h,t) may be thought of as a growth factor. If it is

larger than one, the expected number of schemata h, will continue to grow;

otherwise, it can do no more than remain constant in number. It is worth

pointing out that Eq. 9.1 holds for all schemata contained in the population. In

other words, a simple GA processes all schemata in this manner. Highly fit

schemata tend to survive because of the factor Fit(h)/AFit. Short definition

lengths are also preferred with a high crossover probability, Pcrossover (in general- 
close to 1). Moreover, due to the fact that mutation probability, Pmutation is often

quite small; this has a little effect except on schemata of very high order.

In short the schema theorem says that a schema h, is expected to grow in

subsequent generations if:

(1) It has above average fitness;

(2) It is relatively short; and

(3) It is of low order.

When all three conditions are met, the schema in question is termed a building

block. These building blocks are combined and recombined by GAs to seek the

best solution.

9.2.3 Genetic Algorithm Essentials

This section investigates a simple genetic algorithm, both its mechanics and

why it works. The mechanics of the process are surprisingly simple. The

algorithm does nothing more complex than string copying and partial string

swapping. The explanation of why it works is much more subtle and powerful.

The simplicity of operation and the power of effect are among the main

attractions of the GA approach.
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Genetic algorithms are derived from a simple model of population genetics

based on the following assumptions:

( 1) Artificial chromosomes, which can undergo genetic transformations

are fixed length strings having a finite number of position values (eg 0/1) at

each position;

(2) A population contains a finite number of artificial chromosomes; and

(3) Each population individual has a fitness, or relative ability to survive

and produce offspring.

Before going into details, it may help to give a brief overview of how GAs

work. During each iteration of the algorithm (a generation), the fitness of each

individual in the population is determined and strings are stochastically

selected to produce offspring according to their relative fitness. Pairs of

successful offspring are chosen to mate and produce the offspring of the next

generation. Variation is introduced by the use of the genetic operators:

Crossover and Mutation. By application of crossover, each offspring draws part

of its genetic material from one parent and part from another. Moreover, new

genetic material is occasionally introduced through mutation. The artificial

chromosomes which survive will, over time, be those which have proved to be

the most fit. In other words, the search is directed towards regions containing

strings with above average fitness.

To be a simple GA which gives good practical results in the sense of Goldberg

(1989), a procedure must contain the following types of operators:

1 - Selection;

2 - Crossover;

3 - Mutation.

In order to produce a new population, strings from the current population have

to follow a certain procedure inspired from the natural world: First, artificial

chromosomes are selected from the current population. Second, they are split

up, and recombined and finally 'mutated' to form new chromosomes for the

following generation.
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9.2.3.1 Selection

The first key step in executing a GA is selection. The purpose of this step is to

lead the genetic search in a specified direction: regions of high observed

average fitness. This concept causes the best chromosomes to proliferate in the

future generations and the least fit members to be ruled out.

There are many ways to perform selection effectively. One commonly-used and

perhaps the easiest technique is roulette wheel selection. The choice of a string
in the current population can be obtained by the following procedure:

(a) Compute the total sum of fitnesses of the population strings; call the

result population fitness;

(b) Generate j, a random number between 0 and population fitness;

(c) Return the first population member whose fitness, added to the

fitnesses of the preceding population strings, is greater than or equal to j.

This procedure is referred to as roulette wheel selection because it can be

viewed as allocating pie-shaped slices or segments, on a roulette wheel to

population strings, with each slice proportional to the string's fitness. Selection

of a particular string from the current population to be a reproduction

candidate can be viewed as a spin of the wheel, with the winning string being

the one in whose slice the roulette spinner stops. It is worth noting that when

using this technique the string fitness values should be positive numbers as

they are proportional to the probability of selection.

9.2.3.2 Crossover

While selection represents an elitist process which retains only the most fit

strings of a population for mating, it does not in any way improve the quality

of any single string in the population. It is the crossover operator that allows

the characteristics of the population strings to be altered. Many GA

practitioners believe that crossover is the genetic workhorse, a high

performance search technique that acts rapidly to combine what is good in the

initial population, and that continues to spread good schemata throughout the

population as the GA runs. In fact crossover, which causes long jumps in the
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search space, is the only operator that is thought to distinguish GAs from all

others optimisation algorithms.

Now let us examine how the crossover transform is applied. Again several

different ways of carrying out this operation are possible. The conventional

approach is described for illustration. First two strings are selected and a

crossing site, called the Crossover-Point (fixed for both of the strings), is

generated randomly. Then, position values are swapped between the two

strings following the crossover-point, so that two new offspring arise.

For simplicity in the following example, each of the two strings used has

identical elements:

Parent 1 [0000000]	Parent 2 [1111111]

Separate:
	

[000 .... ]	 [...1111]

{...0000]	 [111 ....]

Recombine:
	

[000 .... ]	 0000]

[	. 1111]	 [111 ....]

Result:	Child 1 [0001111]	Child 2 [1110000]

It should be noted that this method is usually referred to as one point

crossover.

9.2.3.3 Mutation

If selection and crossover provide much of the innovation of the genetic search,

what then is the role of the diversity-generating or mutation operator?

Mutation is a necessary component of GAs: in the beginning, mutation

safeguards the genetic search process from an early loss of valuable genetic

material and after substantial convergence it refines solutions after selection

and crossover have narrowed the search.
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Usually mutation is performed with a low probability rate, for instance, 0.001:

thus, when mutation is applied to a binary string during a run of a standard

GA, each bit in the string will have a one in one thousand chance of being

randomly replaced. If the mutation rate is too high, information dissolves and

the process degenerates into a random search (Eigen, 1987). Once again, there

are many mutation operators. For example, in a binary-coded GA, one

commonly used operator replaces a 1 with a 0 or vice versa if a probability

test is passed.

9.2.3.4 The Algorithm

The structure of an algorithm that can be applied to a wide range of problem

domains is shown in the following diagram:

Initialise Population: Randomly generate an initial Population of size Npop

While Not (terminate condition) DO
Compute the Fitness function of each member of the population;
For i . 1 To (Np./2) Do

Selection: Pick two parents on a roulette wheel basis;
Crossover: Crossover the parents based on crossover probability

to produce two new offspring;
Mutation: Mutate each offspring based on mutation probability;

EndFor
END.

9.2.4 Advantages of Genetic Algorithms

In summary the principle attractions of GAs are:

(a) Globality: the main advantage of this stochastic search is its ability to

achieve a near global optimum while most search techniques seek for a local

optimum solution. This is due basically to: (1) a parallel search; seeking from a

population of points instead of a simple point and (2) the fact that a diverse
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population of solutions is maintained from generation to generation. Sets of

solutions will tend to converge on each local optimum, but these will eventually

be left as the overall search identifies new solutions in more profitable regions.

(b) Decision Variable independence: GAs require any continuous valued

decision variable to be discretised, for the process of mapping onto a binary

string. Yet, they handle integer and discrete valued variables efficiently. Most

engineering design problems tend to involve discrete choices such as pipe

sizes, beam section, which are very suited to binary representation.

(c) Domain independence: the algorithm works on the coding of a

problem, ie each decision variable of the problem is represented by, for

instance, a sub-string of O's and l 's, so that it is easy to write a general

computer program for solving many different optimisation problems.

(d) Non-Linearity: Many conventional optimisation techniques are based

on unrealistic assumptions of linearity, convexity, differentiability etc. None of

these are needed by GAs. The only requirement is the ability to compute some

quality function (fitness function) which may be highly complicated and

non-linear.

(e) Flexibility: GAs do not require that the constraints should be

expressed explicitly in terms of design variables.

(f) Robustness: As a consequence of the previous advantages, GAs are

inherently robust, they can cope with a large spectrum of problems, they can

work with highly non-linear problems and they do it in a very efficient manner

(Goldberg et al., 1989).

(g) Parallel Nature: Not only are GAs inherently parallel search

techniques but also due to the independence of processing every individual

solution in the population, computation can be performed in parallel. This

implicit parallelism of GAs makes them the most suitable for design

optimisation in a parallel computing environment. Attempts have been made

for such implementation (Pettey et al., 1987).
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9.2.5 Application of a simple Genetic Algorithm

In the previous sections a simple GA was investigated. Now an application of

the algorithm to the minimisation of a simple algebraic function is examined.

This example is taken from Bunday and Garside (1987). The problem is to

minimise the following function:

Problem GAl:

Minimise	F = 3x1 2 I- 4x1 X2 ± 5x22
	

(9.3)

Subject to	 x1 > 0

x2 > 0
	

(9.4)

xi +x2 >4

The anticipated solution is F* = 44 at XI S = 3 and x2s = 1. As reported in the

literature, to solve an optimisation problem by GAs one should specify 5

components:

1) A string representation of the solution to the problem;

2) A way of generating an initial population of solutions;

3) A fitness function measuring the quality of solutions;

4) Genetic operators that improve solutions during the run of the GAs;
and

5) Values of the parameter utilised by the genetic search (population
size; probabilities of applying operators etc).

9.2.5.1 String representation of the solution

Since standard GAs work on coded variables, a chromosomal representation of

the solution is required. Owing to its simplicity, binary coding is adopted. The

problem we face is the determination of the length of a sub-string (No. of bits),
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L , per decision variable. Ls relies on the type of decision variable involved:

continuous, integer or discrete. In general, given a continuous design variable,

xi , which can take any value between a minimum value xmin and a maximum

value xmax, the sub-string length Ls required to a precision of 6, may be

estimated from the following expression (Goldberg, 1989):

21's	[(xmai, - xmin)/€ + 1]
	

(9.5)

For problem GA I, if we suppose that the decision variable xi, can take any

value between 0.0 and 15.0 (inclusive) to a precision of 1.0, then 21-s > 16.

This gives a value of Ls of 4, with the following 16 4-digit combinations of 0

and 1:

1 0000
2: 0001
3: 0010
4: 0011
5 0100
6: 0101
7 0110

0111
9: 1000

10: 1001
11 1010
12: 1011
13: 1100
14: 1101
15: 1110
16: 1111

The decoding of the strings will produce the corresponding decimal digits

which will then represent real values of the variables. This 'parameter' mapping

is within the control of the user. The procedures extract_parm which removes a

sub-string from a full string, and map_parrn that maps the unsigned integers to
the range [xinin , xrnm, ] presented in Goldberg (1989) are used in this example.
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9.2.5.2 Initial Population

Having coded the decision variables x1 and x2 as finite-length strings, the

initial population of solutions can be set up. It is a common practice when

beginning a genetic search to initialise a population of Np.p strings by

randomly generating bits with equal probability, 130 (eg 0.5), for zero and one.

Indeed, a random number is generated between 0 and 1 and compared to pc,. If

the generated number is greater than or equal to RD then the bit value is 1

iotherwise 0. If there are ND decision variables (x, =1,...,ND), this process isI
repeated ND.Ls.Npop times. Table 9.1 shows a population created in this way.

9.2.5.3 Fitness Function

Fitness values of solutions are the only information that GAs exploit to move

to high performance space regions. To be more precise, a fitness value is used

to guide the selection component to choose the most fit strings for crossover

and mutation. A fitness value, which must be positive as required by

computation of selection probability, expresses the quality or fitness of a

solution.

Originally, GAs were designed to deal with maximisation problems. The

common practice used to transform a minimisation problem to maximisation

problem is to maximise the negative objective function. This approach is not

feasible as mentioned earlier. Thus minimisation problems can be solved for

example by using a simple device:

Fit = Cr - F	 (9.6)

Where Fit is the fitness function and Cr is a constant large enough to prevent

negative values of fitness. For problem GA1, Cr can be estimated by putting

both of the variables to their maximum values, 15, in Eq. 9.3. This gives Cr =

2700.

Another convenient and efficient approach to sort out this problem will be

explained, when the optimisation of water networks is addressed.
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X2 F	Fit	Selection
Probability

Fit/iFit

	St.	x

	

1	1

Generation 0

1 1111 15 1000 8 1475 1225 0.085
2 1010 10 0111 7 825 1875 0.129
3 0000 0 0010 2 20* Os 0.000
4 1000 8 1110 14 1620 1080 0.075
5 1100 12 0000 0 432 2268 0.157
6 0000 0 1000 8 320 2380 0.164
7 1110 14 0001 1 649 2051 0.142
8 1100 12 1011 11 1565 1135 0.078
9 1101 13 1110 14 2215 485 0.033

10 0100 4 1010 10 708 1992 0.137

E
	

14491	1

Table 9.1 Processing Generation 0
*Constraints violation

9.2.5.4 Genetic Operators

The genetic operators used herein to solve problem GA1 are:

(1) The simple roulette wheel selection;

(2) One point crossover; and

(3) Bit mutation, ie replace a 1 with 0 or vice versa.
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9.2.5.5 Parameter Values

Hidden behind the conceptual simplicity of GAs, there are a variety of

parameters such as population size and probabilities of mutation and

crossover. Effective values of these parameters for bit string representation

have been intensively studied (De Jong, 1975; Grefenstette, 1986 and Schaffer

et al., 1989). Again this problem will be discussed further when the

optimisation of water systems is examined. Note that the object of this section

is to present a simple illustration of the way in which GAs deal with

optimisation problems. For this example the genetic parameters for problem

GA I are:

1. Population size: Npop = 10;

2. Probability of Crossover: Pcrossover = 0.8;

= 0.03;3. Probability of mutation: D.- mutation

4. Number of generations = 50;

9.2.5.6 Implementation and Results

The work now to be described was carried out using a PASCAL program,

developed by the author from Goldberg's "Simple Genetic Algorithm" (1989).

Table 9.1 shows also the binary sub-strings of x1 and x2 and their numerical

values, the values of the function F and its corresponding fitness (columns 6

and 7), and finally the probabilities of selection. Note that the maximum fitness

(2380) corresponding to the minimum value of the function F of generation 0

(320) has the highest probability of selection (16.4% for St6) and the worst

strings has the lowest probability of selection (0.0% for St3). A zero in the

fitness column indicates that the particular combination of the variables does

not satisfy the imposed constraint (Eq. 9.4).

Application of the three genetic operators to the members of generation 0

results in producing new solutions comprising generation 1. The new strings

generated and their corresponding function values F and fitnesses are

summarised in Table 9.2.
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St.I binary
coding

x1 x2 F Fitness

1 01010100 5 4 235 2465
2 10111001 11 9 1164 1536
3 01100100 6 4 284 2416
4 00111101 3 13 1028 1672
5 01010010 5 2 135 2565
6 11000100 12 4 704 1996
7 01011100 5 12 1035 1665
8 11100001 14 1 649 2051
9 01110100 7 4 339 2361

10 01010011 5 3 180 2520

Table 9.2 Results of Generation 1

A complete analysis of the problem by computer is listed in Appendix C. It

will be seen that the optimum solution of problem GA1 (F* . 44 at xl * . 3

and x2 = 1) has been found at generation 10. It should be noted that only

improved solutions are listed in Appendix C.

9.2.6 Summary

The detailed mechanics of a simple genetic algorithm have been presented.

GAs operate upon populations of strings. The strings are coded to represent

the underlying parameter set. Selection, crossover, and mutation are applied to

successive string populations to generate new string populations. The

operations performed are simple string copies and partial string swaps, yet the

effect is extremely powerful. A simple genetic algorithm has been introduced

to deal with optimisation of a simple algebraic function with the aim of

illustrating both the detail and power of the method.

Having introduced the basic concepts of GAs in section 9.2, we now move to

consider how these might be applied in the context of water network design

with reliability issues.
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9.3 OVERALL MODEL

In the previous section, it was shown how GAs can be applied to a simple

optimisation problem. Now their application to the design of water networks

with reliability specifications is considered. Earlier a simple GA incorporating

standard forms of genetic operators was presented. In this section, however,

improved forms of genetic operators, associated with a new version of GAs are

implemented to speed up the convergence of the search.

9.3.1 The problem

Design of water networks under reliability constraints and stochastic demands

can be stated verbally as:

GIVEN:

1) A set of demand nodes;

2) A set of links;

3) A set of normal loading (demand) conditions;

4) A set of stochastic demands;

5) A set of commercially available pipe diameters and costs;

6) A set of minimum performance levels for normal loading conditions
and stochastic loads.

FIND:

1) Link diameters;

2) The minimum total cost of the network.

SUBJECT TO:

1) Satisfying steady state flow conditions;

2) Satisfying minimum performance levels under normal and stochastic
loading conditions;

3) Satisfying a minimum system reliability.
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This problem can be viewed as finding the optimal network cost and diameters

subject to the technical constraints (steady state flow conditions and minimum

nodal pressures) and the constraint on reliability.

Therefore, for stochastic demands, the optimal design of a water network

having NF fixed head nodes, Nj nodes, Np pipes and NI, loops can now be

stated as:

Problem GA2

NP
Minimise costNET .E CostDi Li	 (9.7)

i=1

Subject to

E	< Ho — ll k inin 0)	V k E Nj , V j E NLoad	(9.8a)
E Pn(k)

E ziFli (j) = bk	 V k (NF - 1), V j E NLoad	(9.8b)
PRIc)

E	.0	V k E Nu V j NLoad	(9.8c)
i E P1(k)

Rs > RsT	 (9.8d)

Where

CostNET = total network cost;

CostD..= unit cost of diameter D. in link i;

L.	 length of link i;

Pn(k)	= set of links in the path from the source to node k;

Ho	. original head at the source;

Hkmin 0) = minimum required head at node k for loading condition j;

Pf(k)	= set of links in path k, k = 1,...,(NF - 1) associated with known
net head loss bk;
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P1(k)

Rs

RsT

• set of links in loop k, k	1,...,NL;

system reliability;

• target reliability;

^ head loss in link i corresponding to loading condition j, may
be defined using the Hazen-Williams equation by:

= y	(Q1iici)1.852 D1-4.87	
(9.9)

Where y is a constant depending on the units used, Qij is the flow of link i for

loading condition j, Ci is the Hazen-Williams coefficient of diameter Di in

link i.

Eq. 9.8a. expresses the node constraints: nodal heads must be equal to or

greater than the required minimum bound. Eqs. 9.8b. and 9.8c. refer to the

path constraints:the total head loss along any path between two fixed nodes

must equal the difference in head between those nodes. However, Eq. 9.8d.

states that the reliability of the system must be greater than a pre-defined

value.

We have seen in Chapter 7 that water networks reliability can be efficiently

assessed by the simple and computationally fast Reliability Tester. In addition,

the reliability tester can be successfully incorporated into an optimisation

scheme.

It is worth noting that Eqs. 9.8 can be solved by the reliability tester. The

problem then is reduced to finding the least cost design of water networks and

the optimal set of diameters given a pre-specified reliability value subject to

the technical and reliability constraints. These can by efficiently assessed by

the reliability tester.

It is worth noting that problem GA2 does not contain constraints on velocity

and therefore the solution of GA2 should be tested for acceptable velocities.
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9.3.2 The GA in the Design of Water Networks

It should be noted that the standard Genetic Algorithm, which is referred to by

some GA researchers as the Generational Replacement (GR) scheme, is the

algorithm that is already exemplified through problem GAl. The basis of the

GR is to generate all the next population from the current population. In other

words, at each generation of the GA, all members of the population are

generated. The Steady State Reproduction (SSR) is an alternative search

strategy. The main difference between the GR and the SSR is that within each

generation, only a few members of the population are changed (usually one or

two). The standard genetic algorithm (GR) and the alternative search strategy

(SSR) are developed, programmed, tested, and compared. The algorithm with

the best performance will be adopted for the design of water networks.

So far, discussions of GAs have focused on searching unconstrained objective

functions. Typical engineering problems often involve a set of constraints

which must be fulfilled. At first, it would appear that constraints pose no

particular problem. Indeed, GAs generate a sequence of decision variables to

be tested. One simply runs the model, evaluates the objective function, and

checks to see if any constraints are violated. If not, the fitness will be the

objective function evaluation. If, on the other hand, constraints are violated the

solution is infeasible and thus has no fitness. This is the approach adopted in

problem GA 1. This procedure is fine except that many problems are highly

constrained; finding a feasible solution is almost as difficult as finding the best.

Furthermore, the foundations of GA theory, however, say that GAs optimise

by combining partial information from all the population. Therefore, the

infeasible solutions should contribute by providing information and not just be

thrown away. Consequently, we might want to rate infeasible solutions as well,

perhaps degrading their fitness ranking in relation to the degree of constraint

violation. This is what is done in penalty methods.

In a penalty method, a constrained problem is transformed to an unconstrained

problem by associating a cost or penalty with constraint violations. This cost is

included in the objective function evaluation. Interior penalty function

approaches (Golberg, 1987) and exterior penalty function approaches (Lin and

Hajela, 1992) have been described in the GA literature.

Furthermore, it was outlined in the previous section that the application of

GAs to optimisation problems requires 5 components to be specified. These
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are: (1) a string representation of the solution; (2) a way of seeding the initial

population; (3) a fitness function; (4) genetic operators and finally (5) values of

the genetic parameters. In the design of water networks, this strategy will be

followed.

9.3.2.1 String representation

Pipe sizes may be taken as decision variables in the design of water networks.

In such a case, these decision variables are not continuous and must be chosen

from the set of the discrete available sizes. With conventional optimisation

techniques, if the problem is formulated as non-linear, one common practice is

to consider pipe sizes as continuous, and, when the optimal solution is found,

diameters are rounded up/down to the nearest commercially available sizes.

Most of the time two situations can arise: either the practical solution is

infeasible or it is not optimal. However GAs can handle discrete problems

efficiently. Pipe sizes may remain discrete but coded in finite length strings.

Hence the final solution obtained after running the GA will be at the same
time optimal and feasible.

9.3.2.1.1 Binary Coding

Usually in engineering problems, the range of variation of the decision

variables xi, i = 1,...,Nd, is known. For example, in the design of water

networks, the minimum and the maximum values of the diameters can be

known. For a single source network, usually the source flow is known and by

considering constraints on velocities, the maximum pipe size can be

determined. The minimum pipe size can be taken as the minimum available

size or the minimum practical size for firefighting (eg 100 mm). Once the

minimum and maximum diameters (Drnin and D.) are known, the number of

candidate decision variables, Nd, also becomes known. Each of these Nd

discrete variables can be represented in the form of a sub-string. One simple

way of doing this is the use of binary coding. In the binary coding

representation, the length Ls of the binary sub-string has to be determined.

With reference to the first example (problem GA1), the variables were

continuous and Ls was determined using Eq. 9.5. In the design of water

networks, where the problem is discrete, the length Ls can also be determined
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by Eq. 9.5 with an accuracy 6 equal to 1 only (Lin and Hajela, 1992).

Under these conditions, one may proceed by mapping an integer variable, i,

between 0 and Nd-1 using binary coding, and then assign each i, i 

to its corresponding pipe size D1+1 . Therefore, the sub-string length can be

determined such that:

Ls > Ln(Nd)/Ln(2)	 (9.10)

For example, suppose that Nd = 32 discrete diameters, from Eq. 9.10, Ls will

be equal to 5. Table 9.3 shows the number of individual binary sub-strings for

a practical range of sub-string length.

Sub-string
length Ls

No. of
possibilities

3 8
4 16
5 32
6 64
7 128
8 256
9 512

Table 9.3 String capacity for binary
mapping of discrete variables

If the number of decision variables, Nd, were equal to the number of

possibilities (ie Ln(Nd)/Ln(2)), a one-to-one correspondence between pipe

sizes and the sub-string chromosomes could be readily established. However, in

most applications this is not possible, and the excessive binary strings must be

assigned in an appropriate manner. Consequently, this problem which may

increase running times of GAs, has to be solved in applications where binary

coding is involved. Approaches for handling this situation are described in Lin

and Hajela, 1992.
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9.3.2.1.2 Integer Coding

Another way for representing efficiently pipe diameters within a GA search is

the use of Integer Coding. In this representation scheme, decision variables are

first mapped to an equivalent number of integer variables. Then a one-to-one

correspondence between pipe sizes and the integer numbers can be performed.

For instance, assume that for a given network, the number of pipes Np = 5

and the number of candidate diameters (in mm) is Nd = 8. These are sorted

from the minimum size to the maximum size such that:

[50, 75, 80, 100, 125, 150, 175, 200]

The mapping of these pipe sizes into an integer coding can be performed in

the following way:

[1, 2, 3, 4, 5, 6, 7, 8]

Examples of solutions encoded in the integer coding are:

Sti = 1 5 7 8 2

St2 = 3 8 3 5 4

In these strings, the corresponding sets of diameters are [50, 125, 175, 200,

75] and [80, 200, 80, 125, 100] respectively.

It is worth noting that for the integer coding, there are no excessive strings

such as those encountered with binary coding. Also one-to-one correspondence

gives no bias, whereas binary representation will give bias towards some

values. Therefore, the run time may be reduced.
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9.3.2.2 Initial Population

For a population of size Npop, the initial set of strings may be generated at

random. For binary coding, this may be achieved by tossing a fair coin as

described in section 9.2.5.2. For the integer coding, however, the initial

population may be created by choosing randomly integer numbers between 1

and Nd . In water distribution design, the decoding procedure which determines

the pipe diameters that correspond to the coded strings will depend on the

representation scheme used (binary coding or integer coding).

9.3.2.3 Fitness Function

It was seen earlier that the fitness function returns a measure of how good any

encoding solution is. In the previous sections, a device of dealing with

minimisation problems was also introduced since GAs were originally designed

to tackle maximisation problems (see Eq. 9.6). With the GR algorithm, the

same approach will be adopted.

Before addressing completely this problem it is worth noting that GAs may be

struck by a malady called Premature Convergence if Fitness Sealing is not

considered (Goldberg, 1989). Premature convergence is typically encountered

in a population of a small size with a few extraordinary individuals dominating

among mediocre individuals during the first stages of a GA. In fact, if left to

the standard selection rule (Piselection.Fiti/iFiti), the best members would take

over a significant proportion of the finite population in a single generation,

leading to an undesirable premature convergence. Late, during the process of

the GA a critical situation can rise when the population average fitness

becomes close to the population best fitness: average members will get the

same numbers of copies in future generations. In this situation, fitness scaling

techniques may also help by giving reproduction chances to the members with

a slight edge that are far in excess of the amount by which they are superior

(Davis, 1991).

Genetic algorithms practitioners have solved this and related problems by

transforming the evaluations of the strings in various ways. The technique used

here is the Linear Scaling scheme proposed by Goldberg (1989). This

technique requires a linear relationship between the raw fitness and the scaled
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fitness. The coefficients of this linear relationship are selected such that the

average scaled fitness is equal to the raw average fitness and for the raw

maximum fitness, the maximum scaled fitness is equal to two times the raw

average fitness.

In the beginning of section 9.3.2 it was mentioned that the design of water

networks is a constrained problem. However, it should be noted that the topic

of constrained function optimisation is of recent interest in GA research

(Richardson et al., 1989). As mentioned earlier, it was reported in the GA

literature that the ways utilised to transform a constrained problem into an

unconstrained one were the use of penalty function approaches; but according

to Rajeev and Krishnamoorthy (1992), the standard penalty approaches are

ideally suited for sequential searches but may not be appropriate for GAs

which process in parallel using population of points in the search space.

Richardson et al. (1989) stressed that penalties, which are functions of the

distance from feasibility are more successful. A formulation based on the

violation of the network availability is proposed.

Consider a solution represented by a coded string St. The decoding of St gives

=the candidate diameters D. j 1,...,Np, extracted from the Nd available

diameters. Having these diameters, the network cost, CostNET(St), can be

computed by Eq. 9.7.

Application of the reliability tester to the solution obtained results in the

assessment of both nodal and system availabilities. Given a target (specified)

system availability, which is a reasonable index of a system's general

performance, that the system is desired to have, two situations can arise:

(1) the computed system availability is greater than or equal to the target

availability:

ANet —> AsT
	 (9.11)

In this case, the solution may be kept, since the conditions on availability are

fulfilled.
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(2) the computed system availability is less than the target availability:

ANet < AsT
	

(9.12)

In this condition, the quality of this solution depends on how far the computed

availability is from the target availability.

Therefore, the total cost of solution St, Costs, may be calculated as the sum of

the network cost, CostNET(St), and the penalty cost, CostpNLT(St), for violation

of the reliability requirement such that:

Costs, = CostNET(St) + CostpNLT(St)	 (9.13)

9.3.2.3.1 Network Cost Function

With reference to Eq. 9.11 the reliability requirement is fulfilled, that is, there

is no penalty cost, and, the solution cost is only the network cost that can be

calculated using Eq. 9.7:

Np

Costs, = COStNET(St) = E CostD. L.,	,
i=1

(9.14)

9.3.2.3.2 Penalty Cost Function

If there is a violation of the reliability constraint, a penalty cost has to be

added to the network cost to represent this violation. Various functions were

tried, with the following being that adopted:
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ANet \CostPNIT(St) = COStrET(St) . r . (1 —
AST 1

_., AsT)	(9.15)(for A sa

Where

ANet *-= computed system availability;

AST = target availability;

r	= penalty coefficient.

Eq. 9.15 states that for any value of the penalty coefficient r, the penalty cost

becomes practically zero when ANet tends to AsT. On the other hand, as ANet

decreases, ie for low system availabilities, the penalty cost, Costpm,T, and the

total system cost Costst increase. Having determined the total cost of a solution

St, the corresponding fitness has now to be evaluated.

9.3.2.3.3 Raw Fitness

Since the design of water networks is a minimisation problem, the raw fitness

should be subtracted from a constant (Cf.), large enough, in order to prevent

negative values of fitness. For a solution St, the raw fitness, Fits, is given by:

Fits, = Cr - Costs,	 (9.16)

C. may be taken as the network cost (given by Eq. 9.14) of a network which is
assumed to be entirely consisting of the maximum pipe diameter allowed

(Dm).

9.3.2.3.4 Scaled Fitness

According to the linear scaling technique (Goldberg, 1989), the scaled fitness,

Fit', for a solution St may be assessed as:
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Fit's,	. Fits, + br	(9.17)

Where a1 and b1 are the linear coefficients linking the raw and scaled fitnesses

that may be obtained as explained earlier in sub-section 9.3.2.3.

9.3.2.4 Improved Operators For Standard GAs

The genetic operators used in the optimal design of water networks are the

same as those presented earlier to solve problem GA 1. However improved

forms of these genetic operators are selected that have been reported to speed

up the convergence of the standard genetic search.

9.3.2.4.1 Selection

Different ways are possible to implement the selection process. Earlier,

selection was performed via the simple roulette wheel approach with the

purpose of providing bias in the population to provide more fit members and

to rid the population of less fit members. In the design of water networks, this

objective can be reached by an alternative approach for standard GAs, that has

been reported to outperform the conventional roulette wheel selection method

(Goldberg, 1989): the Remainder Stochastic Sampling Without Replacement

method. In her dissertation, Brindle (1981) has confirmed the inferiority of

roulette wheel selection observed earlier by De Jong (1975) compared to the

remainder stochastic sampling without replacement. Therefore, the remainder

stochastic sampling without replacement scheme will be adopted for the

selection process within the GR algorithm.

Like the roulette wheel selection, the remainder stochastic sampling procedure

starts by computing the number of copies (Ncopiess, Npv .FitsizFitst) that a

string St may have according to its probability of selection. In the roulette

wheel selection the number of copies, being a real number, is rounded to the

nearest integer value. However, for the remainder stochastic method, the

fractional parts of the expected number of copies are treated as probabilities

and if the expected number is greater than one, such a string will receive for
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certain one copy and another with a probability equal to the fractional part of

the expected number. For instance, assume that the expected number of copies

of a string St turns to have a value of 1.6. This string will definitely receive a

single copy and another with probability 0.6.

The Pascal code that implements the remainder stochastic sampling without

replacement selection used here is that published by Goldberg (1989).

9.3.2.4.2 Crossover

The second modification suggested for the design of water networks is

implemented through the use of Two Crossover Points. This has been reported

to improve the performance of the standard genetic search (Booker, 1987;

Syswerda, 1989). In 1982, investigations by Booker demonstrated and showed

that a two crossover points operator can indeed improve performance of GAs.

This result was confirmed by optimising 10 times a set of 5 test functions

(Booker, 1987). Therefore the two crossover points system is adopted.

To effect crossover, a set of crossover parameters are generated randomly.

These consist of a pair of strings and two crossing sites. The crossover is

carried out by swapping the set of bits between the two cut points. A Pascal

routine called Two _ Point_ Crossover that implements this process has being

developed.

9.3.2.4.3 Mutation

If binary coding is used, the same mutation operator utilised in the illustrative

example (problem GA I) may be adopted for the optimisation of water

networks. However, with integer coding, the bit mutation scheme cannot be

applied. A new mutation operator is sought.

For binary coding, mutation was performed by replacing a 1 with a 0 or vice

versa. In the same manner, for integer coding, mutation of an integer in a

given string may be achieved by choosing at random any integer among the Nd

integers allowed except that integer. For example, assume that for a given

network, the number of pipes Np = 5 and the number of candidate diameters
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is Nd = 8 (1, 2, 3, 4, 5, 6, 7, 8). For a string Sti (Sti = 1 5 1 8 2), assume that

the probability test, to apply mutation, for the third position (7) has passed, a
mutation of the integer 7 may take any value from 1 to 8 except 7 (eg 3). The
result is a new string:

St 1 ' . 1 5 3 8 2

Algorithm 

Given a string St
FOR any integer I in St DO

IF (the probability test of mutation is passed) THEN
REPEAT

Generate an integer J among the Nd integers
UNTIL J <> I

ENDIF
END.

9.3.2.5 Parameter Values

With the standard GAs, it has long been acknowledged that the parameters

controlling GAs can have a significant impact on their performance. Moreover,

GAs theory gives little guidance for their proper choice. Basically three works

have been published in this area. De Jong (1975) performed several

computational experiments, on five minimisation functions, to try to gain some

insight into the influence of population size, the probability rates of crossover

and mutation operators, and a number of other parameters, on the efficacy of

genetic search. Two performance measures were designed for this purpose: the

on-line performance and the off-line performance. The on-line performance is

simply the mean of all function evaluations up to a given number of trials

while the off-line performance is the average best fitness of a population up to

the given number of trials. Empirical results produced a set of numerical

parameters that was generally found to yield the best on-line and off-line

performances: Npop = 50-100, D- crossover = 0.60	pmutationand	
= 0.0 0 1 .
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Grefenstette (1986) has suggested a more robust approach for the optimal

selection of these parameters. Indeed, he has developed a Meta-Genetic

Algorithm that takes not only the design variables as chromosomal

representation but also values of the desired parameters (N_ _ 13
pop' - crossover

and prnutation ). Applications of these algorithms to the minimisation functions

used in the above study by De Jong, to generate the best on-line performance,

give the following recommended parameters: Npop .
30, Pcrossover = 

0.95 and

Pinutation . 0.0 1.

Grefenstette's combination of parameter values, which recommended a smaller

population size and much higher rates of applying the genetic operators than

did De Jong, have been proven useful across a variety of problem domains

(Davis, 1989).

More recently Grefenstette's results were reinforced by the work of Schaffer et

al. (1989) that has consumed more than 12 months of CPU time (1.5 CPU

years on Sun 3 and VAX machines). They have used the De Jong test

functions and some additional problems (five other functions) which were more

complicated and multimodal. They were able to show that robust parameter

settings found by their search indicated that good on-line performance can be

expected with: Np op = 20-30, p- crossover = 
0.75-0.95 and D- mutation 

= 0.005-0.01.

It becomes clear that for standard GAs, good parameter values may be taken

from the above fairly recent works in this area, since there is some supporting

evidence that the reported parameter sets are function independent. For these

reasons, the values of the parameters applied for designing water networks are:

N	=30;
pop

Pcrossover = 0.95;

Pmutation = 0.0 I .

By adopting this selection, one can avoid any exploratory experiments which

would inevitably increase the overheads of the implementation.
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9.3.3 The Standard Genetic Algorithm Adopted

For water network design, the algorithm used in problem GAI can also be

applied. However, the Linear fitness scaling technique and the improved

genetic operators, for both binary and integer codings, discussed earlier are

added to the algorithm. Therefore, solution of problem GA2 may be reached

by the following scheme:

Algorithm 

Initialise Population: Randomly generate an initial Population of size Np.p.
Each member of the population consists of Np candidate pipe
sizes.

WHILE NOT (terminate condition) DO

Compute the Fitness function of each member of the population
based on running the Reliability Tester which gives the system
availability. Having the system availability, the fitness function can
be determined on the basis of network cost (CostNET) only if there
is no violation of the availability specification or on both network
cost (CostNET) and penalty cost (Costpm,T) for violation of the
availability specification.

Compute the Scaled Fitness of each member of the population by
applying Linear Scaling;

FOR i = 1 To (N1op/2) DO

Selection by Stochastic Remainder Method: Pick two parents

Crossover (One-point/Two-point Crossover): Crossover the parents
based on crossover probability to produce two new offspring;

Mutation (Bit/Integer Mutation): Mutate each offspring based on
mutation probability;

ENDFOR

END WHILE.
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This algorithm which the author calls OPTNET1 has been developed and

written in Pascal. OPTNET1 calls the reliability tester for computing the

system availability of a candidate solution, which is essential for the

determination of the raw fitness of the candidate solution. If the reliability test

is passed, the raw fitness is reduced to the network cost given by Eq. 9.14.

Otherwise, the raw fitness corresponds to the total cost (see Eq. 1.15)
including the penalty cost. OPTNET1 is implemented and tested in the

following section.

Since OPTNET1 includes the reliability tester model, the probabilistic demand

factors, the repair time and the probabilities for pipe failures should be

specified. For the optimisation of water networks in this Chapter, the same

probabilistic demand factors (see Table 7.4) and repair time (Trep = 1 day) used

in Chapter 7 will also be utilised. For unit costs of pipe diameters, the cost

equation taken from the literature (Tanyimboh and Templeman, 1993 ) is also

used here.

9.3.4 Example: Network G

Under this heading, the standard genetic algorithm is applied to the

optimisation of a water system: Network G. This system has been deliberately

selected to be a very small size (one loop) to illustrate rapidly the application

of the GA search to the design of water networks.

The layout of Network G (NF = 1, Nit = 4, N. = 5, and NL = 1) is shown in

Fig. 9.1. Fig 9.1 shows also the network demands. Ground levels are equal to

140m for all nodes, which are supplied by one source with a pressure head at

200m. Link lengths are set to 1000m for all pipes. Minimum acceptable

pressure and Hazen-Williams coefficients are assumed to be 20m and 130

respectively for all the system.

Application of OPTNET1 to Network G requires the determination of the Nd

candidate diameters which, for simplicity, may be held constant for all links.

As mentioned in subsection 9.3.2.1, Nd may be determined on the basis of

selecting the minimum and maximum pipe sizes for Network G. The minimum

diameter may be taken as Dmin = 100 mm for reasons of firefighting. Since
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40 vs

Figure 9.1 Network G
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Network G is a single-source system, the total network demand which is

known (140 1/s) and a minimum acceptable velocity (say Vinin . 0.5 m/s)

may be used to determine the maximum pipe size. According to Eq. 1.1, Dm.

is given by:

Drnax = (4/7t * 0.14/0.5) 1/2

D
MaX —

= 600mm.

Therefore, the number of candidate diameters for Network G is Nd = 16 (see

Table 7.3). Note that Nd is a large value for this small problem. However, the

objective of this first example is to show rapidly how to apply the standard

genetic search to the design of water systems.

For binary coding, with the availability of Nd, the length L5 of the binary

sub-string representing each diameter may be determined by Eq. 9.10. This

gives:

Ls > Ln(16)/Ln(2)

L5 > 4.

Consequently, each member of the population comprises L5 * Np = 4 * 5 = 20

bits. However, with integer coding, as seen earlier, each member of the

population will only have Np (5) integer numbers. For the purpose of

comparison between binary and integer codings, the maximum number of

generations has been set to 30 generations which gives for network G: 30 *

(N + 1) = 930 fitness evaluations.pop

Another important parameter that must be specified before executing

OPTNET1 is the target availability value that is supplied by the user. It was

mentioned in Chapter 7 that the system availability defined as the average of

nodal availabilities weighted by the demands, to take into account the
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St.	 Diameters	 Total Cost1
(mm)	 of Strings (£)

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16
17
18
19:
20:
21:
22:
23:
24:
25:
26:
27:
28
29:
30:

125 600 500 450 375
125 450 525 600 275
200 350 150 450 450
175 450 100 100 500
125 525 175 300 300
225 300 500 350 350
150 525 100 125 300
175 500 250 225 125
225 200 525 275 250
600 100 250 150 250
100 500 125 175 175
225 125 125 450 250
250 100 275 450 275
200 125 300 225 350
450 100 150 100 400
450 100 100 150 375
225 275 100 175 400
175 225 125 375 125
225 100 350 150 175
525 375 150 450 500
600 500 300 375 175
500 250 350 600 175
375 400 400 100 600
275 275 150 525 350
300 200 500 300 275
300 500 150 300 525
500 175 175 450 350
400 250 100 275 525
275 400 175 275 250
275 350 100 200 350

17109471.6633*
16493302.4650*
9308296.7941*
8401445.1355*
8092579.8076*
7867905.7778*
6769642.9146*
6433307.4651*
6216649.7761*
5709367.7727*
5387841.5871*
5139235.1378*
5023229.5686*
4392263.4949*
4238000.7686*
3959091.4877*
3679647.2474*
3543686.0471*
3226371.2627*
589610.6002
583898.6687
553118.0673
552821.6868
544614.9679*
506723.6312*
471784.2155
402833.7197
368014.9126
304127.9184*
237902.1182*

Table 9.4 Processing the Initial Population - Binary Coding

(* Violated solutions)
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distribution of the demands, is a reasonable assessment of a system's general

performance. The problem then is to specify a target availability (Aar), that

the designers wish to reach, and apply OPTNET1 to search for economical

solutions that do not violate this availability issue. For Networks considered

herein, this value, which depends on the designers and planners of water

networks, has been fixed at 99.95 %.

OPTNET1 was first run three times with Network G using binary coding. As

mentioned earlier, just 30 generations have been considered for each trial. For

bigger networks however, larger numbers of generations may be required.

In Fig. 9.2 results of the three independent trials, using different starting

points, are displayed. Some details of the best run are summarised in Tables

9.4 and 9.5. Table 9.4 gives (1) the member numbers, (2) the diameters of the

initial population and (3) the total network cost of each population member. It

should be noted that OPTNET1 includes a routine that sorts the population

costs in a decreasing order and hence, the minimum population cost is that

having the biggest rank (Npop). Table 9.5 presents the result of the last

generation.

It should be noted that for Network G, many values for the penalty coefficient

r (1, 5, 10, 15, 20, 25, 30, 35 and 40) have been tried. The penalty coefficient

r . 30, which has been held constant throughout the runs, has been found

suitable and allowed the search to include some infeasible solutions during the

genetic process as previously outlined (see Section 9.3.2). Reduction of the

penalty factor makes the infeasible solutions more prominent in the search.

Increasing the penalty factor will exclude infeasible solutions from the search.

Fig. 9.2 shows the best-of-generation network costs of each generation as the

solution proceeds for the three independent runs. At first, performance is poor,

but through the action of the genetic operators, better and better strings are

formed. The best solution has been found in the 3rd trial in which the total

network cost corresponds to the network cost only with no violation of the

availability constraint. This optimal solution, which has been found at

generation 22 of the best run, is as follows:

Diameters:	350, 275, 200, 100 and 225.
(mm)

Cost:	£160638.
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St.	 Diameters	 Total Cost1
(mm)	 of Strings

(f)

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13
14
15:
16
17
18
19
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

150 250 125 275 275
350 275 100 125 375
300 275 125 125 350
500 275 100 450 400
450 275 150 500 250
450 275 150 500 250
350 225 200 500 375
500 150 225 225 250
350 250 150 175 500
350 275 450 225 225
350 375 275 275 275
375 275 200 225 400
350 275 275 225 375
350 275 250 225 375
350 275 225 225 375
400 275 125 175 375
450 225 200 225 275
350 225 250 125 275
350 175 250 225 350
350 175 250 225 350
400 225 200 225 275
375 275 225 225 225
350 275 125 275 275
350 175 250 275 275
350 175 250 275 275
350 275 200 225 275
350 275 100 275 250
300 250 225 275 275
350 275 225 125 275
300 275 200 225 275

3352382.4265*
1344067.9019*
518906.2021*
446944.3649
385336.8454
385336.8454
372452.9583
351548.0446*
298476.6610
295652.6721
279767.2461
269913.8826
264245.3378
255941.7323
248723.4294
245760.7813
242119.1061
236469.4520*
216010.7905
216010.7905
209512.2809
201367.7016
200397.8648
199698.8794
199698.8794
197665.8980
189556.1653
188659.3418
184875.9565
175263.2008

Table 9.5 Processing the Final Population - Binary Coding

(* Violated solutions)
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The first diameter (350) corresponds to the first link in the network, the

second diameter (275) to link number 2 and so on.

OPTNET1 was executed a further three times with Network G, but this time

using integer coding. Fig. 9.3 shows the results related to the three runs.

From Fig. 9.3, it can be seen that the best optimal solution (£159553) has

been found in the third run at generation 27. Fig. 9.3 shows also that solution

costs obtained using integer coding are slightly better than those

corresponding to the use of binary coding. Indeed, with respect to the best

solutions found using both binary and integer codings, the best solution has

been found using integer coding. This solution has the following set of optimal

diameters and cost:

Diameters:	350, 200, 100, 250 and 250.
(mm)

Cost:	 £159553.

Run Number
	

Best Cost	Difference from
(i )	Global (%)

Binary coding

Integer coding

1	164603	 4.03
2	162253	 2.54
3	160638	 1.52

1	163176	 3.12
2	161351	 1.97
3	159553	 0.83

Table 9.6 Run Comparisons
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Examination of figures 9.2 and 9.3 shows that with the use of integer coding, a

'real' convergence is observed for network G from generation 25 to generation

30 for the three runs. Moreover, for Network G the best solution found using

integer coding is less economical (0.7 %) than that obtained with binary

coding. This result has been confirmed by running OPTNET1 (for binary and

integer codings) with network G many times.

Each run for network G has required approximately 5 min on a 486 IBM
compatible PC.

9.3.5 Enumeration

For the purpose of highlighting the performance of OPTNET1, network G was

sized using a complete enumeration scheme. A simple program called

GLOBAL,  which incorporates the Reliability Tester and a routine for

computing the total network cost (penalty cost is included), was written for this

purpose. GLOBAL performs all combinations of the 16 diameters allowed for

each link of network G.  For each combination, the Reliability Tester is applied,

and its corresponding total cost is calculated. GLOBAL retains the best

solution found so far. It should be noted that for network G  the total number

of solutions examined by enumeration is 165 (1 048 576 solutions). GLOBAL

was run using the same computer machine (486 IBM  compatible PC) and has

required an extensive run time of approximately 4 days. The global solution

found is:

Diameters:	350, 225, 150, 200 and 250.
(mm)

C_251:	£158233.

9.3.6 Conclusions

As seen above, the global solution for network G has a cost of £158233.

Examining the results presented in Table 9.6 shows that OPTNET1 finds

solutions near to the global solution (increase in cost of 0.8% - 1.5% for the
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best runs). The difference between the global solution and the best solutions

related to each trial may be further improved by increasing the number of

generations allowed. This number has been set deliberately to 30 for the

purpose of comparison between the standard genetic algorithm (OPTNET1)

and the steady state genetic search (OPTNET2) which is presented in the

following section.

Irrespective of whichever coding is used, one finishes with the conclusion that

genetic algorithms are very effective techniques in finding near-optimal

solutions, as solutions within 0.8-1.5% of global optimum were found by

examining only a small proportion (0.09%) of the possible designs for an

insignificant run time (5 min) compared to that (4 days) required by complete

enumeration.

Having applied the standard genetic algorithm to the design of water network

G, we move now to the application of the steady state genetic algorithm to the

design of the same network and network F which was presented previously in

chapter 8.

9.4 THE STEADY STATE GENETIC ALGORITHM

The performance of the standard genetic algorithm may again be improved by

applying the Elitist strategy. The main idea of the elitist strategy is to copy the

best member of each generation into succeeding generations. It will be seen

later that this strategy is built into the steady state genetic algorithm.

In this section, the focus will be on the difference between the standard genetic

algorithms and the Steady State Genetic Algorithms. Specifically, these include

overlapping generations, partial replacement and independent genetic

operators. Then, the SSGAs will be programmed in Pascal, implemented and

applied to Networks C and F.

The steady state genetic search is similar to the GA procedures normally used

in classifier systems. Holland (1975) was the first to describe an algorithm

with most of the features of SSGAs and later these were used in other works

(Goldberg, 1983; Whitley and Kauth, 1988; Syswerda, 1989). The main

difference between SSGAs and the standard GAs is the use of overlapping

generations, ie, instead of replacing the current population by a new one, only

204



a few members (typically one or two) of the population are changed. Among

the advantages of this algorithm, there are:

(1) Good members of the population are not destroyed and float to the

top of the list where their genetic material is preserved.

(2) Poor members sink to the bottom where they are more likely to be

deleted, but can still be parents if they are lucky. These characteristics provide

an automatic elitism to protect good members of the population.

It is worth noting that the technique that will be used for the design of water

networks, which is called Steady State without Duplicates, has been used with

great success by a number of genetic algorithm practitioners (Whitley and

Kauth, 1988; Syswerda, 1989; Davis, 1991). The purpose of the

non-duplication is to discard from the population offspring that are duplicates

of current solutions. Consequently, each string within the population will be

unique. Moreover, the steady state without duplication algorithm may be

further improved, as found herein, by insertion of generated members that are

better than the worst member in the current population.

The same strategy that was followed in section 9.2 for the application of GAs

to the optimisation of water networks will be adopted. The string

representation and the way of seeding the initial population will not change.

However, the technique of fitness function, the way the genetic operators are

applied and finally the values of the genetic parameters will be discussed.

9.4.1 The Scaled Fitness

Recently, Davis (1991) suggested the Linear Normalization technique as a

surrogate fitness scaling scheme which requires a sorting of the raw fitnesses,

followed by generation of scaled fitnesses that begin with a constant value and

decrease linearly. Parameters of this technique are the constant value and the

rate of decrement.

To test the performance of each of the fitness scaling techniques outlined,

(Goldberg's Linear scaling and Davis Linear Normalization) critical fitness

values presented in Table 9.7 are used. These are taken from Davis (1991) for

two reasons. First, because they exemplify a quick convergence that may occur
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during the execution of GAs if scaling techniques are not used. Indeed, the

existence of a super member (200) will probably eliminate all its competitors

and dominate the population in one or two generations. Second, they

reflect a situation, especially encountered at the end of GAs runs, when the

Raw Fitness 200.00 9.00 8.00 8.00 4.00 1.00

Linear Scaling 76.67 31.38 31.38 31.14 30.19 29.48

Linear 100.00 80.00 60.00 40.00 20.00 1.00
Normalization

TABLE 9.7 Examples of Fitness Scaling Techniques

fitnesses of several members become close (eg 9, 8, 8). If this happens, it is

desirable to increase the pressure of the selection to allow the fittest solutions

to have more copies than the others. Examination of the result of the two

techniques shows that the linear scaling does no better than having the raw

fitnesses: the super member and the closeness of the other members still

persist. However, with the Linear Normalization, the super member will be

selected, but not so much that it will quickly dominate the population.

Moreover, the Linear Normalization heightens the competition in the close

race. Therefore, for the reasons outlined above, the Linear Normalization will

be used in the steady state Genetic search.

In the design of water networks, if the raw fitness corresponds to the total cost

of a solution St (see Eq. 9.13), sorting the raw fitnesses into an ascending

numerical order permits a correspondence between the minimum raw fitness

and the best (cheapest) solution. On the other hand, the maximum raw fitness

will be associated with the worst (most expensive) solution. When these raw

fitnesses are sorted, the scaled fitness may be assessed as:
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Where

N op	
. size of population;

p

Fit'st

KScal

..-_ scaled fitness;

. constant used in the Linear Normalization, eg 10;

Fit's,	= KScal • (Npop ± 1 — Ranks)
	

(9.18)

Rank 	rank of the solution St; Rankst = 1 ,..., Npop.

Eq. 9.18 states that the first solution (rank = 1) will receive the highest scaled

fitness and the last solution (rank . N0 ) will have the lowest scaled fitness.
p

Values of the scaled fitness vary linearly between these bounds. Thus, the

transformation of a minimisation problem to a maximisation problem required

by GAs has been achieved without requiring a large constant as suggested

earlier.

9.4.2 Genetic Operators

Basically, the three genetic operators used in the generational replacement

search may also be applied to the steady state genetic algorithms. However,

the operators that have been reported to enhance the performance of the

STGAs will be adopted. Since STGAs worked individual by individual there is

no need for any sophisticated selection operator and the simple and quick

roulette wheel process may fill this gap.

Syswerda (1989) has made a comparison of three crossover operators using

the STGAs. These are one-point crossover, two-point crossover and uniform

crossover. By treating six different optimisation problems, he has found that

two-point crossover was consistently better than one point crossover and the

uniform crossover, generally works better than either. Therefore, the uniform

crossover will be used.
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In brief, to effect the uniform crossover, two parents (Sti and St2) are selected

and a crossover mask, which is a string having the same length (eg Ls ..8) as

the population member, has to be generated randomly. If the crossover mask is

made up of '0' and '1', this means that the first offspring will take the same

genes of the first parent having at their positions '0' and the same genes from

the second parent having at their positions '1', and, vice versa for the second

offspring. An example of the uniform crossover applied to the integer coding is

shown as follow:

St1	1 5 4 7 9 2 1 8

St2	9 3 8 2 3 4 5 7

Mask	1 0 0 1 1 0 1 0	Yields:

St1 '	 9 5 4 2 3 2 5 8

St2'	1 3 8 7 9 4 1 7

Having selected the crossover operator, the bit mutation or the integer

mutation used in the above section are suitable and may be also used.

It was mentioned that in the standard GAs, selection is performed first and

then, the selected members undergo crossover and mutation. It is common to

apply a combined operator in which mutation is embedded with crossover

(Goldberg, 1989). With the aim of improving the performance the STGAs,

Davis (1991) proposed to separate crossover and mutation, and, one or the

other of these operators will be applied during any iteration of the genetic

search. He proposed that the choice of any operator may be performed by the

roulette wheel selection. These modifications are adopted in the present work.
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9.4.3 Parameter Values

Most genetic implementations keep the crossover and the mutation rates fixed

over the course of a run. Recent work by Booker (1987) suggests that varying

the crossover rate may be beneficial. Davis (1991) has confirmed this result by

his experimental work. Indeed, Davis proposed to alter both crossover and

mutation rates as the run is in progress in order to gain improvements in the

genetic search. This was achieved by specifying a minimum and maximum

values of each operator. At the beginning of a run these rates are set to their

minimum and then will be changed gradually over the run and finally set to

their maximum when the run is completed. A full description of how to

produce these values efficiently and effectively is given in Davis (1991). These

values that are also used here are:

Pcrossover = 0.70 - 0.50;

Pmutation = 0.30 - 0.50.

For the size of the population, the same population size used in the

generational replacement algorithm, applied to water network design, has been

adopted:

N op . 30;p
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9.4.4 The Steady State Genetic Algorithm Adopted

Algorithm

Initialise Population: Randomly generate an initial Population of size N0

Each member of the population consists of Np candidate pipe sizes.

Compute the Fitness function of each member of the population based

on running the Reliability Tester which gives the system availability.

Having the system availability, the fitness function can be determined

on the basis of network cost (CostNET) only if there is no violation

of the availability specification or on both network cost (CostNET) and

penalty cost (CostpNLT) for violation of the availability specification.

Compute the Scaled Fitness of each member of the population by
applying the Linear Normalization Scaling technique;

WHILE NOT (Terminate Condition) DO

FOR 1 To 2 DO

REPEAT

Selection by Roulette wheel technique: Pick two parents

Selection by Roulette wheel technique: Pick one operator

IF Operator = Crossover then Uniform Crossover: Crossover

the parents based on the crossover probability

to produce two new offspring;
IF Operator = Mutation Mutate each offspring based on

mutation probability;

Duplication Condition: the first offspring is taken and its

genes (diameters) are compared to the other genes

of each population member. In the event of being

different to all the members it will be retained.

Otherwise, the same procedure is applied to the second

offspring. If each offspring has an identical copy within

the population the process restarts and continues until

the continues until the condition of non-duplication

is satisfied;

UNTIL (No Duplication)

Compute the Fitness of the member retained;

Compute the Scaled Fitness: insert the member retained into the

population, sort the population and apply the Linear

Normalization technique to compute the scaled fitness values;

Insertion Test. the retained offspring is compared to the worst member

within the population. It is only inserted on the condition

that is better than the worst;

ENDFOR

ENDWHI LE.
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It is worth noting that the repeat-until loop within the above algorithm tests

the duplication condition. The test on duplication is very quick since only

comparisons of diameters are involved. Note that the resulting population may

be composed of members having the same cost but different diameters.

OPTNET2, which implements the above algorithm has been developed during

this research. Like OPTNET1, OPTNET2 used the same sets of data. Tests of

OPTNET2 are provided in the following subsection.

9.4.5 Examples

Under this heading, OPTNET2 is applied to two numerical examples:

Networks G and F. The coding used is the integer representation for the

reasons observed in the previous section.

9.4.5.1 Network G

One of the convergence criteria used in the standard genetic algorithm is the

number of generations allowed. In the steady state genetic algorithms,

however, the concept of generation is not used. Instead, the convergence

criterion applied is a desired number of function evaluations (Davis, 1991).

Previously network G was optimised for a total number of function evaluations

of 930. Here again, this number of trials is also considered.

As in subsection 9.3.4, OPTNET2 was run three times with network G for 930

function evaluations. Table 9.8 shows the initial population of strings,

generated at random for the third run, while Table 9.9 displays the final

population.
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St.1 Diameters
(mm)

Total Cost
of Strings

(E)

1: 225 525 275 150 525 9235717.9390*
2: 225 500 450 400 150 8807991.1564*
3: 100 350	175 525 300 8606600.6451*
4: 150	125 500 400	125 7579059.6420*
5: 100 375	100 300 450 7138852.5675*
6: 100	125 450 350 275 6622622.1158*
7: 100 275 300 100 450 5974069.8874*
8: 100	150 225 350 375 5089788.7120*
9: 150 300 375	175 200 4613773.3192*

10: 225 350	125	150 225 2991762.0094*
11: 600	150	150	175 450 1549328.9547*
12: 350 500 350	150	100 1134061.0626*
13 500 525 350 100 500 608764.9609
14: 375 225 200 600 500 564130.9597
15: 275 375 525 225 150 540812.6497*
16: 500 175 250 225 600 505762.3394
17 525 525	175	175 375 496344.2026
18 525 300 200 400 450 492886.6118
19: 375 450 400 375 350 475657.9860
20: 275 525 250 375 300 457740.2507*
21: 375 250 450 350 450 455081.5125
22: 275 175 200 500 450 445023.8877*
23: 350	175 400 275 525 418295.0516
24: 275 400 400 350 400 412493.8851
25: 350	125 450 375 400 396288.6047
26: 450 200 400 275 400 391567.1443
27: 300 225 400 275 500 386072.4250
28: 450 225 225 100 400 327119.0924*
29: 300 275 525	175 225 321168.3353
30: 350 225 250 125 275 236469.4520*

Table 9.8 Processing the Initial Population - Network G

(* Violated solutions)
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St.1 Diameters
(mm)

Total Cost
of Strings

(L)

1: 350 225 225 200 250 173840.3842
2: 350 225 200 225 250 173840.3842
3: 350 275 150 200 250 173754.6155
4: 350 275 200 150 250 173754.6155
5: 350 250 225 150 250 171628.8482
6: 350 225 150 250 250 171628.8482
7: 350 250 150 225 250 171628.8482
8: 350 225	125 175 250 171213.5202
9: 350 225	150 150 250 170203.6543

10: 350 250 175 200 250 169695.5274
II: 350 250 200 175 250 169695.5274
12: 350 225 225 175 250 168655.0627
13 350 225 175 225 250 168655.0627
14 350 275	175	150 250 168569.2939
15: 350 275	150 175 250 168569.2939
16 350 225 100 175 250 168305.5358
17 350 225 125 250 250 168268.7456
18 350 275 200 100 250 167856.4188
19 350 225 200 200 250 167662.5461
20: 350 200 150 250 250 165451.0100
21: 350 250 150 200 250 165451.0100
22: 350 250 200 150 250 165451.0100
23: 350 250 175 175 250 164510.2059
24: 350 225 150 225 250 164410.5452
25: 350 225 175 200 250 162477.2245
26: 350 225 200 175 250 162477.2245
27: 350 200 125 250 250 162090.9075
28: 350 250	150 175 250 160265.6885
29: 350 250 175 150 250 160265.6885
30: 350 225 150 200 250 158232.7071

Table 9.9 Processing the Final Population - Network G
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Some of the features of the last population need to be highlighted. First, the

solution costs are between £173840 and £158233, giving a region within

which best costs are located. This offers the possibility of taking as an

alternative to the optimum one of these solutions which may actually be

preferred to the optimum, based on other non-quantifiable measures. This is a

major benefit of the steady state genetic algorithm. In contrast, this was not

observed with the generational replacement scheme where results of the last

generation vary between £3352382 which is infeasible and £175263 (see

Table 9.5). Second, as shown by Table 9.5, in the Generational Replacement

scheme the best solution (£159553) was lost during the course of the further

runs. For the steady state genetic search, however, the best string is preserved

automatically. Third, the technique of non-duplication has been applied

successfully ie, each member of the final population is unique. Since the test of

duplication is performed on pipe sizes only, different solutions with the same

cost may be members of the final solution. Examples are strings 1, 2; 3, 4; and

5, 6, 7. For the standard genetic algorithm, duplicate solutions which reduce

the diversity of the population may be present in the final result as shown in

Table 9.5 (eg strings 5, 6 and 24, 25).

Finally, the most important feature related to the application of OPTNET2 to

network G is the fact of locating the global solution (£l58233) in relatively

few evaluations. In Figures 9.4.1/2/3, the best string costs, found during the

courses of the three runs, are displayed against the number of function

evaluations. Examination of these figures shows clearly the rapid convergence

of OPTNET2 to the global solution in Figures 9.4.2 and 9.4.3 or to the very

near global solution (Fig. 9.4.1) for fewer function evaluations compared to the

generational replacement technique. The best solutions for each run, their

numbers of function evaluations required and the differences from the global

solution are tabulated in Table 9.10.

According to subsection 9.3.4, 27 generations were required to find the best

solution (£159553). This corresponds to a total of 840 function evaluations.

With OPTNET2, however, the total number of function evaluations (324)

required is less than that corresponding to the application of OPTNET1.

Therefore, for network G about half of the number of function evaluations are

required by OPTNET2.
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Run	Best Cost	Number of	Difference from
Number	(E)	 Function	Global (%)

Evaluations

1 160266 252 1.28
2 158233 294 0
3 158233 205 0

Table 9.10 Run Comparisons - Network G

As for OPTNET1, each complete run (930 function evaluations) of OPTNET2

has required for the same number of function evaluations 5 min on the same

computer.

Before applying OPTNET2 to a greater network, it is worth noting that

network G is symmetrical in layout and demand, whereas, the solutions

produced by OPTNET2 and the global solution are unsymmetrical in pipe

sizes. This can be explained by the fact that the optimisation technique used is

a discrete technique. Furthermore the optimisation of the symmetrical network

G without reliability constraints will be a tree configuration (Tree 1: 1, 2, 4

and 5 or Tree 2: 1, 2, 3 and 5) which is not symmetrical. As the GA program

incorporates a measure of reliability, in the above global solution for instance,

pipe 3 which is a link-forming loop has 150 mm which is greater than the

minimum pipe size allowed (100 mm) for this example to produce the target

reliability.

OPTNET2 finds also the "mirror-image" of unsymmetrical solutions. Examples

are (see Table 9.9):

St1: 350 225 225 200 250 and
St2: 350 225 200 225 250

St28:350 250 150 175 250	and
St29:350 250 175 150 250
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9.4.5.2 Network F

To further demonstrate the effectiveness of OPTNET2, a second numerical

example was selected (Network F). The Data required for network F have been

presented earlier in Chapter 8. As in chapter 8, the minimum pipe size

considered here is again Dmin 50 mm. The number of candidate diameters Nd

has been set to 16. In this situation, the maximum diameter is Dmax = 450 mm

(see Table 7.3). According to Chapter 8, a diameter of 350 mm was optimal

and sufficient to convey the network maximum flow (Q1 175 Us). Therefore,

450 mm is a reasonable maximum diameter for link 1. Since the distribution of

flow which may help in determining candidate pipe sizes for each link is

unknown, Nd (50 mm-450 mm) is held constant for all links.

OPTNET2 was applied three times to network F with integer coding for 2000

function evaluations. The final results of the best run are shown in Table 9.11

where thirty alternative feasible solutions close to the optimum are presented.

Figures 9.5.1/2/3 show plots of the best string costs found during the course

of trials for the three runs against the number of function evaluations.

As shown by Table 9.11, the genetic algorithm best solution corresponds to a

network cost of £238170 found at the third run (Run #3) after 1947 function

evaluations.

For run time, OPTNET2 has required approximately 2 Hrs 10 min on a 486

IBM compatible PC for 2030 function evaluations.

The following subsection addresses the problem of comparison of the results of

the optimisation of network F by the two genetic programs: OPTNET1 and

OPTNET2.
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St.1 Diameters
(mm)

Total Cost
of Strings

(E)

1: 375 250 250 50 175 125 80 50 150 150 80 100 300 248090.88
2 : 375 250 250 50 175 125 75 50 150 150 80 100 300 247789.94
3 : 350 250 250 50 175 100 80 150 175 150 100 100 300 247039.43
4 : 375 250 250 50 175 10080 50 150 150 100 100 300 247038.47
5 : 375 250 250 50 175 100 80 80 150 150 80 100 300 246971.24
6 : 350 250 250 50 175 100 75 150 175 150 100 100 300 246738.48
7 : 375 250 250 50 175 100 75 50 150150 100 100 300 246737.52
8 : 375 250 250 50 175 100 75 80 150 150 80 100 300 246670.29
9 : 350 250 250 50 175 150 80 80 115 150 100 100 MO 245551:35
10: 350 250 250 50 175 100 80 150 175 150 80 100 300 245553.75
11: 375 250 250 50 175 100 80 50 150 150 80 100 300 245552.79
12: 350 250 250 50 175 150 75 80 175 150 100 100 300 245252.80
13: 350 250 250 50 175 100 75 150 175 150 80 100 300 245252.80
14: 375 250 250 50 175 100 75 50 150 150 80 100 300 245251.84
15: 350 250 250 50 175 150 80 50 175 150 100 100 300 244135.31
16: 350 250 250 50 175 150 80 80 175 150 80 100 300 244068.08
17: 350 250 250 50 175 150 75 50 175 150 100 100 300 243834.36
18: 350 250 250 50 175 150 75 80 175 150 80 100 300 243767.13
19: 350 250 250 50 175 150 80 50 175 150 80 100 300 242649.63
20: 350 250 250 50 175 125 80 80 175 150 100 100 300 242193.65
21: 350 250 250 50 175 125 75 80 175 150 100 100 300 241892.70
22: 350 250 250 50 175 125 80 50 175 150 100 100300 240775.20
23: 350 250 250 50 175 125 80 80 175 150 80 100 300 240707.97
24: 350 250 250 50 175 125 75 50 175 150 100 100 300 240474.26
25: 350 250 250 50 175 125 75 80 175 150 80 100 300 240407.03
26: 350 250 250 50 175 100 80 80 175 150 100 100 300 239655.55
27: 350 250 250 50 175 100 75 80 175 150 100 100300 239354.61
28: 350 250 250 50 175 125 80 50 175 150 80 100 300 239289.53
29: 350 250 250 50 175 100 80 50 175 150 100 100300 238237.11
30: 350 250 250 50 175 100 80 80 175 150 80 100 300 238169.88

Table 9.11 Processing the Final Population - Network F
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9.4.5.2.1 Comparison between OPTNET1 and OPTNET2

Network F was optimised three times with OPTNET1 for 100 generations.

Fig. 9.6 shows the best-of-generation network costs against the number of

generation. Table 9.12 presents the final results of running OPTNET1 and

OPTNET2 with network F. The numbers of function evaluations presented in

Table 9.12 did not include the first population. In the final column of Table

9.12, the 'near optimal' solution considered for computation is the best solution

of the six runs.

Running OPTNET1 with network F has required 4 Hrs on the same PC for

3030 function evaluations.

Examination of Table 9.12 shows clearly that (1) the best solution for network

F has been obtained by running OPTNET2. (2) Results of the three runs of

OPTNET2 are all very close to the best network cost and are better than those

corresponding to OPTNET1. (3) The total number of function evaluations

(2030) required by OPTNET2 is less than that (3030) required by OPTNET1

and locates better solutions. (4) For the same network OPTNET2 has required

lower run time (2 Hrs 10 min) than OPTNET1 (4 Hrs). These four points

accord with the conclusion made earlier for the optimisation of network G.

Increasing the number of generations may improve the quality of the solutions

corresponding to OPTNET1 but at the cost of run time.

On the basis of the results presented in this Chapter, OPTNET2 outperforms

OPTNET1, ie OPTNET2 not only locates near global solutions but also

performs in a run time reduced relative to that required by OPTNET1.

224



--0--- Run # i1

--A---- Run # i2

--•--- Run # i3

	 Near-Optimal

6 0 0 0 0 0

5 5 0 0 0 0

5 0 0 0 0 0
C—
.. 4 5 0 0 0 0
0o
u
.x 4 0 0 0 0 0

3 5 0 0 0 00
z

3 0 0 0 0 0

2 5 0 0 0 0

2 0 0 0 0 0

0 10	20	30	40	50	60	70	80	90	100

Generation

Figure 9.6 Best-of-generation Network Costs for the three Runs

- Application of OPTNET1 to Network F



Run	Diameters	Best Cost Number	Difference
Number	(mm)	 (E)	of Function from near

Evaluations Optimal (%)

Results by OPTNET1

1 375 300 225 175 175
75 80 175 100 125

200 100 225	 262979	2970	10.42

2 375 300 225 80 275
80 150 100 125 75

200 75 175	 260841	3000	9.52

3 350 275 225 50 175
150 50 150 125 75
250 150 225	 246984	3000	3.70

Results by OPTNET2

1 350 275 175 80 75
225 150 50 175 50
200 100 275	 243433	1742	2.20

2 375 250 200 80 75
75 200 80 200 50
175 75 275	 239130	1947	0.40

3 350 250 250 50 175
100 80 80 175 150
80 100 300	 238170	951	0

Table 9.12 Run Comparisons - Network F
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9.5 CONCLUSIONS

The efficient software developed in this project, OPTNET2, has demonstrated

its efficacy as an improvement finding algorithm. Indeed, for each of the three

runs, OPTNET2 was executed with network F to a total number of function

evaluations of 2030. This may seem like a large number of function

evaluations, for this case, until the size of the discrete space being searched is

considered. For integer coding, each link of network F has the possibility of

taking any diameter of the 16 diameters considered. This represents a total of

1613 = 4.50* 1015 possible different alternatives in this huge search space. In

this light, 2030 function evaluations is an insignificant fraction,

0.000000000044%, of the possible unique alternatives. To put this

performance in perspective, if we were to search this efficiently for the best

solution among say, 10000 billion solutions, we would only examine 5

solutions before making our selection.

Since OPTNET2 is a stochastic optimisation software, there is no guarantee

that it will obtain the mathematically optimum solution to the problem.

One possible disadvantage is the computer time requirement for large

networks. In most cases, however, this is not a major consideration in view of

the cost savings that may be obtained. Such implementation should result in

the savings of many millions of pounds per year to the water industry.
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Chapter X

DISCUSSION

10.1 INTRODUCTION

Most aspects of reliability and optimisation for water distribution networks

have been discussed in the previous Chapters. However, it would be interesting

to make a comparison between the methods developed herein for the same

water distribution network. For this purpose, network F was selected and

optimised using the two reliability based optimal design models: the first is the

Entropy/LP (PATH_Q + LNOPTNET) method and the second is the

GA/Reliability Tester (OPTNET2) approach. The comparison must include

costs and reliability aspects for the same minimum and maximum bounds of

velocity. For the entropy based method, since the distribution of flow was

known, practical bounds on velocity were used to determine candidate

diameters and hence the optimal solution will be within these bounds. The

minimum and the maximum velocities considered were 0.5 m/s and 3.0m/s

respectively. For the second approach however, since the distribution of flow

was unknown a specified number of candidate diameters was held constant for

all the pipes within the network. Limits on velocity can only be known once

the optimal design has been found. The following section addresses these

considerations.
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10.2 Comparison between Flow Assignment plus LP Method

and OPTNET2

In Chapter 8, Network F was optimised using the Entropy/LP method for the

candidate diameters specified in Appendix B. Since the distribution of flow is

known, pipe velocities can be found by the application of the continuity

equation (steady state flow condition).

In Chapter 9 on the other hand, running OPTNET2 with network F gave the

best network cost and availability of the optimal solution. This solution needs

to be analysed for the distribution of flow and pipe velocities.

For clarity, Table 10.1 presents the solutions produced by the two methods for

network F along with flows and velocities. Table 10.2 summarises the results

of the analysis in terms of pressure for both solutions.

Examination of Table 10.1 shows that the minimum and the maximum

velocities for both methods are practically the same. Velocities are in the range

of 0.50-2.60 m/s. As far as the GA solution is concerned, it should be noted

that the flow directions have changed in three pipes (Links 4, 7 and 8) while

in the entropy based solution flows are not allowed to reverse.

Table 10.2 shows that the most pressure-critical nodes are different for the two

solutions as a consequence of the different directions and distributions of flow.

Node 5 for the entropy based solution and node 4 for the GA solution.

For the reliability aspect, it can be seen from Table 10.1 that both methods

produce reliable schemes (>99.95%). However the solution resulting from the

application of the Entropy/LP method is more reliable (99.98%).

With respect to cost the GA/RT method produces for this example a more

economical solution than that corresponding to the Entropy/LP method. This

difference in cost can be explained by the fact that in addition to the

specification of the values of flow in the Entropy based approach, the

directions of flow are not allowed to reverse. This additional constraint

prevents the optimisation search from exploring other solutions based on

different directions.
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Link X
(m)

Entropy/LP

D	Q
(mm)	(Us)

V
(m/s)

D
(mm)

GA/RT

Q
(Us)

v
(m/s)

1 1000.00 375 248.82 2.25 350 248.82 2.59

2 605.92 200 80.44 2.56 250 118.80 2.42
394.08 225 2.02

3 207.69 150 33.60 1.90 250 77.93 1.59
792.31 175 1.40

4 1000.00 225 50.41 1.27 50 1.03 -0.53*

5 1000.00 225 41.11 1.03 175 34.00 1.41

6 770.53 150 24.67 1.40 100 4.15 0.53
229.47 175 1.03

7 1000.00 200 22.88 0.73 80 4.75 -0.95*

8 37.14 80 8.58 1.71 80 4.03 -0.80*
962.86 100 1.09

9 501.93 50 2.86 1.46 175 43.11 1.79
498.07 75 0.65

10 764.43 175 42.18 1.75 150 36.57 2.07
235.57 200 1.34

11 1000.00 275 84.37 1.42 80 5.42 1.08

12 564.21 250 80.44 1.64 100 7.45 0.95
435.79 275 1.35

13 1000.00 300 168.38 2.38 300 130.02 1.84

Cost :	£345513	 £238170

ANET :	 99.98%	 99.95%

Vmin •	0.65 m/s at Link 9	 0.53 m/s at Link 4

Vm. :	2.56 m/s at Link 2	 2.59 m/s at Link 1

Table 10.1 Comparison between the two methods for Network F
(* the initial direction has reversed)
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Node
Entropy/LP
Pressure

(m)

GA/RT
Pressure

(m)

source 90.00 90.00
1 78.25 73.56
2 52.59 52.03
3 38.06 42.18
4 33.02 30.13
5 30.00 44.39
6 45.41 33.87
7 61.35 63.09

Table 10.2 Pressures of the two solutions

With respect to run time, the first method is very quick (about 5 min for

network F) since it involves simple mathematical computations (Simplex

algorithm) compared to the second (2 Hrs 10 min for network F) which

requires frequent use of the reliability tester, ie, for each member of the

population and for the number of function evaluations selected.

On the other hand, OPTNET2 may produce directly, not only the required

system availability of the near global solution, but also a set of near global

solutions that do not require to be adjusted as in the case of the solution

produced by the first approach.
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Chapter XI

RECOMMENDATIONS FOR FURTHER WORK

With the Reliability Tester, it is now possible to examine systematically in

what sense entropy based design are reliable. It is recommended that future

works investigate the impact of different directions of flow on the reliability of

water networks based on the entropy principle.

The efficient optimisation program, OPTNET2, developed in this research is a

global search algorithm for single source networks. OPTNET2 incorporates the

Reliability Tester, which is a general frame for the calculation of reliability of

water distribution networks. The use of OPTNET2 for the optimisation of

complex water systems relies on the extension of the Reliability Tester. For

this purpose, it is recommended that the Reliability Tester should be extended

to accommodate more complex water networks.

The possibilities for further research in the general area of water distribution

system optimisation with reliability considerations are numerous. These

possibilities include the development of optimisation models for large and

complex water distribution systems that incorporate a wide range of hydraulic

components. It is likely that any successful work in this area will involve some

form of Genetic Algorithm due to their robustness and efficiency in finding

near global solutions. As seen earlier in this report, in addition to being easy

to use, GAs do not rely on the restrictive assumptions of other optimisation

methods (unimodality, existence of derivatives, piecewise linearity, etc.). Indeed,
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GAs stand ready, today, to optimise water distribution networks and other

engineering systems.

Finding optimal locations of hydraulic components such as pumps, valves and

water towers, including their optimal sizes and heights, may be possible areas

for further work although some very few studies have been published in the

literature (eg, Lansey and Mays, 1989).

Research should be carried out into the selection of optimal layouts of water

distribution systems since very little work has been published in this area (eg,

Rowell and Barnes, 1982; Morgan and Goulter, 1989).

For the reliability aspects, reliability models have been developed for pumps

and links in the system. However no effort, to the knowledge of the author,

has been made to develop the same models for joints and fittings in water

systems which are more prone to failure (ie leakage) than pipes. Computation

of nodal reliabilities also involves the junction of pipes, where two or more

pipes are joined together by joints and fittings. In the absence of reliability

models for the joints and fittings, the network nodes are assumed to be

perfectly reliable. This assumption will give an upper bound to the overall

system reliability. Therefore it is recommended that reliability models be

developed for all components of water networks to obtain more realistic

estimates of the network reliability.

The past work on rates of breakage of pipes, information on pump failures and

failures of other network components, has shown that historical data in this

area are scarce. Since these data are essential for the accuracy of reliability

models, it is further recommended that a complete data base for all network

components that records the break and repair history including date and time

of breaks, date and time of repair, probable cause of break, type of break (eg a

circumferential or a longitudinal crack in a pipe) etc, should be developed.
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Chapter XII

CONCLUSIONS

Basically three main models for the design of water networks have been

developed in this study. The first model is related to the reliability aspects

while the two other models handle the reliability-based optimal design of water

networks. These models are: (1) the Reliability Tester, (2) the Entropy based

flow assignment plus Linear Programming model and (3) the Genetic

Algorithm search coupled with the Reliability Tester.

12.1 THE RELIABILITY TESTER

The reliability tester, that incorporates the major factors of reliability aspects

such as the randomness of both the demands and pipe failures and the concept

of repair time, is a powerful tool for fast assessment of nodal and system

availabilities of water distribution networks.

The model can be utilised for the analysis of an existing water system and the

identification of critical nodes with serious supply problems, and also identify

the major causes of unreliability.

In the design of water networks, where the focus is on provision of a system of

specified reliability or where the reliability is to be maximised, the model can

also be used.
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Due to its modest computational requirements compared to Monte-Carlo

simulations, the model has been efficiently and successfully incorporated into

the genetic searches: OPTNET1 and OPTNET2, for determining least cost

design of water distribution networks under reliability constraints.

12.2 PATH_Q, SIZED AND LNOPTNET

The unsatisfactory methods currently available for the design of water

networks, with reliability indices, require the introduction of new approaches

such as the quick and efficient first approach developed in this work, and

termed the flow assignment plus linear programming method. In this method

the distribution of flow is based on the entropy principle.

PATH Q finds the 'reliable' distribution of flow, SizeD determines the_
candidate diameters for each link within the water system according to the

velocity constraints, while LNOPTNET solves for the network least cost and

the optimal set of diameters. Execution of this sequence of programs with a

water distribution network requires very low run time compared to that

required by the genetic algorithm programs developed such as OPTNET2.

Application of the three computer programs: PATH_Q, SizeD and LNOPTNET

to the design of water networks results in the production of more reliable

schemes than those based on an arbitrary flow distribution. Results of the use

of the entropy and LP based method for the design of three samples of

networks showed that the maximum network availability obtained is a high

availability of about 99.99% when tested using the Reliability Tester with

standard assumption of demand distribution and pipe breakage statistics.

12.3 OPTNET2

The optimisation model, OPTNET2 developed herein is a robust stochastic

search algorithm that can overcome the limitations of the previous models. The

technique applied is based on the genetic algorithm and incorporates the

Reliability Tester for the computation of nodal and network availabilities.
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OPTNET2 uses two genetic operators: crossover and mutation that involve

nothing more complex than string copying and partial string swapping.

Numerical results of the examples discussed have demonstrated that OPTNET2

is a rapid search algorithm in the huge spaces explored.

OPTNET2 locates not only a near-global design but identifies a region of a

population of solutions close to the near-global solution that offers to the

designer the flexibility of choosing any close alternative solution to the

optimum, which may actually be preferred to the optimum solution, based on

other non-quantifiable measures, eg environmental considerations.

One possible drawback of OPTNET2 is related to run time ie, OPTNET2 is

time consuming. However, this is not a major consideration compared to the

cost savings that may be obtained. Moreover, due to the rapid development in

the world of PCs, if for instance, OPTNET2 now takes 10 Hrs to converge for

a network to the best solution, in the near future, it will probably take just 10

min or less on faster machines.
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APPENDIX A

SOLUTION OF THE NETWORK EQUATIONS

USING THE LINEAR METHOD

There is a considerable amount of published material for treating the problem

of analysis of pressure and flows of water distribution networks. An efficient

algorithm to solve this problem was proposed by Wood and Charles (1972) in

which a linearization scheme was developed for the energy equations. The

basic strategy is simple: the non-linear equations are first linearized using the

tangent approximation for each pipe belonging to a closed circuit and/or path

between the fixed head nodes. Then, the system of Np equations is solved ( Nj

continuity equations are included) for the flows. The newly calculated flows are

compared to the previous ones to check for convergence. Next, if the

pre-defined criterion for convergence is satisfied the algorithm stops.

Otherwise, these new values are substituted into the linearized part and the

process continues. The global head equation for a path, expressed as a function

fQ of the flowrate Q, is:

E fQ(Q) = LIE = E (hi) - E (Hpmp)
	

(A.1)

hj, is the head loss in each pipe (including minor losses) which can be

expressed as the sum of two terms, the line head loss in a pipe and the minor

loss, hu, and 1112,,,j respectively.

h 	KpQn	(A.2)

km	. IS„Q 2	(A.3)
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Krn

Where

m

g

Ad

ICp is a pipe-line constant which is a function which depends on length,

diameter and roughness of the pipe, and n is an exponent. Kp depends on the

head loss equation used in the analysis. Given a pipe of diameter D and length

L expressed in SI Units (m) Kp for the Hazen-Williams equation is:

Kp
	= }CL/C1•852 D4.87

	
(A.4)

Where

Kx	= 10.70 for SI Units;

C	= Hazen-Williams Coefficient;

n	= 1.852.

IC„ is the minor loss constant which is a function of the sum of the minor

loss coefficients for the fittings in the pipe (E m) given by:

= E (m) / 2gAd2	(A.5)

= minor loss coefficient;

= acceleration due to gravity, m/s2;

= aD2/4, m2.

Although pump head can be expressed in several ways, usually, it is described

by a concave curve which is fitted to actual pump operating data. For the

normal operating range, this curve is commonly approximated by a quadratic

or exponential equation:

Hpump = apQ2 + bpQ + Cp

Or

Hpump = 1-1. — dpQeP	(A.6)
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With ap, bp, cp, dp, ep are coefficients and I-Ic the cutoff head. Irrespective of

whichever relationship is used to link the pump head Ep to the discharge Q,

one finishes with a function f of Q such that:

= f(Q)
	

(A.7)

So, (A.1) can be written as:

E f(Q) = AE = E ((KpQ" Km42 ) — fp(Q))
	

(A.8)

Eq. A.8 is then linearized in terms of an approximate flowrate, Qi, in each

pipe. This is achieved by developing a Taylor expansion truncated to the first

order. The function fQ and its gradient Gi evaluated at Q = Qi are:

fQ(Q)

G.

=	IcpQin + ICQ12 — f(Q1) (A.9)

=	fQ'((2,)	BfQ/ OQ I Q=Q	nKp + 21C Q. — fp (Qi ) (A.10)

and for a path, the following linearized equation results:

E fQ(Q)	= AE = E (fQ(Q) + Gi (Q — Qi))

Or

E (Gi Q)	E (Gi Qi — fQ(Qi)) + dE
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The resulting (NL + NF - 1) linearized equations (A.11) added to Nj linear

continuity equations form a set of simultaneous linear equations, in Np

unknown pipe flows. These can be determined by an efficient computer matrix

routine, eg LU Decomposition for solving a set of linear equations.
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APPENDIX B: Candidate Diametrs for Networks E
&F

Network E

Candidate Diameters (mm)
Link Path Q Arbitrary Q Distribution

1 500 525 600 500 525 600
675 700 675 700

2 300 350 375 350 375 400
400 450 450 500

3 175 200 225 200 225 250
250 275 275 300

4 350 475 400 300 350 375
450 500 400 450

5 200 225 250 250 275 300
275 300 350 375

6 125 150 175 150 175 200
200 250 225 250

7 200 225 250 100 125 150
275 300 175 200

8 150 175 200 125 150 175
225 250 200 225

9 250 275 300 250 275 300
350 375 350 375

10 200 225 250 175 200 225
275 300 250 275

11 125 150 175 150 175 200
200 225 225 250

12 150 175 200 150 175 200
225 250 225 250

13 125 150 175 125 150 175
200 225 200 225

14 150 175 200 150 175 200
225 250 225 250

15 125 150 175 125 150 175
200 225 200 225

16 100 125 150 75 80 100
175 200 125 150

17 75 80 100 80 100 125
125 150 150 175

•	18 75 80 100 100 125 150
125 150 175 200

Table Bl. Candidate Diameters for the Two Flow Distributions for Network E
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Path	Number of
Links in Path

Link Number

1
2
3
4
5
6
7
8
9

10
11
12

Node Equation
1
2
3
4
3
2
3
4
5
6
5
4

1

1
1
1
1
1

12
123
1236
125
14
149

4	9 12
4	9 12
2	3	6
4	914
4914 

13
11
17

16

Loop Equation
13 4 -2 4 7	-5
14 4 -3 5 8	-6
15 4 -8 10 13	-11
16 4 -7 9 12-10
17 4 -12 14 17	-15
18 4 -13 15 18	-16

Table B2. Strings of Pipes for Pressure and Loop Constraints

For Network E.
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Network F

Candidate Diameters (mm)
Link Path_Q Arbitrary Q

Distribution

1 350 375 400 350 375 400
450 500 450 500

2 175 200 225 250 275 300
250 275 350 375

3 150 175 200 150 175 200
225 250 225 250

4 200 225 250 50 75 80
275 300

5 175 200 225 75 80 100
250 275 125 150

6 125 150 175 125 150 175
200 225 200 225

7 150 175 200 50 75
225 250

8 80 100 125 50 75
150

9 50 75 125 150 175
200 225

10 150 175 200 125 150 175
225 250 200 225

11 250 275 300 150 175 200
350 375 225 250

12 225 250 275 100 125 150
300 350 175 200

13 225 250 275 250 275 300
300 350 350 375

Table B3. Candidate Diameters for the Two Flow Distributions for Network F.
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Path	Number of
Links in Path

Link Number

1
2
3
4
5
6
7

8
9

10
11
12
13

Node Equation
1
2
3
4
4
3
2

Loop Equation
3
3
3
3
3
3

13
10
11
6
8
9

1
12
123

1	2
1	2
113

12
-11

4
-5
-7
-8

1235
11
11

-2
-12
-3
-4
-6

-10

8

Table B4. Strings of Pipes for Pressure and Loop Constraints

For Network F.
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String	x1
No.

	

1	5

	

2	11

	

3	6

	

4	3

	

5	5

	

6	12

	

7	5

	

8	14

	

9	7

	

10	5

APPENDIX C

RESULTS OF MINIMISATION OF

F = 3X 2 + 4X
1 • X2 + 5X22

1 

S.T X 1' X2 >= 0

X
1
 + X

2
 >= 4

Generation 0

x2 F Fitness

4 235 2465
9 1164 1536
4 284 2416

13 1028 1672
2 135 2565
4 704 1996

12 1035 1665
1 649 2051
4 339 2361
3 180 2520

E Fitness = 21247;
Max Fitness = 2565;
Avg Fitness = 2124.7;

Generation 7
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String	x1	x2
No.

1	6	o
2	7	6
3	7	5
4	6	o
5	5	6
6	5	4
7	6	4
8	13	3
9	12	5

10	4	3

E Fitness = 23337;
Max Fitness = 2592;
Avg Fitness = 2333.7;

Fitness

108 2592
495 2205
412 2288
108 2592
375 2325
235 2465
284 2416
708 1992
797 1903
141 2559

Generation 10

String	x1	x2
No.

1	7	3
2	6	1
3	7	1
4	3	13
5	7	2
6	6	8
7	7	5
8	7	1
9	3	1

1 0	7	o

Fitness

276 2424
137 2563
180 2520

1028 1672
223 2477
620 2080
412 2288
180 2520
44 2656 (optimum)

147 2553

E Fitness = 23753;
Max Fitness = 2656;
Avg Fitness = 2375.3;
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